WorldWideScience

Sample records for carlo treatment planning

  1. Monte Carlo Treatment Planning for Advanced Radiotherapy

    DEFF Research Database (Denmark)

    Cronholm, Rickard

    This Ph.d. project describes the development of a workflow for Monte Carlo Treatment Planning for clinical radiotherapy plans. The workflow may be utilized to perform an independent dose verification of treatment plans. Modern radiotherapy treatment delivery is often conducted by dynamically...... modulating the intensity of the field during the irradiation. The workflow described has the potential to fully model the dynamic delivery, including gantry rotation during irradiation, of modern radiotherapy. Three corner stones of Monte Carlo Treatment Planning are identified: Building, commissioning...... and validation of a Monte Carlo model of a medical linear accelerator (i), converting a CT scan of a patient to a Monte Carlo compliant phantom (ii) and translating the treatment plan parameters (including beam energy, angles of incidence, collimator settings etc) to a Monte Carlo input file (iii). A protocol...

  2. Clinical considerations of Monte Carlo for electron radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Faddegon, Bruce; Balogh, Judith; Mackenzie, Robert; Scora, Daryl

    1998-01-01

    Technical requirements for Monte Carlo based electron radiotherapy treatment planning are outlined. The targeted overall accuracy for estimate of the delivered dose is the least restrictive of 5% in dose, 5 mm in isodose position. A system based on EGS4 and capable of achieving this accuracy is described. Experience gained in system design and commissioning is summarized. The key obstacle to widespread clinical use of Monte Carlo is lack of clinically acceptable measurement based methodology for accurate commissioning

  3. Markov chain Monte Carlo methods in radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Hugtenburg, R.P.

    2001-01-01

    The Markov chain method can be used to incorporate measured data in Monte Carlo based radiotherapy treatment planning. This paper shows that convergence to the measured data, within the target precision, is achievable. Relative output factors for blocked fields and oblique beams are shown to compare well with independent measurements according to the same criterion. (orig.)

  4. Treatment planning for a small animal using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Chow, James C. L.; Leung, Michael K. K.

    2007-01-01

    The development of a small animal model for radiotherapy research requires a complete setup of customized imaging equipment, irradiators, and planning software that matches the sizes of the subjects. The purpose of this study is to develop and demonstrate the use of a flexible in-house research environment for treatment planning on small animals. The software package, called DOSCTP, provides a user-friendly platform for DICOM computed tomography-based Monte Carlo dose calculation using the EGSnrcMP-based DOSXYZnrc code. Validation of the treatment planning was performed by comparing the dose distributions for simple photon beam geometries calculated through the Pinnacle3 treatment planning system and measurements. A treatment plan for a mouse based on a CT image set by a 360-deg photon arc is demonstrated. It is shown that it is possible to create 3D conformal treatment plans for small animals with consideration of inhomogeneities using small photon beam field sizes in the diameter range of 0.5-5 cm, with conformal dose covering the target volume while sparing the surrounding critical tissue. It is also found that Monte Carlo simulation is suitable to carry out treatment planning dose calculation for small animal anatomy with voxel size about one order of magnitude smaller than that of the human

  5. Monte Carlo systems used for treatment planning and dose verification

    Energy Technology Data Exchange (ETDEWEB)

    Brualla, Lorenzo [Universitaetsklinikum Essen, NCTeam, Strahlenklinik, Essen (Germany); Rodriguez, Miguel [Centro Medico Paitilla, Balboa (Panama); Lallena, Antonio M. [Universidad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, Granada (Spain)

    2017-04-15

    General-purpose radiation transport Monte Carlo codes have been used for estimation of the absorbed dose distribution in external photon and electron beam radiotherapy patients since several decades. Results obtained with these codes are usually more accurate than those provided by treatment planning systems based on non-stochastic methods. Traditionally, absorbed dose computations based on general-purpose Monte Carlo codes have been used only for research, owing to the difficulties associated with setting up a simulation and the long computation time required. To take advantage of radiation transport Monte Carlo codes applied to routine clinical practice, researchers and private companies have developed treatment planning and dose verification systems that are partly or fully based on fast Monte Carlo algorithms. This review presents a comprehensive list of the currently existing Monte Carlo systems that can be used to calculate or verify an external photon and electron beam radiotherapy treatment plan. Particular attention is given to those systems that are distributed, either freely or commercially, and that do not require programming tasks from the end user. These systems are compared in terms of features and the simulation time required to compute a set of benchmark calculations. (orig.) [German] Seit mehreren Jahrzehnten werden allgemein anwendbare Monte-Carlo-Codes zur Simulation des Strahlungstransports benutzt, um die Verteilung der absorbierten Dosis in der perkutanen Strahlentherapie mit Photonen und Elektronen zu evaluieren. Die damit erzielten Ergebnisse sind meist akkurater als solche, die mit nichtstochastischen Methoden herkoemmlicher Bestrahlungsplanungssysteme erzielt werden koennen. Wegen des damit verbundenen Arbeitsaufwands und der langen Dauer der Berechnungen wurden Monte-Carlo-Simulationen von Dosisverteilungen in der konventionellen Strahlentherapie in der Vergangenheit im Wesentlichen in der Forschung eingesetzt. Im Bemuehen, Monte-Carlo

  6. Monte Carlo conformal treatment planning as an independent assessment

    International Nuclear Information System (INIS)

    Rincon, M.; Leal, A.; Perucha, M.; Carrasco, E.; Sanchez-Doblado, F.; Hospital Univ. Virgen Macarena, Sevilla; Arrans, R.; Sanchez-Calzado, J.A.; Errazquin, L.; Medrano, J.C.

    2001-01-01

    The wide range of possibilities available in Radiotherapy with conformal fields cannot be covered experimentally. For this reason, dosimetrical and planning procedures are based on approximate algorithms or systematic measurements. Dose distribution calculations based on Monte Carlo (MC) simulations can be used to check results. In this work, two examples of conformal field treatments are shown: A prostate carcinoma and an ocular lymphoma. The dose distributions obtained with a conventional Planning System and with MC have been compared. Some significant differences have been found. (orig.)

  7. Treatment planning in radiosurgery: parallel Monte Carlo simulation software

    Energy Technology Data Exchange (ETDEWEB)

    Scielzo, G [Galliera Hospitals, Genova (Italy). Dept. of Hospital Physics; Grillo Ruggieri, F [Galliera Hospitals, Genova (Italy) Dept. for Radiation Therapy; Modesti, M; Felici, R [Electronic Data System, Rome (Italy); Surridge, M [University of South Hampton (United Kingdom). Parallel Apllication Centre

    1995-12-01

    The main objective of this research was to evaluate the possibility of direct Monte Carlo simulation for accurate dosimetry with short computation time. We made us of: graphics workstation, linear accelerator, water, PMMA and anthropomorphic phantoms, for validation purposes; ionometric, film and thermo-luminescent techniques, for dosimetry; treatment planning system for comparison. Benchmarking results suggest that short computing times can be obtained with use of the parallel version of EGS4 that was developed. Parallelism was obtained assigning simulation incident photons to separate processors, and the development of a parallel random number generator was necessary. Validation consisted in: phantom irradiation, comparison of predicted and measured values good agreement in PDD and dose profiles. Experiments on anthropomorphic phantoms (with inhomogeneities) were carried out, and these values are being compared with results obtained with the conventional treatment planning system.

  8. A Monte Carlo dose calculation tool for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Ma, C.-M.; Li, J.S.; Pawlicki, T.; Jiang, S.B.; Deng, J.; Lee, M.C.; Koumrian, T.; Luxton, M.; Brain, S.

    2002-01-01

    A Monte Carlo user code, MCDOSE, has been developed for radiotherapy treatment planning (RTP) dose calculations. MCDOSE is designed as a dose calculation module suitable for adaptation to host RTP systems. MCDOSE can be used for both conventional photon/electron beam calculation and intensity modulated radiotherapy (IMRT) treatment planning. MCDOSE uses a multiple-source model to reconstruct the treatment beam phase space. Based on Monte Carlo simulated or measured beam data acquired during commissioning, source-model parameters are adjusted through an automated procedure. Beam modifiers such as jaws, physical and dynamic wedges, compensators, blocks, electron cut-outs and bolus are simulated by MCDOSE together with a 3D rectilinear patient geometry model built from CT data. Dose distributions calculated using MCDOSE agreed well with those calculated by the EGS4/DOSXYZ code using different beam set-ups and beam modifiers. Heterogeneity correction factors for layered-lung or layered-bone phantoms as calculated by both codes were consistent with measured data to within 1%. The effect of energy cut-offs for particle transport was investigated. Variance reduction techniques were implemented in MCDOSE to achieve a speedup factor of 10-30 compared to DOSXYZ. (author)

  9. Efficient sampling algorithms for Monte Carlo based treatment planning

    International Nuclear Information System (INIS)

    DeMarco, J.J.; Solberg, T.D.; Chetty, I.; Smathers, J.B.

    1998-01-01

    Efficient sampling algorithms are necessary for producing a fast Monte Carlo based treatment planning code. This study evaluates several aspects of a photon-based tracking scheme and the effect of optimal sampling algorithms on the efficiency of the code. Four areas were tested: pseudo-random number generation, generalized sampling of a discrete distribution, sampling from the exponential distribution, and delta scattering as applied to photon transport through a heterogeneous simulation geometry. Generalized sampling of a discrete distribution using the cutpoint method can produce speedup gains of one order of magnitude versus conventional sequential sampling. Photon transport modifications based upon the delta scattering method were implemented and compared with a conventional boundary and collision checking algorithm. The delta scattering algorithm is faster by a factor of six versus the conventional algorithm for a boundary size of 5 mm within a heterogeneous geometry. A comparison of portable pseudo-random number algorithms and exponential sampling techniques is also discussed

  10. Evaluation of IMRT plans of prostate carcinoma from four treatment planning systems based on Monte Carlo

    International Nuclear Information System (INIS)

    Chi Zifeng; Han Chun; Liu Dan; Cao Yankun; Li Runxiao

    2011-01-01

    Objective: With the Monte Carlo method to recalculate the IMRT dose distributions from four TPS to provide a platform for independent comparison and evaluation of the plan quality.These results will help make a clinical decision as which TPS will be used for prostate IMRT planning. Methods: Eleven prostate cancer cases were planned with the Corvus, Xio, Pinnacle and Eclipse TPS. The plans were recalculated by Monte Carlo using leaf sequences and MUs for individual plans. Dose-volume-histograms and isodose distributions were compared. Other quantities such as D min (the minimum dose received by 99% of CTV/PTV), D max (the maximum dose received by 1% of CTV/PTV), V 110% , V 105% , V 95% (the volume of CTV/PTV receiving 110%, 105%, 95% of the prescription dose), the volume of rectum and bladder receiving >65 Gy and >40 Gy, and the volume of femur receiving >50 Gy were evaluated. Total segments and MUs were also compared. Results: The Monte Carlo results agreed with the dose distributions from the TPS to within 3%/3 mm. The Xio, Pinnacle and Eclipse plans show less target dose heterogeneity and lower V 65 and V 40 for the rectum and bladder compared to the Corvus plans. The PTV D min is about 2 Gy lower for Xio plans than others while the Corvus plans have slightly lower female head V 50 (0.03% and 0.58%) than others. The Corvus plans require significantly most segments (187.8) and MUs (1264.7) to deliver and the Pinnacle plans require fewest segments (82.4) and MUs (703.6). Conclusions: We have tested an independent Monte Carlo dose calculation system for dose reconstruction and plan evaluation. This system provides a platform for the fair comparison and evaluation of treatment plans to facilitate clinical decision making in selecting a TPS and beam delivery system for particular treatment sites. (authors)

  11. An efficient framework for photon Monte Carlo treatment planning

    International Nuclear Information System (INIS)

    Fix, Michael K; Manser, Peter; Frei, Daniel; Volken, Werner; Mini, Roberto; Born, Ernst J

    2007-01-01

    Currently photon Monte Carlo treatment planning (MCTP) for a patient stored in the patient database of a treatment planning system (TPS) can usually only be performed using a cumbersome multi-step procedure where many user interactions are needed. This means automation is needed for usage in clinical routine. In addition, because of the long computing time in MCTP, optimization of the MC calculations is essential. For these purposes a new graphical user interface (GUI)-based photon MC environment has been developed resulting in a very flexible framework. By this means appropriate MC transport methods are assigned to different geometric regions by still benefiting from the features included in the TPS. In order to provide a flexible MC environment, the MC particle transport has been divided into different parts: the source, beam modifiers and the patient. The source part includes the phase-space source, source models and full MC transport through the treatment head. The beam modifier part consists of one module for each beam modifier. To simulate the radiation transport through each individual beam modifier, one out of three full MC transport codes can be selected independently. Additionally, for each beam modifier a simple or an exact geometry can be chosen. Thereby, different complexity levels of radiation transport are applied during the simulation. For the patient dose calculation, two different MC codes are available. A special plug-in in Eclipse providing all necessary information by means of Dicom streams was used to start the developed MC GUI. The implementation of this framework separates the MC transport from the geometry and the modules pass the particles in memory; hence, no files are used as the interface. The implementation is realized for 6 and 15 MV beams of a Varian Clinac 2300 C/D. Several applications demonstrate the usefulness of the framework. Apart from applications dealing with the beam modifiers, two patient cases are shown. Thereby

  12. Vega library for processing DICOM data required in Monte Carlo verification of radiotherapy treatment plans

    International Nuclear Information System (INIS)

    Locke, C.; Zavgorodni, S.; British Columbia Cancer Agency, Vancouver Island Center, Victoria BC

    2008-01-01

    Monte Carlo (MC) methods provide the most accurate to-date dose calculations in heterogeneous media and complex geometries, and this spawns increasing interest in incorporating MC calculations into treatment planning quality assurance process. This involves MC dose calculations for clinically produced treatment plans. To perform these calculations, a number of treatment plan parameters specifying radiation beam

  13. Monte Carlo treatment planning with modulated electron radiotherapy: framework development and application

    Science.gov (United States)

    Alexander, Andrew William

    Within the field of medical physics, Monte Carlo radiation transport simulations are considered to be the most accurate method for the determination of dose distributions in patients. The McGill Monte Carlo treatment planning system (MMCTP), provides a flexible software environment to integrate Monte Carlo simulations with current and new treatment modalities. A developing treatment modality called energy and intensity modulated electron radiotherapy (MERT) is a promising modality, which has the fundamental capabilities to enhance the dosimetry of superficial targets. An objective of this work is to advance the research and development of MERT with the end goal of clinical use. To this end, we present the MMCTP system with an integrated toolkit for MERT planning and delivery of MERT fields. Delivery is achieved using an automated "few leaf electron collimator" (FLEC) and a controller. Aside from the MERT planning toolkit, the MMCTP system required numerous add-ons to perform the complex task of large-scale autonomous Monte Carlo simulations. The first was a DICOM import filter, followed by the implementation of DOSXYZnrc as a dose calculation engine and by logic methods for submitting and updating the status of Monte Carlo simulations. Within this work we validated the MMCTP system with a head and neck Monte Carlo recalculation study performed by a medical dosimetrist. The impact of MMCTP lies in the fact that it allows for systematic and platform independent large-scale Monte Carlo dose calculations for different treatment sites and treatment modalities. In addition to the MERT planning tools, various optimization algorithms were created external to MMCTP. The algorithms produced MERT treatment plans based on dose volume constraints that employ Monte Carlo pre-generated patient-specific kernels. The Monte Carlo kernels are generated from patient-specific Monte Carlo dose distributions within MMCTP. The structure of the MERT planning toolkit software and

  14. Considerations of MCNP Monte Carlo code to be used as a radiotherapy treatment planning tool.

    Science.gov (United States)

    Juste, B; Miro, R; Gallardo, S; Verdu, G; Santos, A

    2005-01-01

    The present work has simulated the photon and electron transport in a Theratron 780® (MDS Nordion)60Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle). This project explains mainly the different methodologies carried out to speedup calculations in order to apply this code efficiently in radiotherapy treatment planning.

  15. Clinical treatment planning for stereotactic radiotherapy, evaluation by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Kairn, T.; Aland, T.; Kenny, J.; Knight, R.T.; Crowe, S.B.; Langton, C.M.; Franich, R.D.; Johnston, P.N.

    2010-01-01

    Full text: This study uses re-evaluates the doses delivered by a series of clinical stereotactic radiotherapy treatments, to test the accuracy of treatment planning predictions for very small radiation fields. Stereotactic radiotherapy treatment plans for meningiomas near the petrous temporal bone and the foramen magnum (incorp rating fields smaller than I c m2) were examined using Monte Carlo simulations. Important differences between treatment planning predictions and Monte Carlo calculations of doses delivered to stereotactic radiotherapy patients are apparent. For example, in one case the Monte Carlo calculation shows that the delivery a planned meningioma treatment would spare the patient's critical structures (eyes, brainstem) more effectively than the treatment plan predicted, and therefore suggests that this patient could safely receive an increased dose to their tumour. Monte Carlo simulations can be used to test the dose predictions made by a conventional treatment planning system, for dosimetrically challenging small fields, and can thereby suggest valuable modifications to clinical treatment plans. This research was funded by the Wesley Research Institute, Australia. The authors wish to thank Andrew Fielding and David Schlect for valuable discussions of aspects of this work. The authors are also grateful to Muhammad Kakakhel, for assisting with the design and calibration of our linear accelerator model, and to the stereotactic radiation therapy team at Premion, who designed the treatment plans. Computational resources and services used in this work were provided by the HPC and Research Support Unit, QUT, Brisbane, Australia. (author)

  16. Application of OMEGA Monte Carlo codes for radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Ayyangar, Komanduri M.; Jiang, Steve B.

    1998-01-01

    The accuracy of conventional dose algorithms for radiosurgery treatment planning is limited, due to the inadequate consideration of the lateral radiation transport and the difficulty of acquiring accurate dosimetric data for very small beams. In the present paper, some initial work on the application of Monte Carlo method in radiation treatment planning in general, and in radiosurgery treatment planning in particular, has been presented. Two OMEGA Monte Carlo codes, BEAM and DOSXYZ, are used. The BEAM code is used to simulate the transport of particles in the linac treatment head and radiosurgery collimator. A phase space file is obtained from the BEAM simulation for each collimator size. The DOSXYZ code is used to calculate the dose distribution in the patient's body reconstructed from CT slices using the phase space file as input. The accuracy of OMEGA Monte Carlo simulation for radiosurgery dose calculation is verified by comparing the calculated and measured basic dosimetric data for several radiosurgery beams and a 4 x 4 cm 2 conventional beam. The dose distributions for three clinical cases are calculated using OMEGA codes as the dose engine for an in-house developed radiosurgery treatment planning system. The verification using basic dosimetric data and the dose calculation for clinical cases demonstrate the feasibility of applying OMEGA Monte Carlo code system to radiosurgery treatment planning. (author)

  17. Efficient photon treatment planning by the use of Swiss Monte Carlo Plan

    International Nuclear Information System (INIS)

    Fix, M K; Manser, P; Frei, D; Volken, W; Mini, R; Born, E J

    2007-01-01

    Currently photon Monte Carlo treatment planning (MCTP) for a patient stored in the patient database of a treatment planning system (TPS) usually can only be performed using a cumbersome multi-step procedure where many user interactions are needed. Automation is needed for usage in clinical routine. In addition, because of the long computing time in MCTP, optimization of the MC calculations is essential. For these purposes a new GUI-based photon MC environment has been developed resulting in a very flexible framework, namely the Swiss Monte Carlo Plan (SMCP). Appropriate MC transport methods are assigned to different geometric regions by still benefiting from the features included in the TPS. In order to provide a flexible MC environment the MC particle transport has been divided into different parts: source, beam modifiers, and patient. The source part includes: Phase space-source, source models, and full MC transport through the treatment head. The beam modifier part consists of one module for each beam modifier. To simulate the radiation transport through each individual beam modifier, one out of three full MC transport codes can be selected independently. Additionally, for each beam modifier a simple or an exact geometry can be chosen. Thereby, different complexity levels of radiation transport are applied during the simulation. For the patient dose calculation two different MC codes are available. A special plug-in in Eclipse providing all necessary information by means of Dicom streams was used to start the developed MC GUI. The implementation of this framework separates the MC transport from the geometry and the modules pass the particles in memory, hence no files are used as interface. The implementation is realized for 6 and 15 MV beams of a Varian Clinac 2300 C/D. Several applications demonstrate the usefulness of the framework. Apart from applications dealing with the beam modifiers, three patient cases are shown. Thereby, comparisons between MC

  18. Use of Monte Carlo computation in benchmarking radiotherapy treatment planning system algorithms

    International Nuclear Information System (INIS)

    Lewis, R.D.; Ryde, S.J.S.; Seaby, A.W.; Hancock, D.A.; Evans, C.J.

    2000-01-01

    Radiotherapy treatments are becoming more complex, often requiring the dose to be calculated in three dimensions and sometimes involving the application of non-coplanar beams. The ability of treatment planning systems to accurately calculate dose under a range of these and other irradiation conditions requires evaluation. Practical assessment of such arrangements can be problematical, especially when a heterogeneous medium is used. This work describes the use of Monte Carlo computation as a benchmarking tool to assess the dose distribution of external photon beam plans obtained in a simple heterogeneous phantom by several commercially available 3D and 2D treatment planning system algorithms. For comparison, practical measurements were undertaken using film dosimetry. The dose distributions were calculated for a variety of irradiation conditions designed to show the effects of surface obliquity, inhomogeneities and missing tissue above tangential beams. The results show maximum dose differences of 47% between some planning algorithms and film at a point 1 mm below a tangentially irradiated surface. Overall, the dose distribution obtained from film was most faithfully reproduced by the Monte Carlo N-Particle results illustrating the potential of Monte Carlo computation in evaluating treatment planning system algorithms. (author)

  19. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors

    International Nuclear Information System (INIS)

    Zamenhof, R.G.; Brenner, J.F.; Wazer, D.E.; Madoc-Jones, H.; Clement, S.D.; Harling, O.K.; Yanch, J.C.

    1990-01-01

    Monte Carlo based dosimetry and computer-aided treatment planning for neutron capture therapy have been developed to provide the necessary link between physical dosimetric measurements performed on the MITR-II epithermal-neutron beams and the need of the radiation oncologist to synthesize large amounts of dosimetric data into a clinically meaningful treatment plan for each individual patient. Monte Carlo simulation has been employed to characterize the spatial dose distributions within a skull/brain model irradiated by an epithermal-neutron beam designed for neutron capture therapy applications. The geometry and elemental composition employed for the mathematical skull/brain model and the neutron and photon fluence-to-dose conversion formalism are presented. A treatment planning program, NCTPLAN, developed specifically for neutron capture therapy, is described. Examples are presented illustrating both one and two-dimensional dose distributions obtainable within the brain with an experimental epithermal-neutron beam, together with beam quality and treatment plan efficacy criteria which have been formulated for neutron capture therapy. The incorporation of three-dimensional computed tomographic image data into the treatment planning procedure is illustrated

  20. Monte Carlo treatment planning and high-resolution alpha-track autoradiography for neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zamenhof, R.G.; Lin, K.; Ziegelmiller, D.; Clement, S.; Lui, C.; Harling, O.K.

    Monte Carlo simulations of thermal neutron flux distributions in a mathematical head model have been compared to experimental measurements in a corresponding anthropomorphic gelatin-based head phantom irradiated by a thermal neutron beam as presently available at the MITR-II Research Reactor. Excellent agreement between Monte Carlo and experimental measurements has encouraged us to employ the Monte Carlo simulation technique to approach treatment planning problems in neutron capture therapy. We have also implemented a high-resolution alpha-track autoradiography technique originally developed in our laboratory at MIT. Initial autoradiograms produced by this technique meet our expectations in terms of the high resolution available and the ability to etch tracks without concommitant destruction of stained tissue. Our preliminary results with computer-aided track distribution analysis indicate that this approach is very promising in being able to quantify boron distributions in tissue at the subcellular level with a minimum amount of operator effort necessary.

  1. Monte Carlo based treatment planning for modulated electron beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Michael C. [Radiation Physics Division, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)]. E-mail: mclee@reyes.stanford.edu; Deng Jun; Li Jinsheng; Jiang, Steve B.; Ma, C.-M. [Radiation Physics Division, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)

    2001-08-01

    A Monte Carlo based treatment planning system for modulated electron radiation therapy (MERT) is presented. This new variation of intensity modulated radiation therapy (IMRT) utilizes an electron multileaf collimator (eMLC) to deliver non-uniform intensity maps at several electron energies. In this way, conformal dose distributions are delivered to irregular targets located a few centimetres below the surface while sparing deeper-lying normal anatomy. Planning for MERT begins with Monte Carlo generation of electron beamlets. Electrons are transported with proper in-air scattering and the dose is tallied in the phantom for each beamlet. An optimized beamlet plan may be calculated using inverse-planning methods. Step-and-shoot leaf sequences are generated for the intensity maps and dose distributions recalculated using Monte Carlo simulations. Here, scatter and leakage from the leaves are properly accounted for by transporting electrons through the eMLC geometry. The weights for the segments of the plan are re-optimized with the leaf positions fixed and bremsstrahlung leakage and electron scatter doses included. This optimization gives the final optimized plan. It is shown that a significant portion of the calculation time is spent transporting particles in the leaves. However, this is necessary since optimizing segment weights based on a model in which leaf transport is ignored results in an improperly optimized plan with overdosing of target and critical structures. A method of rapidly calculating the bremsstrahlung contribution is presented and shown to be an efficient solution to this problem. A homogeneous model target and a 2D breast plan are presented. The potential use of this tool in clinical planning is discussed. (author)

  2. MMCTP: a radiotherapy research environment for Monte Carlo and patient-specific treatment planning

    International Nuclear Information System (INIS)

    Alexander, A; DeBlois, F; Stroian, G; Al-Yahya, K; Heath, E; Seuntjens, J

    2007-01-01

    Radiotherapy research lacks a flexible computational research environment for Monte Carlo (MC) and patient-specific treatment planning. The purpose of this study was to develop a flexible software package on low-cost hardware with the aim of integrating new patient-specific treatment planning with MC dose calculations suitable for large-scale prospective and retrospective treatment planning studies. We designed the software package 'McGill Monte Carlo treatment planning' (MMCTP) for the research development of MC and patient-specific treatment planning. The MMCTP design consists of a graphical user interface (GUI), which runs on a simple workstation connected through standard secure-shell protocol to a cluster for lengthy MC calculations. Treatment planning information (e.g., images, structures, beam geometry properties and dose distributions) is converted into a convenient MMCTP local file storage format designated, the McGill RT format. MMCTP features include (a) DICOM R T, RTOG and CADPlan CART format imports; (b) 2D and 3D visualization views for images, structure contours, and dose distributions; (c) contouring tools; (d) DVH analysis, and dose matrix comparison tools; (e) external beam editing; (f) MC transport calculation from beam source to patient geometry for photon and electron beams. The MC input files, which are prepared from the beam geometry properties and patient information (e.g., images and structure contours), are uploaded and run on a cluster using shell commands controlled from the MMCTP GUI. The visualization, dose matrix operation and DVH tools offer extensive options for plan analysis and comparison between MC plans and plans imported from commercial treatment planning systems. The MMCTP GUI provides a flexible research platform for the development of patient-specific MC treatment planning for photon and electron external beam radiation therapy. The impact of this tool lies in the fact that it allows for systematic, platform

  3. Towards the elimination of Monte Carlo statistical fluctuation from dose volume histograms for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Sempau, J.; Bielajew, A.F.

    2000-01-01

    The Monte Carlo calculation of dose for radiotherapy treatment planning purposes introduces unavoidable statistical noise into the prediction of dose in a given volume element (voxel). When the doses in these voxels are summed to produce dose volume histograms (DVHs), this noise translates into a broadening of differential DVHs and correspondingly flatter DVHs. A brute force approach would entail calculating dose for long periods of time - enough to ensure that the DVHs had converged. In this paper we introduce an approach for deconvolving the statistical noise from DVHs, thereby obtaining estimates for converged DVHs obtained about 100 times faster than the brute force approach described above. There are two important implications of this work: (a) decisions based upon DVHs may be made much more economically using the new approach and (b) inverse treatment planning or optimization methods may employ Monte Carlo dose calculations at all stages of the iterative procedure since the prohibitive cost of Monte Carlo calculations at the intermediate calculation steps can be practically eliminated. (author)

  4. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors

    International Nuclear Information System (INIS)

    Zamenhof, R.G.; Clement, S.D.; Harling, O.K.; Brenner, J.F.; Wazer, D.E.; Madoc-Jones, H.; Yanch, J.C.

    1990-01-01

    Monte Carlo based dosimetry and computer-aided treatment planning for neutron capture therapy have been developed to provide the necessary link between physical dosimetric measurements performed on the MITR-II epithermal-neutron beams and the need of the radiation oncologist to synthesize large amounts of dosimetric data into a clinically meaningful treatment plan for each individual patient. Monte Carlo simulation has been employed to characterize the spatial dose distributions within a skull/brain model irradiated by an epithermal-neutron beam designed for neutron capture therapy applications. The geometry and elemental composition employed for the mathematical skull/brain model and the neutron and photon fluence-to-dose conversion formalism are presented. A treatment planning program, NCTPLAN, developed specifically for neutron capture therapy, is described. Examples are presented illustrating both one and two-dimensional dose distributions obtainable within the brain with an experimental epithermal-neutron beam, together with beam quality and treatment plan efficacy criteria which have been formulated for neutron capture therapy. The incorporation of three-dimensional computed tomographic image data into the treatment planning procedure is illustrated. The experimental epithermal-neutron beam has a maximum usable circular diameter of 20 cm, and with 30 ppm of B-10 in tumor and 3 ppm of B-10 in blood, it produces a beam-axis advantage depth of 7.4 cm, a beam-axis advantage ratio of 1.83, a global advantage ratio of 1.70, and an advantage depth RBE-dose rate to tumor of 20.6 RBE-cGy/min (cJ/kg-min). These characteristics make this beam well suited for clinical applications, enabling an RBE-dose of 2,000 RBE-cGy/min (cJ/kg-min) to be delivered to tumor at brain midline in six fractions with a treatment time of approximately 16 minutes per fraction

  5. Monte Carlo evaluation of a photon pencil kernel algorithm applied to fast neutron therapy treatment planning

    Science.gov (United States)

    Söderberg, Jonas; Alm Carlsson, Gudrun; Ahnesjö, Anders

    2003-10-01

    When dedicated software is lacking, treatment planning for fast neutron therapy is sometimes performed using dose calculation algorithms designed for photon beam therapy. In this work Monte Carlo derived neutron pencil kernels in water were parametrized using the photon dose algorithm implemented in the Nucletron TMS (treatment management system) treatment planning system. A rectangular fast-neutron fluence spectrum with energies 0-40 MeV (resembling a polyethylene filtered p(41)+ Be spectrum) was used. Central axis depth doses and lateral dose distributions were calculated and compared with the corresponding dose distributions from Monte Carlo calculations for homogeneous water and heterogeneous slab phantoms. All absorbed doses were normalized to the reference dose at 10 cm depth for a field of radius 5.6 cm in a 30 × 40 × 20 cm3 water test phantom. Agreement to within 7% was found in both the lateral and the depth dose distributions. The deviations could be explained as due to differences in size between the test phantom and that used in deriving the pencil kernel (radius 200 cm, thickness 50 cm). In the heterogeneous phantom, the TMS, with a directly applied neutron pencil kernel, and Monte Carlo calculated absorbed doses agree approximately for muscle but show large deviations for media such as adipose or bone. For the latter media, agreement was substantially improved by correcting the absorbed doses calculated in TMS with the neutron kerma factor ratio and the stopping power ratio between tissue and water. The multipurpose Monte Carlo code FLUKA was used both in calculating the pencil kernel and in direct calculations of absorbed dose in the phantom.

