WorldWideScience

Sample records for casimir effect

  1. Casimir Effect The Classical Limit

    CERN Document Server

    Feinberg, J; Revzen, M

    2001-01-01

    We analyze the high temperature limit of the Casimir effect. A simple physical argument suggests that the Casimir energy (as opposed to the Casimir free energy) should vanish in the classical limit. We check the validity of this argument for massless scalar field confined in a cavity with boundaries of arbitrary shape, using path integral formalism. We are able to verify this suggestion only when the boundaries consist of disjoint pieces. Moreover, we find in these cases that the contribution to the Casimir entropy by field modes that depend on that separation, tends, in the classical limit, to a finite asymptotic value which depends only on the geometry of the cavity. Thus the Casimir force between disjoint pieces of the boundary in the classical limit is entropy driven and is governed by a dimensionless number characterizing the arbitrary geometry of the cavity. Contributions to the Casimir thermodynamical quantities due to each individual connected component of the boundary exhibit logarithmic deviations i...

  2. Casimir Effect - The Classical Limit

    International Nuclear Information System (INIS)

    The temperature dependence of the Casimir effect for the radiation field confined between two conducting plates is analysed; The Casimir energy is shown to decline exponentially with temperature while the Casimir entropy which is defined in the text is shown to approach a limit which depends only on the geometry of the constraining plates. The result is shown to hold, for a scalar field, for arbitrary geometry. The high temperature (T) expansion is shown to be ''robust'', i.e. it does not have any nonvanishing correction to the ''classical' result where the latter is defined by the validity of the Rayleigh - Jeans law. We show that validity of the Rayleigh - Jeans law implies the vanishing of the Casimir energy, hence the high temperature Casimir force, for a wide variety of geometries, is purely entropic

  3. Casimir Effect : Theory and Experiments

    CERN Document Server

    Lambrecht, Astrid

    2011-01-01

    The Casimir effect is a crucial prediction of Quantum Field Theory which has fascinating connections with open questions in fundamental physics. The ideal formula written by Casimir does not describe real experiments and it has to be generalized by taking into account the effects of imperfect reflection, thermal fluctuations, geometry as well as the corrections coming from surface physics. We discuss these developments in Casimir physics and give the current status in the comparison between theory and experiment after years of improvements in measurements as well as theory.

  4. Casimir effect: The classical limit

    International Nuclear Information System (INIS)

    We analyze the high temperature (or classical) limit of the Casimir effect. A useful quantity which arises naturally in our discussion is the 'relative Casimir energy', which we define for a configuration of disjoint conducting boundaries of arbitrary shapes, as the difference of Casimir energies between the given configuration and a configuration with the same boundaries infinitely far apart. Using path integration techniques, we show that the relative Casimir energy vanishes exponentially fast in temperature. This is consistent with a simple physical argument based on Kirchhoff's law. As a result the 'relative Casimir entropy', which we define in an obviously analogous manner, tends, in the classical limit, to a finite asymptotic value which depends only on the geometry of the boundaries. Thus the Casimir force between disjoint pieces of the boundary, in the classical limit, is entropy driven and is governed by a dimensionless number characterizing the geometry of the cavity. Contributions to the Casimir thermodynamical quantities due to each individual connected component of the boundary exhibit logarithmic deviations in temperature from the behavior just described. These logarithmic deviations seem to arise due to our difficulty to separate the Casimir energy (and the other thermodynamical quantities) from the 'electromagnetic' self-energy of each of the connected components of the boundary in a well defined manner. Our approach to the Casimir effect is not to impose sharp boundary conditions on the fluctuating field, but rather take into consideration its interaction with the plasma of 'charge carriers' in the boundary, with the plasma frequency playing the role of a physical UV cutoff. This also allows us to analyze deviations from a perfect conductor behavior

  5. Casimir Effect on the brane

    CERN Document Server

    Flachi, Antonino

    2009-01-01

    We consider the Casimir effect between two parallel plates localized on a brane. We argue that in order to properly compute the contribution to the Casimir energy due to any higher dimensional field, it is necessary to take into account the localization properties of the Kaluza-Klein modes. When the bulk field configuration is such that no massless mode appears in the spectrum, as, for instance, when the higher dimensional field obeys twisted boundary conditions across the branes, the correction to the Casimir energy is exponentially suppressed. When a massless mode is present in the spectrum, the correction to the Casimir energy can be, in principle, sizeable. However, when the bulk field is massless and strongly coupled to brane matter, the model is already excluded without resorting to any Casimir force experiment. The case which is in principle interesting is when the massless mode is not localized on the visible brane. We illustrate a method to compute the Casimir energy between two parallel plates, loca...

  6. Schwinger's Dynamical Casimir Effect Bulk Energy Contribution

    CERN Document Server

    Carlson, C E; Pérez-Mercader, J; Visser, M; Carlson, C E; Carlson, Carl E.; Molina-Paris, Carmen; Perez-Mercader, Juan; Visser, Matt

    1997-01-01

    Schwinger's Dynamical Casimir Effect is one of several candidate explanations for sonoluminescence. Recently, several papers have claimed that Schwinger's estimate of the Casimir energy involved is grossly inaccurate. In this letter, we show that these calculations omit the crucial volume term. When the missing term is correctly included one finds full agreement with Schwinger's result for the Dynamical Casimir Effect. We have nothing new to say about sonoluminescence itself except to affirm that the Casimir effect is energetically adequate as a candidate explanation. Schwinger's Dynamical Casimir Effect is one of several candidate explanations for sonoluminescence. Recently, several papers have claimed that Schwinger's estimate of the Casimir energy involved is grossly inaccurate. In this letter, we show that these calculations omit the crucial volume term. When the missing term is correctly included one finds full agreement with Schwinger's result for the Dynamical Casimir Effect. We have nothing new to say...

  7. Experiment and theory in the Casimir effect

    CERN Document Server

    Klimchitskaya, G L

    2006-01-01

    Casimir effect is the attractive force which acts between two plane parallel, closely spaced, uncharged, metallic plates in vacuum. This phenomenon was predicted theoretically in 1948 and reliably investigated experimentally only in recent years. In fact, the Casimir force is similar to the familiar van der Waals force in the case of relatively large separations when the relativistic effects come into play. We review the most important experiments on measuring the Casimir force by means of torsion pendulum, atomic force microscope and micromechanical torsional oscillator. Special attention is paid to the puzzle of the thermal Casimir force, i.e., to the apparent violation of the third law of thermodynamics when the Lifshitz theory of dispersion forces is applied to real metals. Thereafter we discuss the role of the Casimir force in nanosystems including the stiction phenomenon, actuators, and interaction of hydrogen atoms with carbon nanotubes. The applications of the Casimir effect for constraining predictio...

  8. Schwinger's Dynamical Casimir Effect: Bulk Energy Contribution

    OpenAIRE

    Carlson, Carl E.; Molina--Paris, Carmen; Perez--Mercader, Juan; Visser, Matt(School of Mathematics, Statistics, and Operations Research, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand)

    1996-01-01

    Schwinger's Dynamical Casimir Effect is one of several candidate explanations for sonoluminescence. Recently, several papers have claimed that Schwinger's estimate of the Casimir energy involved is grossly inaccurate. In this letter, we show that these calculations omit the crucial volume term. When the missing term is correctly included one finds full agreement with Schwinger's result for the Dynamical Casimir Effect. We have nothing new to say about sonoluminescence itself except to affirm ...

  9. The electromagnetic Casimir effect of spherical cavity

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The Casimir effect results from the zero-point energy of vacuum. A spherical cavity can be divided into three regions, and we make an analysis of every region and then give a formal solution of Casimir energy. The zeta-function regularization is also used to dispel the divergence of the summation. At the end, we can see the Casimir effect of a single sphere is included in our results.

  10. Finite Temperature Casimir Effect for Corrugated Plates

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan; SHAO Cheng-Gang; LUO Jun

    2006-01-01

    @@ Using the path-integral method, the corrections to the Casimir energy due to the combined effect of surface roughness and the finite temperature are calculated. For the specific case of two sinusoidally corrugated plates,the lateral Casimir force at finite temperature is obtained. The amplitude of the lateral Casimir force has a maximum at an optimal wavelength of λ≈ 2H with the mean plate distance H. This optimal parameter relation is almost independent of temperature.

  11. Of Some Theoretical Significance Implications of Casimir Effects

    CERN Document Server

    MacLay, G J; Milonni, P W; Fearn, Heidi; Milonni, Peter W.

    2001-01-01

    In his autobiography Casimir barely mentioned the Casimir effect, but remarked that it is "of some theortical significance." We will describe some aspects of Casimir effects that appear to be of particular significance now, more than half a century after Casimir's famous paper.

  12. The Casimir effect: a force from nothing

    International Nuclear Information System (INIS)

    The attractive force between two surfaces in a vacuum - first predicted by Hendrik Casimir over 50 years ago - could affect everything from micro machines to unified theories of nature. What happens if you take two mirrors and arrange them so that they are facing each other in empty space? Your first reaction might be 'nothing at all'. In fact, both mirrors are mutually attracted to each other by the simple presence of the vacuum. This startling phenomenon was first predicted in 1948 by the Dutch theoretical physicist Hendrik Casimir while he was working at Philips Research Laboratories in Eindhoven on - of all things - colloidal solutions (see box). The phenomenon is now dubbed the Casimir effect, while the force between the mirrors is known as the Casimir force. For many years the Casimir effect was little more than a theoretical curiosity. But interest in the phenomenon has blossomed in recent years. Experimental physicists have realized that the Casimir force affects the workings of micro machined devices, while advances in instrumentation have enabled the force to be measured with ever-greater accuracy. The new enthusiasm has also been fired by fundamental physics. Many theorists have predicted the existence of 'large' extra dimensions in 10- and 11-dimensional unified field theories of the fundamental forces. These dimensions, they say, could modify classical Newtonian gravitation at sub-millimetre distances. Measuring the Casimir effect could therefore help physicists to test the validity of such radical ideas. (U.K.)

  13. The Casimir effect: a force from nothing

    Energy Technology Data Exchange (ETDEWEB)

    Lambrecht, Astrid [Laboratoire Kastler Brossel, Universite Pierre et Marie Curie, Ecole Normale Superieure, Centre National de Recherche Scientifique, Campus Jussieu, Case 74, Paris (France)]. E-mail: lambrecht@spectro.jussieu.fr

    2002-09-01

    The attractive force between two surfaces in a vacuum - first predicted by Hendrik Casimir over 50 years ago - could affect everything from micromachines to unified theories of nature. What happens if you take two mirrors and arrange them so that they are facing each other in empty space? Your first reaction might be 'nothing at all'. In fact, both mirrors are mutually attracted to each other by the simple presence of the vacuum. This startling phenomenon was first predicted in 1948 by the Dutch theoretical physicist Hendrik Casimir while he was working at Philips Research Laboratories in Eindhoven on - of all things - colloidal solutions (see box). The phenomenon is now dubbed the Casimir effect, while the force between the mirrors is known as the Casimir force. For many years the Casimir effect was little more than a theoretical curiosity. But interest in the phenomenon has blossomed in recent years. Experimental physicists have realized that the Casimir force affects the workings of micromachined devices, while advances in instrumentation have enabled the force to be measured with ever-greater accuracy. The new enthusiasm has also been fired by fundamental physics. Many theorists have predicted the existence of 'large' extra dimensions in 10- and 11-dimensional unified field theories of the fundamental forces. These dimensions, they say, could modify classical Newtonian gravitation at sub-millimetre distances. Measuring the Casimir effect could therefore help physicists to test the validity of such radical ideas. (U.K.)

  14. Casimir effect from macroscopic quantum electrodynamics

    CERN Document Server

    Philbin, T G

    2011-01-01

    The canonical quantization of macroscopic electromagnetism was recently presented in New J. Phys. 12 (2010) 123008. This theory is here used to derive the Casimir effect, by considering the special case of thermal and zero-point fields. The stress-energy-momentum tensor follows from Noether's theorem, and its electromagnetic part in thermal equilibrium gives the Casimir energy density and stress tensor. The results hold for arbitrary inhomogeneous magnetodielectrics and are obtained from a rigorous quantization of electromagnetism in dispersive, dissipative media. Continuing doubts about the status of the standard Lifshitz theory as a proper quantum treatment of Casimir forces do not apply to the derivation given here.

  15. Is the Casimir effect relevant to sonoluminescence?

    International Nuclear Information System (INIS)

    The Casimir energy of a solid ball (or cavity in an infinite medium) is calculated by a direct frequency summation using the contour integration. The dispersion is taken into account, and the divergences are removed by making use of the zeta function technique. The Casimir energy of a dielectric ball (or cavity) turns out to be positive, it being increased when the radius of the ball decreases. The latter eliminates completely the possibility of explaining, via the Casimir effect, the sonoluminescence for bubbles in a liquid. Besides, the Casimir energy of the air bubbles in water proves to be immensely smaller than the amount of the energy emitted in a sonoluminescent flash. The dispersive effect is shown to be inessential for the final result

  16. ``Casimir effect'' with active swimmers

    Science.gov (United States)

    Ray, Dipanjan; Lopatina, Lena; Olson Reichhardt, Cynthia; Reichhardt, Charles

    2014-03-01

    In recent years, active matter has increasingly found applications in nanoengineering.[1] Here we show using molecular dynamics simulations that the natural motion of ``run-and-tumble'' bacteria will push together two parallel walls arranged in a Casimir geometry. This effect is robust as long as the wall separation is comparable to or smaller than the bacterial run-length, so that the bacterial motion is not Brownian on the length scale of the walls. The magnitude of the attractive force between the walls exhibits an unusual exponential dependence on the wall separation. The attraction arises from a depleted concentration of bacteria in the region between the plates; this is caused by the tendency of the bacteria to slide along the walls, which breaks time-reversal symmetry and allows a density difference to develop. The same mechanism was used recently to explain bacterial rectification.[2] The inclusion of steric interactions between the bacteria reduces the attraction between the plates but does not eliminate it.

  17. Dynamical Casimir effect and quantum cosmology

    International Nuclear Information System (INIS)

    We apply the background field method and the effective action formalism to describe the four-dimensional dynamical Casimir effect. Our picture corresponds to the consideration of quantum cosmology for an expanding FRW universe (the boundary conditions act as a moving mirror) filled by a quantum massless GUT which is conformally invariant. We consider cases in which the static Casimir energy is attractive and repulsive. Inserting the simplest possible inertial term, we find, in the adiabatic (and semiclassical) approximation, the dynamical evolution of the scale factor and the dynamical Casimir stress analytically and numerically [for SU(2) super Yang-Mills theory]. Alternative kinetic energy terms are explored in the Appendix. (c) 2000 The American Physical Society

  18. Radiative Corrections to the Casimir Force and Effective Field Theories

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, Kirill

    2001-07-25

    Radiative corrections to the Casimir force between two parallel plates are considered in both scalar field theory of one massless and one massive field and in QED. Full calculations are contrasted with calculations based on employing ''boundary-free'' effective field theories. The difference between two previous results on QED radiative corrections to the Casimir force between two parallel plates is clarified and the low-energy effective field theory for the Casimir effect in QED is constructed.

  19. Radiative corrections to the Casimir force and effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, Kirill

    2001-08-15

    Radiative corrections to the Casimir force between two parallel plates are considered in both scalar field theory of one massless and one massive field and in QED. Full calculations are contrasted with calculations based on employing 'boundary-free' effective field theories. The difference between two previous results on QED radiative corrections to the Casimir force between two parallel plates is clarified and the low-energy effective field theory for the Casimir effect in QED is constructed.

  20. Optical and Casimir effects in topological materials

    Science.gov (United States)

    Wilson, Justin H.

    Two major electromagnetic phenomena, magneto-optical effects and the Casimir effect, have seen much theoretical and experimental use for many years. On the other hand, recently there has been an explosion of theoretical and experimental work on so-called topological materials, and a natural question to ask is how such electromagnetic phenomena change with these novel materials. Specifically, we will consider are topological insulators and Weyl semimetals. When Dirac electrons on the surface of a topological insulator are gapped or Weyl fermions in the bulk of a Weyl semimetal appear due to time-reversal symmetry breaking, there is a resulting quantum anomalous Hall effect (2D in one case and bulk 3D in the other, respectively). For topological insulators, we investigate the role of localized in-gap states which can leave their own fingerprints on the magneto-optics and can therefore be probed. We have shown that these states resonantly contribute to the Hall conductivity and are magneto-optically active. For Weyl semimetals we investigate the Casimir force and show that with thickness, chemical potential, and magnetic field, a repulsive and tunable Casimir force can be obtained. Additionally, various values of the parameters can give various combinations of traps and antitraps. We additionally probe the topological transition called a Lifshitz transition in the band structure of a material and show that in a Casimir experiment, one can observe a non-analytic "kink'' in the Casimir force across such a transition. The material we propose is a spin-orbit coupled semiconductor with large g-factor that can be magnetically tuned through such a transition. Additionally, we propose an experiment with a two-dimensional metal where weak localization is tuned with an applied field in order to definitively test the effect of diffusive electrons on the Casimir force---an issue that is surprisingly unresolved to this day. Lastly, we show how the time-continuous coherent state

  1. The Casimir effect and critical phenomena

    International Nuclear Information System (INIS)

    In the present review we focus our attention on the theory and experimental confirmations of the Casimir effect in critical phenomena. Since the effect is related to the boundary conditions imposed on a system undergoing a phase transition and its consequences, the theory of critical phenomena in finite-size systems is an indispensable part of the theoretical description. Experiments with liquid films near a critical point are of particular experimental relevance to the studied phenomenon

  2. The Casimir Effect in Relativistic Quantum Field Theories

    CERN Document Server

    Mostepanenko, V M

    2008-01-01

    We review recent developments in the Casimir effect which arises in quantization volumes restricted by material boundaries and in spaces with non-Euclidean topology. The starting point of our discussion is the novel exact solution for the electromagnetic Casimir force in the configuration of a cylinder above a plate. The related work for the scalar Casimir effect in sphere-plate configuration is also considered, and the application region of the proximity force theorem is discussed. Next we consider new experiments on the measurement of the Casimir force between metals and between metal and semiconductor. The complicated problem connected with the theory of the thermal Casimir force between real metals is analyzed in detail. The present situation regarding different theoretical approaches to the resolution of this problem is summarized. We conclude with new constraints on non-Newtonian gravity obtained using the results of latest Casimir force measurements and compare them with constraints following from the ...

  3. Casimir effect in dielectrics: Bulk energy contribution

    International Nuclear Information System (INIS)

    In a recent series of papers, Schwinger discussed a process that he called the dynamical Casimir effect. The key essence of this effect is the change in zero-point energy associated with any change in a dielectric medium. (In particular, if the change in the dielectric medium is taken to be the growth or collapse of a bubble, this effect may have relevance to sonoluminescence.) The kernel of Schwinger close-quote s result is that the change in Casimir energy is proportional to the change in the volume of the dielectric, plus finite-volume corrections. Other papers have called into question this result, claiming that the volume term should actually be discarded, and that the dominant term remaining is proportional to the surface area of the dielectric. In this paper, which is an expansion of an earlier Letter on the same topic, we present a careful and critical review of the relevant analyses. We find that the Casimir energy, defined as the change in zero-point energy due to a change in the medium, has at leading order a bulk volume dependence. This is in full agreement with Schwinger close-quote s result, once the correct physical question is asked. We have nothing new to say about sonoluminescence itself. copyright 1997 The American Physical Society

  4. Casimir effect in dielectrics Bulk Energy Contribution

    CERN Document Server

    Carlson, C E; Pérez-Mercader, J; Visser, M; Visser, Matt

    1997-01-01

    In a recent series of papers, Schwinger discussed a process that he called the Dynamical Casimir Effect. The key essence of this effect is the change in zero-point energy associated with any change in a dielectric medium. (In particular, if the change in the dielectric medium is taken to be the growth or collapse of a bubble, this effect may have relevance to sonoluminescence.) The kernel of Schwinger's result is that the change in Casimir energy is proportional to the change in volume of the dielectric, plus finite-volume corrections. Other papers have called into question this result, claiming that the volume term should actually be discarded, and that the dominant term remaining is proportional to the surface area of the dielectric. In this communication, which is an expansion of an earlier letter on the same topic, we present a careful and critical review of the relevant analyses. We find that the Casimir energy, defined as the change in zero-point energy due to a change in the medium, has at leading orde...

  5. Global Casimir Effect in the Schwarzschild Spacetime

    CERN Document Server

    Muniz, C R; Tahim, M O; Cunha, M S

    2015-01-01

    In this paper, we study the vacuum quantum fluctuations of an uncharged massive scalar field in the Schwarzschild background and analyze its main physical effects at zero temperature. The procedure consists of calculating the energy eigenvalues starting from the exact solutions recently found for the dynamics of that field, considering the regime in which the particle is not absorbed by the black hole. From this result, we obtain the vacuum energy for the field, taking into account the respective degeneracies. Then we use the Abel-Plana formula valid for bosonic fields in order to regularize this infinite vacuum energy. Such a regularized quantity is the Casimir energy, which is computed numerically and presented graphically. The Casimir energy thus obtained does not take into account any boundaries artificially imposed on the system, just the nontrivial spacetime topology associated to the source and its singularity.

  6. Thermodynamics of the Casimir Effect Asymptotic Considerations

    CERN Document Server

    Mitter, H

    1998-01-01

    We study the Casimir effect with different temperatures between the plates ($T$) resp. outside of them ($T'$). If we consider the inner system as the black body radiation for a special geometry, then contrary to common belief the temperature approaches a constant value for vanishing volume during isentropic processes. This means: the reduction of the degrees of freedom can not be compensated by a concentration of the energy during an adiabatic contraction of the two-plate system. Looking at the Casimir pressure, we find one unstable equilibrium point for isothermal processes with $T > T'$. For isentropic processes there is additionally one stable equilibrium point for larger values of the distances between the two plates.}

  7. Casimir effect in dielectrics Surface area contribution

    CERN Document Server

    Molina-Paris, C; Molina-Paris, Carmen; Visser, Matt

    1997-01-01

    In this paper we take a deeper look at the technically elementary but physically robust viewpoint in which the Casimir energy in dielectric media is interpreted as the change in the total zero point energy of the electromagnetic vacuum summed over all states. Extending results presented in previous papers [hep-th/9609195; hep-th/9702007] we approximate the sum over states by an integral over the density of states including finite volume corrections. For an arbitrarily-shaped finite dielectric, the first finite-volume correction to the density of states is shown to be proportional to the surface area of the dielectric interface and is explicitly evaluated as a function of the permeability and permitivity. Since these calculations are founded in an elementary and straightforward way on the underlying physics of the Casimir effect they serve as an important consistency check on field-theoretic calculations. As a concrete example we discuss Schwinger's suggestion that the Casimir effect might be the underlying ph...

  8. Enhanced Casimir effect for doped graphene

    Science.gov (United States)

    Bordag, M.; Fialkovskiy, I.; Vassilevich, D.

    2016-02-01

    We analyze the Casimir interaction of doped graphene. To this end we derive a simple expression for the finite-temperature polarization tensor with a chemical potential. It is found that doping leads to a strong enhancement of the Casimir force, reaching almost 60 % in quite realistic situations. This result should be important for planning and interpreting Casimir measurements, especially taking into account that the Casimir interaction of undoped graphene is rather weak.

  9. Ultrastrong optomechanics incorporating the dynamical Casimir effect

    Science.gov (United States)

    Nation, P. D.; Suh, J.; Blencowe, M. P.

    2016-02-01

    We propose a superconducting circuit comprising a dc superconducting quantum interference device with a mechanically compliant arm embedded in a coplanar microwave cavity that realizes an optomechanical system with a degenerate or nondegenerate parametric interaction generated via the dynamical Casimir effect. For experimentally feasible parameters, this setup is capable of reaching the single-photon ultrastrong-coupling regime while simultaneously possessing a parametric coupling strength approaching the renormalized cavity frequency. This opens up the possibility of observing the interplay between these two fundamental nonlinearities at the single-photon level.

  10. The Casimir Effect for Thick Pistons

    OpenAIRE

    Fucci, Guglielmo

    2015-01-01

    In this work we analyze the Casimir energy and force for a {\\it thick} piston configuration. This study is performed by utilizing the spectral zeta function regularization method. The results we obtain for the Casimir energy and force depend explicitly on the parameters that describe the general self-adjoint boundary conditions imposed. Numerical results for the Casimir force are provided for specific types of boundary conditions and are also compared to the corresponding force on an infinite...

  11. Edges and Diffractive Effects in Casimir Energies

    CERN Document Server

    Kabat, Daniel; Nair, V P

    2010-01-01

    The prototypical Casimir effect arises when a scalar field is confined between parallel Dirichlet boundaries. We study corrections to this when the boundaries themselves have apertures and edges. We consider several geometries: a single plate with a slit in it, perpendicular plates separated by a gap, and two parallel plates, one of which has a long slit of large width, related to the case of one plate being semi-infinite. We develop a general formalism for studying such problems, based on the wavefunctional for the field in the gap between the plates. This formalism leads to a lower dimensional theory defined on the open regions of the plates or boundaries. The Casimir energy is then given in terms of the determinant of the nonlocal differential operator which defines the lower dimensional theory. We develop perturbative methods for computing these determinants. Our results are in good agreement with known results based on Monte Carlo simulations. The method is well suited to isolating the diffractive contri...

  12. The covariant electromagnetic Casimir effect for real conducting spherical shells

    CERN Document Server

    Razmi, H

    2016-01-01

    Using the covariant electromagnetic Casimir effect (previously introduced for real conducting cylindrical shells [1]), the Casimir force experienced by a spherical shell, under Dirichlet boundary condition, is calculated. The renormalization procedure is based on the plasma cut-off frequency for real conductors. The real case of a gold (silver) sphere is considered and the corresponding electromagnetic Casimir force is computed. In the covariant approach, there isn't any decomposition of fields to TE and TM modes; thus, we do not need to consider the Neumann boundary condition in parallel to the Dirichlet problem and then add their corresponding results.

  13. Small object limit of the Casimir effect and the sign of the Casimir force

    International Nuclear Information System (INIS)

    We suggest a simple derivation of the Casimir-Polder interaction, and present some general arguments on the finiteness and sign of mutual Casimir interactions. Finally we derive a simple expression for Casimir radiation from small accelerated objects

  14. Small object limit of Casimir effect and the sign of the Casimir force

    OpenAIRE

    Kenneth, O.; Nussinov, S.

    1999-01-01

    We show a simple way of deriving the Casimir Polder interaction, present some general arguments on the finiteness and sign of mutual Casimir interactions and finally we derive a simple expression for Casimir radiation from small accelerated objects.

  15. Mode contributions to the Casimir effect

    CERN Document Server

    Intravaia, Francesco

    2009-01-01

    Applying a sum-over-modes approach to the Casimir interaction between two plates with finite conductivity, we isolate and study the contributions of surface plasmons and Foucault (eddy current) modes. We show in particular that for the TE-polarization eddy currents provide a repulsive force that cancels, at high temperatures, the Casimir free energy calculated with the plasma model.

  16. On the Casimir effect in the microelectromechanical systems MEMS

    OpenAIRE

    Marciak-Kozlowska, Janina; Kozlowski, Miroslaw

    2005-01-01

    In this paper the thermal transport phenomena in MEMS are investigated. The thermal Klein-Gordon transport equation for nanoscale structures is formulated and solved. Key words: MEMS, Klein-Gordon equation, Casimir effect.

  17. The Casimir effect: from quantum to critical fluctuations

    OpenAIRE

    Gambassi, Andrea

    2008-01-01

    The Casimir effect in quantum electrodynamics (QED) is perhaps the best-known example of fluctuation-induced long-ranged force acting on objects (conducting plates) immersed in a fluctuating medium (quantum electromagnetic field in vacuum). A similar effect emerges in statistical physics, where the force acting, e.g., on colloidal particles immersed in a binary liquid mixture is affected by the classical thermal fluctuations occurring in the surrounding medium. The resulting Casimir-like forc...

  18. Dynamical Casimir effect in Circuit QED for Nonuniform Trajectories

    CERN Document Server

    Corona-Ugalde, Paulina; Wilson, C M; Mann, Robert B

    2015-01-01

    We propose a generalization of the superconducting circuit simulation of the dynamical Casimir effect where we consider relativistically moving boundary conditions following different trajectories. We study the feasibility of the setup used in the past to simulate the dynamical Casimir effect to reproduce richer relativistic trajectories differing from purely sinusoidal ones. We show how different relativistic oscillatory trajectories of the boundaries of the same period and similar shape produce a rather different spectrum of particles characteristic of their respective motions.

  19. The Transplanckian Question and the Casimir Effect

    CERN Document Server

    Bachmann, S

    2005-01-01

    It is known that, through inflation, Planck scale phenomena should have left an imprint in the cosmic microwave background. The magnitude of this imprint is expected to be suppressed by a factor $\\sigma^n$ where $\\sigma\\approx 10^{-5}$ is the ratio of the Planck length to the Hubble length during inflation. While there is no consensus about the value of $n$, it is generally thought that $n$ will determine whether the imprint is observable. Here, we suggest that the magnitude of the imprint may not be suppressed by any power of $\\sigma$ and that, instead, $\\sigma$ may merely quantify the amount of fine tuning required to achieve an imprint of order one. To this end, we show that the UV/IR scale separation, $\\sigma$, in the analogous case of the Casimir effect plays exactly this role.

  20. Gamma ray bursts, neutron star quakes, and the Casimir effect

    CERN Document Server

    Carlson, C; Pérez-Mercader, J; Carlson, C; Goldman, T; Perez-Mercader, J

    1994-01-01

    We propose that the dynamic Casimir effect is a mechanism that converts the energy of neutron starquakes into \\gamma--rays. This mechanism efficiently produces photons from electromagnetic Casimir energy released by the rapid motion of a dielectric medium into a vacuum. Estimates based on the cutoff energy of the gamma ray bursts and the volume involved in a starquake indicate that the total gamma ray energy emission is consonant with observational requirements.

  1. New constraints on Yukawa-type interactions from the Casimir effect

    CERN Document Server

    Mostepanenko, V M; Klimchitskaya, G L; Romero, C

    2012-01-01

    Measurements of the Casimir force are used to obtain stronger constraints on the parameters of hypothetical interactions predicted in different unification schemes beyond the Standard Model. We review new strong constraints on the Yukawa-type interactions derived during the last two years from recent experiments on measuring the lateral Casimir force, Casimir force in configurations with corrugated boundaries and the Casimir-Polder force. Specifically, from measurements of the lateral Casimir force compared with the exact theory the strengthening of constraints up to a factor of 24 millions was achieved. We also discuss further possibilities to strengthen constraints on the Yukawa interactions from the Casimir effect.

  2. Casimir effect for a Cavity in the Spacetime with an Extra Dimension

    Institute of Scientific and Technical Information of China (English)

    CHENG Hong-Bo

    2005-01-01

    @@ We reexamine the Casimir effect for the rectangular cavity with two or three equal edges in the presence of compactified universal extra dimension. We derive the expressions for the Casimir energy and discuss the nature of Casimir force. We show analytically the extra-dimension corrections to the standard Casimir effect to put forward a new method of exploring the existence of extra dimensions of the Universe.

  3. Nonequilibrium Tuning of the Thermal Casimir Effect

    CERN Document Server

    Dean, David S; Maggs, A C; Podgornik, Rudolf

    2016-01-01

    In net-neutral systems correlations between charge fluctuations generate strong attractive thermal Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge. We show how the normal and lateral thermal Casimir forces between two plates containing Brownian charges can be modulated by decorrelating the system through the application of an electric field, which generates a nonequilibrium steady state with a constant current in one or both plates, reducing the ensuing fluctuation-generated normal force while at the same time generating a lateral drag force. This hypothesis is confirmed by detailed numerical simulations as well as an analytical approach based on stochastic density functional theory.

  4. The Casimir effect: From quantum to critical fluctuations

    International Nuclear Information System (INIS)

    The Casimir effect in quantum electrodynamics (QED) is perhaps the best-known example of fluctuation-induced long-ranged force acting on objects (conducting plates) immersed in a fluctuating medium (quantum electromagnetic field in vacuum). A similar effect emerges in statistical physics, where the force acting, e.g., on colloidal particles immersed in a binary liquid mixture is affected by the classical thermal fluctuations occurring in the surrounding medium. The resulting Casimir-like force acquires universal features upon approaching a critical point of the medium and becomes long-ranged at criticality. In turn, this universality allows one to investigate theoretically the temperature dependence of the force via representative models and to stringently test the corresponding predictions in experiments. In contrast to QED, the Casimir force resulting from critical fluctuations can be easily tuned with respect to strength and sign by surface treatments and temperature control. We present some recent advances in the theoretical study of the universal properties of the critical Casimir force arising in thin films. The corresponding predictions compare very well with the experimental results obtained for wetting layers of various fluids. We discuss how the Casimir force between a colloidal particle and a planar wall immersed in a binary liquid mixture has been measured with femto-Newton accuracy, comparing these experimental results with the corresponding theoretical predictions.

  5. Evanescent radiation, quantum mechanics and the Casimir effect

    Science.gov (United States)

    Schatten, Kenneth H.

    1989-01-01

    An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.

  6. Casimir effect and radiative heat transfer between Chern Insulators

    Science.gov (United States)

    Rodriguez Lopez, Pablo; Grushin, Adolfo; Tse, Wang-Kong; Dalvit, Diego

    2015-03-01

    Chern Insulators are a class of two-dimensional topological materials. Their electronic properties are different from conventional materials, and lead to interesting new physics as quantum Hall effect in absence of an external magnetic field. Here we will review some of their special properties and, in particular, we will discuss the radiative heat transfer and the Casimir effect between two planar Chern Insulators sheets. Finally, we will see how to control the intensity and sign of this Casimir force and the requirements to observe a repulsive Casimir force in the lab with those materials. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. 302005.

  7. The Casimir effect in the sphere-plane geometry

    CERN Document Server

    Canaguier-Durand, Antoine; Neto, Paulo A Maia; Lambrecht, Astrid; Reynaud, Serge

    2012-01-01

    We present calculations of the Casimir interaction between a sphere and a plane, using a multipolar expansion of the scattering formula. This configuration enables us to study the nontrivial dependence of the Casimir force on the geometry, and its correlations with the effects of imperfect reflection and temperature. The accuracy of the Proximity Force Approximation (PFA) is assessed, and is shown to be affected by imperfect reflexion. Our analytical and numerical results at ambient temperature show a rich variety of interplays between the effects of curvature, temperature, finite conductivity, and dissipation.

  8. Dynamical Casimir effect with rough surfaces

    International Nuclear Information System (INIS)

    Full text: The dynamical Casimir effect is a quantum vacuum effect that consists, essentially, in two related phenomena, namely: the particle creation due to moving neutral bodies and the radiation reaction forces that act on these bodies. Using simple arguments based on energy conservation, the emergence of a dissipative force on the moving bodies can be understood as the counterpart of the particle creation. Theoretical models for idealized plane surfaces, as for instance, an infinite plane metallic surface, are well known. However, real surfaces are necessarily rough so that this information must be somehow incorporated to the theoretical models. With this goal in mind, we first study the scattering of electromagnetic field modes by a rough and perfectly conducting mirror, using a perturbative method such that roughness is treated as a perturbation of the plane geometry. We calculate the modifications in the reflection coefficients due to roughness in first order of the corrugation amplitude. To be as general as possible, we consider the general case of a time-dependent corrugation. We then apply the obtained reflection coefficients to study dissipative effects in two distinct situations: a corrugated conducting surface moving laterally and a rotating rough conducting surface. We also show how to use the results for the electromagnetic field to derive the results for the case of a scalar field coupled to a rough surface which imposes on the field Dirichlet and Neumann boundary conditions. We show the necessity to go beyond the first order approximation and derive the reflection coefficients up to second order in the corrugation amplitude. We finish this work by showing some recent progress of second order calculations. (author)

  9. Casimir effect with rough metallic mirrors

    International Nuclear Information System (INIS)

    We calculate the second-order roughness correction to the Casimir energy for two parallel metallic mirrors. Our results may also be applied to the plane-sphere geometry used in most experiments. The metallic mirrors are described by the plasma model, with arbitrary values for the plasma wavelength, the mirror separation, and the roughness correlation length, with the roughness amplitude remaining the smallest length scale for perturbation theory to hold. From the analysis of the intracavity field fluctuations, we obtain the Casimir energy correction in terms of generalized reflection operators, which account for diffraction and polarization coupling in the scattering by the rough surfaces. We present simple analytical expressions for several limiting cases, as well as numerical results that allow for a reliable calculation of the roughness correction in real experiments. The correction is larger than the result of the proximity force approximation, which is obtained from our theory as a limiting case (very smooth surfaces)

  10. The fermionic Casimir effect at finite temperature

    International Nuclear Information System (INIS)

    Vacuum fluctuations of massless fermions between two parallel and confining plates give rise to an attractive Casimir force at zero temperature. It becomes repulsive at sufficiently high temperatures. All thermodynamic quantities are given by the free energy which satisfies a remarkable symmetry under temperature inversion. The fermion condensate varies between the plates and goes rapidly to zero with increasing temperature, except for a narrow region adjacent to the plates

  11. Casimir effect in de Sitter spacetime

    CERN Document Server

    Saharian, A A

    2011-01-01

    The vacuum expectation value of the energy-momentum tensor and the Casimir forces are investigated for a massive scalar field with an arbitrary curvature coupling parameter in the geometry of two parallel plates, on the background of de Sitter spacetime. The field is prepared in the Bunch--Davies vacuum state and is constrained to satisfy Robin boundary conditions on the plates. The vacuum energy-momentum tensor is non-diagonal, with the off-diagonal component corresponding to the energy flux along the direction normal to the plates. It is shown that the curvature of the background spacetime decisively influences the behavior of the Casimir forces at separations larger than the curvature radius of de Sitter spacetime. In dependence of the curvature coupling parameter and the mass of the field, two different regimes are realized, which exhibit monotonic or oscillatory behavior of the forces. The decay of the Casimir force at large plate separation is shown to be power-law, with independence of the value of the...

  12. On the Casimir effect in the high-Tc cuprates

    International Nuclear Information System (INIS)

    High-temperature superconductors have in common that they consist of parallel planes of copper oxide separated by layers whose composition can vary. Being ceramics, the cuprate superconductors are poor conductors above the transition temperature, Tc. Below Tc, the parallel Cu-O planes in those materials become superconducting while the layers in between stay poor conductors. Here, we ask to what extent the Casimir energy that arises when the parallel Cu-O layers become superconducting could contribute to the superconducting condensation energy. Our aim here is merely to obtain an order of magnitude estimate. To this end, the material is modelled as consisting below Tc of parallel plasma sheets separated by vacuum and as without a significant Casimir effect above Tc. Due to the close proximity of the Cu-O planes the system is in the regime where the Casimir effect becomes a van der Waals type effect, dominated by contributions from TM surface plasmons propagating along the ab planes. Within this model, the Casimir energy is found to be of the same order of magnitude as the superconducting condensation energy

  13. Interplay between geometry and temperature in the Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Alexej

    2010-06-23

    In this thesis, we investigate the interplay between geometry and temperature in the Casimir effect for the inclined-plates, sphere-plate and cylinder-plate configurations. We use the worldline approach, which combines the string-inspired quantum field theoretical formalism with Monte Carlo techniques. The approach allows the precise computation of Casimir energies in arbitrary geometries. We analyze the dependence of the Casimir energy, force and torque on the separation parameter and temperature T, and find Casimir phenomena which are dominated by long-range fluctuations. We demonstrate that for open geometries, thermal energy densities are typically distributed on scales of thermal wavelengths. As an important consequence, approximation methods for thermal corrections based on local energy-density estimates, such as the proximity-force approximation, are found to become unreliable even at small surface-separations. Whereas the hightemperature behavior is always found to be linear in T, richer power-law behaviors at small temperatures emerge. In particular, thermal forces can develop a non-monotonic behavior. Many novel numerical as well as analytical results are presented. (orig.)

  14. Interplay between geometry and temperature in the Casimir effect

    International Nuclear Information System (INIS)

    In this thesis, we investigate the interplay between geometry and temperature in the Casimir effect for the inclined-plates, sphere-plate and cylinder-plate configurations. We use the worldline approach, which combines the string-inspired quantum field theoretical formalism with Monte Carlo techniques. The approach allows the precise computation of Casimir energies in arbitrary geometries. We analyze the dependence of the Casimir energy, force and torque on the separation parameter and temperature T, and find Casimir phenomena which are dominated by long-range fluctuations. We demonstrate that for open geometries, thermal energy densities are typically distributed on scales of thermal wavelengths. As an important consequence, approximation methods for thermal corrections based on local energy-density estimates, such as the proximity-force approximation, are found to become unreliable even at small surface-separations. Whereas the hightemperature behavior is always found to be linear in T, richer power-law behaviors at small temperatures emerge. In particular, thermal forces can develop a non-monotonic behavior. Many novel numerical as well as analytical results are presented. (orig.)

  15. Casimir Effect of Scalar Massive Field

    CERN Document Server

    Mobassem, Sonia

    2014-01-01

    The energy momentum tensor is used to introduce the Casimir force of the massive scalar field acting on a nonpenetrating surface. This expression can be used to evaluate the vacuum force by employing the appropriate field operators. To simplify our formalism we also relates the vacuum force expression to the imaginary part of the Green function via the fluctuation dissipation theorem and Kubo formula. This allows one to evaluate the vacuum force without resorting to the process of field quantization. These two approaches are used to calculate the attractive force between two nonpenetrating plates. Special attention is paid to the generalization of the formalism to D + 1 space-time dimensions.

  16. Temperature dependence of the Casimir effect

    International Nuclear Information System (INIS)

    The temperature dependence of the Casimir force between a real metallic plate and a metallic sphere is analyzed on the basis of optical data concerning the dispersion relation of metals such as gold and copper. Realistic permittivities imply, together with basic thermodynamic considerations, that the transverse electric zero mode does not contribute. This results in observable differences from the conventional prediction, which does not take this physical requirement into account. The results are shown to be consistent with the third law of thermodynamics, as well as being not inconsistent with current experiments. However, the predicted temperature dependence should be detectable in future experiments. The inadequacies of approaches based on ad hoc assumptions, such as the plasma dispersion relation and the use of surface impedance without transverse momentum dependence, are discussed

  17. Casimir effect for a scalar field via Krein quantization

    International Nuclear Information System (INIS)

    In this work, we present a rather simple method to study the Casimir effect on a spherical shell for a massless scalar field with Dirichlet boundary condition by applying the indefinite metric field (Krein) quantization technique. In this technique, the field operators are constructed from both negative and positive norm states. Having understood that negative norm states are un-physical, they are only used as a mathematical tool for renormalizing the theory and then one can get rid of them by imposing some proper physical conditions. -- Highlights: • A modification of QFT is considered to address the vacuum energy divergence problem. • Casimir energy of a spherical shell is calculated, through this approach. • In this technique, it is shown, the theory is automatically regularized

  18. Casimir Effect at Finite Temperature in the Presence of Compactified Universal Extra Dimensions

    Institute of Scientific and Technical Information of China (English)

    CHENG Hong-Bo

    2005-01-01

    @@ We analyse the Casimir effect for parallel plates atfinite temperature in the presence of compactified universal extra dimensions and analytically show the thermal corrections to the effect in detail. The Casimir effect for different sizes of universal extra dimensions is investigated to test the five-dimensional Kaluza-Klein theory.

  19. Casimir Effect for a Massless Spin-3/2 Field in Minkowski Spacetime

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Casimir effect has been studied for various quantum fields in both flat and curved spacetimes. As a further step along this line, we provide an explicit derivation of Casimir effect for massless spin-3/2 field with periodic boundary condition imposed in four-dimensional Minkowski spacetime. The corresponding results with Dirichlet ard Neumann boundary conditions are also discussed.

  20. Casimir effects for classical and quantum liquids in slab geometry: A brief review

    International Nuclear Information System (INIS)

    We analytically explore Casimir effects for confinement of classical and quantum fluctuations in slab (film) geometry (i) for classical (critical) fluctuations over 4He liquid around the λ point, and (ii) for quantum (phonon) fluctuations of Bogoliubov excitations over an interacting Bose-Einstein condensate. We also briefly review Casimir effects for confinement of quantum vacuum fluctuations confined to two plates of different geometries

  1. Generalized Bogoliubov Transformation for Confined Fields Applications in Casimir Effect

    CERN Document Server

    Silva, J C; Neto, A M; Santana, A E

    2002-01-01

    The Bogoliubov transformation in thermofield dynamics, an operator formalism for the finite-temperature quantum-field theory, is generalized to describe a field in arbitrary confined regions of space and time. Starting with the scalar field, the approach is extended to the electromagnetic field and the energy-momentum tensor is written via the Bogoliubov transformation. In this context, the Casimir effect is calculated for zero and non-zero temperature, and therefore it can be considered as a vacuum condensation effect of the electromagnetic field. This aspect opens an interesting perspective for using this procedure as an effective scheme for calculations in the studies of confined fields, including the interacting fields.

  2. Symmetric ordering effect on Casimir energy in $\\kappa-$Minkowski spacetime

    CERN Document Server

    Kim, Hyeong-Chan; Yee, Jae Hyung

    2008-01-01

    We present the Casimir energy of spherical shell, for the symmetrically deformed scalar field in $\\kappa$-Minkowski space-time, satisfying Dirichlet boundary condition. The Casimir energy shows the particle anti-particle symmetry contrary to the asymmetrically deformed case. In addition, the deformation effect starts from $O(1/\\kappa)$ term unlike in the parallel plates.

  3. The Casimir Effect at Finite Temperature in a Six-Dimensional Vortex Scenario

    Science.gov (United States)

    Cheng, Hongbo

    2016-03-01

    The Casimir effect for parallel plates satisfying the Dirichlet boundary condition in the context of effective QED coming from a six-dimensional Nielsen-Olesen vortex solution of the Abelian Higgs model with fermions coupled to gravity is studied at finite temperature. We find that the sign of the Casimir energy remains negative under the thermal influence. It is also shown that the Casimir force between plates will be weaker in the higher-temperature surroundings while keeps attractive. This Casimir effect involving the thermal influence is still inconsistent with the known experiments. We find that the thermal correction can not compensate or even reduce the modification from this kind of vortex model to make the Casimir force to be in less conflict with the measurements.

  4. The Casimir effect at finite temperature in a six-dimensional vortex scenario

    CERN Document Server

    Cheng, Hongbo

    2015-01-01

    The Casimir effect for parallel plates satisfying the Dirichlet boundary condition in the context of effective QED coming from a six-dimensional Nielsen-Olesen vortex solution of the Abelian Higgs model with fermions coupled to gravity is studied at finite temperature. We find that the sign of the Casimir energy remains negative under the thermal influence. It is also shown that the Casimir force between plates will be weaker in the higher-temperature surroundings while keeps attractive. This Casimir effect involving the thermal influence is still inconsistent with the known experiments. We find that the thermal correction can not compensate or even reduce the modification from this kind of vortex model to make the Casimir force to be in less conflict with the measurements.

  5. Possibility of measuring thermal effects in the Casimir force

    International Nuclear Information System (INIS)

    We analyze the possibility of measuring small thermal effects in the Casimir force between metal test bodies in configurations of a sphere above a plate and two parallel plates. For the sphere-plate geometry used in many experiments, we investigate the applicability of the proximity force approximation (PFA) to calculation of thermal effects in the Casimir force and its gradient. It is shown that for real metals the two formulations of the PFA used in the literature lead to relative differences in the results obtained being less than a small parameter equal to the ratio of separation distance to sphere radius. For ideal metals, PFA results for the thermal correction are obtained and compared with available exact results. It is emphasized that in the experimental region in the zeroth order of the small parameter already mentioned, the thermal Casimir force and its gradient calculated using the PFA (and thermal corrections in their own right) coincide with the respective exact results. For real metals, available exact results are outside the application region of the PFA. However, the exact results are shown to converge with the PFA results when the small parameter goes down to experimental values. We arrive at the conclusion that the large thermal effects predicted by the Drude-model approach, if they exist, could be measured in both static and dynamic experiments in sphere-plate and plate-plate configurations. As for the small thermal effects predicted by the plasma-model approach, the static experiment in the configuration of two parallel plates is found to be the best for their observation.

