WorldWideScience

Sample records for cascade lasers based

  1. Cascade Type-I Quantum Well GaSb-Based Diode Lasers

    Directory of Open Access Journals (Sweden)

    Leon Shterengas

    2016-05-01

    Full Text Available Cascade pumping of type-I quantum well gain sections was utilized to increase output power and efficiency of GaSb-based diode lasers operating in a spectral region from 1.9 to 3.3 μm. Carrier recycling between quantum well gain stages was realized using band-to-band tunneling in GaSb/AlSb/InAs heterostructure complemented with optimized electron and hole injector regions. Coated devices with an ~100-μm-wide aperture and a 3-mm-long cavity demonstrated continuous wave (CW output power of 1.96 W near 2 μm, 980 mW near 3 μm, 500 mW near 3.18 μm, and 360 mW near 3.25 μm at 17–20 °C—a nearly or more than twofold increase compared to previous state-of-the-art diode lasers. The utilization of the different quantum wells in the cascade laser heterostructure was demonstrated to yield wide gain lasers, as often desired for tunable laser spectroscopy. Double-step etching was utilized to minimize both the internal optical loss and the lateral current spreading penalties in narrow-ridge lasers. Narrow-ridge cascade diode lasers operate in a CW regime with ~100 mW of output power near and above 3 μm and above 150 mW near 2 μm.

  2. Integrated Broadband Quantum Cascade Laser

    Science.gov (United States)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  3. Chemical sensors based on quantum cascade lasers

    Science.gov (United States)

    Tittel, Frank K.; Kosterev, Anatoliy A.; Rochat, Michel; Beck, Mattias; Faist, Jerome

    2002-09-01

    There is an increasing need in many chemical sensing applications ranging from industrial process control to environmental science and medical diagnostics for fast, sensitive, and selective gas detection based on laser spectroscopy. The recent availability of novel pulsed and cw quantum cascade distributed feedback (QC-DFB) lasers as mid-infrared spectroscopic sources address this need. A number of spectroscopic techniques have been demonstrated. For example, the authors have employed QC-DFB lasers for the monitoring and quantification of several trace gases and isotopic species in ambient air at ppmv and ppbv levels by means of direct absorption, wavelength modulation, cavity enhanced and cavity ringdown spectroscopy. In this work, pulsed thermoelectrically cooled QC-DFB lasers operating at ~15.6 μm were characterized for spectroscopic gas sensing applications. A new method for wavelength scanning based on the repetition rate modulation was developed. A non-wavelength-selective pyroelectric detector was incorporated in the gas sensor giving an advantage of room-temperature operation and low cost. Absorption lines of CO2 and H2O were observed in ambient air providing information about the concentration of these species.

  4. Analysis of a wavelength selectable cascaded DFB laser based on the transfer matrix method

    International Nuclear Information System (INIS)

    Xie Hongyun; Chen Liang; Shen Pei; Sun Botao; Wang Renqing; Xiao Ying; You Yunxia; Zhang Wanrong

    2010-01-01

    A novel cascaded DFB laser, which consists of two serial gratings to provide selectable wavelengths, is presented and analyzed by the transfer matrix method. In this method, efficient facet reflectivity is derived from the transfer matrix built for each serial section and is then used to simulate the performance of the novel cascaded DFB laser through self-consistently solving the gain equation, the coupled wave equation and the current continuity equations. The simulations prove the feasibility of this kind of wavelength selectable laser and a corresponding designed device with two selectable wavelengths of 1.51 μm and 1.53 μm is realized by experiments on InP-based multiple quantum well structure. (semiconductor devices)

  5. Modeling techniques for quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Jirauschek, Christian [Institute for Nanoelectronics, Technische Universität München, D-80333 Munich (Germany); Kubis, Tillmann [Network for Computational Nanotechnology, Purdue University, 207 S Martin Jischke Drive, West Lafayette, Indiana 47907 (United States)

    2014-03-15

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.

  6. Modeling techniques for quantum cascade lasers

    Science.gov (United States)

    Jirauschek, Christian; Kubis, Tillmann

    2014-03-01

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.

  7. Widely tunable quantum cascade laser-based terahertz source.

    Science.gov (United States)

    Danylov, Andriy A; Light, Alexander R; Waldman, Jerry; Erickson, Neal; Qian, Xifeng

    2014-07-10

    A compact, tunable, ultranarrowband terahertz source, Δν∼1  MHz, is demonstrated by upconversion of a 2.324 THz, free-running quantum cascade laser with a THz Schottky-diode-balanced mixer using a swept, synthesized microwave source to drive the nonlinearity. Continuously tunable radiation of 1 μW power is demonstrated in two frequency regions: ν(Laser) ± 0 to 50 GHz and ν(Laser) ± 70 to 115 GHz. The sideband spectra were characterized with a Fourier-transform spectrometer, and the radiation was tuned through CO, HDO, and D2O rotational transitions.

  8. Quantum Cascade Lasers Modulation and Applications

    Science.gov (United States)

    Luzhansky, Edward

    The mid-wave IR (MWIR) spectral band, extending from 3 to 5 microns, is considered to be a low loss atmospheric window. There are several spectral sub-bands with relatively low atmospheric attenuation in this region making it popular for various commercial and military applications. Relatively low thermal and solar background emissions, effective penetration through the natural and anthropogenic obscurants and eye safety add to the long list of advantages of MWIR wavelengths. Quantum Cascade Lasers are compact semiconductor devices capable of operating in MWIR spectrum. They are based on inter-subband transitions in a multiple-quantum-well (QW) hetero-structure, designed by means of band-structure engineering. The inter-subband nature of the optical transition has several key advantages. First, the emission wavelength is primarily a function of the QW thickness. This characteristic allows choosing well-understood and reliable semiconductors for the generation of light in a wavelength range of interest. Second, a cascade process in which tens of photons are generated per injected electron. This cascading process is behind the intrinsic high-power capabilities of QCLs. This dissertation is focused on modulation properties of Quantum Cascade Lasers. Both amplitude and phase/frequency modulations were studied including modulation bandwidth, modulation efficiency and chirp linearity. Research was consisted of the two major parts. In the first part we describe the theory of frequency modulation (FM) response of Distributed Feedback Quantum Cascade Lasers (DFB QCL). It includes cascading effect on the QCL's maximum modulation frequency. The "gain levering" effect for the maximum FM response of the two section QCLs was studied as well. In the second part of research we concentrated on the Pulse Position Amplitude Modulation of a single section QCL. The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept is

  9. Interband cascade lasers

    International Nuclear Information System (INIS)

    Vurgaftman, I; Meyer, J R; Canedy, C L; Kim, C S; Bewley, W W; Merritt, C D; Abell, J; Weih, R; Kamp, M; Kim, M; Höfling, S

    2015-01-01

    We review the current status of interband cascade lasers (ICLs) emitting in the midwave infrared (IR). The ICL may be considered the hybrid of a conventional diode laser that generates photons via electron–hole recombination, and an intersubband-based quantum cascade laser (QCL) that stacks multiple stages for enhanced current efficiency. Following a brief historical overview, we discuss theoretical aspects of the active region and core designs, growth by molecular beam epitaxy, and the processing of broad-area, narrow-ridge, and distributed feedback (DFB) devices. We then review the experimental performance of pulsed broad area ICLs, as well as the continuous-wave (cw) characteristics of narrow ridges having good beam quality and DFBs producing output in a single spectral mode. Because the threshold drive powers are far lower than those of QCLs throughout the λ = 3–6 µm spectral band, ICLs are increasingly viewed as the laser of choice for mid-IR laser spectroscopy applications that do not require high output power but need to be hand-portable and/or battery operated. Demonstrated ICL performance characteristics to date include threshold current densities as low as 106 A cm −2 at room temperature (RT), cw threshold drive powers as low as 29 mW at RT, maximum cw operating temperatures as high as 118 °C, maximum cw output powers exceeding 400 mW at RT, maximum cw wallplug efficiencies as high as 18% at RT, maximum cw single-mode output powers as high as 55 mW at RT, and single-mode output at λ = 5.2 µm with a cw drive power of only 138 mW at RT. (topical review)

  10. Cascade laser applications: trends and challenges

    Science.gov (United States)

    d'Humières, B.; Margoto, Éric; Fazilleau, Yves

    2016-03-01

    When analyses need rapid measurements, cost effective monitoring and miniaturization, tunable semiconductor lasers can be very good sources. Indeed, applications like on-field environmental gas analysis or in-line industrial process control are becoming available thanks to the advantage of tunable semiconductor lasers. Advances in cascade lasers (CL) are revolutionizing Mid-IR spectroscopy with two alternatives: interband cascade lasers (ICL) in the 3-6μm spectrum and quantum cascade lasers (QCL), with more power from 3 to 300μm. The market is getting mature with strong players for driving applications like industry, environment, life science or transports. CL are not the only Mid-IR laser source. In fact, a strong competition is now taking place with other technologies like: OPO, VCSEL, Solid State lasers, Gas, SC Infrared or fiber lasers. In other words, CL have to conquer a share of the Mid-IR application market. Our study is a market analysis of CL technologies and their applications. It shows that improvements of components performance, along with the progress of infrared laser spectroscopy will drive the CL market growth. We compare CL technologies with other Mid-IR sources and estimate their share in each application market.

  11. Free-space communication based on quantum cascade laser

    International Nuclear Information System (INIS)

    Liu Chuanwei; Zhai Shenqiang; Zhang Jinchuan; Zhou Yuhong; Jia Zhiwei; Liu Fengqi; Wang Zhanguo

    2015-01-01

    A free-space communication based on a mid-infrared quantum cascade laser (QCL) is presented. A room-temperature continuous-wave distributed-feedback (DFB) QCL combined with a mid-infrared detector comprise the basic unit of the communication system. Sinusoidal signals at a highest frequency of 40 MHz and modulated video signals with a carrier frequency of 30 MHz were successfully transmitted with this experimental setup. Our research has provided a proof-of-concept demonstration of space optical communication application with QCL. The highest operation frequency of our setup was determined by the circuit-limited modulation bandwidth. A high performance communication system can be obtained with improved modulation circuit system. (paper)

  12. A hybrid plasmonic waveguide terahertz quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Degl' Innocenti, Riccardo, E-mail: rd448@cam.ac.uk; Shah, Yash D.; Wallis, Robert; Klimont, Adam; Ren, Yuan; Jessop, David S.; Beere, Harvey E.; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-02-23

    We present the realization of a quantum cascade laser emitting at around 2.85 THz, based on a hybrid plasmonic waveguide with a low refractive index dielectric cladding. This hybrid waveguide design allows the performance of a double-metal waveguide to be retained, while improving the emission far-field. A set of lasers based on the same active region material were fabricated with different metal layer thicknesses. A detailed characterization of the performance of these lasers revealed that there is an optimal trade-off that yields the best far-field emission and the maximum temperature of operation. By exploiting the pure plasmonic mode of these waveguides, the standard operation conditions of a double-metal quantum cascade laser were retrieved, such that the maximum operating temperature of these devices is not affected by the process. These results pave the way to realizing a class of integrated devices working in the terahertz range which could be further exploited to fabricate terahertz on-chip circuitry.

  13. High performance 5.6μm quantum cascade lasers

    Science.gov (United States)

    Suttinger, M.; Go, R.; Figueiredo, P.; Todi, A.; Shu, Hong; Lyakh, A.

    2017-02-01

    5.6 μm quantum cascade lasers based on Al 0.78 In 0.22 As/In 0.69 Ga 0.31 As active region composition with measured pulsed room temperature wall plug efficiency of 28.3% are reported. Injection efficiency for the upper laser level of 75% was measured for the new design by testing devices with variable cavity length. Threshold current density of 1.7kA/cm2 and slope efficiency of 4.9W/A were measured for uncoated 3.15mm × 9μm lasers. Threshold current density and slope efficiency dependence on temperature in the range from 288K to 348K for the new structure can be described by characteristic temperatures T0 140K and T1 710K, respectively. Experimental data for inverse slope efficiency dependence on cavity length for 15-stage quantum cascade lasers with the same design are also presented. When combined with the 40-stage device data, the new data allowed for separate evaluation of the losses originating from the active region and from the cladding layers of the laser structure. Specifically, the active region losses for the studied design were found to be 0.77 cm-1, while cladding region losses - 0.33 cm-1. The data demonstrate that active region losses in mid wave infrared quantum cascade lasers largely define total waveguide losses and that their reduction should be one of the main priorities in the quantum cascade laser design.

  14. Quantum cascade laser combs: effects of modulation and dispersion.

    Science.gov (United States)

    Villares, Gustavo; Faist, Jérôme

    2015-01-26

    Frequency comb formation in quantum cascade lasers is studied theoretically using a Maxwell-Bloch formalism based on a modal decomposition, where dispersion is considered. In the mid-infrared, comb formation persists in the presence of weak cavity dispersion (500 fs2 mm-1) but disappears when much larger values are used (30'000 fs2 mm-1). Active modulation at the round-trip frequency is found to induce mode-locking in THz devices, where the upper state lifetime is in the tens of picoseconds. Our results show that mode-locking based on four-wave mixing in broadband gain, low dispersion cavities is the most promising way of achieving broadband quantum cascade laser frequency combs.

  15. Design strategy for terahertz quantum dot cascade lasers.

    Science.gov (United States)

    Burnett, Benjamin A; Williams, Benjamin S

    2016-10-31

    The development of quantum dot cascade lasers has been proposed as a path to obtain terahertz semiconductor lasers that operate at room temperature. The expected benefit is due to the suppression of nonradiative electron-phonon scattering and reduced dephasing that accompanies discretization of the electronic energy spectrum. We present numerical modeling which predicts that simple scaling of conventional quantum well based designs to the quantum dot regime will likely fail due to electrical instability associated with high-field domain formation. A design strategy adapted for terahertz quantum dot cascade lasers is presented which avoids these problems. Counterintuitively, this involves the resonant depopulation of the laser's upper state with the LO-phonon energy. The strategy is tested theoretically using a density matrix model of transport and gain, which predicts sufficient gain for lasing at stable operating points. Finally, the effect of quantum dot size inhomogeneity on the optical lineshape is explored, suggesting that the design concept is robust to a moderate amount of statistical variation.

  16. Experimental investigation of terahertz quantum cascade laser with variable barrier heights

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Aiting; Vijayraghavan, Karun; Belkin, Mikhail A., E-mail: mbelkin@ece.utexas.edu [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758 (United States); Matyas, Alpar; Jirauschek, Christian [Institute for Nanoelectronics, Technische Universität München, D-80333 Munich (Germany); Wasilewski, Zbig R. [Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G (Canada)

    2014-04-28

    We report an experimental study of terahertz quantum cascade lasers with variable barrier heights based on the Al{sub x}Ga{sub 1–x}As/GaAs material system. Two new designs are developed based on semiclassical ensemble Monte Carlo simulations using state-of-the-art Al{sub 0.15}Ga{sub 0.85}As/GaAs three-quantum-well resonant phonon depopulation active region design as a reference. The new designs achieved maximum lasing temperatures of 188 K and 172 K, as compared to the maximum lasing temperature of 191 K for the reference structure. These results demonstrate that terahertz quantum cascade laser designs with variable barrier heights provide a viable alternative to the traditional active region designs with fixed barrier composition. Additional design space offered by using variable barriers may lead to future improvements in the terahertz quantum cascade laser performance.

  17. Exhaled breath profiling using broadband quantum cascade laser-based spectroscopy in healthy children and children with asthma and cystic fibrosis.

    Science.gov (United States)

    van Mastrigt, E; Reyes-Reyes, A; Brand, K; Bhattacharya, N; Urbach, H P; Stubbs, A P; de Jongste, J C; Pijnenburg, M W

    2016-04-08

    Exhaled breath analysis is a potential non-invasive tool for diagnosing and monitoring airway diseases. Gas chromatography-mass spectrometry and electrochemical sensor arrays are the main techniques to detect volatile organic compounds (VOC) in exhaled breath. We developed a broadband quantum cascade laser spectroscopy technique for VOC detection and identification. The objective of this study was to assess the repeatability of exhaled breath profiling with broadband quantum cascade laser-based spectroscopy and to explore the clinical applicability by comparing exhaled breath samples from healthy children with those from children with asthma or cystic fibrosis (CF). Healthy children and children with stable asthma or stable CF, aged 6-18 years, were included. Two to four exhaled breath samples were collected in Tedlar bags and analyzed by quantum cascade laser spectroscopy to detect VOCs with an absorption profile in the wavenumber region between 832 and 1262.55 cm(-1). We included 35 healthy children, 39 children with asthma and 15 with CF. Exhaled breath VOC profiles showed poor repeatability (Spearman's rho  =  0.36 to 0.46) and agreement of the complete profiles. However, we were able to discriminate healthy children from children with stable asthma or stable CF and identified VOCs that were responsible for this discrimination. Broadband quantum cascade laser-based spectroscopy detected differences in VOC profiles in exhaled breath samples between healthy children and children with asthma or CF. The combination of a relatively easy and fast method and the possibility of molecule identification makes broadband quantum cascade laser-based spectroscopy attractive to investigate the diagnostic and prognostic potential of volatiles in exhaled breath.

  18. A Tunable CW Orange Laser Based on a Cascaded MgO:PPLN Single-Pass Sum-Frequency Generation Module

    OpenAIRE

    Dismas K. Choge; Huai-Xi Chen; Bao-Lu Tian; Yi-Bin Xu; Guang-Wei Li; Wan-Guo Liang

    2018-01-01

    We report an all-solid-state continuous wave (CW) tunable orange laser based on cascaded single-pass sum-frequency generation with fundamental wavelengths at 1545.7 and 975.2 nm using two quasi-phase-matched (QPM) MgO-doped periodically poled lithium niobate (MgO:PPLN) crystals. Up to 10 mW of orange laser is generated in the cascaded module corresponding to a 10.4%/W nonlinear conversion efficiency. The orange output showed a temperature tuning rate of ~0.05 nm/°C, and the beam quality (M2) ...

  19. Surface emitting ring quantum cascade lasers for chemical sensing

    Science.gov (United States)

    Szedlak, Rolf; Hayden, Jakob; Martín-Mateos, Pedro; Holzbauer, Martin; Harrer, Andreas; Schwarz, Benedikt; Hinkov, Borislav; MacFarland, Donald; Zederbauer, Tobias; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Acedo, Pablo; Lendl, Bernhard; Strasser, Gottfried

    2018-01-01

    We review recent advances in chemical sensing applications based on surface emitting ring quantum cascade lasers (QCLs). Such lasers can be implemented in monolithically integrated on-chip laser/detector devices forming compact gas sensors, which are based on direct absorption spectroscopy according to the Beer-Lambert law. Furthermore, we present experimental results on radio frequency modulation up to 150 MHz of surface emitting ring QCLs. This technique provides detailed insight into the modulation characteristics of such lasers. The gained knowledge facilitates the utilization of ring QCLs in combination with spectroscopic techniques, such as heterodyne phase-sensitive dispersion spectroscopy for gas detection and analysis.

  20. Photoacoustic Spectroscopy with Quantum Cascade Lasers for Trace Gas Detection

    Directory of Open Access Journals (Sweden)

    Gaetano Scamarcio

    2006-10-01

    Full Text Available Various applications, such as pollution monitoring, toxic-gas detection, noninvasive medical diagnostics and industrial process control, require sensitive and selectivedetection of gas traces with concentrations in the parts in 109 (ppb and sub-ppb range.The recent development of quantum-cascade lasers (QCLs has given a new aspect toinfrared laser-based trace gas sensors. In particular, single mode distributed feedback QCLsare attractive spectroscopic sources because of their excellent properties in terms of narrowlinewidth, average power and room temperature operation. In combination with these lasersources, photoacoustic spectroscopy offers the advantage of high sensitivity and selectivity,compact sensor platform, fast time-response and user friendly operation. This paper reportsrecent developments on quantum cascade laser-based photoacoustic spectroscopy for tracegas detection. In particular, different applications of a photoacoustic trace gas sensoremploying a longitudinal resonant cell with a detection limit on the order of hundred ppb ofozone and ammonia are discussed. We also report two QC laser-based photoacousticsensors for the detection of nitric oxide, for environmental pollution monitoring andmedical diagnostics, and hexamethyldisilazane, for applications in semiconductormanufacturing process.

  1. Quantum Cascade Laser-Based Infrared Microscopy for Label-Free and Automated Cancer Classification in Tissue Sections.

    Science.gov (United States)

    Kuepper, Claus; Kallenbach-Thieltges, Angela; Juette, Hendrik; Tannapfel, Andrea; Großerueschkamp, Frederik; Gerwert, Klaus

    2018-05-16

    A feasibility study using a quantum cascade laser-based infrared microscope for the rapid and label-free classification of colorectal cancer tissues is presented. Infrared imaging is a reliable, robust, automated, and operator-independent tissue classification method that has been used for differential classification of tissue thin sections identifying tumorous regions. However, long acquisition time by the so far used FT-IR-based microscopes hampered the clinical translation of this technique. Here, the used quantum cascade laser-based microscope provides now infrared images for precise tissue classification within few minutes. We analyzed 110 patients with UICC-Stage II and III colorectal cancer, showing 96% sensitivity and 100% specificity of this label-free method as compared to histopathology, the gold standard in routine clinical diagnostics. The main hurdle for the clinical translation of IR-Imaging is overcome now by the short acquisition time for high quality diagnostic images, which is in the same time range as frozen sections by pathologists.

  2. Study of optical confinement of quantum cascade lasers and applications to detection

    International Nuclear Information System (INIS)

    Moreau, Virginie

    2008-01-01

    Quantum cascade lasers have been invented in 1994 and they have already established themselves as the semiconductor laser source of choice in the mid- and far-infrared ranges of the electromagnetic spectrum. As most molecules of chemical interest exhibit roto-vibrational transitions in these spectral ranges, quantum cascade lasers are especially suited for applications such as spectroscopy, trace gas detection or medical imaging. One of the current leading research axis targets the device optimization and miniaturization, with possible applications in detection microsystems. This PhD thesis work focused on the study and optimization of the vertical optical confinement in quantum cascade lasers featuring optical waveguides without top cladding layers. These structures are interesting because they are compatible with two different guiding mechanisms at the same time, i.e. surface-plasmons and air confinement. The study of the characteristics of the optical mode and of the electrical current dispersion allowed us to conceive original structures which open new perspectives, for instance in the domain of analytic detection in a fluidic environment. Furthermore, we have shown that the observation by near field microscopy is a powerful tool to characterize and understand quantum cascade lasers. Finally, we have laid the foundations for the optimization of miniaturized arrays of single-mode lasers based on photonic crystal technology. (author) [fr

  3. Lens Coupled Quantum Cascade Laser

    Science.gov (United States)

    Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor)

    2013-01-01

    Terahertz quantum cascade (QC) devices are disclosed that can operate, e.g., in a range of about 1 THz to about 10 THz. In some embodiments, QC lasers are disclosed in which an optical element (e.g., a lens) is coupled to an output facet of the laser's active region to enhance coupling of the lasing radiation from the active region to an external environment. In other embodiments, terahertz amplifier and tunable terahertz QC lasers are disclosed.

  4. A sulfur hexafluoride sensor using quantum cascade and CO2 laser-based photoacoustic spectroscopy.

    Science.gov (United States)

    Rocha, Mila; Sthel, Marcelo; Lima, Guilherme; da Silva, Marcelo; Schramm, Delson; Miklós, András; Vargas, Helion

    2010-01-01

    The increase in greenhouse gas emissions is a serious environmental problem and has stimulated the scientific community to pay attention to the need for detection and monitoring of gases released into the atmosphere. In this regard, the development of sensitive and selective gas sensors has been the subject of several research programs. An important greenhouse gas is sulphur hexafluoride, an almost non-reactive gas widely employed in industrial processes worldwide. Indeed it is estimated that it has a radiative forcing of 0.52 W/m(2). This work compares two photoacoustic spectrometers, one coupled to a CO(2) laser and another one coupled to a Quantum Cascade (QC) laser, for the detection of SF(6). The laser photoacoustic spectrometers described in this work have been developed for gas detection at small concentrations. Detection limits of 20 ppbv for CO(2) laser and 50 ppbv for quantum cascade laser were obtained.

  5. Diode pumped cascade Er:Y2O3 laser

    International Nuclear Information System (INIS)

    Sanamyan, T

    2015-01-01

    A cascade, diode-pumped, continuous wave (CW), dual-wavelength operation in a 0.5% Er 3+ :Y 2 O 3 cryogenic ceramic laser is demonstrated for the first time. The laser operates on cascaded Er ( 4 I 11/2   →   4 I 13/2   →   4 I 15/2 ) transitions and can deliver 24 and 13 W at 1.6 and 2.7 μm, respectively. The overall efficiency with respect to the absorbed ∼980 nm power was 62%. This is, to our best knowledge, the first demonstration of an efficient, high power, cascade, erbium laser achieved in bulk solid-state lasers. The analysis of the output power, the laser’s wavelengths and slope efficiency for each individual laser transition are presented for pure CW operation mode. Also presented are the temporal behaviors of each laser line as a function of pump pulse duration in the quasi-CW regime. (letter)

  6. Processing Interband Cascade Laser for High Temperature CW Operation

    National Research Council Canada - National Science Library

    Tober, Richard

    2004-01-01

    A narrow ridge-waveguide mid-IR interband cascade laser based on Type-II InAs/GaInSh heterostructures processed with a thick gold heat spreading layer operated CW at temperatures ranging from 80 K to 214.4 K...

  7. Terahertz quantum cascade laser as local oscillator in a heterodyne receiver.

    Science.gov (United States)

    Hübers, Heinz-Wilhelm; Pavlov, S; Semenov, A; Köhler, R; Mahler, L; Tredicucci, A; Beere, H; Ritchie, D; Linfield, E

    2005-07-25

    Terahertz quantum cascade lasers have been investigated with respect to their performance as a local oscillator in a heterodyne receiver. The beam profile has been measured and transformed in to a close to Gaussian profile resulting in a good matching between the field patterns of the quantum cascade laser and the antenna of a superconducting hot electron bolometric mixer. Noise temperature measurements with the hot electron bolometer and a 2.5 THz quantum cascade laser yielded the same result as with a gas laser as local oscillator.

  8. Linewidth and tuning characteristics of terahertz quantum cascade lasers.

    Science.gov (United States)

    Barkan, A; Tittel, F K; Mittleman, D M; Dengler, R; Siegel, P H; Scalari, G; Ajili, L; Faist, J; Beere, H E; Linfield, E H; Davies, A G; Ritchie, D A

    2004-03-15

    We have measured the spectral linewidths of three continuous-wave quantum cascade lasers operating at terahertz frequencies by heterodyning the free-running quantum cascade laser with two far-infrared gas lasers. Beat notes are detected with a GaAs diode mixer and a microwave spectrum analyzer, permitting very precise frequency measurements and giving instantaneous linewidths of less than -30 kHz. Characteristics are also reported for frequency tuning as the injection current is varied.

  9. Energy spectrum and thermal properties of a terahertz quantum-cascade laser based on the resonant-phonon depopulation scheme

    Energy Technology Data Exchange (ETDEWEB)

    Khabibullin, R. A., E-mail: khabibullin@isvch.ru; Shchavruk, N. V.; Klochkov, A. N.; Glinskiy, I. A.; Zenchenko, N. V.; Ponomarev, D. S.; Maltsev, P. P. [Russian Academy of Sciences, Institute of Ultrahigh Frequency Semiconductor Electronics (Russian Federation); Zaycev, A. A. [National Research University of Electronic Technology (MIET) (Russian Federation); Zubov, F. I.; Zhukov, A. E.; Cirlin, G. E.; Alferov, Zh. I. [Russian Academy of Sciences, Saint Petersburg Academic University—Nanotechnology Research and Education Center (Russian Federation)

    2017-04-15

    The dependences of the electronic-level positions and transition oscillator strengths on an applied electric field are studied for a terahertz quantum-cascade laser (THz QCL) with the resonant-phonon depopulation scheme, based on a cascade consisting of three quantum wells. The electric-field strengths for two characteristic states of the THz QCL under study are calculated: (i) “parasitic” current flow in the structure when the lasing threshold has not yet been reached; (ii) the lasing threshold is reached. Heat-transfer processes in the THz QCL under study are simulated to determine the optimum supply and cooling conditions. The conditions of thermocompression bonding of the laser ridge stripe with an n{sup +}-GaAs conductive substrate based on Au–Au are selected to produce a mechanically stronger contact with a higher thermal conductivity.

  10. Room-temperature operation of quantum cascade lasers at a wavelength of 5.8 μm

    Energy Technology Data Exchange (ETDEWEB)

    Babichev, A. V. [Connector Optics LLC (Russian Federation); Bousseksou, A. [University Paris Saclay, Institut d’Electronique Fondamentale, UMR 8622 CNRS (France); Pikhtin, N. A.; Tarasov, I. S. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Nikitina, E. V. [Russian Academy of Sciences, Saint Petersburg Academic University—Nanotechnology Research and Education Center (Russian Federation); Sofronov, A. N.; Firsov, D. A.; Vorobjev, L. E. [Peter-the-Great Saint-Petersburg Polytechnic University (Russian Federation); Novikov, I. I.; Karachinsky, L. Ya.; Egorov, A. Yu., E-mail: anton.egorov@connector-optics.com [Connector Optics LLC (Russian Federation)

    2016-10-15

    The room-temperature generation of multiperiod quantum-cascade lasers (QCL) at a wavelength of 5.8 μm in the pulsed mode is demonstrated. The heterostructure of a quantum-cascade laser based on a heterojunction of InGaAs/InAlAs alloys is grown by molecular-beam epitaxy and incorporates 60 identical cascades. The threshold current density of the stripe laser 1.4 mm long and 22 μm wide is ~4.8 kA/cm{sup 2} at a temperature of 303 K. The maximum power of the optical-radiation output from one QCL face, recorded by a detector, is 88 mW. The actual optical-power output from one QCL face is no less than 150 mW. The results obtained and possible ways of optimizing the structure of the developed quantum-cascade lasers are discussed.

  11. Multicomponent gas analysis using broadband quantum cascade laser spectroscopy

    NARCIS (Netherlands)

    Reyes Reyes, A.; Hou, Z.; Van Mastrigt, E.; Horsten, R.C.; De Jongste, J.C.; Pijnenburg, M.W.; Urbach, H.P.; Bhattacharya, N.

    2014-01-01

    We present a broadband quantum cascade laser-based spectroscopic system covering the region between 850 and 1250 cm?1. Its robust multipass cavity ensures a constant interaction length over the entire spectral region. The device enables the detection and identification of numerous molecules present

  12. High performance 40-stage and 15-stage quantum cascade lasers based on two-material active region composition

    Science.gov (United States)

    Figueiredo, P.; Suttinger, M.; Go, R.; Todi, A.; Shu, Hong; Tsvid, E.; Patel, C. Kumar N.; Lyakh, A.

    2017-05-01

    5.6μm quantum cascade lasers based on Al0.78In0.22As/In0.69Ga0.31As active region composition with measured pulsed room temperature wall plug efficiency of 28.3% are reported. Injection efficiency for the upper laser level of 75% was measured by testing devices with variable cavity length. Threshold current density of 1.7kA/cm2 and slope efficiency of 4.9W/A were measured for uncoated 3.15mm x 9µm lasers. Threshold current density and slope efficiency dependence on temperature in the range from 288K to 348K can be described by characteristic temperatures T0 140K and T1 710K, respectively. Pulsed slope efficiency, threshold current density, and wallplug efficiency for a 2.1mm x 10.4µm 15-stage device with the same design and a high reflection-coated back facet were measured to be 1.45W/A, 3.1kA/cm2 , and 18%, respectively. Continuous wave values for the same parameters were measured to be 1.42W/A, 3.7kA/cm2 , and 12%. Continuous wave optical power levels exceeding 0.5W per millimeter of cavity length was demonstrated. When combined with the 40-stage device data, the inverse slope efficiency dependence on cavity length for 15-stage data allowed for separate evaluation of the losses originating from the active region and from the cladding layers of the laser structure. Specifically, the active region losses for the studied design were found to be 0.77cm-1, while cladding region losses - 0.33cm-1. The data demonstrate that active region losses in mid wave infrared quantum cascade lasers largely define total waveguide losses and that their reduction should be one of the main priorities in the quantum cascade laser design.

  13. Non-equilibrium Green's function calculation for GaN-based terahertz-quantum cascade laser structures

    Science.gov (United States)

    Yasuda, H.; Kubis, T.; Hosako, I.; Hirakawa, K.

    2012-04-01

    We theoretically investigated GaN-based resonant phonon terahertz-quantum cascade laser (QCL) structures for possible high-temperature operation by using the non-equilibrium Green's function method. It was found that the GaN-based THz-QCL structures do not necessarily have a gain sufficient for lasing, even though the thermal backfilling and the thermally activated phonon scattering are effectively suppressed. The main reason for this is the broadening of the subband levels caused by a very strong interaction between electrons and longitudinal optical (LO) phonons in GaN.

  14. Broadband external cavity quantum cascade laser based sensor for gasoline detection

    Science.gov (United States)

    Ding, Junya; He, Tianbo; Zhou, Sheng; Li, Jinsong

    2018-02-01

    A new type of tunable diode spectroscopy sensor based on an external cavity quantum cascade laser (ECQCL) and a quartz crystal tuning fork (QCTF) were used for quantitative analysis of volatile organic compounds. In this work, the sensor system had been tested on different gasoline sample analysis. For signal processing, the self-established interpolation algorithm and multiple linear regression algorithm model were used for quantitative analysis of major volatile organic compounds in gasoline samples. The results were very consistent with that of the standard spectra taken from the Pacific Northwest National Laboratory (PNNL) database. In future, The ECQCL sensor will be used for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis, etc.

  15. Efficient method for transport simulations in quantum cascade lasers

    Directory of Open Access Journals (Sweden)

    Maczka Mariusz

    2017-01-01

    Full Text Available An efficient method for simulating quantum transport in quantum cascade lasers is presented. The calculations are performed within a simple approximation inspired by Büttiker probes and based on a finite model for semiconductor superlattices. The formalism of non-equilibrium Green’s functions is applied to determine the selected transport parameters in a typical structure of a terahertz laser. Results were compared with those obtained for a infinite model as well as other methods described in literature.

  16. Frequency modulation spectroscopy with a THz quantum-cascade laser.

    Science.gov (United States)

    Eichholz, R; Richter, H; Wienold, M; Schrottke, L; Hey, R; Grahn, H T; Hübers, H-W

    2013-12-30

    We report on a terahertz spectrometer for high-resolution molecular spectroscopy based on a quantum-cascade laser. High-frequency modulation (up to 50 MHz) of the laser driving current produces a simultaneous modulation of the frequency and amplitude of the laser output. The modulation generates sidebands, which are symmetrically positioned with respect to the laser carrier frequency. The molecular transition is probed by scanning the sidebands across it. In this way, the absorption and the dispersion caused by the molecular transition are measured. The signals are modeled by taking into account the simultaneous modulation of the frequency and amplitude of the laser emission. This allows for the determination of the strength of the frequency as well as amplitude modulation of the laser and of molecular parameters such as pressure broadening.

  17. Surface plasmon quantum cascade lasers as terahertz local oscillators

    NARCIS (Netherlands)

    Hajenius, M.; Khosropanah, P.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Barbieri, S.; Dhillon, S.; Filloux, P.; Sirtori, C.; Ritchie, D. A.; Beere, H. E.

    2008-01-01

    We characterize a heterodyne receiver based on a surface-plasmon waveguide quantum cascade laser (QCL) emitting at 2.84 THz as a local oscillator, and an NbN hot electron bolometer as a mixer. We find that the envelope of the far-field pattern of the QCL is diffraction-limited and superimposed onto

  18. High-Speed Operation of Interband Cascade Lasers

    Science.gov (United States)

    Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Wright, Malcom W.; Farr, William H.; Yang, Rui Q.; Liu, H. C.

    2010-01-01

    Optical sources operating in the atmospheric window of 3-5 microns are of particular interest for the development of free-space optical communication link. It is more advantageous to operate the free-space optical communication link in 3-5-microns atmospheric transmission window than at the telecom wavelength of 1.5 m due to lower optical scattering, scintillation, and background radiation. However, the realization of optical communications at the longer wavelength has encountered significant difficulties due to lack of adequate optical sources and detectors operating in the desirable wavelength regions. Interband Cascade (IC) lasers are novel semiconductor lasers that have a great potential for the realization of high-power, room-temperature optical sources in the 3-5-microns wavelength region, yet no experimental work, until this one, was done on high-speed direct modulation of IC lasers. Here, highspeed interband cascade laser, operating at wavelength 3.0 m, has been developed and the first direct measurement of the laser modulation bandwidth has been performed using a unique, highspeed quantum well infrared photodetector (QWIP). The developed laser has modulation bandwidth exceeding 3 GHz. This constitutes a significant increase of the IC laser modulation bandwidth over currently existing devices. This result has demonstrated suitability of IC lasers as a mid-IR light source for multi-GHz free-space optical communications links

  19. Quantum cascade laser-based photoacoustic sulfuryl fluoride sensing

    Science.gov (United States)

    Minini, Kariza Mayra Silva; Bueno, Sâmylla Cristina Espécie; da Silva, Marcelo Gomes; Sthel, Marcelo Silva; Vargas, Helion; Angster, Judit; Miklós, András

    2017-02-01

    Although sulfuryl fluoride (SO2F2) is an efficient fumigant that does not react with the surface of indoor materials and does not reduce the stratospheric ozone shield, there are some concerns about its use. It is a toxic gas that attacks the central nervous system, and its global warming potential (GWP) value is 4780 for 100 years' time. Therefore, it is a clear necessity of implementing detection methods for tracing such a molecule. In this work a sensitive photoacoustic setup was built to detect SO2F2 at concentrations of parts per billion by volume (ppbv). The symmetric S-O stretching mode was excited by a continuous-wave quantum cascade laser with radiation wavenumber ranging from 1275.7 to 1269.3 cm-1. The photoacoustic signal was generated by modulating the laser wavenumber at the first longitudinal mode of the photoacoustic cell with amplitude depth of 5 × 10-3 cm-1. The detection of a minimum SO2F2 concentration of 20 ppbv was achieved.

  20. A field-deployable compound-specific isotope analyzer based on quantum cascade laser and hollow waveguide

    Science.gov (United States)

    Wu, Sheng; Deev, Andrei

    2013-01-01

    A field deployable Compound Specific Isotope Analyzer (CSIA) coupled with capillary chromatogrpahy based on Quantum Cascade (QC) lasers and Hollow Waveguide (HWG) with precision and chemical resolution matching mature Mass Spectroscopy has been achieved in our laboratory. The system could realize 0.3 per mil accuracy for 12C/13C for a Gas Chromatography (GC) peak lasting as short as 5 seconds with carbon molar concentration in the GC peak less than 0.5%. Spectroscopic advantages of HWG when working with QC lasers, i.e. single mode transmission, noiseless measurement and small sample volume, are compared with traditional free space and multipass spectroscopy methods.

  1. Influence of interface roughness in quantum cascade lasers

    International Nuclear Information System (INIS)

    Krivas, K. A.; Winge, D. O.; Franckié, M.; Wacker, A.

    2015-01-01

    We use a numerical model based on non-equilibrium Green's functions to investigate the influence of interface roughness (IFR) scattering in terahertz quantum cascade lasers. We confirm that IFR is an important phenomenon that affects both current and gain. The simulations indicate that IFR causes a leakage current that transfers electrons from the upper to the lower laser state. In certain cases, this current can greatly reduce gain. In addition, individual interfaces and their impact on the renormalized single particle energies are studied and shown to give both blue- and red-shifts of the gain spectrum

  2. Epi-Side-Down Mounting of Interband Cascade Lasers for Army Applications

    National Research Council Canada - National Science Library

    Tobin, M. S; Monroy, C. J; Oliver, K. A; Tober, R. L; Bradshaw, J. L; Bruno, J. D; Towner, F. J

    2006-01-01

    The interband cascade laser, based on the type II energy band alignment in the InAs/GaSb material system, has great potential to meet the power and the wall plug efficiency requirements of many Army applications...

  3. 5.5 W of Diffraction-Limited Green Light Generated by SFG of Tapered Diode Lasers in a Cascade of Nonlinear Crystals

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Jensen, Ole Bjarlin; Andersen, Peter Eskil

    2015-01-01

    Diode-based high power visible lasers are perfect pump sources for, e.g., titaniumsapphire lasers. The combination of favorable scaling laws in both SFG and cascading of nonlinear crystals allows access to unprecedented powers in diode-based systems.......Diode-based high power visible lasers are perfect pump sources for, e.g., titaniumsapphire lasers. The combination of favorable scaling laws in both SFG and cascading of nonlinear crystals allows access to unprecedented powers in diode-based systems....

  4. Coherent quantum cascade laser micro-stripe arrays

    Directory of Open Access Journals (Sweden)

    G. M. de Naurois

    2011-09-01

    Full Text Available We have fabricated InP-based coherent quantum cascade laser micro-stripe arrays. Phase-locking is provided by evanescent coupling between adjacent stripes. Stripes are buried into semi-insulating iron doped InP. Lasing at room temperature is obtained at 8.4μm for stripe arrays comprising up to 16 emitters. Pure supermode emission is demonstrated via farfield measurements and simulations. The farfield pattern shows a dual-lobe emission, corroborating the predicted phase-locked antisymmetric supermode emission.

  5. Novel High Power Type-I Quantum Well Cascade Diode Lasers

    Science.gov (United States)

    2017-08-30

    Novel High Power Type-I Quantum Well Cascade Diode Lasers The views, opinions and/or findings contained in this report are those of the author(s...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6... High Power Type-I Quantum Well Cascade Diode Lasers Report Term: 0-Other Email: leon.shterengas@stonybrook.edu Distribution Statement: 1-Approved

  6. Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements.

    Science.gov (United States)

    Provencal, Robert; Gupta, Manish; Owano, Thomas G; Baer, Douglas S; Ricci, Kenneth N; O'Keefe, Anthony; Podolske, James R

    2005-11-01

    An autonomous instrument based on off-axis integrated cavity output spectroscopy has been developed and successfully deployed for measurements of carbon monoxide in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument (Carbon Monoxide Gas Analyzer) consists of a measurement cell comprised of two high-reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data-acquisition electronics, and data-analysis software. CO measurements were determined from high-resolution CO absorption line shapes obtained by tuning the laser wavelength over the R(7) transition of the fundamental vibration band near 2172.8 cm(-1). The instrument reports CO mixing ratio (mole fraction) at a 1-Hz rate based on measured absorption, gas temperature, and pressure using Beer's Law. During several flights in May-June 2004 and January 2005 that reached altitudes of 41,000 ft (12.5 km), the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time) and an accuracy limited by the reference CO gas cylinder (uncertainty < 1.0%). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights.

  7. A terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer.

    Energy Technology Data Exchange (ETDEWEB)

    Klaassen, T. O. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Hajenius, M. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Adam, A. J. L. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Klapwijk, T. M. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Baryshev, A. (SRON National Institute for Space Research, Sorbonnelaan, Utrecht, The Netherlands); Kumar, Sushil (Massachusetts Institute of Technology, Cambridge, MA); Baselmans, J. J. A. (SRON National Institute for Space Research, Sorbonnelaan, Utrecht, The Netherlands); Hu, Qing (Massachusetts Institute of Technology, Cambridge, MA); Yang, Z. Q. (SRON National Institute for Space Research, Sorbonnelaan, Utrecht, The Netherlands); Hovenier, J. N. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Williams, Benjamin S. (Massachusetts Institute of Technology, Cambridge, MA); Gao, J. R. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Reno, John Louis

    2005-03-01

    We report the first demonstration of an all solid-state heterodyne receiver that can be used for high-resolution spectroscopy above 2 THz suitable for space-based observatories. The receiver uses a NbN superconducting hot-electron bolometer as mixer and a quantum cascade laser operating at 2.8 THz as local oscillator. We measure a double sideband receiver noise temperature of 1400 K at 2.8 THz and 4.2 K, and find that the free-running QCL has sufficient power stability for a practical receiver, demonstrating an unprecedented combination of sensitivity and stability.

  8. Narrow line-width Tm3+ doped double-clad silica fiber laser based on in-line cascade biconical tapers filter

    International Nuclear Information System (INIS)

    Tian, Y; Zhao, J Q; Wang, W; Wang, Y Z; Gao, W

    2010-01-01

    Narrow line-width 793 nm laser diode cladding pumped Tm 3+ doped double cladding silica fiber laser with in-line four concatenated tapers filter was reported for the first time to our knowledge. These cascade tapers located 3.6 cm from the output end of the fiber laser was fabricated by heating and stretching method. The taper's transmitted power response as a function of wavelength was described by using local mode coupling theory and successive tapers filter model. The wavelength filter function of the in-line cascade tapers in a linear cavity fiber laser was demonstrated, and the experimental result agreed with these theories. The maximum output laser power was 736 mW, corresponding to single peak of laser spectrum with narrow line-width of ∼ 60 pm

  9. Mid-infrared quantum cascade laser spectroscopy probing of the ...

    Indian Academy of Sciences (India)

    Aparajeo Chattopadhyay

    2018-05-07

    May 7, 2018 ... cm3 molecule. −1 s. −1 ... Quantum cascade laser; time-resolved mid-infrared spectroscopy; transient absorption; peroxy radicals .... peak of the laser emission profile. .... cal with O2 is a termolecular reaction (Eq. 3) and the.

  10. Estimating optical feedback from a chalcogenide fiber in mid-infrared quantum cascade lasers

    Directory of Open Access Journals (Sweden)

    L. Jumpertz

    2016-10-01

    Full Text Available The amount of optical feedback originating from a chalcogenide fiber used to couple light from a mid-infrared quantum cascade laser is evaluated experimentally. Threshold reduction measurements on the fibered laser, combined with an analytical study of a rate equations model of the laser under optical feedback, allow estimating the feedback strength between 11% and 15% depending on the fiber cleavage quality. While this remains below the frontier of the chaotic regime, it is sufficient to deeply modify the optical spectrum of a quantum cascade laser. Hence for applications such as gas spectroscopy, where the shape of the optical spectrum is of prime importance, the use of mid-infrared optical isolators may be necessary for fibered quantum cascade lasers to be fully exploited.

  11. Quantum Cascade Laser-Based Photoacoustic Sensor for Trace Detection of Formaldehyde Gas

    Directory of Open Access Journals (Sweden)

    Pietro Mario Lugarà

    2009-04-01

    Full Text Available We report on the development of a photoacoustic sensor for the detection of formaldehyde (CH2O using a thermoelectrically cooled distributed-feedback quantum cascade laser operating in pulsed mode at 5.6 mm. A resonant photoacoustic cell, equipped with four electret microphones, is excited in its first longitudinal mode at 1,380 Hz. The absorption line at 1,778.9 cm-1 is selected for CH2O detection. A detection limit of 150 parts per billion in volume in nitrogen is achieved using a 10 seconds time constant and 4 mW laser power. Measurements in ambient air will require water vapour filters.

  12. Quantum cascade lasers as metrological tools for space optics

    Science.gov (United States)

    Bartalini, S.; Borri, S.; Galli, I.; Mazzotti, D.; Cancio Pastor, P.; Giusfredi, G.; De Natale, P.

    2017-11-01

    A distributed-feedback quantum-cascade laser working in the 4.3÷4.4 mm range has been frequency stabilized to the Lamb-dip center of a CO2 ro-vibrational transition by means of first-derivative locking to the saturated absorption signal, and its absolute frequency counted with a kHz-level precision and an overall uncertainty of 75 kHz. This has been made possible by an optical link between the QCL and a near-IR Optical Frequency Comb Synthesizer, thanks to a non-linear sum-frequency generation process with a fiber-amplified Nd:YAG laser. The implementation of a new spectroscopic technique, known as polarization spectroscopy, provides an improved signal for the locking loop, and will lead to a narrower laser emission and a drastic improvement in the frequency stability, that in principle is limited only by the stability of the optical frequency comb synthesizer (few parts in 1013). These results confirm quantum cascade lasers as reliable sources not only for high-sensitivity, but also for highprecision measurements, ranking them as optimal laser sources for space applications.

  13. Pseudorandom dynamics of frequency combs in free-running quantum cascade lasers

    Science.gov (United States)

    Henry, Nathan; Burghoff, David; Yang, Yang; Hu, Qing; Khurgin, Jacob B.

    2018-01-01

    Recent research has shown that free-running quantum cascade lasers are capable of producing frequency combs in midinfrared and THz regions of the spectrum. Unlike familiar frequency combs originating from mode-locked lasers, these do not require any additional optical elements inside the cavity and have temporal characteristics that are dramatically different from the periodic pulse train of conventional combs. Frequency combs from quantum cascade lasers are characterized by the absence of sharp pulses and strong frequency modulation, periodic with the cavity round trip time but lacking any periodicity within that period. To explicate for this seemingly perplexing behavior, we develop a model of the gain medium using optical Bloch equations that account for hole burning in spectral, spatial, and temporal domains. With this model, we confirm that the most efficient mode of operation of a free-running quantum cascade laser is indeed a pseudorandom frequency-modulated field with nearly constant intensity. We show that the optimum modulation period is commensurate with the gain recovery time of the laser medium and the optimum modulation amplitude is comparable to the gain bandwidth, behavior that has been observed in the experiments.

  14. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing.

    Science.gov (United States)

    Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo

    2016-02-17

    The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF₂ microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.

  15. Freedom from band-gap slavery: from diode lasers to quantum cascade lasers

    Science.gov (United States)

    Capasso, Federico

    2010-02-01

    Semiconductor heterostructure lasers, for which Alferov and Kromer received part of the Nobel Prize in Physics in 2000, are the workhorse of technologies such as optical communications, optical recording, supermarket scanners, laser printers and fax machines. They exhibit high performance in the visible and near infrared and rely for their operation on electrons and holes emitting photons across the semiconductor bandgap. This mechanism turns into a curse at longer wavelengths (mid-infrared) because as the bandgap, shrinks laser operation becomes much more sensitive to temperature, material defects and processing. Quantum Cascade Laser (QCL), invented in 1994, rely on a radically different process for light emission. QCLs are unipolar devices in which electrons undergo transitions between quantum well energy levels and are recycled through many stages emitting a cascade of photons. Thus by suitable tailoring of the layers' thickness, using the same heterostructure material, they can lase across the molecular fingerprint region from 3 to 25 microns and beyond into the far-infrared and submillimiter wave spectrum. High power cw room temperature QCLs and QCLs with large continuous single mode tuning range have found many applications (infrared countermeasures, spectroscopy, trace gas analysis and atmospheric chemistry) and are commercially available. )

  16. High power cascade diode lasers emitting near 2 μm

    Energy Technology Data Exchange (ETDEWEB)

    Hosoda, Takashi; Feng, Tao; Shterengas, Leon, E-mail: leon.shterengas@stonybrook.edu; Kipshidze, Gela; Belenky, Gregory [State University of New York at Stony Brook, Stony Brook, New York 11794 (United States)

    2016-03-28

    High-power two-stage cascade GaSb-based type-I quantum well diode lasers emitting near 2 μm were designed and fabricated. Coated devices with cavity length of 3 mm generated about 2 W of continuous wave power from 100-μm-wide aperture at the current of 6 A. The power conversion efficiency peaked at 20%. Carrier recycling between quantum well gain stages was realized using band-to-band tunneling in GaSb/AlSb/InAs heterostructure complemented with optimized electron and hole injector regions. Design optimization eliminated parasitic optical absorption and thermionic emission, and included modification of the InAs quantum wells of electron and composition and doping profile of hole injectors. Utilization of the cascade pumping scheme yielded 2 μm lasers with improved output power and efficiency compared to existing state-of-the-art diodes.

  17. Fast gas spectroscopy using pulsed quantum cascade lasers

    Science.gov (United States)

    Beyer, T.; Braun, M.; Lambrecht, A.

    2003-03-01

    Laser spectroscopy has found many industrial applications, e.g., control of automotive exhaust and process monitoring. The midinfrared region is of special interest because it has stronger absorption lines compared to the near infrared (NIR). However, in the NIR high quality reliable laser sources, detectors, and passive optical components are available. A quantum cascade laser could change this situation if fundamental advantages can be exploited with compact and reliable systems. It will be shown that, using pulsed lasers and available fast detectors, lower residual sensitivity levels than in corresponding NIR systems can be achieved. The stability is sufficient for industrial applications.

  18. Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Martin, E-mail: hempel@pdi-berlin.de; Röben, Benjamin; Schrottke, Lutz; Grahn, Holger T. [Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e. V., Hausvogteiplatz 5–7, 10117 Berlin (Germany); Hübers, Heinz-Wilhelm [Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin (Germany); Department of Physics, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin (Germany)

    2016-05-09

    GaAs-based terahertz quantum-cascade lasers (QCLs) are continuously tuned in their emission frequency by illuminating the rear facet with a near-infrared, high-power diode laser. For QCLs emitting around 3.1 THz, the maximum tuning range amounts to 2.8 GHz for continuous-wave operation at a heat sink temperature of 55 K, while in pulsed mode 9.1 and 8.0 GHz are achieved at 35 and 55 K, respectively.

  19. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing

    Directory of Open Access Journals (Sweden)

    Simone Borri

    2016-02-01

    Full Text Available The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.

  20. Strain-free Ge/GeSiSn Quantum Cascade Lasers Based on L-Valley Intersubband Transitions

    National Research Council Canada - National Science Library

    Soret, R. A; Sun, G; Cheng, H; Menendez, J; Khurgin, J

    2007-01-01

    The authors propose a Ge/Ge0.76Si0.19Sn0.05 quantum cascade laser using intersubband transitions at L valleys of the conduction band which has a clean offset of 150 meV situated below other energy valleys Gamma and X...

  1. Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output

    Directory of Open Access Journals (Sweden)

    Q. Y. Lu

    2017-04-01

    Full Text Available Chromatic dispersion control plays an underlying role in optoelectronics and spectroscopy owing to its enhancement to nonlinear interactions by reducing the phase mismatching. This is particularly important to optical frequency combs based on quantum cascade lasers which require negligible dispersions for efficient mode locking of the dispersed modes into equally spaced comb modes. Here, we demonstrated a dispersion compensated mid-IR quantum cascade laser frequency comb with high power output at room temperature. A low-loss dispersive mirror has been engineered to compensate the device’s dispersion residue for frequency comb generation. Narrow intermode beating linewidths of 40 Hz in the comb-working currents were identified with a high power output of 460 mW and a broad spectral coverage of 80 cm-1. This dispersion compensation technique will enable fast spectroscopy and high-resolution metrology based on QCL combs with controlled dispersion and suppressed noise.

  2. Quantum cascade laser-based analyzer for hydrogen sulfide detection at sub-parts-per-million levels

    Science.gov (United States)

    Nikodem, Michal; Krzempek, Karol; Stachowiak, Dorota; Wysocki, Gerard

    2018-01-01

    Due to its high toxicity, monitoring of hydrogen sulfide (H2S) concentration is essential in many industrial sites (such as natural gas extraction sites, petroleum refineries, geothermal power plants, or waste water treatment facilities), which require sub-parts-per-million sensitivities. We report on a quantum cascade laser-based spectroscopic system for detection of H2S in the midinfrared at ˜7.2 μm. We present a sensor design utilizing Herriott multipass cell and a wavelength modulation spectroscopy to achieve a detection limit of 140 parts per billion for 1-s integration time.

  3. Chirped laser dispersion spectroscopy using a directly modulated quantum cascade laser

    International Nuclear Information System (INIS)

    Hangauer, Andreas; Nikodem, Michal; Wysocki, Gerard; Spinner, Georg

    2013-01-01

    Chirped laser dispersion spectroscopy (CLaDS) utilizing direct modulation of a quantum cascade laser (QCL) is presented. By controlling the laser bias nearly single- and dual-sideband CLaDS operation can be realized in an extremely simplified optical setup with no external optical modulators. Capability of direct single-sideband modulation is a unique feature of QCLs that exhibit a low linewidth enhancement factor. The developed analytical model shows excellent agreement with the experimental, directly modulated CLaDS spectra. This method overcomes major technical limitations of mid-infrared CLaDS systems by allowing significantly higher modulation frequencies and eliminating optical fringes introduced by external modulators

  4. Active mode locking of quantum cascade lasers in an external ring cavity.

    Science.gov (United States)

    Revin, D G; Hemingway, M; Wang, Y; Cockburn, J W; Belyanin, A

    2016-05-05

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.

  5. Spectrally high performing quantum cascade lasers

    Science.gov (United States)

    Toor, Fatima

    Quantum cascade (QC) lasers are versatile semiconductor light sources that can be engineered to emit light of almost any wavelength in the mid- to far-infrared (IR) and terahertz region from 3 to 300 mum [1-5]. Furthermore QC laser technology in the mid-IR range has great potential for applications in environmental, medical and industrial trace gas sensing [6-10] since several chemical vapors have strong rovibrational frequencies in this range and are uniquely identifiable by their absorption spectra through optical probing of absorption and transmission. Therefore, having a wide range of mid-IR wavelengths in a single QC laser source would greatly increase the specificity of QC laser-based spectroscopic systems, and also make them more compact and field deployable. This thesis presents work on several different approaches to multi-wavelength QC laser sources that take advantage of band-structure engineering and the uni-polar nature of QC lasers. Also, since for chemical sensing, lasers with narrow linewidth are needed, work is presented on a single mode distributed feedback (DFB) QC laser. First, a compact four-wavelength QC laser source, which is based on a 2-by-2 module design, with two waveguides having QC laser stacks for two different emission wavelengths each, one with 7.0 mum/11.2 mum, and the other with 8.7 mum/12.0 mum is presented. This is the first design of a four-wavelength QC laser source with widely different emission wavelengths that uses minimal optics and electronics. Second, since there are still several unknown factors that affect QC laser performance, results on a first ever study conducted to determine the effects of waveguide side-wall roughness on QC laser performance using the two-wavelength waveguides is presented. The results are consistent with Rayleigh scattering effects in the waveguides, with roughness effecting shorter wavelengths more than longer wavelengths. Third, a versatile time-multiplexed multi-wavelength QC laser system that

  6. Enhancement of optical Kerr effect in quantum-cascade lasers with multiple resonance levels.

    Science.gov (United States)

    Bai, Jing; Citrin, D S

    2008-08-18

    In this paper, we investigated the optical Kerr lensing effect in quantum-cascade lasers with multiple resonance levels. The Kerr refractive index n2 is obtained through the third-order susceptibility at the fundamental frequency chi(3)( omega; omega, omega,-omega). Resonant two-photon processes are found to have almost equal contributions to chi(3)( omega; omega, omega,-omega) as the single-photon processes, which result in the predicted enhancement of the positive nonlinear (Kerr) refractive index, and thus may enhance mode-locking of quantum-cascade lasers. Moreover, we also demonstrate an isospectral optimization strategy for further improving n2 through the band-structure design, in order to boost the multimode performance of quantum-cascade lasers. Simulation results show that the optimized stepwise multiple-quantum-well structure has n2 approximately 10-8 cm2/W, a twofold enhancement over the original flat quantum-well structure. This leads to a refractive-index change (delta)n of about 0.01, which is at the upper bound of those reported for typical Kerr medium. This stronger Kerr refractive index may be important for quantum-cascade lasers ultimately to demonstrate self-mode-locking.