  6. A Monte Carlo-based treatment-planning tool for ion beam therapy

    CERN Document Server

    Böhlen, T T; Dosanjh, M; Ferrari, A; Haberer, T; Parodi, K; Patera, V; Mairan, A

    2013-01-01

    Ion beam therapy, as an emerging radiation therapy modality, requires continuous efforts to develop and improve tools for patient treatment planning (TP) and research applications. Dose and fluence computation algorithms using the Monte Carlo (MC) technique have served for decades as reference tools for accurate dose computations for radiotherapy. In this work, a novel MC-based treatment-planning (MCTP) tool for ion beam therapy using the pencil beam scanning technique is presented. It allows single-field and simultaneous multiple-fields optimization for realistic patient treatment conditions and for dosimetric quality assurance for irradiation conditions at state-of-the-art ion beam therapy facilities. It employs iterative procedures that allow for the optimization of absorbed dose and relative biological effectiveness (RBE)-weighted dose using radiobiological input tables generated by external RBE models. Using a re-implementation of the local effect model (LEM), theMCTP tool is able to perform TP studies u...

  7. Dose perturbation in the presence of metallic implants: treatment planning system versus Monte Carlo simulations

    International Nuclear Information System (INIS)

    Wieslander, Elinore; Knoeoes, Tommy

    2003-01-01

    An increasing number of patients receiving radiation therapy have metallic implants such as hip prostheses. Therefore, beams are normally set up to avoid irradiation through the implant; however, this cannot always be accomplished. In such situations, knowledge of the accuracy of the used treatment planning system (TPS) is required. Two algorithms, the pencil beam (PB) and the collapsed cone (CC), are implemented in the studied TPS. Comparisons are made with Monte Carlo simulations for 6 and 18 MV. The studied materials are steel, CoCrMo, Orthinox(a stainless steel alloy and registered trademark of Stryker Corporation), TiAlV and Ti. Monte Carlo simulated depth dose curves and dose profiles are compared to CC and PB calculated data. The CC algorithm shows overall a better agreement with Monte Carlo than the PB algorithm. Thus, it is recommended to use the CC algorithm to get the most accurate dose calculation both for the planning target volume and for tissues adjacent to the implants when beams are set up to pass through implants

  8. EDITORIAL: International Workshop on Current Topics in Monte Carlo Treatment Planning

    Science.gov (United States)

    Verhaegen, Frank; Seuntjens, Jan

    2005-03-01

    The use of Monte Carlo particle transport simulations in radiotherapy was pioneered in the early nineteen-seventies, but it was not until the eighties that they gained recognition as an essential research tool for radiation dosimetry, health physics and later on for radiation therapy treatment planning. Since the mid-nineties, there has been a boom in the number of workers using MC techniques in radiotherapy, and the quantity of papers published on the subject. Research and applications of MC techniques in radiotherapy span a very wide range from fundamental studies of cross sections and development of particle transport algorithms, to clinical evaluation of treatment plans for a variety of radiotherapy modalities. The International Workshop on Current Topics in Monte Carlo Treatment Planning took place at Montreal General Hospital, which is part of McGill University, halfway up Mount Royal on Montreal Island. It was held from 3-5 May, 2004, right after the freezing winter has lost its grip on Canada. About 120 workers attended the Workshop, representing 18 countries. Most of the pioneers in the field were present but also a large group of young scientists. In a very full programme, 41 long papers were presented (of which 12 were invited) and 20 posters were on display during the whole meeting. The topics covered included the latest developments in MC algorithms, statistical issues, source modelling and MC treatment planning for photon, electron and proton treatments. The final day was entirely devoted to clinical implementation issues. Monte Carlo radiotherapy treatment planning has only now made a slow entrée in the clinical environment, taking considerably longer than envisaged ten years ago. Of the twenty-five papers in this dedicated special issue, about a quarter deal with this topic, with probably many more studies to follow in the near future. If anything, we hope the Workshop served as an accelerator for more clinical evaluation of MC applications. The

  9. Monte Carlo based electron treatment planning and cutout output factor calculations

    Science.gov (United States)

    Mitrou, Ellis

    Electron radiotherapy (RT) offers a number of advantages over photons. The high surface dose, combined with a rapid dose fall-off beyond the target volume presents a net increase in tumor control probability and decreases the normal tissue complication for superficial tumors. Electron treatments are normally delivered clinically without previously calculated dose distributions due to the complexity of the electron transport involved and greater error in planning accuracy. This research uses Monte Carlo (MC) methods to model clinical electron beams in order to accurately calculate electron beam dose distributions in patients as well as calculate cutout output factors, reducing the need for a clinical measurement. The present work is incorporated into a research MC calculation system: McGill Monte Carlo Treatment Planning (MMCTP) system. Measurements of PDDs, profiles and output factors in addition to 2D GAFCHROMICRTM EBT2 film measurements in heterogeneous phantoms were obtained to commission the electron beam model. The use of MC for electron TP will provide more accurate treatments and yield greater knowledge of the electron dose distribution within the patient. The calculation of output factors could invoke a clinical time saving of up to 1 hour per patient.

  10. Implementation of random set-up errors in Monte Carlo calculated dynamic IMRT treatment plans

    International Nuclear Information System (INIS)

    Stapleton, S; Zavgorodni, S; Popescu, I A; Beckham, W A

    2005-01-01

    The fluence-convolution method for incorporating random set-up errors (RSE) into the Monte Carlo treatment planning dose calculations was previously proposed by Beckham et al, and it was validated for open field radiotherapy treatments. This study confirms the applicability of the fluence-convolution method for dynamic intensity modulated radiotherapy (IMRT) dose calculations and evaluates the impact of set-up uncertainties on a clinical IMRT dose distribution. BEAMnrc and DOSXYZnrc codes were used for Monte Carlo calculations. A sliding window IMRT delivery was simulated using a dynamic multi-leaf collimator (DMLC) transport model developed by Keall et al. The dose distributions were benchmarked for dynamic IMRT fields using extended dose range (EDR) film, accumulating the dose from 16 subsequent fractions shifted randomly. Agreement of calculated and measured relative dose values was well within statistical uncertainty. A clinical seven field sliding window IMRT head and neck treatment was then simulated and the effects of random set-up errors (standard deviation of 2 mm) were evaluated. The dose-volume histograms calculated in the PTV with and without corrections for RSE showed only small differences indicating a reduction of the volume of high dose region due to set-up errors. As well, it showed that adequate coverage of the PTV was maintained when RSE was incorporated. Slice-by-slice comparison of the dose distributions revealed differences of up to 5.6%. The incorporation of set-up errors altered the position of the hot spot in the plan. This work demonstrated validity of implementation of the fluence-convolution method to dynamic IMRT Monte Carlo dose calculations. It also showed that accounting for the set-up errors could be essential for correct identification of the value and position of the hot spot

  11. Implementation of random set-up errors in Monte Carlo calculated dynamic IMRT treatment plans

    Science.gov (United States)

    Stapleton, S.; Zavgorodni, S.; Popescu, I. A.; Beckham, W. A.

    2005-02-01

    The fluence-convolution method for incorporating random set-up errors (RSE) into the Monte Carlo treatment planning dose calculations was previously proposed by Beckham et al, and it was validated for open field radiotherapy treatments. This study confirms the applicability of the fluence-convolution method for dynamic intensity modulated radiotherapy (IMRT) dose calculations and evaluates the impact of set-up uncertainties on a clinical IMRT dose distribution. BEAMnrc and DOSXYZnrc codes were used for Monte Carlo calculations. A sliding window IMRT delivery was simulated using a dynamic multi-leaf collimator (DMLC) transport model developed by Keall et al. The dose distributions were benchmarked for dynamic IMRT fields using extended dose range (EDR) film, accumulating the dose from 16 subsequent fractions shifted randomly. Agreement of calculated and measured relative dose values was well within statistical uncertainty. A clinical seven field sliding window IMRT head and neck treatment was then simulated and the effects of random set-up errors (standard deviation of 2 mm) were evaluated. The dose-volume histograms calculated in the PTV with and without corrections for RSE showed only small differences indicating a reduction of the volume of high dose region due to set-up errors. As well, it showed that adequate coverage of the PTV was maintained when RSE was incorporated. Slice-by-slice comparison of the dose distributions revealed differences of up to 5.6%. The incorporation of set-up errors altered the position of the hot spot in the plan. This work demonstrated validity of implementation of the fluence-convolution method to dynamic IMRT Monte Carlo dose calculations. It also showed that accounting for the set-up errors could be essential for correct identification of the value and position of the hot spot.

  12. CT-Based Brachytherapy Treatment Planning using Monte Carlo Simulation Aided by an Interface Software

    Directory of Open Access Journals (Sweden)

    Vahid Moslemi

    2011-03-01

    Full Text Available Introduction: In brachytherapy, radioactive sources are placed close to the tumor, therefore, small changes in their positions can cause large changes in the dose distribution. This emphasizes the need for computerized treatment planning. The usual method for treatment planning of cervix brachytherapy uses conventional radiographs in the Manchester system. Nowadays, because of their advantages in locating the source positions and the surrounding tissues, CT and MRI images are replacing conventional radiographs. In this study, we used CT images in Monte Carlo based dose calculation for brachytherapy treatment planning, using an interface software to create the geometry file required in the MCNP code. The aim of using the interface software is to facilitate and speed up the geometry set-up for simulations based on the patient’s anatomy. This paper examines the feasibility of this method in cervix brachytherapy and assesses its accuracy and speed. Material and Methods: For dosimetric measurements regarding the treatment plan, a pelvic phantom was made from polyethylene in which the treatment applicators could be placed. For simulations using CT images, the phantom was scanned at 120 kVp. Using an interface software written in MATLAB, the CT images were converted into MCNP input file and the simulation was then performed. Results: Using the interface software, preparation time for the simulations of the applicator and surrounding structures was approximately 3 minutes; the corresponding time needed in the conventional MCNP geometry entry being approximately 1 hour. The discrepancy in the simulated and measured doses to point A was 1.7% of the prescribed dose.  The corresponding dose differences between the two methods in rectum and bladder were 3.0% and 3.7% of the prescribed dose, respectively. Comparing the results of simulation using the interface software with those of simulation using the standard MCNP geometry entry showed a less than 1

  13. Tally and geometry definition influence on the computing time in radiotherapy treatment planning with MCNP Monte Carlo code.

    Science.gov (United States)

    Juste, B; Miro, R; Gallardo, S; Santos, A; Verdu, G

    2006-01-01

    The present work has simulated the photon and electron transport in a Theratron 780 (MDS Nordion) (60)Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle), version 5. In order to become computationally more efficient in view of taking part in the practical field of radiotherapy treatment planning, this work is focused mainly on the analysis of dose results and on the required computing time of different tallies applied in the model to speed up calculations.

  14. Monte Carlo calculated CT numbers for improved heavy ion treatment planning

    Directory of Open Access Journals (Sweden)

    Qamhiyeh Sima

    2014-03-01

    Full Text Available Better knowledge of CT number values and their uncertainties can be applied to improve heavy ion treatment planning. We developed a novel method to calculate CT numbers for a computed tomography (CT scanner using the Monte Carlo (MC code, BEAMnrc/EGSnrc. To generate the initial beam shape and spectra we conducted full simulations of an X-ray tube, filters and beam shapers for a Siemens Emotion CT. The simulation output files were analyzed to calculate projections of a phantom with inserts. A simple reconstruction algorithm (FBP using a Ram-Lak filter was applied to calculate the pixel values, which represent an attenuation coefficient, normalized in such a way to give zero for water (Hounsfield unit (HU. Measured and Monte Carlo calculated CT numbers were compared. The average deviation between measured and simulated CT numbers was 4 ± 4 HU and the standard deviation σ was 49 ± 4 HU. The simulation also correctly predicted the behaviour of H-materials compared to a Gammex tissue substitutes. We believe the developed approach represents a useful new tool for evaluating the effect of CT scanner and phantom parameters on CT number values.

  15. Reporting and analyzing statistical uncertainties in Monte Carlo-based treatment planning

    International Nuclear Information System (INIS)

    Chetty, Indrin J.; Rosu, Mihaela; Kessler, Marc L.; Fraass, Benedick A.; Haken, Randall K. ten; Kong, Feng-Ming; McShan, Daniel L.

    2006-01-01

    Purpose: To investigate methods of reporting and analyzing statistical uncertainties in doses to targets and normal tissues in Monte Carlo (MC)-based treatment planning. Methods and Materials: Methods for quantifying statistical uncertainties in dose, such as uncertainty specification to specific dose points, or to volume-based regions, were analyzed in MC-based treatment planning for 5 lung cancer patients. The effect of statistical uncertainties on target and normal tissue dose indices was evaluated. The concept of uncertainty volume histograms for targets and organs at risk was examined, along with its utility, in conjunction with dose volume histograms, in assessing the acceptability of the statistical precision in dose distributions. The uncertainty evaluation tools were extended to four-dimensional planning for application on multiple instances of the patient geometry. All calculations were performed using the Dose Planning Method MC code. Results: For targets, generalized equivalent uniform doses and mean target doses converged at 150 million simulated histories, corresponding to relative uncertainties of less than 2% in the mean target doses. For the normal lung tissue (a volume-effect organ), mean lung dose and normal tissue complication probability converged at 150 million histories despite the large range in the relative organ uncertainty volume histograms. For 'serial' normal tissues such as the spinal cord, large fluctuations exist in point dose relative uncertainties. Conclusions: The tools presented here provide useful means for evaluating statistical precision in MC-based dose distributions. Tradeoffs between uncertainties in doses to targets, volume-effect organs, and 'serial' normal tissues must be considered carefully in determining acceptable levels of statistical precision in MC-computed dose distributions

  16. A new Monte Carlo-based treatment plan optimization approach for intensity modulated radiation therapy.

    Science.gov (United States)

    Li, Yongbao; Tian, Zhen; Shi, Feng; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun

    2015-04-07

    Intensity-modulated radiation treatment (IMRT) plan optimization needs beamlet dose distributions. Pencil-beam or superposition/convolution type algorithms are typically used because of their high computational speed. However, inaccurate beamlet dose distributions may mislead the optimization process and hinder the resulting plan quality. To solve this problem, the Monte Carlo (MC) simulation method has been used to compute all beamlet doses prior to the optimization step. The conventional approach samples the same number of particles from each beamlet. Yet this is not the optimal use of MC in this problem. In fact, there are beamlets that have very small intensities after solving the plan optimization problem. For those beamlets, it may be possible to use fewer particles in dose calculations to increase efficiency. Based on this idea, we have developed a new MC-based IMRT plan optimization framework that iteratively performs MC dose calculation and plan optimization. At each dose calculation step, the particle numbers for beamlets were adjusted based on the beamlet intensities obtained through solving the plan optimization problem in the last iteration step. We modified a GPU-based MC dose engine to allow simultaneous computations of a large number of beamlet doses. To test the accuracy of our modified dose engine, we compared the dose from a broad beam and the summed beamlet doses in this beam in an inhomogeneous phantom. Agreement within 1% for the maximum difference and 0.55% for the average difference was observed. We then validated the proposed MC-based optimization schemes in one lung IMRT case. It was found that the conventional scheme required 10(6) particles from each beamlet to achieve an optimization result that was 3% difference in fluence map and 1% difference in dose from the ground truth. In contrast, the proposed scheme achieved the same level of accuracy with on average 1.2 × 10(5) particles per beamlet. Correspondingly, the computation

  17. Commissioning of a Monte Carlo treatment planning system for clinical use in radiation therapy; Evaluacion de un sistema de planificacion Monte Carlo de uso clinico para radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Zucca Aparcio, D.; Perez Moreno, J. M.; Fernandez Leton, P.; Garcia Ruiz-Zorrila, J.

    2016-10-01

    The commissioning procedures of a Monte Carlo treatment planning system (MC) for photon beams from a dedicated stereotactic body radiosurgery (SBRT) unit has been reported in this document. XVMC has been the MC Code available in the treatment planning system evaluated (BrainLAB iPlan RT Dose) which is based on Virtual Source Models that simulate the primary and scattered radiation, besides the electronic contamination, using gaussian components for whose modelling are required measurements of dose profiles, percentage depth dose and output factors, performed both in water and in air. The dosimetric accuracy of the particle transport simulation has been analyzed by validating the calculations in homogeneous and heterogeneous media versus measurements made under the same conditions as the dose calculation, and checking the stochastic behaviour of Monte Carlo calculations when using different statistical variances. Likewise, it has been verified how the planning system performs the conversion from dose to medium to dose to water, applying the stopping power ratio water to medium, in the presence of heterogeneities where this phenomenon is relevant, such as high density media (cortical bone). (Author)

  18. Photon energy-modulated radiotherapy: Monte Carlo simulation and treatment planning study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Min; Kim, Jung-in; Heon Choi, Chang; Chie, Eui Kyu; Kim, Il Han; Ye, Sung-Joon [Interdiciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, 110-744, Korea and Department of Radiation Oncology, Seoul National University Hospital, Seoul, 110-744 (Korea, Republic of); Interdiciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, 110-744 (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul, 110-744 (Korea, Republic of); Interdiciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, 110-744 (Korea, Republic of) and Department of Radiation Oncology, Seoul National University Hospital, Seoul, 110-744 (Korea, Republic of); Interdiciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, 110-744 (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul, 110-744 (Korea, Republic of) and Department of Intelligent Convergence Systems, Seoul National University, Seoul, 151-742 (Korea, Republic of)

    2012-03-15

    Purpose: To demonstrate the feasibility of photon energy-modulated radiotherapy during beam-on time. Methods: A cylindrical device made of aluminum was conceptually proposed as an energy modulator. The frame of the device was connected with 20 tubes through which mercury could be injected or drained to adjust the thickness of mercury along the beam axis. In Monte Carlo (MC) simulations, a flattening filter of 6 or 10 MV linac was replaced with the device. The thickness of mercury inside the device varied from 0 to 40 mm at the field sizes of 5 x 5 cm{sup 2} (FS5), 10 x 10 cm{sup 2} (FS10), and 20 x 20 cm{sup 2} (FS20). At least 5 billion histories were followed for each simulation to create phase space files at 100 cm source to surface distance (SSD). In-water beam data were acquired by additional MC simulations using the above phase space files. A treatment planning system (TPS) was commissioned to generate a virtual machine using the MC-generated beam data. Intensity modulated radiation therapy (IMRT) plans for six clinical cases were generated using conventional 6 MV, 6 MV flattening filter free, and energy-modulated photon beams of the virtual machine. Results: As increasing the thickness of mercury, Percentage depth doses (PDD) of modulated 6 and 10 MV after the depth of dose maximum were continuously increased. The amount of PDD increase at the depth of 10 and 20 cm for modulated 6 MV was 4.8% and 5.2% at FS5, 3.9% and 5.0% at FS10 and 3.2%-4.9% at FS20 as increasing the thickness of mercury from 0 to 20 mm. The same for modulated 10 MV was 4.5% and 5.0% at FS5, 3.8% and 4.7% at FS10 and 4.1% and 4.8% at FS20 as increasing the thickness of mercury from 0 to 25 mm. The outputs of modulated 6 MV with 20 mm mercury and of modulated 10 MV with 25 mm mercury were reduced into 30%, and 56% of conventional linac, respectively. The energy-modulated IMRT plans had less integral doses than 6 MV IMRT or 6 MV flattening filter free plans for tumors located in the

  19. Helical tomotherapy for SIB and hypo-fractionated treatments in lung carcinomas: A 4D Monte Carlo treatment planning study

    International Nuclear Information System (INIS)

    Sterpin, Edmond; Janssens, Guillaume; Orban de Xivry, Jonathan; Goossens, Samuel; Wanet, Marie; Lee, John A.; Delor, Antoine; Bol, Vanesa; Vynckier, Stefaan; Gregoire, Vincent; Geets, Xavier

    2012-01-01

    Purpose: To evaluate the impact of intra-fraction motion induced by regular breathing on treatment quality for helical tomotherapy treatments. Material and methods: Four patients treated by simultaneous-integrated boost (SIB) and three by hypo-fractionated stereotactic treatments (hypo-fractionated, 18 Gy/fraction) were included. All patients were coached to ensure regular breathing. For the SIB group, the tumor volume was delineated using CT information only (CTV CT ) and the boost region was based on PET information (GTV PET , no CTV extension). In the hypo-fractionated group, a GTV based on CT information was contoured. In both groups, ITVs were defined according to 4D data. The PTV included the ITV plus a setup error margin. The treatment was planned using the tomotherapy TPS on 3D CT images. In order to verify the impact of intra-fraction motion and interplay effects, dose calculations were performed using a previously validated Monte Carlo model of tomotherapy (TomoPen): first on the planning 3D CT (“planned dose”) and second, on the 10 phases of the 4D scan. For the latter, two dose distributions, termed “interplay simulated” or “no interplay” were computed with and without beamlet-phase correlation over the 10 phases and combined using deformable dose registration. Results: In all cases, DVHs of “interplay simulated” dose distributions complied within 1% of the original clinical objectives used for planning, defined according to ICRU (report 83) and RTOG (trials 0236 and 0618) recommendations, for SIB and hypo-fractionated groups, respectively. For one patient in the hypo-fractionated group, D mean to the CTV CT was 2.6% and 2.5% higher than “planned” for “interplay simulated” and “no interplay”, respectively. Conclusion: For the patients included in this study, assuming regular breathing, the results showed that interplay of breathing and tomotherapy delivery motions did not affect significantly plan delivery accuracy. Hence

  20. Evaluation of an electron Monte Carlo dose calculation algorithm for treatment planning.

    Science.gov (United States)

    Chamberland, Eve; Beaulieu, Luc; Lachance, Bernard

    2015-05-08

    The purpose of this study is to evaluate the accuracy of the electron Monte Carlo (eMC) dose calculation algorithm included in a commercial treatment planning system and compare its performance against an electron pencil beam algorithm. Several tests were performed to explore the system's behavior in simple geometries and in configurations encountered in clinical practice. The first series of tests were executed in a homogeneous water phantom, where experimental measurements and eMC-calculated dose distributions were compared for various combinations of energy and applicator. More specifically, we compared beam profiles and depth-dose curves at different source-to-surface distances (SSDs) and gantry angles, by using dose difference and distance to agreement. Also, we compared output factors, we studied the effects of algorithm input parameters, which are the random number generator seed, as well as the calculation grid size, and we performed a calculation time evaluation. Three different inhomogeneous solid phantoms were built, using high- and low-density materials inserts, to clinically simulate relevant heterogeneity conditions: a small air cylinder within a homogeneous phantom, a lung phantom, and a chest wall phantom. We also used an anthropomorphic phantom to perform comparison of eMC calculations to measurements. Finally, we proceeded with an evaluation of the eMC algorithm on a clinical case of nose cancer. In all mentioned cases, measurements, carried out by means of XV-2 films, radiographic films or EBT2 Gafchromic films. were used to compare eMC calculations with dose distributions obtained from an electron pencil beam algorithm. eMC calculations in the water phantom were accurate. Discrepancies for depth-dose curves and beam profiles were under 2.5% and 2 mm. Dose calculations with eMC for the small air cylinder and the lung phantom agreed within 2% and 4%, respectively. eMC calculations for the chest wall phantom and the anthropomorphic phantom also

  1. Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy.

    Science.gov (United States)

    Martinez-Rovira, I; Sempau, J; Prezado, Y

    2012-05-01

    Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-μm-wide microbeams spaced by 200-400 μm) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct features of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Good agreement between MC simulations and experimental results was achieved, even at the interfaces between two

  2. Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Rovira, I.; Sempau, J.; Prezado, Y. [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain) and ID17 Biomedical Beamline, European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz B.P. 220, F-38043 Grenoble Cedex (France); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain); Laboratoire Imagerie et modelisation en neurobiologie et cancerologie, UMR8165, Centre National de la Recherche Scientifique (CNRS), Universites Paris 7 et Paris 11, Bat 440., 15 rue Georges Clemenceau, F-91406 Orsay Cedex (France)

    2012-05-15

    Purpose: Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-{mu}m-wide microbeams spaced by 200-400 {mu}m) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct features of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. Methods: The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Results: Good agreement between MC simulations and experimental results was achieved, even at

  3. Experimental verification of lung dose with radiochromic film: comparison with Monte Carlo simulations and commercially available treatment planning systems

    International Nuclear Information System (INIS)

    Paelinck, L; Reynaert, N; Thierens, H; Neve, W De; Wagter, C de

    2005-01-01

    The purpose of this study was to assess the absorbed dose in and around lung tissue by performing radiochromic film measurements, Monte Carlo simulations and calculations with superposition convolution algorithms. We considered a layered polystyrene phantom of 12 x 12 x 12 cm 3 containing a central cavity of 6 x 6 x 6 cm 3 filled with Gammex RMI lung-equivalent material. Two field configurations were investigated, a small 1 x 10 cm 2 field and a larger 10 x 10 cm 2 field. First, we performed Monte Carlo simulations to investigate the influence of radiochromic film itself on the measured dose distribution when the film intersects a lung-equivalent region and is oriented parallel to the central beam axis. To that end, the film and the lung-equivalent materials were modelled in detail, taking into account their specific composition. Next, measurements were performed with the film oriented both parallel and perpendicular to the central beam axis to verify the results of our Monte Carlo simulations. Finally, we digitized the phantom in two commercially available treatment planning systems, Helax-TMS version 6.1A and Pinnacle version 6.2b, and calculated the absorbed dose in the phantom with their incorporated superposition convolution algorithms to compare with the Monte Carlo simulations. Comparing Monte Carlo simulations with measurements reveals that radiochromic film is a reliable dosimeter in and around lung-equivalent regions when the film is positioned perpendicular to the central beam axis. Radiochromic film is also able to predict the absorbed dose accurately when the film is positioned parallel to the central beam axis through the lung-equivalent region. However, attention must be paid when the film is not positioned along the central beam axis, in which case the film gradually attenuates the beam and decreases the dose measured behind the cavity. This underdosage disappears by offsetting the film a few centimetres. We find deviations of about 3.6% between

  4. Experimental verification of lung dose with radiochromic film: comparison with Monte Carlo simulations and commercially available treatment planning systems

    Science.gov (United States)

    Paelinck, L.; Reynaert, N.; Thierens, H.; DeNeve, W.; DeWagter, C.

    2005-05-01

    The purpose of this study was to assess the absorbed dose in and around lung tissue by performing radiochromic film measurements, Monte Carlo simulations and calculations with superposition convolution algorithms. We considered a layered polystyrene phantom of 12 × 12 × 12 cm3 containing a central cavity of 6 × 6 × 6 cm3 filled with Gammex RMI lung-equivalent material. Two field configurations were investigated, a small 1 × 10 cm2 field and a larger 10 × 10 cm2 field. First, we performed Monte Carlo simulations to investigate the influence of radiochromic film itself on the measured dose distribution when the film intersects a lung-equivalent region and is oriented parallel to the central beam axis. To that end, the film and the lung-equivalent materials were modelled in detail, taking into account their specific composition. Next, measurements were performed with the film oriented both parallel and perpendicular to the central beam axis to verify the results of our Monte Carlo simulations. Finally, we digitized the phantom in two commercially available treatment planning systems, Helax-TMS version 6.1A and Pinnacle version 6.2b, and calculated the absorbed dose in the phantom with their incorporated superposition convolution algorithms to compare with the Monte Carlo simulations. Comparing Monte Carlo simulations with measurements reveals that radiochromic film is a reliable dosimeter in and around lung-equivalent regions when the film is positioned perpendicular to the central beam axis. Radiochromic film is also able to predict the absorbed dose accurately when the film is positioned parallel to the central beam axis through the lung-equivalent region. However, attention must be paid when the film is not positioned along the central beam axis, in which case the film gradually attenuates the beam and decreases the dose measured behind the cavity. This underdosage disappears by offsetting the film a few centimetres. We find deviations of about 3.6% between

  5. Application of adjoint Monte Carlo to accelerate simulations of mono-directional beams in treatment planning for Boron Neutron Capture Therapy

    NARCIS (Netherlands)

    Nievaart, V.A.; Legrady, D.; Moss, R.L.; Kloosterman, J.L.; Van der Hagen, T.H.; Van Dam, H.

    2007-01-01

    This paper deals with the application of the adjoint transport theory in order to optimize Monte Carlo based radiotherapy treatment planning. The technique is applied to Boron Neutron Capture Therapy where most often mixed beams of neutrons and gammas are involved. In normal forward Monte Carlo

  6. Full Monte Carlo-Based Biologic Treatment Plan Optimization System for Intensity Modulated Carbon Ion Therapy on Graphics Processing Unit.

