WorldWideScience

Sample records for cascade optical chromatography

  1. Cascaded Bragg scattering in fiber optics.

    Science.gov (United States)

    Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G

    2013-01-15

    We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.

  2. Optical encryption with cascaded fractional wavelet transforms

    Institute of Scientific and Technical Information of China (English)

    BAO Liang-hua; CHEN Lin-fei; ZHAO Dao-mu

    2006-01-01

    On the basis of fractional wavelet transform, we propose a new method called cascaded fractional wavelet transform to encrypt images. It has the virtues of fractional Fourier transform and wavelet transform. Fractional orders, standard focal lengths and scaling factors are its keys. Multistage fractional Fourier transforms can add the keys easily and strengthen information security. This method can also realize partial encryption just as wavelet transform and fractional wavelet transform. Optical realization of encryption and decryption is proposed. Computer simulations confirmed its possibility.

  3. Analysis of noise suppression in cascaded all-optical regenerators

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Bischoff, Svend

    2002-01-01

    We derive an approximate analytical expression for the BER of cascaded links with all-optical regenerators and use it for performing a general analysis of the interplay between noise and the non-linearity of the regenerator characteristic.......We derive an approximate analytical expression for the BER of cascaded links with all-optical regenerators and use it for performing a general analysis of the interplay between noise and the non-linearity of the regenerator characteristic....

  4. TEMPORAL OPTICAL SOLITONS VIA MULTISTEP x(2) CASCADING

    Institute of Scientific and Technical Information of China (English)

    HUANG GUO-XIANG

    2001-01-01

    We consider a multistep X(2) cascading for light pulses with the dispersion of the system taken into account. Using the method of multiple scales we derive a set of coupled envelope equations governing the nonlinear evolution of the fundamental, second and third harmonic waves involved simultaneously in two nonlinear optical processes, i.e. second harmonic generation and sum frequency mixing. We show that three-wave temporal optical solitons are possible in three- and four-step cascading in the presence of a group-velocity mismatch between different pulses.

  5. 20-GHz optical pulse source based on cascaded electroabsorption modulators

    Institute of Scientific and Technical Information of China (English)

    Yuanshan Liu; Jianguo Zhang; Wei Zhao

    2007-01-01

    A high-quality low-timing-jitter 20-GHz optical pulse train is generated by using two cascaded sinusoidally driven electroabsorption modulators (EAMs) at very low bias voltage of -0.8 V in conjunction with a tunable distributed feedback (DFB) semiconductor laser. An approximate transform-limited optical pulse,with the pulse width less than 7 ps, the spectral width of 0.3 nm, and the side-mode suppression ratio (SMSR) above 20 dB, is obtained by tuning the optical delay line.

  6. Applications of cascading nonlinear optics to all-optical devices

    NARCIS (Netherlands)

    Stegeman, G.I.; Schiek, R.; Baek, Y.; Krijnen, G.J.M.; Baumann, I.; Sohler, W.

    1996-01-01

    The application of a cascaded phase shift to a fully integrated nonlinear directional coupler (NLDC) and Mach-Zehnder interferometer (MZI) is presented. It shows that for MZI, the input power was increased and the throughput was modulated between 80% and 20% of the input. For the NLDC, the switching

  7. Unconditional preparation of entanglement between atoms in cascaded optical cavities

    CERN Document Server

    Clark, S; Gu, M; Parkins, S; Clark, Stephen; Peng, Amy; Gu, Mile; Parkins, Scott

    2003-01-01

    We propose a scheme to unconditionally entangle the internal states of atoms trapped in separate high finesse optical cavities. The scheme uses the technique of quantum reservoir engineering in a cascaded cavity QED setting, and for ideal (lossless) coupling between the cavities generates an entangled pure state. Highly entangled states are also shown to be possible for realizable cavity QED parameters and with nonideal coupling.

  8. Optical mode control of surface-plasmon quantum cascade lasers

    Science.gov (United States)

    Moreau, V.; Bahriz, M.; Palomo, J.; Wilson, L. R.; Krysa, A. B.; Sirtori, C.; Austin, D. A.; Cockburn, J. W.; Roberts, J. S.; Colombelli, R.

    2007-04-01

    Surface-plasmon waveguides based on metallic strips can provide a two dimensional optical confinement. This concept has been successfully applied to quantum cascade lasers, processed as ridge waveguides, to demonstrate that the lateral extension of the optical mode can be influenced solely by the width of the device top contact. For devices operating at a wavelength of λ ≈7.5 μm, the room-temperature threshold current density was reduced from 6.3 kA/cm2 to 4.4 kA/cm2 with respect to larger devices with full top metallization.

  9. Tunable Optical Filter Based on Mechanically Induced Cascaded Long Period Optical Fiber Grating

    Directory of Open Access Journals (Sweden)

    Sunita P. Ugale

    2013-01-01

    Full Text Available We have proposed and demonstrated experimentally a novel and simple tunable optical filter based on mechanically induced and cascaded long period optical fiber gratings. In this filter variable FWHM and center wavelength is provided by cascading long period and ultralong period optical fiber gratings with different periods in a novel fiber structure. We report here for the first time to our knowledge the characterization of mechanically induced long period fiber gratings with periods up to several millimeters in novel multimode-single-mode-multimode fiber structure. We have obtained maximum loss peak of around 20 dB.

  10. Design and Analysis of Single and Cascaded Diffractive Optical Elements

    Science.gov (United States)

    Johnson, Eric Gordon

    The design of complex diffractive optical elements requires both a mathematical formulation of the problem and the appropriate optimization method. The mathematical formulations are very complex, since in some circumstances scalar based strategies are acceptable, whereas, in other cases exact solutions to Maxwell's equations are required. Once the mathematical formulations are coupled with the appropriate optimization algorithms, then the design of single and cascaded diffractive optical elements can be exploited. This Dissertation develops the mathematical framework for diffractive optics utilizing scalar based design and exact solutions to complex periodic dielectric structures. Additionally, a new method of optimization is introduced which is based on the foundations of genetics. This methodology is used to design unique elements for wavefront splitting, polarization filtering, and wavelength filtering. An additional algorithm is developed for scalar based solutions using variants of existing methods, resulting in some interesting designs concerning data encryption and beam shaping.

  11. Nonlinear dynamics of quantum cascade lasers with optical feedback

    Science.gov (United States)

    Jumpertz, L.; Ferré, S.; Schires, K.; Carras, M.; Grillot, F.

    2015-01-01

    Quantum Cascade (QC) lasers are widely used in optical communications, high-resolution spectroscopy, imaging, and remote sensing due to their wide spectral range, going from mid-infrared to the terahertz regime. The dynamics of QClasers are dominated by their ultrafast carrier lifetime, typically of the order of a few picoseconds. The combination of optical nonlinearities and ultrafast dynamics is an interesting feature of QC-lasers, and investigating the dynamical properties of such lasers gives unprecedented insights into the underlying physics of the components, which is of interest for the next generation of QC devices. A particular feature of QC-lasers is the absence of relaxation oscillations, which is the consequence of the relatively short carrier lifetime compared to photon lifetime. Optical feedback (i.e. self-injection) is known to be a robust technique for stabilizing or synchronizing a free-running laser, however its effect on QC-lasers remains mostly unexplored. This work aims at discussing the dynamical properties of QC-lasers operating under optical feedback by employing a novel set of rate equations taking into account the upper and lower lasing levels, the bottom state as well as the gain stage's cascading. This work analyzes the static laser properties subject to optical feedback and provides a comparison with experiments. Spectral analysis reveals that QC-lasers undergo distinct feedback regimes depending on the phase and amplitude of the reinjected field, and that the coherence-collapse regime only appears in a very narrow range of operation, making such lasers much more stable than their interband counterparts.

  12. Cascaded Optical Buffer Based on Nonlinear Polarization Rotation in Semiconductor Optical Amplifiers

    Institute of Scientific and Technical Information of China (English)

    CHENG Mu; WU Chong-Qing; LIU Hua

    2008-01-01

    A cascaded buffer based on nonlinear polarization rotation in semiconductor optical amplifiers is proposed, which is suitable for fast reconfiguration of buffering time at picoseconds. With the proposed buffer, sixty different buffer times are demonstrated at 2.5 Gb/s.

  13. The cascaded amplifier and saturable absorber (CASA) all-optical switch

    DEFF Research Database (Denmark)

    Hilliger, E.; Berger, J.; Weber, H. G.;

    2001-01-01

    The cascaded amplifier and saturable absorber is presented as a new all-optical switching scheme for optical signal processing applications. First demultiplexing experiments demonstrate the principle of operation of this scheme....

  14. Material optimization for electro-optic modulation and cascading

    Science.gov (United States)

    Reyes, Jorge; Darracq, Bruno; Canva, Michael; Blanchard-Desce, Mireille H.; Chaput, Frederic; Lahlil, Khalid; Boilot, Jean-Pierre; Brun, Alain; Levy, Yves

    2000-11-01

    A large effort has been devoted to the preparation of organic polymeric materials for electro-optic modulation and more recently for cascading based processes. These materials contain push-pull chromophores either incorporated as guest in a high Tg polymeric matrix (doped polymers) or grafted onto the polymeric matrix. These systems present several advantages but require significant improvement at the molecular level- by designing optimized chromophores with very large molecular figure of merit specific to each application targeted. The sol-gel route was used to prepare hybrid organic-inorganic materials, for the fabrication of amorphous solids of various shapes (bulk, think films...). The results obtained on optimized chromophore-doped poled thin films emphasize that intermolecular interactions have to be taken into account, as already pointed out by Dalton and coworkers. By combining a molecular engineering strategy for getting large molecular figure of merit and by controlling the intermolecular dipole-dipole interactions via both tuning the push-pull chromophore concentration and the incorporation screening carbazole moieties in high concentration. This strategy allows us to obtain a r33 of about 50 pm/V at 831 nm for a new optimized chromophore structure. In parallel, these thin films are being processed to be used as passive components for integrated optics.

  15. Optical Properties of Active Regions in Terahertz Quantum Cascade Lasers

    Science.gov (United States)

    Dyksik, M.; Motyka, M.; Rudno-Rudziński, W.; Sęk, G.; Misiewicz, J.; Pucicki, D.; Kosiel, K.; Sankowska, I.; Kubacka-Traczyk, J.; Bugajski, M.

    2016-07-01

    In this work, AlGaAs/GaAs superlattice, with layers' sequence and compositions imitating the active and injector regions of a quantum cascade laser designed for emission in the terahertz spectral range, was investigated. Three independent absorption-like optical spectroscopy techniques were employed in order to study the band structure of the minibands formed within the conduction band. Photoreflectance measurements provided information about interband transitions in the investigated system. Common transmission spectra revealed, in the target range of intraband transitions, mainly a number of lines associated with the phonon-related processes, including two-phonon absorption. In contrast, differential transmittance realized by means of Fourier-transform spectroscopy was utilized to probe the confined states of the conduction band. The obtained energy separation between the second and third confined electron levels, expected to be predominantly contributing to the lasing, was found to be ~9 meV. The optical spectroscopy measurements were supported by numerical calculations performed in the effective mass approximation and XRD measurements for layers' width verification. The calculated energy spacings are in a good agreement with the experimental values.

  16. Rate equations model and optical external efficiency of optically pumped electrically driven terahertz quantum cascade lasers

    Science.gov (United States)

    Hamadou, A.; Thobel, J.-L.; Lamari, S.

    2016-10-01

    A four level rate equations model for a terahertz optically pumped electrically driven quantum cascade laser is here introduced and used to model the system both analytically and numerically. In the steady state, both in the presence and absence of the terahertz optical field, we solve the resulting nonlinear system of equations and obtain closed form expressions for the levels occupation, population inversion as well as the mid-infrared pump threshold intensity in terms of the device parameters. We also derive, for the first time for this system, an analytical formula for the optical external efficiency and analyze the simultaneous effects of the cavity length and pump intensity on it. At moderate to high pump intensities, we find that the optical external efficiency scales roughly as the reciprocal of the cavity length.

  17. Optical measurement on quantum cascade lasers using femtosecond pulses

    Science.gov (United States)

    Cai, Hong

    Quantum cascade lasers (QCLs) as the state-of-the-art mid-infrared (mid-IR) coherent sources have been greatly developed in aspects such as output power, energy efficiency and spectral purity. However, there are additional applications of QCLs in high demand, namely mode-locking, mid-IR modulation, etc. The inherent optical properties and ultrafast carrier dynamics can lead to solutions to these challenges. In this dissertation, we further characterize QCLs using mid-IR femtosecond (fs) pulses generated from a laser system consisting of a Ti:sapphire oscillator, a Ti:sapphire regenerative amplifier, an optical parametric amplifier and a difference frequency generator. We study the Kerr nonlinearity of QCLs by coupling resonant and off-resonant mid-IR fs pulses into an active QCL waveguide. We observe an increase in the spectral width of the transmitted fs pulses as the coupled mid-IR pulse power increases. This is explained by the self-phase modulation effect due to the large Kerr nonlinearity of QCL waveguides. We further confirm this effect by observing the intensity dependent far-field profile of the transmitted mid-IR pulses, showing the pulses undergo self-focusing as they propagate through the active QCL due to the intensity dependent refractive index. The finite-difference time-domain simulations of QCL waveguides with Kerr nonlinearity incorporated show similar behavior to the experimental results. The giant Kerr nonlinearity investigated here may be used to realize ultrafast pulse generation in QCLs. In addition, we temporally resolved the ultrafast mid-infrared transmission modulation of QCLs using a near-infrared pump/mid-infrared probe technique at room temperature. Two different femtosecond wavelength pumps are used with photon energy above and below the quantum well (QW) bandgap. The shorter wavelength pump modulates the mid-infrared probe transmission through interband transition assisted mechanisms, resulting in a high transmission modulation depth

  18. Wavelength Conversion by Cascaded FWM in a Fiber Optical Parametric Oscillator

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Lund-Hansen, Toke; Rishøj, Lars Søgaard;

    2011-01-01

    We report on a continuous-wave fiber optical parametric oscillator utilizing selective filtering on cascade four wave mixing (CFWM). Oscillations of distinct CFWM terms are obtained, extending wavelength conversion outside the parametric gain region.......We report on a continuous-wave fiber optical parametric oscillator utilizing selective filtering on cascade four wave mixing (CFWM). Oscillations of distinct CFWM terms are obtained, extending wavelength conversion outside the parametric gain region....

  19. Electron - positron cascades in multiple-laser optical traps

    CERN Document Server

    Vranic, Marija; Fonseca, Ricardo A; Silva, Luis O

    2016-01-01

    We present an analytical and numerical study of multiple-laser QED cascades induced with linearly polarised laser pulses. We analyse different polarisation orientations and propose a configuration that maximises the cascade multiplicity and favours the laser absorption. We generalise the analytical estimate for the cascade growth rate previously calculated in the field of two colliding linearly polarised laser pulses and account for multiple laser interaction. The estimate is verified by a comprehensive numerical study of four-laser QED cascades across a range of different laser intensities with QED PIC module of OSIRIS. We show that by using four linearly polarised 30 fs laser pulses, one can convert more than 50 % of the total energy to gamma-rays already at laser intensity $I\\simeq10^{24}\\ \\mathrm{W/cm^2}$. In this configuration, the laser conversion efficiency is higher compared with the case with two colliding lasers.

  20. Cascaded transformerless DC-DC voltage amplifier with optically isolated switching devices

    Science.gov (United States)

    Sridharan, Govind (Inventor)

    1993-01-01

    A very high voltage amplifier is provided in which plural cascaded banks of capacitors are switched by optically isolated control switches so as to be charged in parallel from the preceding stage or capacitor bank and to discharge in series to the succeeding stage or capacitor bank in alternating control cycles. The optically isolated control switches are controlled by a logic controller whose power supply is virtually immune to interference from the very high voltage output of the amplifier by the optical isolation provided by the switches, so that a very high voltage amplification ratio may be attained using many capacitor banks in cascade.

  1. New-generation concentrator modules based on cascade solar cells: Design and optical and thermal properties

    Science.gov (United States)

    Andreev, V. M.; Davidyuk, N. Yu.; Malevski, D. A.; Pan'chak, A. N.; Rumyantsev, V. D.; Sadchikov, N. A.; Chekalin, A. V.; Luque, A.

    2014-11-01

    New-generation concentrator modules use III-V nanoheterostructure cascade solar cells the efficiency of which can be raised to 50% for the number of cascades exceeding three. To obtain a high overall efficiency of photovoltaic conversion in power plants and extend their service time, it is necessary that the design of the modules be optimal in terms of optics and thermal engineering. In this work, main challenges in designing solar modules, such as optical concentration of radiation and residual heat removal, are considered. The results of pilot works that have been recently done in the Ioffe Physical Technical Institute are primarily reported.

  2. Cascaded all-optical operations in a hybrid integrated 80-Gb/s logic circuit.

    Science.gov (United States)

    LeGrange, J D; Dinu, M; Sochor, T; Bollond, P; Kasper, A; Cabot, S; Johnson, G S; Kang, I; Grant, A; Kay, J; Jaques, J

    2014-06-01

    We demonstrate logic functionalities in a high-speed all-optical logic circuit based on differential Mach-Zehnder interferometers with semiconductor optical amplifiers as the nonlinear optical elements. The circuit, implemented by hybrid integration of the semiconductor optical amplifiers on a planar lightwave circuit platform fabricated in silica glass, can be flexibly configured to realize a variety of Boolean logic gates. We present both simulations and experimental demonstrations of cascaded all-optical operations for 80-Gb/s on-off keyed data.

  3. All-optical integrated Mach-Zehnder switching in lithium niobate waveguides due to cascaded nonlinearities

    NARCIS (Netherlands)

    Baek, Y.; Schiek, R.; Krijnen, G.J.M.; Stegeman, G.I.; Baumann, I.; Sohler, W.

    1996-01-01

    In all-optical switching the required phase shift is produced by the light itself. Typically this shift has been achieved via the intensity-dependent refractive index. But recently the fact that the so-called cascaded second-order nonlinearity can imitate the third-order nonlinearity was proven expe

  4. Spectral characteristics of single-mode-fiber-based cascaded acousto-optic filters

    International Nuclear Information System (INIS)

    In this paper, two cascaded single-mode-fiber-based acousto-optic fiber grating schemes have been proposed and a comparative study on their spectral characteristics has been performed. By serially employing two acoustic transducers with the same geometrical and physical settings, a cascaded configuration of acousto-optic fiber gratings has been established. Experimental results indicate that the mode coupling efficiency has been improved due to the presence of the acoustic transducers in a serial configuration. Moreover, another cascaded acousto-optic tunable filter scheme is implemented based on a reflection configuration, in which an acousto-optic tunable filter is employed with a thin silver film coated at the fiber end as an efficient reflector for both of the core and cladding modes. And, moreover, spectral fringes resulting from the intermodal interference between the fundamental core mode and cladding modes have been experimentally observed, which is basically in accordance with our theoretical simulation result. Further theoretical investigation of its transmission spectral response to the acousto-optical coupling coefficient reveals the possibility to control the interference spectrum through adjusting the acousto-optic coupling strength of a single acoustic fiber grating, which is an important feature for the acoustic-grating-based fiber interferometers to be used in practical applications. (paper)

  5. Cascaded optical fiber link using the Internet network for remote clocks comparison

    CERN Document Server

    Chiodo, Nicola; Stefani, Fabio; Wiotte, Fabrice; Camisard, Emilie; Chardonnet, Christian; Santarelli, Giorgio; Amy-Klein, Anne; Pottie, Paul-Eric; Lopez, Olivier

    2015-01-01

    We report a cascaded optical link of 1100 km for ultra-stable frequency distribution over an Internet fiber network. The link is composed of four spans for which the propagation noise is actively compensated. The robustness and the performance of the link are ensured by five fully automated optoelectronic stations, two of them at the link ends, and three deployed on the field and connecting the spans. This device coherently regenerates the optical signal with the heterodyne optical phase locking of a low-noise laser diode. Optical detection of the beat-note signals for the laser lock and the link noise compensation are obtained with stable and low-noise fibered optical interferometer. We show 3.5 days of continuous operation of the noise-compensated 4-span cascaded link leading to fractional frequency instability of 4x10-16 at 1-s measurement time and 1x10-19 at 2000 s. This cascaded link was extended to 1480-km with the same performance. This work is a significant step towards a sustainable wide area ultra-s...

  6. Optical signal impairment study of cascaded optical filters in 40 Gbps DQPSK and 100 Gbps PM-DQPSK systems

    Science.gov (United States)

    Chen, Xiaoyong; Horche, Paloma R.; Minguez, Alfredo M.

    2013-09-01

    Optical filters are crucial elements in optical communications. The influence of cascaded filters in the optical signal will affect the communications quality seriously. In this paper we will study and simulate the optical signal impairment caused by different kinds of filters which include Butterworth, Bessel, Fiber Bragg Grating (FBG) and Fabry-Perot (FP). Optical signal impairment is analyzed from an Eye Opening Penalty (EOP) and optical spectrum point of view. The simulation results show that when the center frequency of all filters aligns with the laser's frequency, the Butterworth has the smallest influence to the signal while the F-P has the biggest. With a -1dB EOP, the amount of cascaded Butterworth optical filters with a bandwidth of 50 GHz is 18 in 40 Gbps NRZ-DQPSK systems and 12 in 100 Gbps PMNRZ- DQPSK systems. The value is reduced to 9 and 6 respectively for Febry-Perot optical filters. In the situation of frequency misalignment, the impairment caused by filters is more serious. Our research shows that with a frequency deviation of 5 GHz, only 12 and 9 Butterworth optical filters can be cascaded in 40 Gbps NRZ-DQPSK and 100 Gbps PM-NRZ-DQPSK systems respectively. We also study the signal impairment caused by different orders of the Butterworth filter model. Our study shows that although the higher-order has a smaller clipping effect in the transmission spectrum, it will introduce a more serious phase ripple which seriously affects the signal. Simulation result shows that the 2nd order Butterworth filter has the best performance.

  7. Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface

    CERN Document Server

    Kumar, Ravi; Chormaic, Síle Nic

    2015-01-01

    Ultrathin optical fibres integrated into cold atom setups are proving to be ideal building blocks for atom-photon hybrid quantum networks. Such optical nanofibres (ONF) can be used for the demonstration of nonlinear optics and quantum interference phenomena in atomic media. Here, we report on the observation of multilevel cascaded electromagnetically induced transparency (EIT) using an optical nanofibre to interface cold $^{87}$Rb atoms through the intense evanescent fields that can be achieved at ultralow probe and coupling powers. Both the probe (at 780 nm) and the coupling (at 776 nm) beams propagate through the nanofibre. The observed multipeak transparency spectra of the probe beam could offer a method for simultaneously slowing down multiple wavelengths in an optical nanofibre or for generating ONF-guided entangled beams, showing the potential of such an atom-nanofibre system for quantum information. We also demonstrate all-optical-switching in the all fibred system using the obtained EIT effect.

  8. Reconfigurable symmetric pulses generation using on-chip cascaded optical differentiators.

    Science.gov (United States)

    Hou, Jie; Dong, Jianji; Zhang, Xinliang

    2016-09-01

    We report a type of programmable pulse shaping method based on cascaded frequency-detuned optical differentiators. By properly adjusting the central wavelength of each differentiator, a large variety of symmetric pulses can be generated from a transform-limited Gaussian-like pulse. We numerically and experimentally demonstrate the generation of flat-top, parabolic and triangular pulses with tunable pulse widths from a 20-ps Gaussian-like pulse, using no more than three cascaded differentiators. It can be found that as more differentiators are used, higher synthesized accuracy and larger tuning range of pulse widths can be obtained in general. Additionally, in our experiment, we design and fabricate thermally tunable delay interferometers on the silicon-on-insulator (SOI) platform to work as optical differentiators, which can help us realize the shaping system with small footprint (943μm × 395μm) and high stability. PMID:27607657

  9. Cascaded multiplexed optical link on a telecommunication network for frequency dissemination.

    Science.gov (United States)

    Lopez, Olivier; Haboucha, Adil; Kéfélian, Fabien; Jiang, Haifeng; Chanteau, Bruno; Roncin, Vincent; Chardonnet, Christian; Amy-Klein, Anne; Santarelli, Giorgio

    2010-08-01

    We demonstrate a cascaded optical link for ultrastable frequency dissemination comprised of two compensated links of 150 km and a repeater station. Each link includes 114 km of Internet fiber simultaneously carrying data traffic through a dense wavelength division multiplexing technology, and passes through two routing centers of the telecommunication network. The optical reference signal is inserted in and extracted from the communication network using bidirectional optical add-drop multiplexers. The repeater station operates autonomously ensuring noise compensation on the two links and the ultra-stable signal optical regeneration. The compensated link shows a fractional frequency instability of 3 x 10(-15) at one second measurement time and 5 x 10(-20) at 20 hours. This work paves the way to a wide dissemination of ultra-stable optical clock signals between distant laboratories via the Internet network.

  10. Cascaded multiplexed optical link on a telecommunication network for frequency dissemination

    CERN Document Server

    Lopez, Olivier; Kéfélian, Fabien; Jiang, Haifeng; Chanteau, Bruno; Roncin, Vincent; Chardonnet, Christian; Amy-Klein, Anne; Santarelli, Georgio

    2010-01-01

    We demonstrate a cascaded optical link for ultrastable frequency dissemination comprised of two compensated links of 150 km and a repeater station. Each link includes 114 km of Internet fiber simultaneously carrying data traffic through a dense wavelength division multiplexing technology, and passes through two routing centers of the telecommunication network. The optical reference signal is inserted in and extracted from the communication network using bidirectional optical add-drop multiplexers. The repeater station operates autonomously ensuring noise compensation on the two links and the ultra-stable signal optical regeneration. The compensated link shows a fractional frequency instability of 3 \\times 10-15 at one second measurement time and 5 \\times 10-20 at 20 hours. This work paves the way to a wide dissemination of ultra-stable optical clock signals between distant laboratories via the Internet network.

  11. Waveguide structure optimization of arrayed waveguide gratings concatenation in cascaded optical add/drop multiplexers

    Institute of Scientific and Technical Information of China (English)

    Yuanliang Chu(初元量); Hanyi Zhang(张汉一)

    2003-01-01

    The dimensions of input waveguide and output waveguide of arrayed waveguide gratings (AWGs) determinethe crosstalk, insertion loss and 1-dB bandwidth. In cascaded optical add/drop multiplexers (OADMs),the value of these parameters will largely affect the power penalty of system. The power penalty ofcascaded OADMs is calculated with different waveguide dimensions of AWGs in this paper. Consideringof wavelength misalignment, an optimization design of AWGs is obtained.

  12. Modeling the Electro-Optical Performance of High Power Mid-Infrared Quantum Cascade Lasers

    OpenAIRE

    Hans Dieter Tholl; Quankui Yang; Joachim Wagner

    2016-01-01

    Performance modeling of the characteristics of mid-infrared quantum cascade lasers (MIR QCL) is an essential element in formulating consistent component requirements and specifications, in preparing guidelines for the design and manufacture of the QCL structures, and in assessing different modes of operation of the laser device. We use principles of system physics to analyze the electro-optical characteristics of high power MIR QCL, including thermal backfilling of the lower laser level, hot ...

  13. Influence of screening on longitudinal-optical phonon scattering in quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Ezhov, Ivan; Jirauschek, Christian, E-mail: jirauschek@tum.de [Institute for Nanoelectronics, Technical University of Munich (TUM), D-80333 Munich (Germany)

    2016-01-21

    We theoretically investigate the influence of screening on electron-longitudinal optical phonon scattering in quantum cascade lasers. By employing ensemble Monte Carlo simulations, an advanced screening model based on the random-phase approximation is compared to the more elementary Thomas-Fermi and Debye models. For mid-infrared structures, and to a lesser extent also for terahertz designs, the inclusion of screening is shown to affect the simulated current and optical output power. Furthermore, it is demonstrated that by using the electron temperature rather than the lattice temperature, the Debye model can be significantly improved.

  14. Security enhanced multiple-image authentication based on cascaded optical interference and sparse phase mixed encoding

    Science.gov (United States)

    Wang, Qu; Alfalou, A.; Brosseau, C.

    2016-08-01

    An interference-based cascaded filtering method is proposed to perform multiple-image authentication. By using spatial phase mixed encoding technique and phase retrieval iteration in Fresnel transform domain, multiple original images are encoded in two phase-only cipher texts. Using correct keys in an interference-based configuration, one can only recover a noisy image without any secret information revealed. A cascaded phase-only filtering structure, instead of correlation methods, is applied to perform authentication where the decrypted image is converted into a pre-specified irregular pattern that functions as authentication criterion. The proposed structure can strengthen security greatly because authentication output strongly depends on the decrypted images and authentication keys. Moreover, the decryption and authentication procedures can be completed optically in a more compact way than previous methods. Simulation results have been given to prove the effectiveness of this proposal and evaluate its performance.

  15. Chromatography.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities on chromatography. Directions for preparing leaf pigment extracts using alcohol are given, and paper chromatography and thin-layer chromatography are described as modifications of the basic principles of chromatography. (KHR)

  16. Voltage-controllable wavelength-selective optical switching based on multiply cascaded long-period fiber gratings

    Science.gov (United States)

    Han, Young-Geun; Choi, Sun-Min; Kim, Sang Hyuck; Lee, Sang Bae

    2003-11-01

    A novel wavelength-selective optical switching device based on multiply cascaded long-period fiber gratings is proposed and experimentally demonstrated. The on and off states of each channel in the optical switching device can be effectively switched by voltage-controllable coil heaters. The device has advantages of multichannel operation, multiwavelength selectivity, and bandwidth controllability. It can be useful for applications in multiwavelength operational signal gating, optical switching devices, routers, and multiplexers in optical communication systems.

  17. Vortex algebra by multiply cascaded four-wave mixing of femtosecond optical beams.

    Science.gov (United States)

    Hansinger, Peter; Maleshkov, Georgi; Garanovich, Ivan L; Skryabin, Dmitry V; Neshev, Dragomir N; Dreischuh, Alexander; Paulus, Gerhard G

    2014-05-01

    Experiments performed with different vortex pump beams show for the first time the algebra of the vortex topological charge cascade, that evolves in the process of nonlinear wave mixing of optical vortex beams in Kerr media due to competition of four-wave mixing with self-and cross-phase modulation. This leads to the coherent generation of complex singular beams within a spectral bandwidth larger than 200nm. Our experimental results are in good agreement with frequency-domain numerical calculations that describe the newly generated spectral satellites.

  18. Free Space Optical Communication Utilizing Mid-Infrared Interband Cascade Laser

    Science.gov (United States)

    Soibel, A.; Wright, M.; Farr, W.; Keo, S.; Hill, C.; Yang, R. Q.; Liu, H. C.

    2010-01-01

    A Free Space Optical (FSO) link utilizing mid-IR Interband Cascade lasers has been demonstrated in the 3-5 micron atmospheric transmission window with data rates up to 70 Mb/s and bit-error-rate (BER) less than 10 (exp -8). The performance of the mid-IR FSO link has been compared with the performance of a near-IR link under various fog conditions using an indoor communication testbed. These experiments demonstrated the lower attenuation and scintillation advantages of a mid-IR FSO link through fog than a 1550 nm FSO link.

  19. Generation of Optical Millimeter Wave Using Two Cascaded Polarization Modulators Based on Frequency Octupling Without Filtering

    Science.gov (United States)

    Yang, Yang; Ma, Jianxin; Zhang, Ruijiao; Xin, Xiangjun; Zhang, Junyi

    2015-11-01

    An approach to generate an optical millimeter wave is introduced with frequency octupling using two cascaded polarization modulators followed by polarizers, respectively. By adjusting the modulation indexes of polarization modulators, only the ±4th-order sidebands are generated with a pure spectrum. Since no filter is needed, the proposed technique can be used to generate a frequency-tunable millimeter wave with a large frequency-tunable range. To prove the feasibility of the proposed approach, a simulation is conducted to generate an 80-GHz millimeter wave, and then its transmission performance is checked.

  20. Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector

    CERN Document Server

    Heath, Robert M; Casaburi, Alessandro; Webster, Mark G; Alvarez, Lara San Emeterio; Barber, Zoe H; Warburton, Richard J; Hadfield, Robert H

    2014-01-01

    The device physics of parallel-wire superconducting nanowire single photon detectors is based on a cascade process. Using nano-optical techniques and a parallel wire device with spatially-separate pixels we explicitly demonstrate the single- and multi-photon triggering regimes. We develop a model for describing efficiency of a detector operating in the arm-trigger regime. We investigate the timing response of the detector when illuminating a single pixel and two pixels. We see a change in the active area of the detector between the two regimes and find the two-pixel trigger regime to have a faster timing response than the one-pixel regime.

  1. Influence of Multi-Cascaded Semiconductor Optical Amplifiers on the Signal in an Energy-Efficient System

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-Yong; SHENG Xin-Zhi; WU Chong-Qing

    2012-01-01

    Signal impairment is experimentally studied by using the extinction ratio (ER),error bit rate (BER) and optical spectrum in a three-cascaded semiconductor optical amplifier (SOA ) setup.The signal with the ER of 13 dB and BER of < 10-9 is achieved after the signal passing through the cascaded SOAs.With the results obtained from the experiment,we confirm that the three-cascaded SOAs used to compensate for power in the optical transmission can be accepted.This experimental result also offers the possibility of achieving a higher throughput of multiplane architecture by exploiting three switching domains instead of two switching domains in the energy-efficient design of a scalable optical multi-plane interconnection architecture.The space switches in output ports of multi-plane interconnection architecture can be improved to N =32 x 32 x 32 =32768.%Signal impairment is experimentally studied by using the extinction ratio (ER), error bit rate (BER) and optical spectrum in a three-cascaded semiconductor optical amplifier (SOA) setup. The signal with the ER of 13 dB and BER of<10-9 is achieved after the signal passing through the cascaded SO As. With the results obtained from the experiment, we confirm that the three-cascaded SOAs used to compensate for power in the optical transmission can be accepted. This experimental result also offers the possibility of achieving a higher throughput of multi-plane architecture by exploiting three switching domains instead of two switching domains in the energy-efficient design of a scalable optical multi-plane interconnection architecture. The space switches in output ports of multi-plane interconnection architecture can be improved to N = 32 × 32 × 32 = 32768.

  2. Modeling the Electro-Optical Performance of High Power Mid-Infrared Quantum Cascade Lasers

    Directory of Open Access Journals (Sweden)

    Hans Dieter Tholl

    2016-05-01

    Full Text Available Performance modeling of the characteristics of mid-infrared quantum cascade lasers (MIR QCL is an essential element in formulating consistent component requirements and specifications, in preparing guidelines for the design and manufacture of the QCL structures, and in assessing different modes of operation of the laser device. We use principles of system physics to analyze the electro-optical characteristics of high power MIR QCL, including thermal backfilling of the lower laser level, hot electron effects, and Stark detuning during lasing. The analysis is based on analytical modeling to give simple mathematical expressions which are easily incorporated in system-level simulations of defense applications such as directed infrared countermeasures (DIRCM. The paper delineates the system physics of the electro-optical energy conversion in QCL and the related modeling. The application of the performance model to a DIRCM QCL is explained by an example.

  3. Optical Analog to Electromagnetically Induced Transparency in Cascaded Ring-Resonator Systems

    Science.gov (United States)

    Wang, Yonghua; Zheng, Hua; Xue, Chenyang; Zhang, Wendong

    2016-01-01

    The analogue of electromagnetically induced transparency in optical methods has shown great potential in slow light and sensing applications. Here, we experimentally demonstrated a coupled resonator induced transparency system with three cascaded ring coupled resonators in a silicon chip. The structure was modeled by using the transfer matrix method. Influences of various parameters including coupling ratio of couplers, waveguide loss and additional loss of couplers on transmission characteristic and group index have been investigated theoretically and numerically in detail. The transmission character of the system was measured by the vertical grating coupling method. The enhanced quality factor reached 1.22 × 105. In addition, we further test the temperature performance of the device. The results provide a new method for the manipulation of light in highly integrated optical circuits and sensing applications. PMID:27463720

  4. [Study on Strain Detection with Si Based on Bicyclic Cascade Optical Microring Resonator].

    Science.gov (United States)

    Tang, Jun; Lei, Long-hai; Zhang, Wei; Zhang, Tian-en; Xue, Chen-yang; Zhang, Wen-dong; Liu, Jun

    2016-03-01

    Optical micro-ring resonator prepared on Silicon-On-Insulator (SOI) has high sensitivity, small size and low mode volume. Its high sensitivity has been widely applied to the optical information transmission and inertial navigation devices field, while it is rarely applied in the testing of Mechanics. This paper presents a cantilever stress/strain gauge with an optical microring resonator. It is proposed the using of radius change of ring waveguide for the sensing element. When external stress is put on the structure, the radius of the SOI ring waveguide will be subjected to variation, which causes the optical resonant parameters to change. This ultimately leads to a red-shift of resonant spectrum, and shows the excellent characteristics of the structure's stress/strain sensitivity. Designed a bicyclic cascade embedded optical micro-cavity structure, which was prepared by employing MEMS lithography and ICP etching process. The characteristic of stress/strain sensitivity was calculated theoretically. Two values of 0.185 pm x kPa(-1) and 18.04 pm x microstrain(-1) were obtained experimentally, which also was verified by theoretical simulations. Comparing with the single-loop micro-cavity structure, its measuring range and stress sensitivity increased by nearly 50.3%, 10.6%, respectively. This paper provides a new method to develop micro-opto-electromechanical system (MOEMS) sensors. PMID:27400541

  5. System Impact of Cascaded All-Optical Wavelength Conversion of D(QPSK Signals in Transparent Optical Networks

    Directory of Open Access Journals (Sweden)

    Robert Elschner

    2010-02-01

    Full Text Available We will compare techniques for all-optical wavelength conversion of differentially phase-modulated signals using four-wave mixing and super-continuum generation. For the super-continuum generation, a relation between the conversion efficieny and the nonlinear phase distortion will be derived and it will be shown that this technique is not suitable for the conversion of phase-modulated signals. For the four-wave mixing, techniques for the improvement of the conversion efficiency will be studied. Mainly the suppression of Brillouin scattering and its impact on phase-distortions will be discussed. A detailed discussion of its cascadability in transparent optical networks will conclude the contribution. The introduction of a maximum outage probability can significantly relax the OSNR requirements.

  6. Controllable all-optical stochastic logic gates and their delay storages based on the cascaded VCSELs with optical-injection

    Science.gov (United States)

    Zhong, Dongzhou; Luo, Wei; Xu, Geliang

    2016-09-01

    Using the dynamical properties of the polarization bistability that depends on the detuning of the injected light, we propose a novel approach to implement reliable all-optical stochastic logic gates in the cascaded vertical cavity surface emitting lasers (VCSELs) with optical-injection. Here, two logic inputs are encoded in the detuning of the injected light from a tunable CW laser. The logic outputs are decoded from the two orthogonal polarization lights emitted from the optically injected VCSELs. For the same logic inputs, under electro-optic modulation, we perform various digital signal processing (NOT, AND, NAND, XOR, XNOR, OR, NOR) in the all-optical domain by controlling the logic operation of the applied electric field. Also we explore their delay storages by using the mechanism of the generalized chaotic synchronization. To quantify the reliabilities of these logic gates, we further demonstrate their success probabilities. Project supported by the National Natural Science Foundation of China (Grant No. 61475120) and the Innovative Projects in Guangdong Colleges and Universities, China (Grant Nos. 2014KTSCX134 and 2015KTSCX146).

  7. Near-infrared induced optical quenching effects on mid-infrared quantum cascade lasers

    Science.gov (United States)

    Guo, Dingkai; Cai, Hong; Talukder, Muhammad Anisuzzaman; Chen, Xing; Johnson, Anthony M.; Khurgin, Jacob B.; Choa, Fow-Sen

    2014-06-01

    In space communications, atmospheric absorption and Rayleigh scattering are the dominant channel impairments. Transmission using mid-infrared (MIR) wavelengths offers the benefits of lower loss and less scintillation effects. In this work, we report the telecom wavelengths (1.55 μm and 1.3 μm) induced optical quenching effects on MIR quantum cascade lasers (QCLs), when QCLs are operated well above their thresholds. The QCL output power can be near 100% quenched using 20 mW of near-infrared (NIR) power, and the quenching effect depends on the input NIR intensity as well as wavelength. Time resolved measurement was conducted to explore the quenching mechanism. The measured recovery time is around 14 ns, which indicates that NIR generated electron-hole pairs may play a key role in the quenching process. The photocarrier created local field and band bending can effectively deteriorate the dipole transition matrix element and quench the QCL. As a result, MIR QCLs can be used as an optical modulator and switch controlled by NIR lasers. They can also be used as "converters" to convert telecom optical signals into MIR optical signals.

  8. Near-infrared induced optical quenching effects on mid-infrared quantum cascade lasers

    International Nuclear Information System (INIS)

    In space communications, atmospheric absorption and Rayleigh scattering are the dominant channel impairments. Transmission using mid-infrared (MIR) wavelengths offers the benefits of lower loss and less scintillation effects. In this work, we report the telecom wavelengths (1.55 μm and 1.3 μm) induced optical quenching effects on MIR quantum cascade lasers (QCLs), when QCLs are operated well above their thresholds. The QCL output power can be near 100% quenched using 20 mW of near-infrared (NIR) power, and the quenching effect depends on the input NIR intensity as well as wavelength. Time resolved measurement was conducted to explore the quenching mechanism. The measured recovery time is around 14 ns, which indicates that NIR generated electron-hole pairs may play a key role in the quenching process. The photocarrier created local field and band bending can effectively deteriorate the dipole transition matrix element and quench the QCL. As a result, MIR QCLs can be used as an optical modulator and switch controlled by NIR lasers. They can also be used as “converters” to convert telecom optical signals into MIR optical signals.

  9. Model for a pulsed terahertz quantum cascade laser under optical feedback.

    Science.gov (United States)

    Agnew, Gary; Grier, Andrew; Taimre, Thomas; Lim, Yah Leng; Bertling, Karl; Ikonić, Zoran; Valavanis, Alexander; Dean, Paul; Cooper, Jonathan; Khanna, Suraj P; Lachab, Mohammad; Linfield, Edmund H; Davies, A Giles; Harrison, Paul; Indjin, Dragan; Rakić, Aleksandar D

    2016-09-01

    Optical feedback effects in lasers may be useful or problematic, depending on the type of application. When semiconductor lasers are operated using pulsed-mode excitation, their behavior under optical feedback depends on the electronic and thermal characteristics of the laser, as well as the nature of the external cavity. Predicting the behavior of a laser under both optical feedback and pulsed operation therefore requires a detailed model that includes laser-specific thermal and electronic characteristics. In this paper we introduce such a model for an exemplar bound-to-continuum terahertz frequency quantum cascade laser (QCL), illustrating its use in a selection of pulsed operation scenarios. Our results demonstrate significant interplay between electro-optical, thermal, and feedback phenomena, and that this interplay is key to understanding QCL behavior in pulsed applications. Further, our results suggest that for many types of QCL in interferometric applications, thermal modulation via low duty cycle pulsed operation would be an alternative to commonly used adiabatic modulation. PMID:27607659

  10. Demonstration of Cascaded In-Line Single-Pump Fiber Optical Parametric Amplifiers in Recirculating Loop Transmission

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Ozolins, Oskars; An, Yi;

    2012-01-01

    The performance of cascaded single-pump fiber optical parametric amplifiers (FOPAs) is experimentally studied for the first time using recirculating loop transmission with 80-km dispersion managed spans. Error-free performance has been achieved over 320 km for 40-Gbit/s CSRZ-OOK and CSRZ...

  11. Measurements of the linewidth enhancement factor of mid-infrared quantum cascade lasers by different optical feedback techniques

    OpenAIRE

    L. Jumpertz; Michel, F; R. Pawlus; Elsässer, W; Schires, K.; Carras, M.; Grillot, F

    2016-01-01

    Precise knowledge of the linewidth enhancement factor of a semiconductor laser under actual operating conditions is of prime importance since this parameter dictates various phenomena such as linewidth broadening or optical nonlinearities enhancement. The above-threshold linewidth enhancement factor of a mid-infrared quantum cascade laser structure operated at 10∘C is determined experimentally using two different methods based on optical feedback. Both Fabry-Perot and distributed feedback qua...

  12. Optical dynamics in low-dimensional semiconductor heterostructures. Quantum dots and quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Carsten

    2008-07-01

    This work is focused on the optical dynamics of mesoscopic semiconductor heterostructures, using as prototypes zero-dimensional quantum dots and quantum cascade lasers which consist of quasitwo- dimensional quantum wells. Within a density matrix theory, a microscopic many-particle theory is applied to study scattering effects in these structures: the coupling to external as well as local fields, electron-phonon coupling, coupling to impurities, and Coulomb coupling. For both systems, the investigated effects are compared to experimentally observed results obtained during the past years. In quantum dots, the three-dimensional spatial confinement leads to the necessity to consider a quantum kinetic description of the dynamics, resulting in non-Markovian electron-phonon effects. This can be seen in the spectral phonon sidebands due to interaction with acoustic phonons as well as a damping of nonlinear Rabi oscillations which shows a nonmonotonous intensity and pulse duration dependence. An analysis of the inclusion of the self-interaction of the quantum dot shows that no dynamical local field terms appear for the simple two-level model. Considering local fields which have their origin in many quantum dots, consequences for a two-level quantum dot such as a zero-phonon line broadening and an increasing signal in photon echo experiments are found. For the use of quantum dots in an optical spin control scheme, it is found that the dephasing due to the electron-phonon interaction can be dominant in certain regimes. Furthermore, soliton and breather solutions are studied analytically in nonlinear quantum dot ensembles. Generalizing to quasi-two-dimensional structures, the intersubband dynamics of quantum cascade laser structures is investigated. A dynamical theory is considered in which the temporal evolution of the subband populations and the current density as well as the influence of scattering effects is studied. In the nonlinear regime, the scattering dependence and

  13. All-optical error-bit amplitude monitor based on NOT and AND gates in cascaded semiconductor optical amplifiers

    Institute of Scientific and Technical Information of China (English)

    Dong Jian-Ji; Zhang Xin-Liang; Huang De-Xiu

    2008-01-01

    This paper proposes and simulates a novel all-optical error-bit amplitude monitor based on cross-gain modulation and four-wave mixing in cascaded semiconductor optical amplifiers (SOAs),which function as logic NOT and logic AND,respectively.The proposed scheme is successfully simulated for 40 Gb/s return-to-zero (RZ) signal with different duty cycles.In the first stage,the SOA is followed by a detuning filter to accelerate the gain recovery as well as improve the extinction ratio.A clock probe signal is used to avoid the edge pulse-pairs in the output waveform.Among these RZ formats,33% RZ format is preferred to obtain the largest eye opening.The normalized error amplitude,defined as error bit amplitude over the standard mark amplitude,has a dynamic range from 0.1 to 0.65 for all RZ formats.The simulations show small input power dynamic range because of the nonlinear gain variation in the first stage.This scheme is competent for nonreturn-to-zero format at 10Gb/s as well.

  14. Comparison of the cascadability of conventional and gain-clamped semiconductor optical amplifier gates in multi wavelength optical networks

    DEFF Research Database (Denmark)

    Wolfson, David; Stubkjær, Kristian Elmholdt

    1999-01-01

    A detailed investigation of the cascadability of Gc-soaS AND soaS in EDM networks is presented. The analysis shows far superior cascadability of GC-SOAs at a channel bit rate of 2,5 Gbit/s in systems with up to at least 16 channels.......A detailed investigation of the cascadability of Gc-soaS AND soaS in EDM networks is presented. The analysis shows far superior cascadability of GC-SOAs at a channel bit rate of 2,5 Gbit/s in systems with up to at least 16 channels....

  15. Measurements of the linewidth enhancement factor of mid-infrared quantum cascade lasers by different optical feedback techniques

    Directory of Open Access Journals (Sweden)

    L. Jumpertz

    2016-01-01

    Full Text Available Precise knowledge of the linewidth enhancement factor of a semiconductor laser under actual operating conditions is of prime importance since this parameter dictates various phenomena such as linewidth broadening or optical nonlinearities enhancement. The above-threshold linewidth enhancement factor of a mid-infrared quantum cascade laser structure operated at 10∘C is determined experimentally using two different methods based on optical feedback. Both Fabry-Perot and distributed feedback quantum cascade lasers based on the same active area design are studied, the former by following the wavelength shift as a function of the feedback strength and the latter by self-mixing interferometry. The results are consistent and unveil a clear pump current dependence of the linewidth enhancement factor, with values ranging from 0.8 to about 3.

  16. Measurements of the linewidth enhancement factor of mid-infrared quantum cascade lasers by different optical feedback techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jumpertz, L., E-mail: louise.jumpertz@telecom-paristech.fr [Université Paris-Saclay, Télécom ParisTech, CNRS LTCI, 46 rue Barrault, F-75013 Paris (France); MirSense, 8 avenue de la Vauve, F-91120 Palaiseau (France); Michel, F.; Pawlus, R.; Elsässer, W. [Technische Universität Darmstadt, Schlossgartenstr. 7, D-64289 Darmstadt (Germany); Schires, K. [Université Paris-Saclay, Télécom ParisTech, CNRS LTCI, 46 rue Barrault, F-75013 Paris (France); Carras, M. [MirSense, 8 avenue de la Vauve, F-91120 Palaiseau (France); Grillot, F. [Université Paris-Saclay, Télécom ParisTech, CNRS LTCI, 46 rue Barrault, F-75013 Paris (France); also with Center for High Technology Materials, University of New-Mexico, 1313 Goddard SE, Albuquerque, NM (United States)

    2016-01-15

    Precise knowledge of the linewidth enhancement factor of a semiconductor laser under actual operating conditions is of prime importance since this parameter dictates various phenomena such as linewidth broadening or optical nonlinearities enhancement. The above-threshold linewidth enhancement factor of a mid-infrared quantum cascade laser structure operated at 10{sup ∘}C is determined experimentally using two different methods based on optical feedback. Both Fabry-Perot and distributed feedback quantum cascade lasers based on the same active area design are studied, the former by following the wavelength shift as a function of the feedback strength and the latter by self-mixing interferometry. The results are consistent and unveil a clear pump current dependence of the linewidth enhancement factor, with values ranging from 0.8 to about 3.

  17. Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Zhou, Binbin;

    2011-01-01

    When ultrafast noncritical cascaded second-harmonic generation of energetic femtosecond pulses occur in a bulk lithium niobate crystal optical Cherenkov waves are formed in the near- to mid-IR. Numerical simulations show that the few-cycle solitons radiate Cherenkov (dispersive) waves in the λ = 2...... efficiency is up to 25%. Thus, optical Cherenkov waves formed with cascaded nonlinearities could become an efficient source of energetic near- to mid-IR few-cycle pulses....

  18. Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched cascaded interactions

    DEFF Research Database (Denmark)

    Zhou, B. B.; Chong, A.; Wise, F. W.;

    2012-01-01

    Cascaded nonlinearities have attracted much interest, but ultrafast applications have been seriously hampered by the simultaneous requirements of being near phase matching and having ultrafast femtosecond response times. Here we show that in strongly phase-mismatched nonlinear frequency conversion...... crystals the pump pulse can experience a large and extremely broadband self-defocusing cascaded Kerrlike nonlinearity. The large cascaded nonlinearity is ensured through interaction with the largest quadratic tensor element in the crystal, and the strong phase mismatch ensures an ultrafast nonlinear......% efficiency, and upon further propagation an octave-spanning supercontinuum is observed. Such ultrafast cascading is expected to occur for a broad range of pump wavelengths spanning the near- and mid-IR using standard nonlinear crystals....