  6. Casimir-Polder effect with thermally excited surfaces

    Science.gov (United States)

    Laliotis, A.; Ducloy, M.

    2015-05-01

    We take a closer look at the fundamental Casimir-Polder (CP) interaction between quantum particles and dispersive dielectric surfaces with surface polariton or plasmon resonances. Linear response theory shows that in the near-field, van der Waals regime the free-energy shift of a particle contains a thermal component that depends exclusively on the excitation of the evanescent surface polariton (plasmon or phonon) modes. Our work makes evident the link between particle surface interaction and near-field thermal emission and demonstrates how this can be used to engineer Casimir-Polder forces. We also examine how the exotic effects of surface waves are washed out as the distance from the surface increases. In the case of molecules or excited-state atoms, far-field approximations result in a classical dipole-dipole interaction which depends on the surface reflectivity and the mean number of photons at the frequency of the atomic or molecular transition. Finally we present numerical results for the CP interaction between Cs atoms and various dielectric surfaces with a single polariton resonance and discuss the implications of temperature and retardation effects for specific spectroscopic experiments.

  7. Electrodynamic Casimir Effect in a Medium-Filled Wedge II

    OpenAIRE

    Ellingsen, Simen Adnoy; Brevik, Iver; Milton, Kimball A.

    2009-01-01

    We consider the Casimir energy in a geometry of an infinite magnetodielectric wedge closed by a circularly cylindrical, perfectly conducting arc embedded in another magnetodielectric medium, under the condition that the speed of light be the same in both media. An expression for the Casimir energy corresponding to the arc is obtained and it is found that in the limit where the reflectivity of the wedge boundaries tends to unity the finite part of the Casimir energy of a perfectly conducting w...

  8. Casimir-Polder effect with thermally excited surfaces

    CERN Document Server

    Laliotis, A

    2015-01-01

    We take a closer look at the fundamental Casimir-Polder interaction between quantum particles and dispersive dielectric surfaces with surface polariton or plasmon resonances. Linear response theory shows that in the near field, van der Waals, regime the free energy shift of a particle contains a thermal component that depends exclusively on the population/excitation of the evanescent surface polariton/plasmon modes. Our work makes evident the link between particle surface interaction and near field thermal emission and demonstrates how this can be used to engineer Casimir-Polder forces. We also examine how the exotic effects of surface waves are washed out as the distance from the surface increases. In the case of molecules or excited state atoms, far field approximations result in a classical dipole-dipole interaction which depends on the surface reflectivity and the mean number of photons at the frequency of the atomic/molecular transition. Finally we present numerical results for the CP interaction between...

  9. Strongly Interacting Fermions and Phases of the Casimir Effect

    CERN Document Server

    Flachi, Antonino

    2013-01-01

    With the intent of exploring how the interplay between boundary effects and chiral symmetry breaking may alter the thermodynamical behavior of a system of strongly interacting fermions, we study the Casimir effect for the set-up of two parallel layers using a four-fermion effective field theory at zero density. This system reveals a number of interesting features. While for infinitely large separation (no boundaries), chiral symmetry is broken/restored via a second order phase transition, in the opposite case of small (and, in general, finite) separation the transition becomes first order, rendering effects of finite size, for the present set-up, similar to those of a chemical potential. Appropriately moving on the separation--temperature plane, it is possible to generate a peculiar behavior in the temperature dependence of the thermodynamic potential and of the condensate, compensating thermal with geometrical variations. A behavior similar to what we find here has been predicted to occur in bilayer graphene...

  10. Repulsive casimir forces

    International Nuclear Information System (INIS)

    We discuss repulsive Casimir forces between dielectric materials with nontrivial magnetic susceptibility. It is shown that considerations based on the naive pairwise summation of van der Waals and Casimir-Polder forces may not only give an incorrect estimate of the magnitude of the total Casimir force but even the wrong sign of the force when materials with high dielectric and magnetic responses are involved. Indeed repulsive Casimir forces may be found in a large range of parameters, and we suggest that the effect may be realized in known materials. The phenomenon of repulsive Casimir forces may be of importance both for experimental study and for nanomachinery applications

  11. Microstructure effects for Casimir forces in chiral metamaterials

    International Nuclear Information System (INIS)

    We examine a recent prediction for the chirality dependence of the Casimir force in chiral metamaterials by numerical computation of the forces between the exact microstructures, rather than homogeneous approximations. Although repulsion in the metamaterial regime is rigorously impossible, it is unknown whether a reduction in the attractive force can be achieved through suitable material engineering. We compute the exact force for a chiral bent-cross pattern, as well as forces for an idealized ''omega''-particle medium in the dilute approximation and identify the effects of structural inhomogeneity (i.e., proximity forces and anisotropy). We find that these microstructure effects dominate the force for separations where chirality was predicted to have a strong influence. At separations where the homogeneous approximation is valid, in even the most ideal circumstances the effects of chirality are less than 10-4 of the total force, making them virtually undetectable in experiments.

  12. Casimir effect for smooth potentials on spherically symmetric pistons

    Science.gov (United States)

    Morales-Almazan, Pedro; Kirsten, Klaus

    2015-12-01

    In this article we consider a spherical piston modeled by a spherically symmetric potential. The piston is positioned between two spherical shells and the corresponding Casimir energy and force are computed. Zeta function regularization based upon suitable contour integral representations is utilized. A numerical analysis of the Casimir force is provided for a variety of Gaussian like potentials.

  13. Casimir effect: running Newton constant or cosmological term

    International Nuclear Information System (INIS)

    We argue that the instability of Euclidean Einstein gravity is an indication that the vacuum is non perturbative and contains a condensate of the metric tensor in a manner reminiscent of Yang-Mills theories. As a simple step toward the characterization of such a vacuum the value of the one-loop effective action is computed for Euclidean de Sitter spaces as a function of the curvature when the unstable conformal modes are held fixed. Two phases are found, one where the curvature is large and an IR Landau pole suggests confinement of gravitons and another one which appears to be weakly coupled and tends to be flat. The induced cosmological constant is positive or negative in the strongly or weakly curved phase, respectively. The relevance of the Casimir effect in understanding the UV sensitivity of gravity is pointed out. (author)

  14. Superconducting circuit boundary conditions and the Dynamical Casimir Effect

    CERN Document Server

    Doukas, Jason

    2014-01-01

    We study analytically the time-dependent boundary conditions of superconducting microwave circuit experiments in the high plasma frequency limit, in which the conditions are Robin-type and relate the value of the field to the spatial derivative of the field. We solve the field evolution explicitly for boundary condition modulations that are small in magnitude but may have arbitrary time dependence, both for a half-open waveguide and for a closed waveguide with two independently adjustable boundaries. The correspondence between the microwave Robin boundary conditions and the mechanically-moving Dirichlet boundary conditions of the Dynamical Casimir Effect is shown to break down at high field frequencies, approximately one order of magnitude above the frequencies probed in the 2011 experiment of Wilson et al. Our results bound the parameter regime in which a microwave circuit can be used to model relativistic effects in a mechanically-moving cavity, and they show that beyond this parameter regime moving mirrors...

  15. Quantum simulation of the dynamical Casimir effect with trapped ions

    Science.gov (United States)

    Trautmann, N.; Hauke, P.

    2016-04-01

    Quantum vacuum fluctuations are a direct manifestation of Heisenberg’s uncertainty principle. The dynamical Casimir effect (DCE) allows for the observation of these vacuum fluctuations by turning them into real, observable photons. However, the observation of this effect in a cavity QED experiment would require the rapid variation of the length of a cavity with relativistic velocities, a daunting challenge. Here, we propose a quantum simulation of the DCE using an ion chain confined in a segmented ion trap. We derive a discrete model that enables us to map the dynamics of the multimode radiation field inside a variable-length cavity to radial phonons of the ion crystal. We perform a numerical study comparing the ion-chain quantum simulation under realistic experimental parameters to an ideal Fabry–Perot cavity, demonstrating the viability of the mapping. The proposed quantum simulator, therefore, allows for probing the photon (respectively phonon) production caused by the DCE on the single photon level.

  16. On the Casimir effect in a static chromomagnetic field

    CERN Document Server

    Bezerra, V B; Muniz, C R; Tahim, M O

    2016-01-01

    In this paper we compute the regularized vacuum energy associated with vectorial perturbations of the SU(2) massless Yang-Mills field. We regard Dirichlet and twisted boundary conditions in a chromomagnetic background, at zero temperature. Then, we analyse the behaviour of the Casimir energy in the weak and strong coupling regimens, and compare with similar results obtained for the scalar and spinorial fields in a magnetic field background. In the weak coupling scenario, we show that it is necessary to introduce mass in the perturbations in order to make manifest the effects due to the chromomagnetic field. Otherwise, in the strong coupling regimen, we evaluate the effects of the mass as well as of a compact extra dimension on the stabilization of the regularized vacuum energy.

  17. Is Dark Energy a Cosmic Casimir Effect?

    CERN Document Server

    Cahill, Kevin

    2011-01-01

    Unknown short-distance effects cancel the quartic divergence of the zero-point energies. If this renormalization took effect in the early universe after the last phase transition and applied only to modes whose wavelengths (over 2 pi) were shorter than the Hubble length 1/H at that time, then the zero-point energies of the modes of longer wavelengths can approximately account for the present value of the dark-energy density. The model makes two predictions.

  18. Casimir Effect Under Quasi-Periodic Boundary Condition Inspired by Nanotubes

    Science.gov (United States)

    Feng, Chao-Jun; Li, Xin-Zhou; Zhai, Xiang-Hua

    2014-01-01

    When one studies the Casimir effect, the periodic (anti-periodic) boundary condition is usually taken to mimic a periodic (anti-periodic) structure for a scalar field living in a flat space with a non-Euclidean topology. However, there could be an arbitrary phase difference between the value of the scalar field on one endpoint of the unit structure and that on the other endpoint, such as the structure of nanotubes. Then, in this paper, a periodic condition on the ends of the system with an additional phase factor, which is called the "quasi-periodic" condition, is imposed to investigate the corresponding Casimir effect. And an attractive or repulsive Casimir force is found, whose properties depend on the phase angle value. Especially, the Casimir effect disappears when the phase angle takes a particular value. High dimensional spacetime case is also investigated.

  19. Casimir effects for classical and quantum liquids in slab geometry: A brief review

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Shyamal, E-mail: sbsp@uohyd.ac.in [School of Physics, University of Hyderabad, C.R. Rao Road, Gachibowli, Hyderabad-500046 (India)

    2015-05-15

    We analytically explore Casimir effects for confinement of classical and quantum fluctuations in slab (film) geometry (i) for classical (critical) fluctuations over {sup 4}He liquid around the λ point, and (ii) for quantum (phonon) fluctuations of Bogoliubov excitations over an interacting Bose-Einstein condensate. We also briefly review Casimir effects for confinement of quantum vacuum fluctuations confined to two plates of different geometries.

  20. The Casimir effect for parallel plates involving massless Majorana fermions at finite temperature

    CERN Document Server

    Cheng, Hongbo

    2010-01-01

    We study the Casimir effect for parallel plates with massless Majorana fermions obeying the bag boundary conditions at finite temperature. The thermal influence will modify the effect. It is found that the sign of the Casimir energy keeps negative if the product of plate distance and the temperature is larger than a special value or the energy will change to be positive. The Casimir energy rises with the stronger thermal influence. We show that the attractive Casimir force between two parallel plates becomes greater with the increasing temperature. In the case of piston system involving the same Majorana fermions with the same boundary conditions, the attractive force on the piston will weaker in the hotter surrounding.

  1. Inhibition of the dynamical Casimir effect with Robin boundary conditions

    CERN Document Server

    Rego, Andreson L C; Farina, C; Alves, Danilo T; 10.1103/PhysRevD.87.045024

    2013-01-01

    We consider a real massless scalar field in 3+1 dimensions satisfying a Robin boundary condition at a nonrelativistic moving mirror. Considering vacuum as the initial field state, we compute explicitly the number of particles created per unit frequency and per unit solid angle, exhibiting in this way the angular dependence of the spectral distribution. The well known cases of Dirichlet and Neumann boundary conditions may be reobtained as particular cases from our results. We show that the particle creation rate can be considerably reduced (with respect to the Dirichlet and Neumann cases) for particular values of the Robin parameter. Our results extend for 3+1 dimensions previous results found in the literature for 1+1 dimensions. Further, we also show that this inhibition of the dynamical Casimir effect occurs for different angles of particle emission.

  2. Electrodynamic Casimir effect in a medium-filled wedge.

    Science.gov (United States)

    Brevik, Iver; Ellingsen, Simen A; Milton, Kimball A

    2009-04-01

    We re-examine the electrodynamic Casimir effect in a wedge defined by two perfect conductors making dihedral angle alpha=pi/p. This system is analogous to the system defined by a cosmic string. We consider the wedge region as filled with an azimuthally symmetric material, with permittivity and permeability epsilon1, micro1 for distance from the axis ra. The results are closely related to those for a circular-cylindrical geometry, but with noninteger azimuthal quantum number mp. Apart from a zero-mode divergence, which may be removed by choosing periodic boundary conditions on the wedge, and may be made finite if dispersion is included, we obtain finite results for the free energy corresponding to changes in a for the case when the speed of light is the same inside and outside the radius a , and for weak coupling, |epsilon1-epsilon2|cosmic string, situated along the cusp line of the pre-existing wedge. PMID:19518186

  3. The Phononic Casimir Effect in Random Fluids

    CERN Document Server

    Arias, E; Duenas, J G; Menezes, G; Svaiter, N F

    2013-01-01

    We investigate the effects of fluctuations of the sound-cone, simulated by a space-time dependent random coefficient, in a free massless scalar field theory describing acoustic modes in a relativistic perfect fluid. We assume also that the field is defined in a domain with one compactified direction. For simplicity we choose the symmetric case of two parallel plates. The renormalized stress-tensor of the system is presented. Due to the sound-cone fluctuations, the renormalized vacuum energy density depends on the distance to the plates in a non-trivial way. The renormalized energy density correction between the plates goes as $1/a^{8}$ instead of the $1/a^{4}$ usual dependence for the free case.

  4. A note on the Lorentz force, magnetic charges and the Casimir effect

    International Nuclear Information System (INIS)

    We show that in order to account for the repulsive Casimir effect in the parallel-plate geometry in terms of the quantum version of the Lorentz force, it is possible to introduce virtual surface densities of magnetic charge and currents. The quantum version of the Lorentz force expressed in terms of the correlators of the electric and magnetic fields for planar geometries then yields the Casimir pressure correctly. (note)

  5. A note on the Lorentz force, magnetic charges and the Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Farina, C; Santos, F C; Tort, A C [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cidade Universitaria - Ilha do Fundao - Caixa Postal 68528, 21941-972 Rio de Janeiro RJ (Brazil)

    2003-05-01

    We show that in order to account for the repulsive Casimir effect in the parallel-plate geometry in terms of the quantum version of the Lorentz force, it is possible to introduce virtual surface densities of magnetic charge and currents. The quantum version of the Lorentz force expressed in terms of the correlators of the electric and magnetic fields for planar geometries then yields the Casimir pressure correctly. (note)

  6. A note on the Lorentz force, magnetic charges and the Casimir effect

    OpenAIRE

    C. Farina; Santos, F. C.; Tort, A C

    2003-01-01

    We show that in order to account for the repulsive Casimir effect in the parallel plate geometry in terms of the quantum version of the Lorentz force, virtual surface densities of magnetic charges and currents must be introduced. The quantum version of the Lorentz force expressed in terms of the correlators of the electric and magnetic fields for planar geometries yields then correctly the Casimir pressure.

  7. Finite temperature Casimir effect of massive fermionic fields in the presence of compact dimensions

    International Nuclear Information System (INIS)

    We consider the finite temperature Casimir effect of a massive fermionic field confined between two parallel plates, with MIT bag boundary conditions on the plates. The background spacetime is Mp+1xTq which has q dimensions compactified to a torus. On the compact dimensions, the field is assumed to satisfy periodicity boundary conditions with arbitrary phases. Both the high temperature and the low temperature expansions of the Casimir free energy and the force are derived explicitly. It is found that the Casimir force acting on the plates is always attractive at any temperature regardless of the boundary conditions assumed on the compact torus. The asymptotic limits of the Casimir force in the small plate separation limit are also obtained.

  8. Finite Temperature Casimir Effect in the Presence of Extra Dimensions

    CERN Document Server

    Teo, L P

    2010-01-01

    We consider the finite temperature Casimir force acting on two parallel plates in a closed cylinder with the same cross section of arbitrary shape in the presence of extra dimensions. Dirichlet boundary conditions are imposed on one plate and fractional Neumann conditions with order between zero (Dirichlet) and one (Neumann) are imposed on the other plate. Formulas for the Casimir force show that it is always attractive for Dirichlet boundary conditions, and is always repulsive when the fractional order is larger than 1/2. For some fractional orders less than 1/2, the Casimir force can be either attractive or repulsive depending on the size of the internal manifold and temperature.

  9. Effect of hydrogen-switchable mirrors on the Casimir force.

    Science.gov (United States)

    Iannuzzi, Davide; Lisanti, Mariangela; Capasso, Federico

    2004-03-23

    We present systematic measurements of the Casimir force between a gold-coated plate and a sphere coated with a hydrogen-switchable mirror. Hydrogen-switchable mirrors are shiny metals that can become transparent upon hydrogenation. Despite such a dramatic change of the optical properties of the sphere, we did not observe any significant decrease of the Casimir force after filling the experimental apparatus with hydrogen. This counterintuitive result can be explained by the Lifshitz theory that describes the Casimir attraction between metallic and dielectric materials. PMID:15024111

  10. Effect of hydrogen-switchable mirrors on the Casimir force

    OpenAIRE

    Iannuzzi, Davide; Lisanti, Mariangela; Capasso, Federico

    2004-01-01

    We present systematic measurements of the Casimir force between a gold-coated plate and a sphere coated with a hydrogen-switchable mirror. Hydrogen-switchable mirrors are shiny metals that can become transparent upon hydrogenation. Despite such a dramatic change of the optical properties of the sphere, we did not observe any significant decrease of the Casimir force after filling the experimental apparatus with hydrogen. This counterintuitive result can be explained by the Lifshitz theory tha...

  11. The covariant electromagnetic Casimir effect for real conducting cylindrical shells

    International Nuclear Information System (INIS)

    Using covariant quantization of the electromagnetic field, the Casimir force per unit area experienced by a long conducting cylindrical shell, under both Dirichlet and Neumann boundary conditions, is calculated. The renormalization procedure is based on the plasma cut-off frequency for real conductors. The real case of a gold (silver) cylindrical shell is considered and the corresponding electromagnetic Casimir pressure is computed. It is discussed that the Dirichlet and Neumann problems should be considered separately without adding their corresponding results.

  12. Geometry-Temperature Interplay in the Casimir Effect

    CERN Document Server

    Gies, Holger

    2009-01-01

    We discuss Casimir phenomena which are dominated by long-range fluctuations. A prime example is given by "geothermal" Casimir phenomena where thermal fluctuations in open Casimir geometries can induce significantly enhanced thermal corrections. We illustrate the underlying mechanism with the aid of the inclined-plates configuration, giving rise to enhanced power-law temperature dependences compared to the parallel-plates case. In limiting cases, we find numerical evidence even for fractional power laws induced by long-range fluctuations. We demonstrate that thermal energy densities for open geometries are typically distributed over length scales of 1/T. As an important consequence, approximation methods for thermal corrections based on local energy-density estimates such as the proximity-force approximation are expected to become unreliable even at small surface separations.

  13. Electromagnetic normal modes and Casimir effects in layered structures

    CERN Document Server

    Sernelius, Bo E

    2014-01-01

    We derive a general procedure for finding the electromagnetic normal modes in layered structures. We apply this procedure to planar, spherical and cylindrical structures. These normal modes are important in a variety of applications. They are the only input needed in calculations of Casimir interactions. We present explicit expression for the condition for modes and Casimir energy for a large number of specific geometries. The layers are allowed to be two-dimensional so graphene and graphene-like sheets as well as two-dimensional electron gases can be handled within the formalism. Also forces on atoms in layered structures are obtained. One side-result is the van der Waals and Casimir-Polder interaction between two atoms.

  14. Casimir-Polder repulsion: Three-body effects

    CERN Document Server

    Milton, Kimball A; Parashar, Prachi; Pourtolami, Nima; Brevik, Iver; Ellingsen, Simen A; Buhmann, Stefan Yoshi; Scheel, Stefan

    2015-01-01

    In this paper we study an archetypical scenario in which repulsive Casimir-Polder forces between an atom or molecule and two macroscopic bodies can be achieved. This is an extension of previous studies of the interaction between a polarizable atom and a wedge, in which repulsion occurs if the atom is sufficiently anisotropic and close enough to the symmetry plane of the wedge. A similar repulsion occurs if such an atom passes a thin cylinder or a wire. An obvious extension is to compute the interaction between such an atom and two facing wedges, which includes as a special case the interaction of an atom with a conducting screen possessing a slit, or between two parallel wires. To this end we further extend the electromagnetic multiple-scattering formalism for three-body interactions. To test this machinery we reinvestigate the interaction of a polarizable atom between two parallel conducting plates. In that case, three-body effects are shown to be small, and are dominated by three- and four-scattering terms....

  15. On the dynamical Casimir effect in 1 + 1 dimensions

    International Nuclear Information System (INIS)

    Full text follows: Vacuum field fluctuations exert radiation pressure on boundaries placed in empty space. If we take only one boundary at rest in vacuum, the total pressure exerted by the vacuum on the boundary is null. For two boundaries at rest in vacuum there is a net pressure exerted on the boundaries known as the Casimir effect. It has also been recognized that the dynamical counterparts of this static force appear for moving boundaries. In the dynamical case the existence of a net vacuum radiation pressure does not require the presence of two boundaries as in static case. Vacuum pressure already exists for a single boundary moving with a nonuniform acceleration. For that type of motion, the field does not remain in the vacuum state, but the quanta of the field are produced through nonadiabatic processes. In 1982 Ford and Vilenkin developed a perturbation method based on the static solution to calculate in first approximation the vacuum pressure exerted on a non-relativistic moving boundary. Using the method of Ford-Vilenkin we compute in the two dimensional quantum theory of a real massless scalar field the pressure exerted by the vacuum on a perfectly reflecting boundary moving with nonuniform acceleration around the coordinate x = 0 , having another boundary fixed at x = L. This simple model can provide insight into more sophisticated processes, such as photon production by moving mirrors and particle production in cosmological models and exploding black holes. (author)

  16. A Toy Cosmology Using a Hubble-Scale Casimir Effect

    Directory of Open Access Journals (Sweden)

    Michael E. McCulloch

    2014-02-01

    Full Text Available The visible mass of the observable universe agrees with that needed for a flat cosmos, and the reason for this is not known. It is shown that this can be explained by modelling the Hubble volume as a black hole that emits Hawking radiation inwards, disallowing wavelengths that do not fit exactly into the Hubble diameter, since partial waves would allow an inference of what lies outside the horizon. This model of “horizon wave censorship” is equivalent to a Hubble-scale Casimir effect. This incomplete toy model is presented to stimulate discussion. It predicts a minimum mass and acceleration for the observable universe which are in agreement with the observed mass and acceleration, and predicts that the observable universe gains mass as it expands and was hotter in the past. It also predicts a suppression of variation on the largest cosmic scales that agrees with the low-l cosmic microwave background anomaly seen by the Planck satellite.

  17. Dynamical Casimir effect and the black body spectrum

    International Nuclear Information System (INIS)

    Creation of scalar massless particles in two-dimensional Minkowski space time-as predicted by the dynamical Casimir effect-is studied for the case of a semitransparent mirror initially at rest, then accelerating for some finite time, along a specified trajectory, and finally moving with constant velocity. When the reflection and transmission coefficients are those in the model proposed by Barton, Calogeracos and Nicolaevici [r(w) = -iα/(ω + iα) and s(w) = ω/(ω + iα), with α ≥ 0], the Bogoliubov coefficients on the back side of the mirror can be computed exactly. This allows us to prove that, when α is very large (case of an ideal, perfectly reflecting mirror) a thermal emission of scalar massless particles obeying Bose-Einstein statistics is radiated from the mirror (a black body radiation), in accordance with previous results in the literature. However, when α is finite (semitransparent mirror, a physically realistic situation) the striking result is obtained that the thermal emission of scalar massless particles obeys Fermi-Dirac statistics. Possible consequences of this result are envisaged. (fast track communication)

  18. Topological Casimir effect in compactified cosmic string spacetime

    International Nuclear Information System (INIS)

    We investigate the Wightman function, the vacuum expectation values of the field squared and the energy-momentum tensor for a massive scalar field with general curvature coupling in the generalized cosmic string geometry with a compact dimension along its axis. The boundary condition along the compactified dimension is taken in general form with an arbitrary phase. The vacuum expectation values are decomposed into two parts. The first one corresponds to the uncompactified cosmic string geometry and the second one is the correction induced by the compactification. The asymptotic behavior of the vacuum expectation values of the field squared, energy density and stresses is investigated near the string and at large distances. We show that the nontrivial topology due to the cosmic string enhances the vacuum polarization effects induced by the compactness of spatial dimension for both the field squared and the vacuum energy density. A simple formula is given for the part of the integrated topological Casimir energy induced by the planar angle deficit. The results are generalized for a charged scalar field in the presence of a constant gauge field. In this case, the vacuum expectation values are periodic functions of the component of the vector potential along the compact dimension. (paper)

  19. Casimir Effects Near the Big Rip Singularity in Viscous Cosmology

    OpenAIRE

    Brevik, Iver; Gorbunova, Olesya; Saez-Gomez, Diego

    2009-01-01

    Analytical properties of the scalar expansion in the cosmic fluid are investigated, especially near the future singularity, when the fluid possesses a constant bulk viscosity \\zeta. In addition, we assume that there is a Casimir-induced term in the fluid's energy-momentum tensor, in such a way that the Casimir contributions to the energy density and pressure are both proportional to 1/a^4, 'a' being the scale factor. A series expansion is worked out for the scalar expansion under the conditio...

  20. The Casimir Effect and the Vacuum Energy: Duality in the Physical Interpretation

    International Nuclear Information System (INIS)

    The Casimir effect is usually interpreted as arising from the modification of the zero point energy of QED when two perfectly conducting plates are put very close to each other, and as a proof of the 'reality' of this zero point energy. The Dark Energy, necessary to explain the acceleration of the expansion of the Universe is sometimes viewed as another proof of the same reality. Recently, several physicists have challenged the usual interpretation, arguing that the Casimir effect should rather be considered as a 'giant' van der Waals effect. All these aspects are shortly reviewed. (author)

  1. Effect of the heterogeneity of metamaterials on the Casimir-Lifshitz interaction

    International Nuclear Information System (INIS)

    The Casimir-Lifshitz interaction between metamaterials is studied using a model that takes into account the structural heterogeneity of the dielectric and magnetic properties of the bodies. A recently developed perturbation theory for the Casimir-Lifshitz interaction between arbitrary material bodies is generalized to include nonuniform magnetic permeability profiles and used to study the interaction between the magneto-dielectric heterostructures within the leading order. The metamaterials are modeled as two-dimensional arrays of domains with varying permittivity and permeability. In the case of two semi-infinite bodies with flat boundaries, the patterned structure of the material properties is found to cause the normal Casimir-Lifshitz force to develop an oscillatory behavior when the distance between the two bodies is comparable to the wavelength of the patterned features in the metamaterials. The nonuniformity also leads to the emergence of lateral Casimir-Lifshitz forces, which tend to strengthen as the gap size becomes smaller. Our results suggest that the recent studies on Casimir-Lifshitz forces between metamaterials, which have been performed with the aim of examining the possibility of observing the repulsive force, should be revisited to include the effect of the patterned structure at the wavelength of several hundred nanometers that coincides with the relevant gap size in the experiments.

  2. Repulsive and restoring Casimir forces based on magneto-optical effect

    International Nuclear Information System (INIS)

    The Casimir force direction tuned by the external magnetic field due to the magneto-optical Voigt effect is investigated. The magneto-optical effect gives rise to the modified frequency-dependent electric permittivity and thus the electromagnetic properties of the materials can be adjusted to satisfy the condition of the formation of repulsive Casimir force. It is found that between the ordinary dielectric slab and magneto-optical material slab, a repulsive force may exist by adjusting the applied magnetic field. The restoring Casimir force can also be obtained if suitable parameter values are taken. For realistic materials, the repulsive and the restoring force is shown to possibly take place at typical distances in microelectromechanical systems. (authors)

  3. The Casimir effect in rugby-ball type flux compactifications

    International Nuclear Information System (INIS)

    We discuss volume stabilization in a 6D braneworld model based on 6D supergravity theory. The internal space is compactified by magnetic flux and contains codimension two 3-branes (conical singularities) as its boundaries. In general the external 4D spacetime is warped and in the unwrapped limit the shape of the internal space looks like a 'rugby ball'. The size of the internal space is not fixed due to the scale invariance of the supergravity theory. We discuss the possibility of volume stabilization by the Casimir effect for a massless, minimally coupled bulk scalar field. The main obstacle in studying this case is that the brane (conical) part of the relevant heat kernel coefficient (a6) has not been formulated. Thus as a first step, we consider the 4D analog model with boundary codimension two 1-branes. The spacetime structure of the 4D model is very similar to that of the original 6D model, where now the relevant heat kernel coefficient is well known. We derive the one-loop effective potential induced by a scalar field in the bulk by employing zeta function regularization with heat kernel analysis. As a result, the volume is stabilized for most possible choices of the parameters. Especially, for a larger degree of warping, our results imply that a large hierarchy between the mass scales and a tiny amount of effective cosmological constant can be realized on the brane. In the non-warped limit the ratio tends to converge to the same value, independently of the bulk gauge coupling constant. Finally, we will analyze volume stabilization in the original model 6D by employing the same mode-sum technique

  4. Constraints on axion and corrections to Newtonian gravity from the Casimir effect

    CERN Document Server

    Klimchitskaya, G L

    2015-01-01

    Axion is a light pseudoscalar particle of much interest for physics of elementary particles and for astrophysics. We review the recently obtained constraints on axion to nucleon coupling constants following from different experiments on measuring the Casimir interaction. These constraints are compared with those following from other laboratory experiments within the wide range of masses of axion-like particles from 10^{-10} to 20 eV. We also collect the most strong constraints on the Yukawa-type and power-type corrections to the Newton law of gravitation which follow from measurements of the Casimir interaction, Eotvos- and Cavendish-type experiments. The possibility to obtain stronger constraints on an axion from the Casimir effect is proposed.

  5. Derivative expansion for the Casimir effect at zero and finite temperature in $d+1$ dimensions

    CERN Document Server

    Fosco, C D; Mazzitelli, F D

    2012-01-01

    We apply the derivative expansion approach to the Casimir effect for a real scalar field in $d$ spatial dimensions, to calculate the next to leading order term in that expansion, namely, the first correction to the proximity force approximation. The field satisfies either Dirichlet or Neumann boundary conditions on two static mirrors, one of them flat and the other gently curved. We show that, for Dirichlet boundary conditions, the next to leading order term in the Casimir energy is of quadratic order in derivatives, regardless of the number of dimensions. Therefore it is local, and determined by a single coefficient. We show that the same holds true, if $d \

  6. Thermo-field Dynamics of the Casimir Effect and Its Quantum Deformation

    Institute of Scientific and Technical Information of China (English)

    景辉; 解炳昊; 陈景灵

    2001-01-01

    The Casimir effect of the deformed cavity field at finite temperature is investigated by generalizing the thermofield dynamics formalism into a q-deformed version. It has been shown that the impact of q-deformation on theCasimir force only manifests in the finite-temperature case and the expression for the ideal pure vacuum remainsunchanged, which almost coincides with the suggestions of Man'ko et al. [Phys. Lett. A 176(1993)173] aboutthe nature of q-oscillators as the nonlinear vibrations of electromagnetic field.

  7. Casimir effect on the lattice: U(1) gauge theory in two spatial dimensions

    CERN Document Server

    Chernodub, M N; Molochkov, A V

    2016-01-01

    We propose a general numerical method to study the Casimir effect in lattice gauge theories. We illustrate the method by calculating the energy density of zero-point fluctuations around two parallel wires of finite static permittivity in Abelian gauge theory in two spatial dimensions. We discuss various subtle issues related to the lattice formulation of the problem and show how they can successfully be resolved. Finally, we calculate the Casimir potential between the wires of a fixed permittivity, extrapolate our results to the limit of ideally conducting wires and demonstrate excellent agreement with a known theoretical result.

  8. Casimir Effect at finite temperature for the CPT-even extension of QED

    CERN Document Server

    Silva, L M; Helayël-Neto, J A

    2016-01-01

    By the thermofield dynamics (TFD) formalism we obtain the energy-momentum tensor for the Electromagnetism with Lorentz Breaking Even term of the Standard Model Extended (SME) Sector in a topology $S^{1}\\times S^{1}\\times R^{2}$. We carry out the compactification by a generalized TFD-Bogoliubov transformation that is used to define a renormalized energy-momentum tensor, and the Casimir energy and pressure at finite temperature are then derived. A comparative analysis with the electromagnetic case is developed, and we remark the influence of the background in the traditional Casimir effect.

  9. The Casimir force on a surface with shallow nanoscale corrugations: Geometry and finite conductivity effects

    CERN Document Server

    Bao, Y; Lussange, J; Lambrecht, A; Cirelli, R A; Klemens, F; Mansfield, W M; Pai, C S; Chan, H B

    2010-01-01

    We measure the Casimir force between a gold sphere and a silicon plate with nanoscale, rectangular corrugations with depth comparable to the separation between the surfaces. In the proximity force approximation (PFA), both the top and bottom surfaces of the corrugations contribute to the force, leading to a distance dependence that is distinct from a flat surface. The measured Casimir force is found to deviate from the PFA by up to 15%, in good agreement with calculations based on scattering theory that includes both geometry effects and the optical properties of the material.

  10. Observation of the skin-depth effect on the Casimir force between metallic surfaces.

    Science.gov (United States)

    Lisanti, Mariangela; Iannuzzi, Davide; Capasso, Federico

    2005-08-23

    We have performed measurements of the Casimir force between a metallic plate and a transparent sphere coated with metallic films of different thicknesses. We have observed that, if the thickness of the coating is less than the skin-depth of the electromagnetic modes that mostly contribute to the interaction, the force is significantly smaller than that measured with a thick bulk-like film. Our results provide direct evidence of the skin-depth effect on the Casimir force between metallic surfaces. PMID:16091459

  11. Casimir force on a surface with shallow nanoscale corrugations: geometry and finite conductivity effects.

    Science.gov (United States)

    Bao, Y; Guérout, R; Lussange, J; Lambrecht, A; Cirelli, R A; Klemens, F; Mansfield, W M; Pai, C S; Chan, H B

    2010-12-17

    We measure the Casimir force between a gold sphere and a silicon plate with nanoscale, rectangular corrugations with a depth comparable to the separation between the surfaces. In the proximity force approximation (PFA), both the top and bottom surfaces of the corrugations contribute to the force, leading to a distance dependence that is distinct from a flat surface. The measured Casimir force is found to deviate from the PFA by up to 10%, in good agreement with calculations based on scattering theory that includes both geometry effects and the optical properties of the material. PMID:21231564

  12. Edge effects in electrostatic calibrations for the measurement of the Casimir force

    Energy Technology Data Exchange (ETDEWEB)

    Wei Qun [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Onofrio, Roberto, E-mail: onofrior@gmail.co [Dipartimento di Fisica ' Galileo Galilei' , Universita di Padova, Via Marzolo 8, Padova 35131 (Italy)] [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States)

    2010-05-03

    We have performed numerical simulations to evaluate the effect on the capacitance of finite size boundaries realistically present in the parallel plane, sphere-plane, and cylinder-plane geometries. The potential impact of edge effects in assessing the accuracy of the parameters obtained in the electrostatic calibrations of Casimir force experiments is then discussed.

  13. Edge effects in electrostatic calibrations for the measurement of the Casimir force

    OpenAIRE

    Wei, Qun; Onofrio, Roberto

    2011-01-01

    We have performed numerical simulations to evaluate the effect on the capacitance of finite size boundaries realistically present in the parallel plane, sphere-plane, and cylinder-plane geometries. The potential impact of edge effects in assessing the accuracy of the parameters obtained in the electrostatic calibrations of Casimir force experiments is then discussed.

  14. Casimir force between planes as a boundary finite size effect

    International Nuclear Information System (INIS)

    The ground state energy of a boundary quantum field theory is derived in planar geometry in D+1-dimensional spacetime. It provides a universal expression for the Casimir energy which exhibits its dependence on the boundary conditions via the reflection amplitudes of the low energy particle excitations. We demonstrate the easy and straightforward applicability of the general expression by analyzing the free scalar field with Robin boundary condition and by rederiving the most important results available in the literature for this geometry

  15. Casimir effects in atomic, molecular, and optical physics

    CERN Document Server

    Babb, James F

    2010-01-01

    The long-range interaction between two atoms and the long-range interaction between an ion and an electron are compared at small and large intersystem separations. The vacuum dressed atom formalism is applied and found to provide a framework for interpretation of the similarities between the two cases. The van der Waals forces or Casimir-Polder potentials are used to obtain insight into relativistic and higher multipolar terms.

  16. On the static Casimir effect with parity-breaking mirrors

    CERN Document Server

    Fosco, C D

    2016-01-01

    We study the Casimir interaction energy due to the vacuum fluctuations of the Electromagnetic (EM) field in the presence of two mirrors, described by $2+1$-dimensional, generally nonlocal actions, which may contain both parity-conserving and parity-breaking terms. We compare the results with the ones corresponding to Chern-Simons boundary conditions, and evaluate the interaction energy for several particular situations.

  17. Casimir effect of the Maxwell-Chern-Simons field for tow non-parallel lines boundary

    International Nuclear Information System (INIS)

    Based on the Faddeev formalism of path-integral quantization for a constrained Hamiltonian system, the Casimir effect between two non-parallel lines in the (2 +1)-dimensional space is calculated by using conformal mapping and Plana summation formula in the theory of complex variable function. Without introducing any cutoff of parameter, the finite analytical expression is obtained

  18. The Casimir effect for fields with arbitrary spin

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, Adam; Bennett, Robert, E-mail: r.bennett@leeds.ac.uk

    2015-09-15

    The Casimir force arises when a quantum field is confined between objects that apply boundary conditions to it. In a recent paper we used the two-spinor calculus to derive boundary conditions applicable to fields with arbitrary spin in the presence of perfectly reflecting surfaces. Here we use these general boundary conditions to investigate the Casimir force between two parallel perfectly reflecting plates for fields up to spin-2. We use the two-spinor calculus formalism to present a unified calculation of well-known results for spin-1/2 (Dirac) and spin-1 (Maxwell) fields. We then use our unified framework to derive new results for the spin-3/2 and spin-2 fields, which turn out to be the same as those for spin-1/2 and spin-1. This is part of a broader conclusion that there are only two different Casimir forces for perfectly reflecting plates—one associated with fermions and the other with bosons.

  19. Kappa-deformed quantum field theory and Casimir effect

    OpenAIRE

    Cougo-Pinto, M. V.; C. Farina; Mendes, J. F. M.

    2003-01-01

    We consider the quantization of a scalar kappa-deformed field up to the point of obtaining an expression for its vacuum energy. The expression is given by the half sum of the field frequencies, as in the non-deformed case, but with the frequencies obeying the kappa-deformed dispersion relation. We consider a set of kappa-deformed Maxwell equations and show that for the purpose of calculating the Casimir energy the Maxwell field, as in the non-deformed case, behaves as a pair of scalar fields....

  20. Casimir Effect for Gauge Scalars: The Kalb-Ramond Case

    CERN Document Server

    Barone, F A; Helayel-Neto, J A

    2005-01-01

    In this work we calculate the functional generator of the Green's functions of the Kalb-Ramond field in 3+1 dimensions. We also calculate the functional generator, and corresponding Casimir energy, of the same field when it is submitted to boundary conditions on two parallel planes. The boundary conditions we consider can be interpreted as a kind of conducting planes for the field in compearing with the Maxweel case. We compare our result with the standard ones for the scalar and Maxwell fields.

  1. Modeling electrostatic patch effects in Casimir force measurements

    CERN Document Server

    Behunin, R O; Dalvit, D A R; Neto, P A Maia; Reynaud, S

    2011-01-01

    Electrostatic patch potentials give rise to forces between neutral conductors at distances in the micrometer range and must be accounted for in the analysis of Casimir force experiments. In this paper we develop a quasi-local model for describing random potentials on metallic surfaces. In contrast to some previously published results, we find that patches may provide a significant contribution to the measured signal, and may render the experimental data at distances below 1 micrometer compatible with theoretical predictions based on the Drude model.

  2. Thermal Casimir Effect in the Plane-Sphere Geometry

    International Nuclear Information System (INIS)

    The thermal Casimir force between two metallic plates is known to depend on the description of material properties. For large separations the dissipative Drude model leads to a force a factor of 2 smaller than the lossless plasma model. Here we show that the plane-sphere geometry, in which current experiments are performed, decreases this ratio to a factor of 3/2, as revealed by exact numerical and large-distance analytical calculations. For perfect reflectors, we find a repulsive contribution of thermal photons to the force and negative entropy values at intermediate distances.

  3. Quantized Casimir Force

    OpenAIRE

    Tse, Wang-Kong; Macdonald, A. H.

    2012-01-01

    We investigate the Casimir effect between two-dimensional electron systems driven to the quantum Hall regime by a strong perpendicular magnetic field. In the large separation (d) limit where retardation effects are essential we find i) that the Casimir force is quantized in units of 3\\hbar c \\alpha^2/(8\\pi^2 d^4), and ii) that the force is repulsive for mirrors with same type of carrier, and attractive for mirrors with opposite types of carrier. The sign of the Casimir force is therefore elec...

  4. Casimir effect for curved boundaries in Robertson-Walker spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Saharian, A A [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, 0025 Yerevan (Armenia); Setare, M R, E-mail: saharian@ysu.a, E-mail: rezakord@ipm.i [Department of Science, Payame Noor University, Bijar (Iran, Islamic Republic of)

    2010-11-21

    Vacuum expectation values of the energy-momentum tensor and the Casimir forces are evaluated for scalar and electromagnetic fields in the geometry of two curved boundaries on the background of the Robertson-Walker spacetime with negative spatial curvature. The boundaries under consideration are conformal images of the flat boundaries in Rindler spacetime. Robin boundary conditions are imposed in the case of the scalar field and perfect conductor boundary conditions are assumed for the electromagnetic field. We use the conformal relation between the Robertson-Walker and Rindler spacetimes and the corresponding results for two parallel plates moving with uniform proper acceleration through the Fulling-Rindler vacuum. For the general scale factor the vacuum energy-momentum tensor is decomposed into the boundary-free and boundary-induced parts. The latter is non-diagonal. The Casimir forces are directed along the normals to the boundaries. For the Dirichlet and Neumann scalars and for the electromagnetic field these forces are attractive for all separations.

  5. Neumann Casimir effect: A singular boundary-interaction approach

    International Nuclear Information System (INIS)

    Dirichlet boundary conditions on a surface can be imposed on a scalar field, by coupling it quadratically to a δ-like potential, the strength of which tends to infinity. Neumann conditions, on the other hand, require the introduction of an even more singular term, which renders the reflection and transmission coefficients ill-defined because of UV divergences. We present a possible procedure to tame those divergences, by introducing a minimum length scale, related to the nonzero 'width' of a nonlocal term. We then use this setup to reach (either exact or imperfect) Neumann conditions, by taking the appropriate limits. After defining meaningful reflection coefficients, we calculate the Casimir energies for flat parallel mirrors, presenting also the extension of the procedure to the case of arbitrary surfaces. Finally, we discuss briefly how to generalize the worldline approach to the nonlocal case, what is potentially useful in order to compute Casimir energies in theories containing nonlocal potentials; in particular, those which we use to reproduce Neumann boundary conditions.

  6. Temperature correction to the Casimir force in cryogenic range and anomalous skin effect

    International Nuclear Information System (INIS)

    The temperature correction to the Casimir force is considered for real metals at low temperatures. With the temperature decrease, the mean free path for electrons becomes larger than the field penetration depth. In this condition, description of metals with the impedance of anomalous skin effect is shown to be more appropriate than with the permittivity. The effect is crucial for the temperature correction. It is demonstrated that in the zero-frequency limit, the reflection coefficients should coincide with those of ideal metal if we demand the entropy to be zero at T=0. All the other prescriptions discussed in the literature for the n=0 term in the Lifshitz formula give negative entropy. It is shown that the temperature correction in the region of anomalous skin effect is not suppressed as it happens in the plasma model. This correction will be important in the future cryogenic measurements of the Casimir force

  7. Aharonov-Bohm phases and Dynamical Casimir Effect in a quantum LC circuit

    CERN Document Server

    Yao, Yuan

    2016-01-01

    We study novel types of contributions to the partition function of the Maxwell system defined on a small compact manifold ${\\mathbb{M}}$ with nontrivial mappings $\\pi_1[U(1)]\\cong\\mathbb{Z}$. These novel contributions cannot be described in terms of conventional physical propagating photons with two transverse polarizations, and instead emerge as a result of tunneling transitions between topologically different but physically identical vacuum winding states. These new terms give an extra contribution to the Casimir pressure, yet to be measured. We argue that if the same system is considered in the background of a small external time-dependent E\\&M field, then real physical photons will be emitted from the vacuum, similar to the dynamical Casimir effect (DCE) where photons are radiated from the vacuum due to time-dependent boundary conditions. We propose an experimental realization of such small effects using a microwave cavity. We also comment on the possible cosmological implications of this effect.

  8. Casimir Effect in 2D Stringy Black Hole Backgrounds

    CERN Document Server

    Christodoulakis, T; Georgalas, B C; Vagenas, E C

    2001-01-01

    We consider the two-dimensional "Schwarzschild" and "Reissner-Nordstrom" stringy black holes as systems of Casimir type. We explicitly calculate the energy-momentum tensor of a massless scalar field satisfying Dirichlet boundary conditions on two one-dimensional "walls". These results are obtained using the Wald's axioms. Thermodynamical quantities such as pressure, specific heat, isothermal compressibility and entropy of the two-dimensional stringy black holes are calculated. A comparison is made between the obtained results and the laws of thermodynamics. The results obtained for the extremal (Q=M) stringy two-dimensional charged black hole are identical in all three different vacua used; a fact that indicates its quantum stability.

  9. Effect of temperature variations on equilibrium distances in levitating parallel dielectric plates interacting through Casimir forces

    Science.gov (United States)

    Esteso, Victoria; Carretero-Palacios, Sol; Míguez, Hernán

    2016-04-01

    We study at thermal equilibrium the effect of temperature deviations around room temperature on the equilibrium distance (deq) at which thin films made of Teflon, silica, or polystyrene immersed in glycerol levitate over a silicon substrate due to the balance of Casimir, gravity, and buoyancy forces. We find that the equilibrium nature (stable or unstable) of deq is preserved under temperature changes, and provide simple rules to predict whether the new equilibrium position will occur closer to or further from the substrate at the new temperature. These rules depend on the static permittivities of all materials comprised in the system ( ɛ0 ( m ) ) and the equilibrium nature of deq. Our designed dielectric configuration is excellent for experimental observation of thermal effects on the Casimir force indirectly detected through the tunable equilibrium distances (with slab thickness and material properties) in levitation mode.