    Science.gov (United States)

    Qin, Nan; Shen, Chenyang; Tsai, Min-Yu; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B; Parodi, Katia; Jia, Xun

    2018-01-01

    One of the major benefits of carbon ion therapy is enhanced biological effectiveness at the Bragg peak region. For intensity modulated carbon ion therapy (IMCT), it is desirable to use Monte Carlo (MC) methods to compute the properties of each pencil beam spot for treatment planning, because of their accuracy in modeling physics processes and estimating biological effects. We previously developed goCMC, a graphics processing unit (GPU)-oriented MC engine for carbon ion therapy. The purpose of the present study was to build a biological treatment plan optimization system using goCMC. The repair-misrepair-fixation model was implemented to compute the spatial distribution of linear-quadratic model parameters for each spot. A treatment plan optimization module was developed to minimize the difference between the prescribed and actual biological effect. We used a gradient-based algorithm to solve the optimization problem. The system was embedded in the Varian Eclipse treatment planning system under a client-server architecture to achieve a user-friendly planning environment. We tested the system with a 1-dimensional homogeneous water case and 3 3-dimensional patient cases. Our system generated treatment plans with biological spread-out Bragg peaks covering the targeted regions and sparing critical structures. Using 4 NVidia GTX 1080 GPUs, the total computation time, including spot simulation, optimization, and final dose calculation, was 0.6 hour for the prostate case (8282 spots), 0.2 hour for the pancreas case (3795 spots), and 0.3 hour for the brain case (6724 spots). The computation time was dominated by MC spot simulation. We built a biological treatment plan optimization system for IMCT that performs simulations using a fast MC engine, goCMC. To the best of our knowledge, this is the first time that full MC-based IMCT inverse planning has been achieved in a clinically viable time frame. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Dosimetric study of prostate brachytherapy using techniques of Monte-Carlo simulation, experimental measurements and comparison with a treatment plan

    International Nuclear Information System (INIS)

    Teles, Pedro; Barros, Silvia; Vaz, Pedro; Goncalves, Isabel; Facure, Alessandro; Rosa, Luiz da; Santos, Maira; Pereira Junior, Pedro Paulo; Zankl, Maria

    2013-01-01

    Prostate Brachytherapy is a radiotherapy technique, which consists in inserting a number of radioactive seeds (containing, usually, the following radionuclides 125 l, 241 Am or 103 Pd ) surrounding or in the vicinity of, prostate tumor tissue . The main objective of this technique is to maximize the radiation dose to the tumor and minimize it in other tissues and organs healthy, in order to reduce its morbidity. The absorbed dose distribution in the prostate, using this technique is usually non-homogeneous and time dependent. Various parameters such as the type of seed, the attenuation interactions between them, their geometrical arrangement within the prostate, the actual geometry of the seeds,and further swelling of the prostate gland after implantation greatly influence the course of absorbed dose in the prostate and surrounding areas. Quantification of these parameters is therefore extremely important for dose optimization and improvement of their plans conventional treatment, which in many cases not fully take into account. The Monte Carlo techniques allow to study these parameters quickly and effectively. In this work, we use the program MCNPX and generic voxel phantom (GOLEM) where simulated different geometric arrangements of seeds containing 125 I, Amersham Health model of type 6711 in prostates of different sizes, in order to try to quantify some of the parameters. The computational model was validated using a phantom prostate cubic RW3 type , consisting of tissue equivalent, and thermoluminescent dosimeters. Finally, to have a term of comparison with a treatment real plan it was simulate a treatment plan used in a hospital of Rio de Janeiro, with exactly the same parameters, and our computational model. The results obtained in our study seem to indicate that the parameters described above may be a source of uncertainty in the correct evaluation of the dose required for actual treatment plans. The use of Monte Carlo techniques can serve as a complementary

  8. EDITORIAL: Special section: Selected papers from the Third European Workshop on Monte Carlo Treatment Planning (MCTP2012) Special section: Selected papers from the Third European Workshop on Monte Carlo Treatment Planning (MCTP2012)

    Science.gov (United States)

    Spezi, Emiliano; Leal, Antonio

    2013-04-01

    The Third European Workshop on Monte Carlo Treatment Planning (MCTP2012) was held from 15-18 May, 2012 in Seville, Spain. The event was organized by the Universidad de Sevilla with the support of the European Workgroup on Monte Carlo Treatment Planning (EWG-MCTP). MCTP2012 followed two successful meetings, one held in Ghent (Belgium) in 2006 (Reynaert 2007) and one in Cardiff (UK) in 2009 (Spezi 2010). The recurrence of these workshops together with successful events held in parallel by McGill University in Montreal (Seuntjens et al 2012), show consolidated interest from the scientific community in Monte Carlo (MC) treatment planning. The workshop was attended by a total of 90 participants, mainly coming from a medical physics background. A total of 48 oral presentations and 15 posters were delivered in specific scientific sessions including dosimetry, code development, imaging, modelling of photon and electron radiation transport, external beam radiation therapy, nuclear medicine, brachitherapy and hadrontherapy. A copy of the programme is available on the workshop's website (www.mctp2012.com). In this special section of Physics in Medicine and Biology we report six papers that were selected following the journal's rigorous peer review procedure. These papers actually provide a good cross section of the areas of application of MC in treatment planning that were discussed at MCTP2012. Czarnecki and Zink (2013) and Wagner et al (2013) present the results of their work in small field dosimetry. Czarnecki and Zink (2013) studied field size and detector dependent correction factors for diodes and ion chambers within a clinical 6MV photon beam generated by a Siemens linear accelerator. Their modelling work based on the BEAMnrc/EGSnrc codes and experimental measurements revealed that unshielded diodes were the best choice for small field dosimetry because of their independence from the electron beam spot size and correction factor close to unity. Wagner et al (2013

  9. SU-E-T-175: Clinical Evaluations of Monte Carlo-Based Inverse Treatment Plan Optimization for Intensity Modulated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Y; Li, Y; Tian, Z; Gu, X; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: Pencil-beam or superposition-convolution type dose calculation algorithms are routinely used in inverse plan optimization for intensity modulated radiation therapy (IMRT). However, due to their limited accuracy in some challenging cases, e.g. lung, the resulting dose may lose its optimality after being recomputed using an accurate algorithm, e.g. Monte Carlo (MC). It is the objective of this study to evaluate the feasibility and advantages of a new method to include MC in the treatment planning process. Methods: We developed a scheme to iteratively perform MC-based beamlet dose calculations and plan optimization. In the MC stage, a GPU-based dose engine was used and the particle number sampled from a beamlet was proportional to its optimized fluence from the previous step. We tested this scheme in four lung cancer IMRT cases. For each case, the original plan dose, plan dose re-computed by MC, and dose optimized by our scheme were obtained. Clinically relevant dosimetric quantities in these three plans were compared. Results: Although the original plan achieved a satisfactory PDV dose coverage, after re-computing doses using MC method, it was found that the PTV D95% were reduced by 4.60%–6.67%. After re-optimizing these cases with our scheme, the PTV coverage was improved to the same level as in the original plan, while the critical OAR coverages were maintained to clinically acceptable levels. Regarding the computation time, it took on average 144 sec per case using only one GPU card, including both MC-based beamlet dose calculation and treatment plan optimization. Conclusion: The achieved dosimetric gains and high computational efficiency indicate the feasibility and advantages of the proposed MC-based IMRT optimization method. Comprehensive validations in more patient cases are in progress.

  10. Implementation of the DPM Monte Carlo code on a parallel architecture for treatment planning applications.

    Science.gov (United States)

    Tyagi, Neelam; Bose, Abhijit; Chetty, Indrin J

    2004-09-01

    We have parallelized the Dose Planning Method (DPM), a Monte Carlo code optimized for radiotherapy class problems, on distributed-memory processor architectures using the Message Passing Interface (MPI). Parallelization has been investigated on a variety of parallel computing architectures at the University of Michigan-Center for Advanced Computing, with respect to efficiency and speedup as a function of the number of processors. We have integrated the parallel pseudo random number generator from the Scalable Parallel Pseudo-Random Number Generator (SPRNG) library to run with the parallel DPM. The Intel cluster consisting of 800 MHz Intel Pentium III processor shows an almost linear speedup up to 32 processors for simulating 1 x 10(8) or more particles. The speedup results are nearly linear on an Athlon cluster (up to 24 processors based on availability) which consists of 1.8 GHz+ Advanced Micro Devices (AMD) Athlon processors on increasing the problem size up to 8 x 10(8) histories. For a smaller number of histories (1 x 10(8)) the reduction of efficiency with the Athlon cluster (down to 83.9% with 24 processors) occurs because the processing time required to simulate 1 x 10(8) histories is less than the time associated with interprocessor communication. A similar trend was seen with the Opteron Cluster (consisting of 1400 MHz, 64-bit AMD Opteron processors) on increasing the problem size. Because of the 64-bit architecture Opteron processors are capable of storing and processing instructions at a faster rate and hence are faster as compared to the 32-bit Athlon processors. We have validated our implementation with an in-phantom dose calculation study using a parallel pencil monoenergetic electron beam of 20 MeV energy. The phantom consists of layers of water, lung, bone, aluminum, and titanium. The agreement in the central axis depth dose curves and profiles at different depths shows that the serial and parallel codes are equivalent in accuracy.

  11. Implementation of the DPM Monte Carlo code on a parallel architecture for treatment planning applications

    International Nuclear Information System (INIS)

    Tyagi, Neelam; Bose, Abhijit; Chetty, Indrin J.

    2004-01-01

    We have parallelized the Dose Planning Method (DPM), a Monte Carlo code optimized for radiotherapy class problems, on distributed-memory processor architectures using the Message Passing Interface (MPI). Parallelization has been investigated on a variety of parallel computing architectures at the University of Michigan-Center for Advanced Computing, with respect to efficiency and speedup as a function of the number of processors. We have integrated the parallel pseudo random number generator from the Scalable Parallel Pseudo-Random Number Generator (SPRNG) library to run with the parallel DPM. The Intel cluster consisting of 800 MHz Intel Pentium III processor shows an almost linear speedup up to 32 processors for simulating 1x10 8 or more particles. The speedup results are nearly linear on an Athlon cluster (up to 24 processors based on availability) which consists of 1.8 GHz+ Advanced Micro Devices (AMD) Athlon processors on increasing the problem size up to 8x10 8 histories. For a smaller number of histories (1x10 8 ) the reduction of efficiency with the Athlon cluster (down to 83.9% with 24 processors) occurs because the processing time required to simulate 1x10 8 histories is less than the time associated with interprocessor communication. A similar trend was seen with the Opteron Cluster (consisting of 1400 MHz, 64-bit AMD Opteron processors) on increasing the problem size. Because of the 64-bit architecture Opteron processors are capable of storing and processing instructions at a faster rate and hence are faster as compared to the 32-bit Athlon processors. We have validated our implementation with an in-phantom dose calculation study using a parallel pencil monoenergetic electron beam of 20 MeV energy. The phantom consists of layers of water, lung, bone, aluminum, and titanium. The agreement in the central axis depth dose curves and profiles at different depths shows that the serial and parallel codes are equivalent in accuracy

  12. Sensitivity studies in Monte Carlo treatment planning for neutron brachytherapy of cervical cancer : role of boron augmentation

    International Nuclear Information System (INIS)

    Ralston, A.; Wallace, S.A.; Allen, B.J.

    1996-01-01

    Cervical cancer is the most common malignancy of women in the world and in the third world often presents in an advanced state. While photo radiation therapy is an established form of treatment, neutron brachytherapy with Cf-252 has proven to give superior local control in advanced cases without serious complications. This advantage arises from the reduction in radio-resistance, ascribed to hypoxia in bulky tumours, which occurs with high LET radiation. A further improvement is being sought by dose augmentation with boron neutron capture therapy. The Los Alamos Monte Carlo Neutron Photon radiation transport code MCNP is being used to investigate the effects of fat, muscle, bone and voids in the fast and thermal dose distributions. Whereas the fast neutron dose determines normal tissue tolerance, the boron neutron capture dose rate is determined by the thermal flux distribution. The neutron spectrum is sensitive to changes in hydrogen density, as occurs with muscle, fat and bone. The implications of this sensitivity are examined to determine whether detailed individual Monte Carlo calculations are required for patient clinical treatment plans. (author)

  13. Fred: a GPU-accelerated fast-Monte Carlo code for rapid treatment plan recalculation in ion beam therapy

    Science.gov (United States)

    Schiavi, A.; Senzacqua, M.; Pioli, S.; Mairani, A.; Magro, G.; Molinelli, S.; Ciocca, M.; Battistoni, G.; Patera, V.

    2017-09-01

    Ion beam therapy is a rapidly growing technique for tumor radiation therapy. Ions allow for a high dose deposition in the tumor region, while sparing the surrounding healthy tissue. For this reason, the highest possible accuracy in the calculation of dose and its spatial distribution is required in treatment planning. On one hand, commonly used treatment planning software solutions adopt a simplified beam-body interaction model by remapping pre-calculated dose distributions into a 3D water-equivalent representation of the patient morphology. On the other hand, Monte Carlo (MC) simulations, which explicitly take into account all the details in the interaction of particles with human tissues, are considered to be the most reliable tool to address the complexity of mixed field irradiation in a heterogeneous environment. However, full MC calculations are not routinely used in clinical practice because they typically demand substantial computational resources. Therefore MC simulations are usually only used to check treatment plans for a restricted number of difficult cases. The advent of general-purpose programming GPU cards prompted the development of trimmed-down MC-based dose engines which can significantly reduce the time needed to recalculate a treatment plan with respect to standard MC codes in CPU hardware. In this work, we report on the development of fred, a new MC simulation platform for treatment planning in ion beam therapy. The code can transport particles through a 3D voxel grid using a class II MC algorithm. Both primary and secondary particles are tracked and their energy deposition is scored along the trajectory. Effective models for particle-medium interaction have been implemented, balancing accuracy in dose deposition with computational cost. Currently, the most refined module is the transport of proton beams in water: single pencil beam dose-depth distributions obtained with fred agree with those produced by standard MC codes within 1-2% of the

  14. The Adjoint Monte Carlo - a viable option for efficient radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, M [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    In cancer therapy using collimated beams of photons, the radiation oncologist must determine a set of beams that delivers the required dose to each point in the tumor and minimizes the risk of damage to the healthy tissue and vital organs. Currently, the oncologist determines these beams iteratively, by using a sequence of dose calculations using approximate numerical methods. In this paper, a more accurate and potentially faster approach, based on the Adjoint Monte Carlo method, is presented (authors).

  15. The use of Monte-Carlo codes for treatment planning in external-beam radiotherapy

    International Nuclear Information System (INIS)

    Alan, E.; Nahum, PhD.

    2003-01-01

    Monte Carlo simulation of radiation transport is a very powerful technique. There are basically no exact solutions to the Boltzmann transport equation. Even, the 'straightforward' situation (in radiotherapy) of an electron beam depth-dose distribution in water proves to be too difficult for analytical methods without making gross approximations such as ignoring energy-loss straggling, large-angle single scattering and Bremsstrahlung production. monte Carlo is essential when radiation is transport from one medium into another. As the particle (be it a neutron, photon, electron, proton) crosses the boundary then a new set of interaction cross-sections is simply read in and the simulation continues as though the new medium were infinite until the next boundary is encountered. Radiotherapy involves directing a beam of megavoltage x rays or electrons (occasionally protons) at a very complex object, the human body. Monte Carlo simulation has proved in valuable at many stages of the process of accurately determining the distribution of absorbed dose in the patient. Some of these applications will be reviewed here. (Rogers and al 1990; Andreo 1991; Mackie 1990). (N.C.)

  16. Commissioning and Validation of the First Monte Carlo Based Dose Calculation Algorithm Commercial Treatment Planning System in Mexico

    International Nuclear Information System (INIS)

    Larraga-Gutierrez, J. M.; Garcia-Garduno, O. A.; Hernandez-Bojorquez, M.; Galvan de la Cruz, O. O.; Ballesteros-Zebadua, P.

    2010-01-01

    This work presents the beam data commissioning and dose calculation validation of the first Monte Carlo (MC) based treatment planning system (TPS) installed in Mexico. According to the manufacturer specifications, the beam data commissioning needed for this model includes: several in-air and water profiles, depth dose curves, head-scatter factors and output factors (6x6, 12x12, 18x18, 24x24, 42x42, 60x60, 80x80 and 100x100 mm 2 ). Radiographic and radiochromic films, diode and ionization chambers were used for data acquisition. MC dose calculations in a water phantom were used to validate the MC simulations using comparisons with measured data. Gamma index criteria 2%/2 mm were used to evaluate the accuracy of MC calculations. MC calculated data show an excellent agreement for field sizes from 18x18 to 100x100 mm 2 . Gamma analysis shows that in average, 95% and 100% of the data passes the gamma index criteria for these fields, respectively. For smaller fields (12x12 and 6x6 mm 2 ) only 92% of the data meet the criteria. Total scatter factors show a good agreement ( 2 ) that show a error of 4.7%. MC dose calculations are accurate and precise for clinical treatment planning up to a field size of 18x18 mm 2 . Special care must be taken for smaller fields.

  17. An investigation of the adjoint method for external beam radiation therapy treatment planning using Monte Carlo transport

    International Nuclear Information System (INIS)

    Kowalok, M.; Mackie, T.R.

    2001-01-01

    A relatively new technique for achieving the right dose to the right tissue, is intensity modulated radiation therapy (IMRT). In this technique, a megavoltage x-ray beam is rotated around a patient, and the intensity and shape of the beam is modulated as a function of source position and patient anatomy. The relationship between beam-let intensity and patient dose can be expressed under a matrix form where the matrix D ij represents the dose delivered to voxel i by beam-let j per unit fluence. The D ij influence matrix is the key element that enables this approach. In this regard, sensitivity theory lends itself in a natural way to the process of computing beam weights for treatment planning. The solution of the adjoint form of the Boltzmann equation is an adjoint function that describes the importance of particles throughout the system in contributing to the detector response. In this case, adjoint methods can provide the sensitivity of the dose at a single point in the patient with respect to all points in the source field. The purpose of this study is to investigate the feasibility of using the adjoint method and Monte Carlo transport for radiation therapy treatment planning

  18. SU-E-T-222: Computational Optimization of Monte Carlo Simulation On 4D Treatment Planning Using the Cloud Computing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Chow, J [Princess Margaret Cancer Center, Toronto, ON (Canada)

    2015-06-15

    Purpose: This study evaluated the efficiency of 4D lung radiation treatment planning using Monte Carlo simulation on the cloud. The EGSnrc Monte Carlo code was used in dose calculation on the 4D-CT image set. Methods: 4D lung radiation treatment plan was created by the DOSCTP linked to the cloud, based on the Amazon elastic compute cloud platform. Dose calculation was carried out by Monte Carlo simulation on the 4D-CT image set on the cloud, and results were sent to the FFD4D image deformation program for dose reconstruction. The dependence of computing time for treatment plan on the number of compute node was optimized with variations of the number of CT image set in the breathing cycle and dose reconstruction time of the FFD4D. Results: It is found that the dependence of computing time on the number of compute node was affected by the diminishing return of the number of node used in Monte Carlo simulation. Moreover, the performance of the 4D treatment planning could be optimized by using smaller than 10 compute nodes on the cloud. The effects of the number of image set and dose reconstruction time on the dependence of computing time on the number of node were not significant, as more than 15 compute nodes were used in Monte Carlo simulations. Conclusion: The issue of long computing time in 4D treatment plan, requiring Monte Carlo dose calculations in all CT image sets in the breathing cycle, can be solved using the cloud computing technology. It is concluded that the optimized number of compute node selected in simulation should be between 5 and 15, as the dependence of computing time on the number of node is significant.

  19. SU-E-T-222: Computational Optimization of Monte Carlo Simulation On 4D Treatment Planning Using the Cloud Computing Technology

    International Nuclear Information System (INIS)

    Chow, J

    2015-01-01

    Purpose: This study evaluated the efficiency of 4D lung radiation treatment planning using Monte Carlo simulation on the cloud. The EGSnrc Monte Carlo code was used in dose calculation on the 4D-CT image set. Methods: 4D lung radiation treatment plan was created by the DOSCTP linked to the cloud, based on the Amazon elastic compute cloud platform. Dose calculation was carried out by Monte Carlo simulation on the 4D-CT image set on the cloud, and results were sent to the FFD4D image deformation program for dose reconstruction. The dependence of computing time for treatment plan on the number of compute node was optimized with variations of the number of CT image set in the breathing cycle and dose reconstruction time of the FFD4D. Results: It is found that the dependence of computing time on the number of compute node was affected by the diminishing return of the number of node used in Monte Carlo simulation. Moreover, the performance of the 4D treatment planning could be optimized by using smaller than 10 compute nodes on the cloud. The effects of the number of image set and dose reconstruction time on the dependence of computing time on the number of node were not significant, as more than 15 compute nodes were used in Monte Carlo simulations. Conclusion: The issue of long computing time in 4D treatment plan, requiring Monte Carlo dose calculations in all CT image sets in the breathing cycle, can be solved using the cloud computing technology. It is concluded that the optimized number of compute node selected in simulation should be between 5 and 15, as the dependence of computing time on the number of node is significant

  20. A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Grevillot, L; Freud, N; Sarrut, D [Universite de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Universite Lyon 1, Centre Leon Berard, Lyon (France); Bertrand, D; Dessy, F, E-mail: loic.grevillot@creatis.insa-lyon.fr [IBA, B-1348, Louvain-la Neuve (Belgium)

    2011-08-21

    This work proposes a generic method for modeling scanned ion beam delivery systems, without simulation of the treatment nozzle and based exclusively on beam data library (BDL) measurements required for treatment planning systems (TPS). To this aim, new tools dedicated to treatment plan simulation were implemented in the Gate Monte Carlo platform. The method was applied to a dedicated nozzle from IBA for proton pencil beam scanning delivery. Optical and energy parameters of the system were modeled using a set of proton depth-dose profiles and spot sizes measured at 27 therapeutic energies. For further validation of the beam model, specific 2D and 3D plans were produced and then measured with appropriate dosimetric tools. Dose contributions from secondary particles produced by nuclear interactions were also investigated using field size factor experiments. Pristine Bragg peaks were reproduced with 0.7 mm range and 0.2 mm spot size accuracy. A 32 cm range spread-out Bragg peak with 10 cm modulation was reproduced with 0.8 mm range accuracy and a maximum point-to-point dose difference of less than 2%. A 2D test pattern consisting of a combination of homogeneous and high-gradient dose regions passed a 2%/2 mm gamma index comparison for 97% of the points. In conclusion, the generic modeling method proposed for scanned ion beam delivery systems was applicable to an IBA proton therapy system. The key advantage of the method is that it only requires BDL measurements of the system. The validation tests performed so far demonstrated that the beam model achieves clinical performance, paving the way for further studies toward TPS benchmarking. The method involves new sources that are available in the new Gate release V6.1 and could be further applied to other particle therapy systems delivering protons or other types of ions like carbon.

  1. SU-E-T-595: Design of a Graphical User Interface for An In-House Monte Carlo Based Treatment Planning System: Planning and Contouring Tools

    International Nuclear Information System (INIS)

    EMAM, M; Eldib, A; Lin, M; Li, J; Chibani, O; Ma, C

    2014-01-01

    Purpose: An in-house Monte Carlo based treatment planning system (MC TPS) has been developed for modulated electron radiation therapy (MERT). Our preliminary MERT planning experience called for a more user friendly graphical user interface. The current work aimed to design graphical windows and tools to facilitate the contouring and planning process. Methods: Our In-house GUI MC TPS is built on a set of EGS4 user codes namely MCPLAN and MCBEAM in addition to an in-house optimization code, which was named as MCOPTIM. Patient virtual phantom is constructed using the tomographic images in DICOM format exported from clinical treatment planning systems (TPS). Treatment target volumes and critical structures were usually contoured on clinical TPS and then sent as a structure set file. In our GUI program we developed a visualization tool to allow the planner to visualize the DICOM images and delineate the various structures. We implemented an option in our code for automatic contouring of the patient body and lungs. We also created an interface window displaying a three dimensional representation of the target and also showing a graphical representation of the treatment beams. Results: The new GUI features helped streamline the planning process. The implemented contouring option eliminated the need for performing this step on clinical TPS. The auto detection option for contouring the outer patient body and lungs was tested on patient CTs and it was shown to be accurate as compared to that of clinical TPS. The three dimensional representation of the target and the beams allows better selection of the gantry, collimator and couch angles. Conclusion: An in-house GUI program has been developed for more efficient MERT planning. The application of aiding tools implemented in the program is time saving and gives better control of the planning process

  2. Quality control of the treatment planning systems dose calculations in external radiation therapy using the Penelope Monte Carlo code; Controle qualite des systemes de planification dosimetrique des traitements en radiotherapie externe au moyen du code Monte-Carlo Penelope

    Energy Technology Data Exchange (ETDEWEB)

    Blazy-Aubignac, L

    2007-09-15

    The treatment planning systems (T.P.S.) occupy a key position in the radiotherapy service: they realize the projected calculation of the dose distribution and the treatment duration. Traditionally, the quality control of the calculated distribution doses relies on their comparisons with dose distributions measured under the device of treatment. This thesis proposes to substitute these dosimetry measures to the profile of reference dosimetry calculations got by the Penelope Monte-Carlo code. The Monte-Carlo simulations give a broad choice of test configurations and allow to envisage a quality control of dosimetry aspects of T.P.S. without monopolizing the treatment devices. This quality control, based on the Monte-Carlo simulations has been tested on a clinical T.P.S. and has allowed to simplify the quality procedures of the T.P.S.. This quality control, in depth, more precise and simpler to implement could be generalized to every center of radiotherapy. (N.C.)

  3. Clinical implementation of a GPU-based simplified Monte Carlo method for a treatment planning system of proton beam therapy

    International Nuclear Information System (INIS)

    Kohno, R; Hotta, K; Nishioka, S; Matsubara, K; Tansho, R; Suzuki, T

    2011-01-01

    We implemented the simplified Monte Carlo (SMC) method on graphics processing unit (GPU) architecture under the computer-unified device architecture platform developed by NVIDIA. The GPU-based SMC was clinically applied for four patients with head and neck, lung, or prostate cancer. The results were compared to those obtained by a traditional CPU-based SMC with respect to the computation time and discrepancy. In the CPU- and GPU-based SMC calculations, the estimated mean statistical errors of the calculated doses in the planning target volume region were within 0.5% rms. The dose distributions calculated by the GPU- and CPU-based SMCs were similar, within statistical errors. The GPU-based SMC showed 12.30–16.00 times faster performance than the CPU-based SMC. The computation time per beam arrangement using the GPU-based SMC for the clinical cases ranged 9–67 s. The results demonstrate the successful application of the GPU-based SMC to a clinical proton treatment planning. (note)

  4. Analysis of Various Multi-Objective Optimization Evolutionary Algorithms for Monte Carlo Treatment Planning System

    CERN Document Server

    Tydrichova, Magdalena

    2017-01-01

    In this project, various available multi-objective optimization evolutionary algorithms were compared considering their performance and distribution of solutions. The main goal was to select the most suitable algorithms for applications in cancer hadron therapy planning. For our purposes, a complex testing and analysis software was developed. Also, many conclusions and hypothesis have been done for the further research.

  5. Treatment plan evaluation for interstitial photodynamic therapy in a mouse model by Monte Carlo simulation with FullMonte

    Directory of Open Access Journals (Sweden)

    Jeffrey eCassidy

    2015-02-01

    Full Text Available Monte Carlo (MC simulation is recognized as the gold standard for biophotonic simulation, capturing all relevant physics and material properties at the perceived cost of high computing demands. Tetrahedral-mesh-based MC simulations particularly are attractive due to the ability to refine the mesh at will to conform to complicated geometries or user-defined resolution requirements. Since no approximations of material or light-source properties are required, MC methods are applicable to the broadest set of biophotonic simulation problems. MC methods also have other implementation features including inherent parallelism, and permit a continuously-variable quality-runtime tradeoff. We demonstrate here a complete MC-based prospective fluence dose evaluation system for interstitial PDT to generate dose-volume histograms on a tetrahedral mesh geometry description. To our knowledge, this is the first such system for general interstitial photodynamic therapy employing MC methods and is therefore applicable to a very broad cross-section of anatomy and material properties. We demonstrate that evaluation of dose-volume histograms is an effective variance-reduction scheme in its own right which greatly reduces the number of packets required and hence runtime required to achieve acceptable result confidence. We conclude that MC methods are feasible for general PDT treatment evaluation and planning, and considerably less costly than widely believed.

  6. Monte Carlo simulation for treatment planning optimization of the COMS and USC eye plaques using the MCNP4C code

    International Nuclear Information System (INIS)

    Jannati Isfahani, A.; Shokrani, P.; Raisali, Gh.

    2010-01-01

    Ophthalmic plaque radiotherapy using I-125 radioactive seeds in removable episcleral plaques is often used in management of ophthalmic tumors. Radioactive seeds are fixed in a gold bowl-shaped plaque and the plaque is sutured to the scleral surface corresponding to the base of the intraocular tumor. This treatment allows for a localized radiation dose delivery to the tumor with a minimum target dose of 85 Gy. The goal of this study was to develop a Monte Carlo simulation method for treatment planning optimization of the COMS and USC eye plaques. Material and Methods: The MCNP4C code was used to simulate three plaques: COMS-12mm, COMS-20mm, and USC ≠9 with I-125 seeds. Calculation of dose was performed in a spherical water phantom (radius 12 mm) using a 3D matrix with a size of 12 voxels in each dimension. Each voxel contained a sphere of radius 1 mm. Results: Dose profiles were calculated for each plaque. Isodose lines were created in 2 planes normal to the axes of the plaque, at the base of the tumor and at the level of the 85 Gy isodose in a 7 day treatment. Discussion and Conclusion: This study shows that it is necessary to consider the following tumor properties in design or selection of an eye plaque: the diameter of tumor base, its thickness and geometric shape, and the tumor location with respect to normal critical structures. The plaque diameter is selected by considering the tumor diameter. Tumor thickness is considered when selecting the seed parameters such as their number, activity and distribution. Finally, tumor shape and its location control the design of following parameters: the shape and material of the plaque and the need for collimation.

  7. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations

    International Nuclear Information System (INIS)

    Sempau, Josep; Wilderman, Scott J.; Bielajew, Alex F.

    2000-01-01

    A new Monte Carlo (MC) algorithm, the 'dose planning method' (DPM), and its associated computer program for simulating the transport of electrons and photons in radiotherapy class problems employing primary electron beams, is presented. DPM is intended to be a high-accuracy MC alternative to the current generation of treatment planning codes which rely on analytical algorithms based on an approximate solution of the photon/electron Boltzmann transport equation. For primary electron beams, DPM is capable of computing 3D dose distributions (in 1 mm 3 voxels) which agree to within 1% in dose maximum with widely used and exhaustively benchmarked general-purpose public-domain MC codes in only a fraction of the CPU time. A representative problem, the simulation of 1 million 10 MeV electrons impinging upon a water phantom of 128 3 voxels of 1 mm on a side, can be performed by DPM in roughly 3 min on a modern desktop workstation. DPM achieves this performance by employing transport mechanics and electron multiple scattering distribution functions which have been derived to permit long transport steps (of the order of 5 mm) which can cross heterogeneity boundaries. The underlying algorithm is a 'mixed' class simulation scheme, with differential cross sections for hard inelastic collisions and bremsstrahlung events described in an approximate manner to simplify their sampling. The continuous energy loss approximation is employed for energy losses below some predefined thresholds, and photon transport (including Compton, photoelectric absorption and pair production) is simulated in an analogue manner. The δ-scattering method (Woodcock tracking) is adopted to minimize the computational costs of transporting photons across voxels. (author)

  8. Dose attenuation effect of hip prostheses in a 9-MV photon beam. Commercial treatment planning system versus Monte Carlo calculations

    International Nuclear Information System (INIS)

    Mesbahi, A.; Nejad, F.S.

    2007-01-01

    The purpose of this study was to investigate the dosimetric effect of various hip prostheses on pelvis lateral fields treated by a 9-MV photon beam using Monte Carlo (MC) and effective path-length (EPL) methods. The head of the Neptun 10 pc linac was simulated using the MCNP4C MC code. The accuracy of the MC model was evaluated using measured dosimetric features including depth dose values and dose profiles in a water phantom. The Alfard treatment planning system (TPS) was used for EPL calculations. A virtual water phantom with dimensions of 30 x 30 x 30 cm 3 and a cube with dimensions of 4 x 4 x 4 cm 3 made of various metals centered in 12 cm depth was used for MC and EPL calculations. Various materials including titanium, Co-Cr-Mo, and steel alloys were used as hip prostheses. Our results showed significant attenuation in absorbed dose for points after and inside the prostheses. Attenuations of 32%, 54% and 55% were seen for titanium, Co-Cr-Mo, and steel alloys, respectively, at a distance of 5 cm from the prosthesis. Considerable dose increase (up to 18%) was found at the water-prosthesis interface due to back-scattered electrons using the MC method. The results of EPL calculations for the titanium implant were comparable to the MC calculations. This method, however, was not able to predict the interface effect or calculate accurately the absorbed dose in the presence of the Co-Cr-Mo and steel prostheses. The dose perturbation effect of hip prostheses is significant and cannot be predicted accurately by the EPL method for Co-Cr-Mo or steel prostheses. The use of MC-based TPS is recommended for treatments requiring fields passing through hip prostheses. (author)

  9. Monte Carlo evaluation of the AAA treatment planning algorithm in a heterogeneous multilayer phantom and IMRT clinical treatments for an Elekta SL25 linear accelerator

    International Nuclear Information System (INIS)

    Sterpin, E.; Tomsej, M.; Smedt, B. de; Reynaert, N.; Vynckier, S.

