Multiscale geometric modeling of macromolecules I: Cartesian representation
Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei
2014-01-01
This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the
Multiscale geometric modeling of macromolecules I: Cartesian representation
Energy Technology Data Exchange (ETDEWEB)
Xia, Kelin [Department of Mathematics, Michigan State University, MI 48824 (United States); Feng, Xin [Department of Computer Science and Engineering, Michigan State University, MI 48824 (United States); Chen, Zhan [Department of Mathematics, Michigan State University, MI 48824 (United States); Tong, Yiying [Department of Computer Science and Engineering, Michigan State University, MI 48824 (United States); Wei, Guo-Wei, E-mail: wei@math.msu.edu [Department of Mathematics, Michigan State University, MI 48824 (United States); Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824 (United States)
2014-01-15
This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace–Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the
Geometric interpretation of the Zero-Moment Point
van Oort, Gijs; Stramigioli, Stefano
In this article we show that the concept of screws and wrenches gives us tools to geometrically establish the relation between the ground reaction wrench and the Zero-Moment Point. In order to arrive at this, we show how a wrench can be decomposed into separate components. The proposed method gives
Issack, Bilkiss B; Roy, Pierre-Nicholas
2005-08-22
An approach for the inclusion of geometric constraints in semiclassical initial value representation calculations is introduced. An important aspect of the approach is that Cartesian coordinates are used throughout. We devised an algorithm for the constrained sampling of initial conditions through the use of multivariate Gaussian distribution based on a projected Hessian. We also propose an approach for the constrained evaluation of the so-called Herman-Kluk prefactor in its exact log-derivative form. Sample calculations are performed for free and constrained rare-gas trimers. The results show that the proposed approach provides an accurate evaluation of the reduction in zero-point energy. Exact basis set calculations are used to assess the accuracy of the semiclassical results. Since Cartesian coordinates are used, the approach is general and applicable to a variety of molecular and atomic systems.
Efficient 3D geometric and Zernike moments computation from unstructured surface meshes.
Pozo, José María; Villa-Uriol, Maria-Cruz; Frangi, Alejandro F
2011-03-01
This paper introduces and evaluates a fast exact algorithm and a series of faster approximate algorithms for the computation of 3D geometric moments from an unstructured surface mesh of triangles. Being based on the object surface reduces the computational complexity of these algorithms with respect to volumetric grid-based algorithms. In contrast, it can only be applied for the computation of geometric moments of homogeneous objects. This advantage and restriction is shared with other proposed algorithms based on the object boundary. The proposed exact algorithm reduces the computational complexity for computing geometric moments up to order N with respect to previously proposed exact algorithms, from N(9) to N(6). The approximate series algorithm appears as a power series on the rate between triangle size and object size, which can be truncated at any desired degree. The higher the number and quality of the triangles, the better the approximation. This approximate algorithm reduces the computational complexity to N(3). In addition, the paper introduces a fast algorithm for the computation of 3D Zernike moments from the computed geometric moments, with a computational complexity N(4), while the previously proposed algorithm is of order N(6). The error introduced by the proposed approximate algorithms is evaluated in different shapes and the cost-benefit ratio in terms of error, and computational time is analyzed for different moment orders.
Directory of Open Access Journals (Sweden)
Ni Luh Wiwik Sri Rahayu Ginantra
2016-03-01
Full Text Available Motif batik merupakan suatu dasar atau pokok suatu pola gambar yang merupakan pusat suatu rancangan gambar sehingga makna dari tanda, simbol atau lambang dibalik motif batik tersebut dapat diungkapkan. Identifikasi secara visual memerlukan skill penglihatan dan pengetahuan dalam mengklasifikasikan pola yang terbentuk dari citra batik. Kurangnya media informasi yang dibuat tentang motif batik menjadikan masyarakat luas kurang mendapatkan informasi tentang motif batik. Berdasarkan hal tersebut penelitian ini dilakukan guna mengimplementasikan identifikasi secara visual kedalam komputer yang dapat membantu dan memudahkan dalam mengidentifikasi jenis batik. Pengenalan citra batik dengan menggunakan metode Co-occurrence Matrix sebagai ekstraksi ciri tekstur dan Geometric Moment Invariant dan pengklasifikasian citra batik dengan menggunakan K Nearest Neighbor.menghasilkan nilai akurasi yang diperoleh dengan metode Geometric Moment Invariant lebih baik dalam mengenali pola batik Parang yang termasuk jenis batik geometric yaitu 80% dibandingkan dengan hasil pada metode Co-occurence Matrix yaitu 70%.
ATS drugs molecular structure representation using refined 3D geometric moment invariants
Czech Academy of Sciences Publication Activity Database
Pratama, S. F.; Muda, A. K.; Choo, J. H.; Flusser, Jan; Abraham, A.
2017-01-01
Roč. 55, č. 10 (2017), s. 1951-1963 ISSN 0259-9791 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : 3D moment invariants * Geometric moment invariants * ATS drugs * Molecular similarity * Molecular descriptors Subject RIV: JD - Computer Applications, Robotics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 1.308, year: 2016 http://library.utia.cas.cz/separaty/2017/ZOI/flusser-0479217.pdf
Loce, R P; Jodoin, R E
1990-09-10
Using the tools of Fourier analysis, a sampling requirement is derived that assures that sufficient information is contained within the samples of a distribution to calculate accurately geometric moments of that distribution. The derivation follows the standard textbook derivation of the Whittaker-Shannon sampling theorem, which is used for reconstruction, but further insight leads to a coarser minimum sampling interval for moment determination. The need for fewer samples to determine moments agrees with intuition since less information should be required to determine a characteristic of a distribution compared with that required to construct the distribution. A formula for calculation of the moments from these samples is also derived. A numerical analysis is performed to quantify the accuracy of the calculated first moment for practical nonideal sampling conditions. The theory is applied to a high speed laser beam position detector, which uses the normalized first moment to measure raster line positional accuracy in a laser printer. The effects of the laser irradiance profile, sampling aperture, number of samples acquired, quantization, and noise are taken into account.
Image Retrieval based on Integration between Color and Geometric Moment Features
International Nuclear Information System (INIS)
Saad, M.H.; Saleh, H.I.; Konbor, H.; Ashour, M.
2012-01-01
Content based image retrieval is the retrieval of images based on visual features such as colour, texture and shape. .the Current approaches to CBIR differ in terms of which image features are extracted; recent work deals with combination of distances or scores from different and usually independent representations in an attempt to induce high level semantics from the low level descriptors of the images. content-based image retrieval has many application areas such as, education, commerce, military, searching, commerce, and biomedicine and Web image classification. This paper proposes a new image retrieval system, which uses color and geometric moment feature to form the feature vectors. Bhattacharyya distance and histogram intersection are used to perform feature matching. This framework integrates the color histogram which represents the global feature and geometric moment as local descriptor to enhance the retrieval results. The proposed technique is proper for precisely retrieving images even in deformation cases such as geometric deformations and noise. It is tested on a standard the results shows that a combination of our approach as a local image descriptor with other global descriptors outperforms other approaches.
International Nuclear Information System (INIS)
Bini, Donato; Geralico, Andrea; Luongo, Orlando; Quevedo, Hernando
2009-01-01
An exact solution of Einstein's field equations in empty space first found in 1985 by Quevedo and Mashhoon is analyzed in detail. This solution generalizes Kerr spacetime to include the case of matter with an arbitrary mass quadrupole moment and is specified by three parameters, the mass M, the angular momentum per unit mass a and the quadrupole parameter q. It reduces to the Kerr spacetime in the limiting case q = 0 and to the Erez-Rosen spacetime when the specific angular momentum a vanishes. The geometrical properties of such a solution are investigated. Causality violations, directional singularities and repulsive effects occur in the region close to the source. Geodesic motion and accelerated motion are studied on the equatorial plane which, due to the reflection symmetry property of the solution, also turns out to be a geodesic plane.
Comparison of organs' shapes with geometric and Zernike 3D moments.
Broggio, D; Moignier, A; Ben Brahim, K; Gardumi, A; Grandgirard, N; Pierrat, N; Chea, M; Derreumaux, S; Desbrée, A; Boisserie, G; Aubert, B; Mazeron, J-J; Franck, D
2013-09-01
The morphological similarity of organs is studied with feature vectors based on geometric and Zernike 3D moments. It is particularly investigated if outliers and average models can be identified. For this purpose, the relative proximity to the mean feature vector is defined, principal coordinate and clustering analyses are also performed. To study the consistency and usefulness of this approach, 17 livers and 76 hearts voxel models from several sources are considered. In the liver case, models with similar morphological feature are identified. For the limited amount of studied cases, the liver of the ICRP male voxel model is identified as a better surrogate than the female one. For hearts, the clustering analysis shows that three heart shapes represent about 80% of the morphological variations. The relative proximity and clustering analysis rather consistently identify outliers and average models. For the two cases, identification of outliers and surrogate of average models is rather robust. However, deeper classification of morphological feature is subject to caution and can only be performed after cross analysis of at least two kinds of feature vectors. Finally, the Zernike moments contain all the information needed to re-construct the studied objects and thus appear as a promising tool to derive statistical organ shapes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Essadki Mohamed
2016-09-01
Full Text Available Predictive simulation of liquid fuel injection in automotive engines has become a major challenge for science and applications. The key issue in order to properly predict various combustion regimes and pollutant formation is to accurately describe the interaction between the carrier gaseous phase and the polydisperse evaporating spray produced through atomization. For this purpose, we rely on the EMSM (Eulerian Multi-Size Moment Eulerian polydisperse model. It is based on a high order moment method in size, with a maximization of entropy technique in order to provide a smooth reconstruction of the distribution, derived from a Williams-Boltzmann mesoscopic model under the monokinetic assumption [O. Emre (2014 PhD Thesis, École Centrale Paris; O. Emre, R.O. Fox, M. Massot, S. Chaisemartin, S. Jay, F. Laurent (2014 Flow, Turbulence and Combustion 93, 689-722; O. Emre, D. Kah, S. Jay, Q.-H. Tran, A. Velghe, S. de Chaisemartin, F. Laurent, M. Massot (2015 Atomization Sprays 25, 189-254; D. Kah, F. Laurent, M. Massot, S. Jay (2012 J. Comput. Phys. 231, 394-422; D. Kah, O. Emre, Q.-H. Tran, S. de Chaisemartin, S. Jay, F. Laurent, M. Massot (2015 Int. J. Multiphase Flows 71, 38-65; A. Vié, F. Laurent, M. Massot (2013 J. Comp. Phys. 237, 277-310]. The present contribution relies on a major extension of this model [M. Essadki, S. de Chaisemartin, F. Laurent, A. Larat, M. Massot (2016 Submitted to SIAM J. Appl. Math.], with the aim of building a unified approach and coupling with a separated phases model describing the dynamics and atomization of the interface near the injector. The novelty is to be found in terms of modeling, numerical schemes and implementation. A new high order moment approach is introduced using fractional moments in surface, which can be related to geometrical quantities of the gas-liquid interface. We also provide a novel algorithm for an accurate resolution of the evaporation. Adaptive mesh refinement properly scaling on massively
International Nuclear Information System (INIS)
Muhtadan
2009-01-01
The purpose of this research is to perform feature extraction in weld defect of digital image of radiographic film using geometric invariant moment and statistical texture method. Feature extraction values can be use as values that used to classify and pattern recognition on interpretation of weld defect in digital image of radiographic film by computer automatically. Weld defectology type that used in this research are longitudinal crack, transversal crack, distributed porosity, clustered porosity, wormhole, and no defect. Research methodology on this research are program development to read digital image, then performing image cropping to localize weld position, and then applying geometric invariant moment and statistical texture formulas to find feature values. The result of this research are feature extraction values that have tested with RST (rotation, scale, transformation) treatment and yield moment values that more invariant there are ϕ 3 , ϕ 4 , ϕ 5 from geometric invariant moment method. Feature values from statistical texture that are average intensity, average contrast, smoothness, 3 rd moment, uniformity, and entropy, they used as feature extraction values. (author)
Effect of geometric imperfections on the ultimate moment capacity of cold-formed sigma-shape se
Directory of Open Access Journals (Sweden)
Bassem L. Gendy
2017-08-01
Full Text Available In recent years, cold formed steel sections are used more and more as primary framing components and as a secondary structural system. They are used as purlins and side rails or floor joist, and after that in the building envelops. Beams are not perfectly straight and are usually associated with geometric imperfections. Initial geometric imperfections can significantly influence the stability response of cold-formed steel members. This paper reports a numerical investigation concerning the effect of these imperfections on the behavior of the simply supported beams subjected to a uniform bending moment. The beam profile is cold formed sigma sections. Group of beams with different overall member slenderness ratios were studied. Several approaches have been utilized to model the geometric imperfections. First, the elastic buckling modes were considered as the imperfect beam shape. In this approach, the elastic buckling analysis was done first to get the elastic buckling modes. In the second approach, the imperfections were considered by assuming the beam bent in a half sine wave along its length. Finally, combination of these two approaches was considered. Results reveal that, the ultimate bending moments of beams with short and intermediate overall slenderness ratios are sensitive to the imperfect shape that comprise compression flange local buckling.
Silenko, Alexander J.
2017-12-01
We consider a proton electric-dipole-moment experiment in an all-electric storage ring when the spin is frozen and local longitudinal and vertical electric fields alternate. In this experiment, the geometric (Berry) phases are very important. Due to the these phases, the spin rotates about the radial axis. The corresponding systematic error is rather important while it can be canceled with clockwise and counterclockwise beams. The geometric phases also lead to the spin rotation about the radial axis. This effect can be canceled with clockwise and counterclockwise beams as well. The sign of the azimuthal component of the angular velocity of the spin precession depends on the starting point where the spin orientation is perfect. The radial component of this quantity keeps its value and sign for each starting point. When the longitudinal and vertical electric fields are joined in the same sections without any alternation, the systematic error due to the geometric phases does not appear but another systematic effect of the spin rotation about the azimuthal axis takes place. It has opposite signs for clockwise and counterclockwise beams.
International Nuclear Information System (INIS)
Yahaqi, E.; Movafeghi, A.; Hosseini- Ashrafi, M.E.
2004-01-01
Given the number of possible combinations of different setting in radiotherapy such as the number of fields etc., arriving at an optimum treatment plan with a completely conventional solution would require an unacceptable number of interaction. Using a priori information whether of a qualitative or quantitative nature has the potential of greatly reducing amount of calculation required in any optimization procedure. Having extracted the outline of the body counter line the treatment area, the sensitive organ and any in- homogeneity present in the given cross section quantitative information in the form of moments is calculated for each treatment case. An artificial neural network classifier is then developed using group of sample treatment case and applied to arrive at initial treatment plan for any new case. The approach has been shown to have strong potential for greatly reducing the number of choices in selecting the optimum answer in treatment planning
Descartes, Cartesianism, and Theology
Goudriaan, A.; Lehner, Ulrich; Muller, Richard A.; Roeber, Gregory
2015-01-01
While insisting on the need to separate theology from philosophy, Descartes developed a philosophical theology that was intensely debated in the early modern period. This article asks the question how the receptions of Cartesian philosophy were related to different confessional profiles.
Cartesian tensors an introduction
Temple, G
2004-01-01
This undergraduate text provides an introduction to the theory of Cartesian tensors, defining tensors as multilinear functions of direction, and simplifying many theorems in a manner that lends unity to the subject. The author notes the importance of the analysis of the structure of tensors in terms of spectral sets of projection operators as part of the very substance of quantum theory. He therefore provides an elementary discussion of the subject, in addition to a view of isotropic tensors and spinor analysis within the confines of Euclidean space. The text concludes with an examination of t
Petrushin, A.; Shevkunova, A.
2018-02-01
The article deals with the investigation concentrated to optimizing the active part of the switched-reluctance motor with the aim of increasing the value of the average electromagnetic torque. Susceptibility of the average value of the electromagnetic torque to changes of the geometric dimensions of the magnetic system found in the optimization process was set.
Grebenev, Igor V.; Lebedeva, Olga V.; Polushkina, Svetlana V.
2018-07-01
The article proposes a new research object for a general physics course—the vapour Cartesian diver, designed to study the properties of saturated water vapour. Physics education puts great importance on the study of the saturated vapour state, as it is related to many fundamental laws and theories. For example, the temperature dependence of the saturated water vapour pressure allows the teacher to demonstrate the Le Chatelier’s principle: increasing the temperature of a system in a dynamic equilibrium favours the endothermic change. That means that increasing the temperature increases the amount of vapour present, and so increases the saturated vapour pressure. The experimental setup proposed in this paper can be used as an example of an auto-oscillatory system, based on the properties of saturated vapour. The article describes a mathematical model of physical processes that occur in the experiment, and proposes a numerical solution method for the acquired system of equations. It shows that the results of numerical simulation coincide with the self-oscillation parameters from the real experiment. The proposed installation can also be considered as a model of a thermal engine.
Shattering a Cartesian Sceptical Dream
Directory of Open Access Journals (Sweden)
Stephen Hetherington
2004-06-01
Full Text Available Scepticism about external world knowledge is frequently claimed to emerge from Descartes’s dreaming argument. That argument supposedly challenges one to have some further knowledge — the knowledge that one is not dreaming that p — if one is to have even one given piece of external world knowledge that p. The possession of that further knowledge can seem espe-cially important when the dreaming possibility is genuinely Cartesian (with one’s dreaming that p being incompatible with the truth of one’s accompany-ing belief that p. But this paper shows why that Cartesian use of that possi-bility is not at all challenging. It is because that putative sceptical challenge reduces to a triviality which is incompatible with the sceptic’s having de-scribed some further piece of knowledge which is needed, if one is to have the knowledge that p.
Non-Cartesian parallel imaging reconstruction.
Wright, Katherine L; Hamilton, Jesse I; Griswold, Mark A; Gulani, Vikas; Seiberlich, Nicole
2014-11-01
Non-Cartesian parallel imaging has played an important role in reducing data acquisition time in MRI. The use of non-Cartesian trajectories can enable more efficient coverage of k-space, which can be leveraged to reduce scan times. These trajectories can be undersampled to achieve even faster scan times, but the resulting images may contain aliasing artifacts. Just as Cartesian parallel imaging can be used to reconstruct images from undersampled Cartesian data, non-Cartesian parallel imaging methods can mitigate aliasing artifacts by using additional spatial encoding information in the form of the nonhomogeneous sensitivities of multi-coil phased arrays. This review will begin with an overview of non-Cartesian k-space trajectories and their sampling properties, followed by an in-depth discussion of several selected non-Cartesian parallel imaging algorithms. Three representative non-Cartesian parallel imaging methods will be described, including Conjugate Gradient SENSE (CG SENSE), non-Cartesian generalized autocalibrating partially parallel acquisition (GRAPPA), and Iterative Self-Consistent Parallel Imaging Reconstruction (SPIRiT). After a discussion of these three techniques, several potential promising clinical applications of non-Cartesian parallel imaging will be covered. © 2014 Wiley Periodicals, Inc.
Zernike Basis to Cartesian Transformations
Mathar, R. J.
2009-12-01
The radial polynomials of the 2D (circular) and 3D (spherical) Zernike functions are tabulated as powers of the radial distance. The reciprocal tabulation of powers of the radial distance in series of radial polynomials is also given, based on projections that take advantage of the orthogonality of the polynomials over the unit interval. They play a role in the expansion of products of the polynomials into sums, which is demonstrated by some examples. Multiplication of the polynomials by the angular bases (azimuth, polar angle) defines the Zernike functions, for which we derive transformations to and from the Cartesian coordinate system centered at the middle of the circle or sphere.
Institute of Scientific and Technical Information of China (English)
韩建玲
2012-01-01
利用幂级数逐项积分性质给出几何分布高阶原点矩的递推公式，并得到推论，使得计算高阶原点矩更为简捷方便．%In this paper, the recursive formula and inference of high -order origin moments of geometric distribution are given by using the nature of power series.
Cartesian oval representation of freeform optics in illumination systems.
Michaelis, D; Schreiber, P; Bräuer, A
2011-03-15
The geometrical method for constructing optical surfaces for illumination purpose developed by Oliker and co-workers [Trends in Nonlinear Analysis (Springer, 2003)] is generalized in order to obtain freeform designs in arbitrary optical systems. The freeform is created by a set of primitive surface elements, which are generalized Cartesian ovals adapted to the given optical system. Those primitives are determined by Hamiltonian theory of ray optics. The potential of this approach is demonstrated by some examples, e.g., freeform lenses with collimating front elements.
Zernike Basis to Cartesian Transformations
Directory of Open Access Journals (Sweden)
Mathar, R. J.
2009-12-01
Full Text Available The radial polynomials of the 2D (circular and 3D (spherical Zernike functions are tabulated as powers of the radial distance. The reciprocal tabulation of powers of the radial distance in series of radial polynomials is also given, based on projections that take advantage of the orthogonality of the polynomials over the unit interval. They play a role in the expansion of products of the polynomials into sums, which is demonstrated by some examples. Multiplication of the polynomials by the angular bases (azimuth, polar angle defines the Zernike functions, for which we derive transformations to and from the Cartesian coordinate system centered at the middle of the circle or sphere.
Zernike basis to cartesian transformations
Directory of Open Access Journals (Sweden)
Mathar R.J.
2009-01-01
Full Text Available The radial polynomials of the 2D (circular and 3D (spherical Zernike functions are tabulated as powers of the radial distance. The reciprocal tabulation of powers of the radial distance in series of radial polynomials is also given, based on projections that take advantage of the orthogonality of the polynomials over the unit interval. They play a role in the expansion of products of the polynomials into sums, which is demonstrated by some examples. Multiplication of the polynomials by the angular bases (azimuth, polar angle defines the Zernike functions, for which we derive transformations to and from the Cartesian coordinate system centered at the middle of the circle or sphere.
Cartesian product of hypergraphs: properties and algorithms
Directory of Open Access Journals (Sweden)
Alain Bretto
2009-09-01
Full Text Available Cartesian products of graphs have been studied extensively since the 1960s. They make it possible to decrease the algorithmic complexity of problems by using the factorization of the product. Hypergraphs were introduced as a generalization of graphs and the definition of Cartesian products extends naturally to them. In this paper, we give new properties and algorithms concerning coloring aspects of Cartesian products of hypergraphs. We also extend a classical prime factorization algorithm initially designed for graphs to connected conformal hypergraphs using 2-sections of hypergraphs.
Bhalla, Amneet Pal Singh; Johansen, Hans; Graves, Dan; Martin, Dan; Colella, Phillip; Applied Numerical Algorithms Group Team
2017-11-01
We present a consistent cell-averaged discretization for incompressible Navier-Stokes equations on complex domains using embedded boundaries. The embedded boundary is allowed to freely cut the locally-refined background Cartesian grid. Implicit-function representation is used for the embedded boundary, which allows us to convert the required geometric moments in the Taylor series expansion (upto arbitrary order) of polynomials into an algebraic problem in lower dimensions. The computed geometric moments are then used to construct stencils for various operators like the Laplacian, divergence, gradient, etc., by solving a least-squares system locally. We also construct the inter-level data-transfer operators like prolongation and restriction for multi grid solvers using the same least-squares system approach. This allows us to retain high-order of accuracy near coarse-fine interface and near embedded boundaries. Canonical problems like Taylor-Green vortex flow and flow past bluff bodies will be presented to demonstrate the proposed method. U.S. Department of Energy, Office of Science, ASCR (Award Number DE-AC02-05CH11231).
Kopferman, H; Massey, H S W
1958-01-01
Nuclear Moments focuses on the processes, methodologies, reactions, and transformations of molecules and atoms, including magnetic resonance and nuclear moments. The book first offers information on nuclear moments in free atoms and molecules, including theoretical foundations of hyperfine structure, isotope shift, spectra of diatomic molecules, and vector model of molecules. The manuscript then takes a look at nuclear moments in liquids and crystals. Discussions focus on nuclear paramagnetic and magnetic resonance and nuclear quadrupole resonance. The text discusses nuclear moments and nucl
International Nuclear Information System (INIS)
Zhang Wen; Haas, Stephan
2009-01-01
An implementation of the fast multiple method (FMM) is performed for magnetic systems with long-ranged dipolar interactions. Expansion in spherical harmonics of the original FMM is replaced by expansion of polynomials in Cartesian coordinates, which is considerably simpler. Under open boundary conditions, an expression for multipole moments of point dipoles in a cell is derived. These make the program appropriate for nanomagnetic simulations, including magnetic nanoparticles and ferrofluids. The performance is optimized in terms of cell size and parameter set (expansion order and opening angle) and the trade off between computing time and accuracy is quantitatively studied. A rule of thumb is proposed to decide the appropriate average number of dipoles in the smallest cells, and an optimal choice of parameter set is suggested. Finally, the superiority of Cartesian coordinate FMM is demonstrated by comparison to spherical harmonics FMM and FFT.
Explicitly computing geodetic coordinates from Cartesian coordinates
Zeng, Huaien
2013-04-01
This paper presents a new form of quartic equation based on Lagrange's extremum law and a Groebner basis under the constraint that the geodetic height is the shortest distance between a given point and the reference ellipsoid. A very explicit and concise formulae of the quartic equation by Ferrari's line is found, which avoids the need of a good starting guess for iterative methods. A new explicit algorithm is then proposed to compute geodetic coordinates from Cartesian coordinates. The convergence region of the algorithm is investigated and the corresponding correct solution is given. Lastly, the algorithm is validated with numerical experiments.
Reconstruction of convex bodies from moments
DEFF Research Database (Denmark)
Hörrmann, Julia; Kousholt, Astrid
We investigate how much information about a convex body can be retrieved from a finite number of its geometric moments. We give a sufficient condition for a convex body to be uniquely determined by a finite number of its geometric moments, and we show that among all convex bodies, those which......- rithm that approximates a convex body using a finite number of its Legendre moments. The consistency of the algorithm is established using the stabil- ity result for Legendre moments. When only noisy measurements of Legendre moments are available, the consistency of the algorithm is established under...
An adaptive Cartesian control scheme for manipulators
Seraji, H.
1987-01-01
A adaptive control scheme for direct control of manipulator end-effectors to achieve trajectory tracking in Cartesian space is developed. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for online implementation with high sampling rates.
Transmuted Complementary Weibull Geometric Distribution
Directory of Open Access Journals (Sweden)
Ahmed Z. A fify
2014-12-01
Full Text Available This paper provides a new generalization of the complementary Weibull geometric distribution that introduced by Tojeiro et al. (2014, using the quadratic rank transmutation map studied by Shaw and Buckley (2007. The new distribution is referred to as transmuted complementary Weibull geometric distribution (TCWGD. The TCWG distribution includes as special cases the complementary Weibull geometric distribution (CWGD, complementary exponential geometric distribution(CEGD,Weibull distribution (WD and exponential distribution (ED. Various structural properties of the new distribution including moments, quantiles, moment generating function and RØnyi entropy of the subject distribution are derived. We proposed the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the exibility of the transmuted version versus the complementary Weibull geometric distribution.
Moments of Inertia of Disks and Spheres without Integration
Hong, Seok-Cheol; Hong, Seok-In
2013-01-01
Calculation of moments of inertia is often challenging for introductory-level physics students due to the use of integration, especially in non-Cartesian coordinates. Methods that do not employ calculus have been described for finding the rotational inertia of thin rods and other simple bodies. In this paper we use the parallel axis theorem and…
Fast computation of Krawtchouk moments
Czech Academy of Sciences Publication Activity Database
Honarvar Shakibaei Asli, B.; Flusser, Jan
2014-01-01
Roč. 288, č. 1 (2014), s. 73-86 ISSN 0020-0255 R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : Krawtchouk polynomial * Krawtchouk moment * Geometric moment * Impulse response * Fast computation * Digital filter Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.038, year: 2014 http://library.utia.cas.cz/separaty/2014/ZOI/flusser-0432452.pdf
Cartesian anisotropic mesh adaptation for compressible flow
International Nuclear Information System (INIS)
Keats, W.A.; Lien, F.-S.
2004-01-01
Simulating transient compressible flows involving shock waves presents challenges to the CFD practitioner in terms of the mesh quality required to resolve discontinuities and prevent smearing. This paper discusses a novel two-dimensional Cartesian anisotropic mesh adaptation technique implemented for compressible flow. This technique, developed for laminar flow by Ham, Lien and Strong, is efficient because it refines and coarsens cells using criteria that consider the solution in each of the cardinal directions separately. In this paper the method will be applied to compressible flow. The procedure shows promise in its ability to deliver good quality solutions while achieving computational savings. The convection scheme used is the Advective Upstream Splitting Method (Plus), and the refinement/ coarsening criteria are based on work done by Ham et al. Transient shock wave diffraction over a backward step and shock reflection over a forward step are considered as test cases because they demonstrate that the quality of the solution can be maintained as the mesh is refined and coarsened in time. The data structure is explained in relation to the computational mesh, and the object-oriented design and implementation of the code is presented. Refinement and coarsening algorithms are outlined. Computational savings over uniform and isotropic mesh approaches are shown to be significant. (author)
Energy Technology Data Exchange (ETDEWEB)
Ebata, T [Tohoku Univ., Sendai (Japan). Coll. of General Education
1976-06-01
The geometrical distribution inferred from the inelastic cross section is assumed to be proportional to the partial waves. The precocious scaling and the Q/sup 2/-dependence of various quantities are treated from the geometrical point of view. It is shown that the approximate conservation of the orbital angular momentum may be a very practical rule to understand the helicity structure of various hadronic and electromagnetic reactions. The rule can be applied to inclusive reactions as well. The model is also applied to large angle processes. Through the discussion, it is suggested that many peculiar properties of the quark-parton can be ascribed to the geometrical effects.
D-dimensional moments of inertia
International Nuclear Information System (INIS)
Bender, C.M.; Mead, L.R.
1995-01-01
We calculate the moments of inertia of D-dimensional spheres and spherical shells, where D is a complex number. We also examine the moments of inertia of fractional-dimensional geometrical objects such as the Cantor set and the Sierpinski carpet and their D-dimensional analogs. copyright 1995 American Association of Physics Teachers
International Nuclear Information System (INIS)
Biondo, Elliott D.; Davis, Andrew; Wilson, Paul P.H.
2016-01-01
Highlights: • A CAD-based shutdown dose rate analysis workflow has been implemented. • Cartesian and superimposed tetrahedral mesh are fully supported. • Biased and unbiased photon source sampling options are available. • Hybrid Monte Carlo/deterministic techniques accelerate photon transport. • The workflow has been validated with the FNG-ITER benchmark problem. - Abstract: In fusion energy systems (FES) high-energy neutrons born from burning plasma activate system components to form radionuclides. The biological dose rate that results from photons emitted by these radionuclides after shutdown—the shutdown dose rate (SDR)—must be quantified for maintenance planning. This can be done using the Rigorous Two-Step (R2S) method, which involves separate neutron and photon transport calculations, coupled by a nuclear inventory analysis code. The geometric complexity and highly attenuating configuration of FES motivates the use of CAD geometry and advanced variance reduction for this analysis. An R2S workflow has been created with the new capability of performing SDR analysis directly from CAD geometry with Cartesian or tetrahedral meshes and with biased photon source sampling, enabling the use of the Consistent Adjoint Driven Importance Sampling (CADIS) variance reduction technique. This workflow has been validated with the Frascati Neutron Generator (FNG)-ITER SDR benchmark using both Cartesian and tetrahedral meshes and both unbiased and biased photon source sampling. All results are within 20.4% of experimental values, which constitutes satisfactory agreement. Photon transport using CADIS is demonstrated to yield speedups as high as 8.5·10"5 for problems using the FNG geometry.
Bray, Hubert L; Mazzeo, Rafe; Sesum, Natasa
2015-01-01
This volume includes expanded versions of the lectures delivered in the Graduate Minicourse portion of the 2013 Park City Mathematics Institute session on Geometric Analysis. The papers give excellent high-level introductions, suitable for graduate students wishing to enter the field and experienced researchers alike, to a range of the most important areas of geometric analysis. These include: the general issue of geometric evolution, with more detailed lectures on Ricci flow and Kähler-Ricci flow, new progress on the analytic aspects of the Willmore equation as well as an introduction to the recent proof of the Willmore conjecture and new directions in min-max theory for geometric variational problems, the current state of the art regarding minimal surfaces in R^3, the role of critical metrics in Riemannian geometry, and the modern perspective on the study of eigenfunctions and eigenvalues for Laplace-Beltrami operators.
Niethammer, Marc; Hart, Gabriel L; Pace, Danielle F; Vespa, Paul M; Irimia, Andrei; Van Horn, John D; Aylward, Stephen R
2011-01-01
Standard image registration methods do not account for changes in image appearance. Hence, metamorphosis approaches have been developed which jointly estimate a space deformation and a change in image appearance to construct a spatio-temporal trajectory smoothly transforming a source to a target image. For standard metamorphosis, geometric changes are not explicitly modeled. We propose a geometric metamorphosis formulation, which explains changes in image appearance by a global deformation, a deformation of a geometric model, and an image composition model. This work is motivated by the clinical challenge of predicting the long-term effects of traumatic brain injuries based on time-series images. This work is also applicable to the quantification of tumor progression (e.g., estimating its infiltrating and displacing components) and predicting chronic blood perfusion changes after stroke. We demonstrate the utility of the method using simulated data as well as scans from a clinical traumatic brain injury patient.
Non-Cartesian MRI scan time reduction through sparse sampling
Wajer, F.T.A.W.
2001-01-01
Non-Cartesian MRI Scan-Time Reduction through Sparse Sampling Magnetic resonance imaging (MRI) signals are measured in the Fourier domain, also called k-space. Samples of the MRI signal can not be taken at will, but lie along k-space trajectories determined by the magnetic field gradients. MRI
The Thickness of Amalgamations and Cartesian Product of Graphs
Directory of Open Access Journals (Sweden)
Yang Yan
2017-08-01
Full Text Available The thickness of a graph is the minimum number of planar spanning subgraphs into which the graph can be decomposed. It is a measurement of the closeness to the planarity of a graph, and it also has important applications to VLSI design, but it has been known for only few graphs. We obtain the thickness of vertex-amalgamation and bar-amalgamation of graphs, the lower and upper bounds for the thickness of edge-amalgamation and 2-vertex-amalgamation of graphs, respectively. We also study the thickness of Cartesian product of graphs, and by using operations on graphs, we derive the thickness of the Cartesian product Kn □ Pm for most values of m and n.
The Louvain printers and the establishment of the Cartesian curriculum
Directory of Open Access Journals (Sweden)
Geert Vanpaemel
2012-03-01
Full Text Available With regard to the public circulation of knowledge, universities are often regarded as privileged institutions where information and ideas are formally transmitted through regulated didactic experiences. University life, however, provided a more complex environment in which various parallel and perhaps contradictory processes of transmission were at work. In this paper, we analyse a set of 55 engravings with scientific images, which started to appear around 1670 in student notebooks at the University of Louvain. These engravings, produced and sold by the Louvain printers Michael Hayé and Lambert Blendeff, were related to the philosophy curriculum of the Faculty of Arts but did not correspond entirely to the actual topics or doctrine taught. In fact, the obvious Cartesian orientation of the images was not in line with the more prudent position of the Faculty. This paper offers a preliminary analysis of the set of engravings and their role in the Cartesian reforms at Louvain.
Analyzing correlation functions with tesseral and Cartesian spherical harmonics
International Nuclear Information System (INIS)
Danielewicz, Pawel; Pratt, Scott
2007-01-01
The dependence of interparticle correlations on the orientation of particle relative momentum can yield unique information on the space-time features of emission in reactions with multiparticle final states. In the present paper, the benefits of a representation and analysis of the three-dimensional correlation information in terms of surface spherical harmonics is presented. The harmonics include the standard complex tesseral harmonics and the real Cartesian harmonics. Mathematical properties of the lesser known Cartesian harmonics are illuminated. The physical content of different angular harmonic components in a correlation is described. The resolving power of different final-state effects with regard to determining angular features of emission regions is investigated. The considered final-state effects include identity interference, strong interactions, and Coulomb interactions. The correlation analysis in terms of spherical harmonics is illustrated with the cases of Gaussian and blast-wave sources for proton-charged meson and baryon-baryon pairs
Angelidis, Dionysios; Chawdhary, Saurabh; Sotiropoulos, Fotis
2016-11-01
A novel numerical method is developed for solving the 3D, unsteady, incompressible Navier-Stokes equations on locally refined fully unstructured Cartesian grids in domains with arbitrarily complex immersed boundaries. Owing to the utilization of the fractional step method on an unstructured Cartesian hybrid staggered/non-staggered grid layout, flux mismatch and pressure discontinuity issues are avoided and the divergence free constraint is inherently satisfied to machine zero. Auxiliary/hanging nodes are used to facilitate the discretization of the governing equations. The second-order accuracy of the solver is ensured by using multi-dimension Lagrange interpolation operators and appropriate differencing schemes at the interface of regions with different levels of refinement. The sharp interface immersed boundary method is augmented with local near-boundary refinement to handle arbitrarily complex boundaries. The discrete momentum equation is solved with the matrix free Newton-Krylov method and the Krylov-subspace method is employed to solve the Poisson equation. The second-order accuracy of the proposed method on unstructured Cartesian grids is demonstrated by solving the Poisson equation with a known analytical solution. A number of three-dimensional laminar flow simulations of increasing complexity illustrate the ability of the method to handle flows across a range of Reynolds numbers and flow regimes. Laminar steady and unsteady flows past a sphere and the oblique vortex shedding from a circular cylinder mounted between two end walls demonstrate the accuracy, the efficiency and the smooth transition of scales and coherent structures across refinement levels. Large-eddy simulation (LES) past a miniature wind turbine rotor, parameterized using the actuator line approach, indicates the ability of the fully unstructured solver to simulate complex turbulent flows. Finally, a geometry resolving LES of turbulent flow past a complete hydrokinetic turbine illustrates
SPECTRAL SETS AND TILES IN CARTESIAN PRODUCTS OVER ...
Indian Academy of Sciences (India)
41
Spectral set conjecture: A Borel set Ω ⊂ Rd of positive and finite. Lebesgue measure is a spectral set if and only if it ... Ω ⊂ G of positive and finite Haar measure is a spectral set if and only if it is a translational tile. ... Key words and phrases. p-adic number field, Cartesian product, tile, spectral set. This work was supported by ...
Adaptive Learning in Cartesian Product of Reproducing Kernel Hilbert Spaces
Yukawa, Masahiro
2014-01-01
We propose a novel adaptive learning algorithm based on iterative orthogonal projections in the Cartesian product of multiple reproducing kernel Hilbert spaces (RKHSs). The task is estimating/tracking nonlinear functions which are supposed to contain multiple components such as (i) linear and nonlinear components, (ii) high- and low- frequency components etc. In this case, the use of multiple RKHSs permits a compact representation of multicomponent functions. The proposed algorithm is where t...
Topics in graph theory graphs and their Cartesian product
Imrich, Wilfried; Rall, Douglas F
2008-01-01
From specialists in the field, you will learn about interesting connections and recent developments in the field of graph theory by looking in particular at Cartesian products-arguably the most important of the four standard graph products. Many new results in this area appear for the first time in print in this book. Written in an accessible way, this book can be used for personal study in advanced applications of graph theory or for an advanced graph theory course.
Naturalism and un-naturalism among the Cartesian physicians
Manning, Gideon
2008-01-01
Highlighting early modern medicine's program of explanation and intervention, I claim that there are two distinctive features of the physician's naturalism. These are, first, an explicit recognition that each patient had her own individual and highly particularized nature and, second, a self-conscious use of normative descriptions when characterizing a patient's nature as healthy (ordered) or unhealthy (disordered). I go on to maintain that in spite of the well documented Cartesian rejection ...
Development of a Cartesian grid based CFD solver (CARBS)
International Nuclear Information System (INIS)
Vaidya, A.M.; Maheshwari, N.K.; Vijayan, P.K.
2013-12-01
Formulation for 3D transient incompressible CFD solver is developed. The solution of variable property, laminar/turbulent, steady/unsteady, single/multi specie, incompressible with heat transfer in complex geometry will be obtained. The formulation can handle a flow system in which any number of arbitrarily shaped solid and fluid regions are present. The solver is based on the use of Cartesian grids. A method is proposed to handle complex shaped objects and boundaries on Cartesian grids. Implementation of multi-material, different types of boundary conditions, thermo physical properties is also considered. The proposed method is validated by solving two test cases. 1 st test case is that of lid driven flow in inclined cavity. 2 nd test case is the flow over cylinder. The 1 st test case involved steady internal flow subjected to WALL boundaries. The 2 nd test case involved unsteady external flow subjected to INLET, OUTLET and FREE-SLIP boundary types. In both the test cases, non-orthogonal geometry was involved. It was found that, under such a wide conditions, the Cartesian grid based code was found to give results which were matching well with benchmark data. Convergence characteristics are excellent. In all cases, the mass residue was converged to 1E-8. Based on this, development of 3D general purpose code based on the proposed approach can be taken up. (author)
Kalman filter techniques for accelerated Cartesian dynamic cardiac imaging.
Feng, Xue; Salerno, Michael; Kramer, Christopher M; Meyer, Craig H
2013-05-01
In dynamic MRI, spatial and temporal parallel imaging can be exploited to reduce scan time. Real-time reconstruction enables immediate visualization during the scan. Commonly used view-sharing techniques suffer from limited temporal resolution, and many of the more advanced reconstruction methods are either retrospective, time-consuming, or both. A Kalman filter model capable of real-time reconstruction can be used to increase the spatial and temporal resolution in dynamic MRI reconstruction. The original study describing the use of the Kalman filter in dynamic MRI was limited to non-Cartesian trajectories because of a limitation intrinsic to the dynamic model used in that study. Here the limitation is overcome, and the model is applied to the more commonly used Cartesian trajectory with fast reconstruction. Furthermore, a combination of the Kalman filter model with Cartesian parallel imaging is presented to further increase the spatial and temporal resolution and signal-to-noise ratio. Simulations and experiments were conducted to demonstrate that the Kalman filter model can increase the temporal resolution of the image series compared with view-sharing techniques and decrease the spatial aliasing compared with TGRAPPA. The method requires relatively little computation, and thus is suitable for real-time reconstruction. Copyright © 2012 Wiley Periodicals, Inc.
Hegel's Solution to Cartesian Dualism of Mind and Body
Directory of Open Access Journals (Sweden)
Farzad
2015-10-01
Full Text Available In this paper, I am going to review the Hegelian solution to solve Cartesian doctrine of the mind body dualism. Such a dichotomy refers to the fact that in the recognition we are dealing with two completely different and separate domains, i.e., the internal world (ideas, beliefs, concepts, and mentalities, and the external world (the domain of objects that which refers to the first domain. Hegel believes that Cartesian dualism arises from a categorical mistake. He says that subjectivism is the starting point that fundamentally is wrong. Hegel argues that a genuine philosophy could overcome the dichotomy. According to Hegel, it is only by the idea of "absolute" and “identity in differences” that could be possible to go out of this dualism. The role of philosophy, for him, is theorizing "about the real world”. Hegel says that these contradictions are within the "structure of consciousness." By adopting the right approach in explaining Cartesian doctrine of the mind body dualism from a phenomenological perspective, it can be possible to show the mind’s Odyssey within reality.
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Borot, Gaëtan; Orantin, Nicolas
We propose a general theory whose main component are functorial assignments ∑→Ω∑ ∈ E (∑), for a large class of functors E from a certain category of bordered surfaces (∑'s) to a suitable a target category of topological vector spaces. The construction is done by summing appropriate compositions...... as Poisson structures on the moduli space of flat connections. The theory has a wider scope than that and one expects that many functorial objects in low-dimensional geometry and topology should have a GR construction. The geometric recursion has various projections to topological recursion (TR) and we...... in particular show it retrieves all previous variants and applications of TR. We also show that, for any initial data for topological recursion, one can construct initial data for GR with values in Frobenius algebra-valued continuous functions on Teichmueller space, such that the ωg,n of TR are obtained...
Maximal Electric Dipole Moments of Nuclei with Enhanced Schiff Moments
Ellis, John; Pilaftsis, Apostolos
2011-01-01
The electric dipole moments (EDMs) of heavy nuclei, such as 199Hg, 225Ra and 211Rn, can be enhanced by the Schiff moments induced by the presence of nearby parity-doublet states. Working within the framework of the maximally CP-violating and minimally flavour-violating (MCPMFV) version of the MSSM, we discuss the maximal values that such EDMs might attain, given the existing experimental constraints on the Thallium, neutron and Mercury EDMs. The maximal EDM values of the heavy nuclei are obtained with the help of a differential-geometrical approach proposed recently that enables the maxima of new CP-violating observables to be calculated exactly in the linear approximation. In the case of 225Ra, we find that its EDM may be as large as 6 to 50 x 10^{-27} e.cm.
ψ -ontology result without the Cartesian product assumption
Myrvold, Wayne C.
2018-05-01
We introduce a weakening of the preparation independence postulate of Pusey et al. [Nat. Phys. 8, 475 (2012), 10.1038/nphys2309] that does not presuppose that the space of ontic states resulting from a product-state preparation can be represented by the Cartesian product of subsystem state spaces. On the basis of this weakened assumption, it is shown that, in any model that reproduces the quantum probabilities, any pair of pure quantum states |ψ >,|ϕ > with ≤1 /√{2 } must be ontologically distinct.
