WorldWideScience

Sample records for cartilage collagen degradation

  1. The response to estrogen deprivation on cartilage collagen degradation markers; CTX-II is unique compared to other markers of collagen turnover

    DEFF Research Database (Denmark)

    Bay-Jensen, Anne-Christine; Tabassi, Nadine; Sondergaard, Lene

    2009-01-01

    ABSTRACT: INTRODUCTION: The urinary level of type II collagen degradation marker CTX-II is increased in postmenopausal women and in ovariectomized rats, suggesting that estrogen deprivation induces cartilage breakdown. Here we investigate whether this response to estrogen holds true for other type...... II collagen turnover markers known to be affected in osteoarthritis, and whether it relates to its presence in specific areas of cartilage tissue. METHODS: The type II collagen degradation markers CTX-II and Helix-II were measured in body fluids of pre- and postmenopausal women and of ovariectomized...... rats receiving estrogen or not. Levels of PIIANP, a marker of type II collagen synthesis, were also measured in rats. Rat knee cartilage was analyzed for immunoreactivity of CTX-II and PIIANP and for type II collagen expression. RESULTS: As expected, urinary levels of CTX-II are significantly increased...

  2. The response to oestrogen deprivation of the cartilage collagen degradation marker, CTX-II, is unique compared with other markers of collagen turnover

    DEFF Research Database (Denmark)

    Bay-Jensen, Anne-Christine; Tabassi, Nadine C B; Sondergaard, Lene V

    2009-01-01

    The urinary level of the type II collagen degradation marker CTX-II is increased in postmenopausal women and in ovariectomised rats, suggesting that oestrogen deprivation induces cartilage breakdown. Here we investigate whether this response to oestrogen is also true for other type II collagen tu...

  3. Increased cartilage type II collagen degradation in patients with osteogenesis imperfecta used as a human model of bone type I collagen alterations.

    Science.gov (United States)

    Rousseau, Jean-Charles; Chevrel, Guillaume; Schott, Anne-Marie; Garnero, Patrick

    2010-04-01

    We investigated whether cartilage degradation is altered in adult patients with mild osteogenesis imperfecta (OI) used as a human model of bone type I collagen-related osteoarthritis (OA). Sixty-four adult patients with OI (39% women, mean age+/-SD: 37+/-12 years) and 64 healthy age-matched controls (54% women, 39+/-7 years) were included. We also compared data in 87 patients with knee OA (73% women, 63+/-8 years, mean disease duration: 6 years) and 291 age-matched controls (80% women, 62+/-10 years). Urinary C-terminal cross-linked telopeptide of type II collagen (CTX-II), a marker of cartilage degradation, urinary helical peptide of type I collagen (Helix-I), a marker of bone resorption, and the urinary ratio between non-isomerised/isomerised (alpha/beta CTX-I) type I collagen C-telopeptide, a marker of type I collagen maturation, were measured. Patients with OI had CTX-II levels similar to those of subjects with knee OA (p=0.89; mean+/-SEM; 460+/-57 ng/mmol Cr for OI group and 547+/-32 ng/mmol Cr for OA group) and significantly higher than both young (144+/-7.8 ng/mmol Cr, p<0.0001) and old controls (247+/-7 ng/mmol Cr, p<0.0001). In patients with OI, increased Helix-I (p<0.0001) and alpha/beta CTX-I (p=0.0067) were independently associated with increased CTX-II and together explained 26% of its variance (p< 0.0001). In patients with knee OA, increased levels of alpha/beta CTX-I ratio were also associated with higher CTX-II levels. Adult patients with OI or knee OA are characterized by increased cartilage type II collagen degradation, which is associated with increased type I collagen degradation for OI and lower type I collagen maturation for both OI and OA. These data suggest that both quantitative and qualitative alterations of bone type I collagen metabolism are involved in increased cartilage degradation in patients with OI or knee OA. Copyright 2009 Elsevier Inc. All rights reserved.

  4. The minor collagens in articular cartilage

    DEFF Research Database (Denmark)

    Luo, Yunyun; Sinkeviciute, Dovile; He, Yi

    2017-01-01

    Articular cartilage is a connective tissue consisting of a specialized extracellular matrix (ECM) that dominates the bulk of its wet and dry weight. Type II collagen and aggrecan are the main ECM proteins in cartilage. However, little attention has been paid to less abundant molecular components......, especially minor collagens, including type IV, VI, IX, X, XI, XII, XIII, and XIV, etc. Although accounting for only a small fraction of the mature matrix, these minor collagens not only play essential structural roles in the mechanical properties, organization, and shape of articular cartilage, but also...... fulfil specific biological functions. Genetic studies of these minor collagens have revealed that they are associated with multiple connective tissue diseases, especially degenerative joint disease. The progressive destruction of cartilage involves the degradation of matrix constituents including...

  5. FK506 protects against articular cartilage collagenous extra-cellular matrix degradation.

    Science.gov (United States)

    Siebelt, M; van der Windt, A E; Groen, H C; Sandker, M; Waarsing, J H; Müller, C; de Jong, M; Jahr, H; Weinans, H

    2014-04-01

    Osteoarthritis (OA) is a non-rheumatologic joint disease characterized by progressive degeneration of the cartilage extra-cellular matrix (ECM), enhanced subchondral bone remodeling, activation of synovial macrophages and osteophyte growth. Inhibition of calcineurin (Cn) activity through tacrolimus (FK506) in in vitro monolayer chondrocytes exerts positive effects on ECM marker expression. This study therefore investigated the effects of FK506 on anabolic and catabolic markers of osteoarthritic chondrocytes in 2D and 3D in vitro cultures, and its therapeutic effects in an in vivo rat model of OA. Effects of high and low doses of FK506 on anabolic (QPCR/histochemistry) and catabolic (QPCR) markers were evaluated in vitro on isolated (2D) and ECM-embedded chondrocytes (explants, 3D pellets). Severe cartilage damage was induced unilaterally in rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with FK506 orally and compared to twenty untreated controls. Subchondral cortical and trabecular bone changes (longitudinal microCT) and macrophage activation (SPECT/CT) were measured. Articular cartilage was analyzed ex vivo using contrast enhanced microCT and histology. FK506 treatment of osteoarthritic chondrocytes in vitro induced anabolic (mainly collagens) and reduced catabolic ECM marker expression. In line with this, FK506 treatment clearly protected ECM integrity in vivo by markedly decreasing subchondral sclerosis, less development of subchondral pores, depletion of synovial macrophage activation and lower osteophyte growth. FK506 protected cartilage matrix integrity in vitro and in vivo. Additionally, FK506 treatment in vivo reduced OA-like responses in different articular joint tissues and thereby makes Cn an interesting target for therapeutic intervention of OA. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. FK506 protects against articular cartilage collagenous extra-cellular matrix degradation

    NARCIS (Netherlands)

    M. Siebelt (Michiel); A.E. van der Windt (Anna); H.C. Groen (Harald); M. Sandker (Marjan); J.H. Waarsing (Jan); C. Müller (Cristina); M. de Jong (Marcel); H. Jahr (Holger); H.H. Weinans (Harrie)

    2014-01-01

    textabstractObjective: Osteoarthritis (OA) is a non-rheumatologic joint disease characterized by progressive degeneration of the cartilage extra-cellular matrix (ECM), enhanced subchondral bone remodeling, activation of synovial macrophages and osteophyte growth. Inhibition of calcineurin (Cn)

  7. Endocytic collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe Ziir

    2012-01-01

    it crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked...... up-regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional...... groups of mice clearly revealed a fibrosis protective role of uPARAP/Endo180. This effect appeared to directly reflect the activity of the collagen receptor, since no compensatory events were noted when comparing the mRNA expression profiles of the two groups of mice in an array system focused on matrix-degrading...

  8. The type II collagen fragments Helix-II and CTX-II reveal different enzymatic pathways of human cartilage collagen degradation

    DEFF Research Database (Denmark)

    Charni-Ben Tabassi, N; Desmarais, S; Jensen, Anne-Christine Bay

    2008-01-01

    human recombinant cathepsins (Cats) and matrix-metalloproteases (MMPs). Next, we analyzed the spontaneous release of Helix-II and CTX-II from cartilage sections of patients with knee OA who were immediately deep frozen after joint replacement to preserve endogenous enzyme activity until assay. Cartilage....... Cat D was unable to digest intact cartilage. MMPs-1, -3, -7, -9, and -13 efficiently released CTX-II, but only small amount of Helix-II. Neither CTX-II nor Helix-II alone was able to reflect accurately the collagenolytic activity of Cats and MMPs as reflected by the release of hydroxyproline. In OA...

  9. Chondrogenic properties of collagen type XI, a component of cartilage extracellular matrix.

    Science.gov (United States)

    Li, Ang; Wei, Yiyong; Hung, Clark; Vunjak-Novakovic, Gordana

    2018-08-01

    Cartilage extracellular matrix (ECM) has been used for promoting tissue engineering. However, the exact effects of ECM on chondrogenesis and the acting mechanisms are not well understood. In this study, we investigated the chondrogenic effects of cartilage ECM on human mesenchymal stem cells (MSCs) and identified the contributing molecular components. To this end, a preparation of articular cartilage ECM was supplemented to pellets of chondrogenically differentiating MSCs, pellets of human chondrocytes, and bovine articular cartilage explants to evaluate the effects on cell proliferation and the production of cartilaginous matrix. Selective enzymatic digestion and screening of ECM components were conducted to identify matrix molecules with chondrogenic properties. Cartilage ECM promoted MSC proliferation, production of cartilaginous matrix, and maturity of chondrogenic differentiation, and inhibited the hypertrophic differentiation of MSC-derived chondrocytes. Selective digestion of ECM components revealed a contributory role of collagens in promoting chondrogenesis. The screening of various collagen subtypes revealed strong chondrogenic effect of collagen type XI. Finally, collagen XI was found to promote production and inhibit degradation of cartilage matrix in human articular chondrocyte pellets and bovine articular cartilage explants. Our results indicate that cartilage ECM promotes chondrogenesis and inhibits hypertrophic differentiation in MSCs. Collagen type XI is the ECM component that has the strongest effects on enhancing the production and inhibiting the degradation of cartilage matrix. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Cartilage collagen damage in hip osteoarthritis similar to that seen in knee osteoarthritis; a case-control study of relationship between collagen, glycosaminoglycan and cartilage swelling.

    Science.gov (United States)

    Hosseininia, Shahrzad; Lindberg, Lisbeth R; Dahlberg, Leif E

    2013-01-09

    suggest a common degradative pathway of collagen in articular cartilage of different joints. Furthermore, the study suggests that biochemical changes precede more overt OA changes and that chondrocytes may have a capability to compensate molecular loss in the early phase of OA.

  11. Cartilage collagen damage in hip osteoarthritis similar to that seen in knee osteoarthritis; a case–control study of relationship between collagen, glycosaminoglycan and cartilage swelling

    Directory of Open Access Journals (Sweden)

    Hosseininia Shahrzad

    2013-01-01

    early stages of the degenerative hip OA process. Our results suggest a common degradative pathway of collagen in articular cartilage of different joints. Furthermore, the study suggests that biochemical changes precede more overt OA changes and that chondrocytes may have a capability to compensate molecular loss in the early phase of OA.

  12. Edaravone suppresses degradation of type II collagen.

    Science.gov (United States)

    Huang, Chen; Liao, Guangjun; Han, Jian; Zhang, Guofeng; Zou, Benguo

    2016-05-13

    Osteoarthritis (OA) is a degenerative joint disease affecting millions of people. The degradation and loss of type II collagen induced by proinflammatory cytokines secreted by chondrocytes, such as factor-α (TNF-α) is an important pathological mechanism to the progression of OA. Edaravone is a potent free radical scavenger, which has been clinically used to treat the neuronal damage following acute ischemic stroke. However, whether Edaravone has a protective effect in articular cartilage hasn't been reported before. In this study, we investigated the chondrocyte protective effects of Edaravone on TNF-α induced degradation of type Ⅱ collagen. And our results indicated that TNF-α treatment resulted in degradation of type Ⅱ collagen, which can be ameliorated by treatment with Edaravone in a dose dependent manner. Notably, it was found that the inhibitory effects of Edaravone on TNF-α-induced reduction of type Ⅱ collagen were mediated by MMP-3 and MMP-13. Mechanistically, we found that Edaravone alleviated TNF-α induced activation of STAT1 and expression of IRF-1. These findings suggest a potential protective effect of Edaravone in OA. Copyright © 2016. Published by Elsevier Inc.

  13. Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm

    NARCIS (Netherlands)

    Wilson, W.; Driessen, N.J.B.; Donkelaar, van C.C.; Ito, K.

    2006-01-01

    Tissue engineering is a promising method to treat damaged cartilage. So far it has not been possible to create tissue-engineered cartilage with an appropriate structural organization. It is envisaged that cartilage tissue engineering will significantly benefit from knowledge of how the collagen

  14. Supramolecular Organization of Collagen Fibrils in Healthy and Osteoarthritic Human Knee and Hip Joint Cartilage.

    Directory of Open Access Journals (Sweden)

    Riccardo Gottardi

    Full Text Available Cartilage matrix is a composite of discrete, but interacting suprastructures, i.e. cartilage fibers with microfibrillar or network-like aggregates and penetrating extrafibrillar proteoglycan matrix. The biomechanical function of the proteoglycan matrix and the collagen fibers are to absorb compressive and tensional loads, respectively. Here, we are focusing on the suprastructural organization of collagen fibrils and the degradation process of their hierarchical organized fiber architecture studied at high resolution at the authentic location within cartilage. We present electron micrographs of the collagenous cores of such fibers obtained by an improved protocol for scanning electron microscopy (SEM. Articular cartilages are permeated by small prototypic fibrils with a homogeneous diameter of 18 ± 5 nm that can align in their D-periodic pattern and merge into larger fibers by lateral association. Interestingly, these fibers have tissue-specific organizations in cartilage. They are twisted ropes in superficial regions of knee joints or assemble into parallel aligned cable-like structures in deeper regions of knee joint- or throughout hip joints articular cartilage. These novel observations contribute to an improved understanding of collagen fiber biogenesis, function, and homeostasis in hyaline cartilage.

  15. Postnatal development of collagen structure in ovine articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.; Schipper, H.; Engel, B.; Buist, W.; Kranenbarg, S.; Leeuwen, van J.L.

    2010-01-01

    Background Articular cartilage (AC) is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Across species, adult AC shows an arcade-like structure with collagen predominantly perpendicular to the subchondral bone near the bone, and collagen predominantly

  16. Postnatal development of collagen structure in ovine articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.; Schipper, H.; Engel, B.; Buist, W.; Kranenbarg, S.; Leeuwen, van J.L.

    2010-01-01

    BACKGROUND:Articular cartilage (AC) is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Across species, adult AC shows an arcade-like structure with collagen predominantly perpendicular to the subchondral bone near the bone, and collagen predominantly

  17. Visualisation of collagen fibrils in joint cartilage using STIM

    International Nuclear Information System (INIS)

    Reinert, T.; Reibetanz, U.; Vogt, J.; Butz, T.; Werner, A.; Gruender, W.

    2001-01-01

    The scanning transmission ion microscopy (STIM) method was used to investigate the collagen network structure of the articular cartilage from a pig's knee in comparison with high resolution nuclear magnetic resonance imaging (microscopic NMR-tomography) and polarised light microscopy (PLM). Single collagen fibrils down to 200 nm in diameter were visualised. It was proved that the cartilage collagen network consists partly of zones of oriented fibrils as suggested by NMR measurements. Radially oriented fibrils were found in the zone near the calcified zone (hypertrophic zone) of both tibia and femur, and in the tibial radial zone. Tangentially oriented fibrils were found in the femoral and tibial superficial zone and in a second zone of the femoral cartilage. Polarisation light microscopy reveals broader zones of orientation than it was found with STIM

  18. Postnatal development of collagen structure in ovine articular cartilage

    Directory of Open Access Journals (Sweden)

    Kranenbarg Sander

    2010-06-01

    Full Text Available Abstract Background Articular cartilage (AC is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Across species, adult AC shows an arcade-like structure with collagen predominantly perpendicular to the subchondral bone near the bone, and collagen predominantly parallel to the articular surface near the articular surface. Recent studies into collagen fibre orientation in stillborn and juvenile animals showed that this structure is absent at birth. Since the collagen structure is an important factor for AC mechanics, the absence of the adult Benninghoff structure has implications for perinatal AC mechanobiology. The current objective is to quantify the dynamics of collagen network development in a model animal from birth to maturity. We further aim to show the presence or absence of zonal differentiation at birth, and to assess differences in collagen network development between different anatomical sites of a single joint surface. We use quantitative polarised light microscopy to investigate properties of the collagen network and we use the sheep (Ovis aries as our model animal. Results Predominant collagen orientation is parallel to the articular surface throughout the tissue depth for perinatal cartilage. This remodels to the Benninghoff structure before the sheep reach sexual maturity. Remodelling of predominant collagen orientation starts at a depth just below the future transitional zone. Tissue retardance shows a minimum near the articular surface at all ages, which indicates the presence of zonal differentiation at all ages. The absolute position of this minimum does change between birth and maturity. Between different anatomical sites, we find differences in the dynamics of collagen remodelling, but no differences in adult collagen structure. Conclusions The collagen network in articular cartilage remodels between birth and sexual maturity from a network with predominant orientation parallel to the

  19. Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: Cartilage oligomeric matrix protein counteracts type IX collagen-induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures

    NARCIS (Netherlands)

    Blumbach, K.; Bastiaansen-Jenniskens, Y.M.; Groot, J. de; Paulsson, M.; Osch, G.J.V.M. van; Zaucke, F.

    2009-01-01

    Objective. Defects in the assembly and composition of cartilage extracellular matrix are likely to result in impaired matrix integrity and increased susceptibility to cartilage degeneration. The aim of this study was to determine the functional interaction of the collagen fibril-associated proteins

  20. Cartilage turnover reflected by metabolic processing of type II collagen

    DEFF Research Database (Denmark)

    Gudmann, Karoline Natasja Stæhr; Wang, Jianxia; Hoielt, Sabine

    2014-01-01

    The aim of this study was to enable measurement of cartilage formation by a novel biomarker of type II collagen formation. The competitive enzyme-linked immunosorbent assay (ELISA) Pro-C2 was developed and characterized for assessment of the beta splice variant of type II procollagen (PIIBNP). Th...

  1. Quantification of collagen distributions in rat hyaline and fibro cartilages based on second harmonic generation imaging

    Science.gov (United States)

    Zhu, Xiaoqin; Liao, Chenxi; Wang, Zhenyu; Zhuo, Shuangmu; Liu, Wenge; Chen, Jianxin

    2016-10-01

    Hyaline cartilage is a semitransparent tissue composed of proteoglycan and thicker type II collagen fibers, while fibro cartilage large bundles of type I collagen besides other territorial matrix and chondrocytes. It is reported that the meniscus (fibro cartilage) has a greater capacity to regenerate and close a wound compared to articular cartilage (hyaline cartilage). And fibro cartilage often replaces the type II collagen-rich hyaline following trauma, leading to scar tissue that is composed of rigid type I collagen. The visualization and quantification of the collagen fibrillar meshwork is important for understanding the role of fibril reorganization during the healing process and how different types of cartilage contribute to wound closure. In this study, second harmonic generation (SHG) microscope was applied to image the articular and meniscus cartilage, and textural analysis were developed to quantify the collagen distribution. High-resolution images were achieved based on the SHG signal from collagen within fresh specimens, and detailed observations of tissue morphology and microstructural distribution were obtained without shrinkage or distortion. Textural analysis of SHG images was performed to confirm that collagen in fibrocartilage showed significantly coarser compared to collagen in hyaline cartilage (p < 0.01). Our results show that each type of cartilage has different structural features, which may significantly contribute to pathology when damaged. Our findings demonstrate that SHG microscopy holds potential as a clinically relevant diagnostic tool for imaging degenerative tissues or assessing wound repair following cartilage injury.

  2. Vascular Canals in Permanent Hyaline Cartilage: Development, Corrosion of Nonmineralized Cartilage Matrix, and Removal of Matrix Degradation Products.

    Science.gov (United States)

    Gabner, Simone; Häusler, Gabriele; Böck, Peter

    2017-06-01

    Core areas in voluminous pieces of permanent cartilage are metabolically supplied via vascular canals (VCs). We studied cartilage corrosion and removal of matrix degradation products during the development of VCs in nose and rib cartilage of piglets. Conventional staining methods were used for glycosaminoglycans, immunohistochemistry was performed to demonstrate collagens types I and II, laminin, Ki-67, von Willebrand factor, VEGF, macrophage marker MAC387, S-100 protein, MMPs -2,-9,-13,-14, and their inhibitors TIMP1 and TIMP2. VCs derived from connective tissue buds that bulged into cartilage matrix ("perichondrial papillae", PPs). Matrix was corroded at the tips of PPs or resulting VCs. Connective tissue stromata in PPs and VCs comprised an axial afferent blood vessel, peripherally located wide capillaries, fibroblasts, newly synthesized matrix, and residues of corroded cartilage matrix (collagen type II, acidic proteoglycans). Multinucleated chondroclasts were absent, and monocytes/macrophages were not seen outside the blood vessels. Vanishing acidity characterized areas of extracellular matrix degradation ("preresorptive layers"), from where the dismantled matrix components diffused out. Leached-out material stained in an identical manner to intact cartilage matrix. It was detected in the stroma and inside capillaries and associated downstream veins. We conclude that the delicate VCs are excavated by endothelial sprouts and fibroblasts, whilst chondroclasts are specialized to remove high volumes of mineralized cartilage. VCs leading into permanent cartilage can be formed by corrosion or inclusion, but most VCs comprise segments that have developed in either of these ways. Anat Rec, 300:1067-1082, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Chicken collagen type II reduces articular cartilage destruction in a model of osteoarthritis in rats.

    Science.gov (United States)

    Xu, D; Shen, W

    2007-06-01

    To evaluate the therapeutic effects of domestic chicken collagen type II (CCII) on rat osteoarthritis (OA) and analyze concomitant changes in the level of Matrix metalloproteinase (MMP)-13, MMP-9, Cathepsin K and their mRNA as well as the tissue inhibitor of matrix metalloproteinase (TIMP)-1 mRNA in articular cartilage of osteoarthritic rats. Osteoarthritis models were surgically induced. Morphology of articular cartilage was done by haematoxylin and eosin staining and Mankin score was calculated, immunohistochemistry of MMP-13, MMP-9 and Cathepsin K was done by ABC method while the mRNA level for MMP-13, MMP-9, cathepsin K as well as TIMP-1 was evaluated by RT-PCR method. Oral administration of CCII reduced the morphological changes of osteoarthritic cartilage (shown by Mankin score), decreased levels of MMP-13, MMP-9, cathepsin K as well as their mRNA in articular cartilage from osteoarthritic rats while it exhibited no effect on TIMP-1 mRNA. Oral CCII reduced articular cartilage degradation of osteoarthritic rats and may probably be a potent drug candidate for OA treatment.

  4. The development of the collagen fibre network in tissue-engineered cartilage constructs in vivo. Engineered cartilage reorganises fibre network

    Directory of Open Access Journals (Sweden)

    H Paetzold

    2012-04-01

    Full Text Available For long term durability of tissue-engineered cartilage implanted in vivo, the development of the collagen fibre network orientation is essential as well as the distribution of collagen, since expanded chondrocytes are known to synthesise collagen type I. Typically, these properties differ strongly between native and tissue-engineered cartilage. Nonetheless, the clinical results of a pilot study with implanted tissue-engineered cartilage in pigs were surprisingly good. The purpose of this study was therefore to analyse if the structure and composition of the artificial cartilage tissue changes in the first 52 weeks after implantation. Thus, collagen network orientation and collagen type distribution in tissue-engineered cartilage-carrier-constructs implanted in the knee joints of Göttinger minipigs for 2, 26 or 52 weeks have been further investigated by processing digitised microscopy images of histological sections. The comparison to native cartilage demonstrated that fibre orientation over the cartilage depth has a clear tendency towards native cartilage with increasing time of implantation. After 2 weeks, the collagen fibres of the superficial zone were oriented parallel to the articular surface with little anisotropy present in the middle and deep zones. Overall, fibre orientation and collagen distribution within the implants were less homogenous than in native cartilage tissue. Despite a relatively low number of specimens, the consistent observation of a continuous approximation to native tissue is very promising and suggests that it may not be necessary to engineer the perfect tissue for implantation but rather to provide an intermediate solution to help the body to heal itself.

  5. Calcified cartilage or bone? Collagens in the tessellated endoskeletons of cartilaginous fish (sharks and rays).

    Science.gov (United States)

    Seidel, Ronald; Blumer, Michael; Pechriggl, Elisabeth-Judith; Lyons, Kady; Hall, Brian K; Fratzl, Peter; Weaver, James C; Dean, Mason N

    2017-10-01

    The primary skeletal tissue in elasmobranchs -sharks, rays and relatives- is cartilage, forming both embryonic and adult endoskeletons. Only the skeletal surface calcifies, exhibiting mineralized tiles (tesserae) sandwiched between a cartilage core and overlying fibrous perichondrium. These two tissues are based on different collagens (Coll II and I, respectively), fueling a long-standing debate as to whether tesserae are more like calcified cartilage or bone (Coll 1-based) in their matrix composition. We demonstrate that stingray (Urobatis halleri) tesserae are bipartite, having an upper Coll I-based 'cap' that merges into a lower Coll II-based 'body' zone, although tesserae are surrounded by cartilage. We identify a 'supratesseral' unmineralized cartilage layer, between tesserae and perichondrium, distinguished from the cartilage core in containing Coll I and X (a common marker for mammalian mineralization), in addition to Coll II. Chondrocytes within tesserae appear intact and sit in lacunae filled with Coll II-based matrix, suggesting tesserae originate in cartilage, despite comprising a diversity of collagens. Intertesseral joints are also complex in their collagenous composition, being similar to supratesseral cartilage closer to the perichondrium, but containing unidentified fibrils nearer the cartilage core. Our results indicate a unique potential for tessellated cartilage in skeletal biology research, since it lacks features believed diagnostic for vertebrate cartilage mineralization (e.g. hypertrophic and apoptotic chondrocytes), while offering morphologies amenable for investigating the regulation of complex mineralized ultrastructure and tissues patterned on multiple collagens. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography

    Science.gov (United States)

    Ravanfar, Mohammadreza; Pfeiffer, Ferris M.; Bozynski, Chantelle C.; Wang, Yuanbo; Yao, Gang

    2017-12-01

    Collagen degeneration is an important pathological feature of osteoarthritis. The purpose of this study is to investigate whether the polarization-sensitive optical coherence tomography (PSOCT)-based optical polarization tractography (OPT) can be useful in imaging collagen structural changes in human osteoarthritic cartilage samples. OPT eliminated the banding artifacts in conventional PSOCT by calculating the depth-resolved local birefringence and fiber orientation. A close comparison between OPT and PSOCT showed that OPT provided improved visualization and characterization of the zonal structure in human cartilage. Experimental results obtained in this study also underlined the importance of knowing the collagen fiber orientation in conventional polarized light microscopy assessment. In addition, parametric OPT imaging was achieved by quantifying the surface roughness, birefringence, and fiber dispersion in the superficial zone of the cartilage. These quantitative parametric images provided complementary information on the structural changes in cartilage, which can be useful for a comprehensive evaluation of collagen damage in osteoarthritic cartilage.

  7. Indentation stiffness does not discriminate between normal and degraded articular cartilage.

    Science.gov (United States)

    Brown, Cameron P; Crawford, Ross W; Oloyede, Adekunle

    2007-08-01

    Relative indentation characteristics are commonly used for distinguishing between normal healthy and degraded cartilage. The application of this parameter in surgical decision making and an appreciation of articular cartilage biomechanics has prompted us to hypothesise that it is difficult to define a reference stiffness to characterise normal articular cartilage. This hypothesis is tested for validity by carrying out biomechanical indentation of articular cartilage samples that are characterised as visually normal and degraded relative to proteoglycan depletion and collagen disruption. Compressive loading was applied at known strain rates to visually normal, artificially degraded and naturally osteoarthritic articular cartilage and observing the trends of their stress-strain and stiffness characteristics. While our results demonstrated a 25% depreciation in the stiffness of individual samples after proteoglycan depletion, they also showed that when compared to the stiffness of normal samples only 17% lie outside the range of the stress-strain behaviour of normal samples. We conclude that the extent of the variability in the properties of normal samples, and the degree of overlap (81%) of the biomechanical properties of normal and degraded matrices demonstrate that indentation data cannot form an accurate basis for distinguishing normal from abnormal articular cartilage samples with consequences for the application of this mechanical process in the clinical environment.

  8. Effect of collagen on magnetization transfer contrast assessed in cultured cartilage

    International Nuclear Information System (INIS)

    Aoki, Jun; Seo, Gwy-Suk; Karakida, Osamu; Ueda, Hitoshi; Sone, Shusuke; Hiraki, Yuji; Shukunami, Chisa; Moriya, Hiroto.

    1996-01-01

    We investigated the effect of collagen on magnetization transfer contrast (MTC) in cultured cartilage. In our culture system, only collagen synthesis was increased by the addition of vitamin C, while proteoglycan synthesis and the number of chondrocytes were unaffected. The MTC effect was assessed by using an off-resonance RF pulse (0.3 KHz off-resonance, sinc wave of 18 msec, maximum amplitude 4.61 x 10 -4 T) on a GRASS sequence. The cartilage cultured with vitamin C showed a higher MTC effect than that cultured without vitamin C. The major role of collagen on MTC was confirmed in living cartilage tissue. (author)

  9. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues.

    Science.gov (United States)

    Foldager, Casper Bindzus; Toh, Wei Seong; Gomoll, Andreas H; Olsen, Bjørn Reino; Spector, Myron

    2014-04-01

    The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti-collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins

  10. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues

    Science.gov (United States)

    Toh, Wei Seong; Gomoll, Andreas H.; Olsen, Bjørn Reino; Spector, Myron

    2014-01-01

    Objective: The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Design: Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti–collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. Results: When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. Conclusions: We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional

  11. Comparative proteomic analysis of normal and collagen IX null mouse cartilage reveals altered extracellular matrix composition and novel components of the collagen IX interactome.

    Science.gov (United States)

    Brachvogel, Bent; Zaucke, Frank; Dave, Keyur; Norris, Emma L; Stermann, Jacek; Dayakli, Münire; Koch, Manuel; Gorman, Jeffrey J; Bateman, John F; Wilson, Richard

    2013-05-10

    Collagen IX is an integral cartilage extracellular matrix component important in skeletal development and joint function. Proteomic analysis and validation studies revealed novel alterations in collagen IX null cartilage. Matrilin-4, collagen XII, thrombospondin-4, fibronectin, βig-h3, and epiphycan are components of the in vivo collagen IX interactome. We applied a proteomics approach to advance our understanding of collagen IX ablation in cartilage. The cartilage extracellular matrix is essential for endochondral bone development and joint function. In addition to the major aggrecan/collagen II framework, the interacting complex of collagen IX, matrilin-3, and cartilage oligomeric matrix protein (COMP) is essential for cartilage matrix stability, as mutations in Col9a1, Col9a2, Col9a3, Comp, and Matn3 genes cause multiple epiphyseal dysplasia, in which patients develop early onset osteoarthritis. In mice, collagen IX ablation results in severely disturbed growth plate organization, hypocellular regions, and abnormal chondrocyte shape. This abnormal differentiation is likely to involve altered cell-matrix interactions but the mechanism is not known. To investigate the molecular basis of the collagen IX null phenotype we analyzed global differences in protein abundance between wild-type and knock-out femoral head cartilage by capillary HPLC tandem mass spectrometry. We identified 297 proteins in 3-day cartilage and 397 proteins in 21-day cartilage. Components that were differentially abundant between wild-type and collagen IX-deficient cartilage included 15 extracellular matrix proteins. Collagen IX ablation was associated with dramatically reduced COMP and matrilin-3, consistent with known interactions. Matrilin-1, matrilin-4, epiphycan, and thrombospondin-4 levels were reduced in collagen IX null cartilage, providing the first in vivo evidence for these proteins belonging to the collagen IX interactome. Thrombospondin-4 expression was reduced at the mRNA level

  12. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianhua; Yang, Qiu; Cheng, Niangmei [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Tao, Xiaojun [Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan (China); Zhang, Zhihua; Sun, Xiaomin [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Key Laboratory of Biomedical Materials of Tianjin, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192 (China)

    2016-04-01

    For cartilage repair, ideal scaffolds should mimic natural extracellular matrix (ECM) exhibiting excellent characteristics, such as biocompatibility, suitable porosity, and good cell affinity. This study aimed to prepare a collagen/silk fibroin composite scaffold incorporated with poly-lactic-co-glycolic acid (PLGA) microsphere that can be applied in repairing cartilage. To obtain optimum conditions for manufacturing a composite scaffold, a scaffold composed of different collagen-to-silk fibroin ratios was evaluated by determining porosity, water absorption, loss rate in hot water, and cell proliferation. Results suggested that the optimal ratio of collagen and silk fibroin composite scaffold was 7:3. The microstructure and morphological characteristics of the obtained scaffold were also examined through scanning electron microscopy and Fourier transform infrared spectroscopy. The results of in vitro fluorescence staining of bone marrow stromal cells revealed that collagen/silk fibroin composite scaffold enhanced cell proliferation without eliciting side effects. The prepared composite scaffold incorporated with PLGA microsphere was implanted in fully thick articular cartilage defects in rabbits. Collagen/silk fibroin composite scaffold with PLGA microspheres could enhance articular cartilage regeneration and integration between the repaired cartilage and the surrounding cartilage. Therefore, this composite will be a promising material for cartilage repair and regeneration. - Highlights: • Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere proposed for cartilage repair was created. • In vivo, scaffold could enhance cartilage regeneration and integration between the repaired and surrounding cartilage. • In vitro, scaffold exhibits excellent characteristics, such as, improved porosity water absorption and good cell affinity.

  13. Mechanical stimulation to stimulate formation of a physiological collagen architecture in tissue-engineered cartilage; a numerical study

    NARCIS (Netherlands)

    Khoshgoftar, M.; Donkelaar, van C.C.; Ito, K.

    2011-01-01

    The load-bearing capacity of today's tissue-engineered (TE) cartilage is insufficient. The arcade-like collagen network in native cartilage plays an important role in its load-bearing properties. Inducing the formation of such collagen architecture in engineered cartilage can, therefore, enhance

  14. On the role of type IX collagen in the extracellular matrix of cartilage: type IX collagen is localized to intersections of collagen fibrils

    OpenAIRE

    1986-01-01

    The tissue distribution of type II and type IX collagen in 17-d-old chicken embryo was studied by immunofluorescence using polyclonal antibodies against type II collagen and a peptic fragment of type IX collagen (HMW), respectively. Both proteins were found only in cartilage where they were co-distributed. They occurred uniformly throughout the extracellular matrix, i.e., without distinction between pericellular, territorial, and interterritorial matrices. Tissues that undergo endochondral bo...

  15. Similar hyaline-like cartilage repair of osteochondral defects in rabbits using isotropic and anisotropic collagen scaffolds

    NARCIS (Netherlands)

    Mulder, E.L.W. de; Hannink, G.J.; Kuppevelt, T.H. van; Daamen, W.F.; Buma, P.

    2014-01-01

    Lesions in knee joint articular cartilage (AC) have limited repair capacity. Many clinically available treatments induce a fibrous-like cartilage repair instead of hyaline cartilage. To induce hyaline cartilage repair, we hypothesized that type I collagen scaffolds with fibers aligned perpendicular

  16. Susceptibility tensor imaging and tractography of collagen fibrils in the articular cartilage.

    Science.gov (United States)

    Wei, Hongjiang; Gibbs, Eric; Zhao, Peida; Wang, Nian; Cofer, Gary P; Zhang, Yuyao; Johnson, G Allan; Liu, Chunlei

    2017-11-01

    To investigate the B 0 orientation-dependent magnetic susceptibility of collagen fibrils within the articular cartilage and to determine whether susceptibility tensor imaging (STI) can detect the 3D collagen network within cartilage. Multiecho gradient echo datasets (100-μm isotropic resolution) were acquired from fixed porcine articular cartilage specimens at 9.4 T. The susceptibility tensor was calculated using phase images acquired at 12 or 15 different orientations relative to B 0 . The susceptibility anisotropy of the collagen fibril was quantified and diffusion tensor imaging (DTI) was compared against STI. 3D tractography was performed to visualize and track the collagen fibrils with DTI and STI. STI experiments showed the distinct and significant anisotropic magnetic susceptibility of collagen fibrils within the articular cartilage. STI can be used to measure and quantify susceptibility anisotropy maps. Furthermore, STI provides orientation information of the underlying collagen network via 3D tractography. The findings of this study demonstrate that STI can characterize the orientation variation of collagen fibrils where diffusion anisotropy fails. We believe that STI could serve as a sensitive and noninvasive marker to study the collagen fibrils microstructure. Magn Reson Med 78:1683-1690, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Alteration of cartilage surface collagen fibers differs locally after immobilization of knee joints in rats

    Science.gov (United States)

    Nagai, Momoko; Aoyama, Tomoki; Ito, Akira; Tajino, Junichi; Iijima, Hirotaka; Yamaguchi, Shoki; Zhang, Xiangkai; Kuroki, Hiroshi

    2015-01-01

    The purpose of this study was to examine the ultrastructural changes of surface cartilage collagen fibers, which differ by region and the length of the experimental period in an immobilization model of rat. Male Wistar rats were randomly divided into histological or macroscopic and ultrastructural assessment groups. The left knees of all the animals were surgically immobilized by external fixation for 1, 2, 4, 8 or 16 weeks (n = 5/time point). Sagittal histological sections of the medial mid-condylar region of the knee were obtained and assessed in four specific regions (contact and peripheral regions of the femur and tibia) and two zones (superficial and deep). To semi-quantify the staining intensity of the collagen fibers in the cartilage, picrosirius red staining was used. The cartilage surface changes of all the assessed regions were investigated by scanning electron microscopy (SEM). From histological and SEM observations, the fibrillation and irregular changes of the cartilage surface were more severe in the peripheral region than in the contact region. Interestingly, at 16 weeks post-immobilization, we observed non-fibrous structures at both the contact and peripheral regions. The collagen fiber staining intensity decreased in the contact region compared with the peripheral region. In conclusion, the alteration of surface collagen fiber ultrastructure and collagen staining intensity differed by the specific cartilage regions after immobilization. These results demonstrate that the progressive degeneration of cartilage is region specific, and depends on the length of the immobilization period. PMID:25939458

  18. Stability of Collagen Scaffold Implants for Animals with Iatrogenic Articular Cartilage Defects

    Directory of Open Access Journals (Sweden)

    Josef Jančář

    2009-01-01

    Full Text Available Synthesis and characterization of biodegradable hydrogels based on collagen modified by addition of synthetic biodegradable copolymer intended for preparation of porous scaffolds for mesenchymal stem cells used for possible implantation to animals with articular surface defects was investigated. The synthetic biodegradable tri-block copolymer used was the block copolymer of polyethylene glycol (PEG, polylactic acid (PLA, polyglycolic acid (PGA (PEG-PLGA endcapped with itaconic acid (ITA. The water-soluble carbodiimide and N-hydroxysuccimide system (EDC-NHS was chosen as the cross-linking agent used to control the rate of hydrogel resorption. Dependence of the physical properties of the prepared hydrogels on the concentration of the EDC-NHS cross-linker, reaction time and concentration of PEG-PLGA-ITA copolymer was examined. Swelling behaviour, thermal stability, surface morphology and degradation rate were also characterized. Based on the obtained results, it can be concluded that increase in concentration of the cross-linking agent, as well as prolonged cross-linking time and increased amount of synthetic copolymer lead to enhanced thermal stability of the gels together with a reduced swelling ratio and degradation rate in saline. The resorption rate of these gels used in preparation of cartilage scaffolds can be controlled over a wide time interval by varying the collagen/(PEG-PLGA-ITA blend composition or the conditions of the cross-linking reaction.

  19. Cartilage collagen type II seromarker patterns in axial spondyloarthritis and psoriatic arthritis

    DEFF Research Database (Denmark)

    Munk, Heidi Lausten; Gudmann, Natasja Staehr; Christensen, Anne Friesgaard

    2016-01-01

    The aim of the study was to assess the possible association between type II collagen turnover seromarkers and disease profile in patients with axial spondyloarthritis (SpA) and psoriatic arthritis (PsA). Outpatients with axial SpA (n = 110) or PsA (n = 101) underwent clinical examination including......-smokers, 0.43 ng/ml (p = 0.02), while PIIANP was higher in HLA-B27 positive, 2312 ng/ml versus negative patients, 2021 ng/ml (p = 0.03). In PsA, PIIANP and C2M did not differ between patients and controls, but PIIANP was elevated in patients not receiving DMARDs, 2726 ng/ml. In PsA, PIIANP and C2M did...... not differ according to smoking and HLA-B27. Cartilage degradation assessed by C2M is increased in SpA irrespective of treatment but not in PsA. Cartilage synthesis reflected by PIIANP is increased in untreated SpA and PsA. PIIANP correlates with CRP in SpA while not in PsA. In DMARD-naïve SpA but not in PsA...

  20. Changes in collagen synthesis and degradation during skeletal muscle growth

    International Nuclear Information System (INIS)

    Laurent, G.J.; McAnulty, R.J.; Gibson, J.

    1985-01-01

    The changes in collagen metabolism during skeletal muscle growth were investigated by measuring rates of synthesis and degradation during stretch-induced hypertrophy of the anterior latissimus dorsi muscle of the adult chicken (Gallus domesticus). Synthesis rates were obtained from the uptake of tritiated proline injected intravenously with a flooding dose of unlabeled proline. Degradation of newly synthesized and ''mature'' collagen was estimated from the amount of hydroxyproline in the free pool as small molecular weight moieties. In normal muscle, the synthesis rate was 1.1 +/- 0.3%/day, with 49 +/- 7% of the newly produced collagen degraded rapidly after synthesis. During hypertrophy there was an increase of about fivefold in the rate of synthesis (P less than 0.01), a 60% decrease in the rate of degradation of newly synthesized collagen (P less than 0.02), and an increase of about fourfold in the amount of degradation of mature collagen (P less than 0.01). These results suggest an important role for degradative as well as synthetic processes in the regulation of collagen mass. They indicate that enhanced degradation of mature collagen is required for muscle growth and suggest a physiological role for the pathway whereby in normal muscle, a large proportion of newly produced collagen is rapidly degraded

  1. In Vitro Analysis of Cartilage Regeneration Using a Collagen Type I Hydrogel (CaReS) in the Bovine Cartilage Punch Model.

    Science.gov (United States)

    Horbert, Victoria; Xin, Long; Foehr, Peter; Brinkmann, Olaf; Bungartz, Matthias; Burgkart, Rainer H; Graeve, T; Kinne, Raimund W

    2018-02-01

    Objective Limitations of matrix-assisted autologous chondrocyte implantation to regenerate functional hyaline cartilage demand a better understanding of the underlying cellular/molecular processes. Thus, the regenerative capacity of a clinically approved hydrogel collagen type I implant was tested in a standardized bovine cartilage punch model. Methods Cartilage rings (outer diameter 6 mm; inner defect diameter 2 mm) were prepared from the bovine trochlear groove. Collagen implants (± bovine chondrocytes) were placed inside the cartilage rings and cultured up to 12 weeks. Cartilage-implant constructs were analyzed by histology (hematoxylin/eosin; safranin O), immunohistology (aggrecan, collagens 1 and 2), and for protein content, RNA expression, and implant push-out force. Results Cartilage-implant constructs revealed vital morphology, preserved matrix integrity throughout culture, progressive, but slight proteoglycan loss from the "host" cartilage or its surface and decreasing proteoglycan release into the culture supernatant. In contrast, collagen 2 and 1 content of cartilage and cartilage-implant interface was approximately constant over time. Cell-free and cell-loaded implants showed (1) cell migration onto/into the implant, (2) progressive deposition of aggrecan and constant levels of collagens 1 and 2, (3) progressively increased mRNA levels for aggrecan and collagen 2, and (4) significantly augmented push-out forces over time. Cell-loaded implants displayed a significantly earlier and more long-lasting deposition of aggrecan, as well as tendentially higher push-out forces. Conclusion Preserved tissue integrity and progressively increasing cartilage differentiation and push-out forces for up to 12 weeks of cultivation suggest initial cartilage regeneration and lateral bonding of the implant in this in vitro model for cartilage replacement materials.

  2. Molecular modulation of articular cartilage degradation

    NARCIS (Netherlands)

    Landman, Ellie

    2013-01-01

    Cartilage homeostasis is maintained due to a balance between anabolic and catabolic processes, that are regulated by a complex network of signaling pathways. Disturbance of one or more of these pathways disrupts this balance, resulting in excessive breakdown of the extracellular matrix and

  3. Degradation of type IV collagen by neoplastic human skin fibroblasts

    International Nuclear Information System (INIS)

    Sheela, S.; Barrett, J.C.

    1985-01-01

    An assay for the degradation of type IV (basement membrane) collagen was developed as a biochemical marker for neoplastic cells from chemically transformed human skin fibroblasts. Type IV collagen was isolated from basement membrane of Syrian hamster lung and type I collagen was isolated from rat tails; the collagens were radioactively labelled by reductive alkylation. The abilities of normal (KD) and chemically transformed (Hut-11A) human skin fibroblasts to degrade the collagens were studied. A cell-associated assay was performed by growing either normal or transformed cells in the presence of radioactively labelled type IV collagen and measuring the released soluble peptides in the medium. This assay also demonstrated that KD cells failed to synthesize an activity capable of degrading type IV collagen whereas Hut-11A cells degraded type IV collagen in a linear manner for up to 4 h. Human serum at very low concentrations, EDTA and L-cysteine inhibited the enzyme activity, whereas protease inhibitors like phenylmethyl sulfonyl fluoride, N-ethyl maleimide or soybean trypsin inhibitor did not inhibit the enzyme from Hut-11A cells. These results suggest that the ability to degrade specifically type IV collagen may be an important marker for neoplastic human fibroblasts and supports a role for this collagenase in tumor cell invasion

  4. The Secret Life of Collagen: Temporal Changes in Nanoscale Fibrillar Pre-Strain and Molecular Organization during Physiological Loading of Cartilage.

    Science.gov (United States)

    Inamdar, Sheetal R; Knight, David P; Terrill, Nicholas J; Karunaratne, Angelo; Cacho-Nerin, Fernando; Knight, Martin M; Gupta, Himadri S

    2017-10-24

    Articular cartilage is a natural biomaterial whose structure at the micro- and nanoscale is critical for healthy joint function and where degeneration is associated with widespread disorders such as osteoarthritis. At the nanoscale, cartilage mechanical functionality is dependent on the collagen fibrils and hydrated proteoglycans that form the extracellular matrix. The dynamic response of these ultrastructural building blocks at the nanoscale, however, remains unclear. Here we measure time-resolved changes in collagen fibril strain, using small-angle X-ray diffraction during compression of bovine and human cartilage explants. We demonstrate the existence of a collagen fibril tensile pre-strain, estimated from the D-period at approximately 1-2%, due to osmotic swelling pressure from the proteoglycan. We reveal a rapid reduction and recovery of this pre-strain which occurs during stress relaxation, approximately 60 s after the onset of peak load. Furthermore, we show that this reduction in pre-strain is linked to disordering in the intrafibrillar molecular packing, alongside changes in the axial overlapping of tropocollagen molecules within the fibril. Tissue degradation in the form of selective proteoglycan removal disrupts both the collagen fibril pre-strain and the transient response during stress relaxation. This study bridges a fundamental gap in the knowledge describing time-dependent changes in collagen pre-strain and molecular organization that occur during physiological loading of articular cartilage. The ultrastructural details of this transient response are likely to transform our understanding of the role of collagen fibril nanomechanics in the biomechanics of cartilage and other hydrated soft tissues.

  5. Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique

    NARCIS (Netherlands)

    Basser, P.J.; Schneiderman, R.; Bank, R.A.; Wachtel, E.; Maroudas, A.

    1998-01-01

    We have used an isotropic osmotic stress technique to assess the swelling pressures of human articular cartilage over a wide range of hydrations in order to determine from these measurements, for the first time, the tensile stress in the collagen network, P(c), as a function of hydration. Osmotic

  6. Postnatal development of depth-dependent collagen density in ovine articular cartilage

    Directory of Open Access Journals (Sweden)

    Kranenbarg Sander

    2010-10-01

    Full Text Available Abstract Background Articular cartilage (AC is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Adult AC is characterised by a depth-dependent composition and structure of the extracellular matrix that results in depth-dependent mechanical properties, important for the functions of adult AC. Collagen is the most abundant solid component and it affects the mechanical behaviour of AC. The current objective is to quantify the postnatal development of depth-dependent collagen density in sheep (Ovis aries AC between birth and maturity. We use Fourier transform infra-red micro-spectroscopy to investigate collagen density in 48 sheep divided over ten sample points between birth (stillborn and maturity (72 weeks. In each animal, we investigate six anatomical sites (caudal, distal and rostral locations at the medial and lateral side of the joint in the distal metacarpus of a fore leg and a hind leg. Results Collagen density increases from birth to maturity up to our last sample point (72 weeks. Collagen density increases at the articular surface from 0.23 g/ml ± 0.06 g/ml (mean ± s.d., n = 48 at 0 weeks to 0.51 g/ml ± 0.10 g/ml (n = 46 at 72 weeks. Maximum collagen density in the deeper cartilage increases from 0.39 g/ml ± 0.08 g/ml (n = 48 at 0 weeks to 0.91 g/ml ± 0.13 g/ml (n = 46 at 72 weeks. Most collagen density profiles at 0 weeks (85% show a valley, indicating a minimum, in collagen density near the articular surface. At 72 weeks, only 17% of the collagen density profiles show a valley in collagen density near the articular surface. The fraction of profiles with this valley stabilises at 36 weeks. Conclusions Collagen density in articular cartilage increases in postnatal life with depth-dependent variation, and does not stabilize up to 72 weeks, the last sample point in our study. We find strong evidence for a valley in collagen densities near the articular surface that is present in the youngest

  7. Comparison of three types of chondrocytes in collagen scaffolds for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Zhang Lu; Spector, Myron

    2009-01-01

    The objective of this study was to compare the chondrogenesis in type I and II collagen scaffolds seeded with chondrocytes from three types of cartilage, after four weeks of culture: auricular (AU), articular (AR) and meniscal (ME). Related aims were to investigate the expression of a contractile muscle actin isoform, α-smooth muscle actin (SMA), in the cells in the scaffold and to determine the presence of a lubricating glycoprotein, lubricin, in the constructs. Adult goat AU, AR and ME chondrocytes were seeded into two types of collagen scaffolds: type II collagen and type I/III collagen. After four weeks of culture, the constructs were prepared for histochemical and immunohistochemical analysis of the distribution of glycosaminoglycan (GAG), types I and II collagen, elastin, SM and lubricin. AU constructs contained substantially more tissue than the AR and ME samples. The AU constructs exhibited neocartilage, but no elastin. There were no notable differences between the type I and II collagen scaffolds. Novel findings were the expression of SMA by the AU cells in the scaffolds and the presence of lubricin in the AR and AU constructs. AU cells have the capability to produce cartilage in collagen scaffolds under conditions in which there is little histogenesis by AR and ME cells.

  8. Comparison of three types of chondrocytes in collagen scaffolds for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lu [Department of Plastic and Reconstructive Surgery, Shanghai Tissue Engineering Center, Shanghai 9th People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Spector, Myron, E-mail: luzhangmd@gmail.co [Tissue Engineering, VA Boston Healthcare System, Boston, MA (United States)

    2009-08-15

    The objective of this study was to compare the chondrogenesis in type I and II collagen scaffolds seeded with chondrocytes from three types of cartilage, after four weeks of culture: auricular (AU), articular (AR) and meniscal (ME). Related aims were to investigate the expression of a contractile muscle actin isoform, alpha-smooth muscle actin (SMA), in the cells in the scaffold and to determine the presence of a lubricating glycoprotein, lubricin, in the constructs. Adult goat AU, AR and ME chondrocytes were seeded into two types of collagen scaffolds: type II collagen and type I/III collagen. After four weeks of culture, the constructs were prepared for histochemical and immunohistochemical analysis of the distribution of glycosaminoglycan (GAG), types I and II collagen, elastin, SM and lubricin. AU constructs contained substantially more tissue than the AR and ME samples. The AU constructs exhibited neocartilage, but no elastin. There were no notable differences between the type I and II collagen scaffolds. Novel findings were the expression of SMA by the AU cells in the scaffolds and the presence of lubricin in the AR and AU constructs. AU cells have the capability to produce cartilage in collagen scaffolds under conditions in which there is little histogenesis by AR and ME cells.

  9. Collagen Structural Hierarchy and Susceptibility to Degradation by Ultraviolet Radiation.

    Science.gov (United States)

    Rabotyagova, Olena S; Cebe, Peggy; Kaplan, David L

    2008-12-01

    Collagen type I is the most abundant extracellular matrix protein in the human body, providing the basis for tissue structure and directing cellular functions. Collagen has complex structural hierarchy, organized at different length scales, including the characteristic triple helical feature. In the present study, the relationship between collagen structure (native vs. denatured) and sensitivity to UV radiation was assessed, with a focus on changes in primary structure, changes in conformation, microstructure and material properties. A brief review of free radical reactions involved in collagen degradation is also provided as a mechanistic basis for the changes observed in the study. Structural and functional changes in the collagens were related to the initial conformation (native vs. denatured) and the energy of irradiation. These changes were tracked using SDS-PAGE to assess molecular weight, Fourier transform infrared (FTIR) spectroscopy to study changes in the secondary structure, and atomic force microscopy (AFM) to characterize changes in mechanical properties. The results correlate differences in sensitivity to irradiation with initial collagen structural state: collagen in native conformation vs. heat-treated (denatured) collagen. Changes in collagen were found at all levels of the hierarchical structural organization. In general, the native collagen triple helix is most sensitive to UV-254nm radiation. The triple helix delays single chain degradation. The loss of the triple helix in collagen is accompanied by hydrogen abstraction through free radical mechanisms. The results received suggest that the effects of electromagnetic radiation on biologically relevant extracellular matrices (collagen in the present study) are important to assess in the context of the state of collagen structure. The results have implications in tissue remodeling, wound repair and disease progression.

  10. The identification of CD163 expressing phagocytic chondrocytes in joint cartilage and its novel scavenger role in cartilage degradation.

    Directory of Open Access Journals (Sweden)

    Kai Jiao

    Full Text Available BACKGROUND: Cartilage degradation is a typical characteristic of arthritis. This study examined whether there was a subset of phagocytic chondrocytes that expressed the specific macrophage marker, CD163, and investigated their role in cartilage degradation. METHODS: Cartilage from the knee and temporomandibular joints of Sprague-Dawley rats was harvested. Cartilage degradation was experimentally-induced in rat temporomandibular joints, using published biomechanical dental methods. The expression levels of CD163 and inflammatory factors within cartilage, and the ability of CD163(+ chondrocytes to conduct phagocytosis were investigated. Cartilage from the knees of patients with osteoarthritis and normal cartilage from knee amputations was also investigated. RESULTS: In the experimentally-induced degrading cartilage from temporomandibular joints, phagocytes were capable of engulfing neighboring apoptotic and necrotic cells, and the levels of CD163, TNF-α and MMPs were all increased (P0.05. CD163(+ chondrocytes were found in the cartilage mid-zone of temporomandibular joints and knee from healthy, three-week old rats. Furthermore, an increased number of CD163(+ chondrocytes with enhanced phagocytic activity were present in Col-II(+ chondrocytes isolated from the degraded cartilage of temporomandibular joints in the eight-week experimental group compared with their age-matched controls. Increased number with enhanced phagocytic activity of CD163(+ chondrocytes were also found in isolated Col-II(+ chondrocytes stimulated with TNF-α (P<0.05. Mid-zone distribution of CD163(+ cells accompanied with increased expression of CD163 and TNF-α were further confirmed in the isolated Col-II(+ chondrocytes from the knee cartilage of human patients with osteoarthritis, in contrast to the controls (both P<0.05. CONCLUSIONS: An increased number of CD163(+ chondrocytes with enhanced phagocytic activity were discovered within degraded joint cartilage, indicating a

  11. Exogenous fibroblast growth factor 9 attenuates cartilage degradation and aggravates osteophyte formation in post-traumatic osteoarthritis.

    Science.gov (United States)

    Zhou, S; Wang, Z; Tang, J; Li, W; Huang, J; Xu, W; Luo, F; Xu, M; Wang, J; Wen, X; Chen, L; Chen, H; Su, N; Shen, Y; Du, X; Xie, Y; Chen, L

    2016-12-01

    The aim of the present study is to investigate the effects of exogenous fibroblast growth factor (FGF)9 on the progression of post-traumatic osteoarthritis (OA). The expression of FGF9 in articular cartilage with OA is detected by immunohistochemistry (IHC). The effects of intra-articular exogenous FGF9 injection on post-traumatic OA induced by the destabilization of the medial meniscus (DMM) surgery are evaluated. Cartilage changes and osteophyte formation in knee joints are investigated by histological analysis. Changes in subchondral bone are evaluated by microcomputed tomography (micro-CT). The effect of exogenous FGF9 on an interleukin-1β (IL-1β)-induced ex vivo OA model of human articular cartilage tissues is also evaluated. FGF9 expression was down-regulated in articular chondrocytes of OA but ectopically induced at sites of osteophyte formation. Intra-articular injection of exogenous FGF9 attenuated articular cartilage degradation in mice after DMM surgery. Exogenous FGF9 suppressed collagen X and MMP13 expressions in OA cartilage, while promoted collagen II expression. Similar results were observed in IL-1β-induced ex vivo OA model. Intra-articular injection of FGF9 had no significant effect on the subchondral bone of knee joints after DMM surgery, but aggravated osteophyte formation. The expressions of SOX9 and collagen II, and cell proliferation were up-regulated at sites of initial osteophyte formation in mice with exogenous FGF9 treatment. Intra-articular injection of exogenous FGF9 delays articular cartilage degradation in post-traumatic OA, while aggravates osteophyte formation. Copyright © 2016. Published by Elsevier Ltd.

  12. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography

    International Nuclear Information System (INIS)

    Ugryumova, Nadya; Attenburrow, Don P; Winlove, C Peter; Matcher, Stephen J

    2005-01-01

    Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. x 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components

  13. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ugryumova, Nadya; Attenburrow, Don P; Winlove, C Peter; Matcher, Stephen J [Biomedical Physics Group, School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2005-08-07

    Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. x 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components.

  14. Collagen-binding peptidoglycans inhibit MMP mediated collagen degradation and reduce dermal scarring.

    Directory of Open Access Journals (Sweden)

    Kate Stuart

    Full Text Available Scarring of the skin is a large unmet clinical problem that is of high patient concern and impact. Wound healing is complex and involves numerous pathways that are highly orchestrated, leaving the skin sealed, but with abnormal organization and composition of tissue components, namely collagen and proteoglycans, that are then remodeled over time. To improve healing and reduce or eliminate scarring, more rapid restoration of healthy tissue composition and organization offers a unique approach for development of new therapeutics. A synthetic collagen-binding peptidoglycan has been developed that inhibits matrix metalloproteinase-1 and 13 (MMP-1 and MMP-13 mediated collagen degradation. We investigated the synthetic peptidoglycan in a rat incisional model in which a single dose was delivered in a hyaluronic acid (HA vehicle at the time of surgery prior to wound closure. The peptidoglycan treatment resulted in a significant reduction in scar tissue at 21 days as measured by histology and visual analysis. Improved collagen architecture of the treated wounds was demonstrated by increased tensile strength and transmission electron microscopy (TEM analysis of collagen fibril diameters compared to untreated and HA controls. The peptidoglycan's mechanism of action includes masking existing collagen and inhibiting MMP-mediated collagen degradation while modulating collagen organization. The peptidoglycan can be synthesized at low cost with unique design control, and together with demonstrated preclinical efficacy in reducing scarring, warrants further investigation for dermal wound healing.

  15. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient.

    Science.gov (United States)

    Ren, Xiang; Wang, Fuyou; Chen, Cheng; Gong, Xiaoyuan; Yin, Li; Yang, Liu

    2016-07-20

    Cartilage tissue engineering is a promising approach for repairing and regenerating cartilage tissue. To date, attempts have been made to construct zonal cartilage that mimics the cartilaginous matrix in different zones. However, little attention has been paid to the chondrocyte density gradient within the articular cartilage. We hypothesized that the chondrocyte density gradient plays an important role in forming the zonal distribution of extracellular matrix (ECM). In this study, collagen type II hydrogel/chondrocyte constructs were fabricated using a bioprinter. Three groups were created according to the total cell seeding density in collagen type II pre-gel: Group A, 2 × 10(7) cells/mL; Group B, 1 × 10(7) cells/mL; and Group C, 0.5 × 10(7) cells/mL. Each group included two types of construct: one with a biomimetic chondrocyte density gradient and the other with a single cell density. The constructs were cultured in vitro and harvested at 0, 1, 2, and 3 weeks for cell viability testing, reverse-transcription quantitative PCR (RT-qPCR), biochemical assays, and histological analysis. We found that total ECM production was positively correlated with the total cell density in the early culture stage, that the cell density gradient distribution resulted in a gradient distribution of ECM, and that the chondrocytes' biosynthetic ability was affected by both the total cell density and the cell distribution pattern. Our results suggested that zonal engineered cartilage could be fabricated by bioprinting collagen type II hydrogel constructs with a biomimetic cell density gradient. Both the total cell density and the cell distribution pattern should be optimized to achieve synergistic biological effects.

  16. Cartilage oligomeric matrix protein deficiency promotes early onset and the chronic development of collagen-induced arthritis

    DEFF Research Database (Denmark)

    Geng, Hui; Carlsen, Stefan; Nandakumar, Kutty

    2008-01-01

    ABSTRACT: INTRODUCTION: Cartilage oligomeric matrix protein (COMP) is a homopentameric protein in cartilage. The development of arthritis, like collagen-induced arthritis (CIA), involves cartilage as a target tissue. We have investigated the development of CIA in COMP-deficient mice. METHODS: COMP......-deficient mice in the 129/Sv background were backcrossed for 10 generations against B10.Q mice, which are susceptible to chronic CIA. COMP-deficient and wild-type mice were tested for onset, incidence, and severity of arthritis in both the collagen and collagen antibody-induced arthritis models. Serum anti......-collagen II and anti-COMP antibodies as well as serum COMP levels in arthritic and wild-type mice were measured by enzyme-linked immunosorbent assay. RESULTS: COMP-deficient mice showed a significant early onset and increase in the severity of CIA in the chronic phase, whereas collagen II-antibody titers were...

  17. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Chen, Chih-Hao; Chen, Jyh-Ping; Shyu, Victor Bong-Hang; Lee, Ming-Yih

    2014-01-01

    Selective laser sintering (SLS), an additive manufacturing (AM) technology, can be used to produce tissue engineering scaffolds with pre-designed macro and micro features based on computer-aided design models. An in-house SLS machine was built and 3D poly-ε-caprolactone (PCL) scaffolds were manufactured using a layer-by-layer design of scaffold struts with varying orientations (0°/45°/0°/45°, 0°/90°/0°/90°, 0°/45°/90°/135°), producing scaffolds with pores of different shapes and distribution. To better enhance the scaffold properties, chondrocytes were seeded in collagen gel and loaded in scaffolds for cartilage tissue engineering. Gel uptake and dynamic mechanical analysis demonstrated the better suitability of the 0°/90°/0°/90° scaffolds for reconstructive cartilage tissue engineering purposes. Chondrocytes were then seeded onto the 0°/90°/0°/90° scaffolds in collagen I hydrogel (PCL/COL1) and compared to medium-suspended cells in terms of their cartilage-like tissue engineering parameters. PCL/COL1 allowed better cell proliferation when compared to PCL or two-dimensional tissue culture polystyrene. Scanning electron microscopy and confocal microscopy observations demonstrated a similar trend for extracellular matrix production and cell survival. Glycosaminoglycan and collagen II quantification also demonstrated the superior matrix secretion properties of PCL/COL1 hybrid scaffolds. Collagen-gel-suspended chondrocytes loaded in SLS-manufactured PCL scaffolds may provide a means of producing tissue-engineered cartilage with customized shapes and designs via AM technology. (paper)

  18. Collagene order of articular cartilage by clinical magnetic resonance images and its age dependency

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, P.; Gruender, W. [Inst. of Medical Physics and Biophysics, Univ. of Leipzig (Germany)

    2005-07-01

    The present papers describes a novel method to obtain information on the degree of order of the collagen network of the knee meniscal cartilage by means of a single clinical MRI. Images were obtained from 34 healthy volunteers aged between 6 and 76 years as well as from one patient with clinically-diagnosed arthrosis at the age of 32 and 37 years. A siemens vision (1.5 T) MRT with TR = 750 ms, TE = 50 ms, FoV = 160 mm, and Matrix 512 x 512 was used for this purpose. The MR signal intensities of the cartilage were read out along slices with constant height above the subchondral bone and plotted versus the actual angle to the external magnetic field. The obtained intensity curves were fitted by a model distribution, and the degree of order of the collagen fibers was calculated. For the knee meniscal cartilage, there was an age-dependency of the degree of order and a significant deviation of the volunteer with arthrosis from the normal curve. The results are discussed in view of the arcade model and of a possible use of non-invasive clinical MRT for the detection of early arthrotic changes of cartilage. (orig.)

  19. Cartilage regeneration using a porous scaffold, a collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite

    International Nuclear Information System (INIS)

    Ohyabu, Yohimi; Adegawa, Takuro; Yoshioka, Tomohiko; Ikoma, Toshiyuki; Uemura, Toshimasa; Tanaka, Junzo

    2010-01-01

    Because cartilage has limited potential for self-repair, tissue engineering is expected to replace the present therapies for damaged cartilage, such as total knee arthroplasty. However, scaffolds suitable for cartilage tissue engineering have not been established. We synthesized a novel porous scaffold, a collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite (pCol-HAp/ChS), containing materials which resemble extracellular matrices in bone and cartilage tissues, which needs high compressive strength for clinical use. HAp/ChS had smaller crystals and a larger total surface area than HAp. SEM images showed pCol-HAp/ChS to have the roughest surface compared with pCol and pCol-HAp. The mechanical properties suggest that pCol-HAp/ChS and pCol/HAp are similar, and superior to pCol. Seeding experiments showed a uniform distribution of mesenchymal stem cells (MSCs) in pCol-HAp/ChS and pCol/HAp. Safranin O, Toluidine blue and Alcian blue staining after 2 weeks of culture revealed pCol-HAp/ChS to be the most chondrogenic in each case. In addition, MSCs in pCol-HAp/ChS produced more glycosaminoglycans, a cartilage matrix, than those in pCol-HAp. Further, pCol-HAp/ChS regenerated 15 times more cartilaginous tissue than pCol. From these results, pCol-HAp/ChS is expected to be a candidate for a scaffold for cartilage tissue engineering in place of collagen sponge.

  20. Cartilage regeneration using a porous scaffold, a collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite

    Energy Technology Data Exchange (ETDEWEB)

    Ohyabu, Yohimi, E-mail: ooyabu.yoshimi@aist.go.jp [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1, S7-5 Ookayama, Meguro, Tokyo 152-8550 (Japan); Nanotechnology Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Central-4, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566 (Japan); Adegawa, Takuro; Yoshioka, Tomohiko [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1, S7-5 Ookayama, Meguro, Tokyo 152-8550 (Japan); Ikoma, Toshiyuki [Biomaterials Center, National Institute for Materials Science, 1-1 Sengen, Tsukuba, Ibaraki, 305-0047 (Japan); Uemura, Toshimasa [Nanotechnology Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Central-4, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566 (Japan); Tanaka, Junzo [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1, S7-5 Ookayama, Meguro, Tokyo 152-8550 (Japan)

    2010-10-15

    Because cartilage has limited potential for self-repair, tissue engineering is expected to replace the present therapies for damaged cartilage, such as total knee arthroplasty. However, scaffolds suitable for cartilage tissue engineering have not been established. We synthesized a novel porous scaffold, a collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite (pCol-HAp/ChS), containing materials which resemble extracellular matrices in bone and cartilage tissues, which needs high compressive strength for clinical use. HAp/ChS had smaller crystals and a larger total surface area than HAp. SEM images showed pCol-HAp/ChS to have the roughest surface compared with pCol and pCol-HAp. The mechanical properties suggest that pCol-HAp/ChS and pCol/HAp are similar, and superior to pCol. Seeding experiments showed a uniform distribution of mesenchymal stem cells (MSCs) in pCol-HAp/ChS and pCol/HAp. Safranin O, Toluidine blue and Alcian blue staining after 2 weeks of culture revealed pCol-HAp/ChS to be the most chondrogenic in each case. In addition, MSCs in pCol-HAp/ChS produced more glycosaminoglycans, a cartilage matrix, than those in pCol-HAp. Further, pCol-HAp/ChS regenerated 15 times more cartilaginous tissue than pCol. From these results, pCol-HAp/ChS is expected to be a candidate for a scaffold for cartilage tissue engineering in place of collagen sponge.

  1. Complementary roles of intracellular and pericellular collagen degradation pathways in vivo

    DEFF Research Database (Denmark)

    Wagenaar-Miller, Rebecca A; Engelholm, Lars H; Gavard, Julie

    2007-01-01

    Collagen degradation is essential for cell migration, proliferation, and differentiation. Two key turnover pathways have been described for collagen: intracellular cathepsin-mediated degradation and pericellular collagenase-mediated degradation. However, the functional relationship between these ...

  2. Similar hyaline-like cartilage repair of osteochondral defects in rabbits using isotropic and anisotropic collagen scaffolds.

    Science.gov (United States)

    de Mulder, Eric L W; Hannink, Gerjon; van Kuppevelt, Toin H; Daamen, Willeke F; Buma, Pieter

    2014-02-01

    Lesions in knee joint articular cartilage (AC) have limited repair capacity. Many clinically available treatments induce a fibrous-like cartilage repair instead of hyaline cartilage. To induce hyaline cartilage repair, we hypothesized that type I collagen scaffolds with fibers aligned perpendicular to the AC surface would result in qualitatively better tissue repair due to a guided cellular influx from the subchondral bone. By specific freezing protocols, type I collagen scaffolds with isotropic and anisotropic fiber architectures were produced. Rabbits were operated on bilaterally and two full thickness defects were created in each knee joint. The defects were filled with (1) an isotropic scaffold, (2) an anisotropic scaffold with pores parallel to the cartilage surface, and (3) an anisotropic scaffold with pores perpendicular to the cartilage surface. Empty defects served as controls. After 4 (n=13) and 12 (n=13) weeks, regeneration was scored qualitatively and quantitatively using histological analysis and a modified O'Driscoll score. After 4 weeks, all defects were completely filled with partially differentiated hyaline cartilage tissue. No differences in O'Driscoll scores were measured between empty defects and scaffold types. After 12 weeks, all treatments led to hyaline cartilage repair visualized by increased glycosaminoglycan staining. Total scores were significantly increased for parallel anisotropic and empty defects over time (phyaline-like cartilage repair. Fiber architecture had no effect on cartilage repair.