  10. Quantized Casimir force.

    Science.gov (United States)

    Tse, Wang-Kong; MacDonald, A H

    2012-12-01

    We investigate the Casimir effect between two-dimensional electron systems driven to the quantum Hall regime by a strong perpendicular magnetic field. In the large-separation (d) limit where retardation effects are essential, we find (i) that the Casimir force is quantized in units of 3ħcα(2)/8π(2)d(4) and (ii) that the force is repulsive for mirrors with the same type of carrier and attractive for mirrors with opposite types of carrier. The sign of the Casimir force is therefore electrically tunable in ambipolar materials such as graphene. The Casimir force is suppressed when one mirror is a charge-neutral graphene system in a filling factor ν=0 quantum Hall state. PMID:23368242

  11. Zeta function regularization in Casimir effect calculations and J.S. Dowker's contribution

    OpenAIRE

    Elizalde, Emilio

    2012-01-01

    A summary of relevant contributions, ordered in time, to the subject of operator zeta functions and their application to physical issues is provided. The description ends with the seminal contributions of Stephen Hawking and Stuart Dowker and collaborators, considered by many authors as the actual starting point of the introduction of zeta function regularization methods in theoretical physics, in particular, for quantum vacuum fluctuation and Casimir effect calculations. After recalling a nu...

  12. Casimir force in absorbing multilayers

    OpenAIRE

    Tomas, M. S.

    2002-01-01

    The Casimir effect in a dispersive and absorbing multilayered system is considered adopting the (net) vacuum-field pressure point of view to the Casimir force. Using the properties of the macroscopic field operators appropriate for absorbing systems and a convenient compact form of the Green function for a multilayer, a straightforward and transparent derivation of the Casimir force in a lossless layer of an otherwise absorbing multilayer is presented. The resulting expression in terms of the...

  13. Casimir force between metallic mirrors

    OpenAIRE

    Lambrecht, Astrid; Reynaud, Serge

    1999-01-01

    We study the influence of finite conductivity of metals on the Casimir effect. We put the emphasis on explicit theoretical evaluations which can help comparing experimental results with theory. The reduction of the Casimir force is evaluated for plane metallic plates. The reduction of the Casimir energy in the same configuration is also calculated. It can be used to infer the reduction of the force in the plane-sphere geometry through the `proximity theorem'. Frequency dependent dielectric re...

  14. Casimir effect for curved geometries: proximity-force-approximation validity limits.

    Science.gov (United States)

    Gies, Holger; Klingmüller, Klaus

    2006-06-01

    We compute Casimir interaction energies for the sphere-plate and cylinder-plate configuration induced by scalar-field fluctuations with Dirichlet boundary conditions. Based on a high-precision calculation using world-line numerics, we quantitatively determine the validity bounds of the proximity-force approximation (PFA) on which the comparison between all corresponding experiments and theory are based. We observe the quantitative failure of the PFA on the 1% level for a curvature parameter a/R>0.00755. Even qualitatively, the PFA fails to predict reliably the correct sign of genuine Casimir curvature effects. We conclude that data analysis of future experiments aiming at a precision of 0.1% must no longer be based on the PFA. PMID:16803290

  15. Casimir force between two parallel semiconductor slabs: Magnetic field effects in the Voigt geometry

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serrano, R.; Palomino-Ovando, M. [Facultad de Ciencias Fisico-Matematicas, Universidad Autonoma de Puebla, Puebla (Mexico); Martinez, G.; Hernandez, P.H.; Cocoletzi, Gregorio H. [Instituto de Fisica, Universidad Autonoma de Puebla, Puebla (Mexico)

    2009-06-15

    We investigate the Casimir force F between two parallel semiconductor slabs taking into account magnetoplasmon effects. For our calculations we consider an external magnetic field applied in the Voigt geometry. Studies are carried out using the formula of F, which is written in terms of the reflectivities of the incident electromagnetic (EM) waves onto the surfaces of the semiconductor slabs, in the vacuum gap between slabs. Results show that the Casimir force depends strongly on the slab thickness as well as on the magnetic-field strength (or equivalently on the cyclotron frequency). At a constant cyclotron frequency and for small slab thickness F/F{sub 0} (F{sub 0} is the ideal force) displays a dip at small separation distances L between slabs. F/F{sub 0} increases with L up to saturation as the slab thickness increases. The curve with the strongest value of F/F{sub 0} corresponds to the semi-infinite medium geometry. For a constant slab thickness and small cyclotron frequency, F/F{sub 0} as a function of L shows a monotonic increase as L increases, and eventually reaches saturation. At high cyclotron frequency F/F{sub 0} displays a dip. The curve of F/F{sub 0} with no applied external field corresponds to the one with the strongest Casimir force. Therefore, magnetoplasmon effects, with an applied magnetic field in the Voigt geometry may inhibit the Casimir force. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. All-optical dynamical Casimir effect in a three-dimensional terahertz photonic band gap

    Science.gov (United States)

    Hagenmüller, David

    2016-06-01

    We identify an architecture for the observation of all-optical dynamical Casimir effect in realistic experimental conditions. We suggest that by integrating quantum wells in a three-dimensional (3D) photonic band-gap material made out of large-scale (˜200 -μ m ) germanium logs, it is possible to achieve ultrastrong light-matter coupling at terahertz frequencies for the cyclotron transition of a two-dimensional electron gas interacting with long-lived optical modes, in which vacuum Rabi splitting is comparable to the Landau level spacing. When a short, intense electromagnetic transient of duration ˜250 fs and carrying a peak magnetic field ˜5 T is applied to the structure, the cyclotron transition can be suddenly tuned on resonance with a desired photon mode, switching on the light-matter interaction and leading to a Casimir radiation emitted parallel to the quantum well plane. The radiation spectrum consists of sharp peaks with frequencies coinciding with engineered optical modes within the 3D photonic band gap, and its characteristics are extremely robust to the nonradiative damping which can be large in our system. Furthermore, the absence of continuum with associated low-energy excitations for both electromagnetic and electronic quantum states can prevent the rapid absorption of the photon flux which is likely to occur in other proposals for all-optical dynamical Casimir effect.

  17. Magnetic field corrections to the repulsive Casimir effect at finite temperature

    CERN Document Server

    Erdas, Andrea

    2015-01-01

    I investigate the finite temperature Casimir effect for a charged and massless scalar field satisfying mixed (Dirichlet-Neumann) boundary conditions on a pair of plane parallel plates of infinite size. The effect of a uniform magnetic field, perpendicular to the plates, on the Helmholtz free energy and Casimir pressure is studied. The zeta-function regularization technique is used to obtain finite results. Simple analytic expressions are obtained for the zeta function and the free energy, in the limits of small plate distance, high temperature and strong magnetic field. The Casimir pressure is obtained in each of the three limits and the situation of a magnetic field present between and outside the plates, as well as that of a magnetic field present only between the plates is examined. It is discovered that, in the small plate distance and high temperature limits, the repulsive pressure is less when the magnetic field is present between the plates but not outside, than it is when the magnetic field is present...

  18. Thermal and Nonthermal Signatures of the Unruh Effect in Casimir-Polder Forces

    Science.gov (United States)

    Marino, Jamir; Noto, Antonio; Passante, Roberto

    2014-07-01

    We show that Casimir-Polder forces between two relativistic uniformly accelerated atoms exhibit a transition from the short distance thermal-like behavior predicted by the Unruh effect to a long distance nonthermal behavior, associated with the breakdown of a local inertial description of the system. This phenomenology extends the Unruh thermal response detected by a single accelerated observer to an accelerated spatially extended system of two particles, and we identify the characteristic length scale for this crossover with the inverse of the proper acceleration of the two atoms. Our results are derived separating at fourth order in perturbation theory the contributions of vacuum fluctuations and radiation reaction field to the Casimir-Polder interaction between two atoms moving in two generic stationary trajectories separated by a constant distance and linearly coupled to a scalar field. The field can be assumed in its vacuum state or at finite temperature, resulting in a general method for the computation of Casimir-Polder forces in stationary regimes.

  19. Electromagnetic Casimir effect for conducting plates in de Sitter spacetime

    CERN Document Server

    Kotanjyan, A S; Nersisyan, H A

    2015-01-01

    Two-point functions, the mean field squared and the vacuum expectation value (VEV) of the energy-momentum tensor are investigated for the electromagnetic field in the geometry of parallel plates on background of $(D+1)$% -dimensional dS spacetime. We assume that the field is prepared in the Bunch-Davies vacuum state and on the plates a boundary condition is imposed that is a generalization of the perfectly conducting boundary condition for an arbitrary number of spatial dimensions. It is shown that for $D\\geq 4$ the background gravitational field essentially changes the behavior of the VEVs at separations between the plates larger than the curvature radius of dS spacetime. At large separations, the Casimir forces are proportional to the inverse fourth power of the distance for all values of spatial dimension $D\\geq 3$. For $D\\geq 4$ this behavior is in sharp contrast with the case of plates in Minkowski bulk where the force decays as the inverse $(D+1)$th power of the distance.

  20. What the Casimir-Effect really is telling about Zero-Point Energy

    CERN Document Server

    Gruendler, Gerold

    2013-01-01

    The attractive force between metallic surfaces, predicted by Casimir in 1948, seems to indicate the physical existence and measurability of the quantized electromagnetic field's zero-point energy. It is shown in this article, that Casimir's derivation depends essentially on a misleading idealization. When that idealization is replaced by a realistic assumption, Casimir's argument turns to the exact opposite: The observed Casimir force does positively prove, that the electromagnetic field's zero-point energy does not exert forces onto metallic surfaces.

  1. The Casimir effect as a screening effect in quantized field theory

    International Nuclear Information System (INIS)

    We study the vacuum energy and the vacuum force in a system of quantized scalar fields (massive and massless) in interaction with a given screening medium. Regularization of the energy is studied and the types of determinable forces are clarified. The Casimir effect - the attraction between two conducting plates in a vacuum, and its extension to different geometries - is re-examined in this framework. Instead of the puzzling repulsion for a spherical shell conductor, an attractive force is obtained in our case. As a by-product, we obtain a potential energy, between two balls of large screening power and at remote distance R, -a1a2/4πR3, where αsub(i) are the ball radii. (orig.)

  2. Zeta Function Regularization in Casimir Effect Calculations and J. S. Dowker's Contribution

    Science.gov (United States)

    Elizalde, Emilio

    2012-07-01

    A summary of relevant contributions, ordered in time, to the subject of operator zeta functions and their application to physical issues is provided. The description ends with the seminal contributions of Stephen Hawking and Stuart Dowker and collaborators, considered by many authors as the actual starting point of the introduction of zeta function regularization methods in theoretical physics, in particular, for quantum vacuum fluctuation and Casimir effect calculations. After recalling a number of the strengths of this powerful and elegant method, some of its limitations are discussed. Finally, recent results of the so called operator regularization procedure are presented.

  3. Finite temperature corrections to the Casimir effect in rectangular cavities with perfectly conducting walls

    International Nuclear Information System (INIS)

    The thermodynamical properties of a quantized electromagnetic field inside a box with perfectly conducting walls are studied using a regularization scheme that permits to obtain finite expressions for the thermodynamic potentials. The source of ultraviolet divergences is directly isolated in the expression for the density of modes, and the logarithmic infrared divergences are regularized imposing the uniqueness of vacuum and, consequently, the vanishing of the entropy in the limit of zero temperature. We thus obtain corrections to the Casimir energy and pressures, and to the specific heat; these results suggest effects that could be tested experimentally

  4. Self-adjointness and the Casimir effect with confined quantized spinor matter

    CERN Document Server

    Sitenko, Yurii A

    2015-01-01

    A generalization of the MIT bag boundary condition for spinor matter is proposed basing on the requirement that the Dirac hamiltonian operator be self-adjoint. An influence of a background magnetic field on the vacuum of charged spinor matter confined between two parallel material plates is studied. Employing the most general set of boundary conditions at the plates in the case of the uniform magnetic field directed orthogonally to the plates, we find the pressure from the vacuum onto the plates. In physically plausible situations, the Casimir effect is shown to be repulsive, independently of a choice of boundary conditions and of a distance between the plates.

  5. Self-adjointness and the Casimir effect with confined quantized spinor matter

    Science.gov (United States)

    Sitenko, Yurii A.

    2016-01-01

    A generalization of the MIT bag boundary condition for spinor matter is proposed basing on the requirement that the Dirac hamiltonian operator be self-adjoint. An influence of a background magnetic field on the vacuum of charged spinor matter confined between two parallel material plates is studied. Employing the most general set of boundary conditions at the plates in the case of the uniform magnetic field directed orthogonally to the plates, we find the pressure from the vacuum onto the plates. In physically plausible situations, the Casimir effect is shown to be repulsive, independently of a choice of boundary conditions and of a distance between the plates.

  6. Approximating the effect of the Casimir force on the instability of electrostatic nano-cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Abadyan, Mohamadreza [Islamic Azad University, Tonekabon Branch, Ramsar Center, Ramsar (Iran, Islamic Republic of); Novinzadeh, Alireza [Aerospace Engineering Department, K N Toosi University of Technology, East Vafadar Street, PO Box 16765-3381, Tehran (Iran, Islamic Republic of); Kazemi, AsiehSadat [School of Physics and Center for Solid State Research, Damghan University of Basic Sciences, PO Box 367164-167, Damghan (Iran, Islamic Republic of)], E-mail: novinzadeh@kntu.ac.ir

    2010-01-15

    In this paper, the homotopy perturbation method (HPM) is used to investigate the effect of the Casimir force on the pull-in instability of electrostatic actuators at nano-scale separations. The proposed HPM is employed to solve nonlinear constitutive equations of cantilever beam-type nanoactuators. An analytical solution is obtained in terms of convergent series with easily computable components. Basic design parameters such as critical cantilever tip deflection and pull-in voltage of the nano-cantilevers are computed. As special cases of this work, freestanding nanoactuators and electrostatic micro-actuators are investigated. The analytical HPM results agree well with numerical solutions and those from the literature.

  7. Interference phenomena in the dynamical Casimir effect for a single mirror with Robin conditions

    Science.gov (United States)

    Silva, Jeferson D. Lima; Braga, Alessandra N.; Rego, Andreson L. C.; Alves, Danilo T.

    2015-07-01

    In the literature, the interference phenomenon in the particle creation via the dynamical Casimir effect is investigated for cavities with two moving mirrors. Here, considering the Robin boundary condition (BC), we investigate the interference phenomenon produced by just a single moving mirror. Specifically, we consider a real massless scalar field in 1 +1 dimensions submitted to a Robin BC with a time-dependent Robin parameter at the instantaneous position of a moving mirror, and compute the expressions for the spectral distribution and the rate of created particles. These expressions, which include interference terms, generalize those found in the literature related to the isolated effects of a Robin BC with a time-dependent Robin parameter for a fixed mirror, or a Robin BC with a time-independent Robin parameter for a moving mirror. Differently from models where the problem of interference in the dynamical Casimir effect is considered for cavities with two Dirichlet moving mirrors, in the present model the spectrum is a continuum, and the interference pattern exhibits new features, in the sense that different regions of the spectrum can be affected in different manners by constructive or destructive effects. Furthermore, we also investigate interference in the context of superconducting circuits.

  8. The generalized Abel-Plana formula. Applications to Bessel functions and Casimir effect

    International Nuclear Information System (INIS)

    One of the most efficient methods to obtain the vacuum expectation values for the physical observables in the Casimir effect is based on using the Abel-Plana summation formula. This allows us to derive the regularized quantities in a manifestly cutoff independent way and present them in the form of strongly convergent integrals. However, the application of Abel-Plana formula, in its usual form, is restricted by simple geometries when the eigenmodes have a simple dependence on quantum numbers. The author generalized the Abel-Plana formula which essentially enlarges its application range. Based on this generalization, formulae have been obtained for various types of series over the zeros of some combinations of Bessel functions and for integrals involving these functions. It has been shown that these results generalize the special cases existing in literature. Further, the derived summation formulae have been used to summarize series arising in the mode summation approach to the Casimir effect for spherically and cylindrically symmetric boundaries. This allows us to extract the divergent parts from the vacuum expectation values for the local physical observables in a manifestly cutoff independent way. The present paper reviews these results. Some new considerations are also added. (author)

  9. Correction to the Casimir force due to the anomalous skin effect

    International Nuclear Information System (INIS)

    The surface impedance approach is discussed in connection with the precise calculation of the Casimir force between metallic plates. It allows us to take into account the nonlocal connection between the current density and electric field inside of metals. In general, a material has to be described by two impedances Zs(ω,q) and Zp(ω,q) corresponding to two different polarization states. In contrast with the approximate Leontovich impedance they depend not only on frequency ω but also on the wave vector along the plate q. In this paper only the nonlocal effects happening at frequencies ωp (plasma frequency) are analyzed. We refer to all of them as the anomalous skin effect. The impedances are calculated for the propagating and evanescent fields in the Boltzmann approximation. It is found that Zp significantly deviates from the local impedance as a result of the Thomas-Fermi screening. The nonlocal correction to the Casimir force is calculated at zero temperature. This correction is small but observable at small separations between bodies. The same theory can be used to find more significant nonlocal contribution at ω∼ωp due to the plasmon excitation

  10. Pulsating Casimir force

    OpenAIRE

    Klimchitskaya, G. L.; Mohideen, U.; Mostepanenko, V. M.

    2007-01-01

    Based on the Lifshitz theory we show that the illumination of one (Si) plate in the three-layer systems Au--ethanol--Si, Si--ethanol--Si and $\\alpha$-Al${}_2$O${}_3$--ethanol--Si with laser pulses can change the Casimir attraction to Casimir repulsion and vice versa. The proposed effect opens novel opportunities in nanotechnology to actuate the periodic movement in electro- and optomechanical micromachines based entirely on the zero-point oscillations of the quantum vacuum without the action ...

  11. Pulsating Casimir force

    Energy Technology Data Exchange (ETDEWEB)

    Klimchitskaya, G L [Center of Theoretical Studies and Institute for Theoretical Physics, Leipzig University, Postfach 100920, D-04009, Leipzig (Germany); Mohideen, U [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Mostepanenko, V M [Center of Theoretical Studies and Institute for Theoretical Physics, Leipzig University, Postfach 100920, D-04009, Leipzig (Germany)

    2007-08-24

    Based on the Lifshitz theory we show that the illumination of one (Si) plate in the three-layer systems Au-ethanol-Si, Si-ethanol-Si and {alpha}-Al{sub 2}O{sub 3}-ethanol-Si with laser pulses can change the Casimir attraction to Casimir repulsion and vice versa. The proposed effect opens novel opportunities in nanotechnology to actuate the periodic movement in electro- and optomechanical micromachines based entirely on the zero-point oscillations of the quantum vacuum without the action of mechanical springs. (fast track communication)

  12. Radiative dark-bright instability and the critical Casimir effect in DQW exciton condensates

    Science.gov (United States)

    Hakioğlu, T.; Özgün, Ege

    2011-07-01

    It is already well known that radiative interband interaction in the excitonic normal liquid in semiconducting double quantum wells is responsible for a negligible splitting between the energies of the dark and bright excitons enabling us to consider a four fold spin degeneracy. This has also lead many workers to naively consider the same degeneracy in studying the condensate. On the other hand, the non-perturbative aspects of this interaction in the condensed phase, e.g. its consequences on the order parameter and the dark-bright mixture in the ground state have not been explored. In this work, we demonstrate that the ground state concentrations of the dark and the bright exciton condensates are dramatically different beyond a sharp interband coupling threshold where the contribution of the bright component in the ground state vanishes. This shows that the effect of the radiative interband interaction on the condensate is nonperturbative. We also observe in the free energy a discontinuous derivative with respect to the layer separation at the entrance to the condensed phase, indicating a strong critical Casimir force. An estimate of its strength shows that it is measurable. Measuring the Casimir force is challenging, but at the same time it has a conclusive power about the presence of the long sought for condensed phase.

  13. Dynamical Casimir Effect in a small compact manifold for the Maxwell vacuum

    CERN Document Server

    Zhitnitsky, Ariel R

    2015-01-01

    We study novel type of contributions to the partition function of the Maxwell system defined on a small compact manifold ${\\mathbb{M}}$ such as torus. These new terms can not be described in terms of the physical propagating photons with two transverse polarizations. Rather, these novel contributions emerge as a result of tunnelling events when transitions occur between topologically different but physically identical vacuum winding states. These new terms give an extra contribution to the Casimir pressure, yet to be measured. We argue that if the same system is considered in the background of a small external time-dependent magnetic field, than there will be emission of photons from the vacuum, similar to the Dynamical Casimir Effect (DCE) when real particles are radiated from the vacuum due to the time-dependent boundary conditions. The difference with conventional DCE is that the dynamics of the vacuum in our system is not related to the fluctuations of the conventional degrees of freedom, the virtual phot...

  14. Thermal effects on the casimir force in the 0.1- 5 &mgr;m range

    Science.gov (United States)

    Bostrom; Sernelius

    2000-05-15

    The vacuum stresses between a metal half-space and a metal sphere were recently measured at room temperature, in the 0.6-6 &mgr;m range, with an estimated accuracy of 5%. In the interpretation it was assumed that the accuracy was not good enough for observing any thermal effects. We claim that thermal effects are important in this separation range and back up this claim with numerical calculations of the Casimir force at zero temperature and at 300 K, based on tabulated optical data of gold, copper, and aluminum. The effects of dissipation and temperature are investigated and we demonstrate the importance of considering these two corrections together. PMID:10990789

  15. Casimir force between bimetallic heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Barcenas, J.; Reyes, L.; Esquivel Sirvent, R. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364 Ciudad Universitaria, Mexico, 01000 (Mexico)

    2005-05-01

    We present a general method for calculating the Casimir force between heterostructures using an effective surface impedance approach. Within this formalism we study the effect of thin film coatings on the force. As a case study we present results for a system made of alternate layers of Mg and Ni and evaluate the effect that Pd coatings have on the Casimir force. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Dynamical Casimir effect in superradiant light scattering by Bose—Einstein condensate in an optomechanical cavity

    International Nuclear Information System (INIS)

    We investigate the effects of dynamical Casimir effect in superradiant light scattering by Bose—Einstein condensate in an optomechanical cavity. The system is studied using both classical and quantized mirror motions. The cavity frequency is harmonically modulated in time for both the cases. The main quantity of interest is the number of intracavity scattered photons. The system has been investigated under the weak and strong modulations. It has been observed that the amplitude of the scattered photons is more for the classical mirror motion than the quantized mirror motion. Also, initially, the amplitude of scattered photons is high for lower modulation amplitude than higher modulation amplitude. We also found that the behavior of the plots are similar under strong and weak modulations for the quantized mirror motion. (general)

  17. New signatures of the dynamical Casimir effect in a superconducting circuit

    CERN Document Server

    Rego, Andreson L C; Alves, Danilo T; Farina, C

    2014-01-01

    We found new signatures of the dynamical Casimir effect (DCE) in the context of superconducting circuits. We show that if the recent experiment made by Wilson {\\it et al}, which brought the DCE into reality for the first time, is repeated with slight modifications (for instance, different values for the capacitance of the SQUID), three remarkable results will show up, namely: {\\it (i)} a quite different spectral distribution for the created particles, deviating from the typical parabolic shape; {\\it (ii)} an enhancement by a factor of approximately $5 \\times 10^3 $ in the number of created particles with half driven frequency of the effective moving mirror and {\\it (iii)} an enhancement by a factor of $3 \\times 10^2$ in the particle creation rate. These results may guide the experimentalists in their search for alternative routes to observe the DCE in future experiments.

  18. Reduction of the Casimir force using aerogels

    OpenAIRE

    Esquivel-Sirvent, R.

    2007-01-01

    By using silicon oxide based aerogels we show numerically that the Casimir force can be reduced several orders of magnitude, making its effect negligible in nanodevices. This decrease in the Casimir force is also present even when the aerogels are deposited on metallic substrates. To calculate the Casimir force we model the dielectric function of silicon oxide aerogels using an effective medium dielectric function such as the Clausius-Mossotti approximation. The results show that both the por...

  19. Size quantization effects in thin film Casimir interaction

    International Nuclear Information System (INIS)

    We investigate the role of size quantization in the vacuum force between metallic films of nanometric thickness. The force is calculated by the Lifshitz formula with the film dielectric tensor derived from the one-electron energies and wavefunctions under the assumption of a constant potential inside the film and a uniform distribution of the positive ion charge. The results show that quantization effects tend to reduce the force with respect to the continuum plasma model. The reduction is more significant at low electron densities and for film size of the order of few nanometers and persists for separation distances up to 10-50 nm. Comparison with previous work indicates that the softening of the boundary potential is important in determining the amount of the reduction. The calculations are extended to treat Drude intraband absorption. It is shown that the inclusion of relaxation time enhances the size quantization effects in the force calculations.

  20. Dispersive Casimir Pressure Effect from Surface Plasmon Quanta by Quasi 1D Metal Wires in Ferrite Disks and The Josephson Frequencies and Currents

    CERN Document Server

    Obol, Mahmut

    2013-01-01

    Ferrites are distinct material for electromagnetic applications due to its unique spin precession. In this paper, Casimir pressure effect by deploying magnetically tunable surface plasmon quanta in stratified structure of using ferrite and metal wires is presented. Previously, oscillating surface plasmon quanta were successfully included to modify first reflection and first transmission characteristics. The oscillating surface plasmon quanta in the modified reflection in such a system, not only does resolve in a typical matter in metamaterial, but also provide new applications such as creating Casimir pressure effects through the metamaterial composite shown in this paper. The Casimir pressure flips from attractive state to repulsive state is referred to actual cause mechanism of radiation from surface plasmon quanta. Both Casimir force analysis and the measured data of radiations indicate us the system develops quantized states by electric flux induced by ferromagnetic resonance, so we also carried quantum a...

  1. Casimir effect mechanism of pairing between fermions in the vicinity of a magnetic quantum critical point

    Science.gov (United States)

    Kharkov, Yaroslav; Oleg P Sushkov Team

    We consider two spin 1 / 2 fermions in a two-dimensional magnetic system that is close to the O (3) magnetic quantum critical point (QCP) which separates magnetically ordered and disordered phases. Focusing on the disordered phase in the vicinity of the QCP, we demonstrate that the criticality results in a strong long range attraction between the fermions, with potential V (r) ~ - 1 /rα , α ~ 0 . 75 , where r is separation between the fermions. The mechanism of the enhanced attraction is similar to Casimir effect and corresponds to multi-magnon exchange processes between the fermions. While we consider a model system, the problem is originally motivated by recent experimental establishment of magnetic QCP in hole doped cuprates under the superconducting dome at doping of about 10%. We suggest the mechanism of magnetic critical enhancement of pairing in cuprates.

  2. Casimir micro-sphere diclusters and three-body effects in fluids

    CERN Document Server

    Varela, Jaime; McCauley, Alexander P; Johnson, Steven G

    2010-01-01

    Our previous article [Phys. Rev. Lett. 104, 060401 (2010)] predicted that Casimir forces induced by the material-dispersion properties of certain dielectrics can give rise to stable configurations of objects. This phenomenon was illustrated via a dicluster configuration of non-touching objects consisting of two spheres immersed in a fluid and suspended against gravity above a plate. Here, we examine these predictions from the perspective of a practical experiment and consider the influence of non-additive, three-body, and nonzero-temperature effects on the stability of the two spheres. We conclude that the presence of Brownian motion reduces the set of experimentally realizable silicon/teflon spherical diclusters to those consisting of layered micro-spheres, such as the hollow- core (spherical shells) considered here.

  3. Casimir forces in a plasma: possible connections to Yukawa potentials

    Science.gov (United States)

    Ninham, Barry W.; Boström, Mathias; Persson, Clas; Brevik, Iver; Buhmann, Stefan Y.; Sernelius, Bo E.

    2014-10-01

    We present theoretical and numerical results for the screened Casimir effect between perfect metal surfaces in a plasma. We show how the Casimir effect in an electron-positron plasma can provide an important contribution to nuclear interactions. Our results suggest that there is a connection between Casimir forces and nucleon forces mediated by mesons. Correct nuclear energies and meson masses appear to emerge naturally from the screened Casimir-Lifshitz effect.

  4. Casimir forces in a plasma: possible connections to Yukawa potentials

    International Nuclear Information System (INIS)

    We present theoretical and numerical results for the screened Casimir effect between perfect metal surfaces in a plasma. We show how the Casimir effect in an electron-positron plasma can provide an important contribution to nuclear interactions. Our results suggest that there is a connection between Casimir forces and nucleon forces mediated by mesons. Correct nuclear energies and meson masses appear to emerge naturally from the screened Casimir-Lifshitz effect. (authors)

  5. Casimir effect for scalar current densities in topologically nontrivial spaces

    CERN Document Server

    Bellucci, S; Saharyan, N A

    2015-01-01

    We evaluate the Hadamard function and the vacuum expectation value (VEV) of the current density for a charged scalar field, induced by flat boundaries in spacetimes with an arbitrary number of toroidally compactified spatial dimensions. The field operator obeys the Robin conditions on the boundaries and quasiperiodicity conditions with general phases along compact dimensions. In addition, the presence of a constant gauge field is assumed. The latter induces Aharonov-Bohm-type effect on the VEVs. There is a region in the space of the parameters in Robin boundary conditions where the vacuum state becomes unstable. The stability condition depends on the lengths of compact dimensions and is less restrictive than that for background with trivial topology. The vacuum current density is a periodic function of the magnetic flux, enclosed by compact dimensions, with the period equal to the flux quantum. It is explicitly decomposed into the boundary-free and boundary-induced contributions. In sharp contrast to the VEVs...

  6. The generalized Abel-Plana formula with applications to Bessel functions and casimir effect

    International Nuclear Information System (INIS)

    One of the most efficient methods for the evaluation of the vacuum expectation values for physical observables in the Casimir effect is based on using the Abel-Plana summation formula. This enables to derive the renormalized quantities in a manifestly cutoff independent way and to present them in the form of strongly convergent integrals. However, applications of the Abel- Plana formula, in its usual form, are restricted by simple geometries when the eigenmodes have a simple dependence on quantum numbers. The author generalized the Abel-Plana formula which essentially enlarges its application range. Based on this generalization, formulae have been obtained for various types of series over the zeros of combinations of Bessel functions and for integrals involving these functions. It has been shown that these results generalize the special cases existing in literature. Further, the derived summation formulae have been used to summarize series arising in the direct mode summation approach to the Casimir effect for spherically and cylindrically symmetric boundaries, for boundaries moving with uniform proper acceleration, and in various braneworld scenarios. This allows to extract from the vacuum expectation values of local physical observables the parts corresponding to the geometry without boundaries and to present the boundary-induced parts in terms of integrals strongly convergent for the points away from the boundaries. As a result, the renormalization procedure for these observables is reduced to the corresponding procedure for bulks without boundaries. The present paper reviews these results. We also aim to collect the results on vacuum expectation values for local physical observables such as the field square and the energy-momentum tensor in manifolds with boundaries for various bulk and boundary geometries. (author)

  7. Casimir effect for scalar current densities in topologically nontrivial spaces

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Saharian, A.A.; Saharyan, N.A. [Yerevan State University, Department of Physics, Yerevan (Armenia)

    2015-08-15

    We evaluate the Hadamard function and the vacuum expectation value (VEV) of the current density for a charged scalar field, induced by flat boundaries in spacetimes with an arbitrary number of toroidally compactified spatial dimensions. The field operator obeys the Robin conditions on the boundaries and quasiperiodicity conditions with general phases along compact dimensions. In addition, the presence of a constant gauge field is assumed. The latter induces Aharonov-Bohm-type effect on the VEVs. There is a region in the space of the parameters in Robin boundary conditions where the vacuum state becomes unstable. The stability condition depends on the lengths of compact dimensions and is less restrictive than that for background with trivial topology. The vacuum current density is a periodic function of the magnetic flux, enclosed by compact dimensions, with the period equal to the flux quantum. It is explicitly decomposed into the boundary-free and boundary-induced contributions. In sharp contrast to the VEVs of the field squared and the energy-momentum tensor, the current density does not contain surface divergences. Moreover, for Dirichlet condition it vanishes on the boundaries. The normal derivative of the current density on the boundaries vanish for both Dirichlet and Neumann conditions and is nonzero for general Robin conditions. When the separation between the plates is smaller than other length scales, the behavior of the current density is essentially different for non-Neumann and Neumann boundary conditions. In the former case, the total current density in the region between the plates tends to zero. For Neumann boundary condition on both plates, the current density is dominated by the interference part and is inversely proportional to the separation. (orig.)

  8. Halving the Casimir force with Conductive Oxides

    OpenAIRE

    WIJNGAARDEN, R. J.; Man, de, F.H.; Heeck, K.; Iannuzzi, D

    2009-01-01

    The possibility to modify the strength of the Casimir effect by tailoring the dielectric functions of the interacting surfaces is regarded as a unique opportunity in the development of Micro- and NanoElectroMechanical Systems. In air, however, one expects that, unless noble metals are used, the electrostatic force arising from trapped charges overcomes the Casimir attraction, leaving no room for exploitation of Casimir force engineering at ambient conditions. Here we show that, in the presenc...

  9. QFT Limit of the Casimir Force

    OpenAIRE

    Scandurra, Marco

    2003-01-01

    High precision measurements of the Casimir effect and recent applications to micro electromechanical systems raise the question of how large the Casimir force can be made in an arbitrarily small device. Using a simple model for the metal boundary in which the metal is perfectly conducting at frequencies below plasma frequency omega_p and perfectly transparent above such frequency, I find that the Casimir force for plate separations a

  10. Critical Casimir effect in three-dimensional Ising systems: Measurements on binary wetting films

    International Nuclear Information System (INIS)

    The critical Casimir force (CF) is observed in thin wetting films of a binary liquid mixture close to the liquid/vapor coexistence. X-ray reflectivity shows thickness (L) enhancement near the bulk consolute point. The extracted Casimir amplitude Δ+-=3±1 agrees with the theoretical universal value for the antisymmetric 3D Ising films. The onset of CF in the one-phase region occurs at L/ξ∼5 regardless of whether the bulk correlation length ξ is varied with temperature or composition. The shape of the Casimir scaling function depends monotonically on the dimensionality

  11. An improved model for the cantilever NEMS actuator including the surface energy, fringing field and Casimir effects

    Science.gov (United States)

    Farrokhabadi, Amin; Mohebshahedin, Abed; Rach, Randolph; Duan, Jun-Sheng

    2016-01-01

    The influence of the surface energy on the instability of nano-structures under the electrostatic force has been investigated in recent years by different researchers. It appears that in all prior research, the response of all structures becomes softer due to the surface effects. In the present study, the pull-in instability of a NEMS device incorporating the electrostatic force and Casimir intermolecular attraction for different values of the surface parameter is investigated by the Duan-Rach method of determined coefficients (MDC) in order to identify the remarkable effect of the surface energy. Although the obtained results verify the behavior of such structures in presence of the fringing field and the Casimir attraction same as the previous investigations, however the incremental effects of the surface energy cause the aforementioned structures to behave more stiffly in contrast.

  12. New Vacuum State of the Electromagnetic Field-Matter Coupling System and the Physical Interpretation of Casimir Effect

    Institute of Scientific and Technical Information of China (English)

    李铜忠

    2004-01-01

    A new concise method is presented for the calculation of the ground-state energy of the electromagnetic field and matter field interacting system. With the assumption of squeezed-like state, a new vacuum state is obtained for the interacting system. The energy of the new vacuum state is lower than that given by the second-order perturbation theory in existing theories. In our theory, the Casimir effect is attributed neither to the quantum fluctuation in the zero-point energy of the genuine electromagnetic field nor to that in the zero-point energy of the genuine matter field, but to that in the vacuum state of the interacting system. Both electromagnetic field and matter field are responsible for the Casimir effect.

  13. Bogoliubov transformation for quantum fields in (S1)d x RD-d topology and applications to the Casimir effect

    International Nuclear Information System (INIS)

    A Bogoliubov transformation accounting simultaneously for spatial compactifica-tion and thermal effects is introduced. The fields are described in a ΓDd = S11 x ... x S1d x RD-d topology, and the Bogoliubov transformation is derived by a generalization of the thermofield dynamics formalism, a real-time finite-temperature quantum field theory. We consider the Casimir effect for Maxwell and Dirac fields and for a non-interacting massless QCD at finite temperature. For the fermion sector in a cubic box, we analyze the temperature at which the Casimir pressure changes its sign from attractive to repulsive. This critical temperature is approximately 200 MeV when the edge of the cube is of the order of the confining lengths (∼ 1 : fm) for quarks in baryons.

  14. Casimir Effect Near the Future Singularity in Kaluza Klein Viscous Cosmology

    Science.gov (United States)

    Khadekar, G. S.

    2016-02-01

    In this paper we investigate the analytical properties of the scalar expansion θ in the cosmic fluid close to the future singularity, when the fluid possesses a constant bulk viscosity ζ in the framework of Kaluza-Klein theory of gravitation. In addition, we assume the viscous cosmology theories in the sense that the Casimir contributions to the energy density and pressure are both proportional to 1/ a 4, where a being scale factor. We also worked out the series expansion for the scalar expansion θ under the condition that the Casimir influence is small. However, near to the big rip singularity the Casimir term has to fade away and we obtain the same singularity behavior for the scalar expansion θ, energy density ρ, the scale factor a as in the Casimir-free viscous case.

  15. The effect of patch potentials in Casimir force measurements determined by heterodyne Kelvin probe force microscopy

    OpenAIRE

    Garrett, Joseph L.; Somers, David; Munday, Jeremy N.

    2014-01-01

    Measurements of the Casimir force require the elimination of electrostatic interactions between the surfaces. However, due to electrostatic patch potentials, the voltage required to minimize the total force may not be sufficient to completely nullify the electrostatic interaction. Thus, these surface potential variations cause an additional force, which can obscure the Casimir force signal. In this paper, we inspect the spatially varying surface potential (SP) of e-beamed, sputtered, sputtere...

  16. The critical Casimir force in the superfluid phase: effect of fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Shyamal [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata-700 009 (India); Bhattacharjee, J K [SN Bose National Centre for Basic Sciences, Sector 3, JD Block, Salt Lake, Kolkata-700 098 (India); Samanta, Himadri S [Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Bhattacharyya, Saugata [Department of Physics, Vidyasagar College, 39 Sankar Ghosh Lane, Kolkata-700 006 (India); Hu, Bambi, E-mail: sbiswas.phys.cu@gmail.co [Centre for Nonlinear Studies, and BHKS Joint Centre for Nonlinear and Complex Systems, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2010-06-15

    We have considered the critical Casimir force on a {sup 4}He film below and above the bulk {lambda} point. We have explored the role of fluctuations around the mean field theory in a perturbative manner, and have substantially improved the mean field result of Zandi et al (2007 Phys. Rev. E 76 030601(R)). The Casimir scaling function obtained by us approaches a universal constant (-{zeta}(3)/8{pi}) for T{approx}<2.13 K.

  17. Casimir force driven ratchets

    OpenAIRE

    Emig, Thorsten

    2007-01-01

    We explore the non-linear dynamics of two parallel periodically patterned metal surfaces that are coupled by the zero-point fluctuations of the electromagnetic field between them. The resulting Casimir force generates for asymmetric patterns with a time-periodically driven surface-to-surface distance a ratchet effect, allowing for directed lateral motion of the surfaces in sizeable parameter ranges. It is crucial to take into account inertia effects and hence chaotic dynamics which are descri...

  18. Casimir forces and geometry

    International Nuclear Information System (INIS)

    Casimir interactions are interactions induced by quantum vacuum fluctuations and thermal fluctuations of the electromagnetic field. Using a path integral quantization for the gauge field, an effective Gaussian action will be derived which is the starting point to compute Casimir forces between macroscopic objects analytically and numerically. No assumptions about the independence of the material and shape dependent contributions to the interaction are made. We study the limit of flat surfaces in further detail and obtain a concise derivation of Lifshitz' theory of molecular forces. For the case of ideally conducting boundaries, the Gaussian action will be calculated explicitly. Both limiting cases are also discussed within the framework of a scalar field quantization approach, which is applicable for translationally invariant geometries. We develop a non-perturbative approach to calculate the Casimir interaction from the Gaussian action for periodically deformed and ideally conducting objects numerically. The obtained results reveal two different scaling regimes for the Casimir force as a function of the distance between the objects, their deformation wavelength and -amplitude. The results confirm that the interaction is non-additive, especially in the presence of strong geometric deformations. Furthermore, the numerical approach is extended to calculate lateral Casimir forces. The results are consistent with the results of the proximity-force approximation for large deformation wavelengths. A qualitatively different behaviour between the normal and lateral force is revealed. We also establish a relation between the boundary induced change of the of the density of states for the scalar Helmholtz equation and the Casimir interaction using the path integral method. For statically deformed boundaries, this relation can be expressed as a novel trace formula, which is formally similar to the so-called Krein-Friedel-Lloyd formula. While the latter formula describes the

  19. Resource Letter CF-1: Casimir Force

    Energy Technology Data Exchange (ETDEWEB)

    Lamoreaux, S.K. [University of California, Los Alamos National Laboratory, Physics Division P-23, M.S. H803, Los Alamos, New Mexico 87545 (United States)

    1999-10-01

    This resource letter provides an introductory guide to the literature on the Casimir force. Journal articles and books are cited for the following topics: introductory articles and books, calculations, dynamical Casimir effect, mechanical analogs, applications, and experiments. {copyright} {ital 1999 American Association of Physics Teachers.}

  20. Precise determination of the Casimir force and first realization of a "Casimir less" experiment

    OpenAIRE

    Decca, R. S.; Lopez, D.; Chan, H. B.; Fischbach, E.; Klimchitskaya, G. L.; Krause, D. E.; Mostepanenkot, V. M.

    2004-01-01

    We present improved Casimir effect measurements. The attractive force between a metallized sphere and the coated plate of a Si microelectro mechanical oscillator is measured with unparalleled precision. The same setup, but in a dynamic scheme, yields a determination of the Casimir pressure between two infinite plates. Since the Casimir force is the dominant interaction in the 0.11 mum range under these experimental conditions, it acts as a background in the search for new forces in the submic...

  1. Large-n approach to thermodynamic Casimir effects in slabs with free surfaces

    Science.gov (United States)

    Diehl, H. W.; Grüneberg, Daniel; Hasenbusch, Martin; Hucht, Alfred; Rutkevich, Sergei B.; Schmidt, Felix M.

    2014-06-01

    The classical n-vector ϕ4 model with O (n) symmetrical Hamiltonian H is considered in a ∞2×L slab geometry bounded by a pair of parallel free surface planes at separation L. Standard quadratic boundary terms implying Robin boundary conditions are included in H. The temperature-dependent scaling functions of the excess free energy and the thermodynamic Casimir force are computed in the large-n limit for temperatures T at, above, and below the bulk critical temperature Tc. Their n =∞ limits can be expressed exactly in terms of the spectrum and eigenfunctions of a self-consistent one-dimensional Schrödinger equation. This equation is solved by numerical means for two distinct discretized versions of the model: in the first ("model A"), only the coordinate z across the slab is discretized and the integrations over momenta conjugate to the lateral coordinates are regularized dimensionally; in the second ("model B"), a simple cubic lattice with periodic boundary conditions along the lateral directions is used. Renormalization-group ideas are invoked to show that, in addition to corrections to scaling ∝L-1, anomalous ones ∝L-1lnL should occur. They can be considerably decreased by taking an appropriate g →∞ (Tc→∞) limit of the ϕ4 interaction constant g. Depending on the model A or B, they can be absorbed completely or to a large extent in an effective thickness Leff=L+δL. Excellent data collapses and consistent high-precision results for both models are obtained. The approach to the low-temperature Goldstone values of the scaling functions is shown to involve logarithmic anomalies. The scaling functions exhibit all qualitative features seen in experiments on the thinning of wetting layers of 4He and Monte Carlo simulations of XY models, including a pronounced minimum of the Casimir force below Tc. The results are in conformity with various analytically known exact properties of the scaling functions.

  2. Thickness dependence of the Casimir force between a magnetodielectric plate and a diamagnetic plate

    Energy Technology Data Exchange (ETDEWEB)

    Inui, Norio [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2201 (Japan)

    2011-11-15

    This paper examines the repulsive Casimir force between a magnetodielectric plate, with static permeability greater than static permittivity, and a diamagnetic plate. As the thickness of the magnetodielectric plate is decreased, the attractive component of the Casimir force decreases more than the repulsive one. This effect makes the net Casimir force repulsive, and a larger repulsive Casimir force is generated compared to the Casimir force between the plates with infinite thickness.

  3. Thickness dependence of the Casimir force between a magnetodielectric plate and a diamagnetic plate

    International Nuclear Information System (INIS)

    This paper examines the repulsive Casimir force between a magnetodielectric plate, with static permeability greater than static permittivity, and a diamagnetic plate. As the thickness of the magnetodielectric plate is decreased, the attractive component of the Casimir force decreases more than the repulsive one. This effect makes the net Casimir force repulsive, and a larger repulsive Casimir force is generated compared to the Casimir force between the plates with infinite thickness.

  4. Static behavior of nano/micromirrors under the effect of Casimir force, an analytical approach

    International Nuclear Information System (INIS)

    In this paper, static behavior of nano/micromirrors under Casimir force is studied. At the first, the equilibrium equation governing the statical behavior of nano/micromirrors is obtained. Then energy method is employed to investigate statical stability of nano/micromirrors equilibrium points and a useful equation is suggested for successful and stable design of nano/micromirrors under Casimir force. Then, equilibrium angle of nano/micromirrors is calculated both numerically and analytically using the homotopy perturbation method (HPM). It is observed that with increasing the instability number defined in the paper, the rotation angle of the mirror is increased and suddenly, pull-in occurs. Since analytical results well follow the numerical ones, the presented analytical method in this paper can be used as a fast, precise and stable design tool in nano/micromirrors under Casimir force

  5. The effect of patch potentials in Casimir force measurements determined by heterodyne Kelvin probe force microscopy

    Science.gov (United States)

    Garrett, Joseph L.; Somers, David; Munday, Jeremy N.

    2015-06-01

    Measurements of the Casimir force require the elimination of the electrostatic force between the surfaces. However, due to electrostatic patch potentials, the voltage required to minimize the total force may not be sufficient to completely nullify the electrostatic interaction. Thus, these surface potential variations cause an additional force, which can obscure the Casimir force signal. In this paper, we inspect the spatially varying surface potential of e-beamed, sputtered, sputtered and annealed, and template stripped gold surfaces with Heterodyne amplitude modulated Kelvin probe force microscopy (HAM-KPFM). It is demonstrated that HAM-KPFM improves the spatial resolution of surface potential measurements compared to amplitude modulated Kelvin probe force microscopy. We find that patch potentials vary depending on sample preparation, and that the calculated pressure can be similar to the pressure difference between Casimir force calculations employing the plasma and Drude models.

  6. Static behavior of nano/micromirrors under the effect of Casimir force, an analytical approach

    Energy Technology Data Exchange (ETDEWEB)

    Moeenfard, Hamid; Darvishian, Ali; Ahmaidan, Mohammad Taghi [Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2012-02-15

    In this paper, static behavior of nano/micromirrors under Casimir force is studied. At the first, the equilibrium equation governing the statical behavior of nano/micromirrors is obtained. Then energy method is employed to investigate statical stability of nano/micromirrors equilibrium points and a useful equation is suggested for successful and stable design of nano/micromirrors under Casimir force. Then, equilibrium angle of nano/micromirrors is calculated both numerically and analytically using the homotopy perturbation method (HPM). It is observed that with increasing the instability number defined in the paper, the rotation angle of the mirror is increased and suddenly, pull-in occurs. Since analytical results well follow the numerical ones, the presented analytical method in this paper can be used as a fast, precise and stable design tool in nano/micromirrors under Casimir force.