  7. Interband cascade lasers with >40% continuous-wave wallplug efficiency at cryogenic temperatures

    International Nuclear Information System (INIS)

    Canedy, C. L.; Kim, C. S.; Merritt, C. D.; Bewley, W. W.; Vurgaftman, I.; Meyer, J. R.; Kim, M.

    2015-01-01

    Broad-area 10-stage interband cascade lasers (ICLs) emitting at λ = 3.0–3.2 μm are shown to maintain continuous-wave (cw) wallplug efficiencies exceeding 40% at temperatures up to 125 K, despite having a design optimized for operation at ambient and above. The cw threshold current density at 80 K is only 11 A/cm 2 for a 2 mm cavity with anti-reflection/high-reflection coatings on the two facets. The external differential quantum efficiency for a 1-mm-long cavity with the same coatings is 70% per stage at 80 K, and still above 65% at 150 K. The results demonstrate that at cryogenic temperatures, where free carrier absorption losses are minimized, ICLs can convert electrical to optical energy nearly as efficiently as the best specially designed intersubband-based quantum cascade lasers

  8. Quantum cascade laser infrared spectroscopy of single cancer cells

    KAUST Repository

    Patel, Imran; Rajamanickam, Vijayakumar Palanisamy; Bertoncini, Andrea; Pagliari, Francesca; Tirinato, Luca; Laptenok, Sergey P.; Liberale, Carlo

    2017-01-01

    Quantum cascade laser infrared spectroscopy is a next generation novel imaging technique allowing high resolution spectral imaging of cells. We show after spectral pre-processing, identification of different cancer cell populations within minutes.

  9. Quantum cascade laser infrared spectroscopy of single cancer cells

    KAUST Repository

    Patel, Imran

    2017-03-27

    Quantum cascade laser infrared spectroscopy is a next generation novel imaging technique allowing high resolution spectral imaging of cells. We show after spectral pre-processing, identification of different cancer cell populations within minutes.

  10. Hot-phonon generation in THz quantum cascade lasers

    Science.gov (United States)

    Spagnolo, V.; Vitiello, M. S.; Scamarcio, G.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.

    2007-12-01

    Observation of non-equilibrium optical phonons population associated with electron transport in THz quantum cascade lasers is reported. The phonon occupation number was measured by using a combination of micro-probe photoluminescence and Stokes/Anti-Stokes Raman spectroscopy. Energy balance analysis allows us to estimate the phonon relaxation rate, that superlinearly increases with the electrical power in the range 1.5 W - 1.95 W, above laser threshold. This observation suggests the occurrence of stimulated emission of optical phonons.

  11. Applications of cw quantum cascade laser near 8 μm in gas sensing research

    KAUST Repository

    Sajid, Muhammad Bilal; Farooq, Aamir

    2014-01-01

    Quantum cascade laser based sensors operating near 8 μm to detect H2O2, C2H2, CH4, N2O and H2O are discussed and demonstrated for applications in chemical kinetics, combustion and spectroscopic measurements.

  12. Quantum cascade lasers, systems, and applications in Europe

    Science.gov (United States)

    Lambrecht, Armin

    2005-03-01

    Since the invention of the Quantum Cascade Laser (QCL) a decade ago an impressive progress has been achieved from first low temperature pulsed laser emission to continuous wave operation at room temperature. Distributed feedback (DFB) lasers working in pulsed mode at ambient temperatures and covering a broad spectral range in the mid infrared (MIR) are commercially available now. For many industrial applications e.g. automotive exhaust control and process monitoring, laser spectroscopy is an established technique, generally using near infrared (NIR) diode lasers. However, the mid infrared (MIR) spectral region is of special interest because of much stronger absorption lines compared to NIR. The status of QCL devices, system development and applications is reviewed. Special emphasis is given to the situation in Europe where a remarkable growth of QCL related R&D can be observed.

  13. How periodic are terahertz quantum cascade lasers?

    International Nuclear Information System (INIS)

    Kubis, T; Vogl, P

    2009-01-01

    We apply a novel non-equilibrium Green's function method for open quantum devices to analyze quantum cascade lasers. We find the carrier distribution in typical resonant phonon THz-QCLs to develop a periodicity that differs from the geometric periodicity of the QCL. We propose a design improvement that thermalizes electrons at threshold bias and thereby pins the electron density to the QCL periodicity.

  14. Quantum-cascade lasers in the 7-8 μm spectral range with full top metallization

    Science.gov (United States)

    Kurochkin, A. S.; Babichev, A. V.; Denisov, D. V.; Karachinsky, L. Ya; Novikov, I. I.; Sofronov, A. N.; Firsov, D. A.; Vorobjev, L. E.; Bousseksou, A.; Egorov, A. Yu

    2018-03-01

    The paper demonstrates the generation of multistage quantum-cascade lasers (QCL) in the 7-8 μm spectral range in the pulse generation mode. The active region structure we used is based on a two-phonon resonance scheme. The QCL heterostructure based on a heteropair of In0.53Ga0.47As/Al0.48In0.52As solid alloys was grown by molecular beam epitaxy and includes 50 identical stages. A waveguide geometry with top cladding with full top metallization (surface- plasmon quantum-cascade lasers) has been used. The developed QCLs have demonstrated multimodal generation in the 7-8 μm spectral range in the pulse mode in the 78-250 K temperature range. The threshold current density for a 1.6 mm long laser and a 20 μm ridge width amounted to ˜ 2.8 kA/cm2 at a temperature of 78 К. A temperature increase to 250 K causes a long-wave shift of the wavelength from 7.6 to 7.9 μm and a jth increase to 5.0 kA/cm2.

  15. How periodic are terahertz quantum cascade lasers?

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, T; Vogl, P, E-mail: tillmann.kubis@wsi.tum.d [Walter Schottky Institute, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany)

    2009-11-15

    We apply a novel non-equilibrium Green's function method for open quantum devices to analyze quantum cascade lasers. We find the carrier distribution in typical resonant phonon THz-QCLs to develop a periodicity that differs from the geometric periodicity of the QCL. We propose a design improvement that thermalizes electrons at threshold bias and thereby pins the electron density to the QCL periodicity.

  16. Optical feedback effects on terahertz quantum cascade lasers: modelling and applications

    Science.gov (United States)

    Rakić, Aleksandar D.; Lim, Yah Leng; Taimre, Thomas; Agnew, Gary; Qi, Xiaoqiong; Bertling, Karl; Han, She; Wilson, Stephen J.; Kundu, Iman; Grier, Andrew; Ikonić, Zoran; Valavanis, Alexander; Demić, Aleksandar; Keeley, James; Li, Lianhe H.; Linfield, Edmund H.; Davies, A. Giles; Harrison, Paul; Ferguson, Blake; Walker, Graeme; Prow, Tarl; Indjin, Dragan; Soyer, H. Peter

    2016-11-01

    Terahertz (THz) quantum cascade lasers (QCLs) are compact sources of radiation in the 1-5 THz range with significant potential for applications in sensing and imaging. Laser feedback interferometry (LFI) with THz QCLs is a technique utilizing the sensitivity of the QCL to the radiation reflected back into the laser cavity from an external target. We will discuss modelling techniques and explore the applications of LFI in biological tissue imaging and will show that the confocal nature of the QCL in LFI systems, with their innate capacity for depth sectioning, makes them suitable for skin diagnostics with the well-known advantages of more conventional confocal microscopes. A demonstration of discrimination of neoplasia from healthy tissue using a THz, LFI-based system in the context of melanoma is presented using a transgenic mouse model.

  17. Cascade Pumping of 1.9–3.3 μm Type-I Quantum Well GaSb-Based Diode Lasers

    International Nuclear Information System (INIS)

    Shterengas, Leon; Kipshidze, Gela; Hosoda, Takashi; Liang, Rui; Feng, Tao

    2017-01-01

    Cascade pumping of type-I quantum well gain sections was utilized to increase output power and efficiency of GaSb-based diode lasers operating in spectral region from 1.9 to 3.3 μm. Coated devices with ~100-μm-wide aperture and 3-mm-long cavity demonstrated continuous wave (CW) output power of 1.96 W near 2 μm, 980 mW near 3 μm, 500 mW near 3.18 μm, and 360 mW near 3.25 μm at room temperature. The corresponding narrow ridge lasers with nearly diffraction limited beams operate in CW regime with tens of mW of output power up to 60 °C. Two step shallow/deep narrow/wide ridge waveguide devices showed lower threshold currents and higher slope efficiencies compared to single step narrow ridge lasers. Laterally coupled DFB lasers mounted epi-up generated above 10 mW of tunable single frequency CW power at 20 °C near 3.22 μm.

  18. Terahertz Heterodyne Receiver with an Electron-Heating Mixer and a Heterodyne Based on the Quantum-Cascade Laser

    Science.gov (United States)

    Seliverstov, S. V.; Anfertyev, V. A.; Tretyakov, I. V.; Ozheredov, I. A.; Solyankin, P. M.; Revin, L. S.; Vaks, V. L.; Rusova, A. A.; Goltsman, G. N.; Shkurinov, A. P.

    2017-12-01

    We study characteristics of the laboratory prototype of a terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser. The results obtained demonstrate the possibility to use this receiver as a basis for creation of a high-sensitivity terahertz spectrometer, which can be used in many basic and practical applications. A significant advantage of this receiver will be the possibility of placing the mixer and heterodyne in the same cryostat, which will reduce the device dimensions considerably. The obtained experimental results are analyzed, and methods of optimizing the parameters of the receiver are proposed.

  19. Multipurpose terahertz quantum cascade laser based system for industrial, environmental and meteorological applications

    International Nuclear Information System (INIS)

    Taslakov, M; Simeonov, V; Bergh, H van den

    2008-01-01

    A portable system, based on a pulsed quantum cascade laser (QCL) is developed. The QCL operates at near to ambient temperature in a pulsed mode with relatively long pulse duration in the range of 200 - 500 ns. The system design is flexible, allowing its use for a number of open path or cell-internal applications. Due to the so called fingerprint spectral region, high haze and turbulence immunity and low beam divergence, this system can be used in various applications. The first group includes environmental monitoring of a number of trace gases as CH 4 , NH 3 , CO, O 3 , CO 2 , HNO 3 , hydrocarbons and many others. The meteorological applications include measuring the average humidity and temperature. Industrial surveillance control is another important application. Remote measurement of some physical parameters, as temperature or pressure, as well as for interferometric measurements are also possible. Space resolved study of air turbulence even in fog is another promising application. Security, speed control, open path data transfer and remote readout of information are but a few other real applications of our QCL based portable system

  20. Spectral behavior of a terahertz quantum-cascade laser.

    Science.gov (United States)

    Hensley, J M; Montoya, Juan; Allen, M G; Xu, J; Mahler, L; Tredicucci, A; Beere, H E; Ritchie, D A

    2009-10-26

    In this paper, the spectral behavior of two terahertz (THz) quantum cascade lasers (QCLs) operating both pulsed and cw is characterized using a heterodyne technique. Both lasers emitting around 2.5 THz are combined onto a whisker contact Schottky diode mixer mounted in a corner cube reflector. The resulting difference frequency beatnote is recorded in both the time and frequency domain. From the frequency domain data, we measure the effective laser linewidth and the tuning rates as a function of both temperature and injection current and show that the current tuning behavior cannot be explained by temperature tuning mechanisms alone. From the time domain data, we characterize the intrapulse frequency tuning behavior, which limits the effective linewidth to approximately 5 MHz.

  1. Carrier transport in THz quantum cascade lasers: Are Green's functions necessary?

    International Nuclear Information System (INIS)

    Matyas, A; Jirauschek, C; Kubis, T; Lugli, P

    2009-01-01

    We have applied two different simulation models for the stationary carrier transport and optical gain analysis in resonant phonon depopulation THz Quantum Cascade Lasers (QCLs), based on the semiclassical ensemble Monte Carlo (EMC) and fully quantum mechanical non-equilibrium Green's functions (NEGF) method, respectively. We find in the incoherent regime near and above the threshold current a qualitative and quantitative agreement of both methods. Therefore, we show that THz-QCLs can be successfully optimized utilizing the numerically efficient EMC method.

  2. Mode-locked terahertz quantum cascade laser by direct phase synchronization

    International Nuclear Information System (INIS)

    Maussang, K.; Maysonnave, J.; Jukam, N.; Freeman, J. R.; Cavalié, P.; Dhillon, S. S.; Tignon, J.; Khanna, S. P.; Linfield, E. H.; Davies, A. G.; Beere, H. E.; Ritchie, D. A.

    2013-01-01

    Mode-locking of a terahertz quantum cascade laser is achieved using multimode injection seeding. Contrary to standard methods that rely on gain modulation, here a fixed phase relationship is directly imprinted to the laser modes. In this work, we demonstrate the generation of 9 ps phase mode-locked pulses around 2.75 THz. A direct measurement of the emitted field phase shows that it results from the phase of the initial injection

  3. Thermal Management of Quantum Cascade Lasers in an individually Addressable Array Architecture

    Science.gov (United States)

    2016-02-08

    diode arrays, along with access to both front and rear facets. Hence, both laser and single-pass amplifier arrays can be accommodated. A module was... CW conditions at an emission wavelength of 9 m. OCIS codes: Semiconductor lasers , quantum cascade (140.5965), Laser arrays (140.3290) 1...Rubio, "Active coherent beam combining of diode lasers ," Opt. Lett. 36, 999-1001 (2011). 2. B. G. Saar, K. Creedon, L. Missaggia, C. A. Wang, M. K

  4. Corneal tissue ablation using 6.1 μm quantum cascade laser

    Science.gov (United States)

    Huang, Yong; Kang, Jin U.

    2012-03-01

    High absorption property of tissues in the IR range (λ> 2 μm) results in effective tissue ablation, especially near 3 μm. In the mid-infrared range, wavelengths of 6.1 μm and 6.45 μm fall into the absorption bands of the amide protein groups Amide-I and Amide-II, respectively. They also coincide with the deformation mode of water, which has an absorption peak at 6.1 μm. This coincidence makes 6.1 μm laser a better ablation tool that has promising effectiveness and minimum collateral damages than 3 μm lasers. In this work, we performed bovine corneal ablation test in-vitro using high-power 6.1μm quantum cascade laser (QCL) operated at pulse mode. Quantum cascade laser has the advantages of low cost, compact size and tunable wavelength, which makes it great alternative Mid-IR light source to conventional tunable free-electron lasers (FEL) for medical applications. Preliminary results show that effective corneal stroma craters were achieved with much less collateral damage in corneal tissue that contains less water. Future study will focus on optimizing the control parameters of QCL to attain neat and precise ablation of corneal tissue and development of high peak power QCL.

  5. Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers

    DEFF Research Database (Denmark)

    Liu, Junqiu; Brasch, Victor; Pfeiffer, Martin H. P.

    2016-01-01

    Frequency-comb-assisted diode laser spectroscopy, employing both the accuracy of an optical frequency comb and the broad wavelength tuning range of a tunable diode laser, has been widely used in many applications. In this Letter, we present a novel method using cascaded frequency agile diode lasers......, which allows us to extend the measurement bandwidth to 37.4 THz (1355-1630 nm) at megahertz resolution with scanning speeds above 1 THz/s. It is demonstrated as a useful tool to characterize a broadband spectrum for molecular spectroscopy, and in particular it enables us to characterize the dispersion...

  6. Terahertz GaAs/AlAs quantum-cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Schrottke, L., E-mail: lutz@pdi-berlin.de; Lü, X.; Rozas, G.; Biermann, K.; Grahn, H. T. [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, 10117 Berlin (Germany)

    2016-03-07

    We have realized GaAs/AlAs quantum-cascade lasers operating at 4.75 THz exhibiting more than three times higher wall plug efficiencies than GaAs/Al{sub 0.25}Ga{sub 0.75}As lasers with an almost identical design. At the same time, the threshold current density at 10 K is reduced from about 350 A/cm{sup 2} for the GaAs/Al{sub 0.25}Ga{sub 0.75}As laser to about 120 A/cm{sup 2} for the GaAs/AlAs laser. Substituting AlAs for Al{sub 0.25}Ga{sub 0.75}As barriers leads to a larger energy separation between the subbands reducing the probability for leakage currents through parasitic states and for reabsorption of the laser light. The higher barriers allow for a shift of the quasi-continuum of states to much higher energies. The use of a binary barrier material may also reduce detrimental effects due to the expected composition fluctuations in ternary alloys.

  7. Mid infrared quantum cascade laser operating in pure amplitude modulation for background-free trace gas spectroscopy.

    Science.gov (United States)

    Bidaux, Yves; Bismuto, Alfredo; Patimisco, Pietro; Sampaolo, Angelo; Gresch, Tobias; Strubi, Gregory; Blaser, Stéphane; Tittel, Frank K; Spagnolo, Vincenzo; Muller, Antoine; Faist, Jérôme

    2016-11-14

    We present a single mode multi-section quantum cascade laser source composed of three different sections: master oscillator, gain and phase section. Non-uniform pumping of the QCL's gain reveals that the various laser sections are strongly coupled. Simulations of the electronic and optical properties of the laser (based on the density matrix and scattering matrix formalisms, respectively) were performed and a good agreement with measurements is obtained. In particular, a pure modulation of the laser output power can be achieved. This capability of the device is applied in tunable-laser spectroscopy of N2O where background-free quartz enhanced photo acoustic spectral scans with nearly perfect Voigt line shapes for the selected absorption line are obtained.

  8. Cascaded quadratic soliton compression of high-power femtosecond fiber lasers in Lithium Niobate crystals

    DEFF Research Database (Denmark)

    Bache, Morten; Moses, Jeffrey; Wise, Frank W.

    2008-01-01

    The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs.......The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs....

  9. Extended electrical tuning of quantum cascade lasers with digital concatenated gratings

    Energy Technology Data Exchange (ETDEWEB)

    Slivken, S.; Bandyopadhyay, N.; Bai, Y.; Lu, Q. Y.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu [Center for Quantum Devices, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208 (United States)

    2013-12-02

    In this report, the sampled grating distributed feedback laser architecture is modified with digital concatenated gratings to partially compensate for the wavelength dependence of optical gain in a standard high efficiency quantum cascade laser core. This allows equalization of laser threshold over a wide wavelength range and demonstration of wide electrical tuning. With only two control currents, a full tuning range of 500 nm (236 cm{sup −1}) has been demonstrated. Emission is single mode, with a side mode suppression of >20 dB.

  10. Surface plasmon quantum cascade lasers as terahertz local oscillators.

    Science.gov (United States)

    Hajenius, M; Khosropanah, P; Hovenier, J N; Gao, J R; Klapwijk, T M; Barbieri, S; Dhillon, S; Filloux, P; Sirtori, C; Ritchie, D A; Beere, H E

    2008-02-15

    We characterize a heterodyne receiver based on a surface-plasmon waveguide quantum cascade laser (QCL) emitting at 2.84 THz as a local oscillator, and an NbN hot electron bolometer as a mixer. We find that the envelope of the far-field pattern of the QCL is diffraction-limited and superimposed onto interference fringes, which are similar to those found in narrow double-metal waveguide QCLs. Compared to the latter, a more directional beam allows for better coupling of the radiation power to the mixer. We obtain a receiver noise temperature of 1050 K when the mixer is at 2 K, which, to our knowledge, is the highest sensitivity reported at frequencies beyond 2.5 THz.

  11. Phase-locked, high power, mid-infrared quantum cascade laser arrays

    Science.gov (United States)

    Zhou, W.; Slivken, S.; Razeghi, M.

    2018-04-01

    We demonstrate phase-locked, high power quantum cascade laser arrays, which are combined using a monolithic, tree array multimode interferometer, with emission wavelengths around 4.8 μm. A maximum output power of 15 W was achieved from an eight-element laser array, which has only a slightly higher threshold current density and a similar slope efficiency compared to a Fabry-Perot laser of the same length. Calculated multimode interferometer splitting loss is on the order of 0.27 dB for the in-phase supermode. In-phase supermode operation with nearly ideal behavior is demonstrated over the working current range of the array.

  12. Cascade conical refraction for annular pumping of a vortex Nd:YAG laser and selective excitation of low- and high-order Laguerre–Gaussian modes

    Science.gov (United States)

    Wu, Yongxiao; Wang, Zhongyang; Chen, Sanbin; Shirakwa, Akira; Ueda, Ken-ichi; Li, Jianlang

    2018-05-01

    We proposed an efficient and vortex Nd:YAG laser for selective lasing of low- and high-order vortex modes, in which multiple-ring pump light was originated from cascaded conical refraction of multiple biaxial crystals. In our proof of concept demonstration, we used two-crystal cascade conical refraction to generate two-ring pump light; the mutual intensity ratio and relative separation of the inner ring and outer ring were controlled by rotating the second biaxial crystal and by moving the imaging lens, respectively. As a result, we obtained selective excitation of Laguerre–Gaussian (LG01 and LG03) vortex modes in the end-pump Nd:YAG laser. For LG01-mode output, the laser power reached 439 mW with 52.5% slope efficiency; for LG03-mode output, the laser power reached 160 mW with 41.3% slope efficiency. Our results revealed that the multiple-ring pumping technique based on cascaded conical refraction would pave the way for realization of the efficient and switchable excitation of low- and high-order LG modes in an end-pumped solid-state laser.

  13. Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor

    Science.gov (United States)

    Lewicki, Rafał; Kosterev, Anatoliy A.; Thomazy, David M.; Risby, Terence H.; Solga, Steven; Schwartz, Timothy B.; Tittel, Frank K.

    2011-01-01

    A continuous wave, thermoelectrically cooled, distributed feedback quantum cascade laser (DFB-QCL) based sensor platform for the quantitative detection of ammonia (NH3) concentrations present in exhaled human breath is reported. The NH3 concentration measurements are performed with a 2f wavelength modulation quartz enhanced photoacoustic spectroscopy (QEPAS) technique, which is very well suited for real time breath analysis, due to the fast gas exchange inside a compact QEPAS gas cell. An air-cooled DFB-QCL was designed to target the interference-free NH3 absorption line located at 967.35 cm-1 (λ~10.34 μm). The laser is operated at 17.5 °C, emitting ~ 24 mW of optical power at the selected wavelength. A 1σ minimum detectable concentration of ammonia for the line-locked NH3 sensor is ~ 6 ppb with 1 sec time resolution. The NH3 sensor, packaged in a 12"x14"x10" housing, is currently installed at a medical breath research center in Bethlehem, PA and tested as an instrument for non-invasive verification of liver and kidney disorders based on human breath samples.

  14. Interband cascade light emitting devices based on type-II quantum wells

    International Nuclear Information System (INIS)

    Yang, Rui Q.; Lin, C.H.; Murry, S.J.

    1997-01-01

    The authors discuss physical processes in the newly developed type-II interband cascade light emitting devices, and review their recent progress in the demonstration of the first type-II interband cascade lasers and the observation of interband cascade electroluminescence up to room temperature in a broad mid-infrared wavelength region (extended to 9 μm)

  15. Real-time terahertz imaging through self-mixing in a quantum-cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Wienold, M., E-mail: martin.wienold@dlr.de; Rothbart, N.; Hübers, H.-W. [Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin (Germany); Department of Physics, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin (Germany); Hagelschuer, T. [Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin (Germany); Schrottke, L.; Biermann, K.; Grahn, H. T. [Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e. V., Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2016-07-04

    We report on a fast self-mixing approach for real-time, coherent terahertz imaging based on a quantum-cascade laser and a scanning mirror. Due to a fast deflection of the terahertz beam, images with frame rates up to several Hz are obtained, eventually limited by the mechanical inertia of the employed scanning mirror. A phase modulation technique allows for the separation of the amplitude and phase information without the necessity of parameter fitting routines. We further demonstrate the potential for transmission imaging.

  16. Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser

    NARCIS (Netherlands)

    Baryshev, A.; Hovenier, J.N.; Adam, A.J.L.; Kašalynas, I.; Gao, J.R.; Klaassen, T.O.; Williams, B.S.; Kumar, S.; Hu, Q.; Reno, J.L.

    2006-01-01

    We have studied the phase locking and spectral linewidth of an ? 2.7?THz quantum cascade laser by mixing its two lateral lasing modes. The beat signal at about 8?GHz is compared with a microwave reference by applying conventional phase lock loop circuitry with feedback to the laser bias current.

  17. A novel image encryption algorithm based on synchronized random bit generated in cascade-coupled chaotic semiconductor ring lasers

    Science.gov (United States)

    Li, Jiafu; Xiang, Shuiying; Wang, Haoning; Gong, Junkai; Wen, Aijun

    2018-03-01

    In this paper, a novel image encryption algorithm based on synchronization of physical random bit generated in a cascade-coupled semiconductor ring lasers (CCSRL) system is proposed, and the security analysis is performed. In both transmitter and receiver parts, the CCSRL system is a master-slave configuration consisting of a master semiconductor ring laser (M-SRL) with cross-feedback and a solitary SRL (S-SRL). The proposed image encryption algorithm includes image preprocessing based on conventional chaotic maps, pixel confusion based on control matrix extracted from physical random bit, and pixel diffusion based on random bit stream extracted from physical random bit. Firstly, the preprocessing method is used to eliminate the correlation between adjacent pixels. Secondly, physical random bit with verified randomness is generated based on chaos in the CCSRL system, and is used to simultaneously generate the control matrix and random bit stream. Finally, the control matrix and random bit stream are used for the encryption algorithm in order to change the position and the values of pixels, respectively. Simulation results and security analysis demonstrate that the proposed algorithm is effective and able to resist various typical attacks, and thus is an excellent candidate for secure image communication application.

  18. Applications of quantum cascade lasers in plasma diagnostics: a review

    International Nuclear Information System (INIS)

    Röpcke, J; Lang, N; Davies, P B; Rousseau, A; Welzel, S

    2012-01-01

    Over the past few years mid-infrared absorption spectroscopy based on quantum cascade lasers operating over the region from 3 to 12 µm and called quantum cascade laser absorption spectroscopy or QCLAS has progressed considerably as a powerful diagnostic technique for in situ studies of the fundamental physics and chemistry of molecular plasmas. The increasing interest in processing plasmas containing hydrocarbons, fluorocarbons, nitrogen oxides and organo-silicon compounds has led to further applications of QCLAS because most of these compounds and their decomposition products are infrared active. QCLAS provides a means of determining the absolute concentrations of the ground states of stable and transient molecular species at time resolutions below a microsecond, which is of particular importance for the investigation of reaction kinetics and dynamics. Information about gas temperature and population densities can also be derived from QCLAS measurements. Since plasmas with molecular feed gases are used in many applications such as thin film deposition, semiconductor processing, surface activation and cleaning, and materials and waste treatment, this has stimulated the adaptation of QCLAS techniques to industrial requirements including the development of new diagnostic equipment. The recent availability of external cavity (EC) QCLs offers a further new option for multi-component detection. The aim of this paper is fourfold: (i) to briefly review spectroscopic issues arising from applying pulsed QCLs, (ii) to report on recent achievements in our understanding of molecular phenomena in plasmas and at surfaces, (iii) to describe the current status of industrial process monitoring in the mid-infrared and (iv) to discuss the potential of advanced instrumentation based on EC-QCLs for plasma diagnostics. (topical review)

  19. Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser

    NARCIS (Netherlands)

    Baryshev, A.; Hovenier, J. N.; Adam, A. J. L.; Kašalynas, I.; Gao, J. R.; Klaassen, T. O.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.

    2006-01-01

    We have studied the phase locking and spectral linewidth of an ˜2.7THz quantum cascade laser by mixing its two lateral lasing modes. The beat signal at about 8GHz is compared with a microwave reference by applying conventional phase lock loop circuitry with feedback to the laser bias current. Phase

  20. Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode

    KAUST Repository

    Nasir, Ehson Fawad; Farooq, Aamir

    2016-01-01

    A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm

  1. Interband cascade laser-based ppbv-level mid-infrared methane detection using two digital lock-in amplifier schemes

    Science.gov (United States)

    Song, Fang; Zheng, Chuantao; Yu, Di; Zhou, Yanwen; Yan, Wanhong; Ye, Weilin; Zhang, Yu; Wang, Yiding; Tittel, Frank K.

    2018-03-01

    A parts-per-billion in volume (ppbv) level mid-infrared methane (CH4) sensor system was demonstrated using second-harmonic wavelength modulation spectroscopy (2 f-WMS). A 3291 nm interband cascade laser (ICL) and a multi-pass gas cell (MPGC) with a 16 m optical path length were adopted in the reported sensor system. Two digital lock-in amplifier (DLIA) schemes, a digital signal processor (DSP)-based DLIA and a LabVIEW-based DLIA, were used for harmonic signal extraction. A limit of detection (LoD) of 13.07 ppbv with an averaging time of 2 s was achieved using the DSP-based DLIA and a LoD of 5.84 ppbv was obtained using the LabVIEW-based DLIA with the same averaging time. A rise time of 0→2 parts-per-million in volume (ppmv) and fall time of 2→0 ppmv were observed. Outdoor atmospheric CH4 concentration measurements were carried out to evaluate the sensor performance using the two DLIA schemes.

  2. Fiber-based coherent polarization beam combining with cascaded phase-locking and polarization-transforming controls

    Science.gov (United States)

    Yang, Yan; Geng, Chao; Li, Feng; Huang, Guan; Li, Xinyang

    2018-05-01

    In this paper, the fiber-based coherent polarization beam combining (CPBC) with cascaded phase-locking (PL) and polarization-transforming (PT) controls was proposed to combine imbalanced input beams where the number of the input beams is not binary, in which the PL control was performed using the piezoelectric-ring fiber-optic phase compensator, and the PT control was realized by the dynamic polarization controller, simultaneously. The principle of the proposed CPBC was introduced. The performance of the proposed CPBC was analyzed in comparison with the CPBC based on PL control and the CPBC based on PT control. The basic experiment of CPBC of three laser beams was carried out to validate the feasibility of the proposed CPBC, where cascaded controls of PL and PT were implemented based on stochastic parallel gradient descent algorithm. Simulation and experimental results show that the proposed CPBC incorporates the advantages of the two previous CPBC schemes and performs well in the closed loop. Moreover, the expansibility and the application of the proposed CPBC were validated by scaling the CPBC to combine seven laser beams. We believe that the proposed fiber-based CPBC with cascaded PL and PT controls has great potential in free space optical communications employing the multi-aperture receiver with asymmetric structure.

  3. Cascade generation in Al laser induced plasma

    Science.gov (United States)

    Nagli, Lev; Gaft, Michael; Raichlin, Yosef; Gornushkin, Igor

    2018-05-01

    We found cascade IR generation in Al laser induced plasma. This generation includes doublet transitions 3s 25s 2S1/2 → 3s24p 2P1/2,3/2 → 3s24s 2S1/2; corresponding to strong lines at 2110 and 2117 nm, and much weaker lines at 1312-1315 nm. The 3s25s2S 1/2 starting IR generation level is directly pumped from the 3s23p 2P3/2 ground level. The starting level for UV generation at 396.2 nm (transitions 3s24s 2S1/2 → 4p 2P3/2) is populated due to the fast collisional processes in the plasma plume. These differences led to different time and special dependences on the lasing in the IR and UV spectral range within the aluminum laser induced plasma.

  4. Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays

    International Nuclear Information System (INIS)

    Jiang, Aiting; Jung, Seungyong; Jiang, Yifan; Kim, Jae Hyun; Belkin, Mikhail A.; Vijayraghavan, Karun

    2015-01-01

    We demonstrate a compact monolithic terahertz source continuously tunable from 1.9 THz to 3.9 THz with the maximum peak power output of 106 μW at 3.46 THz at room temperature. The source consists of an array of 10 electrically tunable quantum cascade lasers with intra-cavity terahertz difference-frequency generation. To increase fabrication yield and achieve high THz peak power output in our devices, a dual-section current pumping scheme is implemented using two electrically isolated grating sections to independently control gain for the two mid-IR pumps

  5. Optimizing the active region of interband cascade lasers for passive mode-locking

    Directory of Open Access Journals (Sweden)

    K. Ryczko

    2017-01-01

    Full Text Available The work proposes possible designs of active regions for a mode-locked interband cascade laser emitting in the mid infrared. For that purpose we investigated the electronic structure properties of respectively modified GaSb-based type II W-shaped quantum wells, including the effect of external bias in order to simultaneously fulfil the requirements for both the absorber as well as the gain sections of a device. The results show that introducing multiple InAs layers in type II InAs/GaInSb quantum wells or introducing a tensely-strained GaAsSb layer into “W-shaped” type II QWs offers significant difference in optical transitions’ oscillator strengths (characteristic lifetimes of the two oppositely polarized parts of such a laser, being promising for utilization in mode-locked devices.

  6. Influence of screening on longitudinal-optical phonon scattering in quantum cascade lasers

    International Nuclear Information System (INIS)

    Ezhov, Ivan; Jirauschek, Christian

    2016-01-01

    We theoretically investigate the influence of screening on electron-longitudinal optical phonon scattering in quantum cascade lasers. By employing ensemble Monte Carlo simulations, an advanced screening model based on the random-phase approximation is compared to the more elementary Thomas-Fermi and Debye models. For mid-infrared structures, and to a lesser extent also for terahertz designs, the inclusion of screening is shown to affect the simulated current and optical output power. Furthermore, it is demonstrated that by using the electron temperature rather than the lattice temperature, the Debye model can be significantly improved

  7. Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers

    International Nuclear Information System (INIS)

    Wójcik, Aleksander K.; Belyanin, Alexey; Malara, Pietro; Blanchard, Romain; Mansuripur, Tobias S.; Capasso, Federico

    2013-01-01

    We propose a robust and reliable method of active mode locking of mid-infrared quantum cascade lasers and develop its theoretical description. Its key element is the use of an external ring cavity, which circumvents fundamental issues undermining the stability of mode locking in quantum cascade lasers. We show that active mode locking can give rise to the generation of picosecond pulses and phase-locked frequency combs containing thousands of the ring cavity modes

  8. Fast automotive diesel exhaust measurement using quantum cascade lasers

    Science.gov (United States)

    Herbst, J.; Brunner, R.; Lambrecht, A.

    2013-12-01

    Step by step, US and European legislations enforce the further reduction of atmospheric pollution caused by automotive exhaust emissions. This is pushing automotive development worldwide. Fuel efficient diesel engines with SCRtechnology can impede NO2-emission by reduction with NH3 down to the ppm range. To meet the very low emission limits of the Euro6 resp. US NLEV (National Low Emission Vehicle) regulations, automotive manufacturers have to optimize continuously all phases of engine operation and corresponding catalytic converters. Especially nonstationary operation holds a high potential for optimizing gasoline consumption and further reducing of pollutant emissions. Test equipment has to cope with demanding sensitivity and speed requirements. In the past Fraunhofer IPM has developed a fast emission analyzer called DEGAS (Dynamic Exhaust Gas Analyzer System), based on cryogenically cooled lead salt lasers. These systems have been used at Volkswagen AG`s test benches for a decade. Recently, IPM has developed DEGAS-Next which is based on cw quantum cascade lasers and thermoelectrically cooled detectors. The system is capable to measure three gas components (i.e. NO, NO2, NH3) in two channels with a time resolution of 20 ms and 1 ppm detection limits. We shall present test data and a comparison with fast FTIR measurements.

  9. Carrier transport in THz quantum cascade lasers: Are Green's functions necessary?

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, A; Jirauschek, C [Emmy Noether Research Group ' Modeling of Quantum Cascade Devices' , TU Muenchen, D-80333 Muenchen (Germany); Kubis, T [Walter Schottky Institute, TU Muenchen, D-85748 Garching (Germany); Lugli, P, E-mail: alparmat@mytum.d [Institute of Nanoelectronics, TU Muenchen, D-80333 Muenchen (Germany)

    2009-11-15

    We have applied two different simulation models for the stationary carrier transport and optical gain analysis in resonant phonon depopulation THz Quantum Cascade Lasers (QCLs), based on the semiclassical ensemble Monte Carlo (EMC) and fully quantum mechanical non-equilibrium Green's functions (NEGF) method, respectively. We find in the incoherent regime near and above the threshold current a qualitative and quantitative agreement of both methods. Therefore, we show that THz-QCLs can be successfully optimized utilizing the numerically efficient EMC method.

  10. Defence and security applications of quantum cascade lasers

    Science.gov (United States)

    Grasso, Robert J.

    2016-09-01

    Quantum Cascade Lasers (QCL) have seen tremendous recent application in the realm of Defence and Security. And, in many instances replacing traditional solid state lasers as the source of choice for Countermeasures, Remote Sensing, In-situ Sensing, Through-Barrier Sensing, and many others. Following their development and demonstration in the early 1990's, QCL's reached some maturity and specific defence and security application prior to 2005; with much initial development fostered by DARPA initiatives in the US, dstl, MoD, and EOARD funding initiatives in the UK, and University level R&D such as those by Prof Manijeh Razeghi at Northwestern University [1], and Prof Ted Masselink at Humboldt University [2]. As QCL's provide direct mid-IR laser output for electrical input, they demonstrate high quantum efficiency compared with diode pumped solid state lasers with optical parametric oscillators (OPOs) to generate mid-Infrared output. One particular advantage of QCL's is their very broad operational bandwidth, extending from the terahertz to the near-infrared spectral regions. Defence and Security areas benefiting from QCL's include: Countermeasures, Remote Sensing, Through-the-Wall Sensing, and Explosive Detection. All information used to construct this paper obtained from open sources.

  11. Enhancing the sensitivity of mid-IR quantum cascade laser-based cavity-enhanced absorption spectroscopy using RF current perturbation.

    Science.gov (United States)

    Manfred, Katherine M; Kirkbride, James M R; Ciaffoni, Luca; Peverall, Robert; Ritchie, Grant A D

    2014-12-15

    The sensitivity of mid-IR quantum cascade laser (QCL) off-axis cavity-enhanced absorption spectroscopy (CEAS), often limited by cavity mode structure and diffraction losses, was enhanced by applying a broadband RF noise to the laser current. A pump-probe measurement demonstrated that the addition of bandwidth-limited white noise effectively increased the laser linewidth, thereby reducing mode structure associated with CEAS. The broadband noise source offers a more sensitive, more robust alternative to applying single-frequency noise to the laser. Analysis of CEAS measurements of a CO(2) absorption feature at 1890  cm(-1) averaged over 100 ms yielded a minimum detectable absorption of 5.5×10(-3)  Hz(-1/2) in the presence of broadband RF perturbation, nearly a tenfold improvement over the unperturbed regime. The short acquisition time makes this technique suitable for breath applications requiring breath-by-breath gas concentration information.

  12. An experimental study of noise in mid-infrared quantum cascade lasers of different designs

    Science.gov (United States)

    Schilt, Stéphane; Tombez, Lionel; Tardy, Camille; Bismuto, Alfredo; Blaser, Stéphane; Maulini, Richard; Terazzi, Romain; Rochat, Michel; Südmeyer, Thomas

    2015-04-01

    We present an experimental study of noise in mid-infrared quantum cascade lasers (QCLs) of different designs. By quantifying the high degree of correlation occurring between fluctuations of the optical frequency and voltage between the QCL terminals, we show that electrical noise is a powerful and simple mean to study noise in QCLs. Based on this outcome, we investigated the electrical noise in a large set of 22 QCLs emitting in the range of 7.6-8 μm and consisting of both ridge-waveguide and buried-heterostructure (BH) lasers with different geometrical designs and operation parameters. From a statistical data processing based on an analysis of variance, we assessed that ridge-waveguide lasers have a lower noise than BH lasers. Our physical interpretation is that additional current leakages or spare injection channels occur at the interface between the active region and the lateral insulator in the BH geometry, which induces some extra noise. In addition, Schottky-type contacts occurring at the interface between the n-doped regions and the lateral insulator, i.e., iron-doped InP, are also believed to be a potential source of additional noise in some BH lasers, as observed from the slight reduction in the integrated voltage noise observed at the laser threshold in several BH-QCLs.

  13. Slowdown of group velocity of light in dual-frequency laser-pumped cascade structure of Er3+-doped optical fiber at room temperature

    Science.gov (United States)

    Qiu, Wei; Yang, Yujing; Gao, Yuan; Liu, Jianjun; Lv, Pin; Jiang, Qiuli

    2018-04-01

    Slow light is demonstrated in the cascade structure of an erbium-doped fiber with two forward propagation pumps. The results of the numerical simulation of the time delay and the optimum modulation frequency complement each other. The time delay and the optimum modulation frequency depend on the pump ratio G (G  =  {{P}1480}:{{P}980} ). The discussion results of this paper show that a larger time delay of slow light propagation can be obtained in the cascade structure of Er3+-doped optical fibers with dual-frequency laser pumping. Compared to previous research methods, the dual-frequency laser-pumped cascade structure of an Er3+-doped optical fiber is more controllable. Based on our discussion the pump ratio G should be selected in order to obtain a more appropriate time delay and the slowdown of group velocity.

  14. Frequency Locking and Monitoring Based on Bi-directional Terahertz Radiation of a 3rd-Order Distributed Feedback Quantum Cascade Laser

    NARCIS (Netherlands)

    Van Marrewijk, N.; Mirzaei, B.; Hayton, D.; Gao, J.R.; Kao, T.Y.; Hu, Q.; Reno, J.L.

    2015-01-01

    We have performed frequency locking of a dual, forward reverse emitting third-order distributed feedback quantum cascade laser (QCL) at 3.5 THz. By using both directions of THz emission in combination with two gas cells and two power detectors, we can for the first time perform frequency

  15. Optimizing optical nonlinearities in GaInAs/AlInAs quantum cascade lasers

    Directory of Open Access Journals (Sweden)

    Gajić Aleksandra D.

    2014-01-01

    Full Text Available Regardless of the huge advances made in the design and fabrication of mid-infrared and terahertz quantum cascade lasers, success in accessing the ~3-4 mm region of the electromagnetic spectrum has remained limited. This fact has brought about the need to exploit resonant intersubband transitions as powerful nonlinear oscillators, consequently enabling the occurrence of large nonlinear optical susceptibilities as a means of reaching desired wavelengths. In this work, we present a computational model developed for the optimization of second-order optical nonlinearities in In0.53Ga0.47As/Al0.48In0.52As quantum cascade laser structures based on the implementation of the Genetic algorithm. The carrier transport and the power output of the structure were calculated by self-consistent solutions to the system of rate equations for carriers and photons. Both stimulated and simultaneous double-photon absorption processes occurring between the second harmonic generation-relevant levels are incorporated into rate equations and the material-dependent effective mass and band non-parabolicity are taken into account, as well. The developed method is quite general and can be applied to any higher order effect which requires the inclusion of the photon density equation. [Projekat Ministarstva nauke Republike Srbije, br. III 45010

  16. Sub-nanometrically resolved chemical mappings of quantum-cascade laser active regions

    International Nuclear Information System (INIS)

    Pantzas, Konstantinos; Beaudoin, Grégoire; Patriarche, Gilles; Largeau, Ludovic; Mauguin, Olivia; Sagnes, Isabelle; Pegolotti, Giulia; Vasanelli, Angela; Calvar, Ariane; Amanti, Maria; Sirtori, Carlo

    2016-01-01

    A procedure that produces sub-nanometrically resolved chemical mappings of MOCVD-grown InGaAs/InAlAs/InP quantum cascade lasers is presented. The chemical mappings reveal that, although the structure is lattice-matched to InP, the InAlAs barriers do not attain the nominal aluminum content—48%—and are, in fact, InGaAlAs quaternaries. This information is used to adjust the aluminum precursor flow and fine-tune the composition of the barriers, resulting in a significant improvement of the fabricated lasers. (paper)

  17. External amplitude and frequency modulation of a terahertz quantum cascade laser using metamaterial/graphene devices.

    Science.gov (United States)

    Kindness, S J; Jessop, D S; Wei, B; Wallis, R; Kamboj, V S; Xiao, L; Ren, Y; Braeuninger-Weimer, P; Aria, A I; Hofmann, S; Beere, H E; Ritchie, D A; Degl'Innocenti, R

    2017-08-09

    Active control of the amplitude and frequency of terahertz sources is an essential prerequisite for exploiting a myriad of terahertz applications in imaging, spectroscopy, and communications. Here we present a optoelectronic, external modulation technique applied to a terahertz quantum cascade laser which holds the promise of addressing a number of important challenges in this research area. A hybrid metamaterial/graphene device is implemented into an external cavity set-up allowing for optoelectronic tuning of feedback into a quantum cascade laser. We demonstrate powerful, all-electronic, control over the amplitude and frequency of the laser output. Full laser switching is performed by electrostatic gating of the metamaterial/graphene device, demonstrating a modulation depth of 100%. External control of the emission spectrum is also achieved, highlighting the flexibility of this feedback method. By taking advantage of the frequency dispersive reflectivity of the metamaterial array, different modes of the QCL output are selectively suppressed using lithographic tuning and single mode operation of the multi-mode laser is enforced. Side mode suppression is electrically modulated from ~6 dB to ~21 dB, demonstrating active, optoelectronic modulation of the laser frequency content between multi-mode and single mode operation.

  18. Stable Single-Mode Operation of Distributed Feedback Quantum Cascade Laser by Optimized Reflectivity Facet Coatings

    Science.gov (United States)

    Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo

    2018-02-01

    In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al2O3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.

  19. An experimental study of noise in midinfrared quantum cascade lasers of different designs

    OpenAIRE

    Schilt, Stéphane; Tombez, Lionel; Tardy, Camille; Bismuto, Alfredo; Blaser, Stéphane; Maulini, Richard; Terazzi, Romain; Rochat, Michel; Südmeyer, Thomas

    2015-01-01

    We present an experimental study of noise in mid-infrared quantum cascade lasers (QCLs) of differ-ent designs. By quantifying the high degree of correlation occurring between fluctuations of the optical frequency and voltage between the QCL terminals, we show that electrical noise is a powerful and simple mean to study noise in QCLs. Based on this outcome, we investigated the electrical noise in a large set of 22 QCLs emitting in the range of 7.6–8 μm and consisting of both ridge-waveguide and...

  20. Passive mode-locking of 3.25μm GaSb-based type-I quantum-well cascade diode lasers

    Science.gov (United States)

    Feng, Tao; Shterengas, Leon; Kipshidze, Gela; Hosoda, Takashi; Wang, Meng; Belenky, Gregory

    2018-02-01

    Passively mode-locked type-I quantum well cascade diode lasers emitting in the methane absorption band near 3.25 μm were designed, fabricated and characterized. The deep etched 5.5-μm-wide single spatial mode ridge waveguide design utilizing split-contact architecture was implemented. The devices with absorber to gain section length ratios of 11% and 5.5% were studied. Lasers with the longer absorber section ( 300 μm) generated smooth bell-shape-like emission spectrum with about 30 lasing modes at full-width-at-half-maximum level. Devices with reverse biased absorber section demonstrated stable radio frequency beat with nearly perfect Lorentzian shape over four orders of magnitude of intensity. The estimated pulse-to-pulse timing jitter was about 110 fs/cycle. Laser generated average power of more than 1 mW in mode-locked regime.

  1. A Study of Residual Amplitude Modulation Suppression in Injection Locked Quantum Cascade Lasers Based on a Simplified Rate Equation Model

    International Nuclear Information System (INIS)

    Webb, J F; Yong, K S C; Haldar, M K

    2015-01-01

    Using results that come out of a simplified rate equation model, the suppression of residual amplitude modulation in injection locked quantum cascade lasers with the master laser modulated by its drive current is investigated. Quasi-static and dynamic expressions for intensity modulation are used. The suppression peaks at a specific value of the injection ratio for a given detuning and linewidth enhancement factor. The intensity modulation suppression remains constant over a range of frequencies. The effects of injection ratio, detuning, coupling efficiency and linewidth enhancement factor are considered. (paper)

  2. Laterally coupled distributed feedback type-I quantum well cascade diode lasers emitting near 3.22  μm.

    Science.gov (United States)

    Feng, Tao; Hosoda, Takashi; Shterengas, Leon; Kipshidze, Gela; Stein, Aaron; Lu, Ming; Belenky, Gregory

    2017-11-01

    The laterally coupled distributed feedback (LC-DFB) GaSb-based type-I quantum well cascade diode lasers using the second- and the sixth-order gratings to stabilize the output spectrum near 3.22 μm were designed and fabricated. The laser heterostructure contained three cascades. The devices were manufactured using a single dry etching step defining the ∼5-μm-wide ridge with ∼5-μm-wide gratings sections adjacent to the ridge sides. The grating coupling coefficients were estimated to be about 1  cm -1 . The stability of the single-frequency operation was ensured by alignment of the DFB mode to the relatively wide gain peak. The 2-mm-long second-order LC-DFB lasers generated above 10 mW of continuous-wave (CW) output power at 20°C in epi-side-up configuration and demonstrated power conversion efficiency above 2%. The sixth-order LC-DFB lasers showed lower efficiency but still generated several milliwatts of CW output power. The devices demonstrated a CW current tuning range of about 3.5 nm at the temperature of 20°C.

  3. Design of three-well indirect pumping terahertz quantum cascade lasers for high optical gain based on nonequilibrium Green's function analysis

    Science.gov (United States)

    Liu, Tao; Kubis, Tillmann; Jie Wang, Qi; Klimeck, Gerhard

    2012-03-01

    The nonequilibrium Green's function approach is applied to the design of three-well indirect pumping terahertz (THz) quantum cascade lasers (QCLs) based on a resonant phonon depopulation scheme. The effects of the anticrossing of the injector states and the dipole matrix element of the laser levels on the optical gain of THz QCLs are studied. The results show that a design that results in a more pronounced anticrossing of the injector states will achieve a higher optical gain in the indirect pumping scheme compared to the traditional resonant-tunneling injection scheme. This offers in general a more efficient coherent resonant-tunneling transport of electrons in the indirect pumping scheme. It is also shown that, for operating temperatures below 200 K and low lasing frequencies, larger dipole matrix elements, i.e., vertical optical transitions, offer a higher optical gain. In contrast, in the case of high lasing frequencies, smaller dipole matrix elements, i.e., diagonal optical transitions are better for achieving a higher optical gain.

  4. Mode structure of a quantum cascade laser

    Science.gov (United States)

    Bogdanov, A. A.; Suris, R. A.

    2011-03-01

    We analyze the mode structure of a quantum cascade laser (QCL) cavity considering the surface plasmon-polariton modes and familiar modes of hollow resonator jointly, within a single model. We present a comprehensive mode structure analysis of the laser cavity, varying its geometric parameters and free electron concentration inside cavity layers within a wide range. Our analysis covers, in particular, the cases of metal-insulator-metal and insulator-metal-insulator waveguides. We discuss the phenomenon of negative dispersion for eigenmodes in detail and explain the nature of this phenomenon. We specify a waveguide parameters domain in which negative dispersion exists. The mode structure of QCL cavity is considered in the case of the anisotropic electrical properties of the waveguide materials. We show that anisotropy of the waveguide core results in propagation of Langmuir modes that are degenerated in the case of the isotropic core. Comparative analysis of optical losses due to free carrier absorption is presented for different modes within the frequency range from terahertz to ultraviolet frequencies.

  5. Genetic algorithm based separation cascade optimization

    International Nuclear Information System (INIS)

    Mahendra, A.K.; Sanyal, A.; Gouthaman, G.; Bera, T.K.

    2008-01-01

    The conventional separation cascade design procedure does not give an optimum design because of squaring-off, variation of flow rates and separation factor of the element with respect to stage location. Multi-component isotope separation further complicates the design procedure. Cascade design can be stated as a constrained multi-objective optimization. Cascade's expectation from the separating element is multi-objective i.e. overall separation factor, cut, optimum feed and separative power. Decision maker may aspire for more comprehensive multi-objective goals where optimization of cascade is coupled with the exploration of separating element optimization vector space. In real life there are many issues which make it important to understand the decision maker's perception of cost-quality-speed trade-off and consistency of preferences. Genetic algorithm (GA) is one such evolutionary technique that can be used for cascade design optimization. This paper addresses various issues involved in the GA based multi-objective optimization of the separation cascade. Reference point based optimization methodology with GA based Pareto optimality concept for separation cascade was found pragmatic and promising. This method should be explored, tested, examined and further developed for binary as well as multi-component separations. (author)

  6. Energy cascading in the beat-wave accelerator

    International Nuclear Information System (INIS)

    McKinstrie, C.J.; Batha, S.H.

    1987-01-01

    A review is given of energy cascading in the beat-wave accelerator. The properties of the electromagnetic cascade and the corresponding plasma-wave evolution are well understood within the framework of an approximate analytic model. Based on this model, idealized laser-plasma coupling efficiencies of the order of 10% do not seem unreasonable. 28 refs

  7. High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm

    International Nuclear Information System (INIS)

    Lu, Q. Y.; Razeghi, M.; Slivken, S.; Bandyopadhyay, N.; Bai, Y.; Zhou, W. J.; Chen, M.; Heydari, D.; Haddadi, A.; McClintock, R.; Amanti, M.; Sirtori, C.

    2015-01-01

    We investigate a frequency comb source based on a mid-infrared quantum cascade laser at λ ∼ 9 μm with high power output. A broad flat-top gain with near-zero group velocity dispersion has been engineered using a dual-core active region structure. This favors the locking of the dispersed Fabry-Pérot modes into equally spaced frequency lines via four wave mixing. A current range with a narrow intermode beating linewidth of 3 kHz is identified with a fast detector and spectrum analyzer. This range corresponds to a broad spectral coverage of 65 cm −1 and a high power output of 180 mW for ∼176 comb modes

  8. Investigations of the polarization behavior of quantum cascade lasers by Stokes parameters.

    Science.gov (United States)

    Janassek, Patrick; Hartmann, Sébastien; Molitor, Andreas; Michel, Florian; Elsäßer, Wolfgang

    2016-01-15

    We experimentally investigate the full polarization behavior of mid-infrared emitting quantum cascade lasers (QCLs) in terms of measuring the complete Stokes parameters, instead of only projecting them on a linear polarization basis. We demonstrate that besides the pre-dominant linear TM polarization of the emitted light as governed by the selection rules of the intersubband transition, small non-TM contributions, e.g., circularly polarized light, are present reflecting the birefringent behavior of the semiconductor quantum well waveguide. Surprisingly unique is the persistence of these polarization properties well below laser threshold. These investigations give further insight into understanding, manipulating, and exploiting the polarization properties of QCLs, both from a laser point of view and with respect toward applications.

  9. Cascaded-focus laser writing of low-loss waveguides in polymers.

    Science.gov (United States)

    Pätzold, Welm M; Reinhardt, Carsten; Demircan, Ayhan; Morgner, Uwe

    2016-03-15

    Waveguide writing in poly (methyl methacrylate) (PMMA) with femtosecond laser radiation is presented. An adequate refractive index change is induced in the border area below the irradiated focal volume. It supports an almost symmetric fundamental mode with propagation losses down to 0.5  dB/cm, the lowest losses observed so far in this class of materials. The writing process with a cascaded focus is demonstrated to be highly reliable over a large parameter range.

  10. Quantum-cascade laser photoacoustic detection of methane emitted from natural gas powered engines

    Science.gov (United States)

    Rocha, M. V.; Sthel, M. S.; Silva, M. G.; Paiva, L. B.; Pinheiro, F. W.; Miklòs, A.; Vargas, H.

    2012-03-01

    In this work we present a laser photoacoustic arrangement for the detection of the important greenhouse gas methane. A quantum-cascade laser and a differential photoacoustic cell were employed. A detection limit of 45 ppbv in nitrogen was achieved as well as a great selectivity. The same methodology was also tested in the detection of methane issued from natural gas powered vehicles (VNG) in Brazil, which demonstrates the excellent potential of this arrangement for greenhouse gas detection emitted from real sources.

  11. Terahertz Quantum Cascade Laser With Efficient Coupling and Beam Profile

    Science.gov (United States)

    Chattopadhyay, Goutam; Kawamura, Jonathan H.; Lin, Robert H.; Williams, Benjamin

    2012-01-01

    Quantum cascade lasers (QCLs) are unipolar semiconductor lasers, where the wavelength of emitted radiation is determined by the engineering of quantum states within the conduction band in coupled multiple-quantum-well heterostructures to have the desired energy separation. The recent development of terahertz QCLs has provided a new generation of solid-state sources for radiation in the terahertz frequency range. Terahertz QCLs have been demonstrated from 0.84 to 5.0 THz both in pulsed mode and continuous wave mode (CW mode). The approach employs a resonant-phonon depopulation concept. The metal-metal (MM) waveguide fabrication is performed using Cu-Cu thermo-compression bonding to bond the GaAs/AlGaAs epitaxial layer to a GaAs receptor wafer.