  3. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Haaparanta, Anne-Marie; Järvinen, Elina; Cengiz, Ibrahim Fatih; Ellä, Ville; Kokkonen, Harri T; Kiviranta, Ilkka; Kellomäki, Minna

    2014-04-01

    In this study, three-dimensional (3D) porous scaffolds were developed for the repair of articular cartilage defects. Novel collagen/polylactide (PLA), chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds were fabricated by combining freeze-dried natural components and synthetic PLA mesh, where the 3D PLA mesh gives mechanical strength, and the natural polymers, collagen and/or chitosan, mimic the natural cartilage tissue environment of chondrocytes. In total, eight scaffold types were studied: four hybrid structures containing collagen and/or chitosan with PLA, and four parallel plain scaffolds with only collagen and/or chitosan. The potential of these types of scaffolds for cartilage tissue engineering applications were determined by the analysis of the microstructure, water uptake, mechanical strength, and the viability and attachment of adult bovine chondrocytes to the scaffolds. The manufacturing method used was found to be applicable for the manufacturing of hybrid scaffolds with highly porous 3D structures. All the hybrid scaffolds showed a highly porous structure with open pores throughout the scaffold. Collagen was found to bind water inside the structure in all collagen-containing scaffolds better than the chitosan-containing scaffolds, and the plain collagen scaffolds had the highest water absorption. The stiffness of the scaffold was improved by the hybrid structure compared to plain scaffolds. The cell viability and attachment was good in all scaffolds, however, the collagen hybrid scaffolds showed the best penetration of cells into the scaffold. Our results show that from the studied scaffolds the collagen/PLA hybrids are the most promising scaffolds from this group for cartilage tissue engineering.

  4. Type II collagen peptide is able to accelerate embryonic chondrocyte differentiation: an association with articular cartilage matrix resorption in osteoarthrosis

    Directory of Open Access Journals (Sweden)

    Elena Vasil'evna Chetina

    2010-01-01

    Conclusion. The effect of CP on gene expression and collagen decomposition activity depends on the morphotype of embryonic chondrocytes. Lack of effect of CP on collagen decomposition activity in both the embryonic hypertrophic chondrocytes and the cartilage explants from OA patients supports the hypothesis that the hypertrophic morphotype is a dominant morphotype of articular chondrocytes in OA. Moreover, collagen decomposition products can be involved in the resorption of matrix in OA and in the maintenance of chronic nature of the pathology.

  5. Calcitonin directly attenuates collagen type II degradation by inhibition of matrix metalloproteinase expression and activity in articular chondrocytes

    DEFF Research Database (Denmark)

    Sondergaard, B C; Wulf, H; Henriksen, K

    2006-01-01

    OBJECTIVE: Calcitonin was recently reported to counter progression of cartilage degradation in an experimental model of osteoarthritis, and the effects were primarily suggested to be mediated by inhibition of subchondral bone resorption. We investigated direct effects of calcitonin on chondrocytes...... by assessing expression of the receptor and pharmacological effects on collagen type II degradation under ex vivo and in vivo conditions. METHODS: Localization of the calcitonin receptor on articular chondrocytes was investigated by immunohistochemistry, and the expression by reverse transcriptase polymerase.......0001-1 microM]. In vivo, cartilage degradation was investigated in ovariectomized (OVX) rats administered with oral calcitonin [2 mg/kg calcitonin] for 9 weeks. RESULTS: The calcitonin receptor was identified in articular chondrocytes by immunohistochemistry and RT-PCR. Calcitonin concentration...

  6. MAPKs are essential upstream signaling pathways in proteolytic cartilage degradation--divergence in pathways leading to aggrecanase and MMP-mediated articular cartilage degradation

    DEFF Research Database (Denmark)

    Sondergaard, B-C; Schultz, N; Madsen, S H

    2010-01-01

    Matrix metalloproteinases (MMPs) and aggrecanases are essential players in cartilage degradation. However, the signaling pathways that results in MMP and/or aggrecanase synthesis and activation are not well understood. We investigated the molecular events leading to MMP- and aggrecanase-mediated ......Matrix metalloproteinases (MMPs) and aggrecanases are essential players in cartilage degradation. However, the signaling pathways that results in MMP and/or aggrecanase synthesis and activation are not well understood. We investigated the molecular events leading to MMP- and aggrecanase......-mediated cartilage degradation....

  7. Engineering Cartilage

    Science.gov (United States)

    ... Research Matters NIH Research Matters March 3, 2014 Engineering Cartilage Artistic rendering of human stem cells on ... situations has been a major goal in tissue engineering. Cartilage contains water, collagen, proteoglycans, and chondrocytes. Collagens ...

  8. Collagen XII and XIV, New Partners of Cartilage Oligomeric Matrix Protein in the Skin Extracellular Matrix Suprastructure*

    Science.gov (United States)

    Agarwal, Pallavi; Zwolanek, Daniela; Keene, Douglas R.; Schulz, Jan-Niklas; Blumbach, Katrin; Heinegård, Dick; Zaucke, Frank; Paulsson, Mats; Krieg, Thomas; Koch, Manuel; Eckes, Beate

    2012-01-01

    The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone. PMID:22573329

  9. Collagen XII and XIV, new partners of cartilage oligomeric matrix protein in the skin extracellular matrix suprastructure.

    Science.gov (United States)

    Agarwal, Pallavi; Zwolanek, Daniela; Keene, Douglas R; Schulz, Jan-Niklas; Blumbach, Katrin; Heinegård, Dick; Zaucke, Frank; Paulsson, Mats; Krieg, Thomas; Koch, Manuel; Eckes, Beate

    2012-06-29

    The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone.

  10. INVIVO DEGRADATION OF PROCESSED DERMAL SHEEP COLLAGEN EVALUATED WITH TRANSMISSION ELECTRON-MICROSCOPY

    NARCIS (Netherlands)

    VANWACHEM, PB; VANLUYN, MJA; NIEUWENHUIS, P; KOERTEN, HK; DAMINK, LO; TENHOOPEN, H; FEIJEN, J

    The in vivo degradation of hexamethylenediisocyanate-tanned dermal sheep collagen was studied with transmission electron microscopy. Discs of hexamethylenediisocyanate-tanned dermal sheep collagen were subcutaneously implanted in rats. Both an intra- and an extracellular route of degradation could

  11. In vivo degradation of processed dermal sheep collagen evaluated with transmission electron microscopy

    NARCIS (Netherlands)

    van Wachem, P.B.; van Luyn, M.J.A.; Nieuwenhuis, P.; Koerten, H.K.; Olde damink, L.H.H.; Olde-Damink, L.; ten Hoopen, Hermina W.M.; Feijen, Jan

    1991-01-01

    The in vivo degradation of hexamethylenediisocyanate-tanned dermal sheep collagen was studied with transmission electron microscopy. Discs of hexamethylenediisocyanate-tanned dermal sheep collagen were subcutaneously implanted in rats. Both an intra- and an extracellular route of degradation could

  12. Type II collagen in cartilage evokes peptide-specific tolerance and skews the immune response.

    Science.gov (United States)

    Malmström, V; Kjellén, P; Holmdahl, R

    1998-06-01

    T cell recognition of type II collagen (CII) is a crucial event in the induction of collagen-induced arthritis in the mouse. Several CII peptides have been shown to be of importance, dependent on which MHC haplotype the mouse carries. By sequencing the rat CII and comparing the sequence with mouse, human, bovine and chicken CII, we have found that the immunodominant peptides all differ at critical positions compared with the autologous mouse sequence. Transgenic expression of the immunodominant Aq-restricted heterologous CII 256-270 epitope inserted into type I collagen (TSC mice) or type II collagen (MMC-1 mice) led to epitope-specific tolerance. Immunization of TSC mice with chick CII led to arthritis and immune responses, dependent on the subdominant, Aq-restricted and chick-specific CII 190-200 epitope. Immunization of F1 mice, expressing both H-2q and H-2r as well as transgenic expression of the Aq-restricted CII 256-270 epitope in cartilage, with bovine CII, led to arthritis, dependent on the Ar-restricted, bovine-specific epitope CII 607-621. These data show that the immunodominance of CII recognition is directed towards heterologous determinants, and that T cells directed towards the corresponding autologous epitopes are tolerated without evidence of active suppression.

  13. Tumor-Associated Macrophages Derived from Circulating Inflammatory Monocytes Degrade Collagen through Cellular Uptake

    DEFF Research Database (Denmark)

    Madsen, Daniel Hargbøl; Jürgensen, Henrik Jessen; Siersbæk, Majken Storm

    2017-01-01

    -associated macrophage (TAM)-like cells that degrade collagen in a mannose receptor-dependent manner. Accordingly, mannose-receptor-deficient mice display increased intratumoral collagen. Whole-transcriptome profiling uncovers a distinct extracellular matrix-catabolic signature of these collagen-degrading TAMs. Lineage......-ablation studies reveal that collagen-degrading TAMs originate from circulating CCR2+ monocytes. This study identifies a function of TAMs in altering the tumor microenvironment through endocytic collagen turnover and establishes macrophages as centrally engaged in tumor-associated collagen degradation. Madsen et...

  14. The influence of collagen network integrity on the accumulation of gadolinium-based MR contrast agents in articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Wiener, Edzard; Schmidt, C.; Diederichs, G. [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie; Settles, M. [Klinikum rechts der Isar, Muenchen (Germany). Inst. fuer Roentgendiagnostik; Weirich, G. [Klinikum Rechts der Isar, Muenchen (Germany). Inst. fuer Pathologie und Pathologische Anatomie

    2011-03-15

    Delayed gadolinium-enhanced MR imaging of cartilage is used to quantify the proteoglycan loss in early osteoarthritis. It is assumed that T 1 after Gd-DTPA administration in the near equilibrium state reflects selective proteoglycan loss from cartilage. To investigate the influence of the collagen network integrity on contrast accumulation, the relaxation rates {delta}R1 and {delta}R2 were compared after Gd-DTPA administration in a well established model of osteoarthritis. Collagen or proteoglycan depletion was induced by the proteolytic enzymes papain and collagenase in healthy bovine patellar cartilage. Using a dedicated MRI sequence, T{sub 1} and T{sub 2} maps were simultaneously acquired before and 11 h after Gd-DTPA administration. Depth-dependent profiles of {delta}R1 and {delta}R2 were calculated in healthy, proteoglycan and collagen-depleted articular cartilage and the mean values of different cartilage layers were compared using the Mann-Whitney-U test. In superficial layers (1 mm) there was no significant difference (p > 0.05) in either {delta}R1 or {delta}R2 between proteoglycan-depleted (16.6 {+-} 1.2 s{sup -1}, 15.9 {+-} 1.0 s{sup -1}) and collagen-depleted articular cartilage (15.3 {+-} 0.9 s{sup -1}, 15.5 {+-} 0.9 s{sup -1}). In deep layers (3 mm) both parameters were significantly higher (p = 0.005, 0.03) in proteoglycan-depleted articular cartilage (12.3 {+-} 1.1 s{sup -1}, 9.8 {+-} 0.8 s{sup -1}) than in collagen-depleted articular cartilage (9.1 {+-} 1.1 s{sup -1}, 8.7 {+-} 0.7 s{sup -1}). Both proteoglycan loss and alterations in the collagen network influence the accumulation of Gd-DTPA in articular cartilage with significant differences between superficial and deep cartilage layers. (orig.)

  15. A method of experimental rheumatoid arthritis induction using collagen type II isolated from chicken sternal cartilage.

    Science.gov (United States)

    Su, Zhaoliang; Shotorbani, Siamak Sandoghchian; Jiang, Xugan; Ma, Rui; Shen, Huiling; Kong, Fanzhi; Xu, Huaxi

    2013-07-01

    At present, collagen‑induced arthritis (CIA) is the best known and most extensively used model for the immunological and pathological characteristics of human rheumatoid arthritis (RA). This model is useful not only in aiding our understanding of the pathogenesis of this disease, but also in the development of new therapies. Bovine, porcine and human collagen has been used to induce CIA; however, response has been identified to vary between strains and injection conditions, and false positive results and reduced potency are common as a result of minor contaminants or deglycosylated protein. Therefore, in the present study, type II collagen (CII) was isolated and purified from chicken sternal cartilage and was found to successfully induce the RA model. Furthermore, T helper 17 (Th17) cells were observed to infiltrate the joint on day 45 following induction by CII. In vitro, expression of toll‑like receptor 2 (TLR2) increased in peritoneal macrophages stimulated by CII. In addition, blockage of TLR2 was identified to markedly decrease levels of TGF‑β and IL‑6 in the cell culture supernatant. The results indicate that CII isolated from chicken sternal cartilage may be recognized by TLR2 on macrophages, leading to TGF‑β and IL‑6 production and subsequent activation of Th17 cells which mediates CIA development.

  16. Study of the collagen structure in the superficial zone and physiological state of articular cartilage using a 3D confocal imaging technique

    Directory of Open Access Journals (Sweden)

    Zheng Ming H

    2008-07-01

    Full Text Available Abstract Introduction The collagen structure in the superficial zone of articular cartilage is critical to the tissue's durability. Early osteoarthritis is often characterized with fissures on the articular surface. This is closely related to the disruption of the collagen network. However, the traditional histology can not offer visualization of the collagen structure in articular cartilage because it uses conventional optical microscopy that does not have insufficient imaging resolution to resolve collagen from proteoglycans in hyaline articular cartilage. This study examines the 3D collagen network of articular cartilage scored from 0 to 2 in the scoring system of International Cartilage Repair Society, and aims to develop a 3D histology for assessing early osteoarthritis. Methods Articular cartilage was visually classified into five physiological groups: normal cartilage, aged cartilage, cartilage with artificial and natural surface disruption, and fibrillated. The 3D collagen matrix of the cartilage was acquired using a 3D imaging technique developed previously. Traditional histology was followed to grade the physiological status of the cartilage in the scoring system of International Cartilage Repair Society. Results Normal articular cartilage contains interwoven collagen bundles near the articular surface, approximately within the lamina splendens. However, its collagen fibres in the superficial zone orient predominantly in a direction spatially oblique to the articular surface. With age and disruption of the articular surface, the interwoven collagen bundles are gradually disappeared, and obliquely oriented collagen fibres change to align predominantly in a direction spatially perpendicular to the articular surface. Disruption of the articular surface is well related to the disappearance of the interwoven collagen bundles. Conclusion A 3D histology has been developed to supplement the traditional histology and study the subtle changes in

  17. Autofluorescence lifetime metrology for label-free detection of cartilage matrix degradation

    Science.gov (United States)

    Nickdel, Mohammad B.; Lagarto, João. L.; Kelly, Douglas J.; Manning, Hugh B.; Yamamoto, Kazuhiro; Talbot, Clifford B.; Dunsby, Christopher; French, Paul; Itoh, Yoshifumi

    2014-03-01

    Degradation of articular cartilage extracellular matrix (ECM) by proteolytic enzyme is the hallmark of arthritis that leads to joint destruction. Detection of early biochemical changes in cartilage before irreversible structural damages become apparent is highly desirable. Here we report that the autofluorescence decay profile of cartilage is significantly affected by proteolytic degradation of cartilage ECM and can be characterised by measurements of the autofluorescence lifetime (AFL). A multidimensional fluorometer utilizing ultraviolet excitation at 355 nm or 375 nm coupled to a fibreoptic probe was developed for single point time-resolved AFL measurements of porcine articular cartilage explants treated with different proteinases. Degradation of cartilage matrix components by treating with bacterial collagenase, matrix metalloproteinase 1, or trypsin resulted in significant reduction of AFL of the cartilage in both a dose and time dependent manner. Differences in cartilage AFL were also confirmed by fluorescence lifetime imaging microscopy (FLIM). Our data suggest that AFL of cartilage tissue is a potential non-invasive readout to monitor cartilage matrix integrity that may be utilized for diagnosis of arthritis as well as monitoring the efficacy of anti-arthritic therapeutic agents.

  18. In Vitro Expression of the Extracellular Matrix Components Aggrecan, Collagen Types I and II by Articular Cartilage-Derived Chondrocytes.

    Science.gov (United States)

    Schneevoigt, J; Fabian, C; Leovsky, C; Seeger, J; Bahramsoltani, M

    2017-02-01

    The extracellular matrix (ECM) of hyaline cartilage is perfectly suited to transmit articular pressure load to the subchondral bone. Pressure is transferred by a high amount of aggrecan-based proteoglycans and collagen type II fibres in particular. After any injury, the hyaline cartilage is replaced by fibrocartilage, which is low in proteoglycans and contains collagen type I predominantly. Until now, long-term results of therapeutic procedures including cell-based therapies like autologous chondrocyte transplantation (ACT) lead to a replacement tissue meeting the composition of fibrocartilage. Therefore, it is of particular interest to discover how and to what extent isolation and in vitro cultivation of chondrocytes affect the cells and their expression of ECM components. Hyaline cartilage-derived chondrocytes were cultivated in vitro and observed microscopically over a time period of 35 days. The expression of collagen type I, collagen type II and aggrecan was analysed using RT-qPCR and Western blot at several days of cultivation. Chondrocytes presented a longitudinal shape for the entire cultivation period. While expression of collagen type I prevailed within the first days, only prolonged cultivation led to an increase in collagen type II and aggrecan expression. The results indicate that chondrocyte isolation and in vitro cultivation lead to a dedifferentiation at least to the stage of chondroprogenitor cells. © 2016 Blackwell Verlag GmbH.

  19. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs.

    Science.gov (United States)

    Jabłońska-Trypuć, Agata; Matejczyk, Marzena; Rosochacki, Stanisław

    2016-01-01

    The main group of enzymes responsible for the collagen and other protein degradation in extracellular matrix (ECM) are matrix metalloproteinases (MMPs). Collagen is the main structural component of connective tissue and its degradation is a very important process in the development, morphogenesis, tissue remodeling, and repair. Typical structure of MMPs consists of several distinct domains. MMP family can be divided into six groups: collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other non-classified MMPs. MMPs and their inhibitors have multiple biological functions in all stages of cancer development: from initiation to outgrowth of clinically relevant metastases and likewise in apoptosis and angiogenesis. MMPs and their inhibitors are extensively examined as potential anticancer drugs. MMP inhibitors can be divided into two main groups: synthetic and natural inhibitors. Selected synthetic inhibitors are in clinical trials on humans, e.g. synthetic peptides, non-peptidic molecules, chemically modified tetracyclines, and bisphosphonates. Natural MMP inhibitors are mainly isoflavonoids and shark cartilage.

  20. Tissue-engineered cartilaginous constructs for the treatment of caprine cartilage defects, including distribution of laminin and type IV collagen.

    Science.gov (United States)

    Jeng, Lily; Hsu, Hu-Ping; Spector, Myron

    2013-10-01

    The purpose of this study was the immunohistochemical evaluation of (1) cartilage tissue-engineered constructs; and (2) the tissue filling cartilage defects in a goat model into which the constructs were implanted, particularly for the presence of the basement membrane molecules, laminin and type IV collagen. Basement membrane molecules are localized to the pericellular matrix in normal adult articular cartilage, but have not been examined in tissue-engineered constructs cultured in vitro or in tissue filling cartilage defects into which the constructs were implanted. Cartilaginous constructs were engineered in vitro using caprine chondrocyte-seeded type II collagen scaffolds. Autologous constructs were implanted into 4-mm-diameter defects created to the tidemark in the trochlear groove in the knee joints of skeletally mature goats. Eight weeks after implantation, the animals were sacrificed. Constructs underwent immunohistochemical and histomorphometric evaluation. Widespread staining for the two basement membrane molecules was observed throughout the extracellular matrix of in vitro and in vivo samples in a distribution unlike that previously reported for cartilage. At sacrifice, 70% of the defect site was filled with reparative tissue, which consisted largely of fibrous tissue and some fibrocartilage, with over 70% of the reparative tissue bonded to the adjacent host tissue. A novel finding of this study was the observation of laminin and type IV collagen in in vitro engineered cartilaginous constructs and in vivo cartilage repair samples from defects into which the constructs were implanted, as well as in normal caprine articular cartilage. Future work is needed to elucidate the role of basement membrane molecules during cartilage repair and regeneration.

  1. Collagen degradation in the abdominal aneurysm: A conspiracy of matrix metalloproteinase and cysteine collagenases

    NARCIS (Netherlands)

    Abdul-Hussien, H.; Soekhoe, R.G.V.; Weber, E.; Thüsen, J.H. von der; Kleemann, R.; Mulder, A.; Hajo Van Bockel, J.; Hanemaaijer, R.; Lindeman, J.H.N.

    2007-01-01

    Growth and rupture of abdominal aortic aneurysms (AAAs) result from increased collagen turnover. Collagen turnover critically depends on specific collagenases that cleave the triple helical region of fibrillar collagen. As yet, the collagenases responsible for collagen degradation in AAAs have not

  2. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.

    NARCIS (Netherlands)

    Korhonen, R.K.; Julkunen, P.; Wilson, W.; Herzog, W.

    2008-01-01

    The collagen network and proteoglycan matrix of articular cartilage are thought to play an important role in controlling the stresses and strains in and around chondrocytes, in regulating the biosynthesis of the solid matrix, and consequently in maintaining the health of diarthrodial joints.

  3. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix.

    Science.gov (United States)

    Wang, Yafei; Yu, Dongsheng; Liu, Zhiming; Zhou, Fang; Dai, Jun; Wu, Bingbing; Zhou, Jing; Heng, Boon Chin; Zou, Xiao Hui; Ouyang, Hongwei; Liu, Hua

    2017-08-14

    Mesenchymal stem cell therapy for osteoarthritis (OA) has been widely investigated, but the mechanisms are still unclear. Exosomes that serve as carriers of genetic information have been implicated in many diseases and are known to participate in many physiological processes. Here, we investigate the therapeutic potential of exosomes from human embryonic stem cell-induced mesenchymal stem cells (ESC-MSCs) in alleviating osteoarthritis (OA). Exosomes were harvested from conditioned culture media of ESC-MSCs by a sequential centrifugation process. Primary mouse chondrocytes treated with interleukin 1 beta (IL-1β) were used as an in vitro model to evaluate the effects of the conditioned medium with or without exosomes and titrated doses of isolated exosomes for 48 hours, prior to immunocytochemistry or western blot analysis. Destabilization of the medial meniscus (DMM) surgery was performed on the knee joints of C57BL/6 J mice as an OA model. This was followed by intra-articular injection of either ESC-MSCs or their exosomes. Cartilage destruction and matrix degradation were evaluated with histological staining and OARSI scores at the post-surgery 8 weeks. We found that intra-articular injection of ESC-MSCs alleviated cartilage destruction and matrix degradation in the DMM model. Further in vitro studies illustrated that this effect was exerted through ESC-MSC-derived exosomes. These exosomes maintained the chondrocyte phenotype by increasing collagen type II synthesis and decreasing ADAMTS5 expression in the presence of IL-1β. Immunocytochemistry revealed colocalization of the exosomes and collagen type II-positive chondrocytes. Subsequent intra-articular injection of exosomes derived from ESC-MSCs successfully impeded cartilage destruction in the DMM model. The exosomes from ESC-MSCs exert a beneficial therapeutic effect on OA by balancing the synthesis and degradation of chondrocyte extracellular matrix (ECM), which in turn provides a new target for OA drug

  4. Non-invasive monitoring of in vivo hydrogel degradation and cartilage regeneration by multiparametric MR imaging

    Science.gov (United States)

    Chen, Zelong; Yan, Chenggong; Yan, Shina; Liu, Qin; Hou, Meirong; Xu, Yikai; Guo, Rui

    2018-01-01

    Numerous biodegradable hydrogels for cartilage regeneration have been widely used in the field of tissue engineering. However, to non-invasively monitor hydrogel degradation and efficiently evaluate cartilage restoration in situ is still challenging. Methods: A ultrasmall superparamagnetic iron oxide (USPIO)-labeled cellulose nanocrystal (CNC)/silk fibroin (SF)-blended hydrogel system was developed to monitor hydrogel degradation during cartilage regeneration. The physicochemical characterization and biocompatibility of the hydrogel were evaluated in vitro. The in vivo hydrogel degradation and cartilage regeneration of different implants were assessed using multiparametric magnetic resonance imaging (MRI) and further confirmed by histological analysis in a rabbit cartilage defect model for 3 months. Results: USPIO-labeled hydrogels showed sufficient MR contrast enhancement and retained stability without loss of the relaxation rate. Neither the mechanical properties of the hydrogels nor the proliferation of bone-marrow mesenchymal stem cells (BMSCs) were affected by USPIO labeling in vitro. CNC/SF hydrogels with BMSCs degraded more quickly than the acellular hydrogels as reflected by the MR relaxation rate trends in vivo. The morphology of neocartilage was noninvasively visualized by the three-dimensional water-selective cartilage MRI scan sequence, and the cartilage repair was further demonstrated by macroscopic and histological observations. Conclusion: This USPIO-labeled CNC/SF hydrogel system provides a new perspective on image-guided tissue engineering for cartilage regeneration. PMID:29464005

  5. Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis

    Science.gov (United States)

    McKleroy, William; Lee, Ting-Hein

    2013-01-01

    Pulmonary fibrosis is a vexing clinical problem with no proven therapeutic options. In the normal lung there is continuous collagen synthesis and collagen degradation, and these two processes are precisely balanced to maintain normal tissue architecture. With lung injury there is an increase in the rate of both collagen production and collagen degradation. The increase in collagen degradation is critical in preventing the formation of permanent scar tissue each time the lung is exposed to injury. In pulmonary fibrosis, collagen degradation does not keep pace with collagen production, resulting in extracellular accumulation of fibrillar collagen. Collagen degradation occurs through both extracellular and intracellular pathways. The extracellular pathway involves cleavage of collagen fibrils by proteolytic enzyme including the metalloproteinases. The less-well-described intracellular pathway involves binding and uptake of collagen fragments by fibroblasts and macrophages for lysosomal degradation. The relationship between these two pathways and their relevance to the development of fibrosis is complex. Fibrosis in the lung, liver, and skin has been associated with an impaired degradative environment. Much of the current scientific effort in fibrosis is focused on understanding the pathways that regulate increased collagen production. However, recent reports suggest an important role for collagen turnover and degradation in regulating the severity of tissue fibrosis. The objective of this review is to evaluate the roles of the extracellular and intracellular collagen degradation pathways in the development of fibrosis and to examine whether pulmonary fibrosis can be viewed as a disease of impaired matrix degradation rather than a disease of increased matrix production. PMID:23564511

  6. Silencing of microRNA-138-5p promotes IL-1β-induced cartilage degradation in human chondrocytes by targeting FOXC1: miR-138 promotes cartilage degradation.

    Science.gov (United States)

    Yuan, Y; Zhang, G Q; Chai, W; Ni, M; Xu, C; Chen, J Y

    2016-10-01

    Osteoarthritis (OA) is characterised by articular cartilage degradation. MicroRNAs (miRNAs) have been identified in the development of OA. The purpose of our study was to explore the functional role and underlying mechanism of miR-138-5p in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage. Human articular cartilage was obtained from patients with and without OA, and chondrocytes were isolated and stimulated by IL-1β. The expression levels of miR-138-5p in cartilage and chondrocytes were both determined. After transfection with miR-138-5p mimics, allele-specific oligonucleotide (ASO)-miR-138-5p, or their negative controls, the messenger RNA (mRNA) levels of aggrecan (ACAN), collagen type II and alpha 1 (COL2A1), the protein levels of glycosaminoglycans (GAGs), and both the mRNA and protein levels of matrix metalloproteinase (MMP)-13 were evaluated. Luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot were performed to explore whether Forkhead Box C1 (FOCX1) was a target of miR-138-5p. Further, we co-transfected OA chondrocytes with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 and then stimulated with IL-1β to determine whether miR-138-5p-mediated IL-1β-induced cartilage matrix degradation resulted from targeting FOXC1. MiR-138-5p was significantly increased in OA cartilage and in chondrocytes in response to IL-1β-stimulation. Overexpression of miR-138-5p significantly increased the IL-1β-induced downregulation of COL2A1, ACAN, and GAGs, and increased the IL-1β-induced over expression of MMP-13.We found that FOXC1 is directly regulated by miR-138-5p. Additionally, co-transfection with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 resulted in higher levels of COL2A1, ACAN, and GAGs, but lower levels of MMP-13. miR-138-5p promotes IL-1β-induced cartilage degradation in human chondrocytes, possibly by targeting FOXC1.Cite this article: Y. Yuan, G. Q. Zhang, W. Chai,M. Ni, C. Xu, J

  7. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.

    Science.gov (United States)

    Neumann, Alexander J; Quinn, Timothy; Bryant, Stephanie J

    2016-07-15

    Photopolymerizable and hydrolytically labile poly(ethylene glycol) (PEG) hydrogels formed from photo-clickable reactions were investigated as cell delivery platforms for cartilage tissue engineering (TE). PEG hydrogels were formed from thiol-norbornene PEG macromers whereby the crosslinks contained caprolactone segments with hydrolytically labile ester linkages. Juvenile bovine chondrocytes encapsulated in the hydrogels were cultured for up to four weeks and assessed biochemically and histologically, using standard destructive assays, and for mechanical and ultrasound properties, as nondestructive assays. Bulk degradation of acellular hydrogels was confirmed by a decrease in compressive modulus and an increase in mass swelling ratio over time. Chondrocytes deposited increasing amounts of sulfated glycosaminoglycans and collagens in the hydrogels with time. Spatially, collagen type II and aggrecan were present in the neotissue with formation of a territorial matrix beginning at day 21. Nondestructive measurements revealed an 8-fold increase in compressive modulus from days 7 to 28, which correlated with total collagen content. Ultrasound measurements revealed changes in the constructs over time, which differed from the mechanical properties, and appeared to correlate with ECM structure and organization shown by immunohistochemical analysis. Overall, non-destructive and destructive measurements show that this new hydrolytically degradable PEG hydrogel is promising for cartilage TE. Designing synthetic hydrogels whose degradation matches tissue growth is critical to maintaining mechanical integrity as the hydrogel degrades and new tissue forms, but is challenging due to the nature of the hydrogel crosslinks that inhibit diffusion of tissue matrix molecules. This study details a promising, new, photo-clickable and synthetic hydrogel whose degradation supports cartilaginous tissue matrix growth leading to the formation of a territorial matrix, concomitant with an

  8. Subchondral Bone Plate Thickening Precedes Chondrocyte Apoptosis and Cartilage Degradation in Spontaneous Animal Models of Osteoarthritis

    OpenAIRE

    Zamli, Zaitunnatakhin; Robson Brown, Kate; Tarlton, John F.; Adams, Mike A.; Torlot, Georgina E.; Cartwright, Charlie; Cook, William A.; Vassilevskaja, Kristiina; Sharif, Mohammed

    2014-01-01

    Osteoarthritis (OA) is the most common joint disorder characterised by bone remodelling and cartilage degradation and associated with chondrocyte apoptosis. These processes were investigated at 10, 16, 24, and 30 weeks in Dunkin Hartley (DH) and Bristol Strain 2 (BS2) guinea pigs that develop OA spontaneously. Both strains had a more pronounced chondrocyte apoptosis, cartilage degradation, and subchondral bone changes in the medial than the lateral side of the tibia, and between strains, the ...

  9. Anisotropic Shape-Memory Alginate Scaffolds Functionalized with Either Type I or Type II Collagen for Cartilage Tissue Engineering.

    Science.gov (United States)

    Almeida, Henrique V; Sathy, Binulal N; Dudurych, Ivan; Buckley, Conor T; O'Brien, Fergal J; Kelly, Daniel J

    2017-01-01

    Regenerating articular cartilage and fibrocartilaginous tissue such as the meniscus is still a challenge in orthopedic medicine. While a range of different scaffolds have been developed for joint repair, none have facilitated the development of a tissue that mimics the complexity of soft tissues such as articular cartilage. Furthermore, many of these scaffolds are not designed to function in mechanically challenging joint environments. The overall goal of this study was to develop a porous, biomimetic, shape-memory alginate scaffold for directing cartilage regeneration. To this end, a scaffold was designed with architectural cues to guide cellular and neo-tissue alignment, which was additionally functionalized with a range of extracellular matrix cues to direct stem cell differentiation toward the chondrogenic lineage. Shape-memory properties were introduced by covalent cross-linking alginate using carbodiimide chemistry, while the architecture of the scaffold was modified using a directional freezing technique. Introducing such an aligned pore structure was found to improve the mechanical properties of the scaffold, and promoted higher levels of sulfated glycosaminoglycans (sGAG) and collagen deposition compared to an isotropic (nonaligned) pore geometry when seeded with adult human stem cells. Functionalization with collagen improved stem cell recruitment into the scaffold and facilitated more homogenous cartilage tissue deposition throughout the construct. Incorporating type II collagen into the scaffolds led to greater cell proliferation, higher sGAG and collagen accumulation, and the development of a stiffer tissue compared to scaffolds functionalized with type I collagen. The results of this study demonstrate how both scaffold architecture and composition can be tailored in a shape-memory alginate scaffold to direct stem cell differentiation and support the development of complex cartilaginous tissues.

  10. Oral salmon calcitonin induced suppression of urinary collagen type II degradation in postmenopausal women: a new potential treatment of osteoarthritis.

    Science.gov (United States)

    Bagger, Yu Z; Tankó, László B; Alexandersen, Peter; Karsdal, Morten A; Olson, Melvin; Mindeholm, Linda; Azria, Moïse; Christiansen, Claus

    2005-09-01

    To assess the efficacy of 3 months of oral salmon calcitonin (sCT) on cartilage degradation as estimated by the changes in the urinary excretion of C-terminal telopeptide of collagen type II (CTX-II), and to investigate whether the response of oral sCT to urinary CTX-II depends on the baseline level of cartilage turnover. This was a randomized, double blind, placebo-controlled clinical setting including 152 Danish postmenopausal women aged 55-85. The subjects received treatment with the different doses of sCT (0.15, 0.4, 1.0, or 2.5 mg) combined with Eligen technology-based carrier molecule (200 mg), or placebo for 3 months. The efficacy parameter was the changes in the 24-h excretion of urinary CTX-I/II corrected for creatinine excretion at month 3. sCT induced a significant dose-dependent decrease in 24-h urinary CTX-II excretion. Similar dose-dependent responses were found in 24-h urinary CTX-I. When stratifying the study population into tertiles of baseline urinary CTX-II, the present osteoarthritic symptoms and definite cases of osteoarthritis (OA) were significantly more frequent in women in the highest tertile of CTX-II (mean 391 +/- 18 ng/mmol). Women who received 1.0 mg of sCT and had the highest cartilage turnover presented the greatest decrease in urinary CTX-II after 3 months of treatment. In addition to its pronounced effect on bone resorption, this novel oral sCT formulation may also reduce cartilage degradation and thereby provide therapeutic benefit in terms of chondroprotection. Women with high cartilage turnover are more likely to benefit from oral sCT treatment.

  11. Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation

    DEFF Research Database (Denmark)

    Sondergaard, B C; Henriksen, K; Wulf, H

    2006-01-01

    OBJECTIVE: Both matrix metalloprotease (MMP) activity and cathepsin K (CK) activity have been implicated in cartilage turnover. We investigated the relative contribution of MMP activity and CK activity in cartilage degradation using ex vivo and in vivo models. METHODS: Bovine articular cartilage...... explants were stimulated with oncostatin M (OSM) 10 ng/ml and tumor necrosis factor-alpha (TNF-alpha) 20 ng/ml in the presence or absence of the broad-spectrum MMP inhibitor GM6001 and the cysteine protease inhibitor, E64. Cartilage degradation was evaluated in the conditioned medium by glycosaminoglycans...... was measured from CK-deficient mice. RESULTS: OSM and TNF-alpha combined induced significant (Pcartilage degradation products measured by hydroxyproline and CTX-II compared to vehicle control. The cytokines potently induced MMP expression, assessed by zymography, and CK expression...

  12. Induction of increased cAMP levels in articular chondrocytes blocks matrix metalloproteinase-mediated cartilage degradation, but not aggrecanase-mediated cartilage degradation

    DEFF Research Database (Denmark)

    Karsdal, Morten Asser; Sumer, Eren Ufuk; Wulf, Helle

    2007-01-01

    OBJECTIVE: Calcitonin has been suggested to have chondroprotective effects. One signaling pathway of calcitonin is via the second messenger cAMP. We undertook this study to investigate whether increased cAMP levels in chondrocytes would be chondroprotective. METHODS: Cartilage degradation......-dependently inhibited by forskolin and IBMX. The highest concentration of IBMX lowered cytokine-induced release of sGAG by 72%. CONCLUSION: Levels of cAMP in chondrocytes play a key role in controlling catabolic activity. Increased cAMP levels in chondrocytes inhibited MMP expression and activity and consequently...... strongly inhibited cartilage degradation. Specific cAMP modulators in chondrocytes may be potential treatments for cartilage degenerative diseases....

  13. MT1-MMP and type II collagen specify skeletal stem cells and their bone and cartilage progeny

    DEFF Research Database (Denmark)

    Szabova, L.; Yamada, S.S.; Wimer, H.

    2009-01-01

    -expressing cells of the skeleton rescues not only diminished chondrocyte proliferation, but surprisingly, also results in amelioration of the severe skeletal dysplasia associated with MT1-MMP deficiency through enhanced bone formation. Consistent with this increased bone formation, type II collagen was identified...... from nontransgenic MT1-MMP-deficient littermates. These observations show that type II collagen is not stringently confined to the chondrocyte but is expressed in skeletal stem/progenitor cells (able to regenerate bone, cartilage, myelosupportive stroma, marrow adipocytes) and in the chondrogenic...

  14. Characterizing the collagen stabilizing effect of crosslinked chitosan nanoparticles against collagenase degradation.

    Science.gov (United States)

    Kishen, Anil; Shrestha, Suja; Shrestha, Annie; Cheng, Calvin; Goh, Cynthia

    2016-08-01

    Antibacterial and chelating properties of chitosan has been widely studied for various dental applications. To characterize the interaction between chitosan-nanoparticles (CSnp) and collagen, and understand their stabilizing effect against collagenase degradation for dentin matrix stabilization. Phase-1: a single Type I collagen-fibril model was used to study the interaction with CSnp along with carbodiimides crosslinking treatment. Degradation of the crosslinked fibrils was studied with bacterial collagenase enzyme and monitored using Fourier Transform Infrared (FTIR) spectroscopy, turbidity measurement (400nm), ninhydrin assay and Atomic Force Microscopy (AFM). Interaction of CSnp with collagenase and Type I collagen, were evaluated using SDS-PAGE, and proteolytic cleavage potential of a synthetic peptide. Phase-2: degradation of dentin collagen crosslinked with/without CSnp was evaluated using FTIR, ninhydrin assay and Scanning Electron Microscopy (SEM). Glutaraldehyde crosslinking was used as a positive control. Both native collagen-fibrils and dentin collagen after crosslinking showed higher resistance to collagenase degradation, as observed in turbidity measurements and FTIR spectra. AFM images showed the interaction of CSnp with single collagen-fibril and crosslinked collagen resisted collagenase degradation up to 54h. The collagen and collagenase both formed complexes with CSnp resulting in thickening of bands and reduction in collagen degradation. CSnp treated collagenase showed significantly reduced cleavage of the fluorescent peptides. Dentin collagen was coated with CSnp following crosslinking with significant increase in resistance to collagenase degradation. Crosslinked CSnp on collagen stabilized and enhanced the resistance of dentin matrix against bacterial collagenase degradation due to non-specific interaction with both collagen and collagenase. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. The collagen receptor uPARAP/Endo180 in tissue degradation and cancer (Review)

    DEFF Research Database (Denmark)

    Carlsen Melander, Eva Maria; Jürgensen, Henrik J; Madsen, Daniel H

    2015-01-01

    The collagen receptor uPARAP/Endo180, the product of the MRC2 gene, is a central component in the collagen turnover process governed by various mesenchymal cells. Through the endocytosis of collagen or large collagen fragments, this recycling receptor serves to direct basement membrane collagen...... as well as interstitial collagen to lysosomal degradation. This capacity, shared only with the mannose receptor from the same protein family, endows uPARAP/Endo180 with a critical role in development and homeostasis, as well as in pathological disruptions of the extracellular matrix structure. Important...

  16. Postnatal changes to the mechanical properties of articular cartilage are driven by the evolution of its collagen network

    Directory of Open Access Journals (Sweden)

    AR Gannon

    2015-01-01

    Full Text Available While it is well established that the composition and organisation of articular cartilage dramatically change during skeletal maturation, relatively little is known about how this impacts the mechanical properties of the tissue. In this study, digital image correlation was first used to quantify spatial deformation within mechanically compressed skeletally immature (4 and 8 week old and mature (1 and 3 year old porcine articular cartilage. The compressive modulus of the immature tissue was relatively homogeneous, while the stiffness of mature articular cartilage dramatically increased with depth from the articular surface. Other, well documented, biomechanical characteristics of the tissue also emerged with skeletal maturity, such as strain-softening and a depth-dependent Poisson’s ratio. The most significant changes that occurred with age were in the deep zone of the tissue, where an order of magnitude increase in compressive modulus (from 0.97 MPa to 9.4 MPa for low applied strains was observed from 4 weeks postnatal to skeletal maturity. These temporal increases in compressive stiffness occurred despite a decrease in tissue sulphated glycosaminoglycan content, but were accompanied by increases in tissue collagen content. Furthermore, helium ion microscopy revealed dramatic changes in collagen fibril alignment through the depth of the tissue with skeletal maturity, as well as a fivefold increase in fibril diameter with age. Finally, computational modelling was used to demonstrate how both collagen network reorganisation and collagen stiffening play a key role in determining the final compressive mechanical properties of the tissue. Together these findings provide a unique insight into evolving structure-function relations in articular cartilage.

  17. Differentiation of human mesenchymal stromal cells cultured on collagen sponges for cartilage repair.

    Science.gov (United States)

    Sanjurjo-Rodríguez, Clara; Martínez-Sánchez, Adela Helvia; Hermida-Gómez, Tamara; Fuentes-Boquete, Isaac; Díaz-Prado, Silvia; Blanco, Francisco J

    2016-11-01

    The aim of this study was to evaluate proliferation and chondrogenic differentiation of human bone-marrow mesenchymal stromal cells (hBMSCs) cultured on collagen biomaterials. hBMSCs were seeded on five different collagen (Col) sponges: C1C2 (types I and II Col), C1C2HS (types I and II Col plus heparan sulphate (HS)), C1C2CHS (types I and II Col plus chondroitin sulphate (CHS)), C1-OLH3 (type I Col plus low molecular weight heparin) and C1CHS (type I Col plus CHS). The resulting constructs were analyzed by histological and immunohistochemical staining, molecular biology and electron microscopy. Col released into culture media was measured by a dye-binding method Results: hBMSCs on biomaterials C1C2, C1C2HS and C1C2CHS had more capacity to attach, proliferate and synthesize Col II and proteoglycans in the extracellular matrix (ECM) than on C1-OLH3 and C1CHS. The presence of aggrecan was detected only at the gene level. Total Col liberated by the cells in the supernatants in all scaffold cultures was detected. The level of Col I in the ECM was lower in C1-OLH3 and that of Col II was highest in C1C2 and C1C2HS. Electron microscopy showed differently shaped cells, from rounded to flattened, in all constructs. Col fibers in bundles were observed in C1C2CHS by transmission electron microscopy. The results show that Col I and Col II (C1C2, C1C2HS and C1C2CHS) biomaterials allowed cell proliferation and chondrogenic-like differentiation of hBMSCs at an early stage. Constructs cultured on C1C2HS and C1C2CHS showed better cartilage-like phenotype than the other ones.

  18. Ectopic mineralization of cartilage and collagen-rich tendons and ligaments in Enpp1asj-2J mice.

    Science.gov (United States)

    Zhang, Jieyu; Dyment, Nathaniel A; Rowe, David W; Siu, Sarah Y; Sundberg, John P; Uitto, Jouni; Li, Qiaoli

    2016-03-15

    Generalized arterial calcification of infancy (GACI), an autosomal recessive disorder caused by mutations in the ENPP1 gene, manifests with extensive mineralization of the cardiovascular system. A spontaneous asj-2J mutant mouse has been characterized as a model for GACI. Previous studies focused on phenotypic characterization of skin and vascular tissues. This study further examined the ectopic mineralization phenotype of cartilage, collagen-rich tendons and ligaments in this mouse model. The mice were placed on either control diet or the "acceleration diet" for up to 12 weeks of age. Soft connective tissues, such as ear (elastic cartilage) and trachea (hyaline cartilage), were processed for standard histology. Assessment of ectopic mineralization in articular cartilage and fibrocartilage as well as tendons and ligaments which are attached to long bones were performed using a novel cryo-histological method without decalcification. These analyses demonstrated ectopic mineralization in cartilages as well as tendons and ligaments in the homozygous asj-2J mice at 12 weeks of age, with the presence of immature osteophytes displaying alkaline phosphatase and tartrate-resistant acid phosphatase activities as early as at 6 weeks of age. Alkaline phosphatase activity was significantly increased in asj-2J mouse serum as compared to wild type mice, indicating increased bone formation rate in these mice. Together, these data highlight the key role of ENPP1 in regulating calcification of both soft and skeletal tissues.

  19. A Novel Method to Simulate the Progression of Collagen Degeneration of Cartilage in the Knee: Data from the Osteoarthritis Initiative

    Science.gov (United States)

    Mononen, Mika E.; Tanska, Petri; Isaksson, Hanna; Korhonen, Rami K.

    2016-02-01

    We present a novel algorithm combined with computational modeling to simulate the development of knee osteoarthritis. The degeneration algorithm was based on excessive and cumulatively accumulated stresses within knee joint cartilage during physiological gait loading. In the algorithm, the collagen network stiffness of cartilage was reduced iteratively if excessive maximum principal stresses were observed. The developed algorithm was tested and validated against experimental baseline and 4-year follow-up Kellgren-Lawrence grades, indicating different levels of cartilage degeneration at the tibiofemoral contact region. Test groups consisted of normal weight and obese subjects with the same gender and similar age and height without osteoarthritic changes. The algorithm accurately simulated cartilage degeneration as compared to the Kellgren-Lawrence findings in the subject group with excess weight, while the healthy subject group’s joint remained intact. Furthermore, the developed algorithm followed the experimentally found trend of cartilage degeneration in the obese group (R2 = 0.95, p osteoarthritis (0-2 years, p  0.05). The proposed algorithm revealed a great potential to objectively simulate the progression of knee osteoarthritis.

  20. Effects of collagen matrix and bioreactor cultivation on cartilage regeneration of a full-thickness critical-size knee joint cartilage defects with subchondral bone damage in a rabbit model.

    Directory of Open Access Journals (Sweden)

    Kuo-Hwa Wang

    Full Text Available Cartilage has limited self-repair ability. The purpose of this study was to investigate the effects of different species of collagen-engineered neocartilage for the treatment of critical-size defects in the articular joint in a rabbit model. Type II and I collagen obtained from rabbits and rats was mixed to form a scaffold. The type II/I collagen scaffold was then mixed with rabbit chondrocytes to biofabricate neocartilage constructs using a rotating cell culture system [three-dimensional (3D-bioreactor]. The rabbit chondrocytes were mixed with rabbit collagen scaffold and rat collagen scaffold to form neoRBT (neo-rabbit cartilage and neoRAT (neo-rat cartilage constructs, respectively. The neocartilage matrix constructs were implanted into surgically created defects in rabbit knee chondyles, and histological examinations were performed after 2 and 3 months. Cartilage-like lacunae formation surrounding the chondrocytes was noted in the cell cultures. After 3 months, both the neoRBT and neoRAT groups showed cartilage-like repair tissue covering the 5-mm circular, 4-mm-deep defects that were created in the rabbit condyle and filled with neocartilage plugs. Reparative chondrocytes were aligned as apparent clusters in both the neoRAT and neoRBT groups. Both neoRBT and neoRAT cartilage repair demonstrated integration with healthy adjacent tissue; however, more integration was obtained using the neoRAT cartilage. Our data indicate that different species of type II/I collagen matrix and 3D bioreactor cultivation can facilitate cartilage engineering in vitro for the repair of critical-size defect.

  1. Natural Type II Collagen Hydrogel, Fibrin Sealant, and Adipose-Derived Stem Cells as a Promising Combination for Articular Cartilage Repair.

    Science.gov (United States)

    Lazarini, Mariana; Bordeaux-Rego, Pedro; Giardini-Rosa, Renata; Duarte, Adriana S S; Baratti, Mariana Ozello; Zorzi, Alessandro Rozim; de Miranda, João Batista; Lenz Cesar, Carlos; Luzo, Ângela; Olalla Saad, Sara Teresinha

    2017-10-01

    Objective Articular cartilage is an avascular tissue with limited ability of self-regeneration and the current clinical treatments have restricted capacity to restore damages induced by trauma or diseases. Therefore, new techniques are being tested for cartilage repair, using scaffolds and/or stem cells. Although type II collagen hydrogel, fibrin sealant, and adipose-derived stem cells (ASCs) represent suitable alternatives for cartilage formation, their combination has not yet been investigated in vivo for focal articular cartilage defects. We performed a simple experimental procedure using the combination of these 3 compounds on cartilage lesions of rabbit knees. Design The hydrogel was developed in house and was first tested in vitro for chondrogenic differentiation. Next, implants were performed in chondral defects with or without ASCs and the degree of regeneration was macroscopically and microscopically evaluated. Results Production of proteoglycans and the increased expression of collagen type II (COL2α1), aggrecan (ACAN), and sex-determining region Y-box 9 (SOX9) confirmed the chondrogenic character of ASCs in the hydrogel in vitro. Importantly, the addition of ASC induced a higher overall repair of the chondral lesions and a better cellular organization and collagen fiber alignment compared with the same treatment without ASCs. This regenerating tissue also presented the expression of cartilage glycosaminoglycan and type II collagen. Conclusions Our results indicate that the combination of the 3 compounds is effective for articular cartilage repair and may be of future clinical interest.

  2. The architecture of cartilage: Elemental maps and scanning transmission ion microscopy/tomography

    International Nuclear Information System (INIS)

    Reinert, Tilo; Reibetanz, Uta; Schwertner, Michael; Vogt, Juergen; Butz, Tilman; Sakellariou, Arthur

    2002-01-01

    Articular cartilage is not just a jelly-like cover of the bone within the joints but a highly sophisticated architecture of hydrated macromolecules, collagen fibrils and cartilage cells. Influences on the physiological balance due to age-related or pathological changes can lead to malfunction and subsequently to degradation of the cartilage. Many activities in cartilage research are dealing with the architecture of joint cartilage but have limited access to elemental distributions. Nuclear microscopy is able to yield spatially resolved elemental concentrations, provides density information and can visualise the arrangement of the collagen fibres. The distribution of the cartilage matrix can be deduced from the elemental and density maps. The findings showed a varying content of collagen and proteoglycan between zones of different cell maturation. Zones of higher collagen content are characterised by aligned collagen fibres that can form tubular structures. Recently we focused on STIM tomography to investigate the three dimensional arrangement of the collagen structures

  3. Preparation, Cell Compatibility and Degradability of Collagen-Modified Poly(lactic acid

    Directory of Open Access Journals (Sweden)

    Miaomiao Cui

    2015-01-01

    Full Text Available Poly(lactic acid (PLA was modified using collagen through a grafting method to improve its biocompatibility and degradability. The carboxylic group at the open end of PLA was transferred into the reactive acylchlorided group by a reaction with phosphorus pentachloride. Then, collagen-modified PLA (collagen-PLA was prepared by the reaction between the reactive acylchlorided group and amino/hydroxyl groups on collagen. Subsequently, the structure of collagen-PLA was confirmed by Fourier transform infrared spectroscopy, fluorescein isothiocyanate-labeled fluorescence spectroscopy, X-ray photoelectron spectroscopy, and DSC analyses. Finally, some properties of collagen-PLA, such as hydrophilicity, cell compatibility and degradability were characterized. Results showed that collagen had been grafted onto the PLA with 5% graft ratio. Water contact angle and water absorption behavior tests indicated that the hydrophilicity of collagen-PLA was significantly higher than that of PLA. The cell compatibility of collagen-PLA with mouse embryonic fibroblasts (3T3 was also significantly better than PLA in terms of cell morphology and cell proliferation, and the degradability of PLA was also improved after introducing collagen. Results suggested that collagen-PLA was a promising candidate for biomedical applications.

  4. Vitamin D prevents articular cartilage erosion by regulating collagen II turnover through TGF-β1 in ovariectomized rats.

    Science.gov (United States)

    Li, S; Niu, G; Wu, Y; Du, G; Huang, C; Yin, X; Liu, Z; Song, C; Leng, H

    2016-02-01

    To explore the effect of vitamin D on turnover of articular cartilage with ovariectomy (OVX) induced OA, and to investigate transforming growth factor-β1 (TGF-β1) as a possible underlying mechanism mediated by 1α,25(OH)2D3. Sixty-six rats were randomly allocated into seven groups: sham plus control diet (SHAM+CTL), OVX+CTL diet, sham plus vitamin D-deficient (VDD) diet, OVX+VDD diet, and three groups of ovariectomized rats treated with different doses of 1α,25(OH)2D3. The cartilage erosion and the levels of serum 17β-estradiol, 1α,25(OH)2D3 and C-telopeptide of type II collagen (CTX-II) were measured. TGF-β1, type II Collagen (CII), matrix metalloproteinases (MMP)-9,-13 in articular cartilage were assessed by immunohistochemistry. TGF-β1 and CTX-II expression were measured in articular cartilage chondrocytes treated with/without tumor necrosis factor (TNF-α), 1α,25(OH)2D3, and TGF-β receptor inhibitor (SB505124) in vitro. Cartilage erosion due to OVX was significantly reduced in a dose-dependent manner by 1α,25(OH)2D3 supplementation, and exacerbated by VDD. The expressions of TGF-β1 and CII in articular cartilage were suppressed by OVX and VDD, and rescued by 1α,25(OH)2D3 supplementation. The expression of MMP-9,-13 in articular cartilage increased with OVX and VDD, and decreased with 1α,25(OH)2D3 supplementation. In vitro experiments showed that 1α,25(OH)2D3 increased the TGF-β1 expression of TNF-α stimulated chondrocytes in a dose-dependent manner. 1α,25(OH)2D3 significantly counteracted the increased CTX-II release due to TNF-α stimulation, and this effect was significantly suppressed by SB505124. VDD aggravated cartilage erosion, and 1α,25(OH)2D3 supplementation showed protective effects in OVX-induced OA partly through the TGF-β1 pathway. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  5. Subchondral Bone Plate Thickening Precedes Chondrocyte Apoptosis and Cartilage Degradation in Spontaneous Animal Models of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Zaitunnatakhin Zamli

    2014-01-01

    Full Text Available Osteoarthritis (OA is the most common joint disorder characterised by bone remodelling and cartilage degradation and associated with chondrocyte apoptosis. These processes were investigated at 10, 16, 24, and 30 weeks in Dunkin Hartley (DH and Bristol Strain 2 (BS2 guinea pigs that develop OA spontaneously. Both strains had a more pronounced chondrocyte apoptosis, cartilage degradation, and subchondral bone changes in the medial than the lateral side of the tibia, and between strains, the changes were always greater and faster in DH than BS2. In the medial side, a significant increase of chondrocyte apoptosis and cartilage degradation was observed in DH between 24 and 30 weeks of age preceded by a progressive thickening and stiffening of subchondral bone plate (Sbp. The Sbp thickness consistently increased over the 30-week study period but the bone mineral density (BMD of the Sbp gradually decreased after 16 weeks. The absence of these changes in the medial side of BS2 may indicate that the Sbp of DH was undergoing remodelling. Chondrocyte apoptosis was largely confined to the deep zone of articular cartilage and correlated with thickness of the subchondral bone plate suggesting that cartilage degradation and chondrocyte apoptosis may be a consequence of continuous bone remodelling during the development of OA in these animal models of OA.

  6. Suramin Inhibits Osteoarthritic Cartilage Degradation by Increasing Extracellular Levels of Chondroprotective Tissue Inhibitor of Metalloproteinases 3.

    Science.gov (United States)

    Chanalaris, Anastasios; Doherty, Christine; Marsden, Brian D; Bambridge, Gabriel; Wren, Stephen P; Nagase, Hideaki; Troeberg, Linda

    2017-10-01

    Osteoarthritis is a common degenerative joint disease for which no disease-modifying drugs are currently available. Attempts to treat the disease with small molecule inhibitors of the metalloproteinases that degrade the cartilage matrix have been hampered by a lack of specificity. We aimed to inhibit cartilage degradation by augmenting levels of the endogenous metalloproteinase inhibitor, tissue inhibitor of metalloproteinases (TIMP)-3, through blocking its interaction with the endocytic scavenger receptor, low-density lipoprotein receptor-related protein 1 (LRP1). We discovered that suramin (C 51 H 40 N 6 O 23 S 6 ) bound to TIMP-3 with a K D value of 1.9 ± 0.2 nM and inhibited its endocytosis via LRP1, thus increasing extracellular levels of TIMP-3 and inhibiting cartilage degradation by the TIMP-3 target enzyme, adamalysin-like metalloproteinase with thrombospondin motifs 5. NF279 (8,8'-[carbonyl bis (imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino)] bis -1,3,5-naphthalenetrisulfonic acid hexasodium salt), a structural analog of suramin, has an increased affinity for TIMP-3 and increased ability to inhibit TIMP-3 endocytosis and protect cartilage. Suramin is thus a promising scaffold for the development of novel therapeutics to increase TIMP-3 levels and inhibit cartilage degradation in osteoarthritis. Copyright © 2017 by The Author(s).

  7. Use of synovium-derived stromal cells and chitosan/collagen type I scaffolds for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Gong Zhongcheng; Lin Zhaoquan [Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054 (China); Xiong Hui; Long Xing; Wei Lili; Li Jian; Wu Yang, E-mail: xinglong1957@yahoo.com.c [State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079 (China)

    2010-10-01

    The objective was to investigate synovium-derived stromal cells (SDSCs) coupled with chitosan/collagen type I (CS/COL-I) scaffolds for cartilage engineering. CS/COL-I scaffolds were fabricated through freeze-drying and cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. SDSCs were isolated from synovium and cultured onto CS/COL-I scaffolds, constructs of which were incubated in serum-free chondrogenic medium with sequential application of TGF-{beta}1 and bFGF for up to 21 days and then implanted into nude mice. The physical characteristics of the scaffolds were examined. The quality of the in vitro constructs was assessed in terms of DNA content by PicoGreen assay and cartilaginous matrix by histological examination. The implants of the constructs were evaluated by histological and immunohistochemical examinations and reverse transcription PCR. Results indicated that the CS/COL-I scaffold showed porous structures, and the DNA content of SDSCs in CS/COL-I scaffolds increased at 1 week culture time. Both of the constructs in vitro and the implants were examined with positive stained GAGs histologically and the implants with positive collagen type II immunohistochemically. RT-PCR of the implants indicated that aggrecan and collagen type II expressed. It suggested that SDSCs coupled with CS/COL-I scaffolds treated sequentially with TGF-{beta}1 and bFGF in vitro were highly competent for engineered cartilage formation in vitro and in vivo.

  8. Micro-mechanical model for the tension-stabilized enzymatic degradation of collagen tissues

    Science.gov (United States)

    Nguyen, Thao; Ruberti, Jeffery

    We present a study of how the collagen fiber structure influences the enzymatic degradation of collagen tissues. Experiments of collagen fibrils and tissues show that mechanical tension can slow and halt enzymatic degradation. Tissue-level experiments also show that degradation rate is minimum at a stretch level coincident with the onset of strain-stiffening in the stress response. To understand these phenomena, we developed a micro-mechanical model of a fibrous collagen tissue undergoing enzymatic degradation. Collagen fibers are described as sinusoidal elastica beams, and the tissue is described as a distribution of fibers. We assumed that the degradation reaction is inhibited by the axial strain energy of the crimped collagen fibers. The degradation rate law was calibrated to experiments on isolated single fibrils from bovine sclera. The fiber crimp and properties were fit to uniaxial tension tests of tissue strips. The fibril-level kinetic and tissue-level structural parameters were used to predict tissue-level degradation-induced creep rate under a constant applied force. We showed that we could accurately predict the degradation-induce creep rate of the pericardium and cornea once we accounted for differences in the fiber crimp structure and properties.

  9. The composition of engineered cartilage at the time of implantation determines the likelihood of regenerating tissue with a normal collagen architecture.

    Science.gov (United States)

    Nagel, Thomas; Kelly, Daniel J

    2013-04-01

    The biomechanical functionality of articular cartilage is derived from both its biochemical composition and the architecture of the collagen network. Failure to replicate this normal Benninghoff architecture in regenerating articular cartilage may in turn predispose the tissue to failure. In this article, the influence of the maturity (or functionality) of a tissue-engineered construct at the time of implantation into a tibial chondral defect on the likelihood of recapitulating a normal Benninghoff architecture was investigated using a computational model featuring a collagen remodeling algorithm. Such a normal tissue architecture was predicted to form in the intact tibial plateau due to the interplay between the depth-dependent extracellular matrix properties, foremost swelling pressures, and external mechanical loading. In the presence of even small empty defects in the articular surface, the collagen architecture in the surrounding cartilage was predicted to deviate significantly from the native state, indicating a possible predisposition for osteoarthritic changes. These negative alterations were alleviated by the implantation of tissue-engineered cartilage, where a mature implant was predicted to result in the formation of a more native-like collagen architecture than immature implants. The results of this study highlight the importance of cartilage graft functionality to maintain and/or re-establish joint function and suggest that engineering a tissue with a native depth-dependent composition may facilitate the establishment of a normal Benninghoff collagen architecture after implantation into load-bearing defects.

  10. Cartilage.

    Science.gov (United States)

    Caplan, Arnold I.

    1984-01-01

    Cartilage is a fundamental biological material that helps to shape the body and then helps to support it. Its fundamental properties of strength and resilience are explained in terms of the tissue's molecular structure. (JN)

  11. Cartilage Turnover Reflected by Metabolic Processing of Type II Collagen: A Novel Marker of Anabolic Function in Chondrocytes

    Directory of Open Access Journals (Sweden)

    Natasja Stæhr Gudmann

    2014-10-01

    Full Text Available The aim of this study was to enable measurement of cartilage formation by a novel biomarker of type II collagen formation. The competitive enzyme-linked immunosorbent assay (ELISA Pro-C2 was developed and characterized for assessment of the beta splice variant of type II procollagen (PIIBNP. This is expected to originate primarily from remodeling of hyaline cartilage. A mouse monoclonal antibody (Mab was raised in mouse, targeting specifically PIIBNP (QDVRQPG and used in development of the assay. The specificity, sensitivity, 4-parameter fit and stability of the assay were tested. Levels of PIIBNP were quantified in human serum (0.6–2.2 nM, human amniotic fluid (163–188 nM and sera from different animal species, e.g., fetal bovine serum (851–901 nM with general good linearity (100% (SD 7.6 recovery and good intra- and inter-assay variation (CV% < 10. Dose (0.1 to 100 ng/mL and time (7, 14 and 21 days dependent release of PIIBNP were evaluated in the conditioned medium from bovine cartilage explants (BEX and human cartilage explants (HEX upon stimulation with insulin-like growth factor (IGF-1, transforming growth factor (TGF-β1 and fibroblastic growth factor-2 (FGF-2. TGF-β1 and IGF-1 in concentrations of 10–100 ng/mL significantly (p < 0.05 induced release of PIIBNP in BEX compared to conditions without treatment (WO. In HEX, IGF-1 100 ng/mL was able to induce a significant increase of PIIBNP after one week compared to WO. FGF-2 did not induce a PIIBNP release in our models. To our knowledge this is the first assay, which is able to specifically evaluate PIIBNP excretion. The Pro-C2 assay seems to provide a promising and novel marker of type II collagen formation.

  12. Effect of antibiotics on in vitro and in vivo avian cartilage degradation.

    Science.gov (United States)

    Peters, T L; Fulton, R M; Roberson, K D; Orth, M W

    2002-01-01

    Antibiotics are used in the livestock industry not only to treat disease but also to promote growth and increase feed efficiency in less than ideal sanitary conditions. However, certain antibiotic families utilized in the poultry industry have recently been found to adversely affect bone formation and cartilage metabolism in dogs, rats, and humans. Therefore, the first objective of this study was to determine if certain antibiotics used in the poultry industry would inhibit in vitro cartilage degradation. The second objective was to determine if the antibiotics found to inhibit in vitro cartilage degradation also induced tibial dyschondroplasia in growing broilers. Ten antibiotics were studied by an avian explant culture system that is designed to completely degrade tibiae over 16 days. Lincomycin, tylosin tartrate, gentamicin, erythromycin, and neomycin sulfate did not inhibit degradation at any concentration tested. Doxycycline (200 microg/ml), oxytetracycline (200 microg/ml), enrofloxacin (200 and 400 microg/ml), ceftiofur (400 microg/ml), and salinomycin (10 microg/ml) prevented complete cartilage degradation for up to 30 days in culture. Thus, some of the antibiotics did inhibit cartilage degradation in developing bone. Day-old chicks were then administered the five antibiotics at 25%, 100%, or 400% above their recommended dose levels and raised until 21 days of age. Thiram, a fungicide known to induce experimental tibial dyschondroplasia (TD), was given at 20 ppm. Birds were then killed by cervical dislocation, and each proximal tibiotarsus was visually examined for TD lesions. The results showed that none of these antibiotics significantly induced TD in growing boilers at any concentration tested, whereas birds given 20 ppm thiram had a 92% incidence rate.

  13. Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis?

    DEFF Research Database (Denmark)

    Bay-Jensen, Anne-Christine; Hoegh-Madsen, Suzi; Dam, Erik

    2010-01-01

    -physiology of the joint and whether the joint damage is reversible or irreversible. In this review, we compile emerging data on cellular and pathological aspects of OA, and ask whether these data could give clue to when cartilage degradation is reversible and whether a point-of-no-return exists. We highlight different...

  14. Systems Based Study of the Therapeutic Potential of Small Charged Molecules for the Inhibition of IL-1 Mediated Cartilage Degradation

    Science.gov (United States)

    Kar, Saptarshi; Smith, David W.; Gardiner, Bruce S.; Grodzinsky, Alan J.

    2016-01-01

    Inflammatory cytokines are key drivers of cartilage degradation in post-traumatic osteoarthritis. Cartilage degradation mediated by these inflammatory cytokines has been extensively investigated using in vitro experimental systems. Based on one such study, we have developed a computational model to quantitatively assess the impact of charged small molecules intended to inhibit IL-1 mediated cartilage degradation. We primarily focus on the simplest possible computational model of small molecular interaction with the IL-1 system—direct binding of the small molecule to the active site on the IL-1 molecule itself. We first use the model to explore the uptake and release kinetics of the small molecule inhibitor by cartilage tissue. Our results show that negatively charged small molecules are excluded from the negatively charged cartilage tissue and have uptake kinetics in the order of hours. In contrast, the positively charged small molecules are drawn into the cartilage with uptake and release timescales ranging from hours to days. Using our calibrated computational model, we subsequently explore the effect of small molecule charge and binding constant on the rate of cartilage degradation. The results from this analysis indicate that the small molecules are most effective in inhibiting cartilage degradation if they are either positively charged and/or bind strongly to IL-1α, or both. Furthermore, our results showed that the cartilage structural homeostasis can be restored by the small molecule if administered within six days following initial tissue exposure to IL-1α. We finally extended the scope of the computational model by simulating the competitive inhibition of cartilage degradation by the small molecule. Results from this model show that small molecules are more efficient in inhibiting cartilage degradation by binding directly to IL-1α rather than binding to IL-1α receptors. The results from this study can be used as a template for the design and

  15. uPARAP/endo180 directs lysosomal delivery and degradation of collagen IV

    DEFF Research Database (Denmark)

    Kjøller, Lars; Engelholm, Lars H; Høyer-Hansen, Maria

    2004-01-01

    Collagen turnover is crucial for tissue homeostasis and remodeling and pathological processes such as cancer invasion, but the underlying molecular mechanisms are poorly understood. A major pathway appears to be internalization and degradation by fibroblasts. We now show that the endocytic...... transmembrane glycoprotein urokinase plasminogen activator receptor-associated protein (uPARAP/endo180) directs collagen IV for lysosomal delivery and degradation. In wild-type fibroblasts, fluorescently labeled collagen IV was first internalized into vesicular structures with diffuse fluorescence eventually...... appearing uniformly within the wild-type cells after longer incubation times. In these cells, some collagen-containing vesicles were identified as lysosomes by staining for LAMP-1. In contrast, collagen IV remained extracellular and associated with fiber-like structures on uPARAP/endo180-deficient...

  16. Articular cartilage repair with recombinant human type II collagen/polylactide scaffold in a preliminary porcine study.

    Science.gov (United States)

    Muhonen, Virpi; Salonius, Eve; Haaparanta, Anne-Marie; Järvinen, Elina; Paatela, Teemu; Meller, Anna; Hannula, Markus; Björkman, Mimmi; Pyhältö, Tuomo; Ellä, Ville; Vasara, Anna; Töyräs, Juha; Kellomäki, Minna; Kiviranta, Ilkka

    2016-05-01

    The purpose of this study was to investigate the potential of a novel recombinant human type II collagen/polylactide scaffold (rhCo-PLA) in the repair of full-thickness cartilage lesions with autologous chondrocyte implantation technique (ACI). The forming repair tissue was compared to spontaneous healing (spontaneous) and repair with a commercial porcine type I/III collagen membrane (pCo). Domestic pigs (4-month-old, n = 20) were randomized into three study groups and a circular full-thickness chondral lesion with a diameter of 8 mm was created in the right medial femoral condyle. After 3 weeks, the chondral lesions were repaired with either rhCo-PLA or pCo together with autologous chondrocytes, or the lesion was only debrided and left untreated for spontaneous repair. The repair tissue was evaluated 4 months after the second operation. Hyaline cartilage formed most frequently in the rhCo-PLA treatment group. Biomechanically, there was a trend that both treatment groups resulted in better repair tissue than spontaneous healing. Adverse subchondral bone reactions developed less frequently in the spontaneous group (40%) and the rhCo-PLA treated group (50%) than in the pCo control group (100%). However, no statistically significant differences were found between the groups. The novel rhCo-PLA biomaterial showed promising results in this proof-of-concept study, but further studies will be needed in order to determine its effectiveness in articular cartilage repair. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:745-753, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Altering the swelling pressures within in vitro engineered cartilage is predicted to modulate the configuration of the collagen network and hence improve tissue mechanical properties.

    Science.gov (United States)

    Nagel, Thomas; Kelly, Daniel J

    2013-06-01

    Prestress in the collagen network has a significant impact on the material properties of cartilaginous tissues. It is closely related to the recruitment configuration of the collagen network which defines the transition from lax collagen fibres to uncrimped, load-bearing collagen fibres. This recruitment configuration can change in response to alterations in the external environmental conditions. In this study, the influence of changes in external salt concentration or sequential proteoglycan digestion on the configuration of the collagen network of tissue engineered cartilage is investigated using a previously developed computational model. Collagen synthesis and network assembly are assumed to occur in the tissue configuration present during in vitro culture. The model assumes that if this configuration is more compact due to changes in tissue swelling, the collagen network will adapt by lowering its recruitment stretch. When returned to normal physiological conditions, these tissues will then have a higher prestress in the collagen network. Based on these assumptions, the model demonstrates that proteoglycan digestion at discrete time points during culture as well as culture in a hypertonic medium can improve the functionality of tissue engineered cartilage, while culture in hypotonic solution is detrimental to the apparent mechanical properties of the graft. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. M2-like macrophages are responsible for collagen degradation through a mannose receptor–mediated pathway

    Science.gov (United States)

    Madsen, Daniel H.; Leonard, Daniel; Masedunskas, Andrius; Moyer, Amanda; Jürgensen, Henrik Jessen; Peters, Diane E.; Amornphimoltham, Panomwat; Selvaraj, Arul; Yamada, Susan S.; Brenner, David A.; Burgdorf, Sven; Engelholm, Lars H.; Behrendt, Niels; Holmbeck, Kenn; Weigert, Roberto

    2013-01-01

    Tissue remodeling processes critically depend on the timely removal and remodeling of preexisting collagen scaffolds. Nevertheless, many aspects related to the turnover of this abundant extracellular matrix component in vivo are still incompletely understood. We therefore took advantage of recent advances in optical imaging to develop an assay to visualize collagen turnover in situ and identify cell types and molecules involved in this process. Collagen introduced into the dermis of mice underwent cellular endocytosis in a partially matrix metalloproteinase–dependent manner and was subsequently routed to lysosomes for complete degradation. Collagen uptake was predominantly executed by a quantitatively minor population of M2-like macrophages, whereas more abundant Col1a1-expressing fibroblasts and Cx3cr1-expressing macrophages internalized collagen at lower levels. Genetic ablation of the collagen receptors mannose receptor (Mrc1) and urokinase plasminogen activator receptor–associated protein (Endo180 and Mrc2) impaired this intracellular collagen degradation pathway. This study demonstrates the importance of receptor-mediated cellular uptake to collagen turnover in vivo and identifies a key role of M2-like macrophages in this process. PMID:24019537

  19. On the role of hydrogel structure and degradation in controlling the transport of cell-secreted matrix molecules for engineered cartilage.