  7. Novel constraints on light elementary particles and extra-dimensional physics from the Casimir effect

    CERN Document Server

    Decca, R S; Fischbach, E; Klimchitskaya, G L; Krause, D E; Mostepanenko, V M

    2007-01-01

    We present supplementary information on the recent indirect measurement of the Casimir pressure between two parallel plates using a micromachined oscillator. The equivalent pressure between the plates is obtained by means of the proximity force approximation after measuring the force gradient between a gold coated sphere and a gold coated plate. The data are compared with a new theoretical approach to the thermal Casimir force based on the use of the Lifshitz formula, combined with a generalized plasma-like dielectric permittivity which takes into account interband transitions of core electrons. The theoretical Casimir pressures calculated using the new approach are compared with those computed in the framework of the previously used impedance approach and also with the Drude model approach. The latter is shown to be excluded by the data at a 99.9% confidence level within a wide separation range from 210 to 620 nm. The level of agreement between the data and theoretical approaches based on the generalized pla...

  8. A Green's function approach to the Casimir effect on topological insulators with planar symmetry

    Science.gov (United States)

    Martín-Ruiz, A.; Cambiaso, M.; Urrutia, L. F.

    2016-03-01

    We investigate the Casimir stress on a topological insulator (TI) between two metallic plates. The TI is assumed to be joined to one of the plates and its surface in front of the other is covered by a thin magnetic layer, which turns the TI into a full insulator. We also analyze the limit where one of the plates is sent to infinity yielding the Casimir stress between a conducting plate and a TI. To this end we employ a local approach in terms of the stress-energy tensor of the system, its vacuum expectation value being subsequently evaluated in terms of the appropriate Green's function. Finally, the construction of the renormalised vacuum stress-energy tensor in the region between the plates yields the Casimir stress. Numerical results are also presented.

  9. Oscillating dipole layer facing a conducting plane: a classical analogue of the dynamical Casimir effect

    International Nuclear Information System (INIS)

    We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation

  10. Local zeta regularization and the scalar Casimir effect I. A general approach based on integral kernels

    CERN Document Server

    Fermi, Davide

    2015-01-01

    This is the first one of a series of papers about zeta regularization of the divergences appearing in the vacuum expectation value (VEV) of several local and global observables in quantum field theory. More precisely we consider a quantized, neutral scalar field on a domain in any spatial dimension, with arbitrary boundary conditions and, possibly, in presence of an external classical potential. We analyze, in particular, the VEV of the stress-energy tensor, the corresponding boundary forces and the total energy, thus taking into account both local and global aspects of the Casimir effect. In comparison with the wide existing literature on these subjects, we try to develop a more systematic approach, allowing to treat specific configurations by mere application of a general machinery. The present Part I is mainly devoted to setting up this general framework; at the end of the paper, this is exemplified in a very simple case. In Parts II, III and IV we will consider more engaging applications, indicated in the...

  11. Radiation from an oscillating dipole layer facing a conducting plane: resonances and Dynamical Casimir Effect

    CERN Document Server

    Fosco, César D

    2015-01-01

    We study the properties of the classical electromagnetic (EM) radiation produced by two phys- ically different yet closely related systems, which may be regarded as classical analogues of the Dynamical Casimir Effect (DCE). They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect conductor boundary conditions, while the other performs a rigid oscil- latory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written i...

  12. A Gedanken spacecraft that operates using the quantum vacuum (Dynamic Casimir effect)

    CERN Document Server

    MacLay, G J; Forward, Robert L.

    2003-01-01

    Conventional rockets are not a suitable technology for deep space missions. Chemical rockets require a very large weight of propellant, travel very slowly compared to light speed, and require significant energy to maintain operation over periods of years. For example, the 722 kg Voyager spacecraft required 13,600 kg of propellant to launch and would take about 80,000 years to reach the nearest star, Proxima Centauri, about 4.3 light years away. There have been various attempts at developing ideas on which one might base a spacecraft that would permit deep space travel, such as spacewarps. In this paper we consider another suggestion from science fiction and explore how the quantum vacuum might be utilized in the creation of a novel spacecraft. The spacecraft is based on the dynamic Casimir effect, in which electromagnetic radiation is emitted when an uncharged mirror is properly accelerated in the vacuum. The radiative reaction produces a dissipative force on the mirror that tends to resist the acceleration o...

  13. Oscillating dipole layer facing a conducting plane: a classical analogue of the dynamical Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Fosco, Cesar D. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche, Instituto Balseiro, Bariloche (Argentina); Lombardo, Fernando C. [Ciudad Universitaria, Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA y IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2015-12-15

    We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation. (orig.)

  14. Oscillating dipole layer facing a conducting plane: a classical analogue of the dynamical Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Fosco, César D. [Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, R8402AGP, Bariloche (Argentina); Lombardo, Fernando C., E-mail: lombardo@df.uba.ar [Departamento de Física Juan José Giambiagi, FCEyN UBA and IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina)

    2015-12-17

    We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation.

  15. The Casimir effect for thin plasma sheets and the role of the surface plasmons

    International Nuclear Information System (INIS)

    We consider the Casimir force between two dielectric bodies described by the plasma model and between two infinitely thin plasma sheets. In both cases in addition to the photon modes, surface plasmons are present in the spectrum of the electromagnetic field. We investigate the contribution of both types of modes to the Casimir force and confirm resp. find in both models large compensations between the plasmon modes themselves and between them and the photon modes especially at large distances. Our conclusion is that the separation of the vacuum energy into plasmon and photon contributions must be handled with care except for the case of small separations

  16. Influence of van-der-Waals like interactions on the thermodynamic Casimir effect; Einfluss van-der-Waals-artiger Wechselwirkungen auf den thermodynamischen Casimir-Effekt

    Energy Technology Data Exchange (ETDEWEB)

    Grueneberg, Daniel

    2008-02-15

    To study how the behavior of the thermodynamic Casimir force changes qualitatively and quantitatively due to the presence of such interactions - compared to systems with purely short-range interactions - is the aim of this work. Considering d-dimensional models belonging to the universality class of the O(n)-symmetrical systems, the thermodynamic Casimir force and its leading corrections are derived for temperatures at and above the transition temperature (T{>=}T{sub c,{infinity}}). The underlying pair potential is assumed to be isotropic and long-ranged, decaying asymptotically proportional to x{sup -(d+{sigma}}{sup )} for large separations x, where the value of the parameter {sigma} is restricted to the interval 2<{sigma}<4. By solving an appropriate spherical model in 2Casimir force and its leading corrections are obtained. To study the case n<{infinity}, which in 2Casimir force and its leading corrections are evaluated to two-loop order. It is shown that both in the spherical model and in the O(n)-symmetrical case with n<{infinity} to two-loop order, the thermodynamic Casimir force in the presence of the long-range interaction decays algebraically {proportional_to}L{sup -(d+{sigma}}{sup )} at fixed temperature T>T{sub c,{infinity}} on sufficiently large length scales. (orig.)

  17. Oscillating Casimir force between two slabs in a Fermi sea

    DEFF Research Database (Denmark)

    Li-Wei, Chen; Guo-Zhen, Su; Jin-Can, Chen; Andresen, Bjarne Bøgeskov

    2012-01-01

    that the Casimir force decreases monotonically with the increase of the separation L between two slabs in an electromagnetic field and a massive Bose gas, the Casimir force in a Fermi gas oscillates as a function of L. The Casimir force can be either attractive or repulsive, depending sensitively on...... the magnitude of L. In addition, it is found that the amplitude of the Casimir force in a Fermi gas decreases with the increase of the temperature, which also is contrary to the case in a Bose gas, since the bosonic Casimir force increases linearly with the increase of the temperature in the region T......The Casimir effect for two parallel slabs immersed in an ideal Fermi sea is investigated at both zero and nonzero temperatures. It is found that the Casimir effect in a Fermi gas is distinctly different from that in an electromagnetic field or a massive Bose gas. In contrast to the familiar result...

  18. Halving the Casimir force with conductive oxides.

    Science.gov (United States)

    de Man, S; Heeck, K; Wijngaarden, R J; Iannuzzi, D

    2009-07-24

    The possibility to modify the strength of the Casimir effect by tailoring the dielectric functions of the interacting surfaces is regarded as a unique opportunity in the development of micro- and nanoelectromechanical systems. In air, however, one expects that, unless noble metals are used, the electrostatic force arising from trapped charges overcomes the Casimir attraction, leaving no room for exploitation of Casimir force engineering at ambient conditions. Here we show that, in the presence of a conductive oxide, the Casimir force can be the dominant interaction even in air, and that the use of conductive oxides allows one to reduce the Casimir force up to a factor of 2 when compared to noble metals. PMID:19659332

  19. Finite-temperature Casimir effect in the presence of nonlinear dielectrics

    DEFF Research Database (Denmark)

    Kheirandish, Fardin; Amooghorban, Ehsan; Soltani, Morteza

    2011-01-01

    Starting from a Lagrangian, the electromagnetic field in the presence of a nonlinear dielectric medium is quantized using path-integral techniques, and correlation functions of different fields are calculated. The susceptibilities of the nonlinear medium are obtained, and their relations to...... coupling functions are determined. Finally, the Casimir energy and force in the presence of a nonlinear medium at finite temperature are calculated....

  20. The Casimir Effect from the Point of View of Algebraic Quantum Field Theory

    Science.gov (United States)

    Dappiaggi, Claudio; Nosari, Gabriele; Pinamonti, Nicola

    2016-06-01

    We consider a region of Minkowski spacetime bounded either by one or by two parallel, infinitely extended plates orthogonal to a spatial direction and a real Klein-Gordon field satisfying Dirichlet boundary conditions. We quantize these two systems within the algebraic approach to quantum field theory using the so-called functional formalism. As a first step we construct a suitable unital ∗-algebra of observables whose generating functionals are characterized by a labelling space which is at the same time optimal and separating and fulfils the F-locality property. Subsequently we give a definition for these systems of Hadamard states and we investigate explicit examples. In the case of a single plate, it turns out that one can build algebraic states via a pull-back of those on the whole Minkowski spacetime, moreover inheriting from them the Hadamard property. When we consider instead two plates, algebraic states can be put in correspondence with those on flat spacetime via the so-called method of images, which we translate to the algebraic setting. For a massless scalar field we show that this procedure works perfectly for a large class of quasi-free states including the Poincaré vacuum and KMS states. Eventually Wick polynomials are introduced. Contrary to the Minkowski case, the extended algebras, built in globally hyperbolic subregions can be collected in a global counterpart only after a suitable deformation which is expressed locally in terms of a *-isomorphism. As a last step, we construct explicitly the two-point function and the regularized energy density, showing, moreover, that the outcome is consistent with the standard results of the Casimir effect.

  1. Spinor Casimir effect for concentric spherical shells in the global monopole spacetime

    International Nuclear Information System (INIS)

    In this paper, we investigate the vacuum polarization effects associated with a massive fermionic field due to the non-trivial topology of the global monopole spacetime and boundary conditions imposed on this field. Specifically, we investigate the vacuum expectation values of the energy-momentum tensor and fermionic condensate admitting that the field obeys the MIT bag boundary condition on two concentric spherical shells. In order to develop this analysis, we use the generalized Abel-Plana summation, which allows us to extract from the vacuum expectation values the contribution coming from a single sphere geometry and to present the second sphere induced part in terms of exponentially convergent integrals. In the limit of strong gravitational fields corresponding to small values of the parameter describing the solid angle deficit in a global monopole geometry, the interference part in the expectation values is exponentially suppressed. The vacuum forces acting on spheres are presented as the sum of self-action and interaction terms. Due to the surface divergences, the first one is divergent and needs additional renormalization, while the second one is finite for all non-zero distances between the spheres. By making use of the zeta function renormalization technique, the total Casimir energy is evaluated in the region between two spheres. It is shown that the interaction part of the vacuum energy is negative and the interaction forces between the spheres are attractive. Asymptotic expressions are derived in various limiting cases. As a special case we discuss the fermionic vacuum densities for two spherical shells on background of the Minkowski spacetime

  2. Comment on Repulsive Casimir Forces

    CERN Document Server

    Iannuzzi, D

    2003-01-01

    A recent theoretical calculation shows that the Casimir force between two parallel plates can be repulsive for plates with nontrivial magnetic properties (O. Kenneth et al., Phys. Rev. Lett. 89, 033001 (2002)). According to the authors, the effect may be observed with known materials, such as ferrites and garnets, and it might be possible to engineer micro- or nanoelectromechanical systems (MEMS or NEMS) that could take advantage of a short range repulsive force. Here we show that on the contrary the Casimir force between two parallel plates in vacuum at micron and submicron distance is always attractive.

  3. Casimir force between dispersive magnetodielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Tomas, M.S. [Rudjer Boskovic Institute, P.O. Box 180, 10002 Zagreb (Croatia)]. E-mail: tomas@thphys.irb.hr

    2005-07-25

    We extend our approach to the Casimir effect between absorbing dielectric multilayers [M.S. Tomas, Phys. Rev. A 66 (2002) 052103] to magnetodielectric systems. The resulting expression for the force is used to numerically explore the effect of the medium dispersion on the attractive/repulsive force in a metal-magnetodielectric system described by the Drude-Lorentz permittivities and permeabilities.

  4. Casimir force between dispersive magnetodielectrics

    OpenAIRE

    Tomas, M. S.

    2004-01-01

    We extend our approach to the Casimir effect between absorbing dielectric multilayers [M. S. Tomas, Phys. Rev. A 66, 052103 (2002)] to magnetodielectric systems. The resulting expression for the force is used to numerically explore the effect of the medium dispersion on the attractive/repulsive force in a metal-magnetodielectric system described by the Drude-Lorentz permittivities and permeabilities.

  5. 在周期边界条件下的类Casimir力%Casimir-like effect with periodic boundary conditions

    Institute of Scientific and Technical Information of China (English)

    李长松; 张玥; 郑泰玉; 姜文英; 潘淑梅

    2013-01-01

    The Casimir-like effect is investigated in dilute Bose-Einstein Condensation at zero-temperature between the two parallel plates with periodic boundary conditions. Obtained the much smaller Bogoliubov corrections due to the nonlinearity of the Bogoliubov dispersion relation. In the calculation, any ultraviolet cut-off parameter was not introduced. These results will will help us further understand the physical effect in the Bose-Einstein condensed body and provide certain reference value to Casimir effect and the Bose-Einstein Condensation experimental study.%研究了在绝对零度下2个平行板之间周期边界条件下均匀稀释玻色爱因斯坦凝聚体中的类Casimir力,得到Bogoliubov色散关系的高阶修正项.计算中没有引入任何截断函数,获得了有限的结果.该结果有助于进一步了解玻色爱因斯坦凝聚体的物理机制,并且对Casimir效应和玻色-爱因斯坦凝聚的实验研究具有一定的参考价值.

  6. How to confirm and exclude different models of material properties in the Casimir effect

    OpenAIRE

    Mostepanenko, V. M.

    2014-01-01

    We formulate a method allowing to confirm or exclude the alternative models of material properties at some definite confidence level in experiments on measuring the Casimir force. The method is based on the consideration of differences between the theoretical and mean measured quantities and the confidence intervals for these differences found at sufficiently high or low confidence probabilities. The developed method is applied to the data of four recent experiments on measuring the gradient ...

  7. Casimir Effect of Massive Scalar Field with Hybrid Boundary Condition in (1+1)-Dimensional Spacetime

    Institute of Scientific and Technical Information of China (English)

    HE Xiao-Kai; LIU Wen-Biao; QIU Wei-Gang

    2009-01-01

    The Casimir energy of maesive scalar field with hybrid (Dirichlet-Neumann) boundary condition is calcu-lated. In order to regularize the model, the typical methods named as mode summation method and Green's function method are used respectively. It is found that the regularized zero-point energy density depends on the scalar field's mass. When the field is massless, the result is consistent with previous literatures.

  8. Casimir Effect at finite temperature for the CPT-even extension of QED

    OpenAIRE

    Silva, L. M.; Belich, H.; Helayël-Neto, J. A.

    2016-01-01

    By the thermofield dynamics (TFD) formalism we obtain the energy-momentum tensor for the Electromagnetism with Lorentz Breaking Even term of the Standard Model Extended (SME) Sector in a topology $S^{1}\\times S^{1}\\times R^{2}$. We carry out the compactification by a generalized TFD-Bogoliubov transformation that is used to define a renormalized energy-momentum tensor, and the Casimir energy and pressure at finite temperature are then derived. A comparative analysis with the electromagnetic c...

  9. The Casimir-Polder effect for a stack of conductive planes

    OpenAIRE

    Khusnutdinov, Nail; Kashapov, Rashid; Woods, Lilia M.

    2016-01-01

    The Casimir-Polder interaction between an atom and a multilayered system composed of infinitely thin planes is considered using the zeta-function regularization approach with summation of the zero-point energies. As a prototype material, each plane is represented by a graphene sheet whose optical response is described by a constant conductivity or Drude-Lorentz model conductivity. Asymptotic expressions for various separations are derived and compared to numerical calculations. We distinguish...

  10. Finite temperature Casimir effect on spherical shells in (D+1)-dimensional spacetime and its high temperature limit

    OpenAIRE

    Teo, L. P.

    2013-01-01

    We consider the finite temperature Casimir free energy acting on a spherical shell in (D+1)-dimensional Minkowski spacetime due to the vacuum fluctuations of scalar and electromagnetic fields. Dirichlet, Neumann, perfectly conducting and infinitely permeable boundary conditions are considered. The Casimir free energy is regularized using zeta functional regularization technique. To renormalize the Casimir free energy, we compute the heat kernel coefficients $c_n$, $0\\leq n\\leq D+1$, from the ...

  11. The Casimir force between rough metallic plates

    OpenAIRE

    Genet, Cyriaque; Lambrecht, Astrid; Neto, Paulo Maia; Reynaud, Serge

    2003-01-01

    The Casimir force between two metallic plates is affected by their roughness state. This effect is usually calculated through the so-called `proximity force approximation' which is only valid for small enough wavevectors in the spectrum of the roughness profile. We introduce here a more general description with a wavevector-dependent roughness sensitivity of the Casimir effect. Since the proximity force approximation underestimates the effect, a measurement of the roughness spectrum is needed...

  12. Novel constraints on light elementary particles and extra-dimensional physics from the Casimir effect

    International Nuclear Information System (INIS)

    We present supplementary information on the recent indirect measurement of the Casimir pressure between two parallel plates using a micromachined oscillator. The equivalent pressure between the plates is obtained by means of the proximity force approximation after measuring the force gradient between a gold coated sphere and a gold coated plate. The data are compared with a new theoretical approach to the thermal Casimir force based on the use of the Lifshitz formula, combined with a generalized plasma-like dielectric permittivity that takes into account interband transitions of core electrons. The theoretical Casimir pressures calculated using the new approach are compared with those computed in the framework of the previously used impedance approach and also with the Drude model approach. The latter is shown to be excluded by the data at a 99.9% confidence level within the wide separation range from 210 to 620 nm. The level of agreement between the data and theoretical approaches based on the generalized plasma model, or the Leontovich surface impedance, is used to set stronger constraints on the Yukawa forces predicted from the exchange of light elementary particles and/or extra-dimensional physics. The resulting constraints are the strongest in the interaction region from 20 to 86 nm with a largest improvement by a factor of 4.4 at 26 nm. (orig.)

  13. Casimir effect of the electromagnetic field in D-dimensional spherically symmetric cavities

    International Nuclear Information System (INIS)

    Eigenmodes of the electromagnetic field with perfectly conducting or infinitely permeable conditions on the boundary of a D-dimensional spherically symmetric cavity is derived explicitly. It is shown that there are (D-2) polarizations for TE modes and one polarization for TM modes, giving rise to a total of (D-1) polarizations. In case of a D-dimensional ball, the eigenfrequencies of the electromagnetic field with perfectly conducting boundary condition coincides with the eigenfrequencies of gauge 1-forms with relative boundary condition; whereas the eigenfrequencies of the electromagnetic field with infinitely permeable boundary condition coincides with the eigenfrequencies of gauge 1-forms with absolute boundary condition. Casimir energies of single and concentric spherical shells in D-dimensions are computed. The Casimir energy of concentric spherical shells can be written as a sum of the single spherical shell contributions and an interacting term, and the latter is free of divergence. The interacting term always gives rise to an attractive force between the two spherical shells. Its leading term is the Casimir force acting between two parallel plates of the same area, as expected by proximity force approximation.

  14. Influence of van-der-Waals like interactions on the thermodynamic Casimir effect

    International Nuclear Information System (INIS)

    To study how the behavior of the thermodynamic Casimir force changes qualitatively and quantitatively due to the presence of such interactions - compared to systems with purely short-range interactions - is the aim of this work. Considering d-dimensional models belonging to the universality class of the O(n)-symmetrical systems, the thermodynamic Casimir force and its leading corrections are derived for temperatures at and above the transition temperature (T≥Tc,∞). The underlying pair potential is assumed to be isotropic and long-ranged, decaying asymptotically proportional to x-(d+σ) for large separations x, where the value of the parameter σ is restricted to the interval 24-model is considered. Employing renormalization-group improved perturbation theory in d=4-ε bulk dimensions, the thermodynamic Casimir force and its leading corrections are evaluated to two-loop order. It is shown that both in the spherical model and in the O(n)-symmetrical case with n-(d+σ) at fixed temperature T>Tc,∞ on sufficiently large length scales. (orig.)

  15. Casimir force between Chern-Simons surfaces

    OpenAIRE

    Bordag, M.; Vassilevich, D.V.(CMCC-Universidade Federal do ABC, Santo André, SP, Brazil)

    1999-01-01

    We calculate the Casimir force between two parallel plates if the boundary conditions for the photons are modified due to presence of the Chern-Simons term. We show that this effect should be measurable within the present experimental technique.

  16. Change in the Casimir force between semiconductive bodies by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Inui, Norio [Graduate School of Engineering, University of Hyogo, 2167, Shosha, Himeji, Hyogo, 671-2280 (Japan)

    2007-11-15

    Two topics relevant to the Casimir force (retarded van der Waals force), which is exerted between neutral objects due to the quantum vacuum fluctuations of the electromagnetic field are discussed- First, the enhancement of the Casimir between silicon plates by irradiation is considered. Irradiation generates free carriers inside silicon and it can cause enhancement of the Casimir force between silicon membranes. The temporal behavior of the Casimir force between two parallel silicon membranes after irradiating the surface with UV pulse laser is numerically studied. Based on the Lifshitz theory accounting for thickness of the slabs, the Casimir force as a function of time and the finite size effect of the thickness is calculated. The our experiment in progress to demonstrate the enhancement of the Casimir force by irradiation is also refer. Second, the influence of optical adsorption on the Casimir force acting between a metallic sphere and a semiconductive plate illuminated with Gaussian light beam is considered. The Casimir torque and the lateral Casimir force result form the inhomogeneous photonionization. Taking into account the spatial inhomogeneousness of the plasma frequency in the semiconductive plate, the dependence of the Casimir force on the distance between the optical axis and the center of the sphere is computed within the proximity force approximation.

  17. Change in the Casimir force between semiconductive bodies by irradiation

    International Nuclear Information System (INIS)

    Two topics relevant to the Casimir force (retarded van der Waals force), which is exerted between neutral objects due to the quantum vacuum fluctuations of the electromagnetic field are discussed- First, the enhancement of the Casimir between silicon plates by irradiation is considered. Irradiation generates free carriers inside silicon and it can cause enhancement of the Casimir force between silicon membranes. The temporal behavior of the Casimir force between two parallel silicon membranes after irradiating the surface with UV pulse laser is numerically studied. Based on the Lifshitz theory accounting for thickness of the slabs, the Casimir force as a function of time and the finite size effect of the thickness is calculated. The our experiment in progress to demonstrate the enhancement of the Casimir force by irradiation is also refer. Second, the influence of optical adsorption on the Casimir force acting between a metallic sphere and a semiconductive plate illuminated with Gaussian light beam is considered. The Casimir torque and the lateral Casimir force result form the inhomogeneous photonionization. Taking into account the spatial inhomogeneousness of the plasma frequency in the semiconductive plate, the dependence of the Casimir force on the distance between the optical axis and the center of the sphere is computed within the proximity force approximation

  18. Additional signature of the dynamical Casimir effect in a superconducting circuit

    International Nuclear Information System (INIS)

    Full text: The dynamical Casimir effect (DCE) is one of the most fascinating quantum vacuum effects that consists, essentially, on the particle creation as a result of the interaction between a quantized field and a moving mirror. In this sense, particle creation due to external time-dependent potentials or backgrounds, or even time dependent electromagnetic properties of a material medium can also be included in a general definition of DCE. For simplicity, this interaction is simulated, in general, by means of idealized boundary conditions (BC). As a consequence of the particle creation, the moving mirror experiences a dissipative radiation reaction force acting on it. In order to generate an appreciable number of photons to be observed, the DCE was investigated in other contexts, as for example, in the circuit quantum electrodynamics. This theory predicted high photon creation rate by the modulation of the length of an open transmission line coupled to a superconducting quantum interference device (SQUID), an extremely sensitive magnetometer (J.R. Johansson et al, 2009/2010). A time dependent magnetic flux can be applied to the SQUID changing its inductance, leading to a time-dependent BC which simulates a moving boundary It was in the last scenario that the first observation of the DCE was announced by Wilson and collaborators (Wilson et al, 2011). Taking as motivation the experiment that observed the DCE, we investigate the influence of the generalized time-dependent Robin BC, that presents an extra term involving the second order time derivative of the field, in the particle creation via DCE. This kind of BC may appear quite naturally in the context of circuit quantum electrodynamics and the extra term was neglected in the theoretical aspects of the first observation of the DCE. Appropriate adjustments of this new parameter can not only enhance the total number of created particles but also give rise to a non-parabolic shape of the particle creation spectral

  19. Thermal Casimir force between nanostructured surfaces

    OpenAIRE

    Guérout, R.; Lussange, J.; Chan, H. B.; Lambrecht, A.; Reynaud, S.

    2012-01-01

    We present detailed calculations for the Casimir force between a plane and a nanostructured surface at finite temperature in the framework of the scattering theory. We then study numerically the effect of finite temperature as a function of the grating parameters and the separation distance. We also infer non-trivial geometrical effects on the Casimir interaction via a comparison with the proximity force approximation. Finally, we compare our calculations with data from experiments performed ...

  20. Constraining axion-nucleon coupling constants from measurements of effective Casimir pressure by means of micromachined oscillator

    CERN Document Server

    Bezerra, V B; Mostepanenko, V M; Romero, C

    2014-01-01

    Stronger constraints on the pseudoscalar coupling constants of an axion to a proton and a neutron are obtained from an indirect measurement of the effective Casimir pressure between two Au-coated plates by means of micromechanical torsional oscillator. For this purpose, the additional effective pressure due to two-axion exchange is calculated. The role of boundary effects and the validity region of the proximity force approximation in application to forces of axion origin are determined. The obtained constraints are up to factors of 380 and 3.15 stronger than those found recently from other laboratory experiments and are relevant to axion masses from $10^{-3}$eV to 15eV.

  1. Repulsive Casimir and Casimir-Polder Forces

    CERN Document Server

    Milton, Kimball A; Parashar, Prachi; Pourtolami, Nima; Brevik, Iver; Ellingsen, Simen A

    2012-01-01

    Casimir and Casimir-Polder repulsion have been known for more than 50 years. The general "Lifshitz" configuration of parallel semi-infinite dielectric slabs permits repulsion if they are separated by a dielectric fluid that has a value of permittivity that is intermediate between those of the dielectric slabs. This was indirectly confirmed in the 1970s, and more directly by Capasso's group recently. It has also been known for many years that electrically and magnetically polarizable bodies can experience a repulsive quantum vacuum force. More amenable to practical application are situations where repulsion could be achieved between ordinary conducting and dielectric bodies in vacuum. The status of the field of Casimir repulsion with emphasis on recent developments will be reviewed. Here, stress will be placed on analytic developments, especially of Casimir-Polder (CP) interactions between anisotropically polarizable atoms, and CP interactions between anisotropic atoms and bodies that also exhibit anisotropy, ...

  2. Casimir force in the presence of a magnetodielectric medium

    CERN Document Server

    Kheirandish, Fardin; Sarabadani, Jalal

    2010-01-01

    In this article we investigate the Casimir effect in the presence of a medium by quantizing the Electromagnetic (EM) field in the presence of a magnetodielectric medium by using the path integral formalism. For a given medium with definite electric and magnetic susceptibilities, explicit expressions for the Casimir force are obtained which are in agree with the original Casimir force between two conducting parallel plates immersed in the quantum electromagnetic vacuum.

  3. New Challenges and Directions in Casimir Force Experiments

    OpenAIRE

    Iannuzzi, Davide; Gelfand, Ian; Lisanti, Mariangela; Capasso, Federico

    2003-01-01

    This article is divided in three sections. In the first section we briefly review some high precision experiments on the Casimir force, underlying an important aspect of the analysis of the data. In the second section we discuss our recent results in the measurement of the Casimir force using non-trivial materials. In the third section we present some original ideas for experiments on new phenomena related to the Casimir effects.

  4. Casimir force induced by imperfect Bose gas

    OpenAIRE

    Napiorkowski, Marek; Piasecki, Jaroslaw

    2011-01-01

    We present a study of the Casimir effect in an imperfect (mean-field) Bose gas contained between two infinite parallel plane walls. The derivation of the Casimir force follows from the calculation of the excess grand canonical free energy density under periodic, Dirichlet, and Neumann boundary conditions with the use of the steepest descent method. In the one-phase region the force decays exponentially fast when distance $D$ between the walls tends to infinity. When Bose-Einstein condensation...

  5. Temperature Dependence of the Casimir Force

    OpenAIRE

    Brevik, Iver; Høye, Johan S.

    2013-01-01

    The Casimir force - at first a rather unexpected consequence of quantum electrodynamics - was discovered by Hendrik Casimir in Eindhoven in 1948. It predicts that two uncharged metal plates experience an attractive force because of the zero-point fluctuations of the electromagnetic field. The idea was tested experimentally in the 1950's and 1960's, but the results were not so accurate that one could make a definite conclusion regarding the existence of the effect. Evgeny Lifshitz expanded the...

  6. The Casimir force between metallic mirrors

    OpenAIRE

    Lambrecht, Astrid; Genet, Cyriaque; Reynaud, Serge

    2001-01-01

    In order to compare recent experimental results with theoretical predictions we study the influence of finite conductivity of metals on the Casimir effect. The correction to the Casimir force and energy due to imperfect reflection and finite temperature are evaluated for plane metallic plates where the dielectric functions of the metals are modeled by a plasma model. The results are compared with the common approximation where conductivity and thermal corrections are evaluated separately and ...

  7. Effective Landau-Zener transitions in the circuit dynamical Casimir effect with time-varying modulation frequency

    Science.gov (United States)

    Dodonov, A. V.; Militello, B.; Napoli, A.; Messina, A.

    2016-05-01

    We consider the dissipative single-qubit circuit QED architecture in which the atomic transition frequency undergoes a weak external time modulation. For sinusoidal modulation with linearly varying frequency we derive effective Hamiltonians that resemble the Landau-Zener problem of finite duration associated with a two- or multilevel systems. The corresponding off-diagonal coupling coefficients originate either from the rotating or the counter-rotating terms in the Rabi Hamiltonian, depending on the values of the modulation frequency. It is demonstrated that in the dissipationless case one can accomplish almost complete transitions between the eigenstates of the bare Rabi Hamiltonian even for relatively short durations of the frequency sweep. To assess the experimental feasibility of our scheme we solved numerically the phenomenological and the microscopic quantum master equations in the Markovian regime at zero temperature. Both models exhibit qualitatively similar behavior and indicate that photon generation from vacuum via effective Landau-Zener transitions could be implemented with the current technology on the time scales of a few microseconds. Moreover, unlike the harmonic dynamical Casimir effect implementations, our proposal does not require precise knowledge of the resonant modulation frequency to accomplish meaningful photon generation.

  8. Casimir force between integrable and chaotic pistons

    International Nuclear Information System (INIS)

    We have computed numerically the Casimir force between two identical pistons inside a very long cylinder, considering different shapes for the pistons. The pistons can be considered quantum billiards, whose spectrum determines the vacuum force. The smooth part of the spectrum fixes the force at short distances and depends only on geometric quantities like the area or perimeter of the piston. However, correcting terms to the force, coming from the oscillating part of the spectrum which is related to the classical dynamics of the billiard, could be qualitatively different for classically integrable or chaotic systems. We have performed a detailed numerical analysis of the corresponding Casimir force for pistons with regular and chaotic classical dynamics. For a family of stadium billiards, we have found that the correcting part of the Casimir force presents a sudden change in the transition from regular to chaotic geometries. This suggests that there could be signatures of quantum chaos in the Casimir effect.

  9. Experiments on Sphere Cylinder Geometry Dependence in the Electromagnetic Casimir Effect

    Science.gov (United States)

    Mukhopadhyay, Shomeek; Noruzifar, Ehsan; Wagner, Jeffrey; Zandi, Roya; Mohideen, Umar

    2013-03-01

    We report on ongoing experimental investigations on the geometry dependence of the electromagnetic Casimir force in the sphere-cylinder configuration. A gold coated hollow glass sphere which forms one surface is attached to a Silicon AFM cantilever. The cylinder, which is constructed from tapered optical fiber is also gold coated. The resonance frequency shift of the cantilever is measured as a function of the sphere-cylinder surface separation. The sphere-cylinder electrostatic force is used for alignment of the sphere and the cylinder and also for calibrating the system. The results are compared to numerical simulations in the framework of the Proximity Force Approximation (PFA).

  10. Casimir Effect at finite temperature for the Kalb-Ramond field

    CERN Document Server

    Belich, H; Helayël-Neto, J A; Santana, A E

    2010-01-01

    We use the thermofield dynamics (TFD) formalism to obtain the energy-momentum tensor for the Kalb-Ramond (KR) field in a topology $% S^{1}\\times S^{1}\\times R^{2}$. The compactification is carried out by a generalized TFD-Bogoliubov transformation that is used to define a renormalized energy-momentum tensor. The expressions for the Casimir energy and pressure at finite temperature are then derived. A comparative analysis with the electromagnetic case is developed, and the results may be important for applications, as in cuprate superconductivity, for instance.

  11. Casimir Effect at finite temperature for the Kalb-Ramond field

    OpenAIRE

    Belich, H.; Silva, L. M.; Helayël-Neto, J. A.; Santana, A. E.

    2010-01-01

    We use the thermofield dynamics (TFD) formalism to obtain the energy-momentum tensor for the Kalb-Ramond (KR) field in a topology $% S^{1}\\times S^{1}\\times R^{2}$. The compactification is carried out by a generalized TFD-Bogoliubov transformation that is used to define a renormalized energy-momentum tensor. The expressions for the Casimir energy and pressure at finite temperature are then derived. A comparative analysis with the electromagnetic case is developed, and the results may be impor...

  12. Bulk and boundary effects on the decay of the thermodynamic Casimir force

    Science.gov (United States)

    Delfino, Gesualdo; Squarcini, Alessio

    2015-01-01

    We consider the decay of the thermodynamic Casimir force in phases with a finite correlation length. For the case of the strip, we use properties of low-energy two-dimensional field theory to show that the decay depends on the symmetry properties of the boundary conditions, in distinctive ways that we determine exactly. Features characteristic of the bulk universality class may induce modifications that we also discuss. Symmetry-breaking and symmetry-preserving boundary conditions exchange their role with respect to the decay of the force when exchanging spontaneously broken with disordered phases. Several of our arguments extend to higher dimensions.

  13. The effect of point split regularization on the sign of the Casimir energy

    OpenAIRE

    Solomon, Dan

    2012-01-01

    In a recent paper [1] the Casimir energy was calculated for a massive dirac field in (1+1) dimensional space-time in the presence of an inverse square well potential and shown to be positive. It will be shown that this result violates a key assumption of quantum field theory which is that the vacuum state is the state of minimum energy. The reason for this discrepancy is examined and is shown to be related to the way the charge density operator is defined. If the charge density operator is de...

  14. How to confirm and exclude different models of material properties in the Casimir effect.

    Science.gov (United States)

    Mostepanenko, V M

    2015-06-01

    We formulate a method allowing us to confirm or exclude the alternative models of material properties at some definite confidence level in experiments on measuring the Casimir force. The method is based on the consideration of differences between the theoretical and mean measured quantities and the confidence intervals for these differences found at sufficiently high or low confidence probabilities. The developed method is applied to the data of four recent experiments on measuring the gradient of the Casimir force by means of a dynamic atomic force microscope. It is shown that in experiments with Au-Au and Ni-Ni test bodies, where the Drude model approach is excluded at a 95% confidence level, the plasma model approach agrees with the data at higher than 90% confidence. In experiments using an Au sphere interacting with either a Ni plate or a graphene-coated substrate, the measurement data agree with the common prediction of the Drude and plasma model approaches and theory using the polarization tensor at 90% and 80% confidence levels, respectively. PMID:25965072

  15. First analytic correction to the proximity force approximation in the Casimir effect between two parallel cylinders

    CERN Document Server

    Teo, L P

    2011-01-01

    We consider the small separation asymptotic expansions of the Casimir interaction energy and the Casimir interaction force between two parallel cylinders. The leading order terms and the next-to-leading order terms are computed analytically. Four combinations of boundary conditions are considered, which are Dirichlet-Dirichlet (DD), Neumann-Neumann (NN), Dirichlet-Neumann (DN) and Neumann-Dirichlet (ND). For the case where one cylinder is inside another cylinder, the computations are shown in detail. In this case, we restrict our attention to the situation where the cylinders are strictly eccentric and the distance between the cylinders $d$ is much smaller than the distance between the centers of the cylinders. The computations for the case where the two cylinders are exterior to each other can be done in the same way and we only present the results, which turn up to be similar to the results for the case where one cylinder is inside another except for some changes of signs. In all the scenarios we consider, ...

  16. How to confirm and exclude different models of material properties in the Casimir effect

    International Nuclear Information System (INIS)

    We formulate a method allowing us to confirm or exclude the alternative models of material properties at some definite confidence level in experiments on measuring the Casimir force. The method is based on the consideration of differences between the theoretical and mean measured quantities and the confidence intervals for these differences found at sufficiently high or low confidence probabilities. The developed method is applied to the data of four recent experiments on measuring the gradient of the Casimir force by means of a dynamic atomic force microscope. It is shown that in experiments with Au–Au and Ni–Ni test bodies, where the Drude model approach is excluded at a 95% confidence level, the plasma model approach agrees with the data at higher than 90% confidence. In experiments using an Au sphere interacting with either a Ni plate or a graphene-coated substrate, the measurement data agree with the common prediction of the Drude and plasma model approaches and theory using the polarization tensor at 90% and 80% confidence levels, respectively. (paper)

  17. On the Casimir effect. Energy density of the free Klein-Gordon-field in front of static classical backgrounds

    International Nuclear Information System (INIS)

    We study the Casimir energy density of the Klein-Gordon-field in the case of two static geometries. We model the effect by coupling the free quantum field to a static classical scalar field. We work out the dependence on the coupling λ, including the limit λ=∞ (Dirichlet boundary condition). The chosen geometries are described by a δ-funktion (σ(x)=δ(x3)) and a step function of finite height (σ(x)(1)/(2ε)1[ε,ε](x3)), respectively. In the area outside the support of the background the density energy converges; calculations for the distorted area lead to divergent surface terms. (orig.)

  18. The Casimir Effect in Biology: The Role of Molecular Quantum Electrodynamics in Linear Aggregations of Red Blood Cells

    International Nuclear Information System (INIS)

    Despite the fact that red blood cells carry negative charges, under certain conditions they form cylindrical stacks, or 'rouleaux'. It is shown here that a form of the Casimir effect, generalizing the more well-known van der Waals forces, can provide the necessary attractive force to balance the electrostatic repulsion. Erythrocytes in plasma are modelled as negatively charged dielectric disks in an ionic solution, allowing predictions to be made about the conditions under which rouleaux will form. The results show qualitative agreement with observations which suggest that the basic idea is worth further pursuit. In addition to revealing a mechanism which may be widespread in biology at the cellular level, it also suggest new experiments and further applications to other biological systems, colloid chemistry and nanotechnology.

  19. The Casimir Effect in Biology: The Role of Molecular Quantum Electrodynamics in Linear Aggregations of Red Blood Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bradonjic, K [Physics Department, Boston University, Boston MA (United States); Swain, J D; Widom, A; Srivastava, Y N, E-mail: john.swain@cern.c [Physics Department, Northeastern University, Boston MA (United States)

    2009-04-01

    Despite the fact that red blood cells carry negative charges, under certain conditions they form cylindrical stacks, or 'rouleaux'. It is shown here that a form of the Casimir effect, generalizing the more well-known van der Waals forces, can provide the necessary attractive force to balance the electrostatic repulsion. Erythrocytes in plasma are modelled as negatively charged dielectric disks in an ionic solution, allowing predictions to be made about the conditions under which rouleaux will form. The results show qualitative agreement with observations which suggest that the basic idea is worth further pursuit. In addition to revealing a mechanism which may be widespread in biology at the cellular level, it also suggest new experiments and further applications to other biological systems, colloid chemistry and nanotechnology.

  20. The Casimir Effect in Biology: The Role of Molecular Quantum Electrodynamics in Linear Aggregations of Red Blood Cells

    Science.gov (United States)

    Bradonjić, K.; Swain, J. D.; Widom, A.; Srivastava, Y. N.

    2009-04-01

    Despite the fact that red blood cells carry negative charges, under certain conditions they form cylindrical stacks, or "rouleaux". It is shown here that a form of the Casimir effect, generalizing the more well-known van der Waals forces, can provide the necessary attractive force to balance the electrostatic repulsion. Erythrocytes in plasma are modelled as negatively charged dielectric disks in an ionic solution, allowing predictions to be made about the conditions under which rouleaux will form. The results show qualitative agreement with observations which suggest that the basic idea is worth further pursuit. In addition to revealing a mechanism which may be widespread in biology at the cellular level, it also suggest new experiments and further applications to other biological systems, colloid chemistry and nanotechnology.

  1. No-nonsense Casimir force

    OpenAIRE

    Herdegen, Andrzej

    2000-01-01

    Two thin conducting, electrically neutral, parallel plates forming an isolated system in vacuum exert attracting force on each other, whose origin is the quantum electrodynamical interaction. This theoretical hypothesis, known as Casimir effect, has been also confirmed experimentally. Despite long history of the subject, no completely convincing theoretical analysis of this effect appears in the literature. Here we discuss the effect (for the scalar field) anew, on a revised physical and math...

  2. Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions

    International Nuclear Information System (INIS)

    We report an improved dynamic determination of the Casimir pressure P expt between two plane plates obtained using a micromachined torsional oscillator. The main improvements in the current experiment are a significant suppression of the surface roughness of the Au layers deposited on the interacting surfaces, and a decrease by a factor of 1.7 (down to 0.6 nm) in the experimental error in the measurement of the absolute separation. A metrological analysis of all data for P expt from 15 sets of measurements permitted us to determine both the random and systematic errors, and to find the total experimental error in P expt as a function of separation at the 95% confidence level. In contrast to all previous experiments on the Casimir effect, where a small relative error was achieved only at the shortest separation, our smallest experimental error (∼0.5%) is achieved over a wide separation range. The theoretical Casimir pressures P theor in the experimental configuration were calculated by the use of four theoretical approaches suggested in the literature based on the Lifshitz formula at nonzero temperature. All corrections to the Casimir force due to grain structure of the overlying metal layers (including the variation of optical data and patch potentials), surface roughness (including nonmultiplicative and diffraction-type effects), and nonlocal effects, were calculated or estimated. The maximum value of the roughness correction, achieved at the shortest separation of 160 nm, is equal to only 0.65% of the Casimir pressure. All theoretical errors, including those introduced by the proximity force theorem, finite size of the plate area, and uncertainties in the experimental separations, were analyzed and metrologically combined to obtain the total theoretical error at the 95% confidence level. Finally, the confidence interval for (P theor - P expt) was obtained as a function of separation. Our measurements are found to be consistent with two theoretical approaches

  3. On the dynamic instability of nanowire-fabricated electromechanical actuators in the Casimir regime: Coupled effects of surface energy and size dependency

    Science.gov (United States)

    Keivani, Maryam; Mardaneh, Mohamadreza; Koochi, Ali; Rezaei, Morteza; Abadyan, Mohamadreza

    2016-02-01

    Herein, the dynamic pull-in instability of cantilever nanoactuator fabricated from conductive cylindrical nanowire with circular cross-section is studied under the presence of Casimir force. The Gurtin-Murdoch surface elasticity in combination with the couple stress theory is employed to incorporate the coupled effects of surface energy and size phenomenon. Using Green-Lagrange strain, the higher order surface stress components are incorporated in the governing equation. The Dirichlet mode is considered and an asymptotic solution, based on the path integral approach, is applied to consider the effect of the Casimir attraction. Furthermore, the influence of structural damping is considered in the model. The nonlinear governing equation is solved using analytical reduced order method (ROM). The effects of various parameters on the dynamic pull-in parameters, phase planes and stability threshold of the actuator are demonstrated.

  4. Fermion Particle Production in Dynamical Casimir Effect in a Three Dimensional Box

    CERN Document Server

    Setare, M R

    2012-01-01

    In this paper we investigate the problem of fermion creation inside a three dimensional box. We present an appropriate wave function which satisfies the Dirac equation in this geometry with MIT bag model boundary condition. We consider walls of the box to have dynamic and introduce the time evolution of the quantized field by expanding it over the 'instantaneous basis'. We explain how we can obtain the average number of particles created. In this regard we find the Bogliubove coefficients. We consider an oscillation and determine the coupling conditions between different modes that can be satisfied depending on the cavity's spectrum. Assuming the parametric resonance case we obtain an expression for the mean number of created fermions in each mode of an oscillation and their dynamical Casimir energy.

  5. Casimir effect of two conducting parallel plates in a general weak gravitational field

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Borzoo [University of Tehran, Faculty of Engineering Science, College of Engineering, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2015-10-15

    We calculate the finite vacuum energy density of the scalar and electromagnetic fields inside a Casimir apparatus made up of two conducting parallel plates in a general weak gravitational field. The metric of the weak gravitational field has a small deviation from flat spacetime inside the apparatus, and we find it by expanding the metric in terms of small parameters of the weak background. We show that the metric found can be transformed via a gauge transformation to the Fermi metric. We solve the Klein-Gordon equation exactly and find mode frequencies in Fermi spacetime. Using the fact that the electromagnetic field can be represented by two scalar fields in the Fermi spacetime, we find general formulas for the energy density and mode frequencies of the electromagnetic field. Some well-known weak backgrounds are examined and consistency of the results with the literature is shown. (orig.)

  6. Nonadditivity of critical Casimir forces

    Science.gov (United States)

    Paladugu, Sathyanarayana; Callegari, Agnese; Tuna, Yazgan; Barth, Lukas; Dietrich, Siegfried; Gambassi, Andrea; Volpe, Giovanni

    2016-04-01

    In soft condensed matter physics, effective interactions often emerge due to the spatial confinement of fluctuating fields. For instance, microscopic particles dissolved in a binary liquid mixture are subject to critical Casimir forces whenever their surfaces confine the thermal fluctuations of the order parameter of the solvent close to its critical demixing point. These forces are theoretically predicted to be nonadditive on the scale set by the bulk correlation length of the fluctuations. Here we provide direct experimental evidence of this fact by reporting the measurement of the associated many-body forces. We consider three colloidal particles in optical traps and observe that the critical Casimir force exerted on one of them by the other two differs from the sum of the forces they exert separately. This three-body effect depends sensitively on the distance from the critical point and on the chemical functionalisation of the colloid surfaces.