  19. Optimization of the idler wavelength tunable cascaded optical parametric oscillator based on chirp-assisted aperiodically poled lithium niobate crystal

    Science.gov (United States)

    Tao, Chen; Rong, Shu; Ye, Ge; Zhuo, Chen

    2016-01-01

    We present the numerical results for the optimization of the pump-to-idler conversion efficiencies of nanosecond idler wavelength tunable cascaded optical parametric oscillators (OPO) in different wavelength tuning ranges, where the primary signals from the OPO process are recycled to enhance the pump-to-idler conversion efficiencies via the simultaneous difference frequency generation (DFG) process by monolithic aperiodically poled, magnesium oxide doped lithium niobate (APMgLN) crystals. The APMgLN crystals are designed with different chirp parameters for the DFG process to broaden their thermal acceptance bandwidths to different extents. The idler wavelength tuning of the cascaded OPO is realized by changing the temperature of the designed APMgLN crystal and the cascaded oscillation is achieved in a single pump pass singly resonant linear cavity. The pump-to-idler conversion efficiencies with respect to the pump pulse duration and ratio of OPO coefficient to DFG coefficient are calculated by numerically solving the coupled wave equations. The optimal working conditions of the tunable cascaded OPOs pumped by pulses with energies of 350 μJ and 700 μJ are compared to obtain the general rules of optimization. It is concluded that the optimization becomes the interplay between the ratio of OPO coefficient to DFG coefficient and the pump pulse duration when the idler wavelength tuning range and the pump pulse energy are fixed. Besides, higher pump pulse energy is beneficial for reaching higher optimal pump-to-idler conversion efficiency as long as the APMgLN crystal is optimized according to this pump condition. To the best of our knowledge, this is the first numerical analysis of idler wavelength tunable cascaded OPOs based on chirp-assisted APMgLN crystals. Project supported by the National Natural Science Foundation of China (Grant No. 61505236), the Innovation Program of Shanghai Institute of Technical Physics, China (Grant No. CX-2), and the Program of Shanghai

  20. Modeling off-resonant nonlinear-optical cascading in mesoscopic thin films and guest-host molecular systems

    CERN Document Server

    Dawson, Nathan J; Crescimanno, Michael

    2013-01-01

    We develop a model for off-resonant microscopic cascading of scalar polarizabilities using a self-consistent field approach, and use it to study the effects of boundaries on mesoscopic systems of nonlinear polarizable atoms and molecules. We find that higher-ordered susceptibilities can be enhanced by increasing the surface-to-volume ratio through reducing the distance between boundaries perpendicular to the linear polarization. We also show lattice scaling effects on the effective nonlinear refractive indices for Gaussian beams, and illustrate finite size effects on dipole field distributions in films subject to long-wavelength propagating fields. We derive simplified expressions for the microscopic cascading of the nonlinear optical response in guest-host systems.

  1. Comparison of optical particle sizing and cascade impaction for measuring the particle size of a suspension metered dose inhaler.

    Science.gov (United States)

    Pu, Yu; Kline, Lukeysha C; Khawaja, Nazia; Van Liew, Melissa; Berry, Julianne

    2015-05-01

    Optical techniques for the particle size characterization of metered dose inhaler (MDI) suspensions have been developed as an alternative to the labor-intensive and time-consuming impaction method. In this study, a laser diffraction (LD) apparatus with a liquid cell ("wet cell" method) and a "time-of-flight" apparatus named aerodynamic particle sizer (APS) were utilized to assess MDI suspensions with varied formulation compositions and storage conditions. The results were compared with the conventional Anderson cascade impaction (ACI) data. The two optical methods were able to detect the changes in particle size distributions between formulations, yet to a lesser extent than those observed using the cascade impaction methodology. The median aerodynamic particle size measured by the APS method and the median geometric particle size obtained from the LD method were linearly correlated with the corresponding ACI results in the range of 2-5 µm. It was also found that the APS measurement was biased towards the finer particle size region and resulted in overestimated fine particle fraction (FPF) values which were 2-3 times folds of the ACI results. In conclusion, the optical particle sizing techniques may, under some circumstances, be viable techniques for the rapid assessment of MDI suspensions. The "wet cell" LD method, in particular, is found to be a valuable means of detecting active pharmaceutical ingredient (API) particle size changes in an MDI suspension. Using both the LD and the APS methods in early formulation screening followed by a final assessment with cascade impaction analysis can improve the efficiency of MDI formulation development.

  2. Regimes of external optical feedback in 5.6 μm distributed feedback mid-infrared quantum cascade lasers

    International Nuclear Information System (INIS)

    External optical feedback is studied experimentally in mid-infrared quantum cascade lasers. These structures exhibit a dynamical response close to that observed in interband lasers, with threshold reduction and optical power enhancement when increasing the feedback ratio. The study of the optical spectrum proves that the laser undergoes five distinct regimes depending on the phase and amplitude of the reinjected field. These regimes are mapped in the plane of external cavity length and feedback strength, revealing unstable behavior only for a very narrow range of operation, making quantum cascade lasers much more stable than their interband counterparts.

  3. 4-wave mixing for phase-matching free nonlinear optics in quantum cascade structures : LDRD 08-0346 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Weng Wah; Wanke, Michael Clement; Allen, Dan G.; Yang, Zhenshan; Waldmueller, Ines

    2010-10-01

    Optical nonlinearities and quantum coherences have the potential to enable efficient, high-temperature generation of coherent THz radiation. This LDRD proposal involves the exploration of the underlying physics using intersubband transitions in a quantum cascade structure. Success in the device physics aspect will give Sandia the state-of-the-art technology for high-temperature THz quantum cascade lasers. These lasers are useful for imaging and spectroscopy in medicine and national defense. Success may have other far-reaching consequences. Results from the in-depth study of coherences, dephasing and dynamics will eventually impact the fields of quantum computing, optical communication and cryptology, especially if we are successful in demonstrating entangled photons or slow light. An even farther reaching development is if we can show that the QC nanostructure, with its discrete atom-like intersubband resonances, can replace the atom in quantum optics experiments. Having such an 'artificial atom' will greatly improve flexibility and preciseness in experiments, thereby enhancing the discovery of new physics. This is because we will no longer be constrained by what natural can provide. Rather, one will be able to tailor transition energies and optical matrix elements to enhance the physics of interest. This report summarizes a 3-year LDRD program at Sandia National Laboratories exploring optical nonlinearities in intersubband devices. Experimental and theoretical investigations were made to develop a fundamental understanding of light-matter interaction in a semiconductor system and to explore how this understanding can be used to develop mid-IR to THz emitters and nonclassical light sources.

  4. A comparative study on dual colour soft aperture cascaded second-order mode-locking with different nonlinear optical crystals

    Indian Academy of Sciences (India)

    Shyamal Mondal; Satya Pratap Singh; Sourabh Mukhopadhyay; Aditya Date; Kamal Hussain; Shouvik Mukherjee; Prasanta Kumar Datta

    2014-02-01

    A comparative study in terms of optimized output power and stability is made on cascaded second-order nonlinear optical mode-locking with KTP, BBO and LBO crystals for both 1064 nm and 532 nm. Large nonlinear optical phase shift achieved in a non-phase-matched second harmonic generating crystal, is transformed into amplitude modulation through soft aperturing the nonlinear cavity mode variation at the laser gain medium to mode-lock a Nd:YVO4 laser. The laser delivers stable dual wavelength cw mode-locked pulse train with pulse duration 10.3 ps and average power of 1.84 W and 255 mW at 1064 nm and 532 nm respectively for the optimum performance in type-II KTP crystal. The exceptional stability achieved with KTP is accounted by simulating the mode-size variation with phase mismatch.

  5. 80-GB all-optical serial-to-parallel convertor for QPSK signal based on cascaded phase modulators and optical filters

    Institute of Scientific and Technical Information of China (English)

    Deming Kong; Yan Li; Hui Wang; Jian Wu; Jintong Lin

    2012-01-01

    An all-optical serial-to-parallel converter (SPC) utilizing two cascaded phase modulators and optical bandpass filters (OBPFs) is experimentally investigated and applied to demultiplex an 80-GBd optical timedivision multiplexing (OTDM) return-to-zero (RZ) differential quadrature phase-shift keying (QPSK) signal.Two 40-GBd OTDM tributaries are error-free demultiplexed with a power penalty of approximately 4 dB in the worst case.With its advantages of compact structure,high speed,low power penalty,simultaneous two-tributary operation,and no assistance from a light source,the SPC has potential for use in future OTDM networks.However,the performance of the SPC still needs improvement.

  6. 光色谱的进展%Development of Optical Chromatography

    Institute of Scientific and Technical Information of China (English)

    顾峻岭; 傅若农

    2001-01-01

    光色谱是近年来发展起来的利用辐射力和介质流体分离粒子的新技术,在分离和测定粒子大小及生物化学研究中有较大的应用潜力。本文对光色谱的理论、应用进展进行综述。%Optical chromatography is a new separation and determination technique of particales. It has great potential value in the separation and determination of particales. The development, basic theory and application of optical chromatography are reviewed in this paper.

  7. Optically tunable full 360° microwave photonic phase shifter using three cascaded silicon-on-insulator microring resonators

    Science.gov (United States)

    Ehteshami, Nasrin; Zhang, Weifeng; Yao, Jianping

    2016-08-01

    A broadband optically tunable microwave phase shifter with a tunable phase shift covering the entire 360° range using three cascaded silicon-on-insulator (SOI) microring resonators (MRRs) that are optically pumped is proposed and experimentally demonstrated. The phase tuning is implemented based on the thermal nonlinear effect in the MRRs. By optically pumping the MRRs, the stored light in the MRRs is absorbed due to two photon absorption (TPA) to generate free carriers, which result in free carrier absorption (FCA). The FCA effect would lead to the heating of the MRRs and cause a redshift in the phase response, which is used to implement a microwave phase shifter with a tunable phase shift. The device is designated and fabricated on an SOI platform, which is experimentally evaluated. The experimental results show that by optically pumping the MRRs, a broadband microwave photonic phase shifter with a bandwidth of 7 GHz from 16 to 23 GHz with a tunable phase shift covering the entire 360° phase shift range is achieved.

  8. Tailoring the time delay of optical pulse/sequence employing cascaded SOA and band-pass filter

    Science.gov (United States)

    Wang, Fu; Wang, Zhi; Wu, Chongqing; Mao, Yaya; Shang, Chao; Gao, Kaiqiang; Li, Qiang

    2016-06-01

    A tunable time delay for a 100-ps pulse is achieved via a SOA cascaded band-pass filter, which can be tailored by tuning the filter or changing the SOA injection current. For a single pulse, when the pulse propagates through the cascaded system, a delay of 99.6 ps and an advance of 42.6 ps can be achieved by altering the SOA injection current at two different wavelengths located in the red band and blue band of the filter, respectively. The corresponding tunable delay range is 165 ps, and the maximum delay-bandwidth product (DBP) is 1.65. For an optical sequence, to our knowledge, it is the first time that the time delay is tailored over 145.6 ps corresponding to a DBP of 1.46 by tuning the wavelength from 1556.075 to 1556.955 nm, and 45.2 ps (95.6 ps) advance (delay) by tuning the injection current from 100 to 500 mA at 1556.155 nm (1556.955 nm). The dependence of the time delay on the injection current and filtering configuration has been discussed based on plenty of experiments data. Based on SOA's fast switching, this device can be used for signal synchronization and bit-by-bit signal processing in a communication system.

  9. A novel microwave photonic link employing cascaded ring resonators as balanced optical discriminators

    OpenAIRE

    Marpaung, D.A.I.; Roeloffzen, C. G. H.; Leinse, A.; Hoekman, M.

    2010-01-01

    We report the design, fabrication and characterization of a balanced optical discriminator for a high performance phase modulation-direct detection microwave photonic link (MPL). The discriminator is an integrated optical filter consisting of five ring resonators which are fully tunable using thermo-optical tuning. The discriminator is configured to yield a desired transfer where the intensity transmission ramps linearly with the frequency. The performance of an MPL employing this discriminat...

  10. Numerical and experimental study of a cascaded microelectromechanical system-based all-optical data center interconnect

    Science.gov (United States)

    Kong, Qian; Huang, Shanguo; Guo, Bingli; Li, Xin; Zhang, Min; Zhao, Yongli; Zhang, Jie; Gu, Wanyi

    2016-07-01

    As the scale of the intra-data center network (DCN) grows even larger, the traditional electrical switching has reached a bottle neck in terms of energy consumption, bandwidth provision, and end-to-end latency. Different approaches have been made by employing the optical switch instead of the electrical ones to solve the bandwidth as well as the energy efficiency and the latency problem. We propose a DCN architecture based on cascaded microelectromechanical systems switches for dynamic DCN connectivity provisioning. This architecture provides high port count, which attributes to the demands of the intradata center traffic. Multiple points to one point switching scenario is experimentally demonstrated through this data center interconnect. Numerical simulation is employed to investigate the performance of the proposed architecture. The results show that the blocking probability and latency decrease as the scale of the architecture is upgraded.

  11. A novel microwave photonic link employing cascaded ring resonators as balanced optical discriminators

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; Leinse, A.; Hoekman, M.

    2010-01-01

    We report the design, fabrication and characterization of a balanced optical discriminator for a high performance phase modulation-direct detection microwave photonic link (MPL). The discriminator is an integrated optical filter consisting of five ring resonators which are fully tunable using thermo

  12. High-quality pulse compression in a novel architecture based on a single-mode fiber cascading a nonlinear optical loop mirror

    Science.gov (United States)

    Xu, Yong-zhao; Song, Jian-xun; Zhang, Geng; Liu, Min-xia; Ling, Dong-xiong

    2016-07-01

    A novel all-fiber low-pedestal pulse compression scheme is proposed and investigated. The scheme is based on an anomalously dispersive single-mode fiber (SMF) cascading a nonlinear optical loop mirror (NOLM) with another anomalously dispersive SMF in the loop. Numerical results show that excellent pulse compression and pedestal reduction can be achieved by using the proposed scheme.

  13. Cinchona alkaloid squaramide catalyzed enantioselective hydrazination/cyclization cascade reaction of α-isocyanoacetates and azodicarboxylates: synthesis of optically active 1,2,4-triazolines.

    Science.gov (United States)

    Zhao, Mei-Xin; Bi, Hong-Lei; Zhou, Hao; Yang, Hui; Shi, Min

    2013-09-20

    An efficient enantioselective hydrazination/cyclization cascade reaction of α-substituted isocyanoacetates to azodicarboxylates catalyzed by Cinchona alkaloid derived squaramide catalysts has been investigated, affording the optically active 1,2,4-triazolines in excellent yields (up to 99%) and good to excellent enantioselectivities (up to 97% ee) under mild conditions. PMID:23984761

  14. Optical pumping: a possible approach towards a SiGe Quantum Cascade Laser

    OpenAIRE

    Scheinert, Maxi; Faist, Jérôme

    2008-01-01

    Le laser à cascade quantique a attiré un large intérêt en tant que source infrarouge depuis sa première réalisation en 1994 en utilisant l'AlInAs/InGaAs. Ses applications principales sont dans la spectroscopie pour la détection des gaz, ainsi que pour les télécommunications à travers l'atmosphère. Ce type de source optique diffère de manière fondamentale d'une diode laser semi-conducteur conventionnelle, car la transition radiative est basée sur des transitions inter-sous-bandes qui ont lieu ...

  15. On accumulated signal degradation in a cascade of semiconductor optical amplifiers

    International Nuclear Information System (INIS)

    We study a design and limitations of a wavelength division multiplexing packet- switched network based on semiconductor optical amplifiers (SOAs) under different modulations formats (QPSK, 8-QAM and 16-QAM). A simple convergence rule for accumulated SOA nonlinearities based on the so-called nonlinear threshold is proposed. We calculate the signal reach depending on various SOA and network parameters by means of numerical simulation. We provide a design tool enabling optimization of a SOA-based optical network architecture

  16. Compact photonic crystal circulator with flat-top transmission band created by cascading magneto-optical resonance cavities.

    Science.gov (United States)

    Wang, Qiong; Ouyang, Zhengbiao; Lin, Mi; Liu, Qiang

    2015-11-20

    A new type of compact three-port circulator with flat-top transmission band (FTTB) in a two-dimensional photonic crystal has been proposed, through coupling the cascaded magneto-optical resonance cavities to waveguides. The coupled-mode theory is applied to investigate the coupled structure and analyze the condition to achieve FTTB. According to the theoretical analysis, the structure is further optimized to ensure that the condition for achieving FTTB can be satisfied for both cavity-cavity coupling and cavity-waveguide coupling. Through the finite-element method, it is demonstrated that the design can realize a high quality, nonreciprocal circulating propagation of waves with an insertion loss of 0.023 dB and an isolation of 23.3 dB, covering a wide range of operation frequency. Such a wideband circulator has potential applications in large-scale integrated photonic circuits for guiding or isolating harmful optical reflections from load elements.

  17. On the data rate extension of semiconductor optical amplifier-based ultrafast nonlinear interferometer in dual rail switching mode using a cascaded optical delay interferometer

    Science.gov (United States)

    Zoiros, K. E.; Demertzis, C.

    2011-10-01

    The feasibility of increasing by a factor of two the data speed of the semiconductor optical amplifier (SOA)-based ultrafast nonlinear interferometer in dual rail switching mode by means of a cascaded optical delay interferometer (ODI) is explored and shown through numerical simulation. From the theoretical analysis it has been found that such extension cannot be done without employing this passive element for any selection of the critical parameters but the SOA carrier lifetime, for which the requirements are yet very demanding. If, however, the time delay introduced by the ODI is adjusted to almost 1/3rd of the bit period, then the result of Boolean XOR operation can be improved for a specified range of parameter values, which can be further selected to be more relaxed than is possible when the ODI is not being used. The use of the ODI allows both error-free and pattern-free performance at the output of the interferometric structure configured as ultrafast XOR gate. In this manner the scheme can offer a practical alternative solution for extending the operating rate of this logical module and enabling its exploitation as a basic building unit in more sophisticated all-optical circuits and subsystems.

  18. Designing microstructured polymer optical fibers for cascaded quadratic soliton compression of femtosecond pulses

    DEFF Research Database (Denmark)

    Bache, Morten

    2009-01-01

    The dispersion of index-guiding microstructured polymer optical fibers is calculated for second-harmonic generation. The quadratic nonlinearity is assumed to come from poling of the polymer, which in this study is chosen to be the cyclic olefin copolymer Topas. We found a very large phase mismatch...

  19. A Quantum Cascade Laser-Based Optical Sensor for Continuous Monitoring of Environmental Methane in Dunkirk (France

    Directory of Open Access Journals (Sweden)

    Rabih Maamary

    2016-02-01

    Full Text Available A room-temperature continuous-wave (CW quantum cascade laser (QCL-based methane (CH4 sensor operating in the mid-infrared near 8 μm was developed for continuous measurement of CH4 concentrations in ambient air. The well-isolated absorption line (7F2,4 ← 8F1,2 of the ν4 fundamental band of CH4 located at 1255.0004 cm−1 was used for optical measurement of CH4 concentration by direct absorption in a White-type multipass cell with an effective path-length of 175 m. A 1σ (SNR = 1 detection limit of 33.3 ppb in 218 s was achieved with a measurement precision of 1.13%. The developed sensor was deployed in a campaign of measurements of time series CH4 concentration on a site near a suburban traffic road in Dunkirk (France from 9th to 22nd January 2013. An episode of high CH4 concentration of up to ~3 ppm has been observed and analyzed with the help of meteorological parameters combined with back trajectory calculation using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT model of NOAA.

  20. Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses

    CERN Document Server

    Bache, M; Zhou, B B; Moses, J; Wise, F W

    2011-01-01

    When ultrafast noncritical cascaded second-harmonic generation of energetic femtosecond pulses occur in a bulk lithium niobate crystal optical Cherenkov waves are formed in the near- to mid-IR. Numerical simulations show that the few-cycle solitons radiate Cherenkov (dispersive) waves in the $\\lambda=2.2-4.5\\mic$ range when pumping at $\\lambda_1=1.2-1.8\\mic$. The exact phase-matching point depends on the soliton wavelength, and we show that a simple longpass filter can separate the Cherenkov waves from the solitons. The Cherenkov waves are born few-cycle with an excellent Gaussian pulse shape, and the conversion efficiency is up to 25%. Thus, optical Cherenkov waves formed with cascaded nonlinearities could become an efficient source of energetic near- to mid-IR few-cycle pulses.

  1. Optimal performance of single-column chromatography and simulated moving bed processes for the separation of optical isomers

    Science.gov (United States)

    Medi, Bijan; Kazi, Monzure-Khoda; Amanullah, Mohammad

    2013-06-01

    Chromatography has been established as the method of choice for the separation and purification of optically pure drugs which has a market size of about 250 billion USD. Single column chromatography (SCC) is commonly used in the development and testing phase of drug development while multi-column Simulated Moving Bed (SMB) chromatography is more suitable for large scale production due to its continuous nature. In this study, optimal performance of SCC and SMB processes for the separation of optical isomers under linear and overloaded separation conditions has been investigated. The performance indicators, namely productivity and desorbent requirement have been compared under geometric similarity for the separation of a mixture of guaifenesin, and Tröger's base enantiomers. SCC process has been analyzed under equilibrium assumption i.e., assuming infinite column efficiency, and zero dispersion, and its optimal performance parameters are compared with the optimal prediction of an SMB process by triangle theory. Simulation results obtained using actual experimental data indicate that SCC may compete with SMB in terms of productivity depending on the molecules to be separated. Besides, insights into the process performances in terms of degree of freedom and relationship between the optimal operating point and solubility limit of the optical isomers have been ascertained. This investigation enables appropriate selection of single or multi-column chromatographic processes based on column packing properties and isotherm parameters.

  2. Proposal and simulation of all-optical NRZ-to-RZ format conversion using cascaded sum- and difference-frequency generation

    Science.gov (United States)

    Wang, Jian; Sun, Junqiang; Sun, Qizhen; Wang, Dalin; Huang, Dexiu

    2007-01-01

    All-optical 40 Gbit/s format conversion from nonreturn-to-zero (NRZ) to return-to-zero (RZ) is proposed and simulated for the first time, using the cascaded sum- and difference-frequency generation (SFG+DFG) in a periodically poled lithium niobate (PPLN) waveguide incorporated in a Sagnac interferometer structure. Simultaneous single-to-triple channel NRZ-to-RZ format conversion is achieved. Both optical spectra and eye diagrams exhibit impressive conversion performance. The duty cycle, pulse width ratio, Q-factor and extinction ratio (ER) of the converted RZ are analyzed. It is found that flexible NRZ-to-RZ format conversion can be implemented with great tunability, i.e. both input NRZ signal wavelength and converted RZ wavelength can be tuned in a wide wavelength range (>60 nm).

  3. Optical single sideband modulation based on a high-order birefringent filter using cascaded Solc-Sagnac and Lyot-Sagnac loops.

    Science.gov (United States)

    Feng, Danqi; Sun, Junqiang

    2016-08-01

    We propose and experimentally demonstrate a simple and flexible photonic approach to implementing single sideband (SSB) modulation based on optical spectral filtering. The high-order birefringent filter is realized through the cascaded Solc-Sagnac and Lyot-Sagnac loops. By adjusting the rotation angle of the polarization controller (PC), the notch position to remove undesired sidebands changes. The frequency for SSB modulation varies accordingly. The periodical response of the filter spectrum allows both the carrier wavelength and the optical carrier to sideband ratio (OCSR) to be tunable. SSB modulation over a frequency range from 5 to 40 GHz and tunable OCSR ranging from -9.174 to 34.408 dB are obtained. The significant merits of the proposed approach are the simple structure, easy operation, large frequency range, tunable OCSR, and wavelength independence. The approach has potential applications in optimizing the transmission performance of photonic microwave signal processing systems. PMID:27472643

  4. Open-path quantum cascade laser-based system for simultaneous remote sensing of methane, nitrous oxide, and water vapor using chirped-pulse differential optical absorption spectroscopy

    Science.gov (United States)

    Castillo, Paulo; Diaz, Adrian; Thomas, Benjamin; Gross, Barry; Moshary, Fred

    2015-10-01

    Methane and Nitrous Oxide are long-lived greenhouse gases in the atmosphere with significant global warming effects. We report on application of chirped-pulsed quantum cascade lasers (QCLs) to simultaneous measurements of these trace gases in both open-path fence-line and backscatter systems. The intra-pulse thermal frequency chip in a QCL can be time resolved and calibrated to allow for high resolution differential optical absorption spectroscopy over the spectral window of the chip, which for a DFB-QCL can be reach ~2cm-1 for a 500 nsec pulse. The spectral line-shape of the output from these lasers are highly stable from pulse to pulse over long period of time (> 1 day), and the system does not require frequent calibrations.

  5. Learning Cascading

    CERN Document Server

    Covert, Michael

    2015-01-01

    This book is intended for software developers, system architects and analysts, big data project managers, and data scientists who wish to deploy big data solutions using the Cascading framework. You must have a basic understanding of the big data paradigm and should be familiar with Java development techniques.

  6. Generation of femtosecond laser pulses tunable from 380 nm to 465 nm via cascaded nonlinear optical mixing in a noncollinear optical parametric amplifier with a type-I phase matched BBO crystal.

    Science.gov (United States)

    Lee, Chao-Kuei; Zhang, Jing-Yuan; Huang, J; Pan, Ci-Ling

    2003-07-14

    We report the generation of tunable femtosecond pulses from 380nm to 465nm near the degenerate point of a 405-nm pumped type-I BBO noncollinearly phase-matched optical parametric amplifier (NOPA). The tunable UV/blue radiation is obtained from sum frequency generation (SFG) between the OPA output and the residual fundamental beam at 810-nm and cascaded second harmonic generation (SHG) of OPA. With a fixed seeding angle, the generated SFG and SHG covers from 385 nm to 465-nm. With a pumping energy of 75 J at 405 nm, the optical conversion efficiency from the pump to the tunable SFG is more than 5% and the efficiency of SHG of the OPA is about 2%.

  7. Generation of femtosecond laser pulses tunable from 380 nm to 465 nm via cascaded nonlinear optical mixing in a noncollinear optical parametric amplifier with a type-I phase matched BBO crystal.

    Science.gov (United States)

    Lee, Chao-Kuei; Zhang, Jing-Yuan; Huang, J; Pan, Ci-Ling

    2003-07-14

    We report the generation of tunable femtosecond pulses from 380nm to 465nm near the degenerate point of a 405-nm pumped type-I BBO noncollinearly phase-matched optical parametric amplifier (NOPA). The tunable UV/blue radiation is obtained from sum frequency generation (SFG) between the OPA output and the residual fundamental beam at 810-nm and cascaded second harmonic generation (SHG) of OPA. With a fixed seeding angle, the generated SFG and SHG covers from 385 nm to 465-nm. With a pumping energy of 75 J at 405 nm, the optical conversion efficiency from the pump to the tunable SFG is more than 5% and the efficiency of SHG of the OPA is about 2%. PMID:19466049

  8. Detailed theoretical investigation and comparison of the cascadability of conventional and gain-clamped SOA gates in multi wavelength optical networks

    DEFF Research Database (Denmark)

    Wolfson, David

    1999-01-01

    A detailed theoretical investigation of the cascadability of GC-SOAs and SOAs in WDM networks is presented. The analysis shows that the cascadability of SOAs is limited by degradation of both extinction ratio and ASE accumulation, whereas the cascadability for GC-SOAs mainly is limited by an accu......A detailed theoretical investigation of the cascadability of GC-SOAs and SOAs in WDM networks is presented. The analysis shows that the cascadability of SOAs is limited by degradation of both extinction ratio and ASE accumulation, whereas the cascadability for GC-SOAs mainly is limited...... by an accumulation af ASE. This result is superior cascadability of GC-SOAs at a channel bit rate of 2,5 Gbit/s in systems with up to at least 16 channels even when compared to short cavity SOA gates....

  9. Low Size, Weight and Power Concept for Mid-Wave Infrared Optical Communication Transceivers Based on Quantum Cascade Lasers

    Science.gov (United States)

    Luzhanskiy, Edward; Choa, Fow-Sen; Merritt, Scott; Yu, Anthony; Krainak, Michael

    2015-01-01

    The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept presented, realized and tested in the laboratory environment. Resilience to atmospheric impairments analyzed with simulated turbulence. Performance compared to typical telecom based Short Wavelength Infra-Red transceiver.

  10. Rapid Separation of Elemental Species by Fast Multicapillary Gas Chromatography with Multichannel Optical Spectrometry Detection following Headspace Solid Phase Microextraction

    Directory of Open Access Journals (Sweden)

    Jacek Giersz

    2015-05-01

    Full Text Available A method for conducting fast and efficient gas chromatography based on short multicapillaries in straight alignment combined with atomic emission detection was developed for field analysis. The strategy enables for speciation analysis of organometallic compounds. The analytes are simultaneously ethylated and preconcentrated on a solid phase microextraction (SPME fiber placed in the headspace over the sample for 25 min. The ethylated species are then completely separated and selectively quantified within 25 s under isothermal conditions. A new miniaturized speciation analyzer has been constructed and evaluated. The system consists of a GC injection port and a lab-made miniaturized GC unit directly coupled with miniaturized plasma excitation source. The emitted light is transferred via optical fiber and registered with a miniaturized charged coupled device (CCD based spectrometer. Working parameters for multicapillary column gas chromatography with atomic emission detector, including carrier gas flow rate, desorption temperature, and GC column temperature, were optimized to achieve good separation of analytes. Basic investigations of the fundamental properties of 5 cm-long multicapillary column, to evaluate its potential and limitations as a rapid separation unit, are presented. The adaptation of the technique for use with a SPME system and with a multichannel element-selective plasma-emission detector is highlighted.

  11. Intracavity-pumped, cascaded AgGaSe₂ optical parametric oscillator tunable from 5.8 to 18 µm.

    Science.gov (United States)

    Boyko, Andrey A; Marchev, Georgi M; Petrov, Valentin; Pasiskevicius, Valdas; Kolker, Dmitry B; Zukauskas, Andrius; Kostyukova, Nadezhda Y

    2015-12-28

    A AgGaSe2 nonlinear crystal placed in a coupled cavity is intracavity pumped by the ~1.85-µm signal pulses of a 1.064-µm pumped Rb:PPKTP doubly-resonant optical parametric oscillator (OPO) operating at a repetition rate of 100 Hz. Using two samples cut for type-I and II phase-matching, the overall idler tunability of the singly-resonant AgGeSe2 OPO covers an unprecedented spectral range from 5.8 to ~18 µm in the mid-IR. PMID:26832010

  12. Active Stand-off Detection of Gas Leaks Using a Short Range Hard-target Backscatter Differential Optical Absorption System Based on a Quantum Cascade Laser Transmitter

    Science.gov (United States)

    Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred

    2016-06-01

    Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they can contribute to the global increase of greenhouse gas concentration. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents gas concentration measurements using a quantum cascade laser open path system (QCLOPS). The system retrieves the pathaveraged concentration of N2O and CH4 by collecting the backscattered light from a scattering target. The gas concentration measurements have a high temporal resolution (68 ms) and are achieved at sufficient range (up to 40 m, ~ 130 feet) with a detection limit of 2.6 ppm CH4 and 0.4 ppm for N2O. Given these characteristics, this system is promising for mobile/multidirectional remote detection and evaluation of gas leaks. The instrument is monostatic with a tunable QCL emitting at ~ 7.7 μm wavelength range. The backscattered radiation is collected by a Newtonian telescope and focused on an infrared light detector. Puffs of N2O and CH4 are released along the optical path to simulate a gas leak. The measured absorption spectrum is obtained using the thermal intra-pulse frequency chirped DFB QCL and is analyzed to obtain path averaged gas concentrations.

  13. Cascading Cosmology

    CERN Document Server

    Agarwal, Nishant; Khoury, Justin; Trodden, Mark

    2009-01-01

    We develop a fully covariant, well-posed 5D effective action for the 6D cascading gravity brane-world model, and use this to study cosmological solutions. We obtain this effective action through the 6D decoupling limit, in which an additional scalar degree mode, \\pi, called the brane-bending mode, determines the bulk-brane gravitational interaction. The 5D action obtained this way inherits from the sixth dimension an extra \\pi self-interaction kinetic term. We compute appropriate boundary terms, to supplement the 5D action, and hence derive fully covariant junction conditions and the 5D Einstein field equations. Using these, we derive the cosmological evolution induced on a 3-brane moving in a static bulk. We study the strong- and weak-coupling regimes analytically in this static ansatz, and perform a complete numerical analysis of our solution. Although the cascading model can generate an accelerating solution in which the \\pi field comes to dominate at late times, the presence of a critical singularity prev...

  14. Cascade photonic integrated circuit architecture for electro-optic in-phase quadrature/single sideband modulation or frequency conversion.

    Science.gov (United States)

    Hasan, Mehedi; Hall, Trevor

    2015-11-01

    A photonic integrated circuit architecture for implementing frequency upconversion is proposed. The circuit consists of a 1×2 splitter and 2×1 combiner interconnected by two stages of differentially driven phase modulators having 2×2 multimode interference coupler between the stages. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. The intrinsic conversion efficiency of the proposed design is improved by 6 dB over the alternative functionally equivalent circuit based on dual parallel Mach-Zehnder modulators known in the prior art. A two-tone analysis is presented to study the linearity of the proposed circuit, and a comparison is provided over the alternative. The proposed circuit is suitable for integration in any platform that offers linear electro-optic phase modulation such as LiNbO(3), silicon, III-V, or hybrid technology.

  15. A quantum cascade phonon-polariton laser

    CERN Document Server

    Ohtani, Keita; Bosco, Lorenzo; Beck, Mattias; Faist, Jérôme

    2016-01-01

    We report a laser that coherently emits phonon-polaritons, quasi-particles arising from the coupling between photons and transverse optical phonons. The gain is provided by an intersubband transition in a quantum cascade structure. The polaritons at h$\

  16. Z-Scan Characteristics of Cascading Nonlinear Media

    Institute of Scientific and Technical Information of China (English)

    臧维平; 田建国; 刘智波; 周文远; 杨新江; 张春平; 张光寅

    2003-01-01

    We present a method, which combines the Gaussian decomposition method and the "distributed-lens" method,for analysing Z-scan curves of cascading nonlinear medium layers or a complicated cascading structure. A good agreement with the experimental data is obtained. The method would be useful to design optical limiters and to determine the nonlinearities of cascading medium layers.

  17. Direct Optical Resolution of Chiral Pesticides by High Performance Liquid Chromatography

    Institute of Scientific and Technical Information of China (English)

    LI Xiaogang; LIU Yiping; HU Changdi; BAI Lianyang; GAO Bida; HUANG Kelong

    2011-01-01

    Enantiomer separation is one of the most important prerequisites for the investigation of environmental enantioselective behavior for chiral pesticides.The enantiomeric separation of three chiral pesticides,indoxacarb,lambda-cyhalothrin,and simeconazole,were studied on cellulose tris-(3,5-dimethylphenyl-carbamate)-coated chiral stationary phase(CDMPC-CSP) using high-performance liquid chromatography under normal phase condition.The effects of chromatographic conditions,such as the mobile phase composition including the concentration and type of alcohol modifiers in hexane,flow rate and column temperature,on enantiomer separation were examined.The thermodynamical mechanism of enantioseparation and chiral recognition mechanism were discussed.Better separation were achieved using 20% n-propanol for indoxacarb,2% iso-butanol for lambda-cyhalothrin,and 20% iso-propanol for simeconazole as modifiers in hexane at 25℃ with the selectivity factor(a) of 1.69,1.82 and 1.70,respectively.The resolution factor(Rs) decreased as the flow rate increased from 0.4 to 1.1 ml·min-1.The retention factor(k') and selectivity factor for the enantiomers of analytes decreased as temperature increased.The lna-1/T plots for racemic chiral pesticides were linear in the range of 15-35℃ in hexane/iso-propanol and the chiral separation was controlled by enthalpy.Hydrogen bonding,π-π and dipole-dipole interactions between enantiomers and CDMPC-CSP play an important role in chiral identification,and the fitting of the asymmetric portion of solutes in a chiral cavity or channel of the CSP is also important.

  18. Calibration of an optical condensate measurement technique using indirect static headspace gas chromatography.

    Science.gov (United States)

    Hoke, P B; Loconto, P R; McGrath, J J

    2001-12-01

    Researchers in the Department of Mechanical Engineering seek to obtain a means to measure less than 3 mg of H2O that adheres to a metal surface as condensate. The objective is to calibrate optical reflectance measurements of an aluminum surface as a function of the condensate thickness present. Collaboration with the Hazardous Substance Research Center at Michigan State University results in the development of an indirect static headspace gas chromatographic technique capable of measuring H2O in low-milligram quantities. The technique utilizes manual headspace sampling, a megabore capillary column, and a flame ionization detector. A correlation of r2 = 0.999 is obtained for the calibration of the indirect measurement technique. The calibration of the analytical instrument demonstrates adequate precision (calcium carbide to convert the H2O to acetylene. A scaled calibration technique is used to simplify handling trace water volumes. The surface reflectance measurements are found to correlate well (r2 = 0.935) with measurements of the condensate mass. This result facilitates the development of an optical mass-transfer measurement technique. This study focuses on the analytical method and its relationship with engineering research.

  19. Impact of Failure of Communication Optical Cable on Cascading Failures of Power Grid%通信光缆故障对电力网连锁故障的影响

    Institute of Scientific and Technical Information of China (English)

    王先培; 田猛; 董政呈; 龙嘉川; 代荡荡; 朱国威

    2015-01-01

    连锁故障研究在应对突发的大面积停电方面具有重要意义,而传统连锁故障研究很少考虑信息网通信光缆对电力网连锁故障的影响。从信息网边的角度出发,在直流潮流模型下,通过建立信息网对电力网连锁故障影响模型,并以 IEEE 30节点系统为例,研究了通信光缆遭受随机故障和不同信息网拓扑结构对电力网连锁故障的影响。仿真结果表明,由于信息网的引入,电力系统脆弱点增多,导致大停电的风险增加,随着信息网中通信光缆故障规模的增大,信息网对电力网连锁故障的影响强度由强变弱,直至稳定。同时,信息网网络拓扑结构对电力网连锁故障影响显著,信息网更宽的度分布增加了电力网的脆弱性,在规则网络中,信息节点的度越大,通信光缆故障对电力网连锁故障的影响越小。%Research on the cascading failures is important to dealing with blackouts,but the impact of failures of communication optical cable is seldom considered in conventional research on cascading failures in the power system.From the perspective of the edge of information network,a model for the failures of communication optical cable with an impact on the cascading failures of the power grid is built based on DC power flow model.The impact on cascading failures of the power grid with random failures of communication optical cable and different topologies of information network are studied with an IEEE 30-bus system as an example.Simulation results show that owing to the introduction of the information network,the power system is becoming increasingly vulnerable,leading to greater risk of blackouts.With the increase in failure scale of the communication optical cable in the information network,the impact strength of failures of communication optical cable on the cascading failures of the power grid changes from strong to weak till stability.Meanwhile,the influence of

  20. Noise properties and cascadability of SOA-EA regenerators

    DEFF Research Database (Denmark)

    Öhman, Filip; Bischoff, Svend; Tromborg, Bjarne;

    2002-01-01

    We suggest and analyse a new device containing concatenated pairs of semiconductor optical amplifiers (SOAs) and electroabsorption modulators (EAs). The device has regenerative properties and improves the cascadability of optical fibre links....

  1. Lens Coupled Quantum Cascade Laser

    Science.gov (United States)

    Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor)

    2013-01-01

    Terahertz quantum cascade (QC) devices are disclosed that can operate, e.g., in a range of about 1 THz to about 10 THz. In some embodiments, QC lasers are disclosed in which an optical element (e.g., a lens) is coupled to an output facet of the laser's active region to enhance coupling of the lasing radiation from the active region to an external environment. In other embodiments, terahertz amplifier and tunable terahertz QC lasers are disclosed.

  2. Optically heated ultra-fast-cycling gas chromatography module for separation of direct sampling and online monitoring applications.

    Science.gov (United States)

    Fischer, Michael; Wohlfahrt, Sebastian; Varga, Janos; Matuschek, Georg; Saraji-Bozorgzad, Mohammad R; Denner, Thomas; Walte, Andreas; Zimmermann, Ralf

    2015-09-01

    This work describes an ultrafast-cycling gas chromatography module (fast-GC module) for direct-sampling gas chromatography/mass spectrometry (GC-MS). The sample can be introduced into the fast-GC module using a common GC injector or any GC × GC modulator. The new fast-GC module offers the possibility to conduct a complete temperature cycle within 30 s. Its thermal mass is minimized by using a specially developed home-built fused silica capillary column stack and a halogen lamp for heat generation, both placed inside a gold-coated quartz glass cylinder. A high airflow blower enables rapid cooling. The new device is highly flexible concerning the used separation column, the applied temperature program, and the integration into existing systems. An application of the fast-GC module is shown in this work by thermal analysis coupled to gas chromatography-mass spectrometry (TA-GC-MS). The continuously evolving gases of the TA are modulated by a liquid CO2 modulator. Because of the rapid cycling of the fast-GC module, it is possible to obtain the best separation while maintaining the online character of the TA. Restrictions in separation and retention time shifting, known from isothermal and normal ramped fast-GC systems, are overcome. PMID:26226397

  3. Cascade quantum teleportation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nan-run; GONG Li-hua; LIU Ye

    2006-01-01

    In this letter a cascade quantum teleportation scheme is proposed. The proposed scheme needs less local quantum operations than those of quantum multi-teleportation. A quantum teleportation scheme based on entanglement swapping is presented and compared with the cascade quantum teleportation scheme. Those two schemes can effectively teleport quantum information and extend the distance of quantum communication.

  4. Terahertz Quantum Cascade Laser Based 3D Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — LongWave Photonics proposes a terahertz quantum-cascade laser based swept-source optical coherence tomography (THz SS-OCT) system for single-sided, 3D,...

  5. Enantiomer separation in a cascaded micellar-enhanced ultrafiltration system

    NARCIS (Netherlands)

    Overdevest, P.E.M.; Hoenders, M.H.J.; Riet, van 't K.; Padt, van der A.; Keurentjes, J.T.F.

    2002-01-01

    The increasing demand for optically pure compounds (enantiomers) stimulates the development of new enantiomer separation processes on an industrial scale. The separation of enantiomers by ultrafiltration of enantioselective micelles was studied in a cascaded system. The feasibility of this separatio

  6. Efficient Design of Multi-stage Cascade Waveband Separator

    Institute of Scientific and Technical Information of China (English)

    Samrat Ganguly; Rauf Izmailov; Nan Tu; Ting Wang

    2003-01-01

    We propose a cascade system of filters for realizing a non-uniform waveband separation for optical networks. The use of such separation is required at the DEMUX stage in a optical OXC switching wavebands. The design of the system is based on optimized balanced tree, which minimizes the overall optical loss.

  7. Dynamics of Soliton Cascades in Fiber Amplifiers

    CERN Document Server

    Arteaga-Sierra, F R; Agrawal, Govind P

    2016-01-01

    We study numerically the formation of cascading solitons when femtosecond optical pulses are launched into a fiber amplifier with less energy than required to form a soliton of equal duration. As the pulse is amplified, cascaded fundamental solitons are created at different distances, without soliton fission, as each fundamental soliton moves outside the gain bandwidth through the Raman-induced spectral shifts. As a result, each input pulse creates multiple, temporally separated, ultrashort pulses of different wavelengths at the amplifier output. The number of pulses depends not only on the total gain of the amplifier but also on the width of input pulses.

  8. Interband Cascade Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui Q. [Univ. of Oklahoma, Norman, OK (United States); Santos, Michael B. [Univ. of Oklahoma, Norman, OK (United States); Johnson, Matthew B. [Univ. of Oklahoma, Norman, OK (United States)

    2014-09-24

    In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamental aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 μm, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.

  9. Cascade Lake: A Novel

    OpenAIRE

    Pack, Camille Marian

    2009-01-01

    Twenty-two-year-old Macy Oman narrates the book in retrospect from Cascade, Oregon, where she is visiting her mother. Macy's father moved with her to Portland shortly after the accidental death of her brother, Nick, seven years before the narration begins. Macy's mother stayed behind in Cascade. Thematically the work centers on the emotional repercussions of these losses. Macy's, and her older lover Jason's, involvement with Nick's death is unknown to everyone. Her guilt and her mother's perc...

  10. Physics of interband cascade lasers

    Science.gov (United States)

    Vurgaftman, I.; Bewley, W. W.; Merritt, C. D.; Canedy, C. L.; Kim, C. S.; Abell, J.; Meyer, J. R.; Kim, M.

    2012-01-01

    The interband cascade laser (ICL) is a unique device concept that combines the effective parallel connection of its multiple-quantum-well active regions, interband active transitions, and internal generation of electrons and holes at a semimetallic interface within each stage of the device. The internal generation of carriers becomes effective under bias, and the role of electrical injection is to replenish the carriers consumed by recombination processes. Major strides have been made toward fundamentally understanding the rich and intricate ICL physics, which has in turn led to dramatic improvements in the device performance. In this article, we review the physical principles of the ICL operation and designs of the active region, electron and hole injectors, and optical waveguide. The results for state-of- the-art ICLs spanning the 3-6 μm wavelength range are also briefly reviewed. The cw threshold input powers at room temperature are more than an order of magnitude lower than those for quantum cascade lasers throughout the mid-IR spectral range. This will lengthen battery lifetimes and greatly relax packaging and size/weight requirements for fielded sensing systems.

  11. Cascade Organic Solar Cells

    KAUST Repository

    Schlenker, Cody W.

    2011-09-27

    We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.

  12. Cascaded Parametric Amplification for Highly Efficient Terahertz Generation

    CERN Document Server

    Ravi, Koustuban; Cirmi, Giovanni; Reichert, Fabian; Schimpf, Damian N; Muecke, Oliver D; Kaertner, Franz X

    2016-01-01

    A highly efficient, practical approach to high-energy terahertz (THz) generation based on spectrally cascaded optical parametric amplification (THz-COPA) is introduced. The THz wave initially generated by difference frequency generation between a strong narrowband optical pump and optical seed (0.1-10% of pump energy) kick-starts a repeated or cascaded energy down-conversion of pump photons. This helps to greatly surpass the quantum-defect efficiency and results in exponential growth of THz energy over crystal length. In cryogenically cooled periodically poled lithium niobate, energy conversion efficiencies >8% for 100 ps pulses are predicted. The calculations account for cascading effects, absorption, dispersion and laser-induced damage. Due to the coupled nonlinear interaction of multiple triplets of waves, THz-COPA exhibits physics distinct from conventional three-wave mixing parametric amplifiers. This in turn governs optimal phase-matching conditions, evolution of optical spectra as well as limitations o...

  13. On-line coupling of surface plasmon resonance optical sensing to size-exclusion chromatography for affinity assessment of antibody samples.

    Science.gov (United States)

    Lakayan, Dina; Haselberg, Rob; Niessen, Wilfried M A; Somsen, Govert W; Kool, Jeroen

    2016-06-24

    Surface plasmon resonance (SPR) is an optical technique that measures biomolecular interactions. Stand-alone SPR cannot distinguish different binding components present in one sample. Moreover, sample matrix components may show non-specific binding to the sensor surface, leading to detection interferences. This study describes the development of coupled size-exclusion chromatography (SEC) SPR sensing for the separation of sample components prior to their on-line bio-interaction analysis. A heterogeneous polyclonal human serum albumin antibody (anti-HSA) sample, which was characterized by proteomics analysis, was used as test sample. The proposed SEC-SPR coupling was optimized by studying system parameters, such as injection volume, flow rate and sample concentration, using immobilized HSA on the sensor chip. Automated switch valves were used for on-line regeneration of the SPR sensor chip in between injections and for potential chromatographic heart cutting experiments, allowing SPR detection of individual components. The performance of the SEC-SPR system was evaluated by the analysis of papain-digested anti-HSA sampled at different incubation time points. The new on-line SEC-SPR methodology allows specific label-free analysis of real-time interactions of eluting antibody sample constituents towards their antigenic target. PMID:27215465

  14. Cascaded Poisson processes

    Science.gov (United States)

    Matsuo, Kuniaki; Saleh, Bahaa E. A.; Teich, Malvin Carl

    1982-12-01

    We investigate the counting statistics for stationary and nonstationary cascaded Poisson processes. A simple equation is obtained for the variance-to-mean ratio in the limit of long counting times. Explicit expressions for the forward-recurrence and inter-event-time probability density functions are also obtained. The results are expected to be of use in a number of areas of physics.

  15. CSS - Cascading Style Sheets

    OpenAIRE

    Martinelli, Massimo

    2009-01-01

    Curso "CSS - Cascading Style Sheets" sobre programación web con CSS para el "Máster doble competencia en ciencias informáticas y ciencias sociales" ("Master double competence in computer science and social science"). Proyecto TEMPUS JEP – 26235-2005

  16. Cascaded Mach–Zehnder interferometer tunable filters

    Science.gov (United States)

    Ovvyan, A. P.; Gruhler, N.; Ferrari, S.; Pernice, W. H. P.

    2016-06-01

    By cascading compact and low-loss Mach–Zehnder interferometers (MZIs) embedded within nanophotonic circuits we realize thermo-optically tunable optical filters for the visible wavelength range. Through phase tuning in either arm of the MZI, the filter response with maximum extinction can be shifted beyond one free-spectral range with low electrical power consumption. The working wavelength of our device is aligned with the emission wavelength of the silicon vacancy color center in diamond around 740 nm where we realize a filter depth beyond 36.5 dB. Our approach allows for efficient isolation of the emitted signal intensity in future hybrid nanodiamond-nanophotonic circuits.

  17. Integrated Broadband Quantum Cascade Laser

    Science.gov (United States)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  18. Gas Chromatography.

    Science.gov (United States)

    Karasek, Francis W.; And Others

    1984-01-01

    This review covers fundamental developments in gas chromatography during 1982 and 1983. Literature is considered under these headings: columns; liguid phases; solid supports; sorption processes and solvents; open tubular column gas chromatography; instrumentation; high-resolution columns and applications; other techniques; qualitative and…

  19. Cascaded frequency doublers for broadband laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, N F; Vlasova, K V; Davydov, V S; Kulikov, S M; Makarov, A I; Sukharev, Stanislav A; Freidman, Gennadii I; Shubin, S V

    2012-10-31

    A new scheme of a cascaded converter of the first harmonic of broadband cw laser radiation into the second harmonic (SH) with compensation for the group walk-off in cascades is proposed and investigated. The conditions under which high conversion coefficients of broadband ({approx}33 cm{sup -1}) single-mode fibre laser radiation with low peak power ({approx}300 W) into the SH are determined for frequency doublers based on the most promising LBO crystal. Conversion of cw radiation with an average power of 300 W and efficiency {eta} = 4.5 % into the SH is obtained in a single LBO crystal. Effect of coherent addition of SH radiation excited in different cascades is demonstrated for two- and three-stage schemes. The expected conversion efficiencies, calculated disregarding loss but taking into account real aberrations of elements, are 18 % and 38 %, respectively. The effect of pumping depletion begins to manifest itself in the third cascade of a three-stage converter; it may reduce the latter value to {approx}30 %. (nonlinear optical phenomena)

  20. Cascaded forward Brillouin scattering to all Stokes orders

    CERN Document Server

    Wolff, Christian; Eggleton, Benjamin J; Steel, Michael J; Poulton, Christopher G

    2016-01-01

    Inelastic scattering processes such as Brillouin scattering can often function in cascaded regimes and this is likely to occur in certain integrated opto-acoustic devices. We develop a Hamiltonian formalism for cascaded Brillouin scattering valid for both quantum and classical regimes. By regarding Brillouin scattering as the interaction of a single acoustic envelope and a single optical envelope that covers all Stokes and anti-Stokes orders, we obtain a compact model that is well suited for numerical implementation, extension to include other optical nonlinearities or short pulses, and application in the quantum-optics domain. We then theoretically analyze intra-mode forward Brillouin scattering (FBS) for arbitrary waveguides with and without optical dispersion. In the absence of optical dispersion, we find an exact analytical solution. With a perturbative approach, we furthermore solve the case of weak optical dispersion. Our work leads to several key results on intra-mode FBS. For negligible dispersion, we...