Connection between Fourier coefficient and Discretized Cartesian path integration
International Nuclear Information System (INIS)
Coalson, R.D.
1986-01-01
The relationship between so-called Discretized and Fourier coefficient formulations of Cartesian path integration is examined. In particular, an intimate connection between the two is established by rewriting the Discretized formulation in a manifestly Fourier-like way. This leads to improved understanding of both the limit behavior and the convergence properties of computational prescriptions based on the two formalisms. The performance of various prescriptions is compared with regard to calculation of on-diagonal statistical density matrix elements for a number of prototypical 1-d potentials. A consistent convergence order among these prescriptions is established
Assembling Transgender Moments
Greteman, Adam J.
2017-01-01
In this article, the author seeks to assemble moments--scholarly, popular, and aesthetic--in order to explore the possibilities that emerge as moments collect in education's encounters with the needs, struggles, and possibilities of transgender lives and practices. Assembling moments, the author argues, illustrates the value of "moments"…
Peano—A Traversal and Storage Scheme for Octree-Like Adaptive Cartesian Multiscale Grids
Weinzierl, Tobias
2011-01-01
Almost all approaches to solving partial differential equations (PDEs) are based upon a spatial discretization of the computational domain-a grid. This paper presents an algorithm to generate, store, and traverse a hierarchy of d-dimensional Cartesian grids represented by a (k = 3)- spacetree, a generalization of the well-known octree concept, and it also shows the correctness of the approach. These grids may change their adaptive structure throughout the traversal. The algorithm uses 2d + 4 stacks as data structures for both cells and vertices, and the storage requirements for the pure grid reduce to one bit per vertex for both the complete grid connectivity structure and the multilevel grid relations. Since the traversal algorithm uses only stacks, the algorithm\\'s cache hit rate is continually higher than 99.9 percent, and the runtime per vertex remains almost constant; i.e., it does not depend on the overall number of vertices or the adaptivity pattern. We use the algorithmic approach as the fundamental concept for a mesh management for d-dimensional PDEs and for a matrix-free PDE solver represented by a compact discrete 3 d-point operator. In the latter case, one can implement a Jacobi smoother, a Krylov solver, or a geometric multigrid scheme within the presented traversal scheme which inherits the low memory requirements and the good memory access characteristics directly. © 2011 Society for Industrial and Applied Mathematics.
Geometrical modelling of scanning probe microscopes and characterization of errors
International Nuclear Information System (INIS)
Marinello, F; Savio, E; Bariani, P; Carmignato, S
2009-01-01
Scanning probe microscopes (SPMs) allow quantitative evaluation of surface topography with ultra-high resolution, as a result of accurate actuation combined with the sharpness of tips. SPMs measure sequentially, by scanning surfaces in a raster fashion: topography maps commonly consist of data sets ideally reported in an orthonormal rectilinear Cartesian coordinate system. However, due to scanning errors and measurement distortions, the measurement process is far from the ideal Cartesian condition. The paper addresses geometrical modelling of the scanning system dynamics, presenting a mathematical model which describes the surface metric x-, y- and z- coordinates as a function of the measured x'-, y'- and z'-coordinates respectively. The complete mathematical model provides a relevant contribution to characterization and calibration, and ultimately to traceability, of SPMs, when applied for quantitative characterization
Exponentiated Lomax Geometric Distribution: Properties and Applications
Directory of Open Access Journals (Sweden)
Amal Soliman Hassan
2017-09-01
Full Text Available In this paper, a new four-parameter lifetime distribution, called the exponentiated Lomax geometric (ELG is introduced. The new lifetime distribution contains the Lomax geometric and exponentiated Pareto geometric as new sub-models. Explicit algebraic formulas of probability density function, survival and hazard functions are derived. Various structural properties of the new model are derived including; quantile function, Re'nyi entropy, moments, probability weighted moments, order statistic, Lorenz and Bonferroni curves. The estimation of the model parameters is performed by maximum likelihood method and inference for a large sample is discussed. The flexibility and potentiality of the new model in comparison with some other distributions are shown via an application to a real data set. We hope that the new model will be an adequate model for applications in various studies.
Direct adaptive control of manipulators in Cartesian space
Seraji, H.
1987-01-01
A new adaptive-control scheme for direct control of manipulator end effector to achieve trajectory tracking in Cartesian space is developed in this article. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of adaptive feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for on-line implementation with high sampling rates. The control scheme is applied to a two-link manipulator for illustration.
Consent: a Cartesian ideal? Human neural transplantation in Parkinson's disease.
Lopes, Manuel; Meningaud, Jean-Paul; Behin, Anthony; Hervé, Christian
2003-01-01
The grafting of human embryonic cells in Parkinson's disease is an innovative and hopefully useful therapeutic approach. However, it still concerns a very small number of patients and is only suggested as a research protocol. We present here a study of the problems of information and consent to research within the framework of this disease in which the efficacy of medical treatment is shortlived. The only French center to use this treatment (Hôpital H. Mondor in Créteil) has received authorization from the Comité Consultatif National d'Ethique (Consultative National Committee on Ethics). Eleven patients were treated between 1991 and 1998. The study of the results of a questionnaire sent to those patients showed the difficulties met in evaluating the perception of information despite intact intellectual capacities in people "prepared to risk everything." In France, the duty to inform patients during research procedures is regulated by the Huriet Act. However, it is not easy to guarantee genuine consent when preliminary information is given to patients psychologically impaired by the slow and ineluctable course of their disease. In these borderline cases, a valid consent seems to be a myth in terms of pure autonomy when considered with the Cartesian aim of elimination of uncertainty. The relevance of this concept of genuine consent probably makes more sense as aiming at a Cartesian ideal which is perhaps more in the spirit rather than in the letter. It is in that same spirit that, from the outset, we propose to define t he practical ways of answering the patients' request for information, even sometimes after consent has been given.
On bivariate geometric distribution
Directory of Open Access Journals (Sweden)
K. Jayakumar
2013-05-01
Full Text Available Characterizations of bivariate geometric distribution using univariate and bivariate geometric compounding are obtained. Autoregressive models with marginals as bivariate geometric distribution are developed. Various bivariate geometric distributions analogous to important bivariate exponential distributions like, Marshall-Olkin’s bivariate exponential, Downton’s bivariate exponential and Hawkes’ bivariate exponential are presented.
Visualizing the Geometric Series.
Bennett, Albert B., Jr.
1989-01-01
Mathematical proofs often leave students unconvinced or without understanding of what has been proved, because they provide no visual-geometric representation. Presented are geometric models for the finite geometric series when r is a whole number, and the infinite geometric series when r is the reciprocal of a whole number. (MNS)
International Nuclear Information System (INIS)
Lipkin, H.J.
1983-06-01
The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties are encountered which are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing present in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks; e.g. from a pion cloud. The large magnitude of the ω - moment may indicate that the strange quark contribution to the ω moments is considerably larger than the value μ(#betta#) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the μ - moment include a value very close to -(1/2)μ(μ + ) which would indicate that strange quarks do not contribute at all to the μ moments. (author)
Federal Laboratory Consortium — Purpose: The mission of the Geometric Design Laboratory (GDL) is to support the Office of Safety Research and Development in research related to the geometric design...
The geometric phase in quantum physics
International Nuclear Information System (INIS)
Bohm, A.
1993-03-01
After an explanatory introduction, a quantum system in a classical time-dependent environment is discussed; an example is a magnetic moment in a classical magnetic field. At first, the general abelian case is discussed in the adiabatic approximation. Then the geometric phase for nonadiabatic change of the environment (Anandan--Aharonov phase) is introduced, and after that general cyclic (nonadiabatic) evolution is discussed. The mathematics of fiber bundles is introduced, and some of its results are used to describe the relation between the adiabatic Berry phase and the geometric phase for general cyclic evolution of a pure state. The discussion is restricted to the abelian, U(1) phase
Tolerating Correlated Failures for Generalized Cartesian Distributions via Bipartite Matching
International Nuclear Information System (INIS)
Ali, Nawab; Krishnamoorthy, Sriram; Halappanavar, Mahantesh; Daily, Jeffrey A.
2011-01-01
Faults are expected to play an increasingly important role in how algorithms and applications are designed to run on future extreme-scale systems. A key ingredient of any approach to fault tolerance is effective support for fault tolerant data storage. A typical application execution consists of phases in which certain data structures are modified while others are read-only. Often, read-only data structures constitute a large fraction of total memory consumed. Fault tolerance for read-only data can be ensured through the use of checksums or parities, without resorting to expensive in-memory duplication or checkpointing to secondary storage. In this paper, we present a graph-matching approach to compute and store parity data for read-only matrices that are compatible with fault tolerant linear algebra (FTLA). Typical approaches only support blocked data distributions with each process holding one block with the parity located on additional processes. The matrices are assumed to be blocked by a cartesian grid with each block assigned to a process. We consider a generalized distribution in which each process can be assigned arbitrary blocks. We also account for the fact that multiple processes might be part of the same failure unit, say an SMP node. The flexibility enabled by our novel application of graph matching extends fault tolerance support to data distributions beyond those supported by prior work. We evaluate the matching implementations and cost to compute the parity and recover lost data, demonstrating the low overhead incurred by our approach.
Shared memory parallelism for 3D cartesian discrete ordinates solver
International Nuclear Information System (INIS)
Moustafa, S.; Dutka-Malen, I.; Plagne, L.; Poncot, A.; Ramet, P.
2013-01-01
This paper describes the design and the performance of DOMINO, a 3D Cartesian SN solver that implements two nested levels of parallelism (multi-core + SIMD - Single Instruction on Multiple Data) on shared memory computation nodes. DOMINO is written in C++, a multi-paradigm programming language that enables the use of powerful and generic parallel programming tools such as Intel TBB and Eigen. These two libraries allow us to combine multi-thread parallelism with vector operations in an efficient and yet portable way. As a result, DOMINO can exploit the full power of modern multi-core processors and is able to tackle very large simulations, that usually require large HPC clusters, using a single computing node. For example, DOMINO solves a 3D full core PWR eigenvalue problem involving 26 energy groups, 288 angular directions (S16), 46*10 6 spatial cells and 1*10 12 DoFs within 11 hours on a single 32-core SMP node. This represents a sustained performance of 235 GFlops and 40.74% of the SMP node peak performance for the DOMINO sweep implementation. The very high Flops/Watt ratio of DOMINO makes it a very interesting building block for a future many-nodes nuclear simulation tool. (authors)
Solus Secedo and Sapere Aude: Cartesian Meditation as Kantian Enlightenment
Directory of Open Access Journals (Sweden)
Suma Rajiva
2015-11-01
Full Text Available Recently Samuel Fleischacker has developed Kant’s model of enlightenment as a “minimalist enlightenment” in the tradition of a relatively thin proceduralism focused on the form of public debate and interaction. I want to discuss the possibility that such a minimalism, endorsed by Fleischacker, Habermas, Rawls, and others, benefits from a metaphysics of critical individual subjectivity as a prerequisite for the social proceduralism of the minimalist enlightenment. I argue that Kant’s enlightenment, metaphysically thicker than much contemporary proceduralism, constitutes a recovery and transformation of a subjective interiority deeply Cartesian in spirit and central to the reciprocity of the community of subjects in What is Enlightenment. This opens a space for a site of resistance to the social. Descartes’ solus secedo describes the analogical space of such a resistance for Kant’s sapere aude. The Meditations thus point forward implicitly to how a rational subject might achieve critical distance from tradition in its various forms, epistemic, ethical, moral, and political.
Marciano, William J
2010-01-01
This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many o
High-Reynolds Number Viscous Flow Simulations on Embedded-Boundary Cartesian Grids
2016-05-05
AFRL-AFOSR-VA-TR-2016-0192 High- Reynolds Number Viscous Flow Simulations on Embedded-Boundary Cartesian Grids Marsha Berger NEW YORK UNIVERSITY Final...TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY) 30/04/2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) High- Reynolds 4. TITLE AND...SUBTITLE High- Reynolds Number Viscous Flow Simulations on Embedded-Boundary Cartesian Grids 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1
On the research of flow around obstacle using the viscous Cartesian grid technique
Directory of Open Access Journals (Sweden)
Liu Yan-Hua
2012-01-01
Full Text Available A new 2-D viscous Cartesian grid is proposed in current research. It is a combination of the existent body-fitted grid and Cartesian grid technology. On the interface of the two different type of grid, a fined triangular mesh is used to connect the two grids. Tests with flow around the cylinder and aerofoil NACA0012 show that the proposed scheme is easy for implement with high accuracy.
Electric dipole moments reconsidered
International Nuclear Information System (INIS)
Rupertsberger, H.
1989-01-01
The electric dipole moments of elementary particles, atoms, molecules and their connection to the electric susceptibility are discussed for stationary states. Assuming rotational invariance it is emphasized that for such states only in the case of a parity and time reversal violating interaction the considered particles can obtain a nonvanishing expectation value for the electric dipole moment. 1 fig., 13 refs. (Author)
DEFF Research Database (Denmark)
Swann, Andrew Francis; Madsen, Thomas Bruun
2012-01-01
We introduce a notion of moment map adapted to actions of Lie groups that preserve a closed three-form. We show existence of our multi-moment maps in many circumstances, including mild topological assumptions on the underlying manifold. Such maps are also shown to exist for all groups whose second...
Energy Technology Data Exchange (ETDEWEB)
Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu
2002-03-29
Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments.
International Nuclear Information System (INIS)
Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu
2002-01-01
Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments
Schmüdgen, Konrad
2017-01-01
This advanced textbook provides a comprehensive and unified account of the moment problem. It covers the classical one-dimensional theory and its multidimensional generalization, including modern methods and recent developments. In both the one-dimensional and multidimensional cases, the full and truncated moment problems are carefully treated separately. Fundamental concepts, results and methods are developed in detail and accompanied by numerous examples and exercises. Particular attention is given to powerful modern techniques such as real algebraic geometry and Hilbert space operators. A wide range of important aspects are covered, including the Nevanlinna parametrization for indeterminate moment problems, canonical and principal measures for truncated moment problems, the interplay between Positivstellensätze and moment problems on semi-algebraic sets, the fibre theorem, multidimensional determinacy theory, operator-theoretic approaches, and the existence theory and important special topics of multidime...
Polarization ellipse and Stokes parameters in geometric algebra.
Santos, Adler G; Sugon, Quirino M; McNamara, Daniel J
2012-01-01
In this paper, we use geometric algebra to describe the polarization ellipse and Stokes parameters. We show that a solution to Maxwell's equation is a product of a complex basis vector in Jackson and a linear combination of plane wave functions. We convert both the amplitudes and the wave function arguments from complex scalars to complex vectors. This conversion allows us to separate the electric field vector and the imaginary magnetic field vector, because exponentials of imaginary scalars convert vectors to imaginary vectors and vice versa, while exponentials of imaginary vectors only rotate the vector or imaginary vector they are multiplied to. We convert this expression for polarized light into two other representations: the Cartesian representation and the rotated ellipse representation. We compute the conversion relations among the representation parameters and their corresponding Stokes parameters. And finally, we propose a set of geometric relations between the electric and magnetic fields that satisfy an equation similar to the Poincaré sphere equation.
Advances in non-Cartesian parallel magnetic resonance imaging using the GRAPPA operator
Energy Technology Data Exchange (ETDEWEB)
Seiberlich, Nicole
2008-07-21
This thesis has presented several new non-Cartesian parallel imaging methods which simplify both gridding and the reconstruction of images from undersampled data. A novel approach which uses the concepts of parallel imaging to grid data sampled along a non-Cartesian trajectory called GRAPPA Operator Gridding (GROG) is described. GROG shifts any acquired k-space data point to its nearest Cartesian location, thereby converting non-Cartesian to Cartesian data. The only requirements for GROG are a multi-channel acquisition and a calibration dataset for the determination of the GROG weights. Then an extension of GRAPPA Operator Gridding, namely Self-Calibrating GRAPPA Operator Gridding (SC-GROG) is discussed. SC-GROG is a method by which non-Cartesian data can be gridded using spatial information from a multi-channel coil array without the need for an additional calibration dataset, as required in standard GROG. Although GROG can be used to grid undersampled datasets, it is important to note that this method uses parallel imaging only for gridding, and not to reconstruct artifact-free images from undersampled data. Thereafter a simple, novel method for performing modified Cartesian GRAPPA reconstructions on undersampled non-Cartesian k-space data gridded using GROG to arrive at a non-aliased image is introduced. Because the undersampled non-Cartesian data cannot be reconstructed using a single GRAPPA kernel, several Cartesian patterns are selected for the reconstruction. Finally a novel method of using GROG to mimic the bunched phase encoding acquisition (BPE) scheme is discussed. In MRI, it is generally assumed that an artifact-free image can be reconstructed only from sampled points which fulfill the Nyquist criterion. However, the BPE reconstruction is based on the Generalized Sampling Theorem of Papoulis, which states that a continuous signal can be reconstructed from sampled points as long as the points are on average sampled at the Nyquist frequency. A novel
Advances in non-Cartesian parallel magnetic resonance imaging using the GRAPPA operator
International Nuclear Information System (INIS)
Seiberlich, Nicole
2008-01-01
This thesis has presented several new non-Cartesian parallel imaging methods which simplify both gridding and the reconstruction of images from undersampled data. A novel approach which uses the concepts of parallel imaging to grid data sampled along a non-Cartesian trajectory called GRAPPA Operator Gridding (GROG) is described. GROG shifts any acquired k-space data point to its nearest Cartesian location, thereby converting non-Cartesian to Cartesian data. The only requirements for GROG are a multi-channel acquisition and a calibration dataset for the determination of the GROG weights. Then an extension of GRAPPA Operator Gridding, namely Self-Calibrating GRAPPA Operator Gridding (SC-GROG) is discussed. SC-GROG is a method by which non-Cartesian data can be gridded using spatial information from a multi-channel coil array without the need for an additional calibration dataset, as required in standard GROG. Although GROG can be used to grid undersampled datasets, it is important to note that this method uses parallel imaging only for gridding, and not to reconstruct artifact-free images from undersampled data. Thereafter a simple, novel method for performing modified Cartesian GRAPPA reconstructions on undersampled non-Cartesian k-space data gridded using GROG to arrive at a non-aliased image is introduced. Because the undersampled non-Cartesian data cannot be reconstructed using a single GRAPPA kernel, several Cartesian patterns are selected for the reconstruction. Finally a novel method of using GROG to mimic the bunched phase encoding acquisition (BPE) scheme is discussed. In MRI, it is generally assumed that an artifact-free image can be reconstructed only from sampled points which fulfill the Nyquist criterion. However, the BPE reconstruction is based on the Generalized Sampling Theorem of Papoulis, which states that a continuous signal can be reconstructed from sampled points as long as the points are on average sampled at the Nyquist frequency. A novel
LES of Internal Combustion Engine Flows Using Cartesian Overset Grids
Directory of Open Access Journals (Sweden)
Falkenstein Tobias
2017-11-01
Full Text Available Accurate computations of turbulent flows using the Large-Eddy Simulation (LES technique with an appropriate SubFilter Scale (SFS model require low artificial dissipation such that the physical energy cascade process is not perturbed by numerical artifacts. To realize this in practical simulations, energy-conserving numerical schemes and high-quality computational grids are needed. If unstructured meshes are used, the latter requirement often makes grid generation for complex geometries very difficult. Structured Cartesian grids offer the advantage that uncertainties in mesh quality are reduced to choosing appropriate resolution. However, two intrinsic challenges of the structured approach are local mesh refinement and representation of complex geometries. In this work, the effectiveness of numerical methods which can be expected to reduce both drawbacks is assessed in engine flows, using a multi-physics inhouse code. The overset grid approach is utilized to arbitrarily combine grid patches of different spacing to a flow domain of complex shape during mesh generation. Walls are handled by an Immersed Boundary (IB method, which is combined with a wall function to treat underresolved boundary layers. A statistically stationary Spark Ignition (SI engine port flow is simulated at Reynolds numbers typical for engine operation. Good agreement of computed and measured integral flow quantities like overall pressure loss and tumble number is found. A comparison of simulated velocity fields to Particle Image Velocimetry (PIV measurement data concludes the validation of the enhanced numerical framework for both mean velocity and turbulent fluctuations. The performance of two SFS models, the dynamic Smagorinsky model with Lagrangian averaging along pathlines and the coherent structure model, is tested on different grids. Sensitivity of pressure loss and tumble ratio to the wall treatment and mesh refinement is presented. It is shown that increased wall
International Nuclear Information System (INIS)
Krivoruchenko, M.I.
1985-01-01
In chiral bag model an expression is obtained for the quark wave functions with account of color and pion interaction of quarks. The quadrupole moments of nonstrange hadrons are calculated. Quadrupole moment of nucleon isobar is found to be Q(Δ)=-6.3x10 -28 esub(Δ)(cm)sup(2). Fredictions of the chiral bag model are in strong disagreement with the non-relativistic quark model
Particle electric dipole moments
Pendlebury, J M
2000-01-01
Measurements of particle electric dipole moments (EDMs) continue to put powerful constraints on theories of T-symmetry and CP-symmetry violation, which form currently one of the most prominent fields in particle physics. EDM measurements have been concentrated on neutral systems such as the neutron and atoms and molecules. These measurements allow one to deduce, in turn, the electric dipole moments of the fundamental fermions, that is, the lighter leptons and quarks and also those of some heavy nuclei.
A new generalization of the Pareto–geometric distribution
Directory of Open Access Journals (Sweden)
M. Nassar
2013-07-01
Full Text Available In this paper we introduce a new distribution called the beta Pareto–geometric. We provide a comprehensive treatment of the mathematical properties of the proposed distribution and derive expressions for its moment generating function and the rth generalized moment. We discuss estimation of the parameters by maximum likelihood and obtain the information matrix that is easily numerically determined. We also demonstrate its usefulness on a real data set.
International Nuclear Information System (INIS)
Kirkpatrick, M.P.; Armfield, S.W.; Kent, J.H.
2003-01-01
A method is presented for representing curved boundaries for the solution of the Navier-Stokes equations on a non-uniform, staggered, three-dimensional Cartesian grid. The approach involves truncating the Cartesian cells at the boundary surface to create new cells which conform to the shape of the surface. We discuss in some detail the problems unique to the development of a cut cell method on a staggered grid. Methods for calculating the fluxes through the boundary cell faces, for representing pressure forces and for calculating the wall shear stress are derived and it is verified that the new scheme retains second-order accuracy in space. In addition, a novel 'cell-linking' method is developed which overcomes problems associated with the creation of small cells while avoiding the complexities involved with other cell-merging approaches. Techniques are presented for generating the geometric information required for the scheme based on the representation of the boundaries as quadric surfaces. The new method is tested for flow through a channel placed oblique to the grid and flow past a cylinder at Re=40 and is shown to give significant improvement over a staircase boundary formulation. Finally, it is used to calculate unsteady flow past a hemispheric protuberance on a plate at a Reynolds number of 800. Good agreement is obtained with experimental results for this flow
International Nuclear Information System (INIS)
Ceolin, Celina
2010-01-01
The objective of this work is to obtain an analytical solution of the neutron diffusion kinetic equation in one-dimensional cartesian geometry, to monoenergetic and multigroup problems. These equations are of the type stiff, due to large differences in the orders of magnitude of the time scales of the physical phenomena involved, which make them difficult to solve. The basic idea of the proposed method is applying the spectral expansion in the scalar flux and in the precursor concentration, taking moments and solving the resulting matrix problem by the Laplace transform technique. Bearing in mind that the equation for the precursor concentration is a first order linear differential equation in the time variable, to enable the application of the spectral method we introduce a fictitious diffusion term multiplied by a positive value which tends to zero. This procedure opened the possibility to find an analytical solution to the problem studied. We report numerical simulations and analysis of the results obtained with the precision controlled by the truncation order of the series. (author)
Free breathing whole-heart 3D CINE MRI with self-gated Cartesian trajectory.
Usman, M; Ruijsink, B; Nazir, M S; Cruz, G; Prieto, C
2017-05-01
To present a method that uses a novel free-running self-gated acquisition to achieve isotropic resolution in whole heart 3D Cartesian cardiac CINE MRI. 3D cardiac CINE MRI using navigator gating results in long acquisition times. Recently, several frameworks based on self-gated non-Cartesian trajectories have been proposed to accelerate this acquisition. However, non-Cartesian reconstructions are computationally expensive due to gridding, particularly in 3D. In this work, we propose a novel highly efficient self-gated Cartesian approach for 3D cardiac CINE MRI. Acquisition is performed using CArtesian trajectory with Spiral PRofile ordering and Tiny golden angle step for eddy current reduction (so called here CASPR-Tiger). Data is acquired continuously under free breathing (retrospective ECG gating, no preparation pulses interruption) for 4-5min and 4D whole-heart volumes (3D+cardiac phases) with isotropic spatial resolution are reconstructed from all available data using a soft gating technique combined with temporal total variation (TV) constrained iterative SENSE reconstruction. For data acquired on eight healthy subjects and three patients, the reconstructed images using the proposed method had good contrast and spatio-temporal variations, correctly recovering diastolic and systolic cardiac phases. Non-significant differences (P>0.05) were observed in cardiac functional measurements obtained with proposed 3D approach and gold standard 2D multi-slice breath-hold acquisition. The proposed approach enables isotropic 3D whole heart Cartesian cardiac CINE MRI in 4 to 5min free breathing acquisition. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Hanks, T.C.; Kanamori, H.
1979-05-10
The nearly conincident forms of the relations between seismic moment M/sub o/ and the magnitudes M/sub L/, M/sub s/, and M/sub w/ imply a moment magnitude scale M=2/3 log M/sub o/-10.7 which is uniformly valid for 3< or approx. =M/sub L/< or approx. = 7, 5 < or approx. =M/sub s/< or approx. =7 1/2 and M/sub w/> or approx. = 7 1/2.
International Nuclear Information System (INIS)
Overseth, O.E.
1981-01-01
The Fermilab Neutral Hyperon Beam Collaboration has measured the magnetic moments of Λ 0 , XI-neutral and XI-minus hyperons. With a recently published result for the Σ + hyperon, we now have precision measurements on the magnetic moments of six baryons. This allows a sensitive test of the quark model. The data are in qualitative agreement with the simple additive static quark model. Quantitatively however the data disagree with theoretical predictions by typically 15%. Several theoretical attempts to understand or remedy this discrepancy will be mentioned
Recursive generation of Cartesian angular momentum coupling trees for SO(3)
International Nuclear Information System (INIS)
Sherborne, B.S.; Stedman, G.E.
1990-01-01
Two computer algorithms are evaluated for the reduction of angular momentum coupling trees with vector (j=1) terminals with a Cartesian choice of basis as used in nonlinear optics. Rather than employ advanced tensor algebra, both methods essentially iterate in distinct ways the basic techniques of angular momentum coupling. Turbo Pascal programs implementing these algorithms are presented and compared. The accompanying analysis integrates the Cartesian tensor approach and the diagrammatic approach to the solution of problems in nonlinear optics. The programs generate TeX files for the relevant angular momentum diagrams. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Deister, F.; Hirschel, E.H. [Univ. Stuttgart, IAG, Stuttgart (Germany); Waymel, F.; Monnoyer, F. [Univ. de Valenciennes, LME, Valenciennes (France)
2003-07-01
An automatic adaptive hybrid Cartesian grid generation and simulation system is presented together with applications. The primary computational grid is an octree Cartesian grid. A quasi-prismatic grid may be added for resolving the boundary layer region of viscous flow around the solid body. For external flow simulations the flow solver TAU from the ''deutsche zentrum fuer luft- und raumfahrt (DLR)'' is integrated in the simulation system. Coarse grids are generated automatically, which are required by the multilevel method. As an application to an internal problem the thermal and dynamic modeling of a subway station is presented. (orig.)
Random subspaces for encryption based on a private shared Cartesian frame
International Nuclear Information System (INIS)
Bartlett, Stephen D.; Hayden, Patrick; Spekkens, Robert W.
2005-01-01
A private shared Cartesian frame is a novel form of private shared correlation that allows for both private classical and quantum communication. Cryptography using a private shared Cartesian frame has the remarkable property that asymptotically, if perfect privacy is demanded, the private classical capacity is three times the private quantum capacity. We demonstrate that if the requirement for perfect privacy is relaxed, then it is possible to use the properties of random subspaces to nearly triple the private quantum capacity, almost closing the gap between the private classical and quantum capacities
Druţu, Cornelia
2018-01-01
The key idea in geometric group theory is to study infinite groups by endowing them with a metric and treating them as geometric spaces. This applies to many groups naturally appearing in topology, geometry, and algebra, such as fundamental groups of manifolds, groups of matrices with integer coefficients, etc. The primary focus of this book is to cover the foundations of geometric group theory, including coarse topology, ultralimits and asymptotic cones, hyperbolic groups, isoperimetric inequalities, growth of groups, amenability, Kazhdan's Property (T) and the Haagerup property, as well as their characterizations in terms of group actions on median spaces and spaces with walls. The book contains proofs of several fundamental results of geometric group theory, such as Gromov's theorem on groups of polynomial growth, Tits's alternative, Stallings's theorem on ends of groups, Dunwoody's accessibility theorem, the Mostow Rigidity Theorem, and quasiisometric rigidity theorems of Tukia and Schwartz. This is the f...
Geometric and engineering drawing
Morling, K
2010-01-01
The new edition of this successful text describes all the geometric instructions and engineering drawing information that are likely to be needed by anyone preparing or interpreting drawings or designs with plenty of exercises to practice these principles.
Differential geometric structures
Poor, Walter A
2007-01-01
This introductory text defines geometric structure by specifying parallel transport in an appropriate fiber bundle and focusing on simplest cases of linear parallel transport in a vector bundle. 1981 edition.
Geometric ghosts and unitarity
International Nuclear Information System (INIS)
Ne'eman, Y.
1980-09-01
A review is given of the geometrical identification of the renormalization ghosts and the resulting derivation of Unitarity equations (BRST) for various gauges: Yang-Mills, Kalb-Ramond, and Soft-Group-Manifold
Pieters, Jurgen
2001-01-01
'Moments of Negotiation' offers the first book-length and indepth analysis of the New Historicist reading method, which the American Shakespeare-scolar Stephen Greenblatt introduced at the beginning of the 1980s. Ever since, Greenblatt has been hailed as the prime representative of this movement,
International Nuclear Information System (INIS)
Towner, I.S.; Khanna, F.C.
1984-01-01
Consideration of core polarization, isobar currents and meson-exchange processes gives a satisfactory understanding of the ground-state magnetic moments in closed-shell-plus (or minus)-one nuclei, A = 3, 15, 17, 39 and 41. Ever since the earliest days of the nuclear shell model the understanding of magnetic moments of nuclear states of supposedly simple configurations, such as doubly closed LS shells +-1 nucleon, has been a challenge for theorists. The experimental moments, which in most cases are known with extraordinary precision, show a small yet significant departure from the single-particle Schmidt values. The departure, however, is difficult to evaluate precisely since, as will be seen, it results from a sensitive cancellation between several competing corrections each of which can be as large as the observed discrepancy. This, then, is the continuing fascination of magnetic moments. In this contribution, we revisit the subjet principally to identify the role played by isobar currents, which are of much concern at this conference. But in so doing we warn quite strongly of the dangers of considering just isobar currents in isolation; equal consideration must be given to competing processes which in this context are the mundane nuclear structure effects, such as core polarization, and the more popular meson-exchange currents
Higgins, Chris
2014-01-01
In "The Humanist Moment," Chris Higgins sets out to recover a tenable, living humanism, rejecting both the version vilified by the anti-humanists and the one sentimentalized by the reactionary nostalgists. Rescuing humanism from such polemics is only the first step, as we find at least nine rival, contemporary definitions of humanism.…
Asymptotic and geometrical quantization
International Nuclear Information System (INIS)
Karasev, M.V.; Maslov, V.P.
1984-01-01
The main ideas of geometric-, deformation- and asymptotic quantizations are compared. It is shown that, on the one hand, the asymptotic approach is a direct generalization of exact geometric quantization, on the other hand, it generates deformation in multiplication of symbols and Poisson brackets. Besides investigating the general quantization diagram, its applications to the calculation of asymptotics of a series of eigenvalues of operators possessing symmetry groups are considered
On geometrized gravitation theories
International Nuclear Information System (INIS)
Logunov, A.A.; Folomeshkin, V.N.
1977-01-01
General properties of the geometrized gravitation theories have been considered. Geometrization of the theory is realized only to the extent that by necessity follows from an experiment (geometrization of the density of the matter Lagrangian only). Aor a general case the gravitation field equations and the equations of motion for matter are formulated in the different Riemann spaces. A covariant formulation of the energy-momentum conservation laws is given in an arbitrary geometrized theory. The noncovariant notion of ''pseudotensor'' is not required in formulating the conservation laws. It is shown that in the general case (i.e., when there is an explicit dependence of the matter Lagrangian density on the covariant derivatives) a symmetric energy-momentum tensor of the matter is explicitly dependent on the curvature tensor. There are enlisted different geometrized theories that describe a known set of the experimental facts. The properties of one of the versions of the quasilinear geometrized theory that describes the experimental facts are considered. In such a theory the fundamental static spherically symmetrical solution has a singularity only in the coordinate origin. The theory permits to create a satisfactory model of the homogeneous nonstationary Universe
Polarized electric dipole moment of well-deformed reflection asymmetric nuclei
International Nuclear Information System (INIS)
Denisov, V.Yu.
2012-01-01
The expression for polarized electric dipole moment of well-deformed reflection asymmetric nuclei is obtained in the framework of liquid-drop model in the case of geometrically similar proton and neutron surfaces. The expression for polarized electric dipole moment consists of the first and second orders terms. It is shown that the second-order correction terms of the polarized electric dipole moment are important for well-deformed nuclei
Embodying Learning: Post-Cartesian Pedagogy and the Academic Study of Religion
Lelwica, Michelle Mary
2009-01-01
This paper explores the concept and practice of "embodied pedagogy" as an alternative to the Cartesian approach to knowledge that is tacitly embedded in traditional modes of teaching and learning about religion. My analysis highlights a class I co-teach that combines the study of Aikido (a Japanese martial art) with seminar-style discussions of…
Numerical Computation of a Viscous Flow around a Circular Cylinder on a Cartesian Grid
Verstappen, R.W.C.P.; Veldman, A.E.P.
2000-01-01
We introduce a novel cut-cell Cartesian grid method that preserves the spectral properties of convection and diffusion. That is, convection is discretised by a skew-symmetric operator and diffusion is approximated by a symmetric positive-definite coefficient matrix. Such a symmetry-preserving
[Odontology and the beginning of cartesianism (1673--1650) (Rene Descartes)].
Gysel, C
1979-01-01
In the seventeenth century the universities of the Netherlands underwent the influence of Descartes in all the faculties. In medicine three periods can be distinguished: in the first, pathology and therapy are still galenic; the second, by the application of the cartesian method, triumphs in physiology; and the third, corrected by the views of Newton is integrated in a moderate biomechanism.
Peano—A Traversal and Storage Scheme for Octree-Like Adaptive Cartesian Multiscale Grids
Weinzierl, Tobias; Mehl, Miriam
2011-01-01
-dimensional Cartesian grids represented by a (k = 3)- spacetree, a generalization of the well-known octree concept, and it also shows the correctness of the approach. These grids may change their adaptive structure throughout the traversal. The algorithm uses 2d + 4
Earnest, Darrell Steven
2012-01-01
This dissertation explores fifth and eighth grade students' interpretations of three kinds of mathematical representations: number lines, the Cartesian plane, and graphs of linear functions. Two studies were conducted. In Study 1, I administered the paper-and-pencil Linear Representations Assessment (LRA) to examine students'…
"Mens Sana in Corpore Sano": Cartesian Dualism and the Marginalisation of Sex Education
Paechter, Carrie
2004-01-01
Cartesian dualism has left a heavy legacy in terms of how we think about ourselves, so that we treat humans as minds within bodies rather than mind/body unities. This has far-reaching effects on our conceptualisation of the sex/gender distinction and on the relationship between bodies and identities. Related to this is a dualism that is embedded…
Non-Cartesian Parallel Imaging Reconstruction of Undersampled IDEAL Spiral 13C CSI Data
DEFF Research Database (Denmark)
Hansen, Rie Beck; Hanson, Lars G.; Ardenkjær-Larsen, Jan Henrik
scan times based on spatial information inherent to each coil element. In this work, we explored the combination of non-cartesian parallel imaging reconstruction and spatially undersampled IDEAL spiral CSI1 acquisition for efficient encoding of multiple chemical shifts within a large FOV with high...
On geometrical splitting in nonanalog Monte Carlo
International Nuclear Information System (INIS)
Lux, I.
1985-01-01
A very general geometrical procedure is considered, and it is shown how the free flights, the statistical weights and the contribution of particles participating in splitting are to be chosen in order to reach unbiased estimates in games where the transition kernels are nonanalog. Equations governing the second moment of the score and the number of flights to be stimulated are derived. It is shown that the post-splitting weights of the fragments are to be chosen equal to reach maximum gain in variance. Conditions are derived under which the expected number of flights remains finite. Simplified example illustrate the optimization of the procedure (author)
Redefining the political moment
Directory of Open Access Journals (Sweden)
James Arvanitakis
2011-07-01
Full Text Available On 16 February 2003, more than half a million people gathered in Sydney, Australia, as part of a global anti-war protest aimed at stopping the impending invasion of Iraq by the then US Administration. It is difficult to estimate how many millions marched on the coordinated protest, but it was by far the largest mobilization of a generation. Walking and chanting on the streets of Sydney that day, it seemed that a political moment was upon us. In a culture that rarely embraces large scale activism, millions around Australian demanded to be heard. The message was clear: if you do not hear us, we would be willing to bring down a government. The invasion went ahead, however, with the then Australian government, under the leadership of John Howard, being one of the loudest and staunchest supporters of the Bush Administrations drive to war. Within 18 months, anti-war activists struggled to have a few hundred participants take part in anti-Iraq war rallies, and the Howard Government was comfortably re-elected for another term. The political moment had come and gone, with both social commentators and many members of the public looking for a reason. While the conservative media was often the focus of analysis, this paper argues that in a time of late capitalism, the political moment is hollowed out by ‘Politics’ itself. That is to say, that formal political processes (or ‘Politics’ undermine the political practices that people participate in everyday (or ‘politics’. Drawing on an ongoing research project focusing on democracy and young people, I discuss how the concept of ’politics‘ has been destabilised and subsequently, the political moment has been displaced. This displacement has led to a re-definition of ‘political action’ and, I argue, the emergence of a different type of everyday politics.
Czech Academy of Sciences Publication Activity Database
Suk, Tomáš; Flusser, Jan
2004-01-01
Roč. 26, č. 10 (2004), s. 1364-1367 ISSN 0162-8828 R&D Projects: GA ČR GA201/03/0675 Institutional research plan: CEZ:AV0Z1075907 Keywords : projective transform * moment invariants * object recognition Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.352, year: 2004 http://library.utia.cas.cz/prace/20040112.pdf
Geometric approximation algorithms
Har-Peled, Sariel
2011-01-01
Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.
Geometrical optical illusionists.
Wade, Nicholas J
2014-01-01
Geometrical optical illusions were given this title by Oppel in 1855. Variants on such small distortions of visual space were illustrated thereafter, many of which bear the names of those who first described them. Some original forms of the geometrical optical illusions are shown together with 'perceptual portraits' of those who described them. These include: Roget, Chevreul, Fick, Zöllner, Poggendorff, Hering, Kundt, Delboeuf Mach, Helmholtz, Hermann, von Bezold, Müller-Lyer, Lipps, Thiéry, Wundt, Münsterberg, Ebbinghaus, Titchener, Ponzo, Luckiesh, Sander, Ehrenstein, Gregory, Heard, White, Shepard, and. Lingelbach. The illusions are grouped under the headings of orientation, size, the combination of size and orientation, and contrast. Early theories of illusions, before geometrical optical illusions were so named, are mentioned briefly.
Heavy quark and magnetic moment
International Nuclear Information System (INIS)
Mubarak, Ahmad; Jallu, M.S.
1979-01-01
The magnetic moments and transition moments of heavy hadrons including the conventional particles are obtained under the SU(5) truth symmetry scheme. To this end state vectors are defined and the quark additivity principle is taken into account. (author)
Moment methods for nonlinear maps
International Nuclear Information System (INIS)
Pusch, G.D.; Atomic Energy of Canada Ltd., Chalk River, ON
1993-01-01
It is shown that Differential Algebra (DA) may be used to push moments of distributions through a map, at a computational cost per moment comparable to pushing a single particle. The algorithm is independent of order, and whether or not the map is symplectic. Starting from the known result that moment-vectors transform linearly - like a tensor - even under a nonlinear map, I suggest that the form of the moment transformation rule indicates that the moment-vectors are elements of the dual to DA-vector space. I propose several methods of manipulating moments and constructing invariants using DA. I close with speculations on how DA might be used to ''close the circle'' to solve the inverse moment problem, yielding an entirely DA-and-moment-based space-charge code. (Author)
A Study of Moment Based Features on Handwritten Digit Recognition
Directory of Open Access Journals (Sweden)
Pawan Kumar Singh
2016-01-01
Full Text Available Handwritten digit recognition plays a significant role in many user authentication applications in the modern world. As the handwritten digits are not of the same size, thickness, style, and orientation, therefore, these challenges are to be faced to resolve this problem. A lot of work has been done for various non-Indic scripts particularly, in case of Roman, but, in case of Indic scripts, the research is limited. This paper presents a script invariant handwritten digit recognition system for identifying digits written in five popular scripts of Indian subcontinent, namely, Indo-Arabic, Bangla, Devanagari, Roman, and Telugu. A 130-element feature set which is basically a combination of six different types of moments, namely, geometric moment, moment invariant, affine moment invariant, Legendre moment, Zernike moment, and complex moment, has been estimated for each digit sample. Finally, the technique is evaluated on CMATER and MNIST databases using multiple classifiers and, after performing statistical significance tests, it is observed that Multilayer Perceptron (MLP classifier outperforms the others. Satisfactory recognition accuracies are attained for all the five mentioned scripts.
International Nuclear Information System (INIS)
La, H.
1992-01-01
A new geometric formulation of Liouville gravity based on the area preserving diffeo-morphism is given and a possible alternative to reinterpret Liouville gravity is suggested, namely, a scalar field coupled to two-dimensional gravity with a curvature constraint
A Geometric Dissection Problem
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 7. A Geometric Dissection Problem. M N Deshpande. Think It Over Volume 7 Issue 7 July 2002 pp 91-91. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/07/0091-0091. Author Affiliations.
Geometric statistical inference
International Nuclear Information System (INIS)
Periwal, Vipul
1999-01-01
A reparametrization-covariant formulation of the inverse problem of probability is explicitly solved for finite sample sizes. The inferred distribution is explicitly continuous for finite sample size. A geometric solution of the statistical inference problem in higher dimensions is outlined
Geometric Series via Probability
Tesman, Barry
2012-01-01
Infinite series is a challenging topic in the undergraduate mathematics curriculum for many students. In fact, there is a vast literature in mathematics education research on convergence issues. One of the most important types of infinite series is the geometric series. Their beauty lies in the fact that they can be evaluated explicitly and that…
Pragmatic geometric model evaluation
Pamer, Robert
2015-04-01
Quantification of subsurface model reliability is mathematically and technically demanding as there are many different sources of uncertainty and some of the factors can be assessed merely in a subjective way. For many practical applications in industry or risk assessment (e. g. geothermal drilling) a quantitative estimation of possible geometric variations in depth unit is preferred over relative numbers because of cost calculations for different scenarios. The talk gives an overview of several factors that affect the geometry of structural subsurface models that are based upon typical geological survey organization (GSO) data like geological maps, borehole data and conceptually driven construction of subsurface elements (e. g. fault network). Within the context of the trans-European project "GeoMol" uncertainty analysis has to be very pragmatic also because of different data rights, data policies and modelling software between the project partners. In a case study a two-step evaluation methodology for geometric subsurface model uncertainty is being developed. In a first step several models of the same volume of interest have been calculated by omitting successively more and more input data types (seismic constraints, fault network, outcrop data). The positions of the various horizon surfaces are then compared. The procedure is equivalent to comparing data of various levels of detail and therefore structural complexity. This gives a measure of the structural significance of each data set in space and as a consequence areas of geometric complexity are identified. These areas are usually very data sensitive hence geometric variability in between individual data points in these areas is higher than in areas of low structural complexity. Instead of calculating a multitude of different models by varying some input data or parameters as it is done by Monte-Carlo-simulations, the aim of the second step of the evaluation procedure (which is part of the ongoing work) is to
Paul Callaghan luminous moments
Callaghan, Paul
2013-01-01
Acknowledged internationally for his ground-breaking scientific research in the field of magnetic resonance, Sir Paul Callaghan was a scientist and visionary with a rare gift for promoting science to a wide audience. He was named New Zealander of the Year in 2011. His death in early 2012 robbed New Zealand of an inspirational leader. Paul Callaghan: Luminous Moments brings together some of his most significant writing. Whether he describes his childhood in Wanganui, reflects on discovering the beauty of science, sets out New Zealand's future potential or discusses the experience of fa
Neutron Electric Dipole Moment
International Nuclear Information System (INIS)
Mischke, R.E.