    2007-01-01

    The Anisotropic Analytical Algorithm (AAA) is a new pencil beam convolution/superposition algorithm proposed by Varian for photon dose calculations. The configuration of AAA depends on linear accelerator design and specifications. The purpose of this study was to investigate the accuracy of AAA for an Elekta SL25 linear accelerator for small fields and intensity modulated radiation therapy (IMRT) treatments in inhomogeneous media. The accuracy of AAA was evaluated in two studies. First, AAA was compared both with Monte Carlo (MC) and the measurements in an inhomogeneous phantom simulating lung equivalent tissues and bone ribs. The algorithm was tested under lateral electronic disequilibrium conditions, using small fields (2x2 cm 2 ). Good agreement was generally achieved for depth dose and profiles, with deviations generally below 3% in lung inhomogeneities and below 5% at interfaces. However, the effects of attenuation and scattering close to the bone ribs were not fully taken into account by AAA, and small inhomogeneities may lead to planning errors. Second, AAA and MC were compared for IMRT plans in clinical conditions, i.e., dose calculations in a computed tomography scan of a patient. One ethmoid tumor, one orophaxynx and two lung tumors are presented in this paper. Small differences were found between the dose volume histograms. For instance, a 1.7% difference for the mean planning target volume dose was obtained for the ethmoid case. Since better agreement was achieved for the same plans but in homogeneous conditions, these differences must be attributed to the handling of inhomogeneities by AAA. Therefore, inherent assumptions of the algorithm, principally the assumption of independent depth and lateral directions in the scaling of the kernels, were slightly influencing AAA's validity in inhomogeneities. However, AAA showed a good accuracy overall and a great ability to handle small fields in inhomogeneous media compared to other pencil beam convolution

  10. OEDIPE, a software for personalized Monte Carlo dosimetry and treatment planning optimization in nuclear medicine: absorbed dose and biologically effective dose considerations

    International Nuclear Information System (INIS)

    Petitguillaume, A.; Broggio, D.; Franck, D.; Desbree, A.; Bernardini, M.; Labriolle Vaylet, C. de

    2014-01-01

    For targeted radionuclide therapies, treatment planning usually consists of the administration of standard activities without accounting for the patient-specific activity distribution, pharmacokinetics and dosimetry to organs at risk. The OEDIPE software is a user-friendly interface which has an automation level suitable for performing personalized Monte Carlo 3D dosimetry for diagnostic and therapeutic radionuclide administrations. Mean absorbed doses to regions of interest (ROIs), isodose curves superimposed on a personalized anatomical model of the patient and dose-volume histograms can be extracted from the absorbed dose 3D distribution. Moreover, to account for the differences in radiosensitivity between tumoral and healthy tissues, additional functionalities have been implemented to calculate the 3D distribution of the biologically effective dose (BED), mean BEDs to ROIs, isoBED curves and BED-volume histograms along with the Equivalent Uniform Biologically Effective Dose (EUD) to ROIs. Finally, optimization tools are available for treatment planning optimization using either the absorbed dose or BED distributions. These tools enable one to calculate the maximal injectable activity which meets tolerance criteria to organs at risk for a chosen fractionation protocol. This paper describes the functionalities available in the latest version of the OEDIPE software to perform personalized Monte Carlo dosimetry and treatment planning optimization in targeted radionuclide therapies. (authors)

  11. Estimating statistical uncertainty of Monte Carlo efficiency-gain in the context of a correlated sampling Monte Carlo code for brachytherapy treatment planning with non-normal dose distribution.

    Science.gov (United States)

    Mukhopadhyay, Nitai D; Sampson, Andrew J; Deniz, Daniel; Alm Carlsson, Gudrun; Williamson, Jeffrey; Malusek, Alexandr

    2012-01-01

    Correlated sampling Monte Carlo methods can shorten computing times in brachytherapy treatment planning. Monte Carlo efficiency is typically estimated via efficiency gain, defined as the reduction in computing time by correlated sampling relative to conventional Monte Carlo methods when equal statistical uncertainties have been achieved. The determination of the efficiency gain uncertainty arising from random effects, however, is not a straightforward task specially when the error distribution is non-normal. The purpose of this study is to evaluate the applicability of the F distribution and standardized uncertainty propagation methods (widely used in metrology to estimate uncertainty of physical measurements) for predicting confidence intervals about efficiency gain estimates derived from single Monte Carlo runs using fixed-collision correlated sampling in a simplified brachytherapy geometry. A bootstrap based algorithm was used to simulate the probability distribution of the efficiency gain estimates and the shortest 95% confidence interval was estimated from this distribution. It was found that the corresponding relative uncertainty was as large as 37% for this particular problem. The uncertainty propagation framework predicted confidence intervals reasonably well; however its main disadvantage was that uncertainties of input quantities had to be calculated in a separate run via a Monte Carlo method. The F distribution noticeably underestimated the confidence interval. These discrepancies were influenced by several photons with large statistical weights which made extremely large contributions to the scored absorbed dose difference. The mechanism of acquiring high statistical weights in the fixed-collision correlated sampling method was explained and a mitigation strategy was proposed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. The Adjoint Method for The Optimization of Brachytherapy and Radiotherapy Patient Treatment Planning Procedures Using Monte Carlo Calculations

    International Nuclear Information System (INIS)

    Henderson, D.L.; Yoo, S.; Kowalok, M.; Mackie, T.R.; Thomadsen, B.R.

    2001-01-01

    The goal of this project is to investigate the use of the adjoint method, commonly used in the reactor physics community, for the optimization of radiation therapy patient treatment plans. Two different types of radiation therapy are being examined, interstitial brachytherapy and radiotherapy. In brachytherapy radioactive sources are surgically implanted within the diseased organ such as the prostate to treat the cancerous tissue. With radiotherapy, the x-ray source is usually located at a distance of about 1-meter from the patient and focused on the treatment area. For brachytherapy the optimization phase of the treatment plan consists of determining the optimal placement of the radioactive sources, which delivers the prescribed dose to the disease tissue while simultaneously sparing (reducing) the dose to sensitive tissue and organs. For external beam radiation therapy the optimization phase of the treatment plan consists of determining the optimal direction and intensity of beam, which provides complete coverage of the tumor region with the prescribed dose while simultaneously avoiding sensitive tissue areas. For both therapy methods, the optimal treatment plan is one in which the diseased tissue has been treated with the prescribed dose and dose to the sensitive tissue and organs has been kept to a minimum

  13. TU-EF-304-07: Monte Carlo-Based Inverse Treatment Plan Optimization for Intensity Modulated Proton Therapy

    International Nuclear Information System (INIS)

    Li, Y; Tian, Z; Jiang, S; Jia, X; Song, T; Wu, Z; Liu, Y

    2015-01-01

    Purpose: Intensity-modulated proton therapy (IMPT) is increasingly used in proton therapy. For IMPT optimization, Monte Carlo (MC) is desired for spots dose calculations because of its high accuracy, especially in cases with a high level of heterogeneity. It is also preferred in biological optimization problems due to the capability of computing quantities related to biological effects. However, MC simulation is typically too slow to be used for this purpose. Although GPU-based MC engines have become available, the achieved efficiency is still not ideal. The purpose of this work is to develop a new optimization scheme to include GPU-based MC into IMPT. Methods: A conventional approach using MC in IMPT simply calls the MC dose engine repeatedly for each spot dose calculations. However, this is not the optimal approach, because of the unnecessary computations on some spots that turned out to have very small weights after solving the optimization problem. GPU-memory writing conflict occurring at a small beam size also reduces computational efficiency. To solve these problems, we developed a new framework that iteratively performs MC dose calculations and plan optimizations. At each dose calculation step, the particles were sampled from different spots altogether with Metropolis algorithm, such that the particle number is proportional to the latest optimized spot intensity. Simultaneously transporting particles from multiple spots also mitigated the memory writing conflict problem. Results: We have validated the proposed MC-based optimization schemes in one prostate case. The total computation time of our method was ∼5–6 min on one NVIDIA GPU card, including both spot dose calculation and plan optimization, whereas a conventional method naively using the same GPU-based MC engine were ∼3 times slower. Conclusion: A fast GPU-based MC dose calculation method along with a novel optimization workflow is developed. The high efficiency makes it attractive for clinical

  14. TU-EF-304-07: Monte Carlo-Based Inverse Treatment Plan Optimization for Intensity Modulated Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y [Tsinghua University, Beijing, Beijing (China); UT Southwestern Medical Center, Dallas, TX (United States); Tian, Z; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Song, T [Southern Medical University, Guangzhou, Guangdong (China); UT Southwestern Medical Center, Dallas, TX (United States); Wu, Z; Liu, Y [Tsinghua University, Beijing, Beijing (China)

    2015-06-15

    Purpose: Intensity-modulated proton therapy (IMPT) is increasingly used in proton therapy. For IMPT optimization, Monte Carlo (MC) is desired for spots dose calculations because of its high accuracy, especially in cases with a high level of heterogeneity. It is also preferred in biological optimization problems due to the capability of computing quantities related to biological effects. However, MC simulation is typically too slow to be used for this purpose. Although GPU-based MC engines have become available, the achieved efficiency is still not ideal. The purpose of this work is to develop a new optimization scheme to include GPU-based MC into IMPT. Methods: A conventional approach using MC in IMPT simply calls the MC dose engine repeatedly for each spot dose calculations. However, this is not the optimal approach, because of the unnecessary computations on some spots that turned out to have very small weights after solving the optimization problem. GPU-memory writing conflict occurring at a small beam size also reduces computational efficiency. To solve these problems, we developed a new framework that iteratively performs MC dose calculations and plan optimizations. At each dose calculation step, the particles were sampled from different spots altogether with Metropolis algorithm, such that the particle number is proportional to the latest optimized spot intensity. Simultaneously transporting particles from multiple spots also mitigated the memory writing conflict problem. Results: We have validated the proposed MC-based optimization schemes in one prostate case. The total computation time of our method was ∼5–6 min on one NVIDIA GPU card, including both spot dose calculation and plan optimization, whereas a conventional method naively using the same GPU-based MC engine were ∼3 times slower. Conclusion: A fast GPU-based MC dose calculation method along with a novel optimization workflow is developed. The high efficiency makes it attractive for clinical

  15. Application of adjoint Monte Carlo to accelerate simulations of mono-directional beams in treatment planning for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Nievaart, V. A.; Legrady, D.; Moss, R. L.; Kloosterman, J. L.; Hagen, T. H. J. J. van der; Dam, H. van

    2007-01-01

    This paper deals with the application of the adjoint transport theory in order to optimize Monte Carlo based radiotherapy treatment planning. The technique is applied to Boron Neutron Capture Therapy where most often mixed beams of neutrons and gammas are involved. In normal forward Monte Carlo simulations the particles start at a source and lose energy as they travel towards the region of interest, i.e., the designated point of detection. Conversely, with adjoint Monte Carlo simulations, the so-called adjoint particles start at the region of interest and gain energy as they travel towards the source where they are detected. In this respect, the particles travel backwards and the real source and real detector become the adjoint detector and adjoint source, respectively. At the adjoint detector, an adjoint function is obtained with which numerically the same result, e.g., dose or flux in the tumor, can be derived as with forward Monte Carlo. In many cases, the adjoint method is more efficient and by that is much quicker when, for example, the response in the tumor or organ at risk for many locations and orientations of the treatment beam around the patient is required. However, a problem occurs when the treatment beam is mono-directional as the probability of detecting adjoint Monte Carlo particles traversing the beam exit (detector plane in adjoint mode) in the negative direction of the incident beam is zero. This problem is addressed here and solved first with the use of next event estimators and second with the application of a Legendre expansion technique of the angular adjoint function. In the first approach, adjoint particles are tracked deterministically through a tube to a (adjoint) point detector far away from the geometric model. The adjoint particles will traverse the disk shaped entrance of this tube (the beam exit in the actual geometry) perpendicularly. This method is slow whenever many events are involved that are not contributing to the point

  16. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation

    Science.gov (United States)

    Magro, G.; Molinelli, S.; Mairani, A.; Mirandola, A.; Panizza, D.; Russo, S.; Ferrari, A.; Valvo, F.; Fossati, P.; Ciocca, M.

    2015-09-01

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo® TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus® chamber. An EBT3® film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification.

  17. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation

    International Nuclear Information System (INIS)

    Magro, G; Molinelli, S; Mairani, A; Mirandola, A; Panizza, D; Russo, S; Valvo, F; Fossati, P; Ciocca, M; Ferrari, A

    2015-01-01

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5–30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo ® TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus ® chamber. An EBT3 ® film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification. (paper)

  18. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning

    International Nuclear Information System (INIS)

    Chetty, Indrin J.; Curran, Bruce; Cygler, Joanna E.; DeMarco, John J.; Ezzell, Gary; Faddegon, Bruce A.; Kawrakow, Iwan; Keall, Paul J.; Liu, Helen; Ma, C.-M. Charlie; Rogers, D. W. O.; Seuntjens, Jan; Sheikh-Bagheri, Daryoush; Siebers, Jeffrey V.

    2007-01-01

    The Monte Carlo (MC) method has been shown through many research studies to calculate accurate dose distributions for clinical radiotherapy, particularly in heterogeneous patient tissues where the effects of electron transport cannot be accurately handled with conventional, deterministic dose algorithms. Despite its proven accuracy and the potential for improved dose distributions to influence treatment outcomes, the long calculation times previously associated with MC simulation rendered this method impractical for routine clinical treatment planning. However, the development of faster codes optimized for radiotherapy calculations and improvements in computer processor technology have substantially reduced calculation times to, in some instances, within minutes on a single processor. These advances have motivated several major treatment planning system vendors to embark upon the path of MC techniques. Several commercial vendors have already released or are currently in the process of releasing MC algorithms for photon and/or electron beam treatment planning. Consequently, the accessibility and use of MC treatment planning algorithms may well become widespread in the radiotherapy community. With MC simulation, dose is computed stochastically using first principles; this method is therefore quite different from conventional dose algorithms. Issues such as statistical uncertainties, the use of variance reduction techniques, the ability to account for geometric details in the accelerator treatment head simulation, and other features, are all unique components of a MC treatment planning algorithm. Successful implementation by the clinical physicist of such a system will require an understanding of the basic principles of MC techniques. The purpose of this report, while providing education and review on the use of MC simulation in radiotherapy planning, is to set out, for both users and developers, the salient issues associated with clinical implementation and

  19. Clinical introduction of Monte Carlo treatment planning: A different prescription dose for non-small cell lung cancer according to tumor location and size

    International Nuclear Information System (INIS)

    Voort van Zyp, Noelle C. van der; Hoogeman, Mischa S.; Water, Steven van de; Levendag, Peter C.; Holt, Bronno van der; Heijmen, Ben J.M.; Nuyttens, Joost J.

    2010-01-01

    Purpose: To provide a prescription dose for Monte Carlo (MC) treatment planning in patients with non-small-cell lung cancer according to tumor size and location. Methods: Fifty-three stereotactic radiotherapy plans designed using the equivalent path-length (EPL) algorithm were re-calculated using MC. Plans were compared by the minimum dose to 95% of the PTV (D95), the heterogeneity index (HI) and the mean dose to organs at risk (OARs). Based on changes in D95, the prescription dose was converted from EPL to MC. Based on changes in HI, we examined the feasibility of MC prescription to plans re-calculated but not re-optimized with MC. Results: The MC fraction dose for peripheral tumors is 16-18 Gy depending on tumor size. For central tumors the MC dose was reduced less than for peripheral tumors. The HI decreased on average by 4-9% in peripheral tumors and 3-5% in central tumors. The mean dose to OARs was lower for MC than EPL, and correlated strongly (R 2 = 0.98-0.99). Conclusion: For the conversion from EPL to MC we recommend a separate prescription dose according to tumor size. MC optimization is not required if a HI ≥ 70% is accepted. Dose constraints to OARs can be easily converted due to the high EPL-MC correlation.

  20. MO-A-BRD-10: A Fast and Accurate GPU-Based Proton Transport Monte Carlo Simulation for Validating Proton Therapy Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Wan Chan Tseung, H; Ma, J; Beltran, C [Mayo Clinic, Rochester, MN (United States)

    2014-06-15

    Purpose: To build a GPU-based Monte Carlo (MC) simulation of proton transport with detailed modeling of elastic and non-elastic (NE) protonnucleus interactions, for use in a very fast and cost-effective proton therapy treatment plan verification system. Methods: Using the CUDA framework, we implemented kernels for the following tasks: (1) Simulation of beam spots from our possible scanning nozzle configurations, (2) Proton propagation through CT geometry, taking into account nuclear elastic and multiple scattering, as well as energy straggling, (3) Bertini-style modeling of the intranuclear cascade stage of NE interactions, and (4) Simulation of nuclear evaporation. To validate our MC, we performed: (1) Secondary particle yield calculations in NE collisions with therapeutically-relevant nuclei, (2) Pencil-beam dose calculations in homogeneous phantoms, (3) A large number of treatment plan dose recalculations, and compared with Geant4.9.6p2/TOPAS. A workflow was devised for calculating plans from a commercially available treatment planning system, with scripts for reading DICOM files and generating inputs for our MC. Results: Yields, energy and angular distributions of secondaries from NE collisions on various nuclei are in good agreement with the Geant4.9.6p2 Bertini and Binary cascade models. The 3D-gamma pass rate at 2%–2mm for 70–230 MeV pencil-beam dose distributions in water, soft tissue, bone and Ti phantoms is 100%. The pass rate at 2%–2mm for treatment plan calculations is typically above 98%. The net computational time on a NVIDIA GTX680 card, including all CPU-GPU data transfers, is around 20s for 1×10{sup 7} proton histories. Conclusion: Our GPU-based proton transport MC is the first of its kind to include a detailed nuclear model to handle NE interactions on any nucleus. Dosimetric calculations demonstrate very good agreement with Geant4.9.6p2/TOPAS. Our MC is being integrated into a framework to perform fast routine clinical QA of pencil

  1. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation

    CERN Document Server

    Magro, G; Mairani, A; Mirandola, A; Panizza, D; Russo, S; Ferrari, A; Valvo, F; Fossati, P; Ciocca, M

    2015-01-01

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5–30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo® TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus® chamber. An EBT3® film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size r...

  2. Determining the distribution of the absorbed dose for a body exposed to Cs-137 using the Monte Carlo method and application in a brachytherapy treatment planning

    International Nuclear Information System (INIS)

    Randriantsizafy, R.D.

    2014-01-01

    Brachytherapy is a means of precise and effective cancer treatment. This is due to the nearby sources of ionizing radiation. The precision and efficiency requires a good dosimetry and a good knowledge of the dose distribution in the patient. The aim is to give the right dose of ionizing radiation to destroy the tumor while reducing the dose to sensitive organs such as the bladder , liver, .... The Monte Carlo is a recognized model method for the distribution of radiation in the material. It is used in this work to determine the doses to organs during treatment planning for Cesium -137 brachytherapy. The programming language used is Python . Library outcome of this work is used in a web application BrachyPy, we designed to replace the manual processing in the Cs-137 brachytherapy planning. Model validation is done by comparing the isodose curves of the model with the isodose curves abacus NUCLETRON and the last report of the American Association of Medical Physics (AAPM) on the amendment to the algorithm TG43. [fr

  3. SU-E-T-157: CARMEN: A MatLab-Based Research Platform for Monte Carlo Treatment Planning (MCTP) and Customized System for Planning Evaluation

    International Nuclear Information System (INIS)

    Baeza, J.A.; Ureba, A.; Jimenez-Ortega, E.; Barbeiro, A.R.; Plaza, A. Leal; Lagares, J.I.

    2015-01-01

    Purpose: Although there exist several radiotherapy research platforms, such as: CERR, the most widely used and referenced; SlicerRT, which allows treatment plan comparison from various sources; and MMCTP, a full MCTP system; it is still needed a full MCTP toolset that provides users complete control of calculation grids, interpolation methods and filters in order to “fairly” compare results from different TPSs, supporting verification with experimental measurements. Methods: This work presents CARMEN, a MatLab-based platform including multicore and GPGPU accelerated functions for loading RT data; designing treatment plans; and evaluating dose matrices and experimental data.CARMEN supports anatomic and functional imaging in DICOM format, as well as RTSTRUCT, RTPLAN and RTDOSE. Besides, it contains numerous tools to accomplish the MCTP process, managing egs4phant and phase space files.CARMEN planning mode assist in designing IMRT, VMAT and MERT treatments via both inverse and direct optimization. The evaluation mode contains a comprehensive toolset (e.g. 2D/3D gamma evaluation, difference matrices, profiles, DVH, etc.) to compare datasets from commercial TPS, MC simulations (i.e. 3ddose) and radiochromic film in a user-controlled manner. Results: CARMEN has been validated against commercial RTPs and well-established evaluation tools, showing coherent behavior of its multiple algorithms. Furthermore, CARMEN platform has been used to generate competitive complex treatment that has been published in comparative studies. Conclusion: A new research oriented MCTP platform with a customized validation toolset has been presented. Despite of being coded with a high-level programming language, CARMEN is agile due to the use of parallel algorithms. The wide-spread use of MatLab provides straightforward access to CARMEN’s algorithms to most researchers. Similarly, our platform can benefit from the MatLab community scientific developments as filters, registration algorithms

  4. SU-E-T-157: CARMEN: A MatLab-Based Research Platform for Monte Carlo Treatment Planning (MCTP) and Customized System for Planning Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Baeza, J.A.; Ureba, A.; Jimenez-Ortega, E.; Barbeiro, A.R.; Plaza, A. Leal [Universidad de Sevilla, Departamento de Fisiologia Medica y Biofisica, Seville (Spain); Lagares, J.I. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain)

    2015-06-15

    Purpose: Although there exist several radiotherapy research platforms, such as: CERR, the most widely used and referenced; SlicerRT, which allows treatment plan comparison from various sources; and MMCTP, a full MCTP system; it is still needed a full MCTP toolset that provides users complete control of calculation grids, interpolation methods and filters in order to “fairly” compare results from different TPSs, supporting verification with experimental measurements. Methods: This work presents CARMEN, a MatLab-based platform including multicore and GPGPU accelerated functions for loading RT data; designing treatment plans; and evaluating dose matrices and experimental data.CARMEN supports anatomic and functional imaging in DICOM format, as well as RTSTRUCT, RTPLAN and RTDOSE. Besides, it contains numerous tools to accomplish the MCTP process, managing egs4phant and phase space files.CARMEN planning mode assist in designing IMRT, VMAT and MERT treatments via both inverse and direct optimization. The evaluation mode contains a comprehensive toolset (e.g. 2D/3D gamma evaluation, difference matrices, profiles, DVH, etc.) to compare datasets from commercial TPS, MC simulations (i.e. 3ddose) and radiochromic film in a user-controlled manner. Results: CARMEN has been validated against commercial RTPs and well-established evaluation tools, showing coherent behavior of its multiple algorithms. Furthermore, CARMEN platform has been used to generate competitive complex treatment that has been published in comparative studies. Conclusion: A new research oriented MCTP platform with a customized validation toolset has been presented. Despite of being coded with a high-level programming language, CARMEN is agile due to the use of parallel algorithms. The wide-spread use of MatLab provides straightforward access to CARMEN’s algorithms to most researchers. Similarly, our platform can benefit from the MatLab community scientific developments as filters, registration algorithms

  5. Estimating statistical uncertainty of Monte Carlo efficiency-gain in the context of a correlated sampling Monte Carlo code for brachytherapy treatment planning with non-normal dose distribution

    Czech Academy of Sciences Publication Activity Database

    Mukhopadhyay, N. D.; Sampson, A. J.; Deniz, D.; Carlsson, G. A.; Williamson, J.; Malušek, Alexandr

    2012-01-01

    Roč. 70, č. 1 (2012), s. 315-323 ISSN 0969-8043 Institutional research plan: CEZ:AV0Z10480505 Keywords : Monte Carlo * correlated sampling * efficiency * uncertainty * bootstrap Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.179, year: 2012 http://www.sciencedirect.com/science/article/pii/S0969804311004775

  6. MATLAB platform for Monte Carlo planning and dosimetry experimental evaluation

    International Nuclear Information System (INIS)

    Baeza, J. A.; Ureba, A.; Jimenez-Ortega, E.; Pereira-Barbeiro, A. R.; Leal, A.

    2013-01-01

    A new platform for the full Monte Carlo planning and an independent experimental evaluation that it can be integrated into clinical practice. The tool has proved its usefulness and efficiency and now forms part of the flow of work of our research group, the tool used for the generation of results, which are to be suitably revised and are being published. This software is an effort of integration of numerous algorithms of image processing, along with planning optimization algorithms, allowing the process of MCTP planning from a single interface. In addition, becomes a flexible and accurate tool for the evaluation of experimental dosimetric data for the quality control of actual treatments. (Author)

  7. Dosimetric quality control of treatment planning systems in external radiation therapy using Digital Test Objects calculated by PENELOPE Monte-Carlo simulations

    International Nuclear Information System (INIS)

    Ben Hdech, Yassine

    2011-01-01

    To ensure the required accuracy and prevent from mis-administration, cancer treatments, by external radiation therapy are simulated on Treatment Planning System or TPS before radiation delivery in order to ensure that the prescription is achieved both in terms of target volumes coverage and healthy tissues protection. The TPS calculates the patient dose distribution and the treatment time per beam required to deliver the prescribed dose. TPS is a key system in the decision process of treatment by radiation therapy. It is therefore essential that the TPS be subject to a thorough check of its performance (quality control or QC) and in particular its ability to accurately compute dose distributions for patients in all clinical situations that be met. The 'traditional' methods recommended to carry out dosimetric CQ of algorithms implemented in the TPS are based on comparisons between dose distributions calculated with the TPS and dose measured in physical test objects (PTO) using the treatment machine. In this thesis we propose to substitute the reference dosimetric measurements performed in OTP by benchmark dose calculations in Digital Test Objects using PENELOPE Monte-Carlo code. This method has three advantages: (i) it allows simulation in situations close to the clinic and often too complex to be experimentally feasible; (ii) due to the digital form of reference data the QC process may be automated; (iii) it allows a comprehensive TPS CQ without hindering the use of an equipment devoted primarily to patients treatments. This new method of CQ has been tested successfully on the Eclipse TPS from Varian Medical Systems Company. (author) [fr

  8. TU-C-17A-12: Towards a Passively Optimized Phase-Space Monte Carlo (POPMC) Treatment Planning Method: A Proof of Principle

    International Nuclear Information System (INIS)

    Yang, Y M; Bednarz, B; Zankowski, C; Svatos, M

    2014-01-01

    Purpose: The advent of on-line/off-line adaptive, and biologically-conformal radiation therapy has led to a need for treatment planning solutions that utilize voxel-specific penalties, requiring optimization over a large solution space that is performed quickly, and the dose in each voxel calculated accurately. This work proposes a “passive” optimization framework, which is executed concurrently during Monte Carlo dose calculation, evaluating the cost/benefit of each history during transport, and creates a passively optimized fluence map. Methods: The Monte Carlo code Geant4 v9.6 was used for this study. The standard voxel geometry implementation was modified to support the passive optimization framework, with voxel-specific optimization parameters. Dose-benefit functions, which will increase a particle history’s weight upon dose deposition, were defined in a central collection of voxels to effectively create target structures. Histories that deposit energy to voxels are reweighted based on a voxel’s dose multiplied by its cost/benefit value. Upon full termination of each history, the dose contributions of that history are reweighted to reflect a contribution proportional to the history’s final weight. A parallel-planar 1.25 MeV photon fluence is transported through the geometry, and re-weighted at each dose deposition step. The resulting weight is tallied with the incident spatial and directional coordinates in a phase-space distribution. Results: A uniform incident fluence was reweighted during MC dose calculations to create an optimized fluence map which would generate dose profiles in target volumes that exhibit the same dose characteristics as the prescribed optimization parameters. An optimized dose profile, calculated concurrently with the phase-space, reflects the resulting dose distribution. Conclusion: This study demonstrated the feasibility of passively optimizing an incident fluence map during Monte Carlo dose calculations. The flexibility of

  9. Personalized Monte Carlo dosimetry for the planning and evaluation of internal radiotherapy treatments: development and application to selective internal radiotherapy (SIRT)

    International Nuclear Information System (INIS)

    Petitguillaume, Alice

    2014-01-01

    Medical techniques in full expansion arousing high therapeutic expectations, targeted radionuclide therapies (TRT) consist of administering a radiopharmaceutical to selectively treat tumors. Nowadays, the activity injected to the patient is generally standardized. However, in order to establish robust dose-effect relationships and to optimize treatments while sparing healthy tissues at best, a personalized dosimetry must be performed, just like actual clinical practice in external beam radiotherapy. In that context, this PhD main objective was to develop, using the OEDIPE software, a methodology for personalized dosimetry based on direct Monte Carlo calculations. The developed method enables to calculate the tridimensional distribution of absorbed doses depending on the patient anatomy, defined from CT or MRI data, and on the patient-specific activity biodistribution, defined from SPECT or PET data. Radiobiological aspects, such as differences in radiosensitivities and repair time constants between tumoral and healthy tissues, have also been integrated through the linear-quadratic model. This methodology has been applied to the selective internal radiation therapy (SIRT) which consists in the injection of 90 Y-microspheres to selectively treat unresectable hepatic cancers. Distributions of absorbed doses and biologically effective doses (BED) along with the equivalent uniform biologically effective doses (EUD) to hepatic lesions have been calculated from 99m Tc-MAA activity distributions obtained during the evaluation step for 18 patients treated at Hopital Europeen Georges Pompidou. Those results have been compared to classical methods used in clinics and the interest of accurate and personalized dosimetry for treatment planning has been investigated. On the one hand, the possibility to increase the activity in a personalized way has been highlighted with the calculation of the maximal activity that could be injected to the patient while meeting tolerance criteria

  10. The dose distribution of low dose rate Cs-137 in intracavitary brachytherapy: comparison of Monte Carlo simulation, treatment planning calculation and polymer gel measurement

    International Nuclear Information System (INIS)

    Fragoso, M; Love, P A; Verhaegen, F; Nalder, C; Bidmead, A M; Leach, M; Webb, S

    2004-01-01

    In this study, the dose distribution delivered by low dose rate Cs-137 brachytherapy sources was investigated using Monte Carlo (MC) techniques and polymer gel dosimetry. The results obtained were compared with a commercial treatment planning system (TPS). The 20 mm and the 30 mm diameter Selectron vaginal applicator set (Nucletron) were used for this study. A homogeneous and a heterogeneous-with an air cavity-polymer gel phantom was used to measure the dose distribution from these sources. The same geometrical set-up was used for the MC calculations. Beyond the applicator tip, differences in dose as large as 20% were found between the MC and TPS. This is attributed to the presence of stainless steel in the applicator and source set, which are not considered by the TPS calculations. Beyond the air cavity, differences in dose of around 5% were noted, due to the TPS assuming a homogeneous water medium. The polymer gel results were in good agreement with the MC calculations for all the cases investigated

  11. A virtual-accelerator-based verification of a Monte Carlo dose calculation algorithm for electron beam treatment planning in homogeneous phantoms

    International Nuclear Information System (INIS)

    Wieslander, Elinore; Knoeoes, Tommy

    2006-01-01

    By introducing Monte Carlo (MC) techniques to the verification procedure of dose calculation algorithms in treatment planning systems (TPSs), problems associated with conventional measurements can be avoided and properties that are considered unmeasurable can be studied. The aim of the study is to implement a virtual accelerator, based on MC simulations, to evaluate the performance of a dose calculation algorithm for electron beams in a commercial TPS. The TPS algorithm is MC based and the virtual accelerator is used to study the accuracy of the algorithm in water phantoms. The basic test of the implementation of the virtual accelerator is successful for 6 and 12 MeV (γ < 1.0, 0.02 Gy/2 mm). For 18 MeV, there are problems in the profile data for some of the applicators, where the TPS underestimates the dose. For fields equipped with patient-specific inserts, the agreement is generally good. The exception is 6 MeV where there are slightly larger deviations. The concept of the virtual accelerator is shown to be feasible and has the potential to be a powerful tool for vendors and users

  12. A Monte Carlo program converting activity distribution to absorbed dose distributions in a radionuclide treatment planning system

    International Nuclear Information System (INIS)

    Tagesson, M.; Ljungberg, M.; Strand, S.E.