  12. Double cascade erbium fiber laser at 1.7 µm, 2.7 µm, and 1.6 µm

    NARCIS (Netherlands)

    Schneider, J.; Frerichs, Ch.; Carbonnier, C.; Unrau, U.B.; Pollnau, Markus; Lüthy, W.; Weber, H.P.

    The output power of the erbium laser at 2.7 um (4I11/2 -> 4I13/2) is enhanced due to simultaneous laser action at 1.7 um (4S3/2 -> 4I9/2) and 1.6 um (4I13/2 -> 4I15/2) in an Er3+-doped fluorozirconate fiber. The laser cascade overwhelms the saturation effect for the transition at 2.7 um by

  13. High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Q. Y.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu; Slivken, S.; Bandyopadhyay, N.; Bai, Y.; Zhou, W. J.; Chen, M.; Heydari, D.; Haddadi, A.; McClintock, R. [Center for Quantum Devices, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208 (United States); Amanti, M.; Sirtori, C. [Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot and CNRS, UMR7162, 75205 Paris (France)

    2015-02-02

    We investigate a frequency comb source based on a mid-infrared quantum cascade laser at λ ∼ 9 μm with high power output. A broad flat-top gain with near-zero group velocity dispersion has been engineered using a dual-core active region structure. This favors the locking of the dispersed Fabry-Pérot modes into equally spaced frequency lines via four wave mixing. A current range with a narrow intermode beating linewidth of 3 kHz is identified with a fast detector and spectrum analyzer. This range corresponds to a broad spectral coverage of 65 cm{sup −1} and a high power output of 180 mW for ∼176 comb modes.

  14. Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation.

    Science.gov (United States)

    Consolino, Luigi; Jung, Seungyong; Campa, Annamaria; De Regis, Michele; Pal, Shovon; Kim, Jae Hyun; Fujita, Kazuue; Ito, Akio; Hitaka, Masahiro; Bartalini, Saverio; De Natale, Paolo; Belkin, Mikhail A; Vitiello, Miriam Serena

    2017-09-01

    Terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers (THz DFG-QCLs) have recently emerged as the first monolithic electrically pumped semiconductor sources capable of operating at room temperature across the 1- to 6-THz range. Despite tremendous progress in power output, which now exceeds 1 mW in pulsed and 10 μW in continuous-wave regimes at room temperature, knowledge of the major figure of merits of these devices for high-precision spectroscopy, such as spectral purity and absolute frequency tunability, is still lacking. By exploiting a metrological grade system comprising a terahertz frequency comb synthesizer, we measure, for the first time, the free-running emission linewidth (LW), the tuning characteristics, and the absolute center frequency of individual emission lines of these sources with an uncertainty of 4 × 10 -10 . The unveiled emission LW (400 kHz at 1-ms integration time) indicates that DFG-QCLs are well suited to operate as local oscillators and to be used for a variety of metrological, spectroscopic, communication, and imaging applications that require narrow-LW THz sources.

  15. Femtosecond laser writing of a flat-top interleaver via cascaded Mach-Zehnder interferometers.

    Science.gov (United States)

    Ng, Jason C; Li, Chengbo; Herman, Peter R; Qian, Li

    2012-07-30

    A flat-top interleaver consisting of cascaded Mach-Zehnder interferometers (MZIs) was fabricated in bulk glass by femtosecond laser direct writing. Spectral contrast ratios of greater than 15 dB were demonstrated over a 30 nm bandwidth for 3 nm channel spacing. The observed spectral response agreed well with a standard transfer matrix model generated from responses of individual optical components, demonstrating the possibility for multi-component optical design as well as sufficient process accuracy and fabrication consistency for femtosecond laser writing of advanced optical circuits in three dimensions.

  16. Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy.

    Science.gov (United States)

    Pfeifer, Marcel; Ruf, Alexander; Fischer, Peer

    2013-11-04

    We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated.

  17. Advances in quantum cascade lasers for security and crime-fighting

    Science.gov (United States)

    Normand, Erwan L.; Stokes, Robert J.; Hay, Kenneth; Foulger, Brian; Lewis, Colin

    2010-10-01

    Advances in the application of Quantum Cascade Lasers (QCL) to trace gas detection will be presented. The solution is real time (~1 μsec per scan), is insensitive to turbulence and vibration, and performs multiple measurements in one sweep. The QCL provides a large dynamic range, which is a linear response from ppt to % level. The concentration can be derived with excellent immunity from cross interference. Point sensing sensors developed by Cascade for home made and commercial explosives operate by monitoring key constituents in real time and matching this to a spatial event (i.e. sniffer device placed close to an object or person walking through portal (overt or covert). Programmable signature detection capability allows for detection of multiple chemical compounds along the most likely array of explosive chemical formulation. The advantages of configuration as "point sensing" or "stand off" will be discussed. In addition to explosives this method is highly applicable to the detection of mobile drugs labs through volatile chemical release.

  18. Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters

    Energy Technology Data Exchange (ETDEWEB)

    Bidaux, Yves, E-mail: yves.bidaux@alpeslasers.ch [Alpes Lasers SA, 1-3 Passsage Max Meuron, CH-2001 Neuchâtel (Switzerland); Institute for Quantum Electronics, ETH-Zurich, CH-8093 Zurich (Switzerland); Bismuto, Alfredo, E-mail: alfredo.bismuto@alpeslasers.ch; Tardy, Camille; Terazzi, Romain; Gresch, Tobias; Blaser, Stéphane; Muller, Antoine [Alpes Lasers SA, 1-3 Passsage Max Meuron, CH-2001 Neuchâtel (Switzerland); Faist, Jerome [Institute for Quantum Electronics, ETH-Zurich, CH-8093 Zurich (Switzerland)

    2015-11-30

    In this work, we demonstrate broad electrical tuning of quantum cascade lasers at 9.25 μm, 8.5 μm, and 4.4 μm in continuous wave operation using Vernier-effect distributed Bragg reflectors based on superstructure gratings. Integrated micro-heaters allow to switch from one Vernier channel to the other, while predictable and mode-hop free tuning can be obtained in each channel modulating the laser current with a side mode suppression ratio as high as 30 dB. The resulting device behaves effectively as a switchable multicolour tunable source. Tuning up to 6.5% of the central wavelength is observed. To prove the importance of the developed devices for high resolution molecular spectroscopy, a N{sub 2}O absorption spectrum has been measured.

  19. All passive architecture for high efficiency cascaded Raman conversion

    Science.gov (United States)

    Balaswamy, V.; Arun, S.; Chayran, G.; Supradeepa, V. R.

    2018-02-01

    Cascaded Raman fiber lasers have offered a convenient method to obtain scalable, high-power sources at various wavelength regions inaccessible with rare-earth doped fiber lasers. A limitation previously was the reduced efficiency of these lasers. Recently, new architectures have been proposed to enhance efficiency, but this came at the cost of enhanced complexity, requiring an additional low-power, cascaded Raman laser. In this work, we overcome this with a new, all-passive architecture for high-efficiency cascaded Raman conversion. We demonstrate our architecture with a fifth-order cascaded Raman converter from 1117nm to 1480nm with output power of ~64W and efficiency of 60%.

  20. Ammonia detection using hollow waveguide enhanced laser absorption spectroscopy based on a 9.56 μm quantum cascade laser

    Science.gov (United States)

    Li, Jinyi; Yang, Sen; Wang, Ruixue; Du, Zhenhui; Wei, Yingying

    2017-10-01

    Ammonia (NH3) is the most abundant alkalescency trace gas in the atmosphere having a foul odor, which is produced by both natural and anthropogenic sources. Chinese Emission Standard for Odor Pollutants has listed NH3 as one of the eight malodorous pollutants since 1993, specifying the emission concentration less than 1 mg/m3 (1.44ppmv). NH3 detection continuously from ppb to ppm levels is significant for protection of environmental atmosphere and safety of industrial and agricultural production. Tunable laser absorption spectroscopy (TLAS) is an increasingly important optical method for trace gas detection. TLAS do not require pretreatment and accumulation of the concentration of the analyzed sample, unlike, for example, more conventional methods such as mass spectrometry or gas chromatography. In addition, TLAS can provide high precision remote sensing capabilities, high sensitivities and fast response. Hollow waveguide (HWG) has recently emerged as a novel concept serving as an efficient optical waveguide and as a highly miniaturized gas cell. Among the main advantages of HWG gas cell compared with conventional multi-pass gas cells is the considerably decreased sample which facilitates gas exchanging. An ammonia sensor based on TLAS using a 5m HWG as the gas cell is report here. A 9.56μm, continuous-wave, distributed feed-back (DFB), room temperature quantum cascade laser (QCL), is employed as the optical source. The interference-free NH3 absorption line located at 1046.4cm-1 (λ 9556.6nm) is selected for detection by analyzing absorption spectrum from 1045-1047 cm-1 within the ν2 fundamental absorption band of ammonia. Direct absorption spectroscopy (DAS) technique is utilized and the measured spectral line is fitted by a simulation model by HITRAN database to obtain the NH3 concentration. The sensor performance is tested with standard gas and the result shows a 1σ minimum detectable concentration of ammonia is about 200 ppb with 1 sec time resolution

  1. Continuous wave power scaling in high power broad area quantum cascade lasers

    Science.gov (United States)

    Suttinger, M.; Leshin, J.; Go, R.; Figueiredo, P.; Shu, H.; Lyakh, A.

    2018-02-01

    Experimental and model results for high power broad area quantum cascade lasers are presented. Continuous wave power scaling from 1.62 W to 2.34 W has been experimentally demonstrated for 3.15 mm-long, high reflection-coated 5.6 μm quantum cascade lasers with 15 stage active region for active region width increased from 10 μm to 20 μm. A semi-empirical model for broad area devices operating in continuous wave mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sub-linearity of pulsed power vs current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall plug efficiency can be achieved from 3.15 mm x 25 μm devices with 21 stages of the same design but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300Å, pulsed roll-over current density of 6 kA/cm2 , and InGaAs waveguide layers; optical power increase of 41% is projected. Finally, the model projects that power level can be increased to 4.5 W from 3.15 mm × 31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.

  2. Common mode frequency instability in internally phase-locked terahertz quantum cascade lasers.

    Science.gov (United States)

    Wanke, M C; Grine, A D; Fuller, C T; Nordquist, C D; Cich, M J; Reno, J L; Lee, Mark

    2011-11-21

    Feedback from a diode mixer integrated into a 2.8 THz quantum cascade laser (QCL) was used to phase lock the difference frequencies (DFs) among the Fabry-Perot (F-P) longitudinal modes of a QCL. Approximately 40% of the DF power was phase locked, consistent with feedback loop bandwidth of 10 kHz and phase noise bandwidth ~0.5 MHz. While the locked DF signal has ≤ 1 Hz linewidth and negligible drift over ~30 min, mixing measurements between two QCLs and between a QCL and molecular gas laser show that the common mode frequency stability is no better than a free-running QCL. © 2011 Optical Society of America

  3. Room temperature negative differential resistance in terahertz quantum cascade laser structures

    Energy Technology Data Exchange (ETDEWEB)

    Albo, Asaf, E-mail: asafalbo@gmail.com; Hu, Qing [Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Reno, John L. [Center for Integrated Nanotechnologies, Sandia National Laboratories, MS 1303, Albuquerque, New Mexico 87185-1303 (United States)

    2016-08-22

    The mechanisms that limit the temperature performance of GaAs/Al{sub 0.15}GaAs-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated LO-phonon scattering and leakage of charge carriers into the continuum. Consequently, the combination of highly diagonal optical transition and higher barriers should significantly reduce the adverse effects of both mechanisms and lead to improved temperature performance. Here, we study the temperature performance of highly diagonal THz-QCLs with high barriers. Our analysis uncovers an additional leakage channel which is the thermal excitation of carriers into bounded higher energy levels, rather than the escape into the continuum. Based on this understanding, we have designed a structure with an increased intersubband spacing between the upper lasing level and excited states in a highly diagonal THz-QCL, which exhibits negative differential resistance even at room temperature. This result is a strong evidence for the effective suppression of the aforementioned leakage channel.

  4. An external-cavity quantum cascade laser operating near 5.2 µm combined with cavity ring-down spectroscopy for multi-component chemical sensing

    Science.gov (United States)

    Dutta Banik, Gourab; Maity, Abhijit; Som, Suman; Pal, Mithun; Pradhan, Manik

    2018-04-01

    We report on the performance of a widely tunable continuous wave mode-hop-free external-cavity quantum cascade laser operating at λ ~ 5.2 µm combined with cavity ring-down spectroscopy (CRDS) technique for high-resolution molecular spectroscopy. The CRDS system has been utilized for simultaneous and molecule-specific detection of several environmentally and bio-medically important trace molecular species such as nitric oxide, nitrous oxide, carbonyl sulphide and acetylene (C2H2) at ultra-low concentrations by probing numerous rotationally resolved ro-vibrational transitions in the mid-IR spectral region within a relatively small spectral range of ~0.035 cm-1. This continuous wave external-cavity quantum cascade laser-based multi-component CRDS sensor with high sensitivity and molecular specificity promises applications in environmental sensing as well as non-invasive medical diagnosis through human breath analysis.

  5. Dual-wavelength DFB quantum cascade lasers: sources for multi-species trace gas spectroscopy

    Science.gov (United States)

    Kapsalidis, Filippos; Shahmohammadi, Mehran; Süess, Martin J.; Wolf, Johanna M.; Gini, Emilio; Beck, Mattias; Hundt, Morten; Tuzson, Béla; Emmenegger, Lukas; Faist, Jérôme

    2018-06-01

    We report on the design, fabrication, and performance of dual-wavelength distributed-feedback (DFB) quantum cascade lasers (QCLs) emitting at several wavelengths in the mid-infrared (mid-IR) spectrum. In this work, two new designs are presented: for the first one, called "Neighbour" DFB, two single-mode DFB QCLs are fabricated next to each other, with minimal lateral distance, to allow efficient beam-coupling into multi-pass gas cells. In addition, the minimal distance allows either laser to be used as an integrated heater for the other, allowing to extend the tuning range of its neighbour without any electrical cross-talk. For the second design, the Vernier effect was used to realize a switchable DFB laser, with two target wavelengths which are distant by about 300 cm^{-1}. These devices are promising laser sources for Tunable Diode Laser Absorption Spectroscopy applications targeting simultaneous detection of multiple gasses, with distant spectral features, in compact and mobile setups.

  6. Phase locking of a 2.7 THz quantum cascade laser to a microwave reference

    NARCIS (Netherlands)

    Khosropanah, P.; Baryshev, A.; Zhang, W.; Jellema, W.; Hovenier, J.N.; Gao, J.R.; Klapwijk, T.M.; Paveliev, D.G.; Williams, B.S.; Kumar, S.; Hu, Q.; Reno, J.L.; Klein, B.; Hesler, J.L.

    2009-01-01

    We demonstrate the phase locking of a 2.7 THz metal–metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain

  7. Phase locking of a 2.7 THz quantum cascade laser to a microwave reference

    NARCIS (Netherlands)

    Khosropanah, P.; Baryshev, A.; Zhang, W.; Jellema, W.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Paveliev, D. G.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.; Klein, B.; Hesler, J. L.

    2009-01-01

    We demonstrate the phase locking of a 2.7 THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain

  8. Regenerative similariton laser

    Directory of Open Access Journals (Sweden)

    Thibault North

    2016-05-01

    Full Text Available Self-pulsating lasers based on cascaded reshaping and reamplification (2R are capable of initiating ultrashort pulses despite the accumulation of large amounts of nonlinearities in all-fiber resonators. The spectral properties of pulses in self-similar propagation are compatible with cascaded 2R regeneration by offset filtering, making parabolic pulses suitable for the design of a laser of this recently introduced class. A new type of regenerative laser giving birth to similaritons is numerically investigated and shows that this laser is the analog of regenerative sources based solely on self-phase modulation and offset filtering. The regenerative similariton laser does not suffer from instabilities due to excessive nonlinearities and enables ultrashort pulse generation in a simple cavity configuration.

  9. A Quantum Cascade Laser-Based Optical Sensor for Continuous Monitoring of Environmental Methane in Dunkirk (France

    Directory of Open Access Journals (Sweden)

    Rabih Maamary

    2016-02-01

    Full Text Available A room-temperature continuous-wave (CW quantum cascade laser (QCL-based methane (CH4 sensor operating in the mid-infrared near 8 μm was developed for continuous measurement of CH4 concentrations in ambient air. The well-isolated absorption line (7F2,4 ← 8F1,2 of the ν4 fundamental band of CH4 located at 1255.0004 cm−1 was used for optical measurement of CH4 concentration by direct absorption in a White-type multipass cell with an effective path-length of 175 m. A 1σ (SNR = 1 detection limit of 33.3 ppb in 218 s was achieved with a measurement precision of 1.13%. The developed sensor was deployed in a campaign of measurements of time series CH4 concentration on a site near a suburban traffic road in Dunkirk (France from 9th to 22nd January 2013. An episode of high CH4 concentration of up to ~3 ppm has been observed and analyzed with the help of meteorological parameters combined with back trajectory calculation using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT model of NOAA.

  10. Progress in Rapidly-Tunable External Cavity Quantum Cascade Lasers with a Frequency-Shifted Feedback

    Directory of Open Access Journals (Sweden)

    Arkadiy Lyakh

    2016-04-01

    Full Text Available The recent demonstration of external cavity quantum cascade lasers with optical feedback, controlled by an acousto-optic modulator, paves the way to ruggedized infrared laser systems with the capability of tuning the emission wavelength on a microsecond scale. Such systems are of great importance for various critical applications requiring ultra-rapid wavelength tuning, including combustion and explosion diagnostics and standoff detection. In this paper, recent research results on these devices are summarized and the advantages of the new configuration are analyzed in the context of practical applications.

  11. Active mode-locking of mid-infrared quantum cascade lasers with short gain recovery time.

    Science.gov (United States)

    Wang, Yongrui; Belyanin, Alexey

    2015-02-23

    We investigate the dynamics of actively modulated mid-infrared quantum cascade lasers (QCLs) using space- and time-domain simulations of coupled density matrix and Maxwell equations with resonant tunneling current taken into account. We show that it is possible to achieve active mode locking and stable generation of picosecond pulses in high performance QCLs with a vertical laser transition and a short gain recovery time by bias modulation of a short section of a monolithic Fabry-Perot cavity. In fact, active mode locking in QCLs with a short gain recovery time turns out to be more robust to the variation of parameters as compared to previously studied lasers with a long gain recovery time. We investigate the effects of spatial hole burning and phase locking on the laser output.

  12. Applying Quantum Cascade Laser Spectroscopy in Plasma Diagnostics

    Directory of Open Access Journals (Sweden)

    Jürgen Röpcke

    2016-07-01

    Full Text Available The considerably higher power and wider frequency coverage available from quantum cascade lasers (QCLs in comparison to lead salt diode lasers has led to substantial advances when QCLs are used in pure and applied infrared spectroscopy. Furthermore, they can be used in both pulsed and continuous wave (cw operation, opening up new possibilities in quantitative time resolved applications in plasmas both in the laboratory and in industry as shown in this article. However, in order to determine absolute concentrations accurately using pulsed QCLs, careful attention has to be paid to features like power saturation phenomena. Hence, we begin with a discussion of the non-linear effects which must be considered when using short or long pulse mode operation. More recently, cw QCLs have been introduced which have the advantage of higher power, better spectral resolution and lower fluctuations in light intensity compared to pulsed devices. They have proved particularly useful in sensing applications in plasmas when very low concentrations have to be monitored. Finally, the use of cw external cavity QCLs (EC-QCLs for multi species detection is described, using a diagnostics study of a methane/nitrogen plasma as an example. The wide frequency coverage of this type of QCL laser, which is significantly broader than from a distributed feedback QCL (DFB-QCL, is a substantial advantage for multi species detection. Therefore, cw EC-QCLs are state of the art devices and have enormous potential for future plasma diagnostic studies.

  13. New cascade laser transitions in CH2F2 pumped with the 9R32 line of a cw CO2 laser

    International Nuclear Information System (INIS)

    Nieswand, C.

    1991-11-01

    New cascade laser transitions of 12 CH 2 F 2 at 172.50μm, 208.83μm, 220.44μm, 223.99μm,and 250.61μm are reported. A waveguide FIR laser was pumped with a quasi cw 12 C 16 O 2 laser operating on the 9R32 line. Together with the already known lines at 184.3μm, 196.1μm and 235.9μm, the laser lines can be assigned to rotational transitions in the ν 9 vibrational band of 12 CH 2 F 2 and to refill transitions of the vibrational ground state ν 0 . 1 fig., 2 tabs., 6 refs. (author)

  14. Methane concentration and isotopic composition measurements with a mid-infrared quantum-cascade laser

    Science.gov (United States)

    Kosterev, A. A.; Curl, R. F.; Tittel, F. K.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Baillargeon, J. N.; Hutchinson, A. L.; Cho, A. Y.

    1999-01-01

    A quantum-cascade laser operating at a wavelength of 8.1 micrometers was used for high-sensitivity absorption spectroscopy of methane (CH4). The laser frequency was continuously scanned with current over more than 3 cm-1, and absorption spectra of the CH4 nu 4 P branch were recorded. The measured laser linewidth was 50 MHz. A CH4 concentration of 15.6 parts in 10(6) ( ppm) in 50 Torr of air was measured in a 43-cm path length with +/- 0.5-ppm accuracy when the signal was averaged over 400 scans. The minimum detectable absorption in such direct absorption measurements is estimated to be 1.1 x 10(-4). The content of 13CH4 and CH3D species in a CH4 sample was determined.

  15. Integration of quantum cascade lasers and passive waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Juan, E-mail: juan.montoya@ll.mit.edu; Wang, Christine; Goyal, Anish; Creedon, Kevin; Connors, Michael; Daulton, Jeffrey; Donnelly, Joseph; Missaggia, Leo; Aleshire, Chris; Sanchez-Rubio, Antonio; Herzog, William [MIT Lincoln Laboratory, 244 Wood St, Lexington, Massachusetts 02420 (United States)

    2015-07-20

    We report on monolithic integration of active quantum cascade laser (QCL) materials with passive waveguides formed by using proton implantation. Proton implantation reduces the electron concentration in the QCL layers by creating deep levels that trap carriers. This strongly reduces the intersubband absorption and the free-carrier absorption in the gain region and surrounding layers, thus significantly reducing optical loss. We have measured loss as low as α = 0.33 cm{sup −1} in λ = 9.6 μm wavelength proton-implanted QCL material. We have also demonstrated lasing in active-passive integrated waveguides. This simple integration technique is anticipated to enable low-cost fabrication in infrared photonic integrated circuits in the mid-infrared (λ ∼ 3–16 μm)

  16. Integration of quantum cascade lasers and passive waveguides

    International Nuclear Information System (INIS)

    Montoya, Juan; Wang, Christine; Goyal, Anish; Creedon, Kevin; Connors, Michael; Daulton, Jeffrey; Donnelly, Joseph; Missaggia, Leo; Aleshire, Chris; Sanchez-Rubio, Antonio; Herzog, William

    2015-01-01

    We report on monolithic integration of active quantum cascade laser (QCL) materials with passive waveguides formed by using proton implantation. Proton implantation reduces the electron concentration in the QCL layers by creating deep levels that trap carriers. This strongly reduces the intersubband absorption and the free-carrier absorption in the gain region and surrounding layers, thus significantly reducing optical loss. We have measured loss as low as α = 0.33 cm −1 in λ = 9.6 μm wavelength proton-implanted QCL material. We have also demonstrated lasing in active-passive integrated waveguides. This simple integration technique is anticipated to enable low-cost fabrication in infrared photonic integrated circuits in the mid-infrared (λ ∼ 3–16 μm)

  17. Frequency stabilization of quantum cascade laser for spectroscopic CO2 isotope analysis

    Science.gov (United States)

    Han, Luo; Xia, Hua; Pang, Tao; Zhang, Zhirong; Wu, Bian; Liu, Shuo; Sun, Pengshuai; Cui, Xiaojuan; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2018-06-01

    Using off-axis integrated cavity output spectroscopy, named OA-ICOS, the absorption spectrum of CO2 at 4.32 μm is recorded by using a quantum cascade laser (QCL). The concentration of the three isotopologues 16O12C16O, 16O13C16O and 16O12C18O is detected simultaneously. The isotope abundance ratio of 13C and 18O in CO2 gas can be obtained, which is most useful for ecological research. Since the ambient temperature has a serious influence on the output wavelength of the laser, even small temperature variations seriously affect the stability and sensitivity of the system. In this paper, a wavelength locking technique for QCL is proposed. The output of a digital potentiometer integrated in the laser current driver control is modified by software, resulting in a correction of the driving current of the laser and thus of its wavelength. This method strongly reduces the influence of external factors on the wavelength drift of lasers and thus substantially improves the stability and performance of OA-ICOS as is demonstrated with long-time measurements on CO2 in laboratory air.

  18. Low-Loss Hollow Waveguide Fibers for Mid-Infrared Quantum Cascade Laser Sensing Applications

    Directory of Open Access Journals (Sweden)

    James A. Harrington

    2013-01-01

    Full Text Available We report on single mode optical transmission of hollow core glass waveguides (HWG coupled with an external cavity mid-IR quantum cascade lasers (QCLs. The QCL mode results perfectly matched to the hybrid HE11 waveguide mode and the higher losses TE-like modes have efficiently suppressed by the deposited inner dielectric coating. Optical losses down to 0.44 dB/m and output beam divergence of ~5 mrad were measured. Using a HGW fiber with internal core size of 300 µm we obtained single mode laser transmission at 10.54 µm and successful employed it in a quartz enhanced photoacoustic gas sensor setup.

  19. Frequency locking of single-mode 3.5-THz quantum cascade lasers using a gas cell

    NARCIS (Netherlands)

    Ren, Y.; Hovenier, J.N.; Cui, M.; Hayton, D.J.; Gao, J.R.; Klapwijk, T.M.; Shi, S.C.; Kao, T.Y.; Hu, Q.; Reno, J.L.

    2012-01-01

    We report frequency locking of two 3.5-THz third-order distributed feedback (DFB) quantum cascade lasers (QCLs) by using methanol molecular absorption lines, a proportional-integral-derivative controller, and a NbN bolometer. We show that the free-running linewidths of the QCLs are dependent on the

  20. High sensitivity detection of NO2 employing cavity ringdown spectroscopy and an external cavity continuously tunable quantum cascade laser.

    Science.gov (United States)

    Rao, Gottipaty N; Karpf, Andreas

    2010-09-10

    A trace gas sensor for the detection of nitrogen dioxide based on cavity ringdown spectroscopy (CRDS) and a continuous wave external cavity tunable quantum cascade laser operating at room temperature has been designed, and its features and performance characteristics are reported. By measuring the ringdown times of the cavity at different concentrations of NO(2), we report a sensitivity of 1.2 ppb for the detection of NO(2) in Zero Air.

  1. Absolute spectroscopy near 7.8 {\\mu} m with a comb-locked extended-cavity quantum-cascade-laser

    KAUST Repository

    Lamperti, Marco; Alsaif, Bidoor; Gatti, Davide; Fermann, Martin; Laporta, Paolo; Farooq, Aamir; Marangoni, Marco

    2017-01-01

    We report the first experimental demonstration of frequency-locking of an extended-cavity quantum-cascade-laser (EC-QCL) to a near-infrared frequency comb. The locking scheme is applied to carry out absolute spectroscopy of N2O lines near 7.87 {\\mu

  2. Planar integrated metasurfaces for highly-collimated terahertz quantum cascade lasers

    Science.gov (United States)

    Liang, Guozhen; Dupont, Emmanuel; Fathololoumi, Saeed; Wasilewski, Zbigniew R.; Ban, Dayan; Liang, Hou Kun; Zhang, Ying; Yu, Siu Fung; Li, Lianhe H.; Davies, Alexander Giles; Linfield, Edmund H.; Liu, Hui Chun; Wang, Qi Jie

    2014-01-01

    We report planar integration of tapered terahertz (THz) frequency quantum cascade lasers (QCLs) with metasurface waveguides that are designed to be spoof surface plasmon (SSP) out-couplers by introducing periodically arranged SSP scatterers. The resulting surface-emitting THz beam profile is highly collimated with a divergence as narrow as ~4° × 10°, which indicates a good waveguiding property of the metasurface waveguide. In addition, the low background THz power implies a high coupling efficiency for the THz radiation from the laser cavity to the metasurface structure. Furthermore, since all the structures are in-plane, this scheme provides a promising platform where well-established surface plasmon/metasurface techniques can be employed to engineer the emitted beam of THz QCLs controllably and flexibly. More importantly, an integrated active THz photonic circuit for sensing and communication applications could be constructed by incorporating other optoelectronic devices such as Schottky diode THz mixers, and graphene modulators and photodetectors. PMID:25403796

  3. Frequency and Phase-lock Control of a 3 THz Quantum Cascade Laser

    Science.gov (United States)

    Betz, A. L.; Boreiko, R. T.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.

    2005-01-01

    We have locked the frequency of a 3 THz quantum cascade laser (QCL) to that of a far-infrared gas laser with a tunable microwave offset frequency. The locked QCL line shape is essentially Gaussian, with linewidths of 65 and 141 kHz at the -3 and -10 dB levels, respectively. The lock condition can be maintained indefinitely, without requiring temperature or bias current regulation of the QCL other than that provided by the lock error signal. The result demonstrates that a terahertz QCL can be frequency controlled with l-part-in-lO(exp 8) accuracy, which is a factor of 100 better than that needed for a local oscillator in a heterodyne receiver for atmospheric and astronomic spectroscopy.

  4. Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Paul, E-mail: p.dean@leeds.ac.uk; Keeley, James; Kundu, Iman; Li, Lianhe; Linfield, Edmund H.; Giles Davies, A. [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Mitrofanov, Oleg [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2016-02-29

    We report two-dimensional apertureless near-field terahertz (THz) imaging using a quantum cascade laser (QCL) source and a scattering probe. A near-field enhancement of the scattered field amplitude is observed for small tip-sample separations, allowing image resolutions of ∼1 μm (∼λ/100) and ∼7 μm to be achieved along orthogonal directions on the sample surface. This represents the highest resolution demonstrated to date with a THz QCL. By employing a detection scheme based on self-mixing interferometry, our approach offers experimental simplicity by removing the need for an external detector and also provides sensitivity to the phase of the reinjected field.

  5. Dynamics of a broad-band quantum cascade laser: from chaos to coherent dynamics and mode-locking

    Science.gov (United States)

    Columbo, L. L.; Barbieri, S.; Sirtori, C.; Brambilla, M.

    2018-02-01

    The dynamics of a multimode Quantum Cascade Laser, is studied in a model based on effective semiconductor Maxwell-Bloch equations, encompassing key features for the radiationmedium interaction such as an asymmetric, frequency dependent, gain and refractive index as well as the phase-amplitude coupling provided by the Henry factor. By considering the role of the free spectral range and Henry factor, we develop criteria suitable to identify the conditions which allow to destabilize, close to threshold, the traveling wave emitted by the laser and lead to chaotic or regular multimode dynamics. In the latter case our simulations show that the field oscillations are associated to self-confined structures which travel along the laser cavity, bridging mode-locking and solitary wave propagation. In addition, we show how a RF modulation of the bias current leads to active mode-locking yielding high-contrast, picosecond pulses. Our results compare well with recent experiments on broad-band THz-QCLs and may help understanding the conditions for the generation of ultrashort pulses and comb operation in Mid-IR and THz spectral regions

  6. Development of principles of two-cascaded laser speckle-microscopy with implication to high-precision express diagnostics of chlamydial infection

    Science.gov (United States)

    Ulianova, Onega; Moiseeva, Yulia; Filonova, Nadezhda; Subbotina, Irina; Zaitsev, Sergey; Saltykov, Yury; Polyanina, Tatiana; Lyapina, Anna; Ulyanov, Sergey; Larionova, Olga; Utz, Sergey; Feodorova, Valentina

    2018-04-01

    Principles of two-cascaded laser speckle-microscopy prospect for application to express diagnostics of chlamydial infection are developed. Prototype of two-cascaded speckle-microscope is designed and tested. Specific case of illumination of bacterial cells by dynamic speckles is considered. Express method of detection of epithelial cells, containing defects, which are caused by Chlamydia trachomatis bacteria, is suggested. Results of improved recognition of C. trachomatis bacteria are discussed.

  7. Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation.

    Science.gov (United States)

    Wan, W J; Li, H; Cao, J C

    2018-01-22

    The authors present an experimental investigation of radio frequency modulation on pulsed terahertz quantum cascade lasers (QCLs) emitting around 4.3 THz. The QCL chip used in this work is based on a resonant phonon design which is able to generate a 1.2 W peak power at 10 K from a 400-µm-wide and 4-mm-long laser with a single plasmon waveguide. To enhance the radio frequency modulation efficiency and significantly broaden the terahertz spectra, the QCLs are also processed into a double-metal waveguide geometry with a Silicon lens out-coupler to improve the far-field beam quality. The measured beam patterns of the double-metal QCL show a record low divergence of 2.6° in vertical direction and 2.4° in horizontal direction. Finally we perform the inter-mode beat note and terahertz spectra measurements for both single plasmon and double-metal QCLs working in pulsed mode. Since the double-metal waveguide is more suitable for microwave signal transmission, the radio frequency modulation shows stronger effects on the spectral broadening for the double-metal QCL. Although we are not able to achieve comb operation in this work for the pulsed lasers due to the large phase noise, the homogeneous spectral broadening resulted from the radio frequency modulation can be potentially used for spectroscopic applications.

  8. Reversible switching of quantum cascade laser-modes using a pH-responsive polymeric cladding as transducer.

    Science.gov (United States)

    Basnar, Bernhard; Schartner, Stephan; Austerer, Maximilian; Andrews, Aaron Maxwell; Roch, Tomas; Schrenk, Werner; Strasser, Gottfried

    2008-06-09

    We present a novel approach for the reversible switching of the emission wavelength of a quantum cascade laser (QCL) using a halochromic cladding. An air-waveguide laser ridge is coated with a thin layer of polyacrylic acid. This cladding introduces losses corresponding to the absorption spectrum of the polymer. By changing the state of the polymer, the absorption spectrum and losses change, inducing a shift of 7 cm(-1) in the emission wavelength. This change is induced by exposure to acidic or alkaline vapors under ambient conditions and is fully reversible. Such lasers can be used as multi-color light source and as sensor for atmospheric pH.

  9. A calibration-free ammonia breath sensor using a quantum cascade laser with WMS 2f/1f

    KAUST Repository

    Owen, Kyle; Farooq, Aamir

    2013-01-01

    modulation spectroscopy with second harmonic normalized by the first harmonic (WMS 2f/1f) is a sensitive technique used in the development of calibration-free sensors. An ammonia gas sensor is designed and developed that uses a quantum cascade laser operating

  10. Integration of a terahertz quantum cascade laser with a hollow waveguide

    Science.gov (United States)

    Wanke, Michael C [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM

    2012-07-03

    The present invention is directed to the integration of a quantum cascade laser with a hollow waveguide on a chip to improve both the beam pattern and manufacturability. By coupling the QCL output into a single-mode rectangular waveguide the radiation mode structure can be known and the propagation, manipulation, and broadcast of the QCL radiation can then be entirely controlled by well-established rectangular waveguide techniques. By controlling the impedance of the interface, enhanced functions, such as creating amplifiers, efficient coupling to external cavities, and increasing power output from metal-metal THz QCLs, are also enabled.

  11. Theoretical investigation of injection-locked high modulation bandwidth quantum cascade lasers.

    Science.gov (United States)

    Meng, Bo; Wang, Qi Jie

    2012-01-16

    In this study, we report for the first time to our knowledge theoretical investigation of modulation responses of injection-locked mid-infrared quantum cascade lasers (QCLs) at wavelengths of 4.6 μm and 9 μm, respectively. It is shown through a three-level rate equations model that the direct intensity modulation of QCLs gives the maximum modulation bandwidths of ~7 GHz at 4.6 μm and ~20 GHz at 9 μm. By applying the injection locking scheme, we find that the modulation bandwidths of up to ~30 GHz and ~70 GHz can be achieved for QCLs at 4.6 μm and 9 μm, respectively, with an injection ratio of 5 dB. The result also shows that an ultrawide modulation bandwidth of more than 200 GHz is possible with a 10 dB injection ratio for QCLs at 9 μm. An important characteristic of injection-locked QCLs is the nonexistence of unstable locking region in the locking map, in contrast to their diode laser counterparts. We attribute this to the ultra-short upper laser state lifetimes of QCLs.

  12. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator.

    Science.gov (United States)

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Vitiello, Miriam S

    2016-03-15

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.

  13. Real time detection of exhaled human breath using quantum cascade laser based sensor technology

    Science.gov (United States)

    Tittel, Frank K.; Lewicki, Rafal; Dong, Lei; Liu, Kun; Risby, Terence H.; Solga, Steven; Schwartz, Tim

    2012-02-01

    The development and performance of a cw, TE-cooled DFB quantum cascade laser based sensor for quantitative measurements of ammonia (NH3) and nitric oxide (NO) concentrations present in exhaled breath will be reported. Human breath contains ~ 500 different chemical species, usually at ultra low concentration levels, which can serve as biomarkers for the identification and monitoring of human diseases or wellness states. By monitoring NH3 concentration levels in exhaled breath a fast, non-invasive diagnostic method for treatment of patients with liver and kidney disorders, is feasible. The NH3 concentration measurements were performed with a 2f wavelength modulation quartz enhanced photoacoustic spectroscopy (QEPAS) technique, which is suitable for real time breath measurements, due to the fast gas exchange inside a compact QEPAS gas cell. A Hamamatsu air-cooled high heat load (HHL) packaged CW DFB-QCL is operated at 17.5°C, targeting the optimum interference free NH3 absorption line at 967.35 cm-1 (λ~10.34 μm), with ~ 20 mW of optical power. The sensor architecture includes a reference cell, filled with a 2000 ppmv NH3 :N2 mixture at 130 Torr, which is used for absorption line-locking. A minimum detection limit (1σ) for the line locked NH3 sensor is ~ 6 ppbv (with a 1σ 1 sec time resolution of the control electronics). This NH3 sensor was installed in late 2010 and is being clinically tested at St. Luke's Hospital in Bethlehem, PA.

  14. Coagulation and ablation of biological soft tissue by quantum cascade laser with peak wavelength of 5.7 μm

    Directory of Open Access Journals (Sweden)

    Keisuke Hashimura

    2014-05-01

    Full Text Available Molecules such as water, proteins and lipids that are contained in biological tissue absorb mid-infrared (MIR light, which allows such light to be used in laser surgical treatment. Esters, amides and water exhibit strong absorption bands in the 5–7 μm wavelength range, but at present there are no lasers in clinical use that can emit in this range. Therefore, the present study focused on the quantum cascade laser (QCL, which is a new type of semiconductor laser that can emit at MIR wavelengths and has recently achieved high output power. A high-power QCL with a peak wavelength of 5.7 μm was evaluated for use as a laser scalpel for ablating biological soft tissue. The interaction of the laser beam with chicken breast tissue was compared to a conventional CO2 laser, based on surface and cross-sectional images. The QCL was found to have sufficient power to ablate soft tissue, and its coagulation, carbonization and ablation effects were similar to those for the CO2 laser. The QCL also induced comparable photothermal effects because it acted as a pseudo-continuous wave laser due to its low peak power. A QCL can therefore be used as an effective laser scalpel, and also offers the possibility of less invasive treatment by targeting specific absorption bands in the MIR region.

  15. Continuous wave room temperature external ring cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W. [Physics and Astronomy Department, The University of Sheffield, S3 7RH Sheffield (United Kingdom); Hempler, N.; Maker, G. T.; Malcolm, G. P. A. [M Squared Lasers Ltd., G20 0SP Glasgow (United Kingdom)

    2015-06-29

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.

  16. Continuous wave room temperature external ring cavity quantum cascade laser

    International Nuclear Information System (INIS)

    Revin, D. G.; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W.; Hempler, N.; Maker, G. T.; Malcolm, G. P. A.

    2015-01-01

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm −1 is realized by the incorporation of a diffraction grating into the cavity

  17. Generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser in a cascade of nonlinear crystals

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Jensen, Ole Bjarlin; Sumpf, Bernd

    2014-01-01

    Many applications, e.g., within biomedicine stand to benefit greatly from the development of diode laser-based multi- Watt efficient compact green laser sources. The low power of existing diode lasers in the green area (about 100 mW) means that the most promising approach remains nonlinear...... frequency conversion of infrared tapered diode lasers. Here, we describe the generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser, itself yielding 10 W at 1063 nm. This SHG is performed in single pass through a cascade of two PPMgO:LN crystals with re...... power of 3.5 W corresponds to a power enhancement greater than 2 compared to SHG in each of the crystals individually and is the highest visible output power generated by frequency conversion of a single diode laser. Such laser sources provide the necessary pump power for biophotonics applications...

  18. Distributed feedback interband cascade lasers with top grating and corrugated sidewalls

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Feng [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Stocker, Michael [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Pham, John [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Towner, Frederick [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Shen, Kun [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Wang, Jie [Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, USA; Lascola, Kevin [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA

    2018-03-26

    Distributed feedback (DFB) interband cascade lasers (ICLs) with a 1st order top surface grating were designed and fabricated. Partially corrugated sidewalls were implemented to suppress high order lateral modes. The DFB ICLs have 4 mm long and 4.5 mu m wide ridge waveguides and are mounted epi-up on AlN submounts. We demonstrated a continuous-wave (CW) DFB ICL, from a first wafer which has a large detuning of the gain peak from the DFB wavelength, with a side mode suppression ratio of 30 dB. With proper matching of grating feedback and the gain peak wavelength for the second wafer, a DFB ICL was demonstrated with a maximum CW output power and a maximum wall plug efficiency reaching 42 mW and 2%, respectively, at 25 degrees C. The lasing wavelengths of both lasers are around 3.3 mu m at 25 degrees C. Published by AIP Publishing.

  19. Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor

    Science.gov (United States)

    Brandstetter, M.; Volgger, L.; Genner, A.; Jungbauer, C.; Lendl, B.

    2013-02-01

    This work reports on a compact sensor for fast and reagent-free point-of-care determination of glucose, lactate and triglycerides in blood serum based on a tunable (1030-1230 cm-1) external-cavity quantum cascade laser (EC-QCL). For simple and robust operation a single beam set-up was designed and only thermoelectric cooling was used for the employed laser and detector. Full computer control of analysis including liquid handling and data analysis facilitated routine measurements. A high optical pathlength (>100 μm) is a prerequisite for robust measurements in clinical practice. Hence, the optimum optical pathlength for transmission measurements in aqueous solution was considered in theory and experiment. The experimentally determined maximum signal-to-noise ratio (SNR) was around 140 μm for the QCL blood sensor and around 50 μm for a standard FT-IR spectrometer employing a liquid nitrogen cooled mercury cadmium telluride (MCT) detector. A single absorption spectrum was used to calculate the analyte concentrations simultaneously by using a partial-least-squares (PLS) regression analysis. Glucose was determined in blood serum with a prediction error (RMSEP) of 6.9 mg/dl and triglycerides with an error of cross-validation (RMSECV) of 17.5 mg/dl in a set of 42 different patients. In spiked serum samples the lactate concentration could be determined with an RMSECV of 8.9 mg/dl.

  20. Analytical Structuring of Periodic and Regular Cascading Solutions in Self-Pulsing Lasers

    Directory of Open Access Journals (Sweden)

    Belkacem Meziane

    2008-01-01

    Full Text Available A newly proposed strong harmonic-expansion method is applied to the laser-Lorenz equations to analytically construct a few typical solutions, including the first few expansions of the well-known period-doubling cascade that characterizes the system in its self-pulsing regime of operation. These solutions are shown to evolve in accordance with the driving frequency of the permanent solution that we recently reported to illustrate the system. The procedure amounts to analytically construct the signal Fourier transform by applying an iterative algorithm that reconstitutes the first few terms of its development.

  1. Detection of acrolein and acrylonitrile with a pulsed room temperature quantum cascade laser

    Science.gov (United States)

    Manne, J.; Jäger, W.; Tulip, J.

    2010-06-01

    We investigated the use of a pulsed, distributed feedback quantum cascade laser centered at 957 cm-1 in combination with an astigmatic Herriot cell with 250 m path length for the detection of acrolein and acrylonitrile. These molecules have been identified as hazardous air-pollutants because of their adverse health effects. The spectrometer utilizes the intra-pulse method, where a linear frequency down-chirp, that is induced when a top-hat current pulse is applied to the laser, is used for sweeping across the absorption line. Up to 450 ns long pulses were used for these measurements which resulted in a spectral window of ~2.2 cm-1. A room temperature mercury-cadmium-telluride detector was used, resulting in a completely cryogen free spectrometer. We demonstrated detection limits of ~3 ppb for acrylonitrile and ~6 ppb for acrolein with ~10 s averaging time. Laser characterization and optimization of the operational parameters for sensitivity improvement are discussed.

  2. Applications of a Mid-IR Quantum Cascade Laser in Gas Sensing Research

    KAUST Repository

    Sajid, Muhammad Bilal

    2015-05-01

    Laser absorption based sensors are extensively used in a variety of gas sensing areas such as combustion, atmospheric research, human breath analysis, and high resolution infrared spectroscopy. Quantum cascade lasers have recently emerged as high resolution, high power laser sources operating in mid infrared region and can have wide tunability range. These devices provide an opportunity to access stronger fundamental and combination vibrational bands located in mid infrared region than previously accessible weaker overtone vibrational bands located in near infrared region. Spectroscopic region near 8 µm contains strong vibrational bands of methane, acetylene, hydrogen peroxide, water vapor and nitrous oxide. These molecules have important applications in a wide range of applications. This thesis presents studies pertaining to spectroscopy and combustion applications. Advancements in combustion research are imperative to achieve lower emissions and higher efficiency in practical combustion devices such as gas turbines and engines. Accurate chemical kinetic models are critical to achieve predictive models which contain several thousand reactions and hundreds of species. These models need highly reliable experimental data for validation and improvements. Shock tubes are ideal devices to obtain such information. A shock tube is a homogenous, nearly constant volume, constant pressure, adiabatic and 0-D reactor. In combination with laser absorption sensors, shock tubes can be used to measure reaction rates and species time histories of several intermediates and products formed during pyrolysis and oxidation of fuels. This work describes measurement of the decomposition rate of hydrogen peroxide which is an important intermediate species controlling reactivity of combustion system in the intermediate temperature range. Spectroscopic parameters (linestrengths, broadening coefficients and temperature dependent coefficients) are determined for various transitions of

  3. Phase Locking of a 2.7 THz Quantum Cascade Laser to a Microwave Reference

    Science.gov (United States)

    Khosropanah, P.; Baryshev, A.; Zhang, W.; Jellema, W.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Paveliev, D. G.; Williams, B. S.; Hu, Q.; hide

    2009-01-01

    We demonstrate the phase locking of a 2.7 THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain (x 12) from a microwave synthesizer at approx. 15 GHz. Both laser and reference radiations are coupled into a bolometer mixer, resulting in a beat signal, which is fed into a phase-lock loop. The spectral analysis of the beat signal confirms that the QCL is phase locked. This result opens the possibility to extend heterodyne interferometers into the far-infrared range.

  4. Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator

    NARCIS (Netherlands)

    Kloosterman, J.L.; Hayton, D.J.; Ren, Y.; Kao, T.Y.; Hovenier, J.N.; Gao, J.R.; Klapwijk, T.M.; Hu, Q.; Walker, C.K.; Reno, J.L.

    2013-01-01

    We report on a heterodyne receiver designed to observe the astrophysically important neutral atomic oxygen [OI] line at 4.7448?THz. The local oscillator is a third-order distributed feedback quantum cascade laser operating in continuous wave mode at 4.741?THz. A quasi-optical, superconducting NbN

  5. Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation.

    Science.gov (United States)

    Gellie, Pierre; Barbieri, Stefano; Lampin, Jean-François; Filloux, Pascal; Manquest, Christophe; Sirtori, Carlo; Sagnes, Isabelle; Khanna, Suraj P; Linfield, Edmund H; Davies, A Giles; Beere, Harvey; Ritchie, David

    2010-09-27

    We demonstrate that the cavity resonance frequency - the round-trip frequency - of Terahertz quantum cascade lasers can be injection-locked by direct modulation of the bias current using an RF source. Metal-metal and single-plasmon waveguide devices with roundtrip frequencies up to 35GHz have been studied, and show locking ranges above 200MHz. Inside this locking range the laser round-trip frequency is phase-locked, with a phase noise determined by the RF-synthesizer. We find a square-root dependence of the locking range with RF-power in agreement with classical injection-locking theory. These results are discussed in the context of mode-locking operation.

  6. Phase-locking of a 2.5 THz quantum cascade laser to a frequency comb using a GaAs photomixer.

    Science.gov (United States)

    Ravaro, M; Manquest, C; Sirtori, C; Barbieri, S; Santarelli, G; Blary, K; Lampin, J-F; Khanna, S P; Linfield, E H

    2011-10-15

    We report the heterodyne detection and phase locking of a 2.5 THz quantum cascade laser (QCL) using a terahertz frequency comb generated in a GaAs photomixer using a femtosecond fiber laser. With 10 mW emitted by the QCL, the phase-locked signal at the intermediate frequency yields 80 dB of signal-to-noise ratio in a bandwidth of 1 Hz.

  7. Towards a continuous glucose monitoring system using tunable quantum cascade lasers

    Science.gov (United States)

    Haase, Katharina; Müller, Niklas; Petrich, Wolfgang

    2018-02-01

    We present a reagent-free approach for long-term continuous glucose monitoring (cgm) of liquid samples using midinfrared absorption spectroscopy. This method could constitute an alternative to enzymatic glucose sensors in order to manage the widespread disease of Diabetes. In order to acquire spectra of the liquid specimen, we use a spectrally tunable external-cavity (EC-) quantum cascade laser (QCL) as radiation source in combination with a fiber-based in vitro sensor setup. Hereby we achieve a glucose sensitivity in pure glucose solutions of 3 mg/dL (RMSEP). Furthermore, the spectral tunability of the EC-QCL enables us to discriminate glucose from other molecules. We exemplify this by detecting glucose among other saccharides with an accuracy of 8 mg/dL (within other monosaccharides, RMSEVC) and 14 mg/dL (within other mono- and disaccharides, RMSECV). Moreover, we demonstrate a characterization of the significance of each wavenumber for an accurate prediction of glucose among other saccharides using an evolutionary algorithm. We show, that by picking 10 distinct wavenumbers we can achieve comparable accuracies to the use of a complete spectrum.

  8. Implementation of an integrating sphere for the enhancement of noninvasive glucose detection using quantum cascade laser spectroscopy

    Science.gov (United States)

    Werth, Alexandra; Liakat, Sabbir; Dong, Anqi; Woods, Callie M.; Gmachl, Claire F.

    2018-05-01

    An integrating sphere is used to enhance the collection of backscattered light in a noninvasive glucose sensor based on quantum cascade laser spectroscopy. The sphere enhances signal stability by roughly an order of magnitude, allowing us to use a thermoelectrically (TE) cooled detector while maintaining comparable glucose prediction accuracy levels. Using a smaller TE-cooled detector reduces form factor, creating a mobile sensor. Principal component analysis has predicted principal components of spectra taken from human subjects that closely match the absorption peaks of glucose. These principal components are used as regressors in a linear regression algorithm to make glucose concentration predictions, over 75% of which are clinically accurate.

  9. NO kinetics in pulsed low-pressure nitrogen plasmas studied by time resolved quantum cascade laser absorption spectroscopy

    NARCIS (Netherlands)

    Welzel, S.; Guaitella, O.; Lazzaroni, C.; Pintassilgo, C.; Rousseau, A.; Röpcke, J.

    2011-01-01

    Time-resolved quantum cascade laser absorption spectroscopy at 1897 cm-1 (5.27 µm) has been applied to study the NO(X) kinetics on the micro- and millisecond time scale in pulsed low-pressure N2/NO dc discharges. Experiments have been performed under flowing and static gas conditions to infer the

  10. Observation of a rainbow of visible colors in a near infrared cascaded Raman fiber laser and its novel application as a diagnostic tool for length resolved spectral analysis

    Science.gov (United States)

    Aparanji, Santosh; Balaswamy, V.; Arun, S.; Supradeepa, V. R.

    2018-02-01

    In this work, we report and analyse the surprising observation of a rainbow of visible colors, spanning 390nm to 620nm, in silica-based, Near Infrared, continuous-wave, cascaded Raman fiber lasers. The cascaded Raman laser is pumped at 1117nm at around 200W and at full power we obtain 100 W at 1480nm. With increasing pump power at 1117nm, the fiber constituting the Raman laser glows in various hues along its length. From spectroscopic analysis of the emitted visible light, it was identified to be harmonic and sum-frequency components of various locally propagating wavelength components. In addition to third harmonic components, surprisingly, even 2nd harmonic components were observed. Despite being a continuous-wave laser, we expect the phase-matching occurring between the core-propagating NIR light with the cladding-propagating visible wavelengths and the intensity fluctuations characteristic of Raman lasers to have played a major role in generation of visible light. In addition, this surprising generation of visible light provides us a powerful non-contact method to deduce the spectrum of light propagating in the fiber. Using static images of the fiber captured by a standard visible camera such as a DSLR, we demonstrate novel, image-processing based techniques to deduce the wavelength component propagating in the fiber at any given spatial location. This provides a powerful diagnostic tool for both length and power resolved spectral analysis in Raman fiber lasers. This helps accurate prediction of the optimal length of fiber required for complete and efficient conversion to a given Stokes wavelength.

  11. Widely tunable Sampled Grating Distributed Bragg Reflector Quantum Cascade laser for gas spectroscopy applications

    Science.gov (United States)

    Diba, Abdou Salam

    Since the advent of semiconductor lasers, the development of tunable laser sources has been subject of many efforts in industry and academia arenas. This interest towards broadly tunable lasers is mainly due to the great promise they have in many applications ranging from telecommunication, to environmental science and homeland security, just to name a few. After the first demonstration of quantum cascade laser (QCL) in the early nineties, QCL has experienced a rapid development, so much so that QCLs are now the most reliable and efficient laser source in the Mid-IR range covering between 3 microm to 30 microm region of the electromagnetic spectrum. QCLs have almost all the desirable characteristics of a laser for spectroscopy applications such as narrow spectral linewidth ideal for high selectivity measurement, high power enabling high sensitivity sensing and more importantly they emit in the finger-print region of most of the trace gases and large molecules. The need for widely tunable QCLs is now more pressing than ever before. A single mode quantum cascade laser (QCL) such as a distributed feedback (DFB) QCL, is an ideal light source for gas sensing in the MIR wavelength range. Despite their performance and reliability, DFB QCLs are limited by their relatively narrow wavelength tuning range determined by the thermal rollover of the laser. An external cavity (EC) QCL, on the other hand, is a widely tunable laser source, and so far is the choice mid-infrared single frequency light sources for detecting multiple species/large molecules. However, EC QCLs can be complex, bulky and expensive. In the quest for finding alternative broadly wavelength tunable sources in the mid-infrared, many monolithic tunable QCLs are recently proposed and fabricated, including SG-DBR, DFB-Arrays, Slot-hole etc. and they are all of potentially of interest as a candidate for multi-gas sensing and monitoring applications, due to their large tuning range (>50 cm-1), and potentially low

  12. Gas spectroscopy with integrated frequency monitoring through self-mixing in a terahertz quantum-cascade laser.

    Science.gov (United States)

    Chhantyal-Pun, Rabi; Valavanis, Alexander; Keeley, James T; Rubino, Pierluigi; Kundu, Iman; Han, Yingjun; Dean, Paul; Li, Lianhe; Davies, A Giles; Linfield, Edmund H

    2018-05-15

    We demonstrate a gas spectroscopy technique, using self-mixing in a 3.4 terahertz quantum-cascade laser (QCL). All previous QCL spectroscopy techniques have required additional terahertz instrumentation (detectors, mixers, or spectrometers) for system pre-calibration or spectral analysis. By contrast, our system self-calibrates the laser frequency (i.e., with no external instrumentation) to a precision of 630 MHz (0.02%) by analyzing QCL voltage perturbations in response to optical feedback within a 0-800 mm round-trip delay line. We demonstrate methanol spectroscopy by introducing a gas cell into the feedback path and show that a limiting absorption coefficient of ∼1×10 -4   cm -1 is resolvable.

  13. Bursting behaviours in cascaded stimulated Brillouin scattering

    International Nuclear Information System (INIS)

    Liu Zhan-Jun; He Xian-Tu; Zheng Chun-Yang; Wang Yu-Gang

    2012-01-01

    Stimulated Brillouin scattering is studied by numerically solving the Vlasov—Maxwell system. A cascade of stimulated Brillouin scattering can occur when a linearly polarized laser pulse propagates in a plasma. It is found that a stimulated Brillouin scattering cascade can reduce the scattering and increase the transmission of light, as well as introduce a bursting behaviour in the evolution of the laser-plasma interaction. The bursting time in the reflectivity is found to be less than half the ion acoustic period. The ion temperature can affect the stimulated Brillouin scattering cascade, which can repeat several times at low ion temperatures and can be completely eliminated at high ion temperatures. For stimulated Brillouin scattering saturation, higher-harmonic generation and wave—wave interaction of the excited ion acoustic waves can restrict the amplitude of the latter. In addition, stimulated Brillouin scattering cascade can restrict the amplitude of the scattered light. (physics of gases, plasmas, and electric discharges)

  14. Room temperature continuous wave operation of quantum cascade laser at λ ~ 9.4 μm

    Science.gov (United States)

    Hou, Chuncai; Zhao, Yue; Zhang, Jinchuan; Zhai, Shenqiang; Zhuo, Ning; Liu, Junqi; Wang, Lijun; Liu, Shuman; Liu, Fengqi; Wang, Zhanguo

    2018-03-01

    Continuous wave (CW) operation of long wave infrared (LWIR) quantum cascade lasers (QCLs) is achieved up to a temperature of 303 K. For room temperature CW operation, the wafer with 35 stages was processed into buried heterostructure lasers. For a 2-mm-long and 10-μm-wide laser with high-reflectivity (HR) coating on the rear facet, CW output power of 45 mW at 283 K and 9 mW at 303 K is obtained. The lasing wavelength is around 9.4 μm locating in the LWIR spectrum range. Project supported by the National Key Research And Development Program (No. 2016YFB0402303), the National Natural Science Foundation of China (Nos. 61435014, 61627822, 61574136, 61774146, 61674144, 61404131), the Key Projects of Chinese Academy of Sciences (Nos. ZDRW-XH-2016-4, QYZDJ-SSW-JSC027), and the Beijing Natural Science Foundation (No. 4162060, 4172060).