2003-01-01
The status of experiments to measure the electric dipole moment of the neutron is presented and the planned experiment at Los Alamos is described. The goal of this experiment is an improvement in sensitivity of a factor of 50 to 100 over the current limit. It has the potential to reveal new sources of T and CP violation and to challenge calculations that propose extensions to the Standard Model. The experiment employs several advances in technique to reach its goals and the feasibility of meeting these technical challenges is currently under study
Directory of Open Access Journals (Sweden)
Marc eWittmann
2011-10-01
Full Text Available It has been suggested that perception and action can be understood as evolving in temporal epochs or sequential processing units. Successive events are fused into units forming a unitary experience or ‘psychological present’. Studies have identified several temporal integration levels on different time scales which are fundamental for our understanding of behaviour and subjective experience. In recent literature concerning the philosophy and neuroscience of consciousness these separate temporal processing levels are not always precisely distinguished. Therefore, empirical evidence from psychophysics and neuropsychology on these distinct temporal processing levels is presented and discussed within philosophical conceptualizations of time experience. On an elementary level, one can identify a functional moment, a basic temporal building block of perception in the range of milliseconds that defines simultaneity and succession. Below a certain threshold temporal order is not perceived, individual events are processed as co-temporal. On a second level, an experienced moment, which is based on temporal integration of up to a few seconds, has been reported in many qualitatively different experiments in perception and action. It has been suggested that this segmental processing mechanism creates temporal windows that provide a logistical basis for conscious representation and the experience of nowness. On a third level of integration, continuity of experience is enabled by working-memory in the range of multiple seconds allowing the maintenance of cognitive operations and emotional feelings, leading to mental presence, a temporal window of an individual’s experienced presence.
A Cartesian Adaptive Level Set Method for Two-Phase Flows
Ham, F.; Young, Y.-N.
2003-01-01
In the present contribution we develop a level set method based on local anisotropic Cartesian adaptation as described in Ham et al. (2002). Such an approach should allow for the smallest possible Cartesian grid capable of resolving a given flow. The remainder of the paper is organized as follows. In section 2 the level set formulation for free surface calculations is presented and its strengths and weaknesses relative to the other free surface methods reviewed. In section 3 the collocated numerical method is described. In section 4 the method is validated by solving the 2D and 3D drop oscilation problem. In section 5 we present some results from more complex cases including the 3D drop breakup in an impulsively accelerated free stream, and the 3D immiscible Rayleigh-Taylor instability. Conclusions are given in section 6.
Optimized respiratory-resolved motion-compensated 3D Cartesian coronary MR angiography.
Correia, Teresa; Ginami, Giulia; Cruz, Gastão; Neji, Radhouene; Rashid, Imran; Botnar, René M; Prieto, Claudia
2018-04-22
To develop a robust and efficient reconstruction framework that provides high-quality motion-compensated respiratory-resolved images from free-breathing 3D whole-heart Cartesian coronary magnetic resonance angiography (CMRA) acquisitions. Recently, XD-GRASP (eXtra-Dimensional Golden-angle RAdial Sparse Parallel MRI) was proposed to achieve 100% scan efficiency and provide respiratory-resolved 3D radial CMRA images by exploiting sparsity in the respiratory dimension. Here, a reconstruction framework for Cartesian CMRA imaging is proposed, which provides respiratory-resolved motion-compensated images by incorporating 2D beat-to-beat translational motion information to increase sparsity in the respiratory dimension. The motion information is extracted from interleaved image navigators and is also used to compensate for 2D translational motion within each respiratory phase. The proposed Optimized Respiratory-resolved Cartesian Coronary MR Angiography (XD-ORCCA) method was tested on 10 healthy subjects and 2 patients with cardiovascular disease, and compared against XD-GRASP. The proposed XD-ORCCA provides high-quality respiratory-resolved images, allowing clear visualization of the right and left coronary arteries, even for irregular breathing patterns. Compared with XD-GRASP, the proposed method improves the visibility and sharpness of both coronaries. Significant differences (p respiratory phases with larger motion amplitudes and subjects with irregular breathing patterns. A robust respiratory-resolved motion-compensated framework for Cartesian CMRA has been proposed and tested in healthy subjects and patients. The proposed XD-ORCCA provides high-quality images for all respiratory phases, independently of the regularity of the breathing pattern. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Directory of Open Access Journals (Sweden)
Karachevtseva Larysа Mykolaivna
2013-06-01
Full Text Available The article analyses the polemics between Michel Foucault and Jacques Derrida that took place in the sixties of the 20th century. This polemics was dedicated to the elucidation of the role of reason and madness within Cartesian radical doubt – that thought experiment maintained the formula ego cogito ergo sum. The article also examines Emmanuel Levinas's interpretation of Descartes' idea of the infinite. It is shown that the idea of the infinite constitutes cogito.
An Algorithm for Fast Computation of 3D Zernike Moments for Volumetric Images
Hosny, Khalid M.; Hafez, Mohamed A.
2012-01-01
An algorithm was proposed for very fast and low-complexity computation of three-dimensional Zernike moments. The 3D Zernike moments were expressed in terms of exact 3D geometric moments where the later are computed exactly through the mathematical integration of the monomial terms over the digital image/object voxels. A new symmetry-based method was proposed to compute 3D Zernike moments with 87% reduction in the computational complexity. A fast 1D cascade algorithm was also employed to add m...
Cyclones and Vortices: Alejo Carpentier's Reasons of State as Cartesian Discourse
Directory of Open Access Journals (Sweden)
Joseph F. O'Neill
1978-01-01
Full Text Available Alejo Carpentier's Reasons of State is a reconstruction of Cartesian discourse that is paradoxically both fantastic and baroque in its implications. Building upon the assumption that Cartesianism is typically baroque and therefore a dynamism, rather than a dichotomy of subject and object, the novel proceeds in the form of a retrospective deathbed narrative to suggest the radically anti-Cartesian polarization of subject and object in fin de siècle Latin America by portraying its dictator/narrator as a man whose world-view, like his culture's, is schizophrenically divided between magical realism and positivist progressivism. This ambiguous narrative perception is comparable to that of the literary genre known as the fantastic, whose several subjective themes are found to be operative in Reasons of State . Their working-out in the novel, however, is not exclusively psychological or socio-psychological. Ultimately they assume in the narrator's retrospective reflections a metaphorical character that effects a paradoxical synthesis of the prevailing opposed epistemologies: a self-aware folk consciousness that, in its dependence upon contradiction, is indisputably baroque.
Many-particle hydrodynamic interactions in parallel-wall geometry: Cartesian-representation method
International Nuclear Information System (INIS)
Blawzdziewicz, J.; Wajnryb, E.; Bhattacharya, S.
2005-01-01
This talk will describe the results of our theoretical and numerical studies of hydrodynamic interactions in a suspension of spherical particles confined between two parallel planar walls, under creeping-flow conditions. We propose an efficient algorithm for evaluating many-particle friction matrix in this system-no Stokesian-dynamics algorithm of this kind has been available so far. Our approach involves expanding the fluid velocity field in the wall-bounded suspension into spherical and Cartesian fundamental sets of Stokes flows. The spherical set is used to describe the interaction of the fluid with the particles and the Cartesian set to describe the interaction with the walls. At the core of our method are transformation relations between the spherical and Cartesian fundamental sets. Using the transformation formulas, we derive a system of linear equations for the force multipoles induced on the particle surfaces; the coefficients in these equations are given in terms of lateral Fourier integrals corresponding to the directions parallel to the walls. The force-multipole equations have been implemented in a numerical algorithm for the evaluation of the multiparticle friction matrix in the wall-bounded system. The algorithm involves subtraction of the particle-wall and particle-particle lubrication contributions to accelerate the convergence of the results with the spherical-harmonics order, and a subtraction of the single-wall contributions to accelerate the convergence of the Fourier integrals. (author)
Kim, Seungil
2010-01-01
In this paper, we study the spectrum of the operator which results when the Perfectly Matched Layer (PML) is applied in Cartesian geometry to the Laplacian on an unbounded domain. This is often thought of as a complex change of variables or "complex stretching." The reason that such an operator is of interest is that it can be used to provide a very effective domain truncation approach for approximating acoustic scattering problems posed on unbounded domains. Stretching associated with polar or spherical geometry lead to constant coefficient operators outside of a bounded transition layer and so even though they are on unbounded domains, they (and their numerical approximations) can be analyzed by more standard compact perturbation arguments. In contrast, operators associated with Cartesian stretching are non-constant in unbounded regions and hence cannot be analyzed via a compact perturbation approach. Alternatively, to show that the scattering problem PML operator associated with Cartesian geometry is stable for real nonzero wave numbers, we show that the essential spectrum of the higher order part only intersects the real axis at the origin. This enables us to conclude stability of the PML scattering problem from a uniqueness result given in a subsequent publication. © 2009 Elsevier Inc. All rights reserved.
Spatial pattern of Amazonian timber species using cartesian and spatial coordinates method
Directory of Open Access Journals (Sweden)
Tiago Monteiro Condé
2016-06-01
Full Text Available Geographic information system (GIS applied to forest analysis permit the recognition and analysis of spatial patterns of species in two and three dimensional. The aim of this study to demonstrate the efficiency of cartesian and spatial coordinates method (MCCE, method of correcting UTM coordinates of trees location in accordance with the location of field or Cartesian (X ,Y, combined with natural neighbor index (ANND in recognition and analysis of spatial distribution patterns of four commercial timber species in forest management in Caracaraí, Roraima State, Brazil. Simulations were performed on 9 ha, divided into 100 plots of 100 m2 each. Collected data were DBH > 10 cm, commercial and total heights, cartesian coordinates (X,Y and spatial coordinates (UTM. Random spatial patterns were observed in Eschweilera bracteosa and Manilkara huberi. The dispersed and rare spatial patterns were observed in Dinizia excelsa and Cedrelinga cateniformis. MCCE proved to be an efficient method in the recognition and analysis of spatial patterns of native species from Amazon rain forest, as forest planning becomes easier by 2D and 3D simulations.
Dynamics in geometrical confinement
Kremer, Friedrich
2014-01-01
This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities: (i) in nanometer thin layers or self supporting films (1-dimensional confinement) (ii) in pores or tubes with nanometric diameters (2-dimensional confinement) (iii) as micelles embedded in matrices (3-dimensional) or as nanodroplets.The dynamics under such conditions have been a much discussed and central topic in the focus of intense worldwide research activities within the last two decades. The present book discusses how the resulting molecular mobility is influenced by the subtle counterbalance between surface effects (typically slowing down molecular dynamics through attractive guest/host interactions) and confinement effects (typically increasing the mobility). It also explains how these influences can be modified and tuned, e.g. through appropriate surface coatings, film thicknesses or pore...
Bestvina, Mladen; Vogtmann, Karen
2014-01-01
Geometric group theory refers to the study of discrete groups using tools from topology, geometry, dynamics and analysis. The field is evolving very rapidly and the present volume provides an introduction to and overview of various topics which have played critical roles in this evolution. The book contains lecture notes from courses given at the Park City Math Institute on Geometric Group Theory. The institute consists of a set of intensive short courses offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The courses begin at an introductory level suitable for graduate students and lead up to currently active topics of research. The articles in this volume include introductions to CAT(0) cube complexes and groups, to modern small cancellation theory, to isometry groups of general CAT(0) spaces, and a discussion of nilpotent genus in the context of mapping class groups and CAT(0) gro...
Lectures in geometric combinatorics
Thomas, Rekha R
2006-01-01
This book presents a course in the geometry of convex polytopes in arbitrary dimension, suitable for an advanced undergraduate or beginning graduate student. The book starts with the basics of polytope theory. Schlegel and Gale diagrams are introduced as geometric tools to visualize polytopes in high dimension and to unearth bizarre phenomena in polytopes. The heart of the book is a treatment of the secondary polytope of a point configuration and its connections to the state polytope of the toric ideal defined by the configuration. These polytopes are relatively recent constructs with numerous connections to discrete geometry, classical algebraic geometry, symplectic geometry, and combinatorics. The connections rely on Gr�bner bases of toric ideals and other methods from commutative algebra. The book is self-contained and does not require any background beyond basic linear algebra. With numerous figures and exercises, it can be used as a textbook for courses on geometric, combinatorial, and computational as...
Geometric information provider platform
Directory of Open Access Journals (Sweden)
Meisam Yousefzadeh
2015-07-01
Full Text Available Renovation of existing buildings is known as an essential stage in reduction of the energy loss. Considerable part of renovation process depends on geometric reconstruction of building based on semantic parameters. Following many research projects which were focused on parameterizing the energy usage, various energy modelling methods were developed during the last decade. On the other hand, by developing accurate measuring tools such as laser scanners, the interests of having accurate 3D building models are rapidly growing. But the automation of 3D building generation from laser point cloud or detection of specific objects in that is still a challenge. The goal is designing a platform through which required geometric information can be efficiently produced to support energy simulation software. Developing a reliable procedure which extracts required information from measured data and delivers them to a standard energy modelling system is the main purpose of the project.
Frè, Pietro Giuseppe
2013-01-01
‘Gravity, a Geometrical Course’ presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications, updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes. Volume One is dedicated to the development of the theory and basic physical applications. It guides the reader from the foundation of special relativity to Einstein field equations, illustrating some basic applications in astrophysics. A detailed account of the historical and conceptual development of the theory is combined with the presentation of its mathematical foundations. Differe...
Ruffino, Fabio Ferrari
2013-01-01
Given a cohomology theory, there is a well-known abstract way to define the dual homology theory using the theory of spectra. In [4] the author provides a more geometric construction of the homology theory, using a generalization of the bordism groups. Such a generalization involves in its definition the vector bundle modification, which is a particular case of the Gysin map. In this paper we provide a more natural variant of that construction, which replaces the vector bundle modification wi...
Waerden, B
1996-01-01
From the reviews: "... Federer's timely and beautiful book indeed fills the need for a comprehensive treatise on geometric measure theory, and his detailed exposition leads from the foundations of the theory to the most recent discoveries. ... The author writes with a distinctive style which is both natural and powerfully economical in treating a complicated subject. This book is a major treatise in mathematics and is essential in the working library of the modern analyst." Bulletin of the London Mathematical Society.
Developing geometrical reasoning
Brown, Margaret; Jones, Keith; Taylor, Ron; Hirst, Ann
2004-01-01
This paper summarises a report (Brown, Jones & Taylor, 2003) to the UK Qualifications and Curriculum Authority of the work of one geometry group. The group was charged with developing and reporting on teaching ideas that focus on the development of geometrical reasoning at the secondary school level. The group was encouraged to explore what is possible both within and beyond the current requirements of the UK National Curriculum and the Key Stage 3 strategy, and to consider the whole atta...
Geometrically Consistent Mesh Modification
Bonito, A.
2010-01-01
A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.
Geometric theory of information
2014-01-01
This book brings together geometric tools and their applications for Information analysis. It collects current and many uses of in the interdisciplinary fields of Information Geometry Manifolds in Advanced Signal, Image & Video Processing, Complex Data Modeling and Analysis, Information Ranking and Retrieval, Coding, Cognitive Systems, Optimal Control, Statistics on Manifolds, Machine Learning, Speech/sound recognition, and natural language treatment which are also substantially relevant for the industry.
International Nuclear Information System (INIS)
Wu Hongchun; Xie Zhongsheng; Zhu Xuehua
1994-01-01
The nodal discrete-ordinate transport calculating model of anisotropy scattering problem in three-dimensional cartesian geometry is given. The computing code NOTRAN/3D has been encoded and the satisfied conclusion is gained
Geometric leaf placement strategies
International Nuclear Information System (INIS)
Fenwick, J D; Temple, S W P; Clements, R W; Lawrence, G P; Mayles, H M O; Mayles, W P M
2004-01-01
Geometric leaf placement strategies for multileaf collimators (MLCs) typically involve the expansion of the beam's-eye-view contour of a target by a uniform MLC margin, followed by movement of the leaves until some point on each leaf end touches the expanded contour. Film-based dose-distribution measurements have been made to determine appropriate MLC margins-characterized through an index d 90 -for multileaves set using one particular strategy to straight lines lying at various angles to the direction of leaf travel. Simple trigonometric relationships exist between different geometric leaf placement strategies and are used to generalize the results of the film work into d 90 values for several different strategies. Measured d 90 values vary both with angle and leaf placement strategy. A model has been derived that explains and describes quite well the observed variations of d 90 with angle. The d 90 angular variations of the strategies studied differ substantially, and geometric and dosimetric reasoning suggests that the best strategy is the one with the least angular variation. Using this criterion, the best straightforwardly implementable strategy studied is a 'touch circle' approach for which semicircles are imagined to be inscribed within leaf ends, the leaves being moved until the semicircles just touch the expanded target outline
Studies in geometric quantization
International Nuclear Information System (INIS)
Tuynman, G.M.
1988-01-01
This thesis contains five chapters, of which the first, entitled 'What is prequantization, and what is geometric quantization?', is meant as an introduction to geometric quantization for the non-specialist. The second chapter, entitled 'Central extensions and physics' deals with the notion of central extensions of manifolds and elaborates and proves the statements made in the first chapter. Central extensions of manifolds occur in physics as the freedom of a phase factor in the quantum mechanical state vector, as the phase factor in the prequantization process of classical mechanics and it appears in mathematics when studying central extension of Lie groups. In this chapter the connection between these central extensions is investigated and a remarkable similarity between classical and quantum mechanics is shown. In chapter three a classical model is given for the hydrogen atom including spin-orbit and spin-spin interaction. The method of geometric quantization is applied to this model and the results are discussed. In the final chapters (4 and 5) an explicit method to calculate the operators corresponding to classical observables is given when the phase space is a Kaehler manifold. The obtained formula are then used to quantise symplectic manifolds which are irreducible hermitian symmetric spaces and the results are compared with other quantization procedures applied to these manifolds (in particular to Berezin's quantization). 91 refs.; 3 tabs
Approximating distributions from moments
Pawula, R. F.
1987-11-01
A method based upon Pearson-type approximations from statistics is developed for approximating a symmetric probability density function from its moments. The extended Fokker-Planck equation for non-Markov processes is shown to be the underlying foundation for the approximations. The approximation is shown to be exact for the beta probability density function. The applicability of the general method is illustrated by numerous pithy examples from linear and nonlinear filtering of both Markov and non-Markov dichotomous noise. New approximations are given for the probability density function in two cases in which exact solutions are unavailable, those of (i) the filter-limiter-filter problem and (ii) second-order Butterworth filtering of the random telegraph signal. The approximate results are compared with previously published Monte Carlo simulations in these two cases.
Geometrical model of multiple production
International Nuclear Information System (INIS)
Chikovani, Z.E.; Jenkovszky, L.L.; Kvaratshelia, T.M.; Struminskij, B.V.
1988-01-01
The relation between geometrical and KNO-scaling and their violation is studied in a geometrical model of multiple production of hadrons. Predictions concerning the behaviour of correlation coefficients at future accelerators are given
Geometric Computing for Freeform Architecture
Wallner, J.; Pottmann, Helmut
2011-01-01
Geometric computing has recently found a new field of applications, namely the various geometric problems which lie at the heart of rationalization and construction-aware design processes of freeform architecture. We report on our work in this area
Geometric Constructions with the Computer.
Chuan, Jen-chung
The computer can be used as a tool to represent and communicate geometric knowledge. With the appropriate software, a geometric diagram can be manipulated through a series of animation that offers more than one particular snapshot as shown in a traditional mathematical text. Geometric constructions with the computer enable the learner to see and…
Moment invariants for particle beams
International Nuclear Information System (INIS)
Lysenko, W.P.; Overley, M.S.
1988-01-01
The rms emittance is a certain function of second moments in 2-D phase space. It is preserved for linear uncoupled (1-D) motion. In this paper, the authors present new functions of moments that are invariants for coupled motion. These invariants were computed symbolically using a computer algebra system. Possible applications for these invariants are discussed. Also, approximate moment invariants for nonlinear motion are presented
International Nuclear Information System (INIS)
Gianluca, Longoni; Alireza, Haghighat
2003-01-01
In recent years, the SP L (simplified spherical harmonics) equations have received renewed interest for the simulation of nuclear systems. We have derived the SP L equations starting from the even-parity form of the S N equations. The SP L equations form a system of (L+1)/2 second order partial differential equations that can be solved with standard iterative techniques such as the Conjugate Gradient (CG). We discretized the SP L equations with the finite-volume approach in a 3-D Cartesian space. We developed a new 3-D general code, Pensp L (Parallel Environment Neutral-particle SP L ). Pensp L solves both fixed source and criticality eigenvalue problems. In order to optimize the memory management, we implemented a Compressed Diagonal Storage (CDS) to store the SP L matrices. Pensp L includes parallel algorithms for space and moment domain decomposition. The computational load is distributed on different processors, using a mapping function, which maps the 3-D Cartesian space and moments onto processors. The code is written in Fortran 90 using the Message Passing Interface (MPI) libraries for the parallel implementation of the algorithm. The code has been tested on the Pcpen cluster and the parallel performance has been assessed in terms of speed-up and parallel efficiency. (author)
Corrochano, Eduardo Bayro
2010-01-01
This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int
Geometric multipartite entanglement measures
International Nuclear Information System (INIS)
Paz-Silva, Gerardo A.; Reina, John H.
2007-01-01
Within the framework of constructions for quantifying entanglement, we build a natural scenario for the assembly of multipartite entanglement measures based on Hopf bundle-like mappings obtained through Clifford algebra representations. Then, given the non-factorizability of an arbitrary two-qubit density matrix, we give an alternate quantity that allows the construction of two types of entanglement measures based on their arithmetical and geometrical averages over all pairs of qubits in a register of size N, and thus fully characterize its degree and type of entanglement. We find that such an arithmetical average is both additive and strongly super additive
Geometric correlations and multifractals
International Nuclear Information System (INIS)
Amritkar, R.E.
1991-07-01
There are many situations where the usual statistical methods are not adequate to characterize correlations in the system. To characterize such situations we introduce mutual correlation dimensions which describe geometric correlations in the system. These dimensions allow us to distinguish between variables which are perfectly correlated with or without a phase lag, variables which are uncorrelated and variables which are partially correlated. We demonstrate the utility of our formalism by considering two examples from dynamical systems. The first example is about the loss of memory in chaotic signals and describes auto-correlations while the second example is about synchronization of chaotic signals and describes cross-correlations. (author). 19 refs, 6 figs
Face recognition using Krawtchouk moment
Indian Academy of Sciences (India)
Zernike moment to enhance the discriminant nature (Pang et al 2006). ... was proposed which is partially invariant to changes in the local image samples, ... tigate the Krawtchouk discrete orthogonal moment-based feature ..... in scale have been achieved by changing the distance between the person and the video camera.
Variational approach to magnetic moments
Energy Technology Data Exchange (ETDEWEB)
Lipparini, E; Stringari, S; Traini, M [Dipartimento di Matematica e Fisica, Libera Universita di Trento, Italy
1977-11-07
Magnetic moments in nuclei with a spin unsaturated core plus or minus an extra nucleon have been studied using a restricted Hartree-Fock approach. The method yields simple explicit expressions for the deformed ground state and for magnetic moments. Different projection techniques of the HF scheme have been discussed and compared with perturbation theory.
On fractional Fourier transform moments
Alieva, T.; Bastiaans, M.J.
2000-01-01
Based on the relation between the ambiguity function represented in a quasi-polar coordinate system and the fractional power spectra, the fractional Fourier transform moments are introduced. Important equalities for the global second-order fractional Fourier transform moments are derived and their
Neutron Electric Dipole Moment Experiments
Peng, Jen-Chieh
2008-01-01
The neutron electric dipole moment (EDM) provides unique information on CP violation and physics beyond the Standard Model. We first review the history of experimental searches for neutron electric dipole moment. The status of future neutron EDM experiments, including experiments using ultra-cold neutrons produced in superfluid helium, will then be presented.
2002-01-01
Experiment IS358 uses the intense and pure beams of copper isotopes provided by the ISOLDE RILIS (resonance ionization laser ion source). The isotopes are implanted and oriented in the low temperature nuclear orientation set-up NICOLE. Magnetic moments are measured by $\\beta$-NMR. Copper (Z=29), with a single proton above the proton-magic nickel isotopes provides an ideal testground for precise shell model calculations of magnetic moments and their experimental verification. In the course of our experiments we already determined the magnetic moments of $^{67}$Ni, $^{67}$Cu, $^{68g}$Cu, $^{69}$Cu and $^{71}$Cu which provide important information on the magicity of the N=40 subshell closure. In 2001 we plan to conclude our systematic investigations by measuring the magnetic moment of the neutron-deficient isotope $^{59}$Cu. This will pave the way for a subsequent study of the magnetic moment of $^{57}$Cu with a complementary method.
Analysis of a Cartesian PML approximation to acoustic scattering problems in and
Bramble, James H.
2013-08-01
We consider the application of a perfectly matched layer (PML) technique applied in Cartesian geometry to approximate solutions of the acoustic scattering problem in the frequency domain. The PML is viewed as a complex coordinate shift ("stretching") and leads to a variable complex coefficient equation for the acoustic wave posed on an infinite domain, the complement of the bounded scatterer. The use of Cartesian geometry leads to a PML operator with simple coefficients, although, still complex symmetric (non-Hermitian). The PML reformulation results in a problem whose solution coincides with the original solution inside the PML layer while decaying exponentially outside. The rapid decay of the PML solution suggests truncation to a bounded domain with a convenient outer boundary condition and subsequent finite element approximation (for the truncated problem). This paper provides new stability estimates for the Cartesian PML approximations both on the infinite and the truncated domain. We first investigate the stability of the infinite PML approximation as a function of the PML strength σ0. This is done for PML methods which involve continuous piecewise smooth stretching as well as piecewise constant stretching functions. We next introduce a truncation parameter M which determines the size of the PML layer. Our analysis shows that the truncated PML problem is stable provided that the product of Mσ0 is sufficiently large, in which case the solution of the problem on the truncated domain converges exponentially to that of the original problem in the domain of interest near the scatterer. This justifies the simple computational strategy of selecting a fixed PML layer and increasing σ0 to obtain the desired accuracy. The results of numerical experiments varying M and σ0 are given which illustrate the theoretically predicted behavior. © 2013 Elsevier B.V. All rights reserved.
Density- and wavefunction-normalized Cartesian spherical harmonics for l ≤ 20.
Michael, J Robert; Volkov, Anatoliy
2015-03-01
The widely used pseudoatom formalism [Stewart (1976). Acta Cryst. A32, 565-574; Hansen & Coppens (1978). Acta Cryst. A34, 909-921] in experimental X-ray charge-density studies makes use of real spherical harmonics when describing the angular component of aspherical deformations of the atomic electron density in molecules and crystals. The analytical form of the density-normalized Cartesian spherical harmonic functions for up to l ≤ 7 and the corresponding normalization coefficients were reported previously by Paturle & Coppens [Acta Cryst. (1988), A44, 6-7]. It was shown that the analytical form for normalization coefficients is available primarily for l ≤ 4 [Hansen & Coppens, 1978; Paturle & Coppens, 1988; Coppens (1992). International Tables for Crystallography, Vol. B, Reciprocal space, 1st ed., edited by U. Shmueli, ch. 1.2. Dordrecht: Kluwer Academic Publishers; Coppens (1997). X-ray Charge Densities and Chemical Bonding. New York: Oxford University Press]. Only in very special cases it is possible to derive an analytical representation of the normalization coefficients for 4 4 the density normalization coefficients were calculated numerically to within seven significant figures. In this study we review the literature on the density-normalized spherical harmonics, clarify the existing notations, use the Paturle-Coppens (Paturle & Coppens, 1988) method in the Wolfram Mathematica software to derive the Cartesian spherical harmonics for l ≤ 20 and determine the density normalization coefficients to 35 significant figures, and computer-generate a Fortran90 code. The article primarily targets researchers who work in the field of experimental X-ray electron density, but may be of some use to all who are interested in Cartesian spherical harmonics.
Generic multiset programming with discrimination-based joins and symbolic Cartesian products
DEFF Research Database (Denmark)
Henglein, Fritz; Larsen, Ken Friis
2010-01-01
This paper presents GMP, a library for generic, SQL-style programming with multisets. It generalizes the querying core of SQL in a number of ways: Multisets may contain elements of arbitrary first-order data types, including references (pointers), recur- sive data types and nested multisets......: symbolic (term) repre- sentations of multisets, specifically for Cartesian products, for facilitating dynamic symbolic computation, which intersperses algebraic simplification steps with conventional data pro- cessing; and discrimination-based joins, a generic technique for computing equijoins based...
International Nuclear Information System (INIS)
Schlegel, H.B.; Binkley, J.S.; Pople, J.A.
1984-01-01
Formulas are developed for the first and second derivatives of two electron integrals over Cartesian Gaussians. Integrals and integral derivatives are evaluated by the Rys polynomial method. Higher angular momentum functions are not used to calculate the integral derivatives; instead the integral formulas are differentiated directly to produce compact and efficient expressions for the integral derivatives. The use of this algorithm in the ab initio molecular orbital programs gaussIan 80 and gaussIan 82 is discussed. Representative timings for some small molecules with several basis sets are presented. This method is compared with previously published algorithms and its computational merits are discussed
Random geometric graphs with general connection functions
Dettmann, Carl P.; Georgiou, Orestis
2016-03-01
In the original (1961) Gilbert model of random geometric graphs, nodes are placed according to a Poisson point process, and links formed between those within a fixed range. Motivated by wireless ad hoc networks "soft" or "probabilistic" connection models have recently been introduced, involving a "connection function" H (r ) that gives the probability that two nodes at distance r are linked (directly connect). In many applications (not only wireless networks), it is desirable that the graph is connected; that is, every node is linked to every other node in a multihop fashion. Here the connection probability of a dense network in a convex domain in two or three dimensions is expressed in terms of contributions from boundary components for a very general class of connection functions. It turns out that only a few quantities such as moments of the connection function appear. Good agreement is found with special cases from previous studies and with numerical simulations.
International Nuclear Information System (INIS)
Noga, M.T.
1984-01-01
This thesis addresses a number of important problems that fall within the framework of the new discipline of Computational Geometry. The list of topics covered includes sorting and selection, convex hull algorithms, the L 1 hull, determination of the minimum encasing rectangle of a set of points, the Euclidean and L 1 diameter of a set of points, the metric traveling salesman problem, and finding the superrange of star-shaped and monotype polygons. The main theme of all the work was to develop a set of very fast state-of-the-art algorithms that supersede any rivals in terms of speed and ease of implementation. In some cases existing algorithms were refined; for others new techniques were developed that add to the present database of fast adaptive geometric algorithms. What emerges is a collection of techniques that is successful at merging modern tools developed in analysis of algorithms with those of classical geometry
Geometrization of quantum physics
International Nuclear Information System (INIS)
Ol'khov, O.A.
2009-01-01
It is shown that the Dirac equation for a free particle can be considered as a description of specific distortion of the space Euclidean geometry (space topological defect). This approach is based on the possibility of interpretation of the wave function as vector realizing representation of the fundamental group of the closed topological space-time 4-manifold. Mass and spin appear to be topological invariants. Such a concept explains all so-called 'strange' properties of quantum formalism: probabilities, wave-particle duality, nonlocal instantaneous correlation between noninteracting particles (EPR-paradox) and so on. Acceptance of the suggested geometrical concept means rejection of atomistic concept where all matter is considered as consisting of more and more small elementary particles. There are no any particles a priory, before measurement: the notions of particles appear as a result of classical interpretation of the contact of the region of the curved space with a device
Geometrization of quantum physics
Ol'Khov, O. A.
2009-12-01
It is shown that the Dirac equation for free particle can be considered as a description of specific distortion of the space euclidean geometry (space topological defect). This approach is based on possibility of interpretation of the wave function as vector realizing representation of the fundamental group of the closed topological space-time 4-manifold. Mass and spin appear to be topological invariants. Such concept explains all so called “strange” properties of quantum formalism: probabilities, wave-particle duality, nonlocal instantaneous correlation between noninteracting particles (EPR-paradox) and so on. Acceptance of suggested geometrical concept means rejection of atomistic concept where all matter is considered as consisting of more and more small elementary particles. There is no any particles a priori, before measurement: the notions of particles appear as a result of classical interpretation of the contact of the region of the curved space with a device.
Havelka, Jan
2008-01-01
Tato diplomová práce se zabývá akcelerací geometrických transformací obrazu s využitím GPU a architektury NVIDIA (R) CUDA TM. Časově kritické části kódu jsou přesunuty na GPU a vykonány paralelně. Jedním z výsledků je demonstrační aplikace pro porovnání výkonnosti obou architektur: CPU, a GPU v kombinaci s CPU. Pro referenční implementaci jsou použity vysoce optimalizované algoritmy z knihovny OpenCV, od firmy Intel. This master's thesis deals with acceleration of geometrical image transfo...
Characteristic signatures of quantum criticality driven by geometrical frustration.
Tokiwa, Yoshifumi; Stingl, Christian; Kim, Moo-Sung; Takabatake, Toshiro; Gegenwart, Philipp
2015-04-01
Geometrical frustration describes situations where interactions are incompatible with the lattice geometry and stabilizes exotic phases such as spin liquids. Whether geometrical frustration of magnetic interactions in metals can induce unconventional quantum critical points is an active area of research. We focus on the hexagonal heavy fermion metal CeRhSn, where the Kondo ions are located on distorted kagome planes stacked along the c axis. Low-temperature specific heat, thermal expansion, and magnetic Grüneisen parameter measurements prove a zero-field quantum critical point. The linear thermal expansion, which measures the initial uniaxial pressure derivative of the entropy, displays a striking anisotropy. Critical and noncritical behaviors along and perpendicular to the kagome planes, respectively, prove that quantum criticality is driven be geometrical frustration. We also discovered a spin flop-type metamagnetic crossover. This excludes an itinerant scenario and suggests that quantum criticality is related to local moments in a spin liquid-like state.
Moment-based method for computing the two-dimensional discrete Hartley transform
Dong, Zhifang; Wu, Jiasong; Shu, Huazhong
2009-10-01
In this paper, we present a fast algorithm for computing the two-dimensional (2-D) discrete Hartley transform (DHT). By using kernel transform and Taylor expansion, the 2-D DHT is approximated by a linear sum of 2-D geometric moments. This enables us to use the fast algorithms developed for computing the 2-D moments to efficiently calculate the 2-D DHT. The proposed method achieves a simple computational structure and is suitable to deal with any sequence lengths.
Design of high-order rotation invariants from Gaussian-Hermite moments
Czech Academy of Sciences Publication Activity Database
Yang, Bo; Flusser, Jan; Suk, Tomáš
2015-01-01
Roč. 113, č. 1 (2015), s. 61-67 ISSN 0165-1684 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Rotationinvariants * Geometric moments * Gaussian–Hermite moments * Recurrentrelation Subject RIV: JD - Computer Applications, Robotics Impact factor: 2.063, year: 2015 http://library.utia.cas.cz/separaty/2015/ZOI/flusser-0441266.pdf
On the baryon magnetic moments
International Nuclear Information System (INIS)
Ferreira, P.L.
1976-01-01
In the context of quark confinement ideas, the baryon magnetic moments are calculated by assuming a SU(3) breaking due to the inequalities of the quark masses (m sub(p) different m sub(n) different m lambda ). The modified SU(6) result for the ratio of the magnetic moments of the neutron and proton is obtained. The p-quark is found heavier than the n-quark by circa 15 MeV. and alternative way of evaluating the baryon magnetic moments by means of simple physical considerations based on the properties of the SU(6) baryon S-waves functions is given
Moment Magnitude discussion in Austria
Weginger, Stefan; Jia, Yan; Hausmann, Helmut; Lenhardt, Wolfgang
2017-04-01
We implemented and tested the Moment Magnitude estimation „dbmw" from the University of Trieste in our Antelope near real-time System. It is used to get a fast Moment Magnitude solutions and Ground Motion Parameter (PGA, PGV, PSA 0.3, PSA 1.0 and PSA 3.0) to calculate Shake and Interactive maps. A Moment Magnitude Catalogue was generated and compared with the Austrian Earthquake Catalogue and all available Magnitude solution of the neighbouring agencies. Relations of Mw to Ml and Ground Motion to Intensity are presented.
International Nuclear Information System (INIS)
Matsuta, K.; Arimura, K.; Nagatomo, T.; Akutsu, K.; Iwakoshi, T.; Kudo, S.; Ogura, M.; Takechi, M.; Tanaka, K.; Sumikama, T.; Minamisono, K.; Miyake, T.; Minamisono, T.; Fukuda, M.; Mihara, M.; Kitagawa, A.; Sasaki, M.; Kanazawa, M.; Torikoshi, M.; Suda, M.; Hirai, M.; Momota, S.; Nojiri, Y.; Sakamoto, A.; Saihara, M.; Ohtsubo, T.; Alonso, J.R.; Krebs, G.F.; Symons, T.J.M.
2004-01-01
The magnetic moment of 33 Cl (Iπ=3/2+, T1/2=2.51s) has been re-measured precisely by β-NMR method. The obtained magnetic moment |μ|=0.7549(3)μN is consistent with the old value 0.7523(16)μN, but is 5 times more accurate. The value is well reproduced by the shell model calculation, μSM=0.70μN. Combined with the magnetic moment of the mirror partner 33 S, the nuclear matrix elements , , , and were derived
Moment methods with effective nuclear Hamiltonians; calculations of radial moments
International Nuclear Information System (INIS)
Belehrad, R.H.
1981-02-01
A truncated orthogonal polynomial expansion is used to evaluate the expectation value of the radial moments of the one-body density of nuclei. The expansion contains the configuration moments, , , and 2 >, where R/sup (k)/ is the operator for the k-th power of the radial coordinate r, and H is the effective nuclear Hamiltonian which is the sum of the relative kinetic energy operator and the Bruckner G matrix. Configuration moments are calculated using trace reduction formulae where the proton and neutron orbitals are treated separately in order to find expectation values of good total isospin. The operator averages are taken over many-body shell model states in the harmonic oscillator basis where all particles are active and single-particle orbitals through six major shells are included. The radial moment expectation values are calculated for the nuclei 16 O, 40 Ca, and 58 Ni and find that is usually the largest term in the expansion giving a large model space dependence to the results. For each of the 3 nuclei, a model space is found which gives the desired rms radius and then we find that the other 5 lowest moments compare favorably with other theoretical predictions. Finally, we use a method of Gordon (5) to employ the lowest 6 radial moment expectation values in the calculation of elastic electron scattering from these nuclei. For low to moderate momentum transfer, the results compare favorably with the experimental data
Cartesian Mesh Linearized Euler Equations Solver for Aeroacoustic Problems around Full Aircraft
Directory of Open Access Journals (Sweden)
Yuma Fukushima
2015-01-01
Full Text Available The linearized Euler equations (LEEs solver for aeroacoustic problems has been developed on block-structured Cartesian mesh to address complex geometry. Taking advantage of the benefits of Cartesian mesh, we employ high-order schemes for spatial derivatives and for time integration. On the other hand, the difficulty of accommodating curved wall boundaries is addressed by the immersed boundary method. The resulting LEEs solver is robust to complex geometry and numerically efficient in a parallel environment. The accuracy and effectiveness of the present solver are validated by one-dimensional and three-dimensional test cases. Acoustic scattering around a sphere and noise propagation from the JT15D nacelle are computed. The results show good agreement with analytical, computational, and experimental results. Finally, noise propagation around fuselage-wing-nacelle configurations is computed as a practical example. The results show that the sound pressure level below the over-the-wing nacelle (OWN configuration is much lower than that of the conventional DLR-F6 aircraft configuration due to the shielding effect of the OWN configuration.
Single-breath-hold 3-D CINE imaging of the left ventricle using Cartesian sampling.
Wetzl, Jens; Schmidt, Michaela; Pontana, François; Longère, Benjamin; Lugauer, Felix; Maier, Andreas; Hornegger, Joachim; Forman, Christoph
2018-02-01
Our objectives were to evaluate a single-breath-hold approach for Cartesian 3-D CINE imaging of the left ventricle with a nearly isotropic resolution of [Formula: see text] and a breath-hold duration of [Formula: see text]19 s against a standard stack of 2-D CINE slices acquired in multiple breath-holds. Validation is performed with data sets from ten healthy volunteers. A Cartesian sampling pattern based on the spiral phyllotaxis and a compressed sensing reconstruction method are proposed to allow 3-D CINE imaging with high acceleration factors. The fully integrated reconstruction uses multiple graphics processing units to speed up the reconstruction. The 2-D CINE and 3-D CINE are compared based on ventricular function parameters, contrast-to-noise ratio and edge sharpness measurements. Visual comparisons of corresponding short-axis slices of 2-D and 3-D CINE show an excellent match, while 3-D CINE also allows reformatting to other orientations. Ventricular function parameters do not significantly differ from values based on 2-D CINE imaging. Reconstruction times are below 4 min. We demonstrate single-breath-hold 3-D CINE imaging in volunteers and three example patient cases, which features fast reconstruction and allows reformatting to arbitrary orientations.
International Nuclear Information System (INIS)
Goncalves, Glenio Aguiar
2003-01-01
In this work, we are reported analytical solutions for the transport equation for neutral particles in cylindrical and cartesian geometry. For the cylindrical geometry, it is applied the Hankel transform of order zero in the S N approximation of the one-dimensional cylindrical transport equation, assuming azimuthal symmetry and isotropic scattering. This procedure is coined HTSN method. The anisotropic problem is handled using the decomposition method, generating a recursive approach, which the HTSN solution is used as initial condition. For cartesian geometry, the one and two dimensional transport equation is derived in the angular variable as many time as the degree of the anisotropic scattering. This procedure leads to set of integro-differential plus one differential equation that can be really solved by the variable separation method. Following this procedure, it was possible to come out with the Case solution for the one-dimensional problem. Numerical simulations are reported for the cylindrical transport problem both isotropic and anisotropic case of quadratic degree. (author)
Large-eddy simulation of wind turbine wake interactions on locally refined Cartesian grids
Angelidis, Dionysios; Sotiropoulos, Fotis
2014-11-01
Performing high-fidelity numerical simulations of turbulent flow in wind farms remains a challenging issue mainly because of the large computational resources required to accurately simulate the turbine wakes and turbine/turbine interactions. The discretization of the governing equations on structured grids for mesoscale calculations may not be the most efficient approach for resolving the large disparity of spatial scales. A 3D Cartesian grid refinement method enabling the efficient coupling of the Actuator Line Model (ALM) with locally refined unstructured Cartesian grids adapted to accurately resolve tip vortices and multi-turbine interactions, is presented. Second order schemes are employed for the discretization of the incompressible Navier-Stokes equations in a hybrid staggered/non-staggered formulation coupled with a fractional step method that ensures the satisfaction of local mass conservation to machine zero. The current approach enables multi-resolution LES of turbulent flow in multi-turbine wind farms. The numerical simulations are in good agreement with experimental measurements and are able to resolve the rich dynamics of turbine wakes on grids containing only a small fraction of the grid nodes that would be required in simulations without local mesh refinement. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the National Science Foundation under Award number NSF PFI:BIC 1318201.
Aligning Spinoza with Descartes: An informed Cartesian account of the truth bias.
Street, Chris N H; Kingstone, Alan
2017-08-01
There is a bias towards believing information is true rather than false. The Spinozan account claims there is an early, automatic bias towards believing. Only afterwards can people engage in an effortful re-evaluation and disbelieve the information. Supporting this account, there is a greater bias towards believing information is true when under cognitive load. However, developing on the Adaptive Lie Detector (ALIED) theory, the informed Cartesian can equally explain this data. The account claims the bias under load is not evidence of automatic belief; rather, people are undecided, but if forced to guess they can rely on context information to make an informed judgement. The account predicts, and we found, that if people can explicitly indicate their uncertainty, there should be no bias towards believing because they are no longer required to guess. Thus, we conclude that belief formation can be better explained by an informed Cartesian account - an attempt to make an informed judgment under uncertainty. © 2016 The British Psychological Society.
Semantyczne założenia sceptycyzmu kartezjańskiego (Semantic Presuppositions of Cartesian Skepticism
Directory of Open Access Journals (Sweden)
Krzysztof Posłajko
2010-12-01
Full Text Available The paper purports to show that in order to formulate the hypothesis that all our beliefs are collectively false – which is taken to be the core of Cartesian skepticism – one must accept the presumption that semantic properties of subject`s beliefs locally supervene on “internal” properties of said subject. In order to show that the responses to skepticism from semantic externalism, i.e. those formulated by Putnam and Davidson, are analyzed. It is argued that even though these arguments are controversial they indicate that Cartesian skeptic must assume that subject beliefs` semantic properties can remain the same in different surroundings, which is exactly what the supervenience thesis amounts to. Finally, it is pointed out that the skepticism introduced by Kripke in his discussion of rule-following is indeed more radical than traditional, Cartesian one, as the former denies the very thesis that the latter must assume.