    Science.gov (United States)

    Dhote, Valentin; Skaalure, Stacey; Akalp, Umut; Roberts, Justine; Bryant, Stephanie J; Vernerey, Franck J

    2013-03-01

    Damage to cartilage caused by injury or disease can lead to pain and loss of mobility, diminishing one's quality of life. Because cartilage has a limited capacity for self-repair, tissue engineering strategies, such as cells encapsulated in synthetic hydrogels, are being investigated as a means to restore the damaged cartilage. However, strategies to date are suboptimal in part because designing degradable hydrogels is complicated by structural and temporal complexities of the gel and evolving tissue along multiple length scales. To address this problem, this study proposes a multi-scale mechanical model using a triphasic formulation (solid, fluid, unbound matrix molecules) based on a single chondrocyte releasing extracellular matrix molecules within a degrading hydrogel. This model describes the key players (cells, proteoglycans, collagen) of the biological system within the hydrogel encompassing different length scales. Two mechanisms are included: temporal changes of bulk properties due to hydrogel degradation, and matrix transport. Numerical results demonstrate that the temporal change of bulk properties is a decisive factor in the diffusion of unbound matrix molecules through the hydrogel. Transport of matrix molecules in the hydrogel contributes both to the development of the pericellular matrix and the extracellular matrix and is dependent on the relative size of matrix molecules and the hydrogel mesh. The numerical results also demonstrate that osmotic pressure, which leads to changes in mesh size, is a key parameter for achieving a larger diffusivity for matrix molecules in the hydrogel. The numerical model is confirmed with experimental results of matrix synthesis by chondrocytes in biodegradable poly(ethylene glycol)-based hydrogels. This model may ultimately be used to predict key hydrogel design parameters towards achieving optimal cartilage growth. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes

    NARCIS (Netherlands)

    Vonk, L A; Kragten, A H M; Dhert, W J A; Saris, D B F; Creemers, L B

    OBJECTIVE: Hsa-miR-148a expression is decreased in Osteoarthritis (OA) cartilage, but its functional role in cartilage has never been studied. Therefore, our aim was to investigate the effects of overexpressing hsa-miR-148a on cartilage metabolism of OA chondrocytes. DESIGN: OA chondrocytes were

  1. Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes

    NARCIS (Netherlands)

    Vonk, Lucienne A.; Kragten, Angela H.M.; Dhert, Wouter J.; Saris, Daniël B.F.; Creemers, Laura B.

    2014-01-01

    Objective Hsa-miR-148a expression is decreased in OA cartilage, but its functional role in cartilage has never been studied. Therefore, our aim was to investigate the effects of overexpressing hsa-miR-148a on cartilage metabolism of OA chondrocytes. Design OA chondrocytes were transfected with a

  2. Changes in Structural-Mechanical Properties and Degradability of Collagen during Aging-associated Modifications*

    Science.gov (United States)

    Panwar, Preety; Lamour, Guillaume; Mackenzie, Neil C. W.; Yang, Heejae; Ko, Frank; Li, Hongbin; Brömme, Dieter

    2015-01-01

    During aging, changes occur in the collagen network that contribute to various pathological phenotypes in the skeletal, vascular, and pulmonary systems. The aim of this study was to investigate the consequences of age-related modifications on the mechanical stability and in vitro proteolytic degradation of type I collagen. Analyzing mouse tail and bovine bone collagen, we found that collagen at both fibril and fiber levels varies in rigidity and Young's modulus due to different physiological changes, which correlate with changes in cathepsin K (CatK)-mediated degradation. A decreased susceptibility to CatK-mediated hydrolysis of fibrillar collagen was observed following mineralization and advanced glycation end product-associated modification. However, aging of bone increased CatK-mediated osteoclastic resorption by ∼27%, and negligible resorption was observed when osteoclasts were cultured on mineral-deficient bone. We observed significant differences in the excavations generated by osteoclasts and C-terminal telopeptide release during bone resorption under distinct conditions. Our data indicate that modification of collagen compromises its biomechanical integrity and affects CatK-mediated degradation both in bone and tissue, thus contributing to our understanding of extracellular matrix aging. PMID:26224630

  3. Age-related accumulation of Maillard reaction products in human articular cartilage collagen

    NARCIS (Netherlands)

    Verzijl, N.; Degroot, J.; Oldehinkel, E.; Bank, R. A.; Thorpe, S. R.; Baynes, J. W.; Bayliss, M. T.; Bijlsma, J. W.; Lafeber, F. P.; TeKoppele, J. M.

    2000-01-01

    Non-enzymic modification of tissue proteins by reducing sugars, the so-called Maillard reaction, is a prominent feature of aging. In articular cartilage, relatively high levels of the advanced glycation end product (AGE) pentosidine accumulate with age. Higher pentosidine levels have been associated

  4. Postnatal development of depth-dependent collagen density in ovine articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.; Schipper, H.; Lagen, van B.; Zuilhof, H.; Kranenbarg, S.; Leeuwen, van J.L.

    2010-01-01

    Articular cartilage (AC) is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Adult AC is characterised by a depth-dependent composition and structure of the extracellular matrix that results in depth-dependent mechanical properties, important for the

  5. Postnatal development of depth-dependent collagen density in ovine articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.; Schipper, H.; Lagen, van B.; Zuilhof, H.; Kranenbarg, S.; Leeuwen, van J.L.

    2010-01-01

    Background Articular cartilage (AC) is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Adult AC is characterised by a depth-dependent composition and structure of the extracellular matrix that results in depth-dependent mechanical properties, important for

  6. IL-1ß and BMPs - Interactive players of cartilage matrix degradation and regeneration

    Directory of Open Access Journals (Sweden)

    T Aigner

    2006-10-01

    Full Text Available Intact human adult articular cartilage is central for the functioning of the articulating joints. This largely depends on the integrity of its extracellular matrix, given the high loading forces during movements in particular in the weight-bearing joints. Unlike the first impression of a more or less static tissue, articular cartilage shows - albeit in the adult organism a slow - tissue turnover. Thus, one of the most important questions in osteoarthritis research is to understand the balance of catabolic and anabolic factors in articular cartilage as this is the key to understand the biology of cartilage maintenance and degeneration. Anabolic and catabolic pathways are very much intermingled in articular cartilage. The balance between anabolism and catabolism is titrated on numerous levels, starting from the mediator-synthesizing cells which express either catabolic or anabolic factors. Also, on the level of the effector cells (i.e. chondrocytes anabolic and catabolic gene expression compete for a balance of matrix homeostasis, namely the synthesis of matrix components and the expression and activation of matrix-degrading proteases. Also, there are multiple layers of intracellular cross-talks in between the anabolic and catabolic signalling pathways. Maybe the most important lesson from this overview is the notion that the anabolic-catabolic balance as such counts and not so much sufficient net anabolism or limited catabolism alone. Thus, it might be neither the aim of osteoarthritis therapy to foster anabolism nor to knock down catabolism, but the balance of anabolic-catabolic activities as a total might need proper titration and balancing.

  7. Deferoxamine Suppresses Collagen Cleavage and Protease, Cytokine, and COL10A1 Expression and Upregulates AMPK and Krebs Cycle Genes in Human Osteoarthritic Cartilage

    Directory of Open Access Journals (Sweden)

    Elena V. Tchetina

    2016-01-01

    Full Text Available This study reports the effects of the iron chelator deferoxamine (DFO on collagen cleavage, inflammation, and chondrocyte hypertrophy in relation to energy metabolism-related gene expression in osteoarthritic (OA articular cartilage. Full-depth explants of human OA knee articular cartilage from arthroplasty were cultured with exogenous DFO (1–50 μM. Type II collagen cleavage and phospho-adenosine monophosphate-activated protein kinase (pAMPK concentrations were measured using ELISAs. Gene expression studies employed real-time PCR and included AMPK analyses in PBMCs. In OA explants collagen cleavage was frequently downregulated by 10–50 μM DFO. PCR analysis of 7 OA patient cartilages revealed that 10 μM DFO suppressed expression of MMP-1, MMP-13, IL-1β, and TNFα and a marker of chondrocyte hypertrophy, COL10A1. No changes were observed in the expression of glycolysis-related genes. In contrast, expressions of genes associated with the mitochondrial Krebs cycle (TCA, AMPK, HIF1α, and COL2A1 were upregulated. AMPK gene expression was reduced in OA cartilage and increased in PBMCs from the same patients compared to healthy controls. Our studies demonstrate that DFO is capable of suppressing excessive collagenase-mediated type II collagen cleavage in OA cartilage and reversing phenotypic changes. The concomitant upregulation of proanabolic TCA-related gene expressions points to a potential for availability of energy generating substrates required for matrix repair by end-stage OA chondrocytes. This might normally be prevented by high whole-body energy requirements indicated by elevated AMPK expression in PBMCs of OA patients.

  8. Embryonic chicken cornea and cartilage synthesize type IX collagen molecules with different amino-terminal domains.

    OpenAIRE

    Svoboda, K K; Nishimura, I; Sugrue, S P; Ninomiya, Y; Olsen, B R

    1988-01-01

    We have analyzed embryonic chicken cornea for the presence of type IX collagen mRNA and protein. Using RNA transfer blot analysis, we demonstrate that alpha 1(IX) and alpha 2(IX) mRNAs are expressed by corneal epithelial cells at the time that the primary stromal components are synthesized. The levels of the mRNAs decrease with increasing developmental age and are barely detectable at day 11 of development. In contrast, type IX collagen protein is detectable by immunofluorescence at days 5 an...

  9. Assessment of proteolytic degradation of the basement membrane: a fragment of type IV collagen as a biochemical marker for liver fibrosis

    DEFF Research Database (Denmark)

    Veidal, Sanne S.; Karsdal, Morten A.; Nawrocki, Arkadiusz

    2011-01-01

    Collagen deposition and an altered matrix metalloproteinase (MMP) expression profile are hallmarks of fibrosis. Type IV collagen is the most abundant structural basement membrane component of tissue, which increases 14-fold during fibrogenesis in the liver. Proteolytic degradation of collagens...

  10. Experimental resin cements containing bioactive fillers reduce matrix metalloproteinase-mediated dentin collagen degradation.

    Science.gov (United States)

    Osorio, Raquel; Yamauti, Monica; Sauro, Salvatore; Watson, Thimoty F; Toledano, Manuel

    2012-09-01

    Collagen dentin matrix may represent a suitable scaffold to be remineralized in the presence of bioactive materials. The purpose of this study was to determine if experimental resin cements containing bioactive fillers may modulate matrix metalloproteinase-mediated collagen degradation of etched dentin. Human dentin beams demineralized using 10% phosphoric acid or 0.5 mol/L EDTA were infiltrated with the following experimental resins: (1) unfilled resin, (2) resin with Bioglass 45S5 particles (Sylc; OSspray Ltd, London, UK), and (3) resin with β-tricalcium phosphate-modified calcium silicate cement (HCAT-β) particles. The filler/resin ratio was 40/60 wt%. The specimens were stored in artificial saliva, and the determination of C-terminal telopeptide (ICTP) was performed by radioimmunoassay after 24 hours, 1 week, and 4 weeks. Scanning electron microscopic analysis of dentin surfaces after 4 weeks of storage was also executed. Collagen degradation was prominent both in phosphoric acid and EDTA-treated dentin. Resin infiltration strongly reduced the MMP activity in demineralized dentin. Resin-containing Bioglass 45S5 particles exerted higher and more stable protection of collagen at all tested dentin states and time points. HCAT-β induced collagen protection from MMPs only in EDTA-treated specimens. Dentin remineralization was achieved when dentin was infiltrated with the resin cements containing bioactive fillers. MMP degradation of dentin collagen is strongly reduced in resin-infiltrated dentin. The inclusion of Bioglass 45S5 particles exerted an additional protection of collagen during dentin remineralization. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Intracellular collagen degradation mediated by uPARAP/Endo180 is a major pathway of extracellular matrix turnover during malignancy

    DEFF Research Database (Denmark)

    Curino, Alejandro C; Engelholm, Lars H; Yamada, Susan S

    2005-01-01

    We recently reported that uPARAP/Endo180 can mediate the cellular uptake and lysosomal degradation of collagen by cultured fibroblasts. Here, we show that uPARAP/Endo180 has a key role in the degradation of collagen during mammary carcinoma progression. In the normal murine mammary gland, uPARAP/...

  12. In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Damink, LHHO; Dijkstra, PJ; vanLuyn, MJA; vanWachem, PB; Nieuwenhuis, P; Feijen, J

    Bacterial collagenase was used to study the susceptibility of dermal sheep collagen (DSC) cross-inked with a mixture of the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride and N-hydroxysuccinimide (EIN-DSC) towards enzymatic degradation. Contrary to

  13. Oral administration of undenatured native chicken type II collagen (UC-II) diminished deterioration of articular cartilage in a rat model of osteoarthritis (OA).

    Science.gov (United States)

    Bagi, C M; Berryman, E R; Teo, S; Lane, N E

    2017-12-01

    The aim of this study was to determine the ability of undenatured native chicken type II collagen (UC-II) to prevent excessive articular cartilage deterioration in a rat model of osteoarthritis (OA). Twenty male rats were subjected to partial medial meniscectomy tear (PMMT) surgery to induce OA. Immediately after the surgery 10 rats received vehicle and another 10 rats oral daily dose of UC-II at 0.66 mg/kg for a period of 8 weeks. In addition 10 naïve rats were used as an intact control and another 10 rats received sham surgery. Study endpoints included a weight-bearing capacity of front and hind legs, serum biomarkers of bone and cartilage metabolism, analyses of subchondral and cancellous bone at the tibial epiphysis and metaphysis, and cartilage pathology at the medial tibial plateau using histological methods. PMMT surgery produced moderate OA at the medial tibial plateau. Specifically, the deterioration of articular cartilage negatively impacted the weight bearing capacity of the operated limb. Immediate treatment with the UC-II preserved the weight-bearing capacity of the injured leg, preserved integrity of the cancellous bone at tibial metaphysis and limited the excessive osteophyte formation and deterioration of articular cartilage. Study results demonstrate that a clinically relevant daily dose of UC-II when applied immediately after injury can improve the mechanical function of the injured knee and prevent excessive deterioration of articular cartilage. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. The stimulation of mononuclear cells from patients with rheumatoid arthritis to degrade articular cartilage is not modulated by cartilage itself

    NARCIS (Netherlands)

    van Roon, J. A.; van Roy, J. L.; Lafeber, F. P.; Bijlsma, J. W.

    1996-01-01

    To study the modulation of mononuclear cell (MNC) activity in patients with rheumatoid arthritis (RA) by constituents released from human articular cartilage, which may be present in vivo during early events of the disease, when articular cartilage is not only mildly damaged. In an attempt to

  15. Does increased local bone resorption secondary to breast and prostate cancer result in increased cartilage degradation?

    DEFF Research Database (Denmark)

    Leeming, Diana J; Byrjalsen, Inger; Qvist, Per

    2008-01-01

    BACKGROUND: Breast and prostate cancer patients often develop lesions of locally high bone turnover, when the primary tumor metastasizes to the bone causing an abnormal high bone resorption at this site. The objective of the present study was to determine whether local increased bone turnover in ...... experiments revealed that osteoclasts released CTXI fragments but not CTXII from bone specimens. The same was observed for cathepsin K. CONCLUSION: Data suggest that an uncoupling between bone resorption and cartilage degradation occurs in breast and lung cancer patient....

  16. Trend of Cadherin-11 expression and its impact on cartilage degradation in the temporomandibular joints of guinea pigs with spontaneous osteoarthritis.

    Science.gov (United States)

    Wu, Mengjie; Lu, Haiping; Yu, Fengyang; Zhou, Yiqun

    2016-08-01

    This study aims to investigate spatial and temporal changes in cadherin-11 (CAD-11) expression and their effects on cartilage degeneration in the temporomandibular joint (TMJ) of guinea pigs with spontaneous osteoarthritis (OA). Dunkin-Hartley (DH) and Bristol strain 2 (BS2) guinea pigs at ages of 1, 3, 6, 9, and 12 months were categorized into two groups and analyzed. The bilateral TMJ condyles of DH and BS2 guinea pigs were harvested and fixed. The distribution and expression profiles of CAD-11, collagen type II, and matrix metalloproteinase 3 (MMP-3) were detected by immunohistological assays. Histological micrographs of the condyle cartilage were obtained and analyzed. Osteoarthritis can be spontaneously induced by mechanical stress in DH guinea pigs. The main histopathological changes in the TMJ structure and increased expression of MMP-3 occurred within 6-9 months of ages in DH guinea pigs with spontaneous OA. By contrast, minimal to mild cartilage degradations were observed in the TMJ of BS2 guinea pigs even at the age of 12 months. From as early as 3 months of age, the expression levels of CAD-11 were upregulated in the TMJ of DH guinea pigs compared with those in BS2 animals. CAD-11 expression differed between the two groups at 12 months of age. Increased CAD-11 expression within cartilage is associated with the development and progression of OA between the two strains of guinea pigs. Therefore, CAD-11 expression in TMJ could be an important predisposing factor for the development of spontaneous OA. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Neo-Epitopes—Fragments of Cartilage and Connective Tissue Degradation in Early Rheumatoid Arthritis and Unclassified Arthritis

    DEFF Research Database (Denmark)

    Maijer, Karen I; Gudmann, Natasja Stæhr; Karsdal, Morten Asser

    2016-01-01

    Objective: Tissue destruction in rheumatoid arthritis (RA) is predominantly mediated by matrix metalloproteinases (MMPs), thereby generating protein fragments. Previous studies have revealed that these fragments include MMP-mediated collagen type I, II, and III degradation, citrullinated and MMP...

  18. Biocompatibility Assessment of Novel Collagen-Sericin Scaffolds Improved with Hyaluronic Acid and Chondroitin Sulfate for Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Sorina Dinescu

    2013-01-01

    Full Text Available Cartilage tissue engineering (CTE applications are focused towards the use of implantable biohybrids consisting of biodegradable scaffolds combined with in vitro cultured cells. Hyaluronic acid (HA and chondroitin sulfate (CS were identified as the most potent prochondrogenic factors used to design new biomaterials for CTE, while human adipose-derived stem cells (ASCs were proved to display high chondrogenic potential. In this context, our aim was not only to build novel 3D porous scaffolds based on natural compounds but also to evaluate their in vitro biological performances. Therefore, for prospective CTE, collagen-sericin (Coll-SS scaffolds improved with HA (5% or 10% and CS (5% or 10% were used as temporary physical supports for ASCs and were analyzed in terms of structural, thermal, morphological, and swelling properties and cytotoxic potential. To complete biocompatibility data, ASCs viability and proliferation potential were also assessed. Our studies revealed that Coll-SS hydrogels improved with 10% HA and 5% CS displayed the best biological performances in terms of cell viability, proliferation, morphology, and distribution. Thus, further work will address a novel 3D system including both HA 10% and CS 5% glycoproteins, which will probably be exposed to prochondrogenic conditions in order to assess its potential use in CTE applications.

  19. Occlusal loading and cross-linking effects on dentin collagen degradation in physiological conditions.

    Science.gov (United States)

    Turco, Gianluca; Frassetto, Andrea; Fontanive, Luca; Mazzoni, Annalisa; Cadenaro, Milena; Di Lenarda, Roberto; Tay, Franklin R; Pashley, David H; Breschi, Lorenzo

    2016-02-01

    This study evaluated the ability of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) to improve the stability of demineralized dentin collagen matrices when subjected to mechanical cycling by means of Chewing Simulation (CS). Demineralized dentin disks were randomly assigned to four groups (N=4): (1) immersion in artificial saliva at 37°C for 30 days; (2) pre-treatment with 0.5 M EDC for 60 s, then stored as in Group 1; (3) CS challenge (50 N occlusal load, 30 s occlusal time plus 30 s with no load, for 30 days); (4) pre-treatment with 0.5 M EDC as in Group 2 and CS challenge as in Group 3. Collagen degradation was evaluated by sampling storage media for ICTP and CTX telopeptides. EDC treated specimens showed no significant telopeptides release, irrespective of the aging method. Cyclic stressing of EDC-untreated specimens caused significantly higher ICTP release at day 1, compared to static storage, while by days 3 and 4, the ICTP release in the cyclic group fell significantly below the static group, and then remained undetectable from 5 to 30 days. CTX release in the cyclic groups, on EDC-untreated control specimens was always lower than in the static group in days 1-4, and then fell to undetectable for 30 days. This study showed that chewing stresses applied to control untreated demineralized dentin increased degradation of collagen in terms of CTX release, while collagen crosslinking agents may prevent dentin collagen degradation, irrespective of simulated occlusal function. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. The relationship between shear force, compression, collagen characteristics, desmin degradation and sarcomere length in lamb biceps femoris.

    Science.gov (United States)

    Starkey, Colin P; Geesink, Geert H; van de Ven, Remy; Hopkins, David L

    2017-04-01

    This study aimed to identity the relationships between known variants of tenderness (collagen content (total and soluble), desmin degradation and sarcomere length) and shear force and compression in the biceps femoris aged for 14days from 112 mixed sex lambs. Desmin degradation was related to compression (Pcompression decreased. Sarcomere length (SL) was related to shear force (Pcompression (Pcompression, sarcomere length and soluble collagen. The findings from this experiment indicate that the known variants (soluble collagen, sarcomere length and desmin degradation) are related to shear force and compression in ovine biceps femoris. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  1. In vitro degradation of porous nano-hydroxyapatite/collagen/PLLA scaffold reinforced by chitin fibres

    International Nuclear Information System (INIS)

    Li Xiaoming; Feng Qingling; Cui Fuzhai

    2006-01-01

    In this paper, a novel porous scaffold for bone tissue engineering was prepared with nano-hydroxyapatite/collagen/Poly-L-lactic acid (PLLA) composite reinforced by chitin fibres. To enhance the strength of the scaffold further, PLLA was linked with chitin fibres by Dicyclohexylcarbodimide (DCC). The structures of the reinforced scaffold with and without linking were characterized by Scanning Electron Microscopy (SEM). The chemical characteristics of the chitin fibres with and without linking were evaluated by Fourier-transformed infrared (FTIR) spectroscopy. The mechanical performance during degradation in vitro was investigated. The results indicated that the nano-hydroxyapatite/collagen/PLLA composite reinforced by chitin fibres with linking kept better mechanical properties than that of the composite without linking. These results denoted that the stronger interfacial bonding strength of the scaffold with linking could decrease the degradation rate in vitro. The reinforced composite with the link-treatment can be severed as a scaffold for bone tissue engineering

  2. Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia.

    Science.gov (United States)

    Legendre, Florence; Ollitrault, David; Hervieu, Magalie; Baugé, Catherine; Maneix, Laure; Goux, Didier; Chajra, Hanane; Mallein-Gerin, Frédéric; Boumediene, Karim; Galera, Philippe; Demoor, Magali

    2013-07-01

    Cartilage healing by tissue engineering is an alternative strategy to reconstitute functional tissue after trauma or age-related degeneration. However, chondrocytes, the major player in cartilage homeostasis, do not self-regenerate efficiently and lose their phenotype during osteoarthritis. This process is called dedifferentiation and also occurs during the first expansion step of autologous chondrocyte implantation (ACI). To ensure successful ACI therapy, chondrocytes must be differentiated and capable of synthesizing hyaline cartilage matrix molecules. We therefore developed a safe procedure for redifferentiating human chondrocytes by combining appropriate physicochemical factors: hypoxic conditions, collagen scaffolds, chondrogenic factors (bone morphogenetic protein-2 [BMP-2], and insulin-like growth factor I [IGF-I]) and RNA interference targeting the COL1A1 gene. Redifferentiation of dedifferentiated chondrocytes was evaluated using gene/protein analyses to identify the chondrocyte phenotypic profile. In our conditions, under BMP-2 treatment, redifferentiated and metabolically active chondrocytes synthesized a hyaline-like cartilage matrix characterized by type IIB collagen and aggrecan molecules without any sign of hypertrophy or osteogenesis. In contrast, IGF-I increased both specific and noncharacteristic markers (collagens I and X) of chondrocytes. The specific increase in COL2A1 gene expression observed in the BMP-2 treatment was shown to involve the specific enhancer region of COL2A1 that binds the trans-activators Sox9/L-Sox5/Sox6 and Sp1, which are associated with a decrease in the trans-inhibitors of COL2A1, c-Krox, and p65 subunit of NF-kappaB. Our procedure in which BMP-2 treatment under hypoxia is associated with a COL1A1 siRNA, significantly increased the differentiation index of chondrocytes, and should offer the opportunity to develop new ACI-based therapies in humans.

  3. Participation of intracellular cysteine proteinases, in particular cathepsin B, in degradation of collagen in periosteal tissue explants

    NARCIS (Netherlands)

    Creemers, L. B.; Hoeben, K. A.; Jansen, D. C.; Buttle, D. J.; Beertsen, W.; Everts, V.

    1998-01-01

    The involvement of cysteine proteinases in the degradation of soft connective tissue collagen was studied in cultured periosteal explants. Using cysteine proteinase inhibitors that were active intracellularly or extracellularly (Ep453 and Ep475, respectively), it was shown that over-all collagen

  4. Effects of type I collagen degradation on the durability of three adhesive systems in the early phase of dentin bonding.

    Directory of Open Access Journals (Sweden)

    Lin Hu

    Full Text Available This study was designed to evaluate the effects of type I collagen degradation on the durability of three adhesive systems in the early phase of dentin bonding.Bonded dentin specimens were prepared using three different types of adhesive systems. Micro-tensile bond strength and degradation of collagen were tested before, and after 1 month or 4 months of aging in artificial saliva. The relationship between micro-tensile bond strength and collagen degradation was analyzed by calculating their Pearson's correlation coefficient.Aging induced time-dependent reduction in micro-tensile bond strengths for all the tested adhesive systems, although such reduction for the single-step self-etching adhesive G-Bond (GB was not statistically significant. The bond strength of the two-step self-etching primer adhesive system Clearfil SE Bond (SEB was similar to that of the two-step etch-and-rinse self-priming adhesive system Single Bond 2 (SB, and they were both significantly reduced after one or four months of aging. A negative correlation was found between the degree of collagen degradation and magnitude of micro-tensile bond strength (r = -0.65, p = 0.003. The Pearson's correlation coefficient was 0.426, indicating that 42.6% of the aging-induced reduction in bond strength can be explained by the degradation of collagen.In the early phase of dentin bonding, there was a negative correlation between the degree of collagen degradation and the magnitude of micro-tensile bond strength. The reduction of bond strength was accompanied by the degradation of collagen. These results provide evidence for the causative relationship between the degradation of collagen and the deterioration of dentin-adhesive interface.

  5. Irradiation Alters MMP-2/TIMP-2 System and Collagen Type IV Degradation in Brain

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Hee [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (United States); Warrington, Junie P.; Sonntag, William E. [Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Lee, Yong Woo, E-mail: ywlee@vt.edu [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (United States); Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (United States)

    2012-04-01

    Purpose: Blood-brain barrier (BBB) disruption is one of the major consequences of radiation-induced normal tissue injury in the central nervous system. We examined the effects of whole-brain irradiation on matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) and extracellular matrix (ECM) degradation in the brain. Methods and Materials: Animals received either whole-brain irradiation (a single dose of 10 Gy {gamma}-rays or a fractionated dose of 40 Gy {gamma}-rays, total) or sham-irradiation and were maintained for 4, 8, and 24 h following irradiation. mRNA expression levels of MMPs and TIMPs in the brain were analyzed by real-time reverse transcriptase-polymerase chain reaction (PCR). The functional activity of MMPs was measured by in situ zymography, and degradation of ECM was visualized by collagen type IV immunofluorescent staining. Results: A significant increase in mRNA expression levels of MMP-2, MMP-9, and TIMP-1 was observed in irradiated brains compared to that in sham-irradiated controls. In situ zymography revealed a strong gelatinolytic activity in the brain 24 h postirradiation, and the enhanced gelatinolytic activity mediated by irradiation was significantly attenuated in the presence of anti-MMP-2 antibody. A significant reduction in collagen type IV immunoreactivity was also detected in the brain at 24 h after irradiation. In contrast, the levels of collagen type IV were not significantly changed at 4 and 8 h after irradiation compared with the sham-irradiated controls. Conclusions: The present study demonstrates for the first time that radiation induces an imbalance between MMP-2 and TIMP-2 levels and suggests that degradation of collagen type IV, a major ECM component of BBB basement membrane, may have a role in the pathogenesis of brain injury.

  6. Irradiation Alters MMP-2/TIMP-2 System and Collagen Type IV Degradation in Brain

    International Nuclear Information System (INIS)

    Lee, Won Hee; Warrington, Junie P.; Sonntag, William E.; Lee, Yong Woo

    2012-01-01

    Purpose: Blood-brain barrier (BBB) disruption is one of the major consequences of radiation-induced normal tissue injury in the central nervous system. We examined the effects of whole-brain irradiation on matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) and extracellular matrix (ECM) degradation in the brain. Methods and Materials: Animals received either whole-brain irradiation (a single dose of 10 Gy γ-rays or a fractionated dose of 40 Gy γ-rays, total) or sham-irradiation and were maintained for 4, 8, and 24 h following irradiation. mRNA expression levels of MMPs and TIMPs in the brain were analyzed by real-time reverse transcriptase-polymerase chain reaction (PCR). The functional activity of MMPs was measured by in situ zymography, and degradation of ECM was visualized by collagen type IV immunofluorescent staining. Results: A significant increase in mRNA expression levels of MMP-2, MMP-9, and TIMP-1 was observed in irradiated brains compared to that in sham-irradiated controls. In situ zymography revealed a strong gelatinolytic activity in the brain 24 h postirradiation, and the enhanced gelatinolytic activity mediated by irradiation was significantly attenuated in the presence of anti-MMP-2 antibody. A significant reduction in collagen type IV immunoreactivity was also detected in the brain at 24 h after irradiation. In contrast, the levels of collagen type IV were not significantly changed at 4 and 8 h after irradiation compared with the sham-irradiated controls. Conclusions: The present study demonstrates for the first time that radiation induces an imbalance between MMP-2 and TIMP-2 levels and suggests that degradation of collagen type IV, a major ECM component of BBB basement membrane, may have a role in the pathogenesis of brain injury.

  7. Protective effect of exogenous chondroitin 4,6-sulfate in the acute degradation of articular cartilage in the rabbit.

    Science.gov (United States)

    Uebelhart, D; Thonar, E J; Zhang, J; Williams, J M

    1998-05-01

    The injection of 2.0 mg chymopapain into the adolescent rabbit knee causes severe loss of articular cartilage proteoglycans (PG). Although chondrocytes attempt to restore lost PG, failure to repair ensues. Pure chondroitin 4,6-sulfate (Condrosulf, IBSA Lugano, Switzerland) has been used in clinical studies of human osteoarthritis (OA) as a slow-acting drug for OA (SYSADOA). Using our model of articular cartilage injury, we examined the effects of oral and intramuscular administration of Condrosulf after chymopapain-induced cartilage injury. In this study, animals received an injection of 2.0 mg chymopapain (Chymodiactin, Boots Pharmaceuticals) into the left knee and were sacrificed after 84 days. The contralateral right knee served as a noninjected control. Some animals received oral Condrosulf while others received intramuscular injections of Condrosulf. Serum keratan sulfate (KS) levels were monitored to ensure degradation of the cartilage PG. Those animals not exhibiting at least a 100% increase of serum KS following chymopapain injection were excluded from the study. At sacrifice, cartilage PG contents were markedly reduced in animals receiving an injection of 2.0 mg chymopapain with no further treatment. In contrast, oral administration of Condrosulf beginning 11 days prior to chymopapain injury resulted in significantly higher (P = 0.0036) cartilage PG contents. Intramuscular administration of Condrosulf resulted in higher, but less significantly so (P = 0.0457), cartilage PG contents. These results suggest that daily Condrosulf treatment prior to and continuing after chymopapain injury may have a protective effect on the damaged cartilage, allowing it to continue to re-synthesize matrix PG after the treatment is discontinued.

  8. Study on de novo collagen biosynthesis and degradation markers of bone

    International Nuclear Information System (INIS)

    Hanna, L.S.; Matta, T.F.; Ibrahim, I.; Meky, N.H.

    2003-01-01

    This investigation was carried out to study the performance of de novo biochemical markers of serum pro collagen type-1 amino terminal extension (PINP), as a marker of collagen biosynthesis, and urinary collagen crosslink free deoxypyridinoline (DPD) as a marker of collagen degradation. Moreover, urinary calcium C Ca) and inorganic phosphorus (P), as markers of bone demineralization, in addition to urinary creatinine (Cr), to reflect status of renal function, were also studied in order to assess the activity of bone turnover in osteoporotic (OST), postmenopausal (POST), peri menopausal(PERI), premenopausal (PRE) women and also in young adult (YON) ones. The obtained results showed that urinary creatinine levels were within the normal ranges in all women even in the elderly osteoporotic and postmenopausal women. Serum PINP did not reflect osteoblastic activity. Urinary DPD proved to be a good marker in monitoring the postmenopausal bone resorption and urinary Ca was a reliable marker for bone loss in osteoporosis and bone turnover in the postmenopausal status

  9. Engineering endostatin-producing cartilaginous constructs for cartilage repair using nonviral transfection of chondrocyte-seeded and mesenchymal-stem-cell-seeded collagen scaffolds.

    Science.gov (United States)

    Jeng, Lily; Olsen, Bjorn R; Spector, Myron

    2010-10-01

    Although there is widespread recognition of the importance of angiogenesis in tissue repair, there is little work on the inhibition of angiogenesis in the context of tissue engineering of naturally avascular tissues, like articular cartilage. The objective was to engineer a collagen-scaffold-based cartilaginous construct overexpressing a potent antiangiogenic factor, endostatin, using nonviral transfection. Endostatin-plasmid-supplemented collagen scaffolds were seeded with mesenchymal stem cells and chondrocytes and cultured for 20–22 days. The effects of the following variables on endostatin expression and chondrogenesis were examined: collagen scaffold material, method of nonviral vector incorporation, plasmid load, culture medium, and oxygen tension. An increase and peak of endostatin protein was observed during the first week of culture, followed by a decrease to low levels, suggesting that overexpression of endostatin could be sustained for several days using the nonviral vector. The amount of endostatin produced was tunable with the external factors. Chondrogenesis was observed in the engineered constructs cultured in chondrogenic medium at the 3-week time point, demonstrating that endostatin did not inhibit the chondrogenic potential of mesenchymal stem cells or the general viability of the cells. The ability to engineer endostatin-expressing cartilaginous constructs will be of value for future work exercising regulatory control of angiogenesis in cartilage repair.

  10. Radiation cross-linked collagen/dextran dermal scaffolds: effects of dextran on cross-linking and degradation.

    Science.gov (United States)

    Zhang, Yaqing; Zhang, Xiangmei; Xu, Ling; Wei, Shicheng; Zhai, Maolin

    2015-01-01

    Ionizing radiation effectively cross-links collagen into network with enhanced anti-degradability and biocompatibility, while radiation-cross-linked collagen scaffold lacks flexibility, satisfactory surface appearance, and performs poor in cell penetration and ingrowth. To make the radiation-cross-linked collagen scaffold to serve as an ideal artificial dermis, dextran was incorporated into collagen. Scaffolds with the collagen/dextran (Col/Dex) ratios of 10/0, 7/3, and 5/5 were fabricated via (60)Co γ-irradiation cross-linking, followed by lyophilization. The morphology, microstructure, physicochemical, and biological properties were investigated. Compared with pure collagen, scaffolds with dextran demonstrated more porous appearance, enhanced hydrophilicity while the cross-linking density was lower with the consequence of larger pore size, higher water uptake, as well as reduced stiffness. Accelerated degradation was observed when dextran was incorporated in both the in vitro and in vivo assays, which led to earlier integration with cell and host tissue. The effect of dextran on degradation was ascribed to the decreased cross-linking density, looser microstructure, more porous and hydrophilic surface. Considering the better appearance, softness, moderate degradation rate due to controllable cross-linking degree and good biocompatibility as well, radiation-cross-linked collagen/dextran scaffolds are expected to serve as promising artificial dermal substitutes.

  11. Degradation of polyvinyl chloride (PVC) / hydrolyzed collagen (HC) blends active sludge test.

    Science.gov (United States)

    Agafiţei, Gabriela-Elena; Pascu, Mihaela; Cazacu, Georgeta; Vasile, Cornelia

    2008-01-01

    Biodegradable polymers represent a solution for the environment protection: they decrease the landfill space, by declining the petrochemical sources, and offer also an alternative solution for the recycling. The behavior during degradation in the presence of active sludge of some polyvinyl chloride (PVC) based blends with variable content of hydrolyzed collagen (HC) has been followed. Some samples were subjected to UV irradiation, for 30 hours. The modifications induced in the environment by the polymer systems (pH variation, bacterial composition), as well as the changes of the properties of the blends (weight losses, aspect etc.) were studied. During the first moments of degradation in active sludge, all the samples absorbed water, behavior which favored the biodegradation. The bacteriological analysis of the sludge indicates the presence of some microbiological species. Generally, the populations of microorganisms decrease, excepting the sulphito-reducing anaerobic bacteria, the actinomycetes and other anaerobic bacteria. PVC/HC blends are degraded with a significant rate in active sewage sludge. More susceptible for the degradation are the UV irradiated blends. After the migration of the components with a small molecular mass in the environment, the natural polymer is degraded. The degradation effect increases with the content in the natural polymer.

  12. Running a marathon induces changes in adipokine levels and in markers of cartilage degradation--novel role for resistin.

    Directory of Open Access Journals (Sweden)

    Katriina Vuolteenaho

    Full Text Available Running a marathon causes strenuous joint loading and increased energy expenditure. Adipokines regulate energy metabolism, but recent studies have indicated that they also exert a role in cartilage degradation in arthritis. Our aim was to investigate the effects of running a marathon on the levels of adipokines and indices of cartilage metabolism. Blood samples were obtained from 46 male marathoners before and after a marathon run. We measured levels of matrix metalloproteinase-3 (MMP-3, cartilage oligomeric protein (COMP and chitinase 3-like protein 1 (YKL-40 as biomarkers of cartilage turnover and/or damage and plasma concentrations of adipokines adiponectin, leptin and resistin. Mean marathon time was 3:30:46±0:02:46 (h:min:sec. The exertion more than doubled MMP-3 levels and this change correlated negatively with the marathon time (r = -0.448, p = 0.002. YKL-40 levels increased by 56% and the effect on COMP release was variable. Running a marathon increased the levels of resistin and adiponectin, while leptin levels remained unchanged. The marathon-induced changes in resistin levels were positively associated with the changes in MMP-3 (r = 0.382, p = 0.009 and YKL-40 (r = 0.588, p<0.001 and the pre-marathon resistin levels correlated positively with the marathon induced change in YKL-40 (r = 0.386, p = 0.008. The present results show the impact of running a marathon, and possible load frequency, on cartilage metabolism: the faster the marathon was run, the greater was the increase in MMP-3 levels. Further, the results introduce pro-inflammatory adipocytokine resistin as a novel factor, which enhances during marathon race and associates with markers of cartilage degradation.

  13. Uncoupling of collagen II metabolism in newly diagnosed, untreated rheumatoid arthritis is linked to inflammation and antibodies against cyclic citrullinated peptides

    DEFF Research Database (Denmark)

    Christensen, Anne Friesgaard; Hørslev-Petersen, Kim; Christgau, Stephan

    2010-01-01

    . METHODS: One hundred sixty patients with newly diagnosed, untreated RA entered the Cyclosporine, Methotrexate, Steroid in RA (CIMESTRA) trial. Disease activity and radiograph status were measured at baseline and 4 years. The N-terminal propeptide of collagen IIA (PIIANP) and the cross-linked C...... associations of collagen II anabolism (PIIANP) and collagen II degradation (CTX-II) with anti-CCP, synovitis, and radiographic progression indicate that at this early stage of RA, cartilage collagen degradation is mainly driven by synovitis, while anti-CCP antibodies may interfere with cartilage regeneration...

  14. Ingestion of BioCell Collagen®, a novel hydrolyzed chicken sternal cartilage extract; enhanced blood microcirculation and reduced facial aging signs

    Directory of Open Access Journals (Sweden)

    Schwartz SR

    2012-07-01

    Full Text Available Stephen R Schwartz,1 Joosang Park21International Research Services Inc, Port Chester, NY, USA; 2BioCell Technology, LLC, Newport Beach, CA, USAAbstract: Skin aging and its clinical manifestation is associated with altered molecular metabolism in the extracellular matrix of the dermis. In a pilot open-label study, we investigated the effect of a dietary supplement, BioCell Collagen® (BCC, which contains a naturally occurring matrix of hydrolyzed collagen type II and low-molecular-weight hyaluronic acid and chondroitin sulfate, in 26 healthy females who displayed visible signs of natural and photoaging in the face. Daily supplementation with 1 g of BCC for 12 weeks led to a significant reduction of skin dryness/scaling (76%, P = 0.002 and global lines/wrinkles (13.2%, P = 0.028 as measured by visual/tactile score. Additionally, a significant increase in the content of hemoglobin (17.7%, P = 0.018 and collagen (6.3%, P = 0.002 in the skin dermis was observed after 6 weeks of supplementation. At the end of the study, the increase in hemoglobin remained significant (15%, P = 0.008, while the increase in collagen content was maintained, but the difference from baseline was not significant (3.5%, P = 0.134. This study provides preliminary data suggesting that dietary supplementation with BCC elicits several physiological events which can be harnessed to counteract natural photoaging processes to reduce visible aging signs in the human face. A controlled study is necessary to verify these observations.Keywords: BioCell Collagen, chicken sternal cartilage extract, hydrolyzed collagen type II, low-molecular-weight hyaluronic acid, skin aging

  15. Matrix metalloproteinase-9-mediated type III collagen degradation as a novel serological biochemical marker for liver fibrogenesis

    DEFF Research Database (Denmark)

    Veidal, Sanne S; Vassiliadis, Efstathios; Barascuk, Natasha

    2010-01-01

    During fibrogenesis in the liver, in which excessive remodelling of the extracellular matrix (ECM) occurs, both the quantity of type III collagen (CO3) and levels of matrix metalloproteinases (MMPs), including MMP-9, increase significantly. MMPs play major roles in ECM remodelling, via...... their activity in the proteolytic degradation of extracellular macromolecules such as collagens, resulting in the generation of specific cleavage fragments. These neo-epitopes may be used as markers of fibrosis....

  16. Magnetic resonance imaging reflects cartilage proteoglycan degradation in the rabbit knee

    International Nuclear Information System (INIS)

    Paul, P.K.; O'Byrne, E.; Blancuzzi, V.; Wilson, D.; Gunson, D.; Douglas, F.L.; Wang Jinzhao; Mezrich, R.S.

    1991-01-01

    Cartilage degeneration in osteoarthritis is initiated by a loss of proteoglycan. Intra-articular injection of papain causes a reversible loss of proteoglycan in rabbit knees. Rabbits were scanned with magnetic resonance imaging (MRI), using a 1.5T Signa superconducting magnet with 3 inch surface coil. Spin echo sequences were performed in the coronal and sagittal planes at 0, 24, 48, and 72 h after intra-articular injection of papain to abtain T 1 , proton density, and T 2 -weighted images. Cartilage proteoglycan content was measured biochemically and histochemically. Reduced articular cartilage thickness in the MR images of papain-treated knees corresponded to changes in cartilage proteoglycan content. (orig.)

  17. THE ACTIVATION OF MATRIX METALLOPROTEINASES AND CHONDROCYTE DIFFERENTIATION, WHICH ACCOMPANIES THE INDUCTION OF COLLAGEN DECOMPOSITION UNDER THE ACTION OF COLLAGEN PEPTIDE IN THE CARTILAGE OFHEALTHY INDIVIDUALS

    Directory of Open Access Journals (Sweden)

    Elena Vasil'evna Chetina

    2010-01-01

    Conclusion. This study has shown that the induction of collagenase activity by CB12-2 in the human articular cartilage chondrocytes is attended by terminal differentiation/hypertrophy of these cells. The terminal differentiation of chondrocytes may be one of the mechanisms of chondrolysis in osteoarthrosis since it naturally occurs not only in endochondrial ossification, but also in the development of pathology.

  18. Fourier Transform Infrared Spectroscopy to Quantify Collagen and Elastin in an In Vitro Model of Extracellular Matrix Degradation in Aorta

    Science.gov (United States)

    Cheheltani, Rabee; McGoverin, Cushla M.; Rao, Jayashree; Vorp, David A.; Kiani, Mohammad F.; Pleshko, N.

    2014-01-01

    Extracellular matrix (ECM) is a key component and regulator of many biological tissues including aorta. Several aortic pathologies are associated with significant changes in the composition of the matrix, especially in the content, quality and type of aortic structural proteins, collagen and elastin. The purpose of this study was to develop an infrared spectroscopic methodology that is comparable to biochemical assays to quantify collagen and elastin in aorta. Enzymatically degraded porcine aorta samples were used as a model of ECM degradation in abdominal aortic aneurysm (AAA). After enzymatic treatment, Fourier transform infrared (FTIR) spectra of the aortic tissue were acquired by an infrared fiber optic probe (IFOP) and FTIR imaging spectroscopy (FT-IRIS). Collagen and elastin content were quantified biochemically and partial least squares (PLS) models were developed to predict collagen and elastin content in aorta based on FTIR spectra. PLS models developed from FT-IRIS spectra were able to predict elastin and collagen content of the samples with strong correlations (RMSE of validation = 8.4% and 11.1% of the range respectively), and IFOP spectra were successfully used to predict elastin content (RMSE = 11.3% of the range). The PLS regression coefficients from the FT-IRIS models were used to map collagen and elastin in tissue sections of degraded porcine aortic tissue as well as a human AAA biopsy tissue, creating a similar map of each component compared to histology. These results support further application of FTIR spectroscopic techniques for evaluation of AAA tissues. PMID:24761431

  19. Fourier transform infrared spectroscopy to quantify collagen and elastin in an in vitro model of extracellular matrix degradation in aorta.

    Science.gov (United States)

    Cheheltani, Rabee; McGoverin, Cushla M; Rao, Jayashree; Vorp, David A; Kiani, Mohammad F; Pleshko, Nancy

    2014-06-21

    Extracellular matrix (ECM) is a key component and regulator of many biological tissues including aorta. Several aortic pathologies are associated with significant changes in the composition of the matrix, especially in the content, quality and type of aortic structural proteins, collagen and elastin. The purpose of this study was to develop an infrared spectroscopic methodology that is comparable to biochemical assays to quantify collagen and elastin in aorta. Enzymatically degraded porcine aorta samples were used as a model of ECM degradation in abdominal aortic aneurysm (AAA). After enzymatic treatment, Fourier transform infrared (FTIR) spectra of the aortic tissue were acquired by an infrared fiber optic probe (IFOP) and FTIR imaging spectroscopy (FT-IRIS). Collagen and elastin content were quantified biochemically and partial least squares (PLS) models were developed to predict collagen and elastin content in aorta based on FTIR spectra. PLS models developed from FT-IRIS spectra were able to predict elastin and collagen content of the samples with strong correlations (RMSE of validation = 8.4% and 11.1% of the range respectively), and IFOP spectra were successfully used to predict elastin content (RMSE = 11.3% of the range). The PLS regression coefficients from the FT-IRIS models were used to map collagen and elastin in tissue sections of degraded porcine aortic tissue as well as a human AAA biopsy tissue, creating a similar map of each component compared to histology. These results support further application of FTIR spectroscopic techniques for evaluation of AAA tissues.

  20. Studies on collagen-tannic acid-collagenase ternary system: Inhibition of collagenase against collagenolytic degradation of extracellular matrix component of collagen.

    Science.gov (United States)

    Krishnamoorthy, Ganesan; Sehgal, Praveen Kumar; Mandal, Asit Baran; Sadulla, Sayeed

    2012-06-01

    We report the detailed studies on the inhibitory effect of tannic acid (TA) on Clostridium histolyticum collagenase (ChC) activity against degradation of extracellular matrix component of collagen. The TA treated collagen exhibited 64% resistance against collagenolytic hydrolysis by ChC, whereas direct interaction of TA with ChC exhibited 99% inhibition against degradation of collagen and the inhibition was found to be concentration dependant. The kinetic inhibition of ChC has been deduced from the extent of hydrolysis of N-[3-(2-furyl) acryloyl]-Leu-Gly-Pro-Ala (FALGPA). This data provides a selective competitive mode of inhibition on ChC activity seems to be influenced strongly by the nature and structure of TA. TA showed inhibitor activity against the ChC by molecular docking method. This result demonstrated that TA containing digalloyl radical possess the ability to inhibit the ChC. The inhibition of ChC in gaining new insight into the mechanism of stabilization of collagen by TA is discussed.

  1. The metabolic dynamics of cartilage explants over a long-term culture period

    Directory of Open Access Journals (Sweden)

    E.K Moo

    2011-01-01

    Full Text Available INTRODUCTION: Although previous studies have been performed on cartilage explant cultures, the generalized dynamics of cartilage metabolism after extraction from the host are still poorly understood due to differences in the experimental setups across studies, which in turn prevent building a complete picture. METHODS: In this study, we investigated the response of cartilage to the trauma sustained during extraction and determined the time needed for the cartilage to stabilize. Explants were extracted aseptically from bovine metacarpal-phalangeal joints and cultured for up to 17 days. RESULTS: The cell viability, cell number, proteoglycan content, and collagen content of the harvested explants were analyzed at 0, 2, 10, and 17 days after explantation. A high percentage of the cartilage explants were found to be viable. The cell density initially increased significantly but stabilized after two days. The proteoglycan content decreased gradually over time, but it did not decrease to a significant level due to leakage through the distorted peripheral collagen network and into the bathing medium. The collagen content remained stable for most of the culture period until it dropped abruptly on day 17. CONCLUSION: Overall, the tested cartilage explants were sustainable over long-term culture. They were most stable from day 2 to day 10. The degradation of the collagen on day 17 did not reach diseased levels, but it indicated the potential of the cultures to develop into degenerated cartilage. These findings have implications for the application of cartilage explants in pathophysiological fields.

  2. A tissue adaptation model based on strain-dependent collagen degradation and contact-guided cell traction.

    Science.gov (United States)

    Heck, T A M; Wilson, W; Foolen, J; Cilingir, A C; Ito, K; van Donkelaar, C C

    2015-03-18

    Soft biological tissues adapt their collagen network to the mechanical environment. Collagen remodeling and cell traction are both involved in this process. The present study presents a collagen adaptation model which includes strain-dependent collagen degradation and contact-guided cell traction. Cell traction is determined by the prevailing collagen structure and is assumed to strive for tensional homeostasis. In addition, collagen is assumed to mechanically fail if it is over-strained. Care is taken to use principally measurable and physiologically meaningful relationships. This model is implemented in a fibril-reinforced biphasic finite element model for soft hydrated tissues. The versatility and limitations of the model are demonstrated by corroborating the predicted transient and equilibrium collagen adaptation under distinct mechanical constraints against experimental observations from the literature. These experiments include overloading of pericardium explants until failure, static uniaxial and biaxial loading of cell-seeded gels in vitro and shortening of periosteum explants. In addition, remodeling under hypothetical conditions is explored to demonstrate how collagen might adapt to small differences in constraints. Typical aspects of all essentially different experimental conditions are captured quantitatively or qualitatively. Differences between predictions and experiments as well as new insights that emerge from the present simulations are discussed. This model is anticipated to evolve into a mechanistic description of collagen adaptation, which may assist in developing load-regimes for functional tissue engineered constructs, or may be employed to improve our understanding of the mechanisms behind physiological and pathological collagen remodeling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Assessing the extent of bone degradation using glutamine deamidation in collagen.

    Science.gov (United States)

    Wilson, Julie; van Doorn, Nienke L; Collins, Matthew J

    2012-11-06

    Collagen peptides are analyzed using a low-cost, high-throughput method for assessing deamidation using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). For each chosen peptide, the theoretical distribution is calculated and the measured distribution for each sample compared with this to determine the extent of glutamine deamidation. The deamidation of glutamine (Q) to glutamic acid (E) results in a mass shift of +0.984 Da. Thus, from the resolution of our data, the second peak in the isotope distribution for a peptide containing one glutamine residue coincides with the first peak of the isotope distribution for the peptide in which the residue is deamidated. A genetic algorithm is used to determine the extent of deamidation that gives the best fit to the measured distribution. The method can be extended to peptides containing more than one glutamine residue. The extent of protein degradation assessed in this way could be used, for example, to assess the damage of collagen, and screen samples for radiocarbon dating and DNA analysis.

  4. Inhibitory assay for degradation of collagen IV by cathepsin B with a surface plasmon resonance sensor.

    Science.gov (United States)

    Shoji, Atsushi; Suenaga, Yumiko; Hosaka, Atsushi; Ishida, Yuuki; Yanagida, Akio; Sugawara, Masao

    2017-10-25

    We describe a simple method for evaluating the inhibition of collagen IV degradation by cathepsin B with a surface plasmon resonance (SPR) biosensor. The change in the SPR signal decreased with an increase in the concentration of cathepsin B inhibitors. The order of the inhibitory constant (Ki) obtained by the SPR method was CA074Me≈Z-Phe-Phe-FMK < leupeptin. This order was different from that obtained by benzyloxycarbonyl-Phe-Phe-Fluoromethylketone (Z-Phe-Phe-FMK) as a peptide substrate. The comparison of Ki suggested that CA074 and Z-Phe-Phe-FMK inhibited exopeptidase activity, and leupeptin inhibited the endopeptidase activity of cathepsin B more strongly. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Sterilization of collagen scaffolds designed for peripheral nerve regeneration: Effect on microstructure, degradation and cellular colonization

    International Nuclear Information System (INIS)

    Monaco, Graziana; Cholas, Rahmatullah; Salvatore, Luca; Madaghiele, Marta; Sannino, Alessandro

    2017-01-01

    In this study we investigated the impact of three different sterilization methods, dry heat (DHS), ethylene oxide (EtO) and electron beam radiation (β), on the properties of cylindrical collagen scaffolds with longitudinally oriented pore channels, specifically designed for peripheral nerve regeneration. Scanning electron microscopy, mechanical testing, quantification of primary amines, differential scanning calorimetry and enzymatic degradation were performed to analyze possible structural and chemical changes induced by the sterilization. Moreover, in vitro proliferation and infiltration of the rat Schwann cell line RSC96 within the scaffolds was evaluated, up to 10 days of culture. No major differences in morphology and compressive stiffness were observed among scaffolds sterilized by the different methods, as all samples showed approximately the same structure and stiffness as the unsterilized control. Proliferation, infiltration, distribution and morphology of RSC96 cells within the scaffolds were also comparable throughout the duration of the cell culture study, regardless of the sterilization treatment. However, we found a slight increase of chemical crosslinking upon sterilization (EtO < DHS < β), together with an enhanced resistance to denaturation of the EtO treated scaffolds and a significantly accelerated enzymatic degradation of the β sterilized scaffolds. The results demonstrated that β irradiation impaired the scaffold properties to a greater extent, whereas EtO exposure appeared as the most suitable method for the sterilization of the proposed scaffolds. - Highlights: • Production of longitudinally oriented collagen scaffolds for nerve regeneration • Control of pore structure and crosslinking • Impact of terminal sterilization on the scaffold properties • Proliferation and infiltration of Schwann cells within the sterilized scaffolds

  6. IGF-1 decreases collagen degradation in diabetic NOD mesangial cells: implications for diabetic nephropathy.

    Science.gov (United States)

    Lupia, E; Elliot, S J; Lenz, O; Zheng, F; Hattori, M; Striker, G E; Striker, L J

    1999-08-01

    Nonobese diabetic (NOD) mice develop glomerulosclerosis shortly after the onset of diabetes. We showed that mesangial cells (MCs) from diabetic mice exhibited a stable phenotypic switch, consisting of both increased IGF-1 synthesis and proliferation (Elliot SJ, Striker LJ, Hattori M, Yang CW, He CJ, Peten EP, Striker GE: Mesangial cells from diabetic NOD mice constitutively secrete increased amounts of insulin-like growth factor-I. Endocrinology 133:1783-1788, 1993). Because the extracellular matrix (ECM) accumulation in diabetic glomerulosclerosis may be partly due to decreased degradation, we examined the effect of excess IGF-1 on collagen turnover and the activity of metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs) in diabetic and nondiabetic NOD-MC. Total collagen degradation was reduced by 58 +/- 18% in diabetic NOD-MCs, which correlated with a constitutive decrease in MMP-2 activity and mRNA levels, and nearly undetectable MMP-9 activity and mRNA. TIMP levels were slightly decreased in diabetic NOD-MC. The addition of recombinant IGF-1 to nondiabetic NOD-MC resulted in a decrease in MMP-2 and TIMP activity. Furthermore, treatment of diabetic NOD-MC with a neutralizing antibody against IGF-1 increased the latent form, and restored the active form, of MMP-2. In conclusion, the excessive production of IGF-1 contributes to the altered ECM turnover in diabetic NOD-MC, largely through a reduction of MMP-2 activity. These data suggest that IGF-1 could be a major contributor to the development of diabetic glomerulosclerosis.

  7. Sterilization of collagen scaffolds designed for peripheral nerve regeneration: Effect on microstructure, degradation and cellular colonization

    Energy Technology Data Exchange (ETDEWEB)

    Monaco, Graziana [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Dhitech Scarl – Distretto Tecnologico High Tech, Via per Monteroni, 73100 Lecce (Italy); Cholas, Rahmatullah; Salvatore, Luca [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Madaghiele, Marta, E-mail: marta.madaghiele@unisalento.it [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Sannino, Alessandro [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy)

    2017-02-01

    In this study we investigated the impact of three different sterilization methods, dry heat (DHS), ethylene oxide (EtO) and electron beam radiation (β), on the properties of cylindrical collagen scaffolds with longitudinally oriented pore channels, specifically designed for peripheral nerve regeneration. Scanning electron microscopy, mechanical testing, quantification of primary amines, differential scanning calorimetry and enzymatic degradation were performed to analyze possible structural and chemical changes induced by the sterilization. Moreover, in vitro proliferation and infiltration of the rat Schwann cell line RSC96 within the scaffolds was evaluated, up to 10 days of culture. No major differences in morphology and compressive stiffness were observed among scaffolds sterilized by the different methods, as all samples showed approximately the same structure and stiffness as the unsterilized control. Proliferation, infiltration, distribution and morphology of RSC96 cells within the scaffolds were also comparable throughout the duration of the cell culture study, regardless of the sterilization treatment. However, we found a slight increase of chemical crosslinking upon sterilization (EtO < DHS < β), together with an enhanced resistance to denaturation of the EtO treated scaffolds and a significantly accelerated enzymatic degradation of the β sterilized scaffolds. The results demonstrated that β irradiation impaired the scaffold properties to a greater extent, whereas EtO exposure appeared as the most suitable method for the sterilization of the proposed scaffolds. - Highlights: • Production of longitudinally oriented collagen scaffolds for nerve regeneration • Control of pore structure and crosslinking • Impact of terminal sterilization on the scaffold properties • Proliferation and infiltration of Schwann cells within the sterilized scaffolds.

  8. A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose

    Science.gov (United States)

    2013-01-01

    Introduction Current therapies for articular cartilage defects fail to achieve qualitatively sufficient tissue regeneration, possibly because of a mismatch between the speed of cartilage rebuilding and the resorption of degradable implant polymers. The present study focused on the self-healing capacity of resident cartilage cells in conjunction with cell-free and biocompatible (but non-resorbable) bacterial nanocellulose (BNC). This was tested in a novel in vitro bovine cartilage punch model. Methods Standardized bovine cartilage discs with a central defect filled with BNC were cultured for up to eight weeks with/without stimulation with transforming growth factor-β1 (TGF-β1. Cartilage formation and integrity were analyzed by histology, immunohistochemistry and electron microscopy. Content, release and neosynthesis of the matrix molecules proteoglycan/aggrecan, collagen II and collagen I were also quantified. Finally, gene expression of these molecules was profiled in resident chondrocytes and chondrocytes migrated onto the cartilage surface or the implant material. Results Non-stimulated and especially TGF-β1-stimulated cartilage discs displayed a preserved structural and functional integrity of the chondrocytes and surrounding matrix, remained vital in long-term culture (eight weeks) without signs of degeneration and showed substantial synthesis of cartilage-specific molecules at the protein and mRNA level. Whereas mobilization of chondrocytes from the matrix onto the surface of cartilage and implant was pivotal for successful seeding of cell-free BNC, chondrocytes did not immigrate into the central BNC area, possibly due to the relatively small diameter of its pores (2 to 5 μm). Chondrocytes on the BNC surface showed signs of successful redifferentiation over time, including increase of aggrecan/collagen type II mRNA, decrease of collagen type I mRNA and initial deposition of proteoglycan and collagen type II in long-term high-density pellet cultures

  9. MR imaging reflects cartilage proteoglycan degradation in the rabbit knee joint

    International Nuclear Information System (INIS)

    Paul, P.K.; O'Byrne, E.M.; Blancuzzi, V.; Wilson, D.; Douglas, F.L.; Mezrich, R.S.

    1989-01-01

    Depletion of proteoglycan (PG) from articular cartilage is an early feature of osteoarthritis (OA). Noninvasive assessment of joint morphology corresponding to changes in cartilage PG is crucial for early diagnosis of OA and for demonstration of efficacy of drugs for OA. Intraarticular injection of papain causes a reversible loss of cartilage PG in intact joints. Both knees of NZW rabbits were scanned with a 1.5-T Signa MR imager with a 3-inch surface coil. A spin-echo technique was used, and coronal and sagittal MR images were obtained at 0, 24, 48, and 72 hours after injection of 5 U papain. An 8-cm field of view, a 3-mm section thickness, and a 128 x 256 matrix was used to obtain T1-, proton density-, and T2-weighted images. Cartilage was dissected from the femur for measurement of PG with 1,9-dimethylmethylene blue. Results are presented

  10. DENTINE CARIES: ACID-TOLERANT MICROORGANISMS AND ASPECTS ON COLLAGEN DEGRADATION.

    Science.gov (United States)

    Lager, Anders Hedenbjörk

    2014-01-01

    . Key findings: Each investigated lesion harbored a unique microbiota in terms of both species composition and numbers of microorganisms. This indicates that various combinations of aciduric microorganisms can colonize, survive in and probably also propagate dentine carious lesions. We also found that solid pH-selective agars can be used successfully to select acid-tolerant microorganisms in caries lesions. This would preserve their phenotypic traits for further study. In Paper III, the relation between salivary levels of matrix metalloproteinase-8 (MMP-8), salivary levels of tissue inhibitor of MMP (TIMP-1), and the presence of manifest caries lesions in a large number of subjects was investigated. Saliva samples were collected and analyzed for concentrations of MMP-8, TIMP-1 and total protein using immunofluorometric assays, enzyme linked immunosorbent assays and Bradford assays, respectively. Key findings: Subjects with manifest caries lesions had significantly elevated levels of salivary MMP-8 compared to subjects without caries lesions. TIMP-1 was not significant in any case. In Paper IV, a new method for generating bioactive demineralized dentine matrix substrate (DDM) was developed using a dialysis system and two different demineralization approaches (acetic acid or EDTA). The generated DDM was subsequently analyzed for the presence of type 1 collagen, active MMP-8 and hydroxyproline (HYP) levels using SDS-PAGE, ELISA or immunofluorescence assay. Key findings: Both demineralization methods produced a substrate rich in collagen and with preserved MMP-8 activity. This report presents new knowledge on the composition of the acid tolerant dentine caries microbiota from three levels in dentine carious lesions and on the efficacy of operative caries removal on the numbers of viable microorganisms in the caries free cavity using two operative methods. Moreover, the basic mechanisms behind collagen degradation in the dentine caries process are studied from both a

  11. Effect of Age-Related Cartilage Turnover on Serum C-Telopeptide of Collagen Type II and Osteocalcin Levels in Growing Rabbits with and without Surgically Induced Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Chung-Cheng Huang

    2014-01-01

    Full Text Available This study aims to determine the effect of age-related cartilage turnover on the serum C-telopeptide of type II collagen (CTX-II and osteocalcin (OC levels in growing rabbits with and without surgically induced osteoarthritis. Twenty-four New Zealand male 3-month-old rabbits were randomized into three operated groups (n = 6 per group, with surgically induced osteroarthritis in the right knee; after blood sampling, the knees were harvested following euthanization at 2, 3, and 6 months after surgery and a control group (n = 6, blood samples were obtained monthly between 3 and 15 months. Histomorphologically, the medial femoral condyles, particularly the central parts, harbored the most severe osteoarthritic changes among the operated rabbits. The serum levels of CTX-II and OC decreased in the controls from 3 to 11 months and then remained stable. No significant differences in the serum CTX-II and OC levels between the osteoarthritic rabbits and controls were observed. The osteoarthritic-to-normal ratios (ONRs, the ratios of serum CTX-II or OC levels in osteoarthritic rabbits to those of the controls at same ages enabled an overall assessment of osteoarthritis and age-related cartilage turnover. Elevated CTX-II ONRs were observed in rabbits with mild to advanced osteoarthritis. However, the OC ONRs were unhelpful in assessing osteoarthritic growing rabbits.

  12. Extracellular collagenases and the endocytic receptor, urokinase plasminogen activator receptor-associated protein/Endo180, cooperate in fibroblast-mediated collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Engelholm, Lars H; Ingvarsen, Signe

    2007-01-01

    in these events. A recently discovered turnover route with importance for tumor growth involves intracellular collagen degradation and is governed by the collagen receptor, urokinase plasminogen activator receptor-associated protein (uPARAP or Endo180). The interplay between this mechanism and extracellular...... collagenolysis is not known. In this report, we demonstrate the existence of a new, composite collagen breakdown pathway. Thus, fibroblast-mediated collagen degradation proceeds preferentially as a sequential mechanism in which extracellular collagenolysis is followed by uPARAP/Endo180-mediated endocytosis......The collagens of the extracellular matrix are the most abundant structural proteins in the mammalian body. In tissue remodeling and in the invasive growth of malignant tumors, collagens constitute an important barrier, and consequently, the turnover of collagen is a rate-limiting process...

  13. Analysis of human knee osteoarthritic cartilage using polarization sensitive second harmonic generation microscopy

    Science.gov (United States)

    Kumar, Rajesh; Grønhaug, Kirsten M.; Romijn, Elisabeth I.; Drogset, Jon O.; Lilledahl, Magnus B.

    2014-05-01

    Osteoarthritis is one of the most prevalent joint diseases in the world. Although the cause of osteoarthritis is not exactly clear, the disease results in a degradation of the quality of the articular cartilage including collagen and other extracellular matrix components. We have investigated alterations in the structure of collagen fibers in the cartilage tissue of the human knee using mulitphoton microscopy. Due to inherent high nonlinear susceptibility, ordered collagen fibers present in the cartilage tissue matrix produces strong second harmonic generation (SHG) signals. Significant morphological differences are found in different Osteoarthritic grades of cartilage by SHG microscopy. Based on the polarization analysis of the SHG signal, we find that a few locations of hyaline cartilage (mainly type II collagen) is being replaced by fibrocartilage (mainly type I cartilage), in agreement with earlier literature. To locate the different types and quantify the alteration in the structure of collagen fiber, we employ polarization-SHG microscopic analysis, also referred to as _-tensor imaging. The image analysis of p-SHG image obtained by excitation polarization measurements would represent different tissue constituents with different numerical values at pixel level resolution.

  14. Inhibition of cartilage degradation and suppression of PGE2 and MMPs expression by pomegranate fruit extract in a model of posttraumatic osteoarthritis.

    Science.gov (United States)

    Akhtar, Nahid; Khan, Nazir M; Ashruf, Omer S; Haqqi, Tariq M

    2017-01-01

    Osteoarthritis (OA) is characterized by cartilage degradation in the affected joints. Pomegranate fruit extract (PFE) inhibits cartilage degradation in vitro. The aim of this study was to determine whether oral consumption of PFE inhibits disease progression in rabbits with surgically induced OA. OA was surgically induced in the tibiofemoral joints of adult New Zealand White rabbits. In one group, animals were fed PFE in water for 8 wk postsurgery. In the second group, animals were fed PFE for 2 wk before surgery and for 8 wk postsurgery. Histologic assessment and scoring of the cartilage was per Osteoarthritis Research Society International guidelines. Gene expression and matrix metalloproteinases (MMP) activity were determined using quantitative reverse transcriptase polymerase chain reaction and fluorometric assay, respectively. Interleukin (IL)-1 β, MMP-13, IL-6, prostaglandin (PG)E 2 , and type II collagen (COL2A1) levels in synovial fluid/plasma/culture media were quantified using enzyme-linked immunosorbent assay. Expression of active caspase-3 and poly (ADP-ribose) polymerase p85 was determined by immunohistochemistry. Effect of PFE and inhibitors of MMP-13, mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB was studied in IL-1 β-stimulated rabbit articular chondrocytes. Safranin-O-staining and chondrocyte cluster formation was significantly reduced in the anterior cruciate ligament transaction plus PFE fed groups. Expression of MMP-3, MMP-9, and MMP-13 mRNA was higher in the cartilage of rabbits given water alone but was significantly lower in the animals fed PFE. PFE-fed rabbits had lower IL-6, MMP-13, and PGE 2 levels in the synovial fluid and plasma, respectively, and showed higher expression of aggrecan and COL2A1 mRNA. Significantly higher numbers of chondrocytes were positive for markers of apoptosis in the joints of rabbits with OA given water only compared with those in the PFE-fed groups. PFE pretreatment significantly

  15. Development and validation of an enzyme-linked immunosorbent assay for the quantification of a specific MMP-9 mediated degradation fragment of type III collagen--A novel biomarker of atherosclerotic plaque remodeling

    DEFF Research Database (Denmark)

    Barascuk, Natasha; Vassiliadis, Efstathios; Larsen, Lise

    2011-01-01

    Degradation of collagen in the arterial wall by matrix metalloproteinases is the hallmark of atherosclerosis. We have developed an ELISA for the quantification of type III collagen degradation mediated by MMP-9 in urine.......Degradation of collagen in the arterial wall by matrix metalloproteinases is the hallmark of atherosclerosis. We have developed an ELISA for the quantification of type III collagen degradation mediated by MMP-9 in urine....