  7. First-principles study of Casimir repulsion in metamaterials.

    Science.gov (United States)

    Yannopapas, Vassilios; Vitanov, Nikolay V

    2009-09-18

    We examine theoretically the Casimir effect between a metallic plate and several types of magnetic metamaterials in pursuit of Casimir repulsion, by employing a rigorous multiple-scattering theory for the Casimir effect. We first examine metamaterials in the form of two-dimensional lattices of inherently nonmagnetic spheres such as spheres made from materials possessing phonon-polariton and exciton-polariton resonances. Although such systems are magnetically active in infrared and optical regimes, the force between finite slabs of these materials and metallic slabs is plainly attractive since the effective electric permittivity is larger than the magnetic permeability for the studied spectrum. When lattices of magnetic spheres made from superparamagnetic composites are employed, we achieve not only Casimir repulsion but almost total suppression of the Casimir effect itself in the micrometer scale. PMID:19792414

  8. Supersymmetry Breaking Casimir Warp Drive

    OpenAIRE

    Obousy, Richard K.

    2005-01-01

    Within the framework of brane-world models it is possible to account for the cosmological constant by assuming supersymmetry is broken on the 3-brane but preserved in the bulk. An effective Casimir energy is induced on the brane due to the boundary conditions imposed on the compactified extra dimensions. It will be demonstrated that modification of these boundary conditions allows a spacecraft to travel at any desired speed due to a local adjustment of the cosmological constant which effectiv...

  9. The Reality of Casimir Friction

    CERN Document Server

    Milton, K A; Brevik, I

    2015-01-01

    For more than 35 years theorists have studied quantum or Casimir friction, which occurs when two smooth bodies move transversely to each other, experiencing a frictional dissipative force due to quantum fluctuations. These forces are typically very small, unless the bodies are nearly touching, and consequently such effects have never been observed, although lateral Casimir forces have been seen for corrugated surfaces. Because of the lack of contact with phenomena, theoretical predictions for the frictional force between parallel plates, or between a polarizable atom and a metallic plate, have varied widely. Here we review the history of these calculations, show that theoretical consensus is emerging, and offer some hope that it might be possible to experimentally confirm this phenomenon of dissipative quantum electrodynamics.

  10. Casimir energy and geometry: beyond the proximity force approximation

    International Nuclear Information System (INIS)

    We review the relation between the Casimir effect and geometry, emphasizing deviations from the commonly used proximity force approximation (PFA). We use, to this aim, the scattering formalism which is nowadays the best tool available for accurate and reliable theory-experiment comparisons. We first recall the main lines of this formalism when the mirrors can be considered to obey specular reflection. We then discuss the more general case where non-planar mirrors give rise to non-specular reflection with wavevectors and field polarizations mixed. The general formalism has already been fruitfully used for evaluating the effect of roughness on the Casimir force as well as the lateral Casimir force or Casimir torque appearing between corrugated surfaces. In this paper, we focus our attention to the case of the lateral force which should make possible in the future an experimental demonstration of the nontrivial (i.e. beyond PFA) interplay of the geometry and Casimir effect

  11. Casimir energy and geometry: beyond the proximity force approximation

    Energy Technology Data Exchange (ETDEWEB)

    Reynaud, S; Lambrecht, A [Laboratoire Kastler Brossel, CNRS, ENS, Universite Pierre et Marie Curie (UPMC), Campus Jussieu, 75252 Paris (France); Neto, P A Maia [Instituto de Fisica, UFRJ, CP 68528, Rio de Janeiro, RJ 21941-972 (Brazil)], E-mail: serge.reynaud@spectro.jussieu.fr

    2008-04-25

    We review the relation between the Casimir effect and geometry, emphasizing deviations from the commonly used proximity force approximation (PFA). We use, to this aim, the scattering formalism which is nowadays the best tool available for accurate and reliable theory-experiment comparisons. We first recall the main lines of this formalism when the mirrors can be considered to obey specular reflection. We then discuss the more general case where non-planar mirrors give rise to non-specular reflection with wavevectors and field polarizations mixed. The general formalism has already been fruitfully used for evaluating the effect of roughness on the Casimir force as well as the lateral Casimir force or Casimir torque appearing between corrugated surfaces. In this paper, we focus our attention to the case of the lateral force which should make possible in the future an experimental demonstration of the nontrivial (i.e. beyond PFA) interplay of the geometry and Casimir effect.

  12. Investigating the effect of Casimir and van der Waals attractions on the electrostatic pull-in instability of nano-actuators

    Energy Technology Data Exchange (ETDEWEB)

    Soroush, R [Electronics Engineering Department, Islamic Azad University, Lahijan Branch, Lahijan (Iran, Islamic Republic of); Koochi, A; Haddadpour, H [Department of Aerospace Engineering, and Center of Excellence in Aerospace Systems, Sharif University of Technology, Azadi Avenue, PO Box 11165-8639, Tehran (Iran, Islamic Republic of); Kazemi, A S [School of Physics and Center for Solid State Research, Damghan University for Basic Sciences, PO Box 367164-167, Damghan (Iran, Islamic Republic of); Noghrehabadi, A [Department of Mechanical Engineering, Shahid Chamran University, PO Box 613574-333, Ahvaz (Iran, Islamic Republic of); Abadyan, M, E-mail: A.R.Noghrehabadi@scu.ac.i, E-mail: Abadyan@yahoo.co [Mechanical Engineering Group, Islamic Azad University Ramsar Branch, Ramsar Center, Ramsar (Iran, Islamic Republic of)

    2010-10-15

    This paper investigates the effect of dispersion (van der Waals and Casimir) forces on the pull-in instability of cantilever nano-actuators by considering their range of application. Adomian decomposition is introduced to obtain an analytical solution of the distributed parameter model. Dispersion forces decrease the pull-in deflection and voltage of a nano-actuator. However, the fringing field increases the pull-in deflection while decreasing the pull-in voltage of the actuator. The minimum initial gap and the detachment length of the actuator that does not stick to the substrate due to van der Waals and Casimir attractions were determined. Furthermore, the proposed approach is capable of determining the stress distribution of the actuator at the onset of instability. It is seen that Casimir and van der Waals attractions effectively reduce the maximum value of stress resultants at the onset of instability. The results indicate that Adomian decomposition is a reliable method for simulating nano-structures at submicrometer ranges.

  13. Normal and lateral Casimir force: Advances and prospects

    International Nuclear Information System (INIS)

    We discuss recent experimental and theoretical results on the Casimir force between real material bodies made of different materials. Special attention is paid to calculations of the normal Casimir force acting perpendicular to the surface with the help of the Lifshitz theory taking into account the role of free charge carriers. Theoretical results for the thermal Casimir force acting between metallic, dielectric and semiconductor materials are presented and compared with available experimental data. Main attention is concentrated on the possibility to control the magnitude and sign of the Casimir force for applications in nanotechnology. In this respect we consider experiments on the optical modulation of the Casimir force between metal and semiconductor test bodies with laser light. Another option is the use of ferromagnetic materials, specifically, ferromagnetic dielectrics. Under some conditions this allows to get Casimir repulsion. The lateral Casimir force acting between sinusoidally corrugated surfaces can be considered as some kind of noncontact friction caused by zero-point oscillations of the electromagnetic field. Recent experiments and computations using the exact theory have demonstrated the role of diffraction-type effects in this phenomenon and the possibility to get asymmetric force profiles. Conclusion is made that the Casimir force may play important role in the operation of different devices on the nanoscale.

  14. Normal and lateral Casimir force: Advances and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Klimchitskaya, G L, E-mail: galina.klimchitskaya@itp.uni-leipzig.d [Department of Physics, North-West Technical University, Millionnaya Street 5, St.Petersburg, 191065 (Russian Federation); Institute for Theoretical Physics, Leipzig University, Postfach 100920, D-04009, Leipzig (Germany)

    2010-11-01

    We discuss recent experimental and theoretical results on the Casimir force between real material bodies made of different materials. Special attention is paid to calculations of the normal Casimir force acting perpendicular to the surface with the help of the Lifshitz theory taking into account the role of free charge carriers. Theoretical results for the thermal Casimir force acting between metallic, dielectric and semiconductor materials are presented and compared with available experimental data. Main attention is concentrated on the possibility to control the magnitude and sign of the Casimir force for applications in nanotechnology. In this respect we consider experiments on the optical modulation of the Casimir force between metal and semiconductor test bodies with laser light. Another option is the use of ferromagnetic materials, specifically, ferromagnetic dielectrics. Under some conditions this allows to get Casimir repulsion. The lateral Casimir force acting between sinusoidally corrugated surfaces can be considered as some kind of noncontact friction caused by zero-point oscillations of the electromagnetic field. Recent experiments and computations using the exact theory have demonstrated the role of diffraction-type effects in this phenomenon and the possibility to get asymmetric force profiles. Conclusion is made that the Casimir force may play important role in the operation of different devices on the nanoscale.

  15. Nonlinear (Anharmonic Casimir Oscillator

    Directory of Open Access Journals (Sweden)

    Habibollah Razmi

    2011-01-01

    Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.

  16. Isoelectronic apparatus to probe the thermal Casimir force

    Science.gov (United States)

    Bimonte, Giuseppe

    2015-05-01

    Isoelectronic differential force measurements provide a unique opportunity to probe controversial features of the thermal Casimir effect that are still much debated in the current literature. Isolectronic setups offer two major advantages over conventional Casimir setups. On the one hand, they are immune from electrostatic forces caused by potential patches on the plates surfaces that plague present Casimir experiments, especially for separations in the micron range. On the other hand, they can strongly enhance the discrepancy between alternative theoretical models that have been proposed to estimate the thermal Casimir force for metallic and magnetic surfaces. Thanks to these two features, isoelectronic differential experiments should allow one to establish conclusively which among these models correctly describes the thermal Casimir force.

  17. Effect of the Casimir-Polder force on the collective oscillations of a trapped Bose-Einstein condensate

    International Nuclear Information System (INIS)

    We calculate the effect of the interaction between an optically active material and a Bose-Einstein condensate on the collective oscillations of the condensate. We provide explicit expressions for the frequency shift of the center-of-mass oscillation in terms of the potential generated by the substrate and of the density profile of the gas. The form of the potential is discussed in detail and various regimes (van der Waals-London, Casimir-Polder, and thermal regimes) are identified as a function of the distance of atoms from the surface. Numerical results for the frequency shifts are given for the case of a sapphire dielectric substrate interacting with a harmonically trapped condensate of 87Rb atoms. We find that at distances of 4-8 μm, where thermal effects become visible, the relative frequency shifts produced by the substrate are of the order 10-4 and hence accessible experimentally. The effects of nonlinearities due to the finite amplitude of the oscillation are explicitly discussed. Predictions are also given for the radial breathing mode

  18. Casimir force for electrolytes

    OpenAIRE

    Høye, J. S.

    2009-01-01

    The Casimir force between a pair of parallell plates filled with ionic particles is considered. We use a statistical mechanical approach and consider the classical high temperature limit. In this limit the ideal metal result with no transverse electric (TE) zero frequency mode is recovered. This result has also been obtained by Jancovici and \\v{S}amaj earlier. Our derivation differs mainly from the latter in the way the Casimir force is evaluated from the correlation function. By our approach...

  19. Repulsive Casimir force between Weyl semimetals

    Science.gov (United States)

    Wilson, Justin H.; Allocca, Andrew A.; Galitski, Victor

    2015-06-01

    Weyl semimetals are a class of topological materials that exhibit a bulk Hall effect due to time-reversal symmetry breaking. We show that for the idealized semi-infinite case, the Casimir force between two identical Weyl semimetals is repulsive at short range and attractive at long range. Considering plates of finite thickness, we can reduce the size of the long-range attraction even making it repulsive for all distances when thin enough. In the thin-film limit, we study the appearance of an attractive Casimir force at shorter distances due to the longitudinal conductivity. Magnetic field, thickness, and chemical potential provide tunable nobs for this effect, controlling the Casimir force: whether it is attractive or repulsive, the magnitude of the effect, and the positions and existence of a trap and antitrap.

  20. Surface impedance and the Casimir force

    International Nuclear Information System (INIS)

    The impedance boundary condition is used to calculate the Casimir force in configurations of two parallel plates and a sphere (spherical lens) above a plate at both zero and nonzero temperature. The impedance approach allows one to find the Casimir force between the realistic test bodies regardless of the electromagnetic fluctuations inside the media. Although this approach is an approximate one, it has wider areas of application than the Lifshitz theory of the Casimir force. The general formulas of the impedance approach to the theory of the Casimir force are given and the formal substitution is found for connecting it with the Lifshitz formula. The range of micrometer separations between the test bodies, which is interesting from the experimental point of view, is investigated in detail. It is shown that at zero temperature the results obtained on the basis of the surface impedance method are in agreement with those obtained in framework of the Lifshitz theory within a fraction of a percent. The temperature correction to the Casimir force from the impedance method coincides with that from the Lifshitz theory up to four significant figures. The case of millimeter separations that corresponds to the normal skin effect is also considered. At zero temperature the obtained results have good agreement with the Lifshitz theory. At nonzero temperature the impedance approach is not subject to the interpretation problems peculiar to the zero-frequency term of the Lifshitz formula in dissipative media

  1. The quantum casimir effect may be a universal force organizing the bilayer structure of the cell membrane.

    Science.gov (United States)

    Pawlowski, Piotr H; Zielenkiewicz, Piotr

    2013-05-01

    A mathematic-physical model of the interaction between cell membrane bilayer leaflets is proposed based on the Casimir effect in dielectrics. This model explains why the layers of a lipid membrane gently slide one past another rather than penetrate each other. The presented model reveals the dependence of variations in the free energy of the system on the membrane thickness. This function is characterized by the two close minima corresponding to the different levels of interdigitation of the lipids from neighbor layers. The energy barrier of the compressing transition between the predicted minima is estimated to be 5.7 kT/lipid, and the return energy is estimated to be 3.1 kT/lipid. The proposed model enables estimation of the value of the membrane elastic thickness modulus of compressibility, which is 1.7 × 10⁹ N/m², and the value of the interlayer friction coefficient, which is 1.9 × 10⁸ Ns/m³. PMID:23612889

  2. Critical Casimir effect in the Ising strips with standard normal and ordinary boundary conditions and the grain boundary

    Science.gov (United States)

    Borjan, Z.

    2016-09-01

    We consider critical Casimir force in the Ising strips with boundary conditions defined by standard normal and ordinary surface universality classes containing also the internal grain boundary. Using exact variational approach of Mikheev and Fisher we have elaborated on behaviors of Casimir amplitudes Δ++(g) , ΔOO(g) and Δ+O(g) , corresponding to normal-normal, ordinary-ordinary and mixed normal-ordinary boundary conditions, respectively, with g as a strength of the grain boundary. Closed analytic results describe Casimir amplitudes Δ++(g) and ΔOO(g) as continuous functions of the grain boundary's strength g, changing the character of the Casimir force from repulsive to attractive and vice versa for certain domains of g. Present results reveal a new type of symmetry between Casimir amplitudes Δ++(g) and ΔOO(g) . Unexpectedly simple constant result for the Casimir amplitude Δ+O(g) = π/12 we have comprehensively interpreted in terms of equilibrium states of the present Ising strip as a complex interacting system comprising two sub-systems. Short-distance expansions of energy density profiles in the vicinity of the grain boundary reveal new distant-wall correction amplitudes that we examined in detail. Analogy of present considerations with earlier more usual short-distance expansions near one of the (N), (O) and (SB) boundaries, as well as close to surfaces with variable boundary conditions refers to the set of scaling dimensions appearing in the present calculations but also to the discovery of the de Gennes-Fisher distant wall correction amplitudes.

  3. Casimir-force-driven ratchets.

    Science.gov (United States)

    Emig, T

    2007-04-20

    We explore the nonlinear dynamics of two parallel periodically patterned metal surfaces that are coupled by the zero-point fluctuations of the electromagnetic field between them. The resulting Casimir force generates for asymmetric patterns with a time periodically driven surface-to-surface distance a ratchet effect, allowing for directed lateral motion of the surfaces in sizable parameter ranges. It is crucial to take into account inertia effects and hence chaotic dynamics which are described by Langevin dynamics. Multiple velocity reversals occur as a function of driving, mean surface distance, and effective damping. These transport properties are shown to be stable against weak ambient noise. PMID:17501407

  4. Lateral Casimir force between self-affine rough surfaces

    Science.gov (United States)

    Tajik, Fatemeh; Masoudi, Amir Ali; Khorrami, Mohammad

    2016-03-01

    The effect of self-affine roughness on the lateral Casimir force between two plates is studied using a perturbative expansion method. The PWS (pairwise summation) method is applicable only at lateral correlation lengths much larger than the separation between two plates. The effect of the roughness parameters on the lateral Casimir force is investigated, and it is seen that this effect is significant, enabling one to tailor roughness parameters so that to obtain the desirable Casimir force and increase the yield of micro- or nano-electromechanical devices based on the vacuum fluctuations.

  5. Graphene Casimir Interactions and Some Possible Applications

    Science.gov (United States)

    Phan, Anh D.

    Scientific development requires profound understandings of micromechanical and nanomechanical systems (MEMS/NEMS) due to their applications not only in the technological world, but also for scientific understanding. At the micro- or nano-scale, when two objects are brought close together, the existence of stiction or adhesion is inevitable and plays an important role in the behavior operation of these systems. Such effects are due to surface dispersion forces, such as the van der Waals or Casimir interactions. The scientific understanding of these forces is particularly important for low-dimensional materials. In addition, the discovery of materials, such as graphitic systems has provided opportunities for new classes of devices and challenging fundamental problems. Therefore, investigations of the van der Waals or Caismir forces in graphene-based systems, in particular, and the solution generating non-touching systems are needed. In this study, the Casimir force involving 2D graphene is investigated under various conditions. The Casimir interaction is usually studied in the framework of the Lifshitz theory. According to this theory, it is essential to know the frequency-dependent reflection coefficients of materials. Here, it is found that the graphene reflection coefficients strongly depend on the optical conductivity of graphene, which is described by the Kubo formalism. When objects are placed in vacuum, the Casimir force is attractive and leads to adhesion on the surface. We find that the Casimir repulsion can be obtained by replacing vacuum with a suitable liquid. Our studies show that bromobenzene is the liquid providing this effect. We also find that this long-range force is temperature dependent and graphene/bromobenzene/metal substrate configuration can be used to demonstrate merely thermal Casimir interaction at room temperature and micrometer distances. These findings would provide good guidance and predictions for practical studies.

  6. Demonstration of the lateral casimir force.

    Science.gov (United States)

    Chen, F; Mohideen, U; Klimchitskaya, G L; Mostepanenko, V M

    2002-03-11

    The lateral Casimir force between a sinusoidally corrugated gold coated plate and large sphere was measured for surface separations between 0.2 to 0.3 microm using an atomic force microscope. The measured force shows the required periodicity corresponding to the corrugations. It also exhibits the necessary inverse fourth power distance dependence. The obtained results are shown to be in good agreement with a complete theory taking into account the imperfectness of the boundary metal. This demonstration opens new opportunities for the use of the Casimir effect for lateral translation in microelectromechanical systems. PMID:11909341

  7. Supersymmetry Breaking Casimir Warp Drive

    CERN Document Server

    Obousy, R K

    2005-01-01

    Within the framework of brane-world models it is possible to account for the cosmological constant by assuming supersymmetry is broken on the 3-brane but preserved in the bulk. An effective Casimir energy is induced on the brane due to the boundary conditions imposed on the compactified extra dimensions. It will be demonstrated that modification of these boundary conditions allows a spacecraft to travel at any desired speed due to a local adjustment of the cosmological constant which effectively contracts/expands space-time in the front/rear of the ship resulting in motion potentially faster than the speed of light as seen by observers outside the disturbance.

  8. Quantum mechanical actuation of microelectromechanical systems by the Casimir force.

    Science.gov (United States)

    Chan, H B; Aksyuk, V A; Kleiman, R N; Bishop, D J; Capasso, F

    2001-03-01

    The Casimir force is the attraction between uncharged metallic surfaces as a result of quantum mechanical vacuum fluctuations of the electromagnetic field. We demonstrate the Casimir effect in microelectromechanical systems using a micromachined torsional device. Attraction between a polysilicon plate and a spherical metallic surface results in a torque that rotates the plate about two thin torsional rods. The dependence of the rotation angle on the separation between the surfaces is in agreement with calculations of the Casimir force. Our results show that quantum electrodynamical effects play a significant role in such microelectromechanical systems when the separation between components is in the nanometer range. PMID:11239149

  9. Oscillating Casimir force between two slabs in a Fermi sea

    International Nuclear Information System (INIS)

    The Casimir effect for two parallel slabs immersed in an ideal Fermi sea is investigated at both zero and nonzero temperatures. It is found that the Casimir effect in a Fermi gas is distinctly different from that in an electromagnetic field or a massive Bose gas. In contrast to the familiar result that the Casimir force decreases monotonically with the increase of the separation L between two slabs in an electromagnetic field and a massive Bose gas, the Casimir force in a Fermi gas oscillates as a function of L. The Casimir force can be either attractive or repulsive, depending sensitively on the magnitude of L. In addition, it is found that the amplitude of the Casimir force in a Fermi gas decreases with the increase of the temperature, which also is contrary to the case in a Bose gas, since the bosonic Casimir force increases linearly with the increase of the temperature in the region T c, where Tc is the critical temperature of the Bose—Einstein condensation. (general)

  10. Advance and prospects in constraining the Yukawa-type corrections to Newtonian gravity from the Casimir effect

    International Nuclear Information System (INIS)

    We report stronger constraints on the parameters of Yukawa-type corrections to Newtonian gravity from measurements of the lateral Casimir force between sinusoidally corrugated surfaces of a sphere and a plate. In the interaction range from 1.6 to 14 nm the strengthening of previously known high confidence constraints up to a factor of 2.4x107 is achieved using these measurements. It is shown that the replacement of a plane plate with a corrugated one in the measurements of the normal Casimir force by means of an atomic force microscope would result in the strengthening of respective high confidence constraints on the Yukawa-type interaction by a factor of 1.1x1012. The use of a corrugated plate instead of a plane plate in the experiment by means of a micromachined oscillator also leads to strengthening of the obtained constraints. We further obtain constraints on the parameters of Yukawa-type interaction from the data of experiments measuring the gradient of the Casimir pressure between two parallel plates and the gradient of the Casimir-Polder force between an atom and a plate. The obtained results are compared with the previously known constraints. The possibilities of how to further strengthen the constraints on non-Newtonian gravity are discussed.

  11. Casimir rack and pinion

    International Nuclear Information System (INIS)

    As the technological advances lead to miniaturization of mechanical devices, engineers face new challenges that are brought about by the fundamentally different rules that apply at small scales. One of the biggest problems in small machines is the excessive wear of the many surfaces that work in contact with each other, which severely constrains the durability of such machine parts. Here, a force that is caused by the quantum fluctuations of electromagnetic field- known as the lateral Casimir force-is employed to propose a design for a potentially wear-proof rack and pinion with no contact, which can be miniaturized to nano-scale. We demonstrate that both uniform and harmonic lateral motion of the rack can be converted into unidirectional rotation of the pinion. The robustness of the design is studied by exploring the relation between the pinion velocity and the rack velocity in the different domains of the parameter space. The effects of friction and added external load are also examined

  12. Particle creation via dynamical Casimir effect in an oscillating cavity with relativistic velocities: an exact numerical approach

    International Nuclear Information System (INIS)

    Full text: The first experimental observation of the dynamical Casimir effect (DCE) was announced by Wilson et al. (2011), using a coplanar waveguide terminated by a superconducting quantum interference device. In their experiment the electromagnetic field in the transmission line is described in terms of a phase field operator φ(t, x) described by a massless Klein-Gordon equation in 1+1 dimensions, in the presence of a boundary with a very large effective maximum velocity ∼ 0:1c. Motivated by this, we investigate the following model: a massless scalar field in 1+1 dimensions satisfying the Klein-Gordon equation (we assume from now on ħ = c = 1) and obeying the Dirichlet boundary condition at the static boundary located at x = 0, and also at the moving boundary's position at x = L(t), where x = L(t) represents a prescribed arbitrary (including relativistic) law of motion for the moving boundary, for which L(t 0, with L0 being the length of the cavity in the static situation. We also consider that after a time interval T, the boundary returns to its initial position L0. Our preliminary results indicate that, although the approximate formulas found in the literature are commonly considered valid for oscillatory laws of motion with maximum velocities ∼ 0.6 x 10-7, surprisingly they are also valid when the maximum velocities ∼ 0.6 x 10-1. In the present work we show in details the spectrum of the created particles in this relativistic case, showing that the discrepancy with the non-relativistic results starts during the beginning of the movement of the boundary, and, since we have a cavity, the discrepancy becomes amplified with the time evolution of the system. (author)

  13. Casimir force in Schwarzschild metric: Progress report

    Science.gov (United States)

    Karim, Munawar

    2016-01-01

    In this paper I report progress on both theoretical and experimental aspects. I describe two approaches to calculating putative effects of gravitational curvature on the Casimir force. The work I describe continues the quest to answer the question: do virtual field excitations follow geodesics?

  14. Stueckelberg massive electromagnetism in curved spacetime: Hadamard renormalization of the stress-energy tensor and the Casimir effect

    Science.gov (United States)

    Belokogne, Andrei; Folacci, Antoine

    2016-02-01

    We discuss Stueckelberg massive electromagnetism on an arbitrary four-dimensional curved spacetime and, in particular, (i) the gauge invariance of the classical theory and its covariant quantization; (ii) the wave equations for the massive spin-1 field Aμ , for the auxiliary Stueckelberg scalar field Φ and for the ghost fields C and C*; (iii) Ward identities; (iv) the Hadamard representation of the various Feynman propagators and the covariant Taylor series expansions of the corresponding coefficients. This permits us to construct, for a Hadamard quantum state, the expectation value of the renormalized stress-energy tensor associated with the Stueckelberg theory. We provide two alternative but equivalent expressions for this result. The first one is obtained by removing the contribution of the "Stueckelberg ghost" Φ and only involves state-dependent and geometrical quantities associated with the massive vector field Aμ. The other one involves contributions coming from both the massive vector field and the auxiliary Stueckelberg scalar field, and it has been constructed in such a way that, in the zero-mass limit, the massive vector field contribution reduces smoothly to the result obtained from Maxwell's theory. As an application of our results, we consider the Casimir effect outside a perfectly conducting medium with a plane boundary. We discuss the results obtained using Stueckelberg but also de Broglie-Proca electromagnetism, and we consider the zero-mass limit of the vacuum energy in both theories. We finally compare the de Broglie-Proca and Stueckelberg formalisms and highlight the advantages of the Stueckelberg point of view, even if, in our opinion, the de Broglie-Proca and Stueckelberg approaches of massive electromagnetism are two faces of the same field theory.

  15. CasimirSim - A Tool to Compute Casimir Polder Forces for Nontrivial 3D Geometries

    International Nuclear Information System (INIS)

    The so-called Casimir effect is one of the most interesting macro-quantum effects. Being negligible on the macro-scale it becomes a governing factor below structure sizes of 1 μm where it accounts for typically 100 kN m-2. The force does not depend on gravity, or electric charge but solely on the materials properties, and geometrical shape. This makes the effect a strong candidate for micro(nano)-mechanical devices M(N)EMS. Despite a long history of research the theory lacks a uniform description valid for arbitrary geometries which retards technical application. We present an advanced state-of-the-art numerical tool overcoming all the usual geometrical restrictions, capable of calculating arbitrary 3D geometries by utilizing the Casimir Polder approximation for the Casimir force

  16. Lateral Casimir Force between Two Sinusoidally Corrugated Eccentric Cylinders Using Proximity Force Approximation

    CERN Document Server

    Setare, M R

    2014-01-01

    This paper is devoted to the presentation of the lateral Casimir force between two sinusoidally corrugated eccentric cylinders. Despite that applying scattering matrix method explains the problem exactly, procedure of applying this method is somehow complicated specially at nonzero temperature. Using the proximity force approximation (PFA) helps to achieve the lateral Casimir force in a truly explicit manner. We assume the cylinders to be slightly eccentric with similar radiuses and separations much smaller than corrugations' wave length for the validity of PFA. For such short distances the effect of finite conductivity would be non negligible. In addition to the effect of finite conductivity, we investigate thermal corrections of the lateral Casimir force to reduce the inaccuracy of the result obtained by PFA. Assuming the Casimir force density between two parallel plates, the normal Casimir force between two cylinders is obtained. With the aid of additive summation of the Casimir energy between cylinders wi...

  17. Boundary conditions and the critical Casimir force on an Ising model film: exact results in one and two dimensions.

    Science.gov (United States)

    Rudnick, Joseph; Zandi, Roya; Shackell, Aviva; Abraham, Douglas

    2010-10-01

    Finite-size effects in certain critical systems can be understood as universal Casimir forces. Here, we compare the Casimir force for free, fixed, periodic, and antiperiodic boundary conditions in the exactly calculable case of the ferromagnetic Ising model in one and two dimensions. We employ a procedure which allows us to calculate the Casimir force with the aforementioned boundary conditions analytically in a transparent manner. Among other results, we find an attractive Casimir force for the case of periodic boundary conditions and a repulsive Casimir force in the antiperiodic case. PMID:21230249

  18. Parameter estimation in dynamic Casimir force measurements with known periodicity

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Song, E-mail: cuis@imre.a-star.edu.sg [Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore); Soh, Yeng Chai, E-mail: eycsoh@ntu.edu.sg [School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2011-12-05

    It is important to have an accurate estimate of the unknown parameters such as the separation distance between interacting materials in Casimir force measurements. Current methods tend to produce large estimation errors. In this Letter, we present a novel method based on an adaptive control approach to estimate the unknown parameters using large amplitude dynamic Casimir measurements at separation distances of below 1 μm where both electrostatic force and Casimir force are significant. The estimate is proved to be accurate and the effectiveness of our method is demonstrated via a numerical example. -- Highlights: ► Unknown parameters like separation gap are nonlinearly parameterized in Casimir force measurements ► A two-stage parameter estimation method is proposed to estimate unknown parameters accurately. ► Our method is proved to be effective by theoretical derivation and simulations. ► Our method can be applied to a broad range of nonlinear parameter estimation problems.

  19. Off-critical Casimir effect in Ising slabs with antisymmetric boundary conditions in d=3

    OpenAIRE

    Upton, P.J.; Borjan, Z.

    2013-01-01

    The universal scaling function W+−(y) of the Casimir force (y is a temperature-dependent variable) away from the critical point for thermodynamic systems in the Ising universality class confined between two parallel plates with antisymmetric boundary conditions [denoted (ab)=(+−)] has been analyzed using the extended de Gennes–Fisher local-functional method. Results on the universal function W+−(y) are presented in spatial dimension d=3 applying the extended sine parametric model for temperat...

  20. Is repulsive Casimir force physical?

    OpenAIRE

    Cho, Sung Nae

    2004-01-01

    The Casimir force for charge-neutral, perfect conductors of non-planar geometric configurations have been investigated. The configurations are: (1) the plate-hemisphere, (2) the hemisphere-hemisphere and (3) the spherical shell. The resulting Casimir forces for these physical arrangements have been found to be attractive. The repulsive Casimir force found by Boyer for a spherical shell is a special case requiring stringent material property of the sphere, as well as the specific boundary cond...

  1. Nanomechanical sensing of gravitational wave-induced Casimir force perturbations

    Science.gov (United States)

    Pinto, Fabrizio

    2014-06-01

    It is shown by means of the optical medium analogy that the static Casimir force between two conducting plates is modulated by gravitational waves. The magnitude of the resulting force changes within the range of already existing small force metrology. It is suggested to enhance the effects on a Casimir force oscillator by mechanical parametric amplification driven by periodic illumination of interacting semiconducting boundaries. This represents a novel opportunity for the ground-based laboratory detection of gravitational waves on the nanoscale.

  2. Observation of the Thermal Casimir Force is Open to Question

    OpenAIRE

    Klimchitskaya, G. L.; Bordag, M.; Fischbach, E.; Krause, D.; Mostepanenko, V. M.

    2011-01-01

    We discuss theoretical predictions for the thermal Casimir force and compare them with available experimental data. Special attention is paid to the recent claim of the observation of that effect, as predicted by the Drude model approach. We show that this claim is in contradiction with a number of experiments reported so far. We suggest that the experimental errors, as reported in support of the observation of the thermal Casimir force, are significantly underestimated. Furthermore, the expe...

  3. Acceleration of the Universe driven by the Casimir force

    OpenAIRE

    Szydlowski, Marek; Godlowski, Wlodzimierz

    2007-01-01

    We investigate an evolutional scenario of the FRW universe with the Casimir energy scaling like $(-)(1+z)^4$. The Casimir effect is used to explain the vacuum energy differences (its value measured from astrophysics is so small compared to value obtained from quantum field theory calculations). The dynamics of the FRW model is represented in terms of a two-dimensional dynamical system to show all evolutional paths of this model in the phase space for all admissible initial conditions. We find...

  4. Non-local thin films in Casimir force calculations

    OpenAIRE

    Esquivel, R.; Svetovoy, V.

    2005-01-01

    he Casimir force is calculated between plates with thin metallic coating. Thin films are described with spatially dispersive (nonlocal) dielectric functions. For thin films the nonlocal effects are more relevant than for half-spaces. However, it is shown that even for film thickness smaller than the mean free path for electrons, the difference between local and nonlocal calculations of the Casimir force is of the order of a few tenths of a percent. Thus the local description of thin metallic ...

  5. Casimir force at both nonzero temperature and finite conductivity.

    Science.gov (United States)

    Bordag, M; Geyer, B; Klimchitskaya, G L; Mostepanenko, V M

    2000-07-17

    We find the combined effect of nonzero temperature and finite conductivity onto the Casimir force between real metals. Configurations of two parallel plates and a sphere (lens) above a plate are considered. Perturbation theory in two parameters (the relative temperature and the relative penetration depth of zero-point oscillations into the metal) is developed. Perturbative results are compared with computations. Recent improper computations based on the Lifshitz formula for the temperature Casimir force are discussed. PMID:10991326

  6. Collective behaviors of the Casimir force in microelectromechanical systems

    Energy Technology Data Exchange (ETDEWEB)

    Chan, H. B.; Yelton, J.

    2013-01-23

    Our goal was to explore the strong dependence of the Casimir force on the shape of the interacting bodies. We made significant progress and measured the Casimir force on silicon surface with rectangular corrugation and showed that the results agree with theoretical calculations, provided that the optical properties of silicon are taken into account. Furthermore, we performed measurement of the Casimir force within a single chip for the first time, between a doubly clamped beam and a movable, on-chip electrode at liquid helium temperature. This experiment represents a new way of studying the Casimir effect, a significant advance from the conventional approach of placing an external surface close to a force transducer.

  7. Attractive and Repulsive Casimir Vacuum Energy with General Boundary Conditions

    CERN Document Server

    Asorey, M

    2013-01-01

    The infrared behavior of quantum field theories confined in bounded domains is strongly dependent on the shape and structure of space boundaries. The most significant physical effect arises in the behaviour of the vacuum energy. The Casimir energy can be attractive or repulsive depending on the nature of the boundary. We calculate the vacuum energy for a massless scalar field confined between two homogeneous parallel plates with the most general type of boundary conditions depending on four parameters. The analysis provides a powerful method to identify which boundary conditions generate attractive or repulsive Casimir forces between the plates. In the interface between both regimes we find a very interesting family of boundary conditions which do not induce any type of Casimir force. We also show that the attractive regime holds far beyond identical boundary conditions for the two plates required by the Kenneth-Klich theorem and that the strongest attractive Casimir force appears for periodic boundary condit...

  8. Temperature dependence of the Casimir force for bulk lossy media

    International Nuclear Information System (INIS)

    We discuss the limitations for the applicability of the Lifshitz theory to describe the temperature dependence of the Casimir force between bulk lossy metal slabs of finite sizes. We pay attention to the important fact that Lifshitz's theory is not applicable when the characteristic wavelength of the fluctuating field, responsible for the temperature-dependent terms in the Casimir force, are longer than the size of the sample. As a result, the widely discussed linearly decreasing temperature dependence of the Casimir force can be observed only for dirty and large metal samples at high enough temperatures. Moreover, for the correct description of the Casimir effect at low enough temperatures, a careful consideration of the concrete geometry of the interacting samples is essential.

  9. Casimir energies of cavities: The geometry question

    Science.gov (United States)

    Abalo, Iroko Komi Elom

    The question of how the Casimir effect relates to a system's geometry is of fundamental interest. In this thesis, we present new results for interior Casimir self-energies of various integrable geometries and show interesting systematic relations between these energies. In particular, we consider prisms with triangular cross sections (equilateral, hemiequilateral, and right isosceles triangles), triangular polygons of the same cross sections, and three tetrahedra. The triangular prisms are of infinite or finite lengths. These geometries are integrable and unique in the sense that the Laplacian eigenvalues may be found using the method of images. We obtain interior Casimir energies for these cavities subject to Dirichlet and Neumann boundary conditions. In addition to these boundary conditions, we also obtain electromagnetic Casimir energies for the infinite prisms. These energies are regularized using various consistent methods, one of which is regularization by point-splitting. Summing these modes explicitly using a cylinder kernel formulation, we show that the correct Weyl divergences are obtained. We also give closed-form results for the infinite triangular prisms. In order to understand the geometry dependence of these energies, we rederive well-known results for rectangular parallelepipeds (including the cube) and infinite rectangular prisms. The analysis of these self-energies yields intriguing results. By plotting the scaled energies against the appropriately chosen isoperimetric or isoareal quotients, we observe interesting patterns, which hint towards a systematic functional dependence. In addition to the calculation of new Casimir energies, this constitutes a significant contribution to the theoretical understanding of self-energies and has interesting implications.

  10. The asymptotic behavior of Casimir force in the presence of compactified universal extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Hongbo [Department of Physics, East China University of Science and Technology, Shanghai 200237 (China)]. E-mail: hbcheng@public4.sta.net.cn

    2006-12-28

    The Casimir effect for parallel plates in the presence of compactified universal extra dimensions within the frame of Kaluza-Klein theory is analyzed. Having regularized and discussed the expressions of Casimir force in the limit, we show that the nature of Casimir force is repulsive if the distance between the plates is large enough and the higher-dimensional spacetime is, the greater the value of repulsive Casimir force between plates is. The repulsive nature of the force is not consistent with the experimental phenomena.

  11. Casimir entropy and internal energy of the objects in fluctuating scalar and electromagnetic fields

    CERN Document Server

    Jafari, Marjan

    2016-01-01

    Casimir entropy is an important aspect of casimir effect.In this paper,we employ the path integral method to derive the total relation for casimir entropy and internal energy of arbitrary shaped objects in the presence of two,three and four dimensions scalar fields and electromagnetic field.We obtain the casimir entropy and internal energy of two nanoribbon immersed in scalar field and two nanospheres immersed in scalar field and electromagnetic field.The casmir entropy of two nanospheres immersed in the electromagnetic field in small interval of temperature variations,shown a different behavior.

  12. Casimir force of expulsion

    OpenAIRE

    Fateev, Evgeny G.

    2012-01-01

    The possibility in principle is shown that the noncompensated Casimir force can exist in nanosized open metal cavities. The force shows up as time-constant expulsion of open cavities toward their least opening. The optimal parameters of the angles of the opening, of "generating lines" of cavities and their lengths are found at which the expulsive force is maximal. The theory is created for trapezoid configurations, in particular for parallel mirrors which experience both the transverse Casimi...

  13. Motional Casimir force

    OpenAIRE

    Jaekel, Marc-Thierry; Reynaud, Serge

    2001-01-01

    We study the situation where two point like mirrors are placed in the vacuum state of a scalar field in a two-dimensional spacetime. Describing the scattering upon the mirrors by transmittivity and reflectivity functions obeying unitarity, causality and high frequency transparency conditions, we compute the fluctuations of the Casimir forces exerted upon the two motionless mirrors. We use the linear response theory to derive the motional forces exerted upon one mirror when it moves or when th...

  14. On the validity of constraints on light elementary particles and extra-dimensional physics from the Casimir effect

    International Nuclear Information System (INIS)

    We discuss the constraints on the parameters of a Yukawa interaction obtained from the indirect measurements of the Casimir pressure between parallel plates using the sphere-plate configuration. Recently, it was claimed in the literature that the application of the proximity force approximation (PFA) to the calculation of a Yukawa interaction in the sphere-plate configuration could lead to a large error of order 100% in the constraints obtained. Here we re-calculate the constraints both exactly and using the PFA, and arrive at identical results. We elucidate the reasons why an incorrect conclusion was obtained suggesting that the PFA is inapplicable to calculate the Yukawa force. (orig.)

  15. Casimir effect in space-times with non-euclidean topology

    International Nuclear Information System (INIS)

    The non-trivial topology of the space-time leads to the vacuum polarization of quantized fields characterized by non-zero vacuum expectation values of the stress-energy tensor. The authors present an approach to its computation which allows analytical investigation of the dependence of the effect upon topology and geometrical parameters of the manifold. A new interpretation and computation method for the effective vacuum temperature is also given

  16. Casimir-Lifshitz interaction between ZnO and SiO2 nanorods in bromobenzene: retardation effects turn the interaction repulsive at intermediate separations

    CERN Document Server

    Boström, Mathias; Baldissera, Gustavo; Persson, Clas; Ninham, Barry W

    2012-01-01

    We consider the interaction between a ZnO nanorod and a SiO2 nanorod in bromobenzene. Using optical data for the interacting objects and ambient we calculate the force - from short-range attractive van der Waals force to intermediate range repulsive Casimir-Lifshitz force to long range entropically driven attraction. The nonretarded van der Waals interaction is attractive at all separations. We demonstrate a retardation driven repulsion at intermediate separations. At short separations (in the nonretarded limit) and at large separations (in the classical limit) the interaction is attractive. These effects can be understood from an analysis of multiple crossings of the dielectric functions of the three media as functions of imaginary frequencies.

  17. Casimir Torque in Inhomogeneous Dielectric Plates

    CERN Document Server

    Long, William

    2013-01-01

    In this work, we consider a torque caused by the well known quantum mechanical Casimir effect arising from quantized field fluctuations between plates with inhomogeneous, sharply discontinuous, dielectric properties. While the Casimir effect is a relatively well understood phenomenon, systems resulting in lateral or rotational forces are far less developed; to our knowledge, a theoretical study of discontinuous dielectric variants of such systems has not been attempted. We utilize a Proximity Force Approximation in conjunction with the Lifshitz dielectric formula to perform theoretical analyses of resultant torques in systems with bisected and quadrisected dielectric regions. We also develop a high precision Monte Carlo type numerical integrator to approximate our derived expressions. Our calculations of an energy density linear with the alignment angle result in a constant torque and have implications in NEMS (nano electromechanical systems) and MEMS (micro electromechanical systems), including a postulated ...

  18. Casimir effect in de Sitter space-time with compactified dimension

    Energy Technology Data Exchange (ETDEWEB)

    Saharian, A.A. [Department of Physics, Yerevan State University, Yerevan (Armenia); International Centre for Theoretical Physics, Trieste (Italy)], E-mail: saharian@ictp.it; Setare, M.R. [Department of Science, Payame Noor University, Bijar (Iran, Islamic Republic of)], E-mail: rezakord@ipm.ir

    2008-01-17

    We investigate the Hadamard function, the vacuum expectation values of the field square and the energy-momentum tensor of a scalar field with general curvature coupling parameter in de Sitter space-time compactified along one of spatial dimensions. By using the Abel-Plana summation formula, we have explicitly extracted from the vacuum expectation values the part due to the compactness of the spatial dimension. The topological part in the vacuum energy-momentum tensor violates the local de Sitter symmetry and dominates in the early stages of the cosmological evolution. At late times the corresponding vacuum stresses are isotropic and the topological part corresponds to an effective gravitational source with barotropic equation of state.

  19. Spinor Casimir effect for concentric spherical shells in the global monopole spacetime

    CERN Document Server

    De Mello, E R B

    2006-01-01

    In this paper we investigate the vacuum polarization effects associated with a massive fermionic field due to the non-trivial topology of the global monopole spacetime and boundary conditions imposed on this field. Specifically we investigate the vacuum expectation values of the energy-momentum tensor and fermionic condensate admitting that the field obeys the MIT bag boundary condition on two concentric spherical shells. In order to develop this analysis, we use the generalized Abel-Plana summation, which allows to extract from the vacuum expectation values the contribution coming from a single sphere geometry and to present the second sphere induced part in terms of exponentially convergent integrals. In the limit of strong gravitational field corresponding to small values of the parameter describing the solid angle deficit in global monopole geometry, the interference part in the expectation values are exponentially suppressed. The vacuum forces acting on spheres are presented as the sum of self-action and...

  20. Isotopic dependence of the Casimir force.

    Science.gov (United States)

    Krause, Dennis E; Fischbach, Ephraim

    2002-11-01

    We calculate the dependence of the Casimir force on the isotopic composition of the interacting objects. This dependence arises from the subtle influence of the nuclear masses on the electronic properties of the bodies. We discuss the relevance of these results to current experiments utilizing the isoelectronic effect to search at very short separations for new weak forces suggested by various unification theories. PMID:12443107

  1. Casimir electromotive force in periodic configurations

    OpenAIRE

    Fateev, Evgeny G.

    2016-01-01

    The possibility in principle of the existence of Casimir electromotive force (EMF) is shown for nonparallel nanosized metal plates arranged in the form of a periodic structure. It is found that EMF does not appear in strictly periodic structures with parallel plates. However, when the strict periodicity is disturbed in nonparallel plates, EMF is generated, and its value is equal to the number of pairs of plates in a configuration. Moreover, there are some effective parameters of the configura...

  2. Isotopic Dependence of the Casimir Force

    OpenAIRE

    Krause, Dennis E.; Fischbach, Ephraim

    2002-01-01

    We calculate the dependence of the Casimir force on the isotopic composition of the interacting objects. This dependence arises from the subtle influence of the nuclear masses on the electronic properties of the bodies. We discuss the relevance of these results to current experiments utilizing the iso-electronic effect to search at very short separations for new weak forces suggested by various unification theories.

  3. On convergence generation in computing the electro-magnetic Casimir force

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, F. [Lab. de Physique des Lasers, UMR 7538 du CNRS, Univ. Paris 13, Villetaneuse (France)

    2008-09-15

    We tackle the very fundamental problem of zero-point energy divergence in the context of the Casimir effect. We calculate the Casimir force due to field fluctuations by using standard cavity radiation modes. The validity of convergence generation by means of an exponential energy cut-off factor is discussed in detail. (orig.)

  4. Conformal field theory of critical Casimir forces

    Science.gov (United States)

    Emig, Thorsten; Bimonte, Giuseppe; Kardar, Mehran

    2015-03-01

    Thermal fluctuations of a critical system induce long-ranged Casimir forces between objects that couple to the underlying field. For two dimensional conformal field theories (CFT) we derive exact results for the Casimir interaction for a deformed strip and for two compact objects of arbitrary shape in terms of the free energy of a standard region (circular ring or flat strip) whose dimension is determined by the mutual capacitance of two conductors with the objects' shape; and a purely geometric energy that is proportional to conformal charge of the CFT, but otherwise super-universal in that it depends only on the shapes and is independent of boundary conditions and other details. The effect of inhomogenous boundary conditions is also discussed.

  5. Casimir force between liquid metals

    Science.gov (United States)

    Esquivel-Sirvent, R.; Escobar, J. V.

    2014-08-01

    We present a theoretical calculation of the Casimir force between liquid metals at room temperature using as case studies mercury (Hg) and eutectic indium gallium (EInGa). The surface tension of the liquids creates surfaces of zero roughness that are truly equipotential, an ideal characteristic for Casimir force experiments. As we show the dielectric properties of Au, EInGa and Hg are very similar and the difference on the Casimir force between Au and EInGa and Au and Hg is less than 4%. Based on these results, a modification of the IUPUI experiment for detecting deviations of Newtonian gravity is proposed.