Harmonic and geometric analysis
Citti, Giovanna; Pérez, Carlos; Sarti, Alessandro; Zhong, Xiao
2015-01-01
This book presents an expanded version of four series of lectures delivered by the authors at the CRM. Harmonic analysis, understood in a broad sense, has a very wide interplay with partial differential equations and in particular with the theory of quasiconformal mappings and its applications. Some areas in which real analysis has been extremely influential are PDE's and geometric analysis. Their foundations and subsequent developments made extensive use of the Calderón–Zygmund theory, especially the Lp inequalities for Calderón–Zygmund operators (Beurling transform and Riesz transform, among others) and the theory of Muckenhoupt weights. The first chapter is an application of harmonic analysis and the Heisenberg group to understanding human vision, while the second and third chapters cover some of the main topics on linear and multilinear harmonic analysis. The last serves as a comprehensive introduction to a deep result from De Giorgi, Moser and Nash on the regularity of elliptic partial differen...
Probability density cloud as a geometrical tool to describe statistics of scattered light.
Yaitskova, Natalia
2017-04-01
First-order statistics of scattered light is described using the representation of the probability density cloud, which visualizes a two-dimensional distribution for complex amplitude. The geometric parameters of the cloud are studied in detail and are connected to the statistical properties of phase. The moment-generating function for intensity is obtained in a closed form through these parameters. An example of exponentially modified normal distribution is provided to illustrate the functioning of this geometrical approach.
Regular Polygons and Geometric Series.
Jarrett, Joscelyn A.
1982-01-01
Examples of some geometric illustrations of limits are presented. It is believed the limit concept is among the most important topics in mathematics, yet many students do not have good intuitive feelings for the concept, since it is often taught very abstractly. Geometric examples are suggested as meaningful tools. (MP)
Geometric Invariants and Object Recognition.
1992-08-01
University of Chicago Press. Maybank , S.J. [1992], "The Projection of Two Non-coplanar Conics", in Geometric Invariance in Machine Vision, eds. J.L...J.L. Mundy and A. Zisserman, MIT Press, Cambridge, MA. Mundy, J.L., Kapur, .. , Maybank , S.J., and Quan, L. [1992a] "Geometric Inter- pretation of
Electric moments in molecule interferometry
International Nuclear Information System (INIS)
Eibenberger, Sandra; Gerlich, Stefan; Arndt, Markus; Tuexen, Jens; Mayor, Marcel
2011-01-01
We investigate the influence of different electric moments on the shift and dephasing of molecules in a matter wave interferometer. Firstly, we provide a quantitative comparison of two molecules that are non-polar yet polarizable in their thermal ground state and that differ in their stiffness and response to thermal excitations. While C 25 H 20 is rather rigid, its larger derivative C 49 H 16 F 52 is additionally equipped with floppy side chains and vibrationally activated dipole moment variations. Secondly, we elucidate the role of a permanent electric dipole momentby contrasting the quantum interference pattern of a (nearly) non-polar and a polar porphyrin derivative. We find that a high molecular polarizability and even sizeable dipole moment fluctuations are still well compatible with high-contrast quantum interference fringes. The presence of permanent electric dipole moments, however, can lead to a dephasing and rapid degradation of the quantum fringe pattern already at moderate electric fields. This finding is of high relevance for coherence experiments with large organic molecules, which are generally equipped with strong electric moments.
A simplified presentation of the multigroup analytic nodal method in 2-D Cartesian geometry
International Nuclear Information System (INIS)
Hebert, Alain
2008-01-01
The nodal diffusion algorithms used in many production reactor simulation codes are originating from a common ancestry developed in the 1970s, the analytic nodal method (ANM) of the QUANDRY code. However, this original presentation of the ANM is complex and makes difficult the calculation of the nodal coupling matrices. Moreover, QUANDRY is limited to two-energy groups and its generalization to more groups appears laborious. We are presenting a simplified implementation of the ANM requiring only limited programming work. This formulation is consistent with the initial QUANDRY implementation and is easily generalizable to arbitrary G-group problems. A Matlab script is provided to highlight the simplicity of our presentation. For the sake of clarity, our implementation is limited to G-group, 2-D Cartesian geometry
Directory of Open Access Journals (Sweden)
Eduardo Izaguirre
2011-09-01
Full Text Available This paper presents a kinematic cartesian control scheme of 3 degree of freedom parallel robot driven by electro-pneumatic actuators based on exteroceptive pose measurement system. The inverse kinematics model is used to obtain the desired joint position coordinates from the time-varying trajectory given in task space. The proposal cascade control scheme in task space is based in two loops, the inner loop consisting in a decoupled joint position control and the outer loop which is designed to obtain an appropriate task space trajectory tracking. In order to avoid the on-line computation of direct kinematics an arrangement of inertial sensor and optical encoders are employed to provide the accurate pose measurement of end-effector. The experiment's results demonstrate the great performance of the proposed control scheme in industrial motion tracking application.
Cartesian coupled coherent states simulations: Ne(n)Br2 dissociation as a test case.
Reed, Stewart K; González-Martínez, Maykel L; Rubayo-Soneira, Jesús; Shalashilin, Dmitrii V
2011-02-07
In this article, we describe coupled coherent states (CCS) simulations of vibrational predissociation of weakly bounded complexes. The CCS method is implemented in the Cartesian frame in a manner that is similar to classical molecular dynamics. The calculated lifetimes of the vibrationally excited Ne-Br(2)(ν) complexes agree with experiment and previous calculations. Although the CCS method is, in principle, a fully quantum approach, in practice it typically becomes a semiclassical technique at long times. This is especially true following dissociation events. Consequently, it is very difficult to converge the quantum calculations of the final Br(2) vibrational distributions after predissociation and of the autocorrelation functions. However, the main advantage of the method is that it can be applied with relative ease to determine the lifetimes of larger complexes and, in order to demonstrate this, preliminary results for tetra- and penta-atomic clusters are reported.
Energy Technology Data Exchange (ETDEWEB)
Zanette, Rodrigo; Petersen, Caudio Zen [Univ. Federal de Pelotas, Capao do Leao (Brazil). Programa de Pos Graduacao em Modelagem Matematica; Schramm, Marcello [Univ. Federal de Pelotas (Brazil). Centro de Engenharias; Zabadal, Jorge Rodolfo [Univ. Federal do Rio Grande do Sul, Tramandai (Brazil)
2017-05-15
In this paper a solution for the one-dimensional steady state Multilayer Multigroup Neutron Diffusion Equation in cartesian geometry by Fictitious Borders Power Method and a perturbative analysis of this solution is presented. For each new iteration of the power method, the neutron flux is reconstructed by polynomial interpolation, so that it always remains in a standard form. However when the domain is long, an almost singular matrix arises in the interpolation process. To eliminate this singularity the domain segmented in R regions, called fictitious regions. The last step is to solve the neutron diffusion equation for each fictitious region in analytical form locally. The results are compared with results present in the literature. In order to analyze the sensitivity of the solution, a perturbation in the nuclear parameters is inserted to determine how a perturbation interferes in numerical results of the solution.
International Nuclear Information System (INIS)
Ceolin, Celina; Vilhena, Marco T.; Petersen, Claudio Z.
2009-01-01
In this work we report an analytical solution for the monoenergetic neutron diffusion kinetic equation in cartesian geometry. Bearing in mind that the equation for the delayed neutron precursor concentration is a first order linear differential equation in the time variable, to make possible the application of the GITT approach to the kinetic equation, we introduce a fictitious diffusion term multiplied by a positive small value ε. By this procedure, we are able to solve this set of equations. Indeed, applying the GITT technique to the modified diffusion kinetic equation, we come out with a matrix differential equation which has a well known analytical solution when ε goes to zero. We report numerical simulations as well study of numerical convergence of the results attained. (author)
High-order discrete ordinate transport in non-conforming 2D Cartesian meshes
International Nuclear Information System (INIS)
Gastaldo, L.; Le Tellier, R.; Suteau, C.; Fournier, D.; Ruggieri, J. M.
2009-01-01
We present in this paper a numerical scheme for solving the time-independent first-order form of the Boltzmann equation in non-conforming 2D Cartesian meshes. The flux solution technique used here is the discrete ordinate method and the spatial discretization is based on discontinuous finite elements. In order to have p-refinement capability, we have chosen a hierarchical polynomial basis based on Legendre polynomials. The h-refinement capability is also available and the element interface treatment has been simplified by the use of special functions decomposed over the mesh entities of an element. The comparison to a classical S N method using the Diamond Differencing scheme as spatial approximation confirms the good behaviour of the method. (authors)
A Comparative Study on Evaluation Methods of Fluid Forces on Cartesian Grids
Directory of Open Access Journals (Sweden)
Taku Nonomura
2017-01-01
Full Text Available We investigate the accuracy and the computational efficiency of the numerical schemes for evaluating fluid forces in Cartesian grid systems. A comparison is made between two different types of schemes, namely, polygon-based methods and mesh-based methods, which differ in the discretization of the surface of the object. The present assessment is intended to investigate the effects of the Reynolds number, the object motion, and the complexity of the object surface. The results show that the mesh-based methods work as well as the polygon-based methods, even if the object surface is discretized in a staircase manner. In addition, the results also show that the accuracy of the mesh-based methods is strongly dependent on the evaluation of shear stresses, and thus they must be evaluated by using a reliable method, such as the ghost-cell or ghost-fluid method.
Wu, Bofeng; Huang, Chao-Guang
2018-04-01
The 1 /r expansion in the distance to the source is applied to the linearized f (R ) gravity, and its multipole expansion in the radiation field with irreducible Cartesian tensors is presented. Then, the energy, momentum, and angular momentum in the gravitational waves are provided for linearized f (R ) gravity. All of these results have two parts, which are associated with the tensor part and the scalar part in the multipole expansion of linearized f (R ) gravity, respectively. The former is the same as that in General Relativity, and the latter, as the correction to the result in General Relativity, is caused by the massive scalar degree of freedom and plays an important role in distinguishing General Relativity and f (R ) gravity.
Dakin, Gautier; Després, Bruno; Jaouen, Stéphane
2018-01-01
We propose a new high-order accurate numerical boundary treatment for solving hyperbolic systems of conservation laws and Euler equations using a Lagrange-remap approach on Cartesian grids in cases of physical boundaries not aligned with the mesh. The method is an adaptation of the Inverse Lax-Wendroff procedure [34-38] to the Lagrange-remap approach, which considerably alleviates the algebra. High-order accurate ghost values of conservative variables are imposed using Taylor expansions whose coefficients are found by inverting a (linear or non-linear) system which is well posed in all our examples. For 2D problems, a least-square procedure is added to prevent extrapolation instabilities. The Lagrange-remap formalism also provides a simpler fluid-structure coupling which is also described. Numerical examples are given for the linear case and Euler equations in 1D and 2D.
The impact of susceptibility gradients on cartesian and spiral EPI for BOLD fMRI
DEFF Research Database (Denmark)
Sangill, Ryan; Wallentin, Mikkel; Østergaard, Leif
2006-01-01
, with special emphasis on spiral EPI (spiral) and cartesian EPI (EPI) and their performance under influence of induced field gradients (SFGs) and stochastic noise. A numerical method for calculating synthetic MR images is developed and used to simulate BOLD fMRI experiments using EPI and spirals. The data...... is then examined for activation using a pixel-wise t test. Nine subjects are scanned with both techniques while performing a motor task. SPM99 is used for analysing the experimental data. The simulated spirals provide generally higher t scores at low SFGs but lose more strength than EPI at higher SFGs, where EPI...... activation is offset from the true position. In the primary motor area spirals provide significantly higher t scores (P SFG areas spirals provide stronger activation than...
A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains
Johansen, Hans; Colella, Phillip
1998-11-01
We present a numerical method for solving Poisson's equation, with variable coefficients and Dirichlet boundary conditions, on two-dimensional regions. The approach uses a finite-volume discretization, which embeds the domain in a regular Cartesian grid. We treat the solution as a cell-centered quantity, even when those centers are outside the domain. Cells that contain a portion of the domain boundary use conservative differencing of second-order accurate fluxes on each cell volume. The calculation of the boundary flux ensures that the conditioning of the matrix is relatively unaffected by small cell volumes. This allows us to use multigrid iterations with a simple point relaxation strategy. We have combined this with an adaptive mesh refinement (AMR) procedure. We provide evidence that the algorithm is second-order accurate on various exact solutions and compare the adaptive and nonadaptive calculations.
Wade, Derick
2006-03-01
Adjectives are supposed to describe the associated noun more fully or definitively, and the adjective physical is sometimes added to words such as medicine, rehabilitation and disability. What increase in description does its use allow? The adjective was probably added when rehabilitation started to develop for several reasons: it contrasted the mode of treatment with pharmacology and surgery; it contrasted the nature of the supposed aetiology with emotionally generated disorders, especially shell-shock; and it justified the presence of rehabilitation within the profession of medicine. Its continued use, however, perpetuates a Cartesian, dualist philosophy. This editorial uses the World Health Organization International Classification of Functioning (WHO ICF) model of illness to analyse its continued use, and concludes that its continued use may disadvantage both patients and the practice of rehabilitation.
Geometrical method of decoupling
Directory of Open Access Journals (Sweden)
C. Baumgarten
2012-12-01
Full Text Available The computation of tunes and matched beam distributions are essential steps in the analysis of circular accelerators. If certain symmetries—like midplane symmetry—are present, then it is possible to treat the betatron motion in the horizontal, the vertical plane, and (under certain circumstances the longitudinal motion separately using the well-known Courant-Snyder theory, or to apply transformations that have been described previously as, for instance, the method of Teng and Edwards. In a preceding paper, it has been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-negligible space charge forces. Unfortunately, the modification was numerically not as stable as desired and it was still unclear, if the extension would work for all conceivable cases. Hence, a systematic derivation of a more general treatment seemed advisable. In a second paper, the author suggested the use of real Dirac matrices as basic tools for coupled linear optics and gave a straightforward recipe to decouple positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with eigenvalues on the real and the imaginary axis. The decoupling of symplectic matrices which are exponentials of such Hamiltonian matrices can be deduced from this in a few steps. It is shown that this algebraic decoupling is closely related to a geometric “decoupling” by the orthogonalization of the vectors E[over →], B[over →], and P[over →], which were introduced with the so-called “electromechanical equivalence.” A mathematical analysis of the problem can be traced down to the task of finding a structure-preserving block diagonalization of symplectic or Hamiltonian matrices. Structure preservation means in this context that the (sequence of transformations must be symplectic and hence canonical. When
Moment of inertia of liquid in a tank
Directory of Open Access Journals (Sweden)
Gyeong Joong Lee
2014-03-01
Full Text Available In this study, the inertial properties of fully filled liquid in a tank were studied based on the potential theory. The analytic solution was obtained for the rectangular tank, and the numerical solutions using Green's 2nd identity were obtained for other shapes. The inertia of liquid behaves like solid in recti-linear acceleration. But under rotational acceleration, the moment of inertia of liquid becomes small compared to that of solid. The shapes of tank investigated in this study were ellipse, rectangle, hexagon, and octagon with various aspect ratios. The numerical solutions were compared with analytic solution, and an ad hoc semi-analytical approximate formula is proposed herein and this formula gives very good predictions for the moment of inertia of the liquid in a tank of several different geometrical shapes. The results of this study will be useful in analyzing of the motion of LNG/LPG tanker, liquid cargo ship, and damaged ship.
Geometric phase for a neutral particle in rotating frames in a cosmic string spacetime
International Nuclear Information System (INIS)
Bakke, Knut; Furtado, Claudio
2009-01-01
We study of the appearance of geometric quantum phases in the dynamics of a neutral particle that possess a permanent magnetic dipole moment in rotating frames in a cosmic string spacetime. The relativistic dynamics of spin-1/2 particle in this frame is investigated and we obtain several contributions to relativistic geometric phase due rotation and topology of spacetime. We also study the geometric phase in the nonrelativistic limit. We obtain effects analogous to the Sagnac effect and Mashhoon effect in a rotating frame in the background of a cosmic string.
A Parallel Cartesian Approach for External Aerodynamics of Vehicles with Complex Geometry
Aftosmis, M. J.; Berger, M. J.; Adomavicius, G.
2001-01-01
This workshop paper presents the current status in the development of a new approach for the solution of the Euler equations on Cartesian meshes with embedded boundaries in three dimensions on distributed and shared memory architectures. The approach uses adaptively refined Cartesian hexahedra to fill the computational domain. Where these cells intersect the geometry, they are cut by the boundary into arbitrarily shaped polyhedra which receive special treatment by the solver. The presentation documents a newly developed multilevel upwind solver based on a flexible domain-decomposition strategy. One novel aspect of the work is its use of space-filling curves (SFC) for memory efficient on-the-fly parallelization, dynamic re-partitioning and automatic coarse mesh generation. Within each subdomain the approach employs a variety reordering techniques so that relevant data are on the same page in memory permitting high-performance on cache-based processors. Details of the on-the-fly SFC based partitioning are presented as are construction rules for the automatic coarse mesh generation. After describing the approach, the paper uses model problems and 3- D configurations to both verify and validate the solver. The model problems demonstrate that second-order accuracy is maintained despite the presence of the irregular cut-cells in the mesh. In addition, it examines both parallel efficiency and convergence behavior. These investigations demonstrate a parallel speed-up in excess of 28 on 32 processors of an SGI Origin 2000 system and confirm that mesh partitioning has no effect on convergence behavior.
Geometric inequalities for black holes
International Nuclear Information System (INIS)
Dain, Sergio
2013-01-01
Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)
Geometric Computing for Freeform Architecture
Wallner, J.
2011-06-03
Geometric computing has recently found a new field of applications, namely the various geometric problems which lie at the heart of rationalization and construction-aware design processes of freeform architecture. We report on our work in this area, dealing with meshes with planar faces and meshes which allow multilayer constructions (which is related to discrete surfaces and their curvatures), triangles meshes with circle-packing properties (which is related to conformal uniformization), and with the paneling problem. We emphasize the combination of numerical optimization and geometric knowledge.
Optical traps with geometric aberrations
International Nuclear Information System (INIS)
Roichman, Yael; Waldron, Alex; Gardel, Emily; Grier, David G.
2006-01-01
We assess the influence of geometric aberrations on the in-plane performance of optical traps by studying the dynamics of trapped colloidal spheres in deliberately distorted holographic optical tweezers. The lateral stiffness of the traps turns out to be insensitive to moderate amounts of coma, astigmatism, and spherical aberration. Moreover holographic aberration correction enables us to compensate inherent shortcomings in the optical train, thereby adaptively improving its performance. We also demonstrate the effects of geometric aberrations on the intensity profiles of optical vortices, whose readily measured deformations suggest a method for rapidly estimating and correcting geometric aberrations in holographic trapping systems
Geometric inequalities for black holes
Energy Technology Data Exchange (ETDEWEB)
Dain, Sergio [Universidad Nacional de Cordoba (Argentina)
2013-07-01
Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)
Stochastic Generalized Method of Moments
Yin, Guosheng; Ma, Yanyuan; Liang, Faming; Yuan, Ying
2011-01-01
The generalized method of moments (GMM) is a very popular estimation and inference procedure based on moment conditions. When likelihood-based methods are difficult to implement, one can often derive various moment conditions and construct the GMM objective function. However, minimization of the objective function in the GMM may be challenging, especially over a large parameter space. Due to the special structure of the GMM, we propose a new sampling-based algorithm, the stochastic GMM sampler, which replaces the multivariate minimization problem by a series of conditional sampling procedures. We develop the theoretical properties of the proposed iterative Monte Carlo method, and demonstrate its superior performance over other GMM estimation procedures in simulation studies. As an illustration, we apply the stochastic GMM sampler to a Medfly life longevity study. Supplemental materials for the article are available online. © 2011 American Statistical Association.
Stochastic Generalized Method of Moments
Yin, Guosheng
2011-08-16
The generalized method of moments (GMM) is a very popular estimation and inference procedure based on moment conditions. When likelihood-based methods are difficult to implement, one can often derive various moment conditions and construct the GMM objective function. However, minimization of the objective function in the GMM may be challenging, especially over a large parameter space. Due to the special structure of the GMM, we propose a new sampling-based algorithm, the stochastic GMM sampler, which replaces the multivariate minimization problem by a series of conditional sampling procedures. We develop the theoretical properties of the proposed iterative Monte Carlo method, and demonstrate its superior performance over other GMM estimation procedures in simulation studies. As an illustration, we apply the stochastic GMM sampler to a Medfly life longevity study. Supplemental materials for the article are available online. © 2011 American Statistical Association.
Method of moments in electromagnetics
Gibson, Walton C
2007-01-01
Responding to the need for a clear, up-to-date introduction to the field, The Method of Moments in Electromagnetics explores surface integral equations in electromagnetics and presents their numerical solution using the method of moments (MOM) technique. It provides the numerical implementation aspects at a nuts-and-bolts level while discussing integral equations and electromagnetic theory at a higher level. The author covers a range of topics in this area, from the initial underpinnings of the MOM to its current applications. He first reviews the frequency-domain electromagnetic theory and t
Neutron star moments of inertia
Ravenhall, D. G.; Pethick, C. J.
1994-01-01
An approximation for the moment of inertia of a neutron star in terms of only its mass and radius is presented, and insight into it is obtained by examining the behavior of the relativistic structural equations. The approximation is accurate to approximately 10% for a variety of nuclear equations of state, for all except very low mass stars. It is combined with information about the neutron-star crust to obtain a simple expression (again in terms only of mass and radius) for the fractional moment of inertia of the crust.
Bahri, A; Bendersky, M; Cohen, F R; Gitler, S
2009-07-28
This article gives a natural decomposition of the suspension of a generalized moment-angle complex or partial product space which arises as the polyhedral product functor described below. The introduction and application of the smash product moment-angle complex provides a precise identification of the stable homotopy type of the values of the polyhedral product functor. One direct consequence is an analysis of the associated cohomology. For the special case of the complements of certain subspace arrangements, the geometrical decomposition implies the homological decomposition in earlier work of others as described below. Because the splitting is geometric, an analogous homological decomposition for a generalized moment-angle complex applies for any homology theory. Implied, therefore, is a decomposition for the Stanley-Reisner ring of a finite simplicial complex, and natural generalizations.
Discrete geometric structures for architecture
Pottmann, Helmut
2010-01-01
. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization
Geometric Rationalization for Freeform Architecture
Jiang, Caigui
2016-01-01
The emergence of freeform architecture provides interesting geometric challenges with regards to the design and manufacturing of large-scale structures. To design these architectural structures, we have to consider two types of constraints. First
Geometrical optics in general relativity
Loinger, A.
2006-01-01
General relativity includes geometrical optics. This basic fact has relevant consequences that concern the physical meaning of the discontinuity surfaces propagated in the gravitational field - as it was first emphasized by Levi-Civita.
Mobile Watermarking against Geometrical Distortions
Directory of Open Access Journals (Sweden)
Jing Zhang
2015-08-01
Full Text Available Mobile watermarking robust to geometrical distortions is still a great challenge. In mobile watermarking, efficient computation is necessary because mobile devices have very limited resources due to power consumption. In this paper, we propose a low-complexity geometrically resilient watermarking approach based on the optimal tradeoff circular harmonic function (OTCHF correlation filter and the minimum average correlation energy Mellin radial harmonic (MACE-MRH correlation filter. By the rotation, translation and scale tolerance properties of the two kinds of filter, the proposed watermark detector can be robust to geometrical attacks. The embedded watermark is weighted by a perceptual mask which matches very well with the properties of the human visual system. Before correlation, a whitening process is utilized to improve watermark detection reliability. Experimental results demonstrate that the proposed watermarking approach is computationally efficient and robust to geometrical distortions.
Geometrical splitting in Monte Carlo
International Nuclear Information System (INIS)
Dubi, A.; Elperin, T.; Dudziak, D.J.
1982-01-01
A statistical model is presented by which a direct statistical approach yielded an analytic expression for the second moment, the variance ratio, and the benefit function in a model of an n surface-splitting Monte Carlo game. In addition to the insight into the dependence of the second moment on the splitting parameters the main importance of the expressions developed lies in their potential to become a basis for in-code optimization of splitting through a general algorithm. Refs
Geometric inequalities methods of proving
Sedrakyan, Hayk
2017-01-01
This unique collection of new and classical problems provides full coverage of geometric inequalities. Many of the 1,000 exercises are presented with detailed author-prepared-solutions, developing creativity and an arsenal of new approaches for solving mathematical problems. This book can serve teachers, high-school students, and mathematical competitors. It may also be used as supplemental reading, providing readers with new and classical methods for proving geometric inequalities. .
Energy Technology Data Exchange (ETDEWEB)
Gianluca, Longoni; Alireza, Haghighat [Florida University, Nuclear and Radiological Engineering Department, Gainesville, FL (United States)
2003-07-01
In recent years, the SP{sub L} (simplified spherical harmonics) equations have received renewed interest for the simulation of nuclear systems. We have derived the SP{sub L} equations starting from the even-parity form of the S{sub N} equations. The SP{sub L} equations form a system of (L+1)/2 second order partial differential equations that can be solved with standard iterative techniques such as the Conjugate Gradient (CG). We discretized the SP{sub L} equations with the finite-volume approach in a 3-D Cartesian space. We developed a new 3-D general code, Pensp{sub L} (Parallel Environment Neutral-particle SP{sub L}). Pensp{sub L} solves both fixed source and criticality eigenvalue problems. In order to optimize the memory management, we implemented a Compressed Diagonal Storage (CDS) to store the SP{sub L} matrices. Pensp{sub L} includes parallel algorithms for space and moment domain decomposition. The computational load is distributed on different processors, using a mapping function, which maps the 3-D Cartesian space and moments onto processors. The code is written in Fortran 90 using the Message Passing Interface (MPI) libraries for the parallel implementation of the algorithm. The code has been tested on the Pcpen cluster and the parallel performance has been assessed in terms of speed-up and parallel efficiency. (author)
Quiet Moment around the Campfire
Centers for Disease Control (CDC) Podcasts
2014-06-18
Byron Breedlove reads his essay, "Quiet Moment around the Campfire," about the art of Frederic Remington and the transmission of pathogens as frontiers expand. Created: 6/18/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID). Date Released: 6/19/2014.
Particle electric dipole-moments
Energy Technology Data Exchange (ETDEWEB)
Pendlebury, J M [Sussex Univ., Brighton (United Kingdom)
1997-04-01
The incentive to detect particle electric dipole-moments, as a window on time-reversal violation, remains undiminished. Efforts to improve the measurements for the neutron, the electron and some nuclei are still making rapid progress as more powerful experimental methods are brought to bear. A new measurement for the neutron at ILL is presented. (author). 7 refs.
Moment of Inertia by Differentiation
Rizcallah, Joseph A.
2015-01-01
The calculation of the moment of inertia of an extended body, as presented in standard introductory-level textbooks, involves the evaluation of a definite integral--an operation often not fully mastered by beginners, let alone the conceptual difficulties it presents, even to the advanced student, in understanding and setting up the integral in the…
Unteachable Moments and Pedagogical Relationships
Wang, Hongyu
2016-01-01
This paper discusses how Julia Kristeva's theory can inform our understanding of unteachable moments. It proposes a pedagogical relationship that can contain breakdowns of meanings and work toward breakthroughs to new awareness, particularly related to social justice pedagogy in teacher education. First, one example from the author's own teaching…
Moment Distributions of Phase Type
DEFF Research Database (Denmark)
Bladt, Mogens; Nielsen, Bo Friis
2011-01-01
Moment distributions of phase-type and matrix-exponential distributions are shown to remain within their respective classes. We provide a probabilistic phase-type representation for the former case and an alternative representation, with an analytically appealing form, for the latter. First order...
Moment methods and Lanczos methods
International Nuclear Information System (INIS)
Whitehead, R.R.
1980-01-01
In contrast to many of the speakers at this conference I am less interested in average properties of nuclei than in detailed spectroscopy. I will try to show, however, that the two are very closely connected and that shell-model calculations may be used to give a great deal of information not normally associated with the shell-model. It has been demonstrated clearly to us that the level spacing fluctuations in nuclear spectra convey very little physical information. This is true when the fluctuations are averaged over the entire spectrum but not if one's interest is in the lowest few states, whose spacings are relatively large. If one wishes to calculate a ground state (say) accurately, that is with an error much smaller than the excitation energy of the first excited state, very high moments, μ/sub n/, n approx. 200, are needed. As I shall show, we use such moments as a matter of course, albeit without actually calculating them; in fact I will try to show that, if at all possible, the actual calculations of moments is to be avoided like the plague. At the heart of the new shell-model methods embodied in the Glasgow shell-model program and one or two similar ones is the so-called Lanczos method and this, it turns out, has many deep and subtle connections with the mathematical theory of moments. It is these connections that I will explore here
A New Integral Geometric Formula of the Blaschke-Petkantschin Type
DEFF Research Database (Denmark)
Jensen, Eva B. Vedel; Kieu, K
1992-01-01
Recently, a new geometric measure decomposition has been derived by ZAHLE (1990), involving the r-fold product of the d-dimensional HAUSDORFF measure with itself The application to moment measure estimation has been discussed in JENSEN et al. (1990a) and ZAHLE (1990). The decomposition involves, ...
Neck Muscle Moment Arms Obtained In-Vivo from MRI: Effect of Curved and Straight Modeled Paths.
Suderman, Bethany L; Vasavada, Anita N
2017-08-01
Musculoskeletal models of the cervical spine commonly represent neck muscles with straight paths. However, straight lines do not best represent the natural curvature of muscle paths in the neck, because the paths are constrained by bone and soft tissue. The purpose of this study was to estimate moment arms of curved and straight neck muscle paths using different moment arm calculation methods: tendon excursion, geometric, and effective torque. Curved and straight muscle paths were defined for two subject-specific cervical spine models derived from in vivo magnetic resonance images (MRI). Modeling neck muscle paths with curvature provides significantly different moment arm estimates than straight paths for 10 of 15 neck muscles (p straight lines to model muscle paths can lead to overestimating neck extension moment. However, moment arm methods for curved paths should be investigated further, as different methods of calculating moment arm can provide different estimates.
Target recognition of log-polar ladar range images using moment invariants
Xia, Wenze; Han, Shaokun; Cao, Jie; Yu, Haoyong
2017-01-01
The ladar range image has received considerable attentions in the automatic target recognition field. However, previous research does not cover target recognition using log-polar ladar range images. Therefore, we construct a target recognition system based on log-polar ladar range images in this paper. In this system combined moment invariants and backpropagation neural network are selected as shape descriptor and shape classifier, respectively. In order to fully analyze the effect of log-polar sampling pattern on recognition result, several comparative experiments based on simulated and real range images are carried out. Eventually, several important conclusions are drawn: (i) if combined moments are computed directly by log-polar range images, translation, rotation and scaling invariant properties of combined moments will be invalid (ii) when object is located in the center of field of view, recognition rate of log-polar range images is less sensitive to the changing of field of view (iii) as object position changes from center to edge of field of view, recognition performance of log-polar range images will decline dramatically (iv) log-polar range images has a better noise robustness than Cartesian range images. Finally, we give a suggestion that it is better to divide field of view into recognition area and searching area in the real application.
Electric transition dipole moment in pre-Born-Oppenheimer molecular structure theory.
Simmen, Benjamin; Mátyus, Edit; Reiher, Markus
2014-10-21
This paper presents the calculation of the electric transition dipole moment in a pre-Born-Oppenheimer framework. Electrons and nuclei are treated equally in terms of the parametrization of the non-relativistic total wave function, which is written as a linear combination of basis functions constructed from explicitly correlated Gaussian functions and the global vector representation. The integrals of the electric transition dipole moment are derived corresponding to these basis functions in both the length and the velocity representation. The calculations are performed in laboratory-fixed Cartesian coordinates without relying on coordinates which separate the center of mass from the translationally invariant degrees of freedom. The effect of the overall motion is eliminated through translationally invariant integral expressions. The electric transition dipole moment is calculated between two rovibronic levels of the H2 molecule assignable to the lowest rovibrational states of the X (1)Σ(g)(+) and B (1)Σ(u)(+) electronic states in the clamped-nuclei framework. This is the first evaluation of this quantity in a full quantum mechanical treatment without relying on the Born-Oppenheimer approximation.
Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.
Arrieta, Jorge; Cartwright, Julyan H E; Gouillart, Emmanuelle; Piro, Nicolas; Piro, Oreste; Tuval, Idan
2015-01-01
Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.
Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.
Directory of Open Access Journals (Sweden)
Jorge Arrieta
Full Text Available Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.
A new geometrical gravitational theory
International Nuclear Information System (INIS)
Obata, T.; Chiba, J.; Oshima, H.
1981-01-01
A geometrical gravitational theory is developed. The field equations are uniquely determined apart from one unknown dimensionless parameter ω 2 . It is based on an extension of the Weyl geometry, and by the extension the gravitational coupling constant and the gravitational mass are made to be dynamical and geometrical. The fundamental geometrical objects in the theory are a metric gsub(μν) and two gauge scalars phi and psi. The theory satisfies the weak equivalence principle, but breaks the strong one generally. u(phi, psi) = phi is found out on the assumption that the strong one keeps holding good at least for bosons of low spins. Thus there is the simple correspondence between the geometrical objects and the gravitational objects. Since the theory satisfies the weak one, the inertial mass is also dynamical and geometrical in the same way as is the gravitational mass. Moreover, the cosmological term in the theory is a coscalar of power -4 algebraically made of psi and u(phi, psi), so it is dynamical, too. Finally spherically symmetric exact solutions are given. The permissible range of the unknown parameter ω 2 is experimentally determined by applying the solutions to the solar system. (author)
Cerezo, Javier; Santoro, Fabrizio
2016-10-11
Vertical models for the simulation of spectroscopic line shapes expand the potential energy surface (PES) of the final state around the equilibrium geometry of the initial state. These models provide, in principle, a better approximation of the region of the band maximum. At variance, adiabatic models expand each PES around its own minimum. In the harmonic approximation, when the minimum energy structures of the two electronic states are connected by large structural displacements, adiabatic models can breakdown and are outperformed by vertical models. However, the practical application of vertical models faces the issues related to the necessity to perform a frequency analysis at a nonstationary point. In this contribution we revisit vertical models in harmonic approximation adopting both Cartesian (x) and valence internal curvilinear coordinates (s). We show that when x coordinates are used, the vibrational analysis at nonstationary points leads to a deficient description of low-frequency modes, for which spurious imaginary frequencies may even appear. This issue is solved when s coordinates are adopted. It is however necessary to account for the second derivative of s with respect to x, which here we compute analytically. We compare the performance of the vertical model in the s-frame with respect to adiabatic models and previously proposed vertical models in x- or Q 1 -frame, where Q 1 are the normal coordinates of the initial state computed as combination of Cartesian coordinates. We show that for rigid molecules the vertical approach in the s-frame provides a description of the final state very close to the adiabatic picture. For sizable displacements it is a solid alternative to adiabatic models, and it is not affected by the issues of vertical models in x- and Q 1 -frames, which mainly arise when temperature effects are included. In principle the G matrix depends on s, and this creates nonorthogonality problems of the Duschinsky matrix connecting the normal
The Critical Moment of Transition
DEFF Research Database (Denmark)
Svalgaard, Lotte
2018-01-01
By providing a holding environment to acknowledge sensitivities and address emotions, leadership programs prove to be powerful spaces for increasing self- and social awareness. However, the challenge is for one to maintain the newly gained self- and social awareness after leaving the holding...... environment and entering a context characterized by activity and performance. This is a frequently debated challenge for both academics and providers of management learning. Yet, critical moments in this transition remain under-exposed and under-researched. The contribution of this article is a research study......—within the context of an international MBA program—of MBA students applying their knowledge from a Leadership Stream in an international consultancy project. This article contributes to the theory and practice of management learning by providing a lens through which subjective experience of critical moments...
2006-01-01
One of the first events reconstructed in the Muon Drift Tubes, the Hadron Calorimeter and elements of the Silicon Tracker (TK) at 3 Tesla. The atmosphere in the CMS control rooms was electric. Everbody was at the helm for the first full-scale testing of the experiment. This was a crunch moment for the entire collaboration. On Tuesday, 22 August the magnet attained almost its nominal power of 4 Tesla! At the same moment, in a tiny improvised control room, the physicists were keyed up to test the entire detector system for the first time. The first cosmic ray tracks appeared on their screens in the week of 15 August. The tests are set to continue for several weeks more until the first CMS components are lowered into their final positions in the cavern.
Moment Distributions of Phase Type
DEFF Research Database (Denmark)
Bladt, Mogens; Nielsen, Bo Friis
In this paper we prove that the class of distributions on the positive reals with a rational Laplace transform, also known as matrix-exponential distributions, is closed under formation of moment distributions. In particular, the results are hence valid for the well known class of phase-type dist...... alternative representation in terms of sub{intensity matrices. Finally we are able to nd explicit expressions for both the Lorenz curve and the Gini index....
Electric Dipole Moments of Hadrons
Wirzba, Andreas
2016-01-01
A nonzero electric dipole moment (EDM) of the neutron, proton, deuteron, helion or any finite system necessarily involves the breaking of a symmetry, either by the presence of external fields (leading to the case of induced EDMs) or explicitly by the breaking of the discrete parity and time-reflection symmetries in the case of permanent EDMs. Recent - and in the case of the deuteron even unpublished - results for the relevant matrix elements of nuclear EDM operators are presented and the rel...
Geometric group theory an introduction
Löh, Clara
2017-01-01
Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.
Geometric procedures for civil engineers
Tonias, Elias C
2016-01-01
This book provides a multitude of geometric constructions usually encountered in civil engineering and surveying practice. A detailed geometric solution is provided to each construction as well as a step-by-step set of programming instructions for incorporation into a computing system. The volume is comprised of 12 chapters and appendices that may be grouped in three major parts: the first is intended for those who love geometry for its own sake and its evolution through the ages, in general, and, more specifically, with the introduction of the computer. The second section addresses geometric features used in the book and provides support procedures used by the constructions presented. The remaining chapters and the appendices contain the various constructions. The volume is ideal for engineering practitioners in civil and construction engineering and allied areas.
An Algorithm for Fast Computation of 3D Zernike Moments for Volumetric Images
Directory of Open Access Journals (Sweden)
Khalid M. Hosny
2012-01-01
Full Text Available An algorithm was proposed for very fast and low-complexity computation of three-dimensional Zernike moments. The 3D Zernike moments were expressed in terms of exact 3D geometric moments where the later are computed exactly through the mathematical integration of the monomial terms over the digital image/object voxels. A new symmetry-based method was proposed to compute 3D Zernike moments with 87% reduction in the computational complexity. A fast 1D cascade algorithm was also employed to add more complexity reduction. The comparison with existing methods was performed, where the numerical experiments and the complexity analysis ensured the efficiency of the proposed method especially with image and objects of large sizes.
Austerity and geometric structure of field theories
International Nuclear Information System (INIS)
Kheyfets, A.
1986-01-01
The relation between the austerity idea and the geometric structure of the three basic field theories - electrodynamics, Yang-Mills theory, and general relativity - is studied. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity of delta dot produced with delta = 0 used twice, at the 1-2-3-dimensional level (providing the homogeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for the source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories above. This dissertation: (a) analyzes the difficulties by means of algebraic topology, integration theory, and modern differential geometry based on the concepts of principal bundles and Ehresmann connections: (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for the three theories and compatible with the original austerity idea; and (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories
An introduction to geometrical physics
Aldrovandi, R
1995-01-01
This book stresses the unifying power of the geometrical framework in bringing together concepts from the different areas of physics. Common underpinnings of optics, elasticity, gravitation, relativistic fields, particle mechanics and other subjects are underlined. It attempts to extricate the notion of space currently in the physical literature from the metric connotation.The book's goal is to present mathematical ideas associated with geometrical physics in a rather introductory language. Included are many examples from elementary physics and also, for those wishing to reach a higher level o
Geometric scaling as traveling waves
International Nuclear Information System (INIS)
Munier, S.; Peschanski, R.
2003-01-01
We show the relevance of the nonlinear Fisher and Kolmogorov-Petrovsky-Piscounov (KPP) equation to the problem of high energy evolution of the QCD amplitudes. We explain how the traveling wave solutions of this equation are related to geometric scaling, a phenomenon observed in deep-inelastic scattering experiments. Geometric scaling is for the first time shown to result from an exact solution of nonlinear QCD evolution equations. Using general results on the KPP equation, we compute the velocity of the wave front, which gives the full high energy dependence of the saturation scale
Asymptotic geometric analysis, part I
Artstein-Avidan, Shiri
2015-01-01
The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomen
Geometric integration for particle accelerators
International Nuclear Information System (INIS)
Forest, Etienne
2006-01-01
This paper is a very personal view of the field of geometric integration in accelerator physics-a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling-unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction
Geometrical spin symmetry and spin
International Nuclear Information System (INIS)
Pestov, I. B.
2011-01-01
Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.
Geometric integration for particle accelerators
Forest, Étienne
2006-05-01
This paper is a very personal view of the field of geometric integration in accelerator physics—a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling—unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction.
Lattice degeneracies of geometric fermions
International Nuclear Information System (INIS)
Raszillier, H.
1983-05-01
We give the minimal numbers of degrees of freedom carried by geometric fermions on all lattices of maximal symmetries in d = 2, 3, and 4 dimensions. These numbers are lattice dependent, but in the (free) continuum limit, part of the degrees of freedom have to escape to infinity by a Wilson mechanism built in, and 2sup(d) survive for any lattice. On self-reciprocal lattices we compare the minimal numbers of degrees of freedom of geometric fermions with the minimal numbers of naive fermions on these lattices and argue that these numbers are equal. (orig.)
Directory of Open Access Journals (Sweden)
Liang Hua
2015-01-01
Full Text Available Automatic extraction of time-frequency spectral image of mechanical faults can be achieved and faults can be identified consequently when rotating machinery spectral image processing technology is applied to fault diagnosis, which is an advantage. Acquired mechanical vibration signals can be converted into color time-frequency spectrum images by the processing of pseudo Wigner-Ville distribution. Then a feature extraction method based on quaternion invariant moment was proposed, combining image processing technology and multiweight neural network technology. The paper adopted quaternion invariant moment feature extraction method and gray level-gradient cooccurrence matrix feature extraction method and combined them with geometric learning algorithm and probabilistic neural network algorithm, respectively, and compared the recognition rates of rolling bearing faults. The experimental results show that the recognition rates of quaternion invariant moment are higher than gray level-gradient cooccurrence matrix in the same recognition method. The recognition rates of geometric learning algorithm are higher than probabilistic neural network algorithm in the same feature extraction method. So the method based on quaternion invariant moment geometric learning and multiweight neural network is superior. What is more, this algorithm has preferable generalization performance under the condition of fewer samples, and it has practical value and acceptation on the field of fault diagnosis for rotating machinery as well.
A Trajectory Generation Method Based on Edge Detection for Auto-Sealant Cartesian Robot
Directory of Open Access Journals (Sweden)
Eka Samsul Maarif
2014-07-01
Full Text Available This paper presents algorithm ingenerating trajectory for sealant process using captured image. Cartesian robot as auto-sealant in manufacturing process has increased productivity, reduces human error and saves time. But, different sealant path in many engine models means not only different trajectory but also different program. Therefore robot with detection ability to generate its own trajectory is needed. This paper describes best lighting technique in capturing image and applies edge detection in trajectory generation as the solution. The algorithm comprises image capturing, Canny edge detection, integral projection in localizing outer most edge, scanning coordinates, and generating vector direction codes. The experiment results show that the best technique is diffuse lighting at 10 Cd. The developed method gives connected point to point trajectory which forms sealant path with a point to next point distance is equal to 90° motor rotation. Directional movement for point to point trajectory is controlled by generated codes which are ready to be sent by serial communication to robot controller as instruction for motors which actuate axes X and Y directions.
Path Planning of Free-Floating Robot in Cartesian Space Using Direct Kinematics
Directory of Open Access Journals (Sweden)
Wenfu Xu
2007-03-01
Full Text Available Dynamic singularities make it difficult to plan the Cartesian path of free-floating robot. In order to avoid its effect, the direct kinematic equations are used for path planning in the paper. Here, the joint position, rate and acceleration are bounded. Firstly, the joint trajectories are parameterized by polynomial or sinusoidal functions. And the two parametric functions are compared in details. It is the first contribution of the paper that polynomial functions can be used when the joint angles are limited(In the similar work of other researchers, only sinusoidla functions could be used. Secondly, the joint functions are normalized and the system of equations about the parameters is established by integrating the differential kinematics equations. Normalization is another contribution of the paper. After normalization, the boundary of the parameters is determined beforehand, and the general criterion to assign the initial guess of the unknown parameters is supplied. The criterion is independent on the planning conditions such as the total time tf. Finally, the parametes are solved by the iterative Newtonian method. Modification of tf may not result in the recalculation of the parameters. Simulation results verify the path planning method.
A sharp interface Cartesian grid method for viscous simulation of shocked particle-laden flows
Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.