    1996-01-01

    In systemic radiation therapy, the absorbed dose distribution must be calculated from the individual activity distribution. A computer code has been developed for the conversion of an arbitrary activity distribution to a 3-D absorbed dose distribution. The activity distribution can be described either analytically or as a voxel based distribution, which comes from a SPECT acquisition. Decay points are sampled according to the activity map, and particles (photons and electrons) from the decay are followed through the tissue until they either escape the patient or drop below a cut off energy. To verify the calculated results, the mathematically defined MIRD phantom and unity density spheres have been included in the code. Also other published dosimetry data were used for verification. Absorbed fraction and S-values were calculated. A comparison with simulated data from the code with MIRD data shows good agreement. The S values are within 10-20% of published MIRD S values for most organs. Absorbed fractions for photons and electrons in spheres (masses between 1 g and 200 kg) are within 10-15% of those published. Radial absorbed dose distributions in a necrotic tumor show good agreement with published data. The application of the code in a radionuclide therapy dose planning system, based on quantitative SPECT, is discussed. (orig.)

  13. SU-F-T-152: Experimental Validation and Calculation Benchmark for a Commercial Monte Carlo Pencil BeamScanning Proton Therapy Treatment Planning System in Heterogeneous Media

    Energy Technology Data Exchange (ETDEWEB)

    Lin, L; Huang, S; Kang, M; Ainsley, C; Simone, C; McDonough, J; Solberg, T [University of Pennsylvania, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Eclipse AcurosPT 13.7, the first commercial Monte Carlo pencil beam scanning (PBS) proton therapy treatment planning system (TPS), was experimentally validated for an IBA dedicated PBS nozzle in the CIRS 002LFC thoracic phantom. Methods: A two-stage procedure involving the use of TOPAS 1.3 simulations was performed. First, Geant4-based TOPAS simulations in this phantom were experimentally validated for single and multi-spot profiles at several depths for 100, 115, 150, 180, 210 and 225 MeV proton beams, using the combination of a Lynx scintillation detector and a MatriXXPT ionization chamber array. Second, benchmark calculations were performed with both AcurosPT and TOPAS in a phantom identical to the CIRS 002LFC, with the exception that the CIRS bone/mediastinum/lung tissues were replaced with similar tissues that are predefined in AcurosPT (a limitation of this system which necessitates the two stage procedure). Results: Spot sigmas measured in tissue were in agreement within 0.2 mm of TOPAS simulation for all six energies, while AcurosPT was consistently found to have larger spot sigma (<0.7 mm) than TOPAS. Using absolute dose calibration by MatriXXPT, the agreements between profiles measurements and TOPAS simulation, and calculation benchmarks are over 97% except near the end of range using 2 mm/2% gamma criteria. Overdosing and underdosing were observed at the low and high density side of tissue interfaces, respectively, and these increased with increasing depth and decreasing energy. Near the mediastinum/lung interface, the magnitude can exceed 5 mm/10%. Furthermore, we observed >5% quenching effect in the conversion of Lynx measurements to dose. Conclusion: We recommend the use of an ionization chamber array in combination with the scintillation detector to measure absolute dose and relative PBS spot characteristics. We also recommend the use of an independent Monte Carlo calculation benchmark for the commissioning of a commercial TPS. Partially

  14. SBRT of lung tumours: Monte Carlo simulation with PENELOPE of dose distributions including respiratory motion and comparison with different treatment planning systems

    Science.gov (United States)

    Panettieri, Vanessa; Wennberg, Berit; Gagliardi, Giovanna; Amor Duch, Maria; Ginjaume, Mercè; Lax, Ingmar

    2007-07-01

    The purpose of this work was to simulate with the Monte Carlo (MC) code PENELOPE the dose distribution in lung tumours including breathing motion in stereotactic body radiation therapy (SBRT). Two phantoms were modelled to simulate a pentagonal cross section with chestwall (unit density), lung (density 0.3 g cm-3) and two spherical tumours (unit density) of diameters respectively of 2 cm and 5 cm. The phase-space files (PSF) of four different SBRT field sizes of 6 MV from a Varian accelerator were calculated and used as beam sources to obtain both dose profiles and dose-volume histograms (DVHs) in different volumes of interest. Dose distributions were simulated for five beams impinging on the phantom. The simulations were conducted both for the static case and including the influence of respiratory motion. To reproduce the effect of breathing motion different simulations were performed keeping the beam fixed and displacing the phantom geometry in chosen positions in the cranial and caudal and left-right directions. The final result was obtained by combining the different position with two motion patterns. The MC results were compared with those obtained with three commercial treatment planning systems (TPSs), two based on the pencil beam (PB) algorithm, the TMS-HELAX (Nucletron, Sweden) and Eclipse (Varian Medical System, Palo Alto, CA), and one based on the collapsed cone algorithm (CC), Pinnacle3 (Philips). Some calculations were also carried out with the analytical anisotropic algorithm (AAA) in the Eclipse system. All calculations with the TPSs were performed without simulated breathing motion, according to clinical practice. In order to compare all the TPSs and MC an absolute dose calibration in Gy/MU was performed. The analysis shows that the dose (Gy/MU) in the central part of the gross tumour volume (GTV) is calculated for both tumour sizes with an accuracy of 2-3% with PB and CC algorithms, compared to MC. At the periphery of the GTV the TPSs overestimate

  15. Teaching Treatment Planning.

    Science.gov (United States)

    Seligman, Linda

    1993-01-01

    Describes approach to teaching treatment planning that author has used successfully in both seminars and graduate courses. Clarifies nature and importance of systematic treatment planning, then describes context in which treatment planning seems more effectively taught, and concludes with step-by-step plan for teaching treatment planning.…

  16. Implementation of a Monte Carlo based inverse planning model for clinical IMRT with MCNP code

    International Nuclear Information System (INIS)

    He, Tongming Tony

    2003-01-01

    Inaccurate dose calculations and limitations of optimization algorithms in inverse planning introduce systematic and convergence errors to treatment plans. This work was to implement a Monte Carlo based inverse planning model for clinical IMRT aiming to minimize the aforementioned errors. The strategy was to precalculate the dose matrices of beamlets in a Monte Carlo based method followed by the optimization of beamlet intensities. The MCNP 4B (Monte Carlo N-Particle version 4B) code was modified to implement selective particle transport and dose tallying in voxels and efficient estimation of statistical uncertainties. The resulting performance gain was over eleven thousand times. Due to concurrent calculation of multiple beamlets of individual ports, hundreds of beamlets in an IMRT plan could be calculated within a practical length of time. A finite-sized point source model provided a simple and accurate modeling of treatment beams. The dose matrix calculations were validated through measurements in phantoms. Agreements were better than 1.5% or 0.2 cm. The beamlet intensities were optimized using a parallel platform based optimization algorithm that was capable of escape from local minima and preventing premature convergence. The Monte Carlo based inverse planning model was applied to clinical cases. The feasibility and capability of Monte Carlo based inverse planning for clinical IMRT was demonstrated. Systematic errors in treatment plans of a commercial inverse planning system were assessed in comparison with the Monte Carlo based calculations. Discrepancies in tumor doses and critical structure doses were up to 12% and 17%, respectively. The clinical importance of Monte Carlo based inverse planning for IMRT was demonstrated

  17. Monte Carlo investigation of collapsed versus rotated IMRT plan verification.

    Science.gov (United States)

    Conneely, Elaine; Alexander, Andrew; Ruo, Russell; Chung, Eunah; Seuntjens, Jan; Foley, Mark J

    2014-05-08

    IMRT QA requires, among other tests, a time-consuming process of measuring the absorbed dose, at least to a point, in a high-dose, low-dose-gradient region. Some clinics use a technique of measuring this dose with all beams delivered at a single gantry angle (collapsed delivery), as opposed to the beams delivered at the planned gantry angle (rotated delivery). We examined, established, and optimized Monte Carlo simulations of the dosimetry for IMRT verification of treatment plans for these two different delivery modes (collapsed versus rotated). The results of the simulations were compared to the treatment planning system dose calculations for the two delivery modes, as well as to measurements taken. This was done in order to investigate the validity of the use of a collapsed delivery technique for IMRT QA. The BEAMnrc, DOSXYZnrc, and egs_chamber codes were utilized for the Monte Carlo simulations along with the MMCTP system. A number of different plan complexity metrics were also used in the analysis of the dose distributions in a bid to qualify why verification in a collapsed delivery may or may not be optimal for IMRT QA. Following the Alfonso et al. formalism, the kfclin,frefQclin,Q correction factor was calculated to correct the deviation of small fields from the reference conditions used for beam calibration. We report on the results obtained for a cohort of 20 patients. The plan complexity was investigated for each plan using the complexity metrics of homogeneity index, conformity index, modulation complexity score, and the fraction of beams from a particular plan that intersect the chamber when performing the QA. Rotated QA gives more consistent results than the collapsed QA technique. The kfclin,frefQclin,Qfactor deviates less from 1 for rotated QA than for collapsed QA. If the homogeneity index is less than 0.05 then the kfclin,frefQclin,Q factor does not deviate from unity by more than 1%. A value this low for the homogeneity index can only be obtained

  18. MATLAB platform for Monte Carlo planning and dosimetry experimental evaluation; Plataforma Matlab para planificacion Monte Carlo y evaluacion dosimetrica experimental

    Energy Technology Data Exchange (ETDEWEB)

    Baeza, J. A.; Ureba, A.; Jimenez-Ortega, E.; Pereira-Barbeiro, A. R.; Leal, A.

    2013-07-01

    A new platform for the full Monte Carlo planning and an independent experimental evaluation that it can be integrated into clinical practice. The tool has proved its usefulness and efficiency and now forms part of the flow of work of our research group, the tool used for the generation of results, which are to be suitably revised and are being published. This software is an effort of integration of numerous algorithms of image processing, along with planning optimization algorithms, allowing the process of MCTP planning from a single interface. In addition, becomes a flexible and accurate tool for the evaluation of experimental dosimetric data for the quality control of actual treatments. (Author)

  19. GPU-Monte Carlo based fast IMRT plan optimization

    Directory of Open Access Journals (Sweden)

    Yongbao Li

    2014-03-01

    Full Text Available Purpose: Intensity-modulated radiation treatment (IMRT plan optimization needs pre-calculated beamlet dose distribution. Pencil-beam or superposition/convolution type algorithms are typically used because of high computation speed. However, inaccurate beamlet dose distributions, particularly in cases with high levels of inhomogeneity, may mislead optimization, hindering the resulting plan quality. It is desire to use Monte Carlo (MC methods for beamlet dose calculations. Yet, the long computational time from repeated dose calculations for a number of beamlets prevents this application. It is our objective to integrate a GPU-based MC dose engine in lung IMRT optimization using a novel two-steps workflow.Methods: A GPU-based MC code gDPM is used. Each particle is tagged with an index of a beamlet where the source particle is from. Deposit dose are stored separately for beamlets based on the index. Due to limited GPU memory size, a pyramid space is allocated for each beamlet, and dose outside the space is neglected. A two-steps optimization workflow is proposed for fast MC-based optimization. At first step, a rough dose calculation is conducted with only a few number of particle per beamlet. Plan optimization is followed to get an approximated fluence map. In the second step, more accurate beamlet doses are calculated, where sampled number of particles for a beamlet is proportional to the intensity determined previously. A second-round optimization is conducted, yielding the final result.Results: For a lung case with 5317 beamlets, 105 particles per beamlet in the first round, and 108 particles per beam in the second round are enough to get a good plan quality. The total simulation time is 96.4 sec.Conclusion: A fast GPU-based MC dose calculation method along with a novel two-step optimization workflow are developed. The high efficiency allows the use of MC for IMRT optimizations.--------------------------------Cite this article as: Li Y, Tian Z

  20. Monte Carlo calculations supporting patient plan verification in proton therapy

    Directory of Open Access Journals (Sweden)

    Thiago Viana Miranda Lima

    2016-03-01

    Full Text Available Patient’s treatment plan verification covers substantial amount of the quality assurance (QA resources, this is especially true for Intensity Modulated Proton Therapy (IMPT. The use of Monte Carlo (MC simulations in supporting QA has been widely discussed and several methods have been proposed. In this paper we studied an alternative approach from the one being currently applied clinically at Centro Nazionale di Adroterapia Oncologica (CNAO. We reanalysed the previously published data (Molinelli et al. 2013, where 9 patient plans were investigated in which the warning QA threshold of 3% mean dose deviation was crossed. The possibility that these differences between measurement and calculated dose were related to dose modelling (Treatment Planning Systems (TPS vs MC, limitations on dose delivery system or detectors mispositioning was originally explored but other factors such as the geometric description of the detectors were not ruled out. For the purpose of this work we compared ionisation-chambers measurements with different MC simulations results. It was also studied some physical effects introduced by this new approach for example inter detector interference and the delta ray thresholds. The simulations accounting for a detailed geometry typically are superior (statistical difference - p-value around 0.01 to most of the MC simulations used at CNAO (only inferior to the shift approach used. No real improvement were observed in reducing the current delta-ray threshold used (100 keV and no significant interference between ion chambers in the phantom were detected (p-value 0.81. In conclusion, it was observed that the detailed geometrical description improves the agreement between measurement and MC calculations in some cases. But in other cases position uncertainty represents the dominant uncertainty. The inter chamber disturbance was not detected for the therapeutic protons energies and the results from the current delta threshold are

  1. SU-F-SPS-02: Accuracy of the Small Field Dosimetry Using the Monte Carlo and Sequential Dose Calculation Algorithms of Multiplan Treatment Planning System Within and Beyond Heterogeneous Media for Cyberknife M6 Unit

    Energy Technology Data Exchange (ETDEWEB)

    Serin, E.; Codel, G.; Mabhouti, H.; Cebe, M.; Sanli, E.; Pacaci, P.; Kucuk, N.; Kucukmorkoc, E.; Doyuran, M.; Canoglu, D.; Altinok, A.; Acar, H.; Caglar Ozkok, H. [Medipol University, Istanbul, Istanbul (Turkey)

    2016-06-15

    Purpose: In small field geometries, the electronic equilibrium can be lost, making it challenging for the dose-calculation algorithm to accurately predict the dose, especially in the presence of tissue heterogeneities. In this study, dosimetric accuracy of Monte Carlo (MC) advanced dose calculation and sequential algorithms of Multiplan treatment planning system were investigated for small radiation fields incident on homogeneous and heterogeneous geometries. Methods: Small open fields of fixed cones of Cyberknife M6 unit 100 to 500 mm2 were used for this study. The fields were incident on in house phantom containing lung, air, and bone inhomogeneities and also homogeneous phantom. Using the same film batch, the net OD to dose calibration curve was obtained using CK with the 60 mm fixed cone by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. The dosimetric accuracy of MC and sequential algorithms in the presence of the inhomogeneities was compared against EBT3 film dosimetry Results: Open field tests in a homogeneous phantom showed good agreement between two algorithms and film measurement For MC algorithm, the minimum gamma analysis passing rates between measured and calculated dose distributions were 99.7% and 98.3% for homogeneous and inhomogeneous fields in the case of lung and bone respectively. For sequential algorithm, the minimum gamma analysis passing rates were 98.9% and 92.5% for for homogeneous and inhomogeneous fields respectively for used all cone sizes. In the case of the air heterogeneity, the differences were larger for both calculation algorithms. Overall, when compared to measurement, the MC had better agreement than sequential algorithm. Conclusion: The Monte Carlo calculation algorithm in the Multiplan treatment planning system is an improvement over the existing sequential algorithm. Dose discrepancies were observed for in the presence of air inhomogeneities.

  2. SU-F-SPS-02: Accuracy of the Small Field Dosimetry Using the Monte Carlo and Sequential Dose Calculation Algorithms of Multiplan Treatment Planning System Within and Beyond Heterogeneous Media for Cyberknife M6 Unit

    International Nuclear Information System (INIS)

    Serin, E.; Codel, G.; Mabhouti, H.; Cebe, M.; Sanli, E.; Pacaci, P.; Kucuk, N.; Kucukmorkoc, E.; Doyuran, M.; Canoglu, D.; Altinok, A.; Acar, H.; Caglar Ozkok, H.

    2016-01-01

    Purpose: In small field geometries, the electronic equilibrium can be lost, making it challenging for the dose-calculation algorithm to accurately predict the dose, especially in the presence of tissue heterogeneities. In this study, dosimetric accuracy of Monte Carlo (MC) advanced dose calculation and sequential algorithms of Multiplan treatment planning system were investigated for small radiation fields incident on homogeneous and heterogeneous geometries. Methods: Small open fields of fixed cones of Cyberknife M6 unit 100 to 500 mm2 were used for this study. The fields were incident on in house phantom containing lung, air, and bone inhomogeneities and also homogeneous phantom. Using the same film batch, the net OD to dose calibration curve was obtained using CK with the 60 mm fixed cone by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. The dosimetric accuracy of MC and sequential algorithms in the presence of the inhomogeneities was compared against EBT3 film dosimetry Results: Open field tests in a homogeneous phantom showed good agreement between two algorithms and film measurement For MC algorithm, the minimum gamma analysis passing rates between measured and calculated dose distributions were 99.7% and 98.3% for homogeneous and inhomogeneous fields in the case of lung and bone respectively. For sequential algorithm, the minimum gamma analysis passing rates were 98.9% and 92.5% for for homogeneous and inhomogeneous fields respectively for used all cone sizes. In the case of the air heterogeneity, the differences were larger for both calculation algorithms. Overall, when compared to measurement, the MC had better agreement than sequential algorithm. Conclusion: The Monte Carlo calculation algorithm in the Multiplan treatment planning system is an improvement over the existing sequential algorithm. Dose discrepancies were observed for in the presence of air inhomogeneities.

  3. Hyperthermia treatment planning

    International Nuclear Information System (INIS)

    Lagendijk, J.J.W.

    2000-01-01

    The development of hyperthermia, the treatment of tumours with elevated temperatures in the range of 40-44 deg. C with treatment times over 30 min, greatly benefits from the development of hyperthermia treatment planning. This review briefly describes the state of the art in hyperthermia technology, followed by an overview of the developments in hyperthermia treatment planning. It particularly highlights the significant problems encountered with heating realistic tissue volumes and shows how treatment planning can help in designing better heating technology. Hyperthermia treatment planning will ultimately provide information about the actual temperature distributions obtained and thus the tumour control probabilities to be expected. This will improve our understanding of the present clinical results of thermoradiotherapy and thermochemotherapy, and will greatly help both in optimizing clinical heating technology and in designing optimal clinical trials. (author)

  4. Planning Tunnel Construction Using Markov Chain Monte Carlo (MCMC

    Directory of Open Access Journals (Sweden)

    Juan P. Vargas

    2015-01-01

    Full Text Available Tunnels, drifts, drives, and other types of underground excavation are very common in mining as well as in the construction of roads, railways, dams, and other civil engineering projects. Planning is essential to the success of tunnel excavation, and construction time is one of the most important factors to be taken into account. This paper proposes a simulation algorithm based on a stochastic numerical method, the Markov chain Monte Carlo method, that can provide the best estimate of the opening excavation times for the classic method of drilling and blasting. Taking account of technical considerations that affect the tunnel excavation cycle, the simulation is developed through a computational algorithm. Using the Markov chain Monte Carlo method, the unit operations involved in the underground excavation cycle are identified and assigned probability distributions that, with random number input, make it possible to simulate the total excavation time. The results obtained with this method are compared with a real case of tunneling excavation. By incorporating variability in the planning, it is possible to determine with greater certainty the ranges over which the execution times of the unit operations fluctuate. In addition, the financial risks associated with planning errors can be reduced and the exploitation of resources maximized.

  5. Revision of orthovoltage chest wall treatment using Monte Carlo simulations.

    Science.gov (United States)

    Zeinali-Rafsanjani, B; Faghihi, R; Mosleh-Shirazi, M A; Mosalaei, A; Hadad, K

    2017-01-01

    Given the high local control rates observed in breast cancer patients undergoing chest wall irradiation by kilovoltage x-rays, we aimed to revisit this treatment modality by accurate calculation of dose distributions using Monte Carlo simulation. The machine components were simulated using the MCNPX code. This model was used to assess the dose distribution of chest wall kilovoltage treatment in different chest wall thicknesses and larger contour or fat patients in standard and mid sternum treatment plans. Assessments were performed at 50 and 100 cm focus surface distance (FSD) and different irradiation angles. In order to evaluate different plans, indices like homogeneity index, conformity index, the average dose of heart, lung, left anterior descending artery (LAD) and percentage target coverage (PTC) were used. Finally, the results were compared with the indices provided by electron therapy which is a more routine treatment of chest wall. These indices in a medium chest wall thickness in standard treatment plan at 50 cm FSD and 15 degrees tube angle was as follows: homogeneity index 2.57, conformity index 7.31, average target dose 27.43 Gy, average dose of heart, lung and LAD, 1.03, 2.08 and 1.60 Gy respectively and PTC 11.19%. Assessments revealed that dose homogeneity in planning target volume (PTV) and conformity between the high dose region and PTV was poor. To improve the treatment indices, the reference point was transferred from the chest wall skin surface to the center of PTV. The indices changed as follows: conformity index 7.31, average target dose 60.19 Gy, the average dose of heart, lung and LAD, 3.57, 6.38 and 5.05 Gy respectively and PTC 55.24%. Coverage index of electron therapy was 89% while it was 22.74% in the old orthovoltage method and also the average dose of the target was about 50 Gy but in the given method it was almost 30 Gy. The results of the treatment study show that the optimized standard and mid sternum treatment for different chest

  6. Computerized radiation treatment planning

    International Nuclear Information System (INIS)

    Laarse, R. van der.

    1981-01-01

    Following a general introduction, a chain consisting of three computer programs which has been developed for treatment planning of external beam radiotherapy without manual intervention is described. New score functions used for determination of optimal incidence directions are presented and the calculation of the position of the isocentre for each optimum combination of incidence directions is explained. A description of how a set of applicators, covering fields with dimensions of 4 to 20 cm, for the 6 to 20 MeV electron beams of a MEL SL75-20 linear accelerator was developed, is given. A computer program for three dimensional electron beam treatment planning is presented. A microprocessor based treatment planning system for the Selectron remote controlled afterloading system for intracavitary radiotherapy is described. The main differences in treatment planning procedures for external beam therapy with neutrons instead of photons is discussed. A microprocessor based densitometer for plotting isodensity lines in film dosimetry is described. A computer program for dose planning of brachytherapy is presented. Finally a general discussion about the different aspects of computerized treatment planning as presented in this thesis is given. (Auth.)

  7. RapidArc treatment verification in 3D using polymer gel dosimetry and Monte Carlo simulation

    DEFF Research Database (Denmark)

    Ceberg, Sofie; Gagne, Isabel; Gustafsson, Helen

    2010-01-01

    The aim of this study was to verify the advanced inhomogeneous dose distribution produced by a volumetric arc therapy technique (RapidArc™) using 3D gel measurements and Monte Carlo (MC) simulations. The TPS (treatment planning system)-calculated dose distribution was compared with gel measurements...

  8. Completion of treatment planning

    International Nuclear Information System (INIS)

    Lief, Eugene

    2008-01-01

    The outline of the lecture included the following topics: entering prescription; plan printout; print and transfer DDR; segment BEV; export to R and V; physician approval; and second check. Considerable attention, analysis and discussion. The summary is as follows: Treatment planning completion is a very responsible process which requires maximum attention; Should be independently checked by the planner, physicist, radiation oncologist and a therapist; Should not be done in a last minute rush; Proper communication between team members; Properly set procedure should prevent propagation of an error by one individual to the treatment: the error should be caught by somebody else. (P.A.)

  9. SU-E-T-219: Comprehensive Validation of the Electron Monte Carlo Dose Calculation Algorithm in RayStation Treatment Planning System for An Elekta Linear Accelerator with AgilityTM Treatment Head

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Park, Yang-Kyun; Doppke, Karen P. [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States)

    2015-06-15

    Purpose: This study evaluated the performance of the electron Monte Carlo dose calculation algorithm in RayStation v4.0 for an Elekta machine with Agility™ treatment head. Methods: The machine has five electron energies (6–8 MeV) and five applicators (6×6 to 25×25 cm {sup 2}). The dose (cGy/MU at d{sub max}), depth dose and profiles were measured in water using an electron diode at 100 cm SSD for nine square fields ≥2×2 cm{sup 2} and four complex fields at normal incidence, and a 14×14 cm{sup 2} field at 15° and 30° incidence. The dose was also measured for three square fields ≥4×4 cm{sup 2} at 98, 105 and 110 cm SSD. Using selected energies, the EBT3 radiochromic film was used for dose measurements in slab-shaped inhomogeneous phantoms and a breast phantom with surface curvature. The measured and calculated doses were analyzed using a gamma criterion of 3%/3 mm. Results: The calculated and measured doses varied by <3% for 116 of the 120 points, and <5% for the 4×4 cm{sup 2} field at 110 cm SSD at 9–18 MeV. The gamma analysis comparing the 105 pairs of in-water isodoses passed by >98.1%. The planar doses measured from films placed at 0.5 cm below a lung/tissue layer (12 MeV) and 1.0 cm below a bone/air layer (15 MeV) showed excellent agreement with calculations, with gamma passing by 99.9% and 98.5%, respectively. At the breast-tissue interface, the gamma passing rate is >98.8% at 12–18 MeV. The film results directly validated the accuracy of MU calculation and spatial dose distribution in presence of tissue inhomogeneity and surface curvature - situations challenging for simpler pencil-beam algorithms. Conclusion: The electron Monte Carlo algorithm in RayStation v4.0 is fully validated for clinical use for the Elekta Agility™ machine. The comprehensive validation included small fields, complex fields, oblique beams, extended distance, tissue inhomogeneity and surface curvature.

  10. Treatment planning systems

    International Nuclear Information System (INIS)

    Fontenla, D.P.

    2008-01-01

    All aspects of treatment planning in radiotherapy are discussed in detail. Included are, among others, machine data and their acquisition, photon dose calculations and tests thereof, criteria of acceptability, sources of uncertainties, from 2D to 3D and from 3D to IMRT, dosimetric measurements for RTP validation, frequency of QA tests and suggested tolerances for TPS, time and staff requirements, model based segmentation, multi-dimensional radiotherapy (MD C RT), and biological IMRT process. (P.A.)

  11. Igo - A Monte Carlo Code For Radiotherapy Planning

    International Nuclear Information System (INIS)

    Goldstein, M.; Regev, D.

    1999-01-01

    The goal of radiation therapy is to deliver a lethal dose to the tumor, while minimizing the dose to normal tissues and vital organs. To carry out this task, it is critical to calculate correctly the 3-D dose delivered. Monte Carlo transport methods (especially the Adjoint Monte Carlo have the potential to provide more accurate predictions of the 3-D dose the currently used methods. IG0 is a Monte Carlo code derived from the general Monte Carlo Program - MCNP, tailored specifically for calculating the effects of radiation therapy. This paper describes the IG0 transport code, the PIG0 interface and some preliminary results

  12. Physical treatment planning by several approaches

    International Nuclear Information System (INIS)

    Burger, G.; Morhart, A.; Wittmann, A.

    1985-01-01

    Neutron isodose planning may be performed by commercial treatment planning systems for photons, providing that certain modifications are applied. All geometry-related corrections such as for nonregular surfaces and oblique incidence remain unchanged. The main modifications concern the tissue-air-ratio, containing essentially the attenuation correction function. We have as a first step applied this modified commercial system to a few regular exposure situations in a homogenious water phantom and compared the generated isodose charts with those derived by direct Monte Carlo calculations of the neutron transport for the corresponding fields. As expected the commercial methods do not incorporate the necessary corrections for the change of scatter conditions in case of oblique incidence or wedged fields. For this reason we developed another approach, based upon the numerical superposition of dose matrices for pencil beams. These matrices were again Monte Carlo calculated. From it build-up functions can be derived by partial radial integration. The isodose charts generated by superposition of pencil beam dose distributions agree much better with directly Monte Carlo calculated ones, than those from the commercial treatment planning system. Based upon these results the method was finally applied to real patients cross sections, as derived from CT or MR-tomography. In the latter case one can even perform a pixelwise attenuation correction, if spin density images are available

  13. The evolution of brachytherapy treatment planning

    International Nuclear Information System (INIS)

    Rivard, Mark J.; Venselaar, Jack L. M.; Beaulieu, Luc

    2009-01-01

    Brachytherapy is a mature treatment modality that has benefited from technological advances. Treatment planning has advanced from simple lookup tables to complex, computer-based dose-calculation algorithms. The current approach is based on the AAPM TG-43 formalism with recent advances in acquiring single-source dose distributions. However, this formalism has clinically relevant limitations for calculating patient dose. Dose-calculation algorithms are being developed based on Monte Carlo methods, collapsed cone, and solving the linear Boltzmann transport equation. In addition to improved dose-calculation tools, planning systems and brachytherapy treatment planning will account for material heterogeneities, scatter conditions, radiobiology, and image guidance. The AAPM, ESTRO, and other professional societies are working to coordinate clinical integration of these advancements. This Vision 20/20 article provides insight into these endeavors.

  14. Treatment planning source assessment

    International Nuclear Information System (INIS)

    Calzetta Larrieu, O.; Blaumann, H.; Longhino, J.