  1. A new cascadic multigrid

    Institute of Scientific and Technical Information of China (English)

    SHI; Zhongci

    2001-01-01

    [1]Bornemann, F., Deuflhard, P., The cascadic multigrid method for elliptic problems, Numer. Math., 996, 75: 35.[2]Bornemann, F., Deuflhard, P., The cascadic multigrid method, The Eighth International Conference on Domain Decomposition Methods for Partial Differential Equations (eds. Glowinski, R., Periaux, J., Shi, Z. et al.), New York: John Wiley and Sons, 997.[3]Bornemann, F., Krause, R., Classical and cascadic multigrid-methodogical comparison, Proceedings of the 9th International Conference on Domain Decomposition (eds. Bjorstad, P., Espedal, M., Keyes, D.), New York: John Wiley and Sons, 998.[4]Shaidurov, V., Some estimates of the rate of convergence for the cascadic conjugate gradient method, Comp. Math. Applic., 996, 3: 6.[5]Shi, Z., Xu, X., Cascadic multigrid method for the second order elliptic problem, East-West J. Numer. Math., 998, 6: 309.[6]Shi, Z., Xu, X., Cascadic multigrid for elliptic problems, East-West J. Numer. Math., 999, 7: 99.[7]Shi, Z., Xu, X., Cascadic multigrid method for the plate bending problem, East-West J. Numer. Math., 998, 6: 37.[8]Braess, D., Dahmen, W., A cascade multigrid algorithm for the Stokes equations, Number. Math., 999, 82: 79.[9]Shi, Z., Xu, X., Cascadic multigrid for parabolic problems, J. Comput. Math., 2000, 8: 450.[10]Ciarlet, P.,The Finite Element Method for Elliptic Problems, Amsterdam: North-Holland, 978.[11]Zienkiewicz, O. C., The Finite Element Method, 3rd. ed., London: McGraw-Hill, 977.[12]Powell, M. J. D., Sabin, M. A., Piecewise quadratic approximations on triangles, ACM Trans. Mat. Software, 977, 3: 36.[13]Xu, J., The auxiliary space method and optimal multigrid precondition techniques for unstructured grids, Computing, 996, 56: 25.[14]Bank, R., Dupont, T., An optimal order process for solving finite element equations, Math. Comput., 980, 36: 35.[15]Brenner, S., Convergence of nonconforming multigrid methods without full elliptic regularity, Math

  2. Quantum Cascade Laser Frequency Combs

    Science.gov (United States)

    Faist, Jérôme; Villares, Gustavo; Scalari, Giacomo; Rösch, Markus; Bonzon, Christopher; Hugi, Andreas; Beck, Mattias

    2016-06-01

    It was recently demonstrated that broadband quantum cascade lasers can operate as frequency combs. As such, they operate under direct electrical pumping at both mid-infrared and THz frequencies, making them very attractive for dual-comb spectroscopy. Performance levels are continuously improving, with average powers over 100mW and frequency coverage of 100 cm-1 in the mid-infrared region. In the THz range, 10mW of average power and 600 GHz of frequency coverage are reported. As a result of the very short upper state lifetime of the gain medium, the mode proliferation in these sources arises from four-wave mixing rather than saturable absorption. As a result, their optical output is characterized by the tendency of small intensity modulation of the output power, and the relative phases of the modes to be similar to the ones of a frequency modulated laser. Recent results include the proof of comb operation down to a metrological level, the observation of a Schawlow-Townes broadened linewidth, as well as the first dual-comb spectroscopy measurements. The capability of the structure to integrate monothically nonlinear optical elements as well as to operate as a detector shows great promise for future chip integration of dual-comb systems.

  3. Quantum Cascade Detectors

    OpenAIRE

    Giorgetta, Fabrizio R.; Baumann, Esther; Graf, Marcel; Yang, Quankui; Manz, Christian; Köhler, Klaus; Beere, Harvey E.; Ritchie, David A.; Linfield, Edmund; Davies, Alexander G.; Fedoryshyn, Yuriy; Jackel, Heinz; Fischer, Milan; Faist, Jérôme; Hofstetter, Daniel

    2010-01-01

    This paper gives an overview on the design, fabrication, and characterization of quantum cascade detectors. They are tailorable infrared photodetectors based on intersubband transitions in semiconductor quantum wells that do not require an external bias voltage due to their asymmetric conduction band profile. They thus profit from favorable noise behavior, reduced thermal load, and simpler readout circuits. This was demonstrated at wavelengths from the near infrared at 2 μm to THz radiation a...

  4. Information cascade on networks

    Science.gov (United States)

    Hisakado, Masato; Mori, Shintaro

    2016-05-01

    In this paper, we discuss a voting model by considering three different kinds of networks: a random graph, the Barabási-Albert (BA) model, and a fitness model. A voting model represents the way in which public perceptions are conveyed to voters. Our voting model is constructed by using two types of voters-herders and independents-and two candidates. Independents conduct voting based on their fundamental values; on the other hand, herders base their voting on the number of previous votes. Hence, herders vote for the majority candidates and obtain information relating to previous votes from their networks. We discuss the difference between the phases on which the networks depend. Two kinds of phase transitions, an information cascade transition and a super-normal transition, were identified. The first of these is a transition between a state in which most voters make the correct choices and a state in which most of them are wrong. The second is a transition of convergence speed. The information cascade transition prevails when herder effects are stronger than the super-normal transition. In the BA and fitness models, the critical point of the information cascade transition is the same as that of the random network model. However, the critical point of the super-normal transition disappears when these two models are used. In conclusion, the influence of networks is shown to only affect the convergence speed and not the information cascade transition. We are therefore able to conclude that the influence of hubs on voters' perceptions is limited.

  5. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  6. Dynamics of quantum cascade lasers: numerics

    Science.gov (United States)

    Van der Sande, Guy; Verschaffelt, Guy

    2016-04-01

    Since the original demonstration of terahertz quantum-cascade lasers (QCLs), the performance of these devices has shown rapid improvement. QCLs can now deliver milliwatts or more of continuous-wave radiation throughout the terahertz frequency range (300 GHz to 10 THz). Therefore, QCLs have become widely used in various applications such as spectroscopy, metrology or free-space telecommunications. For many of these applications there is a need for compact tuneable quantum cascade lasers. Nowadays most tuneable QCLs are based on a bulky external cavity configuration. We explore the possibility of tuning the operating wavelength through a fully integrated on-chip wavelength selective feedback applied to a dual wavelength QCL. Our numerical and analytical analyses are based on rate equation models describing the dynamics of QCLs extended to include delayed filtered optical feedback. We demonstrate the possibility to tune the operating wavelength by altering the absorption and/or amplification of the signal in the delayed feedback path. The tuning range of a laser is limited by the spectral width of its gain. For inter-band semiconductor lasers this spectral width is typically several tens of nm. Hence, the laser cavity supports the existence of multiple modes and on chip wavelength selective feedback has been demonstrated to be a promising tuning mechanism. We have selected a specific QCL gain structure with four energy levels and with two lasing transitions in the same cascade. In this scheme, the two lasing modes use a common upper level. Hence, the two modes compete in part for the same carriers to account for their optical gain. We have added delayed wavelength specific filtered optical feedback to the rate equation model describing these transitions. We have calculated the steady states and their stability in the absence of delay for the feedback field and studied numerically the case with non-zero delay. We have proven that wavelength tuning of a dual wavelength

  7. Hyperuniform disordered terahertz quantum cascade laser

    Science.gov (United States)

    Degl'Innocenti, R.; Shah, Y. D.; Masini, L.; Ronzani, A.; Pitanti, A.; Ren, Y.; Jessop, D. S.; Tredicucci, A.; Beere, H. E.; Ritchie, D. A.

    2016-01-01

    Laser cavities have been realized in various different photonic systems. One of the forefront research fields regards the investigation of the physics of amplifying random optical media. The random laser is a fascinating concept because, further to the fundamental research investigating light transport into complex media, it allows us to obtain non-conventional spectral distribution and angular beam emission patterns not achievable with conventional approaches. Even more intriguing is the possibility to engineer a priori the optical properties of a disordered distribution in an amplifying medium. We demonstrate here the realization of a terahertz quantum cascade laser in an isotropic hyperuniform disordered distribution exhibiting unique features, such as the presence of a photonic band gap, low threshold current density, unconventional angular emission and optical bistability.

  8. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  9. Multiphase cascaded lattice Boltzmann method

    OpenAIRE

    Lycett-Brown, D.; Luo, K. H.

    2014-01-01

    To improve the stability of the lattice Boltzmann method (LBM) at high Reynolds number the cascaded LBM has recently been introduced. As in the multiple relaxation time (MRT) method the cascaded LBM introduces additional relaxation times into the collision operator, but does so in a co-moving reference frame. This has been shown to significantly increase stability at low viscosity in the single phase case. Here the cascaded LBM is further developed to include multiphase flow. For this the for...

  10. Cascade hydrodewaxing process

    Energy Technology Data Exchange (ETDEWEB)

    Yen, J.H.

    1986-07-08

    A cascade catalytic hydrodewaxing process is described comprising: (a) passing a hydrocarbon feedstock containing waxy components selected from a group of normal paraffins and slightly branched chain paraffins over a hydroisomerization catalyst comprising a crystalline silicate zeolite having the structure of ZSM-12 in admixture with a crystalline silicate zeolite having the structure of ZSM-23, the admixture having hydrogenation/dehydrogenation activity to hydroisomerize the feedstock; and (b) passing at least a majority of the normally liquid hydrocarbon recovered from step (a) over a dewaxing catalyst comprising a crystalline silicate zeolite having a structure of ZSM-5, the zeolite of step (b) having hydrogenation/-dehydrogenation activity to dewax the recovered hydrocarbon.

  11. Quantum Cascade Laser Frequency Combs

    CERN Document Server

    Faist, Jérôme; Scalari, Giacomo; Rösch, Markus; Bonzon, Christopher; Hugi, Andreas; Beck, Mattias

    2015-01-01

    It was recently demonstrated that broadband quantum cascade lasers can operate as frequency combs. As such, they operate under direct electrical pumping at both mid-infrared and THz frequencies, making them very attractive for dual-comb spectroscopy. Performance levels are continuously improving, with average powers over 100 mW and frequency coverage of 100 cm$^{-1}$ in the mid-infrared. In the THz range, 10 mW of average power and 600 GHz of frequency coverage are reported. As a result of the very short upper state lifetime of the gain medium, the mode proliferation in these sources arises from four wave mixing rather than saturable absorption. As a result, their optical output is characterized by the tendency of small intensity modulation of the output power, and the relative phases of the modes to be similar to the ones of a frequency modulated laser. Recent results include the proof of comb operation down to a metrological level, the observation of a Schawlow-Townes broadened linewidth, as well as the fir...

  12. Energy Cascades in MHD

    Science.gov (United States)

    Alexakis, A.

    2009-04-01

    Most astrophysical and planetary systems e.g., solar convection and stellar winds, are in a turbulent state and coupled to magnetic fields. Understanding and quantifying the statistical properties of magneto-hydro-dynamic (MHD) turbulence is crucial to explain the involved physical processes. Although the phenomenological theory of hydro-dynamic (HD) turbulence has been verified up to small corrections, a similar statement cannot be made for MHD turbulence. Since the phenomenological description of Hydrodynamic turbulence by Kolmogorov in 1941 there have been many attempts to derive a similar description for turbulence in conducting fluids (i.e Magneto-Hydrodynamic turbulence). However such a description is going to be based inevitably on strong assumptions (typically borrowed from hydrodynamics) that do not however necessarily apply to the MHD case. In this talk I will discuss some of the properties and differences of the energy and helicity cascades in turbulent MHD and HD flows. The investigation is going to be based on the analysis of direct numerical simulations. The cascades in MHD turbulence appear to be a more non-local process (in scale space) than in Hydrodynamics. Some implications of these results to turbulent modeling will be discussed

  13. Quantum Cascade Photonic Crystal lasers

    Science.gov (United States)

    Capasso, Federico

    2004-03-01

    QC lasers have emerged in recent years as the dominant laser technology for the mid-to far infrared spectrum in light of their room temperature operation, their tunability, ultrahigh speed operation and broad range of applications to chemical sensing, spectroscopy etc. (Ref. 1-3). After briefly reviewing the latter, I will describe a new class of mid-infrared QC lasers, Quantum Cascade Photonic Crystal Surface Emitting Lasers (QCPCSELS), that combine electronic and photonic band structure engineering to achieve vertical emission from the surface (Ref. 4). Devices operating on bandedge mode and on defect modes will be discussed. Exciting potential uses of these new devices exist in nonlinear optics, microfluidics as well as novel sensors. Finally a bird's eye view of other exciting areas of QC laser research will be given including broadband QCLs and new nonlinear optical sources based on multiwavelength QCLs. 1. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Physics Today 55, 34 (May 2002) 2. F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho and H. C. Liu, IEEE Journal of Selected Topics in Quantum Electronics, 6, 931 (2000). 3. F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, E. A. Whittaker, IEEE J. Quantum Electron. 38, 511 (2002) 4. R. Colombelli, K. Srivasan, M. Troccoli, O. Painter, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho and F. Capasso, Science 302, 1374 (2003)

  14. Gas chromatography

    Science.gov (United States)

    Guiochon, Georges; Guillemin, Claude L.

    1990-11-01

    Gas chromatography is a powerful separation technique for gas and vapor mixtures. Combining separation and on-line detection permits accurate quantitative analysis of complex mixtures, including traces of compounds down to parts per trillions in some particular cases. The importance of gas chromatography in quality control and process control in the chemical and drug industry, in environmental pollution investigations and in clinical analysis is critical. The principles of the technique are discussed, the main components of a gas chromatograph are described and some idea of the importance of the applications is given.

  15. Cascaded uncoupled dual-ring modulator

    CERN Document Server

    Gu, Tingyi; Wong, Chee Wei; Dong, Po

    2014-01-01

    We demonstrate that by coherent driving two uncoupled rings in same direction, the effective photon circulating time in the dual ring modulator is reduced, with increased modulation quality. The inter-ring detuning dependent photon dynamics, Q-factor, extinction ratio and optical modulation amplitude of two cascaded silicon ring resonators are studied and compared with that of a single ring modulator. Experimentally measured eye diagrams, together with coupled mode theory simulations, demonstrate the enhancement of dual ring configuration at 20 Gbps with a Q ~ 20,000.

  16. Ion Chromatography.

    Science.gov (United States)

    Mulik, James D.; Sawicki, Eugene

    1979-01-01

    Accurate for the analysis of ions in solution, this form of analysis enables the analyst to directly assay many compounds that previously were difficult or impossible to analyze. The method is a combination of the methodologies of ion exchange, liquid chromatography, and conductimetric determination with eluant suppression. (Author/RE)

  17. Cascade Error Projection Learning Algorithm

    Science.gov (United States)

    Duong, T. A.; Stubberud, A. R.; Daud, T.

    1995-01-01

    A detailed mathematical analysis is presented for a new learning algorithm termed cascade error projection (CEP) and a general learning frame work. This frame work can be used to obtain the cascade correlation learning algorithm by choosing a particular set of parameters.

  18. Cascade Distillation System Development

    Science.gov (United States)

    Callahan, Michael R.; Sargushingh, Miriam; Shull, Sarah

    2014-01-01

    NASA's Advanced Exploration Systems (AES) Life Support System (LSS) Project is chartered with de-veloping advanced life support systems that will ena-ble NASA human exploration beyond low Earth orbit (LEO). The goal of AES is to increase the affordabil-ity of long-duration life support missions, and to re-duce the risk associated with integrating and infusing new enabling technologies required to ensure mission success. Because of the robust nature of distillation systems, the AES LSS Project is pursuing develop-ment of the Cascade Distillation Subsystem (CDS) as part of its technology portfolio. Currently, the system is being developed into a flight forward Generation 2.0 design.

  19. Interband cascade lasers

    Science.gov (United States)

    Vurgaftman, I.; Weih, R.; Kamp, M.; Meyer, J. R.; Canedy, C. L.; Kim, C. S.; Kim, M.; Bewley, W. W.; Merritt, C. D.; Abell, J.; Höfling, S.

    2015-04-01

    We review the current status of interband cascade lasers (ICLs) emitting in the midwave infrared (IR). The ICL may be considered the hybrid of a conventional diode laser that generates photons via electron-hole recombination, and an intersubband-based quantum cascade laser (QCL) that stacks multiple stages for enhanced current efficiency. Following a brief historical overview, we discuss theoretical aspects of the active region and core designs, growth by molecular beam epitaxy, and the processing of broad-area, narrow-ridge, and distributed feedback (DFB) devices. We then review the experimental performance of pulsed broad area ICLs, as well as the continuous-wave (cw) characteristics of narrow ridges having good beam quality and DFBs producing output in a single spectral mode. Because the threshold drive powers are far lower than those of QCLs throughout the λ = 3-6 µm spectral band, ICLs are increasingly viewed as the laser of choice for mid-IR laser spectroscopy applications that do not require high output power but need to be hand-portable and/or battery operated. Demonstrated ICL performance characteristics to date include threshold current densities as low as 106 A cm-2 at room temperature (RT), cw threshold drive powers as low as 29 mW at RT, maximum cw operating temperatures as high as 118 °C, maximum cw output powers exceeding 400 mW at RT, maximum cw wallplug efficiencies as high as 18% at RT, maximum cw single-mode output powers as high as 55 mW at RT, and single-mode output at λ = 5.2 µm with a cw drive power of only 138 mW at RT.

  20. Interband cascade lasers

    International Nuclear Information System (INIS)

    We review the current status of interband cascade lasers (ICLs) emitting in the midwave infrared (IR). The ICL may be considered the hybrid of a conventional diode laser that generates photons via electron–hole recombination, and an intersubband-based quantum cascade laser (QCL) that stacks multiple stages for enhanced current efficiency. Following a brief historical overview, we discuss theoretical aspects of the active region and core designs, growth by molecular beam epitaxy, and the processing of broad-area, narrow-ridge, and distributed feedback (DFB) devices. We then review the experimental performance of pulsed broad area ICLs, as well as the continuous-wave (cw) characteristics of narrow ridges having good beam quality and DFBs producing output in a single spectral mode. Because the threshold drive powers are far lower than those of QCLs throughout the λ = 3–6 µm spectral band, ICLs are increasingly viewed as the laser of choice for mid-IR laser spectroscopy applications that do not require high output power but need to be hand-portable and/or battery operated. Demonstrated ICL performance characteristics to date include threshold current densities as low as 106 A cm−2 at room temperature (RT), cw threshold drive powers as low as 29 mW at RT, maximum cw operating temperatures as high as 118 °C, maximum cw output powers exceeding 400 mW at RT, maximum cw wallplug efficiencies as high as 18% at RT, maximum cw single-mode output powers as high as 55 mW at RT, and single-mode output at λ = 5.2 µm with a cw drive power of only 138 mW at RT. (topical review)

  1. Investigation of cascadability of add-drop multiplexers in OTDM systems

    DEFF Research Database (Denmark)

    Jepsen, Kim Stokholm; Poulsen, Henrik Nørskov; Clausen, Anders;

    1998-01-01

    The influence of coherent cross-talk on the cascadability of add-drop multiplexers in optical time division multiplexing (OTDM) systems is analysed theoretically using moment generating functions. Calculations are validated by experiments......The influence of coherent cross-talk on the cascadability of add-drop multiplexers in optical time division multiplexing (OTDM) systems is analysed theoretically using moment generating functions. Calculations are validated by experiments...

  2. Use of a fast beam target for the determination and reduction of the cascade contribution to electron excitation cross-section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Boffard, J.B.; Gehrke, M.F.; Lagus, M.E.; Anderson, L.W.; Lin, C.C. [Wisconsin Univ., Madison, WI (United States). Dept. of Physics

    2000-02-01

    This paper describes a method for reducing the influence of cascades on the measurement of electron excitation cross sections using the optical method and a fast beam atomic target. By using a fast beam of target atoms one can reduce the influence of cascades on a measurement, and estimate the cascade contribution to the excitation signal. (orig.)

  3. Penalty-free transmission at 10 Gbit/s through 40 cascaded 1-nm arrayed waveguide multiplexers

    DEFF Research Database (Denmark)

    Nissov, Morten; Jørgensen, Bo Foged; Pedersen, Rune Johan Skullerud

    1997-01-01

    is therefore vital for the network performance. The actual transfer function of multiplexers is important, because the available end-to-end bandwidth between connected nodes in optical networks with cascades of OXCs and OADMs is given by the product of the transfer functions. In this paper, we demonstrate......Cascaded optical add-drop multiplexers (OADM) and optical cross connects (OXC) are key components in optical wavelength-division multiplex networks. OADMs with filtering of the passing signals and OXCs can be constructed by the use of wavelength-division multiplexers. Cascadability of multiplexers...

  4. Modeling of Bit Error Rate in Cascaded 2R Regenerators

    DEFF Research Database (Denmark)

    Öhman, Filip; Mørk, Jesper

    2006-01-01

    This paper presents a simple and efficient model for estimating the bit error rate in a cascade of optical 2R-regenerators. The model includes the influences of of amplifier noise, finite extinction ratio and nonlinear reshaping. The interplay between the different signal impairments...... and the regenerating nonlinearity is investigated. It is shown that an increase in nonlinearity can compensate for an increase in noise figure or decrease in signal power. Furthermore, the influence of the improvement in signal extinction ratio along the cascade and the importance of choosing the proper threshold...

  5. Cascade Mountain Range in Oregon

    Science.gov (United States)

    Sherrod, David R.

    2016-01-01

    The Cascade mountain system extends from northern California to central British Columbia. In Oregon, it comprises the Cascade Range, which is 260 miles long and, at greatest breadth, 90 miles wide (fig. 1). Oregon’s Cascade Range covers roughly 17,000 square miles, or about 17 percent of the state, an area larger than each of the smallest nine of the fifty United States. The range is bounded on the east by U.S. Highways 97 and 197. On the west it reaches nearly to Interstate 5, forming the eastern margin of the Willamette Valley and, farther south, abutting the Coast Ranges. 

  6. Cascade redox flow battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  7. High-Speed Operation of Interband Cascade Lasers

    Science.gov (United States)

    Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Wright, Malcom W.; Farr, William H.; Yang, Rui Q.; Liu, H. C.

    2010-01-01

    Optical sources operating in the atmospheric window of 3-5 microns are of particular interest for the development of free-space optical communication link. It is more advantageous to operate the free-space optical communication link in 3-5-microns atmospheric transmission window than at the telecom wavelength of 1.5 m due to lower optical scattering, scintillation, and background radiation. However, the realization of optical communications at the longer wavelength has encountered significant difficulties due to lack of adequate optical sources and detectors operating in the desirable wavelength regions. Interband Cascade (IC) lasers are novel semiconductor lasers that have a great potential for the realization of high-power, room-temperature optical sources in the 3-5-microns wavelength region, yet no experimental work, until this one, was done on high-speed direct modulation of IC lasers. Here, highspeed interband cascade laser, operating at wavelength 3.0 m, has been developed and the first direct measurement of the laser modulation bandwidth has been performed using a unique, highspeed quantum well infrared photodetector (QWIP). The developed laser has modulation bandwidth exceeding 3 GHz. This constitutes a significant increase of the IC laser modulation bandwidth over currently existing devices. This result has demonstrated suitability of IC lasers as a mid-IR light source for multi-GHz free-space optical communications links

  8. Cascading Gravity is Ghost Free

    CERN Document Server

    de Rham, Claudia; Tolley, Andrew J

    2010-01-01

    We perform a full perturbative stability analysis of the 6D cascading gravity model in the presence of 3-brane tension. We demonstrate that for sufficiently large tension on the (flat) 3-brane, there are no ghosts at the perturbative level, consistent with results that had previously only been obtained in a specific 5D decoupling limit. These results establish the cascading gravity framework as a consistent infrared modification of gravity.

  9. Communication Scheme via Cascade Chaotic Systems

    Institute of Scientific and Technical Information of China (English)

    HUA Chang-Chun; GUAN Xin-Ping

    2004-01-01

    @@ A new chaotic communication scheme is constructed. Different from the existing literature, cascade chaotic systems are employed. Two cascade modes are considered. First, we investigate the input to state cascade mode;cascade systems between different kinds of chaotic systems are considered. Then the parameter cascade case of chaotic system is studied. Under the different cases, the corresponding receivers are designed, which can succeed in recovering the former emitted signal. Simulations are performed to verify the validity of the proposed main results.

  10. A Cascading Failure Model by Quantifying Interactions

    OpenAIRE

    Qi, Junjian; Mei, Shengwei

    2013-01-01

    Cascading failures triggered by trivial initial events are encountered in many complex systems. It is the interaction and coupling between components of the system that causes cascading failures. We propose a simple model to simulate cascading failure by using the matrix that determines how components interact with each other. A careful comparison is made between the original cascades and the simulated cascades by the proposed model. It is seen that the model can capture general features of t...

  11. Cascaded parametric amplification for highly efficient terahertz generation.

    Science.gov (United States)

    Ravi, Koustuban; Hemmer, Michael; Cirmi, Giovanni; Reichert, Fabian; Schimpf, Damian N; Mücke, Oliver D; Kärtner, Franz X

    2016-08-15

    A highly efficient, practical approach to high-energy multi-cycle terahertz (THz) generation based on spectrally cascaded optical parametric amplification (THz-COPA) is introduced. Feasible designs are presented that enable the THz wave, initially generated by difference frequency generation between a narrowband optical pump and optical seed (0.1-10% of pump energy), to self-start a cascaded (or repeated) energy downconversion of pump photons in a single pass through a single crystal. In cryogenically cooled, periodically poled lithium niobate, unprecedented energy conversion efficiencies >8% achievable with existing pump laser technology are predicted using realistic simulations. The calculations account for cascading effects, absorption, dispersion, and laser-induced damage. Due to the simultaneous, coupled nonlinear evolution of multiple phase-matched three-wave mixing processes, THz-COPA exhibits physics distinctly different from conventional three-wave mixing parametric amplifiers. This, in turn, governs optimal phase-matching conditions, evolution of optical spectra, and limitations of the nonlinear process. Circumventing these limitations is shown to yield conversion efficiencies ≫10%. PMID:27519094

  12. Red-green-blue laser emission from cascaded polymer membranes

    Science.gov (United States)

    Zhai, Tianrui; Wang, Yonglu; Chen, Li; Wu, Xiaofeng; Li, Songtao; Zhang, Xinping

    2015-11-01

    Red-green-blue polymer laser emission is achieved in a free-standing membrane device consisting of three distributed feedback cavities. The polymer membrane is fabricated via interference lithography and a simple lift-off process. Multilayer structures can be assembled by cascading several polymer membranes. Thus optically pumped, simultaneous, red-green-blue laser emission is obtained from a three-layer cascaded membrane structure. This simple and low-cost fabrication technique can be used for compact, integrated laser sources.Red-green-blue polymer laser emission is achieved in a free-standing membrane device consisting of three distributed feedback cavities. The polymer membrane is fabricated via interference lithography and a simple lift-off process. Multilayer structures can be assembled by cascading several polymer membranes. Thus optically pumped, simultaneous, red-green-blue laser emission is obtained from a three-layer cascaded membrane structure. This simple and low-cost fabrication technique can be used for compact, integrated laser sources. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05965h

  13. Cromatografia unificada Unified chromatography

    Directory of Open Access Journals (Sweden)

    Carin von Mühlen

    2004-10-01

    Full Text Available The scope of this study encompasses an overview of the principles of unified chromatography as well as the principles of chromatographic techniques as applied to unified systems, which include gas chromatography, liquid chromatography, supercritical fluid chromatography, high temperature and high pressure liquid chromatography, micro-liquid chromatography, enhanced fluidity chromatography, and solvating gas chromatography. Theoretical considerations and individual instrumental parameters such as mobile phase, sample introduction system, columns, and detection system are also discussed. Future applications of this separation approach are discussed.

  14. InAs based terahertz quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Brandstetter, Martin, E-mail: martin.brandstetter@tuwien.ac.at; Kainz, Martin A.; Krall, Michael; Schönhuber, Sebastian; Unterrainer, Karl [Photonics Institute and Center for Micro- and Nanostructures, Technische Universität Wien, Gusshausstrasse 27-29, 1040 Vienna (Austria); Zederbauer, Tobias; Schrenk, Werner; Andrews, Aaron Maxwell; Strasser, Gottfried [Institute for Solid State Electronics and Center for Micro- and Nanostructures, Technische Universität Wien, Floragasse 7, 1040 Vienna (Austria); Detz, Hermann [Austrian Academy of Sciences, Dr. Ignaz Seipel-Platz 2, 1010 Vienna (Austria)

    2016-01-04

    We demonstrate terahertz lasing emission from a quantum cascade structure, realized with InAs/AlAs{sub 0.16}Sb{sub 0.84} heterostructures. Due to the lower effective electron mass, InAs based active regions are expected to provide a higher optical gain compared to structures consisting of GaAs or InGaAs. The growth by molecular beam epitaxy enabled the fabrication of monolayer-thick barriers, required for the active region, which is based on a 3-well resonant phonon depletion design. Devices were processed in a double-metal waveguide geometry to ensure high mode confinement and low optical losses. Lasing emission at 3.8 THz was observed at liquid helium temperatures by applying a magnetic field perpendicular to the layered structure in order to suppress parasitic scattering channels. These results demonstrate the feasibility of InAs based active regions for terahertz quantum cascade lasers, potentially enabling higher operating temperatures.

  15. Economical cascadic multigrid method (ECMG)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, an economical cascadic multigrid method is proposed. Compared with the usual cascadic multigrid method developed by Bornemann and Deuflhard, the new one requires less iterations on each level, especially on the coarser grids. Many operations can be saved in the new cascadic multigrid algorithms. The main ingredient is the control of the iteration numbers on the each level to preserve the accuracy without over iterations. The theoretical justification is based on the observations that the error reduction rate of an iteration scheme in terms of the smoothing property is no longer accurate while the iteration number is big enough. A new formulae of the error reduction rate is employed in our new algorithm. Numerical experiments are reported to support our theory.

  16. Rescuing Ecosystems from Extinction Cascades

    Science.gov (United States)

    Sahasrabudhe, Sagar; Motter, Adilson

    2010-03-01

    Food web perturbations stemming from climate change, overexploitation, invasive species, and natural disasters often cause an initial loss of species that results in a cascade of secondary extinctions. Using a predictive modeling framework, here we will present a systematic network-based approach to reduce the number of secondary extinctions. We will show that the extinction of one species can often be compensated by the concurrent removal of a second specific species, which is a counter-intuitive effect not previously tested in complex food webs. These compensatory perturbations frequently involve long-range interactions that are not a priori evident from local predator-prey relationships. Strikingly, in numerous cases even the early removal of a species that would eventually be extinct by the cascade is found to significantly reduce the number of cascading extinctions. Other nondestructive interventions based on partial removals and growth suppression and/or mortality increase are shown to sometimes prevent all secondary extinctions.

  17. The Optical Resolution of Chiral Tetrahedrone-type Clusters Contai- ning SCoFeM (M=Mo or W) Using High Performance Liquid Chromatography Chiral Stationary Phase

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Amylose tris (phenylcarbamate) chiral stationary phase (ATPC-CSP) was prepared and used for optical resolution of clusters 1 and 2. n-Hexane/2-propanol ( 99/1; v/v) were found to be the most suitable mobile phase on ATPC-CSP.

  18. Instrumentation: Ion Chromatography.

    Science.gov (United States)

    Fritz, James S.

    1987-01-01

    Discusses the importance of ion chromatography in separating and measuring anions. The principles of ion exchange are presented, along with some applications of ion chromatography in industry. Ion chromatography systems are described, as well as ion pair and ion exclusion chromatography, column packings, detectors, and programming. (TW)

  19. Characteristics for two kinds of cascading events

    Science.gov (United States)

    Zou, Sheng-Rong; Gu, Ai-Hua; Liu, Ai-Fen; Xu, Xiu-Lian; Wang, Jian; He, Da-Ren

    2011-04-01

    Avalanche or cascade failure is ubiquitous. We first classify the cascading phenomena into two categories: the cascading disasters which result in large-scale functional failures and the cascading events that do not lead to disasters. We elucidate that two important factors, the increasing amount of events and the acceleration of event frequency, can induce the crossover from the cascading phenomenon to the cascading disaster. Through a simplified sandpile model and a heuristic logistic map, we demonstrate that the dependence of the event number on the observation time behaves as a power-law and as an exponential for these two different cascading events, respectively. The analytic derivations are found to be consistent with several empirical observations. Our present findings contribute to the understanding of the transition between different cascading events, providing a basis for the further understanding of the transitions among more general critical events.

  20. Cascade Support Vector Machines with Dimensionality Reduction

    Directory of Open Access Journals (Sweden)

    Oliver Kramer

    2015-01-01

    Full Text Available Cascade support vector machines have been introduced as extension of classic support vector machines that allow a fast training on large data sets. In this work, we combine cascade support vector machines with dimensionality reduction based preprocessing. The cascade principle allows fast learning based on the division of the training set into subsets and the union of cascade learning results based on support vectors in each cascade level. The combination with dimensionality reduction as preprocessing results in a significant speedup, often without loss of classifier accuracies, while considering the high-dimensional pendants of the low-dimensional support vectors in each new cascade level. We analyze and compare various instantiations of dimensionality reduction preprocessing and cascade SVMs with principal component analysis, locally linear embedding, and isometric mapping. The experimental analysis on various artificial and real-world benchmark problems includes various cascade specific parameters like intermediate training set sizes and dimensionalities.

  1. Unsteady transonic flow in cascades

    Science.gov (United States)

    Surampudi, S. P.; Adamczyk, J. J.

    1984-01-01

    There is a need for methods to predict the unsteady air loads associated with flutter of turbomachinery blading at transonic speeds. The results of such an analysis in which the steady relative flow approaching a cascade of thin airfoils is assumed to be transonic, irrotational, and isentropic is presented. The blades in the cascade are allowed to undergo a small amplitude harmonic oscillation which generates a small unsteady flow superimposed on the existing steady flow. The blades are assumed to oscillate with a prescribed motion of constant amplitude and interblade phase angle. The equations of motion are obtained by linearizing about a uniform flow the inviscid nonheat conducting continuity and momentum equations. The resulting equations are solved by employing the Weiner Hopf technique. The solution yields the unsteady aerodynamic forces acting on the cascade at Mach number equal to 1. Making use of an unsteady transonic similarity law, these results are compared with the results obtained from linear unsteady subsonic and supersonic cascade theories. A parametric study is conducted to find the effects of reduced frequency, solidity, stagger angle, and position of pitching axis on the flutter.

  2. Applications of cascade multilevel inverters

    Institute of Scientific and Technical Information of China (English)

    彭方正; 钱照明

    2003-01-01

    Cascade multilevel inverters have been developed for electric utility applications. A cascade M-level inverter consists of (M-1)/2 H-bridges in which each bridge's dc voltage is supported by its own de ca-pacitor. The new inverter can : ( 1 ) generate almost sinusoidal waveform voltage while only switching one timeper fundamental cycle ; (2) dispense with multi-pulse inverters' transformers used in conventional utility in-terfaces and static var compensators; (3) enables direct parallel or series transformer-less connection to medium- and high-voltage power systems. In short, the cascade inverter is much more efficient and suitable for utility applications than traditional multi-pulse and pulse width modulation (PWM) inverters. The authors have experimentally demonstrated the superiority of the new inverter for power supply, (hybrid) electric vehicle (EV) motor drive, reactive power (var) and harmonic compensation. This paper summarizes the features,feasibility, and control schemes of the cascade inverter for utility applications including utility interface of renewable energy, voltage regulation, var compensation, and harmonic filtering in power systems. Analytical,simulated, and experimental results demonstrated the superiority of the new inverters.

  3. Applications of cascade multilevel inverters

    Institute of Scientific and Technical Information of China (English)

    彭方正; 钱照明

    2003-01-01

    Cascade multilevel inverters have been developed for electric utility applications. A cascade M-level inverter consists of (M-1)/2 H-bridges in which each bridge's dc voltage is supported by its own dc capacitor. The new inverter can: (1) generate almost sinusoidal waveform voltage while only switching one time per fundamental cycle; (2) dispense with multi-pulse inverters' transformers used in conventional utility interfaces and static var compensators; (3) enables direct parallel or series transformer-less connection to medium- and high-voltage power systems. In short, the cascade inverter is much more efficient and suitable for utility applications than traditional multi-pulse and pulse width modulation (PWM) inverters. The authors have experimentally demonstrated the superiority of the new inverter for power supply, (hybrid) electric vehicle (EV) motor drive, reactive power (var) and harmonic compensation. This paper summarizes the features, feasibility, and control schemes of the cascade inverter for utility applications including utility interface of renewable energy, voltage regulation, var compensation, and harmonic filtering in power systems. Analytical, simulated, and experimental results demonstrated the superiority of the new inverters.

  4. Azobenzene-functionalized cascade molecules

    DEFF Research Database (Denmark)

    Archut, A.; Vogtle, F.; De Cola, L.;

    1998-01-01

    Cascade molecules bearing up to 32 azobenzene groups in the periphery have been prepared from poly(propylene imine) dendrimers and N-hydroxysuccinimide esters. The dendritic azobenzene species show similar isomerization properties as the corresponding azobenzene monomers. The all-E azobenzene...

  5. Plasmonic lens enhanced mid-infrared quantum cascade detector

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, Andreas, E-mail: andreas.harrer@tuwien.ac.at; Schwarz, Benedikt; Gansch, Roman; Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried [Institute for Solid State Electronics and Center for Micro- and Nanostructures, Vienna University of Technology, 1040 Vienna (Austria)

    2014-10-27

    We demonstrate monolithic integrated quantum cascade detectors enhanced by plasmonic lenses. Surface normal incident mid-infrared radiation is coupled to surface plasmon polaritons guided to and detected by the active region of the detector. The lens extends the optical effective active area of the device up to a 5 times larger area than for standard mesa detectors or pixel devices while the electrical active region stays the same. The extended optical area increases the absorption efficiency of the presented device as well as the room temperature performance while it offers a flexible platform for various detector geometries. A photocurrent response increase at room temperature up to a factor of 6 was observed.

  6. Intranuclear cascade models lack dynamic flow

    OpenAIRE

    Molitoris, Joseph J.; Stöcker, Horst; Gustafsson, Hans-Ake; Cugnon, Joseph; L'Hote, Denis

    2006-01-01

    We study the recent claim that the intranuclear cascade model exhibits collective sidewards flow. 4000 intranuclear cascade simulations of the reaction Nb(400 MeV/nucleon)+Nb are performed employing bound and unbound versions of the Cugnon cascade. We show that instability of the target and projectile nuclei in the unbound cascade produces substantial spurious sidewards flow angles, for spectators as well as for participants. Once the nuclear binding is included, the peak of the flow angle di...

  7. Improving Soliton Compression Quality with Cascaded Nonlinearities by Engineered Multi-section Quasi-phase-matching Design

    DEFF Research Database (Denmark)

    Zeng, Xianglong; Guo, Hairun; Zhou, Binbin;

    2012-01-01

    In few-cycle soliton generation with large compression factors using cascaded nonlinearities the pulse quality can be improved by engineering quasi-phase-matching structures. The soliton-induced mid-IR optical Cherenkov wave is also enhanced.......In few-cycle soliton generation with large compression factors using cascaded nonlinearities the pulse quality can be improved by engineering quasi-phase-matching structures. The soliton-induced mid-IR optical Cherenkov wave is also enhanced....

  8. Exciton management in organic photovoltaic multidonor energy cascades.

    Science.gov (United States)

    Griffith, Olga L; Forrest, Stephen R

    2014-05-14

    Multilayer donor regions in organic photovoltaics show improved power conversion efficiency when arranged in decreasing exciton energy order from the anode to the acceptor interface. These so-called "energy cascades" drive exciton transfer from the anode to the dissociating interface while reducing exciton quenching and allowing improved overlap with the solar spectrum. Here we investigate the relative importance of exciton transfer and blocking in a donor cascade employing diphenyltetracene (D1), rubrene (D2), and tetraphenyldibenzoperiflanthene (D3) whose optical gaps monotonically decrease from D1 to D3. In this structure, D1 blocks excitons from quenching at the anode, D2 accepts transfer of excitons from D1 and blocks excitons at the interface between D2 and D3, and D3 contributes the most to the photocurrent due to its strong absorption at visible wavelengths, while also determining the open circuit voltage. We observe singlet exciton Förster transfer from D1 to D2 to D3 consistent with cascade operation. The power conversion efficiency of the optimized cascade OPV with a C60 acceptor layer is 7.1 ± 0.4%, which is significantly higher than bilayer devices made with only the individual donors. We develop a quantitative model to identify the dominant exciton processes that govern the photocurrent generation in multilayer organic structures. PMID:24702468

  9. Phase-locking in cascaded stimulated Brillouin scattering

    CERN Document Server

    Büttner, Thomas F S; Steel, M J; Hudson, Darren D; Eggleton, Benjamin J

    2015-01-01

    Cascaded stimulated Brillouin scattering (SBS) is a complex nonlinear optical process that results in the generation of several optical waves that are frequency shifted by an acoustic resonance frequency. Four-wave mixing (FWM) between these Brillouin shifted optical waves can create an equally spaced optical frequency comb with a stable spectral phase, i.e. a Brillouin frequency comb (BFC). Here, we investigate phase-locking of the spectral components of BFCs, considering FWM interactions arising from the Kerr-nonlinearity as well as from coupling by the acoustic field. Deriving for the first time the coupled-mode equations that include all relevant nonlinear interactions, we examine the contribution of the various nonlinear processes to phase-locking, and show that different regimes can be obtained that depend on the length scale on which the field amplitudes vary.

  10. Phase-locking in cascaded stimulated Brillouin scattering

    Science.gov (United States)

    Büttner, Thomas F. S.; Poulton, Christopher G.; Steel, M. J.; Hudson, Darren D.; Eggleton, Benjamin J.

    2016-02-01

    Cascaded stimulated Brillouin scattering is a complex nonlinear optical process that results in the generation of several optical waves that are frequency shifted by an acoustic resonance frequency. Four-wave mixing (FWM) between these Brillouin shifted optical waves can create an equally spaced optical frequency comb with a stable spectral phase, i.e. a Brillouin frequency comb (BFC). Here, we investigate phase-locking of the spectral components of BFCs, considering FWM interactions arising from the Kerr-nonlinearity as well as from coupling by the acoustic field. Deriving for the first time the coupled-mode equations that include all relevant nonlinear interactions, we examine the contribution of the various nonlinear processes to phase-locking, and show that different regimes can be obtained that depend on the length scale on which the field amplitudes vary.

  11. Quantum cascade laser Kerr frequency comb

    CERN Document Server

    Lecaplain, Caroline; Lucas, Erwan; Jost, John D; Kippenberg, Tobias J

    2015-01-01

    The mid-infrared (mid-IR) regime (typically the wavelength regime of $\\lambda \\sim 2.5-20 \\ \\mathrm{\\mu m}$) is an important spectral range for spectroscopy as many molecules have their fundamental rotational-vibrational absorption in this band. Recently optical frequency combs based on optical microresonators ("Kerr" combs) at the onset of the mid-IR region have been generated using crystalline resonators and integrated planar silicon micro-resonators. Here we extend for the first time Kerr combs deep into the mid-IR i.e. the 'molecular fingerprint' region. This is achieved by combining an ultra high quality (Q) factor mid-IR microresonator based on crystalline $\\mathrm{MgF_{2}}$ with the quantum cascade laser (QCL) technology. Using a tapered chalgogenide (ChG) fiber and a QCL continuous wave pump laser, frequency combs at $\\lambda\\sim 4.4\\ \\mathrm{\\mu m}$ (i.e. 2270cm$^{-1}$) are generated, that span over 600nm (i.e. 300cm$^{-1}$) in bandwidth, with a mode spacing of 14.3GHz (0.5cm$^{-1}$), corresponding t...

  12. Cascade Chaotic System With Applications.

    Science.gov (United States)

    Zhou, Yicong; Hua, Zhongyun; Pun, Chi-Man; Chen, C L Philip

    2015-09-01

    Chaotic maps are widely used in different applications. Motivated by the cascade structure in electronic circuits, this paper introduces a general chaotic framework called the cascade chaotic system (CCS). Using two 1-D chaotic maps as seed maps, CCS is able to generate a huge number of new chaotic maps. Examples and evaluations show the CCS's robustness. Compared with corresponding seed maps, newly generated chaotic maps are more unpredictable and have better chaotic performance, more parameters, and complex chaotic properties. To investigate applications of CCS, we introduce a pseudo-random number generator (PRNG) and a data encryption system using a chaotic map generated by CCS. Simulation and analysis demonstrate that the proposed PRNG has high quality of randomness and that the data encryption system is able to protect different types of data with a high-security level.

  13. Bankruptcy cascades in interbank markets.

    Directory of Open Access Journals (Sweden)

    Gabriele Tedeschi

    Full Text Available We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank's liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable.

  14. Bankruptcy Cascades in Interbank Markets

    Science.gov (United States)

    Tedeschi, Gabriele; Mazloumian, Amin; Gallegati, Mauro; Helbing, Dirk

    2012-01-01

    We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank’s liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable. PMID:23300760

  15. Optimally Training a Cascade Classifier

    CERN Document Server

    Shen, Chunhua; Hengel, Anton van den

    2010-01-01

    Cascade classifiers are widely used in real-time object detection. Different from conventional classifiers that are designed for a low overall classification error rate, a classifier in each node of the cascade is required to achieve an extremely high detection rate and moderate false positive rate. Although there are a few reported methods addressing this requirement in the context of object detection, there is no a principled feature selection method that explicitly takes into account this asymmetric node learning objective. We provide such an algorithm here. We show a special case of the biased minimax probability machine has the same formulation as the linear asymmetric classifier (LAC) of \\cite{wu2005linear}. We then design a new boosting algorithm that directly optimizes the cost function of LAC. The resulting totally-corrective boosting algorithm is implemented by the column generation technique in convex optimization. Experimental results on object detection verify the effectiveness of the proposed bo...

  16. Thermal cascaded lattice Boltzmann method

    CERN Document Server

    Fei, Linlin

    2016-01-01

    In this paper, a thermal cascaded lattice Boltzmann method (TCLBM) is developed in combination with the double-distribution-function (DDF) approach. A density distribution function relaxed by the cascaded scheme is employed to solve the flow field, and a total energy distribution function relaxed by the BGK scheme is used to solve temperature field, where two distribution functions are coupled naturally. The forcing terms are incorporated by means of central moments, which is consistent with the previous force scheme [Premnath \\emph{et al.}, Phys. Rev. E \\textbf{80}, 036702 (2009)] but the derivation is more intelligible and the evolution process is simpler. In the method, the viscous heat dissipation and compression work are taken into account, the Prandtl number and specific-heat ratio are adjustable, the external force is considered directly without the Boussinesq assumption, and the low-Mach number compressible flows can also be simulated. The forcing scheme is tested by simulating a steady Taylor-Green f...

  17. THz quantum cascade lasers for standoff molecule detection.

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Weng Wah; Wanke, Michael Clement; Lerttamrab, Maytee; Waldmueller, Ines

    2007-10-01

    Remote optical detection of molecules, agents, and energetic materials has many applications to national security interests. Currently there is significant interest in determining under what circumstances THz frequency coverage will aid in a complete sensing package. Sources of coherent THz frequency (i.e. 0.1 to 10 THz) electromagnetic radiation with requisite power levels, frequency agility, compactness and reliability represent the single greatest obstacle in establishing a THz technology base, but recent advances in semiconductor-based quantum cascade lasers (QCLs) offer huge improvements towards the ultimate THz source goals. This project advanced the development of narrow-linewidth THz quantum cascade lasers. We developed theoretical tools to guide the improvement of standard THz quantum cascade lasers, the investigation of nonlinear optics employing infrared QCLs, and the exploration of quantum coherence to improve QCL performance. The latter was aimed especially towards achieving high temperature operation. In addition we developed a computer algorithm capable of shifting the frequencies of an existing THz QCL to a different frequency and invented a new type of laser that may enable room temperature THz generation in a electrically driven solid-state source.

  18. Turbulence: does energy cascade exist?

    CERN Document Server

    Josserand, Christophe; Lehner, Thierry; Pomeau, Yves

    2016-01-01

    To answer the question whether a cascade of energy exists or not in turbulence, we propose a set of correlation functions able to test if there is an irreversible transfert of energy, step by step, from large to small structures. These tests are applied to real Eulerian data of a turbulent velocity flow, taken in the wind grid tunnel of Modane, and also to a prototype model equation for wave turbulence. First we demonstrate the irreversible character of the flow by using multi-time correlation function at a given point of space. Moreover the unexpected behavior of the test function leads us to connect irreversibility and finite time singularities (intermittency). Secondly we show that turbulent cascade exists, and is a dynamical process, by using a test function depending on time and frequency. The cascade shows up only in the inertial domain where the kinetic energy is transferred more rapidly (on average) from the wavenumber $k_{1}$ to $k_{2}$ than from $k_{1}$ to $k'_{2}$ larger than $k_{2}$.

  19. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Northern Illinois U.; Piot, P. [Northern Illinois U.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  20. Emergence of a Turbulent Cascade in a Quantum Gas

    CERN Document Server

    Navon, Nir; Smith, Robert P; Hadzibabic, Zoran

    2016-01-01

    In the modern understanding of turbulence, a central concept is the existence of cascades of excitations from large to small lengthscales, or vice-versa. This concept was introduced in 1941 by Kolmogorov and Obukhov, and the phenomenon has since been observed in a variety of systems, including interplanetary plasmas, supernovae, ocean waves, and financial markets. Despite a lot of progress, quantitative understanding of turbulence remains a challenge due to the interplay of many lengthscales that usually thwarts theoretical simulations of realistic experimental conditions. Here we observe the emergence of a turbulent cascade in a weakly interacting homogeneous Bose gas, a quantum fluid that is amenable to a theoretical description on all relevant lengthscales. We prepare a Bose-Einstein condensate (BEC) in an optical box, drive it out of equilibrium with an oscillating force that pumps energy into the system at the largest lengthscale, study the BEC's nonlinear response to the periodic drive, and observe a gr...