  15. First quantitative measurements by IR spectroscopy of dioxins and furans by means of broadly tunable quantum cascade lasers

    International Nuclear Information System (INIS)

    Siciliani de Cumis, M; D’Amato, F; Viciani, S; Patrizi, B; Foggi, P; Galea, C L

    2013-01-01

    We demonstrate the possibility of a quantitative analysis of the concentration of several dioxins and furans, among the most toxic ones, by only using infrared absorption laser spectroscopy. Two broadly tunable quantum cascade lasers, emitting in the mid-infrared, have been used to measure the absorption spectra of dioxins and furans, dissolved in CCl 4 , in direct absorption mode. The minimum detectable concentrations are inferred by analyzing diluted samples. A comparison between this technique and standard Fourier transform spectroscopy has been carried out and an analysis of future perspectives is reported. (paper)

  16. Experimental and theoretical study of the electron cascade induced in a gas by laser light

    International Nuclear Information System (INIS)

    Louis-Jacquet, Michel.

    1978-10-01

    In a laser gas interaction experiment, first electrons created by multiphoton ionization of atoms gain sufficient energy in the laser E.M. wave to promote collisional ionization of other atoms. An experimental and theoretical study of the electron-neutral atom inverse bremsstrahlung process and the consecutive electron cascade is presented. The main basic idea is to create an initial electron population and to study its evolution versus the photon density. A Boltzman equation including several collision terms can describe such a plasma. The resolution by a general eigen values method shows that the electron density growth rate is inversely proportionnal to both neutral atom density and laser light illumination. Experimental conditions were defined in order to insure negligible secondary mechanisms (multiphoton ionization, diffusion, recombination, ...). Using a macroscopic description of the interaction, the growth rate can be deduced from the experimental results. Values are in a rather good agreement with the theoretical ones. Moreover evidence is given of influence of the excited atoms on the multiplication process [fr

  17. Spectrally resolved modal characteristics of leaky-wave-coupled quantum cascade phase-locked laser arrays

    Science.gov (United States)

    Sigler, Chris; Gibson, Ricky; Boyle, Colin; Kirch, Jeremy D.; Lindberg, Donald; Earles, Thomas; Botez, Dan; Mawst, Luke J.; Bedford, Robert

    2018-01-01

    The modal characteristics of nonresonant five-element phase-locked arrays of 4.7-μm emitting quantum cascade lasers (QCLs) have been studied using spectrally resolved near- and far-field measurements and correlated with results of device simulation. Devices are fabricated by a two-step metal-organic chemical vapor deposition process and operate predominantly in an in-phase array mode near threshold, although become multimode at higher drive levels. The wide spectral bandwidth of the QCL's core region is found to be a factor in promoting multispatial-mode operation at high drive levels above threshold. An optimized resonant-array design is identified to allow sole in-phase array-mode operation to high drive levels above threshold, and indicates that for phase-locked laser arrays full spatial coherence to high output powers does not require full temporal coherence.

  18. Observation of double resonant laser induced transitions in the $v = n - l - 1 = 2$ metastable cascade of antiprotonic helium-4 atoms

    CERN Document Server

    Hayano, R S; Tamura, H; Torii, H A; Hori, Masaki; Maas, F E; Morita, N; Kumakura, M; Sugai, I; Hartmann, F J; Daniel, H; Von Egidy, T; Ketzer, B; Pohl, R; Horváth, D; Eades, John; Widmann, E; Yamazaki, T

    1997-01-01

    A new laser-induced resonant transition in the $v=n-l-1=2$ metastable cascade of antiprotonic $^4$He atoms has been found by using a double resonance technique. This was done by setting the first laser to the already known 470.724 nm resonance ($(n,l)=(37,34)\\rightarrow (36,33)$), while the $(38,35)\\rightarrow (37,34)$ transition was searched for with the second laser. The resonant transition was found at wavelength of 529.622$\\pm$0.003 nm, showing excellent agreement with a recent prediction of Korobov.

  19. Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Terabayashi, Ryohei, E-mail: terabayashi.ryouhei@h.mbox.nagoya-u.ac.jp; Sonnenschein, Volker, E-mail: volker@nagoya-u.jp; Tomita, Hideki, E-mail: tomita@nagoya-u.jp; Hayashi, Noriyoshi, E-mail: hayashi.noriyoshi@h.mbox.nagoya-u.ac.jp; Kato, Shusuke, E-mail: katou.shuusuke@f.mbox.nagoya-u.ac.jp; Jin, Lei, E-mail: kin@nuee.nagoya-u.ac.jp; Yamanaka, Masahito, E-mail: yamanaka@nuee.nagoya-u.ac.jp; Nishizawa, Norihiko, E-mail: nishizawa@nuee.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan); Sato, Atsushi, E-mail: atsushi.sato@sekisui.com; Nozawa, Kohei, E-mail: kohei.nozawa@sekisui.com; Hashizume, Kenta, E-mail: kenta.hashizume@sekisui.com; Oh-hara, Toshinari, E-mail: toshinari.ohara@sekisui.com [Sekisui Medical Co., Ltd., Drug Development Solutions Center (Japan); Iguchi, Tetsuo, E-mail: t-iguchi@nucl.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan)

    2017-11-15

    A simple external optical feedback system has been applied to a distributed feedback quantum cascade laser (DFB QCL) for cavity ring-down spectroscopy (CRDS) and a clear effect of feedback was observed. A long external feedback path length of up to 4m can decrease the QCL linewidth to around 50kHz, which is of the order of the transmission linewidth of our high finesse ring-down cavity. The power spectral density of the transmission signal from high finesse cavity reveals that the noise at frequencies above 20kHz is reduced dramatically.

  20. Phase locking of 2.324 and 2.959 terahertz quantum cascade lasers using a Schottky diode harmonic mixer.

    Science.gov (United States)

    Danylov, Andriy; Erickson, Neal; Light, Alexander; Waldman, Jerry

    2015-11-01

    The 23rd and 31st harmonics of a microwave signal generated in a novel THz balanced Schottky diode mixer were used as a frequency stable reference source to phase lock solid-nitrogen-cooled 2.324 and 2.959 THz quantum cascade lasers. Hertz-level frequency stability was achieved, which was maintained for several hours.

  1. Diagnostic studies of molecular plasmas using mid-infrared semiconductor lasers

    NARCIS (Netherlands)

    Röpcke, J.; Welzel, S.; Lang, N.; Hempel, F.; Gatilova, L.; Guaitella, O.; Rousseau, A.; Davies, P.B.

    2008-01-01

    Within the last decade mid-infrared absorption spectroscopy between 3 and 20 µm, known as infrared laser absorption spectroscopy (IRLAS) and based on tuneable semiconductor lasers, namely lead salt diode lasers, often called tuneable diode lasers (TDL), and quantum cascade lasers (QCL) has

  2. X-ray Production by Cascading Stages of a High-Gain Harmonic Generation Free-Electron Laser II: Special Topics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J

    2004-09-01

    In this paper, we study the tolerance of a new approach to produce coherent x-ray by cascading several stages of a High-Gain Harmonic Generation (HGHG) Free-Electron Laser (FEL). Being a harmonic generation process, a small noise in the initial fundamental signal will lead to a significant noise-to-signal (NTS) ratio in the final harmonic, so the noise issue is studied in this paper. We study two sources of noise: the incoherent undulator radiation, which is a noise with respect to the seed laser; and the noise of the seed laser itself. In reality, the electron beam longitudinal current profile is not uniform. Since the electron beam is the amplification medium for the FEL, this non- uniformity will induce phase error in the FEL. Therefore, this effect is studied. Phase error due to the wakefield and electron beam self-field is also studied. Synchrotronization of the electron beam and the seed laser is an important issue determining the success of the HGHG. We study the timing jitter induced frequency jitter in this paper. We also show that an HGHG FEL poses a less stringent requirement on the emittance than a SASE FEL does, due to a Natural Emittance Effect Reduction (NEER) mechanism. This NEER mechanism suggests a new operation mode, i.e., the HGHG FEL could adopt a high current, though unavoidable, a high emittance electron beam. Study in this paper shows that, production of hard x-rays with good longitudinal coherence by cascading stages of a HGHG FEL is promising. However, technical improvement is demanded.

  3. Absolute spectroscopy near 7.8 {\\mu} m with a comb-locked extended-cavity quantum-cascade-laser

    KAUST Repository

    Lamperti, Marco

    2017-07-31

    We report the first experimental demonstration of frequency-locking of an extended-cavity quantum-cascade-laser (EC-QCL) to a near-infrared frequency comb. The locking scheme is applied to carry out absolute spectroscopy of N2O lines near 7.87 {\\\\mu}m with an accuracy of ~60 kHz. Thanks to a single mode operation over more than 100 cm^{-1}, the comb-locked EC-QCL shows great potential for the accurate retrieval of line center frequencies in a spectral region that is currently outside the reach of broadly tunable cw sources, either based on difference frequency generation or optical parametric oscillation. The approach described here can be straightforwardly extended up to 12 {\\\\mu}m, which is the current wavelength limit for commercial cw EC-QCLs.

  4. Wavefront measurement of single-mode quantum cascade laser beam for seed application in laser-produced plasma extreme ultraviolet system.

    Science.gov (United States)

    Nowak, Krzysztof M; Ohta, Takeshi; Suganuma, Takashi; Yokotsuka, Toshio; Fujimoto, Junichi; Mizoguchi, Hakaru

    2012-12-01

    Quantum cascade laser (QCL) is a very attractive seed source for a multikilowatt pulsed CO2 lasers applied for driving extreme ultraviolet emitting plasmas. In this Letter, we investigate output beam properties of a QCL designed to address P18 and P20 lines of 10.6 micron band of CO2 molecule. In particular, output beam quality and stability are investigated for the first time. A well-defined linear polarization and a single-mode operation enabled a use of phase retrieval method for full description of QCL output beam. A direct, multi-image numerical phase retrieval technique was developed and successfully applied to the measured intensity patterns of a QCL beam. Very good agreement between the measured and reconstructed beam profiles was observed at distances ranging from QCL aperture to infinity, proving a good understanding of the beam propagation. The results also confirm a high spatial coherence and high stability of the beam parameters, the features expected from an excellent seed source.

  5. Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements.

    Science.gov (United States)

    Parameswaran, Krishnan R; Rosen, David I; Allen, Mark G; Ganz, Alan M; Risby, Terence H

    2009-02-01

    Cavity-enhanced tunable diode laser absorption spectroscopy is an attractive method for measuring small concentrations of gaseous species. Ethane is a breath biomarker of lipid peroxidation initiated by reactive oxygen species. A noninvasive means of quickly quantifying oxidative stress status has the potential for broad clinical application. We present a simple, compact system using off-axis integrated cavity output spectroscopy with an interband cascade laser and demonstrate its use in real-time measurements of breath ethane. We demonstrate a detection sensitivity of 0.48 ppb/Hz(1/2).

  6. Time-resolved study of a pulsed dc discharge using quantum cascade laser absorption spectroscopy : NO and gas temperature kinetics

    NARCIS (Netherlands)

    Welzel, S.; Gatilova, L.; Röpcke, J.; Rousseau, A.

    2007-01-01

    In a pulsed dc discharge of an Ar–N2 mixture containing 0.91% of NO the kinetics of the destruction of NO has been studied under static and flowing conditions, i.e. in a closed and open discharge tube (p = 266 Pa). For this purpose quantum cascade laser absorption spectroscopy (QCLAS) in the

  7. Kinetic and diagnostic studies of molecular plasmas using laser absorption techniques

    NARCIS (Netherlands)

    Welzel, S.; Rousseau, A.; Davies, P.B.; Röpcke, J.

    2007-01-01

    Within the last decade mid infrared absorption spectroscopy between 3 and 20 µm, known as Infrared Laser Absorption Spectroscopy (IRLAS) and based on tuneable semiconductor lasers, namely lead salt diode lasers, often called tuneable diode lasers (TDL), and quantum cascade lasers (QCL) has

  8. Enhanced modeling of band nonparabolicity with application to a mid-IR quantum cascade laser structure

    International Nuclear Information System (INIS)

    Vukovic, N; Radovanovic, J; Milanovic, V

    2014-01-01

    We analyze the influence of conduction-band nonparabolicity on bound electronic states in the active region of a quantum cascade laser (QCL). Our model assumes expansion of the conduction-band dispersion relation up to a fourth order in wavevector and use of a suitable second boundary condition at the interface of two III-V semiconductor layers. Numerical results, obtained by the transfer matrix method, are presented for two mid-infrared GaAs/Al 0.33 Ga 0.67 As QCL active regions, and they are in very good agreement with experimental data found in the literature. Comparison with a different nonparabolicity model is presented for the example of a GaAs/Al 0.38 Ga 0.62 As-based mid-IR QCL. Calculations have also been carried out for one THz QCL structure to illustrate the possible application of the model in the terahertz part of the spectrum. (paper)

  9. Time-Resolved Quantum Cascade Laser Absorption Spectroscopy of Pulsed Plasma Assisted Chemical Vapor Deposition Processes Containing BCl3

    Science.gov (United States)

    Lang, Norbert; Hempel, Frank; Strämke, Siegfried; Röpcke, Jürgen

    2011-08-01

    In situ measurements are reported giving insight into the plasma chemical conversion of the precursor BCl3 in industrial applications of boriding plasmas. For the online monitoring of its ground state concentration, quantum cascade laser absorption spectroscopy (QCLAS) in the mid-infrared spectral range was applied in a plasma assisted chemical vapor deposition (PACVD) reactor. A compact quantum cascade laser measurement and control system (Q-MACS) was developed to allow a flexible and completely dust-sealed optical coupling to the reactor chamber of an industrial plasma surface modification system. The process under the study was a pulsed DC plasma with periodically injected BCl3 at 200 Pa. A synchronization of the Q-MACS with the process control unit enabled an insight into individual process cycles with a sensitivity of 10-6 cm-1·Hz-1/2. Different fragmentation rates of the precursor were found during an individual process cycle. The detected BCl3 concentrations were in the order of 1014 molecules·cm-3. The reported results of in situ monitoring with QCLAS demonstrate the potential for effective optimization procedures in industrial PACVD processes.

  10. Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser

    Science.gov (United States)

    Manne, J.; Lim, A.; Tulip, J.; Jäger, W.

    2012-05-01

    We report on spectroscopic measurements of acrolein and acrylonitrile at atmospheric pressure using a pulsed distributed feedback quantum-cascade laser in combination with intra- and inter-pulse techniques and compare the results. The measurements were done in the frequency region around 957 cm-1. In the inter-pulse technique, the laser is excited with short current pulses (5-10 ns), and the pulse amplitude is modulated with an external current ramp resulting in a ˜2.3 cm-1 frequency scan. In the intra-pulse technique, a linear frequency down-chirp during the pulse is used for sweeping across the absorption line. Long current pulses up to 500 ns were used for these measurements which resulted in a spectral window of ˜2.2 cm-1 during the down-chirp. These comparatively wide spectral windows facilitated the measurements of the relatively broad absorption lines (˜1 cm-1) of acrolein and acrylonitrile. The use of a room-temperature mercury-cadmium-telluride detector resulted in a completely cryogen-free spectrometer. We demonstrate ppb level detection limits within a data acquisition time of ˜10 s with these methodologies.

  11. Study of the exhaled acetone in type 1 diabetes using quantum cascade laser spectroscopy.

    Science.gov (United States)

    Reyes-Reyes, Adonis; Horsten, Roland C; Urbach, H Paul; Bhattacharya, Nandini

    2015-01-06

    The acetone concentration exhaled in the breath of three type 1 diabetes patients (two minors and one adult) and one healthy volunteer is studied using a quantum cascade laser-based spectroscopic system. Using the acetone signature between 1150 and 1250 cm(-1) and a multiline fitting method, the concentration variations on the order of parts per billion by volume were measured. Blood glucose and ketone concentrations in blood measurements were performed simultaneously to study their relation with acetone in exhaled breath. We focus on personalized studies to better understand the role of acetone in diabetes. For each volunteer, we performed a series of measurements over a period of time, including overnight fastings of 11 ± 1 h and during ketosis-hyperglycemia events for the minors. Our results highlight the importance of performing personalized studies because the response of the minors to the presence of ketosis was consistent but unique for each individual. Also, our results emphasize the need for performing more studies with T1D minors, because the acetone concentration in the breath of the minors differs, with respect to those reported in the literature, which are based on adults.

  12. Falling liquid film flow along cascade-typed first wall of laser-fusion reactor

    International Nuclear Information System (INIS)

    Kunugi, T.; Nakai, T.; Kawara, Z.

    2007-01-01

    To protect from high energy/particle fluxes caused by nuclear fusion reaction such as extremely high heat flux, X rays, Alpha particles and fuel debris to a first wall of an inertia fusion reactor, a 'cascade-typed' first wall with a falling liquid film flow is proposed as the 'liquid wall' concept which is one of the reactor chamber cooling and wall protection schemes: the reactor chamber can protect by using a liquid metal film flow (such as Li 17 Pb 83 ) over the wall. In order to investigate the feasibility of this concept, we conducted the numerical analyses by using the STREAM code and also conducted the flow visualization experiments. The numerical results suggested that the cascade structure design should be improved, so that we redesigned the cascade-typed first wall and performed the flow visualization as a POP (proof-of-principle) experiment. In the numerical analyses, the water is used as the working liquid and an acrylic plate as the wall. These selections are based on two reasons: (1) from the non-dimensional analysis approach, the Weber number (We=ρu 2 δ/σ: ρ is density, u is velocity, δ is film thickness, σ is surface tension coefficient) should be the same between the design (Li 17 Pb 83 flow) and the model experiment (water flow) because of the free-surface instability, (2) the SiC/SiC composite would be used as the wall material, so that the wall may have the less wettability: the acrylic plate has the similar feature. The redesigned cascade-typed first wall for one step (30 cm height corresponding to 4 Hz laser duration) consists of a liquid tank having a free-surface for keeping the constant water-head located at the backside of the first wall, and connects to a slit which is composed of two plates: one plate is the first wall, and the other is maintaining the liquid level. This design solved the trouble of the previous design. The test section for the flow visualization has the same structure and the same height as the reactor design

  13. Spatial-mode switchable ring fiber laser based on low mode-crosstalk all-fiber mode MUX/DEMUX

    Science.gov (United States)

    Ren, Fang; Yu, Jinyi; Wang, Jianping

    2018-05-01

    We report an all-fiber ring laser that emits linearly polarized (LP) modes based on the intracavity all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). Multiple LP modes in ring fiber laser are generated by taking advantage of mode MUX/DEMUX. The all-fiber mode MUX/DEMUX are composed of cascaded mode-selective couplers (MSCs). The output lasing mode of the ring fiber laser can be switched among the three lowest-order LP modes by employing combination of a mode MUX and a simple N × 1 optical switch. The slope efficiencies, optical spectra and mode profiles are measured.

  14. An ant colony based resilience approach to cascading failures in cluster supply network

    Science.gov (United States)

    Wang, Yingcong; Xiao, Renbin

    2016-11-01

    Cluster supply chain network is a typical complex network and easily suffers cascading failures under disruption events, which is caused by the under-load of enterprises. Improving network resilience can increase the ability of recovery from cascading failures. Social resilience is found in ant colony and comes from ant's spatial fidelity zones (SFZ). Starting from the under-load failures, this paper proposes a resilience method to cascading failures in cluster supply chain network by leveraging on social resilience of ant colony. First, the mapping between ant colony SFZ and cluster supply chain network SFZ is presented. Second, a new cascading model for cluster supply chain network is constructed based on under-load failures. Then, the SFZ-based resilience method and index to cascading failures are developed according to ant colony's social resilience. Finally, a numerical simulation and a case study are used to verify the validity of the cascading model and the resilience method. Experimental results show that, the cluster supply chain network becomes resilient to cascading failures under the SFZ-based resilience method, and the cluster supply chain network resilience can be enhanced by improving the ability of enterprises to recover and adjust.

  15. Terahertz near-field imaging using subwavelength plasmonic apertures and a quantum cascade laser source.

    Science.gov (United States)

    Baragwanath, Adam J; Freeman, Joshua R; Gallant, Andrew J; Zeitler, J Axel; Beere, Harvey E; Ritchie, David A; Chamberlain, J Martyn

    2011-07-01

    The first demonstration, to our knowledge, of near-field imaging using subwavelength plasmonic apertures with a terahertz quantum cascade laser source is presented. "Bull's-eye" apertures, featuring subwavelength circular apertures flanked by periodic annular corrugations were created using a novel fabrication method. A fivefold increase in intensity was observed for plasmonic apertures over plain apertures of the same diameter. Detailed studies of the transmitted beam profiles were undertaken for apertures with both planarized and corrugated exit facets, with the former producing spatially uniform intensity profiles and subwavelength spatial resolution. Finally, a proof-of-concept imaging experiment is presented, where an inhomogeneous pharmaceutical drug coating is investigated.

  16. Design, fabrication, and optimization of quantum cascade laser cavities and spectroscopy of the intersubband gain

    Science.gov (United States)

    Dirisu, Afusat Olayinka

    Quantum Cascade (QC) lasers are intersubband light sources operating in the wavelength range of ˜ 3 to 300 mum and are used in applications such as sensing (environmental, biological, and hazardous chemical), infrared countermeasures, and free-space infrared communications. The mid-infrared range (i.e. lambda ˜ 3-30 mum) is of particular importance in sensing because of the strong interaction of laser radiation with various chemical species, while in free space communications the atmospheric windows of 3-5 mum and 8-12 mum are highly desirable for low loss transmission. Some of the requirements of these applications include, (1) high output power for improved sensitivity; (2) high operating temperatures for compact and cost-effective systems; (3) wide tunability; (4) single mode operation for high selectivity. In the past, available mid-infrared sources, such as the lead-salt and solid-state lasers, were bulky, expensive, or emit low output power. In recent years, QC lasers have been explored as cost-effective and compact sources because of their potential to satisfy and exceed all the above requirements. Also, the ultrafast carrier lifetimes of intersubband transitions in QC lasers are promising for high bandwidth free-space infrared communication. This thesis was focused on the improvement of QC lasers through the design and optimization of the laser cavity and characterization of the laser gain medium. The optimization of the laser cavity included, (1) the design and fabrication of high reflection Bragg gratings and subwavelength antireflection gratings, by focused ion beam milling, to achieve tunable, single mode and high power QC lasers, and (2) modeling of slab-coupled optical waveguide QC lasers for high brightness output beams. The characterization of the QC laser gain medium was carried out using the single-pass transmission experiment, a sensitive measurement technique, for probing the intersubband transitions and the electron distribution of QC lasers

  17. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    Science.gov (United States)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  18. FERMI @ Elettra A Seeded Harmonic Cascade FEL for EUV and Soft X-Rays

    CERN Document Server

    Bocchetta, C J; Craievich, P; D'Auria, G; Danailov, M B; De Ninno, G; Di Mitri, S; Diviacco, B; Ferianis, M; Gomezel, A; Iazzourene, F; Karantzoulis, E; Penco, G; Trovò, M

    2005-01-01

    We describe the machine layout and major performance parameters for the FERMI FEL project funded for construction at Sincrotrone Trieste, Italy. The project will be the first user facility based on seeded harmonic cascade FELs, providing controlled, high peak-power pulses. With a high-brightness rf photocathode gun, and using the existing 1.2 GeV S-band linac, the facility will provide tunable output over a range from ~100 nm to ~10 nm, with pulse duration from 40 fs to ~ 1ps, and with fully variable output polarization. Initially, two FEL cascades are planned; a single-stage harmonic generation to operate > 40 nm, and a two-stage cascade operating from ~40 nm to ~10 nm or shorter wavelength. The output is spatially and temporally coherent, with peak power in the GW range. Lasers provide modulation to the electron beam, as well as driving the photocathode and other systems, and the facility will integrate laser systems with the accelerator infrastructure, including a state-of-the-art optical timing sys...

  19. Absolute spectroscopy near 7.8 μm with a comb-locked extended-cavity quantum-cascade-laser.

    Science.gov (United States)

    Lamperti, Marco; AlSaif, Bidoor; Gatti, Davide; Fermann, Martin; Laporta, Paolo; Farooq, Aamir; Marangoni, Marco

    2018-01-22

    We report for the first time the frequency locking of an extended-cavity quantum-cascade-laser (EC-QCL) to a near-infrared frequency comb. The locked laser source is exploited to carry out molecular spectroscopy around 7.8 μm with a line-centre frequency combined uncertainty of ~63 kHz. The strength of the approach, in view of an accurate retrieval of line centre frequencies over a spectral range as large as 100 cm -1 , is demonstrated on the P(40), P(18) and R(31) lines of the fundamental rovibrational band of N 2 O covering the centre and edges of the P and R branches. The spectrometer has the potential to be straightforwardly extended to other spectral ranges, till 12 μm, which is the current wavelength limit for commercial cw EC-QCLs.

  20. Absolute spectroscopy near 7.8 μm with a comb-locked extended-cavity quantum-cascade-laser

    KAUST Repository

    Lamperti, Marco; Alsaif, Bidoor; Gatti, Davide; Fermann, Martin; Laporta, Paolo; Farooq, Aamir; Marangoni, Marco

    2018-01-01

    We report for the first time the frequency locking of an extended-cavity quantum-cascade-laser (EC-QCL) to a near-infrared frequency comb. The locked laser source is exploited to carry out molecular spectroscopy around 7.8 μm with a line-centre frequency combined uncertainty of ~63 kHz. The strength of the approach, in view of an accurate retrieval of line centre frequencies over a spectral range as large as 100 cm-1, is demonstrated on the P(40), P(18) and R(31) lines of the fundamental rovibrational band of N2O covering the centre and edges of the P and R branches. The spectrometer has the potential to be straightforwardly extended to other spectral ranges, till 12 μm, which is the current wavelength limit for commercial cw EC-QCLs.

  1. Absolute spectroscopy near 7.8 μm with a comb-locked extended-cavity quantum-cascade-laser

    KAUST Repository

    Lamperti, Marco

    2018-01-16

    We report for the first time the frequency locking of an extended-cavity quantum-cascade-laser (EC-QCL) to a near-infrared frequency comb. The locked laser source is exploited to carry out molecular spectroscopy around 7.8 μm with a line-centre frequency combined uncertainty of ~63 kHz. The strength of the approach, in view of an accurate retrieval of line centre frequencies over a spectral range as large as 100 cm-1, is demonstrated on the P(40), P(18) and R(31) lines of the fundamental rovibrational band of N2O covering the centre and edges of the P and R branches. The spectrometer has the potential to be straightforwardly extended to other spectral ranges, till 12 μm, which is the current wavelength limit for commercial cw EC-QCLs.

  2. High-quality electron beam generation and bright betatron radiation from a cascaded laser wakefield accelerator (Conference Presentation)

    Science.gov (United States)

    Liu, Jiansheng; Wang, Wentao; Li, Wentao; Qi, Rong; Zhang, Zhijun; Yu, Changhai; Wang, Cheng; Liu, Jiaqi; Qing, Zhiyong; Ming, Fang; Xu, Yi; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2017-05-01

    One of the major goals of developing laser wakefiled accelerators (LWFAs) is to produce compact high-energy electron beam (e-beam) sources, which are expected to be applied in developing compact x-ray free-electron lasers and monoenergetic gamma-ray sources. Although LWFAs have been demonstrated to generate multi-GeV e-beams, to date they are still failed to produce high quality e beams with several essential properties (narrow energy spread, small transverse emittance and high beam charge) achieved simultaneously. Here we report on the demonstration of a high-quality cascaded LWFA experimentally via manipulating electron injection, seeding in different periods of the wakefield, as well as controlling energy chirp for the compression of energy spread. The cascaded LWFA was powered by a 1-Hz 200-TW femtosecond laser facility at SIOM. High-brightness e beams with peak energies in the range of 200-600 MeV, 0.4-1.2% rms energy spread, 10-80 pC charge, and 0.2 mrad rms divergence are experimentally obtained. Unprecedentedly high 6-dimensional (6-D) brightness B6D,n in units of A/m2/0.1% was estimated at the level of 1015-16, which is very close to the typical brightness of e beams from state-of-the-art linac drivers and several-fold higher than those of previously reported LWFAs. Furthermore, we propose a scheme to minimize the energy spread of an e beam in a cascaded LWFA to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution via velocity bunching. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge. Based on the high-quality e beams generated in the LWFA, we have experimentally realized a new scheme to enhance the

  3. Phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser using a room-temperature superlattice harmonic mixer

    NARCIS (Netherlands)

    Hayton, D. J.; Khudchencko, A.; Pavelyev, D. G.; Hovenier, J. N.; Baryshev, A.; Gao, J. R.; Kao, T. Y.; Hu, Q.; Reno, J. L.; Vaks, V.

    2013-01-01

    We report on the phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser (QCL) using a room temperature GaAs/AlAs superlattice diode as both a frequency multiplier and an internal harmonic mixer. A signal-to-noise level of 60 dB is observed in the intermediate frequency

  4. Phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser using a room-temperature superlattice harmonic mixer

    NARCIS (Netherlands)

    Hayton, D.J.; Khudchenko, A.; Pavelyev, D.G.; Hovenier, J.N.; Baryshev, A.; Gao, J.R.; Kao, T.Y.; Hu, Q.; Reno, J.L.; Vaks, V.

    2013-01-01

    We report on the phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser (QCL) using a room temperature GaAs/AlAs superlattice diode as both a frequency multiplier and an internal harmonic mixer. A signal-to-noise level of 60?dB is observed in the intermediate frequency

  5. Watt-level widely tunable single-mode emission by injection-locking of a multimode Fabry-Perot quantum cascade laser

    Science.gov (United States)

    Chevalier, Paul; Piccardo, Marco; Anand, Sajant; Mejia, Enrique A.; Wang, Yongrui; Mansuripur, Tobias S.; Xie, Feng; Lascola, Kevin; Belyanin, Alexey; Capasso, Federico

    2018-02-01

    Free-running Fabry-Perot lasers normally operate in a single-mode regime until the pumping current is increased beyond the single-mode instability threshold, above which they evolve into a multimode state. As a result of this instability, the single-mode operation of these lasers is typically constrained to few percents of their output power range, this being an undesired limitation in spectroscopy applications. In order to expand the span of single-mode operation, we use an optical injection seed generated by an external-cavity single-mode laser source to force the Fabry-Perot quantum cascade laser into a single-mode state in the high current range, where it would otherwise operate in a multimode regime. Utilizing this approach, we achieve single-mode emission at room temperature with a tuning range of 36 cm-1 and stable continuous-wave output power exceeding 1 W at 4.5 μm. Far-field measurements show that a single transverse mode is emitted up to the highest optical power, indicating that the beam properties of the seeded Fabry-Perot laser remain unchanged as compared to free-running operation.

  6. Quantum Transport Simulation of High-Power 4.6-μm Quantum Cascade Lasers

    Directory of Open Access Journals (Sweden)

    Olafur Jonasson

    2016-06-01

    Full Text Available We present a quantum transport simulation of a 4.6- μ m quantum cascade laser (QCL operating at high power near room temperature. The simulation is based on a rigorous density-matrix-based formalism, in which the evolution of the single-electron density matrix follows a Markovian master equation in the presence of applied electric field and relevant scattering mechanisms. We show that it is important to allow for both position-dependent effective mass and for effective lowering of very thin barriers in order to obtain the band structure and the current-field characteristics comparable to experiment. Our calculations agree well with experiments over a wide range of temperatures. We predict a room-temperature threshold field of 62 . 5 kV/cm and a characteristic temperature for threshold-current-density variation of T 0 = 199 K . We also calculate electronic in-plane distributions, which are far from thermal, and show that subband electron temperatures can be hundreds to thousands of degrees higher than the heat sink. Finally, we emphasize the role of coherent tunneling current by looking at the size of coherences, the off-diagonal elements of the density matrix. At the design lasing field, efficient injection manifests itself in a large injector/upper lasing level coherence, which underscores the insufficiency of semiclassical techniques to address injection in QCLs.

  7. High-accuracy and high-sensitivity spectroscopic measurement of dinitrogen pentoxide (N2O5) in an atmospheric simulation chamber using a quantum cascade laser.

    Science.gov (United States)

    Yi, Hongming; Wu, Tao; Lauraguais, Amélie; Semenov, Vladimir; Coeur, Cecile; Cassez, Andy; Fertein, Eric; Gao, Xiaoming; Chen, Weidong

    2017-12-04

    A spectroscopic instrument based on a mid-infrared external cavity quantum cascade laser (EC-QCL) was developed for high-accuracy measurements of dinitrogen pentoxide (N 2 O 5 ) at the ppbv-level. A specific concentration retrieval algorithm was developed to remove, from the broadband absorption spectrum of N 2 O 5 , both etalon fringes resulting from the EC-QCL intrinsic structure and spectral interference lines of H 2 O vapour absorption, which led to a significant improvement in measurement accuracy and detection sensitivity (by a factor of 10), compared to using a traditional algorithm for gas concentration retrieval. The developed EC-QCL-based N 2 O 5 sensing platform was evaluated by real-time tracking N 2 O 5 concentration in its most important nocturnal tropospheric chemical reaction of NO 3 + NO 2 ↔ N 2 O 5 in an atmospheric simulation chamber. Based on an optical absorption path-length of L eff = 70 m, a minimum detection limit of 15 ppbv was achieved with a 25 s integration time and it was down to 3 ppbv in 400 s. The equilibrium rate constant K eq involved in the above chemical reaction was determined with direct concentration measurements using the developed EC-QCL sensing platform, which was in good agreement with the theoretical value deduced from a referenced empirical formula under well controlled experimental conditions. The present work demonstrates the potential and the unique advantage of the use of a modern external cavity quantum cascade laser for applications in direct quantitative measurement of broadband absorption of key molecular species involved in chemical kinetic and climate-change related tropospheric chemistry.

  8. 1.9 W yellow, CW, high-brightness light from a high efficiency semiconductor laser-based system

    Science.gov (United States)

    Hansen, A. K.; Christensen, M.; Noordegraaf, D.; Heist, P.; Papastathopoulos, E.; Loyo-Maldonado, V.; Jensen, O. B.; Stock, M. L.; Skovgaard, P. M. W.

    2017-02-01

    Semiconductor lasers are ideal sources for efficient electrical-to-optical power conversion and for many applications where their small size and potential for low cost are required to meet market demands. Yellow lasers find use in a variety of bio-related applications, such as photocoagulation, imaging, flow cytometry, and cancer treatment. However, direct generation of yellow light from semiconductors with sufficient beam quality and power has so far eluded researchers. Meanwhile, tapered semiconductor lasers at near-infrared wavelengths have recently become able to provide neardiffraction- limited, single frequency operation with output powers up to 8 W near 1120 nm. We present a 1.9 W single frequency laser system at 562 nm, based on single pass cascaded frequency doubling of such a tapered laser diode. The laser diode is a monolithic device consisting of two sections: a ridge waveguide with a distributed Bragg reflector, and a tapered amplifier. Using single-pass cascaded frequency doubling in two periodically poled lithium niobate crystals, 1.93 W of diffraction-limited light at 562 nm is generated from 5.8 W continuous-wave infrared light. When turned on from cold, the laser system reaches full power in just 60 seconds. An advantage of using a single pass configuration, rather than an external cavity configuration, is increased stability towards external perturbations. For example, stability to fluctuating case temperature over a 30 K temperature span has been demonstrated. The combination of high stability, compactness and watt-level power range means this technology is of great interest for a wide range of biological and biomedical applications.

  9. Closed Loop Fuzzy Logic Controlled PV Based Cascaded Boost Five-Level Inverter System

    Science.gov (United States)

    Revana, Guruswamy; Kota, Venkata Reddy

    2018-04-01

    Recent developments in intelligent control methods and power electronics have produced PV based DC to AC converters related to AC drives. Cascaded boost converter and inverter find their way in interconnecting PV and Induction Motor. This paper deals with digital simulation and implementation of closed loop controlled five-level inverter based Photo-Voltaic (PV) system. The objective of this work is to reduce the harmonics using Multi Level Inverter based system. The DC output from the PV panel is boosted using cascaded-boost-converters. The DC output of these cascaded boost converters is applied to the bridges of the cascaded inverter. The AC output voltage is obtained by the series cascading of the output voltage of the two inverters. The investigations are done with Induction motor load. Cascaded boost-converter is proposed in the present work to produce the required DC Voltage at the input of the bridge inverter. A simple FLC is applied to CBFLIIM system. The FLC is proposed to reduce the steady state error. The simulation results are compared with the hardware results. The results of the comparison are made to show the improvement in dynamic response in terms of settling time and steady state error. Design procedure and control strategy are presented in detail.

  10. A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser.

    Science.gov (United States)

    Patimisco, Pietro; Borri, Simone; Sampaolo, Angelo; Beere, Harvey E; Ritchie, David A; Vitiello, Miriam S; Scamarcio, Gaetano; Spagnolo, Vincenzo

    2014-05-07

    An innovative quartz enhanced photoacoustic (QEPAS) gas sensing system operating in the THz spectral range and employing a custom quartz tuning fork (QTF) is described. The QTF dimensions are 3.3 cm × 0.4 cm × 0.8 cm, with the two prongs spaced by ∼800 μm. To test our sensor we used a quantum cascade laser as the light source and selected a methanol rotational absorption line at 131.054 cm(-1) (∼3.93 THz), with line-strength S = 4.28 × 10(-21) cm mol(-1). The sensor was operated at 10 Torr pressure on the first flexion QTF resonance frequency of 4245 Hz. The corresponding Q-factor was 74 760. Stepwise concentration measurements were performed to verify the linearity of the QEPAS signal as a function of the methanol concentration. The achieved sensitivity of the system is 7 parts per million in 4 seconds, corresponding to a QEPAS normalized noise-equivalent absorption of 2 × 10(-10) W cm(-1) Hz(-1/2), comparable with the best result of mid-IR QEPAS systems.

  11. Magnetic field sensor based on cascaded microfiber coupler with magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Lianmin; Su, Delong; Wang, Zhaofang [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Pu, Shengli, E-mail: shlpu@usst.edu.cn [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093 (China); Zeng, Xianglong [The Key Lab of Specialty Fiber Optics and Optical Access Network, Shanghai University, Shanghai 200072 (China); Lahoubi, Mahieddine [Laboratory L.P.S., Department of Physics, Faculty of Sciences, Badji-Mokhtar Annaba University, Annaba 23000 (Algeria)

    2016-09-07

    A kind of magnetic field sensor based on cascaded microfiber coupler with magnetic fluid is proposed and experimentally demonstrated. The magnetic fluid is utilized as the cladding of the fused regions of the cascaded microfiber coupler. As the interference valley wavelength of the sensing structure is sensitive to the ambient variation, considering the magnetic-field-dependent refractive index of magnetic fluid, the proposed structure is employed for magnetic field sensing. The effective coupling length for each coupling region of the as-fabricated cascaded microfiber coupler is 6031 μm. The achieved sensitivity is 125 pm/Oe, which is about three times larger than that of the previously similar structure based on the single microfiber coupler. Experimental results indicate that the sensing sensitivity can be easily improved by increasing the effective coupling length or cascading more microfiber couplers. The proposed magnetic field sensor is attractive due to its low cost, immunity to electromagnetic interference, as well as high sensitivity, which also has the potentials in other tunable all-fiber photonic devices, such as filter.

  12. Tunable All-Optical Wavelength Conversion Based on Cascaded SHG/DFG in a Ti:PPLN Waveguide Using a Single CW Control Laser

    DEFF Research Database (Denmark)

    Hu, Hao; Nouroozi, Rahman; Wang, Wenrui

    2012-01-01

    Tunable all-optical wavelength conversion (AOWC) of a 40-Gb/s RZ-OOK data signal based on cascaded second-harmonic generation (SHG) and difference-frequency generation (DFG) in a Ti:PPLN waveguide is demonstrated. Error-free performances with negligible power penalty are achieved for the wavelength...

  13. An off Axis Cavity Enhanced Absorption Spectrometer and a Rapid Scan Spectrometer with a Room-Temperature External Cavity Quantum Cascade Laser

    Science.gov (United States)

    Liu, Xunchen; Kang, Cheolhwa; Xu, Yunjie

    2009-06-01

    Quantum cascade laser (QCL) is a new type of mid-infrared tunable diode lasers with superior output power and mode quality. Recent developments, such as room temperature operation, wide frequency tunability, and narrow line width, make QCLs an ideal light source for high resolution spectroscopy. Two slit jet infrared spectrometers, namely an off-axis cavity enhanced absorption (CEA) spectrometer and a rapid scan spectrometer with an astigmatic multi-pass cell assembly, have been coupled with a newly purchased room temperature tunable mod-hop-free QCL with a frequency coverage from 1592 cm^{-1} to 1698 cm^{-1} and a scan rate of 0.1 cm^{-1}/ms. Our aim is to utilize these two sensitive spectrometers, that are equipped with a molecular jet expansion, to investigate the chiral molecules-(water)_n clusters. To demonstrate the resolution and sensitivity achieved, the rovibrational transitions of the static N_2O gas and the bending rovibrational transitions of the Ar-water complex, a test system, at 1634 cm^{-1} have been measured. D. Hofstetter and J. Faist in High performance quantum cascade lasers and their applications, Vol.89 Springer-Verlag Berlin & Heidelberg, 2003, pp. 61-98. Y. Xu, X. Liu, Z. Su, R. M. Kulkarni, W. S. Tam, C. Kang, I. Leonov and L. D'Agostino, Proc. Spie, 2009, 722208 (1-11). M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 1997, 106, 3078-3089.

  14. Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode

    KAUST Repository

    Nasir, Ehson Fawad

    2016-07-16

    A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm were operated in pulsed mode, causing a frequency "down-chirp" across two ro-vibrational transitions of carbon monoxide. The down-chirp phenomenon resulted in large spectral tuning (δν ∼2.8cm-1) within a single pulse of each laser at a high pulse repetition frequency (100kHz). The wide tuning range allowed the application of the two-line thermometry technique, thus making the sensor quantitative and calibration-free. The sensor was first tested in non-reactive CO-N2 gas mixtures in the RCM and then applied to cases of n-pentane oxidation. Experiments were carried out for end of compression (EOC) pressures and temperatures ranging 9.21-15.32bar and 745-827K, respectively. Measured EOC temperatures agreed with isentropic calculations within 5%. Temperature rise measured during the first-stage ignition of n-pentane is over-predicted by zero-dimensional kinetic simulations. This work presents, for the first time, highly time-resolved temperature measurements in reactive and non-reactive rapid compression machine experiments. © 2016 Elsevier Ltd.

  15. Investigation of SOI Raman Lasers for Mid-Infrared Gas Sensing

    Science.gov (United States)

    Passaro, Vittorio M.N.; De Leonardis, Francesco

    2009-01-01

    In this paper, the investigation and detailed modeling of a cascaded Raman laser, operating in the midwave infrared region, is described. The device is based on silicon-on-insulator optical waveguides and a coupled resonant microcavity. Theoretical results are compared with recent experiments, demonstrating a very good agreement. Design criteria are derived for cascaded Raman lasers working as continuous wave light sources to simultaneously sense two types of gases, namely C2H6 and CO2, at a moderate power level of 130 mW. PMID:22408481

  16. Period adding cascades: experiment and modeling in air bubbling.

    Science.gov (United States)

    Pereira, Felipe Augusto Cardoso; Colli, Eduardo; Sartorelli, José Carlos

    2012-03-01

    Period adding cascades have been observed experimentally/numerically in the dynamics of neurons and pancreatic cells, lasers, electric circuits, chemical reactions, oceanic internal waves, and also in air bubbling. We show that the period adding cascades appearing in bubbling from a nozzle submerged in a viscous liquid can be reproduced by a simple model, based on some hydrodynamical principles, dealing with the time evolution of two variables, bubble position and pressure of the air chamber, through a system of differential equations with a rule of detachment based on force balance. The model further reduces to an iterating one-dimensional map giving the pressures at the detachments, where time between bubbles come out as an observable of the dynamics. The model has not only good agreement with experimental data, but is also able to predict the influence of the main parameters involved, like the length of the hose connecting the air supplier with the needle, the needle radius and the needle length.

  17. Propene concentration sensing for combustion gases using quantum-cascade laser absorption near 11 μm

    KAUST Repository

    Chrystie, Robin

    2015-05-29

    We report on a strategy to measure, in situ, the concentration of propene (C3H6) in combustion gases using laser absorption spectroscopy. Pyrolysis of n-butane was conducted in a shock tube, in which the resultant gases were probed using an extended cavity quantum-cascade laser. A differential absorption approach using online and offline wavelengths near λ = 10.9 μm enabled discrimination of propene, cancelling the effects of spectral interference from the simultaneous presence of intermediate hydrocarbon species during combustion. Such interference-free measurements were facilitated by exploiting the =C–H bending mode characteristic to alkenes (olefins). It was confirmed, for intermediate species present during pyrolysis of n-butane, that their absorption cross sections were the same magnitude for both online and offline wavelengths. Hence, this allowed time profiles of propene concentration to be measured during pyrolysis of n-butane in a shock tube. Time profiles of propene subsequent to a passing shock wave exhibit trends similar to that predicted by the well-established JetSurF 1.0 chemical kinetic mechanism, albeit lower by a factor of two. Such a laser diagnostic is a first step to experimentally determining propene in real time with sufficient time resolution, thus aiding the refinement and development of chemical kinetic models for combustion. © 2015 Springer-Verlag Berlin Heidelberg

  18. Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production

    Science.gov (United States)

    Couto, F. M.; Sthel, M. S.; Castro, M. P. P.; da Silva, M. G.; Rocha, M. V.; Tavares, J. R.; Veiga, C. F. M.; Vargas, H.

    2014-12-01

    In order to investigate the generation of greenhouse gases in sugarcane ethanol production chain, a comparative study of N2O emission in artificially fertilized soils and soils free from fertilizers was carried out. Photoacoustic spectroscopy using quantum cascade laser with an emission ranging from 7.71 to 7.88 µm and differential photoacoustic cell were applied to detect nitrous oxide (N2O), an important greenhouse gas emitted from soils cultivated with sugar cane. Owing to calibrate the experimental setup, an initial N2O concentration was diluted with pure nitrogen and detection limit of 50 ppbv was achieved. The proposed methodology was selective and sensitive enough to detect N2O from no fertilized and artificially fertilized soils. The measured N2O concentration ranged from ppmv to ppbv.

  19. Multi Agent System Based Wide Area Protection against Cascading Events

    DEFF Research Database (Denmark)

    Liu, Zhou; Chen, Zhe; Liu, Leo

    2012-01-01

    In this paper, a multi-agent system based wide area protection scheme is proposed in order to prevent long term voltage instability induced cascading events. The distributed relays and controllers work as a device agent which not only executes the normal function automatically but also can...... the effectiveness of proposed protection strategy. The simulation results indicate that the proposed multi agent control system can effectively coordinate the distributed relays and controllers to prevent the long term voltage instability induced cascading events....

  20. Optical dynamics in low-dimensional semiconductor heterostructures. Quantum dots and quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Carsten

    2008-07-01

    This work is focused on the optical dynamics of mesoscopic semiconductor heterostructures, using as prototypes zero-dimensional quantum dots and quantum cascade lasers which consist of quasitwo- dimensional quantum wells. Within a density matrix theory, a microscopic many-particle theory is applied to study scattering effects in these structures: the coupling to external as well as local fields, electron-phonon coupling, coupling to impurities, and Coulomb coupling. For both systems, the investigated effects are compared to experimentally observed results obtained during the past years. In quantum dots, the three-dimensional spatial confinement leads to the necessity to consider a quantum kinetic description of the dynamics, resulting in non-Markovian electron-phonon effects. This can be seen in the spectral phonon sidebands due to interaction with acoustic phonons as well as a damping of nonlinear Rabi oscillations which shows a nonmonotonous intensity and pulse duration dependence. An analysis of the inclusion of the self-interaction of the quantum dot shows that no dynamical local field terms appear for the simple two-level model. Considering local fields which have their origin in many quantum dots, consequences for a two-level quantum dot such as a zero-phonon line broadening and an increasing signal in photon echo experiments are found. For the use of quantum dots in an optical spin control scheme, it is found that the dephasing due to the electron-phonon interaction can be dominant in certain regimes. Furthermore, soliton and breather solutions are studied analytically in nonlinear quantum dot ensembles. Generalizing to quasi-two-dimensional structures, the intersubband dynamics of quantum cascade laser structures is investigated. A dynamical theory is considered in which the temporal evolution of the subband populations and the current density as well as the influence of scattering effects is studied. In the nonlinear regime, the scattering dependence and

  1. CASCADE: An Agent Based Framework For Modeling The Dynamics Of Smart Electricity Systems

    OpenAIRE

    Rylatt, R. M.; Gammon, Rupert; Boait, Peter John; Varga, L.; Allen, P.; Savill, M.; Snape, J. Richard; Lemon, Mark; Ardestani, B. M.; Pakka, V. H.; Fletcher, G.; Smith, S.; Fan, D.; Strathern, M.

    2013-01-01

    Collaborative project with Cranfield University The Complex Adaptive Systems, Cognitive Agents and Distributed Energy (CASCADE) project is developing a framework based on Agent Based Modelling (ABM). The CASCADE Framework can be used both to gain policy and industry relevant insights into the smart grid concept itself and as a platform to design and test distributed ICT solutions for smart grid based business entities. ABM is used to capture the behaviors of diff erent socia...

  2. Detection of benzene and toluene gases using a midinfrared continuous-wave external cavity quantum cascade laser at atmospheric pressure.

    Science.gov (United States)

    Sydoryk, Ihor; Lim, Alan; Jäger, Wolfgang; Tulip, John; Parsons, Matthew T

    2010-02-20

    We demonstrate the application of a commercially available widely tunable continuous-wave external cavity quantum cascade laser as a spectroscopic source for the simultaneous detection of multiple gases. We measured broad absorption features of benzene and toluene between 1012 and 1063 cm(-1) (9.88 and 9.41 microm) at atmospheric pressure using an astigmatic Herriott multipass cell. Our results show experimental detection limits of 0.26 and 0.41 ppm for benzene and toluene, respectively, with a 100 m path length for these two gases.

  3. Modeling of cascade and sub-cascade formation at high pka energies in irradiated fusion structural materials

    International Nuclear Information System (INIS)

    Ryazanov, A.; Metelkin, E.V.; Semenov, E.A.

    2007-01-01

    Full text of publication follows: A new theoretical model is developed for the investigations of cascade and sub-cascade formation in fusion structural materials under fast neutron irradiation at high primary knock atom (PKA) energies. Under 14 MeV neutron irradiation especially of light fusion structural materials such as Be, C, SiC materials PKA will have the energies up to 1 MeV. At such high energies it is very difficult to use the Monte Carlo or molecular dynamic simulations. The developed model is based on the analytical consideration of elastic collisions between displaced moving atoms into atomic cascades produced by a PKAs with the some kinetic energy obtained from fast neutrons. The Tomas-Fermy interaction potential is used for the describing of elastic collisions between moving atoms. The suggested model takes into account also the electronic losses for moving atoms between elastic collisions. The self consistent criterion for sub-cascade formation is suggested here which is based on the comparison of mean distance between two consequent PKA collisions and size of sub-cascade produced by PKA. The analytical relations for the most important characteristics of cascades and sub-cascade are determined including the average number of sub-cascades per one PKA in the dependence on PKA energy, the distance between sub-cascades and the average cascade and sub-cascade sizes as a function of PKA energy. The developed model allows determining the total numbers, distribution functions of cascades and sub-cascades in dependence on their sizes and generation rate of cascades and sub-cascades for different fusion neutron energy spectra. Based on the developed model the numerical calculations for main characteristics of cascades and sub-cascades in different fusion structural materials are performed using the neutron flux and PKA energy spectra for fusion reactors: ITER and DEMO. The main characteristics for cascade and sub-cascade formation are calculated here for the

  4. Turbulence Amplification with Incidence at the Leading Edge of a Compressor Cascade

    Directory of Open Access Journals (Sweden)

    Garth V. Hobson

    1999-01-01

    Full Text Available Detailed measurements, with a two-component laser-Doppler velocimeter and a thermal anemometer were made near the suction surface leading edge of controlled-diffusion airfoils in cascade. The Reynolds number was near 700,000, Mach number equal to 0.25, and freestream turbulence was at 1.5% ahead of the cascade.

  5. Quantum cascade laser absorption spectroscopy with the amplitude-to-time conversion technique for atmospheric-pressure plasmas

    International Nuclear Information System (INIS)

    Yumii, Takayoshi; Kimura, Noriaki; Hamaguchi, Satoshi

    2013-01-01

    The NO 2 concentration, i.e., density, in a small plasma of a nitrogen oxide (NOx) treatment reactor has been measured by highly sensitive laser absorption spectroscopy. The absorption spectroscopy uses a single path of a quantum cascade laser beam passing through a plasma whose dimension is about 1 cm. The high sensitivity of spectroscopy is achieved by the amplitude-to-time conversion technique. Although the plasma reactor is designed to convert NO in the input gas to NO 2 , it has been demonstrated by this highly sensitive absorption spectroscopy that NO 2 in a simulated exhaust gas that enters the reactor is decomposed by the plasma first and then NO 2 is formed again, possibly more than it was decomposed, through a series of gas-phase reactions by the time the gas exits the reactor. The observation is consistent with that of an earlier study on NO decomposition by the same type of a plasma reactor [T. Yumii et al., J. Phys. D 46, 135202 (2013)], in which a high concentration of NO 2 was observed at the exit of the reactor.

  6. Investigation of cascade-typed falling liquid film flow along first wall of laser-fusion reactor

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki; Nakai, Tadakatsu; Kawara, Zensaku

    2007-01-01

    To protect from high energy/particle fluxes caused by nuclear fusion reaction such as extremely high heat flux, X rays, Alpha particles and fuel debris to a first wall of an inertia fusion reactor, a ''cascade-typed'' falling liquid film flow is proposed as the ''liquid wall'' concept which is one of the reactor chamber cooling and wall protection schemes: the reactor chamber can protect by using a liquid metal film flow (such as Li 17 Pb 83 ) over the wall. In order to investigate the feasibility of this concept, we conducted the numerical analyses by using the commercial code (STREAM: unsteady three-dimensional general purpose thermofluid code) and also conducted the flow visualization experiments. The numerical results suggested that the cascade structure design should be improved, so that we redesigned the cascade-typed first wall and performed the flow visualization as a POP (proof-of-principle) experiment. In the numerical analyses, the water is used as the working liquid and an acrylic plate as the wall. These selections are based on two reasons: (1) from the non-dimensional analysis approach, the Weber number (We=ru 2 d/s: r is density, u is velocity, d is film thickness, s is surface tension coefficient) should be the same between the design (Li 17 Pb 83 flow) and the model experiment (water flow) because of the free-surface instability, (2) the SiC/SiC composite would be used as the wall material, so that the wall may have the less wettability: the acrylic plate has the similar feature. The redesigned cascade-typed first wall for one step (30 cm height corresponding to 4 Hz laser duration) consists of a liquid tank having a free-surface for keeping the constant waterhead located at the backside of the first wall, and connects to a slit which is composed of two plates: one plate is the first wall, and the other is maintaining the liquid level. This design solved the trouble of the previous design. The test section for the flow visualization has the same

  7. A New Method of Cloud Detection Based on Cascaded AdaBoost

    International Nuclear Information System (INIS)

    Ma, C; Chen, F; Liu, J; Duan, J

    2014-01-01

    Cloud detection of remote sensing image is a critical step in the processing of the remote sensing images. How to quickly, accurately and effectively detect cloud on remote sensing images, is still a challenging issue in this area. In order to avoid disadvantages of the current algorithms, the cascaded AdaBoost classifier algorithm is successfully applied to the cloud detection. A new algorithm combined cascaded AdaBoost classifier and multi-features, is proposed in this paper. First, multi-features based on the color, texture and spectral features are extracted from the remote sensing image. Second, the automatic cloud detection model is obtained based on the cascaded AdaBoost algorithm. In this paper, the results show that the new algorithm can determine cloud detection model and threshold values adaptively for different resolution remote sensing training data. The accuracy of cloud detection is improved. So it is a new effective algorithm for the cloud detection of remote sensing images

  8. Terahertz lasers and amplifiers based on resonant optical phonon scattering to achieve population inversion

    Science.gov (United States)

    Williams, Benjamin S. (Inventor); Hu, Qing (Inventor)

    2009-01-01

    The present invention provides quantum cascade lasers and amplifier that operate in a frequency range of about 1 Terahertz to about 10 Terahertz. In one aspect, a quantum cascade laser of the invention includes a semiconductor heterostructure that provides a plurality of lasing modules connected in series. Each lasing module includes a plurality of quantum well structure that collectively generate at least an upper lasing state, a lower lasing state, and a relaxation state such that the upper and the lower lasing states are separated by an energy corresponding to an optical frequency in a range of about 1 to about 10 Terahertz. The lower lasing state is selectively depopulated via resonant LO-phonon scattering of electrons into the relaxation state.

  9. Continuous anti-Stokes Raman laser operation

    International Nuclear Information System (INIS)

    Feitisch, A.; Muller, T.; Welling, H.; Wellegehausen, B.