2017-09-01
A Cartesian grid-based sharp interface method is presented for viscous simulations of shocked particle-laden flows. The moving solid-fluid interfaces are represented using level sets. A moving least-squares reconstruction is developed to apply the no-slip boundary condition at solid-fluid interfaces and to supply viscous stresses to the fluid. The algorithms developed in this paper are benchmarked against similarity solutions for the boundary layer over a fixed flat plate and against numerical solutions for moving interface problems such as shock-induced lift-off of a cylinder in a channel. The framework is extended to 3D and applied to calculate low Reynolds number steady supersonic flow over a sphere. Viscous simulation of the interaction of a particle cloud with an incident planar shock is demonstrated; the average drag on the particles and the vorticity field in the cloud are compared to the inviscid case to elucidate the effects of viscosity on momentum transfer between the particle and fluid phases. The methods developed will be useful for obtaining accurate momentum and heat transfer closure models for macro-scale shocked particulate flow applications such as blast waves and dust explosions.
International Nuclear Information System (INIS)
Palmiotti, G.; Carrico, C.B.; Lewis, E.E.
1995-10-01
The theoretical basis, implementation information and numerical results are presented for VARIANT (VARIational Anisotropic Neutron Transport), a FORTRAN module of the DIF3D code system at Argonne National Laboratory. VARIANT employs the variational nodal method to solve multigroup steady-state neutron diffusion and transport problems. The variational nodal method is a hybrid finite element method that guarantees nodal balance and permits spatial refinement through the use of hierarchical complete polynomial trial functions. Angular variables are expanded with complete or simplified P 1 , P 3 or P 5 5 spherical harmonics approximations with full anisotropic scattering capability. Nodal response matrices are obtained, and the within-group equations are solved by red-black or four-color iteration, accelerated by a partitioned matrix algorithm. Fission source and upscatter iterations strategies follow those of DIF3D. Two- and three-dimensional Cartesian and hexagonal geometries are implemented. Forward and adjoint eigenvalue, fixed source, gamma heating, and criticality (concentration) search problems may be performed
The Dirac equation in external fields: Variable separation in Cartesian coordinates
International Nuclear Information System (INIS)
Shishkin, G.V.; Cabos, W.D.
1991-01-01
The method of separation of variables in the Dirac equation proposed in an earlier work by one of the present authors [J. Math. Phys. 30, 2132 (1989)] is developed for the complete set of interactions of the Dirac particle. The essence of the method consists of the separation of the first-order matrix differential operators that define the dependence of the Dirac bispinor on the related variables, but commutation of such operators with or between the operator of the equation is not assumed. This approach, which is perfectly justified in the presence of gravitational [Theor. Math. Phys. 70, 204 (1987)] or vector fields [J. Math. Phys. 30, 2132 (1989)], permits one to find all the possibilities of separation of variables in the Dirac equation in the case of the most general set of external fields. The complete set of interactions of the Dirac particle is determined by the symmetry group of equations, namely, viz. the SU(4) group. The interactions are scalar, vector, tensor, pseudovector and pseudoscalar. The analysis in this article is limited to Cartesian coordinates. The corresponding results for the general curvilinear coordinates will be presented in a future paper
Tensor decomposition in electronic structure calculations on 3D Cartesian grids
International Nuclear Information System (INIS)
Khoromskij, B.N.; Khoromskaia, V.; Chinnamsetty, S.R.; Flad, H.-J.
2009-01-01
In this paper, we investigate a novel approach based on the combination of Tucker-type and canonical tensor decomposition techniques for the efficient numerical approximation of functions and operators in electronic structure calculations. In particular, we study applicability of tensor approximations for the numerical solution of Hartree-Fock and Kohn-Sham equations on 3D Cartesian grids. We show that the orthogonal Tucker-type tensor approximation of electron density and Hartree potential of simple molecules leads to low tensor rank representations. This enables an efficient tensor-product convolution scheme for the computation of the Hartree potential using a collocation-type approximation via piecewise constant basis functions on a uniform nxnxn grid. Combined with the Richardson extrapolation, our approach exhibits O(h 3 ) convergence in the grid-size h=O(n -1 ). Moreover, this requires O(3rn+r 3 ) storage, where r denotes the Tucker rank of the electron density with r=O(logn), almost uniformly in n. For example, calculations of the Coulomb matrix and the Hartree-Fock energy for the CH 4 molecule, with a pseudopotential on the C atom, achieved accuracies of the order of 10 -6 hartree with a grid-size n of several hundreds. Since the tensor-product convolution in 3D is performed via 1D convolution transforms, our scheme markedly outperforms the 3D-FFT in both the computing time and storage requirements.
Vogman, Genia
Plasmas are made up of charged particles whose short-range and long-range interactions give rise to complex behavior that can be difficult to fully characterize experimentally. One of the most complete theoretical descriptions of a plasma is that of kinetic theory, which treats each particle species as a probability distribution function in a six-dimensional position-velocity phase space. Drawing on statistical mechanics, these distribution functions mathematically represent a system of interacting particles without tracking individual ions and electrons. The evolution of the distribution function(s) is governed by the Boltzmann equation coupled to Maxwell's equations, which together describe the dynamics of the plasma and the associated electromagnetic fields. When collisions can be neglected, the Boltzmann equation is reduced to the Vlasov equation. High-fidelity simulation of the rich physics in even a subset of the full six-dimensional phase space calls for low-noise high-accuracy numerical methods. To that end, this dissertation investigates a fourth-order finite-volume discretization of the Vlasov-Maxwell equation system, and addresses some of the fundamental challenges associated with applying these types of computationally intensive enhanced-accuracy numerical methods to phase space simulations. The governing equations of kinetic theory are described in detail, and their conservation-law weak form is derived for Cartesian and cylindrical phase space coordinates. This formulation is well known when it comes to Cartesian geometries, as it is used in finite-volume and finite-element discretizations to guarantee local conservation for numerical solutions. By contrast, the conservation-law weak form of the Vlasov equation in cylindrical phase space coordinates is largely unexplored, and to the author's knowledge has never previously been solved numerically. Thereby the methods described in this dissertation for simulating plasmas in cylindrical phase space
On the adequacy of Cartesian geometry discrete ordinates solutions for assembly calculations
International Nuclear Information System (INIS)
Schunert, S.; Azmy, Y. Y.
2009-01-01
The current generation of lattice codes employs the method of Collision Probabilities (CP), the Method of Characteristics (MOC) or methods derived thereof to solve the two-dimensional multigroup transport equation on the assembly level. We compare the attainable solution accuracy of the lattice code DRAGON to the accuracy of the Discrete Ordinates (DO) code DORT on the basis of the two-dimensional GE-13 assembly in order to determine if the DO on Cartesian meshes is suitable as flux solver in future lattice codes. If DO exhibits high accuracy for assembly configurations, the next question is at what computational expense compared to traditional assembly codes. For this purpose DORT and DRAGON are required to converge to a reference solution, obtained by a multigroup MCNP calculation, with increasing angular quadrature order and decreasing spatial cell size; additionally for DRAGON the reference solution must be approached with increasing tracking density. The convergence of the two codes is judged via the multiplication factor, the pin wise relative error in the fission production rate, it's RMS and the maximum of it's absolute value over all pins. Additionally the computational cost of the obtained solutions is judged via the user CPU time. Although the multiplication factor computed by both codes converges with refinement of the employed meshes, the maximum deviation error of the fission production rate in the central region of the assembly remains unsatisfactorily high for CP and MOC. (authors)
International Nuclear Information System (INIS)
Warnock, R.L.; Ellison, J.A.; Univ. of New Mexico, Albuquerque, NM
1997-08-01
Data from orbits of a symplectic integrator can be interpolated so as to construct an approximation to the generating function of a Poincare map. The time required to compute an orbit of the symplectic map induced by the generator can be much less than the time to follow the same orbit by symplectic integration. The construction has been carried out previously for full-turn maps of large particle accelerators, and a big saving in time (for instance a factor of 60) has been demonstrated. A shortcoming of the work to date arose from the use of canonical polar coordinates, which precluded map construction in small regions of phase space near coordinate singularities. This paper shows that Cartesian coordinates can also be used, thus avoiding singularities. The generator is represented in a basis of tensor product B-splines. Under weak conditions the spline expansion converges uniformly as the mesh is refined, approaching the exact generator of the Poincare map as defined by the symplectic integrator, in some parallelepiped of phase space centered at the origin
Viability of Bioprinted Cellular Constructs Using a Three Dispenser Cartesian Printer.
Dennis, Sarah Grace; Trusk, Thomas; Richards, Dylan; Jia, Jia; Tan, Yu; Mei, Ying; Fann, Stephen; Markwald, Roger; Yost, Michael
2015-09-22
Tissue engineering has centralized its focus on the construction of replacements for non-functional or damaged tissue. The utilization of three-dimensional bioprinting in tissue engineering has generated new methods for the printing of cells and matrix to fabricate biomimetic tissue constructs. The solid freeform fabrication (SFF) method developed for three-dimensional bioprinting uses an additive manufacturing approach by depositing droplets of cells and hydrogels in a layer-by-layer fashion. Bioprinting fabrication is dependent on the specific placement of biological materials into three-dimensional architectures, and the printed constructs should closely mimic the complex organization of cells and extracellular matrices in native tissue. This paper highlights the use of the Palmetto Printer, a Cartesian bioprinter, as well as the process of producing spatially organized, viable constructs while simultaneously allowing control of environmental factors. This methodology utilizes computer-aided design and computer-aided manufacturing to produce these specific and complex geometries. Finally, this approach allows for the reproducible production of fabricated constructs optimized by controllable printing parameters.
The Cartesian doctor, François Bayle (1622-1709), on psychosomatic explanation.
Easton, Patricia
2011-06-01
There are two standing, incompatible accounts of Descartes' contributions to the study of psychosomatic phenomena that pervade histories of medicine, psychology, and psychiatry. The first views Descartes as the father of "rational psychology" a tradition that defines the soul as a thinking, unextended substance. The second account views Descartes as the father of materialism and the machine metaphor. The consensus is that Descartes' studies of optics and motor reflexes and his conception of the body-machine metaphor made early and important contributions to physiology and neuroscience but otherwise his impact was minimal. These predominately negative assessments of Descartes' contributions give a false impression of the role his philosophy played in the development of medicine and psychiatry in seventeenth-century France and beyond. I explore Descartes' influence in the little-known writings of a doctor from Toulouse, François Bayle (1622-1709). A study of Bayle gives us occasion to rethink the nature and role of psychosomatic explanation in Descartes' philosophy. The portrait I present is of a Cartesian science that had an actual and lasting effect on medical science and practice, and may offer something of value to practitioners today. Copyright © 2010 Elsevier Ltd. All rights reserved.
Häyrynen, Teppo; Osterkryger, Andreas Dyhl; de Lasson, Jakob Rosenkrantz; Gregersen, Niels
2017-09-01
Recently, an open geometry Fourier modal method based on a new combination of an open boundary condition and a non-uniform k-space discretization was introduced for rotationally symmetric structures, providing a more efficient approach for modeling nanowires and micropillar cavities [J. Opt. Soc. Am. A33, 1298 (2016)JOAOD61084-752910.1364/JOSAA.33.001298]. Here, we generalize the approach to three-dimensional (3D) Cartesian coordinates, allowing for the modeling of rectangular geometries in open space. The open boundary condition is a consequence of having an infinite computational domain described using basis functions that expand the whole space. The strength of the method lies in discretizing the Fourier integrals using a non-uniform circular "dartboard" sampling of the Fourier k space. We show that our sampling technique leads to a more accurate description of the continuum of the radiation modes that leak out from the structure. We also compare our approach to conventional discretization with direct and inverse factorization rules commonly used in established Fourier modal methods. We apply our method to a variety of optical waveguide structures and demonstrate that the method leads to a significantly improved convergence, enabling more accurate and efficient modeling of open 3D nanophotonic structures.
Path Planning of Free-Floating Robot in Cartesian Space Using Direct Kinematics
Directory of Open Access Journals (Sweden)
Wenfu Xu
2008-11-01
Full Text Available Dynamic singularities make it difficult to plan the Cartesian path of freefloating robot. In order to avoid its effect, the direct kinematic equations are used for path planning in the paper. Here, the joint position, rate and acceleration are bounded. Firstly, the joint trajectories are parameterized by polynomial or sinusoidal functions. And the two parametric functions are compared in details. It is the first contribution of the paper that polynomial functions can be used when the joint angles are limited(In the similar work of other researchers, only sinusoidla functions could be used. Secondly, the joint functions are normalized and the system of equations about the parameters is established by integrating the differential kinematics equations. Normalization is another contribution of the paper. After normalization, the boundary of the parameters is determined beforehand, and the general criterion to assign the initial guess of the unknown parameters is supplied. The criterion is independent on the planning conditions such as the total time tf. Finally, the parametes are solved by the iterative Newtonian method. Modification of tf may not result in the recalculation of the parameters. Simulation results verify the path planning method.
A second order penalized direct forcing for hybrid Cartesian/immersed boundary flow simulations
International Nuclear Information System (INIS)
Introini, C.; Belliard, M.; Fournier, C.
2014-01-01
In this paper, we propose a second order penalized direct forcing method to deal with fluid-structure interaction problems involving complex static or time-varying geometries. As this work constitutes a first step toward more complicated problems, our developments are restricted to Dirichlet boundary condition in purely hydraulic context. The proposed method belongs to the class of immersed boundary techniques and consists in immersing the physical domain in a Cartesian fictitious one of simpler geometry on fixed grids. A penalized forcing term is added to the momentum equation to take the boundary conditions around/inside the obstacles into account. This approach avoids the tedious task of re-meshing and allows us to use fast and accurate numerical schemes. In contrary, as the immersed boundary is described by a set of Lagrangian points that does not generally coincide with those of the Eulerian grid, numerical procedures are required to reconstruct the velocity field near the immersed boundary. Here, we develop a second order linear interpolation scheme and we compare it to a simpler model of order one. As far as the governing equations are concerned, we use a particular fractional-step method in which the penalized forcing term is distributed both in prediction and correction equations. The accuracy of the proposed method is assessed through 2-D numerical experiments involving static and rotating solids. We show in particular that the numerical rate of convergence of our method is quasi-quadratic. (authors)
Directory of Open Access Journals (Sweden)
Panou G.
2017-02-01
Full Text Available The direct geodesic problem on an oblate spheroid is described as an initial value problem and is solved numerically using both geodetic and Cartesian coordinates. The geodesic equations are formulated by means of the theory of differential geometry. The initial value problem under consideration is reduced to a system of first-order ordinary differential equations, which is solved using a numerical method. The solution provides the coordinates and the azimuths at any point along the geodesic. The Clairaut constant is not used for the solution but it is computed, allowing to check the precision of the method. An extensive data set of geodesics is used, in order to evaluate the performance of the method in each coordinate system. The results for the direct geodesic problem are validated by comparison to Karney’s method. We conclude that a complete, stable, precise, accurate and fast solution of the problem in Cartesian coordinates is accomplished.
The Cartesian intervention in body and mind through the notions of «habit» and «memory»
Directory of Open Access Journals (Sweden)
Sergio García Rodríguez
2017-06-01
Full Text Available The Cartesian habit is the key element that enables the implementation of certain regularities in mind and body, allowing the intervention of the subject in both dimensions. Habits play a central role in important Cartesian proposals ―the assumption of the method, the prejudices of childhood or the education of passions—, for that reason, the present article will elucidate the meaning of habit. This aim will require a distinction between types of movements which generate different habits and an analysis of the kinds of memory which preserve the connections of habits. Once offered this explanation about how habits are produced, it will be proposed a categorization of them appealing to Descartes’s distinction between soul and body.
An interior-point method for the Cartesian P*(k-linear complementarity problem over symmetric cones
Directory of Open Access Journals (Sweden)
B Kheirfam
2014-06-01
Full Text Available A novel primal-dual path-following interior-point algorithm for the Cartesian P*(k-linear complementarity problem over symmetric cones is presented. The algorithm is based on a reformulation of the central path for finding the search directions. For a full Nesterov-Todd step feasible interior-point algorithm based on the new search directions, the complexity bound of the algorithm with small-update approach is the best-available bound.
Moment Closure for the Stochastic Logistic Model
National Research Council Canada - National Science Library
Singh, Abhyudai; Hespanha, Joao P
2006-01-01
..., which we refer to as the moment closure function. In this paper, a systematic procedure for constructing moment closure functions of arbitrary order is presented for the stochastic logistic model...
Height and Tilt Geometric Texture
DEFF Research Database (Denmark)
Andersen, Vedrana; Desbrun, Mathieu; Bærentzen, Jakob Andreas
2009-01-01
compromise between functionality and simplicity: it can efficiently handle and process geometric texture too complex to be represented as a height field, without having recourse to full blown mesh editing algorithms. The height-and-tilt representation proposed here is fully intrinsic to the mesh, making...
In Defence of Geometrical Algebra
Blasjo, V.N.E.
The geometrical algebra hypothesis was once the received interpretation of Greek mathematics. In recent decades, however, it has become anathema to many. I give a critical review of all arguments against it and offer a consistent rebuttal case against the modern consensus. Consequently, I find that
Geometrical interpretation of extended supergravity
International Nuclear Information System (INIS)
Townsend, P.K.; Nieuwenhuizen, P.van
1977-01-01
SO 2 extended supergravity is shown to be a geometrical theory, whose underlying gauge group is OSp(4,2). The couplings which gauge the SO 2 symmetry as well as the accompanying cosmological and masslike terms are directly obtained, and the usual SO 2 model is obtained after a Wigner-Inoenue group contraction. (Auth.)
Geometric scaling in exclusive processes
International Nuclear Information System (INIS)
Munier, S.; Wallon, S.
2003-01-01
We show that according to the present understanding of the energy evolution of the observables measured in deep-inelastic scattering, the photon-proton scattering amplitude has to exhibit geometric scaling at each impact parameter. We suggest a way to test this experimentally at HERA. A qualitative analysis based on published data is presented and discussed. (orig.)
Geometric quantization and general relativity
International Nuclear Information System (INIS)
Souriau, J.-M.
1977-01-01
The purpose of geometric quantization is to give a rigorous mathematical content to the 'correspondence principle' between classical and quantum mechanics. The main tools are borrowed on one hand from differential geometry and topology (differential manifolds, differential forms, fiber bundles, homology and cohomology, homotopy), on the other hand from analysis (functions of positive type, infinite dimensional group representations, pseudo-differential operators). Some satisfactory results have been obtained in the study of dynamical systems, but some fundamental questions are still waiting for an answer. The 'geometric quantization of fields', where some further well known difficulties arise, is still in a preliminary stage. In particular, the geometric quantization on the gravitational field is still a mere project. The situation is even more uncertain due to the fact that there is no experimental evidence of any quantum gravitational effect which could give us a hint towards what we are supposed to look for. The first level of both Quantum Theory, and General Relativity describes passive matter: influence by the field without being a source of it (first quantization and equivalence principle respectively). In both cases this is only an approximation (matter is always a source). But this approximation turns out to be the least uncertain part of the description, because on one hand the first quantization avoids the problems of renormalization and on the other hand the equivalence principle does not imply any choice of field equations (it is known that one can modify Einstein equations at short distances without changing their geometrical properties). (Auth.)
Geometric origin of central charges
International Nuclear Information System (INIS)
Lukierski, J.; Rytel, L.
1981-05-01
The complete set of N(N-1) central charge generators for D=4 N-extended super Poincare algebra is obtained by suitable contraction of OSp (2N; 4) superalgebra. The superspace realizations of the spinorial generators with central charges are derived. The conjugate set of N(N-1) additional bosonic superspace coordinates is introduced in an unique and geometric way. (author)
Vergence, Vision, and Geometric Optics
Keating, Michael P.
1975-01-01
Provides a definition of vergence in terms of the curvature of the wave fronts, and gives examples to illustrate the advantages of this approach. The vergence treatment of geometrical optics provides both conceptual and algebraic advantages, particularly for the life science student, over the traditional object distance-image distance-focal length…
Geometric phases and quantum computation
International Nuclear Information System (INIS)
Vedral, V.
2005-01-01
Full text: In my lectures I will talk about the notion of the geometric phase and explain its relevance for both fundamental quantum mechanics as well as quantum computation. The phase will be at first introduced via the idea of Pancharatnam which involves interference of three or more light beams. This notion will then be generalized to the evolving quantum systems. I will discuss both pure and mixed states as well as unitary and non-unitary evolutions. I will also show how the concept of the vacuum induced geometric phase arises in quantum optics. A simple measurement scheme involving a Mach Zehnder interferometer will be presented and will be used to illustrate all the concepts in the lecture. Finally, I will expose a simple generalization of the geometric phase to evolving degenerate states. This will be seen to lead to the possibility of universal quantum computation using geometric effects only. Moreover, this contains a promise of intrinsically fault tolerant quantum information processing, whose prospects will be outlined at the end of the lecture. (author)
Cartan's geometrical structure of supergravity
International Nuclear Information System (INIS)
Baaklini, N.S.
1977-06-01
The geometrical partnership of the vierbein and the spin-3/2 field in the structure of the supergravity Lagrangian is emphasized. Both fields are introduced as component of the same matrix differential form. The only local symmetry of the theory is SL(2,C)
On the interpretation of the support moment
Hof, AL
2000-01-01
It has been suggested by Winter (J. Biomech. 13 (1980) 923-927) that the 'support moment', the sum of the sagittal extension moments, shows less variability in walking than any of the joint moments separately. A simple model is put forward to explain this finding. It is proposed to reformulate the
Geometric Transformations in Engineering Geometry
Directory of Open Access Journals (Sweden)
I. F. Borovikov
2015-01-01
Full Text Available Recently, for business purposes, in view of current trends and world experience in training engineers, research and faculty staff there has been a need to transform traditional courses of descriptive geometry into the course of engineering geometry in which the geometrical transformations have to become its main section. On the basis of critical analysis the paper gives suggestions to improve a presentation technique of this section both in the classroom and in academic literature, extend an application scope of geometrical transformations to solve the position and metric tasks and simulation of surfaces, as well as to design complex engineering configurations, which meet a number of pre-specified conditions.The article offers to make a number of considerable amendments to the terms and definitions used in the existing courses of descriptive geometry. It draws some conclusions and makes the appropriate proposals on feasibility of coordination in teaching the movement transformation in the courses of analytical and descriptive geometry. This will provide interdisciplinary team teaching and allow students to be convinced that a combination of analytical and graphic ways to solve geometric tasks is useful and reasonable.The traditional sections of learning courses need to be added with a theory of projective and bi-rational transformations. In terms of application simplicity and convenience it is enough to consider the central transformations when solving the applied tasks. These transformations contain a beam of sub-invariant (low-invariant straight lines on which the invariant curve induces non-involution and involution projectivities. The expediency of nonlinear transformations application is shown in the article by a specific example of geometric modeling of the interfacing surface "spar-blade".Implementation of these suggestions will contribute to a real transformation of a traditional course of descriptive geometry to the engineering geometry
Failure of geometric electromagnetism in the adiabatic vector Kepler problem
International Nuclear Information System (INIS)
Anglin, J.R.; Schmiedmayer, J.
2004-01-01
The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r 3 singularity which is an artifact of the adiabatic approximation
Electric and Magnetic Dipole Moments
CERN. Geneva
2005-01-01
The stringent limit on the electric dipole moment of the neutron forced the issue on the strong CP-problem. The most elegant solution of which is the axion field proposed by Peccei and Quinn. The current limit on the QCD parameter theta coming from the limit on the neutron EDM is of order 10-10. I am going to describe the present status on the neutron EDM searches and further prospects on getting down to theta_qcd sensitivity of 10-13 with the new deuteron EDM in storage rings proposal. For completeness the current status and prospects of the muon g-2 experiment will also be given.
The Muon Electric Dipole Moment
Barger, Vernon; Kao, Chung; Das, Ashok
1997-01-01
The electric dipole moment of the muon ($d_\\mu$) is evaluated in a two Higgs doublet model with a softly broken discrete symmetry. For $\\tan\\beta \\equiv |v_2|/|v_1| \\sim 1$, contributions from two loop diagrams involving the $t$ quark and the $W$ boson dominate; while for $\\tan\\beta \\gsim 10$, contributions from two loop diagrams involving the $b$ quark and the $\\tau$ lepton are dominant. For $8 \\gsim \\tan\\beta \\gsim 4$, significant cancellation occurs among the contributions from two loop di...
Shakir, Muhammad
2011-12-01
In this paper, we introduce a new detector referred to as Geometric mean detector (GEMD) which is based on the ratio of the largest eigenvalue to the Geometric mean of the eigenvalues for collaborative spectrum sensing. The decision threshold has been derived by employing Gaussian approximation approach. In this approach, the two random variables, i.e. The largest eigenvalue and the Geometric mean of the eigenvalues are considered as independent Gaussian random variables such that their cumulative distribution functions (CDFs) are approximated by a univariate Gaussian distribution function for any number of cooperating secondary users and received samples. The approximation approach is based on the calculation of exact analytical moments of the largest eigenvalue and the Geometric mean of the eigenvalues of the received covariance matrix. The decision threshold has been calculated by exploiting the CDF of the ratio of two Gaussian distributed random variables. In this context, we exchange the analytical moments of the two random variables with the moments of the Gaussian distribution function. The performance of the detector is compared with the performance of the energy detector and eigenvalue ratio detector. Analytical and simulation results show that our newly proposed detector yields considerable performance advantage in realistic spectrum sensing scenarios. Moreover, our results based on proposed approximation approach are in perfect agreement with the empirical results. © 2011 IEEE.
An adaptive discretization of incompressible flow using a multitude of moving Cartesian grids
English, R. Elliot; Qiu, Linhai; Yu, Yue; Fedkiw, Ronald
2013-12-01
We present a novel method for discretizing the incompressible Navier-Stokes equations on a multitude of moving and overlapping Cartesian grids each with an independently chosen cell size to address adaptivity. Advection is handled with first and second order accurate semi-Lagrangian schemes in order to alleviate any time step restriction associated with small grid cell sizes. Likewise, an implicit temporal discretization is used for the parabolic terms including Navier-Stokes viscosity which we address separately through the development of a method for solving the heat diffusion equations. The most intricate aspect of any such discretization is the method used in order to solve the elliptic equation for the Navier-Stokes pressure or that resulting from the temporal discretization of parabolic terms. We address this by first removing any degrees of freedom which duplicately cover spatial regions due to overlapping grids, and then providing a discretization for the remaining degrees of freedom adjacent to these regions. We observe that a robust second order accurate symmetric positive definite readily preconditioned discretization can be obtained by constructing a local Voronoi region on the fly for each degree of freedom in question in order to obtain both its stencil (logically connected neighbors) and stencil weights. Internal curved boundaries such as at solid interfaces are handled using a simple immersed boundary approach which is directly applied to the Voronoi mesh in both the viscosity and pressure solves. We independently demonstrate each aspect of our approach on test problems in order to show efficacy and convergence before finally addressing a number of common test cases for incompressible flow with stationary and moving solid bodies.
International Nuclear Information System (INIS)
Barros, R.C.; Filho, H.A.; Oliveira, F.B.S.; Silva, F.C. da
2004-01-01
Presented here are the advances in spectral nodal methods for discrete ordinates (SN) eigenvalue problems in Cartesian geometry. These coarse-mesh methods are based on three ingredients: (i) the use of the standard discretized spatial balance SN equations; (ii) the use of the non-standard spectral diamond (SD) auxiliary equations in the multiplying regions of the domain, e.g. fuel assemblies; and (iii) the use of the non-standard spectral Green's function (SGF) auxiliary equations in the non-multiplying regions of the domain, e.g., the reflector. In slab-geometry the hybrid SD-SGF method generates numerical results that are completely free of spatial truncation errors. In X,Y-geometry, we obtain a system of two 'slab-geometry' SN equations for the node-edge average angular fluxes by transverse-integrating the X,Y-geometry SN equations separately in the y- and then in the x-directions within an arbitrary node of the spatial grid set up on the domain. In this paper, we approximate the transverse leakage terms by constants. These are the only approximations considered in the SD-SGF-constant nodal method, as the source terms, that include scattering and eventually fission events, are treated exactly. Moreover, we describe in this paper the progress of the approximate SN albedo boundary conditions for substituting the non-multiplying regions around the nuclear reactor core. We show numerical results to typical model problems to illustrate the accuracy of spectral nodal methods for coarse-mesh SN criticality calculations. (Author)
A fast apparent horizon finder for three-dimensional Cartesian grids in numerical relativity
Energy Technology Data Exchange (ETDEWEB)
Thornburg, Jonathan [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Golm (Germany)
2004-01-21
In 3 + 1 numerical simulations of dynamic black-hole spacetimes, it is useful to be able to find the apparent horizon(s) (AH) in each slice of a time evolution. A number of AH finders are available, but they often take many minutes to run, so they are too slow to be practically usable at each time step. Here I present a new AH finder, AHFINDERDIRECT, which is very fast and accurate: at typical resolutions it takes only a few seconds to find an AH {approx} 10{sup -5}m accuracy on a GHz-class processor. I assume that an AH to be searched for is a Strahlkoerper ('star-shaped region') with respect to some local origin, and so parametrize the AH shape by r = h(angle) for some single-valued function h:S{sup 2} {yields} R{sup 2}. The AH equation then becomes a nonlinear elliptic PDE in h on S{sup 2}, whose coefficients are algebraic functions of g{sub ij}, K{sub ij}, and the Cartesian-coordinate spatial derivatives of g{sub ij}. I discretize S{sup 2} using six angular patches (one each in the neighbourhood of the {+-}x, {+-} y, and {+-}z axes) to avoid coordinate singularities, and finite difference the AH equation in the angular coordinates using fourth-order finite differencing. I solve the resulting system of nonlinear algebraic equations (for h at the angular grid points) by Newton's method, using a 'symbolic differentiation' technique to compute the Jacobian matrix. AHFINDERDIRECT is implemented as a thorn in the CACTUS computational toolkit, and is freely available by anonymous CVS checkout.
Moment-to-moment dynamics of ADHD behaviour
Directory of Open Access Journals (Sweden)
Aase Heidi
2005-08-01
learning long behavioural sequences may ultimately lead to deficient development of verbally governed behaviour and self control. The study represents a new approach to analyzing the moment-to-moment dynamics of behaviour, and provides support for the theory that reinforcement processes are altered in ADHD.
On chromatic and geometrical calibration
DEFF Research Database (Denmark)
Folm-Hansen, Jørgen
1999-01-01
The main subject of the present thesis is different methods for the geometrical and chromatic calibration of cameras in various environments. For the monochromatic issues of the calibration we present the acquisition of monochrome images, the classic monochrome aberrations and the various sources...... the correct interpolation method is described. For the chromatic issues of calibration we present the acquisition of colour and multi-spectral images, the chromatic aberrations and the various lens/camera based non-uniformities of the illumination of the image plane. It is described how the monochromatic...... to design calibration targets for both geometrical and chromatic calibration are described. We present some possible systematical errors on the detection of the objects in the calibration targets, if viewed in a non orthogonal angle, if the intensities are uneven or if the image blurring is uneven. Finally...
Geometrical approach to tumor growth.
Escudero, Carlos
2006-08-01
Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells and particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former paper [C. Escudero, Phys. Rev. E 73, 020902(R) (2006)], and in the present work we extend our analysis and try to shed light on the possible geometrical principles that drive tumor growth. We present two-dimensional models that reproduce the experimental observations, and analyze the unexplored three-dimensional case, for which interesting conclusions on tumor growth are derived.
Geometrical interpretation of optical absorption
Energy Technology Data Exchange (ETDEWEB)
Monzon, J. J.; Barriuso, A. G.; Sanchez-Soto, L. L. [Departamento de Optica, Facultad de Fisica, Universidad Complutense, E-28040 Madrid (Spain); Montesinos-Amilibia, J. M. [Departamento de Geometria y Topologia, Facultad de Matematicas, Universidad Complutense, E-28040 Madrid (Spain)
2011-08-15
We reinterpret the transfer matrix for an absorbing system in very simple geometrical terms. In appropriate variables, the system appears as performing a Lorentz transformation in a (1 + 3)-dimensional space. Using homogeneous coordinates, we map that action on the unit sphere, which is at the realm of the Klein model of hyperbolic geometry. The effects of absorption appear then as a loxodromic transformation, that is, a rhumb line crossing all the meridians at the same angle.
Parametric FEM for geometric biomembranes
Bonito, Andrea; Nochetto, Ricardo H.; Sebastian Pauletti, M.
2010-05-01
We consider geometric biomembranes governed by an L2-gradient flow for bending energy subject to area and volume constraints (Helfrich model). We give a concise derivation of a novel vector formulation, based on shape differential calculus, and corresponding discretization via parametric FEM using quadratic isoparametric elements and a semi-implicit Euler method. We document the performance of the new parametric FEM with a number of simulations leading to dumbbell, red blood cell and toroidal equilibrium shapes while exhibiting large deformations.
Geometrical methods in learning theory
International Nuclear Information System (INIS)
Burdet, G.; Combe, Ph.; Nencka, H.
2001-01-01
The methods of information theory provide natural approaches to learning algorithms in the case of stochastic formal neural networks. Most of the classical techniques are based on some extremization principle. A geometrical interpretation of the associated algorithms provides a powerful tool for understanding the learning process and its stability and offers a framework for discussing possible new learning rules. An illustration is given using sequential and parallel learning in the Boltzmann machine
Geometrical approach to tumor growth
Escudero, Carlos
2006-01-01
Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells/particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former article [C. Escudero, Phys. Rev. E 73, 020902(R) (200...
Riemannian geometry and geometric analysis
Jost, Jürgen
2017-01-01
This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research. The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the B...
Geometric mean for subspace selection.
Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J
2009-02-01
Subspace selection approaches are powerful tools in pattern classification and data visualization. One of the most important subspace approaches is the linear dimensionality reduction step in the Fisher's linear discriminant analysis (FLDA), which has been successfully employed in many fields such as biometrics, bioinformatics, and multimedia information management. However, the linear dimensionality reduction step in FLDA has a critical drawback: for a classification task with c classes, if the dimension of the projected subspace is strictly lower than c - 1, the projection to a subspace tends to merge those classes, which are close together in the original feature space. If separate classes are sampled from Gaussian distributions, all with identical covariance matrices, then the linear dimensionality reduction step in FLDA maximizes the mean value of the Kullback-Leibler (KL) divergences between different classes. Based on this viewpoint, the geometric mean for subspace selection is studied in this paper. Three criteria are analyzed: 1) maximization of the geometric mean of the KL divergences, 2) maximization of the geometric mean of the normalized KL divergences, and 3) the combination of 1 and 2. Preliminary experimental results based on synthetic data, UCI Machine Learning Repository, and handwriting digits show that the third criterion is a potential discriminative subspace selection method, which significantly reduces the class separation problem in comparing with the linear dimensionality reduction step in FLDA and its several representative extensions.
International Nuclear Information System (INIS)
Hemenger, R.P.
1978-01-01
The problem of extracting structural information from the optical spectra of aggregates of molecules interacting through their electronic transitions is studied. One serious difficulty common to all approaches to this problem is that of properly taking into account the effects of molecular vibrations. A series of exact relations derived previously which are correct with regard to molecular vibrations provide a number of independent, explicit connections between aggregate geometrical parameters and moments of experimental spectra. It is shown that, by applying these moment relations to the optical absorption and circular dichroism spectra of simple aggregates, a complete set of equations can be found, i.e., enough equations can be found to solve for all of the geometrical parameters which enter into the expressions for absorption and circular dichroism spectra. This procedure is applied in some detail to the purple membrane of Halobacterium halobium. The results are completely consistent with what is known about its structure
International Nuclear Information System (INIS)
Soliman, S.F.; Gill, S.S.
1979-01-01
Charts are presented giving the elastic stress concentration factors in spherical pressure vessels with pad and integral reinforcement for radial branches subjected to radial load and moment. The effect of all the geometrical parameters is discussed, including the limitations of thin shell theory on the validity of the results. (author)
The Critical Moment of Transition
DEFF Research Database (Denmark)
Svalgaard, Lotte
2018-01-01
By providing a holding environment to acknowledge sensitivities and address emotions, leadership programmes prove to be powerful spaces for increasing self- and social awareness. However, the challenge is for one to maintain the newly gained self- and social awareness after leaving the holding...... – within the context of an international MBA program – of MBA students applying their knowledge from a Leadership Stream in an International Consultancy Project. This paper contributes to the theory and practice of management learning by providing lenses to understand subjective experiences of critical...... moments of transition, developing the notion of “mindful avoidance,” and pointing out a major and neglected potential space in the design of management education....
Exact Solutions for Einstein's Hyperbolic Geometric Flow
International Nuclear Information System (INIS)
He Chunlei
2008-01-01
In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow
How do deltoid muscle moment arms change after reverse total shoulder arthroplasty?
Walker, David R; Struk, Aimee M; Matsuki, Keisuke; Wright, Thomas W; Banks, Scott A
2016-04-01
Although many advantages of reverse total shoulder arthroplasty (RTSA) have been demonstrated, a variety of complications indicate there is much to learn about how RTSA modifies normal shoulder function. This study used a subject-specific computational model driven by in vivo kinematic data to assess how RTSA affects deltoid muscle moment arms after surgery. A subject-specific 12 degree-of-freedom musculoskeletal model was used to analyze the shoulders of 26 individuals (14 RTSA and 12 normal). The model was modified from the work of Holzbaur to directly input 6 degree-of-freedom humeral and scapular kinematics obtained using fluoroscopy. The moment arms of the anterior, lateral, and posterior aspects of the deltoid were significantly different when RTSA and normal cohorts were compared at different abduction angles. Anterior and lateral deltoid moment arms were significantly larger in the RTSA group at the initial elevation of the arm. The posterior deltoid was significantly larger at maximum elevation. There was large intersubject variability within the RTSA group. Placement of implant components during RTSA can directly affect the geometric relationship between the humerus and scapula and the muscle moment arms in the RTSA shoulder. RTSA shoulders maintain the same anterior and posterior deltoid muscle moment-arm patterns as healthy shoulders but show much greater intersubject variation and larger moment-arm magnitudes. These observations provide a basis for determining optimal implant configuration and surgical placement to maximize RTSA function in a patient-specific manner. Published by Elsevier Inc.
Jiang, Wenwen; Larson, Peder E Z; Lustig, Michael
2018-03-09
To correct gradient timing delays in non-Cartesian MRI while simultaneously recovering corruption-free auto-calibration data for parallel imaging, without additional calibration scans. The calibration matrix constructed from multi-channel k-space data should be inherently low-rank. This property is used to construct reconstruction kernels or sensitivity maps. Delays between the gradient hardware across different axes and RF receive chain, which are relatively benign in Cartesian MRI (excluding EPI), lead to trajectory deviations and hence data inconsistencies for non-Cartesian trajectories. These in turn lead to higher rank and corrupted calibration information which hampers the reconstruction. Here, a method named Simultaneous Auto-calibration and Gradient delays Estimation (SAGE) is proposed that estimates the actual k-space trajectory while simultaneously recovering the uncorrupted auto-calibration data. This is done by estimating the gradient delays that result in the lowest rank of the calibration matrix. The Gauss-Newton method is used to solve the non-linear problem. The method is validated in simulations using center-out radial, projection reconstruction and spiral trajectories. Feasibility is demonstrated on phantom and in vivo scans with center-out radial and projection reconstruction trajectories. SAGE is able to estimate gradient timing delays with high accuracy at a signal to noise ratio level as low as 5. The method is able to effectively remove artifacts resulting from gradient timing delays and restore image quality in center-out radial, projection reconstruction, and spiral trajectories. The low-rank based method introduced simultaneously estimates gradient timing delays and provides accurate auto-calibration data for improved image quality, without any additional calibration scans. © 2018 International Society for Magnetic Resonance in Medicine.
Noncommutative QED and anomalous dipole moments
International Nuclear Information System (INIS)
Riad, I.F.; Sheikh-Jabbari, M.M.
2000-09-01
We study QED on noncommutative spaces, NCQED. In particular we present the detailed calculation for the noncommutative electron-photon vertex and show that the Ward identity is satisfied. We discuss that in the noncommutative case moving electron will show electric dipole effects. In addition, we work out the electric and magnetic dipole moments up to one loop level. For the magnetic moment we show that noncommutative electron has an intrinsic (spin independent) magnetic moment. (author)
Electric dipole moment of diatomic molecules
International Nuclear Information System (INIS)
Rosato, A.
1983-01-01
The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the molecules CO, HB, HF and LiH are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. It is discussed the possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment. (Author) [pt
Electric dipole moment of diatomic molecules
International Nuclear Information System (INIS)
Rosato, A.
1983-01-01
The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the CO, HB, HF and LiH molecules are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. The possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment is discussed. (Author) [pt
Restrictions on the neutrino magnetic dipole moment
International Nuclear Information System (INIS)
Duncan, M.J.; Sankar, S.U.; Grifols, J.A.; Mendez, A.
1987-01-01
We examine mechanisms for producing neutrino magnetic moments from a wide class of particle theories which are extensions of the standard model. We show that it is difficult to naturally obtain a moment greater than ≅ 10 -2 electron Bohr magnetons. Thus models of phenomena requiring moments of order ≅ 10 -10 magnetons, such as those proposed as a resolution to the solar neutrino puzzle, are in conflict with current perceptions in particle physics. (orig.)
W-boson electric dipole moment
International Nuclear Information System (INIS)
He, X.; McKellar, B.H.J.
1990-01-01
The W-boson electric dipole moment is calculated in the SU(3) C xSU(2) L xU(1) Y model with several Higgs-boson doublets. Using the constraint on the CP-violating parameters from the experimental upper bound of the neutron electric dipole moment, we find that the W-boson electric dipole moment is constrained to be less than 10 -4
Lyusternik, L A
1965-01-01
Ten-Decimal Tables of the Logarithms of Complex Numbers and for the Transformation from Cartesian to Polar Coordinates contains Tables of mathematical functions up to ten-decimal value. These tables are compiled in the Department for Approximate Computations of the Institute of Exact Mechanics and Computational Methods of the U.S.S.R. Academy of Sciences. The computations are carried out by this department in conjunction with the Computational-Experimental Laboratory of the Institute.This book will be of value to mathematicians and researchers.
International Nuclear Information System (INIS)
Anderson, D.V.; Breazeal, J.; Finan, C.H.; Johnston, B.M.
1976-01-01
ABCXYZ is a computer code for obtaining the Cartesian components of the vector potential and the magnetic field on an observed grid from an arrangement of current-carrying wires. Arbitrary combinations of straight line segments, arcs, and loops are allowed in the specification of the currents. Arbitrary positions and orientations of the current-carrying elements are also allowed. Specification of the wire diameter permits the computation of well-defined fields, even in the interiors of the conductors. An optical feature generates magnetic field lines. Extensive graphical and printed output is available to the user including contour, grid-line, and field-line plots. 12 figures, 1 table
International Nuclear Information System (INIS)
Yan-Jun, Gong; Zhen-Sen, Wu; Jia-Ji, Wu
2009-01-01
We present an analytical model of Doppler spectra in backscattering from arbitrary rough convex bodies of revolution rotating around their axes in the global Cartesian coordinate system. This analytical model is applied to analyse Doppler spectra in backscatter from two cones and two cylinders, as well as two ellipsoids of revolution. We numerically analyse the influences of attitude and geometry size of objects on Doppler spectra. The analytical model can give contribution of the surface roughness, attitude and geometry size of convex bodies of revolution to Doppler spectra and may contribute to laser Doppler velocimetry as well as ladar applications
Geometrically Induced Interactions and Bifurcations
Binder, Bernd
2010-01-01
In order to evaluate the proper boundary conditions in spin dynamics eventually leading to the emergence of natural and artificial solitons providing for strong interactions and potentials with monopole charges, the paper outlines a new concept referring to a curvature-invariant formalism, where superintegrability is given by a special isometric condition. Instead of referring to the spin operators and Casimir/Euler invariants as the generator of rotations, a curvature-invariant description is introduced utilizing a double Gudermann mapping function (generator of sine Gordon solitons and Mercator projection) cross-relating two angular variables, where geometric phases and rotations arise between surfaces of different curvature. Applying this stereographic projection to a superintegrable Hamiltonian can directly map linear oscillators to Kepler/Coulomb potentials and/or monopoles with Pöschl-Teller potentials and vice versa. In this sense a large scale Kepler/Coulomb (gravitational, electro-magnetic) wave dynamics with a hyperbolic metric could be mapped as a geodesic vertex flow to a local oscillator singularity (Dirac monopole) with spherical metrics and vice versa. Attracting fixed points and dynamic constraints are given by special isometries with magic precession angles. The nonlinear angular encoding directly provides for a Shannon mutual information entropy measure of the geodesic phase space flow. The emerging monopole patterns show relations to spiral Fresnel holography and Berry/Aharonov-Bohm geometric phases subject to bifurcation instabilities and singularities from phase ambiguities due to a local (entropy) overload. Neutral solitons and virtual patterns emerging and mediating in the overlap region between charged or twisted holographic patterns are visualized and directly assigned to the Berry geometric phase revealing the role of photons, neutrons, and neutrinos binding repulsive charges in Coulomb, strong and weak interaction.
Geometrical approach to elementary particles
International Nuclear Information System (INIS)
Elbaz, E.; Meyer, J.