  6. Casimir-Foucault interaction: Free energy and entropy at low temperature

    CERN Document Server

    Intravaia, F; Henkel, C

    2010-01-01

    It was recently found that thermodynamic anomalies which arise in the Casimir effect between metals described by the Drude model can be attributed to the interaction of fluctuating Foucault (or eddy) currents [Phys. Rev. Lett. 103, 130405 (2009)]. We show explicitly that the two leading terms of the low-temperature correction to the Casimir free energy of interaction between two plates, are identical to those pertaining to the Foucault current interaction alone, up to a correction which is very small for good metals. Moreover, a mode density along real frequencies is introduced, showing that the Casimir free energy, as given by the Lifshitz theory, separates in a natural manner in contributions from eddy currents and propagating cavity modes, respectively. The latter have long been known to be of little importance to the low-temperature Casimir anomalies. This convincingly demonstrates that eddy current modes are responsible for the large temperature correction to the Casimir effect between Drude metals, pred...

  7. Precision measurement of the Casimir-Lifshitz force in a fluid

    International Nuclear Information System (INIS)

    The Casimir force, which results from the confinement of the quantum-mechanical zero-point fluctuations of electromagnetic fields, has received significant attention in recent years for its effect on micro- and nanoscale mechanical systems. With few exceptions, experimental observations have been limited to interacting conductive bodies separated by vacuum or air. However, interesting phenomena, including repulsive forces, are expected to exist in certain circumstances between metals and dielectrics when the intervening medium is not vacuum. In order to better understand the effect of the Casimir force in such situations and to test the robustness of the generalized Casimir-Lifshitz theory, we have performed precision measurements of the Casimir force between two metals immersed in a fluid. For this situation, the measured force is attractive and is approximately 80% smaller than the force predicted by Casimir for ideal metals in vacuum. We present experimental results and find them to be consistent with Lifshitz's theory

  8. Precision measurement of the Casimir-Lifshitz force in a fluid

    CERN Document Server

    Munday, Jeremy N

    2007-01-01

    The Casimir force, which results from the confinement of the quantum mechanical zero-point fluctuations of the electromagnetic fields, has received significant attention in recent years for its effect on micro- and nano-scale mechanical systems. With few exceptions, experimental observations have been limited to conductive bodies interacting separated by vacuum or air. However, interesting phenomena including repulsive forces are expected to exist in certain circumstances between metals and dielectrics when the intervening medium is not vacuum. In order to better understand the effect of the Casimir force in such situations and to test the robustness of the generalized Casimir-Lifshitz theory, we have performed the first precision measurements of the Casimir force between two metals immersed in a fluid. For this situation, the measured force is attractive and is approximately 80% smaller than the force predicted by Casimir for ideal metals in vacuum. We present experimental results and find them to be consist...

  9. Critical Casimir forces for colloidal assembly

    International Nuclear Information System (INIS)

    Critical Casimir forces attract increasing interest due to their opportunities for reversible particle assembly in soft matter and nano science. These forces provide a thermodynamic analogue of the celebrated quantum mechanical Casimir force that arises from the confinement of vacuum fluctuations of the electromagnetic field. In its thermodynamic analogue, solvent fluctuations, confined between suspended particles, give rise to an attractive or repulsive force between the particles. Due to its unique temperature dependence, this effect allows in situ control of reversible assembly. Both the force magnitude and range vary with the solvent correlation length in a universal manner, adjusting with temperature from fractions of the thermal energy, k B T, and nanometre range to several ten kT and micrometer length scale. Combined with recent breakthroughs in the synthesis of complex particles, critical Casimir forces promise the design and assembly of complex colloidal structures, for fundamental studies of equilibrium and out-of-equilibrium phase behaviour. This review highlights recent developments in this evolving field, with special emphasis on the dynamic interaction control to assemble colloidal structures, in and out of equilibrium. (topical review)

  10. Critical Casimir forces for colloidal assembly

    Science.gov (United States)

    Nguyen, V. D.; Dang, M. T.; Nguyen, T. A.; Schall, P.

    2016-02-01

    Critical Casimir forces attract increasing interest due to their opportunities for reversible particle assembly in soft matter and nano science. These forces provide a thermodynamic analogue of the celebrated quantum mechanical Casimir force that arises from the confinement of vacuum fluctuations of the electromagnetic field. In its thermodynamic analogue, solvent fluctuations, confined between suspended particles, give rise to an attractive or repulsive force between the particles. Due to its unique temperature dependence, this effect allows in situ control of reversible assembly. Both the force magnitude and range vary with the solvent correlation length in a universal manner, adjusting with temperature from fractions of the thermal energy, k B T, and nanometre range to several ten kT and micrometer length scale. Combined with recent breakthroughs in the synthesis of complex particles, critical Casimir forces promise the design and assembly of complex colloidal structures, for fundamental studies of equilibrium and out-of-equilibrium phase behaviour. This review highlights recent developments in this evolving field, with special emphasis on the dynamic interaction control to assemble colloidal structures, in and out of equilibrium.

  11. Casimir-Polder interaction in second quantization

    Energy Technology Data Exchange (ETDEWEB)

    Schiefele, Juergen

    2011-03-21

    The Casimir-Polder interaction between a single neutral atom and a nearby surface, arising from the (quantum and thermal) fluctuations of the electromagnetic field, is a cornerstone of cavity quantum electrodynamics (cQED), and theoretically well established. Recently, Bose-Einstein condensates (BECs) of ultracold atoms have been used to test the predictions of cQED. The purpose of the present thesis is to upgrade single-atom cQED with the many-body theory needed to describe trapped atomic BECs. Tools and methods are developed in a second-quantized picture that treats atom and photon fields on the same footing. We formulate a diagrammatic expansion using correlation functions for both the electromagnetic field and the atomic system. The formalism is applied to investigate, for BECs trapped near surfaces, dispersion interactions of the van der Waals-Casimir-Polder type, and the Bosonic stimulation in spontaneous decay of excited atomic states. We also discuss a phononic Casimir effect, which arises from the quantum fluctuations in an interacting BEC. (orig.)

  12. Casimir force on amplifying bodies

    OpenAIRE

    Sambale, Agnes; Welsch, Dirk-Gunnar; Buhmann, Stefan Yoshi; Dung, Ho Trung

    2009-01-01

    Based on a unified approach to macroscopic QED that allows for the inclusion of amplification in a limited space and frequency range, we study the Casimir force as a Lorentz force on an arbitrary partially amplifying system of linearly locally responding (isotropic) magnetoelectric bodies. We demonstrate that the force on a weakly polarisable/magnetisable amplifying object in the presence of a purely absorbing environment can be expressed as a sum over the Casimir--Polder forces on the excite...

  13. Casimir force between eccentric cylinders

    OpenAIRE

    Dalvit, Diego A. R.; Lombardo, Fernando C.; Mazzitelli, Francisco D.; Onofrio, Roberto

    2004-01-01

    We consider the Casimir interaction between a cylinder and a hollow cylinder, both conducting, with parallel axis and slightly different radii. The Casimir force, which vanishes in the coaxial situation, is evaluated for both small and large eccentricities using the proximity approximation. The cylindrical configuration offers various experimental advantages with respect to the parallel planes or the plane-sphere geometries, leading to favourable conditions for the search of extra-gravitation...

  14. Repulsive Casimir Force: Sufficient Conditions

    OpenAIRE

    Rosa, Luigi; Lambrecht, Astrid

    2010-01-01

    In this paper the Casimir energy of two parallel plates made by materials of different penetration depth and no medium in between is derived. We study the Casimir force density and derive analytical constraints on the two penetration depths which are sufficient conditions to ensure repulsion. Compared to other methods our approach needs no specific model for dielectric or magnetic material properties and constitutes a complementary analysis.

  15. The Casimir force between real materials: Experiment and theory

    International Nuclear Information System (INIS)

    The physical origin of the Casimir force is connected with the existence of zero-point and thermal fluctuations. The Casimir effect is very general and finds applications in various fields of physics. This review is limited to the rapid progress at the intersection of experiment and theory that has been achieved in the last few years. It includes a critical assessment of the proposed approaches to the resolution of the puzzles arising in the applications of the Lifshitz theory of the van der Waals and Casimir forces to real materials. All the primary experiments on the measurement of the Casimir force between macroscopic bodies and the Casimir-Polder force between an atom and a wall that have been performed in the last decade are reviewed, including the theory needed for their interpretation. The methodology for the comparison between experiment and theory in the force-distance measurements is presented. The experimental and theoretical results described here provide a deeper understanding of the phenomenon of dispersion forces in real materials and offer guidance for the application of the Lifshitz theory to the interpretation of the measurement results.

  16. The Casimir force between real materials: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Klimchitskaya, G. L.; Mohideen, U.; Mostepanenko, V. M. [Institute for Theoretical Physics, Leipzig University, Postfach 100920, Leipzig D-04009 (Germany) and North-West Technical University, Millionnaya Street 5, St. Petersburg 191065 (Russian Federation); Department of Physics and Astronomy, University of California, Riverside, California 92521 (United States); Institute for Theoretical Physics, Leipzig University, Postfach 100920, Leipzig D-04009 (Germany) and Noncommercial Partnership ' ' Scientific Instruments' ' , Tverskaya Street 11, Moscow 103905 (Russian Federation)

    2009-10-15

    The physical origin of the Casimir force is connected with the existence of zero-point and thermal fluctuations. The Casimir effect is very general and finds applications in various fields of physics. This review is limited to the rapid progress at the intersection of experiment and theory that has been achieved in the last few years. It includes a critical assessment of the proposed approaches to the resolution of the puzzles arising in the applications of the Lifshitz theory of the van der Waals and Casimir forces to real materials. All the primary experiments on the measurement of the Casimir force between macroscopic bodies and the Casimir-Polder force between an atom and a wall that have been performed in the last decade are reviewed, including the theory needed for their interpretation. The methodology for the comparison between experiment and theory in the force-distance measurements is presented. The experimental and theoretical results described here provide a deeper understanding of the phenomenon of dispersion forces in real materials and offer guidance for the application of the Lifshitz theory to the interpretation of the measurement results.

  17. Casimir Force on a Piston in Randall-Sundrum Models

    International Nuclear Information System (INIS)

    The Casimir effect of a piston for massless scalar fields which satisfy Dirichlet boundary conditions in the context of five-dimensional Randall-Sundrum models is studied. In these scenarios we derive and calculate the expression for the Casimir force on the piston. We also discuss the Casimir force in the limit that one outer plate is moved to the remote place to show that the nature of the reduced force between the parallel plates left. In the Randall-Sundrum model involving two branes the two plates attract each other when they locate very closely, but the reduced Casimir force turns to be repulsive as the plates separation is not extremely tiny, which is against the experimental phenomena, meaning that the RSI model can not be acceptable. In the case of one brane model the shape of the reduced Casimir force is similar to that of the standard two-parallel-system in the four-dimensional flat spacetimes while the sign of force remains negative. (physics of elementary particles and fields)

  18. Quantum field theory of the Casimir force for graphene

    Science.gov (United States)

    Klimchitskaya, G. L.

    2016-01-01

    We present theoretical description of the Casimir interaction in graphene systems which is based on the Lifshitz theory of dispersion forces and the formalism of the polarization tensor in (2+1)-dimensional space-time. The representation for the polarization tensor of graphene allowing the analytic continuation to the whole plane of complex frequencies is given. This representation is used to obtain simple asymptotic expressions for the reflection coefficients at all Matsubara frequencies and to investigate the origin of large thermal effect in the Casimir force for graphene. The developed theory is shown to be in a good agreement with the experimental data on measuring the gradient of the Casimir force between a Au-coated sphere and a graphene-coated substrate. The possibility to observe the thermal effect for graphene due to a minor modification of the already existing experimental setup is demonstrated.

  19. Demonstration of angle-dependent Casimir force between corrugations.

    Science.gov (United States)

    Banishev, A A; Wagner, J; Emig, T; Zandi, R; Mohideen, U

    2013-06-21

    The normal Casimir force between a sinusoidally corrugated gold coated plate and a sphere was measured at various angles between the corrugations using an atomic force microscope. A strong dependence on the orientation angle of the corrugation is found. The measured forces were found to deviate from the proximity force approximation and are in agreement with the theory based on the gradient expansion including correlation effects of geometry and material properties. We analyze the role of temperature. The obtained results open new opportunities for control of the Casimir effect in micromechanical systems. PMID:23829717

  20. Colloidal aggregation in microgravity by critical Casimir forces

    Science.gov (United States)

    Veen, Sandra; Schall, Peter; Antoniuk, Oleg; Potenza, Marco; Alaimo, Matteo; Mazzoni, Stefano; Wegdam, Gerard

    2012-02-01

    We study aggregation and crystal growth of spherical Teflon colloids in binary liquid mixtures in microgravity by the critical Casimir effect. The critical Casimir effect induces interactions between colloids due to the confinement of bulk fluctuations (density or concentration) near the critical point of liquids. The strength and range of the interaction depends on the length scale of these fluctuations which increase as one approaches the critical point. The interaction potential can thus be tuned with temperature. We follow the growth of structures in real time with Near Field Scattering. Measurements are performed in microgravity in order to study pure diffusion limited aggregation, without disturbance by sedimentation or flow.

  1. Spherical Casimir pistons

    CERN Document Server

    Dowker, J S

    2011-01-01

    A piston is introduced into a spherical lune Casimir cavity turning it into two adjacent lunes separated by the (hemispherical) piston. On the basis of zeta function regularisation, the vacuum energy of the arrangement is finite for conformal propagation in space-time. For even spheres this energy is independent of the angle of the lune. For odd dimensions it is shown that for all Neumann, or all Dirichlet, boundary conditions the piston is attracted or repelled by the nearest wall if d=3,7,... or if d=1,5,..., respectively. For hybrid N-D conditions these requirements are switched. If a mass is added, divergences arise which render the model suspect. The analysis, however, is relatively straightforward and involves the Barnes zeta function.

  2. Casimir operator dependences of non-perturbative fermionic QCD amplitudes

    CERN Document Server

    Fried, H M; Hofmann, R

    2015-01-01

    In eikonal and quenched approximation, it is argued that the strong coupling fermionic QCD Green's functions and related amplitudes, when based on the newly discovered effective locality property, depart from a sole dependence on the SUc(3) quadratic Casimir operator, evaluated over the fundamental gauge group representation.Though noticed in non-relativistic Quark Models, an additional dependence on the cubic Casimir operator is in contradistinction with perturbation theory, and also with a number of non-perturbative approaches such as the MIT Bag, the Stochastic Vacuum Models and lattice simulations. It accounts for the full algebraic content of the rank-2 Lie algebra of SUc(3). We briefly discuss the orders of magnitude of quadratic and cubic Casimir operator contributions.

  3. Electromagnetic Energy, Absorption, and Casimir Forces. Inhomogeneous Dielectric Media

    CERN Document Server

    Rosa, F S S; Milonni, P W

    2011-01-01

    A general, exact formula is derived for the expectation value of the electromagnetic energy density of an inhomogeneous absorbing and dispersive dielectric medium at zero temperature, assuming that the medium is well approximated as a continuum. From this formula we obtain the formal expression for the Casimir force density. Unlike most previous approaches to Casimir effects in which absorption is either ignored or admitted implicitly through the required analytic properties of the permittivity, we include dissipation explicitly via the coupling of each dipole oscillator of the medium to a reservoir of harmonic oscillators. We obtain the energy density and the Casimir force density as a consequence of the van der Waals interactions of the oscillators and also from Poynting's theorem.

  4. Casimir force due to condensed vortices in a plane

    CERN Document Server

    Neto, J F de Medeiros; Santos, Carlos Rafael M

    2012-01-01

    The Casimir force between parallel lines in a theory describing condensed vortices in a plane is determined. We make use of the relation between a Chern-Simons-Higgs model and its dualized version, which is expressed in terms of a dual gauge field and a vortex field. The dual model can have a phase of condensed vortices and, in this phase, there is a mapping to a model of two non-interacting massive scalar fields from which the Casimir force can readily be obtained. The choice of boundary conditions required for the mapped scalar fields and their association with those for the vectorial field and the issues involved are discussed. We also briefly discuss the implications of our results for experiments related to the Casimir effect when vortices can be present.

  5. Casimir force induced by an imperfect Bose gas.

    Science.gov (United States)

    Napiórkowski, Marek; Piasecki, Jarosław

    2011-12-01

    We present a study of the Casimir effect in an imperfect (mean-field) Bose gas contained between two infinite parallel plane walls. The derivation of the Casimir force follows from the calculation of the excess grand-canonical free energy density under periodic, Dirichlet, and Neumann boundary conditions with the use of the steepest descent method. In the one-phase region, the force decays exponentially fast when distance D between the walls tends to infinity. When the Bose-Einstein condensation point is approached, the decay length in the exponential law diverges with critical exponent ν(IMP) = 1, which differs from the perfect gas case where ν(P) = 1/2. In the two-phase region, the Casimir force is long range and decays following the power law D(-3), with the same amplitude as in the perfect gas. PMID:22304038

  6. Some new results of the Casimir force for rectangular cavity

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, X.-H.; Li, X.-Z. [Shanghai Normal University, Dept. of Physics, Shanghai (China)

    2001-10-01

    The Casimir effect giving rise to an attractive or repulsive force between the configuration boundaries that confine the massless scalar field is analytically approached for a p-dimensional rectangular cavity with the Dirichlet boundary conditions and different spacetime dimensions D. The Casimir force is attractive in the cases: i) p-odd hypercube when D is less than the critical dimension D{sub c} and p {<=} 29; ii) o =2 and the length ratio is less than a critical value; iii) p = 1. The Casimir force is repulsive in the cases: i) p = 2 and the length ratio is larger than a critical value; ii) the length of q edges is equal and others are much longer than q edges, in the direction of (p-q) edges; iii) (p-q) edges are much longer than q edges, in the direction of (p-q) edges.

  7. Casimir energy in the compact QED on the lattice

    CERN Document Server

    Pavlovsky, Oleg

    2009-01-01

    A new method based on the Monte-Carlo calculation on the lattice is proposed to study the Casimir effect in the compact lattice U(1) theory with Wilson action. We have studied the standard Casimir problem with two parallel plane surfaces (mirrors) and oblique boundary conditions on those as a test of our method. Physically, this boundary conditions may appear in the problem of modelling of the thin material films interaction and are generated by additional Chern-Simons boundary term. This approach for the boundary condition generation is very suitable for the lattice formulation of the Casimir problem due to gauge invariance. This method can be simply generalized on the case of more complicated geometries and other gauge groups.

  8. Experimental observations of temperature effects in the near-field regime of the Casimir-Polder interaction

    CERN Document Server

    de Silans, Thierry Passerat; Maurin, Isabelle; Gorza, Marie Pascale; Segundo, Pedro Chaves de Souza; Ducloy, Martial; Bloch, Daniel

    2014-01-01

    We investigate the temperature dependence of the Casimir-Polder interaction in the electrostatic limit. This unusual phenomenon relies on the coupling between a virtual atomic transition and a thermal excitation of surface polariton modes. We first focus on the scenario where a Cs(8P3/2) atom is next to a CaF2 or a BaF2 surface. Our theoretical predictions show a strong temperature dependence of the van der Waals coefficient at experimentally accessible conditions. A series of spectroscopic measurements performed in a specially designed Cs vapour cell containing a CaF2 tube is presented. Our results illustrate the sensitivity of atom surface-interaction experiments to the quality and chemical stability of the surface material and emphasize the need of using more durable materials, such as sapphire. We finally discuss selective reflection experiments on Cs(7D3/2) in an all-sapphire cell that clearly demonstrate a temperature dependent van der Waals coefficient.

  9. Casimir switch: steering optical transparency with vacuum forces

    CERN Document Server

    Liu, X -f; Jing, H

    2016-01-01

    The Casimir force, originating from vacuum zero-point energy, is one of the most intriguing purely quantum effects. It has attracted renewed interests in current field of nanomechanics, due to the rapid size decrease of on-chip devices. Here we study the optomechanically-induced transparency (OMIT) with a tunable Casimir force. We find that the optical output rate can be significantly altered by the vacuum force, even terminated and then restored, indicating a highly-controlled optical switch. Our result addresses the possibility of designing exotic optical nano-devices by harnessing the power of vacuum.

  10. Nonmonotonic thermal Casimir force from geometry-temperature interplay.

    Science.gov (United States)

    Weber, Alexej; Gies, Holger

    2010-07-23

    The geometry dependence of Casimir forces is significantly more pronounced in the presence of thermal fluctuations due to a generic geometry-temperature interplay. We show that the thermal force for standard sphere-plate or cylinder-plate geometries develops a nonmonotonic behavior already in the simple case of a fluctuating Dirichlet scalar. In particular, the attractive thermal force can increase for increasing distances below a critical temperature. This anomalous behavior is triggered by a reweighting of relevant fluctuations on the scale of the thermal wavelength. The essence of the phenomenon becomes transparent within the worldline picture of the Casimir effect. PMID:20867823

  11. Nonequilibrium Casimir-like Forces in Liquid Mixtures

    Science.gov (United States)

    Kirkpatrick, T. R.; Ortiz de Zárate, J. M.; Sengers, J. V.

    2015-07-01

    In this Letter, we consider a liquid mixture confined between two thermally conducting walls subjected to a stationary temperature gradient. While in a one-component liquid nonequilibrium fluctuation forces appear inside the liquid layer, nonequilibrium fluctuations in a mixture induce a Casimir-like force on the walls. The physical reason is that the temperature gradient induces large concentration fluctuations through the Soret effect. Unlike temperature fluctuations, nonequilibrium concentration fluctuations are also present near a perfectly thermally conducting wall. The magnitude of the fluctuation-induced Casimir force is proportional to the square of the Soret coefficient and is related to the concentration dependence of the heat and volume of mixing.

  12. Casimir switch: steering optical transparency with vacuum forces

    Science.gov (United States)

    Liu, Xi-Fang; Li, Yong; Jing, H.

    2016-06-01

    The Casimir force, originating from vacuum zero-point energy, is one of the most intriguing purely quantum effects. It has attracted renewed interests in current field of nanomechanics, due to the rapid size decrease of on-chip devices. Here we study the optomechanically-induced transparency (OMIT) with a tunable Casimir force. We find that the optical output rate can be significantly altered by the vacuum force, even terminated and then restored, indicating a highly-controlled optical switch. Our result addresses the possibility of designing exotic optical nano-devices by harnessing the power of vacuum.

  13. Casimir energy in the compact QED on the lattice

    OpenAIRE

    Pavlovsky, Oleg; Ulybyshev, Maxim

    2009-01-01

    A new method based on the Monte-Carlo calculation on the lattice is proposed to study the Casimir effect in the compact lattice U(1) theory with Wilson action. We have studied the standard Casimir problem with two parallel plane surfaces (mirrors) and oblique boundary conditions on those as a test of our method. Physically, this boundary conditions may appear in the problem of modelling of the thin material films interaction and are generated by additional Chern-Simons boundary term. This app...

  14. Negative Entropies in Casimir and Casimir-Polder Interactions

    CERN Document Server

    Milton, Kimball A; Kalauni, Pushpa; Parashar, Prachi; Guérout, Romain; Ingold, Gert-Ludwig; Lambrecht, Astrid; Reynaud, Serge

    2016-01-01

    It has been increasingly becoming clear that Casimir and Casimir-Polder entropies may be negative in certain regions of temperature and separation. In fact, the occurrence of negative entropy seems to be a nearly ubiquitous phenomenon. This is most highlighted in the quantum vacuum interaction of a nanoparticle with a conducting plate or between two nanoparticles. It has been argued that this phenomenon does not violate physical intuition, since the total entropy, including the self-entropies of the plate and the nanoparticle, should be positive. New calculations, in fact, seem to bear this out at least in certain cases.

  15. Stochastic Quantization and Casimir Forces

    CERN Document Server

    Rodriguez-Lopez, Pablo; Soto, Rodrigo

    2011-01-01

    In this paper we show how the stochastic quantization method developed by Parisi and Wu can be used to obtain Casimir forces. Both quantum and thermal fluctuations are taken into account by a Langevin equation for the field. The method allows the Casimir force to be obtained directly, derived from the stress tensor instead of the free energy. It only requires the spectral decomposition of the Laplacian operator in the given geometry. The formalism provides also an expression for the fluctuations of the force. As an application we compute the Casimir force on the plates of a finite piston of arbitrary cross section. Fluctuations of the force are also directly obtained, and it is shown that, in the piston case, the variance of the force is twice the force squared.

  16. Drastic change of the Casimir force at the metal-insulator transition

    International Nuclear Information System (INIS)

    The dependence of the Casimir force on material properties is important for both future applications and to gain further insight on its fundamental aspects. Here we apply the general Lifshitz theory of the Casimir force to low-conducting compounds, or poor metals. For distances in the micrometer range, the Casimir force for a large variety of such materials is described by universal equations containing a few parameters: the effective plasma frequency ωp, dissipation rate γ of the free carriers, and electric permittivity ε∞ for ω≥ωp (in the infrared range). This theory of the Casimir force for poor metals can also describe inhomogeneous composite materials containing small regions with different conductivity. The Casimir force for systems involving samples made with compounds that have a metal-insulator transition shows a drastic change of the Casimir force within the transition region, where the metallic and dielectric phases coexist. Indeed, the Casimir force can increase by a factor of 2 near this transition.

  17. The Casimir Force in Randall Sundrum Models

    OpenAIRE

    Frank, Mariana; Turan, Ismail; Ziegler, Lorric

    2007-01-01

    We discuss and compare the effects of one extra dimension in the Randall Sundrum models on the evaluation of the Casimir force between two parallel plates. We impose the condition that the result reproduce the experimental measurements within the known uncertainties in the force and the plate separation, and get an upper bound kR < 20 if the curvature parameter k of AdS_5 is equal to the Planck scale. Although the upper bound decreases as k decreases, kR ~ 12, which is the required value for ...

  18. Casimir electromotive force in periodic configurations

    CERN Document Server

    Fateev, Evgeny G

    2016-01-01

    The possibility in principle of the existence of Casimir electromotive force (EMF) is shown for nonparallel nanosized metal plates arranged in the form of a periodic structure. It is found that EMF does not appear in strictly periodic structures with parallel plates. However, when the strict periodicity is disturbed in nonparallel plates, EMF is generated, and its value is equal to the number of pairs of plates in a configuration. Moreover, there are some effective parameters of the configuration (angles between plates, plate lengths and length to length ratios), at which the EMF generation per unit of the length of the periodic structure is maximal.

  19. Repulsive Casimir force between Weyl semimetals

    OpenAIRE

    Wilson, Justin H.; Allocca, Andrew A.; Galitski, Victor M.

    2015-01-01

    Weyl semimetals are a class of topological materials that exhibit a bulk Hall effect due to time-reversal symmetry breaking. We show that for the idealized semi-infinite case, the Casimir force between two identical Weyl semimetals is repulsive at short range and attractive at long range. Considering plates of finite thickness, we can reduce the size of the long-range attraction even making it repulsive for all distances when thin enough. In the thin-film limit, we study the appearance of an ...

  20. Casimir energy calculations within the formalism of the noncompact lattice QED

    CERN Document Server

    Pavlovsky, Oleg

    2009-01-01

    A new method based on the Monte-Carlo calculation on the lattice is proposed to study the Casimir effect in the noncompact lattice QED. We have studied the standard Casimir problem with two parallel plane surfaces (mirrors) and oblique boundary conditions on those as a test of our method. Physically, this boundary conditions may appear in the problem of modelling of the thin material films interaction and are generated by additional Chern-Simons boundary term. This approach for the boundary condition generation is very suitable for the lattice formulation of the Casimir problem due to gauge invariance.

  1. Casimir force on a piston

    OpenAIRE

    Cavalcanti, R. M.

    2003-01-01

    We consider a massless scalar field obeying Dirichlet boundary conditions on the walls of a two-dimensional L x b rectangular box, divided by a movable partition (piston) into two compartments of dimensions a x b and (L-a) x b. We compute the Casimir force on the piston in the limit L -> infinity. Regardless of the value of a/b, the piston is attracted to the nearest end of the box. Asymptotic expressions for the Casimir force on the piston are derived for a > b.

  2. Archimedes Force on Casimir Apparatus

    CERN Document Server

    Shevchenko, Vladimir

    2016-01-01

    We address a problem of Casimir apparatus in dense medium and weak gravitational field. The falling of the apparatus has to be governed by the equivalence principle, with proper account for contributions to the weight of the apparatus from its material part and from distorted quantum fields. We discuss general expression for the corresponding force in metric with cylindrical symmetry. By way of example we compute explicit expression for Archimedes force, acting on the Casimir apparatus of finite size, immersed into thermal bath of free scalar field. It is shown that besides universal term, proportional to the volume of the apparatus, there are non-universal quantum corrections, depending on the boundary conditions.

  3. A special kind of Casimir plates for making exotic matter

    CERN Document Server

    Mansooryar, M

    2003-01-01

    Herein a process of suitable extraction of energy from vacuum is introduced. By followung Ridgely's idea[1], it is proposed some molecular fine-scale plates. Then some properties of them are considered. In fact Casimir effect is viewed in engineering manner. The introduced plates may be applied for support of traversable wormholes (TWs) & warp drives (WDs).

  4. Using the Casimir Force to Measure the Gravitational Constant

    Science.gov (United States)

    Pinto, F.

    1998-01-01

    I show that the dynamics of two coupled torsion pendulums is drastically affected by their mutual Casimir surface interaction if the masses involved are relatively close to each other. The effect is directly related to the ratio of the masses used to the Planck mass.

  5. Spherical Casimir pistons

    Energy Technology Data Exchange (ETDEWEB)

    Dowker, J S, E-mail: dowker@man.ac.uk [Theory Group, School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom)

    2011-08-07

    A piston is introduced into a spherical lune Casimir cavity turning it into two adjacent lunes separated by the (hemispherical) piston. On the basis of zeta-function regularization, the vacuum energy of the arrangement is finite for conformal propagation in spacetime. For even spheres this energy is independent of the angle of the lune. For odd dimensions it is shown that for all Neumann, or all Dirichlet, boundary conditions the piston is repelled or attracted by the nearest wall if d = 3, 7, ... or if d = 1, 5, ... , respectively. For hybrid N-D conditions these requirements are switched. If a mass is added, divergences arise which render the model suspect. The analysis, however, is relatively straightforward and involves the Barnes zeta function. The extension to finite temperatures is made and it is shown that for the 3, 7, ... series of odd spheres, the repulsion by the walls continues but that, above a certain temperature, the free energy acquires two minima symmetrically placed about the midpoint.

  6. Nonlocal impedances and the Casimir entropy at low temperatures

    International Nuclear Information System (INIS)

    The problem with the temperature dependence of the Casimir force is investigated. Specifically, the entropy behavior in the low temperature limit, which caused debates in the literature, is analyzed. It is stressed that the behavior of the relaxation frequency in the T→0 limit does not play a physical role since the anomalous skin effect dominates in this range. In contrast with the previous works, where the approximate Leontovich impedance was used for analysis of nonlocal effects, we give description of the problem in terms of exact nonlocal impedances. It is found that the Casimir entropy is going to zero at T→0 only in the case when s polarization does not contribute to the classical part of the Casimir force. However, the entropy approaching zero from the negative side that, in our opinion, cannot be considered as thermodynamically satisfactory. The resolution of the negative entropy problem proposed in the literature is analyzed and it is shown that it cannot be considered as complete. The crisis with the thermal Casimir effect is stressed

  7. Critical Casimir interactions between Janus particles.

    Science.gov (United States)

    Labbé-Laurent, M; Dietrich, S

    2016-08-21

    Recently there has been strong experimental and theoretical interest in studying the self-assembly and the phase behavior of patchy and Janus particles, which form colloidal suspensions. Although in this quest a variety of effective interactions have been proposed and used in order to achieve a directed assembly, the critical Casimir effect stands out as being particularly suitable in this respect because it provides both attractive and repulsive interactions as well as the potential of a sensitive temperature control of their strength. Specifically, we have calculated the critical Casimir force between a single Janus particle and a laterally homogeneous substrate as well as a substrate with a chemical step. We have used the Derjaguin approximation and compared it with results from full mean field theory. A modification of the Derjaguin approximation turns out to be generally reliable. Based on this approach we have derived the effective force and the effective potential between two Janus cylinders as well as between two Janus spheres. PMID:27444691

  8. Retardation turns the van der Waals attraction into a Casimir repulsion as close as 3 nm

    OpenAIRE

    Boström, Mathias; Sernelius, Bo; Brevik, Iver; Ninham, Barry W.

    2012-01-01

    Casimir forces between surfaces immersed in bromobenzene have recently been measured by Munday et al. [Nature (London) 454, 07610 (2009)]. Attractive Casimir forces were found between gold surfaces. The forces were repulsive between gold and silica surfaces. We show the repulsion is due to retardation effects. The van der Waals interaction is attractive at all separations. The retardation-driven repulsion sets in at around 3 nm. To our knowledge, retardation effects have never been found at s...

  9. Normal and lateral Casimir forces between deformed plates

    International Nuclear Information System (INIS)

    The Casimir force between macroscopic bodies depends strongly on their shape and orientation. To study this geometry dependence in the case of two deformed metal plates, we use a path-integral quantization of the electromagnetic field which properly treats the many-body nature of the interaction, going beyond the commonly used pairwise summation (PWS) of van der Waals forces. For arbitrary deformations we provide an analytical result for the deformation induced change in the Casimir energy, which is exact to second order in the deformation amplitude. For the specific case of sinusoidally corrugated plates, we calculate both the normal and the lateral Casimir forces. The deformation induced change in the Casimir interaction of a flat and a corrugated plate shows an interesting crossover as a function of the ratio of the mean plate distance H to the corrugation length λ: For λ-4, compared to the H-5 behavior predicted by PWS which we show to be valid only for λ>>H. The amplitude of the lateral force between two corrugated plates which are out of registry is shown to have a maximum at an optimal wavelength of λ≅2.5 H. With increasing H/λ > or approx. 0.3 the PWS approach becomes a progressively worse description of the lateral force due to many-body effects. These results may be of relevance for the design and operation of novel microelectromechanical systems (MEMS) and other nanoscale devices

  10. Surface impedance and the Casimir force

    OpenAIRE

    Bezerra, V.B.; Klimchitskaya, G. L.; Romero, C.

    2001-01-01

    The impedance boundary condition is used to calculate the Casimir force in configurations of two parallel plates and a shpere (spherical lens) above a plate at both zero and nonzero temperature. The impedance approach allows one to find the Casimir force between the realistic test bodies regardless of the electromagnetic fluctuations inside the media. Although this approach is an approximate one, it has wider areas of application than the Lifshitz theory of the Casimir force. The general form...

  11. Thermal Casimir Force between Magnetic Materials

    OpenAIRE

    Klimchitskaya, G. L.; Geyer, B.; Mostepanenko, V. M.

    2009-01-01

    We investigate the Casimir pressure between two parallel plates made of magnetic materials at nonzero temperature. It is shown that for real magnetodielectric materials only the magnetic properties of ferromagnets can influence the Casimir pressure. This influence is accomplished through the contribution of the zero-frequency term of the Lifshitz formula. The possibility of the Casimir repulsion through the vacuum gap is analyzed depending on the model used for the description of the dielectr...

  12. Detecting Chameleons through Casimir Force Measurements

    OpenAIRE

    Brax, Philippe; van de Bruck, Carsten; Davis, Anne-Christine; Mota, David F.; Shaw, Douglas

    2007-01-01

    The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet ...

  13. Casimir energy calculations within the formalism of the noncompact lattice QED

    OpenAIRE

    Pavlovsky, Oleg; Ulybyshev, Maxim

    2009-01-01

    A new method based on the Monte-Carlo calculation on the lattice is proposed to study the Casimir effect in the noncompact lattice QED. We have studied the standard Casimir problem with two parallel plane surfaces (mirrors) and oblique boundary conditions on those as a test of our method. Physically, this boundary conditions may appear in the problem of modelling of the thin material films interaction and are generated by additional Chern-Simons boundary term. This approach for the boundary c...

  14. Geothermal Casimir phenomena for the sphere-plate and cylinder-plate configurations

    OpenAIRE

    Weber, Alexej; Gies, Holger

    2010-01-01

    We investigate the nontrivial interplay between geometry and temperature in the Casimir effect for the sphere-plate and cylinder-plate configurations. At low temperature, the thermal contribution to the Casimir force is dominated by this interplay, implying that standard approximation techniques such as the PFA are inapplicable even in the limit of small surface separation. Thermal fluctuations on scales of the thermal wavelength lead to a delocalization of the thermal force density at low te...

  15. Electrostatic patch potentials in Casimir force measurements

    Science.gov (United States)

    Garrett, Joseph; Somers, David; Munday, Jeremy

    2015-03-01

    Measurements of the Casimir force require the elimination of the electrostatic force between interacting surfaces. The force can be minimized by applying a potential to one of the two surfaces. However, electrostatic patch potentials remain and contribute an additional force which can obscure the Casimir force signal. We will discuss recent measurements of patch potentials made with Heterodyne Amplitude-Modulated Kelvin Probe Force Microscopy that suggest patches could be responsible for >1% of the signal in some Casimir force measurements, and thus make the distinction between different theoretical models of the Casimir force (e.g. a Drude-model or a plasma-model for the dielectric response) difficult to discern.

  16. Casimir-Lifshitz interaction between ZnO and SiO2 nanorods in bromobenzene: retardation effects turn the interaction repulsive at intermediate separations

    OpenAIRE

    Boström, Mathias; Sernelius, Bo; Baldissera, Gustavo; Persson, Clas; Ninham, Barry W.

    2012-01-01

    We consider the interaction between a ZnO nanorod and a SiO2 nanorod in bromobenzene. Using optical data for the interacting objects and ambient we calculate the force (from short-range attractive van der Waals force to intermediate-range repulsive Casimir-Lifshitz force to long-range entropically driven attraction). The nonretarded van der Waals interaction is attractive at all separations. We demonstrate a retardation-driven repulsion at intermediate separations. At short separations (in th...

  17. Line contribution to the critical Casimir force between a homogeneous and a chemically stepped surface

    Science.gov (United States)

    Parisen Toldin, Francesco; Tröndle, Matthias; Dietrich, S.

    2015-06-01

    Recent experimental realizations of the critical Casimir effect have been implemented by monitoring colloidal particles immersed in a binary liquid mixture near demixing and exposed to a chemically structured substrate. In particular, critical Casimir forces have been measured for surfaces consisting of stripes with periodically alternating adsorption preferences, forming chemical steps between them. Motivated by these experiments, we analyze the contribution of such chemical steps to the critical Casimir force for the film geometry and within the Ising universality class. By means of Monte Carlo simulations, mean-field theory and finite-size scaling analysis we determine the universal scaling function associated with the contribution to the critical Casimir force due to individual, isolated chemical steps facing a surface with homogeneous adsorption preference or with Dirichlet boundary condition. In line with previous findings, these results allow one to compute the critical Casimir force for the film geometry and in the presence of arbitrarily shaped, but wide stripes. In this latter limit the force decomposes into a sum of the contributions due to the two homogeneous parts of the surface and due to the chemical steps between the stripes. We assess this decomposition by comparing the resulting sum with actual simulation data for the critical Casimir force in the presence of a chemically striped substrate.

  18. Casimir force: an alternative treatment

    OpenAIRE

    Silva, P. R.

    2009-01-01

    The Casimir force between two parallel uncharged closely spaced metallic plates is evaluated in ways alternatives to those usually considered in the literature. In a first approximation we take in account the suppressed quantum numbers of a cubic box, representing a cavity which was cut in a metallic block. We combine these ideas with those of the MIT bag model of hadrons, but adapted to non-relativistic particles. In a second approximation we consider the particles occupying the energy level...

  19. Numerical calculation of Casimir forces

    OpenAIRE

    Kilen, Isak Ragnvald

    2012-01-01

    In this thesis a set of regularized boundary integral equation are introduced that can be used to calculate the Casimir force induced by a two dimensional scalar field. The boundary integral method is compared to the functional integral method and mode summation where possible. Comparisons are done for the case of two parallel plates, two concentric circles and two adjacent circles. The results indicate that the boundary integral method correctly predicts the geometry dependence of the C...

  20. Nonequilibrium thermal Casimir-Polder forces

    International Nuclear Information System (INIS)

    We study the nonequilibrium Casimir-Polder force on an atom prepared in an incoherent superposition of internal energy eigenstates, which is placed in a magnetoelectric environment of nonuniform temperature. After solving the coupled atom-field dynamics within the framework of macroscopic quantum electrodynamics, we derive a general expression for the thermal Casimir-Polder force.

  1. The Casimir force for passive mirrors

    OpenAIRE

    Lambrecht, A.; Jaekel, M. -T.; Reynaud, S.

    1998-01-01

    We show that the Casimir force between mirrors with arbitrary frequency dependent reflectivities obeys bounds due to causality and passivity properties. The force is always smaller than the Casimir force between two perfectly reflecting mirrors. For narrow-band mirrors in particular, the force is found to decrease with the mirrors bandwidth.

  2. Controlling Casimir force via coherent driving field

    Science.gov (United States)

    Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid

    2016-04-01

    A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.

  3. Casimir forces between cylinders at different temperatures

    CERN Document Server

    Golyk, Vladyslav A; Reid, M T Homer; Kardar, Mehran

    2012-01-01

    We study Casimir interactions between cylinders in thermal non-equilibrium, where the objects as well as the environment are held at different temperatures. We provide the general formula for the force, in a one reflection approximation, for cylinders of arbitrary radii and optical properties. As is the case for equilibrium, we find that the force for optically diluted cylinders can be obtained by appropriate summation of the corresponding result for spheres. We find that the non-equilibrium forces are generally larger than their equilibrium counterpart at separations greater than the thermal wavelength. They may also exhibit oscillations as function of separation, leading to stable points of zero net force. These effects are particularly pronounced for thin conducting cylinders (e.g. 40nm diameter nano-wires of tungsten) due to their large emissivity.

  4. Casimir-Polder forces on moving atoms

    International Nuclear Information System (INIS)

    Polarizable atoms and molecules experience the Casimir-Polder force near magnetoelectric bodies, a force that is induced by quantum fluctuations of the electromagnetic field and the matter. Atoms and molecules in relative motion to a magnetoelectric surface experience an additional velocity-dependent force. We present a full quantum-mechanical treatment of this force and identify a generalized Doppler effect, the time delay between photon emission and reabsorption, and the Roentgen interaction as its three sources. For ground-state atoms, the force is very small and always decelerating, hence commonly known as quantum friction. For atoms and molecules in electronically excited states, on the contrary, both decelerating and accelerating forces can occur depending on the magnitude of the atomic transition frequency relative to the surface-plasmon frequency.

  5. Tuning the mass of chameleon fields in Casimir force experiments.

    Science.gov (United States)

    Brax, Ph; van de Bruck, C; Davis, A C; Shaw, D J; Iannuzzi, D

    2010-06-18

    We have calculated the chameleon pressure between two parallel plates in the presence of an intervening medium that affects the mass of the chameleon field. As intuitively expected, the gas in the gap weakens the chameleon interaction mechanism with a screening effect that increases with the plate separation and with the density of the intervening medium. This phenomenon might open up new directions in the search of chameleon particles with future long-range Casimir force experiments. PMID:20867290

  6. Self-similar plates: Casimir energies

    CERN Document Server

    Shajesh, K V; Cavero-Peláez, Inés; Parashar, Prachi

    2016-01-01

    We construct various self-similar configurations using parallel $\\delta$-function plates and show that it is possible to evaluate the Casimir interaction energy of these configurations using the idea of self-similarity alone. We restrict our analysis to interactions mediated by a scalar field, but the extension to electromagnetic field is immediate. Our work unveils an easy and powerful method that can be easily employed to calculate the Casimir energies of a class of self-similar configurations. As a highlight, in an example, we determine the Casimir interaction energy of a stack of parallel plates constructed by positioning $\\delta$-function plates at the points constituting the Cantor set, a prototype of a fractal. This, to our knowledge, is the first time that the Casimir energy of a fractal configuration has been reported. Remarkably, the Casimir energy of some of the configurations we consider turn out to be positive, and a few even have zero Casimir energy. For the case of positive Casimir energy that ...

  7. Nonanalytic behavior of the Casimir force across a Lifshitz transition in a spin-orbit-coupled material

    Science.gov (United States)

    Allocca, Andrew A.; Wilson, Justin H.; Galitski, Victor

    2014-08-01

    The Casimir effect is a fascinating phenomenon where quantum fluctuations of the electromagnetic field give rise to measurable forces between macroscopic systems. Here we propose that the Casimir effect can be used as a tool to detect changes in electronic structures. In particular, we focus here on the Lifshitz transition—a topological change in the Fermi surface—in a planar spin-orbit-coupled semiconductor in a magnetic field and calculate the Casimir force between the semiconductor and another probe system across the magnetic-field-tuned transition. We show that the Casimir force experiences a sharp kink at the topological transition and provide numerical estimates indicating that the effect is well within experimental reach. The simplest experimental realization of the proposed effect would involve a metal-coated sphere suspended from a microcantilever above a thin layer of InSb (or another semiconductor with a large g factor).

  8. Casimir, Gravitational and Neutron Tests of Dark Energy

    CERN Document Server

    Brax, Philippe

    2014-01-01

    We investigate laboratory tests of dark energy theories which modify gravity in a way generalising the inverse power law chameleon models. We make use of the tomographic description of such theories which captures $f(R)$ models in the large curvature limit, the dilaton and the symmetron. We consider their effects in various experiments where the presence of a new scalar interaction may be uncovered. More precisely, we focus on the Casimir, Eot-wash and neutron experiments. We show that dilatons, symmetrons and generalised chameleon models are efficiently testable in the laboratory. For generalised chameleons, we revise their status in the light of forthcoming Casimir experiments like CANNEX in Amsterdam and show that they are within reach of detection.

  9. Non-equilibrium Casimir force between vibrating plates.

    Directory of Open Access Journals (Sweden)

    Andreas Hanke

    Full Text Available We study the fluctuation-induced, time-dependent force between two plates confining a correlated fluid which is driven out of equilibrium mechanically by harmonic vibrations of one of the plates. For a purely relaxational dynamics of the fluid we calculate the fluctuation-induced force generated by the vibrating plate on the plate at rest. The time-dependence of this force is characterized by a positive lag time with respect to the driving. We obtain two distinctive contributions to the force, one generated by diffusion of stress in the fluid and another related to resonant dissipation in the cavity. The relation to the dynamic Casimir effect of the electromagnetic field and possible experiments to measure the time-dependent Casimir force are discussed.

  10. Non-equilibrium Casimir force between vibrating plates.

    Science.gov (United States)

    Hanke, Andreas

    2013-01-01

    We study the fluctuation-induced, time-dependent force between two plates confining a correlated fluid which is driven out of equilibrium mechanically by harmonic vibrations of one of the plates. For a purely relaxational dynamics of the fluid we calculate the fluctuation-induced force generated by the vibrating plate on the plate at rest. The time-dependence of this force is characterized by a positive lag time with respect to the driving. We obtain two distinctive contributions to the force, one generated by diffusion of stress in the fluid and another related to resonant dissipation in the cavity. The relation to the dynamic Casimir effect of the electromagnetic field and possible experiments to measure the time-dependent Casimir force are discussed. PMID:23326401

  11. Thermal Issues in Casimir Forces Between Conductors and Semiconductors

    CERN Document Server

    Milton, K A; Ellingsen, Simen A

    2012-01-01

    The Casimir effect between metal surfaces has now been well-verified at the few-percent level experimentally. However, the temperature dependence has never been observed in the laboratory, since all experiments are conducted at room temperature. The temperature dependence for the related Casimir-Polder force between an atom and a bulk material has, in contrast, been observed between a BEC and a silica substrate, with the environment and the silica held at different temperatures. There is a controversy about the temperature dependence for the force between metals, having to do with the magnitude of the linear temperature term for both low and high temperature, the latter being most prominent at large distances. There are also related anomalies pertaining to semiconductors. The status of this controversy, and of the relevant experiments, are reviewed in this report.