    1988-01-01

    The anti-Stokes Raman laser (ASRL) process has proved to be a method that works well for frequency upconversion and for the generation of powerful tunable narrowband (pulsed) laser radiation in the UV and VUV spectral range. This conversion process allows large-frequency shifts in single step, high output energies, and high efficiencies. A basic requirement is population inversion on a two-photon transition, where, in general, the upper level of the transition should be metastable. Up to now the ASRL technique has only been demonstrated for the pulsed regime, where the necessary population inversion was generated by photodissociation or inner shell photoionization. These inversion techniques, however, cannot be transferred to cw operation of an ASRL, and, therefore, other inversion techniques have to be developed. Here a novel approach for the creation of the necessary population inversion is proposed, that uses well-known cw gas lasers as the active material for the conversion process. The basic idea is to use either existing two-photon population inversions in a cw laser material or to generate the necessary population inversion by applying a suitable population transfer process to the material. A natural two-photon inversion situation in a laser material is evident whenever a cascade laser can be operated. Cascade laser-based anti-Stokes schemes are possible in a He-Ne laser discharge, and investigations of these schemes are discussed

  10. Electrically-driven pure amplitude and frequency modulation in a quantum cascade laser.

    Science.gov (United States)

    Shehzad, Atif; Brochard, Pierre; Matthey, Renaud; Blaser, Stéphane; Gresch, Tobias; Maulini, Richard; Muller, Antoine; Südmeyer, Thomas; Schilt, Stéphane

    2018-04-30

    We present pure amplitude modulation (AM) and frequency modulation (FM) achieved electrically in a quantum cascade laser (QCL) equipped with an integrated resistive heater (IH). The QCL output power scales linearly with the current applied to the active region (AR), but decreases with the IH current, while the emission frequency decreases with both currents. Hence, a simultaneous modulation applied to the current of the AR and IH sections with a proper relative amplitude and phase can suppress the AM, resulting in a pure FM, or vice-versa. The adequate modulation parameters depend on the applied modulation frequency. Therefore, they were first determined from the individual measurements of the AM and FM transfer functions obtained for a modulation applied to the current of the AR or IH section, respectively. By optimizing the parameters of the two modulations, we demonstrate a reduction of the spurious AM or FM by almost two orders of magnitude at characteristic frequencies of 1 and 10 kHz compared to the use of the AR current only.

  11. A widely tunable 10-μm quantum cascade laser phase-locked to a state-of-the-art mid-infrared reference for precision molecular spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sow, P. L. T.; Mejri, S.; Tokunaga, S. K.; Lopez, O.; Argence, B.; Chardonnet, C.; Darquié, B., E-mail: benoit.darquie@univ-paris13.fr [CNRS, UMR 7538, LPL, 93430 Villetaneuse (France); Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, 93430 Villetaneuse (France); Goncharov, A.; Amy-Klein, A.; Daussy, C. [Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, 93430 Villetaneuse (France); CNRS, UMR 7538, LPL, 93430 Villetaneuse (France)

    2014-06-30

    We report the coherent phase-locking of a quantum cascade laser (QCL) at 10-μm to the secondary frequency standard of this spectral region, a CO{sub 2} laser stabilized on a saturated absorption line of OsO{sub 4}. The stability and accuracy of the standard are transferred to the QCL resulting in a line width of the order of 10 Hz, and leading to the narrowest QCL to date. The locked QCL is then used to perform absorption spectroscopy spanning 6 GHz of NH{sub 3} and methyltrioxorhenium, two species of interest for applications in precision measurements.

  12. Generation of 13.9 µm radiation from CO2 by cascade lasing or ...

    Indian Academy of Sciences (India)

    the 1000 level is fast, and such lasers operate at low power and energies. ... CO2 laser; Q-switching; generation of 14 µm radiation from CO2; cascade lasing ... of 5% hole coupling output mirror, and a high reflectivity rotating mirror. This.

  13. Frequency locking of an extended-cavity quantum cascade laser to a frequency comb for precision mid infrared spectroscopy

    KAUST Repository

    Alsaif, Bidoor; Lamperti, Marco; Gatti, Davide; Laporta, Paolo; Fermann, Martin E.; Farooq, Aamir; Marangoni, Marco

    2017-01-01

    Extended-cavity quantum cascade lasers (EC-QCLs) enable mode-hope-free frequency sweeps in the mid-infrared region over ranges in excess of 100 cm−1, at speeds up to 1 THz/s and with a 100-mW optical power level. This makes them ideally suited for broadband absorption spectroscopy and for the simultaneous detection of multiple gases. On the other hand, their use for precision spectroscopy has been hampered so far by a large amount of frequency noise, resulting in an optical linewidth of about 30 MHz over 50 ms [1]. This is one of the reasons why neither their frequency nor their phase have been so far locked to a frequency comb. Their use in combination with frequency combs has been performed in an open loop regime only [2], which has the merit of preserving the inherently fast modulation speed of these lasers, yet not to afford high spectral resolution and accuracy.

  14. Frequency locking of an extended-cavity quantum cascade laser to a frequency comb for precision mid infrared spectroscopy

    KAUST Repository

    Alsaif, Bidoor

    2017-11-02

    Extended-cavity quantum cascade lasers (EC-QCLs) enable mode-hope-free frequency sweeps in the mid-infrared region over ranges in excess of 100 cm−1, at speeds up to 1 THz/s and with a 100-mW optical power level. This makes them ideally suited for broadband absorption spectroscopy and for the simultaneous detection of multiple gases. On the other hand, their use for precision spectroscopy has been hampered so far by a large amount of frequency noise, resulting in an optical linewidth of about 30 MHz over 50 ms [1]. This is one of the reasons why neither their frequency nor their phase have been so far locked to a frequency comb. Their use in combination with frequency combs has been performed in an open loop regime only [2], which has the merit of preserving the inherently fast modulation speed of these lasers, yet not to afford high spectral resolution and accuracy.

  15. Electrical tuning of the oscillator strength in type II InAs/GaInSb quantum wells for active region of passively mode-locked interband cascade lasers

    Science.gov (United States)

    Dyksik, Mateusz; Motyka, Marcin; Kurka, Marcin; Ryczko, Krzysztof; Misiewicz, Jan; Schade, Anne; Kamp, Martin; Höfling, Sven; Sęk, Grzegorz

    2017-11-01

    Two designs of active region for an interband cascade laser, based on double or triple GaInSb/InAs type II quantum wells (QWs), were compared with respect to passive mode-locked operation in the mid-infrared range around 4 µm. The layer structure and electron and hole wavefunctions under external electric field were engineered to allow controlling the optical transition oscillator strength and the resulting lifetimes. As a result, the investigated structures can mimic absorber-like and gain-like sections of a mode-locked device when properly polarized with opposite bias. A significantly larger oscillator strength tuning range for triple QWs was experimentally verified by Fourier-transform photoreflectance.

  16. THz laser based on quasi-periodic AlGaAs superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Malyshev, K V [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation)

    2013-06-30

    The use of quasi-periodic AlGaAs superlattices as an active element of a quantum cascade laser of terahertz range is proposed and theoretically investigated. A multi-colour emission, having from three to six peaks of optical gain, is found in Fibonacci, Thue-Morse, and figurate superlattices in electric fields of intensity F = 11 - 13 kV cm{sup -1} in the frequency range f = 2 - 4 THz. The peaks depend linearly on the electric field, retain the height of 20 cm{sup -1}, and strongly depend on the thickness of the AlGaAs-layers. (lasers)

  17. Observation of sum-frequency-generation-induced cascaded four-wave mixing using two crossing femtosecond laser pulses in a 0.1 mm beta-barium-borate crystal.

    Science.gov (United States)

    Liu, Weimin; Zhu, Liangdong; Fang, Chong

    2012-09-15

    We demonstrate the simultaneous generation of multicolor femtosecond laser pulses spanning the wavelength range from UV to near IR in a 0.1 mm Type I beta-barium borate crystal from 800 nm fundamental and weak IR super-continuum white light (SCWL) pulses. The multicolor broadband laser pulses observed are attributed to two concomitant cascaded four-wave mixing (CFWM) processes as corroborated by calculation: (1) directly from the two incident laser pulses; (2) by the sum-frequency generation (SFG) induced CFWM process (SFGFWM). The latter signal arises from the interaction between the frequency-doubled fundamental pulse (400 nm) and the SFG pulse generated in between the fundamental and IR-SCWL pulses. The versatility and simplicity of this spatially dispersed multicolor self-compressed laser pulse generation offer compact and attractive methods to conduct femtosecond stimulated Raman spectroscopy and time-resolved multicolor spectroscopy.

  18. Simulation studies of a XUV/soft X-ray harmonic-cascade FEL for the proposed LBNL recirculating linac*

    International Nuclear Information System (INIS)

    Fawley, W.M.; Barletta, W.A.; Corlett, J.N.; Zholents, A.

    2003-01-01

    Presently there is significant interest at LBNL in designing and building a facility for ultrafast (i.e. femtosecond time scale) x-ray science based upon a superconducting, recirculating RF linac (see Corlett et al. for more details). In addition to producing synchrotron radiation pulses in the 1-15 keV energy range, we are also considering adding one or more free-electron laser (FEL) beamlines using a harmonic cascade approach to produce coherent XUV soft X-ray emission beginning with a strong input seed at ∼200 nm wavelength obtained from a ''conventional'' laser. Each cascade is composed of a radiator together with a modulator section, separated by a magnetic chicane. The chicane temporally delays the electron beam pulse in order that a ''virgin'' pulse region (with undegraded energy spread) be brought into synchronism with the radiation pulse, which together then undergo FEL action in the modulator. We present various results obtained with the GINGER simulation code examining final output sensitivity to initial electron beam parameters. We also discuss the effects of spontaneous emission and shot noise upon this particular cascade approach which can limit the final output coherence

  19. Resonant tunneling diodes based on ZnO for quantum cascade structures (Conference Presentation)

    Science.gov (United States)

    Hinkov, Borislav; Schwarz, Benedikt; Harrer, Andreas; Ristanic, Daniela; Schrenk, Werner; Hugues, Maxime; Chauveau, Jean-Michel; Strasser, Gottfried

    2017-02-01

    The terahertz (THz) spectral range (lambda 30µm - 300µm) is also known as the "THz-gap" because of the lack of compact semiconductor devices. Various real-world applications would strongly benefit from such sources like trace-gas spectroscopy or security-screening. A crucial step is the operation of THz-emitting lasers at room temperature. But this seems out of reach with current devices, of which GaAs-based quantum cascade lasers (QCLs) seem to be the most promising ones. They are limited by the parasitic, non-optical LO-phonon transitions (36meV in GaAs), being on the same order as the thermal energy at room temperature (kT = 26meV). This can be solved by using larger LO-phonon materials like ZnO (E_LO = 72meV). But to master the fabrication of ZnO-based QC structures, a high quality epitaxial growth is crucial followed by a well-controlled fabrication process including ZnO/ZnMgO etching. We use devices grown on m-plane ZnO-substrate by molecular beam epitaxy. They are patterned by reactive ion etching in a CH4-based chemistry (CH4:H2:Ar/30:3:3 sccm) into 50μm to 150μm square mesas. Resonant tunneling diode structures are investigated in this geometry and are presented including different barrier- and well-configurations. We extract contact resistances of 8e-5 Omega cm^2 for un-annealed Ti/Au contacts and an electron mobility of above 130cm^2/Vs, both in good agreement with literature. Proving that resonant electron tunneling can be achieved in ZnO is one of the crucial building blocks of a QCL. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 665107.

  20. Minimum Entropy-Based Cascade Control for Governing Hydroelectric Turbines

    Directory of Open Access Journals (Sweden)

    Mifeng Ren

    2014-06-01

    Full Text Available In this paper, an improved cascade control strategy is presented for hydroturbine speed governors. Different from traditional proportional-integral-derivative (PID control and model predictive control (MPC strategies, the performance index of the outer controller is constructed by integrating the entropy and mean value of the tracking error with the constraints on control energy. The inner controller is implemented by a proportional controller. Compared with the conventional PID-P and MPC-P cascade control methods, the proposed cascade control strategy can effectively decrease fluctuations of hydro-turbine speed under non-Gaussian disturbance conditions in practical hydropower plants. Simulation results show the advantages of the proposed cascade control method.

  1. Reliability Evaluation of Machine Center Components Based on Cascading Failure Analysis

    Science.gov (United States)

    Zhang, Ying-Zhi; Liu, Jin-Tong; Shen, Gui-Xiang; Long, Zhe; Sun, Shu-Guang

    2017-07-01

    In order to rectify the problems that the component reliability model exhibits deviation, and the evaluation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influenced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure probability function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree of the system component, which provides a theoretical basis for reliability allocation of machine center system.

  2. A new cascade NN based method to short-term load forecast in deregulated electricity market

    International Nuclear Information System (INIS)

    Kouhi, Sajjad; Keynia, Farshid

    2013-01-01

    Highlights: • We are proposed a new hybrid cascaded NN based method and WT to short-term load forecast in deregulated electricity market. • An efficient preprocessor consist of normalization and shuffling of signals is presented. • In order to select the best inputs, a two-stage feature selection is presented. • A new cascaded structure consist of three cascaded NNs is used as forecaster. - Abstract: Short-term load forecasting (STLF) is a major discussion in efficient operation of power systems. The electricity load is a nonlinear signal with time dependent behavior. The area of electricity load forecasting has still essential need for more accurate and stable load forecast algorithm. To improve the accuracy of prediction, a new hybrid forecast strategy based on cascaded neural network is proposed for STLF. This method is consists of wavelet transform, an intelligent two-stage feature selection, and cascaded neural network. The feature selection is used to remove the irrelevant and redundant inputs. The forecast engine is composed of three cascaded neural network (CNN) structure. This cascaded structure can be efficiently extract input/output mapping function of the nonlinear electricity load data. Adjustable parameters of the intelligent feature selection and CNN is fine-tuned by a kind of cross-validation technique. The proposed STLF is tested on PJM and New York electricity markets. It is concluded from the result, the proposed algorithm is a robust forecast method

  3. Phenomenological scattering-rate model for the simulation of the current density and emission power in mid-infrared quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kurlov, S. S. [Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Institute of Semiconductor Physics, National Academy of Sciences, pr. Nauki 45, Kiev-03028 (Ukraine); Flores, Y. V.; Elagin, M.; Semtsiv, M. P.; Masselink, W. T. [Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Schrottke, L.; Grahn, H. T. [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, 10117 Berlin (Germany); Tarasov, G. G. [Institute of Semiconductor Physics, National Academy of Sciences, pr. Nauki 45, Kiev-03028 (Ukraine)

    2016-04-07

    A phenomenological scattering-rate model introduced for terahertz quantum cascade lasers (QCLs) [Schrottke et al., Semicond. Sci. Technol. 25, 045025 (2010)] is extended to mid-infrared (MIR) QCLs by including the energy dependence of the intersubband scattering rates for energies higher than the longitudinal optical phonon energy. This energy dependence is obtained from a phenomenological fit of the intersubband scattering rates based on published lifetimes of a number of MIR QCLs. In our approach, the total intersubband scattering rate is written as the product of the exchange integral for the squared moduli of the envelope functions and a phenomenological factor that depends only on the transition energy. Using the model to calculate scattering rates and imposing periodical boundary conditions on the current density, we find a good agreement with low-temperature data for current-voltage, power-current, and energy-photon flux characteristics for a QCL emitting at 5.2 μm.

  4. Cascade quantum teleportation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nan-run; GONG Li-hua; LIU Ye

    2006-01-01

    In this letter a cascade quantum teleportation scheme is proposed. The proposed scheme needs less local quantum operations than those of quantum multi-teleportation. A quantum teleportation scheme based on entanglement swapping is presented and compared with the cascade quantum teleportation scheme. Those two schemes can effectively teleport quantum information and extend the distance of quantum communication.

  5. Infrared laser spectroscopic trace gas sensing

    Science.gov (United States)

    Sigrist, Markus

    2016-04-01

    Chemical sensing and analyses of gas samples by laser spectroscopic methods are attractive owing to several advantages such as high sensitivity and specificity, large dynamic range, multi-component capability, and lack of pretreatment or preconcentration procedures. The preferred wavelength range comprises the fundamental molecular absorption range in the mid-infared between 3 and 15 μm, whereas the near-infrared range covers the (10-100 times weaker) higher harmonics and combination bands. The availability of near-infrared and, particularly, of broadly tunable mid-infrared sources like external cavity quantum cascade lasers (EC-QCLs), interband cascade lasers (ICLs), difference frequency generation (DFG), optical parametric oscillators (OPOs), recent developments of diode-pumped lead salt semiconductor lasers, of supercontinuum sources or of frequency combs have eased the implementation of laser-based sensing devices. Sensitive techniques for molecular absorption measurements include multipass absorption, various configurations of cavity-enhanced techniques such as cavity ringdown (CRD), or of photoacoustic spectroscopy (PAS) including quartz-enhanced (QEPAS) or cantilever-enhanced (CEPAS) techniques. The application requirements finally determine the optimum selection of laser source and detection scheme. In this tutorial talk I shall discuss the basic principles, present various experimental setups and illustrate the performance of selected systems for chemical sensing of selected key atmospheric species. Applications include an early example of continuous vehicle emission measurements with a mobile CO2-laser PAS system [1]. The fast analysis of C1-C4 alkanes at sub-ppm concentrations in gas mixtures is of great interest for the petrochemical industry and was recently achieved with a new type of mid-infrared diode-pumped piezoelectrically tuned lead salt vertical external cavity surface emitting laser (VECSEL) [2]. Another example concerns measurements on short

  6. Mode-locking of a terahertz laser by direct phase synchronization.

    Science.gov (United States)

    Maysonnave, J; Maussang, K; Freeman, J R; Jukam, N; Madéo, J; Cavalié, P; Rungsawang, R; Khanna, S P; Linfield, E H; Davies, A G; Beere, H E; Ritchie, D A; Dhillon, S S; Tignon, J

    2012-09-10

    A novel scheme to achieve mode-locking of a multimode laser is demonstrated. Traditional methods to produce ultrashort laser pulses are based on modulating the cavity gain or losses at the cavity roundtrip frequency, favoring the pulsed emission. Here, we rather directly act on the phases of the modes, resulting in constructive interference for the appropriated phase relationship. This was performed on a terahertz quantum cascade laser by multimode injection seeding with an external terahertz pulse, resulting in phase mode-locked terahertz laser pulses of 9 ps duration, characterized unambiguously in the time domain.

  7. X-Ray Production by Cascading Stages of a High-Gain Harmonic Generation Free-Electron Laser I: Basic Theory

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J

    2004-07-02

    We study a new approach to produce x-ray by cascading several stages of a High-Gain Harmonic Generation (HGHG) Free-Electron Laser (FEL). Besides the merits of a Self-Amplified Spontaneous Emission (SASE) scheme, an HGHG scheme could also provide much better stability of the radiation power, controllable short pulse length, more stable central wavelength, and radiation with better longitudinal coherence. Detailed design and optimization scheme, simulation results and analytical estimate formulae are presented. To lay results on a realistic basis, the electron bunch parameters used in this paper are restricted to be those of DESY TTF and SLAC LCLS projects; however, such sets of parameters are not necessary to be optimized for an HGHG FEL.

  8. Nano lasers in photonic VLSI

    NARCIS (Netherlands)

    Hill, M.T.; Oei, Y.S.; Smit, M.K.

    2007-01-01

    We examine the use of micro and nano lasers to form digital photonic VLSI building blocks. Problems such as isolation and cascading of building blocks are addressed, and the potential of future nano lasers explored.

  9. Modeling of cascade and sub-cascade formation at high PKA energies in irradiated fusion structural materials

    International Nuclear Information System (INIS)

    Ryazanov, A.I.; Metelkin, E.V.; Semenov, E.V.

    2009-01-01

    A new theoretical model is developed for the investigations of cascade and sub-cascade formation in fusion structural materials under fast neutron irradiation at high primary knock-on atom energies. Light fusion structural materials: such as Be, C and SiC under 14 MeV neutron irradiation in fusion reactor will have the primary knock-on atoms with the energies up to 1 MeV. It is very difficult to use at such high energies the Monte-Carlo or molecular dynamic simulations [H.L. Heinisch, B.N. Singh, Philos. Mag. A67 (1993) 407; H.L. Heinisch, B.N. Singh, J. Nucl. Mater. 251 (1997) 77]. The developed model is based on the analytical consideration of elastic collisions between displaced moving atoms produced by primary knock-on atoms with some kinetic energies obtained from fast neutrons and crystal lattice atoms. The Thomas-Fermi interaction potential is used here for the description of these elastic atomic collisions. The suggested model takes into account also the electronic losses for moving atoms between elastic collisions. The self-consistent criterion for sub-cascade formation is suggested here which is based on the comparison of mean distance of primary knock-on atoms between consequent collisions of them with the target atoms and a size of sub-cascade produced by moving secondary knock-on atoms produced in such collisions. The analytical relations for the most important characteristics of cascades and sub-cascades are determined including the average number of sub-cascades per one primary knock-on atom in the dependence on its energy, the distance between sub-cascades and the average cascade and sub-cascade sizes. The developed model allows determining the total numbers, distribution functions of cascades and sub-cascades in dependence on their sizes and generation rate of cascades and sub-cascades for the different fusion neutron energy spectra. On the basis of this developed model the numerical calculations for main characteristics of cascades and sub-cascades

  10. Laser-powered lunar base

    International Nuclear Information System (INIS)

    Costen, R.; Humes, D.H.; Walker, G.H.; Williams, M.D.; Deyoung, R.J.

    1989-01-01

    The objective was to compare a nuclear reactor-driven Sterling engine lunar base power source to a laser-to-electric converter with orbiting laser power station, each providing 1 MW of electricity to the lunar base. The comparison was made on the basis of total mass required in low-Earth-orbit for each system. This total mass includes transportation mass required to place systems in low-lunar orbit or on the lunar surface. The nuclear reactor with Sterling engines is considered the reference mission for lunar base power and is described first. The details of the laser-to-electric converter and mass are discussed. The next two solar-driven high-power laser concepts, the diode array laser or the iodine laser system, are discussed with associated masses in low-lunar-orbit. Finally, the payoff for laser-power beaming is summarized

  11. On the problems of separation work unit for the laser isotope separation

    International Nuclear Information System (INIS)

    Wang, Lijun

    2008-01-01

    The concept of separation power or separation work, which is widely used in Uranium isotope separation industry is introduced historically for the weak separating machine and so-called 'ideal cascade'. Therefore, when this concept is applied to a laser isotope separation facility, which is deeply different from a cascade in structure and in mechanism of separation, some confusions may occur. By comparison the costs of SWU of laser isotope separation facility and an ideal cascade we come to a conclusion: the concept of separation work is not applicable for laser isotope separation. In order to compare the economics of laser isotope separation technique with diffusion or centrifugation techniques an equivalent cost of SWU is suggested in this paper. (author)

  12. Analysis on Invulnerability of Wireless Sensor Network towards Cascading Failures Based on Coupled Map Lattice

    Directory of Open Access Journals (Sweden)

    Xiuwen Fu

    2018-01-01

    Full Text Available Previous research of wireless sensor networks (WSNs invulnerability mainly focuses on the static topology, while ignoring the cascading process of the network caused by the dynamic changes of load. Therefore, given the realistic features of WSNs, in this paper we research the invulnerability of WSNs with respect to cascading failures based on the coupled map lattice (CML. The invulnerability and the cascading process of four types of network topologies (i.e., random network, small-world network, homogenous scale-free network, and heterogeneous scale-free network under various attack schemes (i.e., random attack, max-degree attack, and max-status attack are investigated, respectively. The simulation results demonstrate that the rise of interference R and coupling coefficient ε will increase the risks of cascading failures. Cascading threshold values Rc and εc exist, where cascading failures will spread to the entire network when R>Rc or ε>εc. When facing a random attack or max-status attack, the network with higher heterogeneity tends to have a stronger invulnerability towards cascading failures. Conversely, when facing a max-degree attack, the network with higher uniformity tends to have a better performance. Besides that, we have also proved that the spreading speed of cascading failures is inversely proportional to the average path length of the network and the increase of average degree k can improve the network invulnerability.

  13. Distributed dual-parameter optical fiber sensor based on cascaded microfiber Fabry-Pérot interferometers

    Science.gov (United States)

    Xiang, Yang; Luo, Yiyang; Zhang, Wei; Liu, Deming; Sun, Qizhen

    2017-04-01

    We propose and demonstrate a distributed fiber sensor based on cascaded microfiber Fabry-Perot interferometers (MFPI) for simultaneous refractive index (SRI) and temperature measurement. By employing MFPI which is fabricated by taper-drawing the center of a uniform fiber Bragg grating (FBG) on standard fiber into a section of microfiber, dual parameters including SRI and temperature can be detected through demodulating the reflection spectrum of the MFPI. Further, wavelength-division-multiplexing (WDM) is applied to realize distributed dual-parameter fiber sensor by using cascaded MFPIs with different Bragg wavelengths. A prototype sensor system with 5 cascaded MFPIs is constructed to experimentally demonstrate the sensing performance.

  14. Standoff detection of turbulent chemical mixture plumes using a swept external cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C. [Pacific Northwest National Laboratory, Richland, Washington; Brumfield, Brian E. [Pacific Northwest National Laboratory, Richland, Washington

    2017-08-21

    We demonstrate standoff detection of turbulent mixed-chemical plumes using a broadly-tunable external cavity quantum cascade laser (ECQCL). The ECQCL was directed through plumes of mixed methanol/ethanol vapor to a partially-reflective surface located 10 m away. The reflected power was measured as the ECQCL was swept over its tuning range of 930-1065 cm-1 (9.4-10.8 µm) at rates up to 200 Hz. Analysis of the transmission spectra though the plume was performed to determine chemical concentrations with time resolution of 0.005 s. Comparison of multiple spectral sweep rates of 2 Hz, 20 Hz, and 200 Hz shows that higher sweep rates reduce effects of atmospheric and source turbulence, resulting in lower detection noise and more accurate measurement of the rapidly-changing chemical concentrations. Detection sensitivities of 0.13 ppm*m for MeOH and 1.2 ppm*m for EtOH are demonstrated for a 200 Hz spectral sweep rate, normalized to 1 s detection time.

  15. Demonstration of a fully integrated superconducting receiver with a 2.7 THz quantum cascade laser.

    Science.gov (United States)

    Miao, Wei; Lou, Zheng; Xu, Gang-Yi; Hu, Jie; Li, Shao-Liang; Zhang, Wen; Zhou, Kang-Min; Yao, Qi-Jun; Zhang, Kun; Duan, Wen-Ying; Shi, Sheng-Cai; Colombelli, Raffaele; Beere, Harvey E; Ritchie, David A

    2015-02-23

    We demonstrate for the first time the integration of a superconducting hot electron bolometer (HEB) mixer and a quantum cascade laser (QCL) on the same 4-K stage of a single cryostat, which is of particular interest for terahertz (THz) HEB/QCL integrated heterodyne receivers for practical applications. Two key issues are addressed. Firstly, a low power consumption QCL is adopted for preventing its heat dissipation from destroying the HEB's superconductivity. Secondly, a simple spherical lens located on the same 4-K stage is introduced to optimize the coupling between the HEB and the QCL, which has relatively limited output power owing to low input direct current (DC) power. Note that simulation techniques are used to design the HEB/QCL integrated heterodyne receiver to avoid the need for mechanical tuning. The integrated HEB/QCL receiver shows an uncorrected noise temperature of 1500 K at 2.7 THz, which is better than the performance of the same receiver with all the components not integrated.

  16. A Memory-Based Programmable Logic Device Using Look-Up Table Cascade with Synchronous Static Random Access Memories

    Science.gov (United States)

    Nakamura, Kazuyuki; Sasao, Tsutomu; Matsuura, Munehiro; Tanaka, Katsumasa; Yoshizumi, Kenichi; Nakahara, Hiroki; Iguchi, Yukihiro

    2006-04-01

    A large-scale memory-technology-based programmable logic device (PLD) using a look-up table (LUT) cascade is developed in the 0.35-μm standard complementary metal oxide semiconductor (CMOS) logic process. Eight 64 K-bit synchronous SRAMs are connected to form an LUT cascade with a few additional circuits. The features of the LUT cascade include: 1) a flexible cascade connection structure, 2) multi phase pseudo asynchronous operations with synchronous static random access memory (SRAM) cores, and 3) LUT-bypass redundancy. This chip operates at 33 MHz in 8-LUT cascades at 122 mW. Benchmark results show that it achieves a comparable performance to field programmable gate array (FPGAs).

  17. Observer-based hyperchaos synchronization in cascaded discrete-time systems

    International Nuclear Information System (INIS)

    Grassi, Giuseppe

    2009-01-01

    This paper deals with the observer-based synchronization in a cascade connection of hyperchaotic discrete-time systems. The paper demonstrates that exact synchronization in finite time is achievable between pairs of drive-response systems using only a scalar synchronizing signal. This 'propagated synchronization' starts from the innermost drive-response system pair and propagates toward the outermost drive-system pair. Choosing the drive-system input to be an information signal (encrypted via an arbitrary encryption function) yields a potential application of this architecture in chaos-based communications.

  18. Molecular Laser Spectroscopy as a Tool for Gas Analysis Applications

    Directory of Open Access Journals (Sweden)

    Javis Anyangwe Nwaboh

    2011-01-01

    Full Text Available We have used the traceable infrared laser spectrometric amount fraction measurement (TILSAM method to perform absolute concentration measurements of molecular species using three laser spectroscopic techniques. We report results performed by tunable diode laser absorption spectroscopy (TDLAS, quantum cascade laser absorption spectroscopy (QCLAS, and cavity ring down spectroscopy (CRDS, all based on the TILSAM methodology. The measured results of the different spectroscopic techniques are in agreement with respective gravimetric values, showing that the TILSAM method is feasible with all different techniques. We emphasize the data quality objectives given by traceability issues and uncertainty analyses.

  19. Stable single-mode distributed feedback quantum cascade lasers at λ ∼ 4.25 μm with low power consumption

    Science.gov (United States)

    Jia, Zhiwei; Wang, Lijun; Zhang, Jinchuan; Liu, Fengqi; Zhuo, Ning; Zhai, Shenqiang; Liu, Junqi; Wang, Zhanguo

    2016-10-01

    Short-wavelength (4.25 μm) distributed-feedback quantum cascade laser operating in continuous wave (cw) mode at room temperature with low power consumption was presented. Stable single-mode operation with a side-mode-suppression-ratio above 25 dB was maintained for the whole measured current and temperature range by enlarging gain difference and strong grating coupling. Because of the strong coupling, very low threshold current and power consumption were achieved. For a device of 9-μm-wide and 2-mm-long, the cw threshold current and power consumption at 293 K were as low as 126 mA and 1.45 W, respectively. All results above were from the device without using buried heterostructure geometry.

  20. NLP model based thermoeconomic optimization of vapor compression–absorption cascaded refrigeration system

    International Nuclear Information System (INIS)

    Jain, Vaibhav; Sachdeva, Gulshan; Kachhwaha, S.S.

    2015-01-01

    Highlights: • It addresses the size and cost estimation of cascaded refrigeration system. • Cascaded system is a promising decarburizing and energy efficient technology. • Second law analysis is carried out with modified Gouy-Stodola equation. • The total annual cost of plant operation is optimized in present work. - Abstract: This paper addresses the size and cost estimation of vapor compression–absorption cascaded refrigeration system (VCACRS) for water chilling application taking R410a and water–LiBr as refrigerants in compression and absorption section respectively which can help the design engineers in manufacturing and experimenting on such kind of systems. The main limitation in the practical implementation of VCACRS is its size and cost which are optimized in the present work by implementing Direct Search Method in non-linear programming (NLP) mathematical model of VCACRS. The main objective of optimization is to minimize the total annual cost of system which comprises of costs of exergy input and capital costs in monetary units. The appropriate set of decision variables (temperature of evaporator, condenser, generator, absorber, cascade condenser, degree of overlap and effectiveness of solution heat exchanger) minimizes the total annual cost of VCACRS by 11.9% with 22.4% reduction in investment cost at the base case whereas the same is reduced by 7.5% with 11.7% reduction in investment cost with reduced rate of interest and increased life span and period of operation. Optimization results show that the more investment cost in later case is well compensated through the performance and operational cost of the system. In the present analysis, optimum cascade condensing temperature is a strong function of period of operation and capital recovery factor. The cascading of compression and absorption systems becomes attractive for lower rate of interest and increase life span and operational period

  1. Diffraction-limited 577 nm true-yellow laser by frequency doubling of a tapered diode laser

    Science.gov (United States)

    Christensen, Mathias; Vilera, Mariafernanda; Noordegraaf, Danny; Hansen, Anders K.; Buß, Thomas; Jensen, Ole B.; Skovgaard, Peter M. W.

    2018-02-01

    A wide range of laser medical treatments are based on coagulation of blood by absorption of the laser radiation. It has, therefore, always been a goal of these treatments to maximize the ratio of absorption in the blood to that in the surrounding tissue. For this purpose lasers at 577 nm are ideal since this wavelength is at the peak of the absorption in oxygenated hemoglobin. Furthermore, 577 nm has a lower absorption in melanin when compared to green wavelengths (515 - 532 nm), giving it an advantage when treating at greater penetration depth. Here we present a laser system based on frequency doubling of an 1154 nm Distributed Bragg Reflector (DBR) tapered diode laser, emitting 1.1 W of single frequency and diffraction limited yellow light at 577 nm, corresponding to a conversion efficiency of 30.5%. The frequency doubling is performed in a single pass configuration using a cascade of two bulk non-linear crystals. The system is power stabilized over 10 hours with a standard deviation of 0.13% and the relative intensity noise is measured to be 0.064 % rms.

  2. Broadband optical frequency comb generator based on driving N-cascaded modulators by Gaussian-shaped waveform

    Science.gov (United States)

    Hmood, Jassim K.; Harun, Sulaiman W.

    2018-05-01

    A new approach for realizing a wideband optical frequency comb (OFC) generator based on driving cascaded modulators by a Gaussian-shaped waveform, is proposed and numerically demonstrated. The setup includes N-cascaded MZMs, a single Gaussian-shaped waveform generator, and N-1 electrical time delayer. The first MZM is driven directly by a Gaussian-shaped waveform, while delayed replicas of the Gaussian-shaped waveform drive the other MZMs. An analytical model that describes the proposed OFC generator is provided to study the effect of number and chirp factor of cascaded MZM as well as pulse width on output spectrum. Optical frequency combs at frequency spacing of 1 GHz are generated by applying Gaussian-shaped waveform at pulse widths ranging from 200 to 400 ps. Our results reveal that, the number of comb lines is inversely proportional to the pulse width and directly proportional to both number and chirp factor of cascaded MZMs. At pulse width of 200 ps and chirp factor of 4, 67 frequency lines can be measured at output spectrum of two-cascaded MZMs setup. Whereas, increasing the number of cascaded stages to 3, 4, and 5, the optical spectra counts 89, 109 and 123 frequency lines; respectively. When the delay time is optimized, 61 comb lines can be achieved with power fluctuations of less than 1 dB for five-cascaded MZMs setup.

  3. Parametric amplification and cascaded-nonlinearity processes in common atomic system.

    Science.gov (United States)

    Zheng, Huaibin; Zhang, Xun; Zhang, Zhaoyang; Tian, Yaling; Chen, Haixia; Li, Changbiao; Zhang, Yanpeng

    2013-01-01

    For the first time, we study the parametric amplification process of multi-wave mixing (PA-MWM) signal and cascaded-nonlinearity process (CNP) in sodium vapors both theoretically and experimentally, based on a conventional phase-conjugate MWM and a self-diffraction four-wave mixing (SD-FWM) processes, which are pumped by laser or amplified spontaneous emission (ASE), respectively. For laser pumping case, SD-FWM process serves as a quantum linear amplifier (a CNP) out (inside) of the resonant absorption region. While for ASE case, only the CNP occurs and the output linewidth is much narrower than that of the MWM signal due to the second selected effect of its electromagnetically induced transparency window. In addition, the phase-sensitive amplifying process seeded by two MWM processes is discussed for the first time. Theoretical fittings agree well with the experiment. The investigations have important potential applications in quantum communication.

  4. 5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers

    International Nuclear Information System (INIS)

    Kirch, J. D.; Chang, C.-C.; Boyle, C.; Mawst, L. J.; Botez, D.; Lindberg, D.; Earles, T.

    2015-01-01

    Five, 8.36 μm-emitting quantum-cascade lasers (QCLs) have been monolithically phase-locked in the in-phase array mode via resonant leaky-wave coupling. The structure is fabricated by etch and regrowth which provides large index steps (Δn = 0.10) between antiguided-array elements and interelement regions. Such high index contrast photonic-crystal (PC) lasers have more than an order of magnitude higher index contrast than PC-distributed feedback lasers previously used for coherent beam combining in QCLs. Absorption loss to metal layers inserted in the interelement regions provides a wide (∼1.0 μm) range in interelement width over which the resonant in-phase mode is strongly favored to lase. Room-temperature, in-phase-mode operation with ∼2.2 kA/cm 2 threshold-current density is obtained from 105 μm-wide aperture devices. The far-field beam pattern has lobewidths 1.65× diffraction limit (D.L.) and 82% of the light in the main lobe, up to 1.8× threshold. Peak pulsed near-D.L. power of 5.5 W is obtained, with 4.5 W emitted in the main lobe. Means of how to increase the device internal efficiency are discussed

  5. Cascaded optical fiber link using the internet network for remote clocks comparison.

    Science.gov (United States)

    Chiodo, Nicola; Quintin, Nicolas; Stefani, Fabio; Wiotte, Fabrice; Camisard, Emilie; Chardonnet, Christian; Santarelli, Giorgio; Amy-Klein, Anne; Pottie, Paul-Eric; Lopez, Olivier

    2015-12-28

    We report a cascaded optical link of 1100 km for ultra-stable frequency distribution over an Internet fiber network. The link is composed of four spans for which the propagation noise is actively compensated. The robustness and the performance of the link are ensured by five fully automated optoelectronic stations, two of them at the link ends, and three deployed on the field and connecting the spans. This device coherently regenerates the optical signal with the heterodyne optical phase locking of a low-noise laser diode. Optical detection of the beat-note signals for the laser lock and the link noise compensation are obtained with stable and low-noise fibered optical interferometer. We show 3.5 days of continuous operation of the noise-compensated 4-span cascaded link leading to fractional frequency instability of 4x10(-16) at 1-s measurement time and 1x10(-19) at 2000 s. This cascaded link was extended to 1480-km with the same performance. This work is a significant step towards a sustainable wide area ultra-stable optical frequency distribution and comparison network at a very high level of performance.

  6. Power scaling and experimentally fitted model for broad area quantum cascade lasers in continuous wave operation

    Science.gov (United States)

    Suttinger, Matthew; Go, Rowel; Figueiredo, Pedro; Todi, Ankesh; Shu, Hong; Leshin, Jason; Lyakh, Arkadiy

    2018-01-01

    Experimental and model results for 15-stage broad area quantum cascade lasers (QCLs) are presented. Continuous wave (CW) power scaling from 1.62 to 2.34 W has been experimentally demonstrated for 3.15-mm long, high reflection-coated QCLs for an active region width increased from 10 to 20 μm. A semiempirical model for broad area devices operating in CW mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sublinearity of pulsed power versus current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall-plug efficiency can be achieved from 3.15 mm×25 μm devices with 21 stages of the same design, but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300 Å, pulsed rollover current density of 6 kA/cm2, and InGaAs waveguide layers, an optical power increase of 41% is projected. Finally, the model projects that power level can be increased to ˜4.5 W from 3.15 mm×31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.

  7. Investigation of cascade-type falling liquid-film along first wall of laser-fusion reactor

    International Nuclear Information System (INIS)

    Kunugi, T.; Nakai, T.; Kawara, Z.; Norimatsu, T.; Kozaki, Y.

    2008-01-01

    To protect the first wall of an inertia fusion reactor from extremely high heat flux, X-rays, alpha particles and fuel debris caused by a nuclear fusion reaction, a 'cascade-type' falling liquid-film flow is proposed as a 'liquid-wall' concept. The flow visualization experiment to investigate the feasibility of this liquid-wall concept has been conducted. The preliminary numerical simulation results suggest that the current cascade structure design should be improved because less thermal-mixing is expected. The cascade-type structure has, therefore, been redesigned. This new cascade-type first wall consists of a liquid reservoir which has a free-surface to maintain a constant water head in the rear, and connects to a slit composed of two plates, i.e., the first wall is connected to a slit which is partially made up of the first wall to begin with it. The numerical simulations were performed on the new cascade-type first wall and they show the stable liquid-film flow on it. Moreover, the POP (proof-of-principle) flow visualization experiments, which satisfy the Weber number coincident condition, are carried out using water as the working fluid. By comparing the numerical and experimental results, it was found that the liquid-film flow with 3-5 mm thickness could be stably established. According to these results for the new cascade-type first wall concept, it was confirmed that the coolant flow rate and the thickness of the liquid-film could be controlled if the Weber number coincident condition was satisfied

  8. Load-redistribution strategy based on time-varying load against cascading failure of complex network

    International Nuclear Information System (INIS)

    Liu Jun; Shi Xin; Wang Kai; Shi Wei-Ren; Xiong Qing-Yu

    2015-01-01

    Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies require global information, which is not suitable for large scale networks, and some strategies based on local information assume that the load of a node is always its initial load before the network is attacked, and the load of the failure node is redistributed to its neighbors according to their initial load or initial residual capacity. This paper proposes a new load-redistribution strategy based on local information considering an ever-changing load. It redistributes the loads of the failure node to its nearest neighbors according to their current residual capacity, which makes full use of the residual capacity of the network. Experiments are conducted on two typical networks and two real networks, and the experimental results show that the new load-redistribution strategy can reduce the size of cascading failure efficiently. (paper)

  9. A multi-view face recognition system based on cascade face detector and improved Dlib

    Science.gov (United States)

    Zhou, Hongjun; Chen, Pei; Shen, Wei

    2018-03-01

    In this research, we present a framework for multi-view face detect and recognition system based on cascade face detector and improved Dlib. This method is aimed to solve the problems of low efficiency and low accuracy in multi-view face recognition, to build a multi-view face recognition system, and to discover a suitable monitoring scheme. For face detection, the cascade face detector is used to extracted the Haar-like feature from the training samples, and Haar-like feature is used to train a cascade classifier by combining Adaboost algorithm. Next, for face recognition, we proposed an improved distance model based on Dlib to improve the accuracy of multiview face recognition. Furthermore, we applied this proposed method into recognizing face images taken from different viewing directions, including horizontal view, overlooks view, and looking-up view, and researched a suitable monitoring scheme. This method works well for multi-view face recognition, and it is also simulated and tested, showing satisfactory experimental results.

  10. Five Wavelength DFB Fibre Laser Source for WDM Systems

    DEFF Research Database (Denmark)

    Hübner, Jörg; Varming, Poul; Kristensen, Martin

    1997-01-01

    Singlemode UV-induced distributed feedback (DFB) fibre lasers with a linewidth of lasers is verified by a 10 Gbit/s transmission experiment. Five DFB fibre lasers are cascaded and pumped by a single...... semiconductor laser, thereby forming a multiwavelength source for WDM systems...

  11. CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm

    KAUST Repository

    Ren, Wei; Farooq, Aamir; Davidson, David Frank; Hanson, Ronald Kenneth

    2012-01-01

    A sensor for sensitive in situ measurements of carbon monoxide and temperature in combustion gases has been developed using absorption transitions in the (v′ = 1 ← v″ = 0) and (v′ = 2 ← v″ = 1) fundamental bands of CO. Recent availability of mid-infrared quantum-cascade (QC) lasers provides convenient access to the CO fundamental band near 4.7 μm, having approximately 104 and 102 times stronger absorption line-strengths compared to the overtone bands near 1.55 μm and 2.3 μm used previously to sense CO in combustion gases. Spectroscopic parameters of the selected transitions were determined via laboratory measurements in a shock tube over the 1100-2000 K range and also at room temperature. A single-laser absorption sensor was developed for accurate CO measurements in shock-heated gases by scanning the line pair v″ = 0, R(12) and v″ = 1, R(21) at 2.5 kHz. To capture the rapidly varying CO time-histories in chemical reactions, two different QC lasers were then used to probe the line-center absorbance of transitions v″ = 0, P(20) and v″ = 1, R(21) with a bandwidth of 1 MHz using fixed-wavelength direct absorption. The sensor was applied in successful shock tube measurements of temperature and CO time-histories during the pyrolysis and oxidation of methyl formate, illustrating the capability of this sensor for chemical kinetic studies. © 2012 Springer-Verlag.

  12. CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm

    KAUST Repository

    Ren, Wei

    2012-05-25

    A sensor for sensitive in situ measurements of carbon monoxide and temperature in combustion gases has been developed using absorption transitions in the (v′ = 1 ← v″ = 0) and (v′ = 2 ← v″ = 1) fundamental bands of CO. Recent availability of mid-infrared quantum-cascade (QC) lasers provides convenient access to the CO fundamental band near 4.7 μm, having approximately 104 and 102 times stronger absorption line-strengths compared to the overtone bands near 1.55 μm and 2.3 μm used previously to sense CO in combustion gases. Spectroscopic parameters of the selected transitions were determined via laboratory measurements in a shock tube over the 1100-2000 K range and also at room temperature. A single-laser absorption sensor was developed for accurate CO measurements in shock-heated gases by scanning the line pair v″ = 0, R(12) and v″ = 1, R(21) at 2.5 kHz. To capture the rapidly varying CO time-histories in chemical reactions, two different QC lasers were then used to probe the line-center absorbance of transitions v″ = 0, P(20) and v″ = 1, R(21) with a bandwidth of 1 MHz using fixed-wavelength direct absorption. The sensor was applied in successful shock tube measurements of temperature and CO time-histories during the pyrolysis and oxidation of methyl formate, illustrating the capability of this sensor for chemical kinetic studies. © 2012 Springer-Verlag.

  13. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities

    OpenAIRE

    Zhang, Xiangao; Shao, Mingzhen; Zeng, Xiaoqi

    2016-01-01

    In this paper, a type of compact nanosensor based on a metal-insulator-metal structure is proposed and investigated through cascading double asymmetric cavities, in which their metal cores shift along different axis directions. The cascaded asymmetric structure exhibits high transmission and sharp Fano resonance peaks via strengthening the mutual coupling of the cavities. The research results show that with the increase of the symmetry breaking in the structure, the number of Fano resonances ...

  14. A calibration-free ammonia breath sensor using a quantum cascade laser with WMS 2f/1f

    KAUST Repository

    Owen, Kyle

    2013-12-22

    The amount of ammonia in exhaled breath has been linked to a variety of adverse medical conditions, including chronic kidney disease (CKD). The development of accurate, reliable breath sensors has the potential to improve medical care. Wavelength modulation spectroscopy with second harmonic normalized by the first harmonic (WMS 2f/1f) is a sensitive technique used in the development of calibration-free sensors. An ammonia gas sensor is designed and developed that uses a quantum cascade laser operating near 1,103.44 cm -1 and a multi-pass cell with an effective path length of 76.45 m. The sensor has a 7 ppbv detection limit and 5 % total uncertainty for breath measurements. The sensor was successfully used to detect ammonia in exhaled breath and compare healthy patients to patients diagnosed with CKD. © 2013 Springer-Verlag Berlin Heidelberg.

  15. Flattened optical frequency-locked multi-carrier generation by cascading one DML and one phase modulator driven by different RF frequency clocks

    International Nuclear Information System (INIS)

    Li, Xinying; Yu, Jianjun; Zhang, Junwen; Chi, Nan

    2013-01-01

    We propose a novel scheme for flattened optical frequency-locked multi-carrier generation based on one directly modulated laser (DML) and one phase modulator (PM) in cascade driven by different sinusoidal radio-frequency (RF) clocks. We experimentally demonstrate that when the clock frequencies for the cascaded DML and the PM are respectively 12.5 GHz and 25 GHz, over 24 optical subcarriers can be generated with 12.5-GHz frequency spacing and amplitude fluctuation less than 3 dB. Furthermore, the number of generated optical subcarriers can be further increased when we increase the driving power for the DML. (letter)

  16. Cascade-based attacks on complex networks

    Science.gov (United States)

    Motter, Adilson E.; Lai, Ying-Cheng

    2002-12-01

    We live in a modern world supported by large, complex networks. Examples range from financial markets to communication and transportation systems. In many realistic situations the flow of physical quantities in the network, as characterized by the loads on nodes, is important. We show that for such networks where loads can redistribute among the nodes, intentional attacks can lead to a cascade of overload failures, which can in turn cause the entire or a substantial part of the network to collapse. This is relevant for real-world networks that possess a highly heterogeneous distribution of loads, such as the Internet and power grids. We demonstrate that the heterogeneity of these networks makes them particularly vulnerable to attacks in that a large-scale cascade may be triggered by disabling a single key node. This brings obvious concerns on the security of such systems.

  17. MATLAB-based program for optimization of quantum cascade laser active region parameters and calculation of output characteristics in magnetic field

    Science.gov (United States)

    Smiljanić, J.; Žeželj, M.; Milanović, V.; Radovanović, J.; Stanković, I.

    2014-03-01

    A strong magnetic field applied along the growth direction of a quantum cascade laser (QCL) active region gives rise to a spectrum of discrete energy states, the Landau levels. By combining quantum engineering of a QCL with a static magnetic field, we can selectively inhibit/enhance non-radiative electron relaxation process between the relevant Landau levels of a triple quantum well and realize a tunable surface emitting device. An efficient numerical algorithm implementation is presented of optimization of GaAs/AlGaAs QCL region parameters and calculation of output properties in the magnetic field. Both theoretical analysis and MATLAB implementation are given for LO-phonon and interface roughness scattering mechanisms on the operation of QCL. At elevated temperatures, electrons in the relevant laser states absorb/emit more LO-phonons which results in reduction of the optical gain. The decrease in the optical gain is moderated by the occurrence of interface roughness scattering, which remains unchanged with increasing temperature. Using the calculated scattering rates as input data, rate equations can be solved and population inversion and the optical gain obtained. Incorporation of the interface roughness scattering mechanism into the model did not create new resonant peaks of the optical gain. However, it resulted in shifting the existing peaks positions and overall reduction of the optical gain. Catalogue identifier: AERL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 37763 No. of bytes in distributed program, including test data, etc.: 2757956 Distribution format: tar.gz Programming language: MATLAB. Computer: Any capable of running MATLAB version R2010a or higher. Operating system: Any platform

  18. Optically Pumped Carbon Monoxide Cascade Laser

    National Research Council Canada - National Science Library

    Sawruk, Nicholas W

    2005-01-01

    ...) overtone band of the CO, which induced lasing on the (3,2) and (2,1) bands around 4.7um. The laser output was spectrally separated to determine the spectral and temporal evolution of the CO lasing pulse...

  19. Research on propane leak detection system and device based on mid infrared laser

    Science.gov (United States)

    Jiang, Meng; Wang, Xuefeng; Wang, Junlong; Wang, Yizhao; Li, Pan; Feng, Qiaoling

    2017-10-01

    Propane is a key component of liquefied petroleum gas (LPG) and crude oil volatile. This issue summarizes the recent progress of propane detection technology. Meanwhile, base on the development trend, our latest progress is also provided. We demonstrated a mid infrared propane sensor system, which is based on wavelength modulation spectroscopy (WMS) technique with a CW interband cascade laser (ICL) emitting at 3370.4nm. The ICL laser scanned over a sharp feature in the broader spectrum of propane, and harmonic signals are obtained by lock-in amplifier for gas concentration deduction. The surrounding gas is extracted into the fine optical absorption cell through the pump to realize online detection. The absorption cell is designed in mid infrared windows range. An example experimental setup is shown. The second harmonic signals 2f and first harmonic signals1f are obtained. We present the sensor performance test data including dynamic precision and temperature stability. The propane detection sensor system and device is portable can carried on the mobile inspection vehicle platforms or intelligent robot inspection platform to realize the leakage monitoring of whole oil gas tank area.

  20. Equivalent circuit-level model of quantum cascade lasers with integrated hot-electron and hot-phonon effects

    Science.gov (United States)

    Yousefvand, H. R.

    2017-12-01

    We report a study of the effects of hot-electron and hot-phonon dynamics on the output characteristics of quantum cascade lasers (QCLs) using an equivalent circuit-level model. The model is developed from the energy balance equation to adopt the electron temperature in the active region levels, the heat transfer equation to include the lattice temperature, the nonequilibrium phonon rate to account for the hot phonon dynamics and simplified two-level rate equations to incorporate the carrier and photon dynamics in the active region. This technique simplifies the description of the electron-phonon interaction in QCLs far from the equilibrium condition. Using the presented model, the steady and transient responses of the QCLs for a wide range of sink temperatures (80 to 320 K) are investigated and analysed. The model enables us to explain the operating characteristics found in QCLs. This predictive model is expected to be applicable to all QCL material systems operating in pulsed and cw regimes.

  1. Learning from unbalanced data: a cascade-based approach for detecting clustered microcalcifications.

    Science.gov (United States)

    Bria, A; Karssemeijer, N; Tortorella, F

    2014-02-01

    Finding abnormalities in diagnostic images is a difficult task even for expert radiologists because the normal tissue locations largely outnumber those with suspicious signs which may thus be missed or incorrectly interpreted. For the same reason the design of a Computer-Aided Detection (CADe) system is very complex because the large predominance of normal samples in the training data may hamper the ability of the classifier to recognize the abnormalities on the images. In this paper we present a novel approach for computer-aided detection which faces the class imbalance with a cascade of boosting classifiers where each node is trained by a learning algorithm based on ranking instead of classification error. Such approach is used to design a system (CasCADe) for the automated detection of clustered microcalcifications (μCs), which is a severely unbalanced classification problem because of the vast majority of image locations where no μC is present. The proposed approach was evaluated with a dataset of 1599 full-field digital mammograms from 560 cases and compared favorably with the Hologic R2CAD ImageChecker, one of the most widespread commercial CADe systems. In particular, at the same lesion sensitivity of R2CAD (90%) on biopsy proven malignant cases, CasCADe and R2CAD detected 0.13 and 0.21 false positives per image (FPpi), respectively (p-value=0.09), whereas at the same FPpi of R2CAD (0.21), CasCADe and R2CAD detected 93% and 90% of true lesions respectively (p-value=0.11) thus showing that CasCADe can compete with high-end CADe commercial systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Active standoff detection of CH4 and N2O leaks using hard-target backscattered light using an open-path quantum cascade laser sensor

    Science.gov (United States)

    Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred

    2016-05-01

    Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they contribute to the global increase of greenhouse gas concentrations. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents standoff detection of CH4 and N2O leaks using a quantum cascade laser open-path system that retrieves path-averaged concentrations by collecting the backscattered light from a remote hard target. It is a true standoff system and differs from other open-path systems that are deployed as point samplers or long-path transmission systems that use retroreflectors. The measured absorption spectra are obtained using a thermal intra-pulse frequency chirped DFB quantum cascade laser at ~7.7 µm wavelength range with ~200 ns pulse width. Making fast time resolved observations, the system simultaneously realizes high spectral resolution and range to the target, resulting in path-averaged concentration retrieval. The system performs measurements at high speed ~15 Hz and sufficient range (up to 45 m, ~148 feet) achieving an uncertainty of 3.1 % and normalized sensitivity of 3.3 ppm m Hz-1/2 for N2O and 9.3 % and normalized sensitivity of 30 ppm m Hz-1/2 for CH4 with a 0.31 mW average power QCL. Given these characteristics, this system is promising for mobile or multidirectional search and remote detection of gas leaks.

  3. Stability of a 500 km erbium-doped fiber amplifier cascade

    DEFF Research Database (Denmark)

    Lumholt, Ole; Bjarklev, Anders Overgaard; Povlsen, Jørn Hedegaard

    1992-01-01

    The stability of a cascade system of erbium-doped fiber amplifiers, due to pump and signal power variations, has been examined by use of a very accurate model. Even with an automatic gain control loop included, a fallout of a pump laser in the first inline amplifier is shown to produce a more than...

  4. Realization of a Tunable Dissipation Scale in a Turbulent Cascade using a Quantum Gas

    Science.gov (United States)

    Navon, Nir; Eigen, Christoph; Zhang, Jinyi; Lopes, Raphael; Smith, Robert; Hadzibabic, Zoran

    2017-04-01

    Many turbulent flows form so-called cascades, where excitations injected at large length scales, are transported to gradually smaller scales until they reach a dissipation scale. We initiate a turbulent cascade in a dilute Bose fluid by pumping energy at the container scale of an optical box trap using an oscillating magnetic force. In contrast to classical fluids where the dissipation scale is set by the viscosity of the fluid, the turbulent cascade of our quantum gas finishes when the particles kinetic energy exceeds the laser-trap depth. This mechanism thus allows us to effectively tune the dissipation scale where particles (and energy) are lost, and measure the particle flux in the cascade at the dissipation scale. We observe a unit power-law decay of the particle-dissipation rate with trap depth, which confirms the surprising prediction that in a wave-turbulent direct energy cascade, the particle flux vanishes in the ideal limit where the dissipation length scale tends to zero.

  5. Type-I cascaded quadratic soliton compression in lithium niobate: Compressing femtosecond pulses from high-power fiber lasers

    DEFF Research Database (Denmark)

    Bache, Morten; Wise, Frank W.

    2010-01-01

    The output pulses of a commercial high-power femtosecond fiber laser or amplifier are typically around 300–500 fs with wavelengths of approximately 1030 nm and tens of microjoules of pulse energy. Here, we present a numerical study of cascaded quadratic soliton compression of such pulses in LiNbO3....... However, the strong group-velocity dispersion implies that the pulses can achieve moderate compression to durations of less than 130 fs in available crystal lengths. Most of the pulse energy is conserved because the compression is moderate. The effects of diffraction and spatial walk-off are addressed......, and in particular the latter could become an issue when compressing such long crystals (around 10 cm long). We finally show that the second harmonic contains a short pulse locked to the pump and a long multi-picosecond red-shifted detrimental component. The latter is caused by the nonlocal effects...