  16. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration

    International Nuclear Information System (INIS)

    Chen, Zonggang; Kang, Lingzhi; Meng, Qing-Yuan; Liu, Huanye; Wang, Zhaoliang; Guo, Zhongwu; Cui, Fu-Zhai

    2014-01-01

    The nHAC/CSH composite is an injectable bone repair material with controllable injectability and self-setting properties prepared by introducing calcium sulfate hemihydrate (CSH) into mineralized collagen (nHAC). When mixed with water, the nHAC/CSH composites can be transformed into mineralized collagen/calcium sulfate dihydrate (nHAC/CSD) composites. The nHAC/CSD composites have good biocompatibility and osteogenic capability. Considering that the degradation behavior of bone repair material is another important factor for its clinical applications, the degradability of nHAC/CSD composites was studied. The results showed that the degradation ratio of the nHAC/CSD composites with lower nHAC content increased with the L/S ratio increase of injectable materials, but the variety of L/S ratio had no significant effect on the degradation ratio of the nHAC/CSD composites with higher nHAC content. Increasing nHAC content in the composites could slow down the degradation of nHAC/CSD composite. Setting accelerator had no significant effect on the degradability of nHAC/CSD composites. In vivo histological analysis suggests that the degradation rate of materials can match the growth rate of new mandibular bone tissues in the implanted site of rabbit. The regulable degradability of materials resulting from the special prescriptions of injectable nHAC/CSH composites will further improve the workability of nHAC/CSD composites. - Highlights: • The nHAC/CSH composite can be as an injectable bone repair material. • The L/S ratio and nHAC content have a significant effect on material degradability. • The degradability of bone materials can be regulated to match tissue repair. • The regulable degradability will further improve the workability of bone materials

  17. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zonggang, E-mail: chenzg@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Kang, Lingzhi [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Meng, Qing-Yuan [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, Huanye [Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Wang, Zhaoliang [Jinan Military General Hospital of PLA, Jinan 250031 (China); Guo, Zhongwu, E-mail: zwguo@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Cui, Fu-Zhai, E-mail: cuifz@mail.tsinghua.edu.cn [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-12-01

    The nHAC/CSH composite is an injectable bone repair material with controllable injectability and self-setting properties prepared by introducing calcium sulfate hemihydrate (CSH) into mineralized collagen (nHAC). When mixed with water, the nHAC/CSH composites can be transformed into mineralized collagen/calcium sulfate dihydrate (nHAC/CSD) composites. The nHAC/CSD composites have good biocompatibility and osteogenic capability. Considering that the degradation behavior of bone repair material is another important factor for its clinical applications, the degradability of nHAC/CSD composites was studied. The results showed that the degradation ratio of the nHAC/CSD composites with lower nHAC content increased with the L/S ratio increase of injectable materials, but the variety of L/S ratio had no significant effect on the degradation ratio of the nHAC/CSD composites with higher nHAC content. Increasing nHAC content in the composites could slow down the degradation of nHAC/CSD composite. Setting accelerator had no significant effect on the degradability of nHAC/CSD composites. In vivo histological analysis suggests that the degradation rate of materials can match the growth rate of new mandibular bone tissues in the implanted site of rabbit. The regulable degradability of materials resulting from the special prescriptions of injectable nHAC/CSH composites will further improve the workability of nHAC/CSD composites. - Highlights: • The nHAC/CSH composite can be as an injectable bone repair material. • The L/S ratio and nHAC content have a significant effect on material degradability. • The degradability of bone materials can be regulated to match tissue repair. • The regulable degradability will further improve the workability of bone materials.

  18. Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(ε-caprolactone nerve conduit with tailored degradation rate

    Directory of Open Access Journals (Sweden)

    Jiang Xinquan

    2011-07-01

    Full Text Available Abstract Background To cope with the limitations faced by autograft acquisitions particularly for multiple nerve injuries, artificial nerve conduit has been introduced by researchers as a substitute for autologous nerve graft for the easy specification and availability for mass production. In order to best mimic the structures and components of autologous nerve, great efforts have been made to improve the designation of nerve conduits either from materials or fabrication techniques. Electrospinning is an easy and versatile technique that has recently been used to fabricate fibrous tissue-engineered scaffolds which have great similarity to the extracellular matrix on fiber structure. Results In this study we fabricated a collagen/poly(ε-caprolactone (collagen/PCL fibrous scaffold by electrospinning and explored its application as nerve guide substrate or conduit in vitro and in vivo. Material characterizations showed this electrospun composite material which was made of submicron fibers possessed good hydrophilicity and flexibility. In vitro study indicated electrospun collagen/PCL fibrous meshes promoted Schwann cell adhesion, elongation and proliferation. In vivo test showed electrospun collagen/PCL porous nerve conduits successfully supported nerve regeneration through an 8 mm sciatic nerve gap in adult rats, achieving similar electrophysiological and muscle reinnervation results as autografts. Although regenerated nerve fibers were still in a pre-mature stage 4 months postoperatively, the implanted collagen/PCL nerve conduits facilitated more axons regenerating through the conduit lumen and gradually degraded which well matched the nerve regeneration rate. Conclusions All the results demonstrated this collagen/PCL nerve conduit with tailored degradation rate fabricated by electrospinning could be an efficient alternative to autograft for peripheral nerve regeneration research. Due to its advantage of high surface area for cell attachment, it

  19. Computer-aided cartilage tissue-engineering : a numerical evaluation of the influence of inhomogeneities, collagen architecture and temporal culture effects

    NARCIS (Netherlands)

    Khoshgoftar, M.

    2012-01-01

    Hyaline articular cartilage has a crucial role in the distribution of joint mechanical loads and smooth movement of bones. Because of its poor healing capacity, cartilage damage is progressive and may lead to osteoarthritis (OA). Replacing damaged cartilage with tissue engineered (TE) cartilage is

  20. Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice

    DEFF Research Database (Denmark)

    Fan, Ming-Hui; Zhu, Qiang; Li, Hui-Hua

    2016-01-01

    , intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent...... within vitrostudies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180....... Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP...

  1. The effect of protease inhibitors on the induction of osteoarthritis-related biomarkers in bovine full-depth cartilage explants

    DEFF Research Database (Denmark)

    He, Yi; Zheng, Qinlong; Jiang, Mengmeng

    2015-01-01

    contribution of ADAMTS-4 and ADAMTS-5 to cartilage degradation upon catabolic stimulation; ii) To investigate the effect of regulating the activities of key enzymes by mean of broad-spectrum inhibitors. Methods Bovine full-depth cartilage explants stimulated with tumor necrosis factor alpha (TNF...... protease for the generation of 374ARGS aggrecan fragment in the TNF-α/OSM stimulated bovine cartilage explants. This study addresses the need to determine the roles of ADAMTS-4 and ADAMTS-5 in human articular degradation in OA and hence identify the attractive target for slowing down human cartilage......Objective The specific degradation of type II collagen and aggrecan by matrix metalloproteinase (MMP)-9, -13 and ADAMTS-4 and -5 (aggrecanase-1 and -2) in the cartilage matrix is a critical step in pathology of osteoarthritis (OA). The aims of this study were: i) To investigate the relative...

  2. Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome.

    Science.gov (United States)

    O'Donoghue, Anthony J; Knudsen, Giselle M; Beekman, Chapman; Perry, Jenna A; Johnson, Alexander D; DeRisi, Joseph L; Craik, Charles S; Bennett, Richard J

    2015-06-16

    Pseudogymnoascus destructans is the causative agent of white-nose syndrome, a disease that has caused the deaths of millions of bats in North America. This psychrophilic fungus proliferates at low temperatures and targets hibernating bats, resulting in their premature arousal from stupor with catastrophic consequences. Despite the impact of white-nose syndrome, little is known about the fungus itself or how it infects its mammalian host. P. destructans is not amenable to genetic manipulation, and therefore understanding the proteins involved in infection requires alternative approaches. Here, we identify hydrolytic enzymes secreted by P. destructans, and use a novel and unbiased substrate profiling technique to define active peptidases. These experiments revealed that endopeptidases are the major proteolytic activities secreted by P. destructans, and that collagen, the major structural protein in mammals, is actively degraded by the secretome. A serine endopeptidase, hereby-named Destructin-1, was subsequently identified, and a recombinant form overexpressed and purified. Biochemical analysis of Destructin-1 showed that it mediated collagen degradation, and a potent inhibitor of peptidase activity was identified. Treatment of P. destructans-conditioned media with this antagonist blocked collagen degradation and facilitated the detection of additional secreted proteolytic activities, including aminopeptidases and carboxypeptidases. These results provide molecular insights into the secretome of P. destructans, and identify serine endopeptidases that have the clear potential to facilitate tissue invasion and pathogenesis in the mammalian host.

  3. Immunohistochemistry Evaluation of TGF-β1, SOX-9, Type II Collagen and Aggrecan in Cartilage Lesions Treated with Conditioned Medium of Umbilical Cord Mesencyhmal Stem Cells in Wistar Mice (Rattus novergicus

    Directory of Open Access Journals (Sweden)

    Bintang Soetjahjo

    2018-01-01

    Full Text Available Currently, umbilical cord mesenchymal stem cells have the potential to be used as treatment options for any cartilage lesion. This research aimed to evaluate the effects of conditioned medium from umbilical cord mesenchymal stem cells (UC-MSC on damaged cartilage through the expression of proteins TGF-β1, SOX-9, type II collagen and aggrecan, which are known to be related to chondrogenesis. UC-MSC were isolated from 19-days-pregnant Wistar mice and were cultured using the standard procedure to obtain 80% confluence. Subsequently, the culture was confirmed through a microscopic examination that was driven to be an embryoid body to obtain a pre-condition medium. This research utilized 3-month-old male Wistar mice and was categorized into 6 groups (3 control and 3 treatment groups. Each animal had surgery performed to create a femur condyle cartilage defect. The treatment groups were administered a dose of stem cells at 1 mL/kg. Next, immunohistochemical (IHC staining was performed to examine the expression of TGF-β1, SOX-9, type II collagen and aggrecan in the 2nd, 3rd, and 4th month of evaluation. The results were analyzed statistically using ANOVA test. For each of the treatment groups, there was increased expression (p < 0.05 in all proteins TGF-β1, SOX-9, type II collagen and aggrecan when compared with control groups at the 2nd, 3rd, and 4th month of evaluation. Pre-conditioned medium from UC-MSC potentially increases the expression of TGF-β1, SOX-9, type II collagen and aggrecan in the damaged cartilage of Wistar mice.

  4. uPARAP/endo180 directs lysosomal delivery and degradation of collagen IV

    DEFF Research Database (Denmark)

    Kjøller, Lars; Engelholm, Lars H; Høyer-Hansen, Maria

    2004-01-01

    appearing uniformly within the wild-type cells after longer incubation times. In these cells, some collagen-containing vesicles were identified as lysosomes by staining for LAMP-1. In contrast, collagen IV remained extracellular and associated with fiber-like structures on uPARAP/endo180-deficient...

  5. MMP mediated type V collagen degradation (C5M) is elevated in ankylosing spondylitis

    DEFF Research Database (Denmark)

    Veidal, S S; Larsen, D V; Chen, Xijuan

    2012-01-01

    Type V collagen has been demonstrated to control fibril formation. The aim of this study was to develop an ELISA capable of detecting a fragment of type V collagen generated by MMP-2/9 and to evaluate the assay as biomarker for ankylosing spondylitis (AS)....

  6. Layer-by-layer assembly of type I collagen and chondroitin sulfate on aminolyzed PU for potential cartilage tissue engineering application

    Energy Technology Data Exchange (ETDEWEB)

    He Xianyun [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Wang Yingjun, E-mail: imwangyj@163.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China) and National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China) and Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Wu Gang, E-mail: imwugang@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer A novel biodegradable polyurethane (PU) was successfully synthesized. Black-Right-Pointing-Pointer Surface aminolyzing of the PU was performed by reacting it with 1,3-propanediamine. Black-Right-Pointing-Pointer Collagen and chondroitin sulfate were deposited alternately on the PU surface. - Abstract: In this paper, a two-step method was used to synthesize a biodegradable polyurethane (PU) composed of L-lysine ethyl ester diisocyanate (LDI), poly({epsilon}-caprolactone) diols (PCL-diol) and 1,4:3,6-dianhydro-D-sorbitol (isosorbide). Amino groups were introduced onto the surface of the PU membrane by an amination reacting with 1,3-propanediamine to produce polycationic substratum. And then, type I collagen (Col) and chondroitin sulfate (CS) were deposited alternately on the polycationic substratum through layer-by-layer (LBL) assembly technology. The FTIR and {sup 1}H NMR results showed that the polyurethane was successfully synthesized. Rhodamine B isothiocyanate (RBITC) fluorescence spectrum indicated that amino groups were successfully introduced onto the PU surface. The results of quartz-crystal microbalance (QCM) and RBITC-Col fluorescence spectroscopy monitoring the LBL assemble process presented that the Col/CS deposited alternately on the PU surface. X-ray photoelectron spectroscopy (XPS) results displayed that the CS deposited on the PU surface as well. The surface of the assembled PU became even smoother observed from the surface morphology by atomic force microscopy (AFM) imaging. The hydrophilicity of the PU membrane was greatly enhanced though the modification of LBL assembly. The PU modified with the adsorption of Col/CS may be a potential application for cartilage tissue engineering due to its created mimicking chondrogenic environment.

  7. Layer-by-layer assembly of type I collagen and chondroitin sulfate on aminolyzed PU for potential cartilage tissue engineering application

    International Nuclear Information System (INIS)

    He Xianyun; Wang Yingjun; Wu Gang

    2012-01-01

    Highlights: ► A novel biodegradable polyurethane (PU) was successfully synthesized. ► Surface aminolyzing of the PU was performed by reacting it with 1,3-propanediamine. ► Collagen and chondroitin sulfate were deposited alternately on the PU surface. - Abstract: In this paper, a two-step method was used to synthesize a biodegradable polyurethane (PU) composed of L-lysine ethyl ester diisocyanate (LDI), poly(ε-caprolactone) diols (PCL-diol) and 1,4:3,6-dianhydro-D-sorbitol (isosorbide). Amino groups were introduced onto the surface of the PU membrane by an amination reacting with 1,3-propanediamine to produce polycationic substratum. And then, type I collagen (Col) and chondroitin sulfate (CS) were deposited alternately on the polycationic substratum through layer-by-layer (LBL) assembly technology. The FTIR and 1 H NMR results showed that the polyurethane was successfully synthesized. Rhodamine B isothiocyanate (RBITC) fluorescence spectrum indicated that amino groups were successfully introduced onto the PU surface. The results of quartz-crystal microbalance (QCM) and RBITC-Col fluorescence spectroscopy monitoring the LBL assemble process presented that the Col/CS deposited alternately on the PU surface. X-ray photoelectron spectroscopy (XPS) results displayed that the CS deposited on the PU surface as well. The surface of the assembled PU became even smoother observed from the surface morphology by atomic force microscopy (AFM) imaging. The hydrophilicity of the PU membrane was greatly enhanced though the modification of LBL assembly. The PU modified with the adsorption of Col/CS may be a potential application for cartilage tissue engineering due to its created mimicking chondrogenic environment.

  8. Effect of a Rapidly Degrading Presolidified 10 kDa Chitosan/Blood Implant and Subchondral Marrow Stimulation Surgical Approach on Cartilage Resurfacing in a Sheep Model

    Science.gov (United States)

    Bell, Angela D.; Hurtig, Mark B.; Quenneville, Eric; Rivard, Georges-Étienne; Hoemann, Caroline D.

    2016-01-01

    Objective This study tested the hypothesis that presolidified chitosan-blood implants are retained in subchondral bone channels perforated in critical-size sheep cartilage defects, and promote bone repair and hyaline-like cartilage resurfacing versus blood implant. Design Cartilage defects (10 × 10 mm) with 3 bone channels (1 drill, 2 Jamshidi biopsy, 2 mm diameter), and 6 small microfracture holes were created bilaterally in n = 11 sheep knee medial condyles. In one knee, 10 kDa chitosan–NaCl/blood implant (presolidified using recombinant factor VIIa or tissue factor), was inserted into each drill and Jamshidi hole. Contralateral knee defects received presolidified whole blood clot. Repair tissues were assessed histologically, biochemically, biomechanically, and by micro–computed tomography after 1 day (n = 1) and 6 months (n = 10). Results Day 1 defects showed a 60% loss of subchondral bone plate volume fraction along with extensive subchondral hematoma. Chitosan implant was resident at day 1, but had no effect on any subsequent repair parameter compared with blood implant controls. At 6 months, bone defects exhibited remodeling and hypomineralized bone repair and were partly resurfaced with tissues containing collagen type II and scant collagen type I, 2-fold lower glycosaminoglycan and fibril modulus, and 4.5-fold higher permeability compared with intact cartilage. Microdrill holes elicited higher histological ICRS-II overall assessment scores than Jamshidi holes (50% vs. 30%, P = 0.041). Jamshidi biopsy holes provoked sporadic osteonecrosis in n = 3 debrided condyles. Conclusions Ten kilodalton chitosan was insufficient to improve repair. Microdrilling is a feasible subchondral marrow stimulation surgical approach with the potential to elicit poroelastic tissues with at least half the compressive modulus as intact articular cartilage. PMID:28934884

  9. Effect of a Rapidly Degrading Presolidified 10 kDa Chitosan/Blood Implant and Subchondral Marrow Stimulation Surgical Approach on Cartilage Resurfacing in a Sheep Model.

    Science.gov (United States)

    Bell, Angela D; Hurtig, Mark B; Quenneville, Eric; Rivard, Georges-Étienne; Hoemann, Caroline D

    2017-10-01

    Objective This study tested the hypothesis that presolidified chitosan-blood implants are retained in subchondral bone channels perforated in critical-size sheep cartilage defects, and promote bone repair and hyaline-like cartilage resurfacing versus blood implant. Design Cartilage defects (10 × 10 mm) with 3 bone channels (1 drill, 2 Jamshidi biopsy, 2 mm diameter), and 6 small microfracture holes were created bilaterally in n = 11 sheep knee medial condyles. In one knee, 10 kDa chitosan-NaCl/blood implant (presolidified using recombinant factor VIIa or tissue factor), was inserted into each drill and Jamshidi hole. Contralateral knee defects received presolidified whole blood clot. Repair tissues were assessed histologically, biochemically, biomechanically, and by micro-computed tomography after 1 day ( n = 1) and 6 months ( n = 10). Results Day 1 defects showed a 60% loss of subchondral bone plate volume fraction along with extensive subchondral hematoma. Chitosan implant was resident at day 1, but had no effect on any subsequent repair parameter compared with blood implant controls. At 6 months, bone defects exhibited remodeling and hypomineralized bone repair and were partly resurfaced with tissues containing collagen type II and scant collagen type I, 2-fold lower glycosaminoglycan and fibril modulus, and 4.5-fold higher permeability compared with intact cartilage. Microdrill holes elicited higher histological ICRS-II overall assessment scores than Jamshidi holes (50% vs. 30%, P = 0.041). Jamshidi biopsy holes provoked sporadic osteonecrosis in n = 3 debrided condyles. Conclusions Ten kilodalton chitosan was insufficient to improve repair. Microdrilling is a feasible subchondral marrow stimulation surgical approach with the potential to elicit poroelastic tissues with at least half the compressive modulus as intact articular cartilage.

  10. Can photobiomodulation associated with implantation of mesenchymal adipose-derived stem cells attenuate the expression of MMPs and decrease degradation of type II collagen in an experimental model of osteoarthritis?

    Science.gov (United States)

    Stancker, Tatiane Garcia; Vieira, Stella Souza; Serra, Andrey Jorge; do Nascimento Lima, Rafael; Dos Santos Feliciano, Regiane; Silva, José Antônio; Dos Santos, Solange Almeida; Dos Santos Vieira, Marcia Ataize; Simões, Maíra Cecília Brandão; Leal-Junior, Ernesto Cesar; de Tarso Camillo de Carvalho, Paulo

    2018-03-08

    This study aimed to determine whether photobiomodulation therapy (PBMT) could improve the bioavailability and chondroprotective benefits of mesenchymal stem cells injected into the knees of rats used as an experimental model of osteoarthritis (OA) as well as reduce the expression of matrix metalloproteinases (MMPs) and degradation of type II collagen (COL2-1) in the cartilage. Adipose-derived stem/stromal cells (ADSCs) were collected from three male Fischer 344 rats and characterized by flow cytometry. Fifty female Fischer 344 rats were distributed into five groups of 10 animals each. These groups were as follows: control, OA, OA PBMT, OA ADSC, and OA ADSC PBMT. OA was induced in the animals using a 4% papain solution. Animals from the OA ADSC and OA ADSC PBMT groups received an intra-articular injection of 10 × 10 6 ADSCs and were treated with PBMT by irradiation (wavelength: 808 nm, power: 50 mW, energy: 42 J, energy density: 71.2 J/cm 2 , spot size: 0.028). Euthanasia was performed 7 days after the first treatment. The use of PBMT alone and the injection of ADSCs resulted in downregulation of pro-inflammatory cytokines and MPs in cartilage compared to the OA group. PBMT and ADSCs caused upregulation of tissue inhibitors of MPs 1 and 2 and mRNA and protein expression of COL2-1 in cartilage compared to the OA group. The intra-articular injection of ADSCs and PBMT prevented joint degeneration resulting from COL2-1 degradation and modulated inflammation by downregulating cytokines and MMPs in the OA group.

  11. Soya-cerebroside, an extract of Cordyceps militaris, suppresses monocyte migration and prevents cartilage degradation in inflammatory animal models

    Science.gov (United States)

    Liu, Shan-Chi; Chiu, Ching-Peng; Tsai, Chun-Hao; Hung, Chun-Yin; Li, Te-Mao; Wu, Yang-Chang; Tang, Chih-Hsin

    2017-01-01

    Pathophysiological events that modulate the progression of structural changes in osteoarthritis (OA) include the secretion of inflammatory molecules, such as proinflammatory cytokines. Interleukin-1beta (IL-1β) is the prototypical inflammatory cytokine that activates OA synovial cells to release cytokines and chemokines in support of the inflammatory response. The monocyte chemoattractant protein-1 (MCP-1/CCL2) is one of the key chemokines that regulate migration and infiltration of monocytes in response to inflammation. We show in this study that IL-1β-induced MCP-1 expression and monocyte migration in OA synovial fibroblasts (OASFs) is effectively inhibited by soya-cerebroside, an extract of Cordyceps militaris. We found that soya-cerebroside up-regulated of microRNA (miR)-432 expression via inhibiting AMPK and AKT signaling pathways in OASFs. Soya-cerebroside also effectively decreased monocyte infiltration and prevented cartilage degradation in a rat inflammatory model. Our findings are the first to demonstrate that soya-cerebroside inhibits monocyte/macrophage infiltration into synoviocytes, attenuating synovial inflammation and preventing cartilage damage by reducing MCP-1 expression in vitro and in vivo. Taken together, we suggest a novel therapeutic strategy based on the use of soya-cerebroside for the management of OA. PMID:28225075

  12. [Relationship between HLA-DRB1 genotypes and efficacy of oral type II collagen treatment using chicken cartilage soup in rheumatoid arthritis].

    Science.gov (United States)

    Toda, Y; Takemura, S; Morimoto, T; Ogawa, R

    1997-02-01

    The correlation between the efficacy of type II collagen (C II) treatment of the rheumatoid arthritis (RA) and the existence of HLA-DRB 1 * 0405 allele was investigated in two groups of patients; the first group had HLA-DRB 1 * 0405 allele (the 0405 group) and the second had no such allele (the non-0405 group). Thirty-eight RA patients were given a chicken cartilage soup containing heat degenerated C II (the CII group) or a placebo soup (the placebo group) for three months. The 38 cases were composed of 11 cases in the 0405/C II group, 9 in the 0405/placebo group, 11 in the non-0405/C II group, 9 cases in the non-0405/placebo group. In the C II group, there was a significant increase in the anti-human C II IgA antibody serum titers (p = 0.003) and significant decrease in the anti-human C II IgG titer (p II and 0405/placebo groups (p of the swollen joints = 0.03, and p of the tender joints = 0.03), and between the 0405/C II and non-0405/C II groups (p = 0.006 and 0.01, respectively). We concluded that oral C II could have a therapeutic efficacy in RA patients with HLA-DRB 1 * 0405 allele.

  13. Layer-by-layer assembly of type I collagen and chondroitin sulfate on aminolyzed PU for potential cartilage tissue engineering application

    Science.gov (United States)

    He, Xianyun; Wang, Yingjun; Wu, Gang

    2012-10-01

    In this paper, a two-step method was used to synthesize a biodegradable polyurethane (PU) composed of L-lysine ethyl ester diisocyanate (LDI), poly(ɛ-caprolactone) diols (PCL-diol) and 1,4:3,6-dianhydro-D-sorbitol (isosorbide). Amino groups were introduced onto the surface of the PU membrane by an amination reacting with 1,3-propanediamine to produce polycationic substratum. And then, type I collagen (Col) and chondroitin sulfate (CS) were deposited alternately on the polycationic substratum through layer-by-layer (LBL) assembly technology. The FTIR and 1H NMR results showed that the polyurethane was successfully synthesized. Rhodamine B isothiocyanate (RBITC) fluorescence spectrum indicated that amino groups were successfully introduced onto the PU surface. The results of quartz-crystal microbalance (QCM) and RBITC-Col fluorescence spectroscopy monitoring the LBL assemble process presented that the Col/CS deposited alternately on the PU surface. X-ray photoelectron spectroscopy (XPS) results displayed that the CS deposited on the PU surface as well. The surface of the assembled PU became even smoother observed from the surface morphology by atomic force microscopy (AFM) imaging. The hydrophilicity of the PU membrane was greatly enhanced though the modification of LBL assembly. The PU modified with the adsorption of Col/CS may be a potential application for cartilage tissue engineering due to its created mimicking chondrogenic environment.

  14. Pannus invasion and cartilage degradation in rheumatoid arthritis: involvement of MMP-3 and interleukin-1beta.

    Science.gov (United States)

    Ainola, M M; Mandelin, J A; Liljeström, M P; Li, T F; Hukkanen, M V J; Konttinen, Y T

    2005-01-01

    Synovial inflammation in rheumatoid arthritis (RA) leads to pannus tissue invasion and destruction of cartilage/bone matrix by proteinases. Our intention was to analyze some of the key matrix metalloproteinases (MMPs) in pannus tissue overlying evolving cartilage erosions in RA. Frozen tissue samples of pannus and synovium from advanced RA and synovium from osteoarthritic patients were used for immunohistochemical, western blotting and quantitative reverse transcriptase polymerase chain reaction (RT-PCR) analysis of MMP-1, -3, -13 and -14. Synovial fibroblast cultures, stimulated with tumour necrosis factor alpha (TNF-alpha) and interleukin-1 beta (IL-1beta), were analyzed with enzyme-linked immunosorbent assays (ELISA) and quantitative RT-PCR. MMP-3 was highly expressed in pannus tissue compared with significantly lower expression levels of MMP-1, -13 and -14. In fibroblast cultures IL-1beta was a potent stimulus for MMP-3, whereas TNF-alpha was more potent for MMP-1. This is the first study to demonstrate quantitatively in real time that MMP-3 mRNA expression is clearly higher in advanced RA pannus tissue compared to parallel RA or osteoarthritic synovium. MMP-3 mRNA levels were also clearly overexpressed in RA pannus compared to MMP-1, -13 and -14. Advanced RA has previously been found to overexpress IL-1beta. The high expression of MMP-3 in pannus and IL-1beta, mediated stimulation of MMP-3 suggest that MMP-3 plays a significant role in the progression of erosions through the proteoglycan-rich cartilage matrix.

  15. A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies.

    Science.gov (United States)

    Christensen, Bjørn Borsøe; Foldager, Casper Bindzus; Hansen, Ole Møller; Kristiansen, Asger Albæk; Le, Dang Quang Svend; Nielsen, Agnete Desirée; Nygaard, Jens Vinge; Bünger, Cody Erik; Lind, Martin

    2012-06-01

    To develop a nano-structured porous polycaprolactone (NSP-PCL) scaffold and compare the articular cartilage repair potential with that of a commercially available collagen type I/III (Chondro-Gide) scaffold. By combining rapid prototyping and thermally induced phase separation, the NSP-PCL scaffold was produced for matrix-assisted autologous chondrocyte implantation. Lyophilizing a water-dioxane-PCL solution created micro and nano-pores. In vitro: The scaffolds were seeded with rabbit chondrocytes and cultured in hypoxia for 6 days. qRT-PCR was performed using primers for sox9, aggrecan, collagen type 1 and 2. In vivo: 15 New Zealand White Rabbits received bilateral osteochondral defects in the femoral intercondylar grooves. Autologous chondrocytes were harvested 4 weeks prior to surgery. There were 3 treatment groups: (1) NSP-PCL scaffold without cells. (2) The Chondro-Gide scaffold with autologous chondrocytes and (3) NSP-PCL scaffold with autologous chondrocytes. Observation period was 13 weeks. Histological evaluation was made using the O'Driscoll score. In vitro: The expressions of sox9 and aggrecan were higher in the NSP-PCL scaffold, while expression of collagen 1 was lower compared to the Chondro-Gide scaffold. In vivo: Both NSP-PCL scaffolds with and without cells scored significantly higher than the Chondro-Gide scaffold when looking at the structural integrity and the surface regularity of the repair tissue. No differences were found between the NSP-PCL scaffold with and without cells. The NSP-PCL scaffold demonstrated higher in vitro expression of chondrogenic markers and had higher in vivo histological scores compared to the Chondro-Gide scaffold. The improved chondrocytic differentiation can potentially produce more hyaline cartilage during clinical cartilage repair. It appears to be a suitable cell-free implant for hyaline cartilage repair and could provide a less costly and more effective treatment option than the Chondro-Gide scaffold with cells.

  16. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted double-echo steady-state sequence (dwDESS)

    International Nuclear Information System (INIS)

    Kretzschmar, M.; Hainc, N.; Studler, U.; Bieri, O.; Miska, M.; Wiewiorski, M.; Valderrabano, V.

    2015-01-01

    The purpose of this study was to characterize the collagen component of repair tissue (RT) of the talus after autologous matrix-induced chondrogenesis (AMIC) using quantitative T2 and diffusion-weighted imaging. Mean T2 values and diffusion coefficients of AMIC-RT and normal cartilage of the talus of 25 patients with posttraumatic osteochondral lesions and AMIC repair were compared in a cross-sectional design using partially spoiled steady-state free precession (pSSFP) for T2 quantification, and diffusion-weighted double-echo steady-state (dwDESS) for diffusion measurement. RT and cartilage were graded with modified Noyes and MOCART scores on morphological sequences. An association between follow-up interval and quantitative MRI measures was assessed using multivariate regression, after stratifying the cohort according to time interval between surgery and MRI. Mean T2 of the AMIC-RT and cartilage were 43.1 ms and 39.1 ms, respectively (p = 0.26). Mean diffusivity of the RT (1.76 μm 2 /ms) was significantly higher compared to normal cartilage (1.46 μm 2 /ms) (p = 0.0092). No correlation was found between morphological and quantitative parameters. RT diffusivity was lowest in the subgroup with follow-up >28 months (p = 0.027). Compared to T2-mapping, dwDESS demonstrated greater sensitivity in detecting differences in the collagen matrix between AMIC-RT and cartilage. Decreased diffusivity in patients with longer follow-up times may indicate an increased matrix organization of RT. (orig.)

  17. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted double-echo steady-state sequence (dwDESS)

    Energy Technology Data Exchange (ETDEWEB)

    Kretzschmar, M.; Hainc, N.; Studler, U. [University Hospital Basel, Department of Radiology, Basel (Switzerland); Bieri, O. [University Hospital Basel, Division of Radiological Physics, Basel (Switzerland); Miska, M. [University Hospital, Department of Orthopedics, Heidelberg (Germany); Wiewiorski, M.; Valderrabano, V. [University Hospital Basel, Department of Orthopedic Surgery, Basel (Switzerland)

    2015-04-01

    The purpose of this study was to characterize the collagen component of repair tissue (RT) of the talus after autologous matrix-induced chondrogenesis (AMIC) using quantitative T2 and diffusion-weighted imaging. Mean T2 values and diffusion coefficients of AMIC-RT and normal cartilage of the talus of 25 patients with posttraumatic osteochondral lesions and AMIC repair were compared in a cross-sectional design using partially spoiled steady-state free precession (pSSFP) for T2 quantification, and diffusion-weighted double-echo steady-state (dwDESS) for diffusion measurement. RT and cartilage were graded with modified Noyes and MOCART scores on morphological sequences. An association between follow-up interval and quantitative MRI measures was assessed using multivariate regression, after stratifying the cohort according to time interval between surgery and MRI. Mean T2 of the AMIC-RT and cartilage were 43.1 ms and 39.1 ms, respectively (p = 0.26). Mean diffusivity of the RT (1.76 μm{sup 2}/ms) was significantly higher compared to normal cartilage (1.46 μm{sup 2}/ms) (p = 0.0092). No correlation was found between morphological and quantitative parameters. RT diffusivity was lowest in the subgroup with follow-up >28 months (p = 0.027). Compared to T2-mapping, dwDESS demonstrated greater sensitivity in detecting differences in the collagen matrix between AMIC-RT and cartilage. Decreased diffusivity in patients with longer follow-up times may indicate an increased matrix organization of RT. (orig.)

  18. Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice*

    Science.gov (United States)

    Fan, Ming-Hui; Zhu, Qiang; Li, Hui-Hua; Ra, Hyun-Jeong; Majumdar, Sonali; Gulick, Dexter L.; Jerome, Jacob A.; Madsen, Daniel H.; Christofidou-Solomidou, Melpo; Speicher, David W.; Bachovchin, William W.; Feghali-Bostwick, Carol; Puré, Ellen

    2016-01-01

    Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2–4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent with in vitro studies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP's protective effects in the lung. PMID:26663085

  19. Plasma vitamin D and osteo-cartilaginous markers in Italian males affected by intervertebral disc degeneration: Focus on seasonal and pathological trend of type II collagen degradation.

    Science.gov (United States)

    Brayda-Bruno, Marco; Viganò, Marco; Cauci, Sabina; Vitale, Jacopo A; de Girolamo, Laura; De Luca, Paola; Lombardi, Giovanni; Banfi, Giuseppe; Colombini, Alessandra

    2017-08-01

    To evaluate plasma vitamin D and cross-linked C-telopeptides of type I (CTx-I) and type II (CTx-II) collagen concentrations in males with lumbar intervertebral disc degeneration (IVD) compared to healthy controls. Improved knowledge might suggest to optimize the vitamin D status of IVD patients and contribute to clarify mechanisms of cartilage degradation. 79 Italian males with lumbar IVD assessed by Magnetic Resonance Imaging (MRI) and 79 age, sex and BMI-matched healthy controls were enrolled. Plasma 25hydroxyvitamin D (25(OH)D), CTx-I and CTx-II were measured by immunoassays. Circannual seasonality, correlation between biomarkers concentrations and clinical variables were assessed. Overall subjects 25(OH)D and CTx-II showed month rhythmicity with acrophase in August/September and October/November, and nadir in February/March and April/May, respectively. An inverse correlation between 25(OH)D and CTx-I, and a direct correlation between CTx-II and CTx-I were observed. IVD patients, particularly with osteochondrosis, showed higher CTx-II than healthy controls. Month of sampling may affect plasma 25(OH)D and CTx-II concentrations. The correlation between CTx-I and CTx-II suggests an interplay between the osteo-cartilaginous endplate and the fibro-cartilaginous disc. The results of this study highlighted that osteochondrosis associates with increased cartilaginous catabolism. Vitamin D supplementation seems more necessary in winter for lumbar IVD patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-alpha, Oncostatin M and response to biologic therapies.

    LENUS (Irish Health Repository)

    Moran, Ellen M

    2009-01-01

    INTRODUCTION: The aim of this study was to examine IL-17A in patients, following anti-TNF-alpha therapy and the effect of IL-17A on matrix turnover and cartilage degradation. METHODS: IL-17A expression was examined by ELISA and immunohistology in the rheumatoid arthritis (RA) joints. RA whole synovial tissue explant (RA ST), primary synovial fibroblasts (RASFC), human cartilage and chondrocyte cultures were stimulated with IL-17A +\\/- TNF-alpha and Oncostatin M (OSM). Matrix metalloproteinase (MMP) and tissue inhibitor (TIMP-1) were assessed by ELISA and zymography. Cartilage proteoglycan release was assessed histologically by Safranin-O staining. Clinical parameters, IL-17A, MMP\\/TIMP were assessed in patients pre\\/post biologic therapy. RESULTS: IL-17A levels were higher in RA vs osteoarthritis (OA)\\/normal joints (P < 0.05). IL-17A up-regulated MMP-1, -2, -9, and -13 in RA ST, RASFC, cartilage and chondrocyte cultures (P < 0.05). In combination with TNF-alpha and OSM, IL-17A shifted the MMP:TIMP-1 ratio in favor of matrix degradation (all P < 0.05). Cartilage proteoglycan depletion in response to IL-17A was mild; however, in combination with TNF-alpha or OSM showed almost complete proteoglycan depletion. Serum IL-17A was detected in 28% of patients commencing biologic therapy. IL-17A negative patients demonstrated reductions post therapy in serum MMP1\\/TIMP4, MMP3\\/TIMP1 and MMP3\\/TIMP4 ratios and an increase in CS846 (all P < 0.05). No significant changes were observed in IL-17A positive patients. CONCLUSIONS: IL-17A is produced locally in the inflamed RA joint. IL-17A promotes matrix turnover and cartilage destruction, especially in the presence of other cytokines, mimicking the joint environment. IL-17A levels are modulated in vivo, following anti-TNF therapy, and may reflect changes in matrix turnover.

  1. Berberine attenuates CCN2-induced IL-1β expression and prevents cartilage degradation in a rat model of osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shan-Chi [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Lee, Hsiang-Ping [Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan (China); Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan (China); Hung, Chun-Yin [Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yun-Lin County, Taiwan (China); Tsai, Chun-Hao [Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan (China); Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan (China); Li, Te-Mao [School of Chinese Medicine, China Medical University, Taichung, Taiwan (China); Tang, Chih-Hsin, E-mail: chtang@mail.cmu.edu.tw [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan (China); Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan (China)

    2015-11-15

    Connective tissue growth factor (CTGF; also known as CCN2) is an inflammatory mediator that is abundantly expressed in osteoarthritis (OA). Interleukin-1β (IL-1β) plays a pivotal role in OA pathogenesis. Berberine exhibits an anti-inflammatory effect, but the mechanisms by which it modulates CCN2-induced IL-1β expression in OA synovial fibroblasts (OASFs) remain unknown. We showed that CCN2-induced IL-1β expression is mediated by the activation of α{sub v}β{sub 3}/α{sub v}β{sub 5} integrin-dependent reactive oxygen species (ROS) generation, and subsequent activation of apoptosis signal-regulating kinase 1 (ASK1), p38/JNK, and nuclear factor-κB (NF-κB) signaling pathways. This IL-1β expression in OASFs is attenuated by N-acetylcysteine (NAC), inhibitors of ASK1, p38, or JNK, or treatment with berberine. Furthermore, berberine also reverses cartilage damage in an experimental model of collagenase-induced OA (CIOA). We observed that CCN2 increased IL-1β expression via α{sub v}β{sub 3}/α{sub v}β{sub 5} integrins, ROS, and ASK1, p38/JNK, and NF-κB signaling pathways. Berberine was found to inhibit these signaling components in OASFs in vitro and prevent cartilage degradation in vivo. We suggest a novel therapeutic strategy of using berberine for managing OA. - Highlights: • CCN2 induce IL-1β production via αvβ3/αvβ5 integrin, ROS, ASK1, p38/JNK, and NF-κB. • Berberine attenuates CCN2-induced IL-1β expression in vitro and in OA rat model. • Berberine as natural drug of choice for anti-inflammatory effect to ameliorates OA.

  2. Calcium EDTA toxicity: renal excretion of endogenous trace metals and the effect of repletion on collagen degradation in the rat.

    Science.gov (United States)

    Braide, V B

    1984-01-01

    Studies on total hydroxyproline concentrations in urine of rats infused with toxic doses of CaEDTA at 6 mmol/kg per 24 hr for 48 hr or injected i.p. with the chelate at 4.8 mmol/kg/day for 10 days, indicate a two- to six-fold increase in urine excretion of the imino acid. This is due to increased degradation of collagen induced by CaEDTA. CaEDTA infusion was also shown to enhance urine excretion of some trace metals (Zn, Mn, Cu and Fe). Rats infused with CaEDTA for 36 hr showed a gradual fall in concentration of hydroxyproline in the urine, following cessation of chelate infusion. The decline in hydroxyproline concentrations was faster in rats receiving trace metal (Zn, Co, Mn or Ni) treatment during the post-CaEDTA infusion period; suggesting that the metals may affect collage, making the protein less susceptible to degradation in the body.

  3. MMP Mediated Degradation of Type VI Collagen Is Highly Associated with Liver Fibrosis - Identification and Validation of a Novel Biochemical Marker Assay

    DEFF Research Database (Denmark)

    Veidal, Sanne Skovgard; Karsdal, Morten Asser; Vassiliadis, Efstathios

    2011-01-01

    Background and Aims: During fibrogenesis, in which excessive remodeling of the extracellular matrix occurs, both the quantity of type VI collagen and levels of matrix metalloproteinases, including MMP-2 and MMP-9, increase significantly. Proteolytic degradation of type VI collagen into small...... fragments, so-called neo-epitopes, may be specific biochemical marker of liver fibrosis. The aim of this study was to develop an ELISA detecting a fragment of type VI collagen generated by MMP-2 and MMP-9, and evaluate this assay in two preclinical models of liver fibrosis. Methods: Mass spectrometric...... analysis of cleaved type VI collagen revealed a large number of protease-generated neo-epitopes. A fragment unique to type VI collagen generated by MMP-2 and MMP-9 was selected for ELISA development. The CO6-MMP assay was evaluated in two rat models of liver fibrosis: bile duct ligation (BDL) and carbon...

  4. The Methoxyflavonoid Isosakuranetin Suppresses UV-B-Induced Matrix Metalloproteinase-1 Expression and Collagen Degradation Relevant for Skin Photoaging

    Directory of Open Access Journals (Sweden)

    Hana Jung

    2016-09-01

    Full Text Available Solar ultraviolet (UV radiation is a main extrinsic factor for skin aging. Chronic exposure of the skin to UV radiation causes the induction of matrix metalloproteinases (MMPs, such as MMP-1, and consequently results in alterations of the extracellular matrix (ECM and skin photoaging. Flavonoids are considered as potent anti-photoaging agents due to their UV-absorbing and antioxidant properties and inhibitory activity against UV-mediated MMP induction. To identify anti-photoaging agents, in the present study we examined the preventative effect of methoxyflavonoids, such as sakuranetin, isosakuranetin, homoeriodictyol, genkwanin, chrysoeriol and syringetin, on UV-B-induced skin photo-damage. Of the examined methoxyflavonoids, pretreatment with isosakuranetin strongly suppressed the UV-B-mediated induction of MMP-1 in human keratinocytes in a concentration-dependent manner. Isosakuranetin inhibited UV-B-induced phosphorylation of mitogen-activated protein kinase (MAPK signaling components, ERK1/2, JNK1/2 and p38 proteins. This result suggests that the ERK1/2 kinase pathways likely contribute to the inhibitory effects of isosakuranetin on UV-induced MMP-1 production in human keratinocytes. Isosakuranetin also prevented UV-B-induced degradation of type-1 collagen in human dermal fibroblast cells. Taken together, our findings suggest that isosakuranetin has the potential for development as a protective agent for skin photoaging through the inhibition of UV-induced MMP-1 production and collagen degradation.

  5. Modulation of Cartilage Degradation Biomarkers Reflect the Activation and Inhibition of Pro-Inflammatory Cytokine Signaling in an Ex Vivo Model of Bovine Cartilage

    DEFF Research Database (Denmark)

    Kjelgaard-Petersen, Cecilie Freja; Sharma, Neha; Kayed, Ashref

    2017-01-01

    -inflammatory treatments for inflammatory arthritis. The aim of this study was to investigate the effect of small molecule inhibitors targeting 4 main pro-inflammatory signaling pathways (p38, Syk, IκBα, and STAT) on Oncostatin M (OSM) and Tumor Necrosis Factor α (TNFα) stimulated cartilage....

  6. Tranexamic acid, an inhibitor of plasminogen activation, reduces urinary collagen cross-link excretion in both experimental and rheumatoid arthritis

    NARCIS (Netherlands)

    Ronday, H.K.; TeKoppele, J.M.; Greenwald, R.A.; Moak, S.A.; Roos, J.A.D.M. de; Dijkmans, B.A.C.; Breedveld, F.C.; Verheijen, J.H.

    1998-01-01

    The plasminogen activation system is one of the enzyme systems held responsible for bone and cartilage degradation in rheumatoid arthritis (RA). In this study, we evaluated the effect of tranexamic acid (TEA), an inhibitor of plasminogen activation, on urinary collagen cross-link excretion and

  7. Downregulation of miR-221-3p contributes to IL-1β-induced cartilage degradation by directly targeting the SDF1/CXCR4 signaling pathway.

    Science.gov (United States)

    Zheng, Xin; Zhao, Feng-Chao; Pang, Yong; Li, Dong-Ya; Yao, Sheng-Cheng; Sun, Shao-Song; Guo, Kai-Jin

    2017-06-01

    Osteoarthritis (OA) is characterized by degradation of chondrocyte extracellular matrix (ECM). Accumulating evidence suggests that microRNAs (miRNAs) are associated with OA, but little is known of their function in chondrocyte ECM degradation. The objective of this study was to investigate the expression and function of miRNAs in OA. miRNA expression profile was determined in OA cartilage tissues and controls, employing Solexa sequencing and reverse transcription quantitative PCR (RT-qPCR). According to a modified Mankin scale, cartilage degradation was evaluated. Functional analysis of the miRNAs on chondrocyte ECM degradation was performed after miRNA transfection and IL-1β treatment. Luciferase reporter assays and western blotting were employed to determine miRNA targets. Expression of miR-221-3p was downregulated in OA cartilage tissues, which was significantly correlated with a modified Mankin scale. Through gain-of-function and loss-of-function studies, miR-221-3p was shown to significantly affect matrix synthesis gene expression and chondrocyte proliferation and apoptosis. Using SW1353 and C28I2 cells, SDF1 was identified as a target of miR-221-3p. SDF1 overexpression resulted in increased expression of catabolic genes such as MMP-13 and ADAMTS-5 in response to IL-1β, but these effects were moderated by miR-221-3p. SDF1 treatment antagonized this effect, while knockdown of SDF1 by shSDF1 induced inhibitory effects on the expression of CXCR4 and its main target genes, similar to miR-221-3p. The results indicate that upregulation of miR-221-3p could prevent IL-1β-induced ECM degradation in chondrocytes. Targeting the SDF1/CXCR4 signaling pathway may be used as a therapeutic approach for OA. miR-221-3p is downregulated in human cartilage tissues. miR-221-3p levels are associated with cartilage degeneration grade. miR-221-3p upregulation prevents IL-1β-induced ECM degradation in chondrocytes. Protection of ECM degradation by miR-223-3p occurs via SDF1/CXCR4

  8. Factors regulating collagen synthesis and degradation during second-intention healing of wounds in the thoracic region and the distal aspect of the forelimb of horses.

    Science.gov (United States)

    Schwartz, Anne J; Wilson, David A; Keegan, Kevin G; Ganjam, Venkataseshu K; Sun, Yao; Weber, Karl T; Zhang, Jiakun

    2002-11-01

    To determine significant molecular and cellular factors responsible for differences in second-intention healing in thoracic and metacarpal wounds of horses. 6 adult mixed-breed horses. A full-thickness skin wound on the metacarpus and another such wound on the pectoral region were created, photographed, and measured, and tissue was harvested from these sites weekly for 4 weeks. Gene expression of type-I collagen, transforming growth factor (TGF)-beta1, matrix metalloproteinase (MMP)-1, and tissue inhibitor of metalloproteinase (TIMP)-1 were determined by quantitative in situ hybridization. Myofibroblasts were detected by immunohistochemical labeling with alpha-smooth muscle actin (alpha-SMA). Collagen accumulation was detected by use of picrosirius red staining. Tissue morphology was examined by use of H&E staining. Unlike thoracic wounds, forelimb wounds enlarged during the first 2 weeks. Myofibroblasts, detected by week 1, remained abundant with superior organization in thoracic wounds. Type-I collagen mRNA accumulated progressively in both wounds. More type-I collagen and TGF-beta1 mRNA were seen in forelimb wounds. Volume of MMP-1 mRNA decreased from day 0 in both wounds. By week 3, TIMP-1 mRNA concentration was greater in thoracic wounds. Greater collagen synthesis in metacarpal than thoracic wounds was documented by increased concentrations of myofibroblasts, type-I collagen mRNA,TGF-beta1 mRNA, and decreased collagen degradation (ie, MMP-1). Imbalanced collagen synthesis and degradation likely correlate with development of exuberant granulation tissue, delaying healing in wounds of the distal portions of the limbs. Factors that inhibit collagen synthesis or stimulate collagenase may provide treatment options for horses with exuberant granulation tissue.

  9. Activation of Indian Hedgehog Promotes Chondrocyte Hypertrophy and Upregulation of MMP-13 in Human Osteoarthritic Cartilage

    Science.gov (United States)

    Wei, Fangyuan; Zhou, Jingming; Wei, Xiaochun; Zhang, Juntao; Fleming, Braden C.; Terek, Richard; Pei, Ming; Chen, Qian; Liu, Tao; Wei, Lei

    2012-01-01

    Objective The objectives of this study were to 1) determine the correlation between osteoarthritis (OA) and Ihh expression, and 2) establish the effects of Ihh on expression of markers of chondrocyte hypertrophy and MMP-13 in human OA cartilage. Design OA cartilage and synovial fluid samples were obtained during total knee arthroplasty. Normal cartilage samples were obtained from intra-articular tumor resections, and normal synovial fluid samples were obtained from healthy volunteers and the contralateral uninjured knee of patients undergoing anterior cruciate ligament reconstruction. OA was graded using the Mankin score. Expression of Ihh in synovial fluid was determined by western blot. Ihh, type X collagen and MMP-13 mRNA were determined by real time PCR. Protein expression of type X collagen and MMP-13 in cartilage samples were analyzed with immunohistochemistry. Chondrocyte size was measured using image analysis. Results Ihh expression was increased 2.6 fold in OA cartilage and 37% in OA synovial fluid when compared to normal control samples. Increased expression of Ihh was associated with the severity of OA and expression of markers of chondrocyte hypertrophy: type X collagen and MMP-13, and chondocyte size. Chondrocytes were more spherical with increasing severity of OA. There was a significant correlation between Mankin score and cell size (r2= 0.80) and Ihh intensity (r2 = 0.89). Exogenous Ihh induced a 6.8 fold increase of type X collagen and 2.8 fold increase of MMP-13 mRNA expression in cultured chondrocytes. Conversely, knockdown of Ihh by siRNA and Hh inhibitor Cyclopamine had the opposite effect. Conclusions Ihh expression correlates with OA progression and changes in chondrocyte morphology and gene expression consistent with chondrocyte hypertrophy and cartilage degradation seen in OA cartilage. Thus, Ihh may be a potential therapeutic target to prevent OA progression. PMID:22469853

  10. Fluoxetine ameliorates cartilage degradation in osteoarthritis by inhibiting Wnt/β-catenin signaling.

    Science.gov (United States)

    Miyamoto, Kentaro; Ohkawara, Bisei; Ito, Mikako; Masuda, Akio; Hirakawa, Akihiro; Sakai, Tadahiro; Hiraiwa, Hideki; Hamada, Takashi; Ishiguro, Naoki; Ohno, Kinji

    2017-01-01

    Abnormal activation of the Wnt/β-catenin signaling is implicated in the osteoarthritis (OA) pathology. We searched for a pre-approved drug that suppresses abnormally activated Wnt/β-catenin signaling and has a potency to reduce joint pathology in OA. We introduced the TOPFlash reporter plasmid into HCS-2/8 human chondrosarcoma cells to estimate the Wnt/β-catenin activity in the presence of 10 μM each compound in a panel of pre-approved drugs. We found that fluoxetine, an antidepressant in the class of selective serotonin reuptake inhibitors (SSRI), down-regulated Wnt/β-catenin signaling in human chondrosarcoma cells. Fluoxetine inhibited both Wnt3A- and LiCl-induced loss of proteoglycans in chondrogenically differentiated ATDC5 cells. Fluoxetine increased expression of Sox9 (the chondrogenic master regulator), and decreased expressions of Axin2 (a marker for Wnt/β-catenin signaling) and Mmp13 (matrix metalloproteinase 13). Fluoxetine suppressed a LiCl-induced increase of total β-catenin and a LiCl-induced decrease of phosphorylated β-catenin in a dose-dependent manner. An in vitro protein-binding assay showed that fluoxetine enhanced binding of β-catenin with Axin1, which is a scaffold protein forming the degradation complex for β-catenin. Fluoxetine suppressed LiCl-induced β-catenin accumulation in human OA chondrocytes. Intraarticular injection of fluoxetine in a rat OA model ameliorated OA progression and suppressed β-catenin accumulation.

  11. Fluoxetine ameliorates cartilage degradation in osteoarthritis by inhibiting Wnt/β-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Kentaro Miyamoto

    Full Text Available Abnormal activation of the Wnt/β-catenin signaling is implicated in the osteoarthritis (OA pathology. We searched for a pre-approved drug that suppresses abnormally activated Wnt/β-catenin signaling and has a potency to reduce joint pathology in OA. We introduced the TOPFlash reporter plasmid into HCS-2/8 human chondrosarcoma cells to estimate the Wnt/β-catenin activity in the presence of 10 μM each compound in a panel of pre-approved drugs. We found that fluoxetine, an antidepressant in the class of selective serotonin reuptake inhibitors (SSRI, down-regulated Wnt/β-catenin signaling in human chondrosarcoma cells. Fluoxetine inhibited both Wnt3A- and LiCl-induced loss of proteoglycans in chondrogenically differentiated ATDC5 cells. Fluoxetine increased expression of Sox9 (the chondrogenic master regulator, and decreased expressions of Axin2 (a marker for Wnt/β-catenin signaling and Mmp13 (matrix metalloproteinase 13. Fluoxetine suppressed a LiCl-induced increase of total β-catenin and a LiCl-induced decrease of phosphorylated β-catenin in a dose-dependent manner. An in vitro protein-binding assay showed that fluoxetine enhanced binding of β-catenin with Axin1, which is a scaffold protein forming the degradation complex for β-catenin. Fluoxetine suppressed LiCl-induced β-catenin accumulation in human OA chondrocytes. Intraarticular injection of fluoxetine in a rat OA model ameliorated OA progression and suppressed β-catenin accumulation.

  12. The Sustainable Release of Vancomycin and Its Degradation Products From Nanostructured Collagen/Hydroxyapatite Composite Layers

    Czech Academy of Sciences Publication Activity Database

    Suchý, Tomáš; Šupová, Monika; Klapková, E.; Horný, L.; Rýglová, Šárka; Žaloudková, Margit; Braun, Martin; Sucharda, Zbyněk; Ballay, R.; Veselý, J.; Chlup, H.; Denk, František

    2016-01-01

    Roč. 105, č. 3 (2016), 1288-1294 ISSN 0022-3549 R&D Projects: GA TA ČR(CZ) TA04010330 Institutional support: RVO:67985891 Keywords : anti-infectives * HPLC * coating * controlled release * degradation products * drug delivery systems * nanoparticles * pharmacokinetics * polymeric drug delivery systems Subject RIV: JI - Composite Materials Impact factor: 2.713, year: 2016

  13. Collagen crosslinks in chondromalacia of the patella.

    Science.gov (United States)

    Väätäinen, U; Kiviranta, I; Jaroma, H; Arokosi, J; Tammi, M; Kovanen, V

    1998-02-01

    The aim of the study was to determine collagen concentration and collagen crosslinks in cartilage samples from chondromalacia of the patella. To study the extracellular matrix alterations associated to chondromalacia, we determined the concentration of collagen (hydroxyproline) and its hydroxylysylpyridinoline and lysylpyridinoline crosslinks from chondromalacia foci of the patellae in 12 patients and 7 controls from apparently normal cadavers. The structure of the collagen network in 8 samples of grades II-IV chondromalacia was examined under polarized light microscopy. The full-thickness cartilage samples taken with a surgical knife from chondromalacia lesions did not show changes in collagen, hydroxylysylpyridinoline and lysylpyridinoline concentration as compared with the controls. Polarized light microscopy showed decreased birefringence in the superficial cartilage of chondromalacia lesions, indicating disorganization or disappearance of collagen fibers in this zone. It is concluded that the collagen network shows gradual disorganization with the severity of chondromalacia lesion of the patella without changes in the concentration or crosslinks of collagen.

  14. H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen

    International Nuclear Information System (INIS)

    Collier, I.E.; Wilhelm, S.M.; Eisen, A.Z.

    1988-01-01

    H-ras transformed human bronchial epithelial cells (TBE-1) secrete a single major extracellular matrix metalloprotease which is not found in the normal parental cells. The enzyme is secreted in a latent form which can be activated to catalyze the cleavage of the basement membrane macromolecule type IV collagen. The substrates in their order of preference are: gelatin, type IV collagen, type V collagen, fibronectin, and type VII collagen; but the enzyme does not cleave the interstitial collagens or laminin. This protease is identical to gelatinase isolated from normal human skin explants, normal human skin fibroblasts, and SV40-transformed human lung fibroblasts. Based on this ability to initiate the degradation of type IV collagen in a pepsin-resistant portion of the molecule, it will be referred to as type IV collagenase. This enzyme is most likely the human analog of type IV collagenase detected in several rodent tumors. Type IV collagenase consists of three domains. Type IV collagenase represents the third member of a newly recognized gene family coding for secreted extracellular matrix metalloproteases, which includes interstitial fibroblast collagenase and stromelysin

  15. Do sarcomere length, collagen content, pH, intramuscular fat and desmin degradation explain variation in the tenderness of three ovine muscles?

    Science.gov (United States)

    Starkey, Colin P; Geesink, Geert H; Collins, Damian; Hutton Oddy, V; Hopkins, David L

    2016-03-01

    The longissimus (n=118) (LL), semimembranosus (n=104) (SM) and biceps femoris (n=134) (BF) muscles were collected from lamb and sheep carcases and aged for 5days (LL and SM) and 14days (BF) to study the impact of muscle characteristics on tenderness as assessed by shear force (SF) and sensory evaluation. The impact of gender, animal age, collagen content, sarcomere length (SL), desmin degradation, ultimate pH and intramuscular fat (IMF) on tenderness was examined. The main factors which influenced SF of the LL were IMF, SL and desmin degradation, but for sensory tenderness, IMF, ultimate pH and gender were the main factors. The SF and sensory tenderness of the SM was best predicted by the degree of desmin degradation. For the BF soluble collagen and animal age both influenced SF. Different factors affect tenderness across muscles and not one prediction model applied across all muscles equally well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Differential association of the N-propeptide of collagen IIA (PIIANP) and collagen II C-telopeptide (CTX-II) with synovitis and erosions in early and longstanding rheumatoid arthritis

    DEFF Research Database (Denmark)

    Christensen, A F; Lottenburger, T; Lindegaard, H

    2009-01-01

    OBJECTIVES: To determine the N-terminal propeptide of collagen IIA (PIIANP) in early and established rheumatoid arthritis (RA) and to study the association with collagen II degradation assessed by its C-telopeptide (CTX-II), x-ray status and disease activity measures. METHODS: Two cohorts of RA......-ray progression (p=0.84). There was no correlation between PIIANP and CTX-II. CONCLUSION: Declining PIIANP with increasing RA duration and persistently increased CTX-II indicate that cartilage anabolic and degradative pathways are unbalanced from clinical RA onset. Furthermore, that collagen II depletion in RA...... is both mediated by anti-anabolic effects unassociated with synovitis (decreased PIIANP) and by excess collagen II degradation linked to synovitis (increased CTX-II)....

  17. IGF-1 and PDGF-bb Suppress IL-1β-Induced Cartilage Degradation through Down-Regulation of NF-κB Signaling: Involvement of Src/PI-3K/AKT Pathway

    Science.gov (United States)

    Mobasheri, Ali; Buhrmann, Constanze; Aldinger, Constance; Rad, Jafar Soleimani; Shakibaei, Mehdi

    2011-01-01

    Objective Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that plays a key role in the pathogenesis of osteoarthritis (OA). Growth factors (GFs) capable of antagonizing the catabolic actions of cytokines may have therapeutic potential in the treatment of OA. Herein, we investigated the potential synergistic effects of insulin-like growth factor (IGF-1) and platelet-derived growth factor (PDGF-bb) on different mechanisms participating in IL-1β-induced activation of nuclear transcription factor-κB (NF-κB) and apoptosis in chondrocytes. Methods Primary chondrocytes were treated with IL-1β to induce dedifferentiation and co-treated with either IGF-1 or/and PDGF-bb and evaluated by immunoblotting and electron microscopy. Results Pretreatment of chondrocytes with IGF-1 or/and PDGF-bb suppressed IL-1β-induced NF-κB activation via inhibition of IκB-α kinase. Inhibition of IκB-α kinase by GFs led to the suppression of IκB-α phosphorylation and degradation, p65 nuclear translocation and NF-κB-regulated gene products involved in inflammation and cartilage degradation (COX-2, MMPs) and apoptosis (caspase-3). GFs or BMS-345541 (specific inhibitor of the IKK) reversed the IL-1β-induced down-regulation of collagen type II, cartilage specific proteoglycans, β1-integrin, Shc, activated MAPKinase, Sox-9 and up-regulation of active caspase-3. Furthermore, the inhibitory effects of IGF-1 or/and PDGF-bb on IL-1β-induced NF-κB activation were sensitive to inhibitors of Src (PP1), PI-3K (wortmannin) and Akt (SH-5), suggesting that the pathway consisting of non-receptor tyrosine kinase (Src), phosphatidylinositol 3-kinase and protein kinase B must be involved in IL-1β signaling. Conclusion The results presented suggest that IGF-1 and PDGF-bb are potent inhibitors of IL-1β-mediated activation of NF-κB and apoptosis in chondrocytes, may be mediated in part through suppression of Src/PI-3K/AKT pathway, which may contribute to their anti-inflammatory effects. PMID

  18. Assessment and characterization of degradation effect for the varied degrees of ultra-violet radiation onto the collagen-bonded polypropylene non-woven fabric surfaces.

    Science.gov (United States)

    Tyan, Yu-Chang; Liao, Jiunn-Der; Klauser, Ruth; Wu, Ie-Der; Weng, Chih-Chiang

    2002-01-01

    R-COOH (derivated from grafted-pAAc or de-carboxylation of collagen), amides degradation (broken-NH), and phenylalanine scission (terminated by -OH, tyrosine formation) may gradually damage collagen by increasing the intervals of UV radiation. These effects considerably influence the bioactivity of the collagen-bonded fabric. The XPS measurements of C 1s core levels at 288.4 eV (O = C-NH) and at 289.1 eV (O = C-O) illustrate significant decreases of intensity after radiation time ca. 44 h. It is clear that UV-254 nm radiation exposure for ca. 20 h has the potential impact to moderate the bioactivities of collagen and therefore act as a vital factor to accelerate biodegradation.

  19. Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application.

    Science.gov (United States)

    Wang, L; Lazebnik, M; Detamore, M S

    2009-03-01

    To compare temporomandibular joint (TMJ) condylar cartilage cells in vitro to hyaline cartilage cells cultured in a three-dimensional (3D) environment for tissue engineering of mandibular condylar cartilage. Mandibular condylar cartilage and hyaline cartilage cells were harvested from pigs and cultured for 6 weeks in polyglycolic acid (PGA) scaffolds. Both types of cells were treated with glucosamine sulfate (0.4 mM), insulin-like growth factor-I (IGF-I) (100 ng/ml) and their combination. At weeks 0 and 6, cell number, glycosaminoglycan (GAG) and collagen content were determined, types I and II collagen were visualized by immunohistochemistry and GAGs were visualized by histology. Hyaline cartilage cells produced from half an order to a full order of magnitude more GAGs and collagen than mandibular condylar cartilage cells in 3D culture. IGF-I was a highly effective signal for biosynthesis with hyaline cartilage cells, while glucosamine sulfate decreased cell proliferation and biosynthesis with both types of cells. In vitro culture of TMJ condylar cartilage cells produced a fibrous tissue with predominantly type I collagen, while hyaline cartilage cells formed a fibrocartilage-like tissue with types I and II collagen. The combination of IGF and glucosamine had a synergistic effect on maintaining the phenotype of TMJ condylar cells to generate both types I and II collagen. Given the superior biosynthetic activity by hyaline cartilage cells and the practical surgical limitations of harvesting cells from the TMJ of a patient requiring TMJ reconstruction, cartilage cells from elsewhere in the body may be a potentially better alternative to cells harvested from the TMJ for TMJ tissue engineering. This finding may also apply to other fibrocartilages such as the intervertebral disc and knee meniscus in applications where a mature cartilage cell source is desired.

  20. Ingestion of BioCell Collagen®, a novel hydrolyzed chicken sternal cartilage extract; enhanced blood microcirculation and reduced facial aging signs

    OpenAIRE

    Park, Joosang; Schwartz,

    2012-01-01

    Stephen R Schwartz,1 Joosang Park21International Research Services Inc, Port Chester, NY, USA; 2BioCell Technology, LLC, Newport Beach, CA, USAAbstract: Skin aging and its clinical manifestation is associated with altered molecular metabolism in the extracellular matrix of the dermis. In a pilot open-label study, we investigated the effect of a dietary supplement, BioCell Collagen® (BCC), which contains a naturally occurring matrix of hydrolyzed collagen type II and low-molecular-weig...

  1. Ingestion of BioCell Collagen®, a novel hydrolyzed chicken sternal cartilage extract; enhanced blood microcirculation and reduced facial aging signs

    OpenAIRE

    Schwartz SR; Park J

    2012-01-01

    Stephen R Schwartz,1 Joosang Park21International Research Services Inc, Port Chester, NY, USA; 2BioCell Technology, LLC, Newport Beach, CA, USAAbstract: Skin aging and its clinical manifestation is associated with altered molecular metabolism in the extracellular matrix of the dermis. In a pilot open-label study, we investigated the effect of a dietary supplement, BioCell Collagen® (BCC), which contains a naturally occurring matrix of hydrolyzed collagen type II and low-molecular-weight h...

  2. Comparative Effects of Biodynes, Tocotrienol-Rich Fraction, and Tocopherol in Enhancing Collagen Synthesis and Inhibiting Collagen Degradation in Stress-Induced Premature Senescence Model of Human Diploid Fibroblasts

    Science.gov (United States)

    Jam, Faidruz Azura; Ismail, Zahariah; Wan Ngah, Wan Zurinah

    2013-01-01

    Biodynes, tocotrienol-rich fraction (TRF), and tocopherol have shown antiaging properties. However, the combined effects of these compounds on skin aging are yet to be investigated. This study aimed to elucidate the skin aging effects of biodynes, TRF, and tocopherol on stress-induced premature senescence (SIPS) model of human diploid fibroblasts (HDFs) by determining the expression of collagen and MMPs at gene and protein levels. Primary HDFs were treated with biodynes, TRF, and tocopherol prior to hydrogen peroxide (H2O2) exposure. The expression of COL1A1, COL3A1, MMP1, MMP2, MMP3, and MMP9 genes was determined by qRT-PCR. Type I and type III procollagen proteins were measured by Western blotting while the activities of MMPs were quantified by fluorometric Sensolyte MMP Kit. Our results showed that biodynes, TRF, and tocopherol upregulated collagen genes and downregulated MMP genes (P < 0.05). Type I procollagen and type III procollagen protein levels were significantly increased in response to biodynes, TRF, and tocopherol treatment (P < 0.05) with reduction in MMP-1, MMP-2, MMP-3, and MMP-9 activities (P < 0.05). These findings indicated that biodynes, TRF, and tocopherol effectively enhanced collagen synthesis and inhibited collagen degradation and therefore may protect the skin from aging. PMID:24396567

  3. Comparative Effects of Biodynes, Tocotrienol-Rich Fraction, and Tocopherol in Enhancing Collagen Synthesis and Inhibiting Collagen Degradation in Stress-Induced Premature Senescence Model of Human Diploid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Suzana Makpol

    2013-01-01

    Full Text Available Biodynes, tocotrienol-rich fraction (TRF, and tocopherol have shown antiaging properties. However, the combined effects of these compounds on skin aging are yet to be investigated. This study aimed to elucidate the skin aging effects of biodynes, TRF, and tocopherol on stress-induced premature senescence (SIPS model of human diploid fibroblasts (HDFs by determining the expression of collagen and MMPs at gene and protein levels. Primary HDFs were treated with biodynes, TRF, and tocopherol prior to hydrogen peroxide (H2O2 exposure. The expression of COL1A1, COL3A1, MMP1, MMP2, MMP3, and MMP9 genes was determined by qRT-PCR. Type I and type III procollagen proteins were measured by Western blotting while the activities of MMPs were quantified by fluorometric Sensolyte MMP Kit. Our results showed that biodynes, TRF, and tocopherol upregulated collagen genes and downregulated MMP genes (P<0.05. Type I procollagen and type III procollagen protein levels were significantly increased in response to biodynes, TRF, and tocopherol treatment (P<0.05 with reduction in MMP-1, MMP-2, MMP-3, and MMP-9 activities (P<0.05. These findings indicated that biodynes, TRF, and tocopherol effectively enhanced collagen synthesis and inhibited collagen degradation and therefore may protect the skin from aging.

  4. Evaluation of the effect of a chicken comb extract-containing supplement on cartilage and bone metabolism in athletes.

    Science.gov (United States)

    Yoshimura, Masafumi; Aoba, Yukihiro; Watari, Taiji; Momomura, Rei; Watanabe, Keita; Tomonaga, Akihito; Matsunaga, Michitaka; Suda, Yoshimasa; Lee, Woo Young; Asai, Katsuhito; Yoshimura, Kaori; Nakagawa, Takashi; Yamamoto, Tetsuro; Yamaguchi, Hideyo; Nagaoka, Isao

    2012-10-01

    In a previous study, we revealed that a commercially available product of dietary supplement containing a chicken comb extract (CCE), which is rich in hyaluronan, not only relieves joint pain and other symptoms, but also potentially improves the balance of type II collagen degradation/synthesis in patients with knee osteoarthritis. Since soccer is one of the sports most likely to cause knee osteoarthritis (OA), we evaluated the effect of a CCE-containing supplement on cartilage and bone metabolism in athletes. Fourteen and 15 subjects (all midfielders) were randomly assigned to receive the test product (test group) and the dummy placebo containing only vehicle (placebo group), respectively, for 12 weeks. The daily oral intake of the CCE-containing test product clearly decreased the urinary levels of both C-terminal crosslinked telopeptides of cartilage-specific type II collagen (CTX-II) as a type II collagen degradation marker and the N-terminal telopeptides of bone-specific type I collagen (NTx) as a marker of bone resorption at 12 weeks after the initiation of the intervention. By contrast, no significant reduction was detected in the placebo group at any timepoint during the intervention. These observations indicate that the test product is effective in inhibiting, not only cartilage degradation, but also bone remodeling. Thus, the CCE-containing supplement may be useful for the management of joint health in athletes.

  5. Tumor necrosis factor-α-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo

    DEFF Research Database (Denmark)

    Ågren, Magnus S; Schnabel, Reinhild; Christensen, Lise H

    2015-01-01

    Tumor necrosis factor (TNF)-α induces matrix metalloproteinases (MMPs) that may disrupt skin integrity. We have investigated the effects and mechanisms of exogenous TNF-α on collagen degradation by incubating human skin explants in defined serum-free media with or without TNF-α (10ng/ml) in the a......Tumor necrosis factor (TNF)-α induces matrix metalloproteinases (MMPs) that may disrupt skin integrity. We have investigated the effects and mechanisms of exogenous TNF-α on collagen degradation by incubating human skin explants in defined serum-free media with or without TNF-α (10ng...... tissue-derived collagenolytic activity with TNF-α exposure was blocked by neutralizing MMP-1 monoclonal antibody and was not due to down-regulation of tissue inhibitor of metalloproteinase-1. TNF-α increased production (pendogenous MMP-1...