    2000-01-01

    The reactor RA-6 NCT system was improved during the last year mainly in two aspects: the facility itself getting lower contamination factors and using better measurements techniques to obtain lower uncertainties in its characterization. In this job we show the different steps to get the source to be used in the treatment planning code representing the NCT facility. The first one was to compare the dosimetry in a water phantom between the calculation using the entire facility including core, filter and shields and a surface source at the end of the beam. The second one was to transform this particle by particle source in a distribution one regarding the minimum spatial, energy and angular resolution to get similar results. Finally we compare calculation and experimental values with and without the water phantom to adjust the distribution source. The results are discussed. (author)

  15. Improvements in patient treatment planning systems

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Wessol, D.E.; Nigg, D.W.; Atkinson, C.A.; Babcock, R.; Evans, J.

    1995-01-01

    The Boron Neutron Capture Therapy, Radiation treatment planning environment (BNCT-Rtpe) software system is used to develop treatment planning information. In typical use BNCT-Rtpe consists of three main components: (1) Semi-automated geometric modeling of objects (brain, target, eyes, sinus) derived from MRI, CT, and other medical imaging modalities, (2) Dose computations for these geometric models with rtt-MC, the INEL Monte Carlo radiation transport computer code, and (3) Dose contouring overlaid on medical images as well as generation of other dose displays. We continue to develop a planning system based on three-dimensional image-based reconstructions using Bspline surfaces. Even though this software is in an experimental state, it has been applied for large animal research and for an isolated case of treatment for a human glioma. Radiation transport is based on Monte Carlo, however there will be implementations of faster methods (e.g. diffusion theory) in the future. The important thing for treatment planning is the output which must convey, to the radiologist, the deposition of dose to healthy and target tissue. Many edits are available such that one can obtain contours registered to medical image, dose/volume histograms and most information required for treatment planning and response assessment. Recent work has been to make the process more automatic and easier to use. The interface, now implemented for contouring and reconstruction, utilizes the Xwindowing system and the MOTIF graphical users interface for effective interaction with the planner. Much work still remains before the tool can be applied in a routine clinical setting

  16. Monte Carlo studies for irradiation process planning at the Portuguese gamma irradiation facility

    International Nuclear Information System (INIS)

    Oliveira, C.; Salgado, J.; Botelho, M.L.M. Luisa; Ferreira, L.M.

    2000-01-01

    The paper describes a Monte Carlo study for planning the irradiation of test samples for microbiological validation of distinct products in the Portuguese Gamma Irradiation Facility. Three different irradiation geometries have been used. Simulated and experimental results are compared and good agreement is observed. It is shown that Monte Carlo simulation improves process understanding, predicts absorbed dose distributions and calculates dose uniformity in different products. Based on these results, irradiation planning of the product can be performed

  17. Fast dose planning Monte Carlo simulations in inhomogeneous phantoms submerged in uniform, static magnetic fields

    International Nuclear Information System (INIS)

    Yanez, R.; Dempsey, J. F.

    2007-01-01

    We present studies in support of the development of a magnetic resonance imaging (MRI) guided intensity modulated radiation therapy (IMRT) device for the treatment of cancer patients. Fast and accurate computation of the absorbed ionizing radiation dose delivered in the presence of the MRI magnetic field are required for clinical implementation. The fast Monte Carlo simulation code DPM, optimized for radiotherapy treatment planning, is modified to simulate absorbed doses in uniform, static magnetic fields, and benchmarked against PENELOPE. Simulations of dose deposition in inhomogeneous phantoms in which a low density material is sandwiched in water shows that a lower MRI field strength (0.3 T) is to prefer in order to avoid dose build-up near material boundaries. (authors)

  18. SU-E-T-202: Impact of Monte Carlo Dose Calculation Algorithm On Prostate SBRT Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Venencia, C; Garrigo, E; Cardenas, J; Castro Pena, P [Instituto de Radioterapia - Fundacion Marie Curie, Cordoba (Argentina)

    2014-06-01

    Purpose: The purpose of this work was to quantify the dosimetric impact of using Monte Carlo algorithm on pre calculated SBRT prostate treatment with pencil beam dose calculation algorithm. Methods: A 6MV photon beam produced by a Novalis TX (BrainLAB-Varian) linear accelerator equipped with HDMLC was used. Treatment plans were done using 9 fields with Iplanv4.5 (BrainLAB) and dynamic IMRT modality. Institutional SBRT protocol uses a total dose to the prostate of 40Gy in 5 fractions, every other day. Dose calculation is done by pencil beam (2mm dose resolution), heterogeneity correction and dose volume constraint (UCLA) for PTV D95%=40Gy and D98%>39.2Gy, Rectum V20Gy<50%, V32Gy<20%, V36Gy<10% and V40Gy<5%, Bladder V20Gy<40% and V40Gy<10%, femoral heads V16Gy<5%, penile bulb V25Gy<3cc, urethra and overlap region between PTV and PRV Rectum Dmax<42Gy. 10 SBRT treatments plans were selected and recalculated using Monte Carlo with 2mm spatial resolution and mean variance of 2%. DVH comparisons between plans were done. Results: The average difference between PTV doses constraints were within 2%. However 3 plans have differences higher than 3% which does not meet the D98% criteria (>39.2Gy) and should have been renormalized. Dose volume constraint differences for rectum, bladder, femoral heads and penile bulb were les than 2% and within tolerances. Urethra region and overlapping between PTV and PRV Rectum shows increment of dose in all plans. The average difference for urethra region was 2.1% with a maximum of 7.8% and for the overlapping region 2.5% with a maximum of 8.7%. Conclusion: Monte Carlo dose calculation on dynamic IMRT treatments could affects on plan normalization. Dose increment in critical region of urethra and PTV overlapping region with PTV could have clinical consequences which need to be studied. The use of Monte Carlo dose calculation algorithm is limited because inverse planning dose optimization use only pencil beam.

  19. Monte Carlo simulation of radiation treatment machine heads

    International Nuclear Information System (INIS)

    Mohan, R.

    1988-01-01

    Monte Carlo simulations of radiation treatment machine heads provide practical means for obtaining energy spectra and angular distributions of photons and electrons. So far, most of the work published in the literature has been limited to photons and the contaminant electrons knocked out by photons. This chapter will be confined to megavoltage photon beams produced by medical linear accelerators and 60 Co teletherapy units. The knowledge of energy spectra and angular distributions of photons and contaminant electrons emerging from such machines is important for a variety of applications in radiation dosimetry

  20. 3D treatment planning systems.

    Science.gov (United States)

    Saw, Cheng B; Li, Sicong

    2018-01-01

    Three-dimensional (3D) treatment planning systems have evolved and become crucial components of modern radiation therapy. The systems are computer-aided designing or planning softwares that speed up the treatment planning processes to arrive at the best dose plans for the patients undergoing radiation therapy. Furthermore, the systems provide new technology to solve problems that would not have been considered without the use of computers such as conformal radiation therapy (CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). The 3D treatment planning systems vary amongst the vendors and also the dose delivery systems they are designed to support. As such these systems have different planning tools to generate the treatment plans and convert the treatment plans into executable instructions that can be implemented by the dose delivery systems. The rapid advancements in computer technology and accelerators have facilitated constant upgrades and the introduction of different and unique dose delivery systems than the traditional C-arm type medical linear accelerators. The focus of this special issue is to gather relevant 3D treatment planning systems for the radiation oncology community to keep abreast of technology advancement by assess the planning tools available as well as those unique "tricks or tips" used to support the different dose delivery systems. Copyright © 2018 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  1. The effect of rib and lung heterogeneities on the computed dose to lung in Ir-192 High-Dose-Rate breast brachytherapy: Monte Carlo versus a treatment planning system

    Directory of Open Access Journals (Sweden)

    Hossein Salehi Yazdi

    2012-01-01

    Conclusions: Taking into account the ribs and entering the actual data for breasts, ribs, and lungs, revealed an average overestimation of the dose by a factor of 8% in the lung for TPS calculations. Therefore, the accuracy of the TPS results may be limited to regions near the implants where the treatment is planned, and is a more conservative approach for regions at boundaries with curvatures or tissues with a different material than that in the breast.

  2. Advantages of three-dimensional treatment planning in radiation therapy

    International Nuclear Information System (INIS)

    Attalla, E.M.; ELSAyed, A.A.; ElGantiry, M.; ElTahher, Z.

    2003-01-01

    This study was designed to demonstrate the feasibility of three-dimensional (3-D) treatment planning in-patients maxilla, breast, bladder, and lung tumors to explore its potential therapeutic advantage over the traditional dimensional (2-D) approach in these diseases. Conventional two-dimensional (2-D) treatment planning was compared to three-dimensional (3-D) treatment planning. In five selected disease sites, plans calculated with both types of treatment planning were compared. The (3-D) treatment planning system used in this work TMS version 5.1 B from helax AB is based on a monte Carlo-based pencil beam model. The other treatment planning system (2-D 0, introduced in this study was the multi data treatment planning system version 2.35. For the volumes of interest; quality of dose distribution concerning homogeneity in the target volume and the isodose distribution in organs at risk, was discussed. Qualitative and quantitative comparisons between the two planning systems were made using dose volume histograms (DVH's) . For comparisons of dose distributions in real-patient cases, differences ranged from 0.8% to 6.4% for 6 MV, while in case of 18 MV photon, it ranged from 1,8% to 6.5% and was within -+3 standard deviations for the dose between the two planning systems.Dose volume histogram (DVH) shows volume reduction of the radiation-related organs at risk 3-D planning

  3. Monte Carlo Planning Method Estimates Planning Horizons during Interactive Social Exchange

    Science.gov (United States)

    Hula, Andreas; Montague, P. Read; Dayan, Peter

    2015-01-01

    Reciprocating interactions represent a central feature of all human exchanges. They have been the target of various recent experiments, with healthy participants and psychiatric populations engaging as dyads in multi-round exchanges such as a repeated trust task. Behaviour in such exchanges involves complexities related to each agent’s preference for equity with their partner, beliefs about the partner’s appetite for equity, beliefs about the partner’s model of their partner, and so on. Agents may also plan different numbers of steps into the future. Providing a computationally precise account of the behaviour is an essential step towards understanding what underlies choices. A natural framework for this is that of an interactive partially observable Markov decision process (IPOMDP). However, the various complexities make IPOMDPs inordinately computationally challenging. Here, we show how to approximate the solution for the multi-round trust task using a variant of the Monte-Carlo tree search algorithm. We demonstrate that the algorithm is efficient and effective, and therefore can be used to invert observations of behavioural choices. We use generated behaviour to elucidate the richness and sophistication of interactive inference. PMID:26053429

  4. Monte Carlo Planning Method Estimates Planning Horizons during Interactive Social Exchange.

    Science.gov (United States)

    Hula, Andreas; Montague, P Read; Dayan, Peter

    2015-06-01

    Reciprocating interactions represent a central feature of all human exchanges. They have been the target of various recent experiments, with healthy participants and psychiatric populations engaging as dyads in multi-round exchanges such as a repeated trust task. Behaviour in such exchanges involves complexities related to each agent's preference for equity with their partner, beliefs about the partner's appetite for equity, beliefs about the partner's model of their partner, and so on. Agents may also plan different numbers of steps into the future. Providing a computationally precise account of the behaviour is an essential step towards understanding what underlies choices. A natural framework for this is that of an interactive partially observable Markov decision process (IPOMDP). However, the various complexities make IPOMDPs inordinately computationally challenging. Here, we show how to approximate the solution for the multi-round trust task using a variant of the Monte-Carlo tree search algorithm. We demonstrate that the algorithm is efficient and effective, and therefore can be used to invert observations of behavioural choices. We use generated behaviour to elucidate the richness and sophistication of interactive inference.

  5. TH-E-BRE-08: GPU-Monte Carlo Based Fast IMRT Plan Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y; Tian, Z; Shi, F; Jiang, S; Jia, X [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States)

    2014-06-15

    Purpose: Intensity-modulated radiation treatment (IMRT) plan optimization needs pre-calculated beamlet dose distribution. Pencil-beam or superposition/convolution type algorithms are typically used because of high computation speed. However, inaccurate beamlet dose distributions, particularly in cases with high levels of inhomogeneity, may mislead optimization, hindering the resulting plan quality. It is desire to use Monte Carlo (MC) methods for beamlet dose calculations. Yet, the long computational time from repeated dose calculations for a number of beamlets prevents this application. It is our objective to integrate a GPU-based MC dose engine in lung IMRT optimization using a novel two-steps workflow. Methods: A GPU-based MC code gDPM is used. Each particle is tagged with an index of a beamlet where the source particle is from. Deposit dose are stored separately for beamlets based on the index. Due to limited GPU memory size, a pyramid space is allocated for each beamlet, and dose outside the space is neglected. A two-steps optimization workflow is proposed for fast MC-based optimization. At first step, rough beamlet dose calculations is conducted with only a small number of particles per beamlet. Plan optimization is followed to get an approximated fluence map. In the second step, more accurate beamlet doses are calculated, where sampled number of particles for a beamlet is proportional to the intensity determined previously. A second-round optimization is conducted, yielding the final Result. Results: For a lung case with 5317 beamlets, 10{sup 5} particles per beamlet in the first round, and 10{sup 8} particles per beam in the second round are enough to get a good plan quality. The total simulation time is 96.4 sec. Conclusion: A fast GPU-based MC dose calculation method along with a novel two-step optimization workflow are developed. The high efficiency allows the use of MC for IMRT optimizations.

  6. Acceptance and implementation of a system of planning computerized based on Monte Carlo

    International Nuclear Information System (INIS)

    Lopez-Tarjuelo, J.; Garcia-Molla, R.; Suan-Senabre, X. J.; Quiros-Higueras, J. Q.; Santos-Serra, A.; Marco-Blancas, N.; Calzada-Feliu, S.

    2013-01-01

    It has been done the acceptance for use clinical Monaco computerized planning system, based on an on a virtual model of the energy yield of the head of the linear electron Accelerator and that performs the calculation of the dose with an algorithm of x-rays (XVMC) based on Monte Carlo algorithm. (Author)

  7. SU-F-T-619: Dose Evaluation of Specific Patient Plans Based On Monte Carlo Algorithm for a CyberKnife Stereotactic Radiosurgery System

    Energy Technology Data Exchange (ETDEWEB)

    Piao, J [PLA General Hospital, Beijing (China); PLA 302 Hospital, Beijing (China); Xu, S [PLA General Hospital, Beijing (China); Tsinghua University, Beijing (China); Wu, Z; Liu, Y [Tsinghua University, Beijing (China); Li, Y [Beihang University, Beijing (China); Qu, B [PLA General Hospital, Beijing (China); Duan, X [PLA 302 Hospital, Beijing (China)

    2016-06-15

    Purpose: This study will use Monte Carlo to simulate the Cyberknife system, and intend to develop the third-party tool to evaluate the dose verification of specific patient plans in TPS. Methods: By simulating the treatment head using the BEAMnrc and DOSXYZnrc software, the comparison between the calculated and measured data will be done to determine the beam parameters. The dose distribution calculated in the Raytracing, Monte Carlo algorithms of TPS (Multiplan Ver4.0.2) and in-house Monte Carlo simulation method for 30 patient plans, which included 10 head, lung and liver cases in each, were analyzed. The γ analysis with the combined 3mm/3% criteria would be introduced to quantitatively evaluate the difference of the accuracy between three algorithms. Results: More than 90% of the global error points were less than 2% for the comparison of the PDD and OAR curves after determining the mean energy and FWHM.The relative ideal Monte Carlo beam model had been established. Based on the quantitative evaluation of dose accuracy for three algorithms, the results of γ analysis shows that the passing rates (84.88±9.67% for head,98.83±1.05% for liver,98.26±1.87% for lung) of PTV in 30 plans between Monte Carlo simulation and TPS Monte Carlo algorithms were good. And the passing rates (95.93±3.12%,99.84±0.33% in each) of PTV in head and liver plans between Monte Carlo simulation and TPS Ray-tracing algorithms were also good. But the difference of DVHs in lung plans between Monte Carlo simulation and Ray-tracing algorithms was obvious, and the passing rate (51.263±38.964%) of γ criteria was not good. It is feasible that Monte Carlo simulation was used for verifying the dose distribution of patient plans. Conclusion: Monte Carlo simulation algorithm developed in the CyberKnife system of this study can be used as a reference tool for the third-party tool, which plays an important role in dose verification of patient plans. This work was supported in part by the grant

  8. Interactively exploring optimized treatment plans

    International Nuclear Information System (INIS)

    Rosen, Isaac; Liu, H. Helen; Childress, Nathan; Liao Zhongxing

    2005-01-01

    Purpose: A new paradigm for treatment planning is proposed that embodies the concept of interactively exploring the space of optimized plans. In this approach, treatment planning ignores the details of individual plans and instead presents the physician with clinical summaries of sets of solutions to well-defined clinical goals in which every solution has been optimized in advance by computer algorithms. Methods and materials: Before interactive planning, sets of optimized plans are created for a variety of treatment delivery options and critical structure dose-volume constraints. Then, the dose-volume parameters of the optimized plans are fit to linear functions. These linear functions are used to show in real time how the target dose-volume histogram (DVH) changes as the DVHs of the critical structures are changed interactively. A bitmap of the space of optimized plans is used to restrict the feasible solutions. The physician selects the critical structure dose-volume constraints that give the desired dose to the planning target volume (PTV) and then those constraints are used to create the corresponding optimized plan. Results: The method is demonstrated using prototype software, Treatment Plan Explorer (TPEx), and a clinical example of a patient with a tumor in the right lung. For this example, the delivery options included 4 open beams, 12 open beams, 4 wedged beams, and 12 wedged beams. Beam directions and relative weights were optimized for a range of critical structure dose-volume constraints for the lungs and esophagus. Cord dose was restricted to 45 Gy. Using the interactive interface, the physician explored how the tumor dose changed as critical structure dose-volume constraints were tightened or relaxed and selected the best compromise for each delivery option. The corresponding treatment plans were calculated and compared with the linear parameterization presented to the physician in TPEx. The linear fits were best for the maximum PTV dose and worst

  9. Concepts and Plans towards fast large scale Monte Carlo production for the ATLAS Experiment

    CERN Document Server

    Chapman, J; Duehrssen, M; Elsing, M; Froidevaux, D; Harrington, R; Jansky, R; Langenberg, R; Mandrysch, R; Marshall, Z; Ritsch, E; Salzburger, A

    2014-01-01

    The huge success of the physics program of the ATLAS experiment at the Large Hadron Collider (LHC) during run I relies upon a great number of simulated Monte Carlo events. This Monte Carlo production takes the biggest part of the computing resources being in use by ATLAS as of now. In this document we describe the plans to overcome the computing resource limitations for large scale Monte Carlo production in the ATLAS Experiment for run II, and beyond. A number of fast detector simulation, digitization and reconstruction techniques and are being discussed, based upon a new flexible detector simulation framework. To optimally benefit from these developments, a redesigned ATLAS MC production chain is presented at the end of this document.

  10. Concepts and Plans towards fast large scale Monte Carlo production for the ATLAS Experiment

    Science.gov (United States)

    Ritsch, E.; Atlas Collaboration

    2014-06-01

    The huge success of the physics program of the ATLAS experiment at the Large Hadron Collider (LHC) during Run 1 relies upon a great number of simulated Monte Carlo events. This Monte Carlo production takes the biggest part of the computing resources being in use by ATLAS as of now. In this document we describe the plans to overcome the computing resource limitations for large scale Monte Carlo production in the ATLAS Experiment for Run 2, and beyond. A number of fast detector simulation, digitization and reconstruction techniques are being discussed, based upon a new flexible detector simulation framework. To optimally benefit from these developments, a redesigned ATLAS MC production chain is presented at the end of this document.

  11. SU-C-BRC-03: Development of a Novel Strategy for On-Demand Monte Carlo and Deterministic Dose Calculation Treatment Planning and Optimization for External Beam Photon and Particle Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y M; Bush, K; Han, B; Xing, L [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)

    2016-06-15

    Purpose: Accurate and fast dose calculation is a prerequisite of precision radiation therapy in modern photon and particle therapy. While Monte Carlo (MC) dose calculation provides high dosimetric accuracy, the drastically increased computational time hinders its routine use. Deterministic dose calculation methods are fast, but problematic in the presence of tissue density inhomogeneity. We leverage the useful features of deterministic methods and MC to develop a hybrid dose calculation platform with autonomous utilization of MC and deterministic calculation depending on the local geometry, for optimal accuracy and speed. Methods: Our platform utilizes a Geant4 based “localized Monte Carlo” (LMC) method that isolates MC dose calculations only to volumes that have potential for dosimetric inaccuracy. In our approach, additional structures are created encompassing heterogeneous volumes. Deterministic methods calculate dose and energy fluence up to the volume surfaces, where the energy fluence distribution is sampled into discrete histories and transported using MC. Histories exiting the volume are converted back into energy fluence, and transported deterministically. By matching boundary conditions at both interfaces, deterministic dose calculation account for dose perturbations “downstream” of localized heterogeneities. Hybrid dose calculation was performed for water and anthropomorphic phantoms. Results: We achieved <1% agreement between deterministic and MC calculations in the water benchmark for photon and proton beams, and dose differences of 2%–15% could be observed in heterogeneous phantoms. The saving in computational time (a factor ∼4–7 compared to a full Monte Carlo dose calculation) was found to be approximately proportional to the volume of the heterogeneous region. Conclusion: Our hybrid dose calculation approach takes advantage of the computational efficiency of deterministic method and accuracy of MC, providing a practical tool for high

  12. SU-C-BRC-03: Development of a Novel Strategy for On-Demand Monte Carlo and Deterministic Dose Calculation Treatment Planning and Optimization for External Beam Photon and Particle Therapy

    International Nuclear Information System (INIS)

    Yang, Y M; Bush, K; Han, B; Xing, L

    2016-01-01

    Purpose: Accurate and fast dose calculation is a prerequisite of precision radiation therapy in modern photon and particle therapy. While Monte Carlo (MC) dose calculation provides high dosimetric accuracy, the drastically increased computational time hinders its routine use. Deterministic dose calculation methods are fast, but problematic in the presence of tissue density inhomogeneity. We leverage the useful features of deterministic methods and MC to develop a hybrid dose calculation platform with autonomous utilization of MC and deterministic calculation depending on the local geometry, for optimal accuracy and speed. Methods: Our platform utilizes a Geant4 based “localized Monte Carlo” (LMC) method that isolates MC dose calculations only to volumes that have potential for dosimetric inaccuracy. In our approach, additional structures are created encompassing heterogeneous volumes. Deterministic methods calculate dose and energy fluence up to the volume surfaces, where the energy fluence distribution is sampled into discrete histories and transported using MC. Histories exiting the volume are converted back into energy fluence, and transported deterministically. By matching boundary conditions at both interfaces, deterministic dose calculation account for dose perturbations “downstream” of localized heterogeneities. Hybrid dose calculation was performed for water and anthropomorphic phantoms. Results: We achieved <1% agreement between deterministic and MC calculations in the water benchmark for photon and proton beams, and dose differences of 2%–15% could be observed in heterogeneous phantoms. The saving in computational time (a factor ∼4–7 compared to a full Monte Carlo dose calculation) was found to be approximately proportional to the volume of the heterogeneous region. Conclusion: Our hybrid dose calculation approach takes advantage of the computational efficiency of deterministic method and accuracy of MC, providing a practical tool for high

  13. Acceptance and implementation of a system of planning computerized based on Monte Carlo; Aceptacion y puesta en marcha de un sistema de planificacion comutarizada basado en Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Tarjuelo, J.; Garcia-Molla, R.; Suan-Senabre, X. J.; Quiros-Higueras, J. Q.; Santos-Serra, A.; Marco-Blancas, N.; Calzada-Feliu, S.

    2013-07-01

    It has been done the acceptance for use clinical Monaco computerized planning system, based on an on a virtual model of the energy yield of the head of the linear electron Accelerator and that performs the calculation of the dose with an algorithm of x-rays (XVMC) based on Monte Carlo algorithm. (Author)

  14. Automatic planning of head and neck treatment plans

    DEFF Research Database (Denmark)

    Hazell, Irene; Bzdusek, Karl; Kumar, Prashant

    2016-01-01

    radiation dose planning (dosimetrist) and potentially improve the overall plan quality. This study evaluates the performance of the Auto-Planning module that has recently become clinically available in the Pinnacle3 radiation therapy treatment planning system. Twenty-six clinically delivered head and neck...... as the previously delivered clinical plans. For all patients, the Auto-Planning tool produced clinically acceptable head and neck treatment plans without any manual intervention, except for the initial target and OAR delineations. The main benefit of the method is the likely improvement in the overall treatment......Treatment planning is time-consuming and the outcome depends on the person performing the optimization. A system that automates treatment planning could potentially reduce the manual time required for optimization and could also pro-vide a method to reduce the variation between persons performing...

  15. The Architect Carlos Contreras and the master plan of Aguascalientes, 1948. Modern city planning and influence on urban morphology

    Directory of Open Access Journals (Sweden)

    Alejandro Acosta Collazo

    2015-04-01

    Full Text Available This paper aims to analyze the ordering interest related to industry in the city, workers' housing needs, the impact on the phenomenon of the city shape of the moment and building complex urban morphology consistent, positive or negative, with a planning practice. The labor colonies and Industrial guild were the product of a social response to the demands of the manufacturing city in the first half of the twentieth century. Thanks to the Master Plan by architect Carlos Contreras Elizondo for the city of Aguascalientes in 1948. Also, this article seeks to address the impact of the Plan in the historic centreof Aguascalientes, which was modified over the years to meet the needs that arose.

  16. Clinical evaluation of treatment plans

    Energy Technology Data Exchange (ETDEWEB)

    Emery, E W [Radiotherapy Department, University College Hospital, London (United Kingdom)

    1966-06-15

    Since the start of radiotherapy, the aim of all radiotherapists has been to treat as many patients who suffer with malignant tumours as possible, so as to give an effective curative dose to the whole tumour, at the same time, doing as little damage as possible to normal tissues. Until 1945, damage to the skin was usually the limiting factor. Since the war, with the rapid development of more powerful X-ray machines and sources of irradiation, we have had at our disposal much more penetrating radiation, allowing us to give effective tumour doses, with little or no damage to the skin. However, with higher tumour doses, there is more likelihood of damage to structures in proximity to the tumour - i.e. bone, nerves, muscle, liver, kidney etc. This has focussed the interest of all radiologists on the need for careful planning, and physicists have worked out with great care the differential absorptions of X-rays on differing tissue, i. e. bone, muscle, fat etc., so that very accurate and correct treatment planning can now be undertaken. This entails a great deal of accurate and complicated work and has had to be done by our physicist colleagues, who may take hours or days to work out a complicated treatment plan. The acceptance of the plan as being the most suitable for a patient is governed by these factors: (a) The dose must be given to the whole tumour area; (b) The nearby structures, i. e. nerves, bowel, kidney etc. must not receive a dose which may cause serious damage; (c) All parts of the tumour must have an effective dose; (d) The integral dose must be such that the patient is not unduly upset. All these factors vary from patient to patient, and thus each plan has to be considered in conjunction with each individual patient so that, although patients have similar tumours, what may be an optimal plan for one may not be for another. Also clinicians themselves vary in their opinions on the size of tumour, general condition of the patient, and the amount of damage

  17. Treatment planning optimization for linear accelerator radiosurgery

    International Nuclear Information System (INIS)

    Meeks, Sanford L.; Buatti, John M.; Bova, Francis J.; Friedman, William A.; Mendenhall, William M.

    1998-01-01

    Purpose: Linear accelerator radiosurgery uses multiple arcs delivered through circular collimators to produce a nominally spherical dose distribution. Production of dose distributions that conform to irregular lesions or conformally avoid critical neural structures requires a detailed understanding of the available treatment planning parameters. Methods and Materials: Treatment planning parameters that may be manipulated within a single isocenter to provide conformal avoidance and dose conformation to ellipsoidal lesions include differential arc weighting and gantry start/stop angles. More irregular lesions require the use of multiple isocenters. Iterative manipulation of treatment planning variables can be difficult and computationally expensive, especially if the effects of these manipulations are not well defined. Effects of treatment parameter manipulation are explained and illustrated. This is followed by description of the University of Florida Stereotactic Radiosurgery Treatment Planning Algorithm. This algorithm organizes the manipulations into a practical approach for radiosurgery treatment planning. Results: Iterative treatment planning parameters may be efficiently manipulated to achieve optimal treatment plans by following the University of Florida Treatment Planning Algorithm. The ability to produce conformal stereotactic treatment plans using the algorithm is demonstrated for a variety of clinical presentations. Conclusion: The standard dose distribution produced in linear accelerator radiosurgery is spherical, but manipulation of available treatment planning parameters may result in optimal dose conformation. The University of Florida Treatment Planning Algorithm organizes available treatment parameters to efficiently produce conformal radiosurgery treatment plans

  18. Computational Dosimetry and Treatment Planning Considerations for Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Nigg, David Waler

    2003-01-01

    Specialized treatment planning software systems are generally required for neutron capture therapy (NCT) research and clinical applications. The standard simplifying approximations that work well for treatment planning computations in the case of many other modalities are usually not appropriate for application to neutron transport. One generally must obtain an explicit three-dimensional numerical solution of the governing transport equation, with energy-dependent neutron scattering completely taken into account. Treatment planning systems that have been successfully introduced for NCT applications over the past 15 years rely on the Monte Carlo stochastic simulation method for the necessary computations, primarily because of the geometric complexity of human anatomy. However, historically, there has also been interest in the application of deterministic methods, and there have been some practical developments in this area. Most recently, interest has turned toward the creation of treatment planning software that is not limited to any specific therapy modality, with NCT as only one of several applications. A key issue with NCT treatment planning has to do with boron quantification, and whether improved information concerning the spatial biodistribution of boron can be effectively used to improve the treatment planning process. Validation and benchmarking of computations for NCT are also of current developmental interest. Various institutions have their own procedures, but standard validation models are not yet in wide use

  19. Fast online Monte Carlo-based IMRT planning for the MRI linear accelerator

    Science.gov (United States)

    Bol, G. H.; Hissoiny, S.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2012-03-01

    The MRI accelerator, a combination of a 6 MV linear accelerator with a 1.5 T MRI, facilitates continuous patient anatomy updates regarding translations, rotations and deformations of targets and organs at risk. Accounting for these demands high speed, online intensity-modulated radiotherapy (IMRT) re-optimization. In this paper, a fast IMRT optimization system is described which combines a GPU-based Monte Carlo dose calculation engine for online beamlet generation and a fast inverse dose optimization algorithm. Tightly conformal IMRT plans are generated for four phantom cases and two clinical cases (cervix and kidney) in the presence of the magnetic fields of 0 and 1.5 T. We show that for the presented cases the beamlet generation and optimization routines are fast enough for online IMRT planning. Furthermore, there is no influence of the magnetic field on plan quality and complexity, and equal optimization constraints at 0 and 1.5 T lead to almost identical dose distributions.