  1. Energy cascades in the upper ocean

    Institute of Scientific and Technical Information of China (English)

    Ray Q.Lin; Scott Chubb

    2006-01-01

    Wave-wave interactions cause energy cascades. These are the most important processes in the upper ocean because they govern wave-growth and dissipation. Through indirect cascades, wave energy is transferred from higher frequencies to lower frequencies, leading to wave growth. In direct cascades, energy is transferred from lower frequencies to the higher frequencies, which causes waves to break, and dissipation of wave energy. However, the evolution and origin of energy cascade processes are still not fully understood. In particular, for example, results from a recent theory (Kalmykov, 1998) suggest that the class I wave-wave interactions (defined by situations involving 4-, 6-, 8-, etc, even numbers of resonantly interacting waves) cause indirect cascades, and Class II wave-wave interactions (involving, 5-, 7-, 9-, etc, .., odd numbers of waves) cause direct cascades. In contrast to this theory, our model results indicate the 4-wave interactions can cause significant transfer of wave energy through both direct and indirect cascades. In most situations, 4-wave interactions provide the major source of energy transfer for both direct cascades and indirect cascades, except when the wave steepness is larger than 0.28. Our model results agree well with wave measurements, obtained using field buoy data (for example, Lin and Lin, 2002). In particular, in these observations, asymmetrical wave-wave interactions were studied. They found that direct and indirect cascades both are mainly due to the 4-wave interactions when wave steepness is less than 0.3.

  2. Optical Properties of Cascaded Long-Period and Fiber Bragg Gratings%级联长周期光纤光栅和Bragg光纤光栅的光学特性

    Institute of Scientific and Technical Information of China (English)

    曹莹; 顾铮(先)

    2012-01-01

    基于耦合模理论及传输矩阵法,给出了级联长周期光纤光栅和Bragg光纤光栅系统(CLBG)的耦合模方程与总传输矩阵,理论模拟了CLBG的反射谱,得到的反射峰位置与已知文献中所给出的两个反射峰的位置关系相吻合.在此基础上,模拟了镀膜CLBG之间的光纤长度、薄膜折射率、薄膜厚度等参数对反射谱的影响.由仿真结果可知,CLBG反射峰中受长周期光纤光栅和Bragg光纤光栅共同影响产生的反射峰对外界环境的变化非常敏感,其对薄膜折射率的分辨率较单个镀膜长周期光纤光栅高2个数量级,表明CLBG在薄膜传感领域具有重要的应用价值.%Based on coupled-mode theory and transfer matrix method, the general transfer matrix for evaluating cascaded long-period grating and fiber Bragg grating system (CLBG) is obtained. Through general transfer matrix, the reflection spectrum of CLBG is simulated, and the theoretical simulations agree well with the relationship of two reflected peaks given in the known paper. Effects of the length of fiber between long-period fiber grating (LPG) and fiber Bragg grating (FBG), film refractive index and thickness on coated CLPG are discussed. From simulation results, reflection peaks affected by LPG and FBG in CLBG are sensitive to changes of the film parameters, and resolution on the film refractive index is 2 orders of magnitude higher than that of single coated LPG, which shows that coated CLBG has important application value in sensing field.

  3. A Comparison of Methods for Cascade Prediction

    CERN Document Server

    Guo, Ruocheng

    2016-01-01

    Information cascades exist in a wide variety of platforms on Internet. A very important real-world problem is to identify which information cascades can go viral. A system addressing this problem can be used in a variety of applications including public health, marketing and counter-terrorism. As a cascade can be considered as compound of the social network and the time series. However, in related literature where methods for solving the cascade prediction problem were proposed, the experimental settings were often limited to only a single metric for a specific problem formulation. Moreover, little attention was paid to the run time of those methods. In this paper, we first formulate the cascade prediction problem as both classification and regression. Then we compare three categories of cascade prediction methods: centrality based, feature based and point process based. We carry out the comparison through evaluation of the methods by both accuracy metrics and run time. The results show that feature based met...

  4. Dispersion engineering of Quantum Cascade Lasers frequency combs

    CERN Document Server

    Villares, Gustavo; Wolf, Johanna; Kazakov, Dmitry; Süess, Martin J; Beck, Mattias; Faist, Jérôme

    2015-01-01

    Quantum cascade lasers are compact sources capable of generating frequency combs. Yet key characteristics - such as optical bandwidth and power-per-mode distribution - have to be improved for better addressing spectroscopy applications. Group delay dispersion plays an important role in the comb formation. In this work, we demonstrate that a dispersion compensation scheme based on a Gires-Tournois Interferometer integrated into the QCL-comb dramatically improves the comb operation regime, preventing the formation of high-phase noise regimes previously observed. The continuous-wave output power of these combs is typically $>$ 100 mW with optical spectra centered at 1330 cm$^{-1}$ (7.52 $\\mu$m) with $\\sim$ 70 cm$^{-1}$ of optical bandwidth. Our findings demonstrate that QCL-combs are ideal sources for chip-based frequency comb spectroscopy systems.

  5. Lateral Modes in Quantum Cascade Lasers

    Directory of Open Access Journals (Sweden)

    Gregory C. Dente

    2016-03-01

    Full Text Available We will examine the waveguide mode losses in ridge-guided quantum cascade lasers. Our analysis illustrates how the low-loss mode for broad-ridge quantum cascade lasers (QCLs can be a higher-order lateral waveguide mode that maximizes the feedback from the sloped ridge-wall regions. The results are in excellent agreement with the near- and far-field data taken on broad-ridge-guided quantum cascade lasers processed with sloped ridge walls.

  6. Disaster Mythology and Availability Cascades

    Directory of Open Access Journals (Sweden)

    Lisa Grow Sun

    2013-04-01

    Full Text Available Sociological research conducted in the aftermath of natural disasters has uncovered a number of “disaster myths” – widely shared misconceptions about typical post-disaster human behavior. This paper discusses the possibility that perpetuation of disaster mythology reflects an “availability cascade,” defined in prior scholarship as a “self-reinforcing process of collective belief formation by which an expressed perception triggers a chain reaction that gives the perception increasing plausibility through its rising availability in public discourse.” (Kuran and Sunstein 1999. Framing the spread of disaster mythology as an availability cascade suggests that certain tools may be useful in halting the myths’ continued perpetuation. These tools include changing the legal and social incentives of so-called “availability entrepreneurs” – those principally responsible for beginning and perpetuating the cascade, as well as insulating decision-makers from political pressures generated by the availability cascade. This paper evaluates the potential effectiveness of these and other solutions for countering disaster mythology. Las investigaciones sociológicas realizadas tras los desastres naturales han hecho evidentes una serie de “mitos del desastre”, conceptos erróneos ampliamente compartidos sobre el comportamiento humano típico tras un desastre. Este artículo analiza la posibilidad de que la perpetuación de los mitos del desastre refleje una “cascada de disponibilidad”, definida en estudios anteriores como un “proceso de auto-refuerzo de la formación de una creencia colectiva, a través del que una percepción expresada produce una reacción en cadena que hace que la percepción sea cada vez más verosímil, a través de una mayor presencia en el discurso público” (Kuran y Sunstein 1999. Enmarcar la propagación de los mitos del desastre como una cascada de disponibilidad sugiere que ciertas herramientas pueden ser

  7. Spray formation: an inverse cascade

    CERN Document Server

    Ling, Yue; Tryggvason, Gretar; zaleski, Stephane

    2015-01-01

    We present a study of droplet formation in a gas-liquid mixing layer using direct numerical simulation. It is seen that two mechanisms compete to generate the droplets: fingering at the tip of the waves and hole formation in the thin liquid sheet. The three dimensional liquid structures are much shorter than the longitudinal wavelength of the instability at the first instant of their formation. As time evolves, the structures evolves to larger and larger scales, in a way similar to the inverse cascade of length scales in droplet impact and impact crown formation.

  8. WHISTLER TURBULENCE FORWARD CASCADE VERSUS INVERSE CASCADE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ouliang [Oracle Corporation, Redwood Shores, CA (United States); Gary, S. Peter [Space Science Institute, Boulder, CO (United States); Wang, Joseph, E-mail: ouliang@usc.edu, E-mail: pgary@lanl.gov, E-mail: josephjw@usc.edu [University of Southern California, Los Angeles, CA (United States)

    2015-02-20

    We present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta β {sub e} = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in the inverse cascade regime is much weaker than that in the forward cascade regime.

  9. Single-Seed Cascades on Clustered Networks

    CERN Document Server

    McSweeney, John K

    2015-01-01

    We consider a dynamic network cascade process developed by Watts applied to a random networks with a specified amount of clustering, belonging to a class of random networks developed by Newman. We adapt existing tree-based methods to formulate an appropriate two-type branching process to describe the spread of a cascade started with a single active node, and obtain a fixed-point equation to implicitly express the extinction probability of such a cascade. In so doing, we also recover a special case of a formula of Hackett et al. giving conditions for certain extinction of the cascade.

  10. Unsteady transonic flow over cascade blades

    Science.gov (United States)

    Surampudi, S. P.; Adamczyk, J. J.

    1986-01-01

    An attempt is made to develop an efficient staggered cascade blade unsteady aerodynamics model for the neighborhood of March 1, representing the blade row by a rectilinear two-dimensional cascade of thin, flat plate airfoils. The equations of motion are derived on the basis of linearized transonic small perturbation theory, and an analytical solution is obtained by means of the Wiener-Hopf procedure. Making use of the transonic similarity law, the results obtained are compared with those of other linearized cascade analyses. A parametric study is conducted to find the effects of reduced frequency, stagger angle, solidity, and the location of the pitching axis on cascade stability.

  11. Contingency Analysis of Cascading Line Outage Events

    Energy Technology Data Exchange (ETDEWEB)

    Thomas L Baldwin; Magdy S Tawfik; Miles McQueen

    2011-03-01

    As the US power systems continue to increase in size and complexity, including the growth of smart grids, larger blackouts due to cascading outages become more likely. Grid congestion is often associated with a cascading collapse leading to a major blackout. Such a collapse is characterized by a self-sustaining sequence of line outages followed by a topology breakup of the network. This paper addresses the implementation and testing of a process for N-k contingency analysis and sequential cascading outage simulation in order to identify potential cascading modes. A modeling approach described in this paper offers a unique capability to identify initiating events that may lead to cascading outages. It predicts the development of cascading events by identifying and visualizing potential cascading tiers. The proposed approach was implemented using a 328-bus simplified SERC power system network. The results of the study indicate that initiating events and possible cascading chains may be identified, ranked and visualized. This approach may be used to improve the reliability of a transmission grid and reduce its vulnerability to cascading outages.

  12. INFLUENCE OF CHROMATIC DISPERSION, DISPERSION SLOPE, DISPERSION CURVATURE ON MICROWAVE GENERATION USING TWO CASCADE MODULATORS

    Directory of Open Access Journals (Sweden)

    Mandeep Singh

    2013-03-01

    Full Text Available This work presents a theoretical study of harmonic generation of microwave signals after detection of a modulated optical carrier in cascaded two electro-optic modulators. Dispersion is one of the major limiting factors for microwave generation in microwave photonics. In this paper, we analyze influence of chromatic dispersion, dispersion slope, dispersion curvature on microwave generation using two cascaded MZMs and it has been found that output intensity of photodetector reduces when dispersion term up to fifth order are added. We have used the two cascaded Mach-Zehnder Modulators for our proposed model and tried to show the dispersion effect with the help of modulation depth factor of MZM, which have been not discussed earlier.

  13. Time evolution of cascade decay

    CERN Document Server

    Boyanovsky, Daniel

    2014-01-01

    We study non-perturbatively the time evolution of cascade decay for generic fields $\\pi \\rightarrow \\phi_1\\phi_2\\rightarrow \\phi_2\\chi_1\\chi_2$ and obtain the time dependence of amplitudes and populations for the resonant and final states. We analyze in detail the different time scales and the manifestation of unitary time evolution in the dynamics of production and decay of resonant intermediate and final states. The probability of occupation (population) ``flows'' as a function of time from the initial to the final states. When the decay width of the parent particle $\\Gamma_\\pi$ is much larger than that of the intermediate resonant state $\\Gamma_{\\phi_1}$ there is a ``bottleneck'' in the flow, the population of resonant states builds up to a maximum at $t^* = \\ln[\\Gamma_\\pi/\\Gamma_{\\phi_1}]/(\\Gamma_\\pi-\\Gamma_{\\phi_1})$ nearly saturating unitarity and decays to the final state on the longer time scale $1/\\Gamma_{\\phi_1}$. As a consequence of the wide separation of time scales in this case the cascade decay ...

  14. Cascade decays of hollow ions

    International Nuclear Information System (INIS)

    A multiple-electron-emission process for atoms with one or more inner-shell vacancies is treated using the radiative- and Auger-electron-emission cascade model, in which inner-shell holes are assumed to decay by sequentially emitting radiations and/or Auger electrons. Such hollow ions are produced by synchrotron irradiation of atomic targets and in ion-surface interactions with multiple-electron transfers. The final charge-state distribution is determined by the Auger and radiative branching ratios at each stage of the decay sequence. At intermediate stages of cascade, hollow ions with more than one hole in different ionization stages are created. The Ne, Mg, and Fe14+ ions with the initial 1s, 2s, and 2p vacancies are considered in detail, and the core charge dependence of the maximum charge state is studied. The hollow Mg ion with double initial 1s holes is analyzed, and the result compared with that for the case of one 1s hole. The peak is shifted more than two units to a higher degree of ionization. The correlated shake-off and shake-up multiple-electron processes are not considered, but they are expected to cause further shifts

  15. Multifunctional Cascaded Metamaterials: Integrated Transmitarrays

    Science.gov (United States)

    Elsakka, Amr A.; Asadchy, Viktar S.; Faniayeu, Ihar A.; Tcvetkova, Svetlana N.; Tretyakov, Sergei A.

    2016-10-01

    Control of electromagnetic waves using engineered materials is very important in a wide range of applications, therefore there is always a continuous need for new and more efficient solutions. Known natural and artificial materials and surfaces provide a particular functionality in the frequency range they operate but cast a "shadow" and produce reflections at other frequencies. Here, we introduce a concept of multifunctional engineered materials that possess different predetermined functionalities at different frequencies. Such response can be accomplished by cascading metasurfaces (thin composite layers) that are designed to perform a single operation at the desired frequency and are transparent elsewhere. Previously, out-of-band transparent metasurfaces for control over reflection and absorption were proposed. In this paper, to complete the full set of functionalities for wave control, we synthesize transmitarrays that tailor transmission in a desired way, being "invisible" beyond the operational band. The designed transmitarrays for wavefront shaping and anomalous refraction are tested numerically and experimentally. To demonstrate our concept of multifunctional engineered materials, we have designed a cascade of three metasurfaces that performs three different functions for waves at different frequencies. Remarkably, applied to volumetric metamaterials, our concept can enable a single composite possessing desired multifunctional response.

  16. Frequency Comb Assisted Broadband Precision Spectroscopy with Cascaded Diode Lasers

    CERN Document Server

    Liu, Junqiu; Pfeiffer, Martin H P; Kordts, Arne; Kamel, Ayman N; Guo, Hairun; Geiselmann, Michael; Kippenberg, Tobias J

    2016-01-01

    Frequency comb assisted diode laser spectroscopy, employing both the accuracy of an optical frequency comb and the broad wavelength tuning range of a tunable diode laser, has been widely used in many applications. In this letter we present a novel method using cascaded frequency agile diode lasers, which allows extending the measurement bandwidth to 37.4 THz (1355 to 1630 nm) at MHz resolution with scanning speeds above 1 THz/s. It is demonstrated as a useful tool to characterize a broadband spectrum for molecular spectroscopy and in particular it enables to characterize the dispersion of integrated microresonators up to the fourth order.

  17. Few-cycle nonlinear mid-IR pulse generated with cascaded quadratic nonlinearities

    DEFF Research Database (Denmark)

    Bache, Morten; Liu, Xing; Zhou, Binbin

    Generating few-cycle energetic and broadband mid-IR pulses is an urgent current challenge in nonlinear optics. Cascaded second-harmonic generation (SHG) gives access to an ultrafast and octave-spanning self-defocusing nonlinearity: when ΔkL >> 2π the pump experiences a Kerr-like nonlinear index...

  18. Application of step-scan FTIR to the research of quantum cascade lasers

    Institute of Scientific and Technical Information of China (English)

    Junqi Liu; Xiuzhen Lu; Yu Guo; Xiuqi Huang; Xiaoling Che; Wen Lei; Fengqi Liu

    2005-01-01

    The principle of step-scan Fourier transform infrared (FTIR) spectroscopy is introduced. Double modulation step-scan FTIR technique is used to obtain the quantum cascade laser's stacked emission spectra in the time domain. Optical property and thermal accumulation of devices due to large drive current are analyzed.

  19. Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers

    DEFF Research Database (Denmark)

    Liu, Junqiu; Brasch, Victor; Pfeiffer, Martin H. P.;

    2016-01-01

    Frequency-comb-assisted diode laser spectroscopy, employing both the accuracy of an optical frequency comb and the broad wavelength tuning range of a tunable diode laser, has been widely used in many applications. In this Letter, we present a novel method using cascaded frequency agile diode lasers...

  20. Nonlinearly Driven Second Harmonics of Alfven Cascades

    International Nuclear Information System (INIS)

    In recent experiments on Alcator C-Mod, measurements of density fluctuations with Phase Contrast Imaging through the plasma core show a second harmonic of the basic Alfven Cascade (AC) signal. The present work describes the perturbation at the second harmonic as a nonlinear sideband produced by the Alfven Cascade eigenmode via quadratic terms in the MHD equations. (author)

  1. Design concept of Hydro cascade control system

    International Nuclear Information System (INIS)

    In this paper a design concept of the comple hydro cascade scheme is presented with the design parameters of the main technical features. The cascade control system architecture is designed considering up-to-date communication and information technology. The control algorithm is based on Pond Level Control and Economic Load Allocation concepts.

  2. Cascading costs: An economic nitrogen cycle

    Institute of Scientific and Technical Information of China (English)

    William; R.; Moomaw; Melissa; B.; L.; Birch

    2005-01-01

    The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrifled to N2. We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single tonne of nitrogen can cascade through the system, the costs also cascade.Therefore evaluating the benefits of mitigating a tonne of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that tonne would cascade.The analysis reveals that it is most cost effective to remove a tonne of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.

  3. Fractal dimensionality of cascades of atomic displacements

    International Nuclear Information System (INIS)

    The cascades of opening displacements, formed during irradiation of solids are the most typical process of dissipation of the energy of incident particles and the generation of radiation defects. The aim of the present work is the examination of the energy dependence of the fractal dimensionality of the cascades of atomic displacements in the solid

  4. A NOTE ON VECTOR CASCADE ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Qiu-hui Chen; Jin-zhao Liu; Wen-sheng Zhang

    2002-01-01

    The focus of this paper is on the relationship between accuracy of multivariate refinable vector and vector cascade algorithm. We show that, if the vector cascade algorithm (1.5) with isotropic dilation converges to a vector-valued function with regularity, then the initial function must satisfy the Strang-Fix conditions.

  5. Cascade Harvest’ red raspberry

    Science.gov (United States)

    Cascade Harvest’ is a new floricane fruiting raspberry cultivar (Rubus idaeus L.) jointly released by Washington State University (WSU), Oregon State University (OSU) and the U.S. Department of Agriculture (USDA). ‘Cascade Harvest’ produces a high yield of large, firm fruit suited to machine harves...

  6. Chromatography resin support

    Science.gov (United States)

    Dobos, James G.

    2002-01-01

    An apparatus and method of using an improved chromatography resin support is disclosed. The chromatography support platform is provided by a stainless steel hollow cylinder adapted for being inserted into a chromatography column. An exterior wall of the stainless steel cylinder defines a groove for carrying therein an "O"-ring. The upper surface of the stainless steel column is covered by a fine stainless steel mesh welded to the edges of the stainless steel cylinder. When placed upon a receiving ledge defined within a chromatography column, the "O"-ring provides a fluid tight seal with the inner edge wall of the chromatography cylinder. The stainless steel mesh supports the chromatography matrix and provides a back flushable support which is economical and simple to construct.

  7. Cascade Error Projection: An Efficient Hardware Learning Algorithm

    Science.gov (United States)

    Duong, T. A.

    1995-01-01

    A new learning algorithm termed cascade error projection (CEP) is presented. CEP is an adaption of a constructive architecture from cascade correlation and the dynamical stepsize of A/D conversion from the cascade back propagation algorithm.

  8. MAPK Cascades in Guard Cell Signal Transduction

    Science.gov (United States)

    Lee, Yuree; Kim, Yun Ju; Kim, Myung-Hee; Kwak, June M.

    2016-01-01

    Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK) cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions. PMID:26904052

  9. MAPK cascades in guard cell signal transduction

    Directory of Open Access Journals (Sweden)

    Yuree eLee

    2016-02-01

    Full Text Available Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions.

  10. Stochastic annealing simulation of cascades in metals

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L.

    1996-04-01

    The stochastic annealing simulation code ALSOME is used to investigate quantitatively the differential production of mobile vacancy and SIA defects as a function of temperature for isolated 25 KeV cascades in copper generated by MD simulations. The ALSOME code and cascade annealing simulations are described. The annealing simulations indicate that the above Stage V, where the cascade vacancy clusters are unstable,m nearly 80% of the post-quench vacancies escape the cascade volume, while about half of the post-quench SIAs remain in clusters. The results are sensitive to the relative fractions of SIAs that occur in small, highly mobile clusters and large stable clusters, respectively, which may be dependent on the cascade energy.

  11. Multiscales and cascade in isotropic turbulence

    CERN Document Server

    Ran, Zheng

    2010-01-01

    The central problem of fully developed turbulence is the energy cascading process. It has revisited all attempts at a full physical understanding or mathematical formulation. The main reason for this failure are related to the large hierarchy of scales involved, the highly nonlinear character inherent in the Navier-Stokes equations, and the spatial intermittency of the dynamically active regions. Richardson has described the interplay between large and small scales and the phenomena so described are known as the Richardson cascade. This local interplay also forms the basis of a theory by Kolmogorov. In this letter, we use the explicit map method to analyze the nonlinear dynamical behavior for cascade in isotropic turbulence. This deductive scale analysis is shown to provide the first visual evidence of the celebrated Richardson cascade, and reveals in particular its multiscale character. The results also indicate that the energy cascading process has remarkable similarities with the deterministic construction...

  12. Network reconstruction from infection cascades

    CERN Document Server

    Braunstein, Alfredo

    2016-01-01

    Reconstructing propagation networks from observations is a fundamental inverse problem, and it's crucial to understand and control dynamics in complex systems. Here we show that it is possible to reconstruct the whole structure of an interaction network and to simultaneously infer the complete time course of activation spreading, relying just on single snapshots of a small number of activity cascades. The method, that we called Inverse Dynamics Network Reconstruction (IDNR), is shown to work successfully on several synthetic and real networks, inferring the networks and the sources of infection based on sparse observations, including single snapshots. IDNR is built on a Belief Propagation approximation, that has an impressive performance in a wide variety of topological structures. The method can be applied in absence of complete time-series data by providing a detailed modeling of the posterior distribution of trajectories conditioned to the observations. Furthermore, we show by experiments that the informat...

  13. Availability Cascades & the Sharing Economy

    DEFF Research Database (Denmark)

    Netter, Sarah

    2014-01-01

    In search of a new concept that will provide answers to as to how modern societies should not only make sense but also resolve the social and environmental problems linked with our modes of production and consumption, collaborative consumption and the sharing economy are increasingly attracting...... attention. This conceptual paper attempts to explain the emergent focus on the sharing economy and associated business and consumption models by applying cascade theory. Risks associated with this behavior will be especially examined with regard to the sustainability claim of collaborative consumption....... With academics, practitioners, and civil society alike having a shared history in being rather fast in accepting new concepts that will not only provide business opportunities but also a good conscience, this study proposes a critical study of the implications of collaborative consumption, before engaging...

  14. Cascades in interdependent flow networks

    Science.gov (United States)

    Scala, Antonio; De Sanctis Lucentini, Pier Giorgio; Caldarelli, Guido; D'Agostino, Gregorio

    2016-06-01

    In this manuscript, we investigate the abrupt breakdown behavior of coupled distribution grids under load growth. This scenario mimics the ever-increasing customer demand and the foreseen introduction of energy hubs interconnecting the different energy vectors. We extend an analytical model of cascading behavior due to line overloads to the case of interdependent networks and find evidence of first order transitions due to the long-range nature of the flows. Our results indicate that the foreseen increase in the couplings between the grids has two competing effects: on the one hand, it increases the safety region where grids can operate without withstanding systemic failures; on the other hand, it increases the possibility of a joint systems' failure.

  15. Cascades in interdependent flow networks

    CERN Document Server

    Scala, Antonio; Caldarelli, Guido; D'Agostino, Gregorio

    2015-01-01

    We investigate the abrupt breakdown behavior of coupled distribution grids under load growth. This scenario mimics the ever-increasing customer demand and the foreseen introduction of energy hubs interconnecting the different energy vectors. We extend an analytical model of cascading behavior due to line overloads to the case of interdependent networks and find evidence of first order transitions due to the long-range nature of the flows. Our results indicate that the foreseen increase in the couplings between the grids has two competing effects: on the one hand, it increases the safety region where grids can operate without withstanding systemic failures; on the other hand, it increases the possibility of a joint systems' failure.

  16. Multifunctional Cascaded Metamaterials: Integrated Transmitarrays

    CERN Document Server

    Elsakka, Amr A; Faniayeu, Ihar A; Tcvetkova, Svetlana N; Tretyakov, Sergei A

    2016-01-01

    Control of electromagnetic waves using engineered materials is very important in a wide range of applications, therefore there is always a continuous need for new and more efficient solutions. Known natural and artificial materials and surfaces provide a particular functionality in the frequency range they operate but cast a "shadow" and produce reflections at other frequencies. Here, we introduce a concept of multifunctional engineered materials that possess different predetermined functionalities at different frequencies. Such response can be accomplished by cascading metasurfaces (thin composite layers) that are designed to perform a single operation at the desired frequency and are transparent elsewhere. Previously, out-of-band transparent metasurfaces for control over reflection and absorption were proposed. In this paper, to complete the full set of functionalities for wave control, we synthesize transmitarrays that tailor transmission in a desired way, being "invisible" beyond the operational band. The...

  17. Single-Mode, Distributed Feedback Interband Cascade Lasers

    Science.gov (United States)

    Frez, Clifford F. (Inventor); Borgentun, Carl E. (Inventor); Briggs, Ryan M. (Inventor); Bagheri, Mahmood (Inventor); Forouhar, Siamak (Inventor)

    2016-01-01

    Single-mode, distributed feedback interband cascade lasers (ICLs) using distributed-feedback gratings (e.g., lateral Bragg gratings) and methods of fabricating such ICLs are provided. The ICLs incorporate distributed-feedback gratings that are formed above the laser active region and adjacent the ridge waveguide (RWG) of the ICL. The ICLs may incorporate a double-ridge system comprising an optical confinement structure (e.g., a RWG) disposed above the laser active region that comprises the first ridge of the double ridge system, a DFB grating (e.g., lateral Bragg grating) disposed above the laser active region and adjacent the optical confinement structure, and an electric confinement structure that passes at least partially through the laser active region and that defines the boundary of the second ridge comprises and the termination of the DFB grating.

  18. Quantum cascade laser: Applications in chemical detection and environmental monitoring

    Directory of Open Access Journals (Sweden)

    Radovanović Jelena

    2009-01-01

    Full Text Available In this paper we consider the structural parameter optimization of the active region of a GaAs-based quantum cascade laser in order to maximize the optical gain of the laser at the characteristic wavelengths, which are best suited for detection of pollutant gasses, such as SO2, HNO3, CH4, and NH3, in the ambient air by means of direct absorption. The procedure relies on applying elaborate tools for global optimization, such as the genetic algorithm. One of the important goals is to extend the applicability of a single active region design to the detection of several compounds absorbing at close wave-lengths, and this is achieved by introducing a strong external magnetic field perpendicularly to the epitaxial layers. The field causes two-dimensional continuous energy subbands to split into the series of discrete Landau levels. Since the arrangement of Landau levels depends strongly on the magnitude of the magnetic field, this enables one to control the population inversion in the active region, and hence the optical gain. Furthermore, strong effects of band non-parabolicity result in subtle changes of the lasing wavelength at magnetic fields which maximize the gain, thus providing a path for fine-tuning of the output radiation properties and changing the target compound for detection. The numerical results are presented for quantum cascade laser structures designed to emit at specified wavelengths in the mid-infrared part of the spectrum.

  19. Genetic algorithm based separation cascade optimization

    International Nuclear Information System (INIS)

    The conventional separation cascade design procedure does not give an optimum design because of squaring-off, variation of flow rates and separation factor of the element with respect to stage location. Multi-component isotope separation further complicates the design procedure. Cascade design can be stated as a constrained multi-objective optimization. Cascade's expectation from the separating element is multi-objective i.e. overall separation factor, cut, optimum feed and separative power. Decision maker may aspire for more comprehensive multi-objective goals where optimization of cascade is coupled with the exploration of separating element optimization vector space. In real life there are many issues which make it important to understand the decision maker's perception of cost-quality-speed trade-off and consistency of preferences. Genetic algorithm (GA) is one such evolutionary technique that can be used for cascade design optimization. This paper addresses various issues involved in the GA based multi-objective optimization of the separation cascade. Reference point based optimization methodology with GA based Pareto optimality concept for separation cascade was found pragmatic and promising. This method should be explored, tested, examined and further developed for binary as well as multi-component separations. (author)

  20. Dynamic Equations and Nonlinear Dynamics of Cascade Two-Photon Laser

    Institute of Scientific and Technical Information of China (English)

    XIE Xia; HUANG Hong-Bin; QIAN Feng; ZHANG Ya-Jun; YANG Peng; QI Guan-Xiao

    2006-01-01

    We derive equations and study nonlinear dynamics of cascade two-photon laser, in which the electromagnetic field in the cavity is driven by coherently prepared three-level atoms and classical field injected into the cavity. The dynamic equations of such a system are derived by using the technique of quantum Langevin operators, and then are studied numerically under different driving conditions. The results show thgt under certain conditions the cascade twophoton laser can generate chaotic, period doubling, periodic, stable and bistable states. Chaos can be inhibited by atomic populations, atomic coherences, and injected classical field. In addition, no chaos occurs in optical bistability.

  1. Multimode analysis of highly tunable, quantum cascade powered, circular graphene spaser

    Energy Technology Data Exchange (ETDEWEB)

    Jayasekara, Charith, E-mail: charith.jayasekara@monash.edu; Premaratne, Malin [Advanced Computing and Simulation Laboratory (A chi L), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800 (Australia); Stockman, Mark I. [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States); Gunapala, Sarath D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)

    2015-11-07

    We carried out a detailed analysis of a circular graphene spaser made of a circular graphene flake and a quantum cascade well structure. Owing to unique properties of graphene and quantum cascade well structure, the proposed design shows high mechanical and thermal stability and low optical losses. Additionally, operation characteristics of the model are analysed and tunability of the device is demonstrated. Some advantages of the proposed design include compact size, lower power operation, and the ability to set the operating wavelength over a wide range from Mid-IR to Near-IR. Thus, it can have wide spread applications including designing of ultracompact and ultrafast devices, nanoscopy and biomedical applications.

  2. Column Liquid Chromatography.

    Science.gov (United States)

    Majors, Ronald E.; And Others

    1984-01-01

    Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…

  3. Liquid Chromatography in 1982.

    Science.gov (United States)

    Freeman, David H.

    1982-01-01

    Reviews trends in liquid chromatography including apparatus, factors affecting efficient separation of a mixture (peak sharpness and speed), simplified problem-solving, adsorption, bonded phase chromatography, ion selectivity, and size exclusion. The current trend is to control chemical selectivity by the liquid phase. (Author/JN)

  4. Epidemic and Cascading Survivability of Complex Networks

    DEFF Research Database (Denmark)

    Manzano, Marc; Calle, Eusebi; Ripoll, Jordi;

    2014-01-01

    networks. For this reason, in this paper, we propose two measures to evaluate the vulnerability of complex networks in two different dynamic multiple failure scenarios: epidemic-like and cascading failures. Firstly, we present epidemic survivability ( ES ), a new network measure that describes...... the vulnerability of each node of a network under a specific epidemic intensity. Secondly, we propose cascading survivability ( CS ), which characterizes how potentially injurious a node is according to a cascading failure scenario. Then, we show that by using the distribution of values obtained from ES and CS...

  5. Cascading blockages in channel bundles.

    Science.gov (United States)

    Barré, C; Talbot, J

    2015-11-01

    Flow in channel networks may involve a redistribution of flux following the blockage or failure of an individual link. Here we consider a simplified model consisting of N(c) parallel channels conveying a particulate flux. Particles enter these channels according to a homogeneous Poisson process and an individual channel blocks if more than N particles are simultaneously present. The behavior of the composite system depends strongly on how the flux of entering particles is redistributed following a blockage. We consider two cases. In the first, the intensity on each open channel remains constant while in the second the total intensity is evenly redistributed over the open channels. We obtain exact results for arbitrary N(c) and N for a system of independent channels and for arbitrary N(c) and N=1 for coupled channels. For N>1 we present approximate analytical as well as numerical results. Independent channels block at a decreasing rate due to a simple combinatorial effect, while for coupled channels the interval between successive blockages remains constant for N=1 but decreases for N>1. This accelerating cascade is due to the nonlinear dependence of the mean blocking time of a single channel on the entering particle flux that more than compensates for the decrease in the number of active channels.

  6. Aspects of the QCD cascade

    International Nuclear Information System (INIS)

    A model is proposed for the production of transverse jets from diffractively excited protons. We propose that transverse jets can be obtained from gluonic bremsstrahlung in a way similar to the emission in DIS. Qualitative agreement is obtained between the model and the uncorrected data published by the UA8 collaboration. Perturbative QCD in the MLLA approximation is applied to multiple jet production in e+e--annihilation. We propose modified evolution equations for deriving the jet cross sections, defined in the 'kt' or 'Durham' algorithm. The mean number of jets as a function of the jet resolution is studied, and analytical predictions are compared to the results of MC simulations. We also study a set of differential-difference equations for multiplicity distributions in e+e--annihilations, supplemented with appropriate boundary conditions. These equations take into account nonsingular terms in the GLAP splitting functions as well as kinematical constraints related to recoil effects. The presence of retarded terms imply that the cascade develops more slowly and reduces the fluctuations. The solutions agree well with MC simulations and experimental data. (authors)

  7. Bursting behaviours in cascaded stimulated Brillouin scattering

    Institute of Scientific and Technical Information of China (English)

    Liu Zhan-Jun; He Xian-Tu; Zheng Chun-Yang; Wang Yu-Gang

    2012-01-01

    Stimulated Brillouin scattering is studied by numerically solving the Vlasov-Maxwell system.A cascade of stimulated Brillouin scattering can occur when a linearly polarized laser pulse propagates in a plasma.It is found that a stimulated Brillouin scattering cascade can reduce the scattering and increase the transmission of light,as well as introduce a bursting behaviour in the evolution of the laser-plasma interaction.The bursting time in the reflectivity is found to be less than half the ion acoustic period.The ion temperature can affect the stimulated Brillouin scattering cascade,which can repeat several times at low ion temperatures and can be completely eliminated at high ion temperatures.For stimulated Brillouin scattering saturation,higher-harmonic generation and wave-wave interaction of the excited ion acoustic waves can restrict the amplitude of the latter.In addition,stimulated Brillouin scattering cascade can restrict the amplitude of the scattered light.

  8. Model for cascading failures in congested Internet

    Institute of Scientific and Technical Information of China (English)

    Jian WANG; Yan-heng LIU; Jian-qi ZHU; Yu JIAO

    2008-01-01

    Cascading failures often occur in congested networks such as the Internet. A cascading failure can be described as a three-phase process: generation, diffusion, and dissipation of the congestion. In this account, we present a function that represents the extent of congestion on a given node. This approach is different from existing functions based on betweenness centrality. By introducing the concept of 'delay time', we designate an intergradation between permanent removal and nouremoval. We also construct an evaluation function of network efficiency, based on congestion, which measures the damage caused by cascading failures. Finally, we investigate the effects of network structure and size, delay time, processing ability and packet generation speed on congestion propagation. Also, we uncover the relationship between the cascade dynamics and some properties of the network such as structure and size.

  9. Cascade Error Projection: A New Learning Algorithm

    Science.gov (United States)

    Duong, T. A.; Stubberud, A. R.; Daud, T.; Thakoor, A. P.

    1995-01-01

    A new neural network architecture and a hardware implementable learning algorithm is proposed. The algorithm, called cascade error projection (CEP), handles lack of precision and circuit noise better than existing algorithms.

  10. Chemoenzymatic cascade processes for sustainable organic synthesis

    NARCIS (Netherlands)

    Simons, C.

    2007-01-01

    Chemical production processes often require wasteful and expensive isolation as well as purification of intermediates. Catalytic cascades offer a unique opportunity to eliminate these inefficient and polluting steps, in particular when carefully orchestrated, involving enzymes and chemocatalysts. Th

  11. Network effects, cascades and CCP interoperability

    Science.gov (United States)

    Feng, Xiaobing; Hu, Haibo; Pritsker, Matthew

    2014-03-01

    To control counterparty risk, financial regulations such as the Dodd Frank Act are increasingly requiring standardized derivatives trades to be cleared by central counterparties (CCPs). It is anticipated that in the near-term future, CCPs across the world will be linked through interoperability agreements that facilitate risk-sharing but also serve as a conduit for transmitting shocks. This paper theoretically studies a network with CCPs that are linked through interoperability arrangements, and studies the properties of the network that contribute to cascading failures. The magnitude of the cascading is theoretically related to the strength of network linkages, the size of the network, the logistic mapping coefficient, a stochastic effect and CCP's defense lines. Simulations indicate that larger network effects increase systemic risk from cascading failures. The size of the network N raises the threshold value of shock sizes that are required to generate cascades. Hence, the larger the network, the more robust it will be.

  12. Compression limits in cascaded quadratic soliton compression

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Krolikowski, Wieslaw;

    2008-01-01

    Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency.......Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency....

  13. Innovation cascades: artefacts, organization and attributions.

    Science.gov (United States)

    Lane, David A

    2016-03-19

    Innovation cascades inextricably link the introduction of new artefacts, transformations in social organization, and the emergence of new functionalities and new needs. This paper describes a positive feedback dynamic, exaptive bootstrapping, through which these cascades proceed, and the characteristics of the relationships in which the new attributions that drive this dynamic are generated. It concludes by arguing that the exaptive bootstrapping dynamic is the principal driver of our current Innovation Society.

  14. Simulation of cascades in W-He

    OpenAIRE

    Juslin, Niklas; Jansson, Ville Bernt Christian; Nordlund, Kai

    2010-01-01

    Abstract He will be present in fusion reactor wall materials, and its effect on radiation damage must be taken into account. The effect of helium on displacement cascades in tungsten has been studied using molecular dynamics simulations. Three different W--W potentials were compared and found to differ especially for the clustering of the vacancies formed in the cascades. While there are differences in the amounts of damage depending on the potential, the overa...

  15. Cascade Textures and SUSY SO(10) GUT

    CERN Document Server

    Adulpravitchai, Adisorn; Takahashi, Ryo

    2010-01-01

    We give texture analyses of cascade hierarchical mass matrices in supersymmetric SO(10) grand unified theory. We embed cascade mass textures of the standard model fermion with right-handed neutrinos into the theory, which gives relations among the mass matrices of the fermions. The related phenomenologies, such as the lepton flavor violating processes and leptogenesis, are also investigated in addition to the PMNS mixing angles.

  16. A Cascaded Incoherent Spectrum Sliced Transversal Photonic Microwave Filters-An Analysis

    Directory of Open Access Journals (Sweden)

    R. K. Jeyachitra

    2010-05-01

    Full Text Available An analysis of the performance of a simple, incoherent spectrum sliced microwave photonic filter is presented. This filter structure is based on cascading of two incoherent fiber Fabry -Pérot filters as a slicing element of a broadband optical source. The filter performance is studied by measuring the overall Free Spectral Range, 3dB Bandwidth, Quality factor and Main Lobe to Sidelobe Suppression level for different modes of connecting the filter in cascadedconfiguration. Also simulation results are presented. The Characteristics of cascaded FP filters with different configurations are tabulated. The estimated performances show that this cascaded filter combination can be tuned over the frequency from 4.6GHz to 18 GHz with very good sidelobe suppression level.

  17. Electron acceleration by cascading reconnection in the solar corona I Magnetic gradient and curvature effects

    CERN Document Server

    Zhou, X; Barta, M; Gan, W; Liu, S

    2015-01-01

    Aims: We investigate the electron acceleration in convective electric fields of cascading magnetic reconnection in a flaring solar corona and show the resulting hard X-ray (HXR) radiation spectra caused by Bremsstrahlung for the coronal source. Methods: We perform test particle calculation of electron motions in the framework of a guiding center approximation. The electromagnetic fields and their derivatives along electron trajectories are obtained by linearly interpolating the results of high-resolution adaptive mesh refinement (AMR) MHD simulations of cascading magnetic reconnection. Hard X-ray (HXR) spectra are calculated using an optically thin Bremsstrahlung model. Results: Magnetic gradients and curvatures in cascading reconnection current sheet accelerate electrons: trapped in magnetic islands, precipitating to the chromosphere and ejected into the interplanetary space. The final location of an electron is determined by its initial position, pitch angle and velocity. These initial conditions also influ...

  18. Emergence of event cascades in inhomogeneous networks

    Science.gov (United States)

    Onaga, Tomokatsu; Shinomoto, Shigeru

    2016-09-01

    There is a commonality among contagious diseases, tweets, and neuronal firings that past events facilitate the future occurrence of events. The spread of events has been extensively studied such that the systems exhibit catastrophic chain reactions if the interaction represented by the ratio of reproduction exceeds unity; however, their subthreshold states are not fully understood. Here, we report that these systems are possessed by nonstationary cascades of event-occurrences already in the subthreshold regime. Event cascades can be harmful in some contexts, when the peak-demand causes vaccine shortages, heavy traffic on communication lines, but may be beneficial in other contexts, such that spontaneous activity in neural networks may be used to generate motion or store memory. Thus it is important to comprehend the mechanism by which such cascades appear, and consider controlling a system to tame or facilitate fluctuations in the event-occurrences. The critical interaction for the emergence of cascades depends greatly on the network structure in which individuals are connected. We demonstrate that we can predict whether cascades may emerge, given information about the interactions between individuals. Furthermore, we develop a method of reallocating connections among individuals so that event cascades may be either impeded or impelled in a network.

  19. Forward and Inverse Cascades in EMHD Turbulence

    Science.gov (United States)

    Cho, Jungyeon

    2016-05-01

    Electron magnetohydrodynamics (EMHD) provides a simple fluid-like description of physics below the proton gyro-scale in collisionless plasmas, such as the solar wind. In this paper, we discuss forward and inverse cascades in EMHD turbulence in the presence of a strong mean magnetic field. Similar to Alfvén waves, EMHD waves, or EMHD perturbations, propagate along magnetic field lines. Therefore, two types of EMHD waves can exist: waves moving parallel to and waves moving anti-parallel to the the magnetic field lines. For energy cascade in EMHD turbulence, the relative amplitudes of opposite-traveling waves are important. When the amplitudes are balanced, we will see fully-developed forward cascade with a k -7/3 energy spectrum and a scale-dependent anisotropy. On the other hand, when the amplitudes are imbalanced, we will see inverse cascade, as well as (presumably not fully developed) forward cascade. The underlying physics for the inverse cascade is magnetic helicity conservation.

  20. Emergence of event cascades in inhomogeneous networks.

    Science.gov (United States)

    Onaga, Tomokatsu; Shinomoto, Shigeru

    2016-01-01

    There is a commonality among contagious diseases, tweets, and neuronal firings that past events facilitate the future occurrence of events. The spread of events has been extensively studied such that the systems exhibit catastrophic chain reactions if the interaction represented by the ratio of reproduction exceeds unity; however, their subthreshold states are not fully understood. Here, we report that these systems are possessed by nonstationary cascades of event-occurrences already in the subthreshold regime. Event cascades can be harmful in some contexts, when the peak-demand causes vaccine shortages, heavy traffic on communication lines, but may be beneficial in other contexts, such that spontaneous activity in neural networks may be used to generate motion or store memory. Thus it is important to comprehend the mechanism by which such cascades appear, and consider controlling a system to tame or facilitate fluctuations in the event-occurrences. The critical interaction for the emergence of cascades depends greatly on the network structure in which individuals are connected. We demonstrate that we can predict whether cascades may emerge, given information about the interactions between individuals. Furthermore, we develop a method of reallocating connections among individuals so that event cascades may be either impeded or impelled in a network. PMID:27625183

  1. Liquid Chromatography on chip

    OpenAIRE

    Faure, Karine

    2010-01-01

    Abstract Liquid chromatography is one of the most powerful separation techniques as illustrated by its leading role in analytical sciences through both academic and industrial communities. Its implementation in microsystems appears to be crucial in the development of ?TAS. If electrophoretic techniques have been widely used in miniaturized devices, liquid chromatography has faced multiple challenges in the downsizing process. During the past five years significant breakthroughs...

  2. Gas chromatography in space

    Science.gov (United States)

    Akapo, S. O.; Dimandja, J. M.; Kojiro, D. R.; Valentin, J. R.; Carle, G. C.

    1999-01-01

    Gas chromatography has proven to be a very useful analytical technique for in situ analysis of extraterrestrial environments as demonstrated by its successful operation on spacecraft missions to Mars and Venus. The technique is also one of the six scientific instruments aboard the Huygens probe to explore Titan's atmosphere and surface. A review of gas chromatography in previous space missions and some recent developments in the current environment of fiscal constraints and payload size limitations are presented.

  3. Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Zhou, Binbin;

    2010-01-01

    -transform-limited ultrashort mid-IR pulses with pulse durations much shorter than the input near-IR pulse. The Cherenkov radiation for the crystal considered (β-barium borate) is found for pump wavelengths in the range λ = 0.95–1.45 μm, and is located in the regime λ = 1.5–3.5 μm. For shorter pump wavelengths, the phase...

  4. Performance comparison of suspended bed and batch contactor chromatography.

    Science.gov (United States)

    Quiñones-García, I; Rayner, I; Levison, P R; Dickson, N; Purdom, G

    2001-01-26

    In some applications, the purification and recovery of biomolecules is performed via a cascade of batch adsorption and desorption stages using agitated contactors and related filtration devices. Suspended bed chromatography is a recent process-scale innovation that is applicable to these separations. This hybrid technique exploits the benefits of combining batch adsorption in an agitated contactor with elution in an enclosed column system. To some extent, the process is similar to batch contactor chromatography but can be fully contained and significantly quicker. The process has two steps; first the fluid containing the sample is mixed with the adsorbent in a stirred tank. Second, the slurry suspension is transferred directly into a specialized column, such as an IsoPak column. The media with the adsorbed product is formed as a packed bed, whilst the suspension liquid is passed out of the column. The product is then eluted from the packed bed utilizing standard column-chromatography techniques. The performance of the suspended bed and the agitated contactor operations are demonstrated both by full-scale experimental results and process simulations. The purification of ovalbumin from a hen-egg white feedstock by anion-exchange chromatography was used as a case study in order to prove the concept. With the availability of both pump-packed systems and shear-resistant media, suspended bed chromatography is a better alternative for a range of applications than the traditional batch separations using agitated contactors. PMID:11218119

  5. Deterministic and cascadable conditional phase gate for photonic qubits

    Energy Technology Data Exchange (ETDEWEB)

    Chudzicki, Christopher; Chuang, Isaac; Shapiro, Jeffrey H. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2014-12-04

    Previous analyses of conditional φ{sub NL}-phase gates for photonic qubits that treat crossphase modulation (XPM) in a causal, multimode, quantum field setting suggest that a large (∼π rad) nonlinear phase shift is always accompanied by fidelity-degrading noise [J. H. Shapiro, Phys. Rev. A 73, 062305 (2006); J. Gea-Banacloche, Phys. Rev. A 81, 043823 (2010)]. Using an atomic V-system to model an XPM medium, we present a conditional phase gate that, for sufficiently small nonzero φ{sub NL}, has high fidelity. The gate is made cascadable by using a special measurement, principal mode projection, to exploit the quantum Zeno effect and preclude the accumulation of fidelity-degrading departures from the principal-mode Hilbert space when both control and target photons illuminate the gate. The nonlinearity of the V-system we study is too weak for this particular implementation to be practical. Nevertheless, the idea of cascading through principal mode projection is of potential use to overcome fidelity degrading noise for a wide variety of nonlinear optical primitive gates.

  6. Efficiency and spatial resolution of the CASCADE thermal neutron detector

    Science.gov (United States)

    Köhli, M.; Allmendinger, F.; Häußler, W.; Schröder, T.; Klein, M.; Meven, M.; Schmidt, U.

    2016-08-01

    We report on the CASCADE project - a detection system, which has been designed for the purposes of neutron Spin Echo spectroscopy and which is continuously further developed and adapted to various applications. It features 2D spatially resolved detection of thermal neutrons at high rates. The CASCADE detector is composed of a stack of solid 10B coated Gas Electron Multiplier foils, which serve both as a neutron converter and as an amplifier for the primary ionization deposited in the standard counting gas environment. This multi-layer setup efficiently increases the detection efficiency and by extracting the signal of the charge traversing the stack the conversion layer can be identified allowing a precise determination of the time-of-flight. The spatial resolution is found by optical contrast determination to be σ =(1.39 ± 0.05) mm and by divergence corrected aperture measurements σ =(1.454 ± 0.007) mm , which is in agreement with the simulated detector model. Furthermore this enabled to investigate and describe the non-Gaussian resolution function. At the HEiDi diffractometer the absolute detection efficiency has been studied. At 0.6 Å for the 6 layer detector, which is currently part of the RESEDA spectrometer, an efficiency of 7.8% has been measured, which by means of Monte Carlo simulations translates to (21.0±1.5)% for thermal neutrons at 1.8 Å and (46.9±3.3)% at 5.4 Å.

  7. Harmonic cascade FEL designs for LUX

    Energy Technology Data Exchange (ETDEWEB)

    Penn, G.; Reinsch, M.; Wurtele, J.; Corlett, J.N.; Fawley, W.M.; Zholents, A.; Wan, W.

    2004-07-16

    LUX is a design concept for an ultrafast X-ray science facility, based on an electron beam accelerated to GeV energies in are circulating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 200-250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1 keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.