  12. Observation of the Thermal Casimir Force is Open to Question

    CERN Document Server

    Klimchitskaya, G L; Fischbach, E; Krause, D; Mostepanenko, V M

    2011-01-01

    We discuss theoretical predictions for the thermal Casimir force and compare them with available experimental data. Special attention is paid to the recent claim of the observation of that effect, as predicted by the Drude model approach. We show that this claim is in contradiction with a number of experiments reported so far. We suggest that the experimental errors, as reported in support of the observation of the thermal Casimir force, are significantly underestimated. Furthermore, the experimental data at separations above $3\\,\\mu$m are shown to be in agreement not with the Drude model approach, as is claimed, but with the plasma model. The seeming agreement of the data with the Drude model at separations below $3\\,\\mu$m is explained by the use of an inadequate formulation of the proximity force approximation.

  13. Casimir Interaction between Plane and Spherical Metallic Surfaces

    International Nuclear Information System (INIS)

    We give an exact series expansion of the Casimir force between plane and spherical metallic surfaces in the nontrivial situation where the sphere radius R, the plane-sphere distance L and the plasma wavelength λP have arbitrary relative values. We then present numerical evaluation of this expansion for not too small values of L/R. For metallic nanospheres where R, L and λP have comparable values, we interpret our results in terms of a correlation between the effects of geometry beyond the proximity force approximation and of finite reflectivity due to material properties. We also discuss the interest of our results for the current Casimir experiments which are performed with spheres of large radius R>>L.

  14. Casimir energy for spherically symmetric dispersive dielectric media

    CERN Document Server

    Falomir, H A

    2001-01-01

    We consider the vacuum energy of the electromagnetic field in the background of spherically symmetric dielectrics, subject to a cut-off frequency in the dispersion relations. The effect of this frequency dependent boundary condition between media is described in terms of the {\\it incomplete} $\\zeta$-functions of the problem. The use of the Debye asymptotic expansion for Bessel functions allows to determine the dominant (volume, area, ...) terms in the Casimir energy. The application of these expressions to the case of a gas bubble immersed in water is discussed, and results consistent with Schwinger's proposal about the role the Casimir energy plays in sonoluminescence are found. PACS: 03.70.+k,12.20.Ds,78.60.Mq

  15. Casimir Force on Real Materials - the Slab and Cavity Geometry

    CERN Document Server

    Ellingsen, S A; Brevik, Iver; Ellingsen, Simen A.

    2006-01-01

    We analyse the potential of the geometry of a slab in a planar cavity for the purpose of Casimir force experiments. The force and its dependence on temperature, material properties and finite slab thickness are investigated both analytically and numerically for slab and walls made of aluminium and teflon FEP respectively. We conclude that such a setup is ideal for measurements of the temperature dependence of the Casimir force. By numerical calculation it is shown that temperature effects are dramatically larger for dielectrics, suggesting that a dielectric such as teflon FEP whose properties vary little within a moderate temperature range, should be considered for experimental purposes. We finally discuss the subtle but fundamental matter of the various Green's two-point function approaches present in the literature and show how they are different formulations describing the same phenomenon.

  16. Long range Casimir force induced by transverse electromagnetic modes

    CERN Document Server

    Alvarez, Ezequiel

    2009-01-01

    We consider the interaction of two perfectly conducting plates of arbitrary shape that are inside a non-simply connected cylinder with transverse section of the same shape. We show that the existence of transverse electromagnetic (TEM) modes produces a Casimir force that decays only as $1/a^2$, where $a$ is the distance between plates. The TEM force does not depend on the area of the plates and dominates at large distances over the force produced by the transverse electric (TE) and transverse magnetic (TM) modes. These geometries provide a physical realization of the 1+1 dimensional Casimir effect. For the particular case of a coaxial circular cylindrical cavity, we compute the TE, TM and TEM contributions to the force, and find the critical distance for which the TEM modes dominate.

  17. The holographic supersymmetric Casimir energy

    CERN Document Server

    Genolini, Pietro Benetti; Martelli, Dario; Sparks, James

    2016-01-01

    We consider a general class of asymptotically locally AdS_5 solutions of minimal gauged supergravity, that are dual to superconformal field theories on curved backgrounds S^1 x M_3 preserving two supercharges. We demonstrate that standard holographic renormalization corresponds to a scheme that breaks supersymmetry. We propose new boundary terms that restore supersymmetry, and show that for smooth solutions with topology S^1 x R^4 the improved on-shell action reproduces both the supersymmetric Casimir energy and the field theory BPS relation between charges.

  18. Supersymmetry Breaking Casimir Warp Drive

    International Nuclear Information System (INIS)

    This paper utilizes a recent model which relates the cosmological constant to the Casimir energy of the extra dimensions in brane-world theories. The objective of this paper is to demonstrate that, given some sufficiently advanced civilization with the ability to manipulate the radius of the extra dimension, a local adjustment of the cosmological constant could be created. This adjustment would facilitate an expansion/contraction of the spacetime around a spacecraft creating an exotic form of field-propulsion. This idea is analogous to the Alcubierre bubble, but differs entirely in the approach, utilizing the physics of higher dimensional quantum field theory, instead of general relativity

  19. Coupled surface polaritons and the Casimir force

    CERN Document Server

    Henkel, C; Mulet, J P; Greffet, J J; Henkel, Carsten; Joulain, Karl; Mulet, Jean-Philippe; Greffet, Jean-Jacques

    2004-01-01

    The Casimir force between metallic plates made of realistic materials is evaluated for distances in the nanometer range. A spectrum over real frequencies is introduced and shows narrow peaks due to surface resonances (plasmon polaritons or phonon polaritons) that are coupled across the vacuum gap. We demonstrate that the Casimir force originates from the attraction (repulsion) due to the corresponding symmetric (antisymmetric) eigenmodes, respectively. This picture is used to derive a simple analytical estimate of the Casimir force at short distances. We recover the result known for Drude metals without absorption and compute the correction for weakly absorbing materials.

  20. Casimir force between dielectric media with free charges.

    Science.gov (United States)

    Høye, Johan S; Brevik, Iver

    2009-07-01

    The statistical mechanical approach to Casimir problems for dielectrics separated by a vacuum gap turns out to be compact and effective. A central ingredient of this method is the effect of interacting fluctuating dipole moments of the polarizable particles. At arbitrary temperature the path-integral formulation of quantized particles, developed by Høye-Stell and others, is needed. At high temperature-the limit considered in the present paper-the classical theory is, however, sufficient. Our present theory is related to an idea put forward earlier by Jancovici and Samaj (2004), namely, to evaluate the Casimir force between parallel plates invoking an electronic plasma model and the Debye-Hückel theory for electrolytes. Their result was recently recovered by Høye (2008), using a related statistical mechanical method. In the present paper we generalize this by including a constant permittivity in the description. The present paper generalizes our earlier theory for parallel plates (1998), as well as for spherical dielectrics (2001). We also consider the Casimir force between a polarizable particle and a conductor with a small density of charges, finding agreement with the result recently derived by Pitaevskii (2008). PMID:19658650

  1. Dispersion forces in micromechanics: Casimir and Casimir-Polder forces affected by geometry and non-zero temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ellingsen, Simen Andreas Aadnoey

    2011-01-15

    The present thesis focuses on several topics within three separate but related branches of the overall field of dispersion forces. The three branches are: temperature corrections to the Casimir force between real materials (Part 1), explicit calculation of Casimir energy in wedge geometries (Part 2), and Casimir-Polder forces on particles out of thermal equilibrium (Part 3). Part 1 deals primarily with analysis of a previously purported thermodynamic inconsistency in the Casimir-Lifshitz free energy of the interaction of two plane mirrors - violation of the third law of thermodynamics - when the latter's dielectric response is described with dissipative models. It is shown analytically and numerically that the Casimir entropy of the interaction between two metallic mirrors described by the Drude model does tend to zero at zero temperature, provided electronic relaxation does not vanish. The leading order terms at low temperature are found. A similar calculation is carried out for the interaction of semiconductors with small but non-zero DC conductivity. In a generalisation, it is shown that a violation of the third law can only occur for permittivities whose low-frequency behaviour is temperature dependent near zero temperature. A calculation using path integral methods shows that the low temperature behaviour of the interaction of fluctuating Foucault currents in two mirrors of Drude metal is identical to that of the full Casimir-Lifshitz free energy, reasserting a previous finding by Intravaia and Henkel that such fluctuating bulk currents are the physical reason for the anomalous entropy behaviour. In a related effort, an analysis of the frequency dependence of the Casimir force by Ford is generalised to imperfectly reflecting mirrors. A paradox is pointed out, in that the effects of a perturbation of the reflecting properties of the mirrors in a finite frequency window can be calculated in two ways giving different results. It is concluded that optimistic

  2. The Casimir Forces in a Single Conducting Cylindrical Cavity

    CERN Document Server

    Razmi, H

    2013-01-01

    We want to study the Casimir effect for a single conducting microscopic cylindrical cavity. The mathematical technique is based on the Green function of the geometry of the inside of the cavity, and the integral regularization is based on the plasma frequency cutoff for real conductors. Using the symmetric electromagnetic energy-momentum tensor, in terms of four potential, the total Casimir energy for the inside of the Cavity is calculated. Considering the fundamental cutoff applied by the uncertainty relations' limit on virtual particles' frequency in the quantum vacuum, it is shown that the contribution of the external (outside of the cavity) Casimir energy is negligible. Finally, the forces experienced by the lateral surface of the cavity and its circular bases are calculated. The resulting expressions show that these forces are repulsive. The numerical computation is done for the real problem of a cavity with a basis of a radius in the same order of its height at the scale of 100 nanometers made of the be...

  3. Casimir force: an alternative treatment

    CERN Document Server

    Silva, P R

    2009-01-01

    The Casimir force between two parallel uncharged closely spaced metallic plates is evaluated in ways alternatives to those usually considered in the literature. In a first approximation we take in account the suppressed quantum numbers of a cubic box, representing a cavity which was cut in a metallic block. We combine these ideas with those of the MIT bag model of hadrons, but adapted to non-relativistic particles. In a second approximation we consider the particles occupying the energy levels of the Bohr atom, so that the Casimir force depends explicitly on the fine structure constant alpha. In both treatments, the mean energies which have explicit dependence on the particle mass and on the maximum occupied quantum number (related to the Fermi level of the system) at the beginning of the calculations, have these dependences mutually canceled at the end of them. Finally by comparing the averaged energies computed in both approximations, we are able to make an estimate of the value of the fine structure consta...

  4. Onsager-Casimir relations revisited

    International Nuclear Information System (INIS)

    The authors study the fate of the Onsager-Casimir reciprocity relations for a continuous system when some of its variables are eliminated adiabatically. Just as for discrete systems, deviations appear in correction terms to the reduced evolution equation that are of higher order in the time scale ratio. The deviations are not removed by including correction terms to the coarse-grained thermodynamic potential. However, via a reformulation of the theory, in which the central role of the thermodynamic potential is taken over by an associated Lagrangian-type expression, they arrive at a modified form of the Onsager-Casimir relations that survives the adiabatic elimination procedure. There is a simple relation between the time evolution of the redefined thermodynamic forces and that of the basic thermodynamic variables; this relation also survives the adiabatic elimination. The formalism is illustrated by explicit calculations for the Klein-Kramers equation, which describes the phase space distribution of Brownian particles, and for the corrected Smoluchowski equation derived from it by adiabatic elimination of the velocity variable. The symmetry relation for the latter leads to a simple proof that the reality of the eigenvalues of the simple Smoluchowski equation is not destroyed by the addition of higher order corrections, at least not within the framework of a formal perturbation expansion in the time scale ratio

  5. The Casimir energy in a separable potential

    International Nuclear Information System (INIS)

    The Casimir energy is the first-order-in-h correction to the energy of a time-independent field configuration in a quantum field theory. We study the Casimir energy in a toy model, where the classical field is replaced by a separable potential. In this model the exact answer is trivial to compute, making it a good place to examine subtleties of the problem. We construct two traditional representations of the Casimir energy, one from the Green's function and the other from the phase shifts, and apply them to this case. We show that the two representations are correct and equivalent in this model. We study the convergence of the Born approximation to the Casimir energy and relate our findings to computational issues that arise in more realistic models. (c) 2000 Academic Press, Inc

  6. Casimir forces of metallic microstructures into cavities

    Science.gov (United States)

    Kenanakis, George; Soukoulis, Costas M.; Economou, Eleftherios N.

    2015-08-01

    A theoretical estimate of the Casimir force of a metallic structure embedded into a cubic cavity is proposed. We demonstrate that by calculating the eigenmodes of the system we can determine the Casimir force, which can be either attractive or repulsive, by simply changing the geometry of the structures relative to the walls of the cavity. In this analysis, several cases of structures are taken into account, from rectangular slabs to chiral "omega" particles, and the predicted data are consistent with recent literature. We demonstrate that the sidewalls of the studied cavity contribute decisively to the repulsive Casimir force between the system and the nearby top surface of the cavity. Finally, we provide evidence that the medium embedded into the studied cavity (and especially its permittivity) can change the intensity of the Casimir force, while its repulsive nature, once established (owing to favorable geometrical features), remains quite robust.

  7. Scattering Theory Approach to Electrodynamic Casimir Forces

    CERN Document Server

    Rahi, Sahand Jamal; Graham, Noah; Jaffe, Robert L; Kardar, Mehran

    2009-01-01

    We give a comprehensive presentation of methods for calculating the Casimir force to arbitrary accuracy, for any number of objects, arbitrary shapes, susceptibility functions, and separations. The technique is applicable to objects immersed in media other than vacuum, nonzero temperatures, and spatial arrangements in which one object is enclosed in another. Our method combines each object's classical electromagnetic scattering amplitude with universal translation matrices, which convert between the bases used to calculate scattering for each object, but are otherwise independent of the details of the individual objects. The method is illustrated by re-deriving the Lifshitz formula for infinite half spaces, by demonstrating the Casimir-Polder to van der Waals cross-over, and by computing the Casimir interaction energy of two infinite, parallel, perfect metal cylinders either inside or outside one another. Furthermore, it is used to obtain new results, namely the Casimir energies of a sphere or a cylinder oppos...

  8. Casimir-Foucault interaction: Free energy and entropy at low temperature

    Science.gov (United States)

    Intravaia, Francesco; Ellingsen, Simen Å.; Henkel, Carsten

    2010-09-01

    It was recently found that thermodynamic anomalies which arise in the Casimir effect between metals described by the Drude model can be attributed to the interaction of fluctuating Foucault (or eddy) currents [F. Intravaia and C. Henkel, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.130405 103, 130405 (2009).] We focus on the transverse electric (TE) polarization, where the anomalies occur, and show explicitly that the two leading terms of the low-temperature correction to the Casimir free energy of interaction between two plates are identical to those pertaining to the Foucault current interaction alone, up to a correction which is very small for good metals. Moreover, a mode density along real frequencies is introduced, showing that the TE contribution to the Casimir free energy, as given by the Lifshitz theory, separates in a natural manner into contributions from eddy currents and propagating cavity modes, respectively. The latter have long been known to be of little importance to the low-temperature Casimir anomalies. This convincingly demonstrates that eddy current modes are responsible for the large temperature correction to the Casimir effect between Drude metals, predicted by the Lifshitz theory, but not observed in experiments.

  9. Casimir-Foucault interaction: Free energy and entropy at low temperature

    International Nuclear Information System (INIS)

    It was recently found that thermodynamic anomalies which arise in the Casimir effect between metals described by the Drude model can be attributed to the interaction of fluctuating Foucault (or eddy) currents [F. Intravaia and C. Henkel, Phys. Rev. Lett. 103, 130405 (2009).] We focus on the transverse electric (TE) polarization, where the anomalies occur, and show explicitly that the two leading terms of the low-temperature correction to the Casimir free energy of interaction between two plates are identical to those pertaining to the Foucault current interaction alone, up to a correction which is very small for good metals. Moreover, a mode density along real frequencies is introduced, showing that the TE contribution to the Casimir free energy, as given by the Lifshitz theory, separates in a natural manner into contributions from eddy currents and propagating cavity modes, respectively. The latter have long been known to be of little importance to the low-temperature Casimir anomalies. This convincingly demonstrates that eddy current modes are responsible for the large temperature correction to the Casimir effect between Drude metals, predicted by the Lifshitz theory, but not observed in experiments.

  10. Casimir force on a piston at finite temperature in Randall-Sundrum models

    Institute of Scientific and Technical Information of China (English)

    CHENG Hong-Bo

    2011-01-01

    The Casimir effect for a three-parallel-plate system at finite temperature within the framework of five-dimensional Randall-Sundrum models is studied.In the case of the Randall-Sundrum model involving two branes we find that the Casimir force depends on the plate distance and temperature after one outer plate has been moved to a distant place.Further we discover that the sign of the reduced force is negative if the plate and piston are located close together,but the nature of reduced force becomes repulsive when the plate distance is not very small and finally the repulsive force vanishes with extremely large plate separation.A higher temperature causes a greater repulsive Casimir force.Within the framework of a one-brane scenario the reduced Casimir force between the piston and one plate remains attractive no matter how high the temperature is.It is interesting that a stronger thermal effect leads to a greater attractive Casimir force instead of changing the nature of the force.

  11. Casimir force experiments with quartz tuning forks and an atomic force microscope (AFM)

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, T [Binnotec, Bouchestr. 12, 12435 Berlin (Germany)], E-mail: DrLudwig@thorstenludwig.de

    2008-04-25

    The aim of the measurement series is to study the Casimir force, specifically the effects of different materials and geometries. The art of measuring sub-nano Newton forces has been engineered to a great extent in the material sciences, especially for the atomic force microscope. In today's scanning microscope technologies there are several common methods used to measure sub-nano Newton forces. While the commercial atomic force microscopes (AFM) mostly work with soft silicon cantilevers, there are a large number of reports from university groups on the use of quartz tuning forks to get high resolution AFM pictures, to measure shear forces or to create new force sensors. The quartz tuning fork based force sensor has a number of advantages over the silicon cantilever, but also has some disadvantages. In this report the method based on quartz tuning forks is described with respect to their usability for Casimir force measurements and compared with other successful techniques. Furthermore, a design for Casimir force measurements that was set up in Berlin will be described and practical experimental aspects will be discussed. A status report on the Casimir experiments in Berlin will be given, including the experimental setup. In order to study the details of the Casimir effect the apparatus and active surfaces have to be improved further. The surfaces have to be flatter and cleaner. For better resolution, cantilevers and tuning forks with a low spring constant have to be employed.

  12. Casimir force experiments with quartz tuning forks and an atomic force microscope (AFM)

    International Nuclear Information System (INIS)

    The aim of the measurement series is to study the Casimir force, specifically the effects of different materials and geometries. The art of measuring sub-nano Newton forces has been engineered to a great extent in the material sciences, especially for the atomic force microscope. In today's scanning microscope technologies there are several common methods used to measure sub-nano Newton forces. While the commercial atomic force microscopes (AFM) mostly work with soft silicon cantilevers, there are a large number of reports from university groups on the use of quartz tuning forks to get high resolution AFM pictures, to measure shear forces or to create new force sensors. The quartz tuning fork based force sensor has a number of advantages over the silicon cantilever, but also has some disadvantages. In this report the method based on quartz tuning forks is described with respect to their usability for Casimir force measurements and compared with other successful techniques. Furthermore, a design for Casimir force measurements that was set up in Berlin will be described and practical experimental aspects will be discussed. A status report on the Casimir experiments in Berlin will be given, including the experimental setup. In order to study the details of the Casimir effect the apparatus and active surfaces have to be improved further. The surfaces have to be flatter and cleaner. For better resolution, cantilevers and tuning forks with a low spring constant have to be employed

  13. Casimir force on a piston at finite temperature in Randall-Sundrum models

    International Nuclear Information System (INIS)

    The Casimir effect for a three-parallel-plate system at finite temperature within the framework of five-dimensional Randall-Sundrum models is studied. In the case of the Randall-Sundrum model involving two branes we find that the Casimir force depends on the plate distance and temperature after one outer plate has been moved to a distant place. Further we discover that the sign of the reduced force is negative if the plate and piston are located close together, but the nature of reduced force becomes repulsive when the plate distance is not very small and finally the repulsive force vanishes with extremely large plate separation. A higher temperature causes a greater repulsive Casimir force. Within the framework of a one-brane scenario the reduced Casimir force between the piston and one plate remains attractive no matter how high the temperature is. It is interesting that a stronger thermal effect leads to a greater attractive Casimir force instead of changing the nature of the force. (author)

  14. Surface Screening in the Casimir Force

    OpenAIRE

    Contreras-Reyes, Ana M.; Mochán, W. Luis

    2005-01-01

    We calculate the corrections to the Casimir force between two metals due to the spatial dispersion of their response functions. We employ model-independent expressions for the force in terms of the optical coefficients. We express the non-local corrections to the Fresnel coefficients employing the surface $d_\\perp$ parameter, which accounts for the distribution of the surface screening charge. Within a self-consistent jellium calculation, spatial dispersion increases the Casimir force signifi...

  15. Casimir Friction Force Between Polarizable Media

    OpenAIRE

    Høye, Johan S.; Brevik, Iver

    2012-01-01

    This work is a continuation of our recent series of papers on Casimir friction, for a pair of particles of low relative particle velocity. Each particle is modeled as a simple harmonic oscillator. Our basic method, as before, is the use of quantum mechanical statistical mechanics, involving the Kubo formula, at finite temperature. In this work we begin by analyzing the Casimir friction between two particles polarizable in all spatial directions, this being a generalization of our study in EPL...

  16. Sample dependence of the Casimir force

    OpenAIRE

    Pirozhenko, I.; Lambrecht, A.; Svetovoy, V.B.

    2006-01-01

    We have analysed available optical data for Au in the mid-infrared range which is important for a precise prediction of the Casimir force. Significant variation of the data demonstrates genuine sample dependence of the dielectric function. We demonstrate that the Casimir force is largely determined by the material properties in the low frequency domain and argue that therefore the precise values of the Drude parameters are crucial for an accurate evaluation of the force. These parameters can ...

  17. Quantitative non contact dynamic Casimir force measurements

    OpenAIRE

    Jourdan, Guillaume; Lambrecht, Astrid; Comin, Fabio; Chevrier, Joël

    2009-01-01

    We show that the Casimir force gradient can be quantitatively measured with no contact involved. Results of the Casimir force measurement with systematic uncertainty of 3% are presented for the distance range of 100-600 nm. The statistical uncertainty is shown to be due to the thermal fluctuations of the force probe. The corresponding signal to noise ratio equals unity at the distance of 600 nm. Direct contact between surfaces used in most previous studies to determine absolute distance separ...

  18. Coupled surface polaritons and the Casimir force

    OpenAIRE

    Henkel, Carsten; Joulain, Karl; Mulet, Jean-Philippe; Greffet, Jean-Jacques

    2003-01-01

    The Casimir force between metallic plates made of realistic materials is evaluated for distances in the nanometer range. A spectrum over real frequencies is introduced and shows narrow peaks due to surface resonances (plasmon polaritons or phonon polaritons) that are coupled across the vacuum gap. We demonstrate that the Casimir force originates from the attraction (repulsion) due to the corresponding symmetric (antisymmetric) eigenmodes, respectively. This picture is used to derive a simple ...

  19. The Casimir force: background, experiments, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Lamoreaux, Steven K [Los Alamos National Laboratory, University of California, Physics Division P-23, M.S. H803, Los Alamos, NM 87545 (United States)

    2005-01-01

    The Casimir force, which is the attraction of two uncharged material bodies due to modification of the zero-point energy associated with the electromagnetic modes in the space between them, has been measured with per cent-level accuracy in a number of recent experiments. A review of the theory of the Casimir force and its corrections for real materials and finite temperature are presented in this report. Applications of the theory to a number of practical problems are discussed.

  20. Thermal Casimir interaction between two magnetodielectric plates

    International Nuclear Information System (INIS)

    We investigate the thermal Casimir interaction between two magnetodielectric plates made of real materials. On the basis of the Lifshitz theory, it is shown that for diamagnets and for paramagnets in the broad sense (with exception of ferromagnets) the magnetic properties do not influence the magnitude of the Casimir force. For ferromagnets, taking into account the realistic dependence of magnetic permeability on frequency, we conclude that the impact of magnetic properties on the Casimir interaction arises entirely from the contribution of the zero-frequency term in the Lifshitz formula. The computations of the Casimir free energy and pressure are performed for the configurations of two plates made of ferromagnetic metals (Co and Fe), for one plate made of ferromagnetic metal and the other of nonmagnetic metal (Au), for two ferromagnetic dielectric plates (on the basis of polystyrene), and for a ferromagnetic dielectric plate near a nonmagnetic metal plate. The dielectric permittivity of metals is described using both the Drude and the plasma model approaches. It is shown that the Casimir repulsion through the vacuum gap can be realized in the configuration of a ferromagnetic dielectric plate near a nonmagnetic metal plate described by the plasma model. In all cases considered, the respective analytical results in the asymptotic limit of large separations between the plates are obtained. The impact of the magnetic phase transition through the Curie temperature on the Casimir interaction is considered. In conclusion, we propose several experiments allowing to determine whether the magnetic properties really influence the Casimir interaction and to independently verify the Drude and plasma model approaches to the thermal Casimir force.

  1. Acoustic Casimir Pressure for Arbitrary Media

    OpenAIRE

    Barcenas, J.; Reyes, L.; Esquivel-Sirvent, R.

    2004-01-01

    In this paper we derive a general expression for the acoustic Casimir pressure between two parallel slabs made of arbitrary materials and whose acoustic reflection coefficients are not equal. The formalism is based on the calculation of the local density of modes using a Green's function approach. The results for the Casimir acoustic pressure are generalized to a sphere/plate configuration using the proximity theorem

  2. Curved Casimir Operators and the BGG Machinery

    OpenAIRE

    Andreas Cap; Vladimír Soucek

    2007-01-01

    We prove that the Casimir operator acting on sections of a homogeneous vector bundle over a generalized flag manifold naturally extends to an invariant differential operator on arbitrary parabolic geometries. We study some properties of the resulting invariant operators and compute their action on various special types of natural bundles. As a first application, we give a very general construction of splitting operators for parabolic geometries. Then we discuss the curved Casimir operators on...

  3. Precision studies of Casimir force and short-range gravity employing prototypes of interferometric gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rajalakshmi, G; Unnikrishnan, C S, E-mail: g.raji@tifr.res.i [Gravitation Group, Tata Institute of Fundamental Research, Mumbai-400 005 (India)

    2010-11-07

    We discuss experimental schemes to measure the Casimir force and short-range forces from hypothetical modified gravity with unprecedented sensitivity using highly sensitive prototype gravitational wave detectors as displacement sensors. The finite temperature effects of the Casimir force would be detectable with a sensitivity better than 1% for separation exceeding 30 {mu}m. Constraints on short-range modifications to gravity can be improved in the distance range of 10-100 {mu}m.

  4. Retardation turns the van der Waals attraction into Casimir repulsion already at 3 nm

    CERN Document Server

    Boström, Mathias; Brevik, Iver; Ninham, Barry W

    2012-01-01

    Casimir forces between surfaces immersed in bromobenzene have recently been measured by Munday et al. Attractive Casimir forces were found between gold surfaces. The forces were repulsive between gold and silica surfaces. We show the repulsion is due to retardation effects. The van der Waals interaction is attractive at all separations. The retardation driven repulsion sets in already at around 3 nm. To our knowledge retardation effects have never been found at such a small distance before. Retardation effects are usually associated with large distances.

  5. Casimir force between partially reflecting mirrors with Robin-like boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Alessandra Nascimento; Silva, Jeferson Danilo Lima; Alves, Danilo Teixeira [Universidade Federal do Para (UFPA), Belem (Brazil). Programa de Pos-Graduacao em Fisica; Rego, Andreson Luis Carvalho [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Fisica

    2013-07-01

    Full text: The Casimir effect consists, essentially, in the problem of interaction forces between neutral objects in the quantum vacuum of a relativistic field. It is a macroscopic force of quantum aspect resulting from the changes in the zero-point energy of a quantized field due to the presence of neutral bodies. In the context of a scalar field in 1 + 1 dimensions and a non-idealized boundary condition (BC), the Casimir force between two point like mirrors was studied by Jaekel and Reynaud (Jaekel and Reynaud, 1991). Introducing reflectivity and transmissivity coefficients, these authors described the scattering upon partially transmitting mirrors. The obtained expression for the Casimir force is valid for arbitrary frequencies and temperatures. The results for the Dirichlet BC case are recovered in the limit of an ideal mirror. Taking into account the last ideas, we investigate the Casimir force between two partially transmitting mirrors that impose a Robin-like BC (a nonideal BC that that recovers the usual Robin BC as limit case) in the presence of a massless scalar field in 1 + 1 dimensions, considering the vacuum as the initial field state. In the limit of perfect (ideal) mirrors, we recover an expression for the Casimir force in agreement with the result found in literature (Romeo and Saharian, 2002). (author)

  6. Casimir force between partially reflecting mirrors with Robin-like boundary conditions

    International Nuclear Information System (INIS)

    Full text: The Casimir effect consists, essentially, in the problem of interaction forces between neutral objects in the quantum vacuum of a relativistic field. It is a macroscopic force of quantum aspect resulting from the changes in the zero-point energy of a quantized field due to the presence of neutral bodies. In the context of a scalar field in 1 + 1 dimensions and a non-idealized boundary condition (BC), the Casimir force between two point like mirrors was studied by Jaekel and Reynaud (Jaekel and Reynaud, 1991). Introducing reflectivity and transmissivity coefficients, these authors described the scattering upon partially transmitting mirrors. The obtained expression for the Casimir force is valid for arbitrary frequencies and temperatures. The results for the Dirichlet BC case are recovered in the limit of an ideal mirror. Taking into account the last ideas, we investigate the Casimir force between two partially transmitting mirrors that impose a Robin-like BC (a nonideal BC that that recovers the usual Robin BC as limit case) in the presence of a massless scalar field in 1 + 1 dimensions, considering the vacuum as the initial field state. In the limit of perfect (ideal) mirrors, we recover an expression for the Casimir force in agreement with the result found in literature (Romeo and Saharian, 2002). (author)

  7. Anisotropy enhancement of the Casimir-Polder force between a nanoparticle and graphene

    Science.gov (United States)

    Biehs, S.-A.; Agarwal, G. S.

    2014-10-01

    We derive the analytical expressions for the thermal Casimir-Polder energy and force between a spheroidal nanoparticle above a semi-infinite material and a graphene covered interface. We analyze in detail the Casimir-Polder force between a gold nanoparticle and a single sheet of pristine graphene focusing on the impact of anisotropy. We show that the effect of anisotropy, i.e., the shape and orientation of the spheroidal nanoparticle, has a much larger influence on the force than the tunability of graphene. The effect of tuning and anisotropy both add up such that we observe a force between the particle and the sheet of graphene which is between 20% and 50% of that between the same particle and an ideal metal plate. Hence the observed force is much larger than the results found for the Casimir force between a metal half-space and a layer of graphene.

  8. Casimir force in noncommutative Randall-Sundrum models revisited

    OpenAIRE

    Teo, L. P.

    2010-01-01

    We propose another method to compute the Casimir force in noncommutative Randall-Sundrum braneworld model considered by K. Nouicer and Y. Sabri recently. Our method can be used to compute the Casimir force to any order in the noncommutative parameter. Contrary to the claim made by K. Nouicer and Y. Sabri that repulsive Casimir force can appear in the first order approximation, we show that the Casimir force is always attractive at any order of approximation.

  9. Towards all-optical control and measurement of Casimir forces via evanescent optical forces

    CERN Document Server

    Rodriguez, Alejandro W; Hui, Pui-Chuen; Iwase, Eiji; McCauley, Alexander P; Capasso, Federico; Loncar, Marko; Johnson, Steven G

    2011-01-01

    We propose an optomechanical structure consisting of a photonic-crystal (holey) membrane suspended above a layered silicon-on-insulator substrate in which resonant bonding/antibonding optical forces created by externally incident light from above enable all-optical control and actuation of stiction effects induced by the Casimir force. The same optical response (reflection spectrum) of the membrane to the incident light can be exploited to accurately measure the effects of the Casimir force on the equilibrium separation of the membrane.

  10. Thermal Casimir-Polder force between an atom and a dielectric plate: thermodynamics and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Klimchitskaya, G L; Mostepanenko, V M [Center of Theoretical Studies and Institute for Theoretical Physics, Leipzig University, Postfach 100920, D-04009, Leipzig (Germany); Mohideen, U [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States)

    2008-10-31

    The low-temperature behavior of the Casimir-Polder free energy and entropy for an atom near a dielectric plate are found on the basis of the Lifshitz theory. The obtained results are shown to be thermodynamically consistent if the dc conductivity of the plate material is disregarded. With inclusion of dc conductivity, both the standard Lifshitz theory (for all dielectrics) and its generalization taking into account screening effects (for a wide range of dielectrics) violate the Nernst heat theorem. The inclusion of the screening effects is also shown to be inconsistent with experimental data of Casimir force measurements. The physical reasons for this inconsistency are elucidated. (fast track communication)

  11. Thermal Casimir-Polder force between an atom and a dielectric plate: thermodynamics and experiment

    International Nuclear Information System (INIS)

    The low-temperature behavior of the Casimir-Polder free energy and entropy for an atom near a dielectric plate are found on the basis of the Lifshitz theory. The obtained results are shown to be thermodynamically consistent if the dc conductivity of the plate material is disregarded. With inclusion of dc conductivity, both the standard Lifshitz theory (for all dielectrics) and its generalization taking into account screening effects (for a wide range of dielectrics) violate the Nernst heat theorem. The inclusion of the screening effects is also shown to be inconsistent with experimental data of Casimir force measurements. The physical reasons for this inconsistency are elucidated. (fast track communication)

  12. Mixing rules and the Casimir force between composite systems

    CERN Document Server

    Esquivel-Sirvent, R

    2011-01-01

    The Casimir-Lifshitz force is calculated between two inhomogeneous composite slabs, each made of a homogeneous matrix with spherical metallic inclusions. The effective dielectric function of the slabs is calculated using several effective medium approximations and we compare the resulting forces as a function of slab separation and filling fraction. We show that the choice of effective medium approximation is critical in making precise comparisons between theory and experiment. The role that the spectral representation of the effective medium plays in making a Wick rotation to the complex frequency axis is also discussed.

  13. Mixing rules and the Casimir force between composite systems

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel-Sirvent, R.; Schatz, George C.

    2011-04-20

    The Casimir-Lifshitz force is calculated between two inhomogeneous composite slabs, each made of a homogeneous matrix with spherical metallic inclusions. The effective dielectric function of the slabs is calculated using several effective medium approximations and we compare the resulting forces as a function of slab separation and filling fraction. We show that the choice of effective medium approximation is critical in making precise comparisons between theory and experiment. The role that the spectral representation of the effective medium plays in making a Wick rotation to the complex frequency axis is also discussed.

  14. Measurement of the Casimir force with a ferrule-top sensor

    CERN Document Server

    Zuurbier, P; Gruca, G; Heeck, K; Iannuzzi, D

    2011-01-01

    We present a Casimir force setup based on an all-optical ferrule-top sensor. We demonstrate that the instrument can be used to measure the gradient of the Casimir force between a gold coated sphere and a gold coated plate with results that are comparable to those achieved by similar atomic force microscope experiments. Thanks to the monolithic design of the force sensor (which does not require any optical triangulation readout) and to the absence of electronics on the sensing head, the instrument represents a significant step ahead for future studies of the Casimir effect under engineered conditions, where the intervening medium or the environmental conditions might be unsuitable for the use of more standard setups.

  15. Measurement of the Casimir force with a ferrule-top sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zuurbier, P; De Man, S; Gruca, G; Heeck, K; Iannuzzi, D, E-mail: iannuzzi@few.vu.nl [Department of Physics and Astronomy and LaserLaB, VU University Amsterdam, Amsterdam (Netherlands)

    2011-02-15

    We present a Casimir force setup based on an all-optical ferrule-top sensor. We demonstrate that the instrument can be used to measure the gradient of the Casimir force between a gold-coated sphere and a gold-coated plate with results that are comparable to those achieved by similar atomic force microscope experiments. Thanks to the monolithic design of the force sensor (which does not require any optical triangulation readout) and to the absence of electronics on the sensing head, the instrument represents a significant step forward for future studies of the Casimir effect under engineered conditions, where the intervening medium or the environmental conditions might be unsuitable for the use of more standard setups.

  16. Constraints on axion-nucleon coupling constants from measuring the Casimir force between corrugated surfaces

    CERN Document Server

    Bezerra, V B; Mostepanenko, V M; Romero, C

    2014-01-01

    We obtain stronger laboratory constraints on the coupling constants of axion-like particles to nucleons from measurements of the normal and lateral Casimir forces between sinusoidally corrugated surfaces of a sphere and a plate. For this purpose, the normal and lateral additional force arising in the experimental configurations due to two-axion exchange between protons and neutrons are calculated. Our constraints following from measurements of the normal and lateral Casimir forces are stronger than the laboratory constraints reported so far for masses of axion-like particles larger than 11eV and 8eV, respectively. A comparison between various laboratory constraints on the coupling constants of axion-like particles to nucleons obtained from the magnetometer measurements, Eotvos- and Cavendish-type experiments, and from the Casimir effect is performed over the wide range of masses of axion-like particles from 10^{-10}eV to 20eV.

  17. Anomalous temperature dependence of the Casimir force for thin metal films.

    Science.gov (United States)

    Yampol'skii, V A; Savel'ev, Sergey; Mayselis, Z A; Apostolov, S S; Nori, Franco

    2008-08-29

    Within the framework of the Drude dispersive model, we predict an unusual nonmonotonic temperature dependence of the Casimir force for thin metal films. For certain conditions, this force decreases with temperature due to the decrease of the metallic conductivity, whereas the force increases at high temperatures due to the increase of the thermal radiation pressure. We consider the attraction of a film to: either (i) a bulk ideal metal with a planar boundary, or (ii) a bulk metal sphere (lens). The experimental observation of the predicted decreasing temperature dependence of the Casimir force can put an end to the long-standing discussion on the role of the electron relaxation in the Casimir effect. PMID:18851637

  18. Constraints on axion-nucleon coupling constants from measuring the Casimir force between corrugated surfaces

    Science.gov (United States)

    Bezerra, V. B.; Klimchitskaya, G. L.; Mostepanenko, V. M.; Romero, C.

    2014-09-01

    We obtain stronger laboratory constraints on the coupling constants of axion-like particles to nucleons from measurements of the normal and lateral Casimir forces between sinusoidally corrugated surfaces of a sphere and a plate. For this purpose, the normal and lateral additional forces arising in the experimental configurations due to the two-axion exchange between protons and neutrons are calculated. Our constraints following from measurements of the normal and lateral Casimir forces are stronger than the laboratory constraints reported so far for masses of axion-like particles larger than 11 and 8 eV, respectively. A comparison between various laboratory constraints on the coupling constants of axion-like particles to nucleons obtained from the magnetometer measurements, Eötvos- and Cavendish-type experiments, and from the Casimir effect is performed over the wide range of masses of axion-like particles from 10-10 to 20 eV.

  19. Critical Casimir force in the presence of random local adsorption preference

    Science.gov (United States)

    Toldin, Francesco Parisen

    2015-03-01

    We study the critical Casimir force for a film geometry in the Ising universality class. We employ a homogeneous adsorption preference on one of the confining surfaces, while the opposing surface exhibits quenched random disorder, leading to a random local adsorption preference. Disorder is characterized by a parameter p , which measures, on average, the portion of the surface that prefers one component, so that p =0 ,1 correspond to homogeneous adsorption preference. By means of Monte Carlo simulations of an improved Hamiltonian and finite-size scaling analysis, we determine the critical Casimir force. We show that by tuning the disorder parameter p , the system exhibits a crossover between an attractive and a repulsive force. At p =1 /2 , disorder allows to effectively realize Dirichlet boundary conditions, which are generically not accessible in classical fluids. Our results are relevant for the experimental realizations of the critical Casimir force in binary liquid mixtures.

  20. Geothermal Casimir phenomena for the sphere-plate and cylinder-plate configurations

    CERN Document Server

    Weber, Alexej

    2010-01-01

    We investigate the nontrivial interplay between geometry and temperature in the Casimir effect for the sphere-plate and cylinder-plate configurations. At low temperature, the thermal contribution to the Casimir force is dominated by this interplay, implying that standard approximation techniques such as the PFA are inapplicable even in the limit of small surface separation. Thermal fluctuations on scales of the thermal wavelength lead to a delocalization of the thermal force density at low temperatures. As a consequence, the temperature dependence strongly differs from naive expectations. Most prominently, thermal forces can develop non-monotonic behavior below a critical temperature. We perform a comprehensive study of such geothermal phenomena in these Casimir geometries, using analytical and numerical worldline techniques for Dirichlet scalar fluctuations.

  1. Kinetic Roughening and Material Optical Properties Influence on Van der Waals/Casimir Forces

    International Nuclear Information System (INIS)

    Atomic force microscopy measurements and force theory calculations using the Lifshitz theory show that van der Waals/Casimir dispersive forces have a strong dependence on surface roughness and material optical properties. It is found that at separations below 100 nm the roughness effect is manifested through a strong deviation from the normal scaling of the force with separation distance. Moreover, knowledge of precise optical properties of metals is shown to be very important for accurate force predictions rather than referring to idealized defect free material models. Finally, we compare the van der Waals/Casimir forces to capillary adhesive forces in order to illustrate their significance in stiction problems. (author)

  2. Rectification of the lateral Casimir force in a vibrating noncontact rack and pinion.

    Science.gov (United States)

    Ashourvan, Arash; Miri, Mirfaez; Golestanian, Ramin

    2007-04-01

    The nonlinear dynamics of a cylindrical pinion that is kept at a distance from a vibrating rack is studied, and it is shown that the lateral Casimir force between the two corrugated surfaces can be rectified. The effects of friction and external load are taken into account, and it is shown that the pinion can do work against loads of up to a critical value, which is set by the amplitude of the lateral Casimir force. We present a phase diagram for the rectified motion that could help its experimental investigations, as the system exhibits a chaotic behavior in a large part of the parameter space. PMID:17500845

  3. Noncontact racK and pinion powered by the lateral Casimir force.

    Science.gov (United States)

    Ashourvan, Arash; Miri, MirFaez; Golestanian, Ramin

    2007-04-01

    The lateral Casimir force is employed to propose a design for a potentially wear-proof rack and pinion with no contact, which can be miniaturized to the nanoscale. The robustness of the design is studied by exploring the relation between the pinion velocity and the rack velocity in the different domains of the parameter space. The effects of friction and added external load are also examined. It is shown that the device can hold up extremely high velocities, unlike what the general perception of the Casimir force as a weak interaction might suggest. PMID:17501261

  4. Casimir forces for inhomogeneous planar media

    International Nuclear Information System (INIS)

    Casimir forces arise from vacuum fluctuations. They are fully understood only for simple models, and are important in nano- and microtechnologies. We report our experience of computer algebra calculations towards the Casimir force for models involving inhomogeneous dielectrics. We describe a methodology that greatly increases confidence in any results obtained, and use this methodology to demonstrate that the analytic derivation of scalar Green's functions is at the boundary of current computer algebra technology. We further demonstrate that Lifshitz theory of electromagnetic vacuum energy can not be directly applied to calculate the Casimir stress for models of this type, and produce results that have led to alternative regularisations. Using a combination of our new computational framework and the new theory based on our results, we provide specific calculations of Casimir forces for planar dielectrics having permittivity that declines exponentially. We discuss the relative strengths and weaknesses of computer algebra systems when applied to this type of problem, and describe a combined numerical and symbolic computational framework for calculating Casimir forces for arbitrary planar models.

  5. Detecting chameleons through Casimir force measurements

    International Nuclear Information System (INIS)

    The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet to shield electrostatic forces; however, this sheet masks any detectable signal due to the presence of a strongly coupled chameleon field. As a result of this shielding, experiments that are designed to specifically test the behavior of gravity are often unable to place any constraint on chameleon fields with a strong coupling to matter. Casimir force measurements do not employ a physical electrostatic shield and as such are able to put tighter constraints on the properties of chameleons fields with a strong matter coupling than tests of gravity. Motivated by this, we perform a full investigation on the possibility of testing chameleon models with both present and future Casimir experiments. We find that present-day measurements are not able to detect the chameleon. However, future experiments have a strong possibility of detecting or rule out a whole class of chameleon models

  6. Monte Carlo Simulation of Critical Casimir Forces

    Science.gov (United States)

    Vasilyev, Oleg A.

    2015-03-01

    In the vicinity of the second order phase transition point long-range critical fluctuations of the order parameter appear. The second order phase transition in a critical binary mixture in the vicinity of the demixing point belongs to the universality class of the Ising model. The superfluid transition in liquid He belongs to the universality class of the XY model. The confinement of long-range fluctuations causes critical Casimir forces acting on confining surfaces or particles immersed in the critical substance. Last decade critical Casimir forces in binary mixtures and liquid helium were studied experimentally. The critical Casimir force in a film of a given thickness scales as a universal scaling function of the ratio of the film thickness to the bulk correlation length divided over the cube of the film thickness. Using Monte Carlo simulations we can compute critical Casimir forces and their scaling functions for lattice Ising and XY models which correspond to experimental results for the binary mixture and liquid helium, respectively. This chapter provides the description of numerical methods for computation of critical Casimir interactions for lattice models for plane-plane, plane-particle, and particle-particle geometries.

  7. Normal and lateral Casimir force: Advances and prospects

    CERN Document Server

    Klimchitskaya, G L

    2010-01-01

    We discuss recent experimental and theoretical results on the Casimir force between real material bodies made of different materials. Special attention is paid to calculations of the normal Casimir force acting perpendicular to the surface with the help of the Lifshitz theory taking into account the role of free charge carriers. Theoretical results for the thermal Casimir force acting between metallic, dielectric and semiconductor materials are presented and compared with available experimental data. Main attention is concentrated on the possibility to control the magnitude and sign of the Casimir force for applications in nanotechnology. In this respect we consider experiments on the optical modulation of the Casimir force between metal and semiconductor test bodies with laser light. Another option is the use of ferromagnetic materials, specifically, ferromagnetic dielectrics. Under some conditions this allows to get Casimir repulsion. The lateral Casimir force acting between sinusoidally corrugated surfaces...

  8. Probing the Casimir force with optical tweezers

    CERN Document Server

    Ether, D S; Umrath, S; Martinez, D; Ayala, Y; Pontes, B; Araújo, G R de S; Frases, S; Ingold, G -L; Rosa, F S S; Viana, N B; Nussenzveig, H M; Neto, P A Maia

    2015-01-01

    We propose to use optical tweezers to probe the Casimir interaction between microspheres inside a liquid medium for geometric aspect ratios far beyond the validity of the widely employed proximity force approximation. This setup has the potential for revealing unprecedented features associated to the non-trivial role of the spherical curvatures. For a proof of concept, we measure femtonewton double layer forces between polystyrene microspheres at distances above $400$ nm by employing very soft optical tweezers, with stiffness of the order of fractions of a fN/nm. As a future application, we propose to tune the Casimir interaction between a metallic and a polystyrene microsphere in saline solution from attraction to repulsion by varying the salt concentration. With those materials, the screened Casimir interaction may have a larger magnitude than the unscreened one. This line of investigation has the potential for bringing together different fields including classical and quantum optics, statistical physics an...