  6. Circulating CO3-610, a degradation product of collagen III, closely reflects liver collagen and portal pressure in rats with fibrosis

    Science.gov (United States)

    2011-01-01

    Background Hepatic fibrosis is characterized by intense tissue remodeling, mainly driven by matrix metalloproteinases. We previously identified CO3-610, a type III collagen neoepitope generated by matrix metalloproteinase (MMP)-9, and tested its performance as a fibrosis marker in rats with bile-duct ligation. In this study, we assessed whether CO3-610 could be used as a surrogate biomarker of liver fibrosis and portal hypertension in carbon tetrachloride-induced experimental fibrosis. Results For this study, 68 Wistar rats were used. Serum CO3-610 was measured by ELISA. Liver fibrosis was quantified by Sirius red staining. Serum hyaluronic acid (HA) was measured with a binding-protein assay. Gene expression of collagens I and III, Mmp2 and Mmp9, and tissue inhibitors of matrix metalloproteinase 1 (Timp1) and 2(Timp2) was quantified by PCR. Hemodynamic measurements were taken in a subgroup of animals. A close direct relationship was found between serum CO3-610 and hepatic collagen content (r = 0.78; P fibrosis (43.5 ± 3.3 ng/mL, P Liver Mmp9 expression increased significantly in fibrotic animals but decreased to control levels in cirrhotic ones. Conclusions Circulating CO3-610 behaves as a reliable indicator of hepatic remodeling and portal hypertension in experimental fibrosis. This peptide could ultimately be a useful marker for the management of liver disease in patients. PMID:21813019

  7. Engineering of hyaline cartilage with a calcified zone using bone marrow stromal cells.

    Science.gov (United States)

    Lee, W D; Hurtig, M B; Pilliar, R M; Stanford, W L; Kandel, R A

    2015-08-01

    In healthy joints, a zone of calcified cartilage (ZCC) provides the mechanical integration between articular cartilage and subchondral bone. Recapitulation of this architectural feature should serve to resist the constant shear force from the movement of the joint and prevent the delamination of tissue-engineered cartilage. Previous approaches to create the ZCC at the cartilage-substrate interface have relied on strategic use of exogenous scaffolds and adhesives, which are susceptible to failure by degradation and wear. In contrast, we report a successful scaffold-free engineering of ZCC to integrate tissue-engineered cartilage and a porous biodegradable bone substitute, using sheep bone marrow stromal cells (BMSCs) as the cell source for both cartilaginous zones. BMSCs were predifferentiated to chondrocytes, harvested and then grown on a porous calcium polyphosphate substrate in the presence of triiodothyronine (T3). T3 was withdrawn, and additional predifferentiated chondrocytes were placed on top of the construct and grown for 21 days. This protocol yielded two distinct zones: hyaline cartilage that accumulated proteoglycans and collagen type II, and calcified cartilage adjacent to the substrate that additionally accumulated mineral and collagen type X. Constructs with the calcified interface had comparable compressive strength to native sheep osteochondral tissue and higher interfacial shear strength compared to control without a calcified zone. This protocol improves on the existing scaffold-free approaches to cartilage tissue engineering by incorporating a calcified zone. Since this protocol employs no xenogeneic material, it will be appropriate for use in preclinical large-animal studies. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  8. Evaluation of the potential of rhTGF- β3 encapsulated P(LLA-CL)/collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton's jelly of human umbilical cord

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Sun, Binbin [State Key Laboratory of Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Tian, Lingling [Center for Nanofibers and Nanotechnology, E3-05-14, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); He, Xiaomin [Department of Pediatric Cardiothoracic Surgery, Shanghai Children' s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127 (China); Gao, Qiang; Wu, Tong [State Key Laboratory of Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Ramakrishna, Seeram [Center for Nanofibers and Nanotechnology, E3-05-14, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632 (China); Zheng, Jinghao, E-mail: zhengjh210@163.com [Department of Pediatric Cardiothoracic Surgery, Shanghai Children' s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127 (China); Mo, Xiumei, E-mail: xmm@dhu.edu.cn [State Key Laboratory of Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Shandong International Biotechnology Park Development Co., Ltd. (China)

    2017-01-01

    Tracheal injuries are one of major challenging issues in clinical medicine because of the poor intrinsic ability of tracheal cartilage for repair. Tissue engineering provides an alternative method for the treatment of tracheal defects by generating replacement tracheal structures. In this study, core-shell nanofibrous scaffold was fabricated to encapsulate bovine serum albumin & rhTGF-β3 (recombinant human transforming growth factor-β3) into the core of the nanofibers for tracheal cartilage regeneration. Characterization of the core-shell nanofibrous scaffold was carried out by scanning electron microscope (SEM), transmission electron microscope (TEM), laser scanning confocal microscopy (LSCM), and tensile mechanical test. The rhTGF-β3 released from the scaffolds in a sustained and stable manner for about 2 months. The bioactivity of released rhTGF-β3 was evaluated by its effect on the synthesis of type II collagen (COL2) and glycosaminoglycans (GAGs) by chondrocytes. The results suggested that its bioactivity was retained during release process. The proliferation and morphology analyses of mesenchymal stems cells derived from Wharton's jelly of human umbilical cord (WMSCs) indicated the good biocompatibility of the fabricated nanofibrous scaffold. Meanwhile, the chondrogenic differentiation of WMSCs cultured on core-shell nanofibrous scaffold was evaluated by real-time qPCR and histological staining. The results suggested that the core-shell nanofibrous scaffold with rhTGF-β3 could promote the chondrogenic differentiation ability of WMSCs. Therefore, WMSCs could be a promising seed cells in the construction of tissue-engineered tracheal cartilage. Overall, the core-shell nanofibrous scaffold could be an effective delivery system for rhTGF-β3 and served as a promising tissue engineered scaffold for tracheal cartilage regeneration. - Highlights: • rhTGF-β3 could be encapsulated into core-shell nanofibers via electrospinning. • rhTGF-β3 could release

  9. Quantification of the optical surface reflection and surface roughness of articular cartilage using optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Saarakkala, Simo; Wang Shuzhe; Huang Yanping; Zheng Yongping [Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong (China)], E-mail: simo.saarakkala@uku.fi, E-mail: ypzheng@ieee.org

    2009-11-21

    Optical coherence tomography (OCT) is a promising new technique for characterizing the structural changes of articular cartilage in osteoarthritis (OA). The calculation of quantitative parameters from the OCT signal is an important step to develop OCT as an effective diagnostic technique. In this study, two novel parameters for the quantification of optical surface reflection and surface roughness from OCT measurements are introduced: optical surface reflection coefficient (ORC), describing the amount of a ratio of the optical reflection from cartilage surface with respect to that from a reference material, and OCT roughness index (ORI) indicating the smoothness of the cartilage surface. The sensitivity of ORC and ORI to detect changes in bovine articular cartilage samples after enzymatic degradations of collagen and proteoglycans using collagenase and trypsin enzymes, respectively, was tested in vitro. A significant decrease (p < 0.001) in ORC as well as a significant increase (p < 0.001) in ORI was observed after collagenase digestion. After trypsin digestion, no significant changes in ORC or ORI were observed. To conclude, the new parameters introduced were demonstrated to be feasible and sensitive to detect typical OA-like degenerative changes in the collagen network. From the clinical point of view, the quantification of OCT measurements is of great interest since OCT probes have been already miniaturized and applied in patient studies during arthroscopy or open knee surgery in vivo. Further studies are still necessary to demonstrate the clinical capability of the introduced parameters for naturally occurring early OA changes in the cartilage.

  10. Ingestion of BioCell Collagen(®), a novel hydrolyzed chicken sternal cartilage extract; enhanced blood microcirculation and reduced facial aging signs.

    Science.gov (United States)

    Schwartz, Stephen R; Park, Joosang

    2012-01-01

    Skin aging and its clinical manifestation is associated with altered molecular metabolism in the extracellular matrix of the dermis. In a pilot open-label study, we investigated the effect of a dietary supplement, BioCell Collagen(®) (BCC), which contains a naturally occurring matrix of hydrolyzed collagen type II and low-molecular-weight hyaluronic acid and chondroitin sulfate, in 26 healthy females who displayed visible signs of natural and photoaging in the face. Daily supplementation with 1 g of BCC for 12 weeks led to a significant reduction of skin dryness/scaling (76%, P = 0.002) and global lines/wrinkles (13.2%, P = 0.028) as measured by visual/tactile score. Additionally, a significant increase in the content of hemoglobin (17.7%, P = 0.018) and collagen (6.3%, P = 0.002) in the skin dermis was observed after 6 weeks of supplementation. At the end of the study, the increase in hemoglobin remained significant (15%, P = 0.008), while the increase in collagen content was maintained, but the difference from baseline was not significant (3.5%, P = 0.134). This study provides preliminary data suggesting that dietary supplementation with BCC elicits several physiological events which can be harnessed to counteract natural photoaging processes to reduce visible aging signs in the human face. A controlled study is necessary to verify these observations.

  11. Ingestion of BioCell Collagen®, a novel hydrolyzed chicken sternal cartilage extract; enhanced blood microcirculation and reduced facial aging signs

    Science.gov (United States)

    Schwartz, Stephen R; Park, Joosang

    2012-01-01

    Skin aging and its clinical manifestation is associated with altered molecular metabolism in the extracellular matrix of the dermis. In a pilot open-label study, we investigated the effect of a dietary supplement, BioCell Collagen® (BCC), which contains a naturally occurring matrix of hydrolyzed collagen type II and low-molecular-weight hyaluronic acid and chondroitin sulfate, in 26 healthy females who displayed visible signs of natural and photoaging in the face. Daily supplementation with 1 g of BCC for 12 weeks led to a significant reduction of skin dryness/scaling (76%, P = 0.002) and global lines/wrinkles (13.2%, P = 0.028) as measured by visual/tactile score. Additionally, a significant increase in the content of hemoglobin (17.7%, P = 0.018) and collagen (6.3%, P = 0.002) in the skin dermis was observed after 6 weeks of supplementation. At the end of the study, the increase in hemoglobin remained significant (15%, P = 0.008), while the increase in collagen content was maintained, but the difference from baseline was not significant (3.5%, P = 0.134). This study provides preliminary data suggesting that dietary supplementation with BCC elicits several physiological events which can be harnessed to counteract natural photoaging processes to reduce visible aging signs in the human face. A controlled study is necessary to verify these observations. PMID:22956862

  12. Rheological, biocompatibility and osteogenesis assessment of fish collagen scaffold for bone tissue engineering.

    Science.gov (United States)

    Elango, Jeevithan; Zhang, Jingyi; Bao, Bin; Palaniyandi, Krishnamoorthy; Wang, Shujun; Wenhui, Wu; Robinson, Jeya Shakila

    2016-10-01

    In the present investigation, an attempt was made to find an alternative to mammalian collagen with better osteogenesis ability. Three types of collagen scaffolds - collagen, collagen-chitosan (CCH), and collagen-hydroxyapatite (CHA) - were prepared from the cartilage of Blue shark and investigated for their physico-functional and mechanical properties in relation to biocompatibility and osteogenesis. CCH scaffold was superior with pH 4.5-4.9 and viscosity 9.7-10.9cP. Notably, addition of chitosan and HA (hydroxyapatite) improved the stiffness (11-23MPa) and degradation rate but lowered the water binding capacity and porosity of the scaffold. Interestingly, CCH scaffolds remained for 3days before complete in-vitro biodegradation. The decreased amount of viable T-cells and higher level of FAS/APO-1 were substantiated the biocompatibility properties of prepared collagen scaffolds. Osteogenesis study revealed that the addition of CH and HA in both fish and mammalian collagen scaffolds could efficiently promote osteoblast cell formation. The ALP activity was significantly high in CHA scaffold-treated osteoblast cells, which suggests an enhanced bone-healing process. Therefore, the present study concludes that the composite scaffolds prepared from fish collagen with higher stiffness, lower biodegradation rate, better biocompatible, and osteogenesis properties were suitable biomaterial for a bone tissue engineering application as an alternative to mammalian collagen scaffolds. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effect of silver nanoparticles and hydroxyproline, administered in ovo, on the development of blood vessels and cartilage collagen structure in chicken embryos

    DEFF Research Database (Denmark)

    Beck, Iwona; Hotowy, Anna; Sawosz, Ewa

    2015-01-01

    . An assessment of the mass of embryo and selected organs was carried out followed by measurements of the expression of the key signalling factors' fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor-A (VEGF-A). Finally, an evaluation of collagen microstructure using scanning electron...... microscopy was performed. Our results clearly indicate that Hyp, Ag and AgHyp administered in ovo to chicken embryos did not harm embryos. Comparing to the control group, Hyp, Ag and the AgHyp complex significantly upregulated expression of the FGF-2 at the mRNA and protein levels. Moreover, Hyp, Ag and......It has been considered that concentrations of certain amino acids in the egg are not sufficient to fully support embryonic development of modern broilers. In this study we evaluated embryo growth and development with particular emphasis on one of the major components of connective tissue, collagen...

  14. Progression of cartilage degradation, bone resorption and pain in rat temporomandibular joint osteoarthritis induced by injection of iodoacetate.

    Directory of Open Access Journals (Sweden)

    Xue-Dong Wang

    Full Text Available BACKGROUND: Osteoarthritis (OA is an important subtype of temporomandibular disorders. A simple and reproducible animal model that mimics the histopathologic changes, both in the cartilage and subchondral bone, and clinical symptoms of temporomandibular joint osteoarthritis (TMJOA would help in our understanding of its process and underlying mechanism. OBJECTIVE: To explore whether injection of monosodium iodoacetate (MIA into the upper compartment of rat TMJ could induce OA-like lesions. METHODS: Female rats were injected with varied doses of MIA into the upper compartment and observed for up to 12 weeks. Histologic, radiographic, behavioral, and molecular changes in the TMJ were evaluated by light and electron microscopy, MicroCT scanning, head withdrawal threshold test, real-time PCR, immunohistochemistry, and TUNEL assay. RESULTS: The intermediate zone of the disc loosened by 1 day post-MIA injection and thinned thereafter. Injection of an MIA dose of 0.5 mg or higher induced typical OA-like lesions in the TMJ within 4 weeks. Condylar destruction presented in a time-dependent manner, including chondrocyte apoptosis in the early stages, subsequent cartilage matrix disorganization and subchondral bone erosion, fibrosis, subchondral bone sclerosis, and osteophyte formation in the late stages. Nociceptive responses increased in the early stages, corresponding to severe synovitis. Furthermore, chondrocyte apoptosis and an imbalance between anabolism and catabolism of cartilage and subchondral bone might account for the condylar destruction. CONCLUSIONS: Multi-level data demonstrated a reliable and convenient rat model of TMJOA could be induced by MIA injection into the upper compartment. The model might facilitate TMJOA related researches.

  15. Shark Cartilage

    Science.gov (United States)

    Shark cartilage (tough elastic tissue that provides support, much as bone does) used for medicine comes primarily from sharks ... Several types of extracts are made from shark cartilage including squalamine lactate, AE-941, and U-995. ...

  16. Phosphodiesterase inhibition mediates matrix metalloproteinase activity and the level of collagen degradation fragments in a liver fibrosis ex vivo rat model

    Directory of Open Access Journals (Sweden)

    Veidal Sanne Skovgård

    2012-12-01

    Full Text Available Abstract Background Accumulation of extracellular matrix (ECM and increased matrix metalloproteinase (MMP activity are hallmarks of liver fibrosis. The aim of the present study was to develop a model of liver fibrosis combining ex vivo tissue culture of livers from CCl4 treated animals with an ELISA detecting a fragment of type III collagen generated in vitro by MMP-9 (C3M, known to be associated with liver fibrosis and to investigate cAMP modulation of MMP activity and liver tissue turnover in this model. Findings In vivo: Rats were treated for 8 weeks with CCl4/Intralipid. Liver slices were cultured for 48 hours. Levels of C3M were determined in the supernatants of slices cultured without treatment, treated with GM6001 (positive control or treated with IBMX (phosphodiesterase inhibitor. Enzymatic activity of MMP-2 and MMP-9 were studied by gelatin zymography. Ex vivo: The levels of serum C3M increased 77% in the CCl4-treated rats at week 8 (p 4-treated animals had highly increased MMP-9, but not MMP-2 activity, compared to slices derived from control animals. Conclusions We have combined an ex vivo model of liver fibrosis with measurement of a biochemical marker of collagen degradation in the condition medium. This technology may be used to evaluate the molecular process leading to structural fibrotic changes, as collagen species are the predominant structural part of fibrosis. These data suggest that modulation of cAMP may play a role in regulation of collagen degradation associated with liver fibrosis.

  17. An Experimental and Finite Element Protocol to Investigate the Transport of Neutral and Charged Solutes across Articular Cartilage.

    Science.gov (United States)

    Arbabi, Vahid; Pouran, Behdad; Zadpoor, Amir A; Weinans, Harrie

    2017-04-23

    Osteoarthritis (OA) is a debilitating disease that is associated with degeneration of articular cartilage and subchondral bone. Degeneration of articular cartilage impairs its load-bearing function substantially as it experiences tremendous chemical degradation, i.e. proteoglycan loss and collagen fibril disruption. One promising way to investigate chemical damage mechanisms during OA is to expose the cartilage specimens to an external solute and monitor the diffusion of the molecules. The degree of cartilage damage (i.e. concentration and configuration of essential macromolecules) is associated with collisional energy loss of external solutes while moving across articular cartilage creates different diffusion characteristics compared to healthy cartilage. In this study, we introduce a protocol, which consists of several steps and is based on previously developed experimental micro-Computed Tomography (micro-CT) and finite element modeling. The transport of charged and uncharged iodinated molecules is first recorded using micro-CT, which is followed by applying biphasic-solute and multiphasic finite element models to obtain diffusion coefficients and fixed charge densities across cartilage zones.

  18. Protection against LPS-induced cartilage inflammation and degradation provided by a biological extract of Mentha spicata

    Directory of Open Access Journals (Sweden)

    Kott Laima S

    2010-05-01

    Full Text Available Abstract Background A variety of mint [Mentha spicata] has been bred which over-expresses Rosmarinic acid (RA by approximately 20-fold. RA has demonstrated significant anti-inflammatory activity in vitro and in small rodents; thus it was hypothesized that this plant would demonstrate significant anti-inflammatory activity in vitro. The objectives of this study were: a to develop an in vitro extraction procedure which mimics digestion and hepatic metabolism, b to compare anti-inflammatory properties of High-Rosmarinic-Acid Mentha spicata (HRAM with wild-type control M. spicata (CM, and c to quantify the relative contributions of RA and three of its hepatic metabolites [ferulic acid (FA, caffeic acid (CA, coumaric acid (CO] to anti-inflammatory activity of HRAM. Methods HRAM and CM were incubated in simulated gastric and intestinal fluid, liver microsomes (from male rat and NADPH. Concentrations of RA, CA, CO, and FA in simulated digest of HRAM (HRAMsim and CM (CMsim were determined (HPLC and compared with concentrations in aqueous extracts of HRAM and CM. Cartilage explants (porcine were cultured with LPS (0 or 3 μg/mL and test article [HRAMsim (0, 8, 40, 80, 240, or 400 μg/mL, or CMsim (0, 1, 5 or 10 mg/mL, or RA (0.640 μg/mL, or CA (0.384 μg/mL, or CO (0.057 μg/mL or FA (0.038 μg/mL] for 96 h. Media samples were analyzed for prostaglandin E2 (PGE2, interleukin 1β (IL-1, glycosaminoglycan (GAG, nitric oxide (NO and cell viability (differential live-dead cell staining. Results RA concentration of HRAMsim and CMsim was 49.3 and 0.4 μg/mL, respectively. CA, FA and CO were identified in HRAMsim but not in aqueous extract of HRAM. HRAMsim (≥ 8 μg/mL inhibited LPS-induced PGE2 and NO; HRAMsim (≥ 80 μg/mL inhibited LPS-induced GAG release. RA inhibited LPS-induced GAG release. No anti-inflammatory or chondroprotective effects of RA metabolites on cartilage explants were identified. Conclusions Our biological extraction procedure produces

  19. Collagen Type III Degradation Is Associated with Deterioration of Kidney Function in Patients with Type 2 Diabetes with Microalbuminuria

    DEFF Research Database (Denmark)

    Genovese, Federica; Hansen, Tine Wilum; Guldager, Daniel Kring Rasmussen

    Background In diabetes one of the main features of the progression to diabetic kidney disease is a pathological deposition of extracellular matrix components triggering renal fibrosis. The main structural component of the fibrotic core is collagen. One of the most prominent collagens is collagen...... type III (COL III), which is excessively synthesized and incorporated into the fibrotic extracellular matrix. Multiple studies in both humans and mice have suggested that MMP-9 activity is increased in diabetic kidney disease. We investigated whether a neo-epitope fragment of COL III generated by MMP-9...... (C3M) was associated with deterioration of kidney function in a well-characterised type 2 diabetic population with microalbuminuria and without symptoms of coronary artery disease. Methods The cohort included 200 participants, followed for 6.1 years. We measured C3M levels in serum (S-C3M) and urine...

  20. Differential effects of collagen prolyl 3-hydroxylation on skeletal tissues.

    Directory of Open Access Journals (Sweden)

    Erica P Homan

    2014-01-01

    Full Text Available Mutations in the genes encoding cartilage associated protein (CRTAP and prolyl 3-hydroxylase 1 (P3H1 encoded by LEPRE1 were the first identified causes of recessive Osteogenesis Imperfecta (OI. These proteins, together with cyclophilin B (encoded by PPIB, form a complex that 3-hydroxylates a single proline residue on the α1(I chain (Pro986 and has cis/trans isomerase (PPIase activity essential for proper collagen folding. Recent data suggest that prolyl 3-hydroxylation of Pro986 is not required for the structural stability of collagen; however, the absence of this post-translational modification may disrupt protein-protein interactions integral for proper collagen folding and lead to collagen over-modification. P3H1 and CRTAP stabilize each other and absence of one results in degradation of the other. Hence, hypomorphic or loss of function mutations of either gene cause loss of the whole complex and its associated functions. The relative contribution of losing this complex's 3-hydroxylation versus PPIase and collagen chaperone activities to the phenotype of recessive OI is unknown. To distinguish between these functions, we generated knock-in mice carrying a single amino acid substitution in the catalytic site of P3h1 (Lepre1(H662A . This substitution abolished P3h1 activity but retained ability to form a complex with Crtap and thus the collagen chaperone function. Knock-in mice showed absence of prolyl 3-hydroxylation at Pro986 of the α1(I and α1(II collagen chains but no significant over-modification at other collagen residues. They were normal in appearance, had no growth defects and normal cartilage growth plate histology but showed decreased trabecular bone mass. This new mouse model recapitulates elements of the bone phenotype of OI but not the cartilage and growth phenotypes caused by loss of the prolyl 3-hydroxylation complex. Our observations suggest differential tissue consequences due to selective inactivation of P3H1 hydroxylase

  1. Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model.

    Science.gov (United States)

    Luo, Ziwei; Jiang, Li; Xu, Yan; Li, Haibin; Xu, Wei; Wu, Shuangchi; Wang, Yuanliang; Tang, Zhenyu; Lv, Yonggang; Yang, Li

    2015-06-01

    Damaged cartilage has poor self-healing ability and usually progresses to scar or fibrocartilaginous tissue, and finally degenerates to osteoarthritis (OA). Here we demonstrated that one of alternative isoforms of IGF-1, mechano growth factor (MGF) acted synergistically with transforming growth factor β3 (TGF-β3) embedded in silk fibroin scaffolds to induce chemotactic homing and chondrogenic differentiation of mesenchymal stem cells (MSCs). Combination of MGF and TGF-β3 significantly increased cell recruitment up to 1.8 times and 2 times higher than TGF-β3 did in vitro and in vivo. Moreover, MGF increased Collagen II and aggrecan secretion of TGF-β3 induced hMSCs chondrogenesis, but decreased Collagen I in vitro. Silk fibroin (SF) scaffolds have been widely used for tissue engineering, and we showed that methanol treated pured SF scaffolds were porous, similar to compressive module of native cartilage, slow degradation rate and excellent drug released curves. At 7 days after subcutaneous implantation, TGF-β3 and MGF functionalized silk fibroin scaffolds (STM) recruited more CD29+/CD44+cells (Pcartilage-like extracellular matrix and less fibrillar collagen were detected in STM scaffolds than that in TGF-β3 modified scaffolds (ST) at 2 months after subcutaneous implantation. When implanted into articular joints in a rabbit osteochondral defect model, STM scaffolds showed the best integration into host tissues, similar architecture and collagen organization to native hyaline cartilage, as evidenced by immunostaining of aggrecan, collagen II and collagen I, as well as Safranin O and Masson's trichrome staining, and histological evalution based on the modified O'Driscoll histological scoring system (Pcartilage regeneration. This study demonstrated that TGF-β3 and MGF functionalized silk fibroin scaffolds enhanced endogenous stem cell recruitment and facilitated in situ articular cartilage regeneration, thus providing a novel strategy for cartilage repair

  2. Cartilage proteoglycans inhibit fibronectin-mediated adhesion

    Science.gov (United States)

    Rich, A. M.; Pearlstein, E.; Weissmann, G.; Hoffstein, S. T.

    1981-09-01

    Normal tissues and organs show, on histological examination, a pattern of cellular and acellular zones that is characteristic and unique for each organ or tissue. This pattern is maintained in health but is sometimes destroyed by disease. For example, in mobile joints, the articular surfaces consist of relatively acellular hyaline cartilage, and the joint space is enclosed by a capsule of loose connective tissue with a lining of fibroblasts and macrophages. In the normal joint these cells are confined to the synovial lining and the articular surface remains acellular. In in vitro culture, macrophages and their precursor monocytes are very adhesive, and fibroblasts can migrate and overgrow surfaces such as collagen or plastic used for tissue culture. The fibroblasts adhere to collagen by means of fibronectin, which they synthesize and secrete1. Because the collagen of cartilage is capable of binding serum fibronectin2 and fibronectin is present in cartilage during its development3, these cells should, in theory, slowly migrate from the synovial lining to the articular surface. It is their absence from the articular cartilage in normal circumstances, and then presence in such pathological states as rheumatoid arthritis, that is striking. We therefore set out to determine whether a component of cartilage could prevent fibroblast adherence in a defined adhesion assay. As normal cartilage is composed of 50% proteoglycans and 50% collagen by dry weight4, we tested the possibility that the proteoglycans in cartilage inhibit fibroblast adhesion to collagen. We present here evidence that fibroblast spreading and adhesion to collagenous substrates is inhibited by cartilage proteoglycans.

  3. Effect of a Herbal-Leucine mix on the IL-1β-induced cartilage degradation and inflammatory gene expression in human chondrocytes

    Directory of Open Access Journals (Sweden)

    Haqqi Tariq M

    2011-08-01

    Full Text Available Abstract Background Conventional treatments for the articular diseases are often effective for symptom relief, but can also cause significant side effects and do not slow the progression of the disease. Several natural substances have been shown to be effective at relieving the symptoms of osteoarthritis (OA, and preliminary evidence suggests that some of these compounds may exert a favorable influence on the course of the disease. The objective of this study was to investigate the anti-inflammatory/chondroprotective potential of a Herbal and amino acid mixture containing extract of the Uncaria tomentosa, Boswellia spp., Lepidium meyenii and L-Leucine on the IL-1β-induced production of nitric oxide (NO, glycosaminoglycan (GAG, matrix metalloproteinases (MMPs, aggrecan (ACAN and type II collagen (COL2A1 in human OA chondrocytes and OA cartilage explants. Methods Primary OA chondrocytes or OA cartilage explants were pretreated with Herbal-Leucine mixture (HLM, 1-10 μg/ml and then stimulated with IL-1β (5 ng/ml. Effect of HLM on IL-1β-induced gene expression of iNOS, MMP-9, MMP-13, ACAN and COL2A1 was verified by real time-PCR. Estimation of NO and GAG release in culture supernatant was done using commercially available kits. Results HLM tested in these in vitro studies was found to be an effective anti-inflammatory agent, as evidenced by strong inhibition of iNOS, MMP-9 and MMP-13 expression and NO production in IL-1β-stimulated OA chondrocytes (p Leucine mixture (HLM up-regulation of ACAN and COL2A1 expression in IL-1β-stimulated OA chondrocytes was also noted (p Conclusion Our data suggests that HLM could be chondroprotective and anti-inflammatory agent in arthritis, switching chondrocyte gene expression from catabolic direction towards anabolic and regenerative, and consequently this approach may be potentially useful as a new adjunct therapeutic/preventive agent for OA or injury recovery.

  4. A Simple and Efficient Method to Improve Mechanical Properties of Collagen Scaffolds by UV Irradiation

    Directory of Open Access Journals (Sweden)

    F. Khayyatan

    2010-12-01

    Full Text Available Collagen is the major protein component of cartilage, bone, skin and connective tissue and constitutes the major part of the extracellular matrix. Collagen type I has complex structural hierarchy, which consists of treepolypeptide α-chains wound together in a rod-like helical structure. Collagen is an important biomaterial, finding many applications in the field of tissue engineering. It has been processed into various shapes, such as, gel, film, sponge and fiber. It is commonly used as the scaffolding material for tissue engineering due to its many superior properties including low antigenicity and high growth promotion. Unfortunately, poor mechanical properties and rapid degradation rates of collagen scaffolds can cause instability and difficulty in handling. By crosslinking, the structural stability of the collagen and its rate of resorption can be adapted with respect to its demanding requirements. The strength, resorption rate, and biocompatibility of collagenous biomaterials are profoundly influenced by the method and extent of crosslinking. In thisstudy, the effect of UV irradiation on collagen scaffolds has been carried out.Collagen scaffolds were fabricated using freeze drying method with freezing temperature of -80oC, then exposed to UV irradiation. Mean pore size of the scaffolds was obtained as 98.52±14.51 μm using scanning electron microscopy. Collagen scaffolds exposed to UV Irradiation (254 nm for 15 min showed the highest tensile strain (17.37±0.98 %, modulus (1.67±0.15 MPa and maximum load (24.47±2.38 cN values. As partial loss of the native collagen structure may influence attachment, migration, and proliferation of cells on collagen scaffolds, we detected no intact α-chains after SDS-Page chromatography. We demonstrate that UV irradiation is a rapid and easily controlled means of increasing the mechanical strength of collagen scaffolds without any molecular fracture.

  5. Matrix metalloproteinase-9-mediated type III collagen degradation as a novel serological biochemical marker for liver fibrogenesis

    DEFF Research Database (Denmark)

    Veidal, Sanne S; Vassiliadis, Efstathios; Barascuk, Natasha

    2010-01-01

    During fibrogenesis in the liver, in which excessive remodelling of the extracellular matrix (ECM) occurs, both the quantity of type III collagen (CO3) and levels of matrix metalloproteinases (MMPs), including MMP-9, increase significantly. MMPs play major roles in ECM remodelling, via...

  6. Dysregulated miR-127-5p contributes to type II collagen degradation by targeting matrix metalloproteinase-13 in human intervertebral disc degeneration.

    Science.gov (United States)

    Hua, Wen-Bin; Wu, Xing-Huo; Zhang, Yu-Kun; Song, Yu; Tu, Ji; Kang, Liang; Zhao, Kang-Cheng; Li, Shuai; Wang, Kun; Liu, Wei; Shao, Zeng-Wu; Yang, Shu-Hua; Yang, Cao

    2017-08-01

    Intervertebral disc degeneration (IDD) is a chronic disease associated with the degradation of extracellular matrix (ECM). Matrix metalloproteinase (MMP)-13 is a major enzyme that mediates the degradation of ECM components. MMP-13 has been predicted to be a potential target of miR-127-5p. However, the exact function of miR-127-5p in IDD is still unclear. We designed this study to evaluate the correlation between miR-127-5p level and the degeneration of human intervertebral discs and explore the potential mechanisms. miR-127-5p levels and MMP-13 mRNA levels were detected by quantitative real-time polymerase chain reaction (qPCR). To determine whether MMP-13 is a target of miR-127-5p, dual luciferase reporter assays were performed. miR-127-5p mimic and miR-127-5p inhibitor were used to overexpress or downregulate miR-127-5p expression in human NP cells, respectively. Small interfering RNA (siRNA) was used to knock down MMP-13 expression in human NP cells. Type II collagen expression in human NP cells was detected by qPCR, western blotting, and immunofluorescence staining. We confirmed that miR-127-5p was significantly downregulated in nucleus pulposus (NP) tissue of degenerative discs and its expression was inversely correlated with MMP-13 mRNA levels. We reveal that MMP-13 may act as a target of miR-127-5p. Expression of miR-127-5p was inversely correlated with type II collagen expression in human NP cells. Moreover, suppression of MMP-13 expression by siRNA blocked downstream signaling and increased type II collagen expression. Dysregulated miR-127-5p contributed to the degradation of type II collagen by targeting MMP-13 in human IDD. Our findings highlight that miR-127-5p may serve as a new therapeutic target in IDD. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  7. Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage.

    Science.gov (United States)

    Kreuz, P C; Gentili, C; Samans, B; Martinelli, D; Krüger, J P; Mittelmeier, W; Endres, M; Cancedda, R; Kaps, C

    2013-12-01

    Studies about cartilage repair in the hip and infant chondrocytes are rare. The aim of our study was to evaluate the use of infant articular hip chondrocytes for tissue engineering of scaffold-assisted cartilage grafts. Hip cartilage was obtained from five human donors (age 1-10 years). Expanded chondrocytes were cultured in polyglycolic acid (PGA)-fibrin scaffolds. De- and re-differentiation of chondrocytes were assessed by histological staining and gene expression analysis of typical chondrocytic marker genes. In vivo, cartilage matrix formation was assessed by histology after subcutaneous transplantation of chondrocyte-seeded PGA-fibrin scaffolds in immunocompromised mice. The donor tissue was heterogenous showing differentiated articular cartilage and non-differentiated tissue and considerable expression of type I and II collagens. Gene expression analysis showed repression of typical chondrocyte and/or mesenchymal marker genes during cell expansion, while markers were re-induced when expanded cells were cultured in PGA-fibrin scaffolds. Cartilage formation after subcutaneous transplantation of chondrocyte loaded PGA-fibrin scaffolds in nude mice was variable, with grafts showing resorption and host cell infiltration or formation of hyaline cartilage rich in type II collagen. Addition of human platelet rich plasma (PRP) to cartilage grafts resulted robustly in formation of hyaline-like cartilage that showed type II collagen and regions with type X collagen. These results suggest that culture of expanded and/or de-differentiated infant hip cartilage cells in PGA-fibrin scaffolds initiates chondrocyte re-differentiation. The heterogenous donor tissue containing immature chondrocytes bears the risk of cartilage repair failure in vivo, which may be possibly overcome by the addition of PRP. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  8. Synthesis and characterization of a lubricin mimic (mLub) to reduce friction and adhesion on the articular cartilage surface.

    Science.gov (United States)

    Lawrence, Alexandra; Xu, Xin; Bible, Melissa D; Calve, Sarah; Neu, Corey P; Panitch, Alyssa

    2015-12-01

    The lubricating proteoglycan, lubricin, facilitates the remarkable low friction and wear properties of articular cartilage in the synovial joints of the body. Lubricin lines the joint surfaces and plays a protective role as a boundary lubricant in sliding contact; decreased expression of lubricin is associated with cartilage degradation and the pathogenesis of osteoarthritis. An unmet need for early osteoarthritis treatment is the development of therapeutic molecules that mimic lubricin function and yet are also resistant to enzymatic degradation common in the damaged joint. Here, we engineered a lubricin mimic (mLub) that is less susceptible to enzymatic degradation and binds to the articular surface to reduce friction. mLub was synthesized using a chondroitin sulfate backbone with type II collagen and hyaluronic acid (HA) binding peptides to promote interaction with the articular surface and synovial fluid constituents. In vitro and in vivo characterization confirmed the binding ability of mLub to isolated type II collagen and HA, and to the cartilage surface. Following trypsin treatment to the cartilage surface, application of mLub, in combination with purified or commercially available hyaluronan, reduced the coefficient of friction, and adhesion, to control levels as assessed over macro-to micro-scales by rheometry and atomic force microscopy. In vivo studies demonstrate an mLub residency time of less than 1 week. Enhanced lubrication by mLub reduces surface friction and adhesion, which may suppress the progression of degradation and cartilage loss in the joint. mLub therefore shows potential for treatment in early osteoarthritis following injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Antibacterial properties of copper iodide-doped glass ionomer-based materials and effect of copper iodide nanoparticles on collagen degradation.

    Science.gov (United States)

    Renné, Walter G; Lindner, Amanda; Mennito, Anthony S; Agee, Kelli A; Pashley, David H; Willett, Daniel; Sentelle, David; Defee, Michael; Schmidt, Michael; Sabatini, Camila

    2017-01-01

    This study investigated the antibacterial properties and micro-hardness of polyacrylic acid (PAA)-coated copper iodide (CuI) nanoparticles incorporated into glass ionomer-based materials, and the effect of PAA-CuI on collagen degradation. PAA-CuI nanoparticles were incorporated into glass ionomer (GI), Ionofil Molar AC, and resin-modified glass ionomer (RMGI), Vitrebond, at 0.263 wt%. The antibacterial properties against Streptococcus mutans (n = 6/group) and surface micro-hardness (n = 5/group) were evaluated. Twenty dentin beams were completely demineralized in 10 wt% phosphoric acid and equally divided in two groups (n = 10/group) for incubation in simulated body fluid (SBF) or SBF containing 1 mg/ml PAA-CuI. The amount of dry mass loss and hydroxyproline (HYP) released were quantified. Kruskal-Wallis, Student's t test, two-way ANOVA, and Mann-Whitney were used to analyze the antibacterial, micro-hardness, dry mass, and HYP release data, respectively (p glass ionomer matrix yielded significant reduction (99.999 %) in the concentration of bacteria relative to the control groups. While micro-hardness values of PAA-CuI-doped GI were no different from its control, PAA-CuI-doped RMGI demonstrated significantly higher values than its control. A significant decrease in dry mass weight was shown only for the control beams (10.53 %, p = 0.04). Significantly less HYP was released from beams incubated in PAA-CuI relative to the control beams (p glass ionomer-based materials as they greatly enhance their antibacterial properties and reduce collagen degradation without an adverse effect on their mechanical properties. The use of copper-doped glass ionomer-based materials under composite restorations may contribute to an increased longevity of adhesive restorations, because of their enhanced antibacterial properties and reduced collagen degradation.

  10. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Rat ear cartilage was studied using Fourier transform-infrared (FT-IR microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1 after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1 overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  11. Analysis of the cartilage proteome from three different mouse models of genetic skeletal diseases reveals common and discrete disease signatures

    Directory of Open Access Journals (Sweden)

    Peter A. Bell

    2013-06-01

    Pseudoachondroplasia and multiple epiphyseal dysplasia are genetic skeletal diseases resulting from mutations in cartilage structural proteins. Electron microscopy and immunohistochemistry previously showed that the appearance of the cartilage extracellular matrix (ECM in targeted mouse models of these diseases is disrupted; however, the precise changes in ECM organization and the pathological consequences remain unknown. Our aim was to determine the effects of matrilin-3 and COMP mutations on the composition and extractability of ECM components to inform how these detrimental changes might influence cartilage organization and degeneration. Cartilage was sequentially extracted using increasing denaturants and the extraction profiles of specific proteins determined using SDS-PAGE/Western blotting. Furthermore, the relative composition of protein pools was determined using mass spectrometry for a non-biased semi-quantitative analysis. Western blotting revealed changes in the extraction of matrilins, COMP and collagen IX in mutant cartilage. Mass spectrometry confirmed quantitative changes in the extraction of structural and non-structural ECM proteins, including proteins with roles in cellular processes such as protein folding and trafficking. In particular, genotype-specific differences in the extraction of collagens XII and XIV and tenascins C and X were identified; interestingly, increased expression of several of these genes has recently been implicated in susceptibility and/or progression of murine osteoarthritis. We demonstrated that mutation of matrilin-3 and COMP caused changes in the extractability of other cartilage proteins and that proteomic analyses of Matn3 V194D, Comp T585M and Comp DelD469 mouse models revealed both common and discrete disease signatures that provide novel insight into skeletal disease mechanisms and cartilage degradation.

  12. Using Second Harmonic Generation Microscopy to Study the Three-Dimensional Structure of Collagen and its Degradation Mechanism

    Science.gov (United States)

    Mega, Yair

    Collagen is one of the most abundant proteins found in the human body. Its crystalline structure possesses no centrosymmetry, allowing it to emit second-harmonic waves. Second harmonic generation (SHG) microscopy utilizes the latter quality to produce high-resolution images of collagen rich tissues and therefore become a key research tool in the biomedical field. We developed a new model, intended to be used together with second harmonic generation (SHG) microscopy, to thoroughly investigate collagen-based tissues. We use our SHG model to reveal information in real time from enzymatic biochemical processes. We also present a novel method used to measure quantitatively the direction of the fibers within the tissue, from SHG images. Using this method, we were able to reconstruct an angular map of the orientation of collagen fibers from multiple sections across the entire area of a human cornea. The structure we obtained demonstrates the criss-crossing structure of the human cornea, previously suggested in the literature. In addition, we also report work on a unique step-wise three-photon fluorescence excitation discovered in melanin. This unique fluorescence mechanism was exploited to discriminate melanin on a small-size, low-cost and low laser power setup which was used as a prototype for a handheld device. The latter study is a part of a larger on-going effort in our group to explore new diagnosis methods to be used for early skin cancer screening. Finally, this work demonstrates a spectroscopy-based method to correct for blood vessel thickness effect. The method analyzes spectral shift from a molecular imaging agent and correlate the shifts to the length of the optical path in blood. The correction method described in this work is intended to be implemented on a guided catheter near infrared fluorescence (NIRF) intra-vascular imaging system. In this imaging system, this study's results will used to correct for the radial distance between the imaging tip of the

  13. A novel surface modification on calcium polyphosphate scaffold for articular cartilage tissue engineering

    International Nuclear Information System (INIS)

    Lien, S.-M.; Liu, C.-K.; Huang, T.-J.

    2007-01-01

    The surface of porous three-dimensional (3D) calcium polyphosphate (CPP) scaffold was modified by treatment of quenching-after-sintering in the fabrication process. Scanning electron microscopic examination and degradation tests confirmed a new type of surface modification. A rotary-shaking culture was compared to that of a stationary culture and the results showed that rotary shaking led to enhanced extracellular matrices (ECM) secretion of both proteoglycans and collagen. Rotary-shaking cultured results showed that the quenching-treated CPP scaffold produced a better cartilage tissue, with both proteoglycans and collagen secretions enhanced, than the air-cooled-after-sintering scaffolds. Moreover, β-CPP scaffolds were better for the ECM secretion of both proteoglycans and collagen than the β-CPP + γ-CPP multiphase scaffold. However, the multiphase scaffold led to higher growth rate than that of β-CPP scaffold; the quenching-after-sintering treatment reversed this. In addition, the ECM secretions of both proteoglycans and collagen in the quenching-treated β-CPP scaffold were higher than those in the air-cooled one. Thus, the novel treatment of quenching-after-sintering has shown merits to the porous 3D CPP scaffolds for articular cartilage tissue engineering

  14. Quantitative Raman characterization of cross-linked collagen thin films as a model system for diagnosing early osteoarthritis

    Science.gov (United States)

    Wang, Chao; Durney, Krista M.; Fomovsky, Gregory; Ateshian, Gerard A.; Vukelic, Sinisa

    2016-03-01

    The onset of osteoarthritis (OA)in articular cartilage is characterized by degradation of extracellular matrix (ECM). Specifically, breakage of cross-links between collagen fibrils in the articular cartilage leads to loss of structural integrity of the bulk tissue. Since there are no broadly accepted, non-invasive, label-free tools for diagnosing OA at its early stage, Raman spectroscopyis therefore proposed in this work as a novel, non-destructive diagnostic tool. In this study, collagen thin films were employed to act as a simplified model system of the cartilage collagen extracellular matrix. Cross-link formation was controlled via exposure to glutaraldehyde (GA), by varying exposure time and concentration levels, and Raman spectral information was collected to quantitatively characterize the cross-link assignments imparted to the collagen thin films during treatment. A novel, quantitative method was developed to analyze the Raman signal obtained from collagen thin films. Segments of Raman signal were decomposed and modeled as the sum of individual bands, providing an optimization function for subsequent curve fitting against experimental findings. Relative changes in the concentration of the GA-induced pyridinium cross-links were extracted from the model, as a function of the exposure to GA. Spatially resolved characterization enabled construction of spectral maps of the collagen thin films, which provided detailed information about the variation of cross-link formation at various locations on the specimen. Results showed that Raman spectral data correlate with glutaraldehyde treatment and therefore may be used as a proxy by which to measure loss of collagen cross-links in vivo. This study proposes a promising system of identifying onset of OA and may enable early intervention treatments that may serve to slow or prevent osteoarthritis progression.

  15. Synthesis of collagen by bovine chondrocytes cultured in alginate; posttranslational modifications and cell-matrix interaction

    NARCIS (Netherlands)

    Beekman, B.; Verzijl, N.; Bank, R.A.; Von Der Mark, K.; TeKoppele, J.M.

    1997-01-01

    The extracellular matrix synthesized by articular chondrocytes cultured in alginate beads was investigated. Collagen levels increased sigmoidally with time and remained constant after 2 weeks of culture. The presence of cartilage-specific type II collagen was confirmed immunohistochemically.

  16. Cartilage-selective genes identified in genome-scale analysis of non-cartilage and cartilage gene expression

    Directory of Open Access Journals (Sweden)

    Cohn Zachary A

    2007-06-01

    Full Text Available Abstract Background Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate into chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18–22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed Celsius. Results 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as cartilage collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. Conclusion Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.

  17. Melanocortin 1 receptor-signaling deficiency results in an articular cartilage phenotype and accelerates pathogenesis of surgically induced murine osteoarthritis.

    Science.gov (United States)

    Lorenz, Julia; Seebach, Elisabeth; Hackmayer, Gerit; Greth, Carina; Bauer, Richard J; Kleinschmidt, Kerstin; Bettenworth, Dominik; Böhm, Markus; Grifka, Joachim; Grässel, Susanne

    2014-01-01

    Proopiomelanocortin-derived peptides exert pleiotropic effects via binding to melanocortin receptors (MCR). MCR-subtypes have been detected in cartilage and bone and mediate an increasing number of effects in diathrodial joints. This study aims to determine the role of MC1-receptors (MC1) in joint physiology and pathogenesis of osteoarthritis (OA) using MC1-signaling deficient mice (Mc1re/e). OA was surgically induced in Mc1re/e and wild-type (WT) mice by transection of the medial meniscotibial ligament. Histomorphometry of Safranin O stained articular cartilage was performed with non-operated controls (11 weeks and 6 months) and 4/8 weeks past surgery. µCT-analysis for assessing epiphyseal bone architecture was performed as a longitudinal study at 4/8 weeks after OA-induction. Collagen II, ICAM-1 and MC1 expression was analysed by immunohistochemistry. Mc1re/e mice display less Safranin O and collagen II stained articular cartilage area compared to WT prior to OA-induction without signs of spontaneous cartilage surface erosion. This MC1-signaling deficiency related cartilage phenotype persisted in 6 month animals. At 4/8 weeks after OA-induction cartilage erosions were increased in Mc1re/e knees paralleled by weaker collagen II staining. Prior to OA-induction, Mc1re/e mice do not differ from WT with respect to bone parameters. During OA, Mc1re/e mice developed more osteophytes and had higher epiphyseal bone density and mass. Trabecular thickness was increased while concomitantly trabecular separation was decreased in Mc1re/e mice. Numbers of ICAM-positive chondrocytes were equal in non-operated 11 weeks Mc1re/e and WT whereas number of positive chondrocytes decreased during OA-progression. Unchallenged Mc1re/e mice display smaller articular cartilage covered area without OA-related surface erosions indicating that MC1-signaling is critical for proper cartilage matrix integrity and formation. When challenged with OA, Mc1re/e mice develop a more severe OA

  18. Enzyme-linked immunosorbent assay (ELISAs) for metalloproteinase derived type II collagen neoepitope, CIIM--increased serum CIIM in subjects with severe radiographic osteoarthritis

    DEFF Research Database (Denmark)

    Bay-Jensen, Anne-Christine; Liu, Qi; Byrjalsen, Inger

    2011-01-01

    OBJECTIVES: In joint degenerative diseases, the collagens are degraded by matrix metalloproteinases and protein fragments are released to serum as potential biomarkers. METHODS: A collagen type II specific neoepitope, CIIM, was identified (…RDGAAG(1053)) by mass spectrometry. Two ELISAs against...... the neoepitope were developed. CIIM was measured in cartilage explants in the presence or absence of protease inhibitors. CIIM was measured in OA synovial fluid (n=51) and serum (n=156). Knee OA was graded by standard Kellgren-Lawrence (KL) score. RESULTS: The ELISAs showed good technical performance; CV%,

  19. Chondroitin Sulfate Perlecan Enhances Collagen Fibril Formation

    DEFF Research Database (Denmark)

    Kvist, A. J.; Johnson, A. E.; Mörgelin, M.

    2006-01-01

    in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters...... produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated...... disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional...

  20. Effects of low molecular weight hyaluronan combined with carprofen on canine osteoarthritis articular chondrocytes and cartilage explants in vitro.

    Science.gov (United States)

    Euppayo, Thippaporn; Siengdee, Puntita; Buddhachat, Kittisak; Pradit, Waranee; Viriyakhasem, Nawarat; Chomdej, Siriwadee; Ongchai, Siriwan; Harada, Yasuji; Nganvongpanit, Korakot

    2015-09-01

    Intra-articular injection with non-steroidal anti-inflammatory drugs (NSAIDs) is used to treat inflammatory joint disease, but the side effects of NSAIDs include chondrotoxicity. Hyaluronan has shown positive effects on chondrocytes by reducing apoptosis and increasing proteoglycan synthesis. The purposes of this study were to evaluate the effects of low molecular weight hyaluronan (low MW HA), carprofen 25 mg/ml, carprofen 12.5 mg/ml, and a combination of HA and carprofen on canine osteoarthritis (OA) articular chondrocytes and a cartilage explant model in terms of cell viability, extracellular matrix remaining, and gene expression after exposure. In chondrocyte culture, MTT assay was used to evaluate the chondrotoxicity of IC50 and IC80 of carprofen with HA. In cartilage explant culture, two kinds of extracellular matrix (uronic acid and collagen) remaining in cartilage were used to evaluate cartilage damage for 14 d after treatment. Expression of COL2A1, AGG, and MMP3 was used to evaluate the synthesis and degradation of the matrix for 7 d after treatment. In chondrocyte culture, low MW HA could preserve OA chondrocyte viability but could not reduce the chondrotoxicity level of carprofen (P carprofen caused less destruction of uronic acid and collagen structure when compared with the control (P carprofen resulted in higher COL2A1 and AGG expression levels than carprofen alone.

  1. PHAGOCYTOSIS AND REMODELING OF COLLAGEN MATRICES

    OpenAIRE

    Abraham, Leah C.; Dice, J Fred.; Lee, Kyongbum; Kaplan, David L.

    2007-01-01

    The biodegradation of collagen and the deposition of new collagen-based extracellular matrices are of central importance in tissue remodeling and function. Similarly, for collagen-based biomaterials used in tissue engineering, the degradation of collagen scaffolds with accompanying cellular infiltration and generation of new extracellular matrix is critical for integration of in vitro grown tissues in vivo. In earlier studies we observed significant impact of collagen structure on primary lun...

  2. Evidence of a novel aggrecan-degrading activity in cartilage: Studies of mice deficient in both ADAMTS-4 and ADAMTS-5.

    Science.gov (United States)

    Rogerson, Fraser M; Stanton, Heather; East, Charlotte J; Golub, Suzanne B; Tutolo, Leonie; Farmer, Pamela J; Fosang, Amanda J

    2008-06-01

    To characterize aggrecan catabolism and the overall phenotype in mice deficient in both ADAMTS-4 and ADAMTS-5 (TS-4/TS-5 Delta-cat) activity. Femoral head cartilage from the joints of TS-4/TS-5 Delta-cat mice and wild-type mice were cultured in vitro, and aggrecan catabolism was stimulated with either interleukin-1alpha (IL-1alpha) or retinoic acid. Total aggrecan release was measured, and aggrecanase activity was examined by Western blotting using neoepitope antibodies for detecting cleavage at EGE 373-374 ALG, SELE 1279-1280 GRG, FREEE 1467-1468 GLG, and AQE 1572-1573 AGEG. Aggrecan catabolism in vivo was examined by Western blotting of cartilage that had been extracted immediately ex vivo. TS-4/TS-5 Delta-cat mice were viable, fertile, and phenotypically normal. TS-4/TS-5 Delta-cat cartilage explants did not release aggrecan in response to IL-1alpha, and there was no detectable increase in aggrecanase neoepitopes. TS-4/TS-5 Delta-cat cartilage explants released aggrecan in response to retinoic acid. There was no retinoic acid-stimulated cleavage at either EGE 373-374 ALG or AQE 1572-1573 AGEG. There was a low level of cleavage at SELE 1279-1280 GRG and major cleavage at FREEE 1467-1468 GLG. Ex vivo, cleavage at FREEE 1467-1468 GLG was substantially reduced, but still present, in TS-4/TS-5 Delta-cat mouse cartilage compared with wild-type mouse cartilage. An aggrecanase other than ADAMTS-4 and ADAMTS-5 is expressed in mouse cartilage and is up-regulated by retinoic acid but not IL-1alpha. The novel aggrecanase appears to have different substrate specificity from either ADAMTS-4 or ADAMTS-5, cleaving E-G bonds but not E-A bonds. Neither ADAMTS-4 nor ADAMTS-5 is required for normal skeletal development or aggrecan turnover in cartilage.

  3. Effect of collagen turnover on the accumulation of advanced glycation end products

    NARCIS (Netherlands)

    Verzijl, N.; Degroot, J.; Thorpe, S. R.; Bank, R. A.; Shaw, J. N.; Lyons, T. J.; Bijlsma, J. W.; Lafeber, F. P.; Baynes, J. W.; TeKoppele, J. M.

    2000-01-01

    Collagen molecules in articular cartilage have an exceptionally long lifetime, which makes them susceptible to the accumulation of advanced glycation end products (AGEs). In fact, in comparison to other collagen-rich tissues, articular cartilage contains relatively high amounts of the AGE

  4. Matrix development in self-assembly of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Gidon Ofek

    2008-07-01

    Full Text Available Articular cartilage is a highly functional tissue which covers the ends of long bones and serves to ensure proper joint movement. A tissue engineering approach that recapitulates the developmental characteristics of articular cartilage can be used to examine the maturation and degeneration of cartilage and produce fully functional neotissue replacements for diseased tissue.This study examined the development of articular cartilage neotissue within a self-assembling process in two phases. In the first phase, articular cartilage constructs were examined at 1, 4, 7, 10, 14, 28, 42, and 56 days immunohistochemically, histologically, and through biochemical analysis for total collagen and glycosaminoglycan (GAG content. Based on statistical changes in GAG and collagen levels, four time points from the first phase (7, 14, 28, and 56 days were chosen to carry into the second phase, where the constructs were studied in terms of their mechanical characteristics, relative amounts of collagen types II and VI, and specific GAG types (chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate, and hyaluronan. Collagen type VI was present in initial abundance and then localized to a pericellular distribution at 4 wks. N-cadherin activity also spiked at early stages of neotissue development, suggesting that self-assembly is mediated through a minimization of free energy. The percentage of collagen type II to total collagen significantly increased over time, while the proportion of collagen type VI to total collagen decreased between 1 and 2 wks. The chondroitin 6- to 4- sulfate ratio decreased steadily during construct maturation. In addition, the compressive properties reached a plateau and tensile characteristics peaked at 4 wks.The indices of cartilage formation examined in this study suggest that tissue maturation in self-assembled articular cartilage mirrors known developmental processes for native tissue. In terms of tissue engineering, it is

  5. Collagen turnover after tibial fractures

    DEFF Research Database (Denmark)

    Joerring, S; Krogsgaard, M; Wilbek, H

    1994-01-01

    Collagen turnover after tibial fractures was examined in 16 patients with fracture of the tibial diaphysis and in 8 patients with fracture in the tibial condyle area by measuring sequential changes in serological markers of turnover of types I and III collagen for up to 26 weeks after fracture....... The markers were the carboxy-terminal extension peptide of type I procollagen (PICP), the amino-terminal extension peptide of type III procollagen (PIIINP), and the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen (ICTP). The latter is a new serum marker of degradation of type I...... collagen. A group comparison showed characteristic sequential changes in the turnover of types I and III collagen in fractures of the tibial diaphysis and tibial condyles. The turnover of type III collagen reached a maximum after 2 weeks in both groups. The synthesis of type I collagen reached a maximum...

  6. Ablation of Perlecan Domain 1 Heparan Sulfate Reduces Progressive Cartilage Degradation, Synovitis, and Osteophyte Size in a Preclinical Model of Posttraumatic Osteoarthritis.

    Science.gov (United States)

    Shu, Cindy C; Jackson, Miriam T; Smith, Margaret M; Smith, Susan M; Penm, Steven; Lord, Megan S; Whitelock, John M; Little, Christopher B; Melrose, James

    2016-04-01

    To investigate the role of the heparan sulfate (HS) proteoglycan perlecan (HSPG-2) in regulating fibroblast growth factor (FGF) activity, bone and joint growth, and the onset and progression of posttraumatic osteoarthritis (OA) in a mouse gene-knockout model. Maturational changes were evaluated histologically in the knees of 3-, 6-, and 12-week-old wild-type (WT) mice and Hspg2(Δ3-/Δ3-) mice (Hspg2 lacking domain 1 HS, generated by ablation of exon 3 of perlecan). Cartilage damage, subchondral bone sclerosis, osteophytosis, and synovial inflammation were scored at 4 and 8 weeks after surgical induction of OA in WT and Hspg2(Δ3-/Δ3-) mice. Changes in cartilage expression of FGF-2, FGF-18, HSPG-2, FGF receptor 1 (FGFR-1), and FGFR-3 were examined immunohistochemically. Femoral head cartilage from both mouse genotypes was cultured in the presence or absence of interleukin-1α (IL-1α), FGF-2, and FGF-18, and the content and release of glycosaminoglycan (GAG) and expression of messenger RNA (mRNA) for key matrix molecules, enzymes, and inhibitors were quantified. No effect of perlecan HS ablation on growth plate or joint development was detected. After induction of OA, Hspg2(Δ3-/Δ3-) mice had significantly reduced cartilage erosion, osteophytosis, and synovitis. OA-induced loss of chondrocyte expression of FGF-2, FGF-18, and HSPG-2 occurred in both genotypes. Expression of FGFR-1 after OA induction was maintained in WT mice, while FGFR-3 loss after OA induction was significantly reduced in Hspg2(Δ3-/Δ3-) mice. There were no genotypic differences in GAG content or release between unstimulated control cartilage and IL-1α-stimulated cartilage. However, IL-1α-induced cartilage expression of Mmp3 mRNA was significantly reduced in Hspg2(Δ3-/Δ3-) mice. Cartilage GAG release in either the presence or absence of IL-1α was unaltered by FGF-2 in both genotypes. In cartilage cultures with FGF-18, IL-1α-stimulated GAG loss was significantly reduced only in Hspg2(Δ3

  7. NONLINEAR SPECTRAL IMAGING OF ELASTIC CARTILAGE IN RABBIT EARS

    Directory of Open Access Journals (Sweden)

    JING CHEN

    2013-07-01

    Full Text Available Elastic cartilage in the rabbit external ear is an important animal model with attractive potential value for researching the physiological and pathological states of cartilages especially during wound healing. In this work, nonlinear optical microscopy based on two-photon excited fluorescence and second harmonic generation were employed for imaging and quantifying the intact elastic cartilage. The morphology and distribution of main components in elastic cartilage including cartilage cells, collagen and elastic fibers were clearly observed from the high-resolution two-dimensional nonlinear optical images. The areas of cell nuclei, a parameter related to the pathological changes of normal or abnormal elastic cartilage, can be easily quantified. Moreover, the three-dimensional structure of chondrocytes and matrix were displayed by constructing three-dimensional image of cartilage tissue. At last, the emission spectra from cartilage were obtained and analyzed. We found that the different ratio of collagen over elastic fibers can be used to locate the observed position in the elastic cartilage. The redox ratio based on the ratio of nicotinamide adenine dinucleotide (NADH over flavin adenine dinucleotide (FAD fluorescence can also be calculated to analyze the metabolic state of chondrocytes in different regions. Our results demonstrated that this technique has the potential to provide more accurate and comprehensive information for the physiological states of elastic cartilage.

  8. Human osteoarthritic cartilage shows reduced in vivo expression of IL-4, a chondroprotective cytokine that differentially modulates IL-1β-stimulated production of chemokines and matrix-degrading enzymes in vitro.

    Directory of Open Access Journals (Sweden)

    Elisa Assirelli

    Full Text Available BACKGROUND: In osteoarthritis (OA, an inflammatory environment is responsible for the imbalance between the anabolic and catabolic activity of chondrocytes and, thus, for articular cartilage derangement. This study was aimed at providing further insight into the impairment of the anabolic cytokine IL-4 and its receptors in human OA cartilage, as well as the potential ability of IL-4 to antagonize the catabolic phenotype induced by IL-1β. METHODOLOGY/PRINCIPAL FINDINGS: The in vivo expression of IL-4 and IL-4 receptor subunits (IL-4R, IL-2Rγ, IL-13Rα1 was investigated on full thickness OA or normal knee cartilage. IL-4 expression was found to be significantly lower in OA, both in terms of the percentage of positive cells and the amount of signal per cell. IL-4 receptor type I and II were mostly expressed in mid-deep cartilage layers. No significant difference for each IL-4 receptor subunit was noted. IL-4 anti-inflammatory and anti-catabolic activity was assessed in vitro in the presence of IL-1β and/or IL-4 for 24 hours using differentiated high density primary OA chondrocyte also exhibiting the three IL-4 R subunits found in vivo. Chemokines, extracellular matrix degrading enzymes and their inhibitors were evaluated at mRNA (real time PCR and protein (ELISA or western blot levels. IL-4 did not affect IL-1β-induced mRNA expression of GRO-α/CXCL1, IL-8/CXCL8, ADAMTS-5, TIMP-1 or TIMP-3. Conversely, IL-4 significantly inhibited RANTES/CCL5, MIP-1α/CCL3, MIP-1β/CCL4, MMP-13 and ADAMTS-4. These results were confirmed at protein level for RANTES/CCL5 and MMP-13. CONCLUSIONS/SIGNIFICANCE: Our results indicate for the first time that OA cartilage has a significantly lower expression of IL-4. Furthermore, we found differences in the spectrum of biological effects of IL-4. The findings that IL-4 has the ability to hamper the IL-1β-induced release of both MMP-13 and CCL5/RANTES, both markers of OA chondrocytes, strongly indicates IL-4 as a

  9. Evaluation of early changes of cartilage biomarkers following ...

    African Journals Online (AJOL)

    Hamdy Khamis Koryem

    2014-08-15

    Aug 15, 2014 ... resulting in structural, biochemical and mechanical changes that can progress from pre-clinical, to pre-radiographic .... blasts/chondrocytes) that produce an extracellular matrix of ... to represent an adequate index of the rate of type II collagen ... collagenous proteins (e.g. cartilage oligomeric matrix protein,.

  10. A study of repair cartilage from osteochondrotic humeral condyles of swine: preliminary report.

    OpenAIRE

    Nakano, T; Aherne, F X

    1992-01-01

    A total of 16 animals, including 12 lame and four normal boars, were used. All lame boars had severe osteochondrotic humeral condyles in which repair cartilage tissues originating from subchondral bone were observed. Quantitative chemical studies of repair cartilage and normal cartilage were carried out using humeral condyles from four selected animals (two lame and two normal boars, respectively). The repair cartilage contained a higher concentration of collagen and lower concentration of pr...

  11. Collagen degradation as a possibility to determine the post-mortem interval (PMI) of animal bones: a validation study referring to an original study of Boaks et al. (2014).

    Science.gov (United States)

    Jellinghaus, Katharina; Hachmann, Carolin; Hoeland, Katharina; Bohnert, Michael; Wittwer-Backofen, Ursula

    2018-05-01

    Estimation of the post-mortem interval (PMI) of unknown skeletal remains is a common forensic task. Boaks and colleagues demonstrated a new method for PMI estimation in showing a reduction of the collagen to non-collagen content (Co/NCo ratio) in porcine bones after a PMI of 12 months using the Sirius Red/Fast Green Collagen Staining Kit from Chondrex in 2014 (Boaks et al. Forensic Sci Int 240: 104-110, 2014). The aim of our study was to reproduce this method and to investigate if the method could be used for forensic issues. Sixteen fresh porcine bones were placed in prepared boxes where they were treated regularly with distilled water or with water from hay infusions. For determining the Co/NCo ratio, we used the Sirius Red/Fast Green Collagen Staining Kit from Chondrex, which stains collagenous (Co) proteins red and non-collagenous (NCo) proteins green Chondrex Inc. (2008). After a PMI of 1-3 months, an analysis of porcine bone thin sections was performed on the one hand with spectrophotometry, on the other hand with stereomicroscopy. Using spectrophotometry, we go low and partially negative Co/NCo ratios which were up to 100-fold lower than the results we expected to get. The data we got by stereomicroscopy and calculating the Co/NCo ratio from extracting the red and green content with the software MATLAB and so calculating the Co/NCo ratio showed a correlation between PMI and the Co/NCo ratio in the porcine bone samples. Regular addition of distilled water or water from a hay infusion did not produce any significant differences so that an increased presence of microorganisms had obviously no influence on collagen degradation.

  12. Assessment of hyaline cartilage matrix composition using near infrared spectroscopy.

    Science.gov (United States)

    Palukuru, Uday P; McGoverin, Cushla M; Pleshko, Nancy

    2014-09-01

    Changes in the composition of the extracellular matrix (ECM) are characteristic of injury or disease in cartilage tissue. Various imaging modalities and biochemical techniques have been used to assess the changes in cartilage tissue but lack adequate sensitivity, or in the case of biochemical techniques, result in destruction of the sample. Fourier transform near infrared (FT-NIR) spectroscopy has shown promise for the study of cartilage composition. In the current study NIR spectroscopy was used to identify the contributions of individual components of cartilage in the NIR spectra by assessment of the major cartilage components, collagen and chondroitin sulfate, in pure component mixtures. The NIR spectra were obtained using homogenous pellets made by dilution with potassium bromide. A partial least squares (PLS) model was calculated to predict composition in bovine cartilage samples. Characteristic absorbance peaks between 4000 and 5000 cm(-1) could be attributed to components of cartilage, i.e. collagen and chondroitin sulfate. Prediction of the amount of collagen and chondroitin sulfate in tissues was possible within 8% (w/dw) of values obtained by gold standard biochemical assessment. These results support the use of NIR spectroscopy for in vitro and in vivo applications to assess matrix composition of cartilage tissues, especially when tissue destruction should be avoided. Copyright © 2014. Published by Elsevier B.V.

  13. UP3005, a Botanical Composition Containing Two Standardized Extracts of Uncaria gambir and Morus alba, Improves Pain Sensitivity and Cartilage Degradations in Monosodium Iodoacetate-Induced Rat OA Disease Model

    Directory of Open Access Journals (Sweden)

    Mesfin Yimam

    2015-01-01

    Full Text Available Osteoarthritis (OA is a multifactorial disease primarily noted by cartilage degradation in association with inflammation that causes significant morbidity, joint pain, stiffness, and limited mobility. Present-day management of OA is inadequate due to the lack of principal therapies proven to be effective in hindering disease progression where symptomatic therapy focused approach masks the actual etiology leading to irreversible damage. Here, we describe the effect of UP3005, a composition containing a proprietary blend of two standardized extracts from the leaf of Uncaria gambir and the root bark of Morus alba, in maintaining joint structural integrity and alleviating OA associated symptoms in monosodium-iodoacetate- (MIA- induced rat OA disease model. Pain sensitivity, micro-CT, histopathology, and glycosaminoglycans (GAGs level analysis were conducted. Diclofenac at 10 mg/kg was used as a reference compound. UP3005 resulted in almost a complete inhibition in proteoglycans degradation, reductions of 16.6% (week 4, 40.5% (week 5, and 22.0% (week 6 in pain sensitivity, statistically significant improvements in articular cartilage matrix integrity, minimal visual subchondral bone damage, and statistically significant increase in bone mineral density when compared to the vehicle control with MIA. Therefore, UP3005 could potentially be considered as an alternative therapy from natural sources for the treatment of OA and/or its associated symptoms.

  14. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators.

    Science.gov (United States)

    Kadler, Karl E; Hill, Adele; Canty-Laird, Elizabeth G

    2008-10-01

    Collagens are triple helical proteins that occur in the extracellular matrix (ECM) and at the cell-ECM interface. There are more than 30 collagens and collagen-related proteins but the most abundant are collagens I and II that exist as D-periodic (where D = 67 nm) fibrils. The fibrils are of broad biomedical importance and have central roles in embryogenesis, arthritis, tissue repair, fibrosis, tumor invasion, and cardiovascular disease. Collagens I and II spontaneously form fibrils in vitro, which shows that collagen fibrillogenesis is a selfassembly process. However, the situation in vivo is not that simple; collagen I-containing fibrils do not form in the absence of fibronectin, fibronectin-binding and collagen-binding integrins, and collagen V. Likewise, the thin collagen II-containing fibrils in cartilage do not form in the absence of collagen XI. Thus, in vivo, cellular mechanisms are in place to control what is otherwise a protein self-assembly process. This review puts forward a working hypothesis for how fibronectin and integrins (the organizers) determine the site of fibril assembly, and collagens V and XI (the nucleators) initiate collagen fibrillogenesis.

  15. Regulation of complement by cartilage oligomeric matrix protein allows for a novel molecular diagnostic principle in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Happonen, Kaisa E; Saxne, Tore; Aspberg, Anders

    2010-01-01

    Cartilage oligomeric matrix protein (COMP) is a structural component of cartilage, where it catalyzes collagen fibrillogenesis. Elevated amounts of COMP are found in serum during increased turnover of cartilage associated with active joint disease, such as rheumatoid arthritis (RA) and osteoarthr...

  16. Collagen macromolecular drug delivery systems

    International Nuclear Information System (INIS)

    Gilbert, D.L.

    1988-01-01

    The objective of this study was to examine collagen for use as a macromolecular drug delivery system by determining the mechanism of release through a matrix. Collagen membranes varying in porosity, crosslinking density, structure and crosslinker were fabricated. Collagen characterized by infrared spectroscopy and solution viscosity was determined to be pure and native. The collagen membranes were determined to possess native vs. non-native quaternary structure and porous vs. dense aggregate membranes by electron microscopy. Collagen monolithic devices containing a model macromolecule (inulin) were fabricated. In vitro release rates were found to be linear with respect to t 1/2 and were affected by crosslinking density, crosslinker and structure. The biodegradation of the collagen matrix was also examined. In vivo biocompatibility, degradation and 14 C-inulin release rates were evaluated subcutaneously in rats

  17. Collagenous sprue

    DEFF Research Database (Denmark)

    Soendergaard, Christoffer; Riis, Lene Buhl; Nielsen, Ole Haagen

    2014-01-01

    Collagenous sprue is a rare clinicopathological condition of the small bowel. It is characterised by abnormal subepithelial collagen deposition and is typically associated with malabsorption, diarrhoea and weight loss. The clinical features of collagenous sprue often resemble those of coeliac...... disease and together with frequent histological findings like mucosal thinning and intraepithelial lymphocytosis the diagnosis may be hard to reach without awareness of this condition. While coeliac disease is treated using gluten restriction, collagenous sprue is, however, not improved...... by this intervention. In cases of diet-refractory 'coeliac disease' it is therefore essential to consider collagenous sprue to initiate treatment at an early stage to prevent the fibrotic progression. Here, we report a case of a 78-year-old man with collagenous sprue and present the clinical and histological...

  18. Effects of growth factors and glucosamine on porcine mandibular condylar cartilage cells and hyaline cartilage cells for tissue engineering applications.

    Science.gov (United States)

    Wang, Limin; Detamore, Michael S

    2009-01-01

    Temporomandibular joint (TMJ) condylar cartilage is a distinct cartilage that has both fibrocartilaginous and hyaline-like character, with a thin proliferative zone that separates the fibrocartilaginous fibrous zone at the surface from the hyaline-like mature and hypertrophic zones below. In this study, we compared the effects of insulin-like growth factor-I (IGF-I), basic fibroblast growth factor (bFGF), transforming growth factor beta1 (TGF-beta1), and glucosamine sulphate on porcine TMJ condylar cartilage and ankle cartilage cells in monolayer culture. In general, TMJ condylar cartilage cells proliferated faster than ankle cartilage cells, while ankle cells produced significantly greater amounts of glycosaminoglycans (GAGs) and collagen than TMJ condylar cartilage cells. IGF-I and bFGF were potent stimulators of TMJ cell proliferation, while no signals statistically outperformed controls for ankle cell proliferation. IGF-I was the most effective signal for GAG production with ankle cells, and the most potent upregulator of collagen synthesis for both cell types. Glucosamine sulphate promoted cell proliferation and biosynthesis at specific concentrations and outperformed growth factors in certain instances. In conclusion, hyaline cartilage cells had lower cell numbers and superior biosynthesis compared to TMJ condylar cartilage cells, and we have found IGF-I at 100 ng/mL and glucosamine sulphate at 100 microg/mL to be the most effective signals for these cells under the prescribed conditions.