  8. Characteristics of Single Cathode Cascaded Bias Voltage Arc Plasma

    Science.gov (United States)

    Ou, Wei; Deng, Baiquan; Zeng, Xianjun; Gou, Fujun; Xue, Xiaoyan; Zhang, Weiwei; Cao, Xiaogang; Yang, Dangxiao; Cao, Zhi

    2016-06-01

    A single cathode with a cascaded bias voltage arc plasma source has been developed with a new quartz cathode chamber, instead of the previous copper chambers, to provide better diagnostic observation and access to the plasma optical emission. The cathode chamber cooling scheme is also modified to be naturally cooled only by light emission without cooling water to improve the optical thin performance in the optical path. A single-parameter physical model has been developed to describe the power dissipated in the cascaded bias voltage arc discharge argon plasmas, which have been investigated by utilizing optical emission spectroscopy (OES) and Langmuir probe. In the experiments, discharge currents from 50 A to 100 A, argon flow rates from 800 sccm to 2000 sccm and magnetic fields of 0.1 T and 0.2 T were chosen. The results show: (a) the relationship between the averaged resistivity and the averaged current density exhibits an empirical scaling law as \\barη \\propto \\bar {j}-0.63369 and the power dissipated in the arc has a strong relation with the filling factor; (b) through the quartz, the argon ions optical emission lines have been easily observed and are dominating with wavelengths between 340 nm and 520 nm, which are the emissions of Ar+‑434.81 nm and Ar+‑442.60 nm line, and the intensities are increasing with the arc current and decreasing with the inlet argon flow rate; and (c) the electron density and temperature can reach 2.0 × 1019 m‑3 and 0.48 eV, respectively, under the conditions of an arc current of 90 A and a magnetic field of 0.2 T. The half-width of the ne radial profile is approximatively equal to a few Larmor radii of electrons and can be regarded as the diameter of the plasma jet in the experiments. supported by the International Thermonuclear Experimental Reactor (ITER) Program Special of Ministry of Science and Technology (No. 2013GB114003), and National Natural Science Foundation of China (Nos. 11275135, 11475122)

  9. Characteristics of Single Cathode Cascaded Bias Voltage Arc Plasma

    Science.gov (United States)

    Ou, Wei; Deng, Baiquan; Zeng, Xianjun; Gou, Fujun; Xue, Xiaoyan; Zhang, Weiwei; Cao, Xiaogang; Yang, Dangxiao; Cao, Zhi

    2016-06-01

    A single cathode with a cascaded bias voltage arc plasma source has been developed with a new quartz cathode chamber, instead of the previous copper chambers, to provide better diagnostic observation and access to the plasma optical emission. The cathode chamber cooling scheme is also modified to be naturally cooled only by light emission without cooling water to improve the optical thin performance in the optical path. A single-parameter physical model has been developed to describe the power dissipated in the cascaded bias voltage arc discharge argon plasmas, which have been investigated by utilizing optical emission spectroscopy (OES) and Langmuir probe. In the experiments, discharge currents from 50 A to 100 A, argon flow rates from 800 sccm to 2000 sccm and magnetic fields of 0.1 T and 0.2 T were chosen. The results show: (a) the relationship between the averaged resistivity and the averaged current density exhibits an empirical scaling law as \\barη \\propto \\bar {j}-0.63369 and the power dissipated in the arc has a strong relation with the filling factor; (b) through the quartz, the argon ions optical emission lines have been easily observed and are dominating with wavelengths between 340 nm and 520 nm, which are the emissions of Ar+-434.81 nm and Ar+-442.60 nm line, and the intensities are increasing with the arc current and decreasing with the inlet argon flow rate; and (c) the electron density and temperature can reach 2.0 × 1019 m-3 and 0.48 eV, respectively, under the conditions of an arc current of 90 A and a magnetic field of 0.2 T. The half-width of the ne radial profile is approximatively equal to a few Larmor radii of electrons and can be regarded as the diameter of the plasma jet in the experiments. supported by the International Thermonuclear Experimental Reactor (ITER) Program Special of Ministry of Science and Technology (No. 2013GB114003), and National Natural Science Foundation of China (Nos. 11275135, 11475122)

  10. Unidirectional cross polarization rotator with enhanced broadband transparency by cascading twisted nanobars

    Science.gov (United States)

    Wang, Ying-Hua; Shao, Jian; Li, Jie; Zhu, Ming-Jie; Li, Jiaqi; Dong, Zheng-Gao

    2016-05-01

    We demonstrate the optical activity for linear polarization by twisting cascading multilayer nanobars, for which the x- (y-)polarized light is significantly transformed to a y- (x-)polarized one with enhanced transmittance in a unidirectional manner, and the bandwidth can be broadened by increasing the cascading number of layers. The polarization conversion rate reaches nearly 100% with a maximum cross-polarization transmission coefficient larger than 0.95. This phenomenon is attributed to the chiral structural arrangement and anisotropic resonance of nanobars, which consequently leads to different cross-polarization conversions between forward and backward incident lights, and thus the unidirectional transmission with an extinction ratio up to 103. These characteristics show application potential in optical nano-devices.

  11. Light-mediated cascaded locking of multiple nano-optomechanical oscillators

    CERN Document Server

    Gil-Santos, Eduardo; Baker, Christophe; Goetschy, Arthur; Hease, William; Gomez, Carmen; Lemaître, Aristide; Leo, Giuseppe; Ciuti, Cristiano; Favero, Ivan

    2016-01-01

    Collective phenomena emerging from non-linear interactions between multiple oscillators, such as synchronization and frequency locking, find applications in a wide variety of fields. Optomechanical resonators, which are intrinsically non-linear, combine the scientific assets of mechanical devices with the possibility of long distance controlled interactions enabled by travelling light. Here we demonstrate light-mediated frequency locking of three distant nano-optomechanical oscillators positioned in a cascaded configuration. The oscillators, integrated on a chip along a coupling waveguide, are optically driven with a single laser and oscillate at gigahertz frequency. Despite an initial frequency disorder of hundreds of kilohertz, the guided light locks them all with a clear transition in the optical output. The experimental results are described by Langevin equations, paving the way to scalable cascaded optomechanical configurations.

  12. Spectral gain profile of a multi-stack terahertz quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, D., E-mail: dominic.bachmann@tuwien.ac.at; Deutsch, C.; Krall, M.; Unterrainer, K.; Darmo, J. [Photonics Institute, Vienna University of Technology, Gußhausstraße 27-29, 1040 Vienna (Austria); Center for Micro- and Nanostructures, Vienna University of Technology, Floragasse 7, 1040 Vienna (Austria); Rösch, M.; Scalari, G.; Beck, M.; Faist, J. [Institute for Quantum Electronics, ETH Zürich, Auguste-Piccard-Hof 1, 8093 Zürich (Switzerland)

    2014-11-03

    The spectral gain of a multi-stack terahertz quantum cascade laser, composed of three active regions with emission frequencies centered at 2.3, 2.7, and 3.0 THz, is studied as a function of driving current and temperature using terahertz time-domain spectroscopy. The optical gain associated with the particular quantum cascade stacks clamps at different driving currents and saturates to different values. We attribute these observations to varying pumping efficiencies of the respective upper laser states and to frequency dependent optical losses. The multi-stack active region exhibits a spectral gain full width at half-maximum of 1.1 THz. Bandwidth and spectral position of the measured gain match with the broadband laser emission. As the laser action ceases with increasing operating temperature, the gain at the dominant lasing frequency of 2.65 THz degrades sharply.

  13. On the modified active region design of interband cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, M.; Ryczko, K.; Dyksik, M.; Sęk, G.; Misiewicz, J. [Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, Wrocław (Poland); Weih, R.; Dallner, M.; Kamp, M. [Technische Physik, University of Würzburg and Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Am Hubland, D-97074 Würzburg (Germany); Höfling, S. [Technische Physik, University of Würzburg and Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Am Hubland, D-97074 Würzburg (Germany); SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, KY16 9SS, St. Andrews (United Kingdom)

    2015-02-28

    Type II InAs/GaInSb quantum wells (QWs) grown on GaSb or InAs substrates and designed to be integrated in the active region of interband cascade lasers (ICLs) emitting in the mid infrared have been investigated. Optical spectroscopy, combined with band structure calculations, has been used to probe their electronic properties. A design with multiple InAs QWs has been compared with the more common double W-shaped QW and it has been demonstrated that it allows red shifting the emission wavelength and enhancing the transition oscillator strength. This can be beneficial for the improvements of the ICLs performances, especially when considering their long-wavelength operation.

  14. Hiding an image in cascaded Fresnel digital holograms

    Institute of Scientific and Technical Information of China (English)

    Shaogeng Deng; Liren Liu; Haitao Lang; Weiqing Pan; Dong Zhao

    2006-01-01

    @@ A system of two separated computer-generated holograms termed cascaded Fresnel digital holography (CFDH) is proposed and its application to hiding information is demonstrated by a computer simulation experiment. The technique is that the reconstructed image is the result of the wave Fresnel diffractionof two sub-holograms located at different distances from the imaging plane along the illuminating beam. The two sub-holograms are generated by an iterative algorithm based on the projection onto convex sets. In the application to the hiding of optical information, the information to be hidden is encoded into thesub-hologram which is multiplied by the host image in the input plane, the other sub-hologram in the filterplane is used for the deciphering key, the hidden image can be reconstructed in the imaging plane of the CFDH setup.

  15. Free-space communication based on quantum cascade laser

    Science.gov (United States)

    Chuanwei, Liu; Shenqiang, Zhai; Jinchuan, Zhang; Yuhong, Zhou; Zhiwei, Jia; Fengqi, Liu; Zhanguo, Wang

    2015-09-01

    A free-space communication based on a mid-infrared quantum cascade laser (QCL) is presented. A room-temperature continuous-wave distributed-feedback (DFB) QCL combined with a mid-infrared detector comprise the basic unit of the communication system. Sinusoidal signals at a highest frequency of 40 MHz and modulated video signals with a carrier frequency of 30 MHz were successfully transmitted with this experimental setup. Our research has provided a proof-of-concept demonstration of space optical communication application with QCL. The highest operation frequency of our setup was determined by the circuit-limited modulation bandwidth. A high performance communication system can be obtained with improved modulation circuit system. Project supported by the State Key Development Program for Basic Research of China (Nos. 2013CB632801, 2013CB632803) and the National Natural Science Foundation of China (Nos. 61435014, 61306058, 61274094).

  16. A New Approach to Cascaded Stimulated Brillouin Scattering

    CERN Document Server

    Dong, Mark

    2015-01-01

    We present a novel approach to cascaded stimulated Brillouin scattering and frequency comb generation in which the multitude of interacting pump, Stokes, and anti-Stokes optical fields are described by a single forward wave and a single backward wave at a single carrier frequency. The envelopes of these two waves are modulated through coupling to a single acoustic oscillation and through four-wave mixing. Starting from a single pump field, we observe the emergence of a comb of frequencies as the intensity is increased. The set of three differential equations derived here are sufficient to describe the generation of any number of Brillouin sidebands in oscillator systems that would have required hundreds of coupled equations in the standard approach. We test the new approach on some published experiments and find excellent agreement with the results.

  17. Contributed Review: Quantum cascade laser based photoacoustic detection of explosives

    Science.gov (United States)

    Li, J. S.; Yu, B.; Fischer, H.; Chen, W.; Yalin, A. P.

    2015-03-01

    Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacoustic spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.

  18. Contributed Review: Quantum cascade laser based photoacoustic detection of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. S., E-mail: jingsong-li@ahu.edu.cn; Yu, B. [Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei (China); Fischer, H. [Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz (Germany); Chen, W. [Laboratoire de Physicochimie de l’Atmosphére, Université du Littoral Côte d’Opale, Dunkerque (France); Yalin, A. P. [Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523-1374 (United States)

    2015-03-15

    Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacoustic spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.

  19. Bifurcations analysis of turbulent energy cascade

    Energy Technology Data Exchange (ETDEWEB)

    Divitiis, Nicola de, E-mail: n.dedivitiis@gmail.com

    2015-03-15

    This note studies the mechanism of turbulent energy cascade through an opportune bifurcations analysis of the Navier–Stokes equations, and furnishes explanations on the more significant characteristics of the turbulence. A statistical bifurcations property of the Navier–Stokes equations in fully developed turbulence is proposed, and a spatial representation of the bifurcations is presented, which is based on a proper definition of the fixed points of the velocity field. The analysis first shows that the local deformation can be much more rapid than the fluid state variables, then explains the mechanism of energy cascade through the aforementioned property of the bifurcations, and gives reasonable argumentation of the fact that the bifurcations cascade can be expressed in terms of length scales. Furthermore, the study analyzes the characteristic length scales at the transition through global properties of the bifurcations, and estimates the order of magnitude of the critical Taylor-scale Reynolds number and the number of bifurcations at the onset of turbulence.

  20. MAP Kinase Cascades in Plant Innate Immunity

    Directory of Open Access Journals (Sweden)

    Magnus Wohlfahrt Rasmussen

    2012-07-01

    Full Text Available Plant mitogen-activated protein kinase (MAPK cascades generally transduce extracellular stimuli into cellular responses. These stimuli include the perception of pathogen-associated molecular patterns (PAMPs by host transmembrane pattern recognition receptors (PRRs which trigger MAPK-dependent innate immune responses. In the model Arabidopsis, molecular genetic evidence implicates a number of MAPK cascade components in PAMP signaling, and in responses to immunity-related phytohormones such as ethylene, jasmonate and salicylate. In a few cases, cascade components have been directly linked to the transcription of target genes or to the regulation of phytohormone synthesis. Thus MAPKs are obvious targets for bacterial effector proteins and are likely guardees of resistance (R proteins, which mediate defense signaling in response to the action of effectors, or effector-triggered immunity (ETI. This mini-review discusses recent progress in this field with a focus on the Arabidopsis MAPKs MPK3, 4, 6 and 11 in their apparent pathways.

  1. Epidemic and Cascading Survivability of Complex Networks

    CERN Document Server

    Manzano, Marc; Ripoll, Jordi; Fagertun, Anna Manolova; Torres-Padrosa, Victor; Pahwa, Sakshi; Scoglio, Caterina

    2014-01-01

    Our society nowadays is governed by complex networks, examples being the power grids, telecommunication networks, biological networks, and social networks. It has become of paramount importance to understand and characterize the dynamic events (e.g. failures) that might happen in these complex networks. For this reason, in this paper, we propose two measures to evaluate the vulnerability of complex networks in two different dynamic multiple failure scenarios: epidemic-like and cascading failures. Firstly, we present \\emph{epidemic survivability} ($ES$), a new network measure that describes the vulnerability of each node of a network under a specific epidemic intensity. Secondly, we propose \\emph{cascading survivability} ($CS$), which characterizes how potentially injurious a node is according to a cascading failure scenario. Then, we show that by using the distribution of values obtained from $ES$ and $CS$ it is possible to describe the vulnerability of a given network. We consider a set of 17 different compl...

  2. Emergence of event cascades in inhomogeneous networks

    CERN Document Server

    Onaga, Tomokatsu

    2016-01-01

    There is a commonality among contagious diseases, tweets, urban crimes, nuclear reactions, and neuronal firings that past events facilitate the future occurrence of events. The spread of events has been extensively studied such that the systems exhibit catastrophic chain reactions if the interaction represented by the ratio of reproduction exceeds unity; however, their subthreshold states for the case of the weaker interaction are not fully understood. Here, we report that these systems are possessed by nonstationary cascades of event-occurrences already in the subthreshold regime. Event cascades can be harmful in some contexts, when the peak-demand causes vaccine shortages, heavy traffic on communication lines, frequent crimes, or large fluctuations in nuclear reactions, but may be beneficial in other contexts, such that spontaneous activity in neural networks may be used to generate motion or store memory. Thus it is important to comprehend the mechanism by which such cascades appear, and consider controlli...

  3. Cascade enzymatic reactions for efficient carbon sequestration.

    Science.gov (United States)

    Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping

    2015-04-01

    Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA. PMID:25708541

  4. Piscivores, Trophic Cascades, and Lake Management

    Directory of Open Access Journals (Sweden)

    Ray W. Drenner

    2002-01-01

    Full Text Available The concept of cascading trophic interactions predicts that an increase in piscivore biomass in lakes will result in decreased planktivorous fish biomass, increased herbivorous zooplankton biomass, and decreased phytoplankton biomass. Though often accepted as a paradigm in the ecological literature and adopted by lake managers as a basis for lake management strategies, the trophic cascading interactions hypothesis has not received the unequivocal support (in the form of rigorous experimental testing that might be expected of a paradigm. Here we review field experiments and surveys, testing the hypothesis that effects of increasing piscivore biomass will cascade down through the food web yielding a decline in phytoplankton biomass. We found 39 studies in the scientific literature examining piscivore effects on phytoplankton biomass. Of the studies, 22 were confounded by supplemental manipulations (e.g., simultaneous reduction of nutrients or removal of planktivores and could not be used to assess piscivore effects. Of the 17 nonconfounded studies, most did not find piscivore effects on phytoplankton biomass and therefore did not support the trophic cascading interactions hypothesis. However, the trophic cascading interactions hypothesis also predicts that lake systems containing piscivores will have lower phytoplankton biomass for any given phosphorus concentration. Based on regression analyses of chlorophyll�total phosphorus relationships in the 17 nonconfounded piscivore studies, this aspect of the trophic cascading interactions hypothesis was supported. The slope of the chlorophyll vs. total phosphorus regression was lower in lakes with planktivores and piscivores compared with lakes containing only planktivores but no piscivores. We hypothesize that this slope can be used as an indicator of “functional piscivory” and that communities with extremes of functional piscivory (zero and very high represent classical 3- and 4-trophic level

  5. Energy cascade in internal wave attractors

    CERN Document Server

    Brouzet, Christophe; Joubaud, Sylvain; Sibgatullin, Ilias; Dauxois, Thierry

    2016-01-01

    One of the pivotal questions in the dynamics of the oceans is related to the cascade of mechanical energy in the abyss and its contribution to mixing. Here, we propose internal wave attractors in the large amplitude regime as a unique self-consistent experimental and numerical setup that models a cascade of triadic interactions transferring energy from large-scale monochro-matic input to multi-scale internal wave motion. We also provide signatures of a discrete wave turbulence framework for internal waves. Finally, we show how beyond this regime, we have a clear transition to a regime of small-scale high-vorticity events which induce mixing. Introduction.

  6. Cascade Grating Structure for Increasing the Channel Number on Holographic Demultiplexer

    Institute of Scientific and Technical Information of China (English)

    Jun Won AN

    2006-01-01

    The expansion capability of the channel number in the optical demultiplexer using two cascaded photopolymer volume gratings is reported. It could be accomplished by designing of two gratings with different spectral range. As a result of the experiment, a 0.4-nm-spaced 130-channel demultiplexer with the channel uniformity of 3.5dB, the 3 dB-bandwidth of 0.12 nm, and the channel crosstalk of - 20 dB is experimentally demonstrated.

  7. The capacity of the cascaded fading channel in the low power regime

    KAUST Repository

    Benkhelifa, Fatma

    2014-04-01

    In this paper, we present a simple way to compute the ergodic capacity of cascaded channels with perfect channel state information at both the transmitter and the receiver. We apply our generic results to the Rayleigh-double fading channel, and to the free-space optical channel in the presence of pointing errors and we express their low signal-to-noise ratio capacities. We mainly focus on the low signal-to-noise ratio range.

  8. A Cascaded Incoherent Spectrum Sliced Transversal Photonic Microwave Filters-An Analysis

    OpenAIRE

    R. K. Jeyachitra; Dr.R.Sukanesh

    2010-01-01

    An analysis of the performance of a simple, incoherent spectrum sliced microwave photonic filter is presented. This filter structure is based on cascading of two incoherent fiber Fabry -Pérot filters as a slicing element of a broadband optical source. The filter performance is studied by measuring the overall Free Spectral Range, 3dB Bandwidth, Quality factor and Main Lobe to Sidelobe Suppression level for different modes of connecting the filter in cascadedconfiguration. Also simulation resu...

  9. Enantioselective Synthesis of Dioxatriquinane Structural Motifs for HIV-1 Protease Inhibitors Using a Cascade Radical Cyclization†

    Science.gov (United States)

    Ghosh, Arun K.; Xu, Chun-Xiao; Osswald, Heather L.

    2015-01-01

    Synthesis of novel HIV-1 protease inhibitors incorporating dioxatriquinane-derived P2-ligands is described. The tricyclic ligand alcohol contains five contiguous chiral centers. The ligand alcohols were prepared in optically active form by an enzymatic asymmetrization of mesodiacetate, cascade radical cyclization, and Lewis acid catalyzed reduction as the key steps. Inhibitors with dioxatriquinane-derived P2-ligands exhibited low nanomolar HIV-1 protease activity. PMID:26185337

  10. Spatial soliton by cascading χ(2) effect and its self-induced wave-guide in quasi-phase-matched media

    Institute of Scientific and Technical Information of China (English)

    Kezhu Hong(洪克柱); Xianfeng Chen(陈险峰); Guangqie Gao(高光且); Yingli Chen(陈英礼)

    2003-01-01

    The formation of the spatial solitons in the quadratic nonlinearity χ(2) media by cascading second harmonicgeneration (SHG) in quasi-phase-matched (QPM) sample is studied on the basis of nonlinear Schrodingerequation (NLSE). When the solitary wave propagates in the QPM media, it formed optical wave-guidesthrough cascading χ(2) effect called self-induced soliton wave-guide. Transverse refractive index distribu-tion of the self-induced soliton wave-guide of fundamental and SHG wave is obtained by cascading process.Analysis of guided-mode of such self-induced soliton wave-guide is first proposed to our knowledge. Be-cause the power needed for forming the spatial solitons in cascading process is much lower than that inKerr media, this kind of self-induced soliton wave-guide shows potential applications in all-optical signalprocess.

  11. Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification.

    Science.gov (United States)

    Thomsen, Mads S; Wernberg, Thomas; Altieri, Andrew; Tuya, Fernando; Gulbransen, Dana; McGlathery, Karen J; Holmer, Marianne; Silliman, Brian R

    2010-08-01

    The importance of positive interactions is increasingly acknowledged in contemporary ecology. Most research has focused on direct positive effects of one species on another. However, there is recent evidence that indirect positive effects in the form of facilitation cascades can also structure species abundances and biodiversity. Here we conceptualize a specific type of facilitation cascade-the habitat cascade. The habitat cascade is defined as indirect positive effects on focal organisms mediated by successive facilitation in the form of biogenic formation or modification of habitat. Based on a literature review, we demonstrate that habitat cascades are a general phenomenon that enhances species abundance and diversity in forests, salt marshes, seagrass meadows, and seaweed beds. Habitat cascades are characterized by a hierarchy of facilitative interactions in which a basal habitat former (typically a large primary producer, e.g., a tree) creates living space for an intermediate habitat former (e.g., an epiphyte) that in turn creates living space for the focal organisms (e.g., spiders, beetles, and mites). We then present new data on a habitat cascade common to soft-bottom estuaries in which a relatively small invertebrate provides basal habitat for larger intermediate seaweeds that, in turn, generate habitat for focal invertebrates and epiphytes. We propose that indirect positive effects on focal organisms will be strongest when the intermediate habitat former is larger and different in form and function from the basal habitat former. We also discuss how humans create, modify, and destroy habitat cascades via global habitat destruction, climatic change, over-harvesting, pollution, or transfer of invasive species. Finally, we outline future directions for research that will lead to a better understanding of habitat cascades. PMID:21558196

  12. Cascadability improvement of a Cross-gain modulation wavelength converter using a grating based oiptical add/drop multiplexer

    DEFF Research Database (Denmark)

    Xueyan, Zheng; Liu, Fenghai

    2000-01-01

    By adding a grating based optical add/drop multiplexer, the maximum cascaded number of a cross-gain modulation based wavelength converter is improved from two to six rounds in a loop experiment at 10 Gb/s due to the improved high frequency response of the converter....

  13. Size fractionation by slalom chromatography and hydrodynamic chromatography

    OpenAIRE

    Ricardo P. Dias

    2008-01-01

    Hydrodynamic chromatography, also called separation by flow, is based on the use of the parabolic flow profile occurring in open capillaries or in the pores from a column filled with non-porous particles. The hydrodynamic chromatography separation medium, if any, is much simpler than that from size exclusion chromatography (porous particles), the former technique being used in the size-fractionation of many colloids and macromolecules. The transition between hydrodynamic chromatography (obtai...

  14. UNIFIED THEORETICAL MOMENT EXPRESSIONS FOR ELUTION CHROMATOGRAPHY AND FRONTAL CHROMATOGRAPHY

    Institute of Scientific and Technical Information of China (English)

    YANGGengliang; TAOZuyi

    1992-01-01

    The unified theoretical moment expressions for elution chromatography and frontal chromatography when the sorption process is described by a linear model were derived. The moment expressions derived by previous authors can be obtained from these unified theoretical moment expressions. In this paper, a mathematical analysis has been carried out so as to set up a unified theoretical basis for elution and frontal chromatography.

  15. Defect accumulation under cascade damage conditions

    DEFF Research Database (Denmark)

    Trinkaus, H.; Singh, B.N.; Woo, C.H.

    1994-01-01

    discussed in terms of this reaction kinetics taking into account cluster production, dissociation, migration and annihilation at extended sinks. Microstructural features which are characteristic of cascade damage and cannot be explained in terms of the conventional single defect reaction kinetics are...

  16. Nested Canalyzing, Unate Cascade, and Polynomial Functions.

    Science.gov (United States)

    Jarrah, Abdul Salam; Raposa, Blessilda; Laubenbacher, Reinhard

    2007-09-15

    This paper focuses on the study of certain classes of Boolean functions that have appeared in several different contexts. Nested canalyzing functions have been studied recently in the context of Boolean network models of gene regulatory networks. In the same context, polynomial functions over finite fields have been used to develop network inference methods for gene regulatory networks. Finally, unate cascade functions have been studied in the design of logic circuits and binary decision diagrams. This paper shows that the class of nested canalyzing functions is equal to that of unate cascade functions. Furthermore, it provides a description of nested canalyzing functions as a certain type of Boolean polynomial function. Using the polynomial framework one can show that the class of nested canalyzing functions, or, equivalently, the class of unate cascade functions, forms an algebraic variety which makes their analysis amenable to the use of techniques from algebraic geometry and computational algebra. As a corollary of the functional equivalence derived here, a formula in the literature for the number of unate cascade functions provides such a formula for the number of nested canalyzing functions.

  17. Impedance interactions in bidirectional cascaded converter

    DEFF Research Database (Denmark)

    Tian, Yanjun; Loh, Poh Chiang; Chen, Zhe;

    2016-01-01

    here for showing that forward and reverse interactions are prominently different in terms of dynamics and stability, even though the cascaded converter control remains unchanged. The concluded findings have been verified by simulation and experimental results, from which, important guidelines have been...

  18. Modeling and simulation of cascading contingencies

    Science.gov (United States)

    Zhang, Jianfeng

    This dissertation proposes a new approach to model and study cascading contingencies in large power systems. The most important contribution of the work involves the development and validation of a heuristic analytic model to assess the likelihood of cascading contingencies, and the development and validation of a uniform search strategy. We model the probability of cascading contingencies as a function of power flow and power flow changes. Utilizing logistic regression, the proposed model is calibrated using real industry data. This dissertation analyzes random search strategies for Monte Carlo simulations and proposes a new uniform search strategy based on the Metropolis-Hastings Algorithm. The proposed search strategy is capable of selecting the most significant cascading contingencies, and it is capable of constructing an unbiased estimator to provide a measure of system security. This dissertation makes it possible to reasonably quantify system security and justify security operations when economic concerns conflict with reliability concerns in the new competitive power market environment. It can also provide guidance to system operators about actions that may be taken to reduce the risk of major system blackouts. Various applications can be developed to take advantage of the quantitative security measures provided in this dissertation.

  19. Cascading effects of overfishing marine systems

    NARCIS (Netherlands)

    Scheffer, M.; Carpenter, S.; Young, de B.

    2005-01-01

    Profound indirect ecosystem effects of overfishing have been shown for coastal systems such as coral reefs and kelp forests. A new study from the ecosystem off the Canadian east coast now reveals that the elimination of large predatory fish can also cause marked cascading effects on the pelagic food

  20. Quantum-engineered interband cascade photovoltaic devices

    Science.gov (United States)

    Yang, Rui Q.; Lotfi, Hossein; Li, Lu; Hinkey, Robert T.; Ye, Hao; Klem, John F.; Lei, L.; Mishima, T. D.; Keay, J. C.; Santos, M. B.; Johnson, M. B.

    2013-12-01

    Quantum-engineered multiple stage photovoltaic (PV) devices are explored based on InAs/GaSb/AlSb interband cascade (IC) structures. These ICPV devices employ multiple discrete absorbers that are connected in series by widebandgap unipolar barriers using type-II heterostructure interfaces for facilitating carrier transport between cascade stages similar to IC lasers. The discrete architecture is beneficial for improving the collection efficiency and for spectral splitting by utilizing absorbers with different bandgaps. As such, the photo-voltages from each individual cascade stage in an ICPV device add together, creating a high overall open-circuit voltage, similar to conventional multi-junction tandem solar cells. Furthermore, photo-generated carriers can be collected with nearly 100% efficiency in each stage. This is because the carriers travel over only a single cascade stage, designed to be shorter than a typical diffusion length. The approach is of significant importance for operation at high temperatures where the diffusion length is reduced. Here, we will present our recent progress in the study of ICPV devices, which includes the demonstration of ICPV devices at room temperature and above with narrow bandgaps (e.g. 0.23 eV) and high open-circuit voltages.

  1. Cascaded frequency doublers for broadband laser radiation

    Science.gov (United States)

    Andreev, N. F.; Vlasova, K. V.; Davydov, V. S.; Kulikov, S. M.; Makarov, A. I.; Sukharev, Stanislav A.; Freidman, Gennadii I.; Shubin, S. V.

    2012-10-01

    A new scheme of a cascaded converter of the first harmonic of broadband cw laser radiation into the second harmonic (SH) with compensation for the group walk-off in cascades is proposed and investigated. The conditions under which high conversion coefficients of broadband (~33 cm-1) single-mode fibre laser radiation with low peak power (~300 W) into the SH are determined for frequency doublers based on the most promising LBO crystal. Conversion of cw radiation with an average power of 300 W and efficiency η = 4.5 % into the SH is obtained in a single LBO crystal. Effect of coherent addition of SH radiation excited in different cascades is demonstrated for two- and three-stage schemes. The expected conversion efficiencies, calculated disregarding loss but taking into account real aberrations of elements, are 18 % and 38 %, respectively. The effect of pumping depletion begins to manifest itself in the third cascade of a three-stage converter; it may reduce the latter value to ~30 %.

  2. Geothermal research, Oregon Cascades: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Priest, G.R.; Black, G.L.

    1988-10-27

    Previous USDOE-funded geothermal studies have produced an extensive temperature gradient and heat flow data base for the State of Oregon. One of the important features identified as a result of these studies is a rapid transition from heat flow values on the order of 40 mW/m/sup 2/ in the Willamette Valley and Western Cascades to values of greater than or equal to100 mW/m/sup 2/ in the High Cascades and the eastern portion of the Western Cascades. These data indicate that the Cascade Range in Oregon has potential as a major geothermal province and stimulated much of the later work completed by government agencies and private industry. Additional data generated as a result of this grant and published in DOGAMI Open-File Report 0-86-2 further define the location and magnitude of this transition zone. In addition, abundant data collected from the vicinity of Breitenbush and Austin Hot Springs have permitted the formulation of relatively detailed models of these hydrothermal systems. These models are published in DOGAMI Open-File Report 0-88-5. Task 1.2 of the Deliverables section of Amendment M001 is fulfilled by DOGAMI publication GMS-48, Geologic map of the McKenzie Bridge quadrangle, Lane County, Oregon. This map was printed in October, 1988, and is part of the final submission to USDOE. 8 refs.

  3. Forecasting Social Unrest Using Activity Cascades.

    Science.gov (United States)

    Cadena, Jose; Korkmaz, Gizem; Kuhlman, Chris J; Marathe, Achla; Ramakrishnan, Naren; Vullikanti, Anil

    2015-01-01

    Social unrest is endemic in many societies, and recent news has drawn attention to happenings in Latin America, the Middle East, and Eastern Europe. Civilian populations mobilize, sometimes spontaneously and sometimes in an organized manner, to raise awareness of key issues or to demand changes in governing or other organizational structures. It is of key interest to social scientists and policy makers to forecast civil unrest using indicators observed on media such as Twitter, news, and blogs. We present an event forecasting model using a notion of activity cascades in Twitter (proposed by Gonzalez-Bailon et al., 2011) to predict the occurrence of protests in three countries of Latin America: Brazil, Mexico, and Venezuela. The basic assumption is that the emergence of a suitably detected activity cascade is a precursor or a surrogate to a real protest event that will happen "on the ground." Our model supports the theoretical characterization of large cascades using spectral properties and uses properties of detected cascades to forecast events. Experimental results on many datasets, including the recent June 2013 protests in Brazil, demonstrate the effectiveness of our approach. PMID:26091012

  4. Modern Thin-Layer Chromatography.

    Science.gov (United States)

    Poole, Colin F.; Poole, Salwa K.

    1989-01-01

    Some of the important modern developments of thin-layer chromatography are introduced. Discussed are the theory and instrumentation of thin-layer chromatography including multidimensional and multimodal techniques. Lists 53 references. (CW)

  5. Room-temperature operation of mid-infrared surface-plasmon quantum cascade lasers

    Science.gov (United States)

    Bahriz, M.; Moreau, V.; Palomo, J.; Krysa, A. B.; Austin, D.; Cockburn, J. W.; Roberts, J. S.; Wilson, L. R.; Julien, F.; Colombelli, R.

    2007-04-01

    We report the pulsed, room-temperature operation of an InGaAs/AllnAs quantum cascade laser at an operating wavelength of ≈ 7.5 μm in which the optical mode is a surface-plasmon polariton excitation. The use of a silver-based electrical contact with reduced optical losses at the laser emission wavelength allows for a reduction of the laser threshold current by a factor of two relative to samples with a gold-based contact layer.

  6. Nonlinear cascade-configuration multi-wave mixing scheme based on electromagnetically induced transparency

    Institute of Scientific and Technical Information of China (English)

    Li Jia-Hua; Yang Wen-Xing; Peng Ju-Cun

    2004-01-01

    A nonlinear optical cascade-configuration multi-wave mixing (CCMWM) scheme is presented and analysed for the generation of coherent light in a six-level atomic system in the context of electromagnetically induced transparency (EIT). A detailed semi-classical study of the propagation of the generated mixing and probe fields is demonstrated.We show by numerical simulations that EIT is capable of suppressing linear and nonlinear photon absorption. The analytical dependence of the generated mixing field on the probe field and the respective detuning is also predicted.Such a nonlinear optical process can be used for generating coherent short-wavelength radiation.

  7. Steering light into logic patterns with two-dimensional cascaded multimode waveguide

    Institute of Scientific and Technical Information of China (English)

    Zhou Hai-Feng; Yang Jian-Yi; Wang Ming-Hua; Jiang Xiao-Qing

    2007-01-01

    Steering light into logic patterns with two-dimensional cascaded multimode waveguide is demonstrated.By employing the imaging properties of 2D multimode interference (MMI) and partial phase modulation method,the design ideas and the implementing methods of the 2(2×2) bits type spatial logic steering are discussed;therefore the structure of logical pattern is proposed.Numerical simulation is carried out to verify the design in detail by using the beam propagation method.It is expected to realize logic coders by using the integrated optical methods and exploit their potential applications in the field of optical logic.

  8. Low-loss hollow waveguide fibers for mid-infrared quantum cascade laser sensing applications.

    Science.gov (United States)

    Patimisco, Pietro; Spagnolo, Vincenzo; Vitiello, Miriam S; Scamarcio, Gaetano; Bledt, Carlos M; Harrington, James A

    2013-01-01

    We report on single mode optical transmission of hollow core glass waveguides (HWG) coupled with an external cavity mid-IR quantum cascade lasers (QCLs). The QCL mode results perfectly matched to the hybrid HE(11) waveguide mode and the higher losses TE-like modes have efficiently suppressed by the deposited inner dielectric coating. Optical losses down to 0.44 dB/m and output beam divergence of ~5 mrad were measured. Using a HGW fiber with internal core size of 300 µm we obtained single mode laser transmission at 10.54 µm and successful employed it in a quartz enhanced photoacoustic gas sensor setup. PMID:23337336

  9. High duty cycle operation of quantum cascade lasers based on graded superlattice active regions

    International Nuclear Information System (INIS)

    High duty cycle operation of quantum cascade superlattice lasers with graded superlattice active regions is investigated with the goal of achieving high average optical power. The optical output power increases with pulse width and decreases with heat sink temperature. This behavior is explained on the basis of the laser core temperature oscillations during the pulsed, high duty cycle operation. Between 175 and 325 K heat sink temperature, optimum duty cycles vary from 10% to 1% and average power levels vary from 50 to 1 mW for various lasers used in this study. [copyright] 2001 American Institute of Physics

  10. Continuous wave operation of quantum cascade lasers with frequency-shifted feedback

    Energy Technology Data Exchange (ETDEWEB)

    Lyakh, A., E-mail: arkadiy.lyakh@ucf.edu [Pranalytica, Inc., 1101 Colorado Ave., Santa Monica, CA 90401 (United States); NanoScience Technology Center, University of Central Florida, 12424 Research Pkwy, Orlando, FL 32826 (United States); College of Optics and Photonics, University of Central Florida, 304 Scorpius St, Orlando, FL 32826 (United States); Barron-Jimenez, R.; Dunayevskiy, I.; Go, R.; Tsvid, G.; Patel, C. Kumar N., E-mail: patel@pranalytica.com [Pranalytica, Inc., 1101 Colorado Ave., Santa Monica, CA 90401 (United States)

    2016-01-15

    Operation of continuous wave quantum cascade lasers with a frequency-shifted feedback provided by an acousto-optic modulator is reported. Measured linewidth of 1.7 cm{sup −1} for these devices, under CW operating conditions, was in a good agreement with predictions of a model based on frequency-shifted feedback seeded by spontaneous emission. Linewidth broadening was observed for short sweep times, consistent with sound wave grating period variation across the illuminated area on the acousto-optic modulator. Standoff detection capability of the AOM-based QCL setup was demonstrated for several solid materials.

  11. Low-Loss Hollow Waveguide Fibers for Mid-Infrared Quantum Cascade Laser Sensing Applications

    Directory of Open Access Journals (Sweden)

    James A. Harrington

    2013-01-01

    Full Text Available We report on single mode optical transmission of hollow core glass waveguides (HWG coupled with an external cavity mid-IR quantum cascade lasers (QCLs. The QCL mode results perfectly matched to the hybrid HE11 waveguide mode and the higher losses TE-like modes have efficiently suppressed by the deposited inner dielectric coating. Optical losses down to 0.44 dB/m and output beam divergence of ~5 mrad were measured. Using a HGW fiber with internal core size of 300 µm we obtained single mode laser transmission at 10.54 µm and successful employed it in a quartz enhanced photoacoustic gas sensor setup.

  12. Extending Paper Chromatography Inquiry

    Science.gov (United States)

    Finson, Kevin

    2004-01-01

    One of the "good old" standard activities middle school students seem to enjoy is paper chromatography. The procedures and materials needed are relatively simple and the results can be colorful. All too often, the activity ends just after these colorful results are obtained, cutting short the potential it holds for some further inquiry. With some…

  13. Cascades with coupled map lattices in preferential attachment community networks

    Institute of Scientific and Technical Information of China (English)

    Cui Di; Gao Zi-You; Zhao Xiao-Mei

    2008-01-01

    In this paper,cascading failure is studied by coupled map lattice (CML) methods in preferential attachment community networks.It is found that external perturbation R is increasing with modularity Q growing by simulation.In particular,the large modularity Q can hold off the cascading failure dynamic process in community networks.Furthermore,different attack strategies also greatly affect the cascading failure dynamic process. It is particularly significant to control cascading failure process in real community networks.

  14. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  15. Optimization Control of Bidirectional Cascaded DC-AC Converter Systems

    DEFF Research Database (Denmark)

    Tian, Yanjun

    in bidirectional cascaded converter. This research work analyses the control strategies based on the topology of dual active bridges converter cascaded with a three phase inverter. It firstly proposed a dc link voltage and active power coordinative control method for this cascaded topology, and it can reduce dc...

  16. Albedo of photons in high energy electromagnetic and hadronic cascades

    International Nuclear Information System (INIS)

    The albedo of photons in electromagnetic cascades is simulated. A simple model of back current photons generation and propagation in electromagnetic cascades is considered which satisfactorily describes the general features of albedo behavior. The contribution to the photonic albedo of electromagnetic subshowers generated by high energy gamma-quanta from π0 decays in the hadron initiated cascade is evaluated. (orig.)

  17. High Performance Thin Layer Chromatography.

    Science.gov (United States)

    Costanzo, Samuel J.

    1984-01-01

    Clarifies where in the scheme of modern chromatography high performance thin layer chromatography (TLC) fits and why in some situations it is a viable alternative to gas and high performance liquid chromatography. New TLC plates, sample applications, plate development, and instrumental techniques are considered. (JN)

  18. The Influence of Optical Filtering on the Noise Performance of Microwave Photonic Phase Shifters Based on SOAs

    DEFF Research Database (Denmark)

    Lloret, Juan; Ramos, Francisco; Xue, Weiqi;

    2011-01-01

    Different optical filtering scenarios involving microwave photonic phase shifters based on semiconductor optical amplifiers are investigated numerically as well as experimentally with respect to noise performance. Investigations on the role of the modulation depth and number of elements in cascad...

  19. Conical refraction in a degenerated two-crystal cascade

    International Nuclear Information System (INIS)

    When a collimated light beam is passed consequently along the optic axes of two identical biaxial crystals, the conical refraction produces in the focal image plane a specific light pattern consisting of a ring and a central spot. The ring is formed due to the additive action of two crystals, while the spot results from the reversed conical refraction in such a degenerated cascade arrangement. The relative intensity of these two components depends on the azimuth angle between the orientations of the crystals about the beam axis. It is shown that this dependence arises due to the interference of pairs of waves produced by conical refraction in two crystals. If a part of these waves is blocked by polarization selection of beam components, the dependence of the light pattern on the azimuth angle vanishes. In this case, the outgoing light profile consists of a ring and a central spot with fixed intensities so that the total beam power is divided equally between these two components. Depending on the applied polarization, the central spot appears either as a restored input beam or a charge-two optical vortex. The results of numerical simulations of the effect are in a very good agreement with the experimental observations. (paper)

  20. Spin projection chromatography

    OpenAIRE

    Danieli, Ernesto P.; Pastawski, Horacio M.; Levstein, Patricia R.

    2003-01-01

    We formulate the many-body spin dynamics at high temperature within the non-equilibrium Keldysh formalism. For the simplest XY interaction, analytical expressions in terms of the one particle solutions are obtained for linear and ring configurations. For small rings of even spin number, the group velocities of excitations depend on the parity of the total spin projection. This should enable a dynamical filtering of spin projections with a given parity i.e. a Spin projection chromatography.

  1. Hydrophobic interaction chromatography

    OpenAIRE

    O'Connor, Brendan; Cummins, Phil

    2011-01-01

    Most proteins and large polypeptides have hydrophobic regions at their surface. These hydrophobic ‘patches’ are due to the presence of the side chains of hydrophobic or non-polar amino acids such as phenylalanine, tryptophan, alanine and methionine. These surface hydrophobic regions are interspersed between more hydrophilic or polar regions and the number, size and distribution of them is a specific characteristic of each protein. Hydrophobic Interaction Chromatography (HIC) is a commonly use...

  2. Spin projection chromatography

    Science.gov (United States)

    Danieli, E. P.; Pastawski, H. M.; Levstein, P. R.

    2004-01-01

    We formulate the many-body spin dynamics at high temperature within the non-equilibrium Keldysh formalism. For the simplest XY interaction, analytical expressions in terms of the one particle solutions are obtained for linear and ring configurations. For small rings of even spin number, the group velocities of excitations depend on the parity of the total spin projection. This should enable a dynamical filtering of spin projections with a given parity i.e., a spin projection chromatography.

  3. High energy electromagnetic cascades in extragalactic space: physics and features

    CERN Document Server

    Berezinsky, V

    2016-01-01

    Using the analytic modeling of the electromagnetic cascades compared with more precise numerical simulations we describe the physical properties of electromagnetic cascades developing in the universe on CMB and EBL background radiations. A cascade is initiated by very high energy photon or electron and the remnant photons at large distance have two-component energy spectrum, $\\propto E^{-2}$ ($\\propto E^{-1.9}$ in numerical simulations) produced at cascade multiplication stage, and $\\propto E^{-3/2}$ from Inverse Compton electron cooling at low energies. The most noticeable property of the cascade spectrum in analytic modeling is 'strong universality', which includes the standard energy spectrum and the energy density of the cascade $\\omega_{\\rm cas}$ as its only numerical parameter. Using numerical simulations of the cascade spectrum and comparing it with recent Fermi LAT spectrum we obtained the upper limit on $\\omega_{\\rm cas}$ stronger than in previous works. The new feature of the analysis is "$E_{\\max}$...

  4. Study of acoustic resonance of cascades

    Science.gov (United States)

    Honjo, M.; Tominaga, T.

    Discrete sounds and vibrations from guide vanes due to acoustic resonance in the vane flow path, are experimentally investigated. Other causes of pure sounds in stationary vanes are considered, such as direct radiation from wake shedding vortices, bubble vortices or leading edges, and radial or axial modes of air columns. Two-dimensional cascade tests are performed under various conditions, and the data are compared with theoretical results of flat plate cascades. Three-dimensional ducted guide vane model tests are carried out to apply prototype guide vanes, and to confirm the resonance of the two-dimensional tests. Results show that frequency is more sensitive to chord length than pitch length, and the ratio of the fluctuation frequency to fluid sound velocity/pitch length is independent of the scale. Bubble vortices on concave surfaces or leading edges are not exciting sources; and under the limit of solidity, no exciting energy can generate acoustic resonance in correspondence to the mode.

  5. Cascade morphology transition in bcc metals

    Energy Technology Data Exchange (ETDEWEB)

    Setyawan, Wahyu; Selby, A.; Juslin, Niklas; Stoller, Roger E.; Wirth, Brian D.; Kurtz, Richard J.

    2015-06-10

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, $b$, in the defect production curve as a function of cascade energy ($N_F$$ \\sim$$E_{MD}^b$). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, $\\mu$, between the high- and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of $\\mu$ as a function of displacement threshold energy, $E_d$, is presented for bcc metals.

  6. Cascade morphology transition in bcc metals.

    Science.gov (United States)

    Setyawan, Wahyu; Selby, Aaron P; Juslin, Niklas; Stoller, Roger E; Wirth, Brian D; Kurtz, Richard J

    2015-06-10

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, b, in the defect production curve as a function of cascade energy (N(F) ~ E(MD)(b)). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, μ, between the high- and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of μ as a function of displacement threshold energy, E(d), is presented for bcc metals. PMID:25985256

  7. Cascade Apartments: Deep Energy Multifamily Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, A. [Washington State Univ. Energy Program, Olympia, WA (United States); Mattheis, L. [Washington State Univ. Energy Program, Olympia, WA (United States); Kunkle, R. [Washington State Univ. Energy Program, Olympia, WA (United States); Howard, L. [Washington State Univ. Energy Program, Olympia, WA (United States); Lubliner, M. [Washington State Univ. Energy Program, Olympia, WA (United States)

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions: 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  8. Cascade Apartments: Deep Energy Multifamily Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, A.; Mattheis, L.; Kunkle, R.; Howard, L.; Lubliner, M.

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions : 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  9. Regimes of turbulence without an energy cascade

    CERN Document Server

    Barenghi, C F; Baggaley, A W

    2016-01-01

    Experiments and numerical simulations of turbulent $^4$He and $^3$He-B have established that, at hydrodynamic length scales larger than the average distance between quantum vortices, the energy spectrum obeys the same 5/3 Kolmogorov law which is observed in the homogeneous isotropic turbulence of ordinary fluids. The importance of the 5/3 law is that it points to the existence of a Richardson energy cascade from large eddies to small eddies. However, there is also evidence of quantum turbulent regimes without Kolmogorov scaling. This raises the important questions of why, in such regimes, the Kolmogorov spectrum fails to form, what is the physical nature of turbulence without energy cascade, and whether hydrodynamical models can account for the unusual behaviour of turbulent superfluid helium. In this work we describe simple physical mechanisms which prevent the formation of Kolmogorov scaling in the thermal counterflow, and analyze the conditions necessary for emergence of quasiclassical regime in quantum tu...

  10. Long-period cascaded fiber taper filters.

    Science.gov (United States)

    Martinez-Rios, A; Salceda-Delgado, G; Guerrero-Viramontes, J A

    2014-02-10

    Fiber filters based on periodic cascaded tapered fiber sections are demonstrated. The filters consist of up to seven tapered sections separated periodically by more than 3 mm from center to center, with nominal tapered sections of 1  mm×1  mm×1  mm longitudinal dimensions. The transmission spectrum consists of discrete notches, resembling those observed in long-period fiber gratings, which differs from the observed spectrum in Mach-Zender interferometers based on cascaded tapers. Its sensitivity to external perturbations, such as refractive index or mechanical stress, made the device potentially very useful as a sensor or tunable filter. PMID:24663276

  11. Cascaded trans-z-source inverters

    DEFF Research Database (Denmark)

    Li, Ding; Loh, Poh Chiang; Zhu, Miao;

    2011-01-01

    the compatibility for distributed sources. Unlike existing techniques, voltage stresses within the proposed inverters are better distributed among the passive components. Theoretical analysis for explaining these operating features has already been discussed before simulation were performed and an experimental......Z-source inverter is a recently proposed single-stage inverter with added voltage-boost capability for complementing the usual voltage-buck operation of a traditional voltage-source inverter. As long as the transformer element added in to the z-source concept, a trans-z-source inverter with one...... transformer and one capacitor is reported recently. This paper has adapted the cascaded concept into the trans-z-source and trans-quasi-z-source inverters to extend each to the cascaded topologies before combination is made with allowing more sources embedded which reduces the capacitor voltage and enhanced...

  12. Impact of Community Structure on Cascades

    OpenAIRE

    Moharrami, Mehrdad; Subramanian, Vijay; Liu, Mingyan; Lelarge, Marc

    2016-01-01

    The threshold model is widely used to study the propagation of opinions and technologies in social networks. In this model individuals adopt the new behavior based on how many neighbors have already chosen it. We study cascades under the threshold model on sparse random graphs with community structure to see whether the existence of communities affects the number of individuals who finally adopt the new behavior. Specifically, we consider the permanent adoption model where nodes that have ado...

  13. HIV treatment cascade in tuberculosis patients

    OpenAIRE

    Lessells, Richard J; Swaminathan, Soumya; Godfrey-Faussett, Peter

    2016-01-01

    Purpose of review Globally, the number of deaths associated with tuberculosis (TB) and HIV coinfection remains unacceptably high. We review the evidence around the impact of strengthening the HIV treatment cascade in TB patients and explore recent findings about how best to deliver integrated TB/HIV services. Recent findings There is clear evidence that the timely provision of antiretroviral therapy (ART) reduces mortality in TB/HIV coinfected adults. Despite this, globally in 2013, only arou...

  14. An asymmetric pericyclic cascade approach to oxindoles

    OpenAIRE

    Richmond, Edward

    2014-01-01

    The research in this thesis describes an asymmetric pericyclic cascade approach to the synthesis of a range of enantioenriched oxindoles using enantiopure oxazolidine derived nitrones and disubstituted ketenes. Chapter 1 aims to place this work in the context of the literature, describing other commonly employed or state-of-the-art asymmetric approaches to oxindoles and related compounds. Examples of where these approaches have been used successfully in the total synthesis of related indol...

  15. Controllability of nonlinear degenerate parabolic cascade systems

    Directory of Open Access Journals (Sweden)

    Mamadou Birba

    2016-08-01

    Full Text Available This article studies of null controllability property of nonlinear coupled one dimensional degenerate parabolic equations. These equations form a cascade system, that is, the solution of the first equation acts as a control in the second equation and the control function acts only directly on the first equation. We prove positive null controllability results when the control and a coupling set have nonempty intersection.