  6. Laser-based additive manufacturing of metals

    CSIR Research Space (South Africa)

    Kumar, S

    2010-11-01

    Full Text Available For making metallic products through Additive Manufacturing (AM) processes, laser-based systems play very significant roles. Laser-based processes such as Selective Laser Melting (SLM) and Laser Engineered Net Shaping (LENS) are dominating processes...

  7. LCA-based optimization of wood utilization under special consideration of a cascading use of wood.

    Science.gov (United States)

    Höglmeier, Karin; Steubing, Bernhard; Weber-Blaschke, Gabriele; Richter, Klaus

    2015-04-01

    Cascading, the use of the same unit of a resource in multiple successional applications, is considered as a viable means to improve the efficiency of resource utilization and to decrease environmental impacts. Wood, as a regrowing but nevertheless limited and increasingly in demand resource, can be used in cascades, thereby increasing the potential efficiency per unit of wood. This study aims to assess the influence of cascading wood utilization on optimizing the overall environmental impact of wood utilization. By combining a material flow model of existing wood applications - both for materials provision and energy production - with an algebraic optimization tool, the effects of the use of wood in cascades can be modelled and quantified based on life cycle impact assessment results for all production processes. To identify the most efficient wood allocation, the effects of a potential substitution of non-wood products were taken into account in a part of the model runs. The considered environmental indicators were global warming potential, particulate matter formation, land occupation and an aggregated single score indicator. We found that optimizing either the overall global warming potential or the value of the single score indicator of the system leads to a simultaneous relative decrease of all other considered environmental impacts. The relative differences between the impacts of the model run with and without the possibility of a cascading use of wood were 7% for global warming potential and the single score indicator, despite cascading only influencing a small part of the overall system, namely wood panel production. Cascading led to savings of up to 14% of the annual primary wood supply of the study area. We conclude that cascading can improve the overall performance of a wood utilization system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity

    Science.gov (United States)

    Li, Q.; Jia, Z. X.; Weng, H. Z.; Li, Z. R.; Yang, Y. D.; Xiao, J. L.; Chen, S. W.; Huang, Y. Z.; Qin, W. P.; Qin, G. S.

    2018-05-01

    We demonstrate broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm and a frequency separation of ~9.28 GHz generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity. By using one continuous-wave laser as the pump source, multi-wavelength Brillouin lasers with an operating wavelength range of 1554–1574 nm were generated via cascaded Brillouin scattering and four-wave mixing. Interestingly, when pumped by two continuous-wave lasers with an appropriate frequency separation, the operating wavelength range of the multi-wavelength Brillouin lasers was increased to 1500–1600 nm due to cavity-enhanced cascaded four-wave mixing among the frequency components generated by two pump lasers in the dual wavelength Brillouin laser cavity.

  9. A New Structure Based on Cascaded Multilevel Converter for Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2010-01-01

    An alternative structure for variable speed wind turbine, using multiple permanent magnet synchronous generators (PMSGs) drive-train configuration and cascaded multilevel converter is proposed in this paper. This study presents a power electronic solution for the wind turbine. A transformer......-less cascaded multilevel converter interface based on PMSGs is developed to synthesize a desired high ac sinusoidal output voltage. The benefits of high power and high ac voltage make this structure possible to be applied in the wind power generation. In addition, the bulky transformer could be omitted....... A simulation model of 10 MW variable speed wind turbine based on PMSGs developed in PSCAD/EMTDC is presented. The dynamic performance of grid-connected wind turbine is analyzed. Simulation results shows that the proposed structure may be attractive in wind power generation....

  10. Cascaded nonlinearities for ultrafast nonlinear optical science and applications

    DEFF Research Database (Denmark)

    Bache, Morten

    the cascading nonlinearity is investigated in detail, especially with focus on femtosecond energetic laser pulses being subjected to this nonlinear response. Analytical, numerical and experimental results are used to understand the cascading interaction and applications are demonstrated. The defocusing soliton...... observations with analogies in fiber optics are observed numerically and experimentally, including soliton self-compression, soliton-induced resonant radiation, supercontinuum generation, optical wavebreaking and shock-front formation. All this happens despite no waveguide being present, thanks...... is of particular interest here, since it is quite unique and provides the solution to a number of standing challenges in the ultrafast nonlinear optics community. It solves the problem of catastrophic focusing and formation of a filaments in bulk glasses, which even under controlled circumstances is limited...

  11. Simulation of novel intensity modulated cascaded coated LPFG sensor based on PMTP

    Science.gov (United States)

    Feng, Wenbin; Gu, Zhengtian; Lin, Qiang; Sang, Jiangang

    2017-12-01

    This paper presents a novel intensity modulated cascaded long-period fiber grating (CLPFG) sensor which is cascaded by two same coated long-period fiber gratings (LPFGs) operating at the phase-matching turning point (PMTP). The sensor combines the high sensitivity of LPFG operating at PMTP and the narrow bandwidth of interference attenuation band of CLPFG, so a higher response to small change of the surrounding refractive index (SRI) can be obtained by intensity modulation. Based on the coupled-mode theory, the grating parameters of the PMTP of a middle odd order cladding mode of a single LPFG are calculated. Then this two same LPFGs are cascaded into a CLPFG, and the optical transmission spectrum of the CLPFG is calculated by transfer matrix method. A resonant wavelength of a special interference attenuation band whose intensity has the highest response to SRI, is selected form CLPFG’s spectrum, and setting the resonant wavelength as the operating wavelength of the sensor. Furthermore, the simulation results show that the resolution of SRI of this CLPFG is available to 1.97 × 10-9 by optimizing the film optical parameters, which is about three orders of magnitude higher than coated dual-peak LPFG and cascaded LPFG sensors. It is noteworthy that the sensor is also sensitive to the refractive index of coat, so that the sensor is expected to be applied to detections of gas, PH value, humidity and so on, in the future.

  12. Cascaded Kalman and particle filters for photogrammetry based gyroscope drift and robot attitude estimation.

    Science.gov (United States)

    Sadaghzadeh N, Nargess; Poshtan, Javad; Wagner, Achim; Nordheimer, Eugen; Badreddin, Essameddin

    2014-03-01

    Based on a cascaded Kalman-Particle Filtering, gyroscope drift and robot attitude estimation method is proposed in this paper. Due to noisy and erroneous measurements of MEMS gyroscope, it is combined with Photogrammetry based vision navigation scenario. Quaternions kinematics and robot angular velocity dynamics with augmented drift dynamics of gyroscope are employed as system state space model. Nonlinear attitude kinematics, drift and robot angular movement dynamics each in 3 dimensions result in a nonlinear high dimensional system. To reduce the complexity, we propose a decomposition of system to cascaded subsystems and then design separate cascaded observers. This design leads to an easier tuning and more precise debugging from the perspective of programming and such a setting is well suited for a cooperative modular system with noticeably reduced computation time. Kalman Filtering (KF) is employed for the linear and Gaussian subsystem consisting of angular velocity and drift dynamics together with gyroscope measurement. The estimated angular velocity is utilized as input of the second Particle Filtering (PF) based observer in two scenarios of stochastic and deterministic inputs. Simulation results are provided to show the efficiency of the proposed method. Moreover, the experimental results based on data from a 3D MEMS IMU and a 3D camera system are used to demonstrate the efficiency of the method. © 2013 ISA Published by ISA All rights reserved.

  13. Cascade redox flow battery systems

    Science.gov (United States)

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  14. Efficient generation of 1.9  W yellow light by cascaded frequency doubling of a distributed Bragg reflector tapered diode

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Christensen, Mathias; Noordegraaf, Danny

    2016-01-01

    Watt-level yellow emitting lasers are interesting for medical applications, due to their high hemoglobin absorption, and for efficient detection of certain fluorophores. In this paper, we demonstrate a compact and robust diode-based laser system in the yellow spectral range. The system generates ...... of a laser diode enables the modulation of the pump wavelength by controlling the drive current. This is utilized to achieve a power modulation depth above 90% for the second harmonic light, with a rise time below 40  μs.......Watt-level yellow emitting lasers are interesting for medical applications, due to their high hemoglobin absorption, and for efficient detection of certain fluorophores. In this paper, we demonstrate a compact and robust diode-based laser system in the yellow spectral range. The system generates 1.......9 W of single-frequency light at 562.4 nm by cascaded single-pass frequency doubling of the 1124.8 nm emission from a distributed Bragg reflector (DBR) tapered laser diode. The absence of a free-space cavity makes the system stable over a base-plate temperature range of 30 K. At the same time, the use...

  15. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation.

    Science.gov (United States)

    Wan, W J; Li, H; Zhou, T; Cao, J C

    2017-03-08

    Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification.

  16. Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing.

    Science.gov (United States)

    Nikodem, Michal; Wysocki, Gerard

    2012-11-28

    In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented.

  17. Subfemtosecond pulse generation by cascade-stimulated Raman scattering with modulated Raman excitation

    International Nuclear Information System (INIS)

    Wu Kun; Wu Jian; Zeng Heping

    2003-01-01

    Subfemtosecond (sub-fs) pulses can be generated by cascade-stimulated Raman scattering in a Raman medium with modulated Raman excitations, driven by two sufficiently intense laser beams, one of which is amplitude modulated. The nonadiabatic Raman interaction establishes a strong modulated Raman coherence, which supports compression of the generated broadband Raman sidebands to a train of sub-fs pulses regardless of whether the carrier frequencies of the driving lasers are tuned above, below or on two-photon Raman resonance. (letter to the editor)

  18. Physics of frequency-modulated comb generation in quantum-well diode lasers

    Science.gov (United States)

    Dong, Mark; Cundiff, Steven T.; Winful, Herbert G.

    2018-05-01

    We investigate the physical origin of frequency-modulated combs generated from single-section semiconductor diode lasers based on quantum wells, isolating the essential physics necessary for comb generation. We find that the two effects necessary for comb generation—spatial hole burning (leading to multimode operation) and four-wave mixing (leading to phase locking)—are indeed present in some quantum-well systems. The physics of comb generation in quantum wells is similar to that in quantum dot and quantum cascade lasers. We discuss the nature of the spectral phase and some important material parameters of these diode lasers.

  19. Wide Area Protection Scheme Preventing Cascading Events based on Improved Impedance relay

    DEFF Research Database (Denmark)

    Liu, Zhou; Chen, Zhe; Sun, Haishun

    2013-01-01

    Load flow transferring after an initial contingency is regarded as one of the main reasons of causing unexpected cascading trips. A multi agent system (MAS) based wide area protection strategy is proposed in this paper to predict the load flow transferring from the point of view of impedance relays...

  20. Laser-based optical detection of explosives

    CERN Document Server

    Pellegrino, Paul M; Farrell, Mikella E

    2015-01-01

    Laser-Based Optical Detection of Explosives offers a comprehensive review of past, present, and emerging laser-based methods for the detection of a variety of explosives. This book: Considers laser propagation safety and explains standard test material preparation for standoff optical-based detection system evaluation Explores explosives detection using deep ultraviolet native fluorescence, Raman spectroscopy, laser-induced breakdown spectroscopy, reflectometry, and hyperspectral imaging Examines photodissociation followed by laser-induced fluorescence, photothermal methods, cavity-enhanced absorption spectrometry, and short-pulse laser-based techniques Describes the detection and recognition of explosives using terahertz-frequency spectroscopic techniques Each chapter is authored by a leading expert on the respective technology, and is structured to supply historical perspective, address current advantages and challenges, and discuss novel research and applications. Readers are left with an in-depth understa...

  1. Defect production in simulated cascades: Cascade quenching and short-term annealing

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1983-01-01

    Defect production in displacement cascades in copper has been modeled using the MARLOWE code to generate cascades and the stochastic annealing code ALSOME to simulate cascade quenching and short-term annealing of isolated cascades. Quenching is accomplished by using exaggerated values for defect mobilities and for critical reaction distances in ALSOME for a very short time. The quenched cascades are then short-term annealed with normal parameter values. The quenching parameter values were empirically determined by comparison with results of resistivity measurements. Throughout the collisional, quenching and short-term annealing phases of cascade development, the high energy cascades continue to behave as a collection of independent lower energy lobes. For recoils above about 30 keV the total number of defects and the numbers of free defects scale with the damage energy. As the energy decreases from 30 keV, defect production varies with the changing nature of the cascade configuration, resulting in more defects per unit damage energy. The simulated annealing of a low fluence of interacting cascades revealed an interstitial shielding effect on depleted zones during Stage I recovery. (orig.)

  2. Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers.

    Science.gov (United States)

    Consolino, L; Taschin, A; Bartolini, P; Bartalini, S; Cancio, P; Tredicucci, A; Beere, H E; Ritchie, D A; Torre, R; Vitiello, M S; De Natale, P

    2012-01-01

    Optical frequency comb synthesizers have represented a revolutionary approach to frequency metrology, providing a grid of frequency references for any laser emitting within their spectral coverage. Extending the metrological features of optical frequency comb synthesizers to the terahertz domain would be a major breakthrough, due to the widespread range of accessible strategic applications and the availability of stable, high-power and widely tunable sources such as quantum cascade lasers. Here we demonstrate phase-locking of a 2.5 THz quantum cascade laser to a free-space comb, generated in a LiNbO(3) waveguide and covering the 0.1-6 THz frequency range. We show that even a small fraction (quantum cascade laser is sufficient to generate a beat note suitable for phase-locking to the comb, paving the way to novel metrological-grade terahertz applications, including high-resolution spectroscopy, manipulation of cold molecules, astronomy and telecommunications.

  3. Free electron laser for the 2 x 1 TeV photon collider

    International Nuclear Information System (INIS)

    Sarantsev, V.P.; Yurkov, M.V.; Saldin, E.L.; Shnejdmiller, E.A.

    1993-01-01

    The two-cascade scheme of a free electron laser (FEL) of the 2 x 1 TeV photon collider is suggested. The FEL-generator having peak power of ∼ 10 MW which is amplified up to 5 x 10 11 W in the FEL-amplifier with variable parameters is used as a driving laser. Requirements for parameters of electron beam and the FEL-amplifier magnetic system are formulated on the base of calculations. 19 refs., 2 tabs., 4 figs

  4. New connecting elements for cascade photoelectric converters based on InP

    Science.gov (United States)

    Marichev, A. E.; Pushnyi, B. V.; Levin, R. V.; Lebedeva, N. M.; Prasolov, N. D.; Kontrosh, E. V.

    2018-03-01

    In this paper, we report on the initial studies of connecting elements for cascade photodetectors. The heterostructures used in this work are based on InP. As a connecting element, it is proposed to use nanocrystalline inclusions instead of the tunnel junction. GaP nanocrystals are most suitable for this purpose because this material does not cause absorption of the incident radiation.

  5. A non-conventional isotope separation cascade without any mixing: net cascade

    International Nuclear Information System (INIS)

    Zeng Shi; Jiang Dongjun; Ying Zhengen

    2012-01-01

    A component has different concentrations in the incoming flows at a confluent point in all existing isotope separations cascades for multi-component isotope separation and mixing is inevitable, which results in deterioration of separation performance of the separation cascade. However, realization of no-mixing at a confluent point is impossible with a conventional cascade. A non-conventional isotope separation cascade, net cascade, is found to be able to realize no mixings for all components at confluent points, and its concept is further developed here. No-mixing is fulfilled by requiring symmetrical separation of two specified key components at every stage, and the procedure of realizing no-mixing is presented in detail. Some properties of net cascade are investigated preliminarily, and the results demonstrated the no-mixing property is indeed realized. Net cascade is the only separation cascade that so far possesses the no-mixing property. (authors)

  6. Optical breakdown threshold investigation of 1064 nm laser induced air plasmas

    International Nuclear Information System (INIS)

    Thiyagarajan, Magesh; Thompson, Shane

    2012-01-01

    We present the theoretical and experimental measurements and analysis of the optical breakdown threshold for dry air by 1064 nm infrared laser radiation and the significance of the multiphoton and collisional cascade ionization process on the breakdown threshold measurements over pressures range from 10 to 2000 Torr. Theoretical estimates of the breakdown threshold laser intensities and electric fields are obtained using two distinct theories namely multiphoton and collisional cascade ionization theories. The theoretical estimates are validated by experimental measurements and analysis of laser induced breakdown processes in dry air at a wavelength of 1064 nm by focusing 450 mJ max, 6 ns, 75 MW max high-power 1064 nm IR laser radiation onto a 20 μm radius spot size that produces laser intensities up to 3 - 6 TW/cm 2 , sufficient for air ionization over the pressures of interest ranging from 10 to 2000 Torr. Analysis of the measured breakdown threshold laser intensities and electric fields are carried out in relation with classical and quantum theoretical ionization processes, operating pressures. Comparative analysis of the laser air breakdown results at 1064 nm with corresponding results of a shorter laser wavelength (193 nm) [M. Thiyagarajan and J. E. Scharer, IEEE Trans. Plasma Sci. 36, 2512 (2008)] and a longer microwave wavelength (10 8 nm) [A. D. MacDonald, Microwave Breakdown in Gases (Wiley, New York, 1966)]. A universal scaling analysis of the breakdown threshold measurements provided a direct comparison of breakdown threshold values over a wide range of frequencies ranging from microwave to ultraviolet frequencies. Comparison of 1064 nm laser induced effective field intensities for air breakdown measurements with data calculated based on the collisional cascade and multiphoton breakdown theories is used successfully to determine the scaled collisional microwave portion. The measured breakdown threshold of 1064 nm laser intensities are then scaled to

  7. Raman fiber lasers

    CERN Document Server

    2017-01-01

    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  8. Intra-pulse laser absorption sensor with cavity enhancement for oxidation experiments in a rapid compression machine

    KAUST Repository

    Nasir, Ehson Fawad; Farooq, Aamir

    2018-01-01

    A sensor based on a mid-IR pulsed quantum cascade laser (QCL) and off-axis cavity enhanced absorption spectroscopy (OA-CEAS) has been developed for highly sensitive concentration measurements of carbon monoxide (CO) in a rapid compression machine

  9. A photothermal Mach-Zehnder interferometer for measuring caffeine and proteins in aqueous solutions using external cavity quantum cascade lasers

    Science.gov (United States)

    Kristament, Christian; Schwaighofer, Andreas; Montemurro, Milagros; Lendl, Bernhard

    2018-02-01

    One of the advantages of mid-IR spectroscopy in biomedical research lies in its capability to provide direct information on the secondary structure of proteins in their natural, often aqueous, environment. One impediment of direct absorption measurements in the correspondent spectral region is the strong absorbance of the native solvent (H2O). In this regard, the advent of broadly-tunable external cavity quantum cascade lasers (EC-QCL) allowed to significantly increasing the optical path length employed in transmission measurements due to their high spectral power densities. Low measured S/N ratios were improved by elaborated data analysis protocols that corrected mechanical flaws in the tuning mechanism of ECQCLs and allow for S/N ratios comparable to research grade FTIR spectrometers. Recent development of new optical set-ups outpacing direct absorption measurements led to further advancements. We present a dedicated Mach-Zehnder interferometer for photothermal measurements in balanced detection mode. In this highly sensitive design, the interferometer is illuminated by a HeNe laser to detect the refractive index change induced by the heat insertion of the EC-QCL. Here, we present photothermal phase shift interferometry measurements of caffeine in ethanol as well as casein in water. Further, the dependency of the signal amplitude on varying modulation frequencies was investigated for different liquids.

  10. Direct phase-locking of a 8.6-μm quantum cascade laser to a mid-IR optical frequency comb: application to precision spectroscopy of N2O.

    Science.gov (United States)

    Gambetta, Alessio; Cassinerio, Marco; Coluccelli, Nicola; Fasci, Eugenio; Castrillo, Antonio; Gianfrani, Livio; Gatti, Davide; Marangoni, Marco; Laporta, Paolo; Galzerano, Gianluca

    2015-02-01

    We developed a high-precision spectroscopic system at 8.6 μm based on direct heterodyne detection and phase-locking of a room-temperature quantum-cascade-laser against an harmonic, 250-MHz mid-IR frequency comb obtained by difference-frequency generation. The ∼30  dB signal-to-noise ratio of the detected beat-note together with the achieved closed-loop locking bandwidth of ∼500  kHz allows for a residual integrated phase noise of 0.78 rad (1 Hz-5 MHz), for an ultimate resolution of ∼21  kHz, limited by the measured linewidth of the mid-IR comb. The system was used to perform absolute measurement of line-center frequencies for the rotational components of the ν2 vibrational band of N2O, with a relative precision of 3×10(-10).

  11. High-Resolution Infrared Spectroscopy of Imidazole Clusters in Helium Droplets Using Quantum Cascade Lasers

    Science.gov (United States)

    Mani, Devendra; Can, Cihad; Pal, Nitish; Schwaab, Gerhard; Havenith, Martina

    2017-06-01

    Imidazole ring is a part of many biologically important molecules and drugs. Imidazole monomer, dimer and its complexes with water have earlier been studied using infrared spectroscopy in helium droplets^{1,2} and molecular beams^{3}. These studies were focussed on the N-H and O-H stretch regions, covering the spectral region of 3200-3800 \\wn. We have extended the studies on imidazole clusters into the ring vibration region. The imidazole clusters were isolated in helium droplets and were probed using a combination of infrared spectroscopy and mass spectrometry. The spectra in the region of 1000-1100 \\wn and 1300-1460 \\wn were recorded using quantum cascade lasers. Some of the observed bands could be assigned to imidazole monomer and higher order imidazole clusters, using pickup curve analysis and ab initio calculations. Work is still in progress. The results will be discussed in detail in the talk. References: 1) M.Y. Choi and R.E. Miller, J. Phys. Chem. A, 110, 9344 (2006). 2) M.Y. Choi and R.E. Miller, Chem. Phys. Lett., 477, 276 (2009). 3) J. Zischang, J. J. Lee and M. Suhm, J. Chem. Phys., 135, 061102 (2011). Note: This work was supported by the Cluster of Excellence RESOLV (Ruhr-Universitat EXC1069) funded by the Deutsche Forschungsgemeinschaft.

  12. Assessment of parameters of gas centrifuge and separation cascade basing on integral characteristics of separation plant

    Energy Technology Data Exchange (ETDEWEB)

    Borisevich, Valentin, E-mail: VDBorisevich@mephi.ru [National Research Nuclear University MEPhI, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); National Research Center “Kurchatov Institute”, Kurchatov Square 1, Moscow 123182 (Russian Federation); Borshchevskiy, Michael, E-mail: Michael_mephi@mail.ru [National Research Nuclear University MEPhI, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); Andronov, Igor, E-mail: andronov@imp.kiae.ru [National Research Center “Kurchatov Institute”, Kurchatov Square 1, Moscow 123182 (Russian Federation); Senchenkov, Sergey, E-mail: senchenkov@imp.kiae.ru [National Research Center “Kurchatov Institute”, Kurchatov Square 1, Moscow 123182 (Russian Federation)

    2013-12-15

    Highlights: • We developed the calculation method to assess a feed flow rate into a gas centrifuge. • It is based on the knowledge of the integral characteristics of a separation plant. • Our method is verified by comparison with the results of the independent one. • The method also allows to specify other features of the separation cascade work. - Abstract: A calculation technique to assess a feed flow rate into a single GC, a total number of centrifuges in a separation cascade and to determine its likely configurations basing on the known integral characteristics of a centrifugal plant is developed. Evaluation of characteristics of the industrial gas centrifuge TC-12 and separation cascades of the NEF plant performed by two independent calculation techniques demonstrates their satisfactory agreement. This methodology would help to some extent the nuclear inspectors in evaluating and assessing the capability of an enrichment facility, and discovering any use for undeclared purposes.

  13. Transient thermal analysis of semiconductor diode lasers under pulsed operation

    Science.gov (United States)

    Veerabathran, G. K.; Sprengel, S.; Karl, S.; Andrejew, A.; Schmeiduch, H.; Amann, M.-C.

    2017-02-01

    Self-heating in semiconductor lasers is often assumed negligible during pulsed operation, provided the pulses are `short'. However, there is no consensus on the upper limit of pulse width for a given device to avoid-self heating. In this paper, we present an experimental and theoretical analysis of the effect of pulse width on laser characteristics. First, a measurement method is introduced to study thermal transients of edge-emitting lasers during pulsed operation. This method can also be applied to lasers that do not operate in continuous-wave mode. Secondly, an analytical thermal model is presented which is used to fit the experimental data to extract important parameters for thermal analysis. Although commercial numerical tools are available for such transient analyses, this model is more suitable for parameter extraction due to its analytical nature. Thirdly, to validate this approach, it was used to study a GaSb-based inter-band laser and an InP-based quantum cascade laser (QCL). The maximum pulse-width for less than 5% error in the measured threshold currents was determined to be 200 and 25 ns for the GaSb-based laser and QCL, respectively.

  14. Long Path Quantum Cascade Laser Based Sensor for Environment Sensing/Ambient Detection of CH4 and N2O

    Science.gov (United States)

    Castillo, P. C.; Sydoryk, I.; Gross, B.; Moshary, F.

    2013-12-01

    Methane (CH4) and Nitrous Oxide (N2O) are long-lived greenhouse gases in the atmosphere with significant global warming effects. These gases also are known to be produced in a number of anthropogenic settings such as manure management systems, which releases substantial GHGs and is mandated by the EPA to provide continuous monitoring. In addition, natural gas leaks in urban areas is another source of strong spatially inhomogeneous methane emissions Most open path methods for quantitative detection of trace gases utilize either Fourier Transform Spectrometer (FTIR) or near-IR differential optical absorption spectroscopy (DOAS). Although, FTIR is suitable for ambient air monitoring measurement of more abundant gases such as CO2 and H20 etc., the lack of spectral resolution makes the retrieval of weaker absorbing features such as N20 more difficult. On the other hand, conventional DOAS systems can be large and impractical. As an alternative, we illustrate a robust portable quantum cascade laser (QCL) approach for simultaneous detection of CH4 and N2O. In particular, gas spectra were recorded by ultrafast pulse intensity (thermal) chirp tuning over the 1299 - 1300cm-1 spectral window. Etalon measurements insure stable tuning was obtained. To deal with multiple species, a LSQ spectral fitting approach was used which accounted for both the overlapping trace gases , background water vapor as well as detector drift and calibration. In summary, ambient concentrations of CH4 with and N2O with accuracy < 1% was obtained on the order of 5ms using optical paths of 500 m path length. In addition, unattended long term operation was demonstrated and validations using other sensors when possible were shown to be consistent. The system accuracy is limited by systemic errors, which are still being explored.

  15. Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach

    Science.gov (United States)

    Yong, WANG; Cong, LI; Jielin, SHI; Xingwei, WU; Hongbin, DING

    2017-11-01

    As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering (LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5 × 1019 m-3 to 7.1 × 1020 m-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison, an optical emission spectroscopy (OES) system was established as well. The results showed that the electron excitation temperature (configuration temperature) measured by OES is significantly higher than the electron temperature (kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium (LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.

  16. Cascade Organic Solar Cells

    KAUST Repository

    Schlenker, Cody W.

    2011-09-27

    We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.

  17. Cascade Organic Solar Cells

    KAUST Repository

    Schlenker, Cody W.; Barlier, Vincent S.; Chin, Stephanie W.; Whited, Matthew T.; McAnally, R. Eric; Forrest, Stephen R.; Thompson, Mark E.

    2011-01-01

    We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.

  18. Methodical study of nitrous oxide eddy covariance measurements using quantum cascade laser spectrometery over a Swiss forest

    Directory of Open Access Journals (Sweden)

    W. Eugster

    2007-10-01

    Full Text Available Nitrous oxide fluxes were measured at the Lägeren CarboEurope IP flux site over the multi-species mixed forest dominated by European beech and Norway spruce. Measurements were carried out during a four-week period in October–November 2005 during leaf senescence. Fluxes were measured with a standard ultrasonic anemometer in combination with a quantum cascade laser absorption spectrometer that measured N2O, CO2, and H2O mixing ratios simultaneously at 5 Hz time resolution. To distinguish insignificant fluxes from significant ones it is proposed to use a new approach based on the significance of the correlation coefficient between vertical wind speed and mixing ratio fluctuations. This procedure eliminated roughly 56% of our half-hourly fluxes. Based on the remaining, quality checked N2O fluxes we quantified the mean efflux at 0.8±0.4 μmol m−2 h−1 (mean ± standard error. Most of the contribution to the N2O flux occurred during a 6.5-h period starting 4.5 h before each precipitation event. No relation with precipitation amount could be found. Visibility data representing fog density and duration at the site indicate that wetting of the canopy may have as strong an effect on N2O effluxes as does below-ground microbial activity. It is speculated that above-ground N2O production from the senescing leaves at high moisture (fog, drizzle, onset of precipitation event may be responsible for part of the measured flux.

  19. Exploring Broad Area Quantum Cascade Lasers

    Science.gov (United States)

    2017-10-01

    Strong current spreading: Trenches etched deeper than the active region. Minimal current spreading: Laser cavity defined by the electrical contact ...refractive index Θ: the angle measured within the cavity. x θ High-Order Transverse Modes 7 Approved for public release. Distribution is...through image. 10 Approved for public release. Distribution is unlimited. 0 5 10 15 20 25 30 -50-40-30-20-10 0 10 20 30 40 50 Angle (degrees) De vic e

  20. CFD-based shape optimization of steam turbine blade cascade in transonic two phase flows

    International Nuclear Information System (INIS)

    Noori Rahim Abadi, S.M.A.; Ahmadpour, A.; Abadi, S.M.N.R.; Meyer, J.P.

    2017-01-01

    Highlights: • CFD-based shape optimization of a nozzle and a turbine blade regarding nucleating steam flow is performed. • Nucleation rate and droplet radius are the best suited objective functions for the optimization process. • Maximum 34% reduction in entropy generation rate is reported for turbine cascade. • A maximum 10% reduction in Baumann factor and a maximum 2.1% increase in efficiency is achieved for a turbine cascade. - Abstract: In this study CFD-based shape optimization of a 3D nozzle and a 2D turbine blade cascade is undertaken in the presence of non-equilibrium condensation within the considered flow channels. A two-fluid formulation is used for the simulation of unsteady, turbulent, supersonic and compressible flow of wet steam accounting for relevant phase interaction between nucleated liquid droplets and continuous vapor phase. An in-house CFD code is developed to solve the governing equations of the two phase flow and was validated against available experimental data. Optimization is carried out in respect to various objective functions. It is shown that nucleation rate and maximum droplet radius are the best suited target functions for reducing thermodynamic and aerodynamic losses caused by the spontaneous nucleation. The maximum increase of 2.1% in turbine blade efficiency is achieved through shape optimization process.

  1. Low Power Consumption Lasers for Miniature Optical Spectrometers for Trace Gas Analysis

    Science.gov (United States)

    Forouhar, S.; Frez, C.; Franz, K. J.; Ksendzov, A.; Qiu, Y.; Soibel, K. A.; Chen, J.; Hosoda, T.; Kipshidze, G.; Shterengas, L.; hide

    2011-01-01

    The air quality of any manned spacecraft needs to be continuously monitored in order to safeguard the health of the crew. Air quality monitoring grows in importance as mission duration increases. Due to the small size, low power draw, and performance reliability, semiconductor laser-based instruments are viable candidates for this purpose. Achieving a minimum instrument size requires lasers with emission wavelength coinciding with the absorption of the fundamental absorption lines of the target gases, which are mostly in the 3.0-5.0 micron wavelength range. In this paper we report on our progress developing high wall plug efficiency type-I quantum-well GaSb-based diode lasers operating at room temperatures in the spectral region near 3.0-3.5 micron and quantum cascade (QC) lasers in the 4.0-5.0 micron range. These lasers will enable the development of miniature, low-power laser spectrometers for environmental monitoring of the spacecraft.

  2. Compact laser-diode-based femtosecond sources

    International Nuclear Information System (INIS)

    Brown, C T A; Cataluna, M A; Lagatsky, A A; Rafailov, E U; Agate, M B; Leburn, C G; Sibbett, W

    2004-01-01

    This paper describes the development of compact femtosecond laser systems that are capable of being directly pumped by laser diodes or are based directly on laser diodes. The paper demonstrates the latest results in a highly efficient vibronic based gain medium and a diode-pumped Yb:KYW laser is reported that has a wall plug efficiency >14%. A Cr 4+ :YAG oscillator is described that generates transform-limited pulses of 81 fs duration at a pulse repetition frequency of >4 GHz. The development of Cr 3+ :LiSAF lasers that can be operated using power supplies based on batteries is briefly discussed. We also present a summary of work being carried out on the generation of fs-pulses from laser diodes and discuss the important issues in this area. Finally, we outline results obtained on the generation of pulses as short as 550 fs directly from a two-section quantum dot laser without any external pulse compression

  3. Rescuing Ecosystems from Extinction Cascades

    Science.gov (United States)

    Sahasrabudhe, Sagar; Motter, Adilson

    2010-03-01

    Food web perturbations stemming from climate change, overexploitation, invasive species, and natural disasters often cause an initial loss of species that results in a cascade of secondary extinctions. Using a predictive modeling framework, here we will present a systematic network-based approach to reduce the number of secondary extinctions. We will show that the extinction of one species can often be compensated by the concurrent removal of a second specific species, which is a counter-intuitive effect not previously tested in complex food webs. These compensatory perturbations frequently involve long-range interactions that are not a priori evident from local predator-prey relationships. Strikingly, in numerous cases even the early removal of a species that would eventually be extinct by the cascade is found to significantly reduce the number of cascading extinctions. Other nondestructive interventions based on partial removals and growth suppression and/or mortality increase are shown to sometimes prevent all secondary extinctions.

  4. Defect production in simulated cascades: cascade quenching and short-term annealing

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1982-01-01

    Defect production in high energy displacement cascades has been modeled using the computer code MARLOWE to generate the cascades and the stochastic computer code ALSOME to simulate the cascade quenching and short-term annealing of isolated cascades. The quenching is accomplished by using ALSOME with exaggerated values for defect mobilities and critical reaction distanes for recombination and clustering, which are in effect until the number of defect pairs is equal to the value determined from resistivity experiments at 4K. Then normal mobilities and reaction distances are used during short-term annealing to a point representative of Stage III recovery. Effects of cascade interactions at low fluences are also being investigated. The quenching parameter values were empirically determined for 30 keV cascades. The results agree well with experimental information throughout the range from 1 keV to 100 keV. Even after quenching and short-term annealing the high energy cascades behave as a collection of lower energy subcascades and lobes. Cascades generated in a crystal having thermal displacements were found to be in better agreement with experiments after quenching and annealing than those generated in a non-thermal crystal

  5. On calculating of squared-off cascades for multicomponent isotope separation

    International Nuclear Information System (INIS)

    Potapov, D.V.; Soulaberidze, G.A.; Chuzhinov, V.A.; Filipppov, I.G.

    1996-01-01

    Calculation on a cascade of specified configuration (specified number of stages and flows in the enriching and stripping sections of the cascade) is performed with two approaches. The first one, which is advisable to use for for calculation of so-called 'long' cascades (for example, squared-off cascades of distillation columns), is based on either analytical transitions enabling the problem to be reduced to to the algebraic transcendental equations, or based on the direct integration of the equations describing the cascade separation process, with the subsequent iteration on the boundary conditions and the balance equations. This approach also involves the orthogonal-collocation technique consisting in the approximation of the differential equations solution by an Lagrangian polynomial interpolation

  6. Improved medical image fusion based on cascaded PCA and shift invariant wavelet transforms.

    Science.gov (United States)

    Reena Benjamin, J; Jayasree, T

    2018-02-01

    In the medical field, radiologists need more informative and high-quality medical images to diagnose diseases. Image fusion plays a vital role in the field of biomedical image analysis. It aims to integrate the complementary information from multimodal images, producing a new composite image which is expected to be more informative for visual perception than any of the individual input images. The main objective of this paper is to improve the information, to preserve the edges and to enhance the quality of the fused image using cascaded principal component analysis (PCA) and shift invariant wavelet transforms. A novel image fusion technique based on cascaded PCA and shift invariant wavelet transforms is proposed in this paper. PCA in spatial domain extracts relevant information from the large dataset based on eigenvalue decomposition, and the wavelet transform operating in the complex domain with shift invariant properties brings out more directional and phase details of the image. The significance of maximum fusion rule applied in dual-tree complex wavelet transform domain enhances the average information and morphological details. The input images of the human brain of two different modalities (MRI and CT) are collected from whole brain atlas data distributed by Harvard University. Both MRI and CT images are fused using cascaded PCA and shift invariant wavelet transform method. The proposed method is evaluated based on three main key factors, namely structure preservation, edge preservation, contrast preservation. The experimental results and comparison with other existing fusion methods show the superior performance of the proposed image fusion framework in terms of visual and quantitative evaluations. In this paper, a complex wavelet-based image fusion has been discussed. The experimental results demonstrate that the proposed method enhances the directional features as well as fine edge details. Also, it reduces the redundant details, artifacts, distortions.

  7. QCL seeded, ns-pulse, multi-line, CO2 laser oscillator for laser-produced-plasma extreme-UV source

    Science.gov (United States)

    Nowak, Krzysztof Michał; Suganuma, Takashi; Kurosawa, Yoshiaki; Ohta, Takeshi; Kawasuji, Yasufumi; Nakarai, Hiroaki; Saitou, Takashi; Fujimoto, Junichi; Mizoguchi, Hakaru; Sumitani, Akira; Endo, Akira

    2017-01-01

    Successful merger of state-of-the-art, semiconductor quantum-cascade lasers (QCL), with the mature CO2 laser technology, resulted in a delivery of highly-desired qualities of CO2 laser output that were not available previously without much effort. These qualities, such as multi-line operation, excellent spectro-temporal stability and pulse waveform control, became available from a single device of moderate complexity. This paper describes the operation principle and the unique properties of the solid{state seeded CO2 laser, invented for an application in laser-produced-plasma (LPP), extreme-UV (EUV) light source.

  8. Investigating the early snowmelt of 2015 in the Cascade Mountains using new MODIS-based snowmelt timing maps

    Science.gov (United States)

    O'Leary, D., III; Hall, D. K.; Medler, M. J.; Flower, A.; Matthews, R.

    2017-12-01

    The spring of 2015 brought an alarmingly early snowmelt to the Cascade Mountains, impacting flora, fauna, watersheds, and wildfire activity. It is important that we understand these events because model-based projections suggest that snowmelt may arrive an average of 10-40 days earlier across the continental US by the year 2100. Available snow measurement methods including SNOTEL stations and stream gauges offer insights into point locations and individual watersheds, but lack the detail needed to assess snowmelt anomalies across the landscape. In this study we describe our new MODIS-based snowmelt timing maps (STMs), validate them with SNOTEL measurements, then use them to explore the spatial patterns of the 2015 snowmelt in the Cascades. We found that the Cascade Mountains experienced snowmelt 41 days earlier than the 2001-2015 average, with many areas melting >70 days early. Of concern to land managers, these events may be the `new normal' in the decades to come.

  9. Arduino based laser control

    OpenAIRE

    Bernal Muñoz, Ferran

    2015-01-01

    ARDUINO is a vey usefull platform for prototypes. In this project ARDUINO will be used for controling a Semiconductor Tuneable Laser. [ANGLÈS] Diode laser for communications control based on an Arduino board. Temperature control implementation. Software and hardware protection for the laser implementation. [CASTELLÀ] Control de un láser de comunicaciones ópticas desde el ordenador utilizando una placa Arduino. Implementación de un control de temperatura y protección software y hardware ...

  10. Investigation on performance of all optical buffer with large dynamical delay time based on cascaded double loop optical buffers

    International Nuclear Information System (INIS)

    Yong-Jun, Wang; Xiang-Jun, Xin; Xiao-Lei, Zhang; Chong-Qing, Wu; Kuang-Lu, Yu

    2010-01-01

    Optical buffers are critical for optical signal processing in future optical packet-switched networks. In this paper, a theoretical study as well as an experimental demonstration on a new optical buffer with large dynamical delay time is carried out based on cascaded double loop optical buffers (DLOBs). It is found that pulse distortion can be restrained by a negative optical control mode when the optical packet is in the loop. Noise analysis indicates that it is feasible to realise a large variable delay range by cascaded DLOBs. These conclusions are validated by the experiment system with 4-stage cascaded DLOBs. Both the theoretical simulations and the experimental results indicate that a large delay range of 1–9999 times the basic delay unit and a fine granularity of 25 ns can be achieved by the cascaded DLOBs. The performance of the cascaded DLOBs is suitable for the all optical networks. (classical areas of phenomenology)

  11. Laser Safety and Hazard Analysis for the Trailer (B70) Based AURA Laser System

    International Nuclear Information System (INIS)

    AUGUSTONI, ARNOLD L.

    2003-01-01

    A laser safety and hazard analysis was performed for the AURA laser system based on the 2000 version of the American National Standards Institute's (ANSI) Standard Z136.1, for ''Safe Use of Lasers'' and the 2000 version of the ANSI Standard Z136.6, for ''Safe Use of Lasers Outdoors''. The trailer based AURA laser system is a mobile platform, which is used to perform laser interaction experiments and tests at various national test sites. The trailer (B70) based AURA laser system is generally operated on the United State Air Force Starfire Optical Range (SOR) at Kirtland Air Force Base (KAFB), New Mexico. The laser is used to perform laser interaction testing inside the laser trailer as well as outside the trailer at target sites located at various distances from the exit telescope. In order to protect personnel, who work inside the Nominal Hazard Zone (NHZ), from hazardous laser emission exposures it was necessary to determine the Maximum Permissible Exposure (MPE) for each laser wavelength (wavelength bands) and calculate the appropriate minimum Optical Density (OD min ) of the laser safety eyewear used by authorized personnel and the Nominal Ocular Hazard Distance (NOHD) to protect unauthorized personnel who may have violated the boundaries of the control area and enter into the laser's NHZ

  12. Terahertz imaging using quantum cascade lasers—a review of systems and applications

    International Nuclear Information System (INIS)

    Dean, P; Valavanis, A; Keeley, J; Alhathlool, R; Burnett, A D; Li, L H; Khanna, S P; Indjin, D; Linfield, E H; Davies, A G; Bertling, K; Lim, Y L; Rakić, A D; Taimre, T

    2014-01-01

    The terahertz (THz) frequency quantum cascade laser (QCL) is a compact source of THz radiation offering high power, high spectral purity and moderate tunability. As such, these sources are particularly suited to the application of THz frequency imaging across a range of disciplines, and have motivated significant research interest in this area over the past decade. In this paper we review the technological approaches to THz QCL-based imaging and the key advancements within this field. We discuss in detail a number of imaging approaches targeted to application areas including multiple-frequency transmission and diffuse reflection imaging for the spectral mapping of targets; as well as coherent approaches based on the self-mixing phenomenon in THz QCLs for long-range imaging, three-dimensional imaging, materials analysis, and high-resolution inverse synthetic aperture radar imaging. (paper)

  13. A two-level model of rise time in quantum cascade laser materials applied to 5 micron, 9 micron and terahertz-range wavelengths

    International Nuclear Information System (INIS)

    Webb, J F; Yong, K S C; Haldar, M K

    2014-01-01

    An equivalent circuit simulation of a two-level rate equation model for quantum cascade laser (QCL) materials is used to study the turn on delay and rise time for three QCLs with 5 micron, 9 micron and terahertz-range wavelengths. In order to do this it is necessary that the model can deal with large signal responses and not be restricted to small signal responses; the model used here is capable of this. The effect of varying some of the characteristic times in the model is also investigated. The comparison of the terahertz wave QCL with the others is particularly important given the increased interest in terahertz sources which have a large range of important applications, such as in medical imaging

  14. Information cascade on networks

    Science.gov (United States)

    Hisakado, Masato; Mori, Shintaro

    2016-05-01

    In this paper, we discuss a voting model by considering three different kinds of networks: a random graph, the Barabási-Albert (BA) model, and a fitness model. A voting model represents the way in which public perceptions are conveyed to voters. Our voting model is constructed by using two types of voters-herders and independents-and two candidates. Independents conduct voting based on their fundamental values; on the other hand, herders base their voting on the number of previous votes. Hence, herders vote for the majority candidates and obtain information relating to previous votes from their networks. We discuss the difference between the phases on which the networks depend. Two kinds of phase transitions, an information cascade transition and a super-normal transition, were identified. The first of these is a transition between a state in which most voters make the correct choices and a state in which most of them are wrong. The second is a transition of convergence speed. The information cascade transition prevails when herder effects are stronger than the super-normal transition. In the BA and fitness models, the critical point of the information cascade transition is the same as that of the random network model. However, the critical point of the super-normal transition disappears when these two models are used. In conclusion, the influence of networks is shown to only affect the convergence speed and not the information cascade transition. We are therefore able to conclude that the influence of hubs on voters' perceptions is limited.

  15. Development of a diamond waveguide sensor for sensitive protein analysis using IR quantum cascade lasers

    Science.gov (United States)

    Piron, P.; Vargas Catalan, E.; Haas, J.; Österlund, L.; Nikolajeff, F.; Andersson, P. O.; Bergström, J.; Mizaikoff, B.; Karlsson, M.

    2018-02-01

    Microfabricated diamond waveguides, between 5 and 20 μm thick, manufactured by chemical vapor deposition of diamond, followed by standard lithographic techniques and inductively coupled plasma etching of diamond, are used as bio-chemical sensors in the mid infrared domain: 5-11 μm. Infrared light, emitted from a broadly tunable quantum cascade laser with a wavelength resolution smaller than 20 nm, is coupled through the diamond waveguides for attenuated total reflection spectroscopy. The expected advantages of these waveguides are a high sensitivity due to the high number of internal reflections along the propagation direction, a high transmittance in the mid-IR domain, the bio-compatibility of diamond and the possibility of functionalizing the surface layer. The sensor will be used for analyzing different forms of proteins such as α-synuclein which is relevant in understanding the mechanism behind Parkinson's disease. The fabrication process of the waveguide, its characteristics and several geometries are introduced. The optical setup of the biosensor is described and our first measurements on two analytes to demonstrate the principle of the sensing method will be presented. Future use of this sensor includes the functionalization of the diamond waveguide sensor surface to be able to fish out alpha-synuclein from cerebrospinal fluid.

  16. Design concept of Hydro cascade control system

    International Nuclear Information System (INIS)

    Fustik, Vangel; Kiteva, Nevenka

    2006-01-01

    In this paper a design concept of the comple hydro cascade scheme is presented with the design parameters of the main technical features. The cascade control system architecture is designed considering up-to-date communication and information technology. The control algorithm is based on Pond Level Control and Economic Load Allocation concepts.

  17. Semiconductor lasers stability, instability and chaos

    CERN Document Server

    Ohtsubo, Junji

    2017-01-01

    This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in se...

  18. Laser Spot Detection Based on Reaction Diffusion.

    Science.gov (United States)

    Vázquez-Otero, Alejandro; Khikhlukha, Danila; Solano-Altamirano, J M; Dormido, Raquel; Duro, Natividad

    2016-03-01

    Center-location of a laser spot is a problem of interest when the laser is used for processing and performing measurements. Measurement quality depends on correctly determining the location of the laser spot. Hence, improving and proposing algorithms for the correct location of the spots are fundamental issues in laser-based measurements. In this paper we introduce a Reaction Diffusion (RD) system as the main computational framework for robustly finding laser spot centers. The method presented is compared with a conventional approach for locating laser spots, and the experimental results indicate that RD-based computation generates reliable and precise solutions. These results confirm the flexibility of the new computational paradigm based on RD systems for addressing problems that can be reduced to a set of geometric operations.

  19. Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry.

    Science.gov (United States)

    Keeley, James; Freeman, Joshua; Bertling, Karl; Lim, Yah L; Mohandas, Reshma A; Taimre, Thomas; Li, Lianhe H; Indjin, Dragan; Rakić, Aleksandar D; Linfield, Edmund H; Davies, A Giles; Dean, Paul

    2017-08-03

    The effects of optical feedback (OF) in lasers have been observed since the early days of laser development. While OF can result in undesirable and unpredictable operation in laser systems, it can also cause measurable perturbations to the operating parameters, which can be harnessed for metrological purposes. In this work we exploit this 'self-mixing' effect to infer the emission spectrum of a semiconductor laser using a laser-feedback interferometer, in which the terminal voltage of the laser is used to coherently sample the reinjected field. We demonstrate this approach using a terahertz frequency quantum cascade laser operating in both single- and multiple-longitudinal mode regimes, and are able to resolve spectral features not reliably resolved using traditional Fourier transform spectroscopy. We also investigate quantitatively the frequency perturbation of individual laser modes under OF, and find excellent agreement with predictions of the excess phase equation central to the theory of lasers under OF.

  20. Fundamentals of Highly Non-Degenerate Cascaded Four-Wave Mixing

    Directory of Open Access Journals (Sweden)

    Rosa Weigand

    2015-09-01

    Full Text Available By crossing two intense ultrashort laser pulses with different colors in a transparent medium, like a simple piece of glass, a fan of multicolored broadband light pulses can be simultaneously generated. These newly generated pulses are emitted in several well-defined directions and can cover a broad spectral range, from the infrared to the ultraviolet and beyond. This beautiful phenomenon, first observed and described 15 years ago, is due to highly-nondegenerate cascaded four-wave mixing (cascaded FWM, or CFWM. Here, we present a review of our work on the generation and measurement of multicolored light pulses based on third-order nonlinearities in transparent solids, from the discovery and first demonstration of highly-nondegenerate CFWM, to the coherent synthesis of single-cycle pulses by superposition of the multicolored light pulses produced by CFWM. We will also present the development and main results of a dedicated 2.5-D nonlinear propagation model, i.e., with propagation occurring along a two-dimensional plane while assuming cylindrically symmetric pump beam profiles, capable of adequately describing noncollinear FWM and CFWM processes. A new method for the generation of femtosecond pulses in the deep-ultraviolet (DUV based on FWM and CFWM will also be described. These experimental and theoretical results show that highly-nondegenerate third-order nonlinear optical processes are formally well understood and provide broader bandwidths than other nonlinear optical processes for the generation of ultrashort light pulses with wavelengths extending from the near-infrared to the deep-ultraviolet, which have many applications in science and technology.

  1. Low Power Consumption Laser for Next Generation Miniature Optical Spectrometers for Trace Gas Analysis

    Science.gov (United States)

    Forouhar, S.; Frez, C.; Franz, K. J.; Ksendzov, A.; Qiu, Y.; Soibel, K. A.; Chen, J.; Hosoda, T.; Kipshidze, G.; Shterengas, L.; hide

    2011-01-01

    The air quality of any manned spacecraft needs to be continuously monitored in order to safeguard the health of the crew. Air quality monitoring grows in importance as mission duration increases. Due to the small size, low power draw, and performance reliability, semiconductor laser-based instruments are viable candidates for this purpose. Achieving a minimum instrument size requires lasers with emission wavelength coinciding with the absorption of the fundamental absorption lines of the target gases, which are mostly in the 3.0-5.0 mu m wavelength range. In this paper we report on our progress developing high wall plug efficiency type-I quantum-well GaSb-based diode lasers operating at room temperatures in the spectral region near 3.0-3.5 mu m and quantum cascade (QC) lasers in the 4.0-5.0 mu m range. These lasers will enable the development of miniature, low-power laser spectrometers for environmental monitoring of the spacecraft

  2. Compact and portable open-path sensor for simultaneous measurements of atmospheric N2O and CO using a quantum cascade laser.

    Science.gov (United States)

    Tao, Lei; Sun, Kang; Khan, M Amir; Miller, David J; Zondlo, Mark A

    2012-12-17

    A compact and portable open-path sensor for simultaneous detection of atmospheric N(2)O and CO has been developed with a 4.5 μm quantum cascade laser (QCL). An in-line acetylene (C(2)H(2)) gas reference cell allows for continuous monitoring of the sensor drift and calibration in rapidly changing field environments and thereby allows for open-path detection at high precision and stability. Wavelength modulation spectroscopy (WMS) is used to detect simultaneously both the second and fourth harmonic absorption spectra with an optimized dual modulation amplitude scheme. Multi-harmonic spectra containing atmospheric N(2)O, CO, and the reference C(2)H(2) signals are fit in real-time (10 Hz) by combining a software-based lock-in amplifier with a computationally fast numerical model for WMS. The sensor consumes ~50 W of power and has a mass of ~15 kg. Precision of 0.15 ppbv N(2)O and 0.36 ppbv CO at 10 Hz under laboratory conditions was demonstrated. The sensor has been deployed for extended periods in the field. Simultaneous N(2)O and CO measurements distinguished between natural and fossil fuel combustion sources of N(2)O, an important greenhouse gas with poorly quantified emissions in space and time.

  3. Velocity and Motion Control of a Self-Balancing Vehicle Based on a Cascade Control Strategy

    Directory of Open Access Journals (Sweden)

    Miguel Velazquez

    2016-06-01

    Full Text Available This paper presents balancing, velocity and motion control of a self-balancing vehicle. A cascade controller is implemented for both balancing control and angular velocity control. This controller is tested in simulations using a proposed mathematical model of the system. Motion control is achieved based on the kinematics of the robot. Control hardware is designed and integrated to implement the proposed controllers. Pitch is kept under 1° from the equilibrium position with no external disturbances. The linear cascade control is able to handle slight changes in the system dynamics, such as in the centre of mass and the slope on an inclined surface.

  4. Q-switched nanosecond Nd3+:Ca(NbO3)2 crystalline self-Raman laser with single-step cascade SE (λSE = 1.0615 μm of 4F3/2 → 4I11/2 channel) → SRS (λSt1 = 1.1741 μm of ωSRS ≈ 904 cm-1 promotion vibration mode) wavelength conversion

    International Nuclear Information System (INIS)

    Kaminskii, A A; Dong, J; Ueda, K; Bettinelli, M; Grinberg, M; Jaque, D

    2009-01-01

    A passively Q-switched nanosecond Nd 3+ :Ca(NbO 3 ) 2 self-Raman laser with 0.808-μm laser-diode pumping has been demonstrated, operating by nonlinear cascaded scheme at converted wavelength of Nd 3+ one-micron stimulated emission

  5. Laser Spot Detection Based on Reaction Diffusion

    Directory of Open Access Journals (Sweden)

    Alejandro Vázquez-Otero

    2016-03-01

    Full Text Available Center-location of a laser spot is a problem of interest when the laser is used for processing and performing measurements. Measurement quality depends on correctly determining the location of the laser spot. Hence, improving and proposing algorithms for the correct location of the spots are fundamental issues in laser-based measurements. In this paper we introduce a Reaction Diffusion (RD system as the main computational framework for robustly finding laser spot centers. The method presented is compared with a conventional approach for locating laser spots, and the experimental results indicate that RD-based computation generates reliable and precise solutions. These results confirm the flexibility of the new computational paradigm based on RD systems for addressing problems that can be reduced to a set of geometric operations.

  6. An automated Monte-Carlo based method for the calculation of cascade summing factors

    Science.gov (United States)

    Jackson, M. J.; Britton, R.; Davies, A. V.; McLarty, J. L.; Goodwin, M.

    2016-10-01

    A versatile method has been developed to calculate cascade summing factors for use in quantitative gamma-spectrometry analysis procedures. The proposed method is based solely on Evaluated Nuclear Structure Data File (ENSDF) nuclear data, an X-ray energy library, and accurate efficiency characterisations for single detector counting geometries. The algorithm, which accounts for γ-γ, γ-X, γ-511 and γ-e- coincidences, can be applied to any design of gamma spectrometer and can be expanded to incorporate any number of nuclides. Efficiency characterisations can be derived from measured or mathematically modelled functions, and can accommodate both point and volumetric source types. The calculated results are shown to be consistent with an industry standard gamma-spectrometry software package. Additional benefits including calculation of cascade summing factors for all gamma and X-ray emissions, not just the major emission lines, are also highlighted.

  7. Cascading failure in the wireless sensor scale-free networks

    Science.gov (United States)

    Liu, Hao-Ran; Dong, Ming-Ru; Yin, Rong-Rong; Han, Li

    2015-05-01

    In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure. Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. F2014203239), the Autonomous Research Fund of Young Teacher in Yanshan University (Grant No. 14LGB017) and Yanshan University Doctoral Foundation, China (Grant No. B867).

  8. Risk and Resilience Analysis of Complex Network Systems Considering Cascading Failure and Recovery Strategy Based on Coupled Map Lattices

    Directory of Open Access Journals (Sweden)

    Fuchun Ren

    2015-01-01

    Full Text Available Risk and resilience are important and challenging issues in complex network systems since a single failure may trigger a whole collapse of the systems due to cascading effect. New theories, models, and methods are urgently demanded to deal with this challenge. In this paper, a coupled map lattices (CML based approach is adopted to analyze the risk of cascading process in Watts-Strogatz (WS small-world network and Barabási and Albert (BA scale-free network, respectively. Then, to achieve an effective and robust system and provide guidance in countering the cascading failure, a modified CML model with recovery strategy factor is proposed. Numerical simulations are put forward based on small-world CML and scale-free CML. The simulation results reveal that appropriate recovery strategies would significantly improve the resilience of networks.

  9. Cascading Generative Adversarial Networks for Targeted

    KAUST Repository

    Hamdi, Abdullah

    2018-01-01

    Abundance of labelled data played a crucial role in the recent developments in computer vision, but that faces problems like scalability and transferability to the wild. One alternative approach is to utilize the data without labels, i.e. unsupervised learning, in learning valuable information and put it in use to tackle vision problems. Generative Adversarial Networks (GANs) have gained momentum for their ability to model image distributions in unsupervised manner. They learn to emulate the training set and that enables sampling from that domain and using the knowledge learned for useful applications. Several methods proposed enhancing GANs, including regularizing the loss with some feature matching. We seek to push GANs beyond the data in the training and try to explore unseen territory in the image manifold. We first propose a new regularizer for GAN based on K-Nearest Neighbor (K-NN) selective feature matching to a target set Y in high-level feature space, during the adversarial training of GAN on the base set X, and we call this novel model K-GAN. We show that minimizing the added term follows from cross-entropy minimization between the distributions of GAN and set Y. Then, we introduce a cascaded framework for GANs that try to address the task of imagining a new distribution that combines the base set X and target set Y by cascading sampling GANs with translation GANs, and we dub the cascade of such GANs as the Imaginative Adversarial Network (IAN). Several cascades are trained on a collected dataset Zoo-Faces and generated innovative samples are shown, including from K-GAN cascade. We conduct an objective and subjective evaluation for different IAN setups in the addressed task of generating innovative samples and we show the effect of regularizing GAN on different scores. We conclude with some useful applications for these IANs, like multi-domain manifold traversing.