Starting with an isospin doublet R = (T/V) with spin 1/2 and hypercharge 1/3, the rishon considered as a vector in the color-space, we define the dirishon R* rank-one tensor product with spin 0 and hypercharge 2/3. Leptons and quarks of the first generation are then obtained as the scalar and dot product l = R*. R and f vector = R* Λ R'. The internal quantum numbers are then expressed with the rishon number. The lepton and quark generations are then defined and a quark mass formula proposed. Baryon magnetic moments are calculated and compared to experiment [fr
Moving walls and geometric phases
Energy Technology Data Exchange (ETDEWEB)
Facchi, Paolo, E-mail: paolo.facchi@ba.infn.it [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Garnero, Giancarlo, E-mail: giancarlo.garnero@uniba.it [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Marmo, Giuseppe [Dipartimento di Scienze Fisiche and MECENAS, Università di Napoli “Federico II”, I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); Samuel, Joseph [Raman Research Institute, 560080 Bangalore (India)
2016-09-15
We unveil the existence of a non-trivial Berry phase associated to the dynamics of a quantum particle in a one dimensional box with moving walls. It is shown that a suitable choice of boundary conditions has to be made in order to preserve unitarity. For these boundary conditions we compute explicitly the geometric phase two-form on the parameter space. The unboundedness of the Hamiltonian describing the system leads to a natural prescription of renormalization for divergent contributions arising from the boundary.
Geometric Topology and Shape Theory
Segal, Jack
1987-01-01
The aim of this international conference the third of its type was to survey recent developments in Geometric Topology and Shape Theory with an emphasis on their interaction. The volume contains original research papers and carefully selected survey of currently active areas. The main topics and themes represented by the papers of this volume include decomposition theory, cell-like mappings and CE-equivalent compacta, covering dimension versus cohomological dimension, ANR's and LCn-compacta, homology manifolds, embeddings of continua into manifolds, complement theorems in shape theory, approximate fibrations and shape fibrations, fibered shape, exact homologies and strong shape theory.
Geometric approach to soliton equations
International Nuclear Information System (INIS)
Sasaki, R.
1979-09-01
A class of nonlinear equations that can be solved in terms of nxn scattering problem is investigated. A systematic geometric method of exploiting conservation laws and related equations, the so-called prolongation structure, is worked out. The nxn problem is reduced to nsub(n-1)x(n-1) problems and finally to 2x2 problems, which have been comprehensively investigated recently by the author. A general method of deriving the infinite numbers of polynomial conservation laws for an nxn problem is presented. The cases of 3x3 and 2x2 problems are discussed explicitly. (Auth.)
Geometric Rationalization for Freeform Architecture
Jiang, Caigui
2016-06-20
The emergence of freeform architecture provides interesting geometric challenges with regards to the design and manufacturing of large-scale structures. To design these architectural structures, we have to consider two types of constraints. First, aesthetic constraints are important because the buildings have to be visually impressive. Sec- ond, functional constraints are important for the performance of a building and its e cient construction. This thesis contributes to the area of architectural geometry. Specifically, we are interested in the geometric rationalization of freeform architec- ture with the goal of combining aesthetic and functional constraints and construction requirements. Aesthetic requirements typically come from designers and architects. To obtain visually pleasing structures, they favor smoothness of the building shape, but also smoothness of the visible patterns on the surface. Functional requirements typically come from the engineers involved in the construction process. For exam- ple, covering freeform structures using planar panels is much cheaper than using non-planar ones. Further, constructed buildings have to be stable and should not collapse. In this thesis, we explore the geometric rationalization of freeform archi- tecture using four specific example problems inspired by real life applications. We achieve our results by developing optimization algorithms and a theoretical study of the underlying geometrical structure of the problems. The four example problems are the following: (1) The design of shading and lighting systems which are torsion-free structures with planar beams based on quad meshes. They satisfy the functionality requirements of preventing light from going inside a building as shad- ing systems or reflecting light into a building as lighting systems. (2) The Design of freeform honeycomb structures that are constructed based on hex-dominant meshes with a planar beam mounted along each edge. The beams intersect without
Field guide to geometrical optics
Greivenkamp, John E
2004-01-01
This Field Guide derives from the treatment of geometrical optics that has evolved from both the undergraduate and graduate programs at the Optical Sciences Center at the University of Arizona. The development is both rigorous and complete, and it features a consistent notation and sign convention. This volume covers Gaussian imagery, paraxial optics, first-order optical system design, system examples, illumination, chromatic effects, and an introduction to aberrations. The appendices provide supplemental material on radiometry and photometry, the human eye, and several other topics.
Geometric phase from dielectric matrix
International Nuclear Information System (INIS)
Banerjee, D.
2005-10-01
The dielectric property of the anisotropic optical medium is found by considering the polarized photon as two component spinor of spherical harmonics. The Geometric Phase of a polarized photon has been evaluated in two ways: the phase two-form of the dielectric matrix through a twist and the Pancharatnam phase (GP) by changing the angular momentum of the incident polarized photon over a closed triangular path on the extended Poincare sphere. The helicity in connection with the spin angular momentum of the chiral photon plays the key role in developing these phase holonomies. (author)
A history of geometrical methods
Coolidge, Julian Lowell
2013-01-01
Full and authoritative, this history of the techniques for dealing with geometric questions begins with synthetic geometry and its origins in Babylonian and Egyptian mathematics; reviews the contributions of China, Japan, India, and Greece; and discusses the non-Euclidean geometries. Subsequent sections cover algebraic geometry, starting with the precursors and advancing to the great awakening with Descartes; and differential geometry, from the early work of Huygens and Newton to projective and absolute differential geometry. The author's emphasis on proofs and notations, his comparisons betwe
Geometrical optics and optimal transport.
Rubinstein, Jacob; Wolansky, Gershon
2017-10-01
The Fermat principle is generalized to a system of rays. It is shown that all the ray mappings that are compatible with two given intensities of a monochromatic wave, measured at two planes, are stationary points of a canonical functional, which is the weighted average of the actions of all the rays. It is further shown that there exist at least two stationary points for this functional, implying that in the geometrical optics regime the phase from intensity problem has inherently more than one solution. The caustic structures of all the possible ray mappings are analyzed. A number of simulations illustrate the theoretical considerations.
How to introduce the magnetic dipole moment
International Nuclear Information System (INIS)
Bezerra, M; Kort-Kamp, W J M; Cougo-Pinto, M V; Farina, C
2012-01-01
We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the magnetic field at distant points, identifying the magnetic dipole moment of the distribution. We also present a simple but general demonstration of the torque exerted by a uniform magnetic field on a current loop of general form, not necessarily planar. For pedagogical reasons we start by reviewing briefly the concept of the electric dipole moment. (paper)
Gross shell structure of moments of inertia
International Nuclear Information System (INIS)
Deleplanque, M.A.; Frauendorf, S.; Pashkevich, V.V.; Chu, S.Y.; Unzhakova, A.
2002-01-01
Average yrast moments of inertia at high spins, where the pairing correlations are expected to be largely absent, were found to deviate from the rigid-body values. This indicates that shell effects contribute to the moment of inertia. We discuss the gross dependence of moments of inertia and shell energies on the neutron number in terms of the semiclassical periodic orbit theory. We show that the ground-state shell energies, nuclear deformations and deviations from rigid-body moments of inertia are all due to the same periodic orbits
Analysis of scaled-factorial-moment data
International Nuclear Information System (INIS)
Seibert, D.
1990-01-01
We discuss the two standard constructions used in the search for intermittency, the exclusive and inclusive scaled factorial moments. We propose the use of a new scaled factorial moment that reduces to the exclusive moment in the appropriate limit and is free of undesirable multiplicity correlations that are contained in the inclusive moment. We show that there are some similarities among most of the models that have been proposed to explain factorial-moment data, and that these similarities can be used to increase the efficiency of testing these models. We begin by calculating factorial moments from a simple independent-cluster model that assumes only approximate boost invariance of the cluster rapidity distribution and an approximate relation among the moments of the cluster multiplicity distribution. We find two scaling laws that are essentially model independent. The first scaling law relates the moments to each other with a simple formula, indicating that the different factorial moments are not independent. The second scaling law relates samples with different rapidity densities. We find evidence for much larger clusters in heavy-ion data than in light-ion data, indicating possible spatial intermittency in the heavy-ion events
Energy Technology Data Exchange (ETDEWEB)
Banks, D; Hughes, P E; Percival, I C [Queen Mary Coll., London (UK); Barnes, K S [National Health Service Operational Research Group, Royal Institute of Public Administration, Reading, Berkshire, UK; Richards, D [Open Univ., Milton Keynes (UK); Valentine, N A [Digital Equipment Corporation, Bilton House, Uxbridge Road, Ealing, London, UK; Wilson, Mc B [Glasgow Univ. (UK). Dept. of Natural Philosophy
1977-01-01
The program solves the equations of motion for the interaction of 3 charged particles, obtaining final states in terms of initial states, and energy transfers, angles of ejection, and final cartesian co-ordinates of relative motion. Using a Monte Carlo method on many orbits total ionization and charge transfer cross sections, integral energy transfer cross sections and moments of energy transfers are estimated. Facilities are provided for obtaining angular distributions, momentum transfer cross sections and for comparison with various approximate classical theories. The equations of motion are solved using stepwise fourth-order Runge-Kutta integration with automatic steplength change. Selection of initial conditions is determined by the user, usually as a statistical distribution determined by a pseudorandom number subroutine. Classical representation theory and transformation methods are extensively used.
Image understanding using geometric context
Zhang, Xiaochun; Liu, Chuancai
2017-07-01
A Gibbs Sampler based topic model for image annotation, which takes into account the interaction between visual geometric context and related topic, is presented. Most of the existing topic models for scene annotation use segmentation-based algorithm. However, topic models using segmentation algorithm alone sometimes can produce erroneous results when used to annotate real-life scene pictures. Therefore, our algorithm makes use of peaks of image surface instead of segmentation regions. Existing approaches use SIFT algorithm and treat the peaks as round blob features. In this paper, the peaks are treated as anisotropic blob features, which models low level visual elements more precisely. In order to better utilize visual features, our model not only takes into consideration visual codeword, but also considers influence of visual properties to topic formation, such as orientation, width, length and color. The basic idea is based on the assumption that different topics will produce distinct visual appearance, and different visual appearance is helpful to distinguish topics. During the learning stage, each topic will be associated with a set of distributions of visual properties, which depicts appearance of the topic. This paper considers more geometric properties, which will reduce topic uncertainty and learn the images better. Tested with Corel5K, SAIAPR-TC12 and Espgame100k Datasets, our method performs moderately better than some state of the arts methods.
Geometrical approach to fluid models
International Nuclear Information System (INIS)
Kuvshinov, B.N.; Schep, T.J.
1997-01-01
Differential geometry based upon the Cartan calculus of differential forms is applied to investigate invariant properties of equations that describe the motion of continuous media. The main feature of this approach is that physical quantities are treated as geometrical objects. The geometrical notion of invariance is introduced in terms of Lie derivatives and a general procedure for the construction of local and integral fluid invariants is presented. The solutions of the equations for invariant fields can be written in terms of Lagrange variables. A generalization of the Hamiltonian formalism for finite-dimensional systems to continuous media is proposed. Analogously to finite-dimensional systems, Hamiltonian fluids are introduced as systems that annihilate an exact two-form. It is shown that Euler and ideal, charged fluids satisfy this local definition of a Hamiltonian structure. A new class of scalar invariants of Hamiltonian fluids is constructed that generalizes the invariants that are related with gauge transformations and with symmetries (Noether). copyright 1997 American Institute of Physics
Geometric back-reaction in pre-inflation from relativistic quantum geometry
Energy Technology Data Exchange (ETDEWEB)
Arcodia, Marcos R.A. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Mar del Plata (Argentina); Bellini, Mauricio [Universidad Nacional de Mar del Plata, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Mar del Plata (Argentina)
2016-06-15
The pre-inflationary evolution of the universe describes the beginning of the expansion from a static initial state, such that the Hubble parameter is initially zero, but increases to an asymptotic constant value, in which it could achieve a de Sitter (inflationary) expansion. The expansion is driven by a background phantom field. The back-reaction effects at this moment should describe vacuum geometrical excitations, which are studied in detail in this work using relativistic quantum geometry. (orig.)
The neutron electric dipole moment
International Nuclear Information System (INIS)
He, X.G.; McKellar, B.H.J.; Pakvasa, S.
1989-01-01
A systematic study was made of the electric dipole moment (EDM) of neutron D n in various models of CP violation. It was found that in the standard KM model with 3 families the neutron EDM is in the range 1.4x10 -33 ≤ D n ≤ 1.6x10 -31 ecm; that the two Higgs doublet model has approximately the same value of D n as the standard model; that D n in the Weinberg model is predicted to satisfy D n > 10 -25 ecm; that in a class of left-right symmetric models D n is of the order of 10 -26-11 ecm; that in supersymmetric models D n is of the order 10 -22 φ ecm with φ being the possible phase difference of the phases of gluino mass and the gluino-quark-smark mixing matrix and that the strong CP parameter θ is found to be θ -9 , using the present experimental limit that D n -25 ecm with 90% confidence. 65 refs., 10 figs
Directory of Open Access Journals (Sweden)
Jay Foster
2015-11-01
Full Text Available At least two recent collections of essays – Postmodernism and the Enlightenment (2001 and What’s Left of Enlightenment?: A Postmodern Question (2001 – have responded to postmodern critiques of Enlightenment by arguing that Enlightenment philosophes themselves embraced a number of post-modern themes. This essay situates Kant’s essay Was ist Aufklärung (1784 in the context of this recent literature about the appropriate characterization of modernity and the Enlightenment. Adopting an internalist reading of Kant’s Aufklärung essay, this paper observes that Kant is surprisingly ambivalent about who might be Enlightened and unspecific about when Enlightenment might be achieved. The paper argues that this is because Kant is concerned less with elucidating his concept of Enlightenment and more with characterizing a political condition that might provide the conditions for the possibility of Enlightenment. This paper calls this political condition modernity and it is achieved when civil order can be maintained alongside fractious and possibly insoluble public disagreement about matters of conscience, including the nature and possibility of Enlightenment. Thus, the audience for the Aufklärung essay is not the tax collector, soldier or clergyman, but rather the sovereign. Kant enjoins and advises the prince that discord and debate about matters of conscience need not entail any political unrest or upheaval. It is in this restricted (Pocockian sense that the Enlightenment essay is Kant’s Machiavellian moment.
Stereo Correspondence Using Moment Invariants
Premaratne, Prashan; Safaei, Farzad
Autonomous navigation is seen as a vital tool in harnessing the enormous potential of Unmanned Aerial Vehicles (UAV) and small robotic vehicles for both military and civilian use. Even though, laser based scanning solutions for Simultaneous Location And Mapping (SLAM) is considered as the most reliable for depth estimation, they are not feasible for use in UAV and land-based small vehicles due to their physical size and weight. Stereovision is considered as the best approach for any autonomous navigation solution as stereo rigs are considered to be lightweight and inexpensive. However, stereoscopy which estimates the depth information through pairs of stereo images can still be computationally expensive and unreliable. This is mainly due to some of the algorithms used in successful stereovision solutions require high computational requirements that cannot be met by small robotic vehicles. In our research, we implement a feature-based stereovision solution using moment invariants as a metric to find corresponding regions in image pairs that will reduce the computational complexity and improve the accuracy of the disparity measures that will be significant for the use in UAVs and in small robotic vehicles.
International Nuclear Information System (INIS)
Zhang Peng; Hung, Derek M H; Lau, Y Y
2013-01-01
The current flow pattern, together with the contact resistance, is calculated analytically in a Cartesian 3-terminal thin film contact with dissimilar materials. The resistivities and the geometric dimensions in the individual contact members, as well as the terminal voltages, may assume arbitrary values. We show that the current flow patterns and the contact resistance may be conveniently decomposed into the even and odd solution. The even solution gives exclusively and totally the current flowing from the source to the gate. The odd solution gives exclusively and totally the current flowing from the source to the drain. Current crowding at the edges, and current partition in different regions are displayed. The analytic solutions are validated using a simulation code. The bounds on the variation of the contact resistance are given. This paper may be considered as the generalization of the transmission line model and the Kennedy-Murley model that were used extensively in the characterization of thin-film devices. For completeness, we include the general results for the cylindrical geometry, which are qualitatively similar to the even solution of the Cartesian geometry.
Moment of inertia of liquid in a tank
Directory of Open Access Journals (Sweden)
Lee Gyeong Joong
2014-03-01
Full Text Available In this study, the inertial properties of fully filled liquid in a tank were studied based on the potential theory. The analytic solution was obtained for the rectangular tank, and the numerical solutions using Green’s 2nd identity were obtained for other shapes. The inertia of liquid behaves like solid in recti-linear acceleration. But under rotational acceleration, the moment of inertia of liquid becomes small compared to that of solid. The shapes of tank investigated in this study were ellipse, rectangle, hexagon, and octagon with various aspect ratios. The numerical solu¬tions were compared with analytic solution, and an ad hoc semi-analytical approximate formula is proposed herein and this formula gives very good predictions for the moment of inertia of the liquid in a tank of several different geometrical shapes. The results of this study will be useful in analyzing of the motion of LNG/LPG tanker, liquid cargo ship, and damaged ship.
Rapoport, Diego L.
2011-01-01
In this transdisciplinary article which stems from philosophical considerations (that depart from phenomenology—after Merleau-Ponty, Heidegger and Rosen—and Hegelian dialectics), we develop a conception based on topological (the Moebius surface and the Klein bottle) and geometrical considerations (based on torsion and non-orientability of manifolds), and multivalued logics which we develop into a unified world conception that surmounts the Cartesian cut and Aristotelian logic. The role of torsion appears in a self-referential construction of space and time, which will be further related to the commutator of the True and False operators of matrix logic, still with a quantum superposed state related to a Moebius surface, and as the physical field at the basis of Spencer-Brown's primitive distinction in the protologic of the calculus of distinction. In this setting, paradox, self-reference, depth, time and space, higher-order non-dual logic, perception, spin and a time operator, the Klein bottle, hypernumbers due to Musès which include non-trivial square roots of ±1 and in particular non-trivial nilpotents, quantum field operators, the transformation of cognition to spin for two-state quantum systems, are found to be keenly interwoven in a world conception compatible with the philosophical approach taken for basis of this article. The Klein bottle is found not only to be the topological in-formation for self-reference and paradox whose logical counterpart in the calculus of indications are the paradoxical imaginary time waves, but also a classical-quantum transformer (Hadamard's gate in quantum computation) which is indispensable to be able to obtain a complete multivalued logical system, and still to generate the matrix extension of classical connective Boolean logic. We further find that the multivalued logic that stems from considering the paradoxical equation in the calculus of distinctions, and in particular, the imaginary solutions to this equation
A short note on the use of the red-black tree in Cartesian adaptive mesh refinement algorithms
Hasbestan, Jaber J.; Senocak, Inanc
2017-12-01
Mesh adaptivity is an indispensable capability to tackle multiphysics problems with large disparity in time and length scales. With the availability of powerful supercomputers, there is a pressing need to extend time-proven computational techniques to extreme-scale problems. Cartesian adaptive mesh refinement (AMR) is one such method that enables simulation of multiscale, multiphysics problems. AMR is based on construction of octrees. Originally, an explicit tree data structure was used to generate and manipulate an adaptive Cartesian mesh. At least eight pointers are required in an explicit approach to construct an octree. Parent-child relationships are then used to traverse the tree. An explicit octree, however, is expensive in terms of memory usage and the time it takes to traverse the tree to access a specific node. For these reasons, implicit pointerless methods have been pioneered within the computer graphics community, motivated by applications requiring interactivity and realistic three dimensional visualization. Lewiner et al. [1] provides a concise review of pointerless approaches to generate an octree. Use of a hash table and Z-order curve are two key concepts in pointerless methods that we briefly discuss next.
Anderson, Christian E; Wang, Charlie Y; Gu, Yuning; Darrah, Rebecca; Griswold, Mark A; Yu, Xin; Flask, Chris A
2018-04-01
The regularly incremented phase encoding-magnetic resonance fingerprinting (RIPE-MRF) method is introduced to limit the sensitivity of preclinical MRF assessments to pulsatile and respiratory motion artifacts. As compared to previously reported standard Cartesian-MRF methods (SC-MRF), the proposed RIPE-MRF method uses a modified Cartesian trajectory that varies the acquired phase-encoding line within each dynamic MRF dataset. Phantoms and mice were scanned without gating or triggering on a 7T preclinical MRI scanner using the RIPE-MRF and SC-MRF methods. In vitro phantom longitudinal relaxation time (T 1 ) and transverse relaxation time (T 2 ) measurements, as well as in vivo liver assessments of artifact-to-noise ratio (ANR) and MRF-based T 1 and T 2 mean and standard deviation, were compared between the two methods (n = 5). RIPE-MRF showed significant ANR reductions in regions of pulsatility (P Reson Med 79:2176-2182, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Closed forms and multi-moment maps
DEFF Research Database (Denmark)
Madsen, Thomas Bruun; Swann, Andrew Francis
2013-01-01
We extend the notion of multi-moment map to geometries defined by closed forms of arbitrary degree. We give fundamental existence and uniqueness results and discuss a number of essential examples, including geometries related to special holonomy. For forms of degree four, multi-moment maps are gu...
Magnetic moment of single layer graphene rings
Margulis, V. A.; Karpunin, V. V.; Mironova, K. I.
2018-01-01
Magnetic moment of single layer graphene rings is investigated. An analytical expression for the magnetic moment as a function of the magnetic field flux through the one-dimensional quantum rings is obtained. This expression has the oscillation character. The oscillation period is equal to one flux quanta.
6-quark contribution to nuclear magnetic moments
International Nuclear Information System (INIS)
Ito, H.
1985-01-01
The magnetic moments of nuclei with LS closed shell +/-1 particle are calculated. Core polarization and meson exchange current are treated realistically in order to single out the 6-quark contribution. Overall agreement with experimental values is quite good. It is shown that the 6-quark system contributes to the respective iso-vector and iso-scalar moments with reasonable magnitudes
Dynamical moments of inertia for superdeformed nuclei
International Nuclear Information System (INIS)
Obikhod, T.V.
1995-01-01
The method of quantum groups has been applied for calculation the dynamical moments of inertia for the yrast superdeformed bands in 194 Hg and 192 Hg as well as to calculation of the dynamical moments of inertia of superdeformed bands in 150 Gd and 148 Gd
Polarization electric dipole moment in nonaxial nuclei
International Nuclear Information System (INIS)
Denisov, V.Yu.; Davidovskaya, O.I.
1996-01-01
An expression for the macroscopic polarization electric dipole moment is obtained for nonaxial nuclei whose radii of the proton and neutron surfaces are related by a linear equation. Dipole transitions associated with the polarization electric dipole moment are analyzed for static and dynamical multipole deformations
Droplet-model electric dipole moments
International Nuclear Information System (INIS)
Myers, W.D.; Swiatecki, W.J.
1991-01-01
Denisov's recent criticism of the droplet-model formula for the dipole moment of a deformed nucleus as derived by Dorso et al., it shown to be invalid. This helps to clarify the relation of theory to the measured dipole moments, as discussed in the review article by Aberg et al. (orig.)
Teachable Moment: Google Earth Takes Us There
Williams, Ann; Davinroy, Thomas C.
2015-01-01
In the current educational climate, where clearly articulated learning objectives are required, it is clear that the spontaneous teachable moment still has its place. Authors Ann Williams and Thomas Davinroy think that instructors from almost any discipline can employ Google Earth as a tool to take advantage of teachable moments through the…
The elastic theory of shells using geometric algebra.
Gregory, A L; Lasenby, J; Agarwal, A
2017-03-01
We present a novel derivation of the elastic theory of shells. We use the language of geometric algebra, which allows us to express the fundamental laws in component-free form, thus aiding physical interpretation. It also provides the tools to express equations in an arbitrary coordinate system, which enhances their usefulness. The role of moments and angular velocity, and the apparent use by previous authors of an unphysical angular velocity, has been clarified through the use of a bivector representation. In the linearized theory, clarification of previous coordinate conventions which have been the cause of confusion is provided, and the introduction of prior strain into the linearized theory of shells is made possible.
Recognition of Simple 3D Geometrical Objects under Partial Occlusion
Barchunova, Alexandra; Sommer, Gerald
In this paper we present a novel procedure for contour-based recognition of partially occluded three-dimensional objects. In our approach we use images of real and rendered objects whose contours have been deformed by a restricted change of the viewpoint. The preparatory part consists of contour extraction, preprocessing, local structure analysis and feature extraction. The main part deals with an extended construction and functionality of the classifier ensemble Adaptive Occlusion Classifier (AOC). It relies on a hierarchical fragmenting algorithm to perform a local structure analysis which is essential when dealing with occlusions. In the experimental part of this paper we present classification results for five classes of simple geometrical figures: prism, cylinder, half cylinder, a cube, and a bridge. We compare classification results for three classical feature extractors: Fourier descriptors, pseudo Zernike and Zernike moments.
Geometrical charged-particle optics
Rose, Harald
2012-01-01
This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are...
Geometrical setting of solid mechanics
International Nuclear Information System (INIS)
Fiala, Zdenek
2011-01-01
Highlights: → Solid mechanics within the Riemannian symmetric manifold GL (3, R)/O (3, R). → Generalized logarithmic strain. → Consistent linearization. → Incremental principle of virtual power. → Time-discrete approximation. - Abstract: The starting point in the geometrical setting of solid mechanics is to represent deformation process of a solid body as a trajectory in a convenient space with Riemannian geometry, and then to use the corresponding tools for its analysis. Based on virtual power of internal stresses, we show that such a configuration space is the (globally) symmetric space of symmetric positive-definite real matrices. From this unifying point of view, we shall analyse the logarithmic strain, the stress rate, as well as linearization and intrinsic integration of corresponding evolution equation.
Geometric Methods in Physics XXXV
Odzijewicz, Anatol; Previato, Emma
2018-01-01
This book features a selection of articles based on the XXXV Białowieża Workshop on Geometric Methods in Physics, 2016. The series of Białowieża workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, and with applications to classical and quantum physics. In 2016 the special session "Integrability and Geometry" in particular attracted pioneers and leading specialists in the field. Traditionally, the Białowieża Workshop is followed by a School on Geometry and Physics, for advanced graduate students and early-career researchers, and the book also includes extended abstracts of the lecture series.
Geometric Operators on Boolean Functions
DEFF Research Database (Denmark)
Frisvad, Jeppe Revall; Falster, Peter
In truth-functional propositional logic, any propositional formula represents a Boolean function (according to some valuation of the formula). We describe operators based on Decartes' concept of constructing coordinate systems, for translation of a propositional formula to the image of a Boolean...... function. With this image of a Boolean function corresponding to a propositional formula, we prove that the orthogonal projection operator leads to a theorem describing all rules of inference in propositional reasoning. In other words, we can capture all kinds of inference in propositional logic by means...... of a few geometric operators working on the images of Boolean functions. The operators we describe, arise from the niche area of array-based logic and have previously been tightly bound to an array-based representation of Boolean functions. We redefine the operators in an abstract form to make them...
Geometric considerations in magnetron sputtering
International Nuclear Information System (INIS)
Thornton, J.A.
1982-01-01
The recent development of high performance magnetron type discharge sources has greatly enhaced the range of coating applications where sputtering is a viable deposition process. Magnetron sources can provide high current densities and sputtering rates, even at low pressures. They have much reduced substrate heating rates and can be scaled to large sizes. Magnetron sputter coating apparatuses can have a variety of geometric and plasma configurations. The target geometry affects the emission directions of both the sputtered atoms and the energetic ions which are neutralized and reflected at the cathode. This fact, coupled with the long mean free particle paths which are prevalent at low pressures, can make the coating properties very dependent on the apparatus geometry. This paper reviews the physics of magnetron operation and discusses the influences of apparatus geometry on the use of magnetrons for rf sputtering and reactive sputtering, as well as on the microstructure and internal stresses in sputtered metallic coatings. (author) [pt
Directory of Open Access Journals (Sweden)
Shaikh Hafeez Hashimdeen
Full Text Available In this work we bring together replicating rapid prototyping technology with electrohydrodynamic phenomena to develop a device with the ability to build structures in three-dimensions while simultaneously affording the user a degree of designing versatility and ease that is not seen in conventional computer numerically controlled machines. An attempt at reproducing an actual human ear using polycaprolactone was pursued to validate the hardware. Five different polycaprolactone solution concentrations between 7-15 wt% were used and printing was performed at applied voltages that ranged from 1 to 6 kV and at flow rates from 5 µl/min to 60 µl/min. The corresponding geometrical and aesthetic features of the printed constructs were studied to determine the effectiveness of the device. The 15 wt% concentration at 60 µl/min under an applied electric field of 6 kV was identified as the best operating parameters to work with.
Physics and necessity rationalist pursuits from the Cartesian past to the quantum present
Darrigol, Olivier
2014-01-01
Can we prove the necessity of our best physical theories by rational means, without appeal to experience? This book recounts a few ingenious attempts to derive physical theories by reason only, beginning with Descartes' geometric construction of the world, and finishing with recent derivations of quantum mechanics from natural axioms. Deductions based on theological, metaphysical, or transcendental arguments are worth remembering for the ways they motivated and structured physical theory, even though we would now criticize their excessive confidence in the power of the mind. Other deductions more modestly relied on criteria for the comprehensibility of nature, including forms of measurability, causality, homogeneity, and correspondence. The central thesis of this book is that such criteria, when properly applied to idealized systems, effectively determine some of our most important theories as well as the mathematical character of the laws of physics. The relevant arguments are not purely rational, because on...
Geometric solitons of Hamiltonian flows on manifolds
Energy Technology Data Exchange (ETDEWEB)
Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)
2013-12-15
It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.
Operational geometric phase for mixed quantum states
International Nuclear Information System (INIS)
Andersson, O; Heydari, H
2013-01-01
The geometric phase has found a broad spectrum of applications in both classical and quantum physics, such as condensed matter and quantum computation. In this paper, we introduce an operational geometric phase for mixed quantum states, based on spectral weighted traces of holonomies, and we prove that it generalizes the standard definition of the geometric phase for mixed states, which is based on quantum interferometry. We also introduce higher order geometric phases, and prove that under a fairly weak, generically satisfied, requirement, there is always a well-defined geometric phase of some order. Our approach applies to general unitary evolutions of both non-degenerate and degenerate mixed states. Moreover, since we provide an explicit formula for the geometric phase that can be easily implemented, it is particularly well suited for computations in quantum physics. (paper)
Geometrical factors in the perception of sacredness
DEFF Research Database (Denmark)
Costa, Marco; Bonetti, Leonardo
2016-01-01
Geometrical and environmental factors in the perception of sacredness, dominance, and attractiveness were assessed by 137 participants in five tests. In the first test, a two-alternative forced-choice paradigm was used to test the perception of sacredness, dominance, and attractiveness in geometr......Geometrical and environmental factors in the perception of sacredness, dominance, and attractiveness were assessed by 137 participants in five tests. In the first test, a two-alternative forced-choice paradigm was used to test the perception of sacredness, dominance, and attractiveness...... in geometrical figures differing in shape, verticality, size, and symmetry. Verticality, symmetry, and convexity were found to be important factors in the perception of sacredness. In the second test, participants had to mark the point inside geometrical surfaces that was perceived as most sacred, dominant....... Geometrical factors in the perception of sacredness, dominance, and attractiveness were largely overlapping....
Guide to Geometric Algebra in Practice
Dorst, Leo
2011-01-01
This highly practical "Guide to Geometric Algebra in Practice" reviews algebraic techniques for geometrical problems in computer science and engineering, and the relationships between them. The topics covered range from powerful new theoretical developments, to successful applications, and the development of new software and hardware tools. This title: provides hands-on review exercises throughout the book, together with helpful chapter summaries; presents a concise introductory tutorial to conformal geometric algebra (CGA) in the appendices; examines the application of CGA for the d
On multipole moments in general relativity
International Nuclear Information System (INIS)
Hoenselaers, C.
1986-01-01
In general situations, involving gravitational waves the question of multiple moments in general relativity restricts the author to stationary axisymmetric situations. Here it has been shown that multipole moments, a set of numbers defined at spatial infinity as far away from the source as possible, determine a solution of Einstein's equations uniquely. With the rather powerful methods for generating solutions one might hope to get solutions with predefined multipole moments. Before doing so, however, one needs an efficient algorithm for calculating the moments of a given solution. Chapter 2 deals with a conjecture pertaining to such a calculational procedure and shows it to be not true. There is another context in which multipole moments are important. Consider a system composed of several objects. To separate, if possible, the various parts of their interaction, one needs a definition for multipole moments of individual members of a many body system. In spite of the fact that there is no definition for individual moments, with the exception of mass and angular momentum, Chapter 3 shows what can be done for the double Kerr solution. The authors can identify various terms in he interaction of two aligned Kerr objects and show that gravitational spin-spin interaction is indeed proportional to the product of the angular momenta
Table of Nuclear Electric Quadrupole Moments
International Nuclear Information System (INIS)
Stone, N.J.
2013-12-01
This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended value of the moment is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary reference EFG/moment references are required and their use is specified. The literature search covers the period to mid-2013. (author)
Theory of nuclear magnetic moments - LT-35
Energy Technology Data Exchange (ETDEWEB)
Kerman, A. K.
1952-09-15
The purpose of these notes is to give an account of some attempts at interpreting the observed values of nuclear magnetic moments. There is no attempt at a complete summary of the field as that would take much more space than is used here. In many cases the arguments are only outlined and references are given for those interested in further details. A discussion of the theory of nuclear magnetic moments necessitates many excursions into the details of the nuclear models because the magnetic moments have a direct bearing on the validity of these models. However the main emphasis here is on those features which tend to explain the magnetic moments and other evidence is not discussed unless it has a direct bearing on the problem. In the first part of the discussion the Shell Model of the nucleus is used, as this model seems to correlate a large body of data relating to the heavier nuclei. Included here are the modifications proposed to explain the fact that the experimental magnetic moments do not fit quantitatively with the exact predictions of the Shell Model. The next sections deal with some of the more drastic modifications introduced to explain the large nuclear quadrupole moments and the effect of these modifications on the magnetic moments. Finally we turn to more detailed investigations of the light nuclei, in particular the - Conjugate nuclei. (author)
Geometrical and Graphical Solutions of Quadratic Equations.
Hornsby, E. John, Jr.
1990-01-01
Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)
Moments analysis of concurrent Poisson processes
International Nuclear Information System (INIS)
McBeth, G.W.; Cross, P.
1975-01-01
A moments analysis of concurrent Poisson processes has been carried out. Equations are given which relate combinations of distribution moments to sums of products involving the number of counts associated with the processes and the mean rate of the processes. Elimination of background is discussed and equations suitable for processing random radiation, parent-daughter pairs in the presence of background, and triple and double correlations in the presence of background are given. The theory of identification of the four principle radioactive series by moments analysis is discussed. (Auth.)
Exchange currents for hypernuclear magnetic moments
International Nuclear Information System (INIS)
Saito, K.; Oka, M.; Suzuki, T.
1997-01-01
The meson (K and π) exchange currents for the hypernuclear magnetic moments are calculated using the effective Lagrangian method. The seagull diagram, the mesonic diagram and the Σ 0 -excitation diagram are considered. The Λ-N exchange magnetic moments for 5 Λ He and A=6 hypernuclei are calculated employing the harmonic oscillator shell model. It is found that the two-body correction is about -9% of the single particle value for 5 Λ He. The π exchange current, induced only in the Σ 0 -excitation diagram, is found to give dominant contribution for the isovector magnetic moments of hypernuclei with A=6. (orig.)
Moment analysis of hadronic vacuum polarization
Directory of Open Access Journals (Sweden)
Eduardo de Rafael
2014-09-01
Full Text Available I suggest a new approach to the determination of the hadronic vacuum polarization (HVP contribution to the anomalous magnetic moment of the muon aμHVP in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how aμHVP is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data.
Moment analysis of hadronic vacuum polarization
International Nuclear Information System (INIS)
Rafael, Eduardo de
2014-01-01
I suggest a new approach to the determination of the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon a μ HVP in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how a μ HVP is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data
Moment analysis of hadronic vacuum polarization
Energy Technology Data Exchange (ETDEWEB)
Rafael, Eduardo de
2014-09-07
I suggest a new approach to the determination of the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon a{sub μ}{sup HVP} in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how a{sub μ}{sup HVP} is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data.
Moment approach to charged particle beam dynamics
International Nuclear Information System (INIS)
Channell, P.J.
1983-01-01
We have derived the hierarchy of moment equations that describes the dynamics of charged-particle beams in linear accelerators and can truncate the hierarchy at any level either by discarding higher moments or by a cumulant expansion discarding only correlation functions. We have developed a procedure for relating the density expansion linearly to the moments to any order. The relation of space-charge fields to the density has been derived; and an accurate, systematic, and computationally convenient expansion of the resultant integrals has been developed
Dipole moments of the rho meson
International Nuclear Information System (INIS)
Hecht, M.B.; McKellar, B.H.P.
1997-04-01
The electric and magnetic dipole moments (EDM) of the rho meson are calculated using the propagators and vertices derived from the quantum chromodynamics Dyson-Schwinger equations. Results obtained from using the Bethe-Salpeter amplitude studied by Chappell, Mitchell et. al., and Pichowsky and Lee, are compared. The rho meson EDM is generated through the inclusion of a quark electric dipole moment, which is left as a free variable. These results are compared to the perturbative results to obtain a measure of the effects of quark interactions and confinement. The two dipole moments are also calculated using the phenomenological MIT bag model to provide a further basis for comparison
Moments method in the theory of accelerators
International Nuclear Information System (INIS)
Perel'shtejn, Eh.A.
1984-01-01
The moments method is widely used for solution of different physical and calculation problems in the theory of accelerators, magnetic optics and dynamics of high-current beams. Techniques using moments of the second order-mean squape characteristics of charged particle beams is shown to be most developed. The moments method is suitable and sometimes even the only technique applicable for solution of computerized problems on optimization of accelerating structures, beam transport channels, matching and other systems with accout of a beam space charge
Discrete geometric structures for architecture
Pottmann, Helmut
2010-06-13
The emergence of freeform structures in contemporary architecture raises numerous challenging research problems, most of which are related to the actual fabrication and are a rich source of research topics in geometry and geometric computing. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization of supporting beams and nodes. A study of quadrilateral meshes with planar faces reveals beautiful relations to discrete differential geometry. In particular, we discuss meshes which discretize the network of principal curvature lines. Conical meshes are among these meshes; they possess conical offset meshes at a constant face/face distance, which in turn leads to a supporting beam layout with so-called torsion free nodes. This work can be generalized to a variety of multilayer structures and laid the ground for an adapted curvature theory for these meshes. There are also efforts on segmenting surfaces into planar hexagonal panels. Though these are less constrained than planar quadrilateral panels, this problem is still waiting for an elegant solution. Inspired by freeform designs in architecture which involve circles and spheres, we present a new kind of triangle mesh whose faces\\' in-circles form a packing, i.e., the in-circles of two triangles with a common edge have the same contact point on that edge. These "circle packing (CP) meshes" exhibit an aesthetic balance of shape and size of their faces. They are closely tied to sphere packings on surfaces and to various remarkable structures and patterns which are of interest in art, architecture, and design. CP meshes constitute a new link between architectural freeform design and computational conformal geometry. Recently, certain timber structures motivated us to study discrete patterns of geodesics on surfaces. This
Geometric asymmetry driven Janus micromotors
Zhao, Guanjia; Pumera, Martin
2014-09-01
The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors.The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors. Electronic supplementary information (ESI) available: Additional SEM images, data analysis, Videos S
DEFF Research Database (Denmark)
Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.
Geometrically non-linear multi-degree-of-freedom (MDOF) systems subject to random excitation are considered. New semi-analytical approximate forward difference equations for the lower order non-stationary statistical moments of the response are derived from the stochastic differential equations...... of motion, and, the accuracy of these equations is numerically investigated. For stationary excitations, the proposed method computes the stationary statistical moments of the response from the solution of non-linear algebraic equations....
Information geometric methods for complexity
Felice, Domenico; Cafaro, Carlo; Mancini, Stefano
2018-03-01
Research on the use of information geometry (IG) in modern physics has witnessed significant advances recently. In this review article, we report on the utilization of IG methods to define measures of complexity in both classical and, whenever available, quantum physical settings. A paradigmatic example of a dramatic change in complexity is given by phase transitions (PTs). Hence, we review both global and local aspects of PTs described in terms of the scalar curvature of the parameter manifold and the components of the metric tensor, respectively. We also report on the behavior of geodesic paths on the parameter manifold used to gain insight into the dynamics of PTs. Going further, we survey measures of complexity arising in the geometric framework. In particular, we quantify complexity of networks in terms of the Riemannian volume of the parameter space of a statistical manifold associated with a given network. We are also concerned with complexity measures that account for the interactions of a given number of parts of a system that cannot be described in terms of a smaller number of parts of the system. Finally, we investigate complexity measures of entropic motion on curved statistical manifolds that arise from a probabilistic description of physical systems in the presence of limited information. The Kullback-Leibler divergence, the distance to an exponential family and volumes of curved parameter manifolds, are examples of essential IG notions exploited in our discussion of complexity. We conclude by discussing strengths, limits, and possible future applications of IG methods to the physics of complexity.
Geometrical aspects of quantum spaces
International Nuclear Information System (INIS)
Ho, P.M.
1996-01-01
Various geometrical aspects of quantum spaces are presented showing the possibility of building physics on quantum spaces. In the first chapter the authors give the motivations for studying noncommutative geometry and also review the definition of a Hopf algebra and some general features of the differential geometry on quantum groups and quantum planes. In Chapter 2 and Chapter 3 the noncommutative version of differential calculus, integration and complex structure are established for the quantum sphere S 1 2 and the quantum complex projective space CP q (N), on which there are quantum group symmetries that are represented nonlinearly, and are respected by all the aforementioned structures. The braiding of S q 2 and CP q (N) is also described. In Chapter 4 the quantum projective geometry over the quantum projective space CP q (N) is developed. Collinearity conditions, coplanarity conditions, intersections and anharmonic ratios is described. In Chapter 5 an algebraic formulation of Reimannian geometry on quantum spaces is presented where Riemannian metric, distance, Laplacian, connection, and curvature have their quantum counterparts. This attempt is also extended to complex manifolds. Examples include the quantum sphere, the complex quantum projective space and the two-sheeted space. The quantum group of general coordinate transformations on some quantum spaces is also given
Yang Mills instantons, geometrical aspects
International Nuclear Information System (INIS)
Stora, R.
1977-09-01
The word instanton has been coined by analogy with the word soliton. They both refer to solutions of elliptic non linear field equations with boundary conditions at infinity (of euclidean space time in the first case, euclidean space in the second case) lying on the set of classical vacua in such a way that stable topological properties emerge, susceptible to survive quantum effects, if those are small. Under this assumption, instantons are believed to be relevant to the description of tunnelling effects between classical vacua and signal some characteristics of the vacuum at the quantum level, whereas solitons should be associated with particles, i.e. discrete points in the mass spectrum. In one case the euclidean action is finite, in the other case, the energy is finite. From the mathematical point of view, the geometrical phenomena associated with the existence of solitons have forced physicists to learn rudiments of algebraic topology. The study of euclidean classical Yang Mills fields involves naturally mathematical items falling under the headings: differential geometry (fibre bundles, connections); differential topology (characteristic classes, index theory) and more recently algebraic geometry. These notes are divided as follows: a first section is devoted to a description of the physicist's views; a second section is devoted to the mathematician's vie
Geometric Reasoning for Automated Planning
Clement, Bradley J.; Knight, Russell L.; Broderick, Daniel
2012-01-01
An important aspect of mission planning for NASA s operation of the International Space Station is the allocation and management of space for supplies and equipment. The Stowage, Configuration Analysis, and Operations Planning teams collaborate to perform the bulk of that planning. A Geometric Reasoning Engine is developed in a way that can be shared by the teams to optimize item placement in the context of crew planning. The ISS crew spends (at the time of this writing) a third or more of their time moving supplies and equipment around. Better logistical support and optimized packing could make a significant impact on operational efficiency of the ISS. Currently, computational geometry and motion planning do not focus specifically on the optimized orientation and placement of 3D objects based on multiple distance and containment preferences and constraints. The software performs reasoning about the manipulation of 3D solid models in order to maximize an objective function based on distance. It optimizes for 3D orientation and placement. Spatial placement optimization is a general problem and can be applied to object packing or asset relocation.