  16. Evolution of Vertebrate Phototransduction: Cascade Activation.

    Science.gov (United States)

    Lamb, Trevor D; Patel, Hardip; Chuah, Aaron; Natoli, Riccardo C; Davies, Wayne I L; Hart, Nathan S; Collin, Shaun P; Hunt, David M

    2016-08-01

    We applied high-throughput sequencing to eye tissue from several species of basal vertebrates (a hagfish, two species of lamprey, and five species of gnathostome fish), and we analyzed the mRNA sequences for the proteins underlying activation of the phototransduction cascade. The molecular phylogenies that we constructed from these sequences are consistent with the 2R WGD model of two rounds of whole genome duplication. Our analysis suggests that agnathans retain an additional representative (that has been lost in gnathostomes) in each of the gene families we studied; the evidence is strong for the G-protein α subunit (GNAT) and the cGMP phosphodiesterase (PDE6), and indicative for the cyclic nucleotide-gated channels (CNGA and CNGB). Two of the species (the hagfish Eptatretus cirrhatus and the lamprey Mordacia mordax) possess only a single class of photoreceptor, simplifying deductions about the composition of cascade protein isoforms utilized in their photoreceptors. For the other lamprey, Geotria australis, analysis of the ratios of transcript levels in downstream and upstream migrant animals permits tentative conclusions to be drawn about the isoforms used in four of the five spectral classes of photoreceptor. Overall, our results suggest that agnathan rod-like photoreceptors utilize the same GNAT1 as gnathostomes, together with a homodimeric PDE6 that may be agnathan-specific, whereas agnathan cone-like photoreceptors utilize a GNAT that may be agnathan-specific, together with the same PDE6C as gnathostomes. These findings help elucidate the evolution of the vertebrate phototransduction cascade from an ancestral chordate phototransduction cascade that existed prior to the vertebrate radiation. PMID:27189541

  17. Cascade laser applications: trends and challenges

    Science.gov (United States)

    d'Humières, B.; Margoto, Éric; Fazilleau, Yves

    2016-03-01

    When analyses need rapid measurements, cost effective monitoring and miniaturization, tunable semiconductor lasers can be very good sources. Indeed, applications like on-field environmental gas analysis or in-line industrial process control are becoming available thanks to the advantage of tunable semiconductor lasers. Advances in cascade lasers (CL) are revolutionizing Mid-IR spectroscopy with two alternatives: interband cascade lasers (ICL) in the 3-6μm spectrum and quantum cascade lasers (QCL), with more power from 3 to 300μm. The market is getting mature with strong players for driving applications like industry, environment, life science or transports. CL are not the only Mid-IR laser source. In fact, a strong competition is now taking place with other technologies like: OPO, VCSEL, Solid State lasers, Gas, SC Infrared or fiber lasers. In other words, CL have to conquer a share of the Mid-IR application market. Our study is a market analysis of CL technologies and their applications. It shows that improvements of components performance, along with the progress of infrared laser spectroscopy will drive the CL market growth. We compare CL technologies with other Mid-IR sources and estimate their share in each application market.

  18. Prediction of Cascading Failures in Spatial Networks.

    Science.gov (United States)

    Shunkun, Yang; Jiaquan, Zhang; Dan, Lu

    2016-01-01

    Cascading overload failures are widely found in large-scale parallel systems and remain a major threat to system reliability; therefore, they are of great concern to maintainers and managers of different systems. Accurate cascading failure prediction can provide useful information to help control networks. However, for a large, gradually growing network with increasing complexity, it is often impractical to explore the behavior of a single node from the perspective of failure propagation. Fortunately, overload failures that propagate through a network exhibit certain spatial-temporal correlations, which allows the study of a group of nodes that share common spatial and temporal characteristics. Therefore, in this study, we seek to predict the failure rates of nodes in a given group using machine-learning methods. We simulated overload failure propagations in a weighted lattice network that start with a center attack and predicted the failure percentages of different groups of nodes that are separated by a given distance. The experimental results of a feedforward neural network (FNN), a recurrent neural network (RNN) and support vector regression (SVR) all show that these different models can accurately predict the similar behavior of nodes in a given group during cascading overload propagation.

  19. Comparison of all optical forwarding packet architectures

    Science.gov (United States)

    Farhat, Rim; Farhat, Amel; Menif, Mourad

    2016-04-01

    In this paper two all optical packet forwarding architectures based on non linear effect in semiconductor optical amplifier in Mach-Zehnder configuration SOA-MZI are studied. The first architecture consist in combing flip flop functionality with the AND logic functionality in the same unit. Error free operation at 40 Gbps for two cascaded nodes is achieved. In the second architecture two separated units namely the flip flop and the AND logic gate are used. 100 Gbps bit rate is reached. At 40 Gbps error free operation is achieved for three cascaded nodes.

  20. Mid-infrared-pumped quantum cascade structure for high-sensitive terahertz detection.

    Science.gov (United States)

    Xie, Yan; Yang, Ning; Duan, Suqing; Chu, Weidong

    2016-07-11

    Based on multiple quantum wells, we design a pumping-detection quantum cascade structure for the detection of terahertz (THz) radiation. In the structure, carriers are first pumped by a mid-infrared (MIR) laser to an excited state, to get enough energy space for the following fast longitudinal optical (LO) phonon extraction. Within the LO-phonon extraction stair, an absorption well is designed for THz detection. Due to the establishment of LO-phonon stair extractor, carriers transport between quantum wells in picosecond range and a high responsivity for THz absorption can be obtained. We also find that doping in both MIR active well and extractor region is significant for high-speed response of the THz detection. Our design is expected to extend the high-sensitive detection of a quantum cascade photodetector from middle wave of MIR to THz region. PMID:27410796

  1. Far-infrared quantum cascade lasers operating in AlAs phonon Reststrahlen band

    CERN Document Server

    Ohtani, K; Süess, M J; Faist, J; Andrews, A M; Zederbauer, T; Detz, H; Schrenk, W; Strasser, G

    2016-01-01

    We report on the operation of a double metal waveguide far-infrared quantum cascade laser emitting at 28 $\\mu$m, corresponding to the AlAs-like phonon Reststrahlen band. To avoid absorption by AlAs-like optical phonons, the Al-free group-V alloy GaAs$_{0.51}$Sb$_{0.49}$ is used as a barrier layer in the bound-to-continuum based active region. Lasing occurs at a wavelength of 28.3 $\\mu$m, which is the longest wavelength among the quantum cascade lasers operating from mid-infrared to far-infrared. The threshold current density at 50 K is 5.5 kA/cm$^{2}$ and maximum operation temperature is 175 K. We also discuss the feasibility that operation wavelength cover the whole spectral range bridging between mid-infrared and terahertz by choosing suited group III-V materials.

  2. Heat cascading regenerative sorption heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1995-01-01

    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  3. Cascade plant control by timer method

    International Nuclear Information System (INIS)

    The present invention relates to a method of controlling uranium flow rate through a cascaded centrifuge plant for the purpose of enriching uranium 235. Such a cascade includes multiple gas separation stage each of which consists of a plurality of centrifuges. The product gas usually includes a large amount of He gas, and a cold trap is used to eliminate the He from UF6. The cold trap is operated periodically in such a way that the mixed gas of He and UF6 is cooled to solidify only UF6 and then warmed to obtain UF6 by gasification. In order to operate the plant continuously, parallel multiple cold traps are operated alternatively. The operating conditions in such a complex cascade system are difficult to alter by conventional control methods. The present invention provides a rapid method of controlling the system when a certain percentage of the centrifuges in one stage malfunction. The control system consists of timers which are provided one for each cold trap to control the operational period of the trap. For example, if 20% of the centrifuges in a particular stage malfunction, the timer period of the cold traps attached to the normally operating centrifuge within the stage is maintained, and the period of all the other centrifuges are changed to 10/8 times that of the initial value. In this way the flow volume through all centrifuges except that in the particular stage is reduced to 80% of the initial value and the operation of the system can be continued with reduced efficiency. (Masui, R.)

  4. The current disequilibrium of North Cascade glaciers

    Science.gov (United States)

    Pelto, Mauri S.

    2006-03-01

    Three lines of evidence indicate that North Cascade (Washington, USA) glaciers are currently in a state of disequilibrium. First, annual balance measured on nine glaciers yields a mean cumulative balance for the 1984-2004 period of -8.58 m water equivalent (w.e.), a net loss of ice thickness exceeding 9.5 m. This is a significant loss for glaciers that average 30-50 m in thickness, representing 18-32% of their entire volume.Second, longitudinal profiles completed in 1984 and 2002 on 12 North Cascade glaciers confirm this volume change indicating a loss of -5.7 to -6.3 m in thickness (5.0-5.6 m w.e.) between 1984 and 2002, agreeing well with the measured cumulative balance of -5.52 m w.e. for the same period. The change in thickness on several glaciers has been equally substantial in the accumulation zone and the ablation zone, indicating that there is no point to which the glacier can retreat to achieve equilibrium. Substantial thinning along the entire length of a glacier is the key indicator that a glacier is in disequilibrium.Third, North Cascade glacier retreat is rapid and ubiquitous. All 47 glaciers monitored are currently undergoing significant retreat or, in the case of four, have disappeared. Two of the glaciers where mass balance observations were begun, Spider Glacier and Lewis Glacier, have disappeared. The retreat since 1984 of eight Mount Baker glaciers that were all advancing in 1975 has averaged 297 m. These observations indicate broad regional continuity in glacial response to climate.

  5. Stopping pions in high-energy nuclear cascades.

    Science.gov (United States)

    Jones, W. V.; Johnson, D. P.; Thompson, J. A.

    1973-01-01

    Results of Monte Carlo calculations for the number and energy spectra of charged pions from nuclear-electromagnetic cascades developing in rock are presented for primary hadron energies ranging from 3 to 3000 GeV. These spectra are given as functions of the longitudinal depth in the absorber and the lateral distance from the cascade axis. The number of charged pions which stop in the absorber increases with the primary energy of the hadron initiating the cascade.

  6. Beam combining of quantum cascade laser arrays.

    Science.gov (United States)

    Lee, Benjamin G; Kansky, Jan; Goyal, Anish K; Pflügl, Christian; Diehl, Laurent; Belkin, Mikhail A; Sanchez, Antonio; Capasso, Federico A

    2009-08-31

    Wavelength beam combining was used to co-propagate beams from 28 elements in an array of distributed-feedback quantum cascade lasers (DFB-QCLs). The beam-quality product of the array, defined as the product of near-field spot size and far-field divergence for the entire array, was improved by a factor of 21 by using wavelength beam combining. To demonstrate the applicability of wavelength beam combined DFB-QCL arrays for remote sensing, we obtained the absorption spectrum of isopropanol at a distance of 6 m from the laser array.

  7. Plant MAPK cascades: Just rapid signaling modules?

    KAUST Repository

    Boudsocq, Marie

    2015-08-27

    © 2015 Taylor & Francis Group, LLC. Abscisic acid (ABA) is a major phytohormone mediating important stress-related processes. We recently unveiled an ABA-activated MAPK signaling module constituted of MAP3K17/18-MKK3-MPK1/2/7/14. Unlike classical rapid MAPK activation, we showed that the activation of the new MAPK module is delayed and relies on the MAP3K protein synthesis. In this addendum, we discuss the role of this original and unexpected activation mechanism of MAPK cascades which suggests that MAPKs can regulate both early and longterm plant stress responses.

  8. The identification of a cascade hypernucleus

    CERN Document Server

    Mondal, A S; Husain, A; Kasim, M M

    1979-01-01

    In a systematic search for rare hypernuclear species in nuclear emulsion exposed to 3.0 GeV/c K/sup -/-mesons at the CERN PS, an event with three connecting stars has been observed. The two secondary stars are most probably due to the decay of a cascade hypernucleus according to the following channel: /sub Xi //sup -13/-C to /sub Lambda //sup 8 /Be+/sub Lambda //sup 5/He+Q. The binding energy of the Xi - hypernucleus is B/sub Xi /-(/sub Xi //sup 13/-C)=(18.1+or-3.2) MeV. (11 refs).

  9. Long-Haul TCP vs. Cascaded TCP

    OpenAIRE

    Feng, Wu-chun

    2006-01-01

    In this work, we investigate the bandwidth and transfer time of long-haul TCP versus cascaded TCP [5]. First, we discuss the models for TCP throughput. For TCP flows in support of bulk data transfer (i.e., long-lived TCP flows), the TCP throughput models have been derived [2, 3]. These models rely on the congestion-avoidance algorithm of TCP. Though these models cannot be applied with short-lived TCP connections, our interest relative to logistical networking is in longer-li...

  10. Cascade model of power lines for PLC

    OpenAIRE

    Dziura, Michal

    2012-01-01

    This bachelor´s thesis deals with studies of power-line in terms of possibilities for using grid as a transmission medium for data transmission. Theoretical part is focused on PLC technology and the parameters of high-voltage lines. In very practical part the modeling of power-line by cascade parameters of two-port network is examined. Influence of va-rious changes in network topology are included in this thesis and also their influence on transfer function. The last part outlines the method ...

  11. Photonic crystal slab quantum cascade detector

    Energy Technology Data Exchange (ETDEWEB)

    Reininger, Peter, E-mail: peter.reininger@tuwien.ac.at; Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried [Institute for Solid State Electronics and Center for Micro- and Nanostructures, Vienna University of Technology, Floragasse 7, Vienna 1040 (Austria)

    2013-12-09

    In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.

  12. Cascading Multicriticality in Nonrelativistic Spontaneous Symmetry Breaking

    CERN Document Server

    Griffin, Tom; Horava, Petr; Yan, Ziqi

    2015-01-01

    Without Lorentz invariance, spontaneous global symmetry breaking can lead to multicritical Nambu-Goldstone modes with a higher-order low-energy dispersion $\\omega\\sim k^n$ ($n=2,3,\\ldots$), whose naturalness is protected by polynomial shift symmetries. Here we investigate the role of infrared divergences and the nonrelativistic generalization of the Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem. We find novel cascading phenomena with large hierarchies between the scales at which the value of $n$ changes, leading to an evasion of the "no-go" consequences of the relativistic CHMW theorem.

  13. Heat flux dynamics in dissipative cascaded systems

    OpenAIRE

    de Lorenzo, S.; Farace, A.; Ciccarello, F.; De Palma, G; Giovannetti, V.

    2014-01-01

    We study the dynamics of heat flux in the thermalization process of a pair of identical quantum system that interact dissipatively with a reservoir in a {\\it cascaded} fashion. Despite the open dynamics of the bipartite system S is globally Lindbladian, one of the subsystems "sees" the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a non-exponential time behaviour which can gre...

  14. Cascades of Fano resonances in Mie scattering

    Science.gov (United States)

    Rybin, M. V.; Sinev, I. S.; Samusev, K. B.; Limonov, M. F.

    2014-03-01

    The interference nature of resonant Mie scattering, which is described within the Fano model, has been demonstrated. The interference is caused by interaction of an incident electromagnetic wave with reemitted waves that correspond to eigenmodes of a scattering particle. Mie scattering due to the interference can be represented in the form of cascades of resonance lines of different shapes, each of which is described by the classical Fano formula. The effect is observed in resonant light scattering by an arbitrary body of revolution and discussed in detail using the example of scattering by an infinite homogeneous dielectric cylinder.

  15. Multilevel Inverter by Cascading Industrial VSI

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Blaabjerg, Frede; Pedersen, John Kim;

    2002-01-01

    -source inverter that uses three IGBT triphase inverter modules along with an output transformer to obtain a 3 p.u. multilevel output voltage is introduced. The system yields in high-quality multistep voltage with up to 4 levels and low dv/dt, balanced operation of the inverter modules, each supplying a third...... of the motor rated kVA. The concept of using cascaded inverters is further extended to a new modular motor-modular inverter system where the motor winding connections are reconnected into several three-phase groups, either six-lead or 12-lead connection according to the voltage level, each powered...

  16. The Cascade of Non-Stationarity

    Science.gov (United States)

    Belmont, P.; Kumarasamy, K.; Kelly, S. A.; Schaffrath, K. R.; Beach, T. J.

    2014-12-01

    Landscapes and channel networks are dynamic systems, often characterized by immense variability in time and space. Systematic shifts in hydrologic, geomorphic, or ecologic drivers can cause a cascade of changes within the system, which may fundamentally alter the way the system itself functions. Due to variability in resilience and resisting forces throughout the landscape, this cascade of changes may manifest in different ways within any given system. Humans may also exert considerable influence, often amplifying or damping system response. We illustrate the cascading effects of non-stationary hydrology and geomorphology in the Minnesota River Basin (MRB), a 44,000 km2 natural laboratory in which pervasive landscape disturbance has been triggered by several well-documented events. Rapid base-level lowering 13,400 YBP along the mainstem Minnesota River created a wave of incision, which continues to propagate up tributary channel networks. Temperature and precipitation have changed significantly in the MRB over the past century with rising temperatures, shifting precipitation patterns and an increase in heavy rainfall events. Streamflow has changed drastically and variably throughout the basin with 5% exceedance flows increasing 60-100% in recent decades, as increases in precipitation have been amplified by land management and artificial drainage. Increases in channel width and depth have occurred variably in the mainstem Minnesota River, the actively incising lower (knick zone) reaches of tributaries, and the low gradient, passively meandering reaches above the knick zones. Altered hydrologic regimes and channel morphologies, combined with increased sedimentation and nutrient loading have adversely affected aquatic biota via disruption of life cycles and habitat degradation. Existing landscape, water quality, and flood risk models are poorly equipped to deal with the cascading effects of non-stationarity and therefore may grossly over- or under

  17. Flow Rates in Liquid Chromatography, Gas Chromatography and Supercritical Fluid Chromatography: A Tool for Optimization

    OpenAIRE

    Meurs, Joris

    2016-01-01

    This paper aimed to develop a standalone application for optimizing flow rates in liquid chromatography (LC), gas chromatography (GC) and supercritical fluid chromatography (SFC). To do so, Van Deemter’s equation, Knox’ equation and Golay’s equation were implemented in a MATLAB script and subsequently a graphical user interface (GUI) was created. The application will show the optimal flow rate or linear velocity and the corresponding plate height for the set input parameters. Furthermore, a p...

  18. Octave-band tunable optical vortex parametric oscillator.

    Science.gov (United States)

    Abulikemu, Aizitiaili; Yusufu, Taximaiti; Mamuti, Roukuya; Araki, Shungo; Miyamoto, Katsuhiko; Omatsu, Takashige

    2016-07-11

    We developed an octave-band tunable optical vortex laser based on a 532 nm optical vortex pumped optical parametric oscillator with a simple linear-cavity configuration by employing cascaded non-critical phase-matching LiB3O5 crystals. The optical vortex output was tunable from 735 to 1903 nm. For a pump energy of 9 mJ, an optical vortex pulse energy of 0.24-2.36 mJ was obtained, corresponding to an optical-optical efficiency of 0.3-26%.

  19. Octave-band tunable optical vortex parametric oscillator.

    Science.gov (United States)

    Abulikemu, Aizitiaili; Yusufu, Taximaiti; Mamuti, Roukuya; Araki, Shungo; Miyamoto, Katsuhiko; Omatsu, Takashige

    2016-07-11

    We developed an octave-band tunable optical vortex laser based on a 532 nm optical vortex pumped optical parametric oscillator with a simple linear-cavity configuration by employing cascaded non-critical phase-matching LiB3O5 crystals. The optical vortex output was tunable from 735 to 1903 nm. For a pump energy of 9 mJ, an optical vortex pulse energy of 0.24-2.36 mJ was obtained, corresponding to an optical-optical efficiency of 0.3-26%. PMID:27410798

  20. Noise propagation in two-step series MAPK cascade.

    Directory of Open Access Journals (Sweden)

    Venkata Dhananjaneyulu

    Full Text Available Series MAPK enzymatic cascades, ubiquitously found in signaling networks, act as signal amplifiers and play a key role in processing information during signal transduction in cells. In activated cascades, cell-to-cell variability or noise is bound to occur and thereby strongly affects the cellular response. Commonly used linearization method (LM applied to Langevin type stochastic model of the MAPK cascade fails to accurately predict intrinsic noise propagation in the cascade. We prove this by using extensive stochastic simulations for various ranges of biochemical parameters. This failure is due to the fact that the LM ignores the nonlinear effects on the noise. However, LM provides a good estimate of the extrinsic noise propagation. We show that the correct estimate of intrinsic noise propagation in signaling networks that contain at least one enzymatic step can be obtained only through stochastic simulations. Noise propagation in the cascade depends on the underlying biochemical parameters which are often unavailable. Based on a combination of global sensitivity analysis (GSA and stochastic simulations, we developed a systematic methodology to characterize noise propagation in the cascade. GSA predicts that noise propagation in MAPK cascade is sensitive to the total number of upstream enzyme molecules and the total number of molecules of the two substrates involved in the cascade. We argue that the general systematic approach proposed and demonstrated on MAPK cascade must accompany noise propagation studies in biological networks.

  1. Cascaded Gamma Rays as a Probe of Cosmic Rays

    Science.gov (United States)

    Murase, Kohta

    2014-06-01

    Very-high-energy (VHE) and ultra-high-energy (UHE) gamma rays from extragalactic sources experience electromagnetic cascades during their propagation in intergalactic space. Recent gamma-ray data on TeV blazars and the diffuse gamma-ray background may have hints of the cascade emission, which are especially interesting if it comes from UHE cosmic rays. I show that cosmic-ray-induced cascades can be discriminated from gamma-ray-induced cascades with detailed gamma-ray spectra. I also discuss roles of structured magnetic fields, which suppress inverse-Compton pair halos/echoes but lead to guaranteed signals - synchrotron pair halos/echoes.

  2. Optic glioma

    Science.gov (United States)

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  3. Cascade synthesis of a gold nanoparticle-network polymer composite

    Science.gov (United States)

    Grubjesic, Simonida; Ringstrand, Bryan S.; Jungjohann, Katherine L.; Brombosz, Scott M.; Seifert, Sönke; Firestone, Millicent A.

    2016-01-01

    The multi-step, cascade synthesis of a self-supporting, hierarchically-structured gold nanoparticle hydrogel composite is described. The composite is spontaneously prepared from a non-covalent, lamellar lyotropic mesophase composed of amphiphiles that support the reactive constituents, a mixture of hydroxyl- and acrylate-end-derivatized PEO117-PPO47-PEO117 and [AuCl4]-. The reaction sequence begins with the auto-reduction of aqueous [AuCl4]- by PEO117-PPO47-PEO117 which leads to both the production of Au NPs and the free radical initiated polymerization and crosslinking of the acrylate end-derivatized PEO117-PPO47-PEO117 to yield a network polymer. Optical spectroscopy and TEM monitored the reduction of [AuCl4]-, formation of large aggregated Au NPs and oxidative etching into a final state of dispersed, spherical Au NPs. ATR/FT-IR spectroscopy and thermal analysis confirms acrylate crosslinking to yield the polymer network. X-ray scattering (SAXS and WAXS) monitored the evolution of the multi-lamellar structured mesophase and revealed the presence of semi-crystalline PEO confined within the water layers. The hydrogel could be reversibly swollen without loss of the well-entrained Au NPs with full recovery of composite structure. Optical spectroscopy shows a notable red shift (Δλ ~ 45 nm) in the surface plasmon resonance between swollen and contracted states, demonstrating solvent-mediated modulation of the internal NP packing arrangement.The multi-step, cascade synthesis of a self-supporting, hierarchically-structured gold nanoparticle hydrogel composite is described. The composite is spontaneously prepared from a non-covalent, lamellar lyotropic mesophase composed of amphiphiles that support the reactive constituents, a mixture of hydroxyl- and acrylate-end-derivatized PEO117-PPO47-PEO117 and [AuCl4]-. The reaction sequence begins with the auto-reduction of aqueous [AuCl4]- by PEO117-PPO47-PEO117 which leads to both the production of Au NPs and the free radical

  4. Mid-infrared absorption spectroscopy using quantum cascade lasers

    Science.gov (United States)

    Haibach, Fred; Erlich, Adam; Deutsch, Erik

    2011-06-01

    Block Engineering has developed an absorption spectroscopy system based on widely tunable Quantum Cascade Lasers (QCL). The QCL spectrometer rapidly cycles through a user-selected range in the mid-infrared spectrum, between 6 to 12 μm (1667 to 833 cm-1), to detect and identify substances on surfaces based on their absorption characteristics from a standoff distance of up to 2 feet with an eye-safe laser. It can also analyze vapors and liquids in a single device. For military applications, the QCL spectrometer has demonstrated trace explosive, chemical warfare agent (CWA), and toxic industrial chemical (TIC) detection and analysis. The QCL's higher power density enables measurements from diffuse and highly absorbing materials and substrates. Other advantages over Fourier Transform Infrared (FTIR) spectroscopy include portability, ruggedness, rapid analysis, and the ability to function from a distance through free space or a fiber optic probe. This paper will discuss the basic technology behind the system and the empirical data on various safety and security applications.

  5. Progress on the development of interband cascade photodetectors

    Science.gov (United States)

    Tian, Z.-B.; Krishna, S.

    2015-06-01

    The InAs/GaSb type-II superlattice (T2-SL) based interband cascade (IC) photodetectors are emerging as a promising candidate for high performance infrared (IR) detectors, particularly for high operating temperature applications. In this paper, we present our latest progress on the development of high performance IC photodetectors in both mid- and longwave-IR. Our results show significant improvement in both the electrical and optical performance for the IC detectors. The mid-IR detectors show zero-bias operation, with external quantum efficiency as high as 11%. The dark current is 1.75 nA/cm2 at 120 K and -10mV, which shows over 5 times improvement over our previous best results. The Johnson-limited D( of the mid-IR detector is around 1.20×1011 Jones at 200 K, showing more than 10 times improvement over a wide temperature range. These mid-IR IC detectors have obtained background limited operation up to 210 K. Progress in longwave-IR IC detectors is also presented, which also demonstrates excellent electrical performance.

  6. An Undergraduate Column Chromatography Experiment.

    Science.gov (United States)

    Danot, M.; And Others

    1984-01-01

    Background information, list of materials needed, and procedures used are provided for an experiment designed to introduce undergraduate students to the theoretical and technical aspects of column chromatography. The experiment can also be shortened to serve as a demonstration of the column chromatography technique. (JN)

  7. The cascad spent fuel dry storage facility

    International Nuclear Information System (INIS)

    France has a wide variety of experimental spent fuels different from LWR spent fuel discharged from commercial reactors. Reprocessing such fuels would thus require the development and construction of special facilities. The French Atomic Energy Commission (CEA) has consequently opted for long-term interim storage of these spent fuels over a period of 50 years. Comparative studies of different storage concepts have been conducted on the basis of safety (mainly containment barriers and cooling), economic, modular design and operating flexibility criteria. These studies have shown that dry storage in a concrete vault cooled by natural convection is the best solution. A research and development program including theoretical investigations and mock-up tests confirmed the feasibility of cooling by natural convection and the validity of design rules applied for fuel storage. A facility called CASCAD was built at the CEA's Cadarache Nuclear Research Center, where it has been operational since mid-1990. This paper describes the CASCAD facility and indicates how its concept can be applied to storage of LWR fuel assemblies

  8. Power Grid Defense Against Malicious Cascading Failure

    CERN Document Server

    Shakarian, Paulo; Lindelauf, Roy

    2014-01-01

    An adversary looking to disrupt a power grid may look to target certain substations and sources of power generation to initiate a cascading failure that maximizes the number of customers without electricity. This is particularly an important concern when the enemy has the capability to launch cyber-attacks as practical concerns (i.e. avoiding disruption of service, presence of legacy systems, etc.) may hinder security. Hence, a defender can harden the security posture at certain power stations but may lack the time and resources to do this for the entire power grid. We model a power grid as a graph and introduce the cascading failure game in which both the defender and attacker choose a subset of power stations such as to minimize (maximize) the number of consumers having access to producers of power. We formalize problems for identifying both mixed and deterministic strategies for both players, prove complexity results under a variety of different scenarios, identify tractable cases, and develop algorithms f...

  9. Flow characteristics of the Cascade granular blanket

    International Nuclear Information System (INIS)

    Analysis of a single granule on a rotating cone shows that for the 350 half-angle, double-cone-shaped Cascade chamber, blanket granules will stay against the chamber wall if the rotational speed is 50 rpm or greater. The granules move axially down the wall with a slight (5-mm or less) sinusoidal oscillation in the circumferential direction. Granule chute-flow experiments confirm that two-layered flow can be obtained when the chute is inclined slightly above the granular material angle of repose. The top surface layer is thin and fast moving (supercritical flow). A thick bottom layer moves more slowly (subcritical flow controlled at the exit) with a velocity that increases with distance from the bottom of the chute. This is a desirable velocity profile because in the Cascade chamber about one-third of the fusion energy is deposited in the form of x rays and fusion-fuel-pellet debris in the top surface (inner-radius) layer

  10. Quantitative analysis of cascade impactor samples - revisited

    Science.gov (United States)

    Orlić , I.; Chiam, S. Y.; Sanchez, J. L.; Tang, S. M.

    1999-04-01

    Concentrations of aerosols collected in Singapore during the three months long haze period that affected the whole South-East Asian region in 1997 are reported. Aerosol samples were continuously collected by using a fine aerosol sampler (PM2.5) and occasionally with a single orifice cascade impactor (CI) sampler. Our results show that in the fine fraction (<2.5 μm) the concentrations of two well-known biomass burning products, i.e. K and S were generally increased by a factor 2-3 compared to the non-hazy periods. However, a discrepancy was noticed, at least for elements with lower atomic number (Ti and below) between the results obtained by the fine aerosol sampler and the cascade impactor. Careful analysis by means of Nuclear Microscopy, in particular by the Scanning Transmission Ion Microscopy (STIM) technique, revealed that thicknesses of the lower CI stages exceeded thick target limits for 2 MeV protons. Detailed depth profiles of all CI stages were therefore measured using the STIM technique and concentrations corrected for absorption and proton energy loss. After correcting results for the actual sample thickness, concentrations of all major elements (S, Cl, K, Ca) agreed much better with the PM2.5 results. The importance of implementing thick target corrections in analysis of CI samples, especially those collected in the urban environments, is emphasized. Broad beam PIXE analysis approach is certainly not adequate in these cases.

  11. Cascade Distiller System Performance Testing Interim Results

    Science.gov (United States)

    Callahan, Michael R.; Pensinger, Stuart; Sargusingh, Miriam J.

    2014-01-01

    The Cascade Distillation System (CDS) is a rotary distillation system with potential for greater reliability and lower energy costs than existing distillation systems. Based upon the results of the 2009 distillation comparison test (DCT) and recommendations of the expert panel, the Advanced Exploration Systems (AES) Water Recovery Project (WRP) project advanced the technology by increasing reliability of the system through redesign of bearing assemblies and improved rotor dynamics. In addition, the project improved the CDS power efficiency by optimizing the thermoelectric heat pump (TeHP) and heat exchanger design. Testing at the NASA-JSC Advanced Exploration System Water Laboratory (AES Water Lab) using a prototype Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell d International, Torrance, Calif.) with test support equipment and control system developed by Johnson Space Center was performed to evaluate performance of the system with the upgrades as compared to previous system performance. The system was challenged with Solution 1 from the NASA Exploration Life Support (ELS) distillation comparison testing performed in 2009. Solution 1 consisted of a mixed stream containing human-generated urine and humidity condensate. A secondary objective of this testing is to evaluate the performance of the CDS as compared to the state of the art Distillation Assembly (DA) used in the ISS Urine Processor Assembly (UPA). This was done by challenging the system with ISS analog waste streams. This paper details the results of the AES WRP CDS performance testing.

  12. Frequency dependence of the maximum operating temperature for quantum-cascade lasers up to 5.4 THz

    Energy Technology Data Exchange (ETDEWEB)

    Wienold, M. [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, 10117 Berlin (Germany); Humboldt Universität zu Berlin, Institut für Physik, Newtonstr. 15, 12489 Berlin (Germany); Deutsches Zentrum für Luft und Raumfahrt, Rutherfordstr. 2, 12489 Berlin (Germany); Röben, B.; Lü, X.; Rozas, G.; Schrottke, L.; Biermann, K.; Grahn, H. T., E-mail: htgrahn@pdi-berlin.de [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, 10117 Berlin (Germany)

    2015-11-16

    We report on the observation of an approximately linear reduction in the maximum operating temperature with an increasing emission frequency for terahertz quantum-cascade lasers between 4.2 and 5.4 THz. These lasers are based on the same design type, but vary in period length and barrier height for the cascade structure. The sample emitting at the highest frequency around 5.4 THz can be operated in pulsed mode up to 56 K. We identify an additional relaxation channel for electrons by longitudinal optical phonon scattering from the upper to the lower laser level and increasing optical losses toward higher frequencies as major processes, leading to the observed temperature behavior.

  13. Quaternary Magmatism in the Cascades - Geologic Perspectives

    Science.gov (United States)

    Hildreth, Wes

    2007-01-01

    Foreward The Cascade magmatic arc is a belt of Quaternary volcanoes that extends 1,250 km from Lassen Peak in northern California to Meager Mountain in Canada, above the subduction zone where the Juan de Fuca Plate plunges beneath the North American Plate. This Professional Paper presents a synthesis of the entire volcanic arc, addressing all 2,300 known Quaternary volcanoes, not just the 30 or so visually prominent peaks that comprise the volcanic skyline. Study of Cascade volcanoes goes back to the geological explorers of the late 19th century and the seminal investigations of Howel Williams in the 1920s and 1930s. However, major progress and application of modern scientific methods and instrumentation began only in the 1970s with the advent of systematic geological, geophysical, and geochemical studies of the entire arc. Initial stimulus from the USGS Geothermal Research Program was enhanced by the USGS Volcano Hazards Program following the 1980 eruption of Mount St. Helens. Together, these two USGS Programs have provided more than three decades of stable funding, staffing, and analytical support. This Professional Paper summarizes the resultant USGS data sets and integrates them with the parallel contributions of other investigators. The product is based upon an all-encompassing and definitive geological database, including chemical and isotopic analyses to characterize the rocks and geochronology to provide the critical time constraints. Until now, this massive amount of data has not been summarized, and a systematic and uniform interpretation firmly grounded in geological fact has been lacking. Herein lies the primary utility of this Cascade volume. It not only will be the mandatory starting point for new workers, but also will provide essential geological context to broaden the perspectives of current investigators of specific Cascade volcanoes. Wes Hildreth's insightful understanding of volcanic processes and his uncompromising scientific integrity make him

  14. Multiplex gas chromatography

    Science.gov (United States)

    Valentin, Jose R.

    1990-01-01

    The principles of the multiplex gas chromatography (GC) technique, which is a possible candidate for chemical analysis of planetary atmospheres, are discussed. Particular attention is given to the chemical modulators developed by present investigators for multiplex GC, namely, the thermal-desorption, thermal-decomposition, and catalytic modulators, as well as to mechanical modulators. The basic technique of multiplex GC using chemical modulators and a mechanical modulator is demonstrated. It is shown that, with the chemical modulators, only one gas stream consisting of the carrier in combination with the components is being analyzed, resulting in a simplified instrument that requires relatively few consumables. The mechanical modulator demonstrated a direct application of multiplex GC for the analysis of gases in atmosphere of Titan at very low pressures.

  15. Dielectrokinetic chromatography devices

    Science.gov (United States)

    Chirica, Gabriela S; Fiechtner, Gregory J; Singh, Anup K

    2014-12-16

    Disclosed herein are methods and devices for dielectrokinetic chromatography. As disclosed, the devices comprise microchannels having at least one perturber which produces a non-uniformity in a field spanning the width of the microchannel. The interaction of the field non-uniformity with a perturber produces a secondary flow which competes with a primary flow. By decreasing the size of the perturber the secondary flow becomes significant for particles/analytes in the nanometer-size range. Depending on the nature of a particle/analyte present in the fluid and its interaction with the primary flow and the secondary flow, the analyte may be retained or redirected. The composition of the primary flow can be varied to affect the magnitude of primary and/or secondary flows on the particles/analytes and thereby separate and concentrate it from other particles/analytes.

  16. High frequency modulation capabilities and quasi single-sideband emission from a quantum cascade laser.

    Science.gov (United States)

    Hangauer, Andreas; Spinner, Georg; Nikodem, Michal; Wysocki, Gerard

    2014-09-22

    Both intensity- (IM) and frequency-modulation (FM) behavior of a directly modulated quantum cascade laser (QCL) are measured from 300 Hz to 1.7 GHz. Quantitative measurements of tuning coefficients has been performed and the transition from thermal- to electronic-tuning is clearly observed. A very specific FM behavior of QCLs has been identified which allows for optical quasi single sideband (SSB) modulation through current injection and has not been observed in directly modulated semiconductor lasers before. This predestines QCLs in applications where SSB is required, such as telecommunication or high speed spectroscopy. The experimental procedure and theoretical modeling for data extraction is discussed.

  17. High Temperature Operation of 5.5μm Strain-Compensated Quantum Cascaded Lasers

    Institute of Scientific and Technical Information of China (English)

    LU Xiu-Zhen; LIU Feng-Qi; LIU Jun-Qi; JIN Peng; WANG Zhan-Guo

    2005-01-01

    @@ We develop 5.5-μm Inx Ga1-xAs/InyAl1-yAs strain-compensated quantum cascade lasers with InP and InGaAs cladding layers by using solid-source molecular-beam epitaxy. Pulse operation has been achieved up to 323K (50℃) for uncoated 20-μm-wide and 2-mm-long devices. These devices display an output power of 36mW with a duty cycle of 1% at room temperature. In continuous wave operation a record peak optical power of 10mW per facet has been measured at 83 K.

  18. On-chip focusing in the mid-infrared: Demonstrated with ring quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Szedlak, Rolf, E-mail: rolf.szedlak@tuwien.ac.at; Schwarzer, Clemens; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Schrenk, Werner; Strasser, Gottfried [Institute for Solid State Electronics and Center for Micro- and Nanostructures, Vienna University of Technology, 1040 Vienna (Austria)

    2014-04-14

    We report on collimated emission beams from substrate emitting ring quantum cascade lasers with an on-chip focusing element fabricated into the bottom side of the device. It is formed by a gradient index metamaterial layer, realized by etching subwavelength holes into the substrate. The generated optical path length difference for rays emitted under different angles from the ring waveguide flattens the wavefront and focuses the light. Our far field measurements show an increased peak intensity corresponding to 617% of the initial value without the focusing element. Far field calculations, based on a Fourier transformation of the metamaterial area, are in good agreement with our experimental data.

  19. Distributed feedback terahertz frequency quantum cascade lasers with dual periodicity gratings

    CERN Document Server

    Castellano, F; Li, L H; Pitanti, A; Tredicucci, A; Linfield, E H; Davies, A G; Vitiello, M S

    2016-01-01

    We have developed terahertz frequency quantum cascade lasers that exploit a double-periodicity distributed feedback grating to control the emission frequency and the output beam direction independently. The spatial refractive index modulation of the gratings necessary to provide optical feedback at a fixed frequency and, simultaneously, a far-field emission pattern centered at controlled angles, was designed through use of an appropriate wavevector scattering model. Single mode THz emission at angles tuned by design between 0{\\deg} and 50{\\deg} was realized, leading to an original phase-matching approach, lithographically independent, for highly collimated THz QCLs.

  20. Separation of whey proteins for chromatography liquid

    OpenAIRE

    Abraham D. Giraldo Zuñiga; Edwin E.García Rojas; Coimbra, Jane S. R.; Wilmer E. Luera Peña

    2010-01-01

    This paper describes and compares three chromatographic methods for the analysis and quantification of most abundant proteins in cheese whey, -lactalbumin and -lactoglobulin. The methods were: Reverse-phase high performance liquid chromatography, anion Exchange chromatography and size-exclusion chromatography. The reverse- phase liquid chromatography led to a better separation of whey proteins than size-exclusion chromatography and anion exchange chromatography, this method offered an ex...

  1. Detection of recombinant growth hormone by evanescent cascaded waveguide coupler on silica-on-silicon.

    Science.gov (United States)

    Ozhikandathil, Jayan; Packirisamy, Muthukumaran

    2013-05-01

    An evanescent wave based biosensor is developed on the silica-on-silicon (SOS) with a cascaded waveguide coupler for the detection of recombinant growth hormone. So far, U -bends and tapered waveguides are demonstrated for increasing the penetration depth and enhancing sensitivity of the evanescent wave sensor. In this work, a monolithically integrated sensor platform containing a cascaded waveguide coupler with optical power splitters and combiners designed with S -bends and tapper waveguides is demonstrated for an enhanced detection of recombinant growth hormone. In the cascaded waveguide coupler, a large surface area to bind the antibody with increased penetration depth of evanescent wave to excite the tagged-rbST is obtained by splitting the waveguide into multiple paths using Y splitters designed with s -bends and subsequently combining them back to a single waveguide through tapered waveguide and combiners. Hence a highly sensitive fluoroimmunoassay sensor is realized. Using the 2D FDTD (Finite-difference time-domain method) simulation of waveguide with a point source in Rsoft FullWAVE, the fluorescence coupling efficiency of straight and bend section of waveguide is analyzed. The sensor is demonstrated for the detection of fluorescently-tagged recombinant growth hormone with the detection limit as low as 25 ng/ml.

  2. Investigation of the compressible flow through the tip-section turbine blade cascade with supersonic inlet

    Science.gov (United States)

    Luxa, Martin; Příhoda, Jaromír; Šimurda, David; Straka, Petr; Synáč, Jaroslav

    2016-04-01

    The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical (interferometry and schlieren method) and pneumatic measurements provide more information about the behaviour and nature of basic phenomena occurring in the profile cascade flow field. The numerical simulation was carried out by means of the EARSM turbulence model according to Hellsten [5] completed by the bypass transition model with the algebraic equation for the intermittency coefficient proposed by Straka and Příhoda [6] and implemented into the in-house numerical code. The investigation was focused particularly on the effect of shock waves on the shear layer development including the laminar/turbulent transition. Interactions of shock waves with shear layers on both sides of the blade result usually in the transition in attached and/ or separated flow and so to the considerable impact to the flow structure and energy losses in the blade cascade.

  3. High quantum efficiency mid-wavelength interband cascade infrared photodetectors with one and two stages

    Science.gov (United States)

    Zhou, Yi; Chen, Jianxin; Xu, Zhicheng; He, Li

    2016-08-01

    In this paper, we report on mid-wavelength infrared interband cascade photodetectors grown on InAs substrates. We studied the transport properties of the photon-generated carriers in the interband cascade structures by comparing two different detectors, a single stage detector and a two-stage cascade detector. The two-stage device showed quantum efficiency around 19.8% at room temperature, and clear optical response was measured even at a temperature of 323 K. The two detectors showed similar Johnson-noise limited detectivity. The peak detectivity of the one- and two-stage devices was measured to be 2.15 × 1014 cm·Hz1/02/W and 2.19 × 1014 cm·Hz1/02/W at 80 K, 1.21 × 109 cm·Hz1/02/W and 1.23 × 109 cm·Hz1/02/W at 300 K, respectively. The 300 K background limited infrared performance (BLIP) operation temperature is estimated to be over 140 K.

  4. Single-mode interband cascade laser sources for mid-infrared spectroscopic applications

    Science.gov (United States)

    Scheuermann, J.; von Edlinger, M.; Weih, R.; Becker, S.; Nähle, L.; Fischer, M.; Koeth, J.; Kamp, M.; Höfling, S.

    2016-05-01

    Compared to the near infrared, many technologically and industrially relevant gas species have more than an order of magnitude higher absorption features in the mid-infrared (MIR) wavelength range. These species include for example important hydrocarbons (methane, acetylene), nitrogen oxides and sulfur oxides. Tunable laser absorption spectroscopy (TLAS) has proven to be a versatile tool for gas sensing applications with significant advantages compared to other techniques. These advantages include real time measurement, standoff detection and ruggedness of the sensor. We present interband cascade lasers (ICLs), which have evolved into important laser sources for the MIR spectral range from 3 to 7 μm. ICLs achieve high efficiency by cascading optically active zones whilst using interband transitions, so they combine common diode laser as well as quantum cascade laser based technologies. Our application grade singlemode distributed feedback devices operate continuous wave at room temperature and are offering several features especially useful for high performance TLAS applications like: side mode suppression ratio of > 30 dB, continuous tuning ranges up to 30 nm, low threshold power densities and low overall power consumption. The devices are typically integrated in a thermoelectrically cooled TO-style package, hermetically sealed using a cap with anti-reflection coated window. This low power consumption as well as the compact size and ruggedness of the fabricated laser sources makes them perfectly suited for battery powered portable solutions for in field spectroscopy applications.

  5. FERMI @ Elettra A Seeded Harmonic Cascade FEL for EUV and Soft X-Rays

    CERN Document Server

    Bocchetta, C J; Craievich, P; D'Auria, G; Danailov, M B; De Ninno, G; Di Mitri, S; Diviacco, B; Ferianis, M; Gomezel, A; Iazzourene, F; Karantzoulis, E; Penco, G; Trovò, M

    2005-01-01

    We describe the machine layout and major performance parameters for the FERMI FEL project funded for construction at Sincrotrone Trieste, Italy. The project will be the first user facility based on seeded harmonic cascade FELs, providing controlled, high peak-power pulses. With a high-brightness rf photocathode gun, and using the existing 1.2 GeV S-band linac, the facility will provide tunable output over a range from ~100 nm to ~10 nm, with pulse duration from 40 fs to ~ 1ps, and with fully variable output polarization. Initially, two FEL cascades are planned; a single-stage harmonic generation to operate > 40 nm, and a two-stage cascade operating from ~40 nm to ~10 nm or shorter wavelength. The output is spatially and temporally coherent, with peak power in the GW range. Lasers provide modulation to the electron beam, as well as driving the photocathode and other systems, and the facility will integrate laser systems with the accelerator infrastructure, including a state-of-the-art optical timing sys...

  6. Fano-resonance boosted cascaded field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application

    OpenAIRE

    Zhu, Zhendong; Bai, Benfeng; You, Oubo; Li, Qunqing; Fan, Shoushan

    2015-01-01

    Cascaded optical field enhancement (CFE) can be realized in some specially designed multiscale plasmonic nanostructures, where the generation of extremely strong field at nanoscale volume is crucial for many applications, for example, surface enhanced Raman spectroscopy (SERS). Here, we propose a strategy of realizing a high-quality plasmonic nanoparticle-in-cavity (PIC) nanoantenna array, where strong coupling between a nanoparticle dark mode with a high order nanocavity bright mode can prod...

  7. Multi-component optical solitary waves

    DEFF Research Database (Denmark)

    Kivshar, Y. S.; Sukhorukov, A. A.; Ostrovskaya, E. A.;

    2000-01-01

    We discuss several novel types of multi-component (temporal and spatial) envelope solitary waves that appear in fiber and waveguide nonlinear optics. In particular, we describe multi-channel solitary waves in bit-parallel-wavelength fiber transmission systems for highperformance computer networks......, multi-color parametric spatial solitary waves due to cascaded nonlinearities of quadratic materials, and quasiperiodic envelope solitons due to quasi-phase-matching in Fibonacci optical superlattices. (C) 2000 Elsevier Science B.V. All rights reserved....

  8. Dark Spatial Solitary Wave Due to Cascaded x(2) Nonlinearity

    Institute of Scientific and Technical Information of China (English)

    GAO Guan-Qie; CHEN Xian-Feng; CHEN Yu-Ping; WANG Fei-Yu; XIA Yu-Xing

    2004-01-01

    The formation of the dark spatial solitary wave in cascaded second harmonic generation processes is numerically studied based on the nonlinear-coupled equations. It is shown that the solitary wave exists when the effective three-order nonlinearity induced by cascaded second-order nonlinearity is negative.

  9. Quantum cascade lasers with an integrated polarization mode converter.

    Science.gov (United States)

    Dhirhe, D; Slight, T J; Holmes, B M; Hutchings, D C; Ironside, C N

    2012-11-01

    We discuss the design, fabrication and characterization of waveguide polarization mode converters for quantum cascade lasers operating at 4.6 μm. We have fabricated a quantum cascade laser with integrated polarization mode converter that emits light of 69% Transverse Electrical (TE) polarization from one facet and 100% Transverse Magnetic (TM) polarization from the other facet. PMID:23187389

  10. Quantum cascade lasers with an integrated polarization mode converter

    OpenAIRE

    Dhirhe, D.; Slight, T.J.; Holmes, B.M.; Hutchings, D.C.; Ironside, C. N.

    2012-01-01

    We discuss the design, fabrication and characterization of waveguide polarization mode converters for quantum cascade lasers operating at 4.6 μm. We have fabricated a quantum cascade laser with integrated polarization mode converter that emits light of 69% Transverse Electrical (TE) polarization from one facet and 100% Transverse Magnetic (TM) polarization from the other facet.

  11. Impedance Coordinative Control for Cascaded Converter in Bidirectional Application

    DEFF Research Database (Denmark)

    Tian, Yanjun; Deng, Fujin; Chen, Zhe;

    2015-01-01

    difference between forward and reversed power flow. This paper addresses the analysis with the topology of cascaded dual-active-bridge converter (DAB) with inverter, and the proposed control method can also be implemented in unidirectional applications and other general cascaded converter system...

  12. Intermittent Flow Regimes in a Transonic Fan Airfoil Cascade

    Directory of Open Access Journals (Sweden)

    J. Lepicovsky

    2004-01-01

    velocity.To date, this flow behavior has only been observed in a linear transonic cascade. Further research is necessary to confirm this phenomenon occurs in actual transonic fans and is not the by-product of an endwall restricted linear cascade.

  13. Signaling cascades modulate the speed of signal propagation through space.

    Directory of Open Access Journals (Sweden)

    Christopher C Govern

    Full Text Available BACKGROUND: Cells are not mixed bags of signaling molecules. As a consequence, signals must travel from their origin to distal locations. Much is understood about the purely diffusive propagation of signals through space. Many signals, however, propagate via signaling cascades. Here, we show that, depending on their kinetics, cascades speed up or slow down the propagation of signals through space, relative to pure diffusion. METHODOLOGY/PRINCIPAL FINDINGS: We modeled simple cascades operating under different limits of Michaelis-Menten kinetics using deterministic reaction-diffusion equations. Cascades operating far from enzyme saturation speed up signal propagation; the second mobile species moves more quickly than the first through space, on average. The enhanced speed is due to more efficient serial activation of a downstream signaling module (by the signaling molecule immediately upstream in the cascade at points distal from the signaling origin, compared to locations closer to the source. Conversely, cascades operating under saturated kinetics, which exhibit zero-order ultrasensitivity, can slow down signals, ultimately localizing them to regions around the origin. CONCLUSIONS/SIGNIFICANCE: Signal speed modulation may be a fundamental function of cascades, affecting the ability of signals to penetrate within a cell, to cross-react with other signals, and to activate distant targets. In particular, enhanced speeds provide a way to increase signal penetration into a cell without needing to flood the cell with large numbers of active signaling molecules; conversely, diminished speeds in zero-order ultrasensitive cascades facilitate strong, but localized, signaling.

  14. 36 CFR 7.66 - North Cascades National Park.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park....

  15. Anomalous dissipation and energy cascade in 3D inviscid flows

    CERN Document Server

    Dascaliuc, Radu

    2011-01-01

    Adopting the setting for the study of existence and scale locality of the energy cascade in 3D viscous flows in physical space introduced in [arXiv:1101.2193] to 3D inviscid flows, it is shown that the anomalous dissipation is indeed capable of triggering the cascade which then continues ad infinitum, confirming Onsager's predictions.

  16. A simple model of global cascades on random networks

    Science.gov (United States)

    Watts, Duncan J.