  10. Cascading Generative Adversarial Networks for Targeted

    KAUST Repository

    Hamdi, Abdullah

    2018-04-09

    Abundance of labelled data played a crucial role in the recent developments in computer vision, but that faces problems like scalability and transferability to the wild. One alternative approach is to utilize the data without labels, i.e. unsupervised learning, in learning valuable information and put it in use to tackle vision problems. Generative Adversarial Networks (GANs) have gained momentum for their ability to model image distributions in unsupervised manner. They learn to emulate the training set and that enables sampling from that domain and using the knowledge learned for useful applications. Several methods proposed enhancing GANs, including regularizing the loss with some feature matching. We seek to push GANs beyond the data in the training and try to explore unseen territory in the image manifold. We first propose a new regularizer for GAN based on K-Nearest Neighbor (K-NN) selective feature matching to a target set Y in high-level feature space, during the adversarial training of GAN on the base set X, and we call this novel model K-GAN. We show that minimizing the added term follows from cross-entropy minimization between the distributions of GAN and set Y. Then, we introduce a cascaded framework for GANs that try to address the task of imagining a new distribution that combines the base set X and target set Y by cascading sampling GANs with translation GANs, and we dub the cascade of such GANs as the Imaginative Adversarial Network (IAN). Several cascades are trained on a collected dataset Zoo-Faces and generated innovative samples are shown, including from K-GAN cascade. We conduct an objective and subjective evaluation for different IAN setups in the addressed task of generating innovative samples and we show the effect of regularizing GAN on different scores. We conclude with some useful applications for these IANs, like multi-domain manifold traversing.

  11. The Cascade Drift Module: a GIS-based study on regional pesticide deposition

    NARCIS (Netherlands)

    Holterman, H.J.; Zande, van de J.C.

    2008-01-01

    The Cascade Project describes the modelling of spray drift and pesticide fate for a network of interconnected water bodies in a rural area. The present study concerns the first part of the proj ect, the Cascade Drift Module, which models the spatial and temporal distribution of deposits of spray

  12. Wavelength modulation spectroscopy coupled with an external-cavity quantum cascade laser operating between 7.5 and 8 µm

    Science.gov (United States)

    Maity, Abhijit; Pal, Mithun; Maithani, Sanchi; Dutta Banik, Gourab; Pradhan, Manik

    2018-04-01

    We demonstrate a mid-infrared detection strategy with 1f-normalized 2f-wavelength modulation spectroscopy (WMS-2f/1f) using a continuous wave (CW) external-cavity quantum cascade laser (EC-QCL) operating between 7.5 and 8 µm. The detailed performance of the WMS-2f/1f detection method was evaluated by making rotationally resolved measurements in the (ν 4  +  ν 5) combination band of acetylene (C2H2) at 1311.7600 cm-1. A noise-limited detection limit of three parts per billion (ppb) with an integration time of 110 s was achieved for C2H2 detection. The present high-resolution CW-EC-QCL system coupled with the WMS-2f/1f strategy was further validated with an extended range of C2H2 concentration of 0.1-1000 ppm, which shows excellent promise for real-life practical sensing applications. Finally, we utilized the WMS-2f/1f technique to measure the C2H2 concentration in the exhaled breath of smokers.

  13. The blue light indicator in rubidium 5S-5P-5D cascade excitation

    Science.gov (United States)

    Raja, Waseem; Ali, Md. Sabir; Chakrabarti, Alok; Ray, Ayan

    2017-07-01

    The cascade system has played an important role in contemporary research areas related to fields like Rydberg excitation, four wave mixing and non-classical light generation, etc. Depending on the specific objective, co or counter propagating pump-probe laser experimental geometry is followed. However, the stepwise excitation of atoms to states higher than the first excited state deals with increasingly much fewer number of atoms even compared to the population at first excited level. Hence, one needs a practical indicator to study the complex photon-atom interaction of the cascade system. Here, we experimentally analyze the case of rubidium 5S → 5P → 5D as a specimen of two-step excitation and highlight the efficacy of monitoring one branch, which emits 420 nm, of associated cascade decay route 5D → 6P → 5S, as an effective monitor of the coherence in the system.

  14. Synthesis of Cascadable DDCC-Based Universal Filter Using NAM

    Directory of Open Access Journals (Sweden)

    Huu-Duy Tran

    2015-08-01

    Full Text Available A novel systematic approach for synthesizing DDCC-based voltage-mode biquadratic universal filters is proposed. The DDCCs are described by infinity-variables’ models of nullor-mirror elements which can be used in the nodal admittance matrix expansion process. Applying the proposed method, the obtained 12 equivalent filters offer the following features: multi-input and two outputs, realization of all five standard filter functions, namely lowpass, bandpass, highpass, notch and allpass, high-input impedance, employing only grounded capacitors and resistors, orthogonal controllability between pole frequency and quality factor, and cascadable, low active and passive sensitivities. The workability of some synthesized filters is verified by HSPICE simulations to demonstrate the feasibility of the proposed method.

  15. Modelling, Design, Growth and Characterization of Strain Balanced Quantum Cascade Lasers (3-11mum), grown by Gas Source Molecular Beam Epitaxy

    Science.gov (United States)

    Bandyopadhyay, Neelanjan

    Quantum Cascade Laser (QCL) is a compact room temperature (RT) source of mid-infrared radiation, which can be used for spectroscopic detection of trace amount of chemicals. The mid-infrared spectral range between (3-11 microm), has a dense array of absorption lines of numerous molecules, due to the presence of fundamental vibrational modes. The goal of this thesis can be subdivided into two parts. Firstly, short wavelength QCLs, emitting below 4microm, perform poorly at RT, due to inter-valley Gamma --- L carrier scattering, carrier escape to the continuum, heat removal from the core region at high power density corresponding to short wavelength operation, and large interface scattering due to highly strained materials. Secondly, it is desirable to have a single QCL based source emitting between 6-10microm, which be used to detect multiple molecules having their peak absorptions far apart, inside this spectral range. However, gain bandwidth of a single core QCL is relatively small, so laser emission cannot be tuned over a wide spectral range. This thesis describes the working principle of a QCL based on superlattice transport, rate equations, scattering mechanism, and waveguide design. The choice of the material system for this work and the fundamentals of band structure engineering has been derived. Gas source molecular beam epitaxy - growth optimization and characterization is one of the most important features of this work, especially for short wavelength QCLs, and has been explained in depth. Different strategies for design of active region design of short wavelength QCL and heterogeneous broadband QCL has been explored. The major milestones, of this research was the world's first watt level continuous wave (CW), RT demonstration at 3.76 microm, which was followed by another milestone of the first CW, RT demonstration at 3.39microm and 3.55microm, and finally the elusive result of QCL emitting at CW, RT at a wavelength as short as lambda ~3microm, a record. In

  16. Noise propagation in two-step series MAPK cascade.

    Directory of Open Access Journals (Sweden)

    Venkata Dhananjaneyulu

    Full Text Available Series MAPK enzymatic cascades, ubiquitously found in signaling networks, act as signal amplifiers and play a key role in processing information during signal transduction in cells. In activated cascades, cell-to-cell variability or noise is bound to occur and thereby strongly affects the cellular response. Commonly used linearization method (LM applied to Langevin type stochastic model of the MAPK cascade fails to accurately predict intrinsic noise propagation in the cascade. We prove this by using extensive stochastic simulations for various ranges of biochemical parameters. This failure is due to the fact that the LM ignores the nonlinear effects on the noise. However, LM provides a good estimate of the extrinsic noise propagation. We show that the correct estimate of intrinsic noise propagation in signaling networks that contain at least one enzymatic step can be obtained only through stochastic simulations. Noise propagation in the cascade depends on the underlying biochemical parameters which are often unavailable. Based on a combination of global sensitivity analysis (GSA and stochastic simulations, we developed a systematic methodology to characterize noise propagation in the cascade. GSA predicts that noise propagation in MAPK cascade is sensitive to the total number of upstream enzyme molecules and the total number of molecules of the two substrates involved in the cascade. We argue that the general systematic approach proposed and demonstrated on MAPK cascade must accompany noise propagation studies in biological networks.

  17. Plasma production and heating by a laser TEA-CO2

    International Nuclear Information System (INIS)

    Goes, L.C.S.; Sudano, J.P.; Rodrigues, N.A.S.

    1987-01-01

    Preliminary experiments of plasma production and heating by laser irradiation of gases and solid targets have been performed with a laser TEA-CO 2 (1 MW, 80 ns, monomode), developed and built at the IEAv/Laser Laboratory. The laser beam was focused in the interior of a vacuum chamber (100 1) with a base pressure of 10 1 torr, and recolimated by a system of confocal lenses. The breakdown theresholds for nitrogen gas was investigated by varying the laser power, the neutral gas density and the focal lenght of the lenses. Plasma breakdown observed in the range of pressures between 100-720 torr was in good agreement with calculations of cascade ionization theory and classical absorption by inverse-Bremsstrahlung. The laser absorption was inferred by measuring the power transmitted in the presence and absence of plasma. The light emitted by the plasma was detected by a fast photo-diode, indicating that the plasma expansion phase lasted for several microseconds. These investigations have been applied in the development of plasma shutters for laser pulse compression. (author) [pt

  18. Multi-Agent System Based Special Protection and Emergency Control Scheme against Cascading Events in Power System

    DEFF Research Database (Denmark)

    Liu, Zhou

    relay operations due to low voltage or overload state in the post stage of N-1 (or N-k) contingency. If such state could be sensed and adjusted appropriately before those relay actions, the system stability might be sustained. So it is of great significance to develop a suitable protection scheme...... the proposed protection strategy in this thesis, a real time simulation platform based on Real Time Digital Simulator (RTDS) and LabVIEW is built. In this platform, the cases of cascaded blackouts are simulated on the test system simplified from the East Denmark power system. For the MAS based control system......, the distributed power system agents are set up in RTDS, while the agents in higher level are designed by LabVIEW toolkits. The case studies and simulation results demonstrate the effectiveness of real time application of the proposed MAS based special protection and emergency control scheme against the cascaded...

  19. 77 FR 14838 - General Electric-Hitachi Global Laser Enrichment LLC, Commercial Laser-Based Uranium Enrichment...

    Science.gov (United States)

    2012-03-13

    ... Laser Enrichment LLC, Commercial Laser-Based Uranium Enrichment Facility, Wilmington, North Carolina... a license to General Electric-Hitachi Global Laser Enrichment LLC (GLE or the applicant) to authorize construction of a laser-based uranium enrichment facility and possession and use of byproduct...

  20. GaN-based vertical-cavity laser performance improvements using tunnel-junction-cascaded active regions

    International Nuclear Information System (INIS)

    Piprek, Joachim

    2014-01-01

    This Letter investigates the output power enhancement achieved by tunnel junction insertion into the InGaN multi-quantum well (MQW) active region of a 410 nm vertical-cavity surface-emitting laser which enables the repeated use of carriers for light generation (carrier recycling). While the number of quantum wells remains unchanged, the tunnel junction eliminates absorption caused by the non-uniform MQW carrier distribution. The thermal resistance drops and the excess bias lead to a surprisingly small rise in self-heating.

  1. Ho:YLF pumped HBr laser

    CSIR Research Space (South Africa)

    Botha, LR

    2009-10-01

    Full Text Available , “Optically Pumped Mid-Infrared HBr Laser,” IEEE J. Quantum Electron. 30(10), 2395–2400 (1994). 2. C. S. Kletecka, N. Campbell, C. R. Jones, J. W. Nicolson, and W. Rudolph, “Cascade Lasing of Molecular HBr in the Four Micron Region Pumped by a Nd:YAG laser...-Infrared Coherent Sources, (European Physical Society 2009) Invited Talk Mo3. 5. C. Bollig, H. J. Strauss, M. J. D. Esser, W. Koen, M.Schellhorn, D. Preussler, K. Nyangaza, C. Jacobs, E. H. Bernardi and L. R. Botha, “Compact Fibre-Laser-Pumped Ho:YLF Oscillator...

  2. High efficiency single frequency 355 nm all-solid-state UV laser

    International Nuclear Information System (INIS)

    Xie, Xiaobing; Wei, Daikang; Ma, Xiuhua; Li, Shiguang; Liu, Jiqiao; Zhu, Xiaolei; Chen, Weibiao

    2016-01-01

    A novel conductively cooled high energy single-frequency 355 nm all-solid-state UV laser is presented based on sum-frequency mixing technique. In this system, a pulsed seeder laser at 1064 nm wavelength, modulated by an AOM, is directly amplified by the cascaded multi-stage hybrid laser amplifiers, and two LBO crystals are used for the SHG and SFG, finally a maximum UV pulse energy of 226 mJ at 355 nm wavelength is achieved with frequency-tripled conversion efficiency as high as 55%, the pulse width is around 12.2 ns at the repetition frequency of 30 Hz. The beam quality factor M 2 of the output UV laser is measured to be 2.54 and 2.98 respectively in two orthogonal directions. (paper)

  3. QED effects induced harmonics generation in extreme intense laser foil interaction

    Science.gov (United States)

    Yu, J. Y.; Yuan, T.; Liu, W. Y.; Chen, M.; Luo, W.; Weng, S. M.; Sheng, Z. M.

    2018-04-01

    A new mechanism of harmonics generation (HG) induced by quantum electrodynamics (QED) effects in extreme intense laser foil interaction is found and investigated by particle-in-cell (PIC) simulations. When two laser pulses with identical intensities of 1.6× {10}24 {{W}} {{{cm}}}-2 are counter-incident on a thin foil target, harmonics emission is observed in their reflected electromagnetic waves. Such harmonics radiation is excited due to transversely oscillating electric currents coming from the vibration of QED effect generated {e}-{e}+ pairs. The effects of laser intensity and polarization were studied. By distinguishing the cascade depth of generated photons and pairs, the influence of QED cascades on HG was analyzed. Although the current HG is not an efficient way for radiation source applications, it may provide a unique way to detect the QED processes in the near future ultra-relativistic laser solid interactions.

  4. Multicascade X-Ray Free-Electron Laser with Harmonic Multiplier and Two-Frequency Undulator

    Science.gov (United States)

    Zhukovsky, K. V.

    2018-06-01

    The feasibility of generation of powerful x-ray radiation by a cascade free-electron laser (FEL) with amplification of higher harmonics using a two-frequency undulator is studied. To analyze the FEL operation, a complex phenomenological single-pass FEL model is developed and used. It describes linear and nonlinear generation of harmonics in the FEL with seed laser that takes into account initial electron beam noise and describes all main losses of each harmonic in each FEL cascade. The model is also calibrated against and approved by the experimental FEL data and available results of three-dimensional numerical simulation. The electron beam in the undulator is assumed to be matched and focused, and the dynamics of power in the singlepass FEL with cascade harmonic multipliers is investigated to obtain x-ray laser radiation in the FEL having the shortest length, beam energy, and frequency of the seed laser as low as possible. In this context, the advantages of the two-frequency undulator used for generation of harmonics are demonstrated. The evolution of harmonics in a multicascade FEL with multiplication of harmonics is investigated. The operation of the cascade FEL at the wavelength λ = 1.14 nm, generating 30 MW already on 38 m with the seed laser operating at a wavelength of 11.43 nm corresponding to the maximal reflectivity of the multilayered mirror MoRu/Be coating is investigated. In addition, the operation of the multicascade FEL with accessible seed UVlaser operating at a wavelength of 157 nm (F2 excimer UV-laser) and electron beam with energy of 0.5 GeV is investigated. X-ray radiation simulated in it at the wavelength λ 3.9 nm reaches power of 50 MW already at 27 m, which is by two orders of magnitude shorter than 3.4 km of the x-ray FEL recently put into operation in Europe.

  5. Assessment on tracking error performance of Cascade P/PI, NPID and N-Cascade controller for precise positioning of xy table ballscrew drive system

    International Nuclear Information System (INIS)

    Abdullah, L; Jamaludin, Z; Rafan, N A; Jamaludin, J; Chiew, T H

    2013-01-01

    At present, positioning plants in machine tools are looking for high degree of accuracy and robustness attributes for the purpose of compensating various disturbance forces. The objective of this paper is to assess the tracking performance of Cascade P/PI, Nonlinear PID (NPID) and Nonlinear cascade (N-Cascade) controller with the existence of disturbance forces in the form of cutting forces. Cutting force characteristics at different cutting parameters; such as spindle speed rotations is analysed using Fast Fourier Transform. The tracking performance of a Nonlinear cascade controller in presence of these cutting forces is compared with NPID controller and Cascade P/PI controller. Robustness of these controllers in compensating different cutting characteristics is compared based on reduction in the amplitudes of cutting force harmonics using Fast Fourier Transform. It is found that the N-cascade controller performs better than both NPID controller and Cascade P/PI controller. The average percentage error reduction between N-cascade controller and Cascade P/PI controller is about 65% whereas the average percentage error reduction between cascade controller and NPID controller is about 82% at spindle speed of 3000 rpm spindle speed rotation. The finalized design of N-cascade controller could be utilized further for machining application such as milling process. The implementation of N-cascade in machine tools applications will increase the quality of the end product and the productivity in industry by saving the machining time. It is suggested that the range of the spindle speed could be made wider to accommodate the needs for high speed machining

  6. Atom-atom collision cascades localization

    International Nuclear Information System (INIS)

    Kirsanov, V.V.

    1980-01-01

    The presence of an impurity and thermal vibration influence on the atom-atom collision cascade development is analysed by the computer simulation method (the modificated dynamic model). It is discovered that the relatively low energetic cascades are localized with the temperature increase of an irradiated crystal. On the basis of the given effect the mechanism of splitting of the high energetic cascades into subcascades is proposed. It accounts for two factors: the primary knocked atom energy and the irradiated crystal temperature. Introduction of an impurity also localizes the cascades independently from the impurity atom mass. The cascades localization leads to intensification of the process of annealing in the cascades and reduction of the post-cascade vacancy cluster sizes. (author)

  7. An automated Monte-Carlo based method for the calculation of cascade summing factors

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, M.J., E-mail: mark.j.jackson@awe.co.uk; Britton, R.; Davies, A.V.; McLarty, J.L.; Goodwin, M.

    2016-10-21

    A versatile method has been developed to calculate cascade summing factors for use in quantitative gamma-spectrometry analysis procedures. The proposed method is based solely on Evaluated Nuclear Structure Data File (ENSDF) nuclear data, an X-ray energy library, and accurate efficiency characterisations for single detector counting geometries. The algorithm, which accounts for γ–γ, γ–X, γ–511 and γ–e{sup −} coincidences, can be applied to any design of gamma spectrometer and can be expanded to incorporate any number of nuclides. Efficiency characterisations can be derived from measured or mathematically modelled functions, and can accommodate both point and volumetric source types. The calculated results are shown to be consistent with an industry standard gamma-spectrometry software package. Additional benefits including calculation of cascade summing factors for all gamma and X-ray emissions, not just the major emission lines, are also highlighted. - Highlights: • Versatile method to calculate coincidence summing factors for gamma-spectrometry analysis. • Based solely on ENSDF format nuclear data and detector efficiency characterisations. • Enables generation of a CSF library for any detector, geometry and radionuclide. • Improves measurement accuracy and reduces acquisition times required to meet MDA.

  8. Passive energy jitter reduction in the cascaded third harmonic generation process

    International Nuclear Information System (INIS)

    Yan, L; Du, Y; You, Y; Sun, X; Wang, D; Hua, J; Shi, J; Lu, W; Huang, W; Chen, H; Tang, C; Huang, Z

    2014-01-01

    In free electron laser (FEL) systems with ultraviolet (UV) laser driven injectors, a highly stable UV source generated through cascaded third harmonic generation (THG) from an infrared (IR) source is a key element in guaranteeing the acceptable current jitter at the undulator. In this letter, the negative slope of the THG efficiency for high intensity ultrashort IR pulses is revealed to be a passive stabilization mechanism for energy jitter reduction in UV. A reduction of 2.5 times the energy jitter in UV is demonstrated in the experiment and simulations show that the energy jitter in UV can be reduced by more than one order of magnitude if the energy jitter in IR is less than 3%, with proper design of the THG efficiency curve, fulfilling the challenging requirement for UV laser stability in a broad scope of applications such as the photoinjector of x-ray FELs. (letter)

  9. Applied optics. Gain modulation by graphene plasmons in aperiodic lattice lasers.

    Science.gov (United States)

    Chakraborty, S; Marshall, O P; Folland, T G; Kim, Y-J; Grigorenko, A N; Novoselov, K S

    2016-01-15

    Two-dimensional graphene plasmon-based technologies will enable the development of fast, compact, and inexpensive active photonic elements because, unlike plasmons in other materials, graphene plasmons can be tuned via the doping level. Such tuning is harnessed within terahertz quantum cascade lasers to reversibly alter their emission. This is achieved in two key steps: first, by exciting graphene plasmons within an aperiodic lattice laser and, second, by engineering photon lifetimes, linking graphene's Fermi energy with the round-trip gain. Modal gain and hence laser spectra are highly sensitive to the doping of an integrated, electrically controllable, graphene layer. Demonstration of the integrated graphene plasmon laser principle lays the foundation for a new generation of active, programmable plasmonic metamaterials with major implications across photonics, material sciences, and nanotechnology. Copyright © 2016, American Association for the Advancement of Science.

  10. Two-channel Hyperspectral LiDAR with a Supercontinuum Laser Source

    Directory of Open Access Journals (Sweden)

    Ruizhi Chen

    2010-07-01

    Full Text Available Recent advances in nonlinear fiber optics and compact pulsed lasers have resulted in creation of broadband directional light sources. These supercontinuum laser sources produce directional broadband light using cascaded nonlinear optical interactions in an optical fibre framework. This system is used to simultaneously measure distance and reflectance to demonstrate a technique capable of distinguishing between a vegetation target and inorganic material using the Normalized Difference Vegetation Index (NDVI parameters, while the range can be obtained from the waveform of the echoes. A two-channel, spectral range-finding system based on a supercontinuum laser source was used to determine its potential application of distinguishing the NDVI for Norway spruce, a coniferous tree, and its three-dimensional parameters at 600 nm and 800 nm. A prototype system was built using commercial components.

  11. Active Stand-off Detection of Gas Leaks Using a Short Range Hard-target Backscatter Differential Optical Absorption System Based on a Quantum Cascade Laser Transmitter

    Science.gov (United States)

    Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred

    2016-06-01

    Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they can contribute to the global increase of greenhouse gas concentration. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents gas concentration measurements using a quantum cascade laser open path system (QCLOPS). The system retrieves the pathaveraged concentration of N2O and CH4 by collecting the backscattered light from a scattering target. The gas concentration measurements have a high temporal resolution (68 ms) and are achieved at sufficient range (up to 40 m, ~ 130 feet) with a detection limit of 2.6 ppm CH4 and 0.4 ppm for N2O. Given these characteristics, this system is promising for mobile/multidirectional remote detection and evaluation of gas leaks. The instrument is monostatic with a tunable QCL emitting at ~ 7.7 μm wavelength range. The backscattered radiation is collected by a Newtonian telescope and focused on an infrared light detector. Puffs of N2O and CH4 are released along the optical path to simulate a gas leak. The measured absorption spectrum is obtained using the thermal intra-pulse frequency chirped DFB QCL and is analyzed to obtain path averaged gas concentrations.

  12. Laser apparatus for surgery and force therapy based on high-power semiconductor and fibre lasers

    International Nuclear Information System (INIS)

    Minaev, V P

    2005-01-01

    High-power semiconductor lasers and diode-pumped lasers are considered whose development qualitatively improved the characteristics of laser apparatus for surgery and force therapy, extended the scope of their applications in clinical practice, and enhanced the efficiency of medical treatment based on the use of these lasers. The characteristics of domestic apparatus are presented and their properties related to the laser emission wavelength used in them are discussed. Examples of modern medical technologies based on these lasers are considered. (invited paper)

  13. High-speed high-sensitivity infrared spectroscopy using mid-infrared swept lasers (Conference Presentation)

    Science.gov (United States)

    Childs, David T. D.; Groom, Kristian M.; Hogg, Richard A.; Revin, Dmitry G.; Cockburn, John W.; Rehman, Ihtesham U.; Matcher, Stephen J.

    2016-03-01

    Infrared spectroscopy is a highly attractive read-out technology for compositional analysis of biomedical specimens because of its unique combination of high molecular sensitivity without the need for exogenous labels. Traditional techniques such as FTIR and Raman have suffered from comparatively low speed and sensitivity however recent innovations are challenging this situation. Direct mid-IR spectroscopy is being speeded up by innovations such as MEMS-based FTIR instruments with very high mirror speeds and supercontinuum sources producing very high sample irradiation levels. Here we explore another possible method - external cavity quantum cascade lasers (EC-QCL's) with high cavity tuning speeds (mid-IR swept lasers). Swept lasers have been heavily developed in the near-infrared where they are used for non-destructive low-coherence imaging (OCT). We adapt these concepts in two ways. Firstly by combining mid-IR quantum cascade gain chips with external cavity designs adapted from OCT we achieve spectral acquisition rates approaching 1 kHz and demonstrate potential to reach 100 kHz. Secondly we show that mid-IR swept lasers share a fundamental sensitivity advantage with near-IR OCT swept lasers. This makes them potentially able to achieve the same spectral SNR as an FTIR instrument in a time x N shorter (N being the number of spectral points) under otherwise matched conditions. This effect is demonstrated using measurements of a PDMS sample. The combination of potentially very high spectral acquisition rates, fundamental SNR advantage and the use of low-cost detector systems could make mid-IR swept lasers a powerful technology for high-throughput biomedical spectroscopy.

  14. Cascades for hydrogen isotope separation using metal hydrides

    International Nuclear Information System (INIS)

    Hill, F.B.; Grzetic, V.

    1982-01-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes

  15. Cascades for hydrogen isotope separation using metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F B; Grzetic, V [Brookhaven National Lab., Upton, NY (USA)

    1983-02-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes.

  16. High Efficiency Mask Based Laser Materials Processing with TEA-CO2 - and Excimer Laser

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1997-01-01

    In general, mask based laser materials processing techniques suffer from a very low energy efficiency. We have developed a simple device called an energy enhancer, which is capable of increasing the energy efficiency of typical mask based laser materials processing systems. A short review of the ...... line marking with TEA-CO2 laser of high speed canning lines. The second one is manufactured for marking or microdrilling with excimer laser....

  17. Planar Laser-Based QEPAS Trace Gas Sensor

    Directory of Open Access Journals (Sweden)

    Yufei Ma

    2016-06-01

    Full Text Available A novel quartz enhanced photoacoustic spectroscopy (QEPAS trace gas detection scheme is reported in this paper. A cylindrical lens was employed for near-infrared laser focusing. The laser beam was shaped as a planar line laser between the gap of the quartz tuning fork (QTF prongs. Compared with a spherical lens-based QEPAS sensor, the cylindrical lens-based QEPAS sensor has the advantages of easier laser beam alignment and a reduction of stringent stability requirements. Therefore, the reported approach is useful in long-term and continuous sensor operation.

  18. Hybrid Modulation Scheme for Cascaded H-Bridge Inverter Cells ...

    African Journals Online (AJOL)

    This work proposes a switching technique for cascaded H-Bridge (CHB) cells. Single carrier Sinusoidal PWM (SCSPWM) scheme is employed in the generation of the gating signals. A sequential switching and base PWM circulation schemes are presented for this fundamental cascaded multilevel inverter topology.

  19. Mechanisms of cascade collapse

    International Nuclear Information System (INIS)

    Diaz de la Rubia, T.; Smalinskas, K.; Averback, R.S.; Robertson, I.M.; Hseih, H.; Benedek, R.

    1988-12-01

    The spontaneous collapse of energetic displacement cascades in metals into vacancy dislocation loops has been investigated by molecular dynamics (MD) computer simulation and transmission electron microscopy (TEM). Simulations of 5 keV recoil events in Cu and Ni provide the following scenario of cascade collapse: atoms are ejected from the central region of the cascade by replacement collision sequences; the central region subsequently melts; vacancies are driven to the center of the cascade during resolidification where they may collapse into loops. Whether or not collapse occurs depends critically on the melting temperature of the metal and the energy density and total energy in the cascade. Results of TEM are presented in support of this mechanism. 14 refs., 4 figs., 1 tab

  20. Scheduling of head-sensitive cascaded hydro systems : a comparison based on numerical simulation results

    Energy Technology Data Exchange (ETDEWEB)

    Catalao, J.P.S.; Mariano, S.J.P.S. [Beira Interior Univ., Covilha (Portugal). Dept. of Electromechanical Engineering; Mendes, V.M.F. [Superior Engineering Inst. of Lisbon, Lisbon (Portugal). Dept. of Electrical Engineering and Automation; Ferreira, L.A.F.M. [Technical Univ. of Lisbon, Superior Technical Inst., Lisbon (Portugal). Dept. of Electrical Engineering and Computers

    2008-07-01

    The electric power sector in Portugal and Spain has shifted from a traditional monopoly to a deregulated, competitive energy market. As such, hydroelectric facilities face the optimal challenge of how to make a profit by managing water resources without compromising future potential profit. As such, hydro scheduling is a key activity for hydroelectric power utilities because of its significant economic impact. It involves the optimal management of water inflows and storage in reservoirs. This paper considered the problem of short-term hydro scheduling, concerning head-sensitive cascaded reservoirs, and the algorithmic aspects of its solution. The authors proposed and compared optimization methods based on dynamic programming, and linear and nonlinear network programming. The comparison revealed a negligible extra computational effort in a realistic cascaded hydro system where the head depended on the stored water volume. 17 refs., 3 tabs., 7 figs.

  1. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities.

    Science.gov (United States)

    Zhang, Xiangao; Shao, Mingzhen; Zeng, Xiaoqi

    2016-10-18

    In this paper, a type of compact nanosensor based on a metal-insulator-metal structure is proposed and investigated through cascading double asymmetric cavities, in which their metal cores shift along different axis directions. The cascaded asymmetric structure exhibits high transmission and sharp Fano resonance peaks via strengthening the mutual coupling of the cavities. The research results show that with the increase of the symmetry breaking in the structure, the number of Fano resonances increase accordingly. Furthermore, by modulating the geometrical parameters appropriately, Fano resonances with high sensitivities to the changes in refractive index can be realized. A maximum figure of merit (FoM) value of 74.3 is obtained. Considerable applications for this work can be found in bio/chemical sensors with excellent performance and other nanophotonic integrated circuit devices such as optical filters, switches and modulators.

  2. Scheduling of head-sensitive cascaded hydro systems : a comparison based on numerical simulation results

    International Nuclear Information System (INIS)

    Catalao, J.P.S.; Mariano, S.J.P.S.; Mendes, V.M.F.; Ferreira, L.A.F.M.

    2008-01-01

    The electric power sector in Portugal and Spain has shifted from a traditional monopoly to a deregulated, competitive energy market. As such, hydroelectric facilities face the optimal challenge of how to make a profit by managing water resources without compromising future potential profit. As such, hydro scheduling is a key activity for hydroelectric power utilities because of its significant economic impact. It involves the optimal management of water inflows and storage in reservoirs. This paper considered the problem of short-term hydro scheduling, concerning head-sensitive cascaded reservoirs, and the algorithmic aspects of its solution. The authors proposed and compared optimization methods based on dynamic programming, and linear and nonlinear network programming. The comparison revealed a negligible extra computational effort in a realistic cascaded hydro system where the head depended on the stored water volume. 17 refs., 3 tabs., 7 figs

  3. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities

    Directory of Open Access Journals (Sweden)

    Xiangao Zhang

    2016-10-01

    Full Text Available In this paper, a type of compact nanosensor based on a metal-insulator-metal structure is proposed and investigated through cascading double asymmetric cavities, in which their metal cores shift along different axis directions. The cascaded asymmetric structure exhibits high transmission and sharp Fano resonance peaks via strengthening the mutual coupling of the cavities. The research results show that with the increase of the symmetry breaking in the structure, the number of Fano resonances increase accordingly. Furthermore, by modulating the geometrical parameters appropriately, Fano resonances with high sensitivities to the changes in refractive index can be realized. A maximum figure of merit (FoM value of 74.3 is obtained. Considerable applications for this work can be found in bio/chemical sensors with excellent performance and other nanophotonic integrated circuit devices such as optical filters, switches and modulators.

  4. Observation of laser multiple filamentation process and multiple electron beams acceleration in a laser wakefield accelerator

    International Nuclear Information System (INIS)

    Li, Wentao; Liu, Jiansheng; Wang, Wentao; Chen, Qiang; Zhang, Hui; Tian, Ye; Zhang, Zhijun; Qi, Rong; Wang, Cheng; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2013-01-01

    The multiple filaments formation process in the laser wakefield accelerator (LWFA) was observed by imaging the transmitted laser beam after propagating in the plasma of different density. During propagation, the laser first self-focused into a single filament. After that, it began to defocus with energy spreading in the transverse direction. Two filaments then formed from it and began to propagate independently, moving away from each other. We have also demonstrated that the laser multiple filamentation would lead to the multiple electron beams acceleration in the LWFA via ionization-induced injection scheme. Besides, its influences on the accelerated electron beams were also analyzed both in the single-stage LWFA and cascaded LWFA

  5. Low Power Consumption Lasers for Next Generation Miniature Optical Spectrometers for Major Constituent and Trace Gas Analysis

    Science.gov (United States)

    Forouhar, Siamak; Soibel, Alexander; Frez, Clifford; Qiu, Yueming; Chen, J.; Hosoda, T.; Kipshidze, G.; Shterengas, L.; Tsvid, G.; Belenky, G.; hide

    2010-01-01

    The air quality of any manned spacecraft needs to be continuously monitored in order to safeguard the health of the crew. Air quality monitoring grows in importance as mission duration increases. Due to the small size, low power draw, and performance reliability, semiconductor laser-based instruments are viable candidates for this purpose. The minimum instrument size requires lasers with emission wavelength coinciding with the absorption of the fundamental frequency of the target gases which are mostly in the 3.0-5.0 micrometers wavelength range. In this paper we report on our progress developing high wall plug efficiency type-I quantum-well GaSb-based diode lasers operating at room temperatures in the spectral region near 3.0-3.5 micrometers and quantum cascade (QC) lasers in the 4.0-5.0 micrometers range. These lasers will enable the development of miniature, low-power laser spectrometers for environmental monitoring of the spacecraft.

  6. Signaling Cascades: Consequences of Varying Substrate and Phosphatase Levels

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Knudsen, Michael; Wiuf, Carsten Henrik

    2012-01-01

    We study signaling cascades with an arbitrary number of layers of one-site phosphorylation cycles. Such cascades are abundant in nature and integrated parts of many pathways. Based on the Michaelis-Menten model of enzyme kinetics and the law of mass-action, we derive explicit analytic expressions...

  7. Multiagent System-Based Wide-Area Protection and Control Scheme against Cascading Events

    DEFF Research Database (Denmark)

    Liu, Zhou; Chen, Zhe; Sun, Haishun

    2015-01-01

    In this paper, a multi agent system (MAS) based wide area protection and control scheme is proposed to deal with the long term voltage instability induced cascading trips. Based on sensitivity analysis between the relay operation margin and power system state variables, an optimal emergency control...... strategy is defined to adjust the emergency states timely and prevent the unexpected relay trips. In order to supervise the control process and further minimize the load loss, an agent based process control is adopted to monitor the states of distributed controllers and adjust the emergency control...... strategy. A hybrid simulation platform based on LabVIEW and real time digital simulator (RTDS) is set up to simulate a blackout case in the power system of Eastern Denmark and to demonstrate the effectiveness of the proposed MAS based protection strategy....

  8. INCAS: an analytical model to describe displacement cascades

    Energy Technology Data Exchange (ETDEWEB)

    Jumel, Stephanie E-mail: stephanie.jumel@edf.fr; Claude Van-Duysen, Jean E-mail: jean-claude.van-duysen@edf.fr

    2004-07-01

    REVE (REactor for Virtual Experiments) is an international project aimed at developing tools to simulate neutron irradiation effects in Light Water Reactor materials (Fe, Ni or Zr-based alloys). One of the important steps of the project is to characterise the displacement cascades induced by neutrons. Accordingly, the Department of Material Studies of Electricite de France developed an analytical model based on the binary collision approximation. This model, called INCAS (INtegration of CAScades), was devised to be applied on pure elements; however, it can also be used on diluted alloys (reactor pressure vessel steels, etc.) or alloys composed of atoms with close atomic numbers (stainless steels, etc.). INCAS describes displacement cascades by taking into account the nuclear collisions and electronic interactions undergone by the moving atoms. In particular, it enables to determine the mean number of sub-cascades induced by a PKA (depending on its energy) as well as the mean energy dissipated in each of them. The experimental validation of INCAS requires a large effort and could not be carried out in the framework of the study. However, it was verified that INCAS results are in conformity with those obtained from other approaches. As a first application, INCAS was applied to determine the sub-cascade spectrum induced in iron by the neutron spectrum corresponding to the central channel of the High Flux Irradiation Reactor of Oak Ridge National Laboratory.

  9. INCAS: an analytical model to describe displacement cascades

    Science.gov (United States)

    Jumel, Stéphanie; Claude Van-Duysen, Jean

    2004-07-01

    REVE (REactor for Virtual Experiments) is an international project aimed at developing tools to simulate neutron irradiation effects in Light Water Reactor materials (Fe, Ni or Zr-based alloys). One of the important steps of the project is to characterise the displacement cascades induced by neutrons. Accordingly, the Department of Material Studies of Electricité de France developed an analytical model based on the binary collision approximation. This model, called INCAS (INtegration of CAScades), was devised to be applied on pure elements; however, it can also be used on diluted alloys (reactor pressure vessel steels, etc.) or alloys composed of atoms with close atomic numbers (stainless steels, etc.). INCAS describes displacement cascades by taking into account the nuclear collisions and electronic interactions undergone by the moving atoms. In particular, it enables to determine the mean number of sub-cascades induced by a PKA (depending on its energy) as well as the mean energy dissipated in each of them. The experimental validation of INCAS requires a large effort and could not be carried out in the framework of the study. However, it was verified that INCAS results are in conformity with those obtained from other approaches. As a first application, INCAS was applied to determine the sub-cascade spectrum induced in iron by the neutron spectrum corresponding to the central channel of the High Flux Irradiation Reactor of Oak Ridge National Laboratory.

  10. INCAS: an analytical model to describe displacement cascades

    International Nuclear Information System (INIS)

    Jumel, Stephanie; Claude Van-Duysen, Jean

    2004-01-01

    REVE (REactor for Virtual Experiments) is an international project aimed at developing tools to simulate neutron irradiation effects in Light Water Reactor materials (Fe, Ni or Zr-based alloys). One of the important steps of the project is to characterise the displacement cascades induced by neutrons. Accordingly, the Department of Material Studies of Electricite de France developed an analytical model based on the binary collision approximation. This model, called INCAS (INtegration of CAScades), was devised to be applied on pure elements; however, it can also be used on diluted alloys (reactor pressure vessel steels, etc.) or alloys composed of atoms with close atomic numbers (stainless steels, etc.). INCAS describes displacement cascades by taking into account the nuclear collisions and electronic interactions undergone by the moving atoms. In particular, it enables to determine the mean number of sub-cascades induced by a PKA (depending on its energy) as well as the mean energy dissipated in each of them. The experimental validation of INCAS requires a large effort and could not be carried out in the framework of the study. However, it was verified that INCAS results are in conformity with those obtained from other approaches. As a first application, INCAS was applied to determine the sub-cascade spectrum induced in iron by the neutron spectrum corresponding to the central channel of the High Flux Irradiation Reactor of Oak Ridge National Laboratory

  11. Learning optimal embedded cascades.

    Science.gov (United States)

    Saberian, Mohammad Javad; Vasconcelos, Nuno

    2012-10-01

    The problem of automatic and optimal design of embedded object detector cascades is considered. Two main challenges are identified: optimization of the cascade configuration and optimization of individual cascade stages, so as to achieve the best tradeoff between classification accuracy and speed, under a detection rate constraint. Two novel boosting algorithms are proposed to address these problems. The first, RCBoost, formulates boosting as a constrained optimization problem which is solved with a barrier penalty method. The constraint is the target detection rate, which is met at all iterations of the boosting process. This enables the design of embedded cascades of known configuration without extensive cross validation or heuristics. The second, ECBoost, searches over cascade configurations to achieve the optimal tradeoff between classification risk and speed. The two algorithms are combined into an overall boosting procedure, RCECBoost, which optimizes both the cascade configuration and its stages under a detection rate constraint, in a fully automated manner. Extensive experiments in face, car, pedestrian, and panda detection show that the resulting detectors achieve an accuracy versus speed tradeoff superior to those of previous methods.

  12. Mid and long-term optimize scheduling of cascade hydro-power stations based on modified GA-POA method

    Directory of Open Access Journals (Sweden)

    J. Li

    2018-06-01

    Full Text Available In this paper, to explore the efficiency and rationality of the cascade combined generation, a cascade combined optimal model with the maximum generating capacity is established, and solving the model by the modified GA-POA method. It provides a useful reference for the joint development of cascade hydro-power stations in large river basins. The typical annual runoff data are selected to calculate the difference between the calculated results under different representative years. The results show that the cascade operation of cascaded hydro-power stations can significantly increase the overall power generation of cascade and ease the flood risk caused by concentration of flood season.

  13. Sample Selection for Training Cascade Detectors.

    Science.gov (United States)

    Vállez, Noelia; Deniz, Oscar; Bueno, Gloria

    2015-01-01

    Automatic detection systems usually require large and representative training datasets in order to obtain good detection and false positive rates. Training datasets are such that the positive set has few samples and/or the negative set should represent anything except the object of interest. In this respect, the negative set typically contains orders of magnitude more images than the positive set. However, imbalanced training databases lead to biased classifiers. In this paper, we focus our attention on a negative sample selection method to properly balance the training data for cascade detectors. The method is based on the selection of the most informative false positive samples generated in one stage to feed the next stage. The results show that the proposed cascade detector with sample selection obtains on average better partial AUC and smaller standard deviation than the other compared cascade detectors.

  14. Waveguide based external cavity semiconductor lasers

    NARCIS (Netherlands)

    Oldenbeuving, Ruud; Klein, E.J.; Offerhaus, Herman L.; Lee, Christopher James; Verhaegen, M.; Boller, Klaus J.

    2012-01-01

    We report on progress of the project waveguide based external cavity semiconductor laser (WECSL) arrays. Here we present the latest results on our efforts to mode lock an array of tunable, external cavity semiconductor lasers.

  15. ZnCdMgSe as a Materials Platform for Advanced Photonic Devices: Broadband Quantum Cascade Detectors and Green Semiconductor Disk Lasers

    Science.gov (United States)

    De Jesus, Joel

    The ZnCdMgSe family of II-VI materials has unique and promising characteristics that may be useful in practical applications. For example they can be grown lattice matched to InP substrates with lattice matched bandgaps that span from 2.1 to 3.5 eV, they can be successfully doped n-type, have a large conduction band offset (CBO) with no intervalley scattering present when strained, they have lower average phonon energies, and the InP lattice constant lies in the middle of the ZnSe and CdSe binaries compounds giving room to experiment with tensile and compressive stress. However they have not been studied in detail for use in practical devices. Here we have identified two types of devices that are being currently developed that benefit from the ZnCdMgSe-based material properties. These are the intersubband (ISB) quantum cascade (QC) detectors and optically pumped semiconductor lasers that emit in the visible range. The paucity for semiconductor lasers operating in the green-orange portion of the visible spectrum can be easily overcome with the ZnCdMgSe materials system developed in our research. The non-strain limited, large CBO available allows to expand the operating wavelength of ISB devices providing shorter and longer wavelengths than the currently commercially available devices. This property can also be exploited to develop broadband room temperature operation ISB detectors. The work presented here focused first on using the ZnCdMgSe-based material properties and parameter to understand and predict the interband and intersubband transitions of its heterostructures. We did this by studying an active region of a QC device by contactless electroreflectance, photoluminescence, FTIR transmittance and correlating the measurements to the quantum well structure by transfer matrix modeling. Then we worked on optimizing the ZnCdMgSe material heterostructures quality by studying the effects of growth interruptions on their optical and optoelectronic properties of

  16. Mid-IR supercontinuum generation beyond 7 μm using a silica-fluoride-chalcogenide fiber cascade

    DEFF Research Database (Denmark)

    Petersen, Christian Rosenberg; Moselund, Peter M.; Petersen, Christian

    2016-01-01

    and fluoride fibers by an amplified 1.55 μm nanosecond diode laser. By pumping a commercial Ge10As22Se68 single-material photonic crystal fiber with 135.7 mW of the pump continuum from 3.5- 4.4 μm, we obtained a continuum up to 7.2 μm with a total output power after the collimating lens of 54.5 mW, and 3.7 m......We report on an experimental demonstration of mid-infrared cascaded supercontinuum generation in commercial silica, fluoride, and chalcogenide fibers as a potentially cheap and practical alternative to direct pumping schemes. A pump continuum up to 4.4 μm was generated in cascaded silica...

  17. Bankruptcy cascades in interbank markets.

    Directory of Open Access Journals (Sweden)

    Gabriele Tedeschi

    Full Text Available We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank's liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable.

  18. Laser Spot Detection Based on Reaction Diffusion

    OpenAIRE

    Alejandro Vázquez-Otero; Danila Khikhlukha; J. M. Solano-Altamirano; Raquel Dormido; Natividad Duro

    2016-01-01

    Center-location of a laser spot is a problem of interest when the laser is used for processing and performing measurements. Measurement quality depends on correctly determining the location of the laser spot. Hence, improving and proposing algorithms for the correct location of the spots are fundamental issues in laser-based measurements. In this paper we introduce a Reaction Diffusion (RD) system as the main computational framework for robustly finding laser spot centers. The method presente...

  19. Comprehensive growth and characterization study on highly n-doped InGaAs as a contact layer for quantum cascade laser applications

    Science.gov (United States)

    Demir, Ilkay; Altuntas, Ismail; Bulut, Baris; Ezzedini, Maher; Ergun, Yuksel; Elagoz, Sezai

    2018-05-01

    We present growth and characterization studies of highly n-doped InGaAs epilayers on InP substrate by metal organic vapor phase epitaxy to use as an n-contact layer in quantum cascade laser applications. We have introduced quasi two-dimensional electrons between 10 s pulsed growth n-doped InGaAs epilayers to improve both carrier concentration and mobility of structure by applying pulsed growth and doping methods towards increasing the Si dopant concentration in InGaAs. Additionally, the V/III ratio optimization under fixed group III source flow has been investigated with this new method to understand the effects on both crystalline quality and electrical properties of n-InGaAs epilayers. Finally, we have obtained high crystalline quality of n-InGaAs epilayers grown by 10 s pulsed as a contact layer with 2.8 × 1019 cm‑3 carrier concentration and 1530 cm2 V‑1 s‑1 mobility.

  20. Hybrid lasers produced in potassium vapor by off-resonance pumping

    International Nuclear Information System (INIS)

    Clark, B.K.; Stack, C.A.; Muehsler, H.E.

    1993-01-01

    Pulsed amplified emissions are observed at or near atomic transitions cascading down from the K(6S) and K(4D 5/2 ) states, when a pulsed dye laser is tuned near the K(6S left-arrow 4 3/2,1/2 ) and the K(4D 5/2 left-arrow 4P 3/2 ) transitions. Emissions are suppressed when the pulsed dye laser is tuned to the K(4D 3/2 left-arrow 4P 5/3,3/2 ) transitions. The pulsed dye laser is used to excite molecules in a heat-pipe oven from high-bring ro-vibrational levels in the K 2 (X 1 Σ g + ) ground state to ro-vibrational levels in the K 2 (B 1 product u ) state that predissociate to K(4S) and K(4P) atoms. The transitions can be pumped when the laser is tuned sufficiently close to the atomic resonances. We discuss the non-linear mechanisms responsible for the observed emissions. Emissions cascading down from the K(4S) state were first reported by Wang et al

  1. Rapid and Sensitive Quantification of Isotopic Mixtures Using a Rapidly-Swept External Cavity Quantum Cascade Laser

    Directory of Open Access Journals (Sweden)

    Brian E. Brumfield

    2016-05-01

    Full Text Available A rapidly-swept external-cavity quantum cascade laser with an open-path Herriott cell is used to quantify gas-phase chemical mixtures of D2O and HDO at a rate of 40 Hz (25-ms measurement time. The chemical mixtures were generated by evaporating D2O liquid near the open-path Herriott cell, allowing the H/D exchange reaction with ambient H2O to produce HDO. Fluctuations in the ratio of D2O and HDO on timescales of <1 s due to the combined effects of plume transport and the H/D exchange chemical reaction are observed. Noise-equivalent concentrations (1σ (NEC of 147.0 ppbv and 151.6 ppbv in a 25-ms measurement time are determined for D2O and HDO, respectively, with a 127-m optical path. These NECs are improved to 23.0 and 24.0 ppbv with a 1-s averaging time for D2O and HDO, respectively. NECs <200 ppbv are also estimated for N2O, 1,1,1,2–tetrafluoroethane (F134A, CH4, acetone and SO2 for a 25-ms measurement time. The isotopic precision for measurement of the [D2O]/[HDO] concentration ratio of 33‰ and 5‰ is calculated for the current experimental conditions for measurement times of 25 ms and 1 s, respectively.

  2. Cascade annealing: an overview

    International Nuclear Information System (INIS)

    Doran, D.G.; Schiffgens, J.O.

    1976-04-01

    Concepts and an overview of radiation displacement damage modeling and annealing kinetics are presented. Short-term annealing methodology is described and results of annealing simulations performed on damage cascades generated using the Marlowe and Cascade programs are included. Observations concerning the inconsistencies and inadequacies of current methods are presented along with simulation of high energy cascades and simulation of longer-term annealing

  3. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade

    Science.gov (United States)

    Decker, A. J.

    1986-01-01

    Since 1979, the Lewis Research Center has examined holographic cinematography for three-dimensional flow visualization. The Nd:YAG lasers used were Q-switched, double-pulsed, and frequency-doubled, operating at 20 pulses per second. The primary subjects for flow visualization were the shock waves produced in two flutter cascades. Flow visualization was by diffuse-illumination, double-exposure, and holographic interferometry. The performances of the lasers, holography, and diffuse-illumination interferometry are evaluated in single-window wind tunnels. The fringe-contrast factor is used to evaluate the results. The effects of turbulence on shock-wave visualization in a transonic flow are discussed. The depth of field for visualization of a turbulent structure is demonstrated to be a measure of the relative density and scale of that structure. Other items discussed are the holographic emulsion, tests of coherence and polarization, effects of windows and diffusers, hologram bleaching, laser configurations, influence and handling of specular reflections, modes of fringe localization, noise sources, and coherence requirements as a function of the pulse energy. Holography and diffuse illumination interferometry are also reviewed.

  4. Evaluation of refrigerating and air-conditioning technologies in heat cascading systems under the carbon dioxide emissions constraint: the proposal of the energy cascade balance table

    International Nuclear Information System (INIS)

    Shimazaki, Yoichi

    2003-01-01

    The aim of this study was to evaluate the refrigerating and air-conditioning technologies in cases of introducing both heat cascading systems and thermal recycling systems in industries located around urban areas. It is necessary to introduce heat cascading systems in the industrial sector in Japan to reduce carbon dioxide emissions. The concept of heat cascading is the multi-stage use of thermal energy by temperature level. This paper introduces three energy policies for introducing the heat cascading systems. The author develops an energy cascade model based on linear programming so as to minimize the total system costs with carbon taxes. Five cases are investigated. Carbon dioxide emission constraints result in the enhancement of heat cascading, where high temperature heat is supplied for process heating while low temperature heat is shifted to refrigeration. It was found that increasing the amount of garbage combustion waste heat could reduce electric power for the turbo compression refrigerator by promoting waste heat driven ammonia absorption refrigerator. In addition, this study proposes an energy cascade balance table with respect to the temperature level

  5. Epi-Side-Down Mounting of Interband Cascade Lasers for Army Applications

    Science.gov (United States)

    2006-11-01

    retain the principal advantage of electron recycling . However, unlike the QCL, the ICL relies on the cascading of interband optical transitions as...9.0 Cu 393 17 SiC 120 4 AlN 230 (high grade –Tsekoun 2006) 4.5, 4.3 Indium 83.7 24.8@ 20C 2 device ridge and an effective heat spreader ...65.3 K/W M271 epi-side down 8-μm x 1-mm mesa TmaxCW= 212K 4 were vital and survived multiple cryogenic to room temperature recyclings . Fig. 4

  6. Breathing, spiking and chaos in a laser with injected signal

    Energy Technology Data Exchange (ETDEWEB)

    Lugiato, L A; Narducci, L M

    1983-06-01

    The behavior of a laser driven by an injected cw field detuned from the operating laser frequency is considered. The analysis covers the entire range of incident power levels from zero to the injection locking threshold. In this domain, the output intensity exhibits regular and chaotic oscillations, a period doubling cascade in reverse order, envelope breathing and spiking.

  7. Laser isotope separation and proliferation risks

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, Werner

    2015-02-15

    There is an ongoing discussion on the proliferation danger of laser enrichment of uranium by the Silex process. Here this risk is compared to that of other processes, in particular centrifuges. The two methods need a similar size of the plant for a comparable production rate (in separative work units per year) and the time and costs for their construction do not differ much. This conclusion from published material does not depend on technical details of Silex. But enough details are known to allow for additional conclusions: Whereas the selectivity (enrichment factor) in the Silex process seems higher, the energy consumption is probably larger. Due to the laser's repetition rate being insufficient for the molecular beam, the method has probably a low depletion factor; this is a serious disadvantage for cascading for high enrichment such as for bomb uranium, although it may be acceptable for low enrichment without cascading for reactor purposes.

  8. Sample Selection for Training Cascade Detectors.

    Directory of Open Access Journals (Sweden)

    Noelia Vállez

    Full Text Available Automatic detection systems usually require large and representative training datasets in order to obtain good detection and false positive rates. Training datasets are such that the positive set has few samples and/or the negative set should represent anything except the object of interest. In this respect, the negative set typically contains orders of magnitude more images than the positive set. However, imbalanced training databases lead to biased classifiers. In this paper, we focus our attention on a negative sample selection method to properly balance the training data for cascade detectors. The method is based on the selection of the most informative false positive samples generated in one stage to feed the next stage. The results show that the proposed cascade detector with sample selection obtains on average better partial AUC and smaller standard deviation than the other compared cascade detectors.

  9. Metasurface external cavity laser

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Hon, Philip W. C.; Itoh, Tatsuo [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Chen, Qi-Sheng [Northrop Grumman Aerospace Systems, Redondo Beach, California 90278 (United States)

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  10. An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm

    Science.gov (United States)

    Zhang, B.; Sang, Jun; Alam, Mohammad S.

    2013-03-01

    An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm was proposed. Firstly, the original secret image was encrypted into two phase-only masks M1 and M2 via cascaded iterative Fourier transform (CIFT) algorithm. Then, the public-key encryption algorithm RSA was adopted to encrypt M2 into M2' . Finally, a host image was enlarged by extending one pixel into 2×2 pixels and each element in M1 and M2' was multiplied with a superimposition coefficient and added to or subtracted from two different elements in the 2×2 pixels of the enlarged host image. To recover the secret image from the stego-image, the two masks were extracted from the stego-image without the original host image. By applying public-key encryption algorithm, the key distribution was facilitated, and also compared with the image hiding method based on optical interference, the proposed method may reach higher robustness by employing the characteristics of the CIFT algorithm. Computer simulations show that this method has good robustness against image processing.

  11. Sign epistasis caused by hierarchy within signalling cascades.

    Science.gov (United States)

    Nghe, Philippe; Kogenaru, Manjunatha; Tans, Sander J

    2018-04-13

    Sign epistasis is a central evolutionary constraint, but its causal factors remain difficult to predict. Here we use the notion of parameterised optima to explain epistasis within a signalling cascade, and test these predictions in Escherichia coli. We show that sign epistasis arises from the benefit of tuning phenotypic parameters of cascade genes with respect to each other, rather than from their complex and incompletely known genetic bases. Specifically, sign epistasis requires only that the optimal phenotypic parameters of one gene depend on the phenotypic parameters of another, independent of other details, such as activating or repressing nature, position within the cascade, intra-genic pleiotropy or genotype. Mutational effects change sign more readily in downstream genes, indicating that optimising downstream genes is more constrained. The findings show that sign epistasis results from the inherent upstream-downstream hierarchy between signalling cascade genes, and can be addressed without exhaustive genotypic mapping.

  12. Key techniques for space-based solar pumped semiconductor lasers

    Science.gov (United States)

    He, Yang; Xiong, Sheng-jun; Liu, Xiao-long; Han, Wei-hua

    2014-12-01

    In space, the absence of atmospheric turbulence, absorption, dispersion and aerosol factors on laser transmission. Therefore, space-based laser has important values in satellite communication, satellite attitude controlling, space debris clearing, and long distance energy transmission, etc. On the other hand, solar energy is a kind of clean and renewable resources, the average intensity of solar irradiation on the earth is 1353W/m2, and it is even higher in space. Therefore, the space-based solar pumped lasers has attracted much research in recent years, most research focuses on solar pumped solid state lasers and solar pumped fiber lasers. The two lasing principle is based on stimulated emission of the rare earth ions such as Nd, Yb, Cr. The rare earth ions absorb light only in narrow bands. This leads to inefficient absorption of the broad-band solar spectrum, and increases the system heating load, which make the system solar to laser power conversion efficiency very low. As a solar pumped semiconductor lasers could absorb all photons with energy greater than the bandgap. Thus, solar pumped semiconductor lasers could have considerably higher efficiencies than other solar pumped lasers. Besides, solar pumped semiconductor lasers has smaller volume chip, simpler structure and better heat dissipation, it can be mounted on a small satellite platform, can compose satellite array, which can greatly improve the output power of the system, and have flexible character. This paper summarizes the research progress of space-based solar pumped semiconductor lasers, analyses of the key technologies based on several application areas, including the processing of semiconductor chip, the design of small and efficient solar condenser, and the cooling system of lasers, etc. We conclude that the solar pumped vertical cavity surface-emitting semiconductor lasers will have a wide application prospects in the space.