Simulating geometrically complex blast scenarios
Directory of Open Access Journals (Sweden)
Ian G. Cullis
2016-04-01
Full Text Available The effects of blast waves generated by energetic and non-energetic sources are of continuing interest to the ballistics research community. Modern conflicts are increasingly characterised by asymmetric urban warfare, with improvised explosive devices (IEDs often playing a dominant role on the one hand and an armed forces requirement for minimal collateral effects from their weapons on the other. These problems are characterised by disparate length- and time-scales and may also be governed by complex physics. There is thus an increasing need to be able to rapidly assess and accurately predict the effects of energetic blast in topologically complex scenarios. To this end, this paper presents a new QinetiQ-developed advanced computational package called EAGLE-Blast, which is capable of accurately resolving the generation, propagation and interaction of blast waves around geometrically complex shapes such as vehicles and buildings. After a brief description of the numerical methodology, various blast scenario simulations are described and the results compared with experimental data to demonstrate the validation of the scheme and its ability to describe these complex scenarios accurately and efficiently. The paper concludes with a brief discussion on the use of the code in supporting the development of algorithms for fast running engineering models.
Generalized Geometric Quantum Speed Limits
Directory of Open Access Journals (Sweden)
Diego Paiva Pires
2016-06-01
Full Text Available The attempt to gain a theoretical understanding of the concept of time in quantum mechanics has triggered significant progress towards the search for faster and more efficient quantum technologies. One of such advances consists in the interpretation of the time-energy uncertainty relations as lower bounds for the minimal evolution time between two distinguishable states of a quantum system, also known as quantum speed limits. We investigate how the nonuniqueness of a bona fide measure of distinguishability defined on the quantum-state space affects the quantum speed limits and can be exploited in order to derive improved bounds. Specifically, we establish an infinite family of quantum speed limits valid for unitary and nonunitary evolutions, based on an elegant information geometric formalism. Our work unifies and generalizes existing results on quantum speed limits and provides instances of novel bounds that are tighter than any established one based on the conventional quantum Fisher information. We illustrate our findings with relevant examples, demonstrating the importance of choosing different information metrics for open system dynamics, as well as clarifying the roles of classical populations versus quantum coherences, in the determination and saturation of the speed limits. Our results can find applications in the optimization and control of quantum technologies such as quantum computation and metrology, and might provide new insights in fundamental investigations of quantum thermodynamics.
Geometric structure of percolation clusters.
Xu, Xiao; Wang, Junfeng; Zhou, Zongzheng; Garoni, Timothy M; Deng, Youjin
2014-01-01
We investigate the geometric properties of percolation clusters by studying square-lattice bond percolation on the torus. We show that the density of bridges and nonbridges both tend to 1/4 for large system sizes. Using Monte Carlo simulations, we study the probability that a given edge is not a bridge but has both its loop arcs in the same loop and find that it is governed by the two-arm exponent. We then classify bridges into two types: branches and junctions. A bridge is a branch iff at least one of the two clusters produced by its deletion is a tree. Starting from a percolation configuration and deleting the branches results in a leaf-free configuration, whereas, deleting all bridges produces a bridge-free configuration. Although branches account for ≈43% of all occupied bonds, we find that the fractal dimensions of the cluster size and hull length of leaf-free configurations are consistent with those for standard percolation configurations. By contrast, we find that the fractal dimensions of the cluster size and hull length of bridge-free configurations are given by the backbone and external perimeter dimensions, respectively. We estimate the backbone fractal dimension to be 1.643 36(10).
Geometric Phase Generated Optical Illusion.
Yue, Fuyong; Zang, Xiaofei; Wen, Dandan; Li, Zile; Zhang, Chunmei; Liu, Huigang; Gerardot, Brian D; Wang, Wei; Zheng, Guoxing; Chen, Xianzhong
2017-09-12
An optical illusion, such as "Rubin's vase", is caused by the information gathered by the eye, which is processed in the brain to give a perception that does not tally with a physical measurement of the stimulus source. Metasurfaces are metamaterials of reduced dimensionality which have opened up new avenues for flat optics. The recent advancement in spin-controlled metasurface holograms has attracted considerate attention, providing a new method to realize optical illusions. We propose and experimentally demonstrate a metasurface device to generate an optical illusion. The metasurface device is designed to display two asymmetrically distributed off-axis images of "Rubin faces" with high fidelity, high efficiency and broadband operation that are interchangeable by controlling the helicity of the incident light. Upon the illumination of a linearly polarized light beam, the optical illusion of a 'vase' is perceived. Our result provides an intuitive demonstration of the figure-ground distinction that our brains make during the visual perception. The alliance between geometric metasurface and the optical illusion opens a pathway for new applications related to encryption, optical patterning, and information processing.
Moments of inertia in a semiclassical approach
International Nuclear Information System (INIS)
Benchein, K.
1993-01-01
Semiclassical calculations have been performed for 31 nuclei. As a result of preliminary non-fully self-consistent calculations, the moments of inertia in investigated nuclei abd spin degrees of freedom are found
Anomalous magnetic moment with heavy virtual leptons
Energy Technology Data Exchange (ETDEWEB)
Kurz, Alexander [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2013-11-15
We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.
Hoang, P. D.; Andonian, G.; Gadjev, I.; Naranjo, B.; Sakai, Y.; Sudar, N.; Williams, O.; Fedurin, M.; Kusche, K.; Swinson, C.; Zhang, P.; Rosenzweig, J. B.
2018-04-01
Photonic structures operating in the terahertz (THz) spectral region enable the essential characteristics of confinement, modal control, and electric field shielding for very high gradient accelerators based on wakefields in dielectrics. We report here an experimental investigation of THz wakefield modes in a three-dimensional photonic woodpile structure. Selective control in exciting or suppressing of wakefield modes with a nonzero transverse wave vector is demonstrated by using drive beams of varying transverse ellipticity. Additionally, we show that the wakefield spectrum is insensitive to the offset position of strongly elliptical beams. These results are consistent with analytic theory and three-dimensional simulations and illustrate a key advantage of wakefield systems with Cartesian symmetry: the suppression of transverse wakes by elliptical beams.
International Nuclear Information System (INIS)
Grundmann, U.
1995-11-01
The code DYN3D/M2 was developed for 3-dimensional steady-state and transient analyses of reactor cores with hexagonal fuel assemblies. The neutron kinetics of the new version DYN3DR is based on a nodal method for the solution of the 3-dimensional 2-group neutron diffusion equation for Cartesian geometry. The thermal-hydraulic model FLOCAL simulating the two phase flow of coolant and the fuel rod behaviour is used in the two versions. The fundamentals for the solution of the neutron diffusion equations in DYN3DR are described. The 3-dimensional NEACRP benchmarks for rod ejections in LWR with quadratic fuel assemblies were calculated and the results were compared with the published solutions. The developed algorithm for neutron kinetics are suitable for using parallel processing. The behaviour of speed-up versus the number of processors is demonstrated for calculations of a static neutron flux distribution using a workstation with 4 processors. (orig.) [de
Gillies, Val; Harden, Angela; Johnson, Katherine; Reavey, Paula; Strange, Vicki; Willig, Carla
2004-03-01
The research presented in this paper uses memory work as a method to explore six women's collective constructions of two embodied practices, sweating and pain. The paper identifies limitations in the ways in which social constructionist research has theorized the relationship between discourse and materiality, and it proposes an approach to the study of embodiment which enjoins, rather than bridges, the discursive and the non-discursive. The paper presents an analysis of 25 memories of sweating and pain which suggests that Cartesian dualism is central to the women's accounts of their experiences. However, such dualism does not operate as a stable organizing principle. Rather, it offers two strategies for the performance of a split between mind and body. The paper traces the ways in which dualism can be both functional and restrictive, and explores the tensions between these two forms. The paper concludes by identifiying opportunities and limitations associated with memory work as a method for studying embodiment.
Bruno, Patrick
2012-06-01
The (Berry-Aharonov-Anandan) geometric phase acquired during a cyclic quantum evolution of finite-dimensional quantum systems is studied. It is shown that a pure quantum state in a (2J+1)-dimensional Hilbert space (or, equivalently, of a spin-J system) can be mapped onto the partition function of a gas of independent Dirac strings moving on a sphere and subject to the Coulomb repulsion of 2J fixed test charges (the Majorana stars) characterizing the quantum state. The geometric phase may be viewed as the Aharonov-Bohm phase acquired by the Majorana stars as they move through the gas of Dirac strings. Expressions for the geometric connection and curvature, for the metric tensor, as well as for the multipole moments (dipole, quadrupole, etc.), are given in terms of the Majorana stars. Finally, the geometric formulation of the quantum dynamics is presented and its application to systems with exotic ordering such as spin nematics is outlined.
Droplet-model predictions of charge moments
International Nuclear Information System (INIS)
Myers, W.D.
1982-04-01
The Droplet Model expressions for calculating various moments of the nuclear charge distribution are given. There are contributions to the moments from the size and shape of the system, from the internal redistribution induced by the Coulomb repulsion, and from the diffuseness of the surface. A case is made for the use of diffuse charge distributions generated by convolution as an alternative to Fermi-functions
Moments of the very high multiplicity distributions
International Nuclear Information System (INIS)
Nechitailo, V.A.
2004-01-01
In experiment, the multiplicity distributions of inelastic processes are truncated due to finite energy, insufficient statistics, or special choice of events. It is shown that the moments of such truncated multiplicity distributions possess some typical features. In particular, the oscillations of cumulant moments at high ranks and their negative values at the second rank can be considered as ones most indicative of the specifics of these distributions. They allow one to distinguish between distributions of different type
Moment approach to tandem mirror radial transport
International Nuclear Information System (INIS)
Siebert, K.D.; Callen, J.D.
1986-02-01
A moment approach is proposed for the study of tandem mirror radial transport in the resonant plateau regime. The salient features of the method are described with reference to axisymmetric tokamak transport theory. In particular, the importance of momentum conservation to the establishment of the azimuthal variations in the electrostatic potential is demonstrated. Also, an ad hoc drift kinetic equation is solved to determine parallel viscosity coefficients which are required to close the moment system
Theoretical status of baryon magnetic moments
Franklin, Jerrold
1989-05-01
This talk given at the Eighth International Symposium on High-Energy Spin Physics in Minneapolis, Minnesota (September 12-17, 1988), is a short summary of theoretical results for baryon magnetic moments. Results from the static bag model and pion exchange effects are summarized and compared with experimental data. A list of references for various models and properties effecting the baryon magnetic moments is given at the end of the article. (AIP)
Theoretical status of baryon magnetic moments
International Nuclear Information System (INIS)
Franklin, J.
1989-01-01
This talk given at the Eighth International Symposium on High-Energy Spin Physics in Minneapolis, Minnesota (September 12--17, 1988), is a short summary of theoretical results for baryon magnetic moments. Results from the static bag model and pion exchange effects are summarized and compared with experimental data. A list of references for various models and properties effecting the baryon magnetic moments is given at the end of the article
From moments to functions in quantum chromodynamics
International Nuclear Information System (INIS)
Bluemlein, Johannes; Klein, Sebastian; Kauers, Manuel; Schneider, Carsten
2009-02-01
Single-scale quantities, like the QCD anomalous dimensions andWilson coefficients, obey difference equations. Therefore their analytic form can be determined from a finite number of moments. We demonstrate this in an explicit calculation by establishing and solving large scale recursions by means of computer algebra for the anomalous dimensions and Wilson coefficients in unpolarized deeply inelastic scattering from their Mellin moments to 3-loop order. (orig.)
Estimation of Uncertainties of Full Moment Tensors
2017-10-06
For our moment tensor inversions, we use the ‘cut-and-paste’ ( CAP ) code of Zhu and Helmberger (1996) and Zhu and Ben-Zion (2013), with some...modifications. For the misfit function we use an L1 norm Silwal and Tape (2016), and we incorporate the number of misfitting polarities into the waveform... norm of the eigenvalue triple provides the magnitude of the moment tensor, leaving two free parameters to define the source type. In the same year
Moments expansion densities for quantifying financial risk
Ñíguez, T.M.; Perote, J.
2017-01-01
We propose a novel semi-nonparametric distribution that is feasibly parameterized to represent the non-Gaussianities of the asset return distributions. Our Moments Expansion (ME) density presents gains in simplicity attributable to its innovative polynomials, which are defined by the difference between the nth power of the random variable and the nth moment of the density used as the basis. We show that the Gram-Charlier distribution is a particular case of the ME-type of densities. The latte...
From moments to functions in quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, Johannes; Klein, Sebastian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Kauers, Manuel; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation
2009-02-15
Single-scale quantities, like the QCD anomalous dimensions andWilson coefficients, obey difference equations. Therefore their analytic form can be determined from a finite number of moments. We demonstrate this in an explicit calculation by establishing and solving large scale recursions by means of computer algebra for the anomalous dimensions and Wilson coefficients in unpolarized deeply inelastic scattering from their Mellin moments to 3-loop order. (orig.)
Hamilton, Scott; Hamilton, Trevor J.
2015-01-01
A fundamental discussion in lower-level undergraduate neuroscience and psychology courses is Descartes’s “radical” or “mind-body” dualism. According to Descartes, our thinking mind, the res cogitans, is separate from the body as physical matter or substance, the res extensa. Since the transmission of sensory stimuli from the body to the mind is a physical capacity shared with animals, it can be confused, misled, or uncertain (e.g., bodily senses imply that ice and water are different substances). True certainty thus arises from within the mind and its capacity to doubt physical stimuli. Since this doubting mind is a thinking thing that is distinct from bodily stimuli, truth and certainty are reached through the doubting mind as cogito ergo sum, or the certainty of itself as it thinks: hence Descartes’s famous maxim, I think, therefore I am. However, in the last century of Western philosophy, with nervous system investigation, and with recent advances in neuroscience, the potential avenues to explore student’s understanding of the epistemology and effects of Cartesian mind-body dualism has expanded. This article further explores this expansion, highlighting pedagogical practices and tools instructors can use to enhance a psychology student’s understanding of Cartesian dualistic epistemology, in order to think more critically about its implicit assumptions and effects on learning. It does so in two ways: first, by offering instructors an alternative philosophical perspective to dualistic thinking: a mind-body holism that is antithetical to the assumed binaries of dualistic epistemology. Second, it supplements this philosophical argument with a practical component: simple mind-body illusions that instructors may use to demonstrate contrary epistemologies to students. Combining these short philosophical and neuroscience arguments thereby acts as a pedagogical tool to open new conceptual spaces within which learning may occur. PMID:26321981
Directory of Open Access Journals (Sweden)
Ali Gunes
2015-12-01
Full Text Available The Deconstruction of the Cartesian Dichotomy of Black and Whitein William Blake’s The Little Black Boy Abstract This paper discusses English Romantic Poet William Blake’s anti-racial views in his poem The Little Black Boy. In so doing, it focuses upon how Blake attempts to deconstruct the Cartesian dichotomy of Western world view, a dichotomy which has usually been based on “the theory that the universe has been ruled from its origins by two conflicting powers, one good and one evil, both existing as equally ultimate first causes.” In this binary and hierarchal relationship, there are two essential terms in which one term is absolutely regarded as primary or fundamental in its essence, whereas the other term is considered secondary or something that lacks originality and presence. Once this equation is applied to the relationship between black and white people, it will easily be seen in the Western world that white people are always primary or fundamental to black-skinned people, and thus the perception behind this binary and hierarchal relationship seems the root of all the racial problems between black and white. This paper argues that Blake strives to deconstruct radically in The Little Black Boy the basis of this binary and hierarchal relationship which has been carried out for centuries in the Western world to segregate and then control the lives of black people. Finally, the paper maintains that Blake also shows a strong aspiration for creating an egalitarian society free of discrimination and injustices at a time when anti-slavery campaigns hit the top on both sides of Atlantic.
Hamilton, Scott; Hamilton, Trevor J
2015-01-01
A fundamental discussion in lower-level undergraduate neuroscience and psychology courses is Descartes's "radical" or "mind-body" dualism. According to Descartes, our thinking mind, the res cogitans, is separate from the body as physical matter or substance, the res extensa. Since the transmission of sensory stimuli from the body to the mind is a physical capacity shared with animals, it can be confused, misled, or uncertain (e.g., bodily senses imply that ice and water are different substances). True certainty thus arises from within the mind and its capacity to doubt physical stimuli. Since this doubting mind is a thinking thing that is distinct from bodily stimuli, truth and certainty are reached through the doubting mind as cogito ergo sum, or the certainty of itself as it thinks: hence Descartes's famous maxim, I think, therefore I am. However, in the last century of Western philosophy, with nervous system investigation, and with recent advances in neuroscience, the potential avenues to explore student's understanding of the epistemology and effects of Cartesian mind-body dualism has expanded. This article further explores this expansion, highlighting pedagogical practices and tools instructors can use to enhance a psychology student's understanding of Cartesian dualistic epistemology, in order to think more critically about its implicit assumptions and effects on learning. It does so in two ways: first, by offering instructors an alternative philosophical perspective to dualistic thinking: a mind-body holism that is antithetical to the assumed binaries of dualistic epistemology. Second, it supplements this philosophical argument with a practical component: simple mind-body illusions that instructors may use to demonstrate contrary epistemologies to students. Combining these short philosophical and neuroscience arguments thereby acts as a pedagogical tool to open new conceptual spaces within which learning may occur.
Geometrical scaling, furry branching and minijets
International Nuclear Information System (INIS)
Hwa, R.C.
1988-01-01
Scaling properties and their violations in hadronic collisions are discussed in the framework of the geometrical branching model. Geometrical scaling supplemented by Furry branching characterizes the soft component, while the production of jets specifies the hard component. Many features of multiparticle production processes are well described by this model. 21 refs
Geometric integrators for stochastic rigid body dynamics
Tretyakov, Mikhail
2016-01-05
Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.
Geometric integrators for stochastic rigid body dynamics
Tretyakov, Mikhail
2016-01-01
Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.
Geometric phases in discrete dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Cartwright, Julyan H.E., E-mail: julyan.cartwright@csic.es [Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, E-18100 Armilla, Granada (Spain); Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Piro, Nicolas, E-mail: nicolas.piro@epfl.ch [École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Piro, Oreste, E-mail: piro@imedea.uib-csic.es [Departamento de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Tuval, Idan, E-mail: ituval@imedea.uib-csic.es [Mediterranean Institute for Advanced Studies, CSIC–Universitat de les Illes Balears, E-07190 Mallorca (Spain)
2016-10-14
In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent. - Highlights: • We extend the concept of geometric phase to maps. • For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number. • For the rotated standard map, we explore the role of the geometric phase at the onset of chaos. • We show that the geometric phase is related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.
Geometrical optics and the diffraction phenomenon
International Nuclear Information System (INIS)
Timofeev, Aleksandr V
2005-01-01
This note outlines the principles of the geometrical optics of inhomogeneous waves whose description necessitates the use of complex values of the wave vector. Generalizing geometrical optics to inhomogeneous waves permits including in its scope the analysis of the diffraction phenomenon. (methodological notes)
Solving Absolute Value Equations Algebraically and Geometrically
Shiyuan, Wei
2005-01-01
The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.
Exact collisional moments for plasma fluid theories
Pfefferle, David; Hirvijoki, Eero; Lingam, Manasvi
2017-10-01
The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of the distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities, and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas, that relies on the Chapman-Enskog method, as well as to deriving collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rate.
Directory of Open Access Journals (Sweden)
Isabel G. Gamero Cabrera
2017-07-01
Full Text Available In this paper, I analyse Judith Butler’s recent critics against the Cartesian scepticism and the posTmodern constructivism (indentified by Preciado and Haraway’s works, in order to explain Butler’s distance from constructivism and, at the same time, to assert the ethical and potentially universal dimension of her defence of the precarious lives.
International Nuclear Information System (INIS)
Yukhimchuk, A.A.; Vinogradov, Yu.I.; Golubkov, A.N.; Grishechkin, S.K.; Il'kaev, R.I.; Kuryakin, A.V.; Lebedev, B.L.; Lobanov, V.N.; Mikhailov, V.N.; Tumkin, D.P.; Bogdanova, L.N.
2005-01-01
For the experiment on the measurement of the electron antineutrino magnetic moment we suggest a new approach to the tritium source design, namely, a configuration of annular cells filled with TiT 2 that are stacked into a hollow cylinder. Detectors are mounted in the hole inside.We present results of the optimization of geometrical and physical parameters of the source with respect to its experimental effectiveness and safety guaranty at all stages of its lifecycle. We discuss the choice of the construction materials and specify technological issues relevant to radiation purity of the source, being of the special concern in the experiment on the electron antineutrino magnetic moment measurement
Performance Evaluation of Moment Connections of Moment Resisting Frames Against Progressive Collapse
Directory of Open Access Journals (Sweden)
M. Mahmoudi
2017-02-01
Full Text Available When a primary structural element fails due to sudden load such as explosion, the building undergoes progressive collapse. The method for design of moment connections during progressive collapse is different to seismic design of moment connections. Because in this case, the axial force on the connections makes it behave differently. The purpose of this paper is to evaluate the performance of a variety of moment connections in preventing progressive collapse in steel moment frames. To achieve this goal, three prequalified moment connections (BSEEP, BFP and WUP-W were designed according seismic codes. These moment connections were analyzed numerically using ABAQUS software for progressive collapse. The results show that the BFP connection (bolted flange plate has capacity much more than other connections because of the use of plates at the junction of beam-column.
Poirot, Jordan; De Luna, Paolo; Rainer, Gregor
2016-04-01
We comprehensively characterize spiking and visual evoked potential (VEP) activity in tree shrew V1 and V2 using Cartesian, hyperbolic, and polar gratings. Neural selectivity to structure of Cartesian gratings was higher than other grating classes in both visual areas. From V1 to V2, structure selectivity of spiking activity increased, whereas corresponding VEP values tended to decrease, suggesting that single-neuron coding of Cartesian grating attributes improved while the cortical columnar organization of these neurons became less precise from V1 to V2. We observed that neurons in V2 generally exhibited similar selectivity for polar and Cartesian gratings, suggesting that structure of polar-like stimuli might be encoded as early as in V2. This hypothesis is supported by the preference shift from V1 to V2 toward polar gratings of higher spatial frequency, consistent with the notion that V2 neurons encode visual scene borders and contours. Neural sensitivity to modulations of polarity of hyperbolic gratings was highest among all grating classes and closely related to the visual receptive field (RF) organization of ON- and OFF-dominated subregions. We show that spatial RF reconstructions depend strongly on grating class, suggesting that intracortical contributions to RF structure are strongest for Cartesian and polar gratings. Hyperbolic gratings tend to recruit least cortical elaboration such that the RF maps are similar to those generated by sparse noise, which most closely approximate feedforward inputs. Our findings complement previous literature in primates, rodents, and carnivores and highlight novel aspects of shape representation and coding occurring in mammalian early visual cortex. Copyright © 2016 the American Physiological Society.
Electric dipole moments and polarizabilities of small Bi{sub n} (n = 2-24, 40, 80) clusters
Energy Technology Data Exchange (ETDEWEB)
Zhang, Song; Yuan, Hong Kuan; Chen, Hong; Wu, Bo [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Kuang, An Long [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); School of Physical Science and Technology, Suzhou University, Suzhou 215006 (China)
2012-01-15
The electric dipole moments (EDMs) and polarizabilities of small Bi{sub n} (n = 2-24, 40, 80) clusters are investigated by the finite field method within density functional theory (DFT). The results show that both dipole moments and polarizabilities have even-odd oscillation behaviors, and they strongly depend on geometrical structures and electronic structures. High symmetry structure prohibits the occurrence of EDMs on Bi clusters. The increasing polarizabilities of Bi clusters are attributed to the inherent novel chain-like geometrical evolution, which is significantly different from the characters observed in metal clusters or semiconductor clusters. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Geometrical formulation of the conformal Ward identity
International Nuclear Information System (INIS)
Kachkachi, M.
2002-08-01
In this paper we use deep ideas in complex geometry that proved to be very powerful in unveiling the Polyakov measure on the moduli space of Riemann surfaces and lead to obtain the partition function of perturbative string theory for 2, 3, 4 loops. Indeed, a geometrical interpretation of the conformal Ward identity in two dimensional conformal field theory is proposed: the conformal anomaly is interpreted as a deformation of the complex structure of the basic Riemann surface. This point of view is in line with the modern trend of geometric quantizations that are based on deformations of classical structures. Then, we solve the conformal Ward identity by using this geometrical formalism. (author)
Initial singularity and pure geometric field theories
Wanas, M. I.; Kamal, Mona M.; Dabash, Tahia F.
2018-01-01
In the present article we use a modified version of the geodesic equation, together with a modified version of the Raychaudhuri equation, to study initial singularities. These modified equations are used to account for the effect of the spin-torsion interaction on the existence of initial singularities in cosmological models. Such models are the results of solutions of the field equations of a class of field theories termed pure geometric. The geometric structure used in this study is an absolute parallelism structure satisfying the cosmological principle. It is shown that the existence of initial singularities is subject to some mathematical (geometric) conditions. The scheme suggested for this study can be easily generalized.
SOME PROPERTIES OF GEOMETRIC DEA MODELS
Directory of Open Access Journals (Sweden)
Ozren Despić
2013-02-01
Full Text Available Some specific geometric data envelopment analysis (DEA models are well known to the researchers in DEA through so-called multiplicative or log-linear efficiency models. Valuable properties of these models were noted by several authors but the models still remain somewhat obscure and rarely used in practice. The purpose of this paper is to show from a mathematical perspective where the geometric DEA fits in relation to the classical DEA, and to provide a brief overview of some benefits in using geometric DEA in practice of decision making and/or efficiency measurement.
Refined geometric transition and qq-characters
Kimura, Taro; Mori, Hironori; Sugimoto, Yuji
2018-01-01
We show the refinement of the prescription for the geometric transition in the refined topological string theory and, as its application, discuss a possibility to describe qq-characters from the string theory point of view. Though the suggested way to operate the refined geometric transition has passed through several checks, it is additionally found in this paper that the presence of the preferred direction brings a nontrivial effect. We provide the modified formula involving this point. We then apply our prescription of the refined geometric transition to proposing the stringy description of doubly quantized Seiberg-Witten curves called qq-characters in certain cases.
A Geometrical View of Higgs Effective Theory
CERN. Geneva
2016-01-01
A geometric formulation of Higgs Effective Field Theory (HEFT) is presented. Experimental observables are given in terms of geometric invariants of the scalar sigma model sector such as the curvature of the scalar field manifold M. We show how the curvature can be measured experimentally via Higgs cross-sections, W_L scattering, and the S parameter. The one-loop action of HEFT is given in terms of geometric invariants of M. The distinction between the Standard Model (SM) and HEFT is whether M is flat or curved, with the curvature a signal of the scale of new physics.
Geometrical analysis of the interacting boson model
International Nuclear Information System (INIS)
Dieperink, A.E.L.
1983-01-01
The Interacting Boson Model is considered, in relation with geometrical models and the application of mean field techniques to algebraic models, in three lectures. In the first, several methods are reviewed to establish a connection between the algebraic formulation of collective nuclear properties in terms of the group SU(6) and the geometric approach. In the second lecture the geometric interpretation of new degrees of freedom that arise in the neutron-proton IBA is discussed, and in the third one some further applications of algebraic techniques to the calculation of static and dynamic collective properties are presented. (U.K.)
Lectures on geometrical properties of nuclei
International Nuclear Information System (INIS)
Myers, W.D.
1975-11-01
Material concerning the geometrical properties of nuclei is drawn from a number of different sources. The leptodermous nature of nuclear density distributions and potential wells is used to draw together the various geometrical properties of these systems and to provide a unified means for their description. Extensive use is made of expansions of radial properties in terms of the surface diffuseness. A strong case is made for the use of convolution as a geometrical ansatz for generating diffuse surface distributions because of the number of simplifications that arise which are of practical importance. 7 figures
Stock price prediction using geometric Brownian motion
Farida Agustini, W.; Restu Affianti, Ika; Putri, Endah RM
2018-03-01
Geometric Brownian motion is a mathematical model for predicting the future price of stock. The phase that done before stock price prediction is determine stock expected price formulation and determine the confidence level of 95%. On stock price prediction using geometric Brownian Motion model, the algorithm starts from calculating the value of return, followed by estimating value of volatility and drift, obtain the stock price forecast, calculating the forecast MAPE, calculating the stock expected price and calculating the confidence level of 95%. Based on the research, the output analysis shows that geometric Brownian motion model is the prediction technique with high rate of accuracy. It is proven with forecast MAPE value ≤ 20%.
International Nuclear Information System (INIS)
RodrIguez, Arezky H; Handy, Carlos R; Trallero-Giner, C
2004-01-01
The suitability of conformal transformation (CT) analysis, and the eigenvalue moment method (EMM), for determining the eigenenergies and eigenfunctions of a quantum particle confined within a lens geometry, is reviewed and compared to the recent results by Even and Loualiche (2003 J. Phys.: Condens. Matter 15 8465). It is shown that CT and EMM define two accurate and versatile analytical/computational methods relevant to lens shaped regions of varying geometrical aspect ratios. (reply)
Improving Zernike moments comparison for optimal similarity and rotation angle retrieval.
Revaud, Jérôme; Lavoué, Guillaume; Baskurt, Atilla
2009-04-01
Zernike moments constitute a powerful shape descriptor in terms of robustness and description capability. However the classical way of comparing two Zernike descriptors only takes into account the magnitude of the moments and loses the phase information. The novelty of our approach is to take advantage of the phase information in the comparison process while still preserving the invariance to rotation. This new Zernike comparator provides a more accurate similarity measure together with the optimal rotation angle between the patterns, while keeping the same complexity as the classical approach. This angle information is particularly of interest for many applications, including 3D scene understanding through images. Experiments demonstrate that our comparator outperforms the classical one in terms of similarity measure. In particular the robustness of the retrieval against noise and geometric deformation is greatly improved. Moreover, the rotation angle estimation is also more accurate than state-of-the-art algorithms.
Measurement of the electric dipole moment and magnetic moment anomaly of the muon
Onderwater, CJG
2005-01-01
The experimental precision of the anomalous magnetic moment of the muon has been improved to 0.5 part-per-million by the Brookhaven E821 experiment, similar to the theoretical uncertainty. In the same experiment, a new limit on the electric dipole moment of 2.8 x 10(-19) e-cm (95% CL) was set. The
An online database of nuclear electromagnetic moments
International Nuclear Information System (INIS)
Mertzimekis, T.J.; Stamou, K.; Psaltis, A.
2016-01-01
Measurements of nuclear magnetic dipole and electric quadrupole moments are considered quite important for the understanding of nuclear structure both near and far from the valley of stability. The recent advent of radioactive beams has resulted in a plethora of new, continuously flowing, experimental data on nuclear structure – including nuclear moments – which hinders the information management. A new, dedicated, public and user friendly online database ( (http://magneticmoments.info)) has been created comprising experimental data of nuclear electromagnetic moments. The present database supersedes existing printed compilations, including also non-evaluated series of data and relevant meta-data, while putting strong emphasis on bimonthly updates. The scope, features and extensions of the database are reported.
Pengenalan Pose Tangan Menggunakan HuMoment
Directory of Open Access Journals (Sweden)
Dina Budhi Utami
2017-02-01
Full Text Available Computer vision yang didasarkan pada pengenalan bentuk memiliki banyak potensi dalam interaksi manusia dan komputer. Pose tangan dapat dijadikan simbol interaksi manusia dengan komputer seperti halnya pada penggunaan berbagai pose tangan pada bahasa isyarat. Berbagai pose tangan dapat digunakan untuk menggantikan fungsi mouse, untuk mengendalikan robot, dan sebagainya. Penelitian ini difokuskan pada pembangunan sistem pengenalan pose tangan menggunakan HuMoment. Proses pengenalan pose tangan dimulai dengan melakukan segmentasi citra masukan untuk menghasilkan citra ROI (Region of Interest yaitu area telapak tangan. Selanjutnya dilakukan proses deteksi tepi. Kemudian dilakukan ekstraksi nilai HuMoment. Nilai HuMoment dikuantisasikan ke dalam bukukode yang dihasilkan dari proses pelatihan menggunakan K-Means. Proses kuantisasi dilakukan dengan menghitung nilai Euclidean Distance terkecil antara nilai HuMomment citra masukan dan bukukode. Berdasarkan hasil penelitian, nilai akurasi sistem dalam mengenali pose tangan adalah 88.57%.
The vector meson with anomalous magnetic moment
International Nuclear Information System (INIS)
Boyarkin, O.M.
1976-01-01
The possibility of introducing an anomalous magnetic moment into the Stuckelberg version of the charged vector meson theory is considered. It is shown that the interference of states with spins equal to one and zero is absent in the presence of an anomalous magnetic moment of a particle. The differential cross section of scattering on the Coulomb field of a nucleus is calculated, and so are the differential and integral cross sections of meson pair production on annihilation of two gamma quanta. The two-photon mechanism of production of a meson pair in colliding electron-positron beams is considered. It is shown that with any value of the anomalous magnetic moment the cross section of the esup(+)esup(-) → esup(+)esup(-)γsup(*)γsup(*) → esup(+)esup(-)Wsup(+)Wsup(-) reaction exceeds that of the esup(+)esup(-) → γsup(*) → Wsup(+)Wsup(-) at sufficiently high energies
The anomalous magnetic moment of the muon
Jegerlehner, Friedrich
2017-01-01
This research monograph covers extensively the theory of the muon anomalous magnetic moment and provides estimates of the theoretical uncertainties. The muon anomalous magnetic moment is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. In addition, quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. Perspectives fo...
A corrector for spacecraft calculated electron moments
Directory of Open Access Journals (Sweden)
J. Geach
2005-03-01
Full Text Available We present the application of a numerical method to correct electron moments calculated on-board spacecraft from the effects of potential broadening and energy range truncation. Assuming a shape for the natural distribution of the ambient plasma and employing the scalar approximation, the on-board moments can be represented as non-linear integral functions of the underlying distribution. We have implemented an algorithm which inverts this system successfully over a wide range of parameters for an assumed underlying drifting Maxwellian distribution. The outputs of the solver are the corrected electron plasma temperature Te, density Ne and velocity vector Ve. We also make an estimation of the temperature anisotropy A of the distribution. We present corrected moment data from Cluster's PEACE experiment for a range of plasma environments and make comparisons with electron and ion data from other Cluster instruments, as well as the equivalent ground-based calculations using full 3-D distribution PEACE telemetry.
Composite quarks and their magnetic moments
International Nuclear Information System (INIS)
Parthasarathy, R.
1980-08-01
A composite quark model based on the symmetry group SU(10)sub(flavour) x SU(10)sub(colour) with the assumption of mass non-degenerate sub-quarks is considered. Magnetic moments of quarks and sub-quarks are obtained from the observed nucleon magnetic moments. Using these quark and sub-quark magnetic moments, a satisfactory agreement for the radiative decays of vector mesons (rho,ω) is obtained. The ratio of the masses of the sub-quarks constituting the u,d,s quarks are found to be Msub(p)/Msub(n) = 0.3953 and Msub(p)/Msub(lambda) = 0.596, indicating a mass hierarchy Msub(p) < Msub(n) < Msub(lambda) for the sub-quarks. (author)
Kπ=0+ band moment of inertia anomaly
International Nuclear Information System (INIS)
Zeng, J.Y.; Wu, C.S.; Cheng, L.; Lin, C.Z.; China Center of Advanced Science and Technology
1990-01-01
The moments of inertia of K π =0 + bands in the well-deformed nuclei are calculated by a particle-number-conserving treatment for the cranked shell model. The very accurate solutions to the low-lying K π =0 + bands are obtained by making use of an effective K truncation. Calculations show that the main contribution to the moments of inertia comes from the nucleons in the intruding high-j orbits. Considering the fact that no free parameter is involved in the calculation and no extra inert core contribution is added, the agreement between the calculated and the observed moments of inertia of 0 + bands in 168 Er is very satisfactory
Baryon magnetic moments: Symmetries and relations
Energy Technology Data Exchange (ETDEWEB)
Parreno, Assumpta [University of Barcelona; Savage, Martin [Univ. of Washington, Seattle, WA (United States); Tiburzi, Brian [City College of New York, NY (United States); City Univ. (CUNY), NY (United States); Wilhelm, Jonas [Justus-Liebig-Universitat Giessen, Giessen, Germany; Univ. of Washington, Seattle, WA (United States); Chang, Emmanuel [Univ. of Washington, Seattle, WA (United States); Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2018-04-01
Magnetic moments of the octet baryons are computed using lattice QCD in background magnetic fields, including the first treatment of the magnetically coupled Σ0- Λ system. Although the computations are performed for relatively large values of the up and down quark masses, we gain new insight into the symmetries and relations between magnetic moments by working at a three-flavor mass-symmetric point. While the spinflavor symmetry in the large Nc limit of QCD is shared by the naïve constituent quark model, we find instances where quark model predictions are considerably favored over those emerging in the large Nc limit. We suggest further calculations that would shed light on the curious patterns of baryon magnetic moments.
Neutron Electric Dipole Moment from colored scalars⋆
Directory of Open Access Journals (Sweden)
Fajfer Svjetlana
2014-01-01
Full Text Available We present new contributions to the neutron electric dipole moment induced by a color octet, weak doublet scalar, accommodated within a modified Minimal Flavor Violating framework. These flavor non-diagonal couplings of the color octet scalar might account for an assymmetry of order 3 × 10−3 for aCP(D0 → K−K+ − aCP(D0 → π+π− at tree level. The same couplings constrained by this assymmetry also induce two-loop contributions to the neutron electric dipole moment. We find that the direct CP violating asymmetry in neutral D-meson decays is more constraining on the allowed parameter space than the current experimental bound on neutron electric dipole moment.
Energy Technology Data Exchange (ETDEWEB)
Ohtsubo, T., E-mail: tohtsubo@np.gs.niigata-u.ac.jp; Kawamura, Y.; Ohya, S. [Niigata University, Department of Physics (Japan); Izumikawa, T. [Niigata University, Radioisotope Center (Japan); Nishimura, K. [Toyama University, Faculty of Engineering (Japan); Muto, S. [Neutron Science Laboratory, KEK (Japan); Shinozuka, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan)
2007-11-15
Nuclear magnetic resonances were measured for {sup 48}Sc and {sup 44m}Sc oriented at 8 mK in an Fe host metal. The magnetic hyperfine splitting frequencies at an external magnetic field of 0.2 T were determined to be 63.22(11) MHz and 64.81(1) MHz for {sup 48}Sc and {sup 44m}Sc, respectively. With the known magnetic moment of {mu}({sup 44m}Sc)=+3.88 (1) {mu}{sub N}, the magnetic moment of {sup 48}Sc is deduced as {mu}({sup 44}Sc)=+3.785(12) {mu}{sub N}. The measured magnetic moment of {sup 48}Sc is discussed in terms of the shell model using the effective interactions.
A General Method to Estimate Earthquake Moment and Magnitude using Regional Phase Amplitudes
Energy Technology Data Exchange (ETDEWEB)
Pasyanos, M E
2009-11-19
This paper presents a general method of estimating earthquake magnitude using regional phase amplitudes, called regional M{sub o} or regional M{sub w}. Conceptually, this method uses an earthquake source model along with an attenuation model and geometrical spreading which accounts for the propagation to utilize regional phase amplitudes of any phase and frequency. Amplitudes are corrected to yield a source term from which one can estimate the seismic moment. Moment magnitudes can then be reliably determined with sets of observed phase amplitudes rather than predetermined ones, and afterwards averaged to robustly determine this parameter. We first examine in detail several events to demonstrate the methodology. We then look at various ensembles of phases and frequencies, and compare results to existing regional methods. We find regional M{sub o} to be a stable estimator of earthquake size that has several advantages over other methods. Because of its versatility, it is applicable to many more events, particularly smaller events. We make moment estimates for earthquakes ranging from magnitude 2 to as large as 7. Even with diverse input amplitude sources, we find magnitude estimates to be more robust than typical magnitudes and existing regional methods and might be tuned further to improve upon them. The method yields a more meaningful quantity of seismic moment, which can be recast as M{sub w}. Lastly, it is applied here to the Middle East region using an existing calibration model, but it would be easy to transport to any region with suitable attenuation calibration.
Mexican sign language recognition using normalized moments and artificial neural networks
Solís-V., J.-Francisco; Toxqui-Quitl, Carina; Martínez-Martínez, David; H.-G., Margarita
2014-09-01
This work presents a framework designed for the Mexican Sign Language (MSL) recognition. A data set was recorded with 24 static signs from the MSL using 5 different versions, this MSL dataset was captured using a digital camera in incoherent light conditions. Digital Image Processing was used to segment hand gestures, a uniform background was selected to avoid using gloved hands or some special markers. Feature extraction was performed by calculating normalized geometric moments of gray scaled signs, then an Artificial Neural Network performs the recognition using a 10-fold cross validation tested in weka, the best result achieved 95.83% of recognition rate.
Toeplitz Operators, Pseudo-Homogeneous Symbols, and Moment Maps on the Complex Projective Space
Directory of Open Access Journals (Sweden)
Miguel Antonio Morales-Ramos
2017-01-01
Full Text Available Following previous works for the unit ball due to Nikolai Vasilevski, we define quasi-radial pseudo-homogeneous symbols on the projective space and obtain the corresponding commutativity results for Toeplitz operators. A geometric interpretation of these symbols in terms of moment maps is developed. This leads us to the introduction of a new family of symbols, extended pseudo-homogeneous, that provide larger commutative Banach algebras generated by Toeplitz operators. This family of symbols provides new commutative Banach algebras generated by Toeplitz operators on the unit ball.
Transition curves for highway geometric design
Kobryń, Andrzej
2017-01-01
This book provides concise descriptions of the various solutions of transition curves, which can be used in geometric design of roads and highways. It presents mathematical methods and curvature functions for defining transition curves. .
Geometrical scaling of jet fragmentation photons
Energy Technology Data Exchange (ETDEWEB)
Hattori, Koichi, E-mail: koichi.hattori@riken.jp [RIKEN BNL Research Center, Brookhaven National Laboratory, Upton NY 11973 (United States); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); McLerran, Larry, E-mail: mclerran@bnl.gov [RIKEN BNL Research Center, Brookhaven National Laboratory, Upton NY 11973 (United States); Physics Dept., Bdg. 510A, Brookhaven National Laboratory, Upton, NY-11973 (United States); Physics Dept., China Central Normal University, Wuhan (China); Schenke, Björn, E-mail: bschenke@bnl.gov [Physics Dept., Bdg. 510A, Brookhaven National Laboratory, Upton, NY-11973 (United States)
2016-12-15
We discuss jet fragmentation photons in ultrarelativistic heavy-ion collisions. We argue that, if the jet distribution satisfies geometrical scaling and an anisotropic spectrum, these properties are transferred to photons during the jet fragmentation.
Geometric U-folds in four dimensions
Lazaroiu, C. I.; Shahbazi, C. S.
2018-01-01
We describe a general construction of geometric U-folds compatible with a non-trivial extension of the global formulation of four-dimensional extended supergravity on a differentiable spin manifold. The topology of geometric U-folds depends on certain flat fiber bundles which encode how supergravity fields are globally glued together. We show that smooth non-trivial U-folds of this type can exist only in theories where both the scalar and space-time manifolds have non-trivial fundamental group and in addition the scalar map of the solution is homotopically non-trivial. Consistency with string theory requires smooth geometric U-folds to be glued using subgroups of the effective discrete U-duality group, implying that the fundamental group of the scalar manifold of such solutions must be a subgroup of the latter. We construct simple examples of geometric U-folds in a generalization of the axion-dilaton model of \
5th Dagstuhl Seminar on Geometric Modelling
Brunnett, Guido; Farin, Gerald; Goldman, Ron
2004-01-01
In 19 articles presented by leading experts in the field of geometric modelling the state-of-the-art on representing, modeling, and analyzing curves, surfaces as well as other 3-dimensional geometry is given. The range of applications include CAD/CAM-systems, computer graphics, scientific visualization, virtual reality, simulation and medical imaging. The content of this book is based on selected lectures given at a workshop held at IBFI Schloss Dagstuhl, Germany. Topics treated are: – curve and surface modelling – non-manifold modelling in CAD – multiresolution analysis of complex geometric models – surface reconstruction – variational design – computational geometry of curves and surfaces – 3D meshing – geometric modelling for scientific visualization – geometric models for biomedical applications
The perception of geometrical structure from congruence
Lappin, Joseph S.; Wason, Thomas D.
1989-01-01
The principle function of vision is to measure the environment. As demonstrated by the coordination of motor actions with the positions and trajectories of moving objects in cluttered environments and by rapid recognition of solid objects in varying contexts from changing perspectives, vision provides real-time information about the geometrical structure and location of environmental objects and events. The geometric information provided by 2-D spatial displays is examined. It is proposed that the geometry of this information is best understood not within the traditional framework of perspective trigonometry, but in terms of the structure of qualitative relations defined by congruences among intrinsic geometric relations in images of surfaces. The basic concepts of this geometrical theory are outlined.