  20. A Monte Carlo tool for evaluating VMAT and DIMRT treatment deliveries including planar detectors

    International Nuclear Information System (INIS)

    Asuni, G; Van Beek, T A; Venkataraman, S; McCurdy, B M C; Popescu, I A

    2013-01-01

    The aim of this work is to describe and validate a new general research tool that performs Monte Carlo (MC) simulations for volumetric modulated arc therapy (VMAT) and dynamic intensity modulated radiation therapy (DIMRT), simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system. The tool is generalized to handle either entrance or exit detectors and provides the simulated dose for the individual control-points of the time-dependent VMAT and DIMRT deliveries. The MC simulation tool was developed with the EGSnrc radiation transport. For the individual control point simulation, we rotate the patient/phantom volume only (i.e. independent of the gantry and planar detector geometries) using the gantry angle in the treatment planning system (TPS) DICOM RP file such that each control point has its own unique phantom file. After MC simulation, we obtained the total dose to the phantom by summing dose contributions for all control points. Scored dose to the sensitive layer of the planar detector is available for each control point. To validate the tool, three clinical treatment plans were used including VMAT plans for a prostate case and a head-and-neck case, and a DIMRT plan for a head-and-neck case. An electronic portal imaging device operated in ‘movie’ mode was used with the VMAT plans delivered to cylindrical and anthropomorphic phantoms to validate the code using an exit detector. The DIMRT plan was delivered to a novel transmission detector, to validate the code using an entrance detector. The total MC 3D absolute doses in patient/phantom were compared with the TPS doses, while 2D MC doses were compared with planar detector doses for all individual control points, using the gamma evaluation test with 3%/3 mm criteria. The MC 3D absolute doses demonstrated excellent agreement with the TPS doses for all the tested plans, with about 95% of voxels having γ 90% of percentage pixels with γ <1. We found that over

  1. Treatment planning with ion beams

    International Nuclear Information System (INIS)

    Foss, M.H.

    1985-01-01

    Ions have higher linear energy transfer (LET) near the end of their range and lower LET away from the end of their range. Mixing radiations of different LET complicates treatment planning because radiation kills cells in two statistically independent ways. In some cases, cells are killed by a single-particle, which causes a linear decrease in log survival at low dosage. When the linear decrease is subtracted from the log survival curve, the remaining curve has zero slope at zero dosage. This curve is the log survival curve for cells that are killed only by two or more particles. These two mechanisms are statistically independent. To calculate survival, these two kinds of doses must be accumulated separately. The effect of each accumulated dosage must be read from its survival curve, and the logarithms of the two effects added to get the log survival. Treatment plans for doses of protons, He 3 ions, and He 4 ions suggest that these ions will be useful therapeutic modalities

  2. A virtual linear accelerator for verification of treatment planning systems

    International Nuclear Information System (INIS)

    Wieslander, Elinore

    2000-01-01

    A virtual linear accelerator is implemented into a commercial pencil-beam-based treatment planning system (TPS) with the purpose of investigating the possibility of verifying the system using a Monte Carlo method. The characterization set for the TPS includes depth doses, profiles and output factors, which is generated by Monte Carlo simulations. The advantage of this method over conventional measurements is that variations in accelerator output are eliminated and more complicated geometries can be used to study the performance of a TPS. The difference between Monte Carlo simulated and TPS calculated profiles and depth doses in the characterization geometry is less than ±2% except for the build-up region. This is of the same order as previously reported results based on measurements. In an inhomogeneous, mediastinum-like case, the deviations between TPS and simulations are small in the unit-density regions. In low-density regions, the TPS overestimates the dose, and the overestimation increases with increasing energy from 3.5% for 6 MV to 9.5% for 18 MV. This result points out the widely known fact that the pencil beam concept does not handle changes in lateral electron transport, nor changes in scatter due to lateral inhomogeneities. It is concluded that verification of a pencil-beam-based TPS with a Monte Carlo based virtual accelerator is possible, which facilitates the verification procedure. (author)

  3. Treatment Planning Systems for BNCT Requirements and Peculiarities

    CERN Document Server

    Daquino, G G

    2003-01-01

    The main requirements and peculiarities expected from the BNCT-oriented treatment planning system (TPS) are summarized in this paper. The TPS is a software, which can be integrated or composed by several auxiliary programs. It plays important roles inside the whole treatment planning of the patient's organ in BNCT. However, the main goal is the simulation of the irradiation, in order to obtain the optimal configuration, in terms of neutron spectrum, patient positioning and dose distribution in the tumour and healthy tissues. The presence of neutrons increases the level of complexity, because much more nuclear reactions need to be monitored and properly calculated during the simulation of the patient's treatment. To this purposes several 3D geometry reconstruction techniques, generally based on the CT scanning data, are implemented and Monte Carlo codes are normally used. The TPSs are expected to show also the results (basically doses and fluences) in a proper format, such as isocurves (or isosurfaces) along t...

  4. Electron beam treatment planning: A review of dose computation methods

    International Nuclear Information System (INIS)

    Mohan, R.; Riley, R.; Laughlin, J.S.

    1983-01-01

    Various methods of dose computations are reviewed. The equivalent path length methods used to account for body curvature and internal structure are not adequate because they ignore the lateral diffusion of electrons. The Monte Carlo method for the broad field three-dimensional situation in treatment planning is impractical because of the enormous computer time required. The pencil beam technique may represent a suitable compromise. The behavior of a pencil beam may be described by the multiple scattering theory or, alternatively, generated using the Monte Carlo method. Although nearly two orders of magnitude slower than the equivalent path length technique, the pencil beam method improves accuracy sufficiently to justify its use. It applies very well when accounting for the effect of surface irregularities; the formulation for handling inhomogeneous internal structure is yet to be developed

  5. Strategies for automatic online treatment plan reoptimization using clinical treatment planning system: A planning parameters study

    International Nuclear Information System (INIS)

    Li, Taoran; Wu, Qiuwen; Zhang, You; Vergalasova, Irina; Lee, W. Robert; Yin, Fang-Fang; Wu, Q. Jackie

    2013-01-01

    Purpose: Adaptive radiation therapy for prostate cancer using online reoptimization provides an improved control of interfractional anatomy variations. However, the clinical implementation of online reoptimization is currently limited by the low efficiency of current strategies and the difficulties associated with integration into the current treatment planning system. This study investigates the strategies for performing fast (∼2 min) automatic online reoptimization with a clinical fluence-map-based treatment planning system; and explores the performance with different input parameters settings: dose-volume histogram (DVH) objective settings, starting stage, and iteration number (in the context of real time planning).Methods: Simulated treatments of 10 patients were reoptimized daily for the first week of treatment (5 fractions) using 12 different combinations of optimization strategies. Options for objective settings included guideline-based RTOG objectives, patient-specific objectives based on anatomy on the planning CT, and daily-CBCT anatomy-based objectives adapted from planning CT objectives. Options for starting stages involved starting reoptimization with and without the original plan's fluence map. Options for iteration numbers were 50 and 100. The adapted plans were then analyzed by statistical modeling, and compared both in terms of dosimetry and delivery efficiency.Results: All online reoptimized plans were finished within ∼2 min with excellent coverage and conformity to the daily target. The three input parameters, i.e., DVH objectives, starting stage, and iteration number, contributed to the outcome of optimization nearly independently. Patient-specific objectives generally provided better OAR sparing compared to guideline-based objectives. The benefit in high-dose sparing from incorporating daily anatomy into objective settings was positively correlated with the relative change in OAR volumes from planning CT to daily CBCT. The use of the

  6. Multi-period multi-objective electricity generation expansion planning problem with Monte-Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tekiner, Hatice [Industrial Engineering, College of Engineering and Natural Sciences, Istanbul Sehir University, 2 Ahmet Bayman Rd, Istanbul (Turkey); Coit, David W. [Department of Industrial and Systems Engineering, Rutgers University, 96 Frelinghuysen Rd., Piscataway, NJ (United States); Felder, Frank A. [Edward J. Bloustein School of Planning and Public Policy, Rutgers University, Piscataway, NJ (United States)

    2010-12-15

    A new approach to the electricity generation expansion problem is proposed to minimize simultaneously multiple objectives, such as cost and air emissions, including CO{sub 2} and NO{sub x}, over a long term planning horizon. In this problem, system expansion decisions are made to select the type of power generation, such as coal, nuclear, wind, etc., where the new generation asset should be located, and at which time period expansion should take place. We are able to find a Pareto front for the multi-objective generation expansion planning problem that explicitly considers availability of the system components over the planning horizon and operational dispatching decisions. Monte-Carlo simulation is used to generate numerous scenarios based on the component availabilities and anticipated demand for energy. The problem is then formulated as a mixed integer linear program, and optimal solutions are found based on the simulated scenarios with a combined objective function considering the multiple problem objectives. The different objectives are combined using dimensionless weights and a Pareto front can be determined by varying these weights. The mathematical model is demonstrated on an example problem with interesting results indicating how expansion decisions vary depending on whether minimizing cost or minimizing greenhouse gas emissions or pollutants is given higher priority. (author)

  7. Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study

    Energy Technology Data Exchange (ETDEWEB)

    Oborn, B. M., E-mail: brad.oborn@gmail.com [Illawarra Cancer Care Centre (ICCC), Wollongong, NSW 2500, Australia and Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2500 (Australia); Ge, Y. [Sydney Medical School, University of Sydney, NSW 2006 (Australia); Hardcastle, N. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia); Metcalfe, P. E. [Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong NSW 2500, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); Keall, P. J. [Sydney Medical School, University of Sydney, NSW 2006, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia)

    2016-01-15

    Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6 MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: A total of eight clinical lung tumor cases were recalculated using Monte Carlo methods, and external magnetic fields of 0.5, 1.0, and 3 T were included to observe the impact on dose to the planning target volume (PTV) and gross tumor volume (GTV). Three plans were 6 MV 3D-CRT plans while 6 were 6 MV IMRT. The GTV’s ranged from 0.8 to 16 cm{sup 3}, while the PTV’s ranged from 1 to 59 cm{sup 3}. In addition, the dose changes in a 30 cm diameter cylindrical water phantom were investigated for small beams. The central 20 cm of this phantom contained either water or lung density insert. Results: For single beams, an inline magnetic field of 1 T has a small impact in lung dose distributions by reducing the lateral scatter of secondary electrons, resulting in a small dose increase along the beam. Superposition of multiple small beams leads to significant dose enhancements. Clinically, this process occurs in the lung tissue typically surrounding the GTV, resulting in increases to the D{sub 98%} (PTV). Two isolated tumors with very small PTVs (3 and 6 cm{sup 3}) showed increases in D{sub 98%} of 23% and 22%. Larger PTVs of 13, 26, and 59 cm{sup 3} had increases of 9%, 6%, and 4%, describing a natural fall-off in enhancement with increasing PTV size. However, three PTVs bounded to the lung wall showed no significant increase, due to lack of dose enhancement in the denser PTV volume. In general, at 0.5 T, the GTV mean dose enhancement is around 60% lower than that at 1 T, while at 3 T, it is 5%–60% higher than 1 T. Conclusions: Monte Carlo methods have described significant and predictable dose enhancement effects in small lung tumor plans for 6 MV radiotherapy when an external inline magnetic field is included. Results of this study

  8. Clinical physics for charged particle treatment planning

    International Nuclear Information System (INIS)

    Chen, G.T.Y.; Pitluck, S.; Lyman, J.T.

    1981-01-01

    The installation of a computerized tomography (CT) scanner which can be used with the patient in an upright position is described. This technique will enhance precise location of tumor position relative to critical structures for accurate charged particle dose delivery during fixed horizontal beam radiotherapy. Pixel-by-pixel treatment planning programs have been developed to calculate the dose distribution from multi-port charged particle beams. The plan includes CT scans, data interpretation, and dose calculations. The treatment planning computer is discussed. Treatment planning for irradiation of ocular melanomas is described

  9. Treatment Planning for Ion Beam Therapy

    Science.gov (United States)

    Jäkel, Oliver

    The special aspects of treatment planning for ion beams are outlined in this chapter, starting with positioning and immobilization of the patient, describing imaging and segmentation, definition of treatment parameters, dose calculation and optimization, and, finally, plan assessment, verification, and quality assurance.

  10. Inverse planning and class solutions for brachytherapy treatment planning

    International Nuclear Information System (INIS)

    Trnkova, P.

    2010-01-01

    Brachytherapy or interventional radiooncology is a method of radiation therapy. It is a method, where a small encapsulated radioactive source is placed near to / in the tumour and therefore delivers high doses directly to the target volume. Organs at risk (OARs) are spared due to the inverse square dose fall-off. In the past years there was a slight stagnation in the development of techniques for brachytherapy treatment. While external beam radiotherapy became more and more sophisticated, in brachytherapy traditional methods have been still used. Recently, 3D imaging was considered also as the modality for brachytherapy and more precise brachytherapy could expand. Nowadays, an image guided brachytherapy is state-of-art in many centres. Integration of imaging methods lead to the dose distribution individually tailored for each patient. Treatment plan optimization is mostly performed manually as an adaptation of a standard loading pattern. Recently, inverse planning approaches have been introduced into brachytherapy. The aim of this doctoral thesis was to analyze inverse planning and to develop concepts how to integrate inverse planning into cervical cancer brachytherapy. First part of the thesis analyzes the Hybrid Inverse treatment Planning and Optimization (HIPO) algorithm and proposes a workflow how to safely work with this algorithm. The problem of inverse planning generally is that only the dose and volume parameters are taken into account and spatial dose distribution is neglected. This fact can lead to unwanted high dose regions in a normal tissue. A unique implementation of HIPO into the treatment planning system using additional features enabled to create treatment plans similar to the plans resulting from manual optimization and to shape the high dose regions inside the CTV. In the second part the HIPO algorithm is compared to the Inverse Planning Simulated Annealing (IPSA) algorithm. IPSA is implemented into the commercial treatment planning system. It

  11. Model unspecific search in CMS. Treatment of insufficient Monte Carlo statistics

    Energy Technology Data Exchange (ETDEWEB)

    Lieb, Jonas; Albert, Andreas; Duchardt, Deborah; Hebbeker, Thomas; Knutzen, Simon; Meyer, Arnd; Pook, Tobias; Roemer, Jonas [III. Physikalisches Institut A, RWTH Aachen University (Germany)

    2016-07-01

    In 2015, the CMS detector recorded proton-proton collisions at an unprecedented center of mass energy of √(s)=13 TeV. The Model Unspecific Search in CMS (MUSiC) offers an analysis approach of these data which is complementary to dedicated analyses: By taking all produced final states into consideration, MUSiC is sensitive to indicators of new physics appearing in final states that are usually not investigated. In a two step process, MUSiC first classifies events according to their physics content and then searches kinematic distributions for the most significant deviations between Monte Carlo simulations and observed data. Such a general approach introduces its own set of challenges. One of them is the treatment of situations with insufficient Monte Carlo statistics. Complementing introductory presentations on the MUSiC event selection and classification, this talk will present a method of dealing with the issue of low Monte Carlo statistics.

  12. Implementation and verification of nuclear interactions in a Monte-Carlo code for the Procom-ProGam proton therapy planning system

    Science.gov (United States)

    Kostyuchenko, V. I.; Makarova, A. S.; Ryazantsev, O. B.; Samarin, S. I.; Uglov, A. S.

    2014-06-01

    A great breakthrough in proton therapy has happened in the new century: several tens of dedicated centers are now operated throughout the world and their number increases every year. An important component of proton therapy is a treatment planning system. To make calculations faster, these systems usually use analytical methods whose reliability and accuracy do not allow the advantages of this method of treatment to implement to the full extent. Predictions by the Monte Carlo (MC) method are a "gold" standard for the verification of calculations with these systems. At the Institute of Experimental and Theoretical Physics (ITEP) which is one of the eldest proton therapy centers in the world, an MC code is an integral part of their treatment planning system. This code which is called IThMC was developed by scientists from RFNC-VNIITF (Snezhinsk) under ISTC Project 3563.

  13. Conformal three dimensional radiotherapy treatment planning in Lund

    Energy Technology Data Exchange (ETDEWEB)

    Knoos, T; Nilsson, P [Lund Univ. (Sweden). Dept. of Radiation Physics; Anders, A [Lund Univ. (Sweden). Dept. of Oncology

    1995-12-01

    The use of conformal therapy is based on 3-dimensional treatment planning as well as on methods and routines for 3-dimensional patient mapping, 3-dimensional virtual simulation and others. The management of patients at the Radiotherapy Department at the University Hospital in Lund (Sweden) is discussed. About 2100 new patients are annually treated with external radiotherapy using seven linear accelerators. Three of the accelerators have dual photon energies and electron treatment facilities. A multi-leaf collimator as well as an electronic portal imaging device are available on one machine. Two simulators and an in-house CT-scanner are used for treatment planning. From 1988 to 1992 Scandiplan (Umplan) was used. Since 1992, the treatment planning system is TMS (HELAX AB, Sweden), which is based on the pencil beam algorithm of Ahnesjo. The calculations use patient modulated accelerator specific energy fluence spectra which are compiled with pencil beams from Monte Carlo generated energy absorption kernels. Heterogeneity corrections are performed with results close to conventional algorithms. Irregular fields, either from standard or individual blocks and from multi-leaf collimators are handled by the treatment planning system. The field shape is determined conveniently using the beam`s eye view. The final field shape is exported electronically to either the block cutting machine or the multileaf collimator control computer. All patient fields are checked against the beam`s eye view during simulation using manual methods. Treatment verification is performed by portal films and in vivo dosimetry with silicon diodes or TL-dosimetry. Up to now, approximately 4400 patients have received a highly individualized 3-dimensional conformal treatment.

  14. Conformal three dimensional radiotherapy treatment planning in Lund

    International Nuclear Information System (INIS)

    Knoos, T.; Nilsson, P.; Anders, A.

    1995-01-01

    The use of conformal therapy is based on 3-dimensional treatment planning as well as on methods and routines for 3-dimensional patient mapping, 3-dimensional virtual simulation and others. The management of patients at the Radiotherapy Department at the University Hospital in Lund (Sweden) is discussed. About 2100 new patients are annually treated with external radiotherapy using seven linear accelerators. Three of the accelerators have dual photon energies and electron treatment facilities. A multi-leaf collimator as well as an electronic portal imaging device are available on one machine. Two simulators and an in-house CT-scanner are used for treatment planning. From 1988 to 1992 Scandiplan (Umplan) was used. Since 1992, the treatment planning system is TMS (HELAX AB, Sweden), which is based on the pencil beam algorithm of Ahnesjo. The calculations use patient modulated accelerator specific energy fluence spectra which are compiled with pencil beams from Monte Carlo generated energy absorption kernels. Heterogeneity corrections are performed with results close to conventional algorithms. Irregular fields, either from standard or individual blocks and from multi-leaf collimators are handled by the treatment planning system. The field shape is determined conveniently using the beam's eye view. The final field shape is exported electronically to either the block cutting machine or the multileaf collimator control computer. All patient fields are checked against the beam's eye view during simulation using manual methods. Treatment verification is performed by portal films and in vivo dosimetry with silicon diodes or TL-dosimetry. Up to now, approximately 4400 patients have received a highly individualized 3-dimensional conformal treatment

  15. Improving treatment planning accuracy through multimodality imaging

    International Nuclear Information System (INIS)

    Sailer, Scott L.; Rosenman, Julian G.; Soltys, Mitchel; Cullip, Tim J.; Chen, Jun

    1996-01-01

    Purpose: In clinical practice, physicians are constantly comparing multiple images taken at various times during the patient's treatment course. One goal of such a comparison is to accurately define the gross tumor volume (GTV). The introduction of three-dimensional treatment planning has greatly enhanced the ability to define the GTV, but there are times when the GTV is not visible on the treatment-planning computed tomography (CT) scan. We have modified our treatment-planning software to allow for interactive display of multiple, registered images that enhance the physician's ability to accurately determine the GTV. Methods and Materials: Images are registered using interactive tools developed at the University of North Carolina at Chapel Hill (UNC). Automated methods are also available. Images registered with the treatment-planning CT scan are digitized from film. After a physician has approved the registration, the registered images are made available to the treatment-planning software. Structures and volumes of interest are contoured on all images. In the beam's eye view, wire loop representations of these structures can be visualized from all image types simultaneously. Each registered image can be seamlessly viewed during the treatment-planning process, and all contours from all image types can be seen on any registered image. A beam may, therefore, be designed based on any contour. Results: Nineteen patients have been planned and treated using multimodality imaging from November 1993 through August 1994. All registered images were digitized from film, and many were from outside institutions. Brain has been the most common site (12), but the techniques of registration and image display have also been used for the thorax (4), abdomen (2), and extremity (1). The registered image has been an magnetic resonance (MR) scan in 15 cases and a diagnostic CT scan in 5 cases. In one case, sequential MRs, one before treatment and another after 30 Gy, were used to plan

  16. Probability-neighbor method of accelerating geometry treatment in reactor Monte Carlo code RMC

    International Nuclear Information System (INIS)

    She, Ding; Li, Zeguang; Xu, Qi; Wang, Kan; Yu, Ganglin

    2011-01-01

    Probability neighbor method (PNM) is proposed in this paper to accelerate geometry treatment of Monte Carlo (MC) simulation and validated in self-developed reactor Monte Carlo code RMC. During MC simulation by either ray-tracking or delta-tracking method, large amounts of time are spent in finding out which cell one particle is located in. The traditional way is to search cells one by one with certain sequence defined previously. However, this procedure becomes very time-consuming when the system contains a large number of cells. Considering that particles have different probability to enter different cells, PNM method optimizes the searching sequence, i.e., the cells with larger probability are searched preferentially. The PNM method is implemented in RMC code and the numerical results show that the considerable time of geometry treatment in MC calculation for complicated systems is saved, especially effective in delta-tracking simulation. (author)

  17. Application of a dummy eye shield for electron treatment planning

    International Nuclear Information System (INIS)

    Kang, Sei-Kwon; Park, Soah; Hwang, Taejin; Cheong, Kwang-Ho; Han, Taejin; Kim, Haeyoung; Lee, Me-Yeon; Kim, Kyoung Ju; Oh, Do Hoon; Bae, Hoonsik

    2013-01-01

    Metallic eye shields have been widely used for near-eye treatments to protect critical regions, but have never been incorporated into treatment plans because of the unwanted appearance of the metal artifacts on CT images. The purpose of this work was to test the use of an acrylic dummy eye shield as a substitute for a metallic eye shield during CT scans. An acrylic dummy shield of the same size as the tungsten eye shield was machined and CT scanned. The BEAMnrc and the DOSXYZnrc were used for the Monte Carlo (MC) simulation, with the appropriate material information and density for the aluminum cover, steel knob and tungsten body of the eye shield. The Pinnacle adopting the Hogstrom electron pencil-beam algorithm was used for the one-port 6-MeV beam plan after delineation and density override of the metallic parts. The results were confirmed with the metal oxide semiconductor field effect transistor (MOSFET) detectors and the Gafchromic EBT2 film measurements. For both the maximum eyelid dose over the shield and the maximum dose under the shield, the MC results agreed with the EBT2 measurements within 1.7%. For the Pinnacle plan, the maximum dose under the shield agreed with the MC within 0.3%; however, the eyelid dose differed by -19.3%. The adoption of the acrylic dummy eye shield was successful for the treatment plan. However, the Pinnacle pencil-beam algorithm was not sufficient to predict the eyelid dose on the tungsten shield, and more accurate algorithms like MC should be considered for a treatment plan. (author)

  18. Normalisation: ROI optimal treatment planning - SNDH pattern

    International Nuclear Information System (INIS)

    Shilvat, D.V.; Bhandari, Virendra; Tamane, Chandrashekhar; Pangam, Suresh

    2001-01-01

    Dose precision maximally to the target / ROI (Region of Interest), taking care of tolerance dose of normal tissue is the aim of ideal treatment planning. This goal is achieved with advanced modalities such as, micro MLC, simulator and 3-dimensional treatment planning system. But SNDH PATTERN uses minimum available resources as, ALCYON II Telecobalt unit, CT Scan, MULTIDATA 2-dimensional treatment planning system to their maximum utility and reaches to the required precision, same as that with advance modalities. Among the number of parameters used, 'NORMALISATION TO THE ROI' will achieve the aim of the treatment planning effectively. This is dealing with an example of canal of esophagus modified treatment planning based on SNDH pattern. Results are attractive and self explanatory. By implementing SNDH pattern, the QUALITY INDEX of treatment plan will reach to greater than 90%, with substantial reduction in dose to the vital organs. Aim is to utilize the minimum available resources efficiently to achieve highest possible precision for delivering homogenous dose to ROI while taking care of tolerance dose to vital organs

  19. Radwaste treatment complex. DRAWMACS planned maintenance system

    International Nuclear Information System (INIS)

    Keel, A.J.

    1992-07-01

    This document describes the operation of the Planned Maintenance System for the Radwaste Treatment Complex. The Planned Maintenance System forms part of the Decommissioning and Radwaste Management Computer System (DRAWMACS). Further detailed information about the data structure of the system is contained in Database Design for the DRAWMACS Planned Maintenance System (AEA-D and R-0285, 2nd issue, 25th February 1992). Information for other components of DRAWMACS is contained in Basic User Guide for the Radwaste Treatment Plant Computer System (AEA-D and R-0019, July 1990). (author)

  20. When does treatment plan optimization require inverse planning?

    International Nuclear Information System (INIS)

    Sherouse, George W.

    1995-01-01

    Increasing maturity of image-based computer-aided design of three-dimensional conformal radiotherapy has recently sparked a great deal of work in the area of treatment plan optimization. Optimization of a conformal photon beam treatment plan is that exercise through which a set of intensity-modulated static beams or arcs is specified such that, when the plan is executed, 1) a region of homogeneous dose is produced in the patient with a shape which geometrically conforms (within a specified tolerance) to the three-dimensional shape of a designated target volume and 2) acceptably low incidental dose is delivered to non-target tissues. Interest in conformal radiotherapy arise from a fundamental assumption that there is significant value to be gained from aggressive customization of the treatment for each individual patient In our efforts to design optimal treatments, however, it is important to remember that, given the biological and economic realities of clinical radiotherapy, mathematical optimization of dose distribution metrics with respect to some minimal constraint set is not a necessary or even sufficient condition for design of a clinically optimal treatment. There is wide variation in the complexity of the clinical situations encountered in practice and there are a number of non-physical criteria to be considered in planning. There is also a complementary variety of computational and engineering means for achieving optimization. To date, the scientific dialogue regarding these techniques has concentrated on development of solutions to worst-case scenarios, largely in the absence of consideration of appropriate matching of solution complexity to problem complexity. It is the aim of this presentation to propose a provisional stratification of treatment planning problems, stratified by relative complexity, and to identify a corresponding stratification of necessary treatment planning techniques. It is asserted that the subset of clinical radiotherapy cases for

  1. Method of radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Hodes, L.

    1976-01-01

    A technique of radiation therapy treatment planning designed to allow the assignment of dosage limits directly to chosen points in the computer-displayed cross-section of the patient. These dosage limits are used as constraints in a linear programming attempt to solve for beam strengths, minimizing integral dosage. If a feasible plan exists, the optimized plan will be displayed for approval as an isodose pattern. If there is no feasible plan, the operator/therapist can designate some of the point dosage constraints as ''relaxed.'' Linear programming will then optimize for minimum deviation at the relaxed points. This process can be iterated and new points selected until an acceptable plan is realized. In this manner the plan is optimized for uniformity as well as overall low dosage. 6 claims, 6 drawing figures

  2. Clinical treatment planning in gynecologic cancer

    International Nuclear Information System (INIS)

    Brady, L.W.; Markoe, A.M.; Micaily, B.; Damsker, J.I.; Karlsson, U.L.; Amendola, B.E.

    1987-01-01

    Treatment planning in gynecologic cancer is a complicated and difficult procedure. It requires an adequate preoperative assessment of the true extent of the patient's disease process and oftentimes this can be achieved not only by conventional studies but must employ surgical exploratory techniques in order to truly define the extent of the disease. However, with contemporary sophisticated treatment planning techniques that are now available in most contemporary departments of radiation oncology, radiation therapy is reemerging as an important and major treatment technique in the management of patients with gynecologic cancer

  3. Implementation of BNCT treatment planning procedures

    International Nuclear Information System (INIS)

    Capala, J.; Ma, R.; Diaz, A.Z.; Chanana, A.D.; Coderre, J.A.

    2001-01-01

    Estimation of radiation doses delivered during boron neutron capture therapy (BNCT) requires combining data on spatial distribution of both the thermal neutron fluence and the 10 B concentration, as well as the relative biological effectiveness of various radiation dose components in the tumor and normal tissues. Using the treatment planning system created at Idaho National Engineering and Environmental Laboratory and the procedures we had developed for clinical trials, we were able to optimize the treatment position, safely deliver the prescribed BNCT doses, and carry out retrospective analyses and reviews. In this paper we describe the BNCT treatment planning process and its implementation in the ongoing dose escalation trials at Brookhaven National Laboratory. (author)

  4. 94: Treatment plan optimization for conformal therapy

    International Nuclear Information System (INIS)

    Rosen, I.I.; Lane, R.G.

    1987-01-01

    Computer-controlled conformal radiation therapy techniques can deliver complex treatments utilizing large numbers of beams, gantry angles and beam shapes. Linear programming is well-suited for planning conformal treatments. Given a list of available treatment beams, linear programming calculates the relative weights of the beams such that the objective function is optimized and doses to constraint points are within the prescribed limits. 5 refs.; 3 figs

  5. Tolerance doses for treatment planning

    International Nuclear Information System (INIS)

    Lyman, J.T.

    1985-10-01

    Data for the tolerance of normal tissues or organs to (low-LET) radiation has been compiled from a number of sources which are referenced at the end of this document. This tolerance dose data are ostensibly for uniform irradiation of all or part of an organ, and are for either 5% (TD 5 ) or 50% (TD 50 ) complication probability. The ''size'' of the irradiated organ is variously stated in terms of the absolute volume or the fraction of the organ volume irradiated, or the area or the length of the treatment field. The accuracy of these data is questionable. Much of the data represents doses that one or several experienced therapists have estimated could be safely given rather than quantitative analyses of clinical observations. Because these data have been obtained from multiple sources with possible different criteria for the definition of a complication, there are sometimes different values for what is apparently the same endpoint. The data from some sources shows a tendancy to be quantized in 5 Gy increments. This reflects the size of possible round off errors. It is believed that all these data have been accumulated without the benefit of 3-D dose distributions and therefore the estimates of the size of the volume and/or the uniformity of the irradiation may be less accurate than is now possible. 19 refs., 4 figs

  6. Improving treatment plan evaluation with automation

    Science.gov (United States)

    Covington, Elizabeth L.; Chen, Xiaoping; Younge, Kelly C.; Lee, Choonik; Matuszak, Martha M.; Kessler, Marc L.; Keranen, Wayne; Acosta, Eduardo; Dougherty, Ashley M.; Filpansick, Stephanie E.