  13. Conjugation of cascades

    International Nuclear Information System (INIS)

    San Martin, Jesus; Rodriguez-Perez, Daniel

    2009-01-01

    Presented in this work are some results relative to sequences found in the logistic equation bifurcation diagram, which is the unimodal quadratic map prototype. All of the different saddle-node bifurcation cascades, associated with every last appearance p-periodic orbit (p=3,4,5,...), can also be generated from the very Feigenbaum cascade. In this way it is evidenced the relationship between both cascades. The orbits of every saddle-node bifurcation cascade, mentioned above, are located in different chaotic bands, and this determines a sequence of orbits converging to every band-merging Misiurewicz point. In turn, these accumulation points form a sequence whose accumulation point is the Myrberg-Feigenbaum point. It is also proven that the first appearance orbits in the n-chaotic band converge to the same point as the last appearance orbits of the (n + 1)-chaotic band. The symbolic sequences of band-merging Misiurewicz points are computed for any window.

  14. Cascade reactor: granule fabrication processes

    International Nuclear Information System (INIS)

    Erlandson, O.D.; Winkler, E.O.; Maya, I.; Pitts, J.H.

    1985-01-01

    A key feature of Cascade is the granular blanket. Of the many blanket material options open to Cascade, fabrication of Li 2 O granules was felt to offer the greatest challenge. The authors explored available methods for initial Li 2 O granule fabrication. They identified three cost-effective processes for fabricating Li 2 O granules: the VSM drop-melt furnace process, which is based on melting and spheroidizing irregularly shaped Li 2 O feed granules; the LiOH process, which spheroidizes liquefied LiOH and uses GA Technologies' sphere-forming procedures; and the Li 2 CO 3 sol-gel process, used for making spherical fuel particles for the high-temperature gas-cooled reactor (HTGR). Each process is described below

  15. Graphene devices based on laser scribing technology

    Science.gov (United States)

    Qiao, Yan-Cong; Wei, Yu-Hong; Pang, Yu; Li, Yu-Xing; Wang, Dan-Yang; Li, Yu-Tao; Deng, Ning-Qin; Wang, Xue-Feng; Zhang, Hai-Nan; Wang, Qian; Yang, Zhen; Tao, Lu-Qi; Tian, He; Yang, Yi; Ren, Tian-Ling

    2018-04-01

    Graphene with excellent electronic, thermal, optical, and mechanical properties has great potential applications. The current devices based on graphene grown by micromechanical exfoliation, chemical vapor deposition (CVD), and thermal decomposition of silicon carbide are still expensive and inefficient. Laser scribing technology, a low-cost and time-efficient method of fabricating graphene, is introduced in this review. The patterning of graphene can be directly performed on solid and flexible substrates. Therefore, many novel devices such as strain sensors, acoustic devices, memory devices based on laser scribing graphene are fabricated. The outlook and challenges of laser scribing technology have also been discussed. Laser scribing may be a potential way of fabricating wearable and integrated graphene systems in the future.

  16. Dynamics robustness of cascading systems.

    Directory of Open Access Journals (Sweden)

    Jonathan T Young

    2017-03-01

    Full Text Available A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1 Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2 Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it

  17. Parton-hadron cascade approach at SPS and RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Nara, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-07-01

    A parton-hadron cascade model which is the extension of hadronic cascade model incorporating hard partonic scattering based on HIJING is presented to describe the space-time evolution of parton/hadron system produced by ultra-relativistic nuclear collisions. Hadron yield, baryon stopping and transverse momentum distribution are calculated and compared with HIJING and VNI. Baryon density, energy density and temperature for RHIC are calculated within this model. (author)

  18. Simulated annealing of displacement cascades in FCC metals. 1. Beeler cascades

    International Nuclear Information System (INIS)

    Doran, D.G.; Burnett, R.A.

    1974-09-01

    An important source of damage to structural materials in fast reactors is the displacement of atoms from normal lattice sites. A high energy neutron may impart sufficient energy to an atom to initiate a displacement cascade consisting of a localized high density of hundreds of interstitials and vacancies. These defects subsequently interact to form clusters and to reduce their density by mutual annihilation. This short term annealing of an isolated cascade has been simulated at high and low temperatures using a correlated random walk model. The cascade representations used were developed by Beeler and the point defect properties were based on the model of γ-iron by Johnson. Low temperature anneals, characterized by no vacancy migration and a 104 site annihilation region (AR), resulted in 49 defect pairs at 20 keV and 11 pairs at 5 keV. High temperature anneals, characterized by both interstitial and vacancy migration and a 32 site AR, resulted in 68 pairs at 20 keV and 18 pairs at 5 keV when no cluster dissociation was permitted; most of the vacancies were in immobile clusters. These high temperature values dropped to 40 and 14 upon dissolution of the vacancy clusters. Parameter studies showed that, at a given temperature, the large AR resulted in about one-half as many defects as the small AR. Cluster size distributions and examples of spatial configurations are included. (U.S.)

  19. Commercialization plan laser-based decoating systems

    International Nuclear Information System (INIS)

    Freiwald, J.; Freiwald, D.A.

    1998-01-01

    F2 Associates Inc. (F2) is a small, high-technology firm focused on developing and commercializing environmentally friendly laser ablation systems for industrial-rate removal of surface coatings from metals, concrete, and delicate substrates such as composites. F2 has a contract with the US Department of Energy Federal Energy Technology Center (FETC) to develop and test a laser-based technology for removing contaminated paint and other contaminants from concrete and metal surfaces. Task 4.1 in Phase 2 of the Statement of Work for this DOE contract requires that F2 ''document its plans for commercializing and marketing the stationary laser ablation system. This document shall include a discussion of prospects for commercial customers and partners and may require periodic update to reflect changing strategy. This document shall be submitted to the DOE for review.'' This report is being prepared and submitted in fulfillment of that requirement. This report describes the laser-based technology for cleaning and coatings removal, the types of laser-based systems that have been developed by F2 based on this technology, and the various markets that are emerging for this technology. F2's commercialization and marketing plans are described, including how F2's organization is structured to meet the needs of technology commercialization, F2's strategy and marketing approach, and the necessary steps to receive certification for removing paint from aircraft and DOE certification for D and D applications. The future use of the equipment built for the DOE contract is also discussed

  20. Sum-Frequency-Generation-Based Laser Sidebands for Tunable Femtosecond Raman Spectroscopy in the Ultraviolet

    Directory of Open Access Journals (Sweden)

    Liangdong Zhu

    2015-04-01

    Full Text Available Femtosecond stimulated Raman spectroscopy (FSRS is an emerging molecular structural dynamics technique for functional materials characterization typically in the visible to near-IR range. To expand its applications we have developed a versatile FSRS setup in the ultraviolet region. We use the combination of a narrowband, ~400 nm Raman pump from a home-built second harmonic bandwidth compressor and a tunable broadband probe pulse from sum-frequency-generation-based cascaded four-wave mixing (SFG-CFWM laser sidebands in a thin BBO crystal. The ground state Raman spectrum of a laser dye Quinolon 390 in methanol that strongly absorbs at ~355 nm is systematically studied as a standard sample to provide previously unavailable spectroscopic characterization in the vibrational domain. Both the Stokes and anti-Stokes Raman spectra can be collected by selecting different orders of SFG-CFWM sidebands as the probe pulse. The stimulated Raman gain with the 402 nm Raman pump is >21 times larger than that with the 550 nm Raman pump when measured at the 1317 cm−1 peak for the aromatic ring deformation and ring-H rocking mode of the dye molecule, demonstrating that pre-resonance enhancement is effectively achieved in the unique UV-FSRS setup. This added tunability in the versatile and compact optical setup enables FSRS to better capture transient conformational snapshots of photosensitive molecules that absorb in the UV range.

  1. Spider foraging strategy affects trophic cascades under natural and drought conditions.

    Science.gov (United States)

    Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong

    2015-07-23

    Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests.

  2. Laser-based analytical monitoring in nuclear-fuel processing plants

    International Nuclear Information System (INIS)

    Hohimer, J.P.

    1978-09-01

    The use of laser-based analytical methods in nuclear-fuel processing plants is considered. The species and locations for accountability, process control, and effluent control measurements in the Coprocessing, Thorex, and reference Purex fuel processing operations are identified and the conventional analytical methods used for these measurements are summarized. The laser analytical methods based upon Raman, absorption, fluorescence, and nonlinear spectroscopy are reviewed and evaluated for their use in fuel processing plants. After a comparison of the capabilities of the laser-based and conventional analytical methods, the promising areas of application of the laser-based methods in fuel processing plants are identified

  3. Electrically pumped graphene-based Landau-level laser

    Science.gov (United States)

    Brem, Samuel; Wendler, Florian; Winnerl, Stephan; Malic, Ermin

    2018-03-01

    Graphene exhibits a nonequidistant Landau quantization with tunable Landau-level (LL) transitions in the technologically desired terahertz spectral range. Here, we present a strategy for an electrically driven terahertz laser based on Landau-quantized graphene as the gain medium. Performing microscopic modeling of the coupled electron, phonon, and photon dynamics in such a laser, we reveal that an inter-LL population inversion can be achieved resulting in the emission of coherent terahertz radiation. The presented paper provides a concrete recipe for the experimental realization of tunable graphene-based terahertz laser systems.

  4. Hybrid Cascading Outage Analysis of Extreme Events with Optimized Corrective Actions

    Energy Technology Data Exchange (ETDEWEB)

    Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.; Samaan, Nader A.; Makarov, Yuri V.; Diao, Ruisheng; Huang, Qiuhua; Ke, Xinda

    2017-10-19

    Power system are vulnerable to extreme contingencies (like an outage of a major generating substation) that can cause significant generation and load loss and can lead to further cascading outages of other transmission facilities and generators in the system. Some cascading outages are seen within minutes following a major contingency, which may not be captured exclusively using the dynamic simulation of the power system. The utilities plan for contingencies either based on dynamic or steady state analysis separately which may not accurately capture the impact of one process on the other. We address this gap in cascading outage analysis by developing Dynamic Contingency Analysis Tool (DCAT) that can analyze hybrid dynamic and steady state behavior of the power system, including protection system models in dynamic simulations, and simulating corrective actions in post-transient steady state conditions. One of the important implemented steady state processes is to mimic operator corrective actions to mitigate aggravated states caused by dynamic cascading. This paper presents an Optimal Power Flow (OPF) based formulation for selecting corrective actions that utility operators can take during major contingency and thus automate the hybrid dynamic-steady state cascading outage process. The improved DCAT framework with OPF based corrective actions is demonstrated on IEEE 300 bus test system.

  5. Influence of laser frequency noise on scanning Fabry-Perot interferometer based laser Doppler velocimetry

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2014-01-01

    n this work, we study the performance of a scanning Fabry-Perot interferometer based laser Doppler velocimeter (sFPILDV) and compare two candidate 1.5 um single-frequency laser sources for the system – a fiber laser (FL) and a semiconductor laser (SL). We describe a straightforward calibration...... procedure for the sFPI-LDV and investigate the effect of different degrees of laser frequency noise between the FL and the SL on the velocimeter’s performance...

  6. Energy cascades in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, A. C.; Brown, T. D.

    1979-03-15

    Combining energy uses in a cascade can result in significant overall reductions in fuel requirements. The simplest applications for a cascade are in the recovery of waste heat from existing processes using special boilers or turbines. Specific applications of more-complex energy cascades for Canada are discussed. A combined-cycle plant at a chemical refinery in Ontario is world leader in energy efficiency. Total-energy systems for commercial buildings, such as one installed in a school in Western Canada, offer attractive energy and operating cost benefits. A cogeneration plant proposed for the National Capital Region, generating electricity as well as steam for district heating, allows the use of a low-grade fossil fuel (coal), greatly improves energy-transformation efficiency, and also utilizes an effectively renewable resource (municipal garbage). Despite the widespread availability of equipment and technology of energy cascades, the sale of steam and electricity across plant boundaries presents a barrier. More widespread use of cascades will require increased cooperation among industry, electric utilities and the various levels of government if Canada is to realize the high levels of energy efficiency potential available.

  7. Cascade reactor: introduction

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1985-01-01

    Cascade is a concept for an ultrasafe, highly efficient, easily built reactor to convert inertial-confinement fusion energy into electrical power. The Cascade design includes a rotating double-cone-shaped chamber in which a moving, 1-m-thick ceramic granular blanket is held against the reactor wall by centrifugal action. The granular material absorbs energy from the fusion reactions. Accomplishments this year associated with Cascade included improvements to simplify chamber design and lower activation. The authors switched from a steel chamber wall to one made from silicon-carbide (SiC) panels held in compression by SiC-fiber/Al-composite tendons that gird the chamber both circumferentially and axially. The authors studies a number of heat-exchanger designs and selected a gravity-flow cascade design with a vacuum on the primary side. This design allows granules leaving the chamber to be transported to the heat exchangers using their own peripheral speed. The granules transfer their thermal energy and return to the chamber gravitationally: no vacuum locks or conveyors are needed

  8. Research on tunable multiwavelength fiber lasers with two-section birefringence fibers and a nonlinear optical loop

    Science.gov (United States)

    Chen, Jiao; Tong, Zhengrong; Zhang, Weihua; Xue, Lifang; Pan, Honggang

    2018-05-01

    Two types of tunable multiwavelength fiber lasers based on two-section polarization maintaining fibers (PMFs) cascaded/in parallel and nonlinear optical loop are proposed and experimentally demonstrated. Two-section cascaded PMFs and two polarization controllers (PCs) form the two-stage Lyot filter, which can generate comb spectrum to achieve multiwavelength output. When two sections of PMFs are in parallel, PCs in two paths are adjusted to change the beam’s polarization to suppress the light of one branch, and then the light of the other branch passes through the cavity. Additionally, a nonlinear optical loop acts as an intensity-dependent component, which can suppress the mode competition to maintain a stable output of multiwavelength lasing. The nonlinear optical loop is made by a 3 dB coupler, a PC3, and a 200 m high nonlinear fiber. Two types of tunable multiwavelength fiber lasers can achieve tuning of the channel space and the number of lasing wavelengths by adjusting PC1 and PC2. The channel space of the multiwavelengh laser can be tuned at nearly 0.4, 0.68, and 0.92 nm. Meanwhile, the spectral range of multiwavelength lasing can be controlled by PC3 in the nonlinear optical loop, and the tuning range of two multiwavelength lasers is about 2.28 and 1.45 nm, respectively.

  9. New enhanced sensitivity infrared laser spectroscopy techniques applied to reactive plasmas and trace gas detection

    NARCIS (Netherlands)

    Welzel, S.

    2009-01-01

    Infrared laser absorption spectroscopy (IRLAS) employing both tuneable diode and quantum cascade lasers (TDLs, QCLs) has been applied with both high sensitivity and high time resolution to plasma diagnostics and trace gas measurements. TDLAS combined with a conventional White type multiple pass cell

  10. Joint compensation scheme of polarization crosstalk, intersymbol interference, frequency offset, and phase noise based on cascaded Kalman filter

    Science.gov (United States)

    Zhang, Qun; Yang, Yanfu; Xiang, Qian; Zhou, Zhongqing; Yao, Yong

    2018-02-01

    A joint compensation scheme based on cascaded Kalman filter is proposed, which can implement polarization tracking, channel equalization, frequency offset, and phase noise compensation simultaneously. The experimental results show that the proposed algorithm can not only compensate multiple channel impairments simultaneously but also improve the polarization tracking capacity and accelerate the convergence speed. The scheme has up to eight times faster convergence speed compared with radius-directed equalizer (RDE) + Max-FFT (maximum fast Fourier transform) + BPS (blind phase search) and can track up polarization rotation 60 times and 15 times faster than that of RDE + Max-FFT + BPS and CMMA (cascaded multimodulus algorithm) + Max-FFT + BPS, respectively.

  11. Suitability of quantum cascade laser spectroscopy for CH4 and N2O eddy covariance flux measurements

    Directory of Open Access Journals (Sweden)

    A. T. Vermeulen

    2007-08-01

    Full Text Available A quantum cascade laser spectrometer was evaluated for eddy covariance flux measurements of CH4 and N2O using three months of continuous measurements at a field site. The required criteria for eddy covariance flux measurements including continuity, sampling frequency, precision and stationarity were examined. The system operated continuously at a dairy farm on peat grassland in the Netherlands from 17 August to 6 November 2006. An automatic liquid nitrogen filling system for the infrared detector was employed to provide unattended operation of the system. The electronic sampling frequency was 10 Hz, however, the flow response time was 0.08 s, which corresponds to a bandwidth of 2 Hz. A precision of 2.9 and 0.5 ppb Hz−1/2 was obtained for CH4 and N2O, respectively. Accuracy was assured by frequent calibrations using low and high standard additions. Drifts in the system were compensated by using a 120 s running mean filter. The average CH4 and N2O exchange was 512 ngC m−2 s−1 (2.46 mg m−2 hr−1 and 52 ngN m−2 s−1 (0.29 mg m−2 hr−1. Given that 40% of the total N2O emission was due to a fertilizing event.

  12. Cascade theory in isotopic separation processes; Theorie des cascades en separation isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, J P

    1994-06-01

    Three main areas are developed within the scope of this work: - the first one is devoted to fundamentals: separative power, value function, ideal cascade and square cascade. Applications to two main cases are carried out, namely: Study of binary isotopic mix, Study of processes with a small enrichment coefficient. - The second one is devoted to cascade coupling -high-flux coupling (more widely used and better known) as well as low-flux coupling are presented and compared to one another. - The third one is an outlook on problems linked to cascade transients. Those problem are somewhat intricate and their interest lies mainly into two areas: economics where the start-up time may have a large influence on the interests paid during the construction and start-up period, military productions where the start-up time has a direct bearing on the production schedule. (author). 50 figs. 3 annexes. 12 refs. 6 tabs.

  13. Tunable, Narrow Line Width Mid-Infrared Laser Source, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to advance the technology of interband cascade (IC) lasers and their facet coatings and to design, build, and deliver to NASA a...

  14. Comparison of laser-based mitigation of fused silica surface damage using mid- versus far-infrared lasers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S T; Matthews, M J; Elhadj, S; Cooke, D; Guss, G M; Draggoo, V G; Wegner, P J

    2009-12-16

    Laser induced growth of optical damage can limit component lifetime and therefore operating costs of large-aperture fusion-class laser systems. While far-infrared (IR) lasers have been used previously to treat laser damage on fused silica optics and render it benign, little is known about the effectiveness of less-absorbing mid-IR lasers for this purpose. In this study, they quantitatively compare the effectiveness and efficiency of mid-IR (4.6 {micro}m) versus far-IR (10.6 {micro}m) lasers in mitigating damage growth on fused silica surfaces. The non-linear volumetric heating due to mid-IR laser absorption is analyzed by solving the heat equation numerically, taking into account the temperature-dependent absorption coefficient {alpha}(T) at {lambda} = 4.6 {micro}m, while far-IR laser heating is well-described by a linear analytic approximation to the laser-driven temperature rise. In both cases, the predicted results agree well with surface temperature measurements based on infrared radiometry, as well as sub-surface fictive temperature measurements based on confocal Raman microscopy. Damage mitigation efficiency is assessed using a figure of merit (FOM) relating the crack healing depth to laser power required, under minimally-ablative conditions. Based on their FOM, they show that for cracks up to at least 500 {micro}m in depth, mitigation with a 4.6 {micro}m mid-IR laser is more efficient than mitigation with a 10.6 {micro}m far-IR laser. This conclusion is corroborated by direct application of each laser system to the mitigation of pulsed laser-induced damage possessing fractures up to 225 {micro}m in depth.

  15. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin

    2017-01-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  16. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben

    2017-08-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  17. 77 FR 13367 - General Electric-Hitachi Global Laser Enrichment, LLC, Proposed Laser-Based Uranium Enrichment...

    Science.gov (United States)

    2012-03-06

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0157] General Electric-Hitachi Global Laser Enrichment, LLC, Proposed Laser-Based Uranium Enrichment Facility, Wilmington, NC AGENCY: Nuclear Regulatory... Impact Statement (EIS) for the proposed General Electric- Hitachi Global Laser Enrichment, LLC (GLE...

  18. Tilt-tuned etalon locking for tunable laser stabilization.

    Science.gov (United States)

    Gibson, Bradley M; McCall, Benjamin J

    2015-06-15

    Locking to a fringe of a tilt-tuned etalon provides a simple, inexpensive method for stabilizing tunable lasers. Here, we describe the use of such a system to stabilize an external-cavity quantum cascade laser; the locked laser has an Allan deviation of approximately 1 MHz over a one-second integration period, and has a single-scan tuning range of approximately 0.4  cm(-1). The system is robust, with minimal alignment requirements and automated lock acquisition, and can be easily adapted to different wavelength regions or more stringent stability requirements with minor alterations.

  19. Measurements of linestrengths, N2-, Ar-, He- and self-broadening coefficients of acetylene in the ν4+ν5 combination band using a cw quantum cascade laser

    KAUST Repository

    Sajid, Muhammad Bilal

    2014-11-01

    Linestrengths, N2-, Ar-, He- and self-broadening coefficients of acetylene have been measured at 296K in the P branch of the ν4+ν5 combination band for 25 rotational transitions. The effect of gas temperature is studied over 296-683K for five transitions to allow the determination of the temperature dependent exponent n for N2- and Ar-broadening coefficients. These measurements were performed using a continuous-wave quantum cascade laser (cw-QCL) operating over 1253-1310cm-1. Spectroscopic parameters were obtained by fitting absorption spectra using Voigt, Galatry and Rautian profiles. Linestrength and broadening results are compared with previous studies available in literature for the ν4+ν5 combination band and other vibrational bands of acetylene. © 2014 Elsevier Ltd.

  20. The relationship between collisional phase defect distribution and cascade collapse efficiency

    International Nuclear Information System (INIS)

    Morishita, K.; Heinisch, H.L.; Ishino, S.; Sekimura, N.

    1994-01-01

    Defect distributions after the collisional phase of cascade damage processes were calculated using the computer simulation code MARLOWE, which is based on the binary collision approximation. The densities of vacant sites were evaluated in defect-dense regions at the end of the collisional phase in simulated ion irradiations of several pure metals (Au, Ag, Cu, Ni, Fe, Mo and W). The vacancy density distributions were compared to the measured cascade collapse efficiencies obtained from low-dose ion irradiations of thin foils reported in the literature to identify the minimum or ''critical'' values of the vacancy densities during the collisional phase corresponding to cascade collapse. The critical densities are generally independent of the cascade energy in the same metal. The relationships between physical properties of the target elements and the critical densities are discussed within the framework of the cascade thermal spike model. ((orig.))

  1. Infrared-laser-based fundus angiography

    Science.gov (United States)

    Klingbeil, Ulrich; Canter, Joseph M.; Lesiecki, Michael L.; Reichel, Elias

    1994-06-01

    Infrared fundus angiography, using the fluorescent dye indocyanine green (ICG), has shown great potential in delineating choroidal neovascularization (CNV) otherwise not detectable. A digital retinal imaging system containing a diode laser for illumination has been developed and optimized to perform high sensitivity ICG angiography. The system requires less power and generates less pseudo-fluorescence background than nonlaser devices. During clinical evaluation at three retinal centers more than 200 patients, the majority of which had age-related macular degeneration, were analyzed. Laser based ICG angiography was successful in outlining many of the ill-defined or obscure CNV as defined by fluorescein angiography. The procedure was not as successful with classic CNV. ICG angiograms were used to prepare and guide laser treatment.

  2. Cascading costs: an economic nitrogen cycle.

    Science.gov (United States)

    Moomaw, William R; Birch, Melissa B L

    2005-09-01

    The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrified to N(2). We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single ton of nitrogen can cascade through the system, the costs also cascade. Therefore evaluating the benefits of mitigating a ton of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that ton would cascade. The analysis reveals that it is most cost effective to remove a ton of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.

  3. Intra-pulse laser absorption sensor with cavity enhancement for oxidation experiments in a rapid compression machine

    KAUST Repository

    Nasir, Ehson Fawad

    2018-05-23

    A sensor based on a mid-IR pulsed quantum cascade laser (QCL) and off-axis cavity enhanced absorption spectroscopy (OA-CEAS) has been developed for highly sensitive concentration measurements of carbon monoxide (CO) in a rapid compression machine. The duty cycle and the pulse repetition rate of the laser were optimized for increased tuning range, high chirp rate, and small line width to achieve effective laser-cavity coupling. This enabled spectrally resolved CO line-shape measurements at high pressures (P ~10 bar). A gain factor of 133 and a time resolution of 10 μs were demonstrated. CO concentration-time profiles during the oxidation of highly dilute n-octane/air mixtures were recorded, illustrating new opportunities in RCM experiments for chemical kinetics.

  4. Contingency Analysis of Cascading Line Outage Events

    Energy Technology Data Exchange (ETDEWEB)

    Thomas L Baldwin; Magdy S Tawfik; Miles McQueen

    2011-03-01

    As the US power systems continue to increase in size and complexity, including the growth of smart grids, larger blackouts due to cascading outages become more likely. Grid congestion is often associated with a cascading collapse leading to a major blackout. Such a collapse is characterized by a self-sustaining sequence of line outages followed by a topology breakup of the network. This paper addresses the implementation and testing of a process for N-k contingency analysis and sequential cascading outage simulation in order to identify potential cascading modes. A modeling approach described in this paper offers a unique capability to identify initiating events that may lead to cascading outages. It predicts the development of cascading events by identifying and visualizing potential cascading tiers. The proposed approach was implemented using a 328-bus simplified SERC power system network. The results of the study indicate that initiating events and possible cascading chains may be identified, ranked and visualized. This approach may be used to improve the reliability of a transmission grid and reduce its vulnerability to cascading outages.

  5. Verification of a characterization method of the laser-induced selective activation based on industrial lasers

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Tang, Peter T.

    2013-01-01

    In this article, laser-induced selective activation (LISA) for subsequent autocatalytic copper plating is performed by several types of industrial scale lasers, including a Nd:YAG laser, a UV laser, a fiber laser, a green laser, and a short pulsed laser. Based on analysis of all the laser......-machined surfaces, normalized bearing area curves and parameters are used to characterize the surface quantitatively. The range of normalized bearing area curve parameters for plate-able surface is suggested. PBT/PET with 40 % glass fiber was used as the substrate material. For all of the studied lasers......, the parameters were varied in a relatively large range, and matrixes of the laser-machined surface were obtained. The topography of those laser-machined surfaces was examined by scanning electronic microscope (SEM). For each sample examined by SEM, there was an identical workpiece plated by for 90 min...

  6. Node vulnerability of water distribution networks under cascading failures

    International Nuclear Information System (INIS)

    Shuang, Qing; Zhang, Mingyuan; Yuan, Yongbo

    2014-01-01

    Water distribution networks (WDNs) are important in modern lifeline system. Its stability and reliability are critical for guaranteeing high living quality and continuous operation of urban functions. The aim of this paper is to evaluate the nodal vulnerability of WDNs under cascading failures. Vulnerability is defined to analyze the effects of the consequent failures. A cascading failure is a step-by-step process which is quantitatively investigated by numerical simulation with intentional attack. Monitored pressures in different nodes and flows in different pipes have been used to estimate the network topological structure and the consequences of nodal failure. Based on the connectivity loss of topological structure, the nodal vulnerability has been evaluated. A load variation function is established to record the nodal failure reason and describe the relative differences between the load and the capacity. The proposed method is validated by an illustrative example. The results revealed that the network vulnerability should be evaluated with the consideration of hydraulic analysis and network topology. In the case study, 70.59% of the node failures trigger the cascading failures with different failure processes. It is shown that the cascading failures result in severe consequences in WDNs. - Highlights: • The aim of this paper is to evaluate the nodal vulnerability of water distribution networks under cascading failures. • Monitored pressures and flows have been used to estimate the network topological structure and the consequences of nodal failure. • Based on the connectivity loss of topological structure, the nodal vulnerability has been evaluated. • A load variation function is established to record the failure reason and describe the relative differences between load and capacity. • The results show that 70.59% of the node failures trigger the cascading failures with different failure processes

  7. Eddy covariance carbonyl sulfide flux measurements with a quantum cascade laser absorption spectrometer

    Directory of Open Access Journals (Sweden)

    K. Gerdel

    2017-09-01

    Full Text Available The trace gas carbonyl sulfide (COS has lately received growing interest from the eddy covariance (EC community due to its potential to serve as an independent approach for constraining gross primary production and canopy stomatal conductance. Thanks to recent developments of fast-response high-precision trace gas analysers (e.g. quantum cascade laser absorption spectrometers, QCLAS, a handful of EC COS flux measurements have been published since 2013. To date, however, a thorough methodological characterisation of QCLAS with regard to the requirements of the EC technique and the necessary processing steps has not been conducted. The objective of this study is to present a detailed characterisation of the COS measurement with the Aerodyne QCLAS in the context of the EC technique and to recommend best EC processing practices for those measurements. Data were collected from May to October 2015 at a temperate mountain grassland in Tyrol, Austria. Analysis of the Allan variance of high-frequency concentration measurements revealed the occurrence of sensor drift under field conditions after an averaging time of around 50 s. We thus explored the use of two high-pass filtering approaches (linear detrending and recursive filtering as opposed to block averaging and linear interpolation of regular background measurements for covariance computation. Experimental low-pass filtering correction factors were derived from a detailed cospectral analysis. The CO2 and H2O flux measurements obtained with the QCLAS were compared with those obtained with a closed-path infrared gas analyser. Overall, our results suggest small, but systematic differences between the various high-pass filtering scenarios with regard to the fraction of data retained in the quality control and flux magnitudes. When COS and CO2 fluxes are combined in the ecosystem relative uptake rate, systematic differences between the high-pass filtering scenarios largely cancel out, suggesting that

  8. Eddy covariance carbonyl sulphide flux measurements with a quantum cascade laser absorption spectrometer.

    Science.gov (United States)

    Gerdel, Katharina; Spielmann, Felix Maximilian; Hammerle, Albin; Wohlfahrt, Georg

    2017-09-26

    The trace gas carbonyl sulphide (COS) has lately received growing interest in the eddy covariance (EC) community due to its potential to serve as an independent approach for constraining gross primary production and canopy stomatal conductance. Thanks to recent developments of fast-response high-precision trace gas analysers (e.g. quantum cascade laser absorption spectrometers (QCLAS)), a handful of EC COS flux measurements have been published since 2013. To date, however, a thorough methodological characterisation of QCLAS with regard to the requirements of the EC technique and the necessary processing steps has not been conducted. The objective of this study is to present a detailed characterization of the COS measurement with the Aerodyne QCLAS in the context of the EC technique, and to recommend best EC processing practices for those measurements. Data were collected from May to October 2015 at a temperate mountain grassland in Tyrol, Austria. Analysis of the Allan variance of high-frequency concentration measurements revealed sensor drift to occur under field conditions after an averaging time of around 50 s. We thus explored the use of two high-pass filtering approaches (linear detrending and recursive filtering) as opposed to block averaging and linear interpolation of regular background measurements for covariance computation. Experimental low-pass filtering correction factors were derived from a detailed cospectral analysis. The CO 2 and H 2 O flux measurements obtained with the QCLAS were compared against those obtained with a closed-path infrared gas analyser. Overall, our results suggest small, but systematic differences between the various high-pass filtering scenarios with regard to the fraction of data retained in the quality control and flux magnitudes. When COS and CO 2 fluxes are combined in the so-called ecosystem relative uptake rate, systematic differences between the high-pass filtering scenarios largely cancel out, suggesting that this

  9. Simulation of concentration spikes in cascades

    International Nuclear Information System (INIS)

    Wood, H.G.

    2006-01-01

    Research has been conducted to investigate the maximum possible enrichment that might be temporarily achieved in a facility that is producing enriched uranium for fuel for nuclear power reactors. The purpose is to provide information to evaluate if uranium enrichment facilities are producing 235 U enriched within declared limits appropriate for power reactors or if the facilities are actually producing more highly enriched uranium. The correlation between feed rate and separation factor in a gas centrifuge cascade shows that as flow decreases, the separation factor increases, thereby, creating small amounts of higher enriched uranium than would be found under optimum design operating conditions. The research uses a number of cascade enrichment programs to model the phenomenon and determine the maximum enrichment possible during the time transient of a gas centrifuge cascade. During cascade start-up, the flow through the centrifuges begins at lower than centrifuge design stage flow rates. Steady-state cascade models have been used to study the maximum 235 U concentrations that would be predicted in the cascade. These calculations should produce an upper bound of product concentrations expected during the transient phase of start-up. Due to the fact that there are different ways in which to start a cascade, several methods are used to determine the maximum enrichment during the time transient. Model cascades were created for gas centrifuges with several product to .feed assay separation factors. With this information, the models were defined and the equilibrium programs were used to determine the maximum enrichment level during the time transient. The calculations predict in a cascade with separation factor 1.254 designed to produce enriched uranium for the purpose of supplying reactor fuel, it would not be unreasonable to see some 235 U in the range of 12-15%. Higher assays produced during the start-up period might lead inspectors to believe the cascade is being

  10. Electron kinetics in a laser plasma with increased collisionality

    Czech Academy of Sciences Publication Activity Database

    Mašek, Jan; Rohlena, Karel

    2010-01-01

    Roč. 165, 6-10 (2010), s. 405-411 ISSN 1042-0150 Institutional research plan: CEZ:AV0Z10100523 Keywords : ion sources * stimulated Raman scattering * Vlasov-Maxwell model * Raman cascading Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.660, year: 2010

  11. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  12. Bearing-Only Formation Control for Cascade Multirobots

    Directory of Open Access Journals (Sweden)

    Qing Han

    2016-01-01

    Full Text Available A new formation control method is proposed, which is used to queue multirobots in a single-direction cascade structure. In the cascade formation, each robot is a follower for the previous robot and a leader for the next robot, and the robots in the middle act as both leader and follower. The follower robot can only observe the bearing information of the leader robot. The observability of the cascade leader-follower formation is studied, which shows that the bearing-only observation meets the observability conditions required for the nonlinear system. Based on the bearing-only observations, the unscented Kalman filter (UKF is employed for the state estimation of the leader and the follower robots at all levels, which enables the real-time movement control of the follower robots via the input-output feedback control. Simulation results demonstrate that the proposed approach can efficiently control the formation of multirobots as desired.

  13. High-temperature measurements of methane and acetylene using quantum cascade laser absorption near 8μm

    KAUST Repository

    Sajid, M.B.; Javed, Tamour; Farooq, Aamir

    2015-01-01

    The mid-infrared wavelength region near 8 mu m contains absorption bands of several molecules such as water vapor, hydrogen peroxide, nitrous oxide, methane and acetylene. A new laser absorption sensor based on the v(4) band of methane and the v(4

  14. Stability of cascade search

    Energy Technology Data Exchange (ETDEWEB)

    Fomenko, Tatiana N [M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics, Moscow (Russian Federation)

    2010-10-22

    We find sufficient conditions on a searching multi-cascade for a modification of the set of limit points of the cascade that satisfy an assessing inequality for the distance from each of these points to the initial point to be small, provided that the modifications of the initial point and the initial set-valued functionals or maps used to construct the multi-cascade are small. Using this result, we prove the stability (in the above sense) of the cascade search for the set of common pre-images of a closed subspace under the action of n set-valued maps, n{>=}1 (in particular, for the set of common roots of these maps and for the set of their coincidences). For n=2 we obtain generalizations of some results of A. V. Arutyunov; the very statement of the problem comes from a recent paper of his devoted to the study of the stability of the subset of coincidences of a Lipschitz map and a covering map.

  15. Laser-based direct-write techniques for cell printing

    Energy Technology Data Exchange (ETDEWEB)

    Schiele, Nathan R; Corr, David T [Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, NY (United States); Huang Yong [Department of Mechanical Engineering, Clemson University, Clemson, SC (United States); Raof, Nurazhani Abdul; Xie Yubing [College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, NY (United States); Chrisey, Douglas B, E-mail: schien@rpi.ed, E-mail: chrisd@rpi.ed [Material Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY (United States)

    2010-09-15

    Fabrication of cellular constructs with spatial control of cell location ({+-}5 {mu}m) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. (topical review)

  16. Laser-based direct-write techniques for cell printing

    International Nuclear Information System (INIS)

    Schiele, Nathan R; Corr, David T; Huang Yong; Raof, Nurazhani Abdul; Xie Yubing; Chrisey, Douglas B

    2010-01-01

    Fabrication of cellular constructs with spatial control of cell location (±5 μm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. (topical review)

  17. Creation of electron-positron plasma with superstrong laser field

    International Nuclear Information System (INIS)

    Narozhny, N.B.; Fedotov, A.M.

    2014-01-01

    We present a short review of recent progress in studying QED effects within the interaction of ultra-relativistic laser pulses with vacuum and e - e + plasma. Current development in laser technologies promises very rapid growth of laser intensities in the near future. Two exa-watt class facilities (ELI and XCELS, Russia) in Europe are already in the planning stage. Realization of these projects will make available a laser intensity of 10 26 W/cm 2 or even higher. Therefore, discussion of nonlinear optical effects in vacuum are becoming compelling for experimentalists and are currently gaining much attention. We show that, in spite of the fact that the expected field strength is still essentially less than E S = m 2 c 3 /eℎ = 1.32*10 16 V/cm, the nonlinear vacuum effects will be accessible for observation at the ELI and XCELS facilities. The most promising effect for observation is pair creation by a laser pulse in vacuum. It is shown, that at intensities of about 5*10 25 W/cm 2 , creation even of a single pair is accompanied by the development of an avalanche QED cascade. There exists a distinctive feature of the laser-induced cascades, as compared with the air showers arising due primarily to cosmic rays entering the atmosphere. In our case the laser field plays not only the role of a target (similar to a nucleus in the case of air showers) but is also responsible for the acceleration of slow particles. It is shown that the effect of pair creation imposes a natural limit for the attainable laser intensity and, apparently, the field strength E ≅ E S is not accessible for a pair-creating electromagnetic field at all. (authors)

  18. Ion-implantation dense cascade data

    International Nuclear Information System (INIS)

    Winterbon, K.B.

    1983-04-01

    A tabulation is given of data useful in estimating various aspects of ion-implantation cascades in the nuclear stopping regime, particularly with respect to nonlinearity of the cascade at high energy densities. The tabulation is restricted to self-ion implantation. Besides power-cross-section cascade dimensions, various material properties are included. Scaling of derived quantities with input data is noted, so one is not limited to the values assumed by the author

  19. Potential for GPC-based laser direct writing

    DEFF Research Database (Denmark)

    Bañas, Andrew; Glückstad, Jesper

    2016-01-01

    lasers for such applications by using phase modulation as opposed to amplitude truncating masks. Here, we explore GPC’s potential for increasing the yield of micropscopic 3D printing also known as direct laser writing. Many light based additive manufacturing techniques, adopt a point scanning approach...

  20. Energy enhancer for mask based laser materials processing

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1996-01-01

    A device capable of drastically improving the energy efficiency of present mask based laser materials processing systems is presented. Good accordance between experiments and simulations for a TEA-CO2 laser system designed for laser marking has been demonstrated. The energy efficiency may...... be improved with a factor of 2 - 4 for typical mask transmittances between 10 - 40%....

  1. Investigation of cascade effect failure for tungsten armour

    International Nuclear Information System (INIS)

    Makhankov, A.; Barabash, V.; Berkhov, N.; Divavin, V.; Giniatullin, R.; Grigoriev, S.; Ibbott, C.; Komarov, V.; Labusov, A.; Mazul, I.; McDonald, J.; Tanchuk, V.; Youchison, D.

    2001-01-01

    The glancing angle of incident power on the target of a tokamak divertor results in doubled and highly peaked heat flux onto adjacent downstream tile in the case of lost of tile event (LOTE). As a result downstream tile has higher probability to fail resulting in triple loads to the next downstream tile and so on (cascade effect). This paper devoted to analytical and experimental investigation of the cascade effect failure for the flat tile option of tungsten armoured plasma facing components. Armour geometry resistant to the cascade effect failure was selected on the base of thermal and stress analyses. Experimental investigation of the LOTE has been performed also. Small size W/Cu mock-up withstood not only LOTE simulation load, but also survived afterwards for 1500 cycles at 26-28 MW/m 2 without damage in joint

  2. Influence maximization in social networks under an independent cascade-based model

    Science.gov (United States)

    Wang, Qiyao; Jin, Yuehui; Lin, Zhen; Cheng, Shiduan; Yang, Tan

    2016-02-01

    The rapid growth of online social networks is important for viral marketing. Influence maximization refers to the process of finding influential users who make the most of information or product adoption. An independent cascade-based model for influence maximization, called IMIC-OC, was proposed to calculate positive influence. We assumed that influential users spread positive opinions. At the beginning, users held positive or negative opinions as their initial opinions. When more users became involved in the discussions, users balanced their own opinions and those of their neighbors. The number of users who did not change positive opinions was used to determine positive influence. Corresponding influential users who had maximum positive influence were then obtained. Experiments were conducted on three real networks, namely, Facebook, HEP-PH and Epinions, to calculate maximum positive influence based on the IMIC-OC model and two other baseline methods. The proposed model resulted in larger positive influence, thus indicating better performance compared with the baseline methods.

  3. Hadron cascades produced by electromagnetic cascades

    International Nuclear Information System (INIS)

    Nelson, W.R.; Jenkins, T.M.; Ranft, J.

    1986-12-01

    A method for calculating high energy hadron cascades induced by multi-GeV electron and photon beams is described. Using the EGS4 computer program, high energy photons in the EM shower are allowed to interact hadronically according to the vector meson dominance (VMD) model, facilitated by a Monte Carlo version of the dual multistring fragmentation model which is used in the hadron cascade code FLUKA. The results of this calculation compare very favorably with experimental data on hadron production in photon-proton collisions and on the hadron production by electron beams on targets (i.e., yields in secondary particle beam lines). Electron beam induced hadron star density contours are also presented and are compared with those produced by proton beams. This FLUKA-EGS4 coupling technique could find use in the design of secondary beams, in the determination high energy hadron source terms for shielding purposes, and in the estimation of induced radioactivity in targets, collimators and beam dumps

  4. Process observation in fiber laser-based selective laser melting

    Science.gov (United States)

    Thombansen, Ulrich; Gatej, Alexander; Pereira, Milton

    2015-01-01

    The process observation in selective laser melting (SLM) focuses on observing the interaction point where the powder is processed. To provide process relevant information, signals have to be acquired that are resolved in both time and space. Especially in high-power SLM, where more than 1 kW of laser power is used, processing speeds of several meters per second are required for a high-quality processing results. Therefore, an implementation of a suitable process observation system has to acquire a large amount of spatially resolved data at low sampling speeds or it has to restrict the acquisition to a predefined area at a high sampling speed. In any case, it is vitally important to synchronously record the laser beam position and the acquired signal. This is a prerequisite that allows the recorded data become information. Today, most SLM systems employ f-theta lenses to focus the processing laser beam onto the powder bed. This report describes the drawbacks that result for process observation and suggests a variable retro-focus system which solves these issues. The beam quality of fiber lasers delivers the processing laser beam to the powder bed at relevant focus diameters, which is a key prerequisite for this solution to be viable. The optical train we present here couples the processing laser beam and the process observation coaxially, ensuring consistent alignment of interaction zone and observed area. With respect to signal processing, we have developed a solution that synchronously acquires signals from a pyrometer and the position of the laser beam by sampling the data with a field programmable gate array. The relevance of the acquired signals has been validated by the scanning of a sample filament. Experiments with grooved samples show a correlation between different powder thicknesses and the acquired signals at relevant processing parameters. This basic work takes a first step toward self-optimization of the manufacturing process in SLM. It enables the

  5. Supercontinuum based mid-IR imaging spectroscopy for cancer detection

    DEFF Research Database (Denmark)

    Bang, Ole; Møller, Uffe Visbech; Kubat, Irnis

    2014-01-01

    -power laser diodes, quantum cascade lasers and synchrotron radiation, have precluded mid-IR applications where the spatial coherence, broad bandwidth, high brightness and portability of a supercontinuum laser are all required. In an international collaboration in the EU project MINERVA [minerva...

  6. Annealing simulation of cascade damage using MARLOWE-DAIQUIRI codes

    International Nuclear Information System (INIS)

    Muroga, Takeo

    1984-01-01

    The localization effect of the defects generated by the cascade damage on the properties of solids was studied by using a computer code. The code is based on the two-body collision approximation method and the Monte Carlo method. The MARLOWE and DAIQUIRI codes were partly improved to fit the present calculation of the annealing of cascade damage. The purpose of this study is to investigate the behavior of defects under the simulated reactive and irradiation condition. Calculation was made for alpha iron (BCC), and the threshold energy was set at 40 eV. The temperature dependence of annealing and the growth of a cluster were studied. The overlapping effect of cascade was studied. At first, the extreme case of overlapping was studied, then the practical cases were estimated by interpolation. The state of overlapping of cascade corresponded to the irradiation speed. The interaction between cascade and dislocations was studied, and the calculation of the annealing of primary knock-out atoms (PKA) in alpha iron was performed. At low temperature, the effect of dislocations was large, but the growth of vacancy was not seen. At high temperature, the effect of dislocations was small. The evaluation of the simulation of various ion irradiation and the growth efficiency of defects were performed. (Kato, T.)

  7. Precedent Research on Compact Laser-plasma based Gantry for Cancer Therapy

    International Nuclear Information System (INIS)

    Hee, Park Seong; Jeong, Young Uk; Lee, Ki Tae; Kim, Kyung Nam; Cha, Young Ho

    2012-03-01

    This is the precedent R and D to develop the technology of next generation compact particle cancer treatment system based on laser-plasma interaction and to deduce a big project. The subject of this project are the survey of application technology of laser-plasma based particle beam and the design of compact laser-plasma based gantry. The survey of characteristic of particle beam for cancer therapy and present status can be adapted to develop new system. The comparison between particle beams from the existing system and new one based on laser-plasma acceleration will be important to new design and design optimization. The project includes design of multi-dimensional laser transfer beamline, minimization of laser-plasma acceleration chamber, design of effective energy separation/selection system, and radiation safety and local shielding

  8. Dirhodium(II Carbenes : The Chiral Product Cascade

    Directory of Open Access Journals (Sweden)

    Gregory H. P. Roos

    2000-12-01

    Full Text Available The last decade has witnessed enormous growth in the spectrum of highly efficient asymmetric synthetic transformations. One prominent example of this progress is the application of dirhodium (II carbenes generated from diazo- precursors. Innovative construction of ‘designer’ catalysts has played a integral role in extending the breadth of the synthetic cascade of non-racemic products now available through the range of cyclopropanation, C-X insertion, aromatic cycloaddition-rearrangement, and ylide-based reaction types. This review deals briefly with an overview of the important catalytic systems and maintains as its primary focus the cascade of diverse optically enriched products that flow from their applications.

  9. Damped trophic cascades driven by fishing in model marine ecosystems

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Pedersen, Martin

    2010-01-01

    The largest perturbation on upper trophic levels of many marine ecosystems stems from fishing. The reaction of the ecosystem goes beyond the trophic levels directly targeted by the fishery. This reaction has been described either as a change in slope of the overall size spectrum or as a trophic...... cascade triggered by the removal of top predators. Here we use a novel size- and trait-based model to explore how marine ecosystems might react to perturbations from different types of fishing pressure. The model explicitly resolves the whole life history of fish, from larvae to adults. The results show...... that fishing does not change the overall slope of the size spectrum, but depletes the largest individuals and induces trophic cascades. A trophic cascade can propagate both up and down in trophic levels driven by a combination of changes in predation mortality and food limitation. The cascade is damped...

  10. THz cavities and injectors for compact electron acceleration using laser-driven THz sources

    Directory of Open Access Journals (Sweden)

    Moein Fakhari

    2017-04-01

    Full Text Available We present a design methodology for developing ultrasmall electron injectors and accelerators based on cascaded cavities excited by short multicycle THz pulses obtained from laser-driven THz generation schemes. Based on the developed concept for optimal coupling of the THz pulse, a THz electron injector and two accelerating stages are designed. The designed electron gun consists of a four cell cavity operating at 300 GHz and a door-knob waveguide to coaxial coupler. Moreover, special designs are proposed to mitigate the problem of thermal heat flow and induced mechanical stress to achieve a stable device. We demonstrated a gun based on cascaded cavities that is powered by only 1.1 mJ of THz energy in 300 cycles to accelerate electron bunches up to 250 keV. An additional two linac sections can be added with five and four cell cavities both operating at 300 GHz boosting the bunch energy up to 1.2 MeV using a 4-mJ THz pulse.

  11. Populations and lifetimes in the $v=n-l-1=2$ and 3 metastable cascades of $\\overline{p} He^{+}$ measured by pulsed and continuous antiproton beams

    CERN Document Server

    Hori, Masaki; Widmann, E; Yamazaki, T; Hayano, R S; Ishikawa, T; Torie, H A; Von Egidy, T; Hartmann, F; Ketzer, B; Maierl, C; Pohl, R; Kumakura, M; Morita, N; Horváth, D; Sugai, I

    2004-01-01

    Using the laser spectroscopy, the time evolution of the state population in the v equivalent n-l=2 and 3 metastable cascades of antiprotonic helium atoms were studied. The effects of the collision between antiprotonic helium and the ordinary helium atoms on the atomic cascade were also analyzed. The measurements were done using the pulsed and continuous types of antiproton beams supplied by the Low Energy Antiproton Ring. The studies revealed five phases in the life history of the metastable antiprotonic helium. (Edited abstract) 71 Refs.

  12. Cascaded Bragg scattering in fiber optics.

    Science.gov (United States)

    Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G

    2013-01-15

    We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.

  13. A novel electrochemical sensor for lead ion based on cascade DNA and quantum dots amplification

    International Nuclear Information System (INIS)

    Tang, Shurong; Lu, Wei; Gu, Fang; Tong, Ping; Yan, Zhiming; Zhang, Lan

    2014-01-01

    A new enzyme-free and ultrasensitive electrochemical Pb 2+ biosensor was developed. By coupling the DNA-assisted cascade of hybridization reaction with the quantum dots (QDs) for signal amplification, a detection limit as low as 6.1 pM can be obtained for Pb 2+ . In this study, the “8-17” DNAzyme was used for specific recognition of Pb 2+ . In the presence of Pb 2+ , the DNAzyme was activated and cleaved the substrate strand. And then, the hybridization between the linker probe and signal probe was initiated, which resulted in formation of a long cascade DNA structure as well as assemble of numerous QDs at last. By the use of magnetic beads, the free signal probe can be easily removed by external magnetic field. After acid lysis, a great amount of redox cations can be released from the QDs and eventually result in significantly amplified electrochemical signals. This method is highly sensitive, selective and simple without the participation of any protein based enzyme (nuclease), thereby holds great potential for real sample analysis

  14. Design and Implementation of a Laser-Based Ammonia Breath Sensor for Medical Applications

    KAUST Repository

    Owen, Kyle

    2012-06-01

    Laser-based sensors can be used as non-invasive monitoring tools to measure parts per billion (ppb) levels of trace gases. Ammonia sensors are useful for applications in environmental pollutant monitoring, atmospheric and combustion kinetic studies, and medical diagnostics. This sensor was specifically designed to measure ammonia in exhaled breath to be used as a medical diagnostic and monitoring tool, however, it can also be extended for use in other applications. Although ammonia is a naturally occurring species in exhaled breath, abnormally elevated levels can be an indication of adverse medical conditions. Laser-based breath diagnostics have many benefits since they are cost effective, non-invasive, painless, real time monitors. They have the potential to improve the quality of medical care by replacing currently used blood tests and providing immediate feedback to physicians. This sensor utilizes a Quantum Cascade Laser and Wavelength Modulation Spectroscopy with second harmonic normalized by first harmonic detection in a 76 m multi-pass absorption cell to measure ppb levels of ammonia with improved sensitivity over previous sensors. Initial measurements to determine the ammonia absorption line parameters were performed using direct absorption spectroscopy. This is the first experimental study of the ammonia absorption line transitions near 1103.46 cm1 with absorption spectroscopy. The linestrengths were measured with uncertainties less than 10%. The collisional broadening coefficients for each of the ammonia lines with nitrogen, oxygen, water vapor, and carbon dioxide were also measured, many of which had uncertainties less than 5%. The sensor was characterized to show a detectability limit of 10 ppb with an uncertainty of less than 5% at typical breath ammonia levels. Initial breath test results showed that some of the patients with chronic kidney disease had elevated ammonia levels while others had ammonia levels in the same range as expected for healthy

  15. Cascade of links in complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yeqian; Sun, Bihui [Department of Management Science, School of Government, Beijing Normal University, 100875 Beijing (China); Zeng, An, E-mail: anzeng@bnu.edu.cn [School of Systems Science, Beijing Normal University, 100875 Beijing (China)

    2017-01-30

    Cascading failure is an important process which has been widely used to model catastrophic events such as blackouts and financial crisis in real systems. However, so far most of the studies in the literature focus on the cascading process on nodes, leaving the possibility of link cascade overlooked. In many real cases, the catastrophic events are actually formed by the successive disappearance of links. Examples exist in the financial systems where the firms and banks (i.e. nodes) still exist but many financial trades (i.e. links) are gone during the crisis, and the air transportation systems where the airports (i.e. nodes) are still functional but many airlines (i.e. links) stop operating during bad weather. In this letter, we develop a link cascade model in complex networks. With this model, we find that both artificial and real networks tend to collapse even if a few links are initially attacked. However, the link cascading process can be effectively terminated by setting a few strong nodes in the network which do not respond to any link reduction. Finally, a simulated annealing algorithm is used to optimize the location of these strong nodes, which significantly improves the robustness of the networks against the link cascade. - Highlights: • We propose a link cascade model in complex networks. • Both artificial and real networks tend to collapse even if a few links are initially attacked. • The link cascading process can be effectively terminated by setting a few strong nodes. • A simulated annealing algorithm is used to optimize the location of these strong nodes.

  16. Cascade of links in complex networks

    International Nuclear Information System (INIS)

    Feng, Yeqian; Sun, Bihui; Zeng, An

    2017-01-01

    Cascading failure is an important process which has been widely used to model catastrophic events such as blackouts and financial crisis in real systems. However, so far most of the studies in the literature focus on the cascading process on nodes, leaving the possibility of link cascade overlooked. In many real cases, the catastrophic events are actually formed by the successive disappearance of links. Examples exist in the financial systems where the firms and banks (i.e. nodes) still exist but many financial trades (i.e. links) are gone during the crisis, and the air transportation systems where the airports (i.e. nodes) are still functional but many airlines (i.e. links) stop operating during bad weather. In this letter, we develop a link cascade model in complex networks. With this model, we find that both artificial and real networks tend to collapse even if a few links are initially attacked. However, the link cascading process can be effectively terminated by setting a few strong nodes in the network which do not respond to any link reduction. Finally, a simulated annealing algorithm is used to optimize the location of these strong nodes, which significantly improves the robustness of the networks against the link cascade. - Highlights: • We propose a link cascade model in complex networks. • Both artificial and real networks tend to collapse even if a few links are initially attacked. • The link cascading process can be effectively terminated by setting a few strong nodes. • A simulated annealing algorithm is used to optimize the location of these strong nodes.

  17. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets

    Directory of Open Access Journals (Sweden)

    Tobias Gabriel

    2017-03-01

    Full Text Available Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co–28Cr–9W–1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM and scanning electron microscopy (SEM, combined with electron backscatter diffraction (EBSD and energy dispersive X-ray spectroscopy (EDX. Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  18. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets.

    Science.gov (United States)

    Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe

    2017-03-10

    Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co-28Cr-9W-1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  19. Phase locking of a 1.5 Terahertz quantum cascade laser and use as a local oscillator in a heterodyne HEB receiver.

    Science.gov (United States)

    Rabanus, D; Graf, U U; Philipp, M; Ricken, O; Stutzki, J; Vowinkel, B; Wiedner, M C; Walther, C; Fischer, M; Faist, J

    2009-02-02

    We demonstrate for the first time the closure of an electronic phase lock loop for a continuous-wave quantum cascade laser (QCL) at 1.5 THz. The QCL is operated in a closed cycle cryo cooler. We achieved a frequency stability of better than 100 Hz, limited by the resolution bandwidth of the spectrum analyser. The PLL electronics make use of the intermediate frequency (IF) obtained from a hot electron bolometer (HEB) which is downconverted to a PLL IF of 125 MHz. The coarse selection of the longitudinal mode and the fine tuning is achieved via the bias voltage of the QCL. Within a QCL cavity mode, the free-running QCL shows frequency fluctuations of about 5 MHz, which the PLL circuit is able to control via the Stark-shift of the QCL gain material. Temperature dependent tuning is shown to be nonlinear, and of the order of -16 MHz/K. Additionally we have used the QCL as local oscillator (LO) to pump an HEB and perform, again for the first time at 1.5 THz, a heterodyne experiment, and obtain a receiver noise temperature of 1741 K.

  20. Recent results in mirror based high power laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Nielsen, Jakob Skov; Elvang, Mads

    2004-01-01

    In this paper, recent results in high power laser cutting, obtained in reseach and development projects are presented. Two types of mirror based focussing systems for laser cutting have been developed and applied in laser cutting studies on CO2-lasers up to 12 kW. In shipyard environment cutting...... speed increase relative to state-of-the-art cutting of over 100 % has been achieved....