  9. Direct simulation of critical Casimir forces

    Science.gov (United States)

    Hobrecht, Hendrik; Hucht, Alfred

    2014-06-01

    We present a new Monte Carlo method to calculate Casimir forces acting on objects in a near-critical fluid, considering the two basic cases of a wall and a sphere embedded in a two-dimensional Ising medium. During the simulation, the objects are moved through the system with appropriate statistical weights, and consequently are attracted or repelled from the system boundaries depending on the boundary conditions. The distribution function of the object position is utilized to obtain the residual free energy, or Casimir potential, of the configuration as well as the corresponding Casimir force. The results are in perfect agreement with known exact results. The method can easily be generalized to more complicated geometries, to higher dimensions, and also to colloidal suspensions with many particles.

  10. Casimir Friction Force Between Polarizable Media

    CERN Document Server

    Høye, Johan S

    2012-01-01

    This work is a continuation of our recent series of papers on Casimir friction, for a pair of particles of low relative particle velocity. Each particle is modeled as a simple harmonic oscillator. Our basic method, as before, is the use of quantum mechanical statistical mechanics, involving the Kubo formula, at finite temperature. In this work we begin by analyzing the Casimir friction between two particles polarizable in all spatial directions, this being a generalization of our study in EPL 91, 60003 (2010), which was restricted to a pair of particles with longitudinal polarization only. For simplicity the particles are taken to interact via the electrostatic dipole-dipole interaction. Thereafter, we consider the Casimir friction between one particle and a dielectric half-space, and also the friction between two dielectric half-spaces. Finally, we consider general polarizabilities (beyond the simple one-oscillator form), and show how friction occurs at finite temperature when finite frequency regions of the...

  11. Casimir-Polder Forces between Chiral Objects

    CERN Document Server

    Butcher, David T; Scheel, Stefan

    2012-01-01

    The chiral component of the Casimir-Polder potential is derived within the framework of macroscopic quantum electrodynamics. It is shown to exist only if the particle and the medium are both chiral. Furthermore, the chiral component of the Casimir-Polder potential can be attractive or repulsive, depending on the chirality of the molecule and the medium. The theory is applied to a cavity geometry in the non-retarded limit with the intention of enantiomer separation. For a ground state molecule the chiral component is dominated by the electric component and thus no explicit separation will happen. If the molecule is initially in an excited state the electric component of the Casimir-Polder force can be suppressed by an appropriate choice of material and the chiral component can select the molecule based on its chirality, allowing enantiomeric separation to occur.

  12. Isoelectronic determination of the thermal Casimir force

    Science.gov (United States)

    Bimonte, G.; López, D.; Decca, R. S.

    2016-05-01

    Differential force measurements between spheres coated with either nickel or gold and rotating disks with periodic distributions of nickel and gold are reported. The rotating samples are covered by a thin layer of titanium and a layer of gold. While titanium is used for fabrication purposes, the gold layer (nominal thicknesses of 21, 37, 47, and 87 nm) provides an isoelectronic environment, and is used to nullify the electrostatic contribution but allow the passage of long wavelength Casimir photons. A direct comparison between the experimental results and predictions from Drude and plasma models for the electrical permittivity is carried out. In the models, the magnetic permeability of nickel is allowed to change to investigate its effects. Possible sources of errors, both in the experimental and theoretical sides, are taken into account. It is found that a Drude response with magnetic properties of nickel taken into account is unequivocally ruled out. The full analysis of the data indicates that a dielectric plasma response with the magnetic properties of Ni included shows good agreement with the data. Neither a Drude nor a plasma dielectric response provide a satisfactory description if the magnetic properties of nickel are disregarded.

  13. Comparison between experiment and theory for the thermal Casimir force

    CERN Document Server

    Klimchitskaya, G L; Mostepanenko, V M

    2012-01-01

    We analyze recent experiments on measuring the thermal Casimir force with account of possible background effects. Special attention is paid to the validity of the proximity force approximation (PFA) used in the comparison between the experimental data and computational results in experiments employing a sphere-plate geometry. The PFA results are compared with the exact results where they are available. The possibility to use fitting procedures in theory-experiment comparison is discussed. On this basis we reconsider experiments exploiting spherical lenses of centimeter-size radii.

  14. Casimir forces beyond the proximity approximation

    CERN Document Server

    Bimonte, G; Jaffe, R L; Kardar, M

    2011-01-01

    The proximity force approximation (PFA) relates the interaction between closely spaced, smoothly curved objects to the force between parallel plates. Precision experiments on Casimir forces necessitate, and spur research on, corrections to the PFA. We use a derivative expansion for gently curved surfaces to derive the leading curvature modifications to the PFA. Our methods apply to any homogeneous and isotropic materials; here we present results for Dirichlet and Neumann boundary conditions and for perfect conductors. A Pad\\'e extrapolation constrained by a multipole expansion at large distance and our improved expansion at short distances, provides an accurate expression for the sphere-plate Casimir force at all separations.

  15. Does the Casimir force need corrections?

    CERN Document Server

    Altaisky, Mikhail

    2011-01-01

    The Casimir force $\\cF = -\\frac{\\pi^2\\hbar c}{240a^4}$, which attracts to each other two perfectly conducting parallel plates separated by the distance $a$ in vacuum, is one of the blueprints of the reality of vacuum fluctuations. Following the recent conjecture, that quantum fields should be described in terms of the fields depending on the resolution of measurement, rather than the position alone (M.V.Altaisky, Phys. Rev. D 81(2010)125003), we derive the correction to the Casimir energy depending on the ratio of the plate displacement amplitude to the distance between plates.

  16. Repulsive Casimir Force between Dielectric Planes

    OpenAIRE

    Wetz, Karen Windmeier

    2001-01-01

    In 1948 H.B.G.Casimir predicted that an attractive force between two perfectly conducting neutral plates exists due to changes in the electromagnetic vacuum energy caused by the influence of the plates. In 1956 E.M. Lifshitz derived an extension of Casimir's expression applicable to finite temperatures and arbitrary dielectric constants for the two half-spaces and the gap in between them. It is shown in this brief report that, while the Lifshitz formula predicts an attractive force for the ca...

  17. Casimir Forces between Nanoparticles and Substrates

    CERN Document Server

    Román-Velázquez, C E; Villarreal, C; Esquivel-Sirvent, R; Noguez, Cecilia

    2002-01-01

    We study the Casimir force between a nanoparticle and a substrate. We consider the interaction of metal nanoparticles with different substrates within the dipolar approximation. We study the force as a function of the distance for gold and potassium spheres, which are over a substrate of titanium dioxide, sapphire and a perfect conductor. We show that Casimir force is important in systems at the nanometer scale. We study the force as a function of the material properties, radii of the spheres, and the distance between the sphere and the substrate.

  18. On Casimir Energy Contribution to Observable Value of the Cosmological Constant

    International Nuclear Information System (INIS)

    The contribution of the ground state energy of quantum fields to the cosmological constant is estimated from the point of view of the standard Casimir energy calculation scheme. It is shown that the requirement of the renormalization group invariance leads to the value of the effective Λ -term which is of 11 orders higher than the result extracted from the experimental data. (author)

  19. Standing wave vs Green's function approach to the Casimir force problem

    CERN Document Server

    Schuller, Frédéric; Neumann-Spallart, Michael

    2012-01-01

    After a short recall of our previous standing wave approach to the Casimir force problem, we consider Lifshitz's temperature Green's function method and its virtues from a physical point of view. Using his formula, specialized for perfectly reflecting mirrors, we present a quantitative discussion of the temperature effect on the attractive force.

  20. Rigorous proof of the attractive nature for the Casimir force of a p-odd hypercube

    Energy Technology Data Exchange (ETDEWEB)

    Li Xinzhou; Zhai Xianghua [Department of Physics, Shanghai Normal University, Shanghai (China)

    2001-12-14

    The Casimir effect giving rise to an attractive force between the configuration boundaries that confine the massless scalar field is rigorously proved for an odd dimensional hypercube with the Dirichlet boundary conditions and different spacetime dimensions D by the Epstein zeta function regularization. (author)

  1. Casimir Force Between Quantum Plasmas

    International Nuclear Information System (INIS)

    Field fluctuations are responsible for an attractive force - the Casimir force - between two parallel (globally neutral) metallic plates separated by a distance d. At high temperature, or equivalently large d, this force is known to exhibit a classical and universal character (independent of the material constitution of the plates). In a recent work, we have displayed the microscopic mechanisms responsible for this universality within a classical model. The plates consist of slabs containing classical charged particles in fluid phase and thermal equilibrium (plasmas). The universality of the force proves to originate from screening sum rules satisfied by the charge correlations. Here we show how this result is altered when the quantum-mechanical nature of the particles is taken into account. It turns out that in addition to the classical result, the asymptotic force for large d comprises a non-universal quantum correction, which is, however, small at high temperature. The method relies on an exact representation of the charge correlations by quantum Mayer graphs, based on the Feynman-Kac path integral formalism. (author)

  2. Modeling the influence of the Casimir force on the pull-in instability of nanowire-fabricated nanotweezers

    Science.gov (United States)

    Farrokhabadi, Amin; Mokhtari, Javad; Rach, Randolph; Abadyan, Mohamadreza

    2015-09-01

    The Casimir force can strongly interfere with the pull-in performance of ultra-small structures. The strength of the Casimir force is significantly affected by the geometries of interacting bodies. Previous investigators have exclusively studied the effect of the Casimir force on the electromechanical instability of nanostructures with planar geometries. However no work has yet considered this effect on the pull-in instability of systems with cylindrical geometries such as nanotweezers fabricated from nanotube/nanowires. In our present work, the influence of the Casimir attraction on the electrostatic response and pull-in instability of nanotweezers fabricated from cylindrical conductive nanowires/nanotubes is theoretically investigated. An asymptotic solution, based on scattering theory, is applied to consider the effect of vacuum fluctuations in the theoretical model. The Euler-Bernoulli beam model is employed, in conjunction with the size-dependent modified couple stress continuum theory, to derive the governing equation of the nanotweezers. The governing nonlinear equations are solved by two different approaches, i.e., the modified Adomian-Padé method (MAD-Padé) and a numerical solution. Various aspects of the problem, i.e., the variation of pull-in parameters, effect of geometry, coupling between the Casimir force and size dependency effects and comparison with the van der Waals force regime are discussed.

  3. A variational size-dependent model for electrostatically actuated NEMS incorporating nonlinearities and Casimir force

    Science.gov (United States)

    Liang, Binbin; Zhang, Long; Wang, Binglei; Zhou, Shenjie

    2015-07-01

    A size-dependent model for the electrostatically actuated Nano-Electro-Mechanical Systems (NEMS) incorporating nonlinearities and Casimir force is presented by using a variational method. The governing equation and boundary conditions are derived with the help of strain gradient elasticity theory and Hamilton principle. Generalized differential quadrature (GDQ) method is employed to solve the problem numerically. The pull-in instability with Casimir force included is then studied. The results reveal that Casimir force, which is a spontaneous force between the two electrodes, can reduce the external applied voltage. With Casimir force incorporated, the pull-in instability occurs without voltage applied when the beam size is in nanoscale. The minimum gap and detachment length can be calculated from the present model for different beam size, which is important for NEMS design. Finally, discussions of size effect induced by the strain gradient terms reveal that the present model is more accurate since size effect play an important role when beam in nanoscale.

  4. Casimir stress on lossy magnetodielectric spheres

    CERN Document Server

    Raabe, C; Welsch, D G; Raabe, Christian; Knoell, Ludwig; Welsch, Dirk-Gunnar

    2003-01-01

    An expression for the Casimir stress on arbitrary dispersive and lossy linear magnetodielectric matter at finite temperature, including left-handed material, is derived and applied to spherical systems. To cast the relevant part of the scattering Green tensor for a general magnetodielectric sphere in a convenient form, classical Mie scattering is reformulated.

  5. Casimir Energy of a Long Wormhole Throat

    CERN Document Server

    Butcher, Luke M

    2014-01-01

    We calculate the Casimir energy-momentum tensor induced in a scalar field by a macroscopic ultrastatic spherically-symmetric long-throated traversable wormhole, and examine whether this exotic matter is sufficient to stabilise the wormhole itself. The Casimir energy-momentum tensor is obtained (within the $\\mathbb{R}\\times S_2$ throat) by a mode sum approach, using a sharp energy cut-off and the Abel-Plana formula; Lorentz invariance is then restored by use of a Pauli-Villars regulator. The massless conformally-coupled case is found to have a logarithmic divergence (which we renormalise) and a conformal anomaly, the thermodynamic relevance of which is discussed. Provided the throat radius is above some fixed length, the renormalised Casimir energy-density is seen to be negative by all timelike observers, and almost all null rays; furthermore, it has sufficient magnitude to stabilise a long-throated wormhole far larger than the Planck scale, at least in principle. Unfortunately, the renormalised Casimir energy...

  6. Observation of the thermal Casimir force

    CERN Document Server

    Sushkov, A O; Dalvit, D A R; Lamoreaux, S K

    2010-01-01

    Quantum theory predicts the existence of the Casimir force between macroscopic bodies, due to the zero-point energy of electromagnetic field modes around them. This quantum fluctuation-induced force has been experimentally observed for metallic and semiconducting bodies, although the measurements to date have been unable to clearly settle the question of the correct low-frequency form of the dielectric constant dispersion (the Drude model or the plasma model) to be used for calculating the Casimir forces. At finite temperature a thermal Casimir force, due to thermal, rather than quantum, fluctuations of the electromagnetic field, has been theoretically predicted long ago. Here we report the experimental observation of the thermal Casimir force between two gold plates. We measured the attractive force between a flat and a spherical plate for separations between 0.7 $\\mu$m and 7 $\\mu$m. An electrostatic force caused by potential patches on the plates' surfaces is included in the analysis. The experimental resul...

  7. Repulsive Casimir Force in Chiral Metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E.N.; Soukoulis, C.M.

    2009-09-04

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  8. Repulsive Casimir Force in Chiral Metamaterials

    OpenAIRE

    Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E. N.; Soukoulis, C. M.

    2009-01-01

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  9. Casimir forces in systems near jamming

    Science.gov (United States)

    Burton, Justin; Liétor-Santos, Juan-José

    Casimir forces arise when long-ranged fluctuations are geometrically confined between two surfaces. In most cases these fluctuations are quantum or thermal in nature, such as those near a classical critical point, yet this is not a requirement. The T = 0 jamming transition in frictionless, granular systems shares many properties with classical critical points, such as a diverging correlation length, although it has recently been identified as a unique example of a random first-order transition (RFOT). Here we show the existence of Casimir forces between two pinned particles immersed in systems near the frictionless jamming transition. We observe two components to the total force: a short-ranged, depletion force and a long-ranged, repulsive Casimir force. The Casimir force dominates when the pinned particles are much larger than the ambient jammed particles. In this case, we find that particles with the largest forces have the least number of contacts, and that these particles are clustered between the pinned particles, giving rise to a repulsive force which is independent of system preparation and inter-particle potential. We acknowledge support from NSF DMR-1455086.

  10. Casimir force between doped silicon slabs

    Energy Technology Data Exchange (ETDEWEB)

    Duraffourg, Laurent [Laboratoire des Composants Microsystemes, CEA/LETI 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)]. E-mail: laurent.duraffourg@cea.fr; Andreucci, Philippe [Laboratoire des Composants Microsystemes, CEA/LETI 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)]. E-mail: philippe.andreucci@cea.fr

    2006-12-04

    We evaluate the Casimir force for the particular case of silicon material including mirror thickness impact and finite conductivity influence. We show a new interesting behavior related to the slab thickness. We compare the results for intrinsic and doped silicon with traditional metals such as gold.

  11. Cubic terms from Casimir invariants in IBM

    International Nuclear Information System (INIS)

    The Xe and Ba nuclei have been shown to be good examples of O(6) dynamical symmetry of IBM. In particular, one might hope to construct cubic terms out of the Casimir invariants of the groups and subgroups of O(6), U(5) SU(3) which may give rise to triaxiality

  12. Casimir apparatuses in a weak gravitational field

    DEFF Research Database (Denmark)

    Bimonte, Giuseppe; Calloni, Enrico; Esposito, Giampiero;

    2009-01-01

    We review and assess a part of the recent work on Casimir apparatuses in the weak gravitational field of the Earth. For a free, real massless scalar field subject to Dirichlet or Neumann boundary conditions on the parallel plates, the resulting regularized and renormalized energy-momentum tensor is...

  13. Why are Casimir energy differences so often finite?

    CERN Document Server

    Visser, Matt

    2016-01-01

    One of the very first applications of the quantum field theoretic vacuum state was in the development of the notion of Casimir energy. Now field theoretic Casimir energies, considered individually, are always infinite. But differences in Casimir energies are quite often finite --- a fortunate circumstance which luckily made some of the early calculations, (for instance, for parallel plates and hollow spheres), tolerably tractable. We shall explore the extent to which this observation can be systematised. For instance: What are necessary and sufficient conditions for Casimir energy differences to be finite? When the Casimir energy differences are not finite, can anything useful be said? We shall see that it is the difference in the first few Seeley-DeWitt coefficients that is central to answering these questions. In particular, for any collection of conductors (perfect or imperfect) and/or dielectrics, as long as one merely moves them around without changing shape or volume, then the Casimir energy difference ...

  14. Surface-impedance approach solves problems with the thermal Casimir force between real metals

    International Nuclear Information System (INIS)

    The surface-impedance approach to the description of the thermal Casimir effect in the case of real metals is elaborated starting from the free energy of oscillators. The Lifshitz formula expressed in terms of the dielectric permittivity depending only on frequency is shown to be inapplicable in the frequency region where a real current may arise leading to Joule heating of the metal. The standard concept of a fluctuating electromagnetic field on such frequencies meets difficulties when used as a model for the zero-point oscillations or thermal photons in the thermal equilibrium inside metals. Instead, the surface impedance permits not to consider the electromagnetic oscillations inside the metal but taking the realistic material properties into account by means of the effective boundary condition. An independent derivation of the Lifshitz-type formulas for the Casimir free energy and force between two metal plates is presented within the impedance approach. It is shown that they are free of the contradictions with thermodynamics that are specific to the usual Lifshitz formula for dielectrics in combination with the Drude model. We demonstrate that in the impedance approach the zero-frequency contribution is uniquely fixed by the form of impedance function and does not need any of the ad hoc prescriptions intensively discussed in the recent literature. As an example, the computations of the Casimir free energy between two gold plates (or the Casimir force acting between a plate and a sphere) are performed at different separations and temperatures specific for the regions of the anomalous skin effect and infrared optics. The results are in good agreement with those obtained by the use of the tabulated optical data for the complex refraction index and plasma model. It is argued that the surface impedance approach lays a reliable theoretical framework for the future measurements of the thermal Casimir force

  15. Tuning quantum fluctuations with an external magnetic field: Casimir-Polder interaction between an atom and a graphene sheet

    CERN Document Server

    Cysne, T; Oliver, D; Pinheiro, F A; Rosa, F S S; Farina, C

    2014-01-01

    We investigate the dispersive Casimir-Polder interaction between a Rubidium atom and a suspended graphene sheet subjected to an external magnetic field B. We demonstrate that this concrete physical system allows for an unprecedented control of dispersive interactions at micro and nanoscales. Indeed, we show that the application of an external magnetic field can induce a 80% reduction of the Casimir-Polder energy relative to its value without the field. We also show that sharp discontinuities emerge in the Casimir-Polder interaction energy for certain values of the applied magnetic field at low temperatures. Moreover, for sufficiently large distances these discontinuities show up as a plateau-like pattern with a quantized Casimir-Polder interaction energy, in a phenomenon that can be explained in terms of the quantum Hall effect. In addition, we point out the importance of thermal effects in the Casimir-Polder interaction, which we show that must be taken into account even for considerably short distances. In ...

  16. Fermionic Casimir energy in a three-dimensional box

    International Nuclear Information System (INIS)

    In this paper we calculate the Casimir energy for a massless fermionic field confined inside a three-dimensional rectangular box. We use the MIT bag model boundary condition for the confinement. We use the direct mode summation method along with the Abel-Plana summation formula to compute the Casimir energy, without any use of regularization or analytic continuation techniques. We obtain a negative Casimir energy, as opposed to the previously reported result for the interior of a three-dimensional sphere.

  17. New features of the thermal Casimir force at small separations.

    Science.gov (United States)

    Chen, F; Klimchitskaya, G L; Mohideen, U; Mostepanenko, V M

    2003-04-25

    The difference of the thermal Casimir forces at different temperatures between real metals is shown to increase with a decrease of the separation distance. This opens new opportunities for the demonstration of the thermal dependence of the Casimir force. Both configurations of two parallel plates and a sphere above a plate are considered. Different approaches to the theoretical description of the thermal Casimir force are shown to lead to different measurable predictions. PMID:12731963

  18. Optical detection of the Casimir force between macroscopic objects.

    Science.gov (United States)

    Petrov, Victor; Petrov, Mikhail; Bryksin, Valeriy; Petter, Juergen; Tschudi, Theo

    2006-11-01

    We report the optical detection of mechanical deformation of a macroscopic object induced by the Casimir force. An adaptive holographic interferometer based on a photorefractive BaTiO3:Co crystal was used to measure periodical nonlinear deformations of a thin pellicle caused by an oscillating Casimir force. A reasonable agreement between the experimental and calculated values of the first and second harmonics of the Casimir force oscillations has been obtained. PMID:17041670

  19. Matter-field theory of the Casimir force

    OpenAIRE

    Koashi, Masato; Ueda, Masahito

    1998-01-01

    A matter-field theory of the Casimir force is formulated in which the electromagnetic field and collective modes of dielectric media are treated on an equal footing. In our theory, the Casimir force is attributed to zero-point energies of the combined matter-field modes. We analyze why some of the existing theories favor the interpretation of the Casimir force as originating from zero-point energies of the electromagnetic field and others from those of the matter.

  20. On the Relation Between Casimir Forces and Bulk Correlations

    Science.gov (United States)

    Napiórkowski, Marek; Piasecki, Jarosław

    2014-09-01

    Within a microscopic approach we show that in the case of an ideal quantum gas enclosed in a slit the Casimir force can be simply expressed in terms of the bulk one-particle density matrix. The corresponding formula, which holds both for bosons and fermions, allows to relate the range of the Casimir force to the bulk correlation length. The low-temperature behavior of the Casimir forces is derived.

  1. Casimir Force in Non-Planar Geometric Configurations

    OpenAIRE

    Cho, Sung Nae

    2004-01-01

    The Casimir force for charge-neutral, perfect conductors of non-planar geometric configurations have been investigated. The configurations were: (1) the plate-hemisphere, (2) the hemisphere-hemisphere and (3) the spherical shell. The resulting Casimir forces for these physical arrangements have been found to be attractive. The repulsive Casimir force found by Boyer for a spherical shell is a special case requiring stringent material property of the sphere, as well as the specific boundary ...

  2. Casimir force on an interacting Bose-Einstein condensate

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Shyamal; Majumder, Dwipesh; Saha, Kush [Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Bhattacharjee, J K [S.N. Bose National Centre for Basic Sciences, Sector 3, JD Block, Salt Lake, Kolkata 700098 (India); Chakravarty, Nabajit, E-mail: tpsb2@iacs.res.i [Positional Astronomy Centre, Block AQ, Plot 8, Sector 5, Salt Lake, Kolkata 700091 (India)

    2010-04-28

    We have presented an analytic theory for the Casimir force on a Bose-Einstein condensate which is confined between two parallel plates. We have considered Dirichlet boundary conditions for the condensate wavefunction as well as for the phonon field. We have shown that the condensate wavefunction (which obeys the Gross-Pitaevskii equation) is responsible for the mean field part of the Casimir force, which usually dominates over the quantum (fluctuations) part of the Casimir force.

  3. Casimir force on interacting Bose-Einstein condensate

    OpenAIRE

    Biswas, Shyamal; Bhattacharjee, J K; Majumder, Dwipesh; Saha, Kush; Chakravarty, Nabajit

    2009-01-01

    We have presented an analytic theory for the Casimir force on a Bose-Einstein condensate (BEC) which is confined between two parallel plates. We have considered Dirichlet boundary conditions for the condensate wave function as well as for the phonon field. We have shown that, the condensate wave function (which obeys the Gross-Pitaevskii equation) is responsible for the mean field part of Casimir force, which usually dominates over the quantum (fluctuations) part of the Casimir force.

  4. Intermolecular Casimir-Polder forces in water and near surfaces

    Science.gov (United States)

    Thiyam, Priyadarshini; Persson, Clas; Sernelius, Bo E.; Parsons, Drew F.; Malthe-Sørenssen, Anders; Boström, Mathias

    2014-09-01

    The Casimir-Polder force is an important long-range interaction involved in adsorption and desorption of molecules in fluids. We explore Casimir-Polder interactions between methane molecules in water, and between a molecule in water near SiO2 and hexane surfaces. Inclusion of the finite molecular size in the expression for the Casimir-Polder energy leads to estimates of the dispersion contribution to the binding energies between molecules and between one molecule and a planar surface.

  5. Reply to 'Comment on 'Temperature dependence of the Casimir force for lossy bulk media''

    Energy Technology Data Exchange (ETDEWEB)

    Yampol' skii, V. A.; Maizelis, Z. A.; Apostolov, S. S. [Advanced Science Institute, RIKEN, Saitama, 351-0198 (Japan); A. Ya. Usikov Institute for Radiophysics and Electronics, NASU, 61085 Kharkov (Ukraine); Savel' ev, Sergey [Advanced Science Institute, RIKEN, Saitama, 351-0198 (Japan); Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom); Nori, Franco [Advanced Science Institute, RIKEN, Saitama, 351-0198 (Japan); Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2011-09-15

    Here, we present an estimate of the characteristic wavelengths of the evanescent modes, which define the main contribution to the thermal part of the Casimir force. This estimate is more precise than the one in the preceding Comment by Bimonte et al.[Phys. Rev. A 84, 036501 (2011)]. The wavelengths we derive are indeed smaller than the sizes of the interacting bodies. We also discuss the results of several experiments on the thermal effects in the Casimir force.

  6. Développement multipolaire de l'effet Casimir dans la géométrie sphère-plan.

    OpenAIRE

    Canaguier-Durand, Antoine

    2011-01-01

    We evaluate the Casimir interaction between a sphere and a plane, at arbitrary temperature, accounting for imperfect reflection. This enables us to study the rich dependance of the Casimir effect on the geometry, and to estimate the error made by the proximity approximation (PFA) commonly used in this sphere-plane configuration, which is the one of the experiments. For this evaluation we apply the scattering method, based on the theory of optical networks, to the sphere-plane geometry. The te...

  7. Regularization of Casimir free energy for p-dimensional Hypercubic Cavities inside D+1-dimensional Minkowski Spacetime

    Directory of Open Access Journals (Sweden)

    LIN Ruihui

    2014-02-01

    Full Text Available We reconsider the thermal scalar Casimir effect for p-dimensional hypercubic cavity inside D+1-dimensional Minkowski space-time.The thermal Casimir free energy can be divided into the divergent zero-temperature part and the automatically finite temperature-dependent part through standard quantum field theory treatments.Due to the finiteness,the regularization of the temperature-dependent part,which is also required for the convergency of the Casimir energy and the vanishing of the Casimir force with the separation increasing to infinity,is neglected in some literatures.We derive rigorously the regularization of the zero temperature part as well as the temperature-dependent part of the free energy by making use of the zeta function technique and the Abel-Plana formula.In the cases of D=3,p=1 and D=3,p=3,we precisely recover the results of parallel plates and three-dimensional box in the literature.And explicit expressions of the Casimir free energy in both low temperature (small separations and high temperature (large separations regimes are given,through which we find that after the regularization of both parts,with the side length going to infinity the force always tends to zero for different boundary conditions.Our study may be helpful in providing a comprehensive and complete understanding of this old problem.

  8. Matter-screened Casimir force and Casimir-Polder force in planar structures

    CERN Document Server

    Raabe, C; Raabe, Christian; Welsch, Dirk-Gunnar

    2005-01-01

    Using a recently developed theory of the Casimir force (Raabe C and Welsch D-G 2005 Phys. Rev. A 71 013814), we calculate the force that acts on a plate in front of a planar wall and the force that acts on the plate in the case where the plate is part of matter that fills the space in front of the wall. We show that in the limit of a dielectric plate whose permittivity is close to unity, the force obtained in the former case reduces to the ordinary, i.e., unscreened Casimir-Polder force acting on isolated atoms. In the latter case, the theory yields the Casimir-Polder force that is screened by the surrounding matter.

  9. Matter-screened Casimir force and Casimir-Polder force in planar structures

    Energy Technology Data Exchange (ETDEWEB)

    Raabe, Christian; Welsch, Dirk-Gunnar [Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2005-12-01

    Using a recently developed theory of the Casimir force (Raabe and Welsch 2005 Phys. Rev. A 71 013814), we calculate the force that acts on a plate in front of a planar wall and the force that acts on the plate in the case where the plate is part of matter that fills the space in front of the wall. We show that in the limit of a dielectric plate whose permittivity is close to unity, the force obtained in the former case reduces to the ordinary, i.e., unscreened, Casimir-Polder force acting on isolated atoms. In the latter case, the theory yields the Casimir-Polder force that is screened by the surrounding matter.

  10. Matter-screened Casimir force and Casimir-Polder force in planar structures

    International Nuclear Information System (INIS)

    Using a recently developed theory of the Casimir force (Raabe and Welsch 2005 Phys. Rev. A 71 013814), we calculate the force that acts on a plate in front of a planar wall and the force that acts on the plate in the case where the plate is part of matter that fills the space in front of the wall. We show that in the limit of a dielectric plate whose permittivity is close to unity, the force obtained in the former case reduces to the ordinary, i.e., unscreened, Casimir-Polder force acting on isolated atoms. In the latter case, the theory yields the Casimir-Polder force that is screened by the surrounding matter

  11. The character of the supersymmetric Casimir energy

    CERN Document Server

    Martelli, Dario

    2015-01-01

    We study the supersymmetric Casimir energy $E_\\mathrm{susy}$ of $\\mathcal{N}=1$ field theories with an R-symmetry, defined on rigid supersymmetric backgrounds $S^1\\times M_3$, using a Hamiltonian formalism. These backgrounds admit an ambi-Hermitian geometry, and we show that the net contributions to $E_\\mathrm{susy}$ arise from certain twisted holomorphic modes on $\\mathbb{R}\\times M_3$, with respect to both complex structures. The supersymmetric Casimir energy may then be identified as a limit of an index-character that counts these modes. In particular this explains a recent observation relating $E_\\mathrm{susy}$ on $S^1\\times S^3$ to the anomaly polynomial. As further applications we compute $E_\\mathrm{susy}$ for certain secondary Hopf surfaces, and discuss how the index-character may also be used to compute generalized supersymmetric indices.

  12. Extended Analysis of the Casimir Force

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2014-04-01

    Full Text Available There are several arguments for the conventional form of the Zero Point Energy fre- quency spectrum to be put in doubt. It has thus to be revised in to that of a self-consistent system in statistical equilibrium where the total energy de nsity and the equivalent pres- sure become finite. An extended form of the Casimir force is th ereby proposed to be used as a tool for determining the local magnitude of the same pressure. This can be done in terms of measurements on the force between a pair po lished plane plates consisting of different metals, the plates having very small or zero air gaps. T his corre- sponds to the largest possible Casimir force. Even then, the re may arise problems with other adhering forces, possibly to be clarified in further experiments.

  13. Casimir force between sharp-shaped conductors

    CERN Document Server

    Maghrebi, Mohammad F; Emig, Thorsten; Graham, Noah; Jaffe, Robert L; Kardar, Mehran

    2010-01-01

    Casimir forces between conductors at the sub-micron scale cannot be ignored in the design and operation of micro-electromechanical (MEM) devices. However, these forces depend non-trivially on geometry, and existing formulae and approximations cannot deal with realistic micro-machinery components with sharp edges and tips. Here, we employ a novel approach to electromagnetic scattering, appropriate to perfect conductors with sharp edges and tips, specifically to wedges and cones. The interaction of these objects with a metal plate (and among themselves) is then computed systematically by a multiple-scattering series. For the wedge, we obtain analytical expressions for the interaction with a plate, as functions of opening angle and tilt, which should provide a particularly useful tool for the design of MEMs. Our result for the Casimir interactions between conducting cones and plates applies directly to the force on the tip of a scanning tunneling probe; the unexpectedly large temperature dependence of the force ...

  14. Curved Casimir Operators and the BGG Machinery

    Directory of Open Access Journals (Sweden)

    Andreas Cap

    2007-11-01

    Full Text Available We prove that the Casimir operator acting on sections of a homogeneous vector bundle over a generalized flag manifold naturally extends to an invariant differential operator on arbitrary parabolic geometries. We study some properties of the resulting invariant operators and compute their action on various special types of natural bundles. As a first application, we give a very general construction of splitting operators for parabolic geometries. Then we discuss the curved Casimir operators on differential forms with values in a tractor bundle, which nicely relates to the machinery of BGG sequences. This also gives a nice interpretation of the resolution of a finite dimensional representation by (spaces of smooth vectors in principal series representations provided by a BGG sequence.

  15. Curved Casimir Operators and the BGG Machinery

    Science.gov (United States)

    Cap, Andreas; Soucek, Vladimír

    2007-11-01

    We prove that the Casimir operator acting on sections of a homogeneous vector bundle over a generalized flag manifold naturally extends to an invariant differential operator on arbitrary parabolic geometries. We study some properties of the resulting invariant operators and compute their action on various special types of natural bundles. As a first application, we give a very general construction of splitting operators for parabolic geometries. Then we discuss the curved Casimir operators on differential forms with values in a tractor bundle, which nicely relates to the machinery of BGG sequences. This also gives a nice interpretation of the resolution of a finite dimensional representation by (spaces of smooth vectors in) principal series representations provided by a BGG sequence.

  16. Casimir-Lifshitz interaction between dielectric heterostructures

    International Nuclear Information System (INIS)

    The interaction between arbitrary dielectric heterostructures is studied within the framework of a recently developed dielectric contrast perturbation theory. It is shown that periodically patterned dielectric or metallic structures lead to oscillatory lateral Casimir-Lifshitz forces, as well as modulations in the normal force as they are displaced with respect to one another. The strength of these oscillatory contributions increases with decreasing gap size and increasing contrast in the dielectric properties of the materials used in the heterostructures.

  17. Casimir-Lifshitz interaction between dielectric heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Azari, Arash; Samanta, Himadri S; Golestanian, Ramin [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom)], E-mail: r.golestanian@sheffield.ac.uk

    2009-09-15

    The interaction between arbitrary dielectric heterostructures is studied within the framework of a recently developed dielectric contrast perturbation theory. It is shown that periodically patterned dielectric or metallic structures lead to oscillatory lateral Casimir-Lifshitz forces, as well as modulations in the normal force as they are displaced with respect to one another. The strength of these oscillatory contributions increases with decreasing gap size and increasing contrast in the dielectric properties of the materials used in the heterostructures.

  18. Improved Precision Measurement of the Casimir Force

    OpenAIRE

    Roy, Anushree; Lin, Chiung-Yuan; Mohideen, U.

    1999-01-01

    We report an improved precision measurement of the Casimir force. The force is measured between a large Al coated sphere and flat plate using an Atomic Force Microscope. The primary experimental improvements include the use of smoother metal coatings, reduced noise, lower systematic errors and independent measurement of surface separations. Also the complete dielectric spectrum of the metal is used in the theory. The average statistical precision remains at the same 1% of the forces measured ...

  19. Casimir Force at a Knife's Edge

    OpenAIRE

    Graham, Noah; Shpunt, Alexander; Emig, Thorsten; Rahi, Sahand Jamal; Jaffe, Robert L.; Kardar, Mehran

    2009-01-01

    The Casimir force has been computed exactly for only a few simple geometries, such as infinite plates, cylinders, and spheres. We show that a parabolic cylinder, for which analytic solutions to the Helmholtz equation are available, is another case where such a calculation is possible. We compute the interaction energy of a parabolic cylinder and an infinite plate (both perfect mirrors), as a function of their separation and inclination, $H$ and $\\theta$, and the cylinder's parabolic radius $R...

  20. Critical Casimir Force between Inhomogeneous Boundaries

    OpenAIRE

    Dubail, Jerome; Santachiara, Raoul; Emig, Thorsten

    2015-01-01

    To study the critical Casimir force between chemically structured boundaries immersed in a binary mixture at its demixing transition, we consider a strip of Ising spins subject to alternating fixed spin boundary conditions. The system exhibits a boundary induced phase transition as function of the relative amount of up and down boundary spins. This transition is associated with a sign change of the asymptotic force and a diverging correlation length that sets the scale for the crossover betwe...

  1. A dispersive correction to the Casimir force

    OpenAIRE

    Ravndal, Finn; Teo, Lee-Peng

    2010-01-01

    Using perturbation theory the first order dispersive correction to the Casimir energy between two plates separated by a dielectric material is calculated. It falls off with the plate separation as 1/L^6. The result is derived both from evaluation of the zero-point energy and within the Lifshitz formulation. It is pointed out that a possible surface term can be more important, varying like 1/L^5.

  2. Demonstration of the Lateral Casimir Force

    OpenAIRE

    Chen, F; Mohideen, U.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2002-01-01

    The lateral Casimir force between a sinusoidally corrugated gold coated plate and large sphere was measured for surface separations between 0.2 $\\mu$m to 0.3 $\\mu$m using an atomic force microscope. The measured force shows the required periodicity corresponding to the corrugations. It also exhibits the necessary inverse fourth power distance dependence. The obtained results are shown to be in good agreement with a complete theory taking into account the imperfectness of the boundary metal. T...

  3. Repulsive Casimir force in chiral metamaterials.

    Science.gov (United States)

    Zhao, R; Zhou, J; Koschny, Th; Economou, E N; Soukoulis, C M

    2009-09-01

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients. PMID:19792309

  4. Casimir force between partially transmitting mirrors

    OpenAIRE

    Jaekel, Marc-Thierry; Reynaud, Serge

    2001-01-01

    The Casimir force can be understood as resulting from the radiation pressure exerted by the vacuum fluctuations reflected by boundaries. We extend this local formulation to the case of partially transmitting boundaries by introducing reflectivity and transmittivity coefficients obeying conditions of unitarity, causality and high frequency transparency. We show that the divergences associated with the infiniteness of the vacuum energy do not appear in this approach. We give explicit expression...

  5. Casimir force between integrable and chaotic pistons

    OpenAIRE

    Alvarez, Ezequiel; Mazzitelli, Francisco Diego; Monastra, Alejandro G.; Wisniacki, Diego A.

    2010-01-01

    We have computed numerically the Casimir force between two identical pistons inside a very long cylinder, considering different shapes for the pistons. The pistons can be considered as quantum billiards, whose spectrum determines the vacuum force. The smooth part of the spectrum fixes the force at short distances, and depends only on geometric quantities like the area or perimeter of the piston. However, correcting terms to the force, coming from the oscillating part of the spectrum which is ...

  6. Casimir Friction Force for Moving Harmonic Oscillators

    OpenAIRE

    Høye, Johan S.; Brevik, Iver

    2011-01-01

    Casimir friction is analyzed for a pair of dielectric particles in relative motion. We first adopt a microscopic model for harmonically oscillating particles at finite temperature T moving non-relativistically with constant velocity. We use a statistical-mechanical description where time-dependent correlations are involved. This description is physical and direct, and, in spite of its simplicity, is able to elucidate the essentials of the problem. This treatment elaborates upon, and extends, ...

  7. Casimir force between atomically thin gold films

    OpenAIRE

    Boström, Mathias; Persson, Clas; Sernelius, Bo E.

    2013-01-01

    We have used density functional theory to calculate the anisotropic dielectric functions for ultrathin gold sheets (composed of 1, 3, 6, and 15 atomic layers). Such films are important components in nano-electromechanical systems. When using correct dielectric functions rather than bulk gold dielectric functions we predict an enhanced attractive Casimir-Lifshitz force (at most around 20%) between two atomically thin gold sheets. For thicker sheets the dielectric properties and the correspondi...

  8. Casimir force between sharp-shaped conductors

    OpenAIRE

    Maghrebi, Mohammad F.; Rahi, Sahand Jamal; Emig, Thorsten; Graham, Noah; Jaffe, Robert L.; Kardar, Mehran

    2010-01-01

    Casimir forces between conductors at the sub-micron scale cannot be ignored in the design and operation of micro-electromechanical (MEM) devices. However, these forces depend non-trivially on geometry, and existing formulae and approximations cannot deal with realistic micro-machinery components with sharp edges and tips. Here, we employ a novel approach to electromagnetic scattering, appropriate to perfect conductors with sharp edges and tips, specifically to wedges and cones. The interactio...

  9. Probing the Casimir force with optical tweezers

    OpenAIRE

    Ether Jr, D. S.; Pires, L. B.; Umrath, S.; Martinez, D; Ayala, Y.; Pontes, B.; Araújo, G. R. de S.; Frases, S.; Ingold, G. -L.; Rosa, F. S. S.; Viana, N. B.; Nussenzveig, H. M.; Neto, P A Maia

    2015-01-01

    We propose to use optical tweezers to probe the Casimir interaction between microspheres inside a liquid medium for geometric aspect ratios far beyond the validity of the widely employed proximity force approximation. This setup has the potential for revealing unprecedented features associated to the non-trivial role of the spherical curvatures. For a proof of concept, we measure femtonewton double layer forces between polystyrene microspheres at distances above $400$ nm by employing very sof...

  10. The Scattering Approach to the Casimir Force

    OpenAIRE

    Reynaud, S.; Canaguier-Durand, A.; Messina, R; Lambrecht, A.; Neto, P A Maia

    2010-01-01

    We present the scattering approach which is nowadays the best tool for describing the Casimir force in realistic experimental configurations. After reminders on the simple geometries of 1d space and specular scatterers in 3d space, we discuss the case of stationary arbitrarily shaped mirrors in electromagnetic vacuum. We then review specific calculations based on the scattering approach, dealing for example with the forces or torques between nanostructured surfaces and with the force between ...

  11. Sample dependence of the Casimir force

    OpenAIRE

    Svetovoy, V.B.

    2004-01-01

    Difference between bulk material and deposited film is shown to have an appreciable influence on the Casimir force. Analysis of the optical data on gold films unambiguously demonstrates the sample dependence: the dielectric functions of the films deposited in different conditions are different on the level that cannot be ignored in high precision prediction of the force. It is argued that the precise values of the Drude parameters are crucial for accurate evaluation of the force. The dielectr...

  12. Isoelectronic determination of the thermal Casimir force

    OpenAIRE

    G. Bimonte; Lopez, D.; Decca, R. S.

    2015-01-01

    Differential force measurements between spheres coated with either nickel or gold and rotating disks with periodic distributions of nickel and gold are reported. The rotating samples are covered by a thin layer of titanium and a layer of gold. While titanium is used for fabrication purposes, the gold layer (nominal thicknesses of 21, 37, 47 and 87 nm) provides an isoelectronic environment, and is used to nullify the electrostatic contribution but allow the passage of long wavelength Casimir p...

  13. Observation of the thermal Casimir force

    OpenAIRE

    Sushkov, A. O.; Kim, W. J.; Dalvit, D. A. R.; Lamoreaux, S. K.

    2010-01-01

    Quantum theory predicts the existence of the Casimir force between macroscopic bodies, due to the zero-point energy of electromagnetic field modes around them. This quantum fluctuation-induced force has been experimentally observed for metallic and semiconducting bodies, although the measurements to date have been unable to clearly settle the question of the correct low-frequency form of the dielectric constant dispersion (the Drude model or the plasma model) to be used for calculating the Ca...

  14. The Casimir force at high temperature

    OpenAIRE

    Buenzli, P. R.; Martin, Ph. A.

    2005-01-01

    The standard expression of the high-temperature Casimir force between perfect conductors is obtained by imposing macroscopic boundary conditions on the electromagnetic field at metallic interfaces. This force is twice larger than that computed in microscopic classical models allowing for charge fluctuations inside the conductors. We present a direct computation of the force between two quantum plasma slabs in the framework of non relativistic quantum electrodynamics including quantum and ther...

  15. Electromagnetic Casimir Forces in Elliptic Cylinder Geometries

    OpenAIRE

    Graham, Noah

    2013-01-01

    The scattering theory approach makes it possible to carry out exact calculations of Casimir energies in any geometry for which the scattering T-matrix and a partial wave expansion of the free Green's function are available. We implement this program for the case of a perfectly conducting elliptic cylinder, thereby completing the set of geometries where electromagnetic scattering is separable. Particular emphasis is placed on the case of zero radius, where the elliptic cylinder reduces to a st...

  16. Casimir forces between cylinders at different temperatures

    OpenAIRE

    Golyk, Vladyslav A.; Krüger, Matthias; Reid, M. T. Homer; Kardar, Mehran

    2012-01-01

    We study Casimir interactions between cylinders in thermal non-equilibrium, where the objects as well as the environment are held at different temperatures. We provide the general formula for the force, in a one reflection approximation, for cylinders of arbitrary radii and optical properties. As is the case for equilibrium, we find that the force for optically diluted cylinders can be obtained by appropriate summation of the corresponding result for spheres. We find that the non-equilibrium ...

  17. Matter-screened Casimir force and Casimir-Polder force in planar structures

    OpenAIRE

    Raabe, Christian; Welsch, Dirk-Gunnar

    2005-01-01

    Using a recently developed theory of the Casimir force (Raabe C and Welsch D-G 2005 Phys. Rev. A 71 013814), we calculate the force that acts on a plate in front of a planar wall and the force that acts on the plate in the case where the plate is part of matter that fills the space in front of the wall. We show that in the limit of a dielectric plate whose permittivity is close to unity, the force obtained in the former case reduces to the ordinary, i.e., unscreened Casimir-Polder force actin...

  18. Casimir force measurements from silicon carbide surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-02-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold- coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was measured to obtain information for the minimum separation distance upon contact. Ellipsometry data for both systems were used to extract optical properties needed for the calculation of the Casimir force via the Lifshitz theory and for comparison to the experiment. Special attention is devoted to the separation of the electrostatic contribution to the measured total force. Our measurements demonstrate large contact potential V0(≈0.67 V ) , and a relatively small density of charges trapped in SiC. Knowledge of both Casimir and electrostatic forces between interacting materials is not only important from the fundamental point of view, but also for device applications involving actuating components at separations of less than 200 nm where surface forces play dominant role.

  19. Probing the Casimir force with optical tweezers

    Science.gov (United States)

    Ether, D. S., Jr.; Pires, L. B.; Umrath, S.; Martinez, D.; Ayala, Y.; Pontes, B.; Araújo, G. R. de S.; Frases, S.; Ingold, G.-L.; Rosa, F. S. S.; Viana, N. B.; Nussenzveig, H. M.; Neto, P. A. Maia

    2015-11-01

    We propose to use optical tweezers to probe the Casimir interaction between microspheres inside a liquid medium for geometric aspect ratios far beyond the validity of the widely employed proximity force approximation. This setup has the potential for revealing unprecedented features associated to the non-trivial role of the spherical curvatures. For a proof of concept, we measure femtonewton double-layer forces between polystyrene microspheres at distances above 400 nm by employing very soft optical tweezers, with stiffness of the order of fractions of a fN/nm. As a future application, we propose to tune the Casimir interaction between a metallic and a polystyrene microsphere in saline solution from attraction to repulsion by varying the salt concentration. With those materials, the screened Casimir interaction may have a larger magnitude than the unscreened one. This line of investigation has the potential for bringing together different fields including classical and quantum optics, statistical physics and colloid science, while paving the way for novel quantitative applications of optical tweezers in cell and molecular biology.

  20. Towards a Casimir force measurement between micromachined parallel plate structures

    NARCIS (Netherlands)

    Syed Nawazuddin, M.B.; Lammerink, Theo S.J.; Berenschot, Erwin; Boer, de Meint; Ma, Ke-Chun; Elwenspoek, Miko C.; Wiegerink, Remco J.

    2012-01-01

    Ever since its prediction, experimental investigation of the Casimir force has been of great scientific interest. Many research groups have successfully attempted quantifying the force with different device geometries; however, measurement of the Casimir force between parallel plates with sub-micron