    2002-04-01

    The origin of large but rare cascades that are triggered by small initial shocks is a phenomenon that manifests itself as diversely as cultural fads, collective action, the diffusion of norms and innovations, and cascading failures in infrastructure and organizational networks. This paper presents a possible explanation of this phenomenon in terms of a sparse, random network of interacting agents whose decisions are determined by the actions of their neighbors according to a simple threshold rule. Two regimes are identified in which the network is susceptible to very large cascadesherein called global cascadesthat occur very rarely. When cascade propagation is limited by the connectivity of the network, a power law distribution of cascade sizes is observed, analogous to the cluster size distribution in standard percolation theory and avalanches in self-organized criticality. But when the network is highly connected, cascade propagation is limited instead by the local stability of the nodes themselves, and the size distribution of cascades is bimodal, implying a more extreme kind of instability that is correspondingly harder to anticipate. In the first regime, where the distribution of network neighbors is highly skewed, it is found that the most connected nodes are far more likely than average nodes to trigger cascades, but not in the second regime. Finally, it is shown that heterogeneity plays an ambiguous role in determining a system's stability: increasingly heterogeneous thresholds make the system more vulnerable to global cascades; but an increasingly heterogeneous degree distribution makes it less vulnerable.

  17. Influence of blood flow on the coagulation cascade

    DEFF Research Database (Denmark)

    The influence of diffusion and convetive flows on the blood coagulation cascade is investigated for a controlled perfusion experiment. We present a cartoon model and reaction schemes for parts of the coagulation cascade with sunsequent set up of a mathematical model in two space dimensions plus one...

  18. Degassing cascades in a shear-thinning viscoelastic fluid

    CERN Document Server

    Vidal, Valérie; Divoux, Thibaut; Géminard, Jean-Christophe

    2011-01-01

    We report the experimental study of the degassing dynamics through a thin layer of shear-thinning viscoelastic fluid (CTAB/NaSal solution), when a constant air flow is imposed at its bottom. Over a large range of parameters, the air is periodically released through series of successive bubbles, hereafter named {\\it cascades}. Each cascade is followed by a continuous degassing, lasting for several seconds, corresponding to an open channel crossing the fluid layer. The periodicity between two cascades does not depend on the injected flow-rate. Inside one cascade, the properties of the overpressure signal associated with the successive bubbles vary continuously. The pressure threshold above which the fluid starts flowing, fluid deformation and pressure drop due to degassing through the thin fluid layer can be simply described by a Maxwell model. We point out that monitoring the evolution inside the cascades provides a direct access to the characteristic relaxation time associated with the fluid rheology.

  19. On Watts' Cascade Model with Random Link Weights

    CERN Document Server

    Hurd, T R

    2012-01-01

    We study an extension of Duncan Watts' 2002 model of information cascades in social networks where edge weights are taken to be random, an innovation motivated by recent applications of cascade analysis to systemic risk in financial networks. The main result is a probabilistic analysis that characterizes the cascade in an infinite network as the fixed point of a vector-valued mapping, explicit in terms of convolution integrals that can be efficiently evaluated numerically using the fast Fourier transform algorithm. A second result gives an approximate probabilistic analysis of cascades on "real world networks", finite networks based on a fixed deterministic graph. Extensive cross testing with Monte Carlo estimates shows that this approximate analysis performs surprisingly well, and provides a flexible microscope that can be used to investigate properties of information cascades in real world networks over a wide range of model parameters.

  20. Tolerance of edge cascades with coupled map lattices methods

    Institute of Scientific and Technical Information of China (English)

    Cui Di; Gao Zi-You; Zheng Jian-Feng

    2009-01-01

    This paper studies the cascading failure on random networks and scale-free networks by introducing the tolerance parameter of edge based on the coupled map lattices methods. The whole work focuses on investigating some indices including the number of failed edges, dynamic edge tolerance capacity and the perturbation of edge. In general, it assumes that the perturbation is attributed to the normal distribution in adopted simulations. By investigating the effectiveness of edge tolerance in scale-free and random networks, it finds that the larger tolerance parameter 位 can more efficiently delay the cascading failure process for scale-free networks than random networks. These results indicate that the cascading failure process can be effectively controlled by increasing the tolerance parameter A. Moreover, the simulations also show that, larger variance of perturbation can easily trigger the cascading failures than the smaller one. This study may be useful for evaluating efficiency of whole traffic systems, and for alleviating cascading failure in such systems.

  1. Spatio-temporal propagation of cascading overload failures

    CERN Document Server

    Zhao, Jichang; Sanhedrai, Hillel; Cohen, Reuven; Havlin, Shlomo

    2015-01-01

    Different from the direct contact in epidemics spread, overload failures propagate through hidden functional dependencies. Many studies focused on the critical conditions and catastrophic consequences of cascading failures. However, to understand the network vulnerability and mitigate the cascading overload failures, the knowledge of how the failures propagate in time and space is essential but still missing. Here we study the spatio-temporal propagation behavior of cascading overload failures analytically and numerically. The cascading overload failures are found to spread radially from the center of the initial failure with an approximately constant velocity. The propagation velocity decreases with increasing tolerance, and can be well predicted by our theoretical framework with one single correction for all the tolerance values. This propagation velocity is found similar in various model networks and real network structures. Our findings may help to predict and mitigate the dynamics of cascading overload f...

  2. Cascading Node Failure with Continuous States in Random Geometric Networks

    CERN Document Server

    Kamran, Khashayar

    2016-01-01

    The increasing complexity and interdependency of today's networks highlight the importance of studying network robustness to failure and attacks. Many large-scale networks are prone to cascading effects where a limited number of initial failures (due to attacks, natural hazards or resource depletion) propagate through a dependent mechanism, ultimately leading to a global failure scenario where a substantial fraction of the network loses its functionality. These cascading failure scenarios often take place in networks which are embedded in space and constrained by geometry. Building on previous results on cascading failure in random geometric networks, we introduce and analyze a continuous cascading failure model where a node has an initial continuously-valued state, and fails if the aggregate state of its neighbors fall below a threshold. Within this model, we derive analytical conditions for the occurrence and non-occurrence of cascading node failure, respectively.

  3. A modeling framework for system restoration from cascading failures.

    Science.gov (United States)

    Liu, Chaoran; Li, Daqing; Zio, Enrico; Kang, Rui

    2014-01-01

    System restoration from cascading failures is an integral part of the overall defense against catastrophic breakdown in networked critical infrastructures. From the outbreak of cascading failures to the system complete breakdown, actions can be taken to prevent failure propagation through the entire network. While most analysis efforts have been carried out before or after cascading failures, restoration during cascading failures has been rarely studied. In this paper, we present a modeling framework to investigate the effects of in-process restoration, which depends strongly on the timing and strength of the restoration actions. Furthermore, in the model we also consider additional disturbances to the system due to restoration actions themselves. We demonstrate that the effect of restoration is also influenced by the combination of system loading level and restoration disturbance. Our modeling framework will help to provide insights on practical restoration from cascading failures and guide improvements of reliability and resilience of actual network systems.

  4. Cascaded generation of coherent Raman dissipative solitons.

    Science.gov (United States)

    Kharenko, Denis S; Bednyakova, Anastasia E; Podivilov, Evgeniy V; Fedoruk, Mikhail P; Apolonski, Alexander; Babin, Sergey A

    2016-01-01

    The cascaded generation of a conventional dissipative soliton (at 1020 nm) together with Raman dissipative solitons of the first (1065 nm) and second (1115 nm) orders inside a common fiber laser cavity is demonstrated experimentally and numerically. With sinusoidal (soft) spectral filtering, the generated solitons are mutually coherent at a high degree and compressible down to 300 fs. Numerical simulation shows that an even higher degree of coherence and shorter pulses could be achieved with step-like (hard) spectral filtering. The approach can be extended toward a high-order coherent Raman dissipative soliton source offering numerous applications such as frequency comb generation, pulse synthesis, biomedical imaging, and the generation of a coherent mid-infrared supercontinuum. PMID:26696187

  5. Availability Cascades and the Sharing Economy

    DEFF Research Database (Denmark)

    Netter, Sarah

    2016-01-01

    As scholars search for a new concept that will provide answers on how modern societies should make sense of and resolve the social and environmental problems linked to our modes of production and consumption, the sharing economy is attracting increased attention. To better understand this emergent...... focus on a sharing economy and associated business and consumption models, this conceptual chapter applies cascade theory to some of the most pronounced narratives , suggesting a win-win scenario, especially as they relate to the claim of sustainability. Given academics, practitioners, and civil society......’s shared history of (too) rapidly embracing new concepts that enable both business opportunities and a clear conscience, this chapter proposes that the implications of the sharing economy should be critically explored before it is actively promoted as the latest best fix....

  6. High brightness angled cavity quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.; Slivken, S.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu [Center for Quantum Devices, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-03-02

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightest QCL to date.

  7. Including electronic effects in damage cascade simulations

    International Nuclear Information System (INIS)

    A method for including the effects of electronic losses and electron-phonon coupling in radiation damage simulations has been developed and implemented for 10 keV cascades in Fe. The MD simulations are coupled to a continuum model for the electronic energy and energy lost by the atoms, due to electronic friction and electron-phonon coupling, is gained by electronic system. Electronic energy transport is described by the heat diffusion equation and energy is returned to the lattice via a stochastic force. Thus the temperature of the atomic system is controlled by a Langevin thermostat at the local electronic temperature, which varies with time and space. The results of simulations with this inhomogeneous thermostat are compared with those of homogeneous (constant temperature) thermostat simulations for a range of electron-phonon coupling strengths. The residual defect concentration was found to have a non-monotonic variation with coupling strength.

  8. Free energy cascade in gyrokinetic turbulence

    CERN Document Server

    Navarro, A Bañón; Albrecht-Marc, M; Merz, F; Görler, T; Jenko, F; Carati, D

    2010-01-01

    In gyrokinetic theory, the quadratic nonlinearity is known to play an important role in the dynamics by redistributing (in a conservative fashion) the free energy between the various active scales. In the present study, the free energy transfer is analyzed for the case of ion temperature gradient driven turbulence. It is shown that it shares many properties with the energy transfer in fluid turbulence. In particular, one finds a forward (from large to small scales), extremely local, and self-similar cascade of free energy in the plane perpendicular to the background magnetic field. These findings shed light on some fundamental properties of plasma turbulence, and encourage the development of large eddy simulation techniques for gyrokinetics.

  9. Interface Phonon Modes in Quantum Cascade Lasers

    Institute of Scientific and Technical Information of China (English)

    YU Bing; CAO Jun-Cheng; FENG Song-Lin

    2005-01-01

    @@ We investigate the interface phonon assisted transition in GaAs/AlGaAs quantum cascade lasers (QCLs) by using the transfer matrix method based on the dielectric continuum model. Electron eigenvalues and eigenstates are calculated by solving Schrodinger equation and the Poisson equation self-consistently. The AlAs-like and upper GaAs-like interface phonon modes contribute most of the scattering rate. Interface phonon modes couple strongly with electrons at E2, and the magnitude of scattering rate between E2 and E1 is much larger than that between E3 and E1, which is helpful for the laser inversion between E3 and E2. The calculation can be easily applied to the design and simulation of QCLs.

  10. Influence of the condensate and inverse cascade on the direct cascade in wave turbulence

    CERN Document Server

    Korotkevich, A O

    2009-01-01

    During direct numerical simulation of the isotropic turbulence of surface gravity waves in the framework of Hamiltonian equations formation of the long wave background or condensate was observed. Exponents of the direct cascade spectra at the different levels of an artificial condensate suppression show a tendency to become closer to the prediction of the wave turbulence theory at lower levels of condensate. A simple qualitative explanation of the mechanism of this phenomenon is proposed.

  11. Period and temperature tuning of cascaded opticalparametric oscillator based on periodically poled LiNbO3

    Institute of Scientific and Technical Information of China (English)

    LinXue-Chun; LiRui-Ning; YaoAi-Yun; BiYong; CuiDa-Fu; XuZu-Yan

    2003-01-01

    We report the broadly tunable source by a cascaded optical parametric oscillator in the periodically poled LiNbO3 (PPLN) with domain grating period and temperature tuning. The optical parametric oscillator was pumped by a passive Q-switched Nd:YVO4 laser.Multi-wavelength outputs from visible to infrared were obtained. The temperature of the PPLN crystal changed within the range of 70-150℃ with different periods of PPLN. The tunable range covered from433 to 1657nm.

  12. Gain-guided broad area quantum cascade lasers emitting 23.5 W peak power at room temperature.

    Science.gov (United States)

    Sergachev, Ilia; Maulini, Richard; Bismuto, Alfredo; Blaser, Stephane; Gresch, Tobias; Muller, Antoine

    2016-08-22

    We report gain-guided broad area quantum cascade lasers at 4.55 μm. The devices were processed in a buried heterostructure configuration with a current injector section much narrower than the active region. They demonstrate 23.5 W peak power at a temperature of 20°C and duty cycle of 1%, while their far field consists of a single symmetric lobe centered on the optical axis. These experimental results are supported well by 2D numerical simulations of electric currents and optical fields in a device cross-section. PMID:27557186

  13. Optic neuritis

    Science.gov (United States)

    Retro-bulbar neuritis; Multiple sclerosis - optic neuritis; Optic nerve - optic neuritis ... The exact cause of optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when ...

  14. Gas chromatography: mass selective detector

    International Nuclear Information System (INIS)

    The mechanism of mass spectrometry technique directed for detecting molecular structures is described, with some considerations about its operational features. This mass spectrometer is used as a gas chromatography detector. (author)

  15. Calcium-sensitive immunoaffinity chromatography

    DEFF Research Database (Denmark)

    Henriksen, Maiken L; Lindhardt Madsen, Kirstine; Skjoedt, Karsten;

    2014-01-01

    Immunoaffinity chromatography is a powerful fractionation technique that has become indispensable for protein purification and characterization. However, it is difficult to retrieve bound proteins without using harsh or denaturing elution conditions, and the purification of scarce antigens...... to homogeneity may be impossible due to contamination with abundant antigens. In this study, we purified the scarce, complement-associated plasma protein complex, collectin LK (CL-LK, complex of collectin liver 1 and kidney 1), by immunoaffinity chromatography using a calcium-sensitive anti-collectin-kidney-1 m...... chromatography was superior to the traditional immunoaffinity chromatographies and resulted in a nine-fold improvement of the purification factor. The technique is applicable for the purification of proteins in complex mixtures by single-step fractionation without the denaturation of eluted antigens...

  16. Compact continuously tunable microwave photonic filters based on cascaded silicon microring resonators

    Science.gov (United States)

    Liu, Li; He, Mengying; Dong, Jianji

    2016-03-01

    We propose and experimentally demonstrate a photonic approach to achieving tunable bandpass microwave photonic filters (MPFs) based on cascaded microring resonators (CMRRs). The optical spectrum of the silicon CMRRs could offer two bandpass response to separately filter the optical carrier and one of the sidebands generated by the phase modulation. Thus we could achieve a bandpass MPF. Moreover, as the central frequencies and bandwidths of the two bandpass response can be tuned by adjusting the laser wavelength and voltages applied on one MRR, the central operating frequency or 3-dB bandwidth of the MPF can be continuously tuned in wide ranges respectively. A proof-of-concept experiment illustrates a central frequency tuning range from 19 GHz to 40 GHz, and a wide bandwidth tuning range from 5.5 GHz to 17.5 GHz.

  17. Nanoscale displacement sensing based on nonlinear frequency mixing in quantum cascade lasers

    CERN Document Server

    Mezzapesa, F P; De Risi, G; Brambilla, M; Dabbicco, M; Spagnolo, V; Scamarcio, G

    2015-01-01

    We demonstrate a sensor scheme for nanoscale target displacement that relies on a single Quantum Cascade Laser (QCL) subject to optical feedback. The system combines the inherent sensitivity of QCLs to optical re-injection and their ultra-stability in the strong feedback regime where nonlinear frequency mixing phenomena are enhanced. An experimental proof of principle in the micrometer wavelength scale is provided. We perform real-time measurements of displacement with {\\lambda}/100 resolution by inserting a fast-shifting reference etalon in the external cavity. The resulting signal dynamics at the QCL terminals shows a stroboscopic-like effect that relates the sensor resolution with the reference etalon speed. Intrinsic limits to the measurement algorithm and to the reference speed are discussed, disclosing that nanoscale ranges are attainable.

  18. Cascaded active silicon microresonator array cross-connect circuits for WDM networks-on-chip

    Science.gov (United States)

    Poon, Andrew W.; Xu, Fang; Luo, Xianshu

    2008-02-01

    We propose a design of an optical switch on a silicon chip comprising a 5 × 5 array of cascaded waveguide-crossing-coupled microring resonator-based switches for photonic networks-on-chip applications. We adopt our recently demonstrated design of multimode-interference (MMI)-based wire waveguide crossings, instead of conventional plain waveguide crossings, for the merits of low loss and low crosstalk. The microring resonator is integrated with a lateral p-i-n diode for carrier-injection-based GHz-speed on-off switching. All 25 microring resonators are assumed to be identical within a relatively wide resonance line width. The optical circuit switch can employ a single wavelength channel or multiple wavelength channels that are spaced by the microring resonator free spectral range. We analyze the potential performance of the proposed photonic network in terms of (i) light path cross-connections loss budget, and (ii) DC on-off power consumption for establishing a light path. As a proof-of-concept, our initial experiments on cascaded passive silicon MMI-crossing-coupled microring resonators demonstrate 3.6-Gbit/s non-return-to-zero data transmissions at on- and off-resonance wavelengths.

  19. Walk off compensation, multicrystal, cascaded, single pass, second harmonic generation in LBO

    Science.gov (United States)

    Ji, B.; Zheng, X. S.; Cai, Z. P.; Xu, H. Y.; Jia, F. Q.

    2012-09-01

    Walk off compensation and multi crystal (MC) cascaded single pass second harmonic generation (SP-SHG) in LBO was combined to improve the SHG conversion efficiency. We report a simple and compact implementation for (SP-SHG) of radiation, based on a cascaded multicrystal (MC) scheme that can provide high conversion efficiency without other focusing device, the enhancement factor of 2.9 was realized. At an incident pump power of 20 W, the average power of 6.1 W and pulse width of 12 ns green laser was obtained at a repetition rate of 42.4 kHz, corresponding to a peak power of 12 kW and single pulse energy of 144 μJ. The optical to optical conversion efficiency from diode to green and from IR to green laser are about 30.5 and 67.8%, the whole length of this system is about 150 mm, the output fluctuation of this system is less than 5% in 2 h.

  20. Hybrid Optical Comb Filter with Multi-Port Fiber Coupler for DWDM Optical Network

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Optical comb filters based on multi-port fused fiber couplers are proposed and numerically analyzed, 3-arm MZI composed by 1×7 fiber splitter and 3×3 fiber coupler, and 2-stage cascaded FIR type MZI interleave filter.

  1. Proton Pump Inhibitors and the Prescribing Cascade.

    Science.gov (United States)

    Rababa, Mohammad; Al-Ghassani, Amal Ali; Kovach, Christine R; Dyer, Elaine M

    2016-04-01

    HOW TO OBTAIN CONTACT HOURS BY READING THIS ARTICLE Instructions 1.3 contact hours will be awarded by Villanova University College of Nursing upon successful completion of this activity. A contact hour is a unit of measurement that denotes 60 minutes of an organized learning activity. This is a learner-based activity. Villanova University College of Nursing does not require submission of your answers to the quiz. A contact hour certificate will be awarded once you register, pay the registration fee, and complete the evaluation form online at http://goo.gl/gMfXaf. To obtain contact hours you must: 1. Read the article, "Proton Pump Inhibitors and the Prescribing Cascade" found on pages 23-31, carefully noting any tables and other illustrative materials that are included to enhance your knowledge and understanding of the content. Be sure to keep track of the amount of time (number of minutes) you spend reading the article and completing the quiz. 2. Read and answer each question on the quiz. After completing all of the questions, compare your answers to those provided within this issue. If you have incorrect answers, return to the article for further study. 3. Go to the Villanova website listed above to register for contact hour credit. You will be asked to provide your name; contact information; and a VISA, MasterCard, or Discover card number for payment of the $20.00 fee. Once you complete the online evaluation, a certificate will be automatically generated. This activity is valid for continuing education credit until March 31, 2019. CONTACT HOURS This activity is co-provided by Villanova University College of Nursing and SLACK Incorporated. Villanova University College of Nursing is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center's Commission on Accreditation. ACTIVITY OBJECTIVES 1. Describe the prescribing cascade of proton pump inhibitors (PPI) in nursing home residents. 2. Identify the statistically

  2. Optical notch filter design based on digital signal processing

    Institute of Scientific and Technical Information of China (English)

    GUO Sen; ZHANG Juan; LI Xue

    2011-01-01

    Based on digital signal processing theory, a novel method of designing optical notch filter is proposed for Mach-Zehnder interferometer with cascaded optical fiber rings coupled structure. The method is simple and effective, and it can be used to implement the designing of the optical notch filter which has arbitrary number of notch points in one free spectrum range (FSR). A design example of notch filter based on cascaded single-fiber-rings is given. On this basis, an improved cascaded double-fiber-rings structure is presented to eliminate the effect of phase shift caused by the single-fiber-ring structure. This new structure can improve the stability and applicability of system. The change of output intensity spectrum is finally investigated for each design parameter and the tuning characteristics of the notch filter are also discussed.

  3. Probabilistic analysis of cascade failure dynamics in complex network

    Science.gov (United States)

    Zhang, Ding-Xue; Zhao, Dan; Guan, Zhi-Hong; Wu, Yonghong; Chi, Ming; Zheng, Gui-Lin

    2016-11-01

    The impact of initial load and tolerance parameter distribution on cascade failure is investigated. By using mean field theory, a probabilistic cascade failure model is established. Based on the model, the damage caused by certain attack size can be predicted, and the critical attack size is derived by the condition of cascade failure end, which ensures no collapse. The critical attack size is larger than the case of constant tolerance parameter for network of random distribution. Comparing three typical distributions, simulation results indicate that the network whose initial load and tolerance parameter both follow Weibull distribution performs better than others.

  4. Fast infrared chemical imaging with a quantum cascade laser.

    Science.gov (United States)

    Yeh, Kevin; Kenkel, Seth; Liu, Jui-Nung; Bhargava, Rohit

    2015-01-01

    Infrared (IR) spectroscopic imaging systems are a powerful tool for visualizing molecular microstructure of a sample without the need for dyes or stains. Table-top Fourier transform infrared (FT-IR) imaging spectrometers, the current established technology, can record broadband spectral data efficiently but requires scanning the entire spectrum with a low throughput source. The advent of high-intensity, broadly tunable quantum cascade lasers (QCL) has now accelerated IR imaging but results in a fundamentally different type of instrument and approach, namely, discrete frequency IR (DF-IR) spectral imaging. While the higher intensity of the source provides a higher signal per channel, the absence of spectral multiplexing also provides new opportunities and challenges. Here, we couple a rapidly tunable QCL with a high performance microscope equipped with a cooled focal plane array (FPA) detector. Our optical system is conceptualized to provide optimal performance based on recent theory and design rules for high-definition (HD) IR imaging. Multiple QCL units are multiplexed together to provide spectral coverage across the fingerprint region (776.9 to 1904.4 cm(-1)) in our DF-IR microscope capable of broad spectral coverage, wide-field detection, and diffraction-limited spectral imaging. We demonstrate that the spectral and spatial fidelity of this system is at least as good as the best FT-IR imaging systems. Our configuration provides a speedup for equivalent spectral signal-to-noise ratio (SNR) compared to the best spectral quality from a high-performance linear array system that has 10-fold larger pixels. Compared to the fastest available HD FT-IR imaging system, we demonstrate scanning of large tissue microarrays (TMA) in 3-orders of magnitude smaller time per essential spectral frequency. These advances offer new opportunities for high throughput IR chemical imaging, especially for the measurement of cells and tissues. PMID:25474546

  5. All-optical queue buffer using optical threshold functions and wavelength converters

    Institute of Scientific and Technical Information of China (English)

    Yuancheng Zhang; Hongming Zhang; Minyu Yao

    2012-01-01

    A modular,cascadable,and self-controlled optical queue buffer is proposed,which can solve the packet contention at a 2 × 1 optical node.Controlled by incoming optical packets,the buffer can realize firstin-first-out queue buffering without the necessity of external control signals.By using optical threshold functions and wavelength converters based on semiconductor optical amplifier,the push and pop operations of packets on queue can both be achieved.In addition,preliminary experiment is carried out.%A modular, cascadable, and self-controlled optical queue buffer is proposed, which can solve the packet contention at a 2 x 1 optical node. Controlled by incoming optical packets, the buffer can realize first-in-first-out queue buffering without the necessity of external control signals. By using optical threshold functions and wavelength converters based on semiconductor optical amplifier, the push and pop operations of packets on queue can both be achieved. In addition, preliminary experiment is carried out.

  6. Probing the energy cascade of convective turbulence.

    Science.gov (United States)

    Kunnen, R P J; Clercx, H J H

    2014-12-01

    The existence of a buoyancy-dominated scaling range in convective turbulence is a longstanding open question. We investigate this issue by considering the scale-by-scale energy budget in direct numerical simulations of Rayleigh-Bénard convection. We try to minimize the so-called Bolgiano length scale, the length scale at which buoyancy becomes dominant for scaling. Therefore, we deliberately choose modest Rayleigh numbers Ra=2.5×10(6) and 2.5×10(7). The budget reveals that buoyant forcing, turbulent energy transfer, and dissipation are contributing significantly over a wide range of scales. Thereby neither Kolmogorov-like (balance of turbulent transfer and dissipation) nor Bolgiano-Obukhov-like scaling (balance of turbulent transfer and buoyancy) is expected in the structure functions, which indeed reveal inconclusive scaling behavior. Furthermore, we consider the calculation of the Bolgiano length scale. To account for correlations between the dissipation rates of kinetic energy and thermal variance we propose to average the Bolgiano length scale directly. This gives an estimate, which is one order of magnitude larger than the previous estimate, and actually larger than the domain itself. Rather than studying the scaling of structure functions, we propose that the use of scale-by-scale energy budgets resolving anisotropic contributions is appropriate to consider the energy cascade mechanisms in turbulent convection.

  7. Inverse turbulent cascade in swarming sperm

    Science.gov (United States)

    Creppy, Adama; Praud, Olivier; Druart, Xavier; Kohnke, Philippa; Plouraboue, Franck; Inra, Cnrs, Umr, F-37380 Nouzilly, France Team; Université de Toulouse, Inpt, Ups, Imft, Umr 5502, France Team

    2014-11-01

    Collective motion of self-sustained swarming flows has recently provided examples of small scale turbulence arising where viscosity effects are dominant. We report the first observation of an universal inverse enstrophy cascade in concentrated swarming sperm consistent with a body of evidence built from various independent measurements. We found a well-defined k-3 power-law decay of velocity field power-spectrum and relative dispersion of small beads consistent with theoretical predictions in two-dimensional turbulence. Concentrated living sperm displays long-range, correlated whirlpool structures the size of which provides turbulence's integral scale. We propose a consistent explanation for this quasi-two-dimensional turbulence based on self-structured laminated flow forced by steric interaction and alignment, a state of active matter that we call ``swarming liquid crystal.'' We develop scaling arguments consistent with this interpretation. The implication of multi-scale collective dynamics of sperm's collective motility for fertility assessment is discussed. This work has been supported by the French Agence Nationale pour la Recherche (ANR) in the frame of the Contract MOTIMO (ANR-11-MONU-009-01). We thank Pierre Degond, Eric Climent, Laurent Lacaze and Frédéric Moulin for interesting discussions.

  8. Cascading reminiscence bumps in popular music.

    Science.gov (United States)

    Krumhansl, Carol Lynne; Zupnick, Justin Adam

    2013-10-01

    Autobiographical memories are disproportionately recalled for events in late adolescence and early adulthood, a phenomenon called the reminiscence bump. Previous studies on music have found autobiographical memories and life-long preferences for music from this period. In the present study, we probed young adults' personal memories associated with top hits over 5-and-a-half decades, as well as the context of their memories and their recognition of, preference for, quality judgments of, and emotional reactions to that music. All these measures showed the typical increase for music released during the two decades of their lives. Unexpectedly, we found that the same measures peaked for the music of participants' parents' generation. This finding points to the impact of music in childhood and suggests that these results reflect the prevalence of music in the home environment. An earlier peak occurred for 1960s music, which may be explained by its quality or by its transmission through two generations. We refer to this pattern of musical cultural transmission over generations as cascading reminiscence bumps. PMID:24006129

  9. Astronomical Forcing of Salt Marsh Biogeochemical Cascades

    Science.gov (United States)

    Morris, J. T.; Sundberg, K.

    2008-12-01

    Astronomically forced changes in the hydroperiod of a salt marsh affect the rate of marsh primary production leading to a biogeochemical cascade. For example, salt marsh primary production and biogeochemical cycles in coastal salt marshes are sensitive to the 18.6-year lunar nodal cycle, which alters the tidal amplitude by about 5 cm. For marshes that are perched high in the tidal frame, a relatively small increase in tidal amplitude and flooding lowers sediment salinity and stimulates primary production. Porewater sulfide concentrations are positively correlated with tidal amplitude and vary on the same cycle as primary production. Soluble reactive phosphate and ammonium concentrations in pore water also vary on this 18.6- year cycle. Phosphate likely responds to variation in the reaction of sulfide with iron-phosphate compounds, while the production of ammonium in sediments is coupled to the activity of diazotrophs that are carbon- limited and, therefore, are regulated by primary productivity. Ammonium also would accumulate when sulfides block nitrification. These dependencies work as a positive feedback between primary production and nutrient supply and are predictive of the near-term effects of sea-level rise.

  10. Cascading reminiscence bumps in popular music.

    Science.gov (United States)

    Krumhansl, Carol Lynne; Zupnick, Justin Adam

    2013-10-01

    Autobiographical memories are disproportionately recalled for events in late adolescence and early adulthood, a phenomenon called the reminiscence bump. Previous studies on music have found autobiographical memories and life-long preferences for music from this period. In the present study, we probed young adults' personal memories associated with top hits over 5-and-a-half decades, as well as the context of their memories and their recognition of, preference for, quality judgments of, and emotional reactions to that music. All these measures showed the typical increase for music released during the two decades of their lives. Unexpectedly, we found that the same measures peaked for the music of participants' parents' generation. This finding points to the impact of music in childhood and suggests that these results reflect the prevalence of music in the home environment. An earlier peak occurred for 1960s music, which may be explained by its quality or by its transmission through two generations. We refer to this pattern of musical cultural transmission over generations as cascading reminiscence bumps.

  11. Cascade category-aware visual search.

    Science.gov (United States)

    Zhang, Shiliang; Tian, Qi; Huang, Qingming; Gao, Wen; Rui, Yong

    2014-06-01

    Incorporating image classification into image retrieval system brings many attractive advantages. For instance, the search space can be narrowed down by rejecting images in irrelevant categories of the query. The retrieved images can be more consistent in semantics by indexing and returning images in the relevant categories together. However, due to their different goals on recognition accuracy and retrieval scalability, it is hard to efficiently incorporate most image classification works into large-scale image search. To study this problem, we propose cascade category-aware visual search, which utilizes weak category clue to achieve better retrieval accuracy, efficiency, and memory consumption. To capture the category and visual clues of an image, we first learn category-visual words, which are discriminative and repeatable local features labeled with categories. By identifying category-visual words in database images, we are able to discard noisy local features and extract image visual and category clues, which are hence recorded in a hierarchical index structure. Our retrieval system narrows down the search space by: 1) filtering the noisy local features in query; 2) rejecting irrelevant categories in database; and 3) preforming discriminative visual search in relevant categories. The proposed algorithm is tested on object search, landmark search, and large-scale similar image search on the large-scale LSVRC10 data set. Although the category clue introduced is weak, our algorithm still shows substantial advantages in retrieval accuracy, efficiency, and memory consumption than the state-of-the-art.

  12. Compression-absorption cascade refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Seara, Jose; Sieres, Jaime; Vazquez, Manuel [Area de Maquinas y Motores Termicos, Escuela Tecnica Superior de Ingenieros Industriales, Universidade de Vigo, Campus Lagoas-Marcosende, 9, 36200 Vigo (Spain)

    2006-04-01

    This paper describes the study carried out to analyse a refrigeration system in cascade with a compression system at the low temperature stage and an absorption system at the high temperature stage to generate cooling at low temperatures, as well as the possibility of powering it by means of a cogeneration system. CO{sub 2} and NH{sub 3} have been considered as refrigerants in the compression stage and the pair NH{sub 3}-H{sub 2}O in the absorption stage. The analysis has been realized by means of a mathematical model of the refrigeration system implemented in a computer program and taking into account the characteristic operating conditions of a cogeneration system with gas engines. The paper presents the results obtained regarding the performance of the refrigeration system and the adaptability between the power requirements of the refrigeration system and the power supplied by the cogeneration system taking into account the present Spanish Regulations about the use of cogeneration systems. [Author].

  13. Acoustic detection of ultra-high energy cascades in ice

    Energy Technology Data Exchange (ETDEWEB)

    Boeser, S.

    2006-12-08

    Current underwater optical neutrino telescopes are designed to detect neutrinos from astrophysical sources with energies in the TeV range. Due to the low fluxes and small cross sections, no high energy neutrinos of extraterrestrial origin have been observed so far. Only the Cherenkov neutrino detectors on the km{sup 3} scale that are currently under construction will have the necessary volume to observe these rare interactions. For the guaranteed source of neutrinos from interactions of the ultra-high energy cosmic at EeV energies rays with the ambient cosmic microwave background, event rates of only one per year are expected in these experiments. To measure the flux and verify the predicted cross sections of these cosmogenic neutrinos, an observed volume of the order of 100 km{sup 3} will be necessary, that will not be feasible with existing detection techniques. Alternative methods are required to build a detector on these scales. One promising idea is to record the acoustic waves generated in hadronic or electromagnetic cascades following the neutrino interaction. The higher amplitudes of the sonic signal and the large expected absorption length of sound favour South Polar ice instead of sea water as a medium. The prerequisites for an estimate of the potential of such a detector are suitable acoustic sensors, a verification of the model of thermo-acoustic sound generation and a determination of the acoustic properties of the ice. In a theoretical derivation the mechanism of thermo-elastic excitation of acoustic waves was shown to be equivalent for isotropic solids and liquids. Following a detailed analysis of the existing knowledge a simulation study of a hybrid optical-radio-acoustic detector has been performed. Ultrasonic sensors dedicated to in-ice application were developed and have been used to record acoustic signals from intense proton and laser beams in water and ice. With the obtained experience, the hitherto largest array of acoustic sensors and

  14. Acoustic detection of ultra-high energy cascades in ice

    International Nuclear Information System (INIS)

    Current underwater optical neutrino telescopes are designed to detect neutrinos from astrophysical sources with energies in the TeV range. Due to the low fluxes and small cross sections, no high energy neutrinos of extraterrestrial origin have been observed so far. Only the Cherenkov neutrino detectors on the km3 scale that are currently under construction will have the necessary volume to observe these rare interactions. For the guaranteed source of neutrinos from interactions of the ultra-high energy cosmic at EeV energies rays with the ambient cosmic microwave background, event rates of only one per year are expected in these experiments. To measure the flux and verify the predicted cross sections of these cosmogenic neutrinos, an observed volume of the order of 100 km3 will be necessary, that will not be feasible with existing detection techniques. Alternative methods are required to build a detector on these scales. One promising idea is to record the acoustic waves generated in hadronic or electromagnetic cascades following the neutrino interaction. The higher amplitudes of the sonic signal and the large expected absorption length of sound favour South Polar ice instead of sea water as a medium. The prerequisites for an estimate of the potential of such a detector are suitable acoustic sensors, a verification of the model of thermo-acoustic sound generation and a determination of the acoustic properties of the ice. In a theoretical derivation the mechanism of thermo-elastic excitation of acoustic waves was shown to be equivalent for isotropic solids and liquids. Following a detailed analysis of the existing knowledge a simulation study of a hybrid optical-radio-acoustic detector has been performed. Ultrasonic sensors dedicated to in-ice application were developed and have been used to record acoustic signals from intense proton and laser beams in water and ice. With the obtained experience, the hitherto largest array of acoustic sensors and transmitters was

  15. Influence of Blade Chordwise Lean on Development of Cascade Losses

    Institute of Scientific and Technical Information of China (English)

    HanWanjin; HuangHongyan; 等

    1996-01-01

    An experimetal investigation was carried out on the effect of blade chordwise lean on the losse in highly loaded rectangular turbine cascades,Datailed measurements include 10 traverses from upstream to downstream of the cascades with five-hole spherical probes.Compared with the experimental data of the coventional Straight and pitchwise lean blades under the same conditions,it is shown that the effect of chordwise lean on the development of the cascade losses is similar to that of pitchwise lean.However,the chordwise lean produces smaller streamwise adverse pressure gradients near both endwalls and a smaller spanwise negative one starting from the actute angle side in the first part of the passages in chordwise lean cascade,thereby the saddle point separations and intensities of the passage vortices are weakened and the secondary vorte losses are cut down notably.

  16. On periodic orbits in discrete-time cascade systems

    Directory of Open Access Journals (Sweden)

    Huimin Li

    2006-01-01

    Full Text Available We present some results on existence, minimum period, number of periodic orbits, and stability of periodic orbits in discrete-time cascade systems. Some examples are presented to illustrate these results.

  17. Mutually independent cascades in anisotropic soap-film turbulence

    Science.gov (United States)

    Liu, Chien-Chia; Gioia, Gustavo; Chakraborty, Pinaki

    2015-03-01

    Computational, experimental and field data amassed to date indicate that in 2D turbulence the spectrum of longitudinal velocity fluctuations, E11 (k1) , and the spectrum of transverse velocity fluctuations, E22 (k1) , correspond always to the same cascade, consistent with isotropy, so that E11 (k1) ~k-α and E22 (k1) ~k-α , where the ``spectral exponent'' α is either 5/3 (for the inverse-energy cascade) or 3 (for the enstrophy cascade). Here, we carry out experiments on turbulent 2D soap-film flows in which E11 (k1) ~k - 5 / 3 and E22 (k1) ~k-3 , as if two mutually independent cascades were concurrently active within the same flow. To our knowledge, this species of spectrum has never been observed or predicted theoretically. Our finding might open up new vistas in the understanding of turbulence.

  18. The flow analysis of supercavitating cascade by linear theory

    Energy Technology Data Exchange (ETDEWEB)

    Park, E.T. [Sung Kyun Kwan Univ., Seoul (Korea, Republic of); Hwang, Y. [Seoul National Univ., Seoul (Korea, Republic of)

    1996-06-01

    In order to reduce damages due to cavitation effects and to improve performance of fluid machinery, supercavitation around the cascade and the hydraulic characteristics of supercavitating cascade must be analyzed accurately. And the study on the effects of cavitation on fluid machinery and analysis on the performances of supercavitating hydrofoil through various elements governing flow field are critically important. In this study comparison of experiment results with the computed results of linear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations. 7 refs., 6 figs.

  19. Dynamic Modeling of Cascading Failure in Power Systems

    CERN Document Server

    Song, Jiajia; Ghanavati, Goodarz; Hines, Paul D H

    2014-01-01

    The modeling of cascading failure in power systems is difficult because of the many different mechanisms involved; no single model captures all of these mechanisms. Understanding the relative importance of these different mechanisms is an important step in choosing which mechanisms need to be modeled for particular types of cascading failure analysis. This work presents a dynamic simulation model of both power networks and protection systems, which can simulate a wider variety of cascading outage mechanisms, relative to existing quasi-steady state (QSS) models. The model allows one to test the impact of different load models and protections on cascading outage sizes. This paper describes each module of the developed dynamic model and demonstrates how different mechanisms interact. In order to test the model we simulated a batch of randomly selected $N-2$ contingencies for several different static load configurations, and found that the distribution of blackout sizes and event lengths from the proposed dynamic...

  20. Cascading failures in local-world evolving networks

    Institute of Scientific and Technical Information of China (English)

    Zhe-jing BAO; Yi-jia CAO

    2008-01-01

    The local-world (LW) evolving network model shows a transition for the degree distribution between the exponential and power-law distributions, depending on the LW size. Cascading failures under intentional attacks in LW network models with different LW sizes were investigated using the cascading failures load model. We found that the LW size has a significant impact on the network's robustness against deliberate attacks. It is much easier to trigger cascading failures in LW evolving networks with a larger LW size. Therefore, to avoid cascading failures in real networks with local preferential attachment such as the Internet, the World Trade Web and the multi-agent system, the LW size should be as small as possible.

  1. Statistical analysis of cascading failures in power grids

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Laboratory; Pfitzner, Rene [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory

    2010-12-01

    We introduce a new microscopic model of cascading failures in transmission power grids. This model accounts for automatic response of the grid to load fluctuations that take place on the scale of minutes, when optimum power flow adjustments and load shedding controls are unavailable. We describe extreme events, caused by load fluctuations, which cause cascading failures of loads, generators and lines. Our model is quasi-static in the causal, discrete time and sequential resolution of individual failures. The model, in its simplest realization based on the Directed Current description of the power flow problem, is tested on three standard IEEE systems consisting of 30, 39 and 118 buses. Our statistical analysis suggests a straightforward classification of cascading and islanding phases in terms of the ratios between average number of removed loads, generators and links. The analysis also demonstrates sensitivity to variations in line capacities. Future research challenges in modeling and control of cascading outages over real-world power networks are discussed.

  2. Cascade Structure of Digital Predistorter for Power Amplifier Linearization

    Directory of Open Access Journals (Sweden)

    E. B. Solovyeva

    2015-12-01

    Full Text Available In this paper, a cascade structure of nonlinear digital predistorter (DPD synthesized by the direct learning adaptive algorithm is represented. DPD is used for linearization of power amplifier (PA characteristic, namely for compensation of PA nonlinear distortion. Blocks of the cascade DPD are described by different models: the functional link artificial neural network (FLANN, the polynomial perceptron network (PPN and the radially pruned Volterra model (RPVM. At synthesis of the cascade DPD there is possibility to overcome the ill conditionality problem due to reducing the dimension of DPD nonlinear operator approximation. Results of compensating nonlinear distortion in Wiener–Hammerstein model of PA at the GSM–signal with four carriers are shown. The highest accuracy of PA linearization is produced by the cascade DPD containing PPN and RPVM.

  3. The CCFM Monte Carlo generator CASCADE 2.2.0

    CERN Document Server

    Jung, H; Deak, M; Grebenyuk, A; Hautmann, F; Hentschinski, M; Knutsson, A; Kraemer, M; Kutak, K; Lipatov, A; Zotov, N

    2010-01-01

    CASCADE is a full hadron level Monte Carlo event generator for ep, \\gamma p and p\\bar{p} and pp processes, which uses the CCFM evolution equation for the initial state cascade in a backward evolution approach supplemented with off - shell matrix elements for the hard scattering. A detailed program description is given, with emphasis on parameters the user wants to change and variables which completely specify the generated events.

  4. Phase seeding of a terahertz quantum cascade laser

    OpenAIRE

    Oustinov, Dimitri; Jukam, Nathan; Rungsawang, Rakchanok; Madéo, Julien; Barbieri, Stefano; Filloux, Pascal; Sirtori, Carlo; Marcadet, Xavier; Tignon, Jérôme; Dhillon, Sukhdeep

    2010-01-01

    International audience The amplification of spontaneous emission is used to initiate laser action. Since the phase of spontaneous emission is random, the phase of the coherent laser emission (the carrier phase) will also be random each time laser action begins. This prevents phase resolved detection of the laser field. Here, we demonstrate how the carrierphase can be fixed in a semiconductor laser: a quantum cascade laser. This is performed by injection seeding a quantum cascade laser with...

  5. Hydrothermal monitoring data from the Cascade Range, northwestern United States

    Science.gov (United States)

    Ingebritsen, Steven E.; Gelwick, Katrina D.; Randolph-Flagg, Noah G.; Crankshaw, Ilana M.; Lundstrom, Elizabeth A.; McCulloch, Callum L.; Murveit, Anna M.; Newman, Alice C.; Mariner, Robert H.; Bergfeld, D.; Tucker, Dave S.; Schmidt, Mariek E.; Spicer, Kurt R.; Mosbrucker, Adam; Evans, William C.

    2013-01-01

    This database serves as a repository for hydrothermal-monitoring data collected at 25 sites in the U.S. portion of the Cascade Range volcanic arc. These data are intended to quantify baseline hydrothermal variability at most (10 of 12) of the highest-risk volcanoes in the Cascades, as defined by the U.S. Geological Survey’s (USGS’) National Volcanic Early Warning System (NVEWS) report (Ewert and others, 2005).

  6. Cascade Decays of Triplet Higgs Bosons at LEP2

    CERN Document Server

    Akeroyd, A G

    1998-01-01

    We study the Georgi-Machacek two triplet, one doublet model in the context of LEP2, and show that cascade decays of Higgs bosons to lighter Higgs bosons and a virtual vector boson may play a major role. Such decays would allow the Higgs bosons of this model to escape current searches, and in particular are of great importance for the members of the five-plet which will always decay to the three-plet giving rise to cascade signatures.

  7. Pair cascades in the magnetospheres of strongly magnetized neutron stars

    Science.gov (United States)

    Medin, Zach; Lai, Dong

    2010-08-01

    We present numerical simulations of electron-positron pair cascades in the magnetospheres of magnetic neutron stars for a wide range of surface fields (Bp = 1012-1015 G), rotation periods (0.1-10 s) and field geometries. This has been motivated by the discovery in recent years of a number of radio pulsars with inferred magnetic fields comparable to those of magnetars. Evolving the cascade generated by a primary electron or positron after it has been accelerated in the inner gap of the magnetosphere, we follow the spatial development of the cascade until the secondary photons and electron-positron pairs leave the magnetosphere, and we obtain the pair multiplicity and the energy spectra of the cascade pairs and photons under various conditions. Going beyond previous works, which were restricted to weaker fields (B crudely treated before, including photon splitting with the correct selection rules for photon polarization modes, one-photon pair production into low Landau levels for the e+/-, and resonant inverse Compton scattering from polar cap hotspots. We find that even for B >> BQ = 4 × 1013 G, photon splitting has a small effect on the multiplicity of the cascade since a majority of the photons in the cascade cannot split. One-photon decay into e+ e- pairs at low Landau levels, however, becomes the dominant pair production channel when B >~ 3 × 1012 G; this tends to suppress synchrotron radiation so that the cascade can develop only at a larger distance from the stellar surface. Nevertheless, we find that the total number of pairs and their energy spectrum produced in the cascade depend mainly on the polar cap voltage BpP-2, and are weakly dependent on Bp (and P) alone. We discuss the implications of our results for the radio pulsar death line and for the hard X-ray emission from magnetized neutron stars.

  8. Cascaded Soliton Compression of Energetic Femtosecond Pulses at 1030 nm

    DEFF Research Database (Denmark)

    Bache, Morten; Zhou, Binbin

    2012-01-01

    We discuss soliton compression with cascaded second-harmonic generation of energetic femtosecond pulses at 1030 nm. We discuss problems encountered with soliton compression of long pulses and show that sub-10 fs compressed pulses can be achieved.......We discuss soliton compression with cascaded second-harmonic generation of energetic femtosecond pulses at 1030 nm. We discuss problems encountered with soliton compression of long pulses and show that sub-10 fs compressed pulses can be achieved....

  9. INFORMATION CASCADES WITH FINANCIAL MARKET PROFESSIONALS: AN EXPERIMENTAL STUDY

    OpenAIRE

    Jonathan E. Alevy; Haigh, Michael S.; List, John A

    2003-01-01

    In settings where there is imperfect information about an underlying state of nature, but where inferences are made sequentially and are publicly observable, information cascades can lead to rational herding. Cascade phenomena may be seen in a variety of areas including technology adoption, financial market behavior, as well as in social processes such as mate selection or fads and fashions. Theories of rational herding have found a natural testing ground in experimental environments since th...

  10. Linewidth and tuning characteristics of terahertz quantum cascade lasers.

    Science.gov (United States)

    Barkan, A; Tittel, F K; Mittleman, D M; Dengler, R; Siegel, P H; Scalari, G; Ajili, L; Faist, J; Beere, H E; Linfield, E H; Davies, A G; Ritchie, D A

    2004-03-15

    We have measured the spectral linewidths of three continuous-wave quantum cascade lasers operating at terahertz frequencies by heterodyning the free-running quantum cascade laser with two far-infrared gas lasers. Beat notes are detected with a GaAs diode mixer and a microwave spectrum analyzer, permitting very precise frequency measurements and giving instantaneous linewidths of less than -30 kHz. Characteristics are also reported for frequency tuning as the injection current is varied.

  11. Critical Boundary of Cascaded Quadratic Soliton Compression in PPLN

    DEFF Research Database (Denmark)

    Guo, Hairun; Zeng, Xianglong; Zhou, Binbin;

    2012-01-01

    Cascaded quadratic soliton compression in PPLN is investigated and a general critical soliton number is found as the compression boundary. An optimal-parameter diagram for compression at 1550 nm is presented.......Cascaded quadratic soliton compression in PPLN is investigated and a general critical soliton number is found as the compression boundary. An optimal-parameter diagram for compression at 1550 nm is presented....

  12. Physics at the AGS with a relativistic cascade

    Energy Technology Data Exchange (ETDEWEB)

    Kahana, S.H.; Pang, Yang; Schlagel, T.J.

    1993-02-01

    The relativistic cascade code ARC is applied to the results from heavy ion collisions, at a laboratory energy of 14.6 GeV/c per nucleon, for a variety of projectiles and targets. A detailed discussion is given of the physics and inputs of this cascade. No deviation between ARC and experiment has yet been identified as a possible signal of collective hadronic behaviour.

  13. Threshold cascades with response heterogeneity in multiplex networks

    Science.gov (United States)

    Lee, Kyu-Min; Brummitt, Charles D.; Goh, K.-I.

    2014-12-01

    Threshold cascade models have been used to describe the spread of behavior in social networks and cascades of default in financial networks. In some cases, these networks may have multiple kinds of interactions, such as distinct types of social ties or distinct types of financial liabilities; furthermore, nodes may respond in different ways to influence from their neighbors of multiple types. To start to capture such settings in a stylized way, we generalize a threshold cascade model to a multiplex network in which nodes follow one of two response rules: some nodes activate when, in at least one layer, a large enough fraction of neighbors is active, while the other nodes activate when, in all layers, a large enough fraction of neighbors is active. Varying the fractions of nodes following either rule facilitates or inhibits cascades. Near the inhibition regime, global cascades appear discontinuously as the network density increases; however, the cascade grows more slowly over time. This behavior suggests a way in which various collective phenomena in the real world could appear abruptly yet slowly.

  14. Photonic generation of ultrawideband monocycle and doublet pulses by using a semiconductor-optical-amplifier-based wavelength converter

    DEFF Research Database (Denmark)

    Zhou, Enbo; Yu, Xianbin; Zhang, Xinliang;

    2009-01-01

    Photonic generation of ultrawideband (UWB) monocycle and doublet pulses is experimentally demonstrated using a cascaded electroabsorption modulator (EAM) and semiconductor optical amplifier by exploiting a combination of cross-absorption modulation and cross-gain modulation. The polarities and...

  15. Numerical Investigation of a Cascaded Longitudinal Space-Charge Amplifier at the Fermilab's Advanced Superconducting Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [NICADD, DeKalb; Piot, P. [NICADD, DeKalb

    2015-06-01

    In a cascaded longitudinal space-charge amplifier (LSCA), initial density noise in a relativistic e-beam is amplified via the interplay of longitudinal space charge forces and properly located dispersive sections. This type of amplification process was shown to potentially result in large final density modulations [1] compatible with the production of broadband electromagnetic radiation. The technique was recently demonstrated in the optical domain [2]. In this paper we investigate, via numerical simulations, the performances of a cascaded LSCA beamline at the Fermilab’s Advanced Superconducting Test Accelerator (ASTA). We especially explore the properties of the produced broadband radiation. Our studies have been conducted with a grid-less three-dimensional space-charge algorithm.