  19. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Chen, Chih-Hao; Lee, Ming-Yih; Shyu, Victor Bong-Hang; Chen, Yi-Chieh; Chen, Chien-Tzung; Chen, Jyh-Ping

    2014-01-01

    Surface modified porous polycaprolactone scaffolds fabricated via rapid prototyping techniques were evaluated for cartilage tissue engineering purposes. Polycaprolactone scaffolds manufactured by selective laser sintering (SLS) were surface modified through immersion coating with either gelatin or collagen. Three groups of scaffolds were created and compared for both mechanical and biological properties. Surface modification with collagen or gelatin improved the hydrophilicity, water uptake and mechanical strength of the pristine scaffold. From microscopic observations and biochemical analysis, collagen-modified scaffold was the best for cartilage tissue engineering in terms of cell proliferation and extracellular matrix production. Chondrocytes/collagen-modified scaffold constructs were implanted subdermally in the dorsal spaces of female nude mice. Histological and immunohistochemical staining of the retrieved implants after 8 weeks revealed enhanced cartilage tissue formation. We conclude that collagen surface modification through immersion coating on SLS-manufactured scaffolds is a feasible scaffold for cartilage tissue engineering in craniofacial reconstruction. - Highlights: • Selective laser sintered polycaprolactone scaffolds are prepared. • Scaffolds are surface modified through immersion coating with gelatin or collagen. • Collagen-scaffold is the best for cartilage tissue engineering in vitro. • Chondrocytes/collagen-scaffold reveals enhanced cartilage tissue formation in vivo

  20. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chih-Hao [Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Craniofacial Research Center, Chang Gung University, Kweishann, Taoyuan 333, Taiwan, ROC (China); Lee, Ming-Yih [Graduate Institute of Medical Mechatronics, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Shyu, Victor Bong-Hang; Chen, Yi-Chieh; Chen, Chien-Tzung [Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Craniofacial Research Center, Chang Gung University, Kweishann, Taoyuan 333, Taiwan, ROC (China); Chen, Jyh-Ping, E-mail: jpchen@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan, ROC (China)

    2014-07-01

    Surface modified porous polycaprolactone scaffolds fabricated via rapid prototyping techniques were evaluated for cartilage tissue engineering purposes. Polycaprolactone scaffolds manufactured by selective laser sintering (SLS) were surface modified through immersion coating with either gelatin or collagen. Three groups of scaffolds were created and compared for both mechanical and biological properties. Surface modification with collagen or gelatin improved the hydrophilicity, water uptake and mechanical strength of the pristine scaffold. From microscopic observations and biochemical analysis, collagen-modified scaffold was the best for cartilage tissue engineering in terms of cell proliferation and extracellular matrix production. Chondrocytes/collagen-modified scaffold constructs were implanted subdermally in the dorsal spaces of female nude mice. Histological and immunohistochemical staining of the retrieved implants after 8 weeks revealed enhanced cartilage tissue formation. We conclude that collagen surface modification through immersion coating on SLS-manufactured scaffolds is a feasible scaffold for cartilage tissue engineering in craniofacial reconstruction. - Highlights: • Selective laser sintered polycaprolactone scaffolds are prepared. • Scaffolds are surface modified through immersion coating with gelatin or collagen. • Collagen-scaffold is the best for cartilage tissue engineering in vitro. • Chondrocytes/collagen-scaffold reveals enhanced cartilage tissue formation in vivo.

  1. Effect of supramolecular organization of a cartilaginous tissue on thermal stability of collagen II

    Science.gov (United States)

    Ignat'eva, N. Yu.; Averkiev, S. V.; Lunin, V. V.; Grokhovskaya, T. E.; Obrezkova, M. V.

    2006-08-01

    The thermal stability of collagen II in various cartilaginous tissues was studied. It was found that heating a tissue of nucleus pulposus results in collagen II melting within a temperature range of 60-70°C; an intact tissue of hyaline cartilage (of nasal septum and cartilage endplates) is a thermally stable system, where collagen II is not denatured completely up to 100°C. It was found that partial destruction of glycosaminoglycans in hyaline cartilage leads to an increase in the degree of denaturation of collagen II upon heating, although a significant fraction remains unchanged. It was shown that electrostatic interactions of proteoglycans and collagen only slightly affect the thermal stability of collagen II in the tissues. Evidently, proteoglycan aggregates play a key role: they create topological hindrances for moving polypeptide chains, thereby reducing the configurational entropy of collagen macromolecules in the state of a random coil.

  2. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    Science.gov (United States)

    Jungmann, Pia M.; Baum, Thomas; Bauer, Jan S.; Karampinos, Dimitrios C.; Link, Thomas M.; Li, Xiaojuan; Trattnig, Siegfried; Rummeny, Ernst J.; Woertler, Klaus; Welsch, Goetz H.

    2014-01-01

    Background. New quantitative magnetic resonance imaging (MRI) techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), and diffusion weighted imaging (DWI) are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair. PMID:24877139

  3. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    Directory of Open Access Journals (Sweden)

    Pia M. Jungmann

    2014-01-01

    Full Text Available Background. New quantitative magnetic resonance imaging (MRI techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC, and diffusion weighted imaging (DWI are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair.

  4. Injectable perlecan domain 1-hyaluronan microgels potentiate the cartilage repair effect of BMP2 in a murine model of early osteoarthritis

    International Nuclear Information System (INIS)

    Srinivasan, Padma P; McCoy, Sarah Y; Yang Weidong; Farach-Carson, Mary C; Kirn-Safran, Catherine B; Jha, Amit K; Jia Xinqiao

    2012-01-01

    The goal of this study was to use bioengineered injectable microgels to enhance the action of bone morphogenetic protein 2 (BMP2) and stimulate cartilage matrix repair in a reversible animal model of osteoarthritis (OA). A module of perlecan (PlnD1) bearing heparan sulfate (HS) chains was covalently immobilized to hyaluronic acid (HA) microgels for the controlled release of BMP2 in vivo. Articular cartilage damage was induced in mice using a reversible model of experimental OA and was treated by intra-articular injection of PlnD1-HA particles with BMP2 bound to HS. Control injections consisted of BMP2-free PlnD1-HA particles, HA particles, free BMP2 or saline. Knees dissected following these injections were analyzed using histological, immunostaining and gene expression approaches. Our results show that knees treated with PlnD1-HA/BMP2 had lesser OA-like damage compared to control knees. In addition, the PlnD1-HA/BMP2-treated knees had higher mRNA levels encoding for type II collagen, proteoglycans and xylosyltransferase 1, a rate-limiting anabolic enzyme involved in the biosynthesis of glycosaminoglycan chains, relative to control knees (PlnD1-HA). This finding was paralleled by enhanced levels of aggrecan in the articular cartilage of PlnD1-HA/BMP2-treated knees. Additionally, decreases in the mRNA levels encoding for cartilage-degrading enzymes and type X collagen were seen relative to controls. In conclusion, PlnD1-HA microgels constitute a formulation improvement compared to HA for efficient in vivo delivery and stimulation of proteoglycan and cartilage matrix synthesis in mouse articular cartilage. Ultimately, PlnD1-HA/BMP2 may serve as an injectable therapeutic agent for slowing or inhibiting the onset of OA after knee injury.

  5. Transcriptomic profiling of cartilage ageing

    Directory of Open Access Journals (Sweden)

    Mandy Jayne Peffers

    2014-12-01

    Full Text Available The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older donors. Here we describe the contents and quality controls in detail for the gene expression and related results published by Peffers and colleagues in Arthritis Research and Therapy 2013 associated with the data uploaded to ArrayExpress (E-MTAB-1386.

  6. Inhibition of cathepsin K reduces cartilage degeneration in the anterior cruciate ligament transection rabbit and murine models of osteoarthritis.

    Science.gov (United States)

    Hayami, Tadashi; Zhuo, Ya; Wesolowski, Gregg A; Pickarski, Maureen; Duong, Le T

    2012-06-01

    To investigate the disease modifying effects of cathepsin K (CatK) inhibitor L-006235 compared to alendronate (ALN) in two preclinical models of osteoarthritis (OA). Skeletally mature rabbits underwent sham or anterior cruciate ligament transection (ACLT)-surgery and were treated with L-006235 (L-235, 10 mg/kg or 50 mg/kg, p.o., daily) or ALN (0.6 mg/kg, s.c., weekly) for 8-weeks. ACLT joint instability was also induced in CatK(-/-) versus wild type (wt) mice and treated for 16-weeks. Changes in cartilage degeneration, subchondral bone volume and osteophyte area were determined by histology and μ-CT. Collagen type I helical peptide (HP-I), a bone resorption marker and collagen type II C-telopeptide (CTX-II), a cartilage degradation marker were measured. L-235 (50 mg/kg) and ALN treatment resulted in significant chondroprotective effects, reducing CTX-II by 60% and the histological Mankin score for cartilage damage by 46% in the ACLT-rabbits. Both doses of L-235 were more potent than ALN in protecting against focal subchondral bone loss, and reducing HP-I by 70% compared to vehicle. L-235 (50 mg/kg) and ALN significantly reduced osteophyte formation in histomorphometric analysis by 55%. The Mankin score in ACLT-CatK(-/-) mice was ~2.5-fold lower than the ACLT-wt mice and was not different from sham-CatK(-/-). Osteophyte development was not different among the groups. Inhibition of CatK provides significant benefits in ACLT-model of OA, including: 1) protection of subchondral bone integrity, 2) protection against cartilage degradation and 3) reduced osteophytosis. Preclinical evidence supports the role of CatK as a potential therapeutic target for the treatment of OA. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Accumulation of advanced glycation end products decreases collagen turnover by bovine chondrocytes

    NARCIS (Netherlands)

    Groot, J. de; Verzijl, N.; Budde, M.; Bijlsma, J.W.J.; Lafeber, F.P.J.G.; TeKoppele, J.M.

    2001-01-01

    The integrity of the collagen network is essential for articular cartilage to fulfill its function in load support and distribution. Damage to the collagen network is one of the first characteristics of osteoarthritis. Since extensive collagen damage is considered irreversible, it is crucial that

  8. A serum biomarker reflecting collagen type I degradation (C1M) is an independent risk factor for acute myocardial infarction in postmenopausal women: results from the PERF study

    DEFF Research Database (Denmark)

    Bertelsen, D.M.; Nielsen, Signe Holm; Neergaard, J.S.

    2017-01-01

    Cardiovascular disease (CVD) is the leading cause of death in postmenopausal women, and symptoms of ischemic heart disease (IHD) and acute myocardial infarction (AMI) are often overlooked. With the loss of estrogen production collagen stability is affected with potential of an increased risk of u...... of unstable plaques in coronary vessels. Collagen type I, a major component of the cardiac extracellular matrix (ECM), is cleaved by matrix metalloproteinases (MMPs) and known to be active remodeled in CVD....

  9. In vitro and in vivo evaluation of chitosan–gelatin scaffolds for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Whu, Shu Wen [Department of Orthopaedic Surgery, Chang Gung Memorial Hospital at Keelung, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Hung, Kun-Che; Hsieh, Kuo-Huang [Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan (China); Chen, Chih-Hwa [Department of Orthopaedic Surgery, Chang Gung Memorial Hospital at Keelung, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Tsai, Ching-Lin, E-mail: tsaicl@ntuh.gov.tw [Department of Orthopaedics, National Taiwan University Hospital, Taipei, Taiwan (China); Hsu, Shan-hui, E-mail: shhsu@ntu.edu.tw [Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan (China)

    2013-07-01

    Chitosan–gelatin polyelectrolyte complexes were fabricated and evaluated as tissue engineering scaffolds for cartilage regeneration in vitro and in vivo. The crosslinker for the gelatin component was selected among glutaraldehyde, bisepoxy, and a water-soluble carbodiimide (WSC) based upon the proliferation of chondrocytes on the crosslinked gelatin. WSC was found to be the most suitable crosslinker. Complex scaffolds made from chitosan and gelatin with a component ratio equal to one possessed the proper degradation rate and mechanical stability in vitro. Chondrocytes were able to proliferate well and secrete abundant extracellular matrix in the chitosan–gelatin (1:1) complex scaffolds crosslinked by WSC (C1G1{sub WSC}) compared to the non-crosslinked scaffolds. Implantation of chondrocytes-seeded scaffolds in the defects of rabbit articular cartilage confirmed that C1G1{sub WSC} promoted the cartilage regeneration. The neotissue formed the histological feature of tide line and lacunae in 6.5 months. The amount of glycosaminoglycans in C1G1{sub WSC} constructs (0.187 ± 0.095 μg/mg tissue) harvested from the animals after 6.5 months was 14 wt.% of that in normal cartilage (1.329 ± 0.660 μg/mg tissue). The average compressive modulus of regenerated tissue at 6.5 months was about 0.539 MPa, which approached to that of normal cartilage (0.735 MPa), while that in the blank control (3.881 MPa) was much higher and typical for fibrous tissue. Type II collagen expression in C1G1{sub WSC} constructs was similarly intense as that in the normal hyaline cartilage. According to the above results, the use of C1G1{sub WSC} scaffolds may enhance the cartilage regeneration in vitro and in vivo. - Highlights: • We developed a chitosan–gelatin scaffold crosslinked with carbodiimide. • Neocartilage formation was more evident in crosslinked vs. non-crosslinked scaffolds. • Histological features of tide line and lacunae were observed in vivo at 6.5 months. • Compressive

  10. [Collagen nephritis].

    Science.gov (United States)

    Lago, N R; Bulos, M J; Monserrat, A J

    1997-01-01

    Fibrillar collagen in the glomeruli is considered specific of the nail-patella syndrome. A new nephropathy with diffuse intraglomerular deposition of type III collagen without nail and skeletal abnormalities has been described. We report the case of a 26-year-old woman who presented persistent proteinuria, hematuria, deafness without nail and skeletal abnormalities. The renal biopsy showed focal and segmental glomerulosclerosis by light microscopy. The electron microscopy revealed the presence of massive fibrillar collagen within the mesangial matriz and the basement membrane. This is the first patient reported in our country. We emphasize the usefulness of electron microscopy in the study of glomerular diseases.

  11. Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects.

    Science.gov (United States)

    White, Lawrence M; Sussman, Marshall S; Hurtig, Mark; Probyn, Linda; Tomlinson, George; Kandel, Rita

    2006-11-01

    To prospectively assess T2 mapping characteristics of normal articular cartilage and of cartilage at sites of arthroscopic repair, including comparison with histologic results and collagen organization assessed at polarized light microscopy (PLM). Study protocol was compliant with the Canadian Council on Animal Care Guidelines and approved by the institutional animal care committee. Arthroscopic osteochondral autograft transplantation (OAT) and microfracture arthroplasty (MFx) were performed in knees of 10 equine subjects (seven female, three male; age range, 3-5 years). A site of arthroscopically normal cartilage was documented in each joint as a control site. Joints were harvested at 12 (n = 5) and 24 (n = 5) weeks postoperatively and were imaged at 1.5-T magnetic resonance (MR) with a 10-echo sagittal fast spin-echo acquisition. T2 maps of each site (21 OAT harvest, 10 MFx, 12 OAT plug, and 10 control sites) were calculated with linear least-squares curve fitting. Cartilage T2 maps were qualitatively graded as "organized" (normal transition of low-to-high T2 signal from deep to superficial cartilage zones) or "disorganized." Quantitative mean T2 values were calculated for deep, middle, and superficial cartilage at each location. Results were compared with histologic and PLM assessments by using kappa analysis. T2 maps were qualitatively graded as organized at 20 of 53 sites and as disorganized at 33 sites. Perfect agreement was seen between organized T2 and histologic findings of hyaline cartilage and between disorganized T2 and histologic findings of fibrous reparative tissue (kappa = 1.0). Strong agreement was seen between organized T2 and normal PLM findings and between disorganized T2 and abnormal PLM findings (kappa = .92). Quantitative assessment of the deep, middle, and superficial cartilage, respectively, showed mean T2 values of 53.3, 58.6, and 54.9 msec at reparative fibrous tissue sites and 40.7, 53.6, and 61.6 msec at hyaline cartilage sites. A

  12. Evaluation of influence of proteoglycans on hydration of articular cartilage with the use of ultrasound

    Directory of Open Access Journals (Sweden)

    Yi-yi YANG

    2015-04-01

    Full Text Available Objective To monitor the changes in hydration behaviour of articular cartilage induced by degradation of proteoglycans, and to explore the effect of proteoglycans on hydration behaviour of articular cartilage by using high-frequency ultrasound. Methods Twelve porcine patellae with smooth cartilage surface were prepared and equally divided into two groups: normal group without any enzyme treatment, and trypsin group they were treated with 0.25% trypsin for 8h to digest proteoglycan in the cartilage. The hydration behaviour of the cartilage tissue was scanned by high-frequency ultrasound system with a central frequency of 25MHz. Parameters including cartilage hydration strain and cartilage thickness were measured. The histopathological changes in the articular cartilage were observed under a light microscope. Results It took approximately 20min to reach equilibrium during the hydration process in the normal cartilages, while proteoglycan-degraded cartilage took only about 5min to achieve equilibrium. The equilibrium strain of normal cartilage was 3.5%±0.5%. The degradation of proteoglycans induced a significant decrease in equilibrium strain (1.8%±0.2%, P0.05. Conclusion Proteoglycans play an important role in hydration behaviour of articular cartilage. The degradation of proteoglycans could induce degeneration of cartilage structure and decrease in hydration behaviour after dehydration. DOI: 10.11855/j.issn.0577-7402.2015.03.03

  13. Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction

    International Nuclear Information System (INIS)

    Utomo, Lizette; Pleumeekers, Mieke M; Van Osch, Gerjo J V M; Nimeskern, Luc; Stok, Kathryn S; Nürnberger, Sylvia; Hildner, Florian

    2015-01-01

    Scaffolds are widely used to reconstruct cartilage. Yet, the fabrication of a scaffold with a highly organized microenvironment that closely resembles native cartilage remains a major challenge. Scaffolds derived from acellular extracellular matrices are able to provide such a microenvironment. Currently, no report specifically on decellularization of full thickness ear cartilage has been published. In this study, decellularized ear cartilage scaffolds were prepared and extensively characterized. Cartilage decellularization was optimized to remove cells and cell remnants from elastic cartilage. Following removal of nuclear material, the obtained scaffolds retained their native collagen and elastin contents as well as their architecture and shape. High magnification scanning electron microscopy showed no obvious difference in matrix density after decellularization. However, glycosaminoglycan content was significantly reduced, resulting in a loss of viscoelastic properties. Additionally, in contact with the scaffolds, human bone-marrow-derived mesenchymal stem cells remained viable and are able to differentiate toward the chondrogenic lineage when cultured in vitro. These results, including the ability to decellularize whole human ears, highlight the clinical potential of decellularization as an improved cartilage reconstruction strategy. (paper)

  14. Cartilage Integration: Evaluation of the reasons for failure of integration during cartilage repair. A review

    Directory of Open Access Journals (Sweden)

    IM Khan

    2008-09-01

    Full Text Available Articular cartilage is a challenging tissue to reconstruct or replace principally because of its avascular nature; large chondral lesions in the tissue do not spontaneously heal. Where lesions do penetrate the bony subchondral plate, formation of hematomas and the migration of mesenchymal stem cells provide an inferior and transient fibrocartilagenous replacement for hyaline cartilage. To circumvent the poor intrinsic reparative response of articular cartilage several surgical techniques based on tissue transplantation have emerged. One characteristic shared by intrinsic reparative processes and the new surgical therapies is an apparent lack of lateral integration of repair or graft tissue with the host cartilage that can lead to poor prognosis. Many factors have been cited as impeding cartilage:cartilage integration including; chondrocyte cell death, chondrocyte dedifferentiation, the nature of the collagenous and proteoglycan networks that constitute the extracellular matrix, the type of biomaterial scaffold employed in repair and the origin of the cells used to repopulate the defect or lesion. This review addresses the principal intrinsic and extrinsic factors that impede integration and describe how manipulation of these factors using a host of strategies can positively influence cartilage integration.

  15. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    Choi, Bogyu; Kim, Soyon; Lin, Brian; Wu, Benjamin M; Lee, Min

    2014-11-26

    Cartilaginous extracellular matrix (ECM) components such as type-II collagen (Col II) and chondroitin sulfate (CS) play a crucial role in chondrogenesis. However, direct clinical use of natural Col II or CS as scaffolds for cartilage tissue engineering is limited by their instability and rapid enzymatic degradation. Here, we investigate the incorporation of Col II and CS into injectable chitosan hydrogels designed to gel upon initiation by exposure to visible blue light (VBL) in the presence of riboflavin. Unmodified chitosan hydrogel supported proliferation and deposition of cartilaginous ECM by encapsulated chondrocytes and mesenchymal stem cells. The incorporation of native Col II or CS into chitosan hydrogels further increased chondrogenesis. The incorporation of Col II, in particular, was found to be responsible for the enhanced cellular condensation and chondrogenesis observed in modified hydrogels. This was mediated by integrin α10 binding to Col II, increasing cell-matrix adhesion. These findings demonstrate the potential of cartilage ECM-modified chitosan hydrogels as biomaterials to promote cartilage regeneration.

  16. Microstructural and compositional features of the fibrous and hyaline cartilage on the medial tibial plateau imply a unique role for the hopping locomotion of kangaroo.

    Directory of Open Access Journals (Sweden)

    Bo He

    Full Text Available Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos.

  17. Microstructural and compositional features of the fibrous and hyaline cartilage on the medial tibial plateau imply a unique role for the hopping locomotion of kangaroo.

    Science.gov (United States)

    He, Bo; Wu, Jian Ping; Xu, Jiake; Day, Robert E; Kirk, Thomas Brett

    2013-01-01

    Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos.

  18. Anti-Inflammatory Inhibitors Targeting Jak and Ikk Have An Anabolic Effect on Type II Collagen Turnover ex Vivo

    DEFF Research Database (Denmark)

    Kjelgaard-Petersen, Cecilie Freja; Bay-Jensen, Anne-Christine; Karsdal, M.A.

    2016-01-01

    be beneficial for the selection of novel anti-inflammatory treatments for RA and iOA. Objectives The aim of this study was to investigate the direct effect of the anti-inflammatory inhibitors R406 (the active metabolite of Fostamatinib), Tofacitinib, TPCA-1 and SB203580 on the cartilage ECM turnover. Methods...... Full depth bovine cartilage ex vivo cultures were cultured for 3 weeks with OSM [10 ng/mL] and TNFα [2 ng/mL] (O+T) or together with R406, Tofacitinib or TPCA-1 at 10 μM and a two-fold dilution to 0.16 μM. SB203580 was tested at 3 μM, 1 μM and 0.3 μM. As negative control, untreated explants were...... R406, the Jak inhibitor Tofacitinib, and the IKK inhibitor TPCA-1 inhibited the release of ARGS or AGNx1, while the p38 inhibitor, SB203580, had no effect. The turnover of type II collagen was measured by the formation of type II collagen (ProC2) and MMP-mediated degradation of type II collagen (C2M...

  19. Imaging of articular cartilage

    Directory of Open Access Journals (Sweden)

    Bhawan K Paunipagar

    2014-01-01

    Full Text Available We tried to review the role of magnetic resonance imaging (MRI in understanding microscopic and morphologic structure of the articular cartilage. The optimal protocols and available spin-echo sequences in present day practice are reviewed in context of common pathologies of articular cartilage. The future trends of articular cartilage imaging have been discussed with their appropriateness. In diarthrodial joints of the body, articular cartilage is functionally very important. It is frequently exposed to trauma, degeneration, and repetitive wear and tear. MRI has played a vital role in evaluation of articular cartilage. With the availability of advanced repair surgeries for cartilage lesions, there has been an increased demand for improved cartilage imaging techniques. Recent advances in imaging strategies for native and postoperative articular cartilage open up an entirely new approach in management of cartilage-related pathologies.

  20. Shortwave-infrared Raman spectroscopic classification of water fractions in articular cartilage ex vivo

    Science.gov (United States)

    Unal, Mustafa; Akkus, Ozan

    2018-01-01

    Water loss is an early onset indicator of osteoarthritis. Although Raman spectroscopy (RS) holds the potential for measurement of cartilage hydration, the knowledge of Raman OH-stretch bands of biological tissue is very limited. We assesed here the sensitivity of RS to identify and classify water types in the cartilage. Raman spectrum measurements over the high wavenumber range were employed to identify different water fractions in articular cartilage. Raman spectra were collected from wet and sequentially dehydrated cartilage along with pure collagen type II and chondroitin sulfate standards. OH-stretch band of cartilage is dominated by mobile water, up to 95% of total intensities. We identified six peaks in cartilage spectrum using second-derivative analysis: peaks at 3200 and 3650 cm-1 are associated with organic matrix (both collagen and proteglycan) and matrix-bound water molecules. Peaks at 3250, 3453, and 3630 cm-1 are associated with collagen and collagen-related water molecules, whereas the peak at 3520 cm-1 is associated with proteoglycan (PG) and PG-related water molecules. The current work is the first thorough analysis of the Raman OH-stretch band of the cartilage and with the knowledge generated by this study, it may now be possible to study on cartilage hydration by RS.

  1. 35Sulphate incorporation assay as a new tool for measuring early cartilage degradation following blood exposure in vitro and in vivo in f8 ko rats

    DEFF Research Database (Denmark)

    Pulles, A. E.; Christensen, K. R.; Coeleveld, K.

    2017-01-01

    hours after euthanasia the cartilage of six healthy F8 KO rats was obtained by shaving off cartilage fragments of the tibia plateau by use of a scalpel. All cartilage explants were then cultured for four days; in addition to culture medium, half of the cartilage samples were cultured with 50% v/v whole...... blood. After four days proteoglycan synthesis rate was determined by adding 35SO42- to the cultures for four hours. The 35SO42- becomes incorporated in new synthesized proteoglycans. After digesting the cartilage pieces, cetylpyridinium chloride was added to the samples to precipitate the proteoglycans...

  2. Enriched Astaxanthin Extract from Haematococcus pluvialis Augments Growth Factor Secretions to Increase Cell Proliferation and Induces MMP1 Degradation to Enhance Collagen Production in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Chou

    2016-06-01

    Full Text Available Among many antioxidants that are used for the repairing of oxidative stress induced skin damages, we identified the enriched astaxanthin extract (EAE from Haematococcus pluvialis as a viable ingredient. EAE was extracted from the red microalgae through supercritical fluid carbon dioxide extraction. To compare the effectiveness, EAE wastreated on human dermal fibroblasts with other components, phorbol 12-myristate 13-acetate (PMA, and doxycycline. With sirius red staining and quantitative real-time polymerase chain reaction (qRT-PCR, we found that PMA decreased the collagen concentration and production while overall the addition of doxycycline and EAE increased the collagen concentration in a trial experiments. EAE increased collagen contents through inhibited MMP1 and MMP3 mRNA expression and induced TIMP1, the antagonists of MMPs protein, gene expression. As for when tested for various proteins through western blotting, it was seen that the addition of EAE increased the expression of certain proteins that promote cell proliferation. Testing those previous solutions using growth factor assay, it was noticeable that EAE had a positive impact on cell proliferation and vascular endothelial growth factor (VEGF than doxycycline, indicating that it was a better alternative treatment for collagen production. To sum up, the data confirmed the possible applications as medical cosmetology agentsand food supplements.

  3. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues.

    Directory of Open Access Journals (Sweden)

    Arash Hanifi

    Full Text Available Hyaline cartilage and mechanically inferior fibrocartilage consisting of mixed collagen types are frequently found together in repairing articular cartilage. The present study seeks to develop methodology to identify collagen type and other tissue components using Fourier transform infrared (FTIR spectral evaluation of matrix composition in combination with multivariate analyses. FTIR spectra of the primary molecular components of repair cartilage, types I and II collagen, and aggrecan, were used to develop multivariate spectral models for discrimination of the matrix components of the tissues of interest. Infrared imaging data were collected from bovine bone, tendon, normal cartilage, meniscus and human repair cartilage tissues, and composition predicted using partial least squares analyses. Histology and immunohistochemistry results were used as standards for validation. Infrared fiber optic probe spectral data were also obtained from meniscus (a tissue with mixed collagen types to evaluate the potential of this method for identification of collagen type in a minimally-invasive clinical application. Concentration profiles of the tissue components obtained from multivariate analysis were in excellent agreement with histology and immunohistochemistry results. Bone and tendon showed a uniform distribution of predominantly type I collagen through the tissue. Normal cartilage showed a distribution of type II collagen and proteoglycan similar to the known composition, while in repair cartilage, the spectral distribution of both types I and II collagen were similar to that observed via immunohistochemistry. Using the probe, the outer and inner regions of the meniscus were shown to be primarily composed of type I and II collagen, respectively, in accordance with immunohistochemistry data. In summary, multivariate analysis of infrared spectra can indeed be used to differentiate collagen type I and type II, even in the presence of proteoglycan, in

  4. [Injectable hydrogel functionalised with thrombocyte-rich solution and microparticles for accelerated cartilage regeneration].

    Science.gov (United States)

    Rampichová, M; Buzgo, M; Křížková, B; Prosecká, E; Pouzar, M; Štrajtová, L

    2013-01-01

    Articular cartilage defects arise due to injury or osteochondral disease such as osteonecrosis or osteochondritis dissecans. In adult patients cartilage has minimal ability to repair itself and the lesions develop into degenerative arthritis. Overcoming the low regenerative capacity of the cartilage cells and the Hayflick limit poses a challenge for the therapy of osteochondral defects. Composite scaffolds with appropriate biomechanical properties combined with a suitable blend of proliferation and differentiation factors could be a solution. The aim of this in vitro study was to develop a novel functionalised hydrogel with an integrated drug delivery system stimulating articular cartilage regeneration. Injectable collagen/ hyaluronic acid/fibrin composite hydrogel was mixed with nanofibre-based microparticles. These were loaded with ascorbic acid and dexamethasone. In addition, the effect of thrombocyte-rich solution (TRS) was studied. The gels seeded with mesenchymal stem cells (MSCs) were cultivated for 14 days. The viability, proliferation and morphology of the cells were evaluated using molecular and microscopic methods. Scaffold degradation was also assessed. The cultivation study showed that MSCs remained viable in all experimental groups, which indicated good biocompatibility of the gel. However, the number of cells in the groups enriched with microparticles was lower than in the other groups. On the other hand, confocal microscopy showed higher cell viability and rounded morphology of the cells, which can be associated with chodrogenic differentiation. The scaffolds containing microparticles showed significantly higher stability during the 14-day experiment. Our results suggest that the addition of microparticles to the scaffold improved cell differentiation into the chondrogenic lineage, resulting in a lower proliferation rate. Cell viability was better in the groups enriched with microparticles that served as an efficient drug delivery system. In

  5. PEDF Is Associated with the Termination of Chondrocyte Phenotype and Catabolism of Cartilage Tissue.

    Science.gov (United States)

    Klinger, P; Lukassen, S; Ferrazzi, F; Ekici, A B; Hotfiel, T; Swoboda, B; Aigner, T; Gelse, K

    2017-01-01

    Objective. To investigate the expression and target genes of pigment epithelium-derived factor (PEDF) in cartilage and chondrocytes, respectively. Methods. We analyzed the expression pattern of PEDF in different human cartilaginous tissues including articular cartilage, osteophytic cartilage, and fetal epiphyseal and growth plate cartilage, by immunohistochemistry and quantitative real-time (qRT) PCR. Transcriptome analysis after stimulation of human articular chondrocytes with rhPEDF was performed by RNA sequencing (RNA-Seq) and confirmed by qRT-PCR. Results. Immunohistochemically, PEDF could be detected in transient cartilaginous tissue that is prone to undergo endochondral ossification, including epiphyseal cartilage, growth plate cartilage, and osteophytic cartilage. In contrast, PEDF was hardly detected in healthy articular cartilage and in the superficial zone of epiphyses, regions that are characterized by a permanent stable chondrocyte phenotype. RNA-Seq analysis and qRT-PCR demonstrated that rhPEDF significantly induced the expression of a number of matrix-degrading factors including SAA1, MMP1, MMP3, and MMP13. Simultaneously, a number of cartilage-specific genes including COL2A1, COL9A2, COMP, and LECT were among the most significantly downregulated genes. Conclusions. PEDF represents a marker for transient cartilage during all neonatal and postnatal developmental stages and promotes the termination of cartilage tissue by upregulation of matrix-degrading factors and downregulation of cartilage-specific genes. These data provide the basis for novel strategies to stabilize the phenotype of articular cartilage and prevent its degradation.

  6. A Dual Flow Bioreactor for Cartilage Tissue Engineering

    NARCIS (Netherlands)

    Spitters, Tim

    2014-01-01

    Preventing the onset of a degenerative disease like osteoarthritis by restoring tissue function before cartilage degradation occurs will decrease health costs, reduce socio-economic burdens of patients and preserve quality of life. However, producing ex vivo cartilage implants of clinically relevant

  7. Mechanical characterization of articular cartilage by combining magnetic resonance imaging and finite-element analysis-a potential functional imaging technique

    International Nuclear Information System (INIS)

    Julkunen, P; Korhonen, R K; Nissi, M J; Jurvelin, J S

    2008-01-01

    Magnetic resonance imaging (MRI) provides a method for non-invasive characterization of cartilage composition and structure. We aimed to see whether T 1 and T 2 relaxation times are related to proteoglycan (PG) and collagen-specific mechanical properties of articular cartilage. Specifically, we analyzed whether variations in the depthwise collagen orientation, as assessed by the laminae obtained from T 2 profiles, affect the mechanical characteristics of cartilage. After MRI and unconfined compression tests of human and bovine patellar cartilage samples, fibril-reinforced poroviscoelastic finite-element models (FEM), with depthwise collagen orientations implemented from quantitative T 2 maps (3 laminae for human, 3-7 laminae for bovine), were constructed to analyze the non-fibrillar matrix modulus (PG specific), fibril modulus (collagen specific) and permeability of the samples. In bovine cartilage, the non-fibrillar matrix modulus (R = -0.64, p 1 . In bovine cartilage, T 2 correlated positively with the initial fibril modulus (R = 0.62, p = 0.05). In human cartilage, the initial fibril modulus correlated negatively (R = -0.61, p 2 . Based on the simulations, cartilage with a complex collagen architecture (5 or 7 laminae), leading to high bulk T 2 due to magic angle effects, provided higher compressive stiffness than tissue with a simple collagen architecture (3 laminae). Our results suggest that T 1 reflects PG-specific mechanical properties of cartilage. High T 2 is characteristic to soft cartilage with a classical collagen architecture. Contradictorily, high bulk T 2 can also be found in stiff cartilage with a multilaminar collagen fibril network. By emerging MRI and FEM, the present study establishes a step toward functional imaging of articular cartilage

  8. Characterization of cells from pannus-like tissue over articular cartilage of advanced osteoarthritis.

    Science.gov (United States)

    Yuan, G-H; Tanaka, M; Masuko-Hongo, K; Shibakawa, A; Kato, T; Nishioka, K; Nakamura, H

    2004-01-01

    To identify the characteristics of cells isolated from pannus-like soft tissue on osteoarthritic cartilage (OA pannus cells), and to evaluate the role of this tissue in osteoarthritis (OA). OA pannus cells were isolated from pannus-like tissues in five joints obtained during arthroplasty. The phenotypic features of the isolated cells were characterized by safranin-O staining and immunohistochemical studies. Expression of MMP-1, MMP-3 and MMP-13 was also assessed using reverse transcriptase-polymerase chain reactions (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and immunocytochemistry. Foci and plaque formation of pannus-like tissue over cartilage surface were found in 15 of 21 (71.4%) OA joints macroscopically, and among them, only five samples had enough tissue to be isolated. OA pannus cells were positive for type I collagen and vimentin, besides they also expressed type II collagen and aggrecan mRNA. Spontaneous expression of MMP-1, MMP-3 and MMP-13 was detected in OA pannus cells. Similar or higher levels of MMPs were detected in the supernatant of cultured OA pannus cells compared to OA chondrocytes, and among these MMP-3 levels were relatively higher in OA pannus cells. Immunohistochemically, MMP-3 positive cells located preferentially in pannus-like tissue on the border of original hyaline cartilage. Our results showed that OA pannus cells shared the property of mesenchymal cells and chondrocytes; however, their origin seemed different from chondrocytes or synoviocytes. The spontaneous expression of MMPs suggests that they are involved in the articular degradation in OA.

  9. New tools for non-invasive exploration of collagen network in cartilaginous tissue-engineered substitute.

    Science.gov (United States)

    Henrionnet, Christel; Dumas, Dominique; Hupont, Sébastien; Stoltz, Jean François; Mainard, Didier; Gillet, Pierre; Pinzano, Astrid

    2017-01-01

    In tissue engineering approaches, the quality of substitutes is a key element to determine its ability to treat cartilage defects. However, in clinical practice, the evaluation of tissue-engineered cartilage substitute quality is not possible due to the invasiveness of the standard procedure, which is to date histology. The aim of this work was to validate a new innovative system performed from two-photon excitation laser adapted to an optical macroscope to evaluate at macroscopic scale the collagen network in cartilage tissue-engineered substitutes in confrontation with gold standard histologic techniques or immunohistochemistry to visualize type II collagen. This system permitted to differentiate the quality of collagen network between ITS and TGF-β1 treatments. Multiscale large field imaging combined to multimodality approaches (SHG-TCSPC) at macroscopical scale represent an innovative and non-invasive technique to monitor the quality of collagen network in cartilage tissue-engineered substitutes before in vivo implantation.

  10. Hyaline Articular Matrix Formed by Dynamic Self-Regenerating Cartilage and Hydrogels.

    Science.gov (United States)

    Meppelink, Amanda M; Zhao, Xing; Griffin, Darvin J; Erali, Richard; Gill, Thomas J; Bonassar, Lawrence J; Redmond, Robert W; Randolph, Mark A

    2016-07-01

    Injuries to the articular cartilage surface are challenging to repair because cartilage possesses a limited capacity for self-repair. The outcomes of current clinical procedures aimed to address these injuries are inconsistent and unsatisfactory. We have developed a novel method for generating hyaline articular cartilage to improve the outcome of joint surface repair. A suspension of 10(7) swine chondrocytes was cultured under reciprocating motion for 14 days. The resulting dynamic self-regenerating cartilage (dSRC) was placed in a cartilage ring and capped with fibrin and collagen gel. A control group consisted of chondrocytes encapsulated in fibrin gel. Constructs were implanted subcutaneously in nude mice and harvested after 6 weeks. Gross, histological, immunohistochemical, biochemical, and biomechanical analyses were performed. In swine patellar groove, dSRC was implanted into osteochondral defects capped with collagen gel and compared to defects filled with osteochondral plugs, collagen gel, or left empty after 6 weeks. In mice, the fibrin- and collagen-capped dSRC constructs showed enhanced contiguous cartilage matrix formation over the control of cells encapsulated in fibrin gel. Biochemically, the fibrin and collagen gel dSRC groups were statistically improved in glycosaminoglycan and hydroxyproline content compared to the control. There was no statistical difference in the biomechanical data between the dSRC groups and the control. The swine model also showed contiguous cartilage matrix in the dSRC group but not in the collagen gel and empty defects. These data demonstrate the survivability and successful matrix formation of dSRC under the mechanical forces experienced by normal hyaline cartilage in the knee joint. The results from this study demonstrate that dSRC capped with hydrogels successfully engineers contiguous articular cartilage matrix in both nonload-bearing and load-bearing environments.

  11. Omentin-1 prevents cartilage matrix destruction by regulating matrix metalloproteinases.

    Science.gov (United States)

    Li, Zhigang; Liu, Baoyi; Zhao, Dewei; Wang, BenJie; Liu, Yupeng; Zhang, Yao; Li, Borui; Tian, Fengde

    2017-08-01

    Matrix metalloproteinases (MMPs) play a crucial role in the degradation of the extracellular matrix and pathological progression of osteoarthritis (OA). Omentin-1 is a newly identified anti-inflammatory adipokine. Little information regarding the protective effects of omentin-1 in OA has been reported before. In the current study, our results indicated that omentin-1 suppressed expression of MMP-1, MMP-3, and MMP-13 induced by the proinflammatory cytokine interleukin-1β (IL-1β) at both the mRNA and protein levels in human chondrocytes. Importantly, administration of omentin-1 abolished IL-1β-induced degradation of type II collagen (Col II) and aggrecan, the two major extracellular matrix components in articular cartilage, in a dose-dependent manner. Mechanistically, omentin-1 ameliorated the expression of interferon regulatory factor 1 (IRF-1) by blocking the JAK-2/STAT3 pathway. Our results indicate that omentin-1 may have a potential chondroprotective therapeutic capacity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Properties of Cartilage on Micro- and Nanolevel

    Directory of Open Access Journals (Sweden)

    Sergei A. Chizhik

    2010-01-01

    Full Text Available Results of investigation of the elastic modulus for cartilage tissue using a technique of micro- and nanoindentation performed with help of an atomic force microscope are presented. SEM and AFM methods were applied to visualize a topography of surface layers of the entire cartilage and as well as its slices and thus to reveal features of the collagen fibers orientation. The technique used for a quantitative evaluation of the elastic modulus under compression against a ball microindenter (curvature radius - 350 micron and a nanoindenter (30 nm is described. It was shown that the cartilage behavior is highly stabile under the load if the entire composite structure of cartilage tissue is engaged into the deformation process. Tribological characteristics were investigated using the ball indenter oscillated by a tuning fork. Dependence of the friction coefficient from applied loads was obtained that revealed strong influence of an interstitial fluid on friction properties. Friction coefficient of a rat cartilage tissue as 0.08 was obtained using a developed plant prototype for tribological measurements based on the AFM construction.

  13. The effect of fixed charge density and cartilage swelling on mechanics of knee joint cartilage during simulated gait.

    Science.gov (United States)

    Räsänen, Lasse P; Tanska, Petri; Zbýň, Štefan; van Donkelaar, Corrinus C; Trattnig, Siegfried; Nieminen, Miika T; Korhonen, Rami K

    2017-08-16

    The effect of swelling of articular cartilage, caused by the fixed charge density (FCD) of proteoglycans, has not been demonstrated on knee joint mechanics during simulated walking before. In this study, the influence of the depth-wise variation of FCD was investigated on the internal collagen fibril strains and the mechanical response of the knee joint cartilage during gait using finite element (FE) analysis. The FCD distribution of tibial cartilage was implemented from sodium ( 23 Na) MRI into a 3-D FE-model of the knee joint ("Healthy model"). For comparison, models with decreased FCD values were created according to the decrease in FCD associated with the progression of osteoarthritis (OA) ("Early OA" and "Advanced OA" models). In addition, a model without FCD was created ("No FCD" model). The effect of FCD was studied with five different collagen fibril network moduli of cartilage. Using the reference fibril network moduli, the decrease in FCD from "Healthy model" to "Early OA" and "Advanced OA" models resulted in increased axial strains (by +2 and +6%) and decreased fibril strains (by -3 and -13%) throughout the stance, respectively, calculated as mean values through cartilage depth in the tibiofemoral contact regions. Correspondingly, compared to the "Healthy model", the removal of the FCD altogether in "NoFCD model" resulted in increased mean axial strains by +16% and decreased mean fibril strains by -24%. This effect was amplified as the fibril network moduli were decreased by 80% from the reference. Then mean axial strains increased by +6, +19 and +49% and mean fibril strains decreased by -9, -20 and -32%, respectively. Our results suggest that the FCD in articular cartilage has influence on cartilage responses in the knee during walking. Furthermore, the FCD is suggested to have larger impact on cartilage function as the collagen network degenerates e.g. in OA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Recombinant gelatin and collagen from methylotrophic yeasts

    NARCIS (Netherlands)

    Bruin, de E.C.

    2002-01-01

    Based on its structural role and compatibility within the human body, collagen is a commonly used biomaterial in medical applications, such as cosmetic surgery, wound treatment and tissue engineering. Gelatin is in essence denatured and partly degraded collagen and is,

  15. BMP-2, hypoxia, and COL1A1/HtrA1 siRNAs favor neo-cartilage hyaline matrix formation in chondrocytes.

    Science.gov (United States)

    Ollitrault, David; Legendre, Florence; Drougard, Carole; Briand, Mélanie; Benateau, Hervé; Goux, Didier; Chajra, Hanane; Poulain, Laurent; Hartmann, Daniel; Vivien, Denis; Shridhar, Vijayalakshmi; Baldi, Alfonso; Mallein-Gerin, Frédéric; Boumediene, Karim; Demoor, Magali; Galera, Philippe

    2015-02-01

    Osteoarthritis (OA) is an irreversible pathology that causes a decrease in articular cartilage thickness, leading finally to the complete degradation of the affected joint. The low spontaneous repair capacity of cartilage prevents any restoration of the joint surface, making OA a major public health issue. Here, we developed an innovative combination of treatment conditions to improve the human chondrocyte phenotype before autologous chondrocyte implantation. First, we seeded human dedifferentiated chondrocytes into a collagen sponge as a scaffold, cultured them in hypoxia in the presence of a bone morphogenetic protein (BMP), BMP-2, and transfected them with small interfering RNAs targeting two markers overexpressed in OA dedifferentiated chondrocytes, that is, type I collagen and/or HtrA1 serine protease. This strategy significantly decreased mRNA and protein expression of type I collagen and HtrA1, and led to an improvement in the chondrocyte phenotype index of differentiation. The effectiveness of our in vitro culture process was also demonstrated in the nude mouse model in vivo after subcutaneous implantation. We, thus, provide here a new protocol able to favor human hyaline chondrocyte phenotype in primarily dedifferentiated cells, both in vitro and in vivo. Our study also offers an innovative strategy for chondrocyte redifferentiation and opens new opportunities for developing therapeutic targets.

  16. Cationic Contrast Agent Diffusion Differs Between Cartilage and Meniscus.

    Science.gov (United States)

    Honkanen, Juuso T J; Turunen, Mikael J; Freedman, Jonathan D; Saarakkala, Simo; Grinstaff, Mark W; Ylärinne, Janne H; Jurvelin, Jukka S; Töyräs, Juha

    2016-10-01

    Contrast enhanced computed tomography (CECT) is a non-destructive imaging technique used for the assessment of composition and structure of articular cartilage and meniscus. Due to structural and compositional differences between these tissues, diffusion and distribution of contrast agents may differ in cartilage and meniscus. The aim of this study is to determine the diffusion kinematics of a novel iodine based cationic contrast agent (CA(2+)) in cartilage and meniscus. Cylindrical cartilage and meniscus samples (d = 6 mm, h ≈ 2 mm) were harvested from healthy bovine knee joints (n = 10), immersed in isotonic cationic contrast agent (20 mgI/mL), and imaged using a micro-CT scanner at 26 time points up to 48 h. Subsequently, normalized X-ray attenuation and contrast agent diffusion flux, as well as water, collagen and proteoglycan (PG) contents in the tissues were determined. The contrast agent distributions within cartilage and meniscus were different. In addition, the normalized attenuation and diffusion flux were higher (p < 0.05) in cartilage. Based on these results, diffusion kinematics vary between cartilage and meniscus. These tissue specific variations can affect the interpretation of CECT images and should be considered when cartilage and meniscus are assessed simultaneously.

  17. Stem Cells and Gene Therapy for Cartilage Repair

    Directory of Open Access Journals (Sweden)

    Umile Giuseppe Longo

    2012-01-01

    Full Text Available Cartilage defects represent a common problem in orthopaedic practice. Predisposing factors include traumas, inflammatory conditions, and biomechanics alterations. Conservative management of cartilage defects often fails, and patients with this lesions may need surgical intervention. Several treatment strategies have been proposed, although only surgery has been proved to be predictably effective. Usually, in focal cartilage defects without a stable fibrocartilaginous repair tissue formed, surgeons try to promote a natural fibrocartilaginous response by using marrow stimulating techniques, such as microfracture, abrasion arthroplasty, and Pridie drilling, with the aim of reducing swelling and pain and improving joint function of the patients. These procedures have demonstrated to be clinically useful and are usually considered as first-line treatment for focal cartilage defects. However, fibrocartilage presents inferior mechanical and biochemical properties compared to normal hyaline articular cartilage, characterized by poor organization, significant amounts of collagen type I, and an increased susceptibility to injury, which ultimately leads to premature osteoarthritis (OA. Therefore, the aim of future therapeutic strategies for articular cartilage regeneration is to obtain a hyaline-like cartilage repair tissue by transplantation of tissues or cells. Further studies are required to clarify the role of gene therapy and mesenchimal stem cells for management of cartilage lesions.

  18. Depth-Dependent Anisotropies of Amides and Sugar in Perpendicular and Parallel Sections of Articular Cartilage by Fourier Transform Infrared Imaging (FTIRI)

    Science.gov (United States)

    Xia, Yang; Mittelstaedt, Daniel; Ramakrishnan, Nagarajan; Szarko, Matthew; Bidthanapally, Aruna

    2010-01-01

    Full thickness blocks of canine humeral cartilage were microtomed into both perpendicular sections and a series of 100 parallel sections, each 6 μm thick. Fourier Transform Infrared Imaging (FTIRI) was used to image each tissue section eleven times under different infrared polarizations (from 0° to 180° polarization states in 20° increments and with an additional 90° polarization), at a spatial resolution of 6.25 μm and a wavenumber step of 8 cm−1. With increasing depth from the articular surface, amide anisotropies increased in the perpendicular sections and decreased in the parallel sections. Both types of tissue sectioning identified a 90° difference between amide I and amide II in the superficial zone of cartilage. The fibrillar distribution in the parallel sections from the superficial zone was shown to not be random. Sugar had the greatest anisotropy in the upper part of the radial zone in the perpendicular sections. The depth-dependent anisotropic data were fitted with a theoretical equation that contained three signature parameters, which illustrate the arcade structure of collagens with the aid of a fibril model. Infrared imaging of both perpendicular and parallel sections provides the possibility of determining the three-dimensional macromolecular structures in articular cartilage. Being sensitive to the orientation of the macromolecular structure in healthy articular cartilage aids the prospect of detecting the early onset of the tissue degradation that may lead to pathological conditions such as osteoarthritis. PMID:21274999

  19. Low‑dose halofuginone inhibits the synthesis of type I collagen without influencing type II collagen in the extracellular matrix of chondrocytes.

    Science.gov (United States)

    Li, Zeng; Fei, Hao; Wang, Zhen; Zhu, Tianyi

    2017-09-01

    Full‑thickness and large area defects of articular cartilage are unable to completely repair themselves and require surgical intervention, including microfracture, autologous or allogeneic osteochondral grafts, and autologous chondrocyte implantation. A large proportion of regenerative cartilage exists as fibrocartilage, which is unable to withstand impacts in the same way as native hyaline cartilage, owing to excess synthesis of type I collagen in the matrix. The present study demonstrated that low‑dose halofuginone (HF), a plant alkaloid isolated from Dichroa febrifuga, may inhibit the synthesis of type I collagen without influencing type II collagen in the extracellular matrix of chondrocytes. In addition, HF was revealed to inhibit the phosphorylation of mothers against decapentaplegic homolog (Smad)2/3 and promoted Smad7 expression, as well as decrease the synthesis of type I collagen synthesis. Results from the present study indicated that HF treatment suppressed the synthesis of type I collagen by inhibiting the transforming growth factor‑β signaling pathway in chondrocytes. These results may provide an alternative solution to the problems associated with fibrocartilage, and convert fibrocartilage into hyaline cartilage at the mid‑early stages of cartilage regeneration. HF may additionally be used to improve monolayer expansion or 3D cultures of seed cells for the tissue engineering of cartilage.

  20. X-ray phase contrast imaging of the bone-cartilage interface

    International Nuclear Information System (INIS)

    Ismail, E.C.; Kaabar, W.; Garrity, D.; Gundogdu, O.; Bradley, D.A.; Bunk, O.; Pfeiffer, F.; Farquharson, M.J.

    2008-01-01

    Full text: Synovial joints articulate in a lubricating environment, the system providing for smooth articulation. The articular cartilage overlying the bone consists of a network of collagen fibres. This network is essential to cartilage integrity, suffering damage in degenerative joint disease such as osteoarthritis. At Surrey and also in work conducted by this group at the Paul Scherrer Institute (PSI) synchrotron site we have been applying a number of techniques in studying the bone-cartilage interface and of changes occurring in this with disease. One technique attracting particular interest is X-ray phase contrast imaging, yielding information on anatomical features that manifest from the large scale organisation of collagen and the mineralised phase contained within the collagen fibres in the deep cartilage zone. This work will briefly review some of the basic supporting physics and then shows some of the images and other results that we have obtained to-date

  1. Imaging Prostate Cancer Microenvironment by Collagen Hybridization

    Science.gov (United States)

    2016-12-01

    of collagen II remodeling in Rheumatoid arthritis and other cartilage-related diseases or wound repair. We did observe trends in the CMP...proteins in vitro and in vivo has been prepared and submitted to Molecular Pharmaceutics . What do you plan to do during the next reporting period to...or care of human subjects, vertebrate animals, biohazards, and/or select agents Nothing to report. PRODUCTS Journal publications: Lucas L

  2. Mastication markedly affects mandibular condylar cartilage growth, gene expression, and morphology.

    Science.gov (United States)

    Enomoto, Akiko; Watahiki, Junichi; Nampo, Tomoki; Irie, Tarou; Ichikawa, Yuuta; Tachikawa, Tetsuhiko; Maki, Koutaro

    2014-09-01

    Mandibular growth is believed to be strongly related to mastication. Furthermore, mandibular condylar cartilage is known to be derived from neural crest cells. We examined whether the degree of chewing affects condylar cartilage growth of the mandible. Mice were fed diets with varying hardness. Genes specific to neural crest-derived cells were measured by real-time polymerase chain reaction to compare the expression changes between the mandibular and tibia cartilages. The mandibular condylar cartilage was then evaluated histologically, and proliferation was evaluated using proliferating cell nuclear antigen. Immunostaining was conducted for osteopontin, type X collagen, and Musashi1, and real-time polymerase chain reaction was used to assess the expression levels of osteopontin and type X collagen. Markers including P75, Wnt-1, Musashi1, and Nestin were upregulated in the mandibular condylar cartilage as compared with the tibial cartilage. Histologic assessment of the mandibular cartilage showed that the hypertrophic chondrocyte zone was statistically significantly thicker in mice fed a hard diet. Chondrocyte proliferation and Musashi1 expression were lower in mice fed a hard diet. After 4 weeks, numerous osteopontin and type X collagen-positive cells were observed in mice fed a mixed diet. Mastication affects the balance between differentiation and proliferation in the mandibular condylar cartilage. This phenomenon might be attributed to the presence of neural crest-derived cells. Copyright © 2014 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  3. Joint immobilization inhibits spontaneous hyaline cartilage regeneration induced by a novel double-network gel implantation.

    Science.gov (United States)

    Arakaki, Kazunobu; Kitamura, Nobuto; Kurokawa, Takayuki; Onodera, Shin; Kanaya, Fuminori; Gong, Jian-Ping; Yasuda, Kazunori

    2011-02-01

    We have recently discovered that spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect in the rabbit, when we implant a novel double-network (DN) gel plug at the bottom of the defect. To clarify whether joint immobilization inhibits the spontaneous hyaline cartilage regeneration, we conducted this study with 20 rabbits. At 4 or 12 weeks after surgery, the defect in the mobile knees was filled with a sufficient volume of the hyaline cartilage tissue rich in proteoglycan and type-2 collagen, while no cartilage tissues were observed in the defect in the immobilized knees. Type-2 collagen, Aggrecan, and SOX9 mRNAs were expressed only in the mobile knees at each period. This study demonstrated that joint immobilization significantly inhibits the spontaneous hyaline cartilage regeneration induced by the DN gel implantation. This fact suggested that the mechanical environment is one of the significant factors to induce this phenomenon.

  4. Platelet rich plasma (PRP) induces chondroprotection via increasing autophagy, anti-inflammatory markers, and decreasing apoptosis in human osteoarthritic cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, Mayssam, E-mail: Moussa-mayssam@hotmail.com [Regenerative medicine and inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut (Lebanon); Lajeunesse, Daniel, E-mail: daniel.lajeunesse@umontreal.ca [Research Centre in Osteoarthritis, Research Centre in Monteral University (Canada); Hilal, George, E-mail: George2266@gmail.com [Cancer and metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut (Lebanon); El Atat, Oula, E-mail: oulaatat@hotmail.com [Regenerative medicine and inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut (Lebanon); Haykal, Gaby, E-mail: Gaby.haykal@hdf.usj.edu.lb [Hotel Dieu de France, Faculty of Medicine, Saint-Joseph University, Beirut (Lebanon); Serhal, Rim, E-mail: rim.basbous@gmail.com [Regenerative medicine and inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut (Lebanon); Chalhoub, Antonio, E-mail: Mava.o@hotmail.com [Carantina Hospital, Beirut (Lebanon); Khalil, Charbel, E-mail: charbelk3@hotmail.com [Regenerative medicine and inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut (Lebanon); Alaaeddine, Nada, E-mail: Nada.aladdin@gmail.com [Regenerative medicine and inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut (Lebanon)

    2017-03-01

    Objectives: Autophagy constitutes a defense mechanism to overcome aging and apoptosis in osteoarthritic cartilage. Several cytokines and transcription factors are linked to autophagy and play an important role in the degradative cascade in osteoarthritis (OA). Cell therapy such as platelet rich plasma (PRP) has recently emerged as a promising therapeutic tool for many diseases including OA. However, its mechanism of action on improving cartilage repair remains to be determined. The purpose of this study is to investigate the effect of PRP on osteoarthritic chondrocytes and to elucidate the mechanism by which PRP contributes to cartilage regeneration. Methods: Osteoarthritic chondrocytes were co-cultured with an increasing concentration of PRP obtained from healthy donors. The effect of PRP on the proliferation of chondrocytes was performed using cell counting and WST8 proliferation assays. Autophagy, apoptosis and intracellular level of IL-4, IL-10, and IL-13 were determined using flow cytometry analyses. Autophagy markers BECLIN and LC3II were also determined using quantitative polymerase chain reaction (qPCR). qPCR and ELISA were used to measure the expression of ADAMDTS-5, MMP3, MMP13, TIMP-1–2–3, aggregan, Collagen type 2, TGF-β, Cox-2, Il-6, FOXO1, FOXO3, and HIF-1 in tissues and co-cultured media. Results: PRP increased significantly the proliferation of chondrocytes, decreased apoptosis and increased autophagy and its markers along with its regulators FOXO1, FOXO3 and HIF-1 in osteoarthritic chondrocytes. Furthermore, PRP caused a dose-dependent significant decrease in MMP3, MMP13, and ADAMTS-5, IL-6 and COX-2 while increasing TGF-β, aggregan, and collagen type 2, TIMPs and intracellular IL-4, IL-10, IL-13. Conclusion: These results suggest that PRP could be a potential therapeutic tool for the treatment of OA. - Highlights: • Platelet Rich Plasma is suggested as a new treatment for osteoarthritis. • The proposed therapeutic effect is

  5. Platelet rich plasma (PRP) induces chondroprotection via increasing autophagy, anti-inflammatory markers, and decreasing apoptosis in human osteoarthritic cartilage

    International Nuclear Information System (INIS)

    Moussa, Mayssam; Lajeunesse, Daniel; Hilal, George; El Atat, Oula; Haykal, Gaby; Serhal, Rim; Chalhoub, Antonio; Khalil, Charbel; Alaaeddine, Nada

    2017-01-01

    Objectives: Autophagy constitutes a defense mechanism to overcome aging and apoptosis in osteoarthritic cartilage. Several cytokines and transcription factors are linked to autophagy and play an important role in the degradative cascade in osteoarthritis (OA). Cell therapy such as platelet rich plasma (PRP) has recently emerged as a promising therapeutic tool for many diseases including OA. However, its mechanism of action on improving cartilage repair remains to be determined. The purpose of this study is to investigate the effect of PRP on osteoarthritic chondrocytes and to elucidate the mechanism by which PRP contributes to cartilage regeneration. Methods: Osteoarthritic chondrocytes were co-cultured with an increasing concentration of PRP obtained from healthy donors. The effect of PRP on the proliferation of chondrocytes was performed using cell counting and WST8 proliferation assays. Autophagy, apoptosis and intracellular level of IL-4, IL-10, and IL-13 were determined using flow cytometry analyses. Autophagy markers BECLIN and LC3II were also determined using quantitative polymerase chain reaction (qPCR). qPCR and ELISA were used to measure the expression of ADAMDTS-5, MMP3, MMP13, TIMP-1–2–3, aggregan, Collagen type 2, TGF-β, Cox-2, Il-6, FOXO1, FOXO3, and HIF-1 in tissues and co-cultured media. Results: PRP increased significantly the proliferation of chondrocytes, decreased apoptosis and increased autophagy and its markers along with its regulators FOXO1, FOXO3 and HIF-1 in osteoarthritic chondrocytes. Furthermore, PRP caused a dose-dependent significant decrease in MMP3, MMP13, and ADAMTS-5, IL-6 and COX-2 while increasing TGF-β, aggregan, and collagen type 2, TIMPs and intracellular IL-4, IL-10, IL-13. Conclusion: These results suggest that PRP could be a potential therapeutic tool for the treatment of OA. - Highlights: • Platelet Rich Plasma is suggested as a new treatment for osteoarthritis. • The proposed therapeutic effect is

  6. Reviewing subchondral cartilage surgery: considerations for standardised and outcome predictable cartilage remodelling: a technical note.

    Science.gov (United States)

    Benthien, Jan P; Behrens, Peter

    2013-11-01

    The potential of subchondral mesenchymal stem cell stimulation (MSS) for cartilage repair has led to the widespread use of microfracture as a first line treatment for full thickness articular cartilage defects. Recent focus on the effects of subchondral bone during cartilage injury and repair has expanded the understanding of the strengths and limitations in MSS and opened new pathways for potential improvement. Comparative studies have shown that bone marrow access has positive implications for pluripotential cell recruitment, repair quality and quantity, i.e. deeper channels elicited better cartilage fill, more hyaline cartilage character with higher type II collagen content and lower type I collagen content compared to shallow marrow access. A subchondral needling procedure using standardised and thin subchondral perforations deep into the subarticular bone marrow making the MSS more consistent with the latest developments in subchondral cartilage remodelling is proposed. As this is a novel method clinical studies have been initiated to evaluate the procedure especially compared to microfracturing. However, the first case studies and follow-ups indicate that specific drills facilitate reaching the subchondral bone marrow while the needle size makes perforation of the subchondral bone easier and more predictable. Clinical results of the first group of patients seem to compare well to microfracturing. The authors suggest a new method for a standardised procedure using a new perforating device. Advances in MSS by subchondral bone marrow perforation are discussed. It remains to be determined by clinical studies how this method compares to microfracturing. The subchondral needling offers the surgeon and the investigator a method that facilitates comparison studies because of its defined depth of subchondral penetration and needle size.

  7. Photoactivated methods for enabling cartilage-to-cartilage tissue fixation

    Science.gov (United States)

    Sitterle, Valerie B.; Roberts, David W.

    2003-06-01

    The present study investigates whether photoactivated attachment of cartilage can provide a viable method for more effective repair of damaged articular surfaces by providing an alternative to sutures, barbs, or fibrin glues for initial fixation. Unlike artificial materials, biological constructs do not possess the initial strength for press-fitting and are instead sutured or pinned in place, typically inducing even more tissue trauma. A possible alternative involves the application of a photosensitive material, which is then photoactivated with a laser source to attach the implant and host tissues together in either a photothermal or photochemical process. The photothermal version of this method shows potential, but has been almost entirely applied to vascularized tissues. Cartilage, however, exhibits several characteristics that produce appreciable differences between applying and refining these techniques when compared to previous efforts involving vascularized tissues. Preliminary investigations involving photochemical photosensitizers based on singlet oxygen and electron transfer mechanisms are discussed, and characterization of the photodynamic effects on bulk collagen gels as a simplified model system using FTIR is performed. Previous efforts using photothermal welding applied to cartilaginous tissues are reviewed.

  8. Time-dependent changes in gene expression induced in vitro by interleukin-1β in equine articular cartilage.

    Science.gov (United States)

    Löfgren, Maria; Svala, Emilia; Lindahl, Anders; Skiöldebrand, Eva; Ekman, Stina

    2018-05-01

    Osteoarthritis is an inflammatory and degenerative joint disease commonly affecting horses. To identify genes of relevance for cartilage pathology in osteoarthritis we studied the time-course effects of interleukin (IL)-1β on equine articular cartilage. Articular cartilage explants from the distal third metacarpal bone were collected postmortem from three horses without evidence of joint disease. The explants were stimulated with IL-1β for 27 days and global gene expression was measured by microarray. Gene expression was compared to that of unstimulated explants at days 3, 9, 15, 21 and 27. Release of inflammatory proteins was measured using Proximity Extension Assay. Stimulation with IL-1β led to time-dependent changes in gene expression related to inflammation, the extracellular matrix (ECM), and phenotypic alterations. Gene expression and protein release of cytokines, chemokines, and matrix-degrading enzymes increased in the stimulated explants. Collagen type II was downregulated from day 15, whereas other ECM molecules were downregulated earlier. In contrast molecules involved in ECM signaling (perlecan, chondroitin sulfate proteoglycan 4, and syndecan 4) were upregulated. At the late time points, genes related to a chondrogenic phenotype were downregulated, and genes related to a hypertrophic phenotype were upregulated, suggesting a transition towards hypertrophy later in the culturing period. The data suggest that this in vitro model mimics time course events of in vivo inflammation in OA and it may be valuable as an in vitro tool to test treatments and to study disease mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Type V Collagen is Persistently Altered after Inguinal Hernia Repair

    DEFF Research Database (Denmark)

    Lorentzen, L; Henriksen, N A; Juhl, P

    2018-01-01

    BACKGROUND AND AIMS: Hernia formation is associated with alterations of collagen metabolism. Collagen synthesis and degradation cause a systemic release of products, which are measurable in serum. Recently, we reported changes in type V and IV collagen metabolisms in patients with inguinal...... elective cholecystectomy served as controls (n = 10). Whole venous blood was collected 35-55 months after operation. Biomarkers for type V collagen synthesis (Pro-C5) and degradation (C5M) and those for type IV collagen synthesis (P4NP) and degradation (C4M2) were measured by a solid-phase competitive...... assay. RESULTS: The turnover of type V collagen (Pro-C5/C5M) was slightly higher postoperatively when compared to preoperatively in the inguinal hernia group (P = 0.034). In addition, the results revealed a postoperatively lower type V collagen turnover level in the inguinal hernia group compared...

  10. A novel functional role of collagen glycosylation

    DEFF Research Database (Denmark)

    Jürgensen, Henrik J; Madsen, Daniel H; Ingvarsen, Signe

    2011-01-01

    Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains......, the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose...... receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens...

  11. Suppression of elevated cartilage turnover in postmenopausal women and in ovariectomized rats by estrogen and a selective estrogen-receptor modulator (SERM).

    Science.gov (United States)

    Christgau, Stephan; Tankó, László B; Cloos, Paul A C; Mouritzen, Ulrik; Christiansen, Claus; Delaissé, Jean-Marie; Høegh-Andersen, Pernille

    2004-01-01

    Several observational studies indicate that estrogen deficiency increases the incidence of osteoarthritis in postmenopausal women. To validate this observation, we investigated the effects of ovariectomy (OVX) on cartilage erosion in rats using histology and an established bio-assay of cartilage-specific collagen type II degradation products (CTX-II). Furthermore, we investigated whether estrogen and levormeloxifene, a selective estrogen-receptor modulator (SERM), can prevent the OVX-induced changes in cartilage degradation. The clinical relevance was assessed in postmenopausal women by measuring the changes in CTX-II during 12-month treatment with levormeloxifene versus placebo. Sixty 6-month-old rats were divided in five groups. One group was subjected to sham and the others to OVX, followed by treatment with vehicle alone, estradiol or 0.2 mg/kg/day or 5 mg/kg/day of levormeloxifene. The rats were treated for 9 weeks with biweekly blood and urine sampling for measurement of bone resorption and cartilage turnover. After study termination, hind knees were removed for histological analysis of erosions. The effect of levormeloxifene in post-menopausal women was assessed by measuring CTX-II in samples from 301 women who were participating in a phase II study of this SERM. OVX rats showed significant increases in the urinary excretion of CTX-II. After 9 weeks this was manifested as increased surface erosion of knee articular cartilage compared with sham-operated rats. Treatment with estrogen or levormeloxifene prevented the OVX-induced changes. There was a significant correlation between the 4-week changes in CTX-II and cartilage erosion at week 9 (r = 0.64, P women treated with levormeloxifene, the urinary excretion of CTX-II was decreased by approximately 50% and restored CTX-II levels to the premenopausal range. This study is the first to demonstrate that a SERM suppresses cartilage degradation in both rodents and humans, suggesting potential therapeutical benefits

  12. Techniques and Applications of in vivo Diffusion Imaging of Articular Cartilage

    Science.gov (United States)

    Raya, José G.

    2014-01-01

    Early in the process of osteoarthritis (OA) the composition (water, proteoglycan [PG], and collagen) and structure of articular cartilage is altered leading to changes in its mechanical properties. A technique that can assess the composition and structure of the cartilage in vivo can provide insight in the mechanical integrity of articular cartilage and become a powerful tool for the early diagnosis of OA. Diffusion tensor imaging (DTI) has been proposed as a biomarker for cartilage composition and structure. DTI is sensitive to the PG content through the mean diffusivity (MD) and to the collagen architecture through the fractional anisotropy (FA). However, the acquisition of DTI of articular cartilage in vivo is challenging due to the short T2 of articular cartilage (~40 ms at 3 T) and the high resolution needed (0.5–0.7 mm in plane) to depict the cartilage anatomy. We describe the pulse sequences used for in vivo DTI of articular cartilage and discus general strategies for protocol optimization. We provide a comprehensive review of measurements of DTI of articular cartilage from ex vivo validation experiments to its recent clinical applications. PMID:25865215

  13. Quantitative assessment of optical properties in healthy cartilage and repair tissue by optical coherence tomography and histology (Conference Presentation)

    Science.gov (United States)

    Jansen, Sanne M. A.; Cernohorsky, Paul; de Bruin, Daniel M.; van der Pol, Edwin; Savci-Heijink, Cemile D.; Strackee, Simon D.; Faber, Dirk J.; van Leeuwen, Ton G.

    2016-02-01

    Quantification of the OCT signal is an important step toward clinical implementation of a diagnostic tool in cartilage imaging. Discrimination of structural cartilage differences in patients with osteoarthritis is critical, yet challenging. This study assesses the variation in the optical attenuation coefficient (μOCT) between healthy cartilage, repair tissue, bone and layers within repair tissue in a controlled setting. OCT and histology was used to assess goat talus articular surfaces in which central osteochondral defects were created. Exact matches of OCT and histology were selected for research. μOCT measurements were taken from healthy cartilage, repair tissue and bone. Measured μOCT in healthy cartilage was higher compared to both repair tissue and bone tissue. Two possible mechanisms for the difference in attenuation were investigated. We studied morphological parameters in terms of nucleus count, nucleus size and inter-nucleus distance. Collagen content in healthy cartilage and repair tissue was assessed using polarization microscopy. Quantitative analysis of the nuclei did not demonstrate a difference in nucleus size and count between healthy cartilage and repair tissue. In healthy cartilage, cells were spaced farther apart and had a lower variation in local nuclear density compared to repair tissue. Polarization microscopy suggested higher collagen content in healthy cartilage compared to repair tissue. μOCT measurements can distinguish between healthy cartilage, repair tissue and bone. Results suggest that cartilage OCT attenuation measurements could be of great impact in clinical diagnostics of osteoarthritis.