Mechanisms of geometrical seismic attenuation
Directory of Open Access Journals (Sweden)
Igor B. Morozov
2011-07-01
Full Text Available In several recent reports, we have explained the frequency dependence of the apparent seismic quality-factor (Q observed in many studies according to the effects of geometrical attenuation, which was defined as the zero-frequency limit of the temporal attenuation coefficient. In particular, geometrical attenuation was found to be positive for most waves traveling within the lithosphere. Here, we present three theoretical models that illustrate the origin of this geometrical attenuation, and we investigate the causes of its preferential positive values. In addition, we discuss the physical basis and limitations of both the conventional and new attenuation models. For waves in media with slowly varying properties, geometrical attenuation is caused by variations in the wavefront curvature, which can be both positive (for defocusing and negative (for focusing. In media with velocity/density contrasts, incoherent reflectivity leads to geometrical-attenuation coefficients which are proportional to the mean squared reflectivity and are always positive. For «coherent» reflectivity, the geometrical attenuation is approximately zero, and the attenuation process can be described according to the concept of «scattering Q». However, the true meaning of this parameter is in describing the mean reflectivity within the medium, and not that of the traditional resonator quality factor known in mechanics. The general conclusion from these models is that non-zero and often positive levels of geometrical attenuation are common in realistic, heterogeneous media, both observationally and theoretically. When transformed into the conventional Q-factor form, this positive geometrical attenuation leads to Q values that quickly increase with frequency. These predictions show that the positive frequency-dependent Q observed in many datasets might represent artifacts of the transformations of the attenuation coefficients into Q.
Rotations et moments angulaires enmécanique quantique
van de Wiele, J.
Rotations and angular moments in quantum mechanics As in classical mechanics, rotation in quantum mechanics is a transformation which deals with angular momentum. The difference with classical mechanics comes from the fact that angular momentum is a vector operator and not a usual vector and its components do not commute. As for any transformation in quantum mechanics, to each rotation we can associate an operator which acts in state space. The expression of this operator depends on whether the rotation is passive, that is we do a rotation of the coordinate axes and the physical system is left unchanged, or active, in which case the coordinate axes are unchanged and the rotation is performed on the physical system. In the first part (Chaps. 1 and 2) of this book, details concerning both aspects are given. Following the definition of the geometrical transformation associated with the most general rotation, we give the expression of the rotation operator for specific cases. Transformation laws for scalar fields, vector fields and spinor fields are given as well as transformation laws for scalar operators, vector operators and more generally, for operators of any rank. The second part (Chaps. 3 and 4) deals with angular momentum algebra. We define the coupling coefficients of 2, 3 and 4 angular momenta as well as the recoupling coefficients. The definition of the irreductible tensor operator, which is a generalisation of scalar and vector operators, is given as well as the Wigner-Eckart theorem. The application of this theorem to more complex cases is studied. Comme en mécanique classique, la rotation en mécanique quantique est une transformation qui fait intervenir le moment cinétique. La différence avec la mécanique classique vient du fait que le moment cinétique est un opérateur vectoriel et non pas un vecteur ordinaire, et que ses composantes ne commutent pas deux-à-deux. Comme pour toute transformation en mécanique quantique, à chaque rotation est
Determination of the neutron magnetic moment
International Nuclear Information System (INIS)
Greene, G.L.; Ramsey, N.F.; Mampe, W.; Pendlebury, J.M.; Smith, K.; Dress, W.B.; Miller, P.D.; Perrin, P.
1981-01-01
The neutron magnetic moment has been measured with an improvement of a factor of 100 over the previous best measurement. Using a magnetic resonance spectrometer of the separated oscillatory field type capable of determining a resonance signal for both neutrons and protons (in flowing H 2 O), we find μ/sub n//μ/sub p/ = 0.68497935(17) (0.25 ppM). The neutron magnetic moment can also be expressed without loss of accuracy in a variety of other units
Macroscopic quantum tunneling of the magnetic moment
Tejada, J.; Hernandez, J. M.; del Barco, E.
1999-05-01
In this paper we review the work done on magnetic relaxation during the last 10 years on both single-domain particles and magnetic molecules and its contribution to the discovery of quantum tunneling of the magnetic moment (Chudnovsky and Tejada, Macroscopic Quantum tunneling of the Magnetic moment, Cambridge University press, Cambridge, 1998). We present first the theoretical expressions and their connection to quantum relaxation and secondly, we show and discuss the experimental results. Finally, we discuss very recent hysteresis data on Mn 12Ac molecules at extremely large sweeping rate for the external magnetic field which suggest the existence of quantum spin—phonon avalanches.
The Method of Moments in electromagnetics
Gibson, Walton C
2014-01-01
Now Covers Dielectric Materials in Practical Electromagnetic DevicesThe Method of Moments in Electromagnetics, Second Edition explains the solution of electromagnetic integral equations via the method of moments (MOM). While the first edition exclusively focused on integral equations for conducting problems, this edition extends the integral equation framework to treat objects having conducting as well as dielectric parts.New to the Second EditionExpanded treatment of coupled surface integral equations for conducting and composite conducting/dielectric objects, including objects having multipl
Hyperon magnetic moments and total cross sections
International Nuclear Information System (INIS)
Lipkin, H.J.
1982-06-01
The new data on both total cross sections and magnetic moments are simply described by beginning with the additive quark model in an SU(3) limit where all quarks behave like strange quarks and breaking both additivity and SU(3) simultaneously with an additional non-additive mechanism which affects only nonstrange quark contributions. The suggestion that strange quarks behave more simply than nonstrange may provide clues to underlying structure or dynamics. Small discrepancies in the moments are analyzed and shown to provide serious difficulties for most models if they are statistically significant. (author)
Scale invariants from Gaussian-Hermite moments
Czech Academy of Sciences Publication Activity Database
Yang, B.; Kostková, Jitka; Flusser, Jan; Suk, Tomáš
2017-01-01
Roč. 132, č. 1 (2017), s. 77-84 ISSN 0165-1684 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Scale invariants * Gaussian–Hermite moments * Variable modulation * Normalization * Zernike moments Subject RIV: JD - Computer Applications, Robotics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 3.110, year: 2016 http://library.utia.cas.cz/separaty/2016/ZOI/flusser-0466031.pdf
Spin and orbital moments in actinide compounds
DEFF Research Database (Denmark)
Lebech, B.; Wulff, M.; Lander, G.H.
1991-01-01
The extended spatial distribution of both the transition-metal 3d electrons and the actinide 5f electrons results in a strong interaction between these electron states when the relevant elements are alloyed. A particular interesting feature of this hybridization, which is predicted by single...... experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe2, NpCo2, and PuFe2 and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced...
Moments of structure functions in full QCD
International Nuclear Information System (INIS)
Dolgov, D.; Brower, R.; Capitani, S.; Negele, J.W.; Pochinsky, A.; Renner, D.; Eicker, N.; Lippert, T.; Schilling, K.; Edwards, R.G.; Heller, U.M.
2001-01-01
Moments of the quark density distribution, moments of the quark helicity distribution, and the tensor charge are calculated in full QCD. Calculations of matrix elements of operators from the operator product expansion have been performed on 16 3 x 32 lattices for Wilson fermions at β = 5.6 using configurations from the SESAM collaboration and at β = 5.5 using configurations from SCRI. One-loop perturbative renormalization corrections are included. Selected results are compared with corresponding quenched calculations and with calculations using cooled configurations
Nuclear moments of inertia at high spin
International Nuclear Information System (INIS)
Deleplanque, M.A.
1982-10-01
The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in γ-γ correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum γ-ray spectra of rotational nuclei up to high frequencies. The evolution of γ-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei
The geometric semantics of algebraic quantum mechanics.
Cruz Morales, John Alexander; Zilber, Boris
2015-08-06
In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Geometric reconstruction methods for electron tomography
DEFF Research Database (Denmark)
Alpers, Andreas; Gardner, Richard J.; König, Stefan
2013-01-01
Electron tomography is becoming an increasingly important tool in materials science for studying the three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts...... and discuss several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed...
Geometric Hypergraph Learning for Visual Tracking
Du, Dawei; Qi, Honggang; Wen, Longyin; Tian, Qi; Huang, Qingming; Lyu, Siwei
2016-01-01
Graph based representation is widely used in visual tracking field by finding correct correspondences between target parts in consecutive frames. However, most graph based trackers consider pairwise geometric relations between local parts. They do not make full use of the target's intrinsic structure, thereby making the representation easily disturbed by errors in pairwise affinities when large deformation and occlusion occur. In this paper, we propose a geometric hypergraph learning based tr...
Sparse geometric graphs with small dilation
Aronov, B.; Berg, de M.; Cheong, O.; Gudmundsson, J.; Haverkort, H.J.; Vigneron, A.; Deng, X.; Du, D.
2005-01-01
Given a set S of n points in the plane, and an integer k such that 0 = k
Thomas Young's contributions to geometrical optics.
Atchison, David A; Charman, W Neil
2011-07-01
In addition to his work on physical optics, Thomas Young (1773-1829) made several contributions to geometrical optics, most of which received little recognition in his time or since. We describe and assess some of these contributions: Young's construction (the basis for much of his geometric work), paraxial refraction equations, oblique astigmatism and field curvature, and gradient-index optics. © 2011 The Authors. Clinical and Experimental Optometry © 2011 Optometrists Association Australia.
Progressive Conversion from B-rep to BSP for Streaming Geometric Modeling.
Bajaj, Chandrajit; Paoluzzi, Alberto; Scorzelli, Giorgio
2006-01-01
We introduce a novel progressive approach to generate a Binary Space Partition (BSP) tree and a convex cell decomposition for any input triangles boundary representation (B-rep), by utilizing a fast calculation of the surface inertia. We also generate a solid model at progressive levels of detail. This approach relies on a variation of standard BSP tree generation, allowing for labeling cells as in, out and fuzzy, and which permits a comprehensive representation of a solid as the Hasse diagram of a cell complex. Our new algorithm is embedded in a streaming computational framework, using four types of dataflow processes that continuously produce, transform, combine or consume subsets of cells depending on their number or input/output stream. A varied collection of geometric modeling techniques are integrated in this streaming framework, including polygonal, spline, solid and heterogeneous modeling with boundary and decompositive representations, Boolean set operations, Cartesian products and adaptive refinement. The real-time B-rep to BSP streaming results we report in this paper are a large step forward in the ultimate unification of rapid conceptual and detailed shape design methodologies.
Mantini, S; Bruner, E; Colaiacomo, B; Ciccarelli, A; Redaelli, A; Ripani, M
2012-04-01
The plantar support and its modifications are widely studied because of their bearing on posture. In particular, past studies have focused on the support modification during specific athletic tasks to highlight the eventual correlations between foot type and the most frequent sport injuries, due to intrinsic and extrinsic components that involve the structural and functional dynamics that act on the plantar vault during static and dynamic condition. These studies have been conducted by analyzing the morphological variation of the footprint during the performance. In the present study the variation in shape of the baropodometrical footprint of young soccer players, has been analyzed using geometric morphometrics. This approach permits a quantification of the morphological variation of the subjects using Cartesian coordinates placed at specific points on the footprint outline, and to correlate them with physical variables. In the present study the young soccer players displayed a narrowing of the footprint due to a transversal variation on the isthmus, when compared to children of the same age who did not play soccer. These results suggest a physiological and biomechanical organization of the foot type in soccer due to the specific athletic tasks involved. As the foot type, in sport, is strictly associated to recurrent injuries, the result obtained in this study should be considered as indicative for future analysis. In fact, a clear and univocal knowledge of this phenomenon would be useful in the planning of a training protocol to reduce the incidence of sport related injuries.
Graphene geometric diodes for terahertz rectennas
International Nuclear Information System (INIS)
Zhu Zixu; Joshi, Saumil; Grover, Sachit; Moddel, Garret
2013-01-01
We demonstrate a new thin-film graphene diode called a geometric diode that relies on geometric asymmetry to provide rectification at 28 THz. The geometric diode is coupled to an optical antenna to form a rectenna that rectifies incoming radiation. This is the first reported graphene-based antenna-coupled diode working at 28 THz, and potentially at optical frequencies. The planar structure of the geometric diode provides a low RC time constant, on the order of 10 −15 s, required for operation at optical frequencies, and a low impedance for efficient power transfer from the antenna. Fabricated geometric diodes show asymmetric current–voltage characteristics consistent with Monte Carlo simulations for the devices. Rectennas employing the geometric diode coupled to metal and graphene antennas rectify 10.6 µm radiation, corresponding to an operating frequency of 28 THz. The graphene bowtie antenna is the first demonstrated functional antenna made using graphene. Its response indicates that graphene is a suitable terahertz resonator material. Applications for this terahertz diode include terahertz-wave and optical detection, ultra-high-speed electronics and optical power conversion. (paper)
Numerical approximation of the Boltzmann equation : moment closure
Abdel Malik, M.R.A.; Brummelen, van E.H.
2012-01-01
This work applies the moment method onto a generic form of kinetic equations to simplify kinetic models of particle systems. This leads to the moment closure problem which is addressed using entropy-based moment closure techniques utilizing entropy minimization. The resulting moment closure system
Three-dimensional geometric analysis of felid limb bone allometry.
Directory of Open Access Journals (Sweden)
Michael Doube
Full Text Available Studies of bone allometry typically use simple measurements taken in a small number of locations per bone; often the midshaft diameter or joint surface area is compared to body mass or bone length. However, bones must fulfil multiple roles simultaneously with minimum cost to the animal while meeting the structural requirements imposed by behaviour and locomotion, and not exceeding its capacity for adaptation and repair. We use entire bone volumes from the forelimbs and hindlimbs of Felidae (cats to investigate regional complexities in bone allometry.Computed tomographic (CT images (16435 slices in 116 stacks were made of 9 limb bones from each of 13 individuals of 9 feline species ranging in size from domestic cat (Felis catus to tiger (Panthera tigris. Eleven geometric parameters were calculated for every CT slice and scaling exponents calculated at 5% increments along the entire length of each bone. Three-dimensional moments of inertia were calculated for each bone volume, and spherical radii were measured in the glenoid cavity, humeral head and femoral head. Allometry of the midshaft, moments of inertia and joint radii were determined. Allometry was highly variable and related to local bone function, with joint surfaces and muscle attachment sites generally showing stronger positive allometry than the midshaft.Examining whole bones revealed that bone allometry is strongly affected by regional variations in bone function, presumably through mechanical effects on bone modelling. Bone's phenotypic plasticity may be an advantage during rapid evolutionary divergence by allowing exploitation of the full size range that a morphotype can occupy. Felids show bone allometry rather than postural change across their size range, unlike similar-sized animals.
Macroscopic polarization in crystalline dielectrics: the geometric phase approach
International Nuclear Information System (INIS)
Resta, R.
1994-01-01
The macroscopic electric polarization of a crystal is often defined as the dipole of a unit cell. In fact, such a dipole moment is ill defined, and the above definition is incorrect. Looking more closely, the quantity generally measured is differential polarization, defined with respect to a ''reference state'' of the same material. Such differential polarizations include either derivatives of the polarization (dielectric permittivity, Born effective charges, piezoelectricity, pyroelectricity) or finite differences (ferroelectricity). On the theoretical side, the differential concept is basic as well. Owing to continuity, a polarization difference is equivalent to a macroscopic current, which is directly accessible to the theory as a bulk property. Polarization is a quantum phenomenon and cannot be treated with a classical model, particularly whenever delocalized valence electrons are present in the dielectric. In a quantum picture, the current is basically a property of the phase of the wave functions, as opposed to the charge, which is a property of their modulus. An elegant and complete theory has recently been developed by King-Smith and Vanderbilt, in which the polarization difference between any two crystal states--in a null electric field--takes the form of a geometric quantum phase. This gives a comprehensive account of this theory, which is relevant for dealing with transverse-optic phonons, piezoelectricity, and ferroelectricity. Its relation to the established concepts of linear-response theory is also discussed. Within the geometric phase approach, the relevant polarization difference occurs as the circuit integral of a Berry connection (or ''vector potential''), while the corresponding curvature (or ''magnetic field'') provides the macroscopic linear response
Modifications of Geometric Truncation of the Scattering Phase Function
Radkevich, A.
2017-12-01
Phase function (PF) of light scattering on large atmospheric particles has very strong peak in forward direction constituting a challenge for accurate numerical calculations of radiance. Such accurate (and fast) evaluations are important in the problems of remote sensing of the atmosphere. Scaling transformation replaces original PF with a sum of the delta function and a new regular smooth PF. A number of methods to construct such a PF were suggested. Delta-M and delta-fit methods require evaluation of the PF moments which imposes a numerical problem if strongly anisotropic PF is given as a function of angle. Geometric truncation keeps the original PF unchanged outside the forward peak cone replacing it with a constant within the cone. This approach is designed to preserve the asymmetry parameter. It has two disadvantages: 1) PF has discontinuity at the cone; 2) the choice of the cone is subjective, no recommendations were provided on the choice of the truncation angle. This choice affects both truncation fraction and the value of the phase function within the forward cone. Both issues are addressed in this study. A simple functional form of the replacement PF is suggested. This functional form allows for a number of modifications. This study consider 3 versions providing continuous PF. The considered modifications also bear either of three properties: preserve asymmetry parameter, provide continuity of the 1st derivative of the PF, and preserve mean scattering angle. The second problem mentioned above is addressed with a heuristic approach providing unambiguous criterion of selection of the truncation angle. The approach showed good performance on liquid water and ice clouds with different particle size distributions. Suggested modifications were tested on different cloud PFs using both discrete ordinates and Monte Carlo methods. It was showed that the modifications provide better accuracy of the radiance computation compare to the original geometric truncation.
Magnetic moment densities in selected UTX compounds
Czech Academy of Sciences Publication Activity Database
Javorský, P.; Schweizer, J.; Givord, F.; Boucherle, J.-X.; Andreev, Alexander V.; Diviš, M.; Lelievre-Berna, E.; Sechovský, V.
2004-01-01
Roč. 350, - (2004), e131-e134 ISSN 0921-4526 R&D Projects: GA ČR GA202/03/0550 Institutional research plan: CEZ:AV0Z1010914 Keywords : uranium compound * polarized neutron scattering * magnetic moment Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.679, year: 2004
Moments, Mixed Methods, and Paradigm Dialogs
Denzin, Norman K.
2010-01-01
I reread the 50-year-old history of the qualitative inquiry that calls for triangulation and mixed methods. I briefly visit the disputes within the mixed methods community asking how did we get to where we are today, the period of mixed-multiple-methods advocacy, and Teddlie and Tashakkori's third methodological moment. (Contains 10 notes.)
The isotopic dipole moment of HDO
Energy Technology Data Exchange (ETDEWEB)
Assafrao, Denise; Mohallem, Jose R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte, MG (Brazil)
2007-03-14
An adiabatic variational approximation is used to study the monodeuterated water molecule, HDO, accounting for the isotopic effect. The isotopic dipole moment, pointing from D to H, is then calculated for the first time, yielding (1.5 {+-} 0.1) x 10{sup -3} Debye, being helpful in the interpretation of experiments. (fast track communication)
Using Aha! Moments to Understand Leadership Theory
Moore, Lori L.; Lewis, Lauren J.
2012-01-01
As Huber (2002) noted, striving to understand how leadership is taught and learned is both a challenge and an opportunity facing leadership educators. This article describes the "Leadership Aha! Moment" assignment used in a leadership theory course to help students recognize the intersection of leadership theories and their daily lives while…
Moment matrices, border bases and radical computation
B. Mourrain; J.B. Lasserre; M. Laurent (Monique); P. Rostalski; P. Trebuchet (Philippe)
2013-01-01
htmlabstractIn this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming it complex (resp. real) variety is nte. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and
Moment matrices, border bases and radical computation
Lasserre, J.B.; Laurent, M.; Mourrain, B.; Rostalski, P.; Trébuchet, P.
2013-01-01
In this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming its complex (resp. real) variety is finite. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and semi-definite
Moment matrices, border bases and radical computation
B. Mourrain; J.B. Lasserre; M. Laurent (Monique); P. Rostalski; P. Trebuchet (Philippe)
2011-01-01
htmlabstractIn this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming it complex (resp. real) variety is nte. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and
Real object recognition using moment invariants
Indian Academy of Sciences (India)
are taken from different angles of view are the main features leading us to our objective. ... Two-dimensional moments of a digitally sampled M × M image that has gray function f (x, y), (x, .... in this paper. Information about the original colours of the objects is not used. .... multi-dimensional changes and recognition. Table 1.
Magnitude of localized magnetic moments in metals
International Nuclear Information System (INIS)
Kiwi, M.; Pestana, E.; Ramirez, R.
1979-01-01
The magnitude of the localized magnetic moment of a transition or rare earth element impurity in a metal is evaluated within the framework of the Anderson model. Rotational invariance is preserved throughout. Graphs of the magnitude of the magnetization as a function of the relevant parameters of the model are provided and discussed. (author)
Wonderful Life : Exploring Wonder in Meaningful Moments
van de Goor, Marie Jacqueline; Sools, Anna Maria; Westerhof, Gerben Johan; Bohlmeijer, Ernst Thomas
In this article, we bring the study of meaning together with the emerging field of study focusing on the emotions of wonder: wonder, enchantment, awe, and being moved. It is in meaningful moments that these two meet, and in our empirical study, we used the emotions of wonder as a lens to investigate
Rovibrational matrix elements of the multipole moments
Indian Academy of Sciences (India)
Rovibrational matrix elements of the multipole moments ℓ up to rank 10 and of the linear polarizability of the H2 molecule in the condensed phase have been computed taking into account the effect of the intermolecular potential. Comparison with gas phase matrix elements shows that the effect of solid state interactions is ...
The muon magnetic moment and new physics
Energy Technology Data Exchange (ETDEWEB)
Stoeckinger, Dominik, E-mail: Dominik.Stoeckinger@tu-dresden.de [Institute for Nuclear and Particle Physics (Germany)
2013-03-15
The impact of the muon magnetic moment measurement on physics beyond the Standard Model is briefly reviewed. Particular emphasis is given on the case of supersymmetry. The sensitivity of g - 2 to supersymmetry parameters and the potential for model discrimination and parameter measurements is described. The interplay between LHC data on the Higgs boson, limits on new particles, and g - 2 is discussed.
Search for a neutron electric dipole moment
Energy Technology Data Exchange (ETDEWEB)
Morse, J [Rutherford Appleton Laboratory, Chilton (U.K.)
1984-03-01
To search for evidence of a breakdown of symmetry under the time reversal transformation, a magnetic resonance measurement is made to detect an electric dipole moment (EDM) of ultracold neutrons stored for periods approximately= 60s in the presence of a strong electric field. The measured neutron EDM is (0.3 +- 4.8) x 10/sup -25/ ecm.
Transverse tails and higher order moments
International Nuclear Information System (INIS)
Spence, W.L.; Decker, F.J.; Woodley, M.D.
1993-05-01
The tails that may be engendered in a beam's transverse phase space distribution by, e.g., intrabunch wakefields and nonlinear magnetic fields, are all important diagnostic and object of tuning in linear colliders. Wire scanners or phosphorescent screen monitors yield one dimensional projected spatial profiles of such beams that are generically asymmetric around their centroids, and therefore require characterization by the third moment left-angle x 3 right-angle in addition to the conventional mean-square or second moment. A set of measurements spread over sufficient phase advance then allows the complete set left-angle x 3 right-angle, left-angle xx' 2 right-angle, left-angle x' 3 right-angle, and left-angle x 2 x'right-angle to be deduced -- the natural extension of the well-known ''emittance measurement'' treatment of second moments. The four third moments may be usefully decomposed into parts rotating in phase space at the β-tron frequency and at its third harmonic, each specified by a phase-advance-invariant amplitude and a phase. They provide a framework for the analysis and tuning of transverse wakefield tails
Expert judgement combination using moment methods
International Nuclear Information System (INIS)
Wisse, Bram; Bedford, Tim; Quigley, John
2008-01-01
Moment methods have been employed in decision analysis, partly to avoid the computational burden that decision models involving continuous probability distributions can suffer from. In the Bayes linear (BL) methodology prior judgements about uncertain quantities are specified using expectation (rather than probability) as the fundamental notion. BL provides a strong foundation for moment methods, rooted in work of De Finetti and Goldstein. The main objective of this paper is to discuss in what way expert assessments of moments can be combined, in a non-Bayesian way, to construct a prior assessment. We show that the linear pool can be justified in an analogous but technically different way to linear pools for probability assessments, and that this linear pool has a very convenient property: a linear pool of experts' assessments of moments is coherent if each of the experts has given coherent assessments. To determine the weights of the linear pool we give a method of performance based weighting analogous to Cooke's classical model and explore its properties. Finally, we compare its performance with the classical model on data gathered in applications of the classical model
Exploration of Learning Strategies Associated With Aha Learning Moments.
Pilcher, Jobeth W
2016-01-01
Educators recognize aha moments as powerful aspects of learning. Yet limited research has been performed regarding how to promote these learning moments. This article describes an exploratory study of aha learning moments as experienced and described by participants. Findings showed use of visuals, scenarios, storytelling, Socratic questions, and expert explanation led to aha learning moments. The findings provide guidance regarding the types of learning strategies that can be used to promote aha moments.
Trunk muscle activation. The effects of torso flexion, moment direction, and moment magnitude.
Lavender, S; Trafimow, J; Andersson, G B; Mayer, R S; Chen, I H
1994-04-01
This study was performed to quantify the electromyographic trunk muscle activities in response to variations in moment magnitude and direction while in forward-flexed postures. Recordings were made over eight trunk muscles in 19 subjects who maintained forward-flexed postures of 30 degrees and 60 degrees. In each of the two flexed postures, external moments of 20 Nm and 40 Nm were applied via a chest harness. The moment directions were varied in seven 30 degrees increments to a subject's right side, such that the direction of the applied load ranged from the upper body's anterior midsagittal plane (0 degree) to the posterior midsagittal plane (180 degrees). Statistical analyses yielded significant moment magnitude by moment-direction interaction effects for the EMG output from six of the eight muscles. Trunk flexion by moment-direction interactions were observed in the responses from three muscles. In general, the primary muscle supporting the torso and the applied load was the contralateral (left) erector spinae. The level of electromyographic activity in the anterior muscles was quite low, even with the posterior moment directions.
Trunk muscle cocontraction: the effects of moment direction and moment magnitude.
Lavender, S A; Tsuang, Y H; Andersson, G B; Hafezi, A; Shin, C C
1992-09-01
This study investigated the cocontraction of eight trunk muscles during the application of asymmetric loads to the torso. External moments of 10, 20, 30, 40, and 50 Nm were applied to the torso via a harness system. The direction of the applied moment was varied by 30 degrees increments to the subjects' right side between the sagittally symmetric orientations front and rear. Electromyographic (EMG) data from the left and right latissimus dorsi, erector spinae, external oblique, and rectus abdominus were collected from 10 subjects. The normalized EMG data were tested using multivariate and univariate analyses of variance procedures. These analyses showed significant interactions between the moment magnitude and the moment direction for seven of the eight muscles. Most of the interactions could be characterized as due to changes in muscle recruitment with changes in the direction of the external moment. Analysis of the relative activation levels, which were computed for each combination of moment magnitude and direction, indicated large changes in muscle recruitment due to asymmetry, but only small adjustments in the relative activation levels due to increased moment magnitude.
Microbial hotspots and hot moments in soil
Kuzyakov, Yakov; Blagodatskaya, Evgenia
2015-04-01
Soils are the most heterogeneous parts of the biosphere, with an extremely high differentiation of properties and processes within nano- to macroscales. The spatial and temporal heterogeneity of input of labile organics by plants creates microbial hotspots over short periods of time - the hot moments. We define microbial hotspots as small soil volumes with much faster process rates and much more intensive interactions compared to the average soil conditions. Such hotspots are found in the rhizosphere, detritusphere, biopores (including drilosphere) and on aggregate surfaces, but hotspots are frequently of mixed origin. Hot moments are short-term events or sequences of events inducing accelerated process rates as compared to the averaged rates. Thus, hotspots and hot moments are defined by dynamic characteristics, i.e. by process rates. For this hotspot concept we extensively reviewed and examined the localization and size of hotspots, spatial distribution and visualization approaches, transport of labile C to and from hotspots, lifetime and process intensities, with a special focus on process rates and microbial activities. The fraction of active microorganisms in hotspots is 2-20 times higher than in the bulk soil, and their specific activities (i.e. respiration, microbial growth, mineralization potential, enzyme activities, RNA/DNA ratio) may also be much higher. The duration of hot moments in the rhizosphere is limited and is controlled by the length of the input of labile organics. It can last a few hours up to a few days. In the detritusphere, however, the duration of hot moments is regulated by the output - by decomposition rates of litter - and lasts for weeks and months. Hot moments induce succession in microbial communities and intense intra- and interspecific competition affecting C use efficiency, microbial growth and turnover. The faster turnover and lower C use efficiency in hotspots counterbalances the high C inputs, leading to the absence of strong
Trost, Nico; Jiménez, Javier; Imke, Uwe; Sanchez, Victor
2014-06-01
TWOPORFLOW is a thermo-hydraulic code based on a porous media approach to simulate single- and two-phase flow including boiling. It is under development at the Institute for Neutron Physics and Reactor Technology (INR) at KIT. The code features a 3D transient solution of the mass, momentum and energy conservation equations for two inter-penetrating fluids with a semi-implicit continuous Eulerian type solver. The application domain of TWOPORFLOW includes the flow in standard porous media and in structured porous media such as micro-channels and cores of nuclear power plants. In the latter case, the fluid domain is coupled to a fuel rod model, describing the heat flow inside the solid structure. In this work, detailed profiling tools have been utilized to determine the optimization potential of TWOPORFLOW. As a result, bottle-necks were identified and reduced in the most feasible way, leading for instance to an optimization of the water-steam property computation. Furthermore, an OpenMP implementation addressing the routines in charge of inter-phase momentum-, energy- and mass-coupling delivered good performance together with a high scalability on shared memory architectures. In contrast to that, the approach for distributed memory systems was to solve sub-problems resulting by the decomposition of the initial Cartesian geometry. Thread communication for the sub-problem boundary updates was accomplished by the Message Passing Interface (MPI) standard.
Directory of Open Access Journals (Sweden)
J. Ju
2017-07-01
Full Text Available The flexible Cartesian robotic manipulator (FCRM is coming into widespread application in industry. Because of the feeble rigidity and heavy deflection, the dynamic characteristics of the FCRM are easily influenced by external disturbances which mainly concentrate in the driving end and the load end. Thus, with the influence of driving base disturbance and terminal load considered, the motion differential equations of the FCRM under the plane motion of the base are constructed, which contain the forced and non-linear parametric excitations originated from the disturbances of base lateral and axial motion respectively. Considering the relationship between the coefficients of the motion differential equations and the mode shapes of the flexible manipulator, the analytic expressions of the mode shapes with terminal load are deduced. Then, based on multiple scales method and rectangular coordinate transformation, the average equations of the FCRM are derived to analyze the influence mechanism of base disturbance and terminal load on the system parametric vibration stability. The results show that terminal load mainly affects the node locations of mode shapes and mode frequencies of the FCRM, and the axial motion disturbance of the driving base introduces parametric excitation while the lateral motion disturbance generates forced excitation for the transverse vibration model of the FCRM. Furthermore, with the increase of the base excitation acceleration and terminal load, the parametric vibration instability region of the FCRM increases significantly. This study will be helpful for the dynamic characteristics analysis and vibration control of the FCRM.
The Transmuted Geometric-Weibull distribution: Properties, Characterizations and Regression Models
Directory of Open Access Journals (Sweden)
Zohdy M Nofal
2017-06-01
Full Text Available We propose a new lifetime model called the transmuted geometric-Weibull distribution. Some of its structural properties including ordinary and incomplete moments, quantile and generating functions, probability weighted moments, Rényi and q-entropies and order statistics are derived. The maximum likelihood method is discussed to estimate the model parameters by means of Monte Carlo simulation study. A new location-scale regression model is introduced based on the proposed distribution. The new distribution is applied to two real data sets to illustrate its flexibility. Empirical results indicate that proposed distribution can be alternative model to other lifetime models available in the literature for modeling real data in many areas.
Spin freezing in the geometrically frustrated pyrochlore antiferromagnet Tb2Mo2O7
DEFF Research Database (Denmark)
Gaulin, B.D.; Reimers, J.N.; Mason, T.E.
1992-01-01
The magnetic metal ions in the cubic pyrochlore Tb2Mo2O7 form an infinite three-dimensional network of corner-sharing tetrahedra with a very high potential for frustration in the presence of antiferromagnetism. We have performed neutron scattering measurements which show short-range spatial...... correlations that develop continuously with decreasing temperature, while the characteristic time scale for the fluctuating moments decreases dramatically below T(f) is similar to 25 K. Therefore, this pure material, which possesses frustration that is purely geometrical in origin, displays a spin-glass state...
International Nuclear Information System (INIS)
McGavin, Dennis G; Tennant, W Craighead
2009-01-01
In setting up a spin Hamiltonian (SH) to study high-spin Zeeman and high-spin nuclear and/or electronic interactions in electron paramagnetic resonance (EPR) experiments, it is argued that a maximally reduced SH (MRSH) framed in tesseral combinations of spherical tensor operators is necessary. Then, the SH contains only those terms that are necessary and sufficient to describe the particular spin system. The paper proceeds then to obtain interrelationships between the parameters of the MRSH and those of alternative SHs expressed in Cartesian tensor and Stevens operator-equivalent forms. The examples taken, initially, are those of Cartesian and Stevens' expressions for high-spin Zeeman terms of dimension BS 3 and BS 5 . Starting from the well-known decomposition of the general Cartesian tensor of second rank to three irreducible tensors of ranks 0, 1 and 2, the decomposition of Cartesian tensors of ranks 4 and 6 are treated similarly. Next, following a generalization of the tesseral spherical tensor equations, the interrelationships amongst the parameters of the three kinds of expressions, as derived from equivalent SHs, are determined and detailed tables, including all redundancy equations, set out. In each of these cases the lowest symmetry, 1-bar Laue class, is assumed and then examples of relationships for specific higher symmetries derived therefrom. The validity of a spin Hamiltonian containing mixtures of terms from the three expressions is considered in some detail for several specific symmetries, including again the lowest symmetry. Finally, we address the application of some of the relationships derived here to seldom-observed low-symmetry effects in EPR spectra, when high-spin electronic and nuclear interactions are present.
Inoue, Yuuji; Yoneyama, Masami; Nakamura, Masanobu; Takemura, Atsushi
2018-06-01
The two-dimensional Cartesian turbo spin-echo (TSE) sequence is widely used in routine clinical studies, but it is sensitive to respiratory motion. We investigated the k-space orders in Cartesian TSE that can effectively reduce motion artifacts. The purpose of this study was to demonstrate the relationship between k-space order and degree of motion artifacts using a moving phantom. We compared the degree of motion artifacts between linear and asymmetric k-space orders. The actual spacing of ghost artifacts in the asymmetric order was doubled compared with that in the linear order in the free-breathing situation. The asymmetric order clearly showed less sensitivity to incomplete breath-hold at the latter half of the imaging period. Because of the actual number of partitions of the k-space and the temporal filling order, the asymmetric k-space order of Cartesian TSE was superior to the linear k-space order for reduction of ghosting motion artifacts.
Morphing of geometric composites via residual swelling.
Pezzulla, Matteo; Shillig, Steven A; Nardinocchi, Paola; Holmes, Douglas P
2015-08-07
Understanding and controlling the shape of thin, soft objects has been the focus of significant research efforts among physicists, biologists, and engineers in the last decade. These studies aim to utilize advanced materials in novel, adaptive ways such as fabricating smart actuators or mimicking living tissues. Here, we present the controlled growth-like morphing of 2D sheets into 3D shapes by preparing geometric composite structures that deform by residual swelling. The morphing of these geometric composites is dictated by both swelling and geometry, with diffusion controlling the swelling-induced actuation, and geometric confinement dictating the structure's deformed shape. Building on a simple mechanical analog, we present an analytical model that quantitatively describes how the Gaussian and mean curvatures of a thin disk are affected by the interplay among geometry, mechanics, and swelling. This model is in excellent agreement with our experiments and numerics. We show that the dynamics of residual swelling is dictated by a competition between two characteristic diffusive length scales governed by geometry. Our results provide the first 2D analog of Timoshenko's classical formula for the thermal bending of bimetallic beams - our generalization explains how the Gaussian curvature of a 2D geometric composite is affected by geometry and elasticity. The understanding conferred by these results suggests that the controlled shaping of geometric composites may provide a simple complement to traditional manufacturing techniques.
Geometric phases and hidden local gauge symmetry
International Nuclear Information System (INIS)
Fujikawa, Kazuo
2005-01-01
The analysis of geometric phases associated with level crossing is reduced to the familiar diagonalization of the Hamiltonian in the second quantized formulation. A hidden local gauge symmetry, which is associated with the arbitrariness of the phase choice of a complete orthonormal basis set, becomes explicit in this formulation (in particular, in the adiabatic approximation) and specifies physical observables. The choice of a basis set which specifies the coordinate in the functional space is arbitrary in the second quantization, and a subclass of coordinate transformations, which keeps the form of the action invariant, is recognized as the gauge symmetry. We discuss the implications of this hidden local gauge symmetry in detail by analyzing geometric phases for cyclic and noncyclic evolutions. It is shown that the hidden local symmetry provides a basic concept alternative to the notion of holonomy to analyze geometric phases and that the analysis based on the hidden local gauge symmetry leads to results consistent with the general prescription of Pancharatnam. We however note an important difference between the geometric phases for cyclic and noncyclic evolutions. We also explain a basic difference between our hidden local gauge symmetry and a gauge symmetry (or equivalence class) used by Aharonov and Anandan in their definition of generalized geometric phases
Energy Technology Data Exchange (ETDEWEB)
Doenni, A.; Fischer, P.; Zolliker, M. [Laboratory for Neutron Scattering, ETH Zuerich and Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ehlers, G.; Maletta, H. [Hahn Meitner Institute Berlin, Glienicker Strasse 100, D-14092 Berlin (Germany); Kitazawa, H. [National Research Institute for Metals, Tsukuba, Ibaraki 305 (Japan)
1996-12-09
The heavy-fermion compound CePdAl with ZrNiAl-type crystal structure (hexagonal space group P6-bar2m) was investigated by powder neutron diffraction. The triangular coordination symmetry of magnetic Ce atoms on site 3f gives rise to geometrical frustration. CePdAl orders below T{sub N} = 2.7 K with an incommensurate antiferromagnetic propagation vector k=[1/2, 0, {tau}], {tau} approx. 0.35, and a longitudinal sine-wave (LSW) modulated spin arrangement. Magnetically ordered moments at Ce(1) and Ce(3) coexist with frustrated disordered moments at Ce(2). The experimentally determined magnetic structure is in agreement with group theoretical symmetry analysis considerations, calculated by the program MODY, which confirm that for Ce(2) an ordered magnetic moment parallel to the magnetically easy c-axis is forbidden by symmetry. Further low-temperature experiments give evidence for a second magnetic phase transition in CePdAl between 0.6 and 1.3 K. Magnetic structures of CePdAl are compared with those of the isostructural compound TbNiAl, where a non-zero ordered magnetic moment for the geometrically frustrated Tb(2) atoms is allowed by symmetry. (author)
Moment-to-Moment Optimal Branding in TV Commercials: Preventing Avoidance by Pulsing
Thales S. Teixeira; Michel Wedel; Rik Pieters
2010-01-01
We develop a conceptual framework about the impact that branding activity (the audiovisual representation of brands) and consumers' focused versus dispersed attention have on consumer moment-to-moment avoidance decisions during television advertising. We formalize this framework in a dynamic probit model and estimate it with Markov chain Monte Carlo methods. Data on avoidance through zapping, along with eye tracking on 31 commercials for nearly 2,000 participants, are used to calibrate the mo...
Geometric inequalities for axially symmetric black holes
International Nuclear Information System (INIS)
Dain, Sergio
2012-01-01
A geometric inequality in general relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities play an important role in the characterization of the gravitational collapse; they are closely related with the cosmic censorship conjecture. Axially symmetric black holes are the natural candidates to study these inequalities because the quasi-local angular momentum is well defined for them. We review recent results in this subject and we also describe the main ideas behind the proofs. Finally, a list of relevant open problems is presented. (topical review)
MM Algorithms for Geometric and Signomial Programming.
Lange, Kenneth; Zhou, Hua
2014-02-01
This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.
The Geometric Phase of Stock Trading.
Altafini, Claudio
2016-01-01
Geometric phases describe how in a continuous-time dynamical system the displacement of a variable (called phase variable) can be related to other variables (shape variables) undergoing a cyclic motion, according to an area rule. The aim of this paper is to show that geometric phases can exist also for discrete-time systems, and even when the cycles in shape space have zero area. A context in which this principle can be applied is stock trading. A zero-area cycle in shape space represents the type of trading operations normally carried out by high-frequency traders (entering and exiting a position on a fast time-scale), while the phase variable represents the cash balance of a trader. Under the assumption that trading impacts stock prices, even zero-area cyclic trading operations can induce geometric phases, i.e., profits or losses, without affecting the stock quote.
Normed algebras and the geometric series test
Directory of Open Access Journals (Sweden)
Robert Kantrowitz
2017-11-01
Full Text Available The purpose of this article is to survey a class of normed algebras that share many central features of Banach algebras, save for completeness. The likeness of these algebras to Banach algebras derives from the fact that the geometric series test is valid, whereas the lack of completeness points to the failure of the absolute convergence test for series in the algebra. Our main result is a compendium of conditions that are all equivalent to the validity of the geometric series test for commutative unital normed algebras. Several examples in the final section showcase some incomplete normed algebras for which the geometric series test is valid, and still others for which it is not.
Geometric function theory in higher dimension
2017-01-01
The book collects the most relevant outcomes from the INdAM Workshop “Geometric Function Theory in Higher Dimension” held in Cortona on September 5-9, 2016. The Workshop was mainly devoted to discussions of basic open problems in the area, and this volume follows the same line. In particular, it offers a selection of original contributions on Loewner theory in one and higher dimensions, semigroups theory, iteration theory and related topics. Written by experts in geometric function theory in one and several complex variables, it focuses on new research frontiers in this area and on challenging open problems. The book is intended for graduate students and researchers working in complex analysis, several complex variables and geometric function theory.
EARLY HISTORY OF GEOMETRIC PROBABILITY AND STEREOLOGY
Directory of Open Access Journals (Sweden)
Magdalena Hykšová
2012-03-01
Full Text Available The paper provides an account of the history of geometric probability and stereology from the time of Newton to the early 20th century. It depicts the development of two parallel ways: on one hand, the theory of geometric probability was formed with minor attention paid to other applications than those concerning spatial chance games. On the other hand, practical rules of the estimation of area or volume fraction and other characteristics, easily deducible from geometric probability theory, were proposed without the knowledge of this branch. A special attention is paid to the paper of J.-É. Barbier published in 1860, which contained the fundamental stereological formulas, but remained almost unnoticed both by mathematicians and practicians.
Geometric optimization and sums of algebraic functions
Vigneron, Antoine E.
2014-01-01
We present a new optimization technique that yields the first FPTAS for several geometric problems. These problems reduce to optimizing a sum of nonnegative, constant description complexity algebraic functions. We first give an FPTAS for optimizing such a sum of algebraic functions, and then we apply it to several geometric optimization problems. We obtain the first FPTAS for two fundamental geometric shape-matching problems in fixed dimension: maximizing the volume of overlap of two polyhedra under rigid motions and minimizing their symmetric difference. We obtain the first FPTAS for other problems in fixed dimension, such as computing an optimal ray in a weighted subdivision, finding the largest axially symmetric subset of a polyhedron, and computing minimum-area hulls.
Understanding geometric algebra for electromagnetic theory
Arthur, John W
2011-01-01
"This book aims to disseminate geometric algebra as a straightforward mathematical tool set for working with and understanding classical electromagnetic theory. It's target readership is anyone who has some knowledge of electromagnetic theory, predominantly ordinary scientists and engineers who use it in the course of their work, or postgraduate students and senior undergraduates who are seeking to broaden their knowledge and increase their understanding of the subject. It is assumed that the reader is not a mathematical specialist and is neither familiar with geometric algebra or its application to electromagnetic theory. The modern approach, geometric algebra, is the mathematical tool set we should all have started out with and once the reader has a grasp of the subject, he or she cannot fail to realize that traditional vector analysis is really awkward and even misleading by comparison"--Provided by publisher.
Spherical projections and liftings in geometric tomography
DEFF Research Database (Denmark)
Goodey, Paul; Kiderlen, Markus; Weil, Wolfgang
2011-01-01
We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies and to rad......We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies...... and to radial functions of star bodies. We then investigate averages of lifted projections and show that they correspond to self-adjoint intertwining operators. We obtain formulas for the eigenvalues of these operators and use them to ascertain circumstances under which tomographic measurements determine...... the original bodies. This approach via mean lifted projections leads us to some unexpected relationships between seemingly disparate geometric constructions....
The effect of photometric and geometric context on photometric and geometric lightness effects.
Lee, Thomas Y; Brainard, David H
2014-01-24
We measured the lightness of probe tabs embedded at different orientations in various contextual images presented on a computer-controlled stereo display. Two background context planes met along a horizontal roof-like ridge. Each plane was a graphic rendering of a set of achromatic surfaces with the simulated illumination for each plane controlled independently. Photometric context was varied by changing the difference in simulated illumination intensity between the two background planes. Geometric context was varied by changing the angle between them. We parsed the data into separate photometric effects and geometric effects. For fixed geometry, varying photometric context led to linear changes in both the photometric and geometric effects. Varying geometric context did not produce a statistically reliable change in either the photometric or geometric effects.