  16. Metal-organic frameworks in chromatography.

    Science.gov (United States)

    Yusuf, Kareem; Aqel, Ahmad; ALOthman, Zeid

    2014-06-27

    Metal-organic frameworks (MOFs) emerged approximately two decades ago and are the youngest class of porous materials. Despite their short existence, MOFs are finding applications in a variety of fields because of their outstanding chemical and physical properties. This review article focuses on the applications of MOFs in chromatography, including high-performance liquid chromatography (HPLC), gas chromatography (GC), and other chromatographic techniques. The use of MOFs in chromatography has already had a significant impact; however, the utilisation of MOFs in chromatography is still less common than other applications, and the number of MOF materials explored in chromatography applications is limited.

  17. Cascade of negative muons in atoms

    International Nuclear Information System (INIS)

    A study is made of the evolution of a negative muon captured in an atom and the formalism of energy loss associated with the muonic atom. The principal goals are to calculate reliability the muon x-ray intensities, given the initial population of the muonic orbits, to invert the problem and deduce the initial distribution from the x-ray intensities, to provide a reasonably simple and convenient tool to correlate observations, and finally, to systematize some questions of theoretical interest. The early part of the history of the muon in matter, including the atomic capture and classical phase of the atomic cascade are reviewed. In the quantal treatment of the transition rates, both radiative and electron Auger transitions are considered. In general, multipolarities up to E3 and K, L, and M electronic shells are fully investigated. Multipole radiation is treated in the conventinal way and pesents no special problems. Magnetic type transitions between states with different principal quantum numbers are shown to be small. Auger electron ejection rates are more complicated and several approximations have been adopted. The basic results have been computed in terms of elemetary functions. In the Auger transitions we have shown that magnetic multipoles can be safety neglected. The relative sizes of the rates corresponding to different multipoles are systematically studied. A comparison of results is made with atomic photoelectric effect data and with the nuclear internal conversion coefficients. A general agreement is found, except around shell thresholds. The existing data of muonic x-ray intensities in iron and thallium are analyzed in a systematic way. It is found that for Fe the initial l-distribution is almost flat, whereas that for T1 is weighted towards the high l values, sharper than statistical. As a result of the investigations and in order to make our findings usable, a computer program has been developed. 36 references

  18. Extraction chromatography: Progress and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, M.L.; Horwitz, E.P.; Bond, A.H. [Argonne National Lab., IL (United States). Chemistry Div.

    1997-10-01

    Extraction chromatography provides a simple and effective method for the analytical and preparative-scale separation of a variety of metal ions. Recent advances in extractant design, particularly the development of extractants capable of metal ion recognition or of strong complex formation in highly acidic media, have significantly improved the utility of the technique. Advances in support design, most notably the introduction of functionalized supports to enhance metal ion retention, promise to yield further improvements. Column instability remains a significant obstacle, however, to the process-scale application of extraction chromatography. 79 refs.

  19. Atomic Force Microscope Mediated Chromatography

    Science.gov (United States)

    Anderson, Mark S.

    2013-01-01

    The atomic force microscope (AFM) is used to inject a sample, provide shear-driven liquid flow over a functionalized substrate, and detect separated components. This is demonstrated using lipophilic dyes and normal phase chromatography. A significant reduction in both size and separation time scales is achieved with a 25-micron-length column scale, and one-second separation times. The approach has general applications to trace chemical and microfluidic analysis. The AFM is now a common tool for ultra-microscopy and nanotechnology. It has also been demonstrated to provide a number of microfluidic functions necessary for miniaturized chromatography. These include injection of sub-femtoliter samples, fluidic switching, and sheardriven pumping. The AFM probe tip can be used to selectively remove surface layers for subsequent microchemical analysis using infrared and tip-enhanced Raman spectroscopy. With its ability to image individual atoms, the AFM is a remarkably sensitive detector that can be used to detect separated components. These diverse functional components of microfluidic manipulation have been combined in this work to demonstrate AFM mediated chromatography. AFM mediated chromatography uses channel-less, shear-driven pumping. This is demonstrated with a thin, aluminum oxide substrate and a non-polar solvent system to separate a mixture of lipophilic dyes. In conventional chromatographic terms, this is analogous to thin-layer chromatography using normal phase alumina substrate with sheardriven pumping provided by the AFM tip-cantilever mechanism. The AFM detection of separated components is accomplished by exploiting the variation in the localized friction of the separated components. The AFM tip-cantilever provides the mechanism for producing shear-induced flows and rapid pumping. Shear-driven chromatography (SDC) is a relatively new concept that overcomes the speed and miniaturization limitations of conventional liquid chromatography. SDC is based on a

  20. Bounded cascade clouds: albedo and effective thickness

    OpenAIRE

    Cahalan, R. F.

    2002-01-01

    If climate models produced clouds having liquid water amounts close to those observed, they would compute a mean albedo that is often much too large, due to the treatment of clouds as plane-parallel. An approximate lower-bound for this "plane-parallel albedo bias" may be obtained from a fractal model having a range of optical thicknesses similar to those observed in marine stratocumulus, since they are more nearly plane-parallel than most other cloud types. We review ...

  1. Thin-Layer and Paper Chromatography.

    Science.gov (United States)

    Sherma, Joseph; Fried, Bernard

    1984-01-01

    Reviews literature on chromatography examining: books, reviews, student experiments; chromatographic systems, techniques, apparatus; detecting and identification of separated zones; preparative chromatography and radiochromatography; and applications related to specific materials (such as acids, alcohols, amino acids, antibiotics, enzymes, dyes,…

  2. Chromatography: Are We Getting It Right?

    Science.gov (United States)

    Maitland, Pamela D.; Maitland, David P.

    2002-01-01

    Explains the basics of chromatography which is used to demonstrate the separation of plant photosynthetic pigments. Reports the results of an evaluative study that explored textbook errors in explaining how chromatography works. (Contains 13 references.) (Author/YDS)

  3. Liquid phase chromatography on microchips

    DEFF Research Database (Denmark)

    Kutter, Jörg Peter

    2012-01-01

    explosive development of, in particular, chromatographic separation systems on microchips, has, however, slowed down in recent years. This review takes a closer, critical look at how liquid phase chromatography has been implemented in miniaturized formats over the past several years, what is important...

  4. Bioaffinity chromatography on monolithic supports

    NARCIS (Netherlands)

    Tetala, K.K.R.; Beek, van T.A.

    2010-01-01

    Affinity chromatography on monolithic supports is a powerful analytical chemical platform because it allows for fast analyses, small sample volumes, strong enrichment of trace biomarkers and applications in microchips. In this review, the recent research using monolithic materials in the field of bi

  5. Illustrating Chromatography with Colorful Proteins

    Science.gov (United States)

    Lefebvre, Brian G.; Farrell, Stephanie; Dominiak, Richard S.

    2007-01-01

    Advances in biology are prompting new discoveries in the biotechnology, pharmaceutical, medical technology, and chemical industries. This paper presents a detailed description of an anion exchange chromatography experiment using a pair of colorful proteins and summarizes the effect of operating parameters on protein separation. This experiment…

  6. Thermal modulation for gas chromatography

    Science.gov (United States)

    Hasselbrink, Ernest F. (Inventor); Libardoni, Mark (Inventor); Stewart, Kristine (Inventor); Waite, J. Hunter (Inventor); Block, Bruce P. (Inventor); Sacks, Richard D. (Inventor)

    2007-01-01

    A thermal modulator device for gas chromatography and associated methods. The thermal modulator device includes a recirculating fluid cooling member, an electrically conductive capillary in direct thermal contact with the cooling member, and a power supply electrically coupled to the capillary and operable for controlled resistive heating of the capillary. The capillary can include more than one separate thermally modulated sections.

  7. Exceeding the Manley-Rowe quantum efficiency limit in an optically pumped THz amplifier

    OpenAIRE

    Waldmueller, Ines; Wanke, Michael C.; Chow, Weng W.

    2006-01-01

    Using a microscopic theory based on the Maxwell-semiconductor Bloch equations, we investigate the possibility of an optically-assisted electrically-driven THz quantum cascade laser. Whereas in optical conversion schemes the power conversion efficiency is limited by the Manley-Rowe relation, the proposed optically-assisted scheme can achieve higher efficiency by coherently recovering the optical pump energy. Furthermore, due to quantum coherence effects the detrimental effects of scattering ar...

  8. Comparison of Delay-Interferometer and Time- Lens-Based All-Optical OFDM Demultiplexers

    OpenAIRE

    Lillieholm, Mads; Mulvad, Hans Christian Hansen; Galili, Michael; Oxenløwe, Leif Katsuo

    2015-01-01

    In this letter, we present the first detailed numerical comparison of two promising all-optical schemes to demultiplex orthogonal frequency-division multiplexing (OFDM) signals. The investigated schemes are the optical discrete Fourier transformation (O-DFT) and the optical spectral magnification (SM) based on time lenses. In the former scheme, cascaded delay-interferometers (DIs) are used to perform the O-DFT, with subsequent active optical gating to remove the intercarrier interference (ICI...

  9. Atomistic Simulations of Displacement Cascades in Fused Silica: It is Compared with Different Concentration of H in the Bulk

    International Nuclear Information System (INIS)

    Amorphous Silica is one of candidate materials for both final focusing optics of lasers for NIF and future inertial fusion reactors and diagnostics of the Safety and Control Systems of the ITER machine as well as DEMO magnetic fusion reactors. In operation, these materials will be exposed to high neutron irradiation fluxes and it can result in point defect and vary the optical absorption, that is, degradation of the optical properties. In this paper we present molecular dynamic simulation of displacement cascade due to energetic recoils in amorphous silica without hydrogen atoms and with 1% of hydrogen atoms trying to identify defects formation. We have made a statistics of the different kind of defects at different energy of primary knock-on atoms (PKA). The range of studied PKA energies are from 400 eV to 3.5 keV and it is made to both component of this material Silicon and Oxygen. (authors)

  10. Review: Applications of chromatography in forensic sciences

    Directory of Open Access Journals (Sweden)

    Manoj S. Charde

    2014-04-01

    Full Text Available This article reviews the use of different Chromatography techniques in the forensic science, Chromatographic technique is very sensitive and selective. Different types of chromatography techniques used were Liquid chromatography -mass spectrometry, Gas chromatography–mass spectrometry, Thin layer chromatography, HPTLC in investigating criminal cases of which chemical warfare’s, terrorist attacks, smugglers, drug abuse, alcoholics. This techniques are promising to detect even pictogram or very less, with selectivity and sensitivity.

  11. Cascaded systems analysis of photon counting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Taguchi, K.; Carrino, J. A. [Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Lundqvist, M.; Fredenberg, E. [Philips Healthcare, Solna 171 41 (Sweden); Siewerdsen, J. H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2014-10-15

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f{sub 50} (spatial

  12. Radio emission from cosmic particle cascades

    Science.gov (United States)

    Buitink, Stijn Jan

    2009-10-01

    STJ (Superconducting Tunneling Junctions) are being developed as spectro-photometers in wavelengths ranging from the NIR to X-rays. 10x12 arrays of STJs have already been successfully used as optical imaging spectrometers with the S-Cam 3, on the William Hershel Telescope on La Palma and on the Optical Ground Station on Tenerife. To overcome the limited field of view which can be achieved with single STJ arrays, DROIDS (Distributed Read Out Imaging Devices) are being developed which produce next to energy and timing also produce positional information with each detector element. These DROIDS consist of a superconducting absorber strip with proximized STJs on either end. The STJs are a Ta/Al/AlOx/Al/Ta 100/30/1/30/100nm sandwich of which the bottom electrode Ta layer is one with the 100nm thick absorber layer. The ratio of the two signals from the STJs provides information on the absorption position and the sum signal is a measure for the energy of the absorbed photon. In this thesis we present different important processes which are involved with the detection of optical photons using DROIDs. This includes the spatial and spectral resolution, confinement of the quasiparticles in the proximized STJs to enhance tunnelling and quasiparticle creation resulting from absorption of a photon in the proximized STJ. We have combined our findings in the development of a 2D theoretical model which describes the diffusion of quasiparticles and imperfect confinement via exchange of quasiparticles between the absorber and STJ. Finally we will present some of the first results obtained with an array of 60 360x33.5 μm2 DROIDs in 3x20 format.

  13. Critical assessment and ramifications of a purported marine trophic cascade

    Science.gov (United States)

    Grubbs, R. Dean; Carlson, John K; Romine, Jason G.; Curtis, Tobey H; McElroy, W. David; McCandless, Camilla T; Cotton, Charles F; Musick, John A.

    2016-01-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions.

  14. Critical assessment and ramifications of a purported marine trophic cascade.

    Science.gov (United States)

    Grubbs, R Dean; Carlson, John K; Romine, Jason G; Curtis, Tobey H; McElroy, W David; McCandless, Camilla T; Cotton, Charles F; Musick, John A

    2016-01-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the "Save the Bay, Eat a Ray" fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions. PMID:26876514

  15. Critical assessment and ramifications of a purported marine trophic cascade

    Science.gov (United States)

    Grubbs, R. Dean; Carlson, John K.; Romine, Jason G.; Curtis, Tobey H.; McElroy, W. David; McCandless, Camilla T.; Cotton, Charles F.; Musick, John A.

    2016-02-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions.

  16. Positional information generated by spatially distributed signaling cascades.

    Directory of Open Access Journals (Sweden)

    Javier Muñoz-García

    2009-03-01

    Full Text Available The temporal and stationary behavior of protein modification cascades has been extensively studied, yet little is known about the spatial aspects of signal propagation. We have previously shown that the spatial separation of opposing enzymes, such as a kinase and a phosphatase, creates signaling activity gradients. Here we show under what conditions signals stall in the space or robustly propagate through spatially distributed signaling cascades. Robust signal propagation results in activity gradients with long plateaus, which abruptly decay at successive spatial locations. We derive an approximate analytical solution that relates the maximal amplitude and propagation length of each activation profile with the cascade level, protein diffusivity, and the ratio of the opposing enzyme activities. The control of the spatial signal propagation appears to be very different from the control of transient temporal responses for spatially homogenous cascades. For spatially distributed cascades where activating and deactivating enzymes operate far from saturation, the ratio of the opposing enzyme activities is shown to be a key parameter controlling signal propagation. The signaling gradients characteristic for robust signal propagation exemplify a pattern formation mechanism that generates precise spatial guidance for multiple cellular processes and conveys information about the cell size to the nucleus.

  17. Trend-driven information cascades on random networks

    Science.gov (United States)

    Kobayashi, Teruyoshi

    2015-12-01

    Threshold models of global cascades have been extensively used to model real-world collective behavior, such as the contagious spread of fads and the adoption of new technologies. A common property of those cascade models is that a vanishingly small seed fraction can spread to a finite fraction of an infinitely large network through local infections. In social and economic networks, however, individuals' behavior is often influenced not only by what their direct neighbors are doing, but also by what the majority of people are doing as a trend. A trend affects individuals' behavior while individuals' behavior creates a trend. To analyze such a complex interplay between local- and global-scale phenomena, I generalize the standard threshold model by introducing a type of node called global nodes (or trend followers), whose activation probability depends on a global-scale trend, specifically the percentage of activated nodes in the population. The model shows that global nodes play a role as accelerating cascades once a trend emerges while reducing the probability of a trend emerging. Global nodes thus either facilitate or inhibit cascades, suggesting that a moderate share of trend followers may maximize the average size of cascades.

  18. TOPOLOGY AND CASCADING LINE OUTAGES IN POWER GRIDS

    Institute of Scientific and Technical Information of China (English)

    David L. PEPYNE

    2007-01-01

    Motivated by the small world network research of Watts & Strogatz, this paper studies relationships between topology and cascading line outages in electric power grids. Cascading line outages are a type of cascading collapse that can occur in power grids when the transmission network is congested. It is characterized by a self-sustaining sequence of line outages followed by grid breakup, which generally leads to widespread blackout. The main findings of this work are twofold: On one hand, the work suggests that topologies with more disorder in their interconnection topology tend to be robust with respect to cascading line outages in the sense of being able to support greater generation and demand levels than more regularly interconnected topologies. On the other hand, the work suggests that topologies with more disorder tend to be more fragile in that should a cascade get started, they tend to break apart after fewer outages than more regularly interconnected topologies. Thus, as has been observed in other complex networks, there appears to be a tradeoff between robustness and fragility.These results were established using synthetically generated power grid topologies and verified using the IEEE 57 bus and 188 bus power grid test cases.

  19. Optical modular arithmetic

    Science.gov (United States)

    Pavlichin, Dmitri S.; Mabuchi, Hideo

    2014-06-01

    Nanoscale integrated photonic devices and circuits offer a path to ultra-low power computation at the few-photon level. Here we propose an optical circuit that performs a ubiquitous operation: the controlled, random-access readout of a collection of stored memory phases or, equivalently, the computation of the inner product of a vector of phases with a binary selector" vector, where the arithmetic is done modulo 2pi and the result is encoded in the phase of a coherent field. This circuit, a collection of cascaded interferometers driven by a coherent input field, demonstrates the use of coherence as a computational resource, and of the use of recently-developed mathematical tools for modeling optical circuits with many coupled parts. The construction extends in a straightforward way to the computation of matrix-vector and matrix-matrix products, and, with the inclusion of an optical feedback loop, to the computation of a weighted" readout of stored memory phases. We note some applications of these circuits for error correction and for computing tasks requiring fast vector inner products, e.g. statistical classification and some machine learning algorithms.

  20. High power continuous operation of a widely tunable quantum cascade laser with an integrated amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Slivken, S.; Sengupta, S.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu [Center for Quantum Devices, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-12-21

    Wide electrical tuning and high continuous output power is demonstrated from a single mode quantum cascade laser emitting at a wavelength near 4.8 μm. This is achieved in a space efficient manner by integrating an asymmetric sampled grating distributed feedback tunable laser with an optical amplifier. An initial demonstration of high peak power operation in pulsed mode is demonstrated first, with >5 W output over a 270 nm (113 cm{sup −1}) spectral range. Refinement of the geometry leads to continuous operation with a single mode spectral coverage of 300 nm (120 cm{sup −1}) and a maximum continuous power of 1.25 W. The output beam is shown to be nearly diffraction-limited, even at high amplifier current.

  1. Synthesis of D- and L-phenylalanine derivatives by phenylalanine ammonia lyases: a multienzymatic cascade process.

    Science.gov (United States)

    Parmeggiani, Fabio; Lovelock, Sarah L; Weise, Nicholas J; Ahmed, Syed T; Turner, Nicholas J

    2015-04-01

    The synthesis of substituted D-phenylalanines in high yield and excellent optical purity, starting from inexpensive cinnamic acids, has been achieved with a novel one-pot approach by coupling phenylalanine ammonia lyase (PAL) amination with a chemoenzymatic deracemization (based on stereoselective oxidation and nonselective reduction). A simple high-throughput solid-phase screening method has also been developed to identify PALs with higher rates of formation of non-natural D-phenylalanines. The best variants were exploited in the chemoenzymatic cascade, thus increasing the yield and ee value of the D-configured product. Furthermore, the system was extended to the preparation of those L-phenylalanines which are obtained with a low ee value using PAL amination.

  2. Evaluation of quantum-cascade lasers as local oscillators for infrared heterodyne spectroscopy.

    Science.gov (United States)

    Sonnabend, Guido; Wirtz, Daniel; Schieder, Rudolf

    2005-11-20

    We report experiments evaluating the feasibility of quantum-cascade lasers (QCLs) at mid-infrared wavelengths for use as local oscillators (LOs) in a heterodyne receiver. Performance tests with continuous-wave (cw) lasers around 9.6 and 9.2 microm were carried out investigating optical output power, laser linewidth, and tunability. A direct comparison with a CO2 gas laser LO is presented as well. The achieved system sensitivity in a heterodyne spectrometer of only a factor of 2 above the quantum limit together with the measured linewidth of less than 1.5 MHz shows that QCLs are suitable laser sources for heterodyne spectroscopy with sufficient output power to replace gas lasers as LOs even in high-sensitivity astronomical heterodyne receivers. In addition, our experiments show that the tunability of the lasers can be greatly enhanced by use of an external cavity.

  3. Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Galli, I.; Cappelli, F.; Bartalini, S.; Mazzotti, D.; Giusfredi, G.; Cancio, P.; De Natale, P. [CNR-INO-Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125 Firenze, FI (Italy); LENS-European Laboratory for Non-Linear Spectroscopy, Via Carrara 1, 50019 Sesto Fiorentino, FI (Italy); Siciliani de Cumis, M. [CNR-INO-Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125 Firenze, FI (Italy); Borri, S. [CNR-IFN-Istituto di Fotonica e Nanotecnologie, Via Amendola 173, 70126 Bari, BA (Italy); Montori, A. [LENS-European Laboratory for Non-Linear Spectroscopy, Via Carrara 1, 50019 Sesto Fiorentino, FI (Italy); Akikusa, N. [Development Bureau Laser Device R and D Group, Hamamatsu Photonics KK, Shizuoka 434-8601 (Japan); Yamanishi, M. [Central Research Laboratories, Hamamatsu Photonics KK, Shizuoka 434-8601 (Japan)

    2013-03-25

    We report on the linewidth narrowing of a room-temperature mid-infrared quantum cascade laser by phase-locking to a difference-frequency-generated radiation referenced to an optical frequency comb synthesizer. A locking bandwidth of 250 kHz, with a residual rms phase-noise of 0.56 rad, has been achieved. The laser linewidth is narrowed by more than 2 orders of magnitude below 1 kHz, and its frequency is stabilized with an absolute traceability of 2 Multiplication-Sign 10{sup -12}. This source has allowed the measurement of the absolute frequency of a CO{sub 2} molecular transition with an uncertainty of about 1 kHz.

  4. Mid-wave interband cascade infrared photodetectors based on GaInAsSb absorbers

    Science.gov (United States)

    Lei, Lin; Li, Lu; Lotfi, Hossein; Jiang, Yuchao; Yang, Rui Q.; Johnson, Matthew B.; Lubyshev, Dmitri; Qiu, Yueming; Fastenau, Joel M.; Liu, Amy W. K.

    2016-10-01

    In this work, we report the demonstration of quaternary GaInAsSb-based mid-wavelength infrared photodetectors with cutoff wavelengths longer than 4 μm at 300 K. Both interband cascade infrared photodetector (ICIP) with a three-stage discrete absorber architecture and conventional one-stage detector structures have been grown by molecular beam epitaxy and investigated in experiments for their electrical and optical properties. High absorption coefficient and gain were observed in both detector structures. The three-stage ICIPs had superior carrier transport over the one-stage detectors. A detectivity as high as 1.0 × 109 cm Hz1/2 W-1 was achieved at 3.3 μm for both one- and three-stage detectors under zero bias at 300 K. The implications of these results are discussed along with potential of GaInAsSb-based ICIPs for high-speed applications.

  5. Monitoring Hydrogen Sulfide Using a Quantum Cascade Laser Based Trace Gas Sensing System

    International Nuclear Information System (INIS)

    We present the detection of hydrogen sulfide (H2S) in a quantum cascade laser (QCL) based gas sensing system employing direct laser absorption spectroscopy. The sensitivity is obtained to be 3.61 × 10−6 cm−1 Hz−1/2 and the H2S broadening coefficient in N2 is analyzed by fitting to the plot of the Lorentzian half width at the half maximum as a function of N2 pressure is 0.1124 ± 0.0031 cm−1·atm−1. A simulation based on data from the HITRAN database shows broad agreement with the experimentally obtained spectrum. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. High peak power (≥10 mW) quantum cascade superluminescent emitter

    International Nuclear Information System (INIS)

    We report room temperature and milliwatt range mid-infrared superluminescent emission at 5 μm from Quantum Cascade (QC) devices. To achieve high power superluminescence, we utilize an ultrastrong coupling QC laser design, and employ a cavity formed by the combination of a 17° tilted cleaved facet and a wet etched rounded and sloped facet to introduce additional mirror loss. For pulsed mode operation, a 8 mm long and 15 μm wide device achieves ∼1.3 mW peak power at 300 K and a 25 μm wide device with Si3N4 anti-reflection coated rounded facet achieves ∼10.2 mW peak optical output power at 250 K

  7. Studies of the reconstruction of cascade-like events in PINGU

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhardt, Thomas [Institut fuer Physik, Universitaet Mainz (Germany)

    2015-07-01

    PINGU (Precision IceCube Next Generation Upgrade) is the envisaged low-energy extension of the IceCube neutrino detector, located at the South Pole. With its high density of optical sensors, deployed at depths where the Antarctic ice is clearest, PINGU will be able to effectively detect neutrinos with energies above a few GeV. Precise reconstruction of neutrino zenith angles and energies are necessary for PINGU to reach its primary physics goal, the determination of the neutrino mass hierarchy. In this talk, the performance of a likelihood-based resolution estimator is examined, and its potential of improving PINGU's neutrino mass hierarchy sensitivity in the cascade channel is discussed.

  8. Unified approach to cascaded stimulated Brillouin scattering and frequency-comb generation

    Science.gov (United States)

    Dong, Mark; Winful, Herbert G.

    2016-04-01

    We present a unified approach to cascaded stimulated Brillouin scattering and frequency-comb generation in which the multitude of interacting pump, Stokes, and anti-Stokes optical fields is described by a single forward wave and a single backward wave at a single carrier frequency. The envelopes of these two waves are modulated through coupling to a single acoustic oscillation and through four-wave mixing. Starting from a single pump field, we observe the emergence of a comb of frequencies as the intensity is increased. The set of three differential equations derived here is sufficient to describe the generation of any number of Brillouin sidebands in oscillator systems that would have required hundreds of coupled equations in the standard approach. We test this approach on some published experiments and find excellent agreement with the results.

  9. Temperature limits in laser cooling of free atoms with three-level cascade transitions

    CERN Document Server

    Cruz, Flavio C; Magno, Wictor C

    2013-01-01

    We employ semiclassical theoretical analysis to study laser cooling of free atoms using three-level cascade transitions, where the upper transition is much weaker than the lower one. This represents an alternate cooling scheme, particularly useful for group II atoms. We find that temperatures below the Doppler limits associated with each of these transitions are expected. The lowest temperatures arise from a remarkable increase in damping and reduced diffusion compared to two-level cooling. They are reached at the two-photon resonance, where there is a crossing between the narrow and the partially-dark dressed states, and can be estimated simply by the usual Doppler limit considering the decay rate of the optical coherence between these states.

  10. Intensity modulated SMF cascaded tapers with a hollow core PCF based microcavity for curvature sensing

    Science.gov (United States)

    Dass, Sumit; Narayan Dash, Jitendra; Jha, Rajan

    2016-03-01

    We propose a highly sensitive curvature sensor based on cascaded single mode fiber (SMF) tapers with a microcavity. The microcavity is created by splicing a small piece of hollow core photonic crystal fiber (HCPCF) at the end of an SMF to obtain a sharp interference pattern. Experimental results show that two SMF tapers enhance the curvature sensitivity of the system and by changing the tapering parameters of the second taper, the curvature sensitivity of the system can be tailored, together with the fringe contrast of the interference pattern. A maximum curvature sensitivity of 10.4 dB/m-1 is observed in the curvature range 0 to 1 m-1 for a second taper diameter of 18 μm. The sensing setup is highly stable and shows very low temperature sensitivity. As the interrogation is intensity based, a low cost optical power meter can be utilized to determine the curvature.

  11. On-chip dual-comb based on quantum cascade laser frequency combs

    Energy Technology Data Exchange (ETDEWEB)

    Villares, G., E-mail: gustavo.villares@phys.ethz.ch; Wolf, J.; Kazakov, D.; Süess, M. J.; Beck, M.; Faist, J., E-mail: jfaist@phys.ethz.ch [Institute for Quantum Electronics, ETH Zürich, CH-8093 Zürich (Switzerland); Hugi, A. [IRsweep GmbH, CH-8093 Zürich (Switzerland)

    2015-12-21

    Dual-comb spectroscopy is emerging as an appealing application of mid-infrared frequency combs for high-resolution molecular spectroscopy, as it leverages on the unique coherence properties of frequency combs. Here, we present an on-chip dual-comb source based on mid-infrared quantum cascade laser frequency combs. Control of the combs repetition and offset frequencies is obtained by integrating micro-heaters next to each laser. We show that a full control of the dual-comb system is possible, by measuring a multi-heterodyne beating corresponding to an optical bandwidth of 32 cm{sup −1} centered at 1330 cm{sup −1} (7.52 μm), demonstrating that this device represents a critical step towards compact dual-comb systems.

  12. Generation of tunable 16 m radiation from CO2 by cascade lasing

    Indian Academy of Sciences (India)

    Utpal Nundy; Manoj Kumar

    2012-12-01

    In this paper we propose a scheme to generate tunable 16 m radiation from CO2 molecules by cascade lasing. The stimulating 9.5 m radiation is generated internally by the fast rotating mirror Q-switching technique. The optical scheme proposed by us uses an intracavity prism to separate the 9.5 m and the 16 m beams. This facilitates independent tuning of the two beams if required. In the present configuration, only the 16 m cavity is dispersive. The 9.5 m beam grows spontaneously in a stable semiconfocal resonator. We have developed a theoretical model to simulate the proposed scheme. The model predicts the energy and power of 16 m radiation. The calculated values are much higher than the previously obtained experimental values. The results point out the feasibility of developing a laser system based on the theoretical design parameters presented in this paper. Such laser systems can find application in uranium isotope separation studies.

  13. Cascaded Photoenhancement: Implications for Photonic Chemical and Biological Sensors

    Science.gov (United States)

    Fuller, Kirk A.; Smith, David D.

    2006-01-01

    Our analysis shows that coupling of gold nanoparticles to microspheres will evoke a cascading effect from the respective photoenhancement mechanisms. We refer to this amplification process as cascaded photoenhancement, and the resulting cavity amplification of surface-enhanced Raman scattering (SERS) and fluorescence as CASERS and CAF, respectively. Calculations, based on modal analysis of scattering and absorption by compound spheres, presented herein indicate that the absorption cross sections of metal nanoparticles immobilized onto dielectric microspheres can be greatly enhanced by cavity resonances in the microspheres without significant degradation of the resonators. Gain factors associated with CSP of 10(exp 3) - 10(exp 4) are predicted for realistic experimental conditions using homogenous microspheres. Cascaded surface photoenhancement thus has the potential of dramatically increasing the sensitivities of fluorescence and vibrational spectroscopies.

  14. Robustness of Power-law Behavior in Cascading Failure Models

    CERN Document Server

    Sloothaak, F; Zwart, A P

    2016-01-01

    Inspired by reliability issues in electric transmission networks, we use a probabilistic approach to study the occurrence of large failures in a stylized cascading failure model. In this model, lines have random capacities that initially meet the load demands imposed on the network. Every single line failure changes the load distribution in the surviving network, possibly causing further lines to become overloaded and trip as well. An initial single line failure can therefore potentially trigger massive cascading effects, and in this paper we measure the risk of such cascading events by the probability that the number of failed lines exceeds a certain large threshold. Under particular critical conditions, the exceedance probability follows a power-law distribution, implying a significant risk of severe failures. We examine the robustness of the power-law behavior by exploring under which assumptions this behavior prevails.

  15. Bearing-Only Formation Control for Cascade Multirobots

    Directory of Open Access Journals (Sweden)

    Qing Han

    2016-01-01

    Full Text Available A new formation control method is proposed, which is used to queue multirobots in a single-direction cascade structure. In the cascade formation, each robot is a follower for the previous robot and a leader for the next robot, and the robots in the middle act as both leader and follower. The follower robot can only observe the bearing information of the leader robot. The observability of the cascade leader-follower formation is studied, which shows that the bearing-only observation meets the observability conditions required for the nonlinear system. Based on the bearing-only observations, the unscented Kalman filter (UKF is employed for the state estimation of the leader and the follower robots at all levels, which enables the real-time movement control of the follower robots via the input-output feedback control. Simulation results demonstrate that the proposed approach can efficiently control the formation of multirobots as desired.

  16. A trio of dualities: walls, trees and cascades

    Energy Technology Data Exchange (ETDEWEB)

    Franco, S. [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Hanany, A. [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Institute for Advanced Study, Princeton, NJ 08540 (United States); He, Y.H. [Department of Physics and Math/Physics RG, The University of Pennsylvania, Philadelphia, PA 19104-6396 (United States)

    2004-06-01

    We study the RG flow of N=1 world-volume gauge theories of D3-brane probes on certain singular Calabi-Yau threefolds. Taking the gauge theories out of conformality by introducing fractional branes, we compute the NSVZ beta-function and follow the subsequent RG flow in the cascading manner of Klebanov-Strassler. We study the duality trees that blossom from various Seiberg dualities and encode possible cascades. We observe the appearance of duality walls, a finite limit energy scale in the UV beyond which the dualization cascade cannot proceed. Diophantine equations of the Markov type characterize the dual phases of these theories. We discuss how the classification of Markov equations for different geometries into families relates the RG flows of the corresponding gauge theories. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  17. Cascaded VLSI Chips Help Neural Network To Learn

    Science.gov (United States)

    Duong, Tuan A.; Daud, Taher; Thakoor, Anilkumar P.

    1993-01-01

    Cascading provides 12-bit resolution needed for learning. Using conventional silicon chip fabrication technology of VLSI, fully connected architecture consisting of 32 wide-range, variable gain, sigmoidal neurons along one diagonal and 7-bit resolution, electrically programmable, synaptic 32 x 31 weight matrix implemented on neuron-synapse chip. To increase weight nominally from 7 to 13 bits, synapses on chip individually cascaded with respective synapses on another 32 x 32 matrix chip with 7-bit resolution synapses only (without neurons). Cascade correlation algorithm varies number of layers effectively connected into network; adds hidden layers one at a time during learning process in such way as to optimize overall number of neurons and complexity and configuration of network.

  18. Irreversibility of the two-dimensional enstrophy cascade

    CERN Document Server

    Piretto,; Boffetta, G

    2016-01-01

    We study the time irreversibility of the direct cascade in two-dimensional turbulence by looking at the time derivative of the square vorticity along Lagrangian trajectories, a quantity which we call metenstrophy. By means of extensive numerical simulations we measure the time irreversibility from the asymmetry of the PDF of the metenstrophy and we find that it increases with the Reynolds number of the cascade, similarly to what found in three-dimensional turbulence. A detailed analysis of the different contributions to the enstrophy budget reveals a remarkable difference with respect to what observed for the direct cascade, in particular the role of the statistics of the forcing to determine the degree of irreversibility.

  19. Distributed flow optimization and cascading effects in weighted complex networks

    CERN Document Server

    Asztalos, Andrea; Szymanski, Boleslaw K; Korniss, G

    2011-01-01

    We investigate the effect of a specific edge weighting scheme $\\sim (k_i k_j)^{\\beta}$ on distributed flow efficiency and robustness to cascading failures in scale-free networks. In particular, we analyze a simple, yet fundamental distributed flow model: current flow in random resistor networks. By the tuning of control parameter $\\beta$ and by considering two general cases of relative node processing capabilities as well as the effect of bandwidth, we show the dependence of transport efficiency upon the correlations between the topology and weights. By studying the severity of cascades for different control parameter $\\beta$, we find that network resilience to cascading overloads and network throughput is optimal for the same value of $\\beta$ over the range of node capacities and available bandwidth.

  20. Spatially Organized Enzymes Drive Cofactor-Coupled Cascade Reactions.

    Science.gov (United States)

    Ngo, Tien Anh; Nakata, Eiji; Saimura, Masayuki; Morii, Takashi

    2016-03-01

    We report the construction of an artificial enzyme cascade based on the xylose metabolic pathway. Two enzymes, xylose reductase and xylitol dehydrogenase, were assembled at specific locations on DNA origami by using DNA-binding protein adaptors with systematic variations in the interenzyme distances and defined numbers of enzyme molecules. The reaction system, which localized the two enzymes in close proximity to facilitate transport of reaction intermediates, resulted in significantly higher yields of the conversion of xylose into xylulose through the intermediate xylitol with recycling of the cofactor NADH. Analysis of the initial reaction rate, regenerated amount of NADH, and simulation of the intermediates' diffusion indicated that the intermediates diffused to the second enzyme by Brownian motion. The efficiency of the cascade reaction with the bimolecular transport of xylitol and NAD(+) likely depends more on the interenzyme distance than that of the cascade reaction with unimolecular transport between two enzymes. PMID:26881296

  1. Cascading failure analysis and restoration strategy in an interdependent network

    Science.gov (United States)

    Hong, Sheng; Lv, Chuan; Zhao, Tingdi; Wang, Baoqing; Wang, Jianghui; Zhu, Juxing

    2016-05-01

    In modern society, many infrastructures are interdependent owing to functional and logical relations among components in different systems. These networked infrastructures can be modeled as interdependent networks. In the real world, different networks carry different traffic loads whose values are dynamic and stem from the load redistribution in the same network and disturbance from the interdependent network. Interdependency makes interdependent networks so fragile that even a slight initial disturbance may lead to a cascading failure of the entire systems. In this paper, interdependencies among networks are modeled and a failure cascade process is studied considering their effects on failure propagation. Meanwhile, an in-process restoration strategy after the initial failure is investigated. The restoration effects depend strongly on the trigger timing, restoration probability and priority of the restoration actions along with the additional disturbances. Our findings highlight the necessity to decrease the large-scale cascading failure by structuring and managing an interdependent network reasonably.

  2. Pair Cascades and Deathlines in Offset Magnetic Dipole Fields

    Science.gov (United States)

    Harding, Alice; Muslimov, Alex

    2010-01-01

    We investigate electron-positron pair cascades in a dipole magnetic field whose axis is offset from the neutron star center. In such a field geometry, the polar cap is displaced from the neutron star symmetry axis and the field line radius of curvature is modified. Using the modified parallel electric field near the polar cap of an offset dipole, we simulate pair cascades to determine the pair deathlines and pair multiplicities as a function of the offset parameter. We find that the pair multiplicity can change dramatically with a modest offset, with a significant increase on one side of the polar cap. Lower pair deathlines allow a larger fraction of the pulsar population, that include old and millisecond pulsars, to produce cascades with high multiplicity.

  3. Photonic encryption using all optical logic.

    Energy Technology Data Exchange (ETDEWEB)

    Blansett, Ethan L.; Schroeppel, Richard Crabtree; Tang, Jason D.; Robertson, Perry J.; Vawter, Gregory Allen; Tarman, Thomas David; Pierson, Lyndon George

    2003-12-01

    With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in the photonic domain to achieve the requisite encryption rates. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines two classes of all optical logic (SEED, gain competition) and how each discrete logic element can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of the SEED and gain competition devices in an optical circuit were modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model of the SEED or gain competition device takes certain parameters (reflectance, intensity, input response), and models the optical ripple and time delay characteristics. These 'black box' models are interconnected and

  4. Long-distance pulse propagation on high-frequency dissipative nonlinear transmission lines/resonant tunneling diode line cascaded maps

    Energy Technology Data Exchange (ETDEWEB)

    Klofai, Yerima [Department of Physics, Higher Teacher Training College, University of Maroua, PO Box 46 Maroua (Cameroon); Essimbi, B Z [Department of Physics, Faculty of Science, University of Yaounde 1, PO Box 812 Yaounde (Cameroon); Jaeger, D, E-mail: bessimb@yahoo.fr [ZHO, Optoelectronik, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany)

    2011-10-15

    Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.

  5. A model of the TeV flare of Cygnus X-1: electron acceleration and extended pair cascades

    CERN Document Server

    Zdziarski, A A; Bednarek, W

    2008-01-01

    We consider theoretical models of emission of TeV photons by Cyg X-1 during a flare discovered by the MAGIC detector. We study acceleration of electrons to energies sufficient for TeV emission, and find the emission site is allowed to be close to the black hole. We then consider pair absorption in the photon field of the central X-ray source and a surrounding accretion disc, and find its optical depth is 3 TeV, in which photons travel far away from the star, initiating a spatially extended pair cascade. This qualitatively explains the observed TeV spectrum, though still not its exact shape.

  6. Long-distance pulse propagation on high-frequency dissipative nonlinear transmission lines/resonant tunneling diode line cascaded maps

    International Nuclear Information System (INIS)

    Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.

  7. Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator

    OpenAIRE

    Kloosterman, J. L.; Hayton, D.J.; Ren, Y; Kao, T.Y.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Hu, Q; Walker, C. K.; Reno, J. L.

    2013-01-01

    We report on a heterodyne receiver designed to observe the astrophysically important neutral atomic oxygen [OI] line at 4.7448 THz. The local oscillator is a third-order distributed feedback Quantum Cascade Laser operating in continuous wave mode at 4.741 THz. A quasi-optical, superconducting NbN hot electron bolometer is used as the mixer. We recorded a double sideband receiver noise temperature (T^DSB_rec) of 815 K, which is ~7 times the quantum noise limit (h{\

  8. High-Duty-Cycle Operation of GaAs/AlGaAs Quantum Cascade Laser above Liquid Nitrogen Temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Jun-Qi; LIU Feng-Qi; SHAO Ye; LI Lu; GUO Yu; WANG Zhan-Guo; WANG Liang-Chen

    2006-01-01

    @@ We present a detailed study of λ~ 9.75μm GaAs/AlGaAs quantum cascade lasers. For a coated 2-mm-long and 40-μm-wide laser, an optical power of 85μ W is observed at 95% duty cycle at 80K. At a moderate driving pulse (1 kHz and 1% duty cycle), the device presents a peak power more than 20mW even at 120K. At 80K, the fitted result of threshold current densities shows evidence of potential cw operation.

  9. Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry.

    Science.gov (United States)

    Huang, Jie; Lan, Xinwei; Luo, Ming; Xiao, Hai

    2014-07-28

    This paper reports a spatially continuous distributed fiber optic sensing technique using optical carrier based microwave interferometry (OCMI), in which many optical interferometers with the same or different optical path differences are interrogated in the microwave domain and their locations can be unambiguously determined. The concept is demonstrated using cascaded weak optical reflectors along a single optical fiber, where any two arbitrary reflectors are paired to define a low-finesse Fabry-Perot interferometer. While spatially continuous (i.e., no dark zone), fully distributed strain measurement was used as an example to demonstrate the capability, the proposed concept may also be implemented on other types of waveguide or free-space interferometers and used for distributed measurement of various physical, chemical and biological quantities. PMID:25089493

  10. Fundamentals of Highly Non-Degenerate Cascaded Four-Wave Mixing

    Directory of Open Access Journals (Sweden)

    Rosa Weigand

    2015-09-01

    Full Text Available By crossing two intense ultrashort laser pulses with different colors in a transparent medium, like a simple piece of glass, a fan of multicolored broadband light pulses can be simultaneously generated. These newly generated pulses are emitted in several well-defined directions and can cover a broad spectral range, from the infrared to the ultraviolet and beyond. This beautiful phenomenon, first observed and described 15 years ago, is due to highly-nondegenerate cascaded four-wave mixing (cascaded FWM, or CFWM. Here, we present a review of our work on the generation and measurement of multicolored light pulses based on third-order nonlinearities in transparent solids, from the discovery and first demonstration of highly-nondegenerate CFWM, to the coherent synthesis of single-cycle pulses by superposition of the multicolored light pulses produced by CFWM. We will also present the development and main results of a dedicated 2.5-D nonlinear propagation model, i.e., with propagation occurring along a two-dimensional plane while assuming cylindrically symmetric pump beam profiles, capable of adequately describing noncollinear FWM and CFWM processes. A new method for the generation of femtosecond pulses in the deep-ultraviolet (DUV based on FWM and CFWM will also be described. These experimental and theoretical results show that highly-nondegenerate third-order nonlinear optical processes are formally well understood and provide broader bandwidths than other nonlinear optical processes for the generation of ultrashort light pulses with wavelengths extending from the near-infrared to the deep-ultraviolet, which have many applications in science and technology.

  11. Two-cascade magnetic field stabilizer on an installation for the measurement of the neutron electric dipole moment

    International Nuclear Information System (INIS)

    A two-cascade magnetic field stabilizer for apparatus for the measurement of the neutron electric dipole moment (EDM) using ultracold neutrons was constructed and tested. Quantum cesium magnetometers (QCM) employing optical pumping and placed inside a multilayer magnetic screen were used as the magnetic field sensors. A static stabilization coefficient of 4 x 105 in the presence of magnetic noise of amplitude up to 50 nT was obtained using QCM employing the Ssub(z)-signal in the inner and outer cascades, their transfer ratios being 300 and 600, respectively. The mean square amplitude of the operating magnetic field fluctuations was 0.1 pT in the interval 10-4-10-2 Hz. Stabilization over a wider frequency band was obtained using QCM of the Ssub(z)-type in the inner cascade and of the Ssub(x)-type in the outer one. In particular, the mean square amplitude of the magnetic field fluctuations in the interval 0.1-1 Hz and 1-10 Hz were 1 pT and 15 pT, respectively. (orig.)

  12. Lipidomics by Supercritical Fluid Chromatography

    Directory of Open Access Journals (Sweden)

    Laurent Laboureur

    2015-06-01

    Full Text Available This review enlightens the role of supercritical fluid chromatography (SFC in the field of lipid analysis. SFC has been popular in the late 1980s and 1990s before almost disappearing due to the commercial success of liquid chromatography (LC. It is only 20 years later that a regain of interest appeared when new commercial instruments were introduced. As SFC is fully compatible with the injection of extracts in pure organic solvent, this technique is perfectly suitable for lipid analysis and can be coupled with either highly universal (UV or evaporative light scattering or highly specific (mass spectrometry detection methods. A short history of the use of supercritical fluids as mobile phase for the separation oflipids will be introduced first. Then, the advantages and drawbacks of SFC are discussed for each class of lipids (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, prenols, polyketides defined by the LIPID MAPS consortium.

  13. Cascade Source Coding with a Side Information "Vending Machine"

    OpenAIRE

    Ahmadi, Behzad; Choudhuri, Chiranjib; Simeone, Osvaldo; Mitra, Urbashi

    2012-01-01

    The model of a side information "vending machine" (VM) accounts for scenarios in which the measurement of side information sequences can be controlled via the selection of cost-constrained actions. In this paper, the three-node cascade source coding problem is studied under the assumption that a side information VM is available and the intermediate and/or at the end node of the cascade. A single-letter characterization of the achievable trade-off among the transmission rates, the distortions ...

  14. Maximizing the Spread of Cascades Using Network Design

    CERN Document Server

    Sheldon, Daniel; Elmachtoub, Adam N; Finseth, Ryan; Sabharwal, Ashish; Conrad, Jon; Gomes, Carla P; Shmoys, David; Allen, William; Amundsen, Ole; Vaughan, William

    2012-01-01

    We introduce a new optimization framework to maximize the expected spread of cascades in networks. Our model allows a rich set of actions that directly manipulate cascade dy- namics by adding nodes or edges to the net- work. Our motivating application is one in spatial conservation planning, where a cas- cade models the dispersal of wild animals through a fragmented landscape. We propose a mixed integer programming (MIP) formu- lation that combines elements from network design and stochastic optimization. Our ap- proach results in solutions with stochastic op- timality guarantees and points to conserva- tion strategies that are fundamentally dier- ent from naive approaches.

  15. Cascade adaptive control of uncertain unified chaotic systems

    Institute of Scientific and Technical Information of China (English)

    Wei Wei; Li Dong-Hai; Wang Jing

    2011-01-01

    The chaos control of uncertain unified chaotic systems is considered. Cascade adaptive control approach with only one control input is presented to stabilize states of the uncertain unified chaotic system at the zero equilibrium point.Since an adaptive controller based on dynamic compensation mechanism is employed, the exact model of the unified chaotic system is not necessarily required.By choosing appropriate controller parameters, chaotic phenomenon can be suppressed and the response speed is tunable. Sufficient condition for the asymptotic stability of the approach is derived. Numerical simulation results confirm that the cascade adaptive control approach with only one control signal is valid in chaos control of uncertain unified chaotic systems.

  16. Cascade Control of Magnetic Levitation with Sliding Modes

    Directory of Open Access Journals (Sweden)

    Eroğlu Yakup

    2016-01-01

    Full Text Available The effectiveness and applicability of magnetic levitation systems need precise feedback control designs. A cascade control approach consisting of sliding mode control plus sliding mode control (SMC plus SMC is designed to solve position control problem and to provide a high control performance and robustness to the magnetic levitation plant. It is shown that the SMC plus SMC cascade controller is able to eliminate the effects of the inductance related uncertainties of the electromagnetic coil of the plant and achieve a robust and precise position control. Experimental and numerical results are provided to validate the effectiveness and feasibility of the method.

  17. Cascade: a high-efficiency ICF power reactor

    International Nuclear Information System (INIS)

    Cascade attains a net power-plant efficiency of 49% and its cost is competitive with high-temperature gas-cooled reactor, pressurized-water reactor, and coal-fired power plants. The Cascade reactor and blanket are made of ceramic materials and activation is 6 times less than that of the MARS Tandem Mirror Reactor operating at comparable power. Hands-on maintenance of the heat exchangers is possible one day after shutdown. Essentially all tritium is recovered in the vacuum system, with the remainder recovered from the helium power conversion loop. Tritium leakage external to the vacuum system and power conversion loop is only 0.03 Ci/d

  18. Quantifying efficient information transduction of biochemical signaling cascades

    CERN Document Server

    Tsuruyama, Tatsuaki

    2016-01-01

    Cells can be considered as systems that utilize changes in thermodynamic entropy as information. Therefore, they serve as useful models for investigating the relationships between entropy production and information transmission, i.e., signal transduction. Based on the hypothesis that cells apply a chemical reaction cascade for the most efficient transduction of information, we adopted a coding design that minimizes the number of bits per concentration of molecules that are employed for information transduction. As a result, the average rate of entropy production is uniform across all cycles in a cascade reaction. Thus, the entropy production rate can be a valuable measure for the quantification of intracellular signal transduction.

  19. Stability and Stabilization of Block-cascading Switched Linear Systems

    Institute of Scientific and Technical Information of China (English)

    Ya-Hong Zhu; Dai-Zhan Cheng

    2006-01-01

    The main purpose of this paper is to investigate the problem of quadratic stability and stabilization in switched linear systems using reducible Lie algebra. First, we investigate the structure of all real invariant subspaces for a given linear system. The result is then used to provide a comparable cascading form for switching models. Using the commoncascading form, a common quadratic Lyapunov function is (QLFs) is explored by finding common QLFs of diagonal blocks.In addition, a cascading Quaker Lemma is proved. Combining it with stability results, the problem of feedback stabilization for a class of switched linear systems is solved.

  20. Feigenbaum Cascade of Discrete Breathers in a Model of DNA

    CERN Document Server

    Maniadis, P; Bishop, A R; Rasmussen, K \\O

    2010-01-01

    We demonstrate that period-doubled discrete breathers appear from the anti-continuum limit of the driven Peyrard-Bishop-Dauxois model of DNA. These novel breathers result from a stability overlap between sub-harmonic solutions of the driven Morse oscillator. Sub-harmonic breathers exist whenever a stability overlap is present within the Feigenbaum cascade to chaos and therefore an entire cascade of such breathers exists. This phenomenon is present in any driven lattice where the on-site potential admits sub-harmonic solutions. In DNA these breathers may have ramifications for cellular gene expression.