  14. Cartilage oligomeric matrix protein enhances matrix assembly during chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Haleem-Smith, Hana; Calderon, Raul; Song, Yingjie; Tuan, Rocky S; Chen, Faye H

    2012-04-01

    Cartilage oligomeric matrix protein/thrombospondin-5 (COMP/TSP5) is an abundant cartilage extracellular matrix (ECM) protein that interacts with major cartilage ECM components, including aggrecan and collagens. To test our hypothesis that COMP/TSP5 functions in the assembly of the ECM during cartilage morphogenesis, we have employed mesenchymal stem cell (MSC) chondrogenesis in vitro as a model to examine the effects of COMP over-expression on neo-cartilage formation. Human bone marrow-derived MSCs were transfected with either full-length COMP cDNA or control plasmid, followed by chondrogenic induction in three-dimensional pellet or alginate hydrogel culture. MSC chondrogenesis and ECM production was estimated based on quantitation of sulfated glycosaminoglycan (sGAG) accumulation, immunohistochemistry of the presence and distribution of cartilage ECM proteins, and real-time RT-PCR analyis of mRNA expression of cartilage markers. Our results showed that COMP over-expression resulted in increased total sGAG content during the early phase of MSC chondrogenesis, and increased immuno-detectable levels of aggrecan and collagen type II in the ECM of COMP-transfected pellet and alginate cultures, indicating more abundant cartilaginous matrix. COMP transfection did not significantly increase the transcript levels of the early chondrogenic marker, Sox9, or aggrecan, suggesting that enhancement of MSC cartilage ECM was effected at post-transcriptional levels. These findings strongly suggest that COMP functions in mesenchymal chondrogenesis by enhancing cartilage ECM organization and assembly. The action of COMP is most likely mediated not via direct changes in cartilage matrix gene expression but via interactions of COMP with other cartilage ECM proteins, such as aggrecan and collagens, that result in enhanced assembly and retention.

  15. CARTILAGE OLIGOMERIC MATRIX PROTEIN ENHANCES MATRIX ASSEMBLY DURING CHONDROGENESIS OF HUMAN MESENCHYMAL STEM CELLS

    Science.gov (United States)

    Haleem-Smith, Hana; Calderon, Raul; Song, Yingjie; Tuan, Rocky S.; Chen, Faye H.

    2011-01-01

    Cartilage oligomeric matrix protein/thrombospondin-5 (COMP/TSP5) is an abundant cartilage extracellular matrix (ECM) protein that interacts with major cartilage ECM components, including aggrecan and collagens. To test our hypothesis that COMP/TSP5 functions in the assembly of the ECM during cartilage morphogenesis, we have employed mesenchymal stem cell (MSC) chondrogenesis in vitro as a model to examine the effects of COMP over-expression on neo-cartilage formation. Human bone marrow-derived MSCs were transfected with either full-length COMP cDNA or control plasmid, followed by chondrogenic induction in three-dimensional pellet or alginate-hydrogel culture. MSC chondrogenesis and ECM production was estimated based on quantitation of sulfated glycosaminoglycan (sGAG) accumulation, immunohistochemistry of the presence and distribution of cartilage ECM proteins, and real-time RT-PCR analyis of mRNA expression of cartilage markers. Our results showed that COMP over-expression resulted in increased total sGAG content during the early phase of MSC chondrogenesis, and increased immuno-detectable levels of aggrecan and collagen type II in the ECM of COMP-transfected pellet and alginate cultures, indicating more abundant cartilaginous matrix. COMP transfection did not significantly increase the transcript levels of the early chondrogenic marker, Sox9, or aggrecan, suggesting that enhancement of MSC cartilage ECM was effected at post-transcriptional levels. These findings strongly suggest that COMP functions in mesenchymal chondrogenesis by enhancing cartilage ECM organization and assembly. The action of COMP is most likely mediated not via direct changes in cartilage matrix gene expression but via interactions of COMP with other cartilage ECM proteins, such as aggrecan and collagens, that result in enhanced assembly and retention. PMID:22095699

  16. Use of collagen scaffold and autologous bone marrow concentrate as a one-step cartilage repair in the knee: histological results of second-look biopsies at 1 year follow-up.

    Science.gov (United States)

    Gigante, A; Calcagno, S; Cecconi, S; Ramazzotti, D; Manzotti, S; Enea, D

    2011-01-01

    Chondral articular defects are a key concern in orthopaedic surgery. To overcome the disadvantages of autologous chondrocyte implantation (ACI) and to improve the outcomes of autologous matrix-induced chondrogenesis (AMIC), the latter technique is currently augmented with bone marrow concentrate injected under or seeded onto the scaffold. However, to date, only a little is known about histological outcomes of either the AMIC technique or AMIC associated with bone marrow concentrate. This study aimed to evaluate the quality of the repair tissue obtained from biopsies harvested during second-look arthroscopy after arthroscopic AMIC augmented with bone marrow concentrate. We analysed five second-look core biopsies harvested at 12 months follow-up. At the time of biopsy the surgeon reported the quality of the repair tissue using the standard ICRS Cartilage Repair Assessment (CRA). Every biopsy together with patient data was sent to our centre to undergo blind histological evaluation (ICRS II Visual Histological Assessment Scale) and data analysis. Five asymptomatic patients (mean age 43.4 years) had isolated lesions (mean size was 3.7 cm2) at the medial femoral condyle. All the implants appeared nearly normal (ICRS CRA) at arthroscopic evaluation and had a mean overall histological (ICRS II) of 59.8±14,5. Hyaline-like matrix was found in only one case, a mixture of hyaline/fibrocartilage was found in one case and fibrocartilage was found three cases. Our clinical and histological data suggest that this procedure achieved a nearly normal arthroscopic appearance and a satisfactory repair tissue, which was possibly still maturing at 12 months follow-up. Further studies are needed to understand the true potential of one-step procedures in the repair of focal chondral lesions in the knee.

  17. Targeting a novel bone degradation pathway in primary bone cancer by inactivation of the collagen receptor uPARAP/Endo180

    DEFF Research Database (Denmark)

    Engelholm, Lars H; Carlsen Melander, Eva Maria; Hald, Andreas

    2016-01-01

    metastases of carcinoma origin. This opened the possibility that sarcoma cells might directly mediate bone degeneration. To examine this question, we utilized a syngeneic, osteolytic bone tumour model with transplanted NCTC-2472 sarcoma cells in mice. When analysed in vitro, these cells were capable......In osteosarcoma, a primary mesenchymal bone cancer occurring predominantly in younger patients, invasive tumour growth leads to extensive bone destruction. This process is insufficiently understood, cannot be efficiently counteracted and calls for novel means of treatment. The endocytic collagen...... receptor, uPARAP/Endo180, is expressed on various mesenchymal cell types and is involved in bone matrix turnover during normal bone growth. Human osteosarcoma specimens showed strong expression of this receptor on tumour cells, along with the collagenolytic metalloprotease, MT1-MMP. In advanced tumours...

  18. Toward understanding the role of cartilage particulates in synovial inflammation.

    Science.gov (United States)

    Silverstein, A M; Stefani, R M; Sobczak, E; Tong, E L; Attur, M G; Shah, R P; Bulinski, J C; Ateshian, G A; Hung, C T

    2017-08-01

    Arthroscopy with lavage and synovectomy can remove tissue debris from the joint space and the synovial lining to provide pain relief to patients with osteoarthritis (OA). Here, we developed an in vitro model to study the interaction of cartilage wear particles with fibroblast-like synoviocytes (FLS) to better understand the interplay of cartilage particulates with cytokines on cells of the synovium. In this study sub-10 μm cartilage particles or 1 μm latex particles were co-cultured with FLS ±10 ng/mL interleukin-1α (IL-1α) or tumor necrosis factor-α (TNF-α). Samples were analyzed for DNA, glycosaminoglycan (GAG), and collagen, and media samples were analyzed for media GAG, nitric oxide (NO) and prostaglandin-E2 (PGE2). The nature of the physical interaction between the particles and FLS was determined by microscopy. Both latex and cartilage particles could be phagocytosed by FLS. Cartilage particles were internalized and attached to the surface of both dense monolayers and individual cells. Co-culture of FLS with cartilage particulates resulted in a significant increase in cell sheet DNA and collagen content as well as NO and PGE2 synthesis compared to control and latex treated groups. The proliferative response of FLS to cartilage wear particles resulted in an overall increase in extracellular matrix (ECM) content, analogous to the thickening of the synovial lining observed in OA patients. Understanding how cartilage particles interface with the synovium may provide insight into how this interaction contributes to OA progression and may guide the role of lavage and synovectomy for degenerative disease. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  19. Degeneration of osteoarthritis cartilage

    DEFF Research Database (Denmark)

    Jørgensen, Dan Richter

    of sensitive biomarkers for monitoring disease progression. This thesis investigates how subregional measures of cartilage thickness can be used to improve upon current imaging biomarkers. The first part of this investigation aims to discover discriminative areas in the cartilage using machine......-learning techniques specifically developed to take advantage of the spatial nature of the problem. The methods were evaluated on data from a longitudinal study where detailed cartilage thickness maps were quantified from magnetic resonance images. The results showed that focal differences in cartilage thickness may...... be relevant for both OA diagnosis and for prediction of future cartilage loss. The second part of the thesis investigates spatial patterns of longitudinal cartilage thickness changes in healthy and OA knees. Based on our findings, we propose a new, conceptually simple biomarker that embraces the heterogeneous...

  20. Adherence, proliferation and collagen turnover by human fibroblasts seeded into different types of collagen sponges

    NARCIS (Netherlands)

    Middelkoop, E.; de Vries, H. J.; Ruuls, L.; Everts, V.; Wildevuur, C. H.; Westerhof, W.

    1995-01-01

    We describe an in vitro model that we have used to evaluate dermal substitutes and to obtain data on cell proliferation, the rate of degradation of the dermal equivalent, contractibility and de novo synthesis of collagen. We tested three classes of collagenous materials: (1) reconstituted

  1. ADHERENCE, PROLIFERATION AND COLLAGEN TURNOVER BY HUMAN FIBROBLASTS SEEDED INTO DIFFERENT TYPES OF COLLAGEN SPONGES

    NARCIS (Netherlands)

    MIDDELKOOP, E; DEVRIES, HJC; RUULS, L; EVERTS, [No Value; WILDEVUUR, CHR; WESTERHOF, W

    We describe an in vitro model that we have used to evaluate dermal substitutes and to obtain data on cell proliferation, the rate of degradation of the dermal equivalent, contractibility and de novo synthesis of collagen. We tested three classes of collagenous materials: (1) reconstituted

  2. uPARAP/Endo180 is essential for cellular uptake of collagen and promotes fibroblast collagen adhesion

    DEFF Research Database (Denmark)

    Engelholm, Lars H; List, Karin; Netzel-Arnett, Sarah

    2003-01-01

    The uptake and lysosomal degradation of collagen by fibroblasts constitute a major pathway in the turnover of connective tissue. However, the molecular mechanisms governing this pathway are poorly understood. Here, we show that the urokinase plasminogen activator receptor-associated protein (u......, these cells had diminished initial adhesion to a range of different collagens, as well as impaired migration on fibrillar collagen. These studies identify a central function of uPARAP/Endo180 in cellular collagen interactions....

  3. Magnetic resonance imaging of articular cartilage: ex vivo study on normal cartilage correlated with magnetic resonance microscopy

    International Nuclear Information System (INIS)

    Cova, M.; Frezza, F.; Pozzi-Mucelli, R.S.; Dalla-Palma, L.; Toffanin, R.; Pozzi-Mucelli, M.; Mlynarik, V.; Vittur, F.

    1998-01-01

    The aims of this study were (a) to compare the MR appearance of normal articular cartilage in ex vivo MR imaging (MRI) and MR microscopy (MRM) images of disarticulated human femoral heads, (b) to evaluate by MRM the topographic variations in articular cartilage of disarticulated human femoral heads, and subsequently, (c) to compare MRM images with histology. Ten disarticulated femoral heads were examined. Magnetic resonance images were obtained using spin-echo (SE) and gradient-echo (GE) sequences. Microimages were acquired on cartilage-bone cylindrical plugs excised from four regions (superior, inferior, anterior, posterior) of one femoral head, using a modified SE sequence. Both MRI and MRM images were obtained before and after a 90 rotation of the specimen, around the axis perpendicular to the examined cartilage surface. Finally, MRM images were correlated with histology. A trilaminar appearance of articular cartilage was observed with MRI and with a greater detail with MRM. A good correlation between MRI and MRM features was demonstrated. Both MRI and MRM showed a loss of the trilaminar cartilage appearance after specimen rotation, with greater evidence on MRM images. Cartilage excised from the four regions of the femoral head showed a different thickness, being thickest in the samples excised from the superior site. The MRM technique confirms the trilaminar MRI appearance of human articular cartilage, showing good correlation with histology. The loss of the trilaminar appearance of articular cartilage induced by specimen rotation suggests that this feature is partially related to the collagen-fiber orientation within the different layers. The MRM technique also shows topographic variations in thickness of human articular cartilage. (orig.)

  4. Changes in the expression of collagen genes show two stages in chondrocyte differentiation in vitro

    OpenAIRE

    1988-01-01

    This report deals with the quantitation of both mRNA and transcription activity of type I collagen gene and of three cartilage-specific collagens (types II, IX, and X) during in vitro differentiation of chick chondrocytes. Differentiation was obtained by transferal to suspension culture of dedifferentiated cells passaged for 3 wk as adherent cells. The type I collagen mRNA, highly represented in the dedifferentiated cells, rapidly decreased during chondrocyte differentiation. On the contrary,...

  5. Arthrogenicity of type II collagen monoclonal antibodies associated with complement activation and antigen affinity

    OpenAIRE

    Koobkokkruad, Thongchai; Kadotani, Tatsuya; Hutamekalin, Pilaiwanwadee; Mizutani, Nobuaki; Yoshino, Shin

    2011-01-01

    Abstract Background The collagen antibody-induced arthritis (CAIA) model, which employs a cocktail of monoclonal antibodies (mAbs) to type II collagen (CII), has been widely used for studying the pathogenesis of autoimmune arthritis. In this model, not all mAbs to CII are capable of inducing arthritis because one of the initial events is the formation of collagen-antibody immune complexes on the cartilage surface or in the synovium, and subsequent activation of the complement by the complexes...

  6. Platelet rich plasma (PRP) induces chondroprotection via increasing autophagy, anti-inflammatory markers, and decreasing apoptosis in human osteoarthritic cartilage.

    Science.gov (United States)

    Moussa, Mayssam; Lajeunesse, Daniel; Hilal, George; El Atat, Oula; Haykal, Gaby; Serhal, Rim; Chalhoub, Antonio; Khalil, Charbel; Alaaeddine, Nada

    2017-03-01

    Autophagy constitutes a defense mechanism to overcome aging and apoptosis in osteoarthritic cartilage. Several cytokines and transcription factors are linked to autophagy and play an important role in the degradative cascade in osteoarthritis (OA). Cell therapy such as platelet rich plasma (PRP) has recently emerged as a promising therapeutic tool for many diseases including OA. However, its mechanism of action on improving cartilage repair remains to be determined. The purpose of this study is to investigate the effect of PRP on osteoarthritic chondrocytes and to elucidate the mechanism by which PRP contributes to cartilage regeneration. Osteoarthritic chondrocytes were co-cultured with an increasing concentration of PRP obtained from healthy donors. The effect of PRP on the proliferation of chondrocytes was performed using cell counting and WST8 proliferation assays. Autophagy, apoptosis and intracellular level of IL-4, IL-10, and IL-13 were determined using flow cytometry analyses. Autophagy markers BECLIN and LC3II were also determined using quantitative polymerase chain reaction (qPCR). qPCR and ELISA were used to measure the expression of ADAMDTS-5, MMP3, MMP13, TIMP-1-2-3, aggregan, Collagen type 2, TGF-β, Cox-2, Il-6, FOXO1, FOXO3, and HIF-1 in tissues and co-cultured media. PRP increased significantly the proliferation of chondrocytes, decreased apoptosis and increased autophagy and its markers along with its regulators FOXO1, FOXO3 and HIF-1 in osteoarthritic chondrocytes. Furthermore, PRP caused a dose-dependent significant decrease in MMP3, MMP13, and ADAMTS-5, IL-6 and COX-2 while increasing TGF-β, aggregan, and collagen type 2, TIMPs and intracellular IL-4, IL-10, IL-13. These results suggest that PRP could be a potential therapeutic tool for the treatment of OA. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Single-photon absorption of isolated collagen mimetic peptides and triple-helix models in the VUV-X energy range

    NARCIS (Netherlands)

    Schwob, Lucas; Lalande, Mathieu; Rangama, Jimmy; Egorov, Dmitrii; Hoekstra, Ronnie; Pandey, Rahul; Eden, Samuel; Schlathölter, Thomas; Vizcaino, Violaine; Poully, Jean-Christophe

    2017-01-01

    Cartilage and tendons owe their special mechanical properties to the fibrous collagen structure. These strong fibrils are aggregates of a sub-unit consisting of three collagen proteins wound around each other in a triple helix. Even though collagen is the most abundant protein in the human body, the

  8. Relaxin's induction of metalloproteinases is associated with the loss of collagen and glycosaminoglycans in synovial joint fibrocartilaginous explants

    Science.gov (United States)

    Naqvi, Tabassum; Duong, Trang T; Hashem, Gihan; Shiga, Momotoshi; Zhang, Qin; Kapila, Sunil

    2005-01-01

    Diseases of specific fibrocartilaginous joints are especially common in women of reproductive age, suggesting that female hormones contribute to their etiopathogenesis. Previously, we showed that relaxin dose-dependently induces matrix metalloproteinase (MMP) expression in isolated joint fibrocartilaginous cells. Here we determined the effects of relaxin with or without β-estradiol on the modulation of MMPs in joint fibrocartilaginous explants, and assessed the contribution of these proteinases to the loss of collagen and glycosaminoglycan (GAG) in this tissue. Fibrocartilaginous discs from temporomandibular joints of female rabbits were cultured in medium alone or in medium containing relaxin (0.1 ng/ml) or β-estradiol (20 ng/ml) or relaxin plus β-estradiol. Additional experiments were done in the presence of the MMP inhibitor GM6001 or its control analog. After 48 hours of culture, the medium was assayed for MMPs and the discs were analyzed for collagen and GAG concentrations. Relaxin and β-estradiol plus relaxin induced the MMPs collagenase-1 and stromelysin-1 in fibrocartilaginous explants – a finding similar to that which we observed in pubic symphysis fibrocartilage, but not in articular cartilage explants. The induction of these proteinases by relaxin or β-estradiol plus relaxin was accompanied by a loss of GAGs and collagen in joint fibrocartilage. None of the hormone treatments altered the synthesis of GAGs, suggesting that the loss of this matrix molecule probably resulted from increased matrix degradation. Indeed, fibrocartilaginous explants cultured in the presence of GM6001 showed an inhibition of relaxin-induced and β-estradiol plus relaxin-induced collagenase and stromelysin activities to control baseline levels that were accompanied by the maintenance of collagen or GAG content at control levels. These findings show for the first time that relaxin has degradative effects on non-reproductive synovial joint fibrocartilaginous tissue and

  9. The properties of bioengineered chondrocyte sheets for cartilage regeneration

    Directory of Open Access Journals (Sweden)

    Ota Naoshi

    2009-03-01

    Full Text Available Abstract Background Although the clinical results of autologous chondrocyte implantation for articular cartilage defects have recently improved as a result of advanced techniques based on tissue engineering procedures, problems with cell handling and scaffold imperfections remain to be solved. A new cell-sheet technique has been developed, and is potentially able to overcome these obstacles. Chondrocyte sheets applicable to cartilage regeneration can be prepared with this cell-sheet technique using temperature-responsive culture dishes. However, for clinical application, it is necessary to evaluate the characteristics of the cells in these sheets and to identify their similarities to naive cartilage. Results The expression of SOX 9, collagen type 2, 27, integrin α10, and fibronectin genes in triple-layered chondrocyte sheets was significantly increased in comparison to those in conventional monolayer culture and in a single chondrocyte sheet, implying a nature similar to ordinary cartilage. In addition, immunohistochemistry demonstrated that collagen type II, fibronectin, and integrin α10 were present in the triple-layered chondrocyte sheets. Conclusion The results of this study indicate that these chondrocyte sheets with a consistent cartilaginous phenotype and adhesive properties may lead to a new strategy for cartilage regeneration.

  10. Cartilage oligomeric matrix protein specific antibodies are pathogenic

    DEFF Research Database (Denmark)

    Geng, Hui; Nandakumar, Kutty Selva; Pramhed, Anna

    2012-01-01

    -specific monoclonal antibodies (mAbs). METHODS: B cell immunodominant regions on the COMP molecule were measured with a novel enzyme-linked immunosorbent assay using mammalian expressed full-length mouse COMP as well as a panel of recombinant mouse COMP fragments. 18 mAbs specific to COMP were generated......ABSTRACT: INTRODUCTION: Cartilage oligomeric matrix protein (COMP) is a major non-collagenous component of cartilage. Earlier, we developed a new mouse model for rheumatoid arthritis using COMP. This study was undertaken to investigate the epitope specificity and immunopathogenicity of COMP...

  11. Artificial cartilage bio-matrix formed of hyaluronic acid and Mg2+-polyphosphate

    Directory of Open Access Journals (Sweden)

    X Wang

    2016-11-01

    Full Text Available Here we show that inorganic polyphosphate (polyP, a polyanionic metabolic regulator consisting of multiple phosphate residues linked by energy-rich phosphoanhydride bonds, is present in the synovial fluid. In a biomimetic approach, to enhance cartilage synthesis and regeneration, we prepared amorphous polyP microparticles with Mg2+ as counterions. The particles were characterised by X-ray diffraction (XRD, energy-dispersive X-ray (EDX and Fourier transformed infrared spectroscopic (FTIR analyses. Similar particles were obtained after addition of Mg2+ ions to a solution containing hyaluronic acid, as a major component of the synovial fluid, and soluble Na-polyP. The viscous paste-like material formed, composed of globular microparticles with diameter of 400 nm, strongly promoted the adhesion of chondrocytes and caused a significant upregulation of the expression of the genes encoding collagen type 3A1, as a marker for chondrocyte differentiation, and SOX9, a transcription factor that regulates chondrocyte differentiation and proliferation. The expression level of the collagen type 3A1 gene was also enhanced by exposure of chondrocytes to synovial fluid that was found to contain polyP with a size of about 80 phosphate residues. This stimulatory effect was abolished after pre-incubation of the synovial fluid with the polyP degrading alkaline phosphatase. We propose a strategy for treatment of joint dysfunctions caused by osteoarthritis based on the application of amorphous Mg2+-polyP microparticles thatprevent calcium crystal formation in the synovial fluid using scavenging Ca2+ ions (Mg2+/Ca2+ exchange and enhance chondrocyte function after binding of the Ca2+-polyP to hyaluronic acid at the cartilage surface.

  12. Evaluation of degenerative changes in articular cartilage of osteoarthritis by Raman spectroscopy

    Science.gov (United States)

    Oshima, Yusuke; Ishimaru, Yasumitsu; Kiyomatsu, Hiroshi; Hino, Kazunori; Miura, Hiromasa

    2018-02-01

    Osteoarthritis (OA) is a very common joint disease in the aging population. Main symptom of OA is accompanied by degenerative changes of articular cartilage. Cartilage contains mostly type II collagen and proteoglycans, so it is difficult to access the quality and morphology of cartilage tissue in situ by conventional diagnostic tools (X-ray, MRI and echography) directly or indirectly. Raman spectroscopy is a label-free technique which enables to analyze molecular composition in degenerative cartilage. In this proposal, we aim to develop Raman spectroscopic system for the quality assessment of articular cartilage during arthroscopic surgery. Toward this goal, we are focusing on the proteoglycan content and collagen fiber alignment in cartilage matrix which may be associated with degenerative changes in OA, and we designed an original Raman device for remote sensing during arthroscopic surgery. In this project, we define the grading system for cartilage defect based on Raman spectroscopy, and we complete the evaluation of the Raman probing system which makes it possible to detect early stage of degenerative cartilage as a novel tool for OA diagnosis using human subject.

  13. Traditional Chinese medicine formula Bi-Qi capsule alleviates rheumatoid arthritis-induced inflammation, synovial hyperplasia, and cartilage destruction in rats.

    Science.gov (United States)

    Wang, Kai; Zhang, Dongmei; Liu, Yan; Wang, Xuan; Zhao, Jiantong; Sun, Tingting; Jin, Tingting; Li, Baoli; Pathak, Janak L

    2018-03-14

    Traditional Chinese medicine (TCM) formula Bi-Qi capsule (Bi-Qi) is a commonly prescribed drug to treat rheumatoid arthritis (RA). However, the mechanism of Bi-Qi-mediated amelioration of RA pathogenesis is still a mystery. Collagen induced arthritis (CIA) in rats is an established model that shares many similarities with RA in humans. In this study we investigated the effect of Bi-Qi on the pathogenesis of CIA in rats. CIA was developed in Sprague-Dawley (S.D) rats (n = 60, female) and used as a model resembling RA in humans. Rats were treated with a high or moderate dose of Bi-Qi, or methotrexate (MTX). Effects of the treatment on local joint and systemic inflammation, synovial hyperplasia, cartilage destruction, and other main features in the pathogenesis of CIA were analyzed. Inflamed and swollen ankles and joints were observed in arthritic rats, while Bi-Qi or MTX treatment alleviated these symptoms. Only the Bi-Qi moderate dose decreased RA-induced serum levels of tumor necrosis factor-alpha (TNF-α). Both Bi-Qi and MTX reduced the interleukin (IL)-18 serum level. Protein levels of cartilage oligomeric matrix protein and osteopontin in serum, synovium, and cartilage were elevated in arthritic rats, while Bi-Qi alleviated these effects. Synovial hyperplasia, inflammatory cell infiltration in synovium and a high degree of cartilage degradation was observed in RA, and Bi-Qi or MTX alleviated this effect. Bi-Qi at the moderate dose was the most effective in mitigating CIA-related clinical complications. Our findings showed that Bi-Qi alleviates CIA-induced inflammation, synovial hyperplasia, cartilage destruction, and the other main features in the pathogenesis of CIA. This provides fundamental evidence for the anti-arthritic properties of Bi-Qi and corroborates the use of Bi-Qi TCM formula for the treatment of RA.

  14. Cartilage Protective and Chondrogenic Capacity of WIN-34B, a New Herbal Agent, in the Collagenase-Induced Osteoarthritis Rabbit Model and in Progenitor Cells from Subchondral Bone

    Directory of Open Access Journals (Sweden)

    Jeong-Eun Huh

    2013-01-01

    Full Text Available We sought to determine the cartilage repair capacity of WIN-34B in the collagenase-induced osteoarthritis rabbit model and in progenitor cells from subchondral bone. The cartilage protective effect of WIN-34B was measured by clinical and histological scores, cartilage area, and proteoglycan and collagen contents in the collagenase-induced osteoarthritis rabbit model. The efficacy of chondrogenic differentiation of WIN-34B was assessed by expression of CD105, CD73, type II collagen, and aggrecan in vivo and was analyzed by the surface markers of progenitor cells, the mRNA levels of chondrogenic marker genes, and the level of proteoglycan, GAG, and type II collagen in vitro. Oral administration of WIN-34B significantly increased cartilage area, and this was associated with the recovery of proteoglycan and collagen content. Moreover, WIN-34B at 200 mg/kg significantly increased the expression of CD105, CD73, type II collagen, and aggrecan compared to the vehicle group. WIN-34B markedly enhanced the chondrogenic differentiation of CD105 and type II collagen in the progenitor cells from subchondral bone. Also, we confirmed that treatment with WIN-34B strongly increased the number of SH-2(CD105 cells and expression type II collagen in subchondral progenitor cells. Moreover, WIN-34B significantly increased proteoglycan, as measured by alcian blue staining; the mRNA level of type II α1 collagen, cartilage link protein, and aggrecan; and the inhibition of cartilage matrix molecules, such as GAG and type II collagen, in IL-1β-treated progenitor cells. These findings suggest that WIN-34B could be a potential candidate for effective anti-osteoarthritic therapy with cartilage repair as well as cartilage protection via enhancement of chondrogenic differentiation in the collagenase-induced osteoarthritis rabbit model and progenitor cells from subchondral bone.

  15. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells.

    Science.gov (United States)

    Levato, Riccardo; Webb, William R; Otto, Iris A; Mensinga, Anneloes; Zhang, Yadan; van Rijen, Mattie; van Weeren, René; Khan, Ilyas M; Malda, Jos

    2017-10-01

    Cell-laden hydrogels are the primary building blocks for bioprinting, and, also termed bioinks, are the foundations for creating structures that can potentially recapitulate the architecture of articular cartilage. To be functional, hydrogel constructs need to unlock the regenerative capacity of encapsulated cells. The recent identification of multipotent articular cartilage-resident chondroprogenitor cells (ACPCs), which share important traits with adult stem cells, represents a new opportunity for cartilage regeneration. However, little is known about the suitability of ACPCs for tissue engineering, especially in combination with biomaterials. This study aimed to investigate the potential of ACPCs in hydrogels for cartilage regeneration and biofabrication, and to evaluate their ability for zone-specific matrix production. Gelatin methacryloyl (gelMA)-based hydrogels were used to culture ACPCs, bone marrow mesenchymal stromal cells (MSCs) and chondrocytes, and as bioinks for printing. Our data shows ACPCs outperformed chondrocytes in terms of neo-cartilage production and unlike MSCs, ACPCs had the lowest gene expression levels of hypertrophy marker collagen type X, and the highest expression of PRG4, a key factor in joint lubrication. Co-cultures of the cell types in multi-compartment hydrogels allowed generating constructs with a layered distribution of collagens and glycosaminoglycans. By combining ACPC- and MSC-laden bioinks, a bioprinted model of articular cartilage was generated, consisting of defined superficial and deep regions, each with distinct cellular and extracellular matrix composition. Taken together, these results provide important information for the use of ACPC-laden hydrogels in regenerative medicine, and pave the way to the biofabrication of 3D constructs with multiple cell types for cartilage regeneration or in vitro tissue models. Despite its limited ability to repair, articular cartilage harbors an endogenous population of progenitor cells

  16. The anti-catabolic role of bovine lactoferricin in cartilage.

    Science.gov (United States)

    Ahmadinia, Kasra; Yan, Dongyao; Ellman, Michael; Im, Hee-Jeong

    2013-10-01

    Bovine lactoferricin (LfcinB) is a multifunctional peptide derived from bovine lactoferrin that demonstrates antibacterial, antifungal, antiviral, antitumor, and immunomodulatory activities. Recently, studies have focused on the anti-catabolic and anti-inflammatory potential of LfcinB. LfcinB is able to modulate the effects cytokines such as IL-1 and fibroblast growth factor 2 as well as promote specific cartilage anabolic factors. These properties are particularly important in maintaining cartilage homeostasis and preventing a catabolic state, which leads to clinical pathology. This review focuses on the recent literature elucidating the role of LfcinB in preventing cartilage degradation.

  17. Optical characterization of porcine articular cartilage using a polarimetry technique with differential Mueller matrix formulism.

    Science.gov (United States)

    Chang, Ching-Min; Lo, Yu-Lung; Tran, Nghia-Khanh; Chang, Yu-Jen

    2018-03-20

    A method is proposed for characterizing the optical properties of articular cartilage sliced from a pig's thighbone using a Stokes-Mueller polarimetry technique. The principal axis angle, phase retardance, optical rotation angle, circular diattenuation, diattenuation axis angle, linear diattenuation, and depolarization index properties of the cartilage sample are all decoupled in the proposed analytical model. Consequently, the accuracy and robustness of the extracted results are improved. The glucose concentration, collagen distribution, and scattering properties of samples from various depths of the articular cartilage are systematically explored via an inspection of the related parameters. The results show that the glucose concentration and scattering effect are both enhanced in the superficial region of the cartilage. By contrast, the collagen density increases with an increasing sample depth.

  18. Compositional and structural studies of the bone-cartilage interface using PIXE and SAXS techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kaabar, W., E-mail: W.kaabar@surrey.ac.u [Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom); Laklouk, A. [Al-Fateh University, Tripoli-Libya (Libyan Arab Jamahiriya); Bunk, O. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen (Switzerland); Baily, M. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4K1 (Canada); Farquharson, M.J. [Surrey Ion Beam Centre, University of Surrey, Guildford, GU2 7XH (United Kingdom); Bradley, David [Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom)

    2010-07-21

    Micro-proton-induced X-ray emission ({mu}-PIXE) analysis has been employed in investigating the presence of number of essential anions and cations in thin sections of diseased human articular cartilage affected by osteoarthritis (OA). Distribution maps for Ca, P, K and S in diseased sections show marked alterations in the concentrations of these at the bone-cartilage interface compared to normal tissue. For a decalcified section of human articular cartilage, organisational changes of the collagen network were investigated by small-angle X-ray scattering (SAXS). The established gradual reorientation of collagen fibres from vertical to the surface of the joint to normal to the bone-cartilage interface is observed to be heavily disrupted in OA.

  19. Compositional and structural studies of the bone-cartilage interface using PIXE and SAXS techniques

    International Nuclear Information System (INIS)

    Kaabar, W.; Laklouk, A.; Bunk, O.; Baily, M.; Farquharson, M.J.; Bradley, David

    2010-01-01

    Micro-proton-induced X-ray emission (μ-PIXE) analysis has been employed in investigating the presence of number of essential anions and cations in thin sections of diseased human articular cartilage affected by osteoarthritis (OA). Distribution maps for Ca, P, K and S in diseased sections show marked alterations in the concentrations of these at the bone-cartilage interface compared to normal tissue. For a decalcified section of human articular cartilage, organisational changes of the collagen network were investigated by small-angle X-ray scattering (SAXS). The established gradual reorientation of collagen fibres from vertical to the surface of the joint to normal to the bone-cartilage interface is observed to be heavily disrupted in OA.

  20. Glucosamine but not ibuprofen alters cartilage turnover in osteoarthritis patients in response to physical training

    DEFF Research Database (Denmark)

    Petersen, Susanne Germann; Saxne, T; Heinegard, D

    2010-01-01

    OBJECTIVE: To investigate changes in levels of serum cartilage oligomeric matrix protein (COMP) and urine c-telopeptide of type-2 collagen (CTX-II) as markers for cartilage turnover in patients with osteoarthritis (OA) of the knee, in response to muscle strength training in combination with treat......OBJECTIVE: To investigate changes in levels of serum cartilage oligomeric matrix protein (COMP) and urine c-telopeptide of type-2 collagen (CTX-II) as markers for cartilage turnover in patients with osteoarthritis (OA) of the knee, in response to muscle strength training in combination......). RESULTS: All three groups increased their muscle strength following 12 weeks of strength training (Preduced in the glucosamine-treated group after the training period (P=0.012), whereas they did not change in the two other groups. Glucosamine reduced COMP statistically...

  1. Regional polarization sensitivity of articular cartilage by using polarization sensitive optical coherence tomography

    Science.gov (United States)

    Xie, Tuqiang; Guo, Shuguang; Chen, Zhongping; Peavy, George M.

    2007-02-01

    In this study, PS-OCT is used to image fresh bovine joints to investigate the orientation of collagen fibrils in relation to optical phase retardation to better understand the distribution of normal matrix orientation and articular cartilage birefringence in different regions of a whole joint. Understanding and mapping variations in matrix organization and orientation within the normal joint is an important issue in potential applications of PS-OCT for evaluation and diagnosis of degenerative joint disease (DJD). The experimental results demonstrate that articular cartilage is not polarization sensitive on the edge of the medial, but polarization sensitive on the lateral edge of the tibial plateau. The collagen orientation on the edge of the joint is different from the central areas of the joint. Normal articular cartilage demonstrates regional polarization sensitivity within joints that is important to understand in order to accurately assess cartilage health by PS-OCT.

  2. Fourier transform infrared spectroscopic imaging and multivariate regression for prediction of proteoglycan content of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Lassi Rieppo

    Full Text Available Fourier Transform Infrared (FT-IR spectroscopic imaging has been earlier applied for the spatial estimation of the collagen and the proteoglycan (PG contents of articular cartilage (AC. However, earlier studies have been limited to the use of univariate analysis techniques. Current analysis methods lack the needed specificity for collagen and PGs. The aim of the present study was to evaluate the suitability of partial least squares regression (PLSR and principal component regression (PCR methods for the analysis of the PG content of AC. Multivariate regression models were compared with earlier used univariate methods and tested with a sample material consisting of healthy and enzymatically degraded steer AC. Chondroitinase ABC enzyme was used to increase the variation in PG content levels as compared to intact AC. Digital densitometric measurements of Safranin O-stained sections provided the reference for PG content. The results showed that multivariate regression models predict PG content of AC significantly better than earlier used absorbance spectrum (i.e. the area of carbohydrate region with or without amide I normalization or second derivative spectrum univariate parameters. Increased molecular specificity favours the use of multivariate regression models, but they require more knowledge of chemometric analysis and extended laboratory resources for gathering reference data for establishing the models. When true molecular specificity is required, the multivariate models should be used.

  3. Species-Independent Modeling of High-Frequency Ultrasound Backscatter in Hyaline Cartilage.

    Science.gov (United States)

    Männicke, Nils; Schöne, Martin; Liukkonen, Jukka; Fachet, Dominik; Inkinen, Satu; Malo, Markus K; Oelze, Michael L; Töyräs, Juha; Jurvelin, Jukka S; Raum, Kay

    2016-06-01

    Apparent integrated backscatter (AIB) is a common ultrasound parameter used to assess cartilage matrix degeneration. However, the specific contributions of chondrocytes, proteoglycan and collagen to AIB remain unknown. To reveal these relationships, this work examined biopsies and cross sections of human, ovine and bovine cartilage with 40-MHz ultrasound biomicroscopy. Site-matched estimates of collagen concentration, proteoglycan concentration, collagen orientation and cell number density were employed in quasi-least-squares linear regression analyses to model AIB. A positive correlation (R(2) = 0.51, p 70°) to the sound beam direction. These findings indicate causal relationships between AIB and cartilage structural parameters and could aid in more sophisticated future interpretations of ultrasound backscatter. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. Progenitor cells in auricular cartilage demonstrate cartilage-forming capacity in 3D hydrogel culture

    Directory of Open Access Journals (Sweden)

    IA Otto

    2018-02-01

    Full Text Available Paramount for the generation of auricular structures of clinically-relevant size is the acquisition of a large number of cells maintaining an elastic cartilage phenotype, which is the key in producing a tissue capable of withstanding forces subjected to the auricle. Current regenerative medicine strategies utilize chondrocytes from various locations or mesenchymal stromal cells (MSCs. However, the quality of neo-tissues resulting from these cell types is inadequate due to inefficient chondrogenic differentiation and endochondral ossification, respectively. Recently, a subpopulation of stem/progenitor cells has been identified within the auricular cartilage tissue, with similarities to MSCs in terms of proliferative capacity and cell surface biomarkers, but their potential for tissue engineering has not yet been explored. This study compared the in vitro cartilage-forming ability of equine auricular cartilage progenitor cells (AuCPCs, bone marrow-derived MSCs and auricular chondrocytes in gelatin methacryloyl (gelMA-based hydrogels over a period of 56 d, by assessing their ability to undergo chondrogenic differentiation. Neocartilage formation was assessed through gene expression profiling, compression testing, biochemical composition and histology. Similar to MSCs and chondrocytes, AuCPCs displayed a marked ability to generate cartilaginous matrix, although, under the applied culture conditions, MSCs outperformed both cartilage-derived cell types in terms of matrix production and mechanical properties. AuCPCs demonstrated upregulated mRNA expression of elastin, low expression of collagen type X and similar levels of proteoglycan production and mechanical properties as compared to chondrocytes. These results underscored the AuCPCs’ tissue-specific differentiation potential, making them an interesting cell source for the next generation of elastic cartilage tissue-engineered constructs.

  5. MRI of the cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, H.; Noebauer-Huhmann, I.-M.; Krestan, C.; Gahleitner, A.; Marlovits, S.; Trattnig, S. [Department of Osteology, Universitaetklinik fuer Radiodiagnostik, AKH-Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Sulzbacher, I. [Universitaetsklinik fuer Pathologie Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)

    2002-11-01

    With the introduction of fat-suppressed gradient-echo and fast spin-echo (FSE) sequences in clinical routine MR visualization of the hyaline articular cartilage is routinely possible in the larger joints. While 3D gradient-echo with fat suppression allows exact depiction of the thickness and surface of cartilage, FSE outlines the normal and abnormal internal structures of the hyaline cartilage; therefore, both sequences seem to be necessary in a standard MRI protocol for cartilage visualization. In diagnostically ambiguous cases, in which important therapeutic decisions are required, direct MR arthrography is the established imaging standard as an add-on procedure. Despite the social impact and prevalence, until recent years there was a paucity of knowledge about the pathogenesis of cartilage damage. With the introduction of high-resolution MRI with powerful surface coils and fat-suppression techniques, visualization of the articular cartilage is now routinely possible in many joints. After a short summary of the anatomy and physiology of the hyaline cartilage, the different MR imaging methods are discussed and recommended standards are suggested. (orig.)

  6. The collagen receptor uPARAP/Endo180

    DEFF Research Database (Denmark)

    Engelholm, Lars H; Ingvarsen, Signe; Jürgensen, Henrik J

    2009-01-01

    The uPAR-associated protein (uPARAP/Endo180), a type-1 membrane protein belonging to the mannose receptor family, is an endocytic receptor for collagen. Through this endocytic function, the protein takes part in a previously unrecognized mechanism of collagen turnover. uPARAP/Endo180 can bind...... and internalize both intact and partially degraded collagens. In some turnover pathways, the function of the receptor probably involves an interplay with certain matrix-degrading proteases whereas, in other physiological processes, redundant mechanisms involving both endocytic and pericellular collagenolysis seem...... in collagen breakdown seems to be involved in invasive tumor growth Udgivelsesdato: 2009...

  7. The formation of human auricular cartilage from microtic tissue: An in vivo study.

    Science.gov (United States)

    Ishak, Mohamad Fikeri bin; See, Goh Bee; Hui, Chua Kien; Abdullah, Asma bt; Saim, Lokman bin; Saim, Aminuddin bin; Idrus, Ruszymah bt Haji

    2015-10-01

    This study aimed to isolate, culture-expand and characterize the chondrocytes isolated from microtic cartilage and evaluate its potential as a cell source for ear cartilage reconstruction. Specific attention was to construct the auricular cartilage tissue by using fibrin as scaffold. Cell culture experiment with the use of microtic chondrocytes. Cell culture experiment with the use of microtic chondrocytes. After ear reconstructive surgery at the Universiti Kebangsaan Malaysia Medical Center, chondrocytes were isolated from microtic cartilage. Chondrocytes isolated from the tissue were cultured expanded until passage 4 (P4). Upon confluency at P4, chondrocytes were harvested and tissue engineered constructs were made with human plasma polymerized to fibrin. Constructs formed later is implanted at the dorsal part of nude mice for 8 weeks, followed by post-implantation evaluation with histology staining (Hematoxylin and Eosin (H&E) and Safranin O), immunohistochemistry and RT-PCR for chondrogenic associated genes expression level. Under gross assessment, the construct after 8 weeks of implantation showed similar physical characteristics that of cartilage. Histological staining showed abundant lacunae cells embedded in extracellular matrix similar to that of native cartilage. Safranin O staining showed positive staining which indicates the presence of proteoglycan-rich matrix. Immunohistochemistry analysis showed the strong positive staining for collagen type II, the specific collagen type in the cartilage. Gene expression quantification showed no significant differences in the expression of chondrogenic gene used which is collagen type I, collagen type II, aggrecan core protein (ACP), elastin and sox9 genes when compared to construct formed from normal auricular tissue. Chondrocytes isolated from microtia cartilage has the potential to be used as an alternative cell source for external ear reconstruction in future clinical application. Copyright © 2015 Elsevier

  8. Early Changes of Articular Cartilage and Subchondral Bone in The DMM Mouse Model of Osteoarthritis

    OpenAIRE

    Fang, Hang; Huang, Lisi; Welch, Ian; Norley, Chris; Holdsworth, David W.; Beier, Frank; Cai, Daozhang

    2018-01-01

    To examine the early changes of articular cartilage and subchondral bone in the DMM mouse model of osteoarthritis, mice were subjected to DMM or SHAM surgery and sacrificed at 2-, 5- and 10-week post-surgery. Catwalk gait analyses, Micro-Computed Tomography, Toluidine Blue, Picrosirius Red and Tartrate-Resistant Acid Phosphatase (TRAP) staining were used to investigate gait patterns, joint morphology, subchondral bone, cartilage, collagen organization and osteoclasts activity, respectively. R...

  9. Repair of articular cartilage defects by tissue-engineered cartilage constructed with adipose-derived stem cells and acellular cartilaginous matrix in rabbits.

    Science.gov (United States)

    Wang, Z J; An, R Z; Zhao, J Y; Zhang, Q; Yang, J; Wang, J B; Wen, G Y; Yuan, X H; Qi, X W; Li, S J; Ye, X C

    2014-06-18

    After injury, inflammation, or degeneration, articular cartilage has limited self-repair ability. We aimed to explore the feasibility of repair of articular cartilage defects with tissue-engineered cartilage constructed by acellular cartilage matrices (ACMs) seeded with adipose-derived stem cells (ADSCs). The ADSCs were isolated from 3-month-old New Zealand albino rabbit by using collagenase and cultured and amplified in vitro. Fresh cartilage isolated from adult New Zealand albino rabbit were freeze-dried for 12 h and treated with Triton X-100, DNase, and RNase to obtain ACMs. ADSCs were seeded in the acellular cartilaginous matrix at 2x10(7)/mL, and cultured in chondrogenic differentiation medium for 2 weeks to construct tissue-engineered cartilage. Twenty-four New Zealand white rabbits were randomly divided into A, B, and C groups. Engineered cartilage was transplanted into cartilage defect position of rabbits in group A, group B obtained ACMs, and group C did not receive any transplants. The rabbits were sacrificed in week 12. The restored tissue was evaluated using macroscopy, histology, immunohistochemistry, and transmission electron microscopy (TEM). In the tissue-engineered cartilage group (group A), articular cartilage defects of the rabbits were filled with chondrocyte-like tissue with smooth surface. Immunohistochemistry showed type II-collagen expression and Alcian blue staining was positive. TEM showed chondrocytes in the recesses, with plenty of secretary matrix particles. In the scaffold group (group B), the defect was filled with fibrous tissue. No repaired tissue was found in the blank group (group C). Tissue-engineered cartilage using ACM seeded with ADSCs can help repair articular cartilage defects in rabbits.

  10. Chondrogenic differentiation of mesenchymal stem cells in a leakproof collagen sponge

    International Nuclear Information System (INIS)

    Chen Guoping; Akahane, Daisuke; Kawazoe, Naoki; Yamamoto, Katsuyuki; Tateishi, Tetsuya

    2008-01-01

    A three-dimensional culture of mesenchymal stem cells (MSCs) in a porous scaffold has been developed as a promising strategy for cartilage tissue engineering. The chondrogenic differentiation of MSCs derived from human bone marrow was studied by culturing the cells in a novel scaffold constructed of leakproof collagen sponge. All the surfaces of the collagen sponge except the top were wrapped with a membrane that has pores smaller than the cells to protect against cell leakage during cell seeding. The cells adhered to the collagen, distributed evenly, and proliferated to fill the spaces in the sponge. Cell seeding efficiency was greater than 95%. The MSCs cultured in the collagen sponge in the presence of TGF-β3 and BMP6 expressed a high level of genes encoding type II and type X collagen, sox9, and aggrecan. Histological examination by HE staining indicated that the differentiated cells showed a round morphology. The extracellular matrices were positively stained by safranin O and toluidine blue. Immunostaining with anti-type II collagen and anti-cartilage proteoglycan showed that type II collagen and cartilage proteoglycan were detected around the cells. These results suggest the chondrogenic differentiation of MSCs when cultured in the collagen sponge in the presence of TGF-β3 and BMP6

  11. The role of calcified cartilage and subchondral bone in the initiation and progression of ochronotic arthropathy in alkaptonuria.

    Science.gov (United States)

    Taylor, A M; Boyde, A; Wilson, P J M; Jarvis, J C; Davidson, J S; Hunt, J A; Ranganath, L R; Gallagher, J A

    2011-12-01

    Alkaptonuria is a genetic disorder of tyrosine metabolism, resulting in elevated circulating concentrations of homogentisic acid. Homogentisic acid is deposited as a polymer, termed ochronotic pigment, in collagenous tissues, especially cartilages of weight-bearing joints, leading to a severe osteoarthropathy. We undertook this study to investigate the initiation and progression of ochronosis from the earliest detection of pigment through complete joint failure. Nine joint samples with varying severities of ochronosis were obtained from alkaptonuria patients undergoing surgery and compared to joint samples obtained from osteoarthritis (OA) patients. Samples were analyzed by light and fluorescence microscopy, 3-dimensional scanning electron microscopy (SEM), and the quantitative backscattered electron mode of SEM. Cartilage samples were mechanically tested by compression to determine Young's modulus of pigmented, nonpigmented, and OA cartilage samples. In alkaptonuria samples with the least advanced ochronosis, pigment was observed intracellularly and in the territorial matrix of individual chondrocytes at the boundary of the subchondral bone and calcified cartilage. In more advanced ochronosis, pigmentation was widespread throughout the hyaline cartilage in either granular composition or as blanket pigmentation in which there is complete and homogenous pigmentation of cartilage matrix. Once hyaline cartilage was extensively pigmented, there was aggressive osteoclastic resorption of the subchondral plate. Pigmented cartilage became impacted on less highly mineralized trabeculae and embedded in the marrow space. Pigmented cartilage samples were much stiffer than nonpigmented or OA cartilage as revealed by a significant difference in Young's modulus. Using alkaptonuria cartilage specimens with a wide spectrum of pigmentation, we have characterized the progression of ochronosis. Intact cartilage appears to be resistant to pigmentation but becomes susceptible following

  12. Local intra-articular injection of resveratrol delays cartilage degeneration in C57BL/6 mice by inducing autophagy via AMPK/mTOR pathway.

    Science.gov (United States)

    Qin, Na; Wei, Liwei; Li, Wuyin; Yang, Wei; Cai, Litao; Qian, Zhuang; Wu, Shufang

    2017-07-01

    Autophagy is an essential cellular homeostasis mechanism that was found to be compromised in aging and osteoarthritis (OA) cartilage. Previous studies showed that resveratrol can effectively regulate autophagy in other cells. The purpose of this study was to determine whether the chondroprotective effect of resveratrol was related to chondrocyte autophagy and to elucidate underlying mechanisms. OA model was induced by destabilization of the medial meniscus (DMM) in 10-week-old male mice. OA mice were treated with resveratrol with/without 3-MA for 8 weeks beginning 4 weeks after surgery. The local intra-articular injection of resveratrol delayed articular cartilage degradation in DMM-induced OA by OARSI scoring systems and Safranin O-fast green. Resveratrol treatment increased Unc-51-like kinase1, Beclin1, microtubule-associated protein light chain 3, hypoxia inducible factor-1α, phosphorylated AMPK, collagen-2A1, Aggrecan expressions, but decreased hypoxia inducible factor-2α, phosphorylated mTOR, matrix metalloproteinases13 and a disintegrin and metalloproteinase with thrombospondin motifs 5 expressions. The effects of resveratrol were obviously blunted by 3-MA except HIF and AMPK. These findings indicate that resveratrol intra-articular injection delayed articular cartilage degeneration and promoted chondrocyte autophagy in an experimental model of surgical DMM-induced OA, in part via balancing HIF-1α and HIF-2α expressions and thereby regulating AMPK/mTOR signaling pathway. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  13. MMP1, MMP9, and COX2 Expressions in Promonocytes Are Induced by Breast Cancer Cells and Correlate with Collagen Degradation, Transformation-Like Morphological Changes in MCF-10A Acini, and Tumor Aggressiveness

    Directory of Open Access Journals (Sweden)

    G. K. Chimal-Ramírez

    2013-01-01

    Full Text Available Tumor-associated immune cells often lack immune effector activities, and instead they present protumoral functions. To understand how tumors promote this immunological switch, invasive and noninvasive breast cancer cell (BRC lines were cocultured with a promonocytic cell line in a Matrigel-based 3D system. We hypothesized that if communication exists between tumor and immune cells, coculturing would result in augmented expression of genes associated with tumor malignancy. Upregulation of proteases MMP1 and MMP9 and inflammatory COX2 genes was found likely in response to soluble factors. Interestingly, changes were more apparent in promonocytes and correlated with the aggressiveness of the BRC line. Increased gene expression was confirmed by collagen degradation assays and immunocytochemistry of prostaglandin 2, a product of COX2 activity. Untransformed MCF-10A cells were then used as a sensor of soluble factors with transformation-like capabilities, finding that acini formed in the presence of supernatants of the highly aggressive BRC/promonocyte cocultures often exhibited total loss of the normal architecture. These data support that tumor cells can modify immune cell gene expression and tumor aggressiveness may importantly reside in this capacity. Modeling interactions in the tumor stroma will allow the identification of genes useful as cancer prognostic markers and therapy targets.

  14. Hyaluronan supplementation as a mechanical regulator of cartilage tissue development under joint-kinematic-mimicking loading.

    Science.gov (United States)

    Wu, Yabin; Stoddart, Martin J; Wuertz-Kozak, Karin; Grad, Sibylle; Alini, Mauro; Ferguson, Stephen J

    2017-08-01

    Articular cartilage plays an essential role in joint lubrication and impact absorption. Through this, the mechanical signals are coupled to the tissue's physiological response. Healthy synovial fluid has been shown to reduce and homogenize the shear stress acting on the cartilage surfaces due to its unique shear-thinning viscosity. As cartilage tissues are sensitive to mechanical changes in articulation, it was hypothesized that replacing the traditional culture medium with a healthy non-Newtonian lubricant could enhance tissue development in a cartilage engineering model, where joint-kinematic-mimicking mechanical loading is applied. Different amounts of hyaluronic acid were added to the culture medium to replicate the viscosities of synovial fluid at different health states. Hyaluronic acid supplementation, especially at a physiologically healthy concentration (2.0 mg ml -1 ), promoted a better preservation of chondrocyte phenotype. The ratio of collagen II to collagen I mRNA was 4.5 times that of the control group, implying better tissue development (however, with no significant difference of measured collagen II content), with a good retention of collagen II and proteoglycan in the mechanically active region. Simulating synovial fluid properties by hyaluronic acid supplementation created a favourable mechanical environment for mechanically loaded constructs. These findings may help in understanding the influence of joint articulation on tissue homeostasis, and moreover, improve methods for functional cartilage tissue engineering. © 2017 The Author(s).

  15. Stimulation of type I collagen activity in healing of pulp perforation

    OpenAIRE

    Kunarti, Sri

    2008-01-01

    Background: TGF-β1 is a connective tissue stimulant, potential regulator for tissue repair, and promoter in wound healing. The healing of pulp perforation is decided by quantity and quality of new collagen deposition. TGF-β1 upregulates collagen transcription. However, after several weeks production of type I collagen synthesis is stopped and enzymatic degradation of collagen matrix will occur. Purpose: Observe synthesis type I collagen during the process of pulp perforation healing in 7, 14,...

  16. Studies of mineralization in tissue culture: optimal conditions for cartilage calcification

    Science.gov (United States)

    Boskey, A. L.; Stiner, D.; Doty, S. B.; Binderman, I.; Leboy, P.

    1992-01-01

    The optimal conditions for obtaining a calcified cartilage matrix approximating that which exists in situ were established in a differentiating chick limb bud mesenchymal cell culture system. Using cells from stage 21-24 embryos in a micro-mass culture, at an optimal density of 0.5 million cells/20 microliters spot, the deposition of small crystals of hydroxyapatite on a collagenous matrix and matrix vesicles was detected by day 21 using X-ray diffraction, FT-IR microscopy, and electron microscopy. Optimal media, containing 1.1 mM Ca, 4 mM P, 25 micrograms/ml vitamin C, 0.3 mg/ml glutamine, no Hepes buffer, and 10% fetal bovine serum, produced matrix resembling the calcifying cartilage matrix of fetal chick long bones. Interestingly, higher concentrations of fetal bovine serum had an inhibitory effect on calcification. The cartilage phenotype was confirmed based on the cellular expression of cartilage collagen and proteoglycan mRNAs, the presence of type II and type X collagen, and cartilage type proteoglycan at the light microscopic level, and the presence of chondrocytes and matrix vesicles at the EM level. The system is proposed as a model for evaluating the events in cell mediated cartilage calcification.

  17. Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering.

    Directory of Open Access Journals (Sweden)

    Amanda J Sutherland

    Full Text Available Extracellular matrix (ECM-based materials are attractive for regenerative medicine in their ability to potentially aid in stem cell recruitment, infiltration, and differentiation without added biological factors. In musculoskeletal tissue engineering, demineralized bone matrix is widely used, but recently cartilage matrix has been attracting attention as a potentially chondroinductive material. The aim of this study was thus to establish a chemical decellularization method for use with articular cartilage to quantify removal of cells and analyze the cartilage biochemical content at various stages during the decellularization process, which included a physically devitalization step. To study the cellular response to the cartilage matrix, rat bone marrow-derived mesenchymal stem cells (rBMSCs were cultured in cell pellets containing cells only (control, chondrogenic differentiation medium (TGF-β, chemically decellularized cartilage particles (DCC, or physically devitalized cartilage particles (DVC. The chemical decellularization process removed the vast majority of DNA and about half of the glycosaminoglycans (GAG within the matrix, but had no significant effect on the amount of hydroxyproline. Most notably, the DCC group significantly outperformed TGF-β in chondroinduction of rBMSCs, with collagen II gene expression an order of magnitude or more higher. While DVC did not exhibit a chondrogenic response to the extent that DCC did, DVC had a greater down regulation of collagen I, collagen X and Runx2. A new protocol has been introduced for cartilage devitalization and decellularization in the current study, with evidence of chondroinductivity. Such bioactivity along with providing the 'raw material' building blocks of regenerating cartilage may suggest a promising role for DCC in biomaterials that rely on recruiting endogenous cell recruitment and differentiation for cartilage regeneration.

  18. Discovery and development of the N-terminal procollagen type II (NPII) biomarker: a tool for measuring collagen type II synthesis.

    Science.gov (United States)

    Nemirovskiy, O V; Sunyer, T; Aggarwal, P; Abrams, M; Hellio Le Graverand, M P; Mathews, W R

    2008-12-01

    Progression of joint damage in osteoarthritis (OA) is likely to result from an imbalance between cartilage degradation and synthesis processes. Markers reflecting these two components appear to be promising in predicting the rate of OA progression. Both N- and C-terminal propeptides of type II collagen reflect the rates of collagen type II synthesis. The ability to quantify the procollagen peptides in biological fluids would enable a better understanding of OA disease pathology and provide means for assessing the proof of mechanism of anabolic disease modifying OA drugs (DMOADs). A polyclonal antibody that recognizes the sequence GPKGQKGEPGDIKDI in the propeptide region of rat, dog, and human type II collagen was raised in chicken and peptide-affinity purified. The immunoaffinity liquid chromatography mass spectrometry (LC-MS/MS) was used to extensively characterize N-terminal procollagen type II (NPII) peptides found in biological fluids. The novel competition enzyme-linked immunosorbent assay (ELISA) assay was developed to quantitatively measure the NPII peptides. Several peptides ranging from 17 to 41 amino acids with various modifications including hydroxylations on proline and lysine residues, oxidation of lysines to allysines, and attachments of glucose and galactose moieties to hydroxylysines were identified in a simple system such as ex vivo cultures of human articular cartilage (HAC) explants as well as in more complex biological fluids such as human urine and plasma. A competitive ELISA assay has been developed and applied to urine, plasma, and synovial fluid matrices in human, rat and dog samples. A novel NPII assay has been developed and applied to OA and normal human subjects to understand the changes in collagen type II synthesis related to the pathology of OA.

  19. Hyaline articular cartilage dissected by papain: light and scanning electron microscopy and micromechanical studies.

    OpenAIRE

    O'Connor, P; Brereton, J D; Gardner, D L

    1984-01-01

    Papain was used to digest the hyaline femoral condylar cartilages of 30 adult Wistar rats. Matrix proteoglycan degradation was assessed by the light microscopy of paraffin sections stained with toluidine blue. The extent of surface structural change was estimated by scanning electron microscopy, and the structural integrity of the hyaline cartilage tested by the controlled impact of a sharp pin. The results demonstrated an early loss of cartilage metachromasia, increasing with time of papain ...

  20. Biochemical and biomechanical characterisation of equine cervical facet joint cartilage.

    Science.gov (United States)

    O'Leary, S A; White, J L; Hu, J C; Athanasiou, K A

    2018-04-15

    The equine cervical facet joint is a site of significant pathology. Located bilaterally on the dorsal spine, these diarthrodial joints work in conjunction with the intervertebral disc to facilitate appropriate spinal motion. Despite the high prevalence of pathology in this joint, the facet joint is understudied and thus lacking in viable treatment options. The goal of this study was to characterise equine facet joint cartilage and provide a comprehensive database describing the morphological, histological, biochemical and biomechanical properties of this tissue. Descriptive cadaver studies. A total of 132 facet joint surfaces were harvested from the cervical spines of six skeletally mature horses (11 surfaces per animal) for compiling biomechanical and biochemical properties of hyaline cartilage of the equine cervical facet joints. Gross morphometric measurements and histological staining were performed on facet joint cartilage. Creep indentation and uniaxial strain-to-failure testing were used to determine the biomechanical compressive and tensile properties. Biochemical assays included quantification of total collagen, sulfated glycosaminoglycan and DNA content. The facet joint surfaces were ovoid in shape with a flat articular surface. Histological analyses highlighted structures akin to articular cartilage of other synovial joints. In general, biomechanical and biochemical properties did not differ significantly between the inferior and superior joint surfaces as well as among spinal levels. Interestingly, compressive and tensile properties of cervical facet articular cartilage were lower than those of articular cartilage from other previously characterised equine joints. Removal of the superficial zone reduced the tissue's tensile strength, suggesting that this zone is important for the tensile integrity of the tissue. Facet surfaces were sampled at a single, central location and do not capture the potential topographic variation in cartilage properties. This

  1. Biological Differences between Hanwoo longissimus dorsi and semimembranosus Muscles in Collagen Synthesis of Fibroblasts.

    Science.gov (United States)

    Subramaniyan, Sivakumar Allur; Hwang, Inho

    2017-01-01

    Variations in physical toughness between muscles and animals are a function of growth rate and extend of collagen type I and III. The current study was designed to investigate the ability of growth rate, collagen concentration, collagen synthesizing and degrading genes on two different fibroblast cells derived from Hanwoo m. longissimus dorsi (LD) and semimembranosus (SM) muscles. Fibroblast cell survival time was determined for understanding about the characteristics of proliferation rate between the two fibroblasts. We examined the collagen concentration and protein expression of collagen type I and III between the two fibroblasts. The mRNA expression of collagen synthesis and collagen degrading genes to elucidate the molecular mechanisms on toughness and tenderness through collagen production between the two fibroblast cells. From our results the growth rate, collagen content and protein expression of collagen type I and III were significantly higher in SM than LD muscle fibroblast. The mRNA expressions of collagen synthesized genes were increased whereas the collagen degrading genes were decreased in SM than LD muscle. Results from confocal microscopical investigation showed increased fluorescence of collagen type I and III appearing stronger in SM than LD muscle fibroblast. These results implied that the locomotion muscle had higher fibroblast growth rate, leads to produce more collagen, and cause tougher than positional muscle. This in vitro study mirrored that background toughness of various muscles in live animal is likely associated with fibroblast growth pattern, collagen synthesis and its gene expression.

  2. Aging histological changes in the cartilages of the cricoarytenoid joint

    Directory of Open Access Journals (Sweden)

    Dedivitis Rogério Aparecido

    2004-01-01

    Full Text Available PURPOSE: Analysis of ossification, bone marrow formation, perichondrium thickness, muscle fibers, collagen fibers and elastic fibers quantities of cricoid and arytenoid cartilages. Design: Correlation morphologic study. METHODS: Twenty-four cricoarytenoid joints were obtained from Caucasian male fresh cadavers divided into three groups with eight specimens in each: group I - adolescents, from 15 to 20; group II - adults, from 25 to 35; and group III - elderly, from 60 to 75. The specimens were stained with H-E; trichrome; Picrosirius; and elastic stain. Histometry was performed for quantitative analysis. Bonferroni Test, Fisher Test and the Variance Analysis were used. RESULTS: At the microscopic analysis, the group I specimens presented typical hyaline cartilage, thin perichondrium, bulky muscle fibers and were surrounded by collagen fibers. In group II, there were ossification in small well defined central areas of four specimens, with lamellar bone tissue. In two of these cases there were central bone cavity full of fat tissue. The other parameters were similar to group I. In group III, most part of hyaline cartilage was replaced by typical lamellar bone tissue with poorly outlined haversian systems. Hematopoietic tissue was noted in six cases and fat tissue in the other two. Perichondrium was thicker. Small muscle fibers were smaller and surrounded by collagen in great quantity. Elastic fibers were present in small quantity in the outer portion of perichondrium in all the groups. CONCLUSIONS: In spite of its lack in adolescence, ossification occurs in cricoid and arytenoid cartilages during adulthood and intensifies with age; bone marrow is formed in ossification tissue with hematopoietic tissue in group III; perichondrium becomes thicker in group III; muscle tissue atrophies in group III and is replaced by collagen fibers; these fibers thicken with age; and elastic fibers is always present in the perichondrium in low quantity.

  3. Magnetic resonance imaging of cartilage and cartilage repair

    International Nuclear Information System (INIS)

    Verstraete, K.L.; Almqvist, F.; Verdonk, P.; Vanderschueren, G.; Huysse, W.; Verdonk, R.; Verbrugge, G.

    2004-01-01

    Magnetic resonance (MR) imaging of articular cartilage has assumed increased importance because of the prevalence of cartilage injury and degeneration, as well as the development of new surgical and pharmacological techniques to treat damaged cartilage. This article will review relevant aspects of the structure and biochemistry of cartilage that are important for understanding MR imaging of cartilage, describe optimal MR pulse sequences for its evaluation, and review the role of experimental quantitative MR techniques. These MR aspects are applied to clinical scenarios, including traumatic chondral injury, osteoarthritis, inflammatory arthritis, and cartilage repair procedures

  4. Magnetic resonance imaging of cartilage and cartilage repair

    Energy Technology Data Exchange (ETDEWEB)

    Verstraete, K.L. E-mail: koenraad.verstraete@ugent.be; Almqvist, F.; Verdonk, P.; Vanderschueren, G.; Huysse, W.; Verdonk, R.; Verbrugge, G

    2004-08-01

    Magnetic resonance (MR) imaging of articular cartilage has assumed increased importance because of the prevalence of cartilage injury and degeneration, as well as the development of new surgical and pharmacological techniques to treat damaged cartilage. This article will review relevant aspects of the structure and biochemistry of cartilage that are important for understanding MR imaging of cartilage, describe optimal MR pulse sequences for its evaluation, and review the role of experimental quantitative MR techniques. These MR aspects are applied to clinical scenarios, including traumatic chondral injury, osteoarthritis, inflammatory arthritis, and cartilage repair procedures.

  5. Biochemical effects on long-term frozen human costal cartilage

    International Nuclear Information System (INIS)

    Santin, Stefany P.; Martinho Junior, Antonio C.; Yoshito, Daniele; Soares, Fernando A.N.; Mathor, Monica B.

    2011-01-01

    Currently, the progresses on treatment of musculoskeletal diseases with the evolving of artificial implants and the success of tissue transplantation between genetically different individuals have conducted to an increase in radiosterilization. Regarding to tissue transplantation, it is essential to have sterile tissue and many tissue banks use radiosterilization as an effective method to sterilize these tissues. However, high doses of ionizing radiation and the preservation method may induce structural modifications in the tissues, as degradation of structural scaffold, decreasing its mechanical properties. Particularly, cartilage have been preserved in high concentrations of glycerol or deep-frozen at -70 degree C for storage after radiosterilization. Therefore, it is important to study the modifications induced in cartilage by preservation methods and by radiosterilization to determine the appropriated parameters for high quality of human allografts. Costal cartilages were obtained from cadaveric donors and were frozen at -20 degree C for 2 years long in order to compare with previous studies for fresh, deep-frozen and glycerolised cartilages. The mechanical tests were carried out in a universal testing machine until sample failure. According our results, there is no significant statistical difference between stress at break of fresh, long-term - 20 degree C frozen cartilages and deep-frozen cartilage. This early result suggests, regarding to tensile property, that long-term - 20 degree C frozen cartilages corresponds to glycerolised costal cartilages irradiated with 25 kGy or deep-frozen cartilages irradiated with 25 and 50 kGy. Thus, this long-term frozen cartilages may be used for tissue banks, but more studies about effects of ionizing radiation are necessary. (author)

  6. Biochemical effects on long-term frozen human costal cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Santin, Stefany P.; Martinho Junior, Antonio C.; Yoshito, Daniele; Soares, Fernando A.N.; Mathor, Monica B., E-mail: mathor@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Currently, the progresses on treatment of musculoskeletal diseases with the evolving of artificial implants and the success of tissue transplantation between genetically different individuals have conducted to an increase in radiosterilization. Regarding to tissue transplantation, it is essential to have sterile tissue and many tissue banks use radiosterilization as an effective method to sterilize these tissues. However, high doses of ionizing radiation and the preservation method may induce structural modifications in the tissues, as degradation of structural scaffold, decreasing its mechanical properties. Particularly, cartilage have been preserved in high concentrations of glycerol or deep-frozen at -70 degree C for storage after radiosterilization. Therefore, it is important to study the modifications induced in cartilage by preservation methods and by radiosterilization to determine the appropriated parameters for high quality of human allografts. Costal cartilages were obtained from cadaveric donors and were frozen at -20 degree C for 2 years long in order to compare with previous studies for fresh, deep-frozen and glycerolised cartilages. The mechanical tests were carried out in a universal testing machine until sample failure. According our results, there is no significant statistical difference between stress at break of fresh, long-term - 20 degree C frozen cartilages and deep-frozen cartilage. This early result suggests, regarding to tensile property, that long-term - 20 degree C frozen cartilages corresponds to glycerolised costal cartilages irradiated with 25 kGy or deep-frozen cartilages irradiated with 25 and 50 kGy. Thus, this long-term frozen cartilages may be used for tissue banks, but more studies about effects of ionizing radiation are necessary. (author)

  7. Autologous Cartilage Chip Transplantation Improves Repair Tissue Composition Compared With Marrow Stimulation.

    Science.gov (United States)

    Christensen, Bjørn Borsøe; Olesen, Morten Lykke; Lind, Martin; Foldager, Casper Bindzus

    2017-06-01

    Repair of chondral injuries by use of cartilage chips has recently demonstrated clinical feasibility. To investigate in vivo cartilage repair outcome of autologous cartilage chips compared with marrow stimulation in full-thickness cartilage defects in a minipig model. Controlled laboratory study. Six Göttingen minipigs received two 6-mm chondral defects in the medial and lateral trochlea of each knee. The two treatment groups were (1) autologous cartilage chips embedded in fibrin glue (ACC) (n = 12) and (2) marrow stimulation (MST) (n = 12). The animals were euthanized after 6 months, and the composition of repair tissue was quantitatively determined using histomorphometry. Semiquantitative evaluation was performed by means of the International Cartilage Repair Society (ICRS) II score. Collagen type II staining was used to further evaluate the repair tissue composition. Significantly more hyaline cartilage was found in the ACC (17.1%) compared with MST (2.9%) group ( P cartilage repair tissue compared with MST at 6 months postoperatively. Further studies are needed to investigate ACC as a possible alternative first-line treatment for focal cartilage injuries in the knee.

  8. Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel.

    Science.gov (United States)

    Zhang, Yanbo; Zhang, Jin; Chang, Fei; Xu, Weiguo; Ding, Jianxun

    2018-07-01

    Cartilage defect repair by hydrogel-based tissue engineering is becoming one of the most potential treatment strategies. In this work, a thermogel of triblock copolymer poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) was prepared as scaffold of bone marrow mesenchymal stem cells (BMMSCs) for repair of full-thickness articular cartilage defect. At first, the copolymer solution showed a reversible sol-gel transition at physiological temperature range, and the mechanical properties of such thermogel were high enough to support the repair of cartilage. Additionally, excellent biodegradability and biocompatibility of the thermogel were demonstrated. By implanting the BMMSC-encapsulated thermogel into the full-thickness articular cartilage defect (5.0 mm in diameter and 4.0 mm in depth) in the rabbit, it was found that the regenerated cartilage integrated well with the surrounding normal cartilage and subchondral bone at 12 weeks post-surgery. The upregulated expression of glycosaminoglycan and type II collagen in the repaired cartilage, and the comparable biomechanical properties with normal cartilage suggested that the cell-encapsulated PLGA-PEG-PLGA thermogel had great potential in serving as the promising scaffold for cartilage regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Biophysical Stimuli: A Review of Electrical and Mechanical Stimulation in Hyaline Cartilage.

    Science.gov (United States)

    Vaca-González, Juan J; Guevara, Johana M; Moncayo, Miguel A; Castro-Abril, Hector; Hata, Yoshie; Garzón-Alvarado, Diego A

    2017-09-01

    Objective Hyaline cartilage degenerative pathologies induce morphologic and biomechanical changes resulting in cartilage tissue damage. In pursuit of therapeutic options, electrical and mechanical stimulation have been proposed for improving tissue engineering approaches for cartilage repair. The purpose of this review was to highlight the effect of electrical stimulation and mechanical stimuli in chondrocyte behavior. Design Different information sources and the MEDLINE database were systematically revised to summarize the different contributions for the past 40 years. Results It has been shown that electric stimulation may increase cell proliferation and stimulate the synthesis of molecules associated with the extracellular matrix of the articular cartilage, such as collagen type II, aggrecan and glycosaminoglycans, while mechanical loads trigger anabolic and catabolic responses in chondrocytes. Conclusion The biophysical stimuli can increase cell proliferation and stimulate molecules associated with hyaline cartilage extracellular matrix maintenance.

  10. Efficacy of platelet-rich fibrin matrix on viability of diced cartilage grafts in a rabbit model.

    Science.gov (United States)

    Güler, İsmail; Billur, Deniz; Aydin, Sevim; Kocatürk, Sinan

    2015-03-01

    The objective of this study was to compare the viability of cartilage grafts embedded in platelet-rich fibrin matrix (PRFM) wrapped with no material (bare diced cartilage grafts), oxidized methylcellulose (Surgicel), or acellular dermal tissue (AlloDerm). Experimental study. In this study, six New Zealand rabbits were used. Cartilage grafts including perichondrium were excised from each ear and diced into 2-mm-by 2-mm pieces. There were four comparison groups: 1) group A, diced cartilage (not wrapped with any material); 2) group B, diced cartilage wrapped with AlloDerm; 3) group C, diced cartilage grafts wrapped with Surgicel; and 4) group D, diced cartilage wrapped with PRFM. Four cartilage grafts were implanted under the skin at the back of each rabbit. All rabbits were sacrificed at the end of 10 weeks. The cartilages were stained with hematoxylin-eosin, Masson's Trichrome, and Orcein. After that, they were evaluated for the viability of chondrocytes, collagen content, fibrillar structure of matrix, and changes in peripheral tissues. When the viability of chondrocytes, the content of fiber in matrix, and changes in peripheral tissues were compared, the cartilage embedded in the PRFM group was statistically significantly higher than in the other groups (P < 0.05). We concluded that PRFM has significant advantages in ensuring the chondrocyte viability of diced cartilage grafts. It is also biocompatible, with relatively lesser inflammation and fibrosis. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  11. Compositional studies at the Bone-Cartilage interface using PIXE, RBS and cSAXS techniques

    International Nuclear Information System (INIS)

    Kaabar, W.; Gundogdu, O.; Bradley, D.A.; Bunk, O.; Pfeiffer, F.; Pfeiffer, F.; Farquharson, M.J.; Webb, M.; Jeynes, C.

    2009-01-01

    Micro Proton Induced X-ray Emission (μ-PIXE) analysis has been employed herein in investigating and quantifying the distribution of a number of essential cations in two thin slices of normal and diseased human articular cartilage, the latter being affected by osteoarthritis (OA). The elemental distribution maps for Ca, P, K, S and Zn in the normal and diseased slices showed similar patterns with marked increases in elemental concentrations in the bone-cartilage interface. The S concentration was significantly lower in bone than in cartilage. Conversely, the Ca and P concentrations were higher in bone. The Ca/P ratio (2.22) of the diseased slice was determined by employing the Rutherford backscattering technique (RBS). The RBS figures of this investigation agree with values previously reported by others. Structural and organisational changes of collagen networks were investigated by coherent Small-Angle X-ray Scattering (SAXS) using beamline facilities at the Swiss Light Source (SLS) for a decalcified diseased human articular cartilage slice. The SAXS findings showed a gradual reorientation of collagen type II fibres of cartilage from parallel to the surface of the joint to normal to the bone-cartilage interface. Similar patterns of orientation were observed at the subchondral bone to bone-cartilage interface

  12. Histochemical characterization of human osteochondral tissue: comparison between healthy cartilage, arthrotic tissues, and cartilage defect treated with MACI technique

    Directory of Open Access Journals (Sweden)

    F. Tessarolo

    2011-01-01

    Full Text Available Matrix-induced sutologous chondrocytes implantation (MACI is a promising technique for the treatment of articular cartilage lesions, but long time outcome have to be established. We developed and optimized specific techniques of histochemical staining to characterize healthy and pathologic osteochondral tissue. Seven different staining protocols were applied to assess tissue architecture, cells morphology, proteoglycan content, and collagen fibers distribution. Potentialities of histochemical staining and histomorphology of biopsies from second look arthroscopy will be presented.

  13. The non-phagocytic route of collagen uptake

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Ingvarsen, Signe; Jürgensen, Henrik J

    2011-01-01

    The degradation of collagens, the most abundant proteins of the extracellular matrix, is involved in numerous physiological and pathological conditions including cancer invasion. An important turnover pathway involves cellular internalization and degradation of large, soluble collagen fragments......, generated by initial cleavage of the insoluble collagen fibers. We have previously observed that in primary mouse fibroblasts, this endocytosis of collagen fragments is dependent on the receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180. Others have identified additional...... mechanisms of collagen uptake, with different associated receptors, in other cell types. These receptors include β1-integrins, being responsible for collagen phagocytosis, and the mannose receptor. We have now utilized a newly developed monoclonal antibody against uPARAP/Endo180, which down...

  14. Monitoring the effect of mechanical stress on mesenchymal stem cell collagen production by multiphoton microscopy

    Science.gov (United States)

    Chen, Wei-Liang; Chang, Chia-Cheng; Chiou, Ling-Ling; Li, Tsung-Hsien; Liu, Yuan; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2008-02-01

    Tissue engineering is emerging as a promising method for repairing damaged tissues. Due to cartilage's common wear and injury, in vitro production of cartilage replacements have been an active area of research. Finding the optimal condition for the generation of the collagen matrix is crucial in reproducing cartilages that closely match those found in human. Using multiphoton autofluorescence and second-harmonic generation (SHG) microscopy we monitored the effect of mechanical stress on mesenchymal stem cell collagen production. Bone marrow mesenchymal stem cells in the form of pellets were cultured and periodically placed under different mechanical stress by centrifugation over a period of four weeks. The differently stressed samples were imaged several times during the four week period, and the collagen production under different mechanical stress is characterized.

  15. Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone

    International Nuclear Information System (INIS)

    Saarakkala, Simo; Laasanen, Mikko S; Jurvelin, Jukka S; Toeyraes, Juha

    2006-01-01

    Previous studies have suggested that quantitative ultrasound imaging could sensitively diagnose degeneration of the articular surface and changes in the subchondral bone during the development of osteoarthrosis (OA). We have recently introduced a new parameter, ultrasound roughness index (URI), for the quantification of cartilage surface roughness, and successfully tested it with normal and experimentally degraded articular surfaces. In this in vitro study, the applicability of URI was tested in bovine cartilage samples with spontaneously developed tissue degeneration. Simultaneously, we studied the sensitivity of quantitative ultrasound imaging to detect degenerative changes in the cartilage-bone interface. For reference, histological degenerative grade of the cartilage samples was determined. Mechanical reference measurements were also conducted. Cartilage surface roughness (URI) was significantly (p < 0.05) higher in histologically degenerated samples with inferior mechanical properties. Ultrasound reflection at the cartilage-bone interface was also significantly (p < 0.05) increased in degenerated samples. Furthermore, it was quantitatively confirmed that ultrasound attenuation in the overlying cartilage significantly affects the measured ultrasound reflection values from the cartilage-bone interface. To conclude, the combined ultrasound measurement of the cartilage surface roughness and ultrasound reflection at the cartilage-bone interface complement each other, and may together enable more sensitive and quantitative diagnosis of early OA or follow up after surgical cartilage repair

  16. Attenuated synovial fluid ghrelin levels are linked with cartilage damage, meniscus injury, and clinical symptoms in patients with knee anterior cruciate ligament deficiency.

    Science.gov (United States)

    Zou, Yu-Cong; Chen, Liang-Hua; Ye, Yong-Liang; Yang, Guang-Gang; Mao, Zheng; Liu, Dan-Dan; Chen, Jun-Qi; Chen, Jing-Jie; Liu, Gang

    2016-12-01

    The meniscus injury and post-traumatic knee osteoarthritis (PTOA) following anterior cruciate ligament (ACL) lesions often cause great burdens to patients. Ghrelin, a recently identified 28-amino-acid peptide, has been shown to inhibit inflammation and perform as a growth factor for chondrocyte. This study was aimed at investigating ghrelin concentration in synovial fluid and its association with the degree of meniscus injury, articular degeneration, and clinical severity in patients suffering from anterior cruciate ligament (ACL) deficiency. 61 ACL deficiency patients admitted to our hospital were drafted in the current study. The Noyes scale and Mankin scores were used to assess articular cartilage damage arthroscopically and histopathologically, respectively. The Lysholm scores and International Knee Documentation Committee (IKDC) subjective scores were utilized to evaluate the clinical severity. The radiological severity of meniscus injury was assessed by MR imaging. Serum and synovial fluid ghrelin levels were determined using enzyme linked immunosorbent assay (ELISA). The cartilage degradation markers collagen type II C-telopeptide (CTX-II) and cartilage oligomeric matrix protein (COMP) in addition to inflammatory markers interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) were also examined. Receiver operating characteristic (ROC) curve was performed and the area under curve (AUC) was calculated to assess the diagnostic value of ghrelin levels for the prediction of the MRI grading for meniscus injury by comparing with other biomarkers. SF ghrelin levels were positively related to Lysholm and IKDC scores. PTOA patients with grade 3 showed significantly decreased levels of ghrelin in SF compared with those with grade 2. The ghrelin levels in SF were negatively related to MRI signal grades for meniscus injury. SF ghrelin levels were also inversely associated with Noyes scale and Mankin scores, and levels of inflammation markers IL-6, TNF-α, and

  17. [The optimization of chondromalacia patellae diagnosis by NMR tomography. The use of an apparatus for cartilage compression].

    Science.gov (United States)

    König, H; Dinkelaker, F; Wolf, K J

    1991-08-01

    The aim of this study was to improve the MRI diagnosis of CMP, with special reference to the early stages and accurate staging. For this purpose, the retropatellar cartilage was examined by MRI while compression was carried out, using 21 patients and five normal controls. The compression was applied by means of a specially constructed device. Changes in cartilage thickness and signal intensity were evaluated quantitatively during FLASH and FISP sequences. In all patients the results of arthroscopies were available and in 12 patients, cartilage biopsies had been obtained. CMP stage I could be distinguished from normal cartilage by reduction in cartilage thickness and signal increase from the oedematous cartilage during compression. In CMP stages II/III, abnormal protein deposition of collagen type I could be demonstrated by its compressibility. In stages III and IV, the method does not add any significant additional information.

  18. Relationship between Disease Activity and Circulating Level of Collagen II C-Telopeptide Fragments in Papain Induced Osteoarthritis Rat Model

    Directory of Open Access Journals (Sweden)

    Humaira Majeed Khan

    2014-01-01

    Full Text Available Osteoarthritis (OA is a progressive degeneration of articular cartilage leading to failure in functional mobility of joints. It is characterized by morphological, biochemical and molecular changes in histology of cartilage. Different biological markers are used as indicators to precisely predict the stage of cartilage destruction of joints in OA patients and to evaluate the therapeutic efficacy of drugs used for OA. The present research was chalked out to establish relationship between disease activity and serum level of C-terminal telopeptide of type II collagen (CTX-II in experimentally induced OA rat model. Out of 30 male Wistar rats, 25 were used to induce OA by injecting papain (10mg/0.5mL of 0.05M sodium acetate in right knee joints whereas five (control were injected with sterile normal saline solution on day 0. Blood samples (5mL each were collected on weekly basis up to 28th days of post papain injection. Sera were separated and subjected to perform ELISA for estimating CTX-II fragments as cartilage biomarker (CartiLaps ® ELISA kit in experimental groups. Maximum level of CTX–II (pg/mL (40.44±3.07 was observed in sera samples of day 14 post papain injection followed by days 21 (40.22±2.01, 28 (36.82±3.81, 7 (34.48±4.17, 1 (15.08±4.22 and day 0 (2.55±0.10. The early changes in serum CTX-II from day 0 to 14 showed significant association with cartilage damage. Later on, no significant difference was observed in CTX-II level on day 14, 21 and 28 post papain injection. It is concluded that elevation in serum CTX-II level was concomitant with the onset of disease and degradation of cartilage. Moreover, CTX-II is a sensitive diagnostic biomarker to monitor joint disorder severity in papain induced OA rat experimental model on different days. These findings may be used as base line for early diagnosis of disease and initiation of therapy for successful outcome.

  19. Effects of Hydrostatic Loading on a Self-Aggregating, Suspension Culture–Derived Cartilage Tissue Analog

    Science.gov (United States)

    Kraft, Jeffrey J.; Jeong, Changhoon; Novotny, John E.; Seacrist, Thomas; Chan, Gilbert; Domzalski, Marcin; Turka, Christina M.; Richardson, Dean W.; Dodge, George R.

    2011-01-01

    Objective: Many approaches are being taken to generate cartilage replacement materials. The goal of this study was to use a self-aggregating suspension culture model of chondrocytes with mechanical preconditioning. Design: Our model differs from others in that it is based on a scaffold-less, self-aggregating culture model that produces a cartilage tissue analog that has been shown to share many similarities with the natural cartilage phenotype. Owing to the known loaded environment under which chondrocytes function in vivo, we hypothesized that applying force to the suspension culture–derived chondrocyte biomass would improve its cartilage-like characteristics and provide a new model for engineering cartilage tissue analogs. Results: In this study, we used a specialized hydrostatic pressure bioreactor system to apply mechanical forces during the growth phase to improve biochemical and biophysical properties of the biomaterial formed. We demonstrated that using this high-density suspension culture, a biomaterial more consistent with the hyaline cartilage phenotype was produced without any foreign material added. Unpassaged chondrocytes responded to a physiologically relevant hydrostatic load by significantly increasing gene expression of critical cartilage molecule collagen and aggrecan along with other cartilage relevant genes, CD44, perlecan, decorin, COMP, and iNOS. Conclusions: This study describes a self-aggregating bioreactor model without foreign material or scaffold in which chondrocytes form a cartilage tissue analog with many features similar to native cartilage. This study represents a promising scaffold-less, methodological advancement in cartilage tissue engineering with potential translational applications to cartilage repair. PMID:26069584

  20. Increasing the Dose of Autologous Chondrocytes Improves Articular Cartilage Repair: Histological and Molecular Study in the Sheep Animal Model.

    Science.gov (United States)

    Guillén-García, Pedro; Rodríguez-Iñigo, Elena; Guillén-Vicente, Isabel; Caballero-Santos, Rosa; Guillén-Vicente, Marta; Abelow, Stephen; Giménez-Gallego, Guillermo; López-Alcorocho, Juan Manuel

    2014-04-01

    We hypothesized that implanting cells in a chondral defect at a density more similar to that of the intact cartilage could induce them to synthesize matrix with the features more similar to that of the uninjured one. We compared the implantation of different doses of chondrocytes: 1 million (n = 5), 5 million (n = 5), or 5 million mesenchymal cells (n = 5) in the femoral condyle of 15 sheep. Tissue generated by microfracture at the trochlea, and normal cartilage from a nearby region, processed as the tissues resulting from the implantation, were used as references. Histological and molecular (expression of type I and II collagens and aggrecan) studies were performed. The features of the cartilage generated by implantation of mesenchymal cells and elicited by microfractures were similar and typical of a poor repair of the articular cartilage (presence of fibrocartilage, high expression of type I collagen and a low mRNA levels of type II collagen and aggrecan). Nevertheless, in the samples obtained from tissues generated by implantation of chondrocytes, hyaline-like cartilage, cell organization, low expression rates of type I collagen and high levels of mRNA corresponding to type II collagen and aggrecan were observed. These histological features, show less variability and are more similar to those of the normal cartilage used as control in the case of 5 million cells implantation than when 1 million cells were used. The implantation of autologous chondrocytes in type I/III collagen membranes at high density could be a promising tool to repair articular cartilage.

  1. Proximal collagenous gastroenteritides:

    DEFF Research Database (Denmark)

    Nielsen, Ole Haagen; Riis, Lene Buhl; Danese, Silvio

    2014-01-01

    AIM: While collagenous colitis represents the most common form of the collagenous gastroenteritides, the collagenous entities affecting the proximal part of the gastrointestinal tract are much less recognized and possibly overlooked. The aim was to summarize the latest information through a syste...

  2. Enhanced regulatory gene expressions in the blood and articular cartilage of patients with rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Elena Vasilyevna Chetina

    2012-01-01

    Full Text Available Objective: to study the expression ratio of the non-tissue specific regulatory genes mTOR, р21, ATG1, caspase 3, tumor necrosis factor-а (TNF-а, and interleukin-6 (IL-6, as well as matrix metalloproteinase 13 (MMP-13 and X type collagen (COL10A1, cartilage resorption-associated MMP13 and COL10A1 in the blood and knee articular cartilage in patients with rheumatoid arthritis (RA. Subjects and methods. Twenty-five specimens of the distal femoral articular cartilage condyles were studied in 15 RA patients (mean age 52.4+9.1 years after endoprosthetic knee joint replacement and in 10 healthy individuals (mean age 36.0+9.1 years included into the control group. Twenty-eight blood samples taken from 28 RA patients (aged 52+7.6 years prior to endoprosthetic knee joint replacement and 27 blood samples from healthy individuals (mean age 53.6+8.3 years; a control group were also analyzed. Real-time quantitative polymerase chain reaction was applied to estimate the expression of the mTOR, p21, ATG1, caspase 3, TNF-а, IL- 6, COL0A1, and MMP-13 genes. The levels of a protein equivalent in the p70-S6K(activated by mTOR, p21, and caspase 3 genes concerned was measured in the isolated lymphocyte lysates, by applying the commercially available ELISA kits. Total protein in the cell extracts was determined using the Bradford assay procedure. Results. The cartilage samples from patients with end-stage RA exhibited a significantly higher mTOR, ATG1, p21, TNFа, MMP-13, and COL10A1 gene expressions than did those from the healthy individuals. At the same time, IL6 gene expression was much lower than that in the control group. The expressions of the mTOR, ATG1, p21, TNFа, and IL 6 genes in the blood of RA patients were much greater than those in the donors. Caspase 3 expression did not differ essentially in the bloods of the patients with RA and healthy individuals. The bloods failed to show MMP-13 and COL10A1 expressions. High mTOR and p21 gene expressions were

  3. Matrix metalloproteinase-13 downregulation and potential cartilage protective action of the Korean Red Ginseng preparation

    Directory of Open Access Journals (Sweden)

    Je Hyeong Lee

    2015-01-01

    Conclusion: Some preparations from Korean Red Ginseng and ginseng leaves, particularly GDF/F4, may possess the protective activity against cartilage degradation in joint disorders, and may have potential as new therapeutic agents.

  4. Raman microspectrometry of laser-reshaped rabbit auricular cartilage: preliminary study on laser-induced cartilage mineralization

    Science.gov (United States)

    Heger, Michal; Mordon, Serge R.; Leroy, Gérard; Fleurisse, Laurence; Creusy, Collette

    2006-03-01

    Laser-assisted cartilage reshaping (LACR) is a relatively novel technique designed to noninvasively and permanently restructure cartilaginous tissue. It is believed that heat-induced stress relaxation, in which a temperature-mediated disruption of H2O binding is associated with conformational alterations in the proteoglycan and collagen-rich matrix, constitutes the underlying mechanism of LACR. Several reports have suggested that laser-mediated cartilage mineralization may contribute to the permanent shape change of laser-reshaped cartilage. In an effort to validate these results in the context of Er:glass LACR, we performed a preliminary Raman microspectrometric study to characterize the crystal deposits in laser-irradiated chondrocytes and extracellular matrix. For the first time, we identified intracellular calcium sulfate deposits and extracellular calcium phosphate (apatite) crystals in laser-reshaped rabbit auricular cartilage. Calcium carbonate deposits are localized in both irradiated and nonirradiated samples, suggesting that this mineral plays no role in conformational retention. In our discussion, we elaborate on the possible molecular and cellular mechanisms responsible for intra- and extracellular crystallization, and propose a novel hypothesis on the formation of apatite, inasmuch as the biological function of this mineral (providing structure and rigidity in bones and dental enamel) may be extrapolated to the permanent shape change of laser-irradiated cartilage.

  5. Degenerated human articular cartilage at autopsy represents preclinical osteoarthritic cartilage: comparison with clinically defined osteoarthritic cartilage

    NARCIS (Netherlands)

    van Valburg, A. A.; Wenting, M. J.; Beekman, B.; te Koppele, J. M.; Lafeber, F. P.; Bijlsma, J. W.

    1997-01-01

    To investigate whether macroscopically fibrillated human articular knee cartilage observed at autopsy can be considered an early, preclinical phase of osteoarthritis (OA). Histological and biochemical characteristics of 3 types of articular knee cartilage were compared: macroscopically degenerated

  6. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Xiaowei Zhang

    Full Text Available Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9 is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP (scSOX9 to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage.

  7. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Xiaowei; Wu, Shili; Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Chu, Cong-Qiu; Zhu, Yong

    2017-01-01

    Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP) (scSOX9) to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage.

  8. Principles of cartilage repair

    CERN Document Server

    Erggelet, Christoph; Mandelbaum, Bert R

    2008-01-01

    Cartilage defects affect patients of all age groups. Surgeons, teamdoctors, general practitioners and physiotherapists alike are expected to provide adequate care. Only individual treatment plans combining a well balanced choice of various options will be successful. Background knowledge, operative and non-operative therapies are described in concise chapters: Articular cartilage biology - Diagnostics - Surgical techniques - Symptomatic and alternative medications - Physiotherapy. Diagnostic findings and surgical procedures are generously illustrated by aquarelles and colour photographs. Recommendations for additional reading, description of important clinical scoring systems and a listing of analytic tools are added for further information.

  9. The junction between hyaline cartilage and engineered cartilage in rabbits.

    Science.gov (United States)

    Komura, Makoto; Komura, Hiroko; Otani, Yushi; Kanamori, Yutaka; Iwanaka, Tadashi; Hoshi, Kazuto; Tsuyoshi, Takato; Tabata, Yasuhiko

    2013-06-01

    Tracheoplasty using costal cartilage grafts to enlarge the tracheal lumen was performed to treat congenital tracheal stenosis. Fibrotic granulomatous tissue was observed at the edge of grafted costal cartilage. We investigated the junction between the native hyaline cartilage and the engineered cartilage plates that were generated by auricular chondrocytes for fabricating the airway. Controlled, prospecive study. In group 1, costal cartilage from New Zealand white rabbits was collected and implanted into a space created in the cervical trachea. In group 2, chondrocytes from auricular cartilages were seeded on absorbable scaffolds. These constructs were implanted in the subcutaneous space. Engineered cartilage plates were then implanted into the trachea after 3 weeks of implantation of the constructs. The grafts in group 1 and 2 were retrieved after 4 weeks. In group 1, histological studies of the junction between the native hyaline cartilage and the implanted costal cartilage demonstrated chondrogenic tissue in four anastomoses sides out of the 10 examined. In group 2, the junction between the native trachea and the engineered cartilage showed neocartilage tissue in nine anastomoses sides out of 10. Engineered cartilage may be beneficial for engineered airways, based on the findings of the junction between the native and engineered grafts. Copyright © 2012 The American Laryngological, Rhinological and Otological Society, Inc.

  10. Application of multiphysics models to efficient design of experiments of solute transport across articular cartilage.

    Science.gov (United States)

    Pouran, Behdad; Arbabi, Vahid; Weinans, Harrie; Zadpoor, Amir A

    2016-11-01

    Transport of solutes helps to regulate normal physiology and proper function of cartilage in diarthrodial joints. Multiple studies have shown the effects of characteristic parameters such as concentration of proteoglycans and collagens and the orientation of collagen fibrils on the diffusion process. However, not much quantitative information and accurate models are available to help understand how the characteristics of the fluid surrounding articular cartilage influence the diffusion process. In this study, we used a combination of micro-computed tomography experiments and biphasic-solute finite element models to study the effects of three parameters of the overlying bath on the diffusion of neutral solutes across cartilage zones. Those parameters include bath size, degree of stirring of the bath, and the size and concentration of the stagnant layer that forms at the interface of cartilage and bath. Parametric studies determined the minimum of the finite bath size for which the diffusion behavior reduces to that of an infinite bath. Stirring of the bath proved to remarkably influence neutral solute transport across cartilage zones. The well-stirred condition was achieved only when the ratio of the diffusivity of bath to that of cartilage was greater than ≈1000. While the thickness of the stagnant layer at the cartilage-bath interface did not significantly influence the diffusion behavior, increase in its concentration substantially elevated solute concentration in cartilage. Sufficient stirring attenuated the effects of the stagnant layer. Our findings could be used for efficient design of experimental protocols aimed at understanding the transport of molecules across articular cartilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Elucidation of possible molecular mechanisms underlying the estrogen-induced disruption of cartilage development in zebrafish larvae.

    Science.gov (United States)

    He, Hanliang; Wang, Chunqing; Tang, Qifeng; Yang, Fan; Xu, Youjia

    2018-06-01

    Estrogen can affect the cartilage development of zebrafish; however, the mechanism underlying its effects is not completely understood. Four-day-old zebrafish larvae were treated with 0.8 μM estrogen, the 5 days post fertilization (dpf) zebrafish larvae did not demonstrate obvious abnormalities during development; however, the 6 dpf and 7 dpf larvae exhibited abnormal craniofacial bone development along with craniofacial bone degradation. RNA deep sequencing was performed to elucidate the mechanism involved. Gene Ontology functional and KEGG pathway enrichment analysis of differentially expressed genes (DEGs) showed that the extracellular matrix (ECM), extracellular region, ECM-interaction receptor, focal adhesion, cell cycle, apoptosis, and bone-related signaling pathways were disrupted. In these signaling pathways, the expressions of key genes, such as collagen encoded (col19a1a, col7a1, col7al, col18a1, and col9a3), MAPK signaling pathway (fgf19, fgf6a), TGF-beta signaling pathway (tgfbr1), and cell cycle (cdnk1a) genes were altered. The qRT-PCR results showed that after treatment with 0.8 μM 17-β estradiol (E2), col19a1a, col7a1, col7al, col18a1, col9a3, fgf6a, cdkn1a were downregulated, and fgf19, tgfr1 were upregulated, which were consistent with deep sequencing analysis. Therefore, the effect of estrogen on cartilage development might occur via multiple mechanisms. The study results demonstrate the mechanism underlying the effect of estrogen on cartilage development. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Formation of Hyaline Cartilage Tissue by Passaged Human Osteoarthritic Chondrocytes.

    Science.gov (United States)

    Bianchi, Vanessa J; Weber, Joanna F; Waldman, Stephen D; Backstein, David; Kandel, Rita A

    2017-02-01

    When serially passaged in standard monolayer culture to expand cell number, articular chondrocytes lose their phenotype. This results in the formation of fibrocartilage when they are used clinically, thus limiting their use for cartilage repair therapies. Identifying a way to redifferentiate these cells in vitro is critical if they are to be used successfully. Transforming growth factor beta (TGFβ) family members are known to be crucial for regulating differentiation of fetal limb mesenchymal cells and mesenchymal stromal cells to chondrocytes. As passaged chondrocytes acquire a progenitor-like phenotype, the hypothesis of this study was that TGFβ supplementation will stimulate chondrocyte redifferentiation in vitro in serum-free three-dimensional (3D) culture. Human articular chondrocytes were serially passaged twice (P2) in monolayer culture. P2 cells were then placed in high-density (3D) culture on top of membranes (Millipore) and cultured for up to 6 weeks in chemically defined serum-free redifferentiation media (SFRM) in the presence or absence of TGFβ. The tissues were evaluated histologically, biochemically, by immunohistochemical staining, and biomechanically. Passaged human chondrocytes cultured in SFRM supplemented with 10 ng/mL TGFβ3 consistently formed a continuous layer of articular-like cartilage tissue rich in collagen type 2 and aggrecan and lacking collagen type 1 and X in the absence of a scaffold. The tissue developed a superficial zone characterized by expression of lubricin and clusterin with horizontally aligned collagen fibers. This study suggests that passaged human chondrocytes can be used to bioengineer a continuous layer of articular cartilage-like tissue in vitro scaffold free. Further study is required to evaluate their ability to repair cartilage defects in vivo.

  13. In Vivo Evaluation of a Novel Oriented Scaffold-BMSC Construct for Enhancing Full-Thickness Articular Cartilage Repair in a Rabbit Model.

    Directory of Open Access Journals (Sweden)

    Shuaijun Jia

    Full Text Available Tissue engineering (TE has been proven usefulness in cartilage defect repair. For effective cartilage repair, the structural orientation of the cartilage scaffold should mimic that of native articular cartilage, as this orientation is closely linked to cartilage mechanical functions. Using thermal-induced phase separation (TIPS technology, we have fabricated an oriented cartilage extracellular matrix (ECM-derived scaffold with a Young's modulus value 3 times higher than that of a random scaffold. In this study, we test the effectiveness of bone mesenchymal stem cell (BMSC-scaffold constructs (cell-oriented and random in repairing full-thickness articular cartilage defects in rabbits. While histological and immunohistochemical analyses revealed efficient cartilage regeneration and cartilaginous matrix secretion at 6 and 12 weeks after transplantation in both groups, the biochemical properties (levels of DNA, GAG, and collagen and biomechanical values in the oriented scaffold group were higher than that in random group at early time points after implantation. While these differences were not evident at 24 weeks, the biochemical and biomechanical properties of the regenerated cartilage in the oriented scaffold-BMSC construct group were similar to that of native cartilage. These results demonstrate that an oriented scaffold, in combination with differentiated BMSCs can successfully repair full-thickness articular cartilage defects in rabbits, and produce cartilage enhanced biomechanical properties.

  14. Mechanical stiffness of TMJ condylar cartilage increases after artificial aging by ribose

    NARCIS (Netherlands)

    Mirahmadi, F.; Koolstra, J.H.; Lobbezoo, F.; van Lenthe, G.H.; Ghazanfari, S.; Snabel, J.; Stoop, R.; Everts, V.

    2018-01-01

    Objective: Aging is accompanied by a series of changes in mature tissues that influence their properties and functions. Collagen, as one of the main extracellular components of cartilage, becomes highly crosslinked during aging. In this study, the aim was to examine whether a correlation exists

  15. Tuning the differentiation of periosteum-derived cartilage using biochemical and mechanical stimulation

    NARCIS (Netherlands)

    Kock, L.M.; Ravetto, A.; Donkelaar, van C.C.; Foolen, J.; Emans, P.J.; Ito, K.

    2010-01-01

    OBJECTIVE: In this study, we aim at tuning the differentiation of periosteum in an organ culture model towards cartilage, rich in collagen type II, using combinations of biochemical and mechanical stimuli. We hypothesize that addition of TGF-ß will stimulate chondrogenesis, whereas sliding

  16. Experimental Influences in the Accurate Measurement of Cartilage Thickness in MRI.

    Science.gov (United States)

    Wang, Nian; Badar, Farid; Xia, Yang

    2018-01-01

    Objective To study the experimental influences to the measurement of cartilage thickness by magnetic resonance imaging (MRI). Design The complete thicknesses of healthy and trypsin-degraded cartilage were measured at high-resolution MRI under different conditions, using two intensity-based imaging sequences (ultra-short echo [UTE] and multislice-multiecho [MSME]) and 3 quantitative relaxation imaging sequences (T 1 , T 2 , and T 1 ρ). Other variables included different orientations in the magnet, 2 soaking solutions (saline and phosphate buffered saline [PBS]), and external loading. Results With cartilage soaked in saline, UTE and T 1 methods yielded complete and consistent measurement of cartilage thickness, while the thickness measurement by T 2 , T 1 ρ, and MSME methods were orientation dependent. The effect of external loading on cartilage thickness is also sequence and orientation dependent. All variations in cartilage thickness in MRI could be eliminated with the use of a 100 mM PBS or imaged by UTE sequence. Conclusions The appearance of articular cartilage and the measurement accuracy of cartilage thickness in MRI can be influenced by a number of experimental factors in ex vivo MRI, from the use of various pulse sequences and soaking solutions to the health of the tissue. T 2 -based imaging sequence, both proton-intensity sequence and quantitative relaxation sequence, similarly produced the largest variations. With adequate resolution, the accurate measurement of whole cartilage tissue in clinical MRI could be utilized to detect differences between healthy and osteoarthritic cartilage after compression.

  17. Training-induced changes in peritendinous type I collagen turnover determined by microdialysis in humans

    DEFF Research Database (Denmark)

    Langberg, Henning; Rosendal, L; Kjaer, M

    2001-01-01

    1. Acute exercise is found to increase collagen type I formation locally in peritendinous connective tissue of the Achilles' tendon in humans, as determined from changes in interstitial concentrations of collagen propeptide (PICP) and a collagen degradation product (ICTP) by the use of microdialy...

  18. Cartilage biomarkers in the osteoarthropathy of alkaptonuria reveal low turnover and accelerated ageing.

    Science.gov (United States)

    Taylor, Adam M; Hsueh, Ming-Feng; Ranganath, Lakshminarayan R; Gallagher, James A; Dillon, Jane P; Huebner, Janet L; Catterall, Jon B; Kraus, Virginia B

    2017-01-01

    Alkaptonuria (AKU) is a rare autosomal recessive disease resulting from a single enzyme deficiency in tyrosine metabolism. As a result, homogentisic acid cannot be metabolized, causing systemic increases. Over time, homogentisic acid polymerizes and deposits in collagenous tissues, leading to ochronosis. Typically, this occurs in joint cartilages, leading to an early onset, rapidly progressing osteoarthropathy. The aim of this study was to examine tissue turnover in cartilage affected by ochronosis and its role in disease initiation and progression. With informed patient consent, hip and knee cartilages were obtained at surgery for arthropathy due to AKU (n = 6; 2 knees/4 hips) and OA (n = 12; 5 knees/7 hips); healthy non-arthritic (non-OA n = 6; 1 knee/5 hips) cartilages were obtained as waste from trauma surgery. We measured cartilage concentrations (normalized to dry weight) of racemized aspartate, GAG, COMP and deamidated COMP (D-COMP). Unpaired AKU, OA and non-OA samples were compared by non-parametric Mann-Whitney U test. Despite more extractable total protein being obtained from AKU cartilage than from OA or non-OA cartilage, there was significantly less extractable GAG, COMP and D-COMP in AKU samples compared with OA and non-OA comparators. Racemized Asx (aspartate and asparagine) was significantly enriched in AKU cartilage compared with in OA cartilage. These novel data represent the first examination of cartilage matrix components in a sample of patients with AKU, representing almost 10% of the known UK alkaptonuric population. Compared with OA and non-OA, AKU cartilage demonstrates a very low turnover state and has low levels of extractable matrix proteins. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. T(2) relaxation time of hyaline cartilage in presence of different gadolinium-based contrast agents.

    Science.gov (United States)

    Wiener, Edzard; Settles, Marcus; Diederichs, Gerd

    2010-01-01

    The transverse relaxation time, T(2), of native cartilage is used to quantify cartilage degradation. T(2) is frequently measured after contrast administration, assuming that the impact of gadolinium-based contrast agents on cartilage T(2) is negligible. To verify this assumption the depth-dependent variation of T(2) in the presence of gadopentetate dimeglumine, gadobenate dimeglumine and gadoteridol was investigated. Furthermore, the r(2)/r(1) relaxivity ratios were quantified in different cartilage layers to demonstrate differences between T(2) and T(1) relaxation effects. Transverse high-spatial-resolution T(1)- and T(2)-maps were simultaneously acquired on a 1.5 T MR scanner before and after contrast administration in nine bovine patellae using a turbo-mixed sequence. The r(2)/r(1) ratios were calculated for each contrast agent in cartilage. Profiles of T(1), T(2) and r(2)/r(1) across cartilage thickness were generated in the absence and presence of contrast agent. The mean values in different cartilage layers were compared for global variance using the Kruskal-Wallis test and pairwise using the Mann-Whitney U-test. T(2) of unenhanced cartilage was 98 +/- 5 ms at 1 mm and 65 +/- 4 ms at 3 mm depth. Eleven hours after contrast administration significant differences (p cartilage thickness were close to 1.0 (range 0.9-1.3). At 1.5 T, T(2) decreased significantly in the presence of contrast agents, more pronounced in superficial than in deep cartilage. The change in T(2) relaxation rate was similar to the change in T(1). Cartilage T(2) measurements after contrast administration will lead to systematic errors in the quantification of cartilage degradation. 2010 John Wiley & Sons, Ltd.

  20. Production and characterization of a monoclonal antibody to chicken type I collagen.

    Science.gov (United States)

    Linsenmayer, T F; Hendrix, M J; Little, C D

    1979-01-01

    We have shown that lymphocyte-myeloma cell hybridization can be used to produce large amounts of extremely high-titer specific antibodies against type I collagen, a macromolecule normally of low immunogenicity. In a passive hemagglutination assay the antibody had a high titer against chicken type I collagen but showed no activity against chicken type II or rat type I collagen. By using a two-step fluorescence histochemical procedure on sections of embryonic chicken tibia, strong fluorescence was observed in the perichondrium and surrounding connective tissue (known to contain type I collagen) but not over the cartilage (characterized by type II collagen). When used in conjunction with Staphylococcus aureus as a solid phase immunoadsorbant, the antibody was shown to bind to labeled collagen synthesized in vitro by embryonic chicken calvaria. Images PMID:291035

  1. Lack of cyclophilin B in osteogenesis imperfecta with normal collagen folding.

    Science.gov (United States)

    Barnes, Aileen M; Carter, Erin M; Cabral, Wayne A; Weis, MaryAnn; Chang, Weizhong; Makareeva, Elena; Leikin, Sergey; Rotimi, Charles N; Eyre, David R; Raggio, Cathleen L; Marini, Joan C

    2010-02-11

    Osteogenesis imperfecta is a heritable disorder that causes bone fragility. Mutations in type I collagen result in autosomal dominant osteogenesis imperfecta, whereas mutations in either of two components of the collagen prolyl 3-hydroxylation complex (cartilage-associated protein [CRTAP] and prolyl 3-hydroxylase 1 [P3H1]) cause autosomal recessive osteogenesis imperfecta with rhizomelia (shortening of proximal segments of upper and lower limbs) and delayed collagen folding. We identified two siblings who had recessive osteogenesis imperfecta without rhizomelia. They had a homozygous start-codon mutation in the peptidyl-prolyl isomerase B gene (PPIB), which results in a lack of cyclophilin B (CyPB), the third component of the complex. The proband's collagen had normal collagen folding and normal prolyl 3-hydroxylation, suggesting that CyPB is not the exclusive peptidyl-prolyl cis-trans isomerase that catalyzes the rate-limiting step in collagen folding, as is currently thought. 2010 Massachusetts Medical Society

  2. Anomalous NMR Relaxation in Cartilage Matrix Components and Native Cartilage: Fractional-Order Models

    Science.gov (United States)

    Magin, Richard L.; Li, Weiguo; Velasco, M. Pilar; Trujillo, Juan; Reiter, David A.; Morgenstern, Ashley; Spencer, Richard G.

    2011-01-01

    We present a fractional-order extension of the Bloch equations to describe anomalous NMR relaxation phenomena (T1 and T2). The model has solutions in the form of Mittag-Leffler and stretched exponential functions that generalize conventional exponential relaxation. Such functions have been shown by others to be useful for describing dielectric and viscoelastic relaxation in complex, heterogeneous materials. Here, we apply these fractional-order T1 and T2 relaxation models to experiments performed at 9.4 and 11.7 Tesla on type I collagen gels, chondroitin sulfate mixtures, and to bovine nasal cartilage (BNC), a largely isotropic and homogeneous form of cartilage. The results show that the fractional-order analysis captures important features of NMR relaxation that are typically described by multi-exponential decay models. We find that the T2 relaxation of BNC can be described in a unique way by a single fractional-order parameter (α), in contrast to the lack of uniqueness of multi-exponential fits in the realistic setting of a finite signal-to-noise ratio. No anomalous behavior of T1 was observed in BNC. In the single-component gels, for T2 measurements, increasing the concentration of the largest components of cartilage matrix, collagen and chondroitin sulfate, results in a decrease in α, reflecting a more restricted aqueous environment. The quality of the curve fits obtained using Mittag-Leffler and stretched exponential functions are in some cases superior to those obtained using mono- and bi-exponential models. In both gels and BNC, α appears to account for microstructural complexity in the setting of an altered distribution of relaxation times. This work suggests the utility of fractional-order models to describe T2 NMR relaxation processes in biological tissues. PMID:21498095

  3. When is cartilage repair successful?

    International Nuclear Information System (INIS)

    Raudner, M.; Roehrich, S.; Zalaudek, M.; Trattnig, S.; Schreiner, M.M.

    2017-01-01

    Focal cartilage lesions are a cause of long-term disability and morbidity. After cartilage repair, it is crucial to evaluate long-term progression or failure in a reproducible, standardized manner. This article provides an overview of the different cartilage repair procedures and important characteristics to look for in cartilage repair imaging. Specifics and pitfalls are pointed out alongside general aspects. After successful cartilage repair, a complete, but not hypertrophic filling of the defect is the primary criterion of treatment success. The repair tissue should also be completely integrated to the surrounding native cartilage. After some months, the transplants signal should be isointense compared to native cartilage. Complications like osteophytes, subchondral defects, cysts, adhesion and chronic bone marrow edema or joint effusion are common and have to be observed via follow-up. Radiological evaluation and interpretation of postoperative changes should always take the repair method into account. (orig.) [de

  4. MR imaging of articular cartilage

    International Nuclear Information System (INIS)

    Schaefer, F.K.W.; Muhle, C.; Heller, M.; Brossmann, J.

    2001-01-01

    MR imaging has evolved to the best non-invasive method for the evaluation of articular cartilage. MR imaging helps to understand the structure and physiology of cartilage, and to diagnose cartilage lesions. Numerous studies have shown high accuracy and reliability concerning detection of cartilage lesions and early changes in both structure and biochemistry. High contrast-to-noise ratio and high spatial resolution are essential for analysis of articular cartilage. Fat-suppressed 3D-T 1 weighted gradient echo and T 2 -weighted fast spin echo sequences with or without fat suppression are recommended for clinical routine. In this article the anatomy and pathology of hyaline articular cartilage and the complex imaging characteristics of hyaline cartilage will be discussed. (orig.) [de

  5. Lubrication and cartilage.

    Science.gov (United States)

    Wright, V; Dowson, D

    1976-02-01

    Mechanisms of lubrication of human synovial joints have been analysed in terms of the operating conditions of the joint, the synovial fluid and articular cartilage. In the hip and knee during a walking cycle the load may rise up to four times body weight. In the knee on dropping one metre the load may go up to 25 time body weight. The elastic modulus of cartilage is similar to that of the synthetic rubber of a car tyre. The cartilage surface is rough and in elderly specimens the centre line average is 2-75 mum. The friction force generated in reciprocating tests shows that both cartilage and synovial fluid are important in lubrication. The viscosity-shear rate relationships of normal synovial fluid show that it is non-Newtonian. Osteoarthrosic fluid is less so and rheumatoid fluid is more nearly Newtonian. Experiments with hip joints in a pendulum machine show that fluid film lubrication obtains at some phases of joint action. Boundary lubrication prevails under certain conditions and has been examined with a reciprocating friction machine. Digestion of hyaluronate does not alter the boundary lubrication, but trypsin digestion does. Surface active substances (lauryl sulphate and cetyl 3-ammonium bromide) give a lubricating ability similar to that of synovial fluid. The effectiveness of the two substances varies with pH.

  6. Chondroptosis in Alkaptonuric Cartilage

    Science.gov (United States)

    Millucci, Lia; Giorgetti, Giovanna; Viti, Cecilia; Ghezzi, Lorenzo; Gambassi, Silvia; Braconi, Daniela; Marzocchi, Barbara; Paffetti, Alessandro; Lupetti, Pietro; Bernardini, Giulia; Orlandini, Maurizio

    2015-01-01

    Alkaptonuria (AKU) is a rare genetic disease that affects the entire joint. Current standard of treatment is palliative and little is known about AKU physiopathology. Chondroptosis, a peculiar type of cell death in cartilage, has been so far reported to occur in osteoarthritis, a rheumatic disease that shares some features with AKU. In the present work, we wanted to assess if chondroptosis might also occur in AKU. Electron microscopy was used to detect the morphological changes of chondrocytes in damaged cartilage distinguishing apoptosis from its variant termed chondroptosis. We adopted histological observation together with Scanning Electron Microscopy and Transmission Electron Microscopy to evaluate morphological cell changes in AKU chondrocytes. Lipid peroxidation in AKU cartilage was detected by fluorescence microscopy. Using the above‐mentioned techniques, we performed a morphological analysis and assessed that AKU chondrocytes undergo phenotypic changes and lipid oxidation, resulting in a progressive loss of articular cartilage structure and function, showing typical features of chondroptosis. To the best of our knowledge, AKU is the second chronic pathology, following osteoarthritis, where chondroptosis has been documented. Our results indicate that Golgi complex plays an important role in the apoptotic process of AKU chondrocytes and suggest a contribution of chondroptosis in AKU pathogenesis. These findings also confirm a similarity between osteoarthritis and AKU. J. Cell. Physiol. 230: 1148–1157, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:25336110

  7. INJURED ARTICULAR CARTILAGE REPAIR

    Directory of Open Access Journals (Sweden)

    Ariana Barlič

    2008-02-01

    Surveys show that the most frequently used surgical methods are mosaicplasty and bonemarrow stimulation with microfracturing. The efficacy of the autologous chondrocyte implantationmethod should be superior to microfracturing on a long run. Especially when(regeneration of the hyaline cartilage instead of fibrous tissue (fibrocartilage is concerned.However, it has not been scientifically proved yet

  8. Complex Determinants in Specific Members of the Mannose Receptor Family Govern Collagen Endocytosis

    DEFF Research Database (Denmark)

    Jürgensen, Henrik J; Johansson, Kristina; Madsen, Daniel H

    2014-01-01

    Members of the well-conserved mannose receptor (MR) protein family have been functionally implicated in diverse biological and pathological processes. Importantly, a proposed common function is the internalization of collagen for intracellular degradation occurring during bone development, cancer...... invasion, and fibrosis protection. This functional relationship is suggested by a common endocytic capability and a candidate collagen-binding domain. Here we conducted a comparative investigation of each member's ability to facilitate intracellular collagen degradation. As expected, the family members u......PARAP/Endo180 and MR bound collagens in a purified system and internalized collagens for degradation in cellular settings. In contrast, the remaining family members, PLA2R and DEC-205, showed no collagen binding activity and were unable to mediate collagen internalization. To pinpoint the structural elements...

  9. Cartilage extracellular matrix as a biomaterial for cartilage regeneration.

    Science.gov (United States)

    Kiyotake, Emi A; Beck, Emily C; Detamore, Michael S

    2016-11-01

    The extracellular matrix (ECM) of various tissues possesses the model characteristics that biomaterials for tissue engineering strive to mimic; however, owing to the intricate hierarchical nature of the ECM, it has yet to be fully characterized and synthetically fabricated. Cartilage repair remains a challenge because the intrinsic properties that enable its durability and long-lasting function also impede regeneration. In the last decade, cartilage ECM has emerged as a promising biomaterial for regenerating cartilage, partly because of its potentially chondroinductive nature. As this research area of cartilage matrix-based biomaterials emerged, investigators facing similar challenges consequently developed convergent solutions in constructing robust and bioactive scaffolds. This review discusses the challenges, emerging trends, and future directions of cartilage ECM scaffolds, including a comparison between two different forms of cartilage matrix: decellularized cartilage (DCC) and devitalized cartilage (DVC). To overcome the low permeability of cartilage matrix, physical fragmentation greatly enhances decellularization, although the process itself may reduce the chondroinductivity of fabricated scaffolds. The less complex processing of a scaffold composed of DVC, which has not been decellularized, appears to have translational advantages and potential chondroinductive and mechanical advantages over DCC, without detrimental immunogenicity, to ultimately enhance cartilage repair in a clinically relevant way. © 2016 New York Academy of Sciences.

  10. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model.

    Science.gov (United States)

    Hayami, Tadashi; Pickarski, Maureen; Wesolowski, Gregg A; McLane, Julia; Bone, Ashleigh; Destefano, James; Rodan, Gideon A; Duong, Le T

    2004-04-01

    It has been suggested that subchondral bone remodeling plays a role in the progression of osteoarthritis (OA). To test this hypothesis, we characterized the changes in the rat anterior cruciate ligament transection (ACLT) model of OA and evaluated the effects of alendronate (ALN), a potent inhibitor of bone resorption, on cartilage degradation and on osteophyte formation. Male Sprague-Dawley rats underwent ACLT or sham operation of the right knee. Animals were then treated with ALN (0.03 and 0.24 microg/kg/week subcutaneously) and necropsied at 2 or 10 weeks postsurgery. OA changes were evaluated. Subchondral bone volume and osteophyte area were measured by histomorphometric analysis. Coimmunostaining for transforming growth factor beta (TGF beta), matrix metalloproteinase 9 (MMP-9), and MMP-13 was performed to investigate the effect of ALN on local activation of TGF beta. ALN was chondroprotective at both dosages, as determined by histologic criteria and collagen degradation markers. ALN suppressed subchondral bone resorption, which was markedly increased 2 weeks postsurgery, and prevented the subsequent increase in bone formation 10 weeks postsurgery, in the untreated tibial plateau of ACLT joints. Furthermore, ALN reduced the incidence and area of osteophytes in a dose-dependent manner. ALN also inhibited vascular invasion into the calcified cartilage in rats with OA and blocked osteoclast recruitment to subchondral bone and osteophytes. ALN treatment reduced the local release of active TGF beta, possibly via inhibition of MMP-13 expression in articular cartilage and MMP-9 expression in subchondral bone. Subchondral bone remodeling plays an important role in the pathogenesis of OA. ALN or other inhibitors of bone resorption could potentially be used as disease-modifying agents in the treatment of OA.

  11. Differential actions of the endocytic collagen receptor uPARAP/Endo180 and the collagenase MMP-2 in bone homeostasis

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Jürgensen, Henrik J; Ingvarsen, Signe

    2013-01-01

    A well-coordinated remodeling of uncalcified collagen matrices is a pre-requisite for bone development and homeostasis. Collagen turnover proceeds through different pathways, either involving extracellular reactions exclusively, or being dependent on endocytic processes. Extracellular collagen...... degradation requires the action of secreted or membrane attached collagenolytic proteases, whereas the alternative collagen degradation pathway proceeds intracellularly after receptor-mediated uptake and delivery to the lysosomes. In this study we have examined the functional interplay between...

  12. Mesenchymal Stem Cells for Cartilage Regeneration of TMJ Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Dixin Cui

    2017-01-01

    Full Text Available Temporomandibular joint osteoarthritis (TMJ OA is a degenerative disease, characterized by progressive cartilage degradation, subchondral bone remodeling, synovitis, and chronic pain. Due to the limited self-healing capacity in condylar cartilage, traditional clinical treatments have limited symptom-modifying and structure-modifying effects to restore impaired cartilage as well as other TMJ tissues. In recent years, stem cell-based therapy has raised much attention as an alternative approach towards tissue repair and regeneration. Mesenchymal stem cells (MSCs, derived from the bone marrow, synovium, and even umbilical cord, play a role as seed cells for the cartilage regeneration of TMJ OA. MSCs possess multilineage differentiation potential, including chondrogenic differentiation as well as osteogenic differentiation. In addition, the trophic modulations of MSCs exert anti-inflammatory and immunomodulatory effects under aberrant conditions. Furthermore, MSCs combined with appropriate scaffolds can form cartilaginous or even osseous compartments to repair damaged tissue and impaired function of TMJ. In this review, we will briefly discuss the pathogenesis of cartilage degeneration in TMJ OA and emphasize the potential sources of MSCs and novel approaches for the cartilage regeneration of TMJ OA, particularly focusing on the MSC-based therapy and tissue engineering.

  13. Mechanical confinement regulates cartilage matrix formation by chondrocytes

    Science.gov (United States)

    Lee, Hong-Pyo; Gu, Luo; Mooney, David J.; Levenston, Marc E.; Chaudhuri, Ovijit

    2017-12-01

    Cartilage tissue equivalents formed from hydrogels containing chondrocytes could provide a solution for replacing damaged cartilage. Previous approaches have often utilized elastic hydrogels. However, elastic stresses may restrict cartilage matrix formation and alter the chondrocyte phenotype. Here we investigated the use of viscoelastic hydrogels, in which stresses are relaxed over time and which exhibit creep, for three-dimensional (3D) culture of chondrocytes. We found that faster relaxation promoted a striking increase in the volume of interconnected cartilage matrix formed by chondrocytes. In slower relaxing gels, restriction of cell volume expansion by elastic stresses led to increased secretion of IL-1β, which in turn drove strong up-regulation of genes associated with cartilage degradation and cell death. As no cell-adhesion ligands are presented by the hydrogels, these results reveal cell sensing of cell volume confinement as an adhesion-independent mechanism of mechanotransduction in 3D culture, and highlight stress relaxation as a key design parameter for cartilage tissue engineering.

  14. Photo-induced processes in collagen-hypericin system revealed by fluorescence spectroscopy and multiphoton microscopy.

    Science.gov (United States)

    Hovhannisyan, V; Guo, H W; Hovhannisyan, A; Ghukasyan, V; Buryakina, T; Chen, Y F; Dong, C Y

    2014-05-01

    Collagen is the main structural protein and the key determinant of mechanical and functional properties of tissues and organs. Proper balance between synthesis and degradation of collagen molecules is critical for maintaining normal physiological functions. In addition, collagen influences tumor development and drug delivery, which makes it a potential cancer therapy target. Using second harmonic generation, two-photon excited fluorescence microscopy, and spectrofluorimetry, we show that the natural pigment hypericin induces photosensitized destruction of collagen-based tissues. We demonstrate that hypericin-mediated processes in collagen fibers are irreversible and may be used for the treatment of cancer and collagen-related disorders.

  15. A Comparison of Bone Marrow and Cord Blood Mesenchymal Stem Cells for Cartilage Self-Assembly.

    Science.gov (United States)

    White, Jamie L; Walker, Naomi J; Hu, Jerry C; Borjesson, Dori L; Athanasiou, Kyriacos A

    2018-04-02

    Joint injury is a common cause of premature retirement for the human and equine athlete alike. Implantation of engineered cartilage offers the potential to increase the success rate of surgical intervention and hasten recovery times. Mesenchymal stem cells (MSCs) are a particularly attractive cell source for cartilage engineering. While bone marrow-derived MSCs (BM-MSCs) have been most extensively characterized for musculoskeletal tissue engineering, studies suggest that cord blood MSCs (CB-MSCs) may elicit a more robust chondrogenic phenotype. The objective of this study was to determine a superior equine MSC source for cartilage engineering. MSCs derived from bone marrow or cord blood were stimulated to undergo chondrogenesis through aggregate redifferentiation and used to generate cartilage through the self-assembling process. The resulting neocartilage produced from either BM-MSCs or CB-MSCs was compared by measuring mechanical, biochemical, and histological properties. We found that while BM constructs possessed higher tensile properties and collagen content, CB constructs had superior compressive properties comparable to that of native tissue and higher GAG content. Moreover, CB constructs had alkaline phosphatase activity, collagen type X, and collagen type II on par with native tissue suggesting a more hyaline cartilage-like phenotype. In conclusion, while both BM-MSCs and CB-MSCs were able to form neocartilage, CB-MSCs resulted in tissue more closely resembling native equine articular cartilage as determined by a quantitative functionality index. Therefore, CB-MSCs are deemed a superior source for the purpose of articular cartilage self-assembly.

  16. Elemental and structural studies at the bone-cartilage interface

    Energy Technology Data Exchange (ETDEWEB)

    Kaabar, W., E-mail: w.kaabar@surrey.ac.uk [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Daar, E. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Bunk, O. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen (Switzerland); Farquharson, M.J. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1 (Canada); Laklouk, A. [Al-Fateh University, Tripoli (Libya); Bailey, M.; Jeynes, C. [Surrey Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Gundogdu, O. [Umuttepe Campus, University of Kocaeli, 41380 Kocaeli (Turkey); Bradley, D.A. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2011-10-01

    Micro-Proton Induced X-ray Emission ({mu}-PIXE) and Proton Induced Gamma-ray Emission (PIGE) techniques were employed in the investigation of trace and essential elements distribution in normal and diseased human femoral head sections affected by osteoarthritis (OA). PIGE was exploited in the determination of elements of low atomic number z<15 such as Na and F whereas elements with z>15 viz Ca, Z, P and S were determined by PIXE. Accumulations of key elements in the bone and cartilage sections were observed, significant S and Na concentrations being found in the cartilage region particularly in normal tissues. Zn showed enhanced concentrations at the bone-cartilage interface. At a synchrotron facility, small angle X-ray scattering (SAXS) was utilized on a decalcified human femoral head section affected by OA, direct measurements being made of spatial alterations of collagen fibres. The SAXS results showed a slight decrease in the axial periodicity between normal collagen type I and that in diseased tissue in various sites, in contrast with the findings of others.

  17. Elemental and structural studies at the bone-cartilage interface

    International Nuclear Information System (INIS)

    Kaabar, W.; Daar, E.; Bunk, O.; Farquharson, M.J.; Laklouk, A.; Bailey, M.; Jeynes, C.; Gundogdu, O.; Bradley, D.A.

    2011-01-01

    Micro-Proton Induced X-ray Emission (μ-PIXE) and Proton Induced Gamma-ray Emission (PIGE) techniques were employed in the investigation of trace and essential elements distribution in normal and diseased human femoral head sections affected by osteoarthritis (OA). PIGE was exploited in the determination of elements of low atomic number z 15 viz Ca, Z, P and S were determined by PIXE. Accumulations of key elements in the bone and cartilage sections were observed, significant S and Na concentrations being found in the cartilage region particularly in normal tissues. Zn showed enhanced concentrations at the bone-cartilage interface. At a synchrotron facility, small angle X-ray scattering (SAXS) was utilized on a decalcified human femoral head section affected by OA, direct measurements being made of spatial alterations of collagen fibres. The SAXS results showed a slight decrease in the axial periodicity between normal collagen type I and that in diseased tissue in various sites, in contrast with the findings of others.

  18. Advances in cartilage tissue engineering : in vitro

    NARCIS (Netherlands)

    E.W. Mandl (Erik)

    2004-01-01

    textabstractWithin the body three subtypes of cartilage can be distinguished: hyaline cartilage, elastic cartilage and fibrocartilage. Hyaline cartilage is the predominant subtype and is mainly located in articular joints and in less extent in the nasal septum and cricoid. Elastic cartilage can be

  19. PIXE and cSAXS studies at the bone-cartilage interface

    International Nuclear Information System (INIS)

    Kaabar, W.; Gundogdu, O.; Bradley, D.A.; Bunk, O.; Pfeiffer, F.; Farquharson, M.J.; Webb, M.; Jeynes, C.

    2008-01-01

    Full text: Divalent cations such as Zn and Ca play a central role both in the normal processes of growth and remodelling as well as in the degenerative and inflammatory processes of articular cartilage during arthritis. These cations act as co-factors of a class of enzymes known as metalloproteinases, believed to be active during the initiation, progress and remodelling processes associated with osteoarthritis. Other important enzymes such as alkaline phosphatase, involved in cartilage mineralization, are also associated with the presence of these metallic co-factors. A number of authors have used X-ray fluorescence, employing synchrotron radiation sources to map metal ion distributions in bone and cartilage. In the present work, investigations were carried out on the distribution of metallic ions (Zn, Ca, P and S) in articular cartilage samples at the University of Surrey hosted EPSRC national ion beam facility based on a 2 MV Tandetron accelerator. An in-air beam line was used, with proton energy of 2.5 MeV. Micro Proton-Induced X-ray Emission (μ-PIXE) analysis has been made of the bone-cartilage interface for samples taken from the human femoral head. The bone-cartilage interface region between uncalcified and mineralized cartilage regions has attracted particular interest, being identified to be an active site of remodelling. Here coherent small angle X-ray scattering (cSAXS) has also been employed to investigate the structure and organization of the collagen network in decalcified diseased human femoral heads and the equine metacarpus joint, study being carried out at the Paul Scherrer Institute (PSI) synchrotron beamline cSAXS. (Fig. 1: cSAXS over a 1 mm x 1.5 mm area of a cartilage/bone sample; the left- and right hand panels corresponds to the length scales 658-568 A and 962-833 A respectively. The bar scale indicates relative orientation, from 0 deg (blue) to 90 deg (red)). The results of Fig. 1 are plotted in terms of orientation of cartilage and bone

  20. Use of the second harmonic generation microscopy to evaluate chondrogenic differentiation of mesenchymal stem cells for cartilage repair

    Science.gov (United States)

    Bordeaux-Rego, P.; Baratti, M. O.; Duarte, A. S. S.; Ribeiro, T. B.; Andreoli-Risso, M. F.; Vidal, B.; Miranda, J. B.; Adur, J.; de Thomaz, A. A.; Pelegati, V. B.; Costa, F. F.; Carvalho, H. F.; Cesar, C. L.; Luzo, A.; Olalla Saad, S. T.

    2012-03-01

    Articular cartilage injury remains one of the major concerns in orthopedic surgery. Mesenchymal stem cell (MSC) transplantation has been introduced to avoid some of the side effects and complications of current techniques.. With the aim to evaluate chondrogenic differentiation of mesenchymal stem cells, we used Second Harmonic Generation (SHG) microscopy to analyze the aggregation and orientation of collagen fibrils in the hyaline cartilage of rabbit knees. The experiment was performed using implants with type II collagen hydrogel (a biomaterial that mimics the microenvironment of the cartilage), one implant containing MSC and one other without MSC (control). After 10 weeks, the rabbit knees were dissected and fibril collagen distribution and spatial organization in the extracellular matrix of the lesions were verified by SHG. The result showed significant differences, whereas in histological sections of the cartilaginous lesions with MSC the collagen fibers are organized and regular; in the control sections the collagen fibers are more irregular, with absence of cells. A macroscopic analysis of the lesions confirmed this difference, showing a greater percentage of lesions filling in knees treated with MSC than in the knees used as controls. This study demonstrates that SHG microscopy will be an excellent tool to help in the evaluation of the effectiveness of MSC-based cell therapy for cartilage repair.

  1. Magnetization transfer contrast (MTC) and MTC-subtraction: enhancement of cartilage lesions and intracartilaginous degeneration in vitro

    International Nuclear Information System (INIS)

    Vahlensieck, M.; Dombrowski, F.; Leutner, C.; Wagner, U.; Reiser, M.

    1994-01-01

    Human articular cartilage from 16 cadaveric or amputated knees was studied using standard magnetic resonance imaging (MRI), on-resonance magnetization transfer contrast (MTC) and MTC-subtraction MRI. Results were compared with subsequent macroscopic and histopathological findings. MTC-subtraction and T2-weighted spin-echo images visualized cartilaginous surface defects with high sensitivity and specificity. MTC and T2-weighted spin-echo images revealed intra-cartilaginous signal loss without surface defects in 80% of the cases, corresponding to an increased collagen concentration. It is concluded that MTC is sensitive to early cartilage degeneration and MTC-subtraction can be helpful in detecting cartilage defects. (orig.)

  2. The effects of different doses of IGF-1 on cartilage and subchondral bone during the repair of full-thickness articular cartilage defects in rabbits.

    Science.gov (United States)

    Zhang, Z; Li, L; Yang, W; Cao, Y; Shi, Y; Li, X; Zhang, Q

    2017-02-01

    To investigate the effects of different doses of insulin-like growth factor 1 (IGF-1) on the cartilage layer and subchondral bone (SB) during repair of full-thickness articular cartilage (AC) defects. IGF-1-loaded collagen membrane was implanted into full-thickness AC defects in rabbits. The effects of two different doses of IGF-1 on cartilage layer and SB adjacent to the defect, the cartilage structure, formation and integration, and the new SB formation were evaluated at the 1st, 4th and 8th week postoperation. Meanwhile, after 1 week treatment, the relative mRNA expressions in tissues adjacent to the defect, including cartilage and SB were determined by quantitative real-time RT-PCR (qRT-PCR), respectively. Different doses of IGF-1 induced different gene expression profiles in tissues adjacent to the defect and resulted in different repair outcomes. Particularly, at high dose IGF-1 aided cell survival, regulated the gene expressions in cartilage layer adjacent defect and altered ECM composition more effectively, improved the formation and integrity of neo-cartilage. While, at low dose IGF-1 regulated the gene expressions in SB more efficaciously and subsequently promoted the SB remodeling and reconstruction. Different doses of IGF-1 induced different responses of cartilage or SB during the repair of full-thickness AC defects. Particularly, high dose of IGF-1 was more beneficial to the neo-cartilage formation and integration, while low dose of it was more effective for the SB formation. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  3. Distinct characteristics of mandibular bone collagen relative to long bone collagen: relevance to clinical dentistry.

    Science.gov (United States)

    Matsuura, Takashi; Tokutomi, Kentaro; Sasaki, Michiko; Katafuchi, Michitsuna; Mizumachi, Emiri; Sato, Hironobu

    2014-01-01

    Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.

  4. Distinct Characteristics of Mandibular Bone Collagen Relative to Long Bone Collagen: Relevance to Clinical Dentistry

    Directory of Open Access Journals (Sweden)

    Takashi Matsuura

    2014-01-01

    Full Text Available Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.

  5. Effect of Collagen Type I or Type II on Chondrogenesis by Cultured Human Articular Chondrocytes

    NARCIS (Netherlands)

    Rutgers, M.; Saris, Daniël B.F.; Vonk, L.A.; van Rijen, M.H.P.; Akrum, V.; Langeveld, D.; van Boxtel, A.; Dhert, W.J.A.; Creemers, L.B.

    2013-01-01

    Introduction: Current cartilage repair procedures using autologous chondrocytes rely on a variety of carriers for implantation. Collagen types I and II are frequently used and valuable properties of both were shown earlier in vitro, although a preference for either was not demonstrated. Recently,

  6. Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model.

    Science.gov (United States)

    Ude, Chinedu C; Sulaiman, Shamsul B; Min-Hwei, Ng; Hui-Cheng, Chen; Ahmad, Johan; Yahaya, Norhamdan M; Saim, Aminuddin B; Idrus, Ruszymah B H

    2014-01-01

    In this study, Adipose stem cells (ADSC) and bone marrow stem cells (BMSC), multipotent adult cells with the potentials for cartilage regenerations were induced to chondrogenic lineage and used for cartilage regenerations in surgically induced osteoarthritis in sheep model. Osteoarthritis was induced at the right knee of sheep by complete resection of the anterior cruciate ligament and medial meniscus following a 3-weeks exercise regimen. Stem cells from experimental sheep were culture expanded and induced to chondrogenic lineage. Test sheep received a single dose of 2 × 10(7) autologous PKH26-labelled, chondrogenically induced ADSCs or BMSCs as 5 mls injection, while controls received 5 mls culture medium. The proliferation rate of ADSCs 34.4 ± 1.6 hr was significantly higher than that of the BMSCs 48.8 ± 5.3 hr (P = 0.008). Chondrogenic induced BMSCs had significantly higher expressions of chondrogenic specific genes (Collagen II, SOX9 and Aggrecan) compared to chondrogenic ADSCs (P = 0.031, 0.010 and 0.013). Grossly, the treated knee joints showed regenerated de novo cartilages within 6 weeks post-treatment. On the International Cartilage Repair Society grade scores, chondrogenically induced ADSCs and BMSCs groups had significantly lower scores than controls (P = 0.0001 and 0.0001). Fluorescence of the tracking dye (PKH26) in the injected cells showed that they had populated the damaged area of cartilage. Histological staining revealed loosely packed matrixes of de novo cartilages and immunostaining demonstrated the presence of cartilage specific proteins, Collagen II and SOX9. Autologous chondrogenically induced ADSCs and BMSCs could be promising cell sources for cartilage regeneration in osteoarthritis.

  7. Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model.

    Directory of Open Access Journals (Sweden)

    Chinedu C Ude

    Full Text Available OBJECTIVES: In this study, Adipose stem cells (ADSC and bone marrow stem cells (BMSC, multipotent adult cells with the potentials for cartilage regenerations were induced to chondrogenic lineage and used for cartilage regenerations in surgically induced osteoarthritis in sheep model. METHODS: Osteoarthritis was induced at the right knee of sheep by complete resection of the anterior cruciate ligament and medial meniscus following a 3-weeks exercise regimen. Stem cells from experimental sheep were culture expanded and induced to chondrogenic lineage. Test sheep received a single dose of 2 × 10(7 autologous PKH26-labelled, chondrogenically induced ADSCs or BMSCs as 5 mls injection, while controls received 5 mls culture medium. RESULTS: The proliferation rate of ADSCs 34.4 ± 1.6 hr was significantly higher than that of the BMSCs 48.8 ± 5.3 hr (P = 0.008. Chondrogenic induced BMSCs had significantly higher expressions of chondrogenic specific genes (Collagen II, SOX9 and Aggrecan compared to chondrogenic ADSCs (P = 0.031, 0.010 and 0.013. Grossly, the treated knee joints showed regenerated de novo cartilages within 6 weeks post-treatment. On the International Cartilage Repair Society grade scores, chondrogenically induced ADSCs and BMSCs groups had significantly lower scores than controls (P = 0.0001 and 0.0001. Fluorescence of the tracking dye (PKH26 in the injected cells showed that they had populated the damaged area of cartilage. Histological staining revealed loosely packed matrixes of de novo cartilages and immunostaining demonstrated the presence of cartilage specific proteins, Collagen II and SOX9. CONCLUSION: Autologous chondrogenically induced ADSCs and BMSCs could be promising cell sources for cartilage regeneration in osteoarthritis.

  8. * Human Amniotic Mesenchymal Stromal Cells as Favorable Source for Cartilage Repair.

    Science.gov (United States)

    Muiños-López, Emma; Hermida-Gómez, Tamara; Fuentes-Boquete, Isaac; de Toro-Santos, Javier; Blanco, Francisco Javier; Díaz-Prado, Silvia María

    2017-09-01

    Localized trauma-derived breakdown of the hyaline articular cartilage may progress toward osteoarthritis, a degenerative condition characterized by total loss of articular cartilage and joint function. Tissue engineering technologies encompass several promising approaches with high therapeutic potential for the treatment of these focal defects. However, most