    2016-01-01

    The goal of this work is to evaluate the effectiveness of Plan‐Checker Tool (PCT) which was created to improve first‐time plan quality, reduce patient delays, increase the efficiency of our electronic workflow, and standardize and automate the physics plan review in the treatment planning system (TPS). PCT uses an application programming interface to check and compare data from the TPS and treatment management system (TMS). PCT includes a comprehensive checklist of automated and manual checks that are documented when performed by the user as part of a plan readiness check for treatment. Prior to and during PCT development, errors identified during the physics review and causes of patient treatment start delays were tracked to prioritize which checks should be automated. Nineteen of 33 checklist items were automated, with data extracted with PCT. There was a 60% reduction in the number of patient delays in the six months after PCT release. PCT was successfully implemented for use on all external beam treatment plans in our clinic. While the number of errors found during the physics check did not decrease, automation of checks increased visibility of errors during the physics check, which led to decreased patient delays. The methods used here can be applied to any TMS and TPS that allows queries of the database. PACS number(s): 87.55.‐x, 87.55.N‐, 87.55.Qr, 87.55.tm, 89.20.Bb PMID:27929478

  7. Fuzzy logic guided inverse treatment planning

    International Nuclear Information System (INIS)

    Yan Hui; Yin Fangfang; Guan Huaiqun; Kim, Jae Ho

    2003-01-01

    A fuzzy logic technique was applied to optimize the weighting factors in the objective function of an inverse treatment planning system for intensity-modulated radiation therapy (IMRT). Based on this technique, the optimization of weighting factors is guided by the fuzzy rules while the intensity spectrum is optimized by a fast-monotonic-descent method. The resultant fuzzy logic guided inverse planning system is capable of finding the optimal combination of weighting factors for different anatomical structures involved in treatment planning. This system was tested using one simulated (but clinically relevant) case and one clinical case. The results indicate that the optimal balance between the target dose and the critical organ dose is achieved by a refined combination of weighting factors. With the help of fuzzy inference, the efficiency and effectiveness of inverse planning for IMRT are substantially improved

  8. Treatment planning systems for high precision radiotherapy

    International Nuclear Information System (INIS)

    Deshpande, D.D.

    2008-01-01

    Computerized Treatment Planning System (TPS) play an important role in radiotherapy with the intent to maximize tumor control and minimize normal tissue complications. Treatment planning during earlier days was generally carried out through the manual summations of standard isodose charts on to patient body contours that were generated by direct tracing or lead wire representation, and relied heavily on the careful choices of beam weights and wedging. Since then there had been tremendous advances in field of Radiation Oncology in last few decades. The linear accelerators had evolved from MLC's to IGRT, the techniques like 3DCRT, IMRT has become almost routine affair. The simulation has seen transition from simple 2D film/fluoroscopy localization to CT Simulator with added development in PET, PET- CT and MR imaging. The Networking and advances in computer technology has made it possible to direct transfer of Images, contours to the treatment planning systems

  9. Three-dimensional teletherapy treatment planning

    International Nuclear Information System (INIS)

    Panthaleon van Eck, R.B. van.

    1986-01-01

    This thesis deals with physical/mathematical backgrounds of computerized teletherapy treatment planning. The subjects discussed in this thesis can be subdivided into three main categories: a) Three-dimensional treatment planning. A method is evaluated which can be used for the purpose of simulation and optimization of dose distributions in three dimensions. b) The use of Computed Tomography. The use of patient information obtained from Computed Tomography for the purpose of dose computations is evaluated. c) Dose computational models for photon- and electron beams. Models are evaluated which provide information regarding the way in which the radiation dose is distributed in the patient (viz. is absorbed and/or dispersed). (Auth.)

  10. Design and evaluation of a Monte Carlo based model of an orthovoltage treatment system

    International Nuclear Information System (INIS)

    Penchev, Petar; Maeder, Ulf; Fiebich, Martin; Zink, Klemens; University Hospital Marburg

    2015-01-01

    The aim of this study was to develop a flexible framework of an orthovoltage treatment system capable of calculating and visualizing dose distributions in different phantoms and CT datasets. The framework provides a complete set of various filters, applicators and X-ray energies and therefore can be adapted to varying studies or be used for educational purposes. A dedicated user friendly graphical interface was developed allowing for easy setup of the simulation parameters and visualization of the results. For the Monte Carlo simulations the EGSnrc Monte Carlo code package was used. Building the geometry was accomplished with the help of the EGSnrc C++ class library. The deposited dose was calculated according to the KERMA approximation using the track-length estimator. The validation against measurements showed a good agreement within 4-5% deviation, down to depths of 20% of the depth dose maximum. Furthermore, to show its capabilities, the validated model was used to calculate the dose distribution on two CT datasets. Typical Monte Carlo calculation time for these simulations was about 10 minutes achieving an average statistical uncertainty of 2% on a standard PC. However, this calculation time depends strongly on the used CT dataset, tube potential, filter material/thickness and applicator size.

  11. Margins for treatment planning of proton therapy

    International Nuclear Information System (INIS)

    Thomas, Simon J

    2006-01-01

    For protons and other charged particles, the effect of set-up errors on the position of isodoses is considerably less in the direction of the incident beam than it is laterally. Therefore, the margins required between the clinical target volume (CTV) and planning target volume (PTV) can be less in the direction of the incident beam than laterally. Margins have been calculated for a typical head plan and a typical prostate plan, for a single field, a parallel opposed and a four-field arrangement of protons, and compared with margins calculated for photons, assuming identical geometrical uncertainties for each modality. In the head plan, where internal motion was assumed negligible, the CTV-PTV margin reduced from approximately 10 mm to 3 mm in the axial direction for the single field and parallel opposed plans. For a prostate plan, where internal motion cannot be ignored, the corresponding reduction in margin was from 11 mm to 7 mm. The planning organ at risk (PRV) margin in the axial direction reduced from 6 mm to 2 mm for the head plan, and from 7 mm to 4 mm for the prostate plan. No reduction was seen on the other axes, or for any axis of the four-field plans. Owing to the shape of proton dose distributions, there are many clinical cases in which good dose distributions can be obtained with one or two fields. When this is done, it is possible to use smaller PTV and PRV margins. This has the potential to convert untreatable cases, in which the PTV and PRV overlap, into cases with a gap between PTV and PRV of adequate size for treatment planning

  12. Applications of NTCP calculations to treatment planning

    International Nuclear Information System (INIS)

    Kutcher, G.J.

    1995-01-01

    A fundamental step in the treatment decision process is the evaluation of a treatment plan. Most often treatment plans are judged by tradition using guidelines like target homogeneity and maximum dose to non-target tissues. While such judgments implicitly assume a relationship between dose distribution parameters and patient response, the judgment process is essentially supported by clinical outcomes from previous treatments. With the development of conformal therapy, new and unusual dose distributions and escalated doses are possible, while the clinical consequences are unknown. this situation has instigated attempts to place plan evaluation on a more systematic platform. One such endeavor has centered around attempts to calculate normal tissue complication probability (NTCP) and its sibling, tumor control probability (TCP). This lecture will be composed of two parts. The first will begin with a review of two categories of NTCP models: (1) an 'empirical' approach, based upon a power-law relationship between partial organ tolerance and irradiated volume, and histogram reduction to account for inhomogeneous irradiation: (2) a 'statistical' approach in which local responses are combined according to the underlying tissue architecture. Since both rely upon clinical data - often of limited and questionable validity - we will review some examples from the clinical and biological literature. The second part of the lecture will review clinical applications of biological-index based models: ranking competing treatment plans; design of dose escalation protocols; optimization of treatment plans with intensity modulation. We will also demonstrate how biological indices can be used to derive dose-volume histograms which account for treatment uncertainty

  13. Radiotherapy treatment planning linear-quadratic radiobiology

    CERN Document Server

    Chapman, J Donald

    2015-01-01

    Understand Quantitative Radiobiology from a Radiation Biophysics PerspectiveIn the field of radiobiology, the linear-quadratic (LQ) equation has become the standard for defining radiation-induced cell killing. Radiotherapy Treatment Planning: Linear-Quadratic Radiobiology describes tumor cell inactivation from a radiation physics perspective and offers appropriate LQ parameters for modeling tumor and normal tissue responses.Explore the Latest Cell Killing Numbers for Defining Iso-Effective Cancer TreatmentsThe book compil

  14. Standardization of prostate brachytherapy treatment plans

    International Nuclear Information System (INIS)

    Ove, Roger; Wallner, Kent; Badiozamani, Kas; Korjsseon, Tammy; Sutlief, Steven

    2001-01-01

    Purpose: Whereas custom-designed plans are the norm for prostate brachytherapy, the relationship between linear prostate dimensions and volume calls into question the routine need for customized treatment planning. With the goal of streamlining the treatment-planning process, we have compared the treatment margins (TMs) achieved with one standard plan applied to patients with a wide range of prostate volumes. Methods and Materials: Preimplant transrectal ultrasound (TRUS) images of 50 unselected University of Washington patients with T1-T2 cancer and a prostate volume between 20 cc and 50 cc were studied. Patients were arbitrarily grouped into categories of 20-30 cc, 30-40 cc, and 40-50 cc. A standard 19-needle plan was devised for patients in the 30- to 40-cc range, using an arbitrary minimum margin of 5 mm around the gross tumor volume (GTV), making use of inverse planning technology to achieve 100% coverage of the target volume with accentuation of dose at the periphery and sparing of the central region. The idealized plan was applied to each patient's TRUS study. The distances (TMs) between the prostatic edge (GTV) and treated volume (TV) were determined perpendicular to the prostatic margin. Results: Averaged over the entire patient group, the ratio of thickness to width was 1.4, whereas the ratio of length to width was 1.3. These values were fairly constant over the range of volumes, emphasizing that the prostate retains its general shape as volume increases. The idealized standard plan was overlaid on the ultrasound images of the 17 patients in the 30- to 40-cc group and the V100, the percentage of target volume receiving 100% or more of the prescription dose, was 98% or greater for 15 of the 17 patients. The lateral and posterior TMs fell within a narrow range, most being within 2 mm of the idealized 5-mm TM. To estimate whether a 10-cc volume-interval stratification was reasonable, the standard plan generated from the 30- to 40-cc prostate model was

  15. SU-D-BRD-01: Cloud-Based Radiation Treatment Planning: Performance Evaluation of Dose Calculation and Plan Optimization

    International Nuclear Information System (INIS)

    Na, Y; Kapp, D; Kim, Y; Xing, L; Suh, T

    2014-01-01

    Purpose: To report the first experience on the development of a cloud-based treatment planning system and investigate the performance improvement of dose calculation and treatment plan optimization of the cloud computing platform. Methods: A cloud computing-based radiation treatment planning system (cc-TPS) was developed for clinical treatment planning. Three de-identified clinical head and neck, lung, and prostate cases were used to evaluate the cloud computing platform. The de-identified clinical data were encrypted with 256-bit Advanced Encryption Standard (AES) algorithm. VMAT and IMRT plans were generated for the three de-identified clinical cases to determine the quality of the treatment plans and computational efficiency. All plans generated from the cc-TPS were compared to those obtained with the PC-based TPS (pc-TPS). The performance evaluation of the cc-TPS was quantified as the speedup factors for Monte Carlo (MC) dose calculations and large-scale plan optimizations, as well as the performance ratios (PRs) of the amount of performance improvement compared to the pc-TPS. Results: Speedup factors were improved up to 14.0-fold dependent on the clinical cases and plan types. The computation times for VMAT and IMRT plans with the cc-TPS were reduced by 91.1% and 89.4%, respectively, on average of the clinical cases compared to those with pc-TPS. The PRs were mostly better for VMAT plans (1.0 ≤ PRs ≤ 10.6 for the head and neck case, 1.2 ≤ PRs ≤ 13.3 for lung case, and 1.0 ≤ PRs ≤ 10.3 for prostate cancer cases) than for IMRT plans. The isodose curves of plans on both cc-TPS and pc-TPS were identical for each of the clinical cases. Conclusion: A cloud-based treatment planning has been setup and our results demonstrate the computation efficiency of treatment planning with the cc-TPS can be dramatically improved while maintaining the same plan quality to that obtained with the pc-TPS. This work was supported in part by the National Cancer Institute (1

  16. SU-D-BRD-01: Cloud-Based Radiation Treatment Planning: Performance Evaluation of Dose Calculation and Plan Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Na, Y; Kapp, D; Kim, Y; Xing, L [Stanford University School of Medicine, Stanford, CA (United States); Suh, T [Catholic UniversityMedical College, Seoul, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: To report the first experience on the development of a cloud-based treatment planning system and investigate the performance improvement of dose calculation and treatment plan optimization of the cloud computing platform. Methods: A cloud computing-based radiation treatment planning system (cc-TPS) was developed for clinical treatment planning. Three de-identified clinical head and neck, lung, and prostate cases were used to evaluate the cloud computing platform. The de-identified clinical data were encrypted with 256-bit Advanced Encryption Standard (AES) algorithm. VMAT and IMRT plans were generated for the three de-identified clinical cases to determine the quality of the treatment plans and computational efficiency. All plans generated from the cc-TPS were compared to those obtained with the PC-based TPS (pc-TPS). The performance evaluation of the cc-TPS was quantified as the speedup factors for Monte Carlo (MC) dose calculations and large-scale plan optimizations, as well as the performance ratios (PRs) of the amount of performance improvement compared to the pc-TPS. Results: Speedup factors were improved up to 14.0-fold dependent on the clinical cases and plan types. The computation times for VMAT and IMRT plans with the cc-TPS were reduced by 91.1% and 89.4%, respectively, on average of the clinical cases compared to those with pc-TPS. The PRs were mostly better for VMAT plans (1.0 ≤ PRs ≤ 10.6 for the head and neck case, 1.2 ≤ PRs ≤ 13.3 for lung case, and 1.0 ≤ PRs ≤ 10.3 for prostate cancer cases) than for IMRT plans. The isodose curves of plans on both cc-TPS and pc-TPS were identical for each of the clinical cases. Conclusion: A cloud-based treatment planning has been setup and our results demonstrate the computation efficiency of treatment planning with the cc-TPS can be dramatically improved while maintaining the same plan quality to that obtained with the pc-TPS. This work was supported in part by the National Cancer Institute (1

  17. Monte Carlo techniques in radiation therapy

    CERN Document Server

    Verhaegen, Frank

    2013-01-01

    Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book-the first of its kind-addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific...

  18. Utilization of a photon transport code to investigate radiation therapy treatment planning quantities and techniques

    International Nuclear Information System (INIS)

    Palta, J.R.

    1981-01-01

    A versatile computer program MORSE, based on neutron and photon transport theory has been utilzed to investigate radiation therapy treatment planning quantities and techniques. A multi-energy group representation of transport equation provides a concise approach in utilizing Monte Carlo numerical techniques to multiple radiation therapy treatment planning problems. Central axis total and scattered dose distributions for homogeneous and inhomogeneous water phantoms are calculated and the correction factor for lung and bone inhomogeneities are also evaluated. Results show that Monte Carlo calculations based on multi-energy group tansport theory predict the depth dose distributions that are in good agreement with available experimental data. Central axis depth dose distributions for a bremsstrahlung spectrum from a linear accelerator is also calculated to exhibit the versatility of the computer program in handling multiple radiation therapy problems. A novel approach is undertaken to study the dosimetric properties of brachytherapy sources

  19. Kinetic Monte Carlo study on the evolution of silicon surface roughness under hydrogen thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gang; Wang, Yu; Wang, Junzhuan; Pan, Lijia; Yu, Linwei; Zheng, Youdou; Shi, Yi, E-mail: yshi@nju.edu.cn

    2017-08-31

    Highlights: • The KMC method is adopted to investigate the relationships between surface evolution and hydrogen thermal treatment conditions. • The reduction in surface roughness is divided into two stages at relatively low temperatures, both exhibiting exponential dependence on the time. • The optimized surface structure can be obtained by precisely adjusting thermal treatment temperatures and hydrogen pressures. - Abstract: The evolution of a two-dimensional silicon surface under hydrogen thermal treatment is studied by kinetic Monte Carlo simulations, focusing on the dependence of the migration behaviors of surface atoms on both the temperature and hydrogen pressure. We adopt different activation energies to analyze the influence of hydrogen pressure on the evolution of surface morphology at high temperatures. The reduction in surface roughness is divided into two stages, both exhibiting exponential dependence on the equilibrium time. Our results indicate that a high hydrogen pressure is conducive to obtaining optimized surfaces, as a strategy in the applications of three-dimensional devices.

  20. Cost-Effective Fuel Treatment Planning

    Science.gov (United States)

    Kreitler, J.; Thompson, M.; Vaillant, N.

    2014-12-01

    The cost of fighting large wildland fires in the western United States has grown dramatically over the past decade. This trend will likely continue with growth of the WUI into fire prone ecosystems, dangerous fuel conditions from decades of fire suppression, and a potentially increasing effect from prolonged drought and climate change. Fuel treatments are often considered the primary pre-fire mechanism to reduce the exposure of values at risk to wildland fire, and a growing suite of fire models and tools are employed to prioritize where treatments could mitigate wildland fire damages. Assessments using the likelihood and consequence of fire are critical because funds are insufficient to reduce risk on all lands needing treatment, therefore prioritization is required to maximize the effectiveness of fuel treatment budgets. Cost-effectiveness, doing the most good per dollar, would seem to be an important fuel treatment metric, yet studies or plans that prioritize fuel treatments using costs or cost-effectiveness measures are absent from the literature. Therefore, to explore the effect of using costs in fuel treatment planning we test four prioritization algorithms designed to reduce risk in a case study examining fuel treatments on the Sisters Ranger District of central Oregon. For benefits we model sediment retention and standing biomass, and measure the effectiveness of each algorithm by comparing the differences among treatment and no treat alternative scenarios. Our objective is to maximize the averted loss of net benefits subject to a representative fuel treatment budget. We model costs across the study landscape using the My Fuel Treatment Planner software, tree list data, local mill prices, and GIS-measured site characteristics. We use fire simulations to generate burn probabilities, and estimate fire intensity as conditional flame length at each pixel. Two prioritization algorithms target treatments based on cost-effectiveness and show improvements over those

  1. Automated radiotherapy treatment plan integrity verification

    Energy Technology Data Exchange (ETDEWEB)

    Yang Deshan; Moore, Kevin L. [Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, Missouri 63110 (United States)

    2012-03-15

    Purpose: In our clinic, physicists spend from 15 to 60 min to verify the physical and dosimetric integrity of radiotherapy plans before presentation to radiation oncology physicians for approval. The purpose of this study was to design and implement a framework to automate as many elements of this quality control (QC) step as possible. Methods: A comprehensive computer application was developed to carry out a majority of these verification tasks in the Philips PINNACLE treatment planning system (TPS). This QC tool functions based on both PINNACLE scripting elements and PERL sub-routines. The core of this technique is the method of dynamic scripting, which involves a PERL programming module that is flexible and powerful for treatment plan data handling. Run-time plan data are collected, saved into temporary files, and analyzed against standard values and predefined logical rules. The results were summarized in a hypertext markup language (HTML) report that is displayed to the user. Results: This tool has been in clinical use for over a year. The occurrence frequency of technical problems, which would cause delays and suboptimal plans, has been reduced since clinical implementation. Conclusions: In addition to drastically reducing the set of human-driven logical comparisons, this QC tool also accomplished some tasks that are otherwise either quite laborious or impractical for humans to verify, e.g., identifying conflicts amongst IMRT optimization objectives.

  2. Automated radiotherapy treatment plan integrity verification

    International Nuclear Information System (INIS)

    Yang Deshan; Moore, Kevin L.

    2012-01-01

    Purpose: In our clinic, physicists spend from 15 to 60 min to verify the physical and dosimetric integrity of radiotherapy plans before presentation to radiation oncology physicians for approval. The purpose of this study was to design and implement a framework to automate as many elements of this quality control (QC) step as possible. Methods: A comprehensive computer application was developed to carry out a majority of these verification tasks in the Philips PINNACLE treatment planning system (TPS). This QC tool functions based on both PINNACLE scripting elements and PERL sub-routines. The core of this technique is the method of dynamic scripting, which involves a PERL programming module that is flexible and powerful for treatment plan data handling. Run-time plan data are collected, saved into temporary files, and analyzed against standard values and predefined logical rules. The results were summarized in a hypertext markup language (HTML) report that is displayed to the user. Results: This tool has been in clinical use for over a year. The occurrence frequency of technical problems, which would cause delays and suboptimal plans, has been reduced since clinical implementation. Conclusions: In addition to drastically reducing the set of human-driven logical comparisons, this QC tool also accomplished some tasks that are otherwise either quite laborious or impractical for humans to verify, e.g., identifying conflicts amongst IMRT optimization objectives.

  3. Quality assurance in dosimetry and treatment planning

    International Nuclear Information System (INIS)

    Cunningham, J.R.

    1984-01-01

    The considerations of tissue response to radiation absorbed dose suggest a need for an accuracy of +/-5% in its delivery. This is very demanding and its regular achievement requires careful quality control. There are three distinct phases to the delivery of the planned treatment: calibration of the radiation beam in a reference situation, calculation of the dose distribution for a patient relative to the reference dose and the delivery of the radiation to the patient as planned. Each has distinctly different quality assurance requirements and must be diligently observed if the desired accuracy is to be achieved

  4. Collision detection and avoidance during treatment planning

    International Nuclear Information System (INIS)

    Humm, John L.; Pizzuto, Domenico; Fleischman, Eric; Mohan, Radhe

    1995-01-01

    Purpose: To develop computer software that assists the planner avoid potential gantry collisions with the patient or patient support assembly during the treatment planning process. Methods and Materials: The approach uses a simulation of the therapy room with a scale model of the treatment machine. Because the dimensions of the machine and patient are known, one can calculate a priori whether any desired therapy field is possible or will result in a collision. To assist the planner, we have developed a graphical interface enabling the accurate visualization of each treatment field configuration with a 'room's eye view' treatment planning window. This enables the planner to be aware of, and alleviate any potential collision hazards. To circumvent blind spots in the graphic representation, an analytical software module precomputes whether each update of the gantry or turntable position is safe. Results: If a collision is detected, the module alerts the planner and suggests collision evasive actions such as either an extended distance treatment or the gantry angle of closest approach. Conclusions: The model enables the planner to experiment with unconventional noncoplanar treatment fields, and immediately test their feasibility

  5. Comparison of absorbed dose in the cervix carcinoma therapy by brachytherapy of high dose rate using the conventional planning and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Silva, Aneli Oliveira da

    2010-01-01

    This study aims to compare the doses received for patients submitted to brachytherapy High Dose Rate (HDR) brachytherapy, a method of treatment of the cervix carcinoma, performed in the planning system PLATO BPS with the doses obtained by Monte Carlo simulation using the radiation transport code MCNP 5 and one female anthropomorphic phantom based on voxel, the FAX. The implementation of HDR brachytherapy treatment for the cervix carcinoma consists of the insertion of an intrauterine probe and an intravaginal probe (ring or ovoid) and then two radiographs are obtained, anteroposterior (AP) and lateral (LAT) to confirm the position of the applicators in the patient and to allow the treatment planning and the determination of the absorbed dose at points of interest: rectum, bladder, sigmoid and point A, which corresponds anatomically to the crossings of the uterine arteries with ureters The absorbed doses obtained with the code MCNP 5, with the exception of the absorbed dose in the rectum and sigmoid for the simulation considering a point source of 192 Ir, are lower than the absorbed doses from PLATO BPS calculations because the MCNP 5 considers the chemical compositions and densities of FAX body, not considering the medium as water. When considering the Monte Carlo simulation for a source with dimensions equal to that used in the brachytherapy irradiator used in this study, the values of calculated absorbed dose to the bladder, to the rectum, to the right point A and to the left point A were respectively lower than those determined by the treatment planning system in 33.29, 5.01, 22.93 and 19.04%. These values are almost all larger than the maximum acceptable deviation between patient planned and administered doses (5 %). With regard to the rectum and bladder, which are organs that must be protected, the present results are in favor of the radiological protection of patients. The point A, that is on the isodose of 100%, used to tumor treatment, the results indicate

  6. Knowledge-based treatment planning and its potential role in the transition between treatment planning systems.

    Science.gov (United States)

    Masi, Kathryn; Archer, Paul; Jackson, William; Sun, Yilun; Schipper, Matthew; Hamstra, Daniel; Matuszak, Martha

    2017-11-22

    Commissioning a new treatment planning system (TPS) involves many time-consuming tasks. We investigated the role that knowledge-based planning (KBP) can play in aiding a clinic's transition to a new TPS. Sixty clinically treated prostate/prostate bed intensity-modulated radiation therapy (IMRT) plans were exported from an in-house TPS and were used to create a KBP model in a newly implemented commercial application. To determine the benefit that KBP may have in a TPS transition, the model was tested on 2 groups of patients. Group 1 consisted of the first 10 prostate/prostate bed patients treated in the commercial TPS after the transition from the in-house TPS. Group 2 consisted of 10 patients planned in the commercial TPS after 8 months of clinical use. The KBP-generated plan was compared with the clinically used plan in terms of plan quality (ability to meet planning objectives and overall dose metrics) and planning efficiency (time required to generate clinically acceptable plans). The KBP-generated plans provided a significantly improved target coverage (p = 0.01) compared with the clinically used plans for Group 1, but yielded plans of comparable target coverage to the clinically used plans for Group 2. For the organs at risk, the KBP-generated plans produced lower doses, on average, for every normal-tissue objective except for the maximum dose to 0.1 cc of rectum. The time needed for the KBP-generated plans ranged from 6 to 15 minutes compared to 30 to 150 and 15 to 60 minutes for manual planning in Groups 1 and 2, respectively. KBP is a promising tool to aid in the transition to a new TPS. Our study indicates that high-quality treatment plans could have been generated in the newly implemented TPS more efficiently compared with not using KBP. Even after 8 months of the clinical use, KBP still showed an increase in plan quality and planning efficiency compared with manual planning. Copyright © 2017 American Association of Medical Dosimetrists. Published

  7. Treatment planning for radiotherapy with very high-energy electron beams and comparison of VHEE and VMAT plans

    International Nuclear Information System (INIS)

    Bazalova-Carter, Magdalena; Qu, Bradley; Palma, Bianey; Jensen, Christopher; Maxim, Peter G.; Loo, Billy W.; Hårdemark, Björn; Hynning, Elin

    2015-01-01

    Purpose: The aim of this work was to develop a treatment planning workflow for rapid radiotherapy delivered with very high-energy electron (VHEE) scanning pencil beams of 60–120 MeV and to study VHEE plans as a function of VHEE treatment parameters. Additionally, VHEE plans were compared to clinical state-of-the-art volumetric modulated arc therapy (VMAT) photon plans for three cases. Methods: VHEE radiotherapy treatment planning was performed by linking EGSnrc Monte Carlo (MC) dose calculations with inverse treatment planning in a research version of RayStation. In order to study the effect of VHEE treatment parameters on VHEE dose distributions, a MATLAB graphical user interface (GUI) for calculation of VHEE MC pencil beam doses was developed. Through the GUI, pediatric case MC simulations were run for a number of beam energies (60, 80, 100, and 120 MeV), number of beams (13, 17, and 36), pencil beam spot (0.1, 1.0, and 3.0 mm) and grid (2.0, 2.5, and 3.5 mm) sizes, and source-to-axis distance, SAD (40 and 50 cm). VHEE plans for the pediatric case calculated with the different treatment parameters were optimized and compared. Furthermore, 100 MeV VHEE plans for the pediatric case, a lung, and a prostate case were calculated and compared to the clinically delivered VMAT plans. All plans were normalized such that the 100% isodose line covered 95% of the target volume. Results: VHEE beam energy had the largest effect on the quality of dose distributions of the pediatric case. For the same target dose, the mean doses to organs at risk (OARs) decreased by 5%–16% when planned with 100 MeV compared to 60 MeV, but there was no further improvement in the 120 MeV plan. VHEE plans calculated with 36 beams outperformed plans calculated with 13 and 17 beams, but to a more modest degree (<8%). While pencil beam spacing and SAD had a small effect on VHEE dose distributions, 0.1–3 mm pencil beam sizes resulted in identical dose distributions. For the 100 MeV VHEE pediatric

  8. Electron Density Calibration for Radiotherapy Treatment Planning

    International Nuclear Information System (INIS)

    Herrera-Martinez, F.; Rodriguez-Villafuerte, M.; Martinez-Davalos, A.; Ruiz-Trejo, C.; Celis-Lopez, M. A.; Larraga-Gutierrez, J. M.; Garcia-Garduno, A.

    2006-01-01

    Computed tomography (CT) images are used as basic input data for most modern radiosurgery treatment planning systems (TPS). CT data not only provide anatomic information to delineate target volumes, but also allow the introduction of corrections for tissue inhomogeneities into dose calculations during the treatment planning procedure. These corrections involve the determination of a relationship between tissue electron density (ρe) and their corresponding Hounsfield Units (HU). In this work, an elemental analysis of different commercial tissue equivalent materials using Scanning Electron Microscopy was carried out to characterize their chemical composition. The tissue equivalent materials were chosen to ensure a large range of ρe to be included in the CT scanner calibration. A phantom was designed and constructed with these materials to simulate the size of a human head

  9. Three-dimensional radiation treatment planning

    International Nuclear Information System (INIS)

    Mohan, R.

    1989-01-01

    A major aim of radiation therapy is to deliver sufficient dose to the tumour volume to kill the cancer cells while sparing the nearby health organs to prevent complications. With the introduction of devices such as CT and MR scanners, radiation therapy treatment planners have access to full three-dimensional anatomical information to define, simulate, and evaluate treatments. There are a limited number of prototype software systems that allow 3D treatment planning currently in use. In addition, there are more advanced tools under development or still in the planning stages. They require sophisticated graphics and computation equipment, complex physical and mathematical algorithms, and new radiation treatment machines that deliver dose very precisely under computer control. Components of these systems include programs for the identification and delineation of the anatomy and tumour, the definition of radiation beams, the calculation of dose distribution patterns, the display of dose on 2D images and as three dimensional surfaces, and the generation of computer images to verify proper patient positioning in treatment. Some of these functions can be performed more quickly and accurately if artificial intelligence or expert systems techniques are employed. 28 refs., figs

  10. CT treatment planning of the liver

    International Nuclear Information System (INIS)

    Lim, M.

    1988-01-01

    The article deals with CT treatment planning of the liver to maximize the dose to the liver but minimize the dose to the right kidney, spinal cord, and bowels. (The left kidney is out of the field due to the oblique angles of the fields.) This is achieved by right kidney shielding reconstruction from multislice CT treatment planning and by the oblique angles of the fields. Without CT, it is not possible to utilize oblique fields to cover the liver. With conventional AP-PA fields, not only is the whole liver treated but also most of the right kidney, half of the left kidney, bowels and spinal cord. Tolerance dose to the kidneys is exceeded if adequate dose is delivered to the liver. Some new computer algorithms display a bird's eye view of the shielding but this paper presents for the first time, a technique for actual shielding reconstruction from multislice CT treatment planning for use by the radiation oncologist when shielding blocks are drawn on the simulator films

  11. [Treatment strategy and planning for pilon fractures].

    Science.gov (United States)

    Mittlmeier, Thomas; Wichelhaus, Alice

    2017-08-01

    Pilon fractures are mainly severe and prognostically serious injuries with a high rate of relevant soft tissue involvement. The adequate decision making and choice of treatment in the early phase of trauma are of paramount importance for the final outcome. This essentially encompasses the management of the soft tissue damage, the surgical planning and the differentiated selection of procedures. Most concepts of staged treatment nowadays offer a wide range of options which are integrated into expert-based algorithms. The aim of the present analysis was to display the strategy variations for the treatment of pilon fractures taking into account the advantages and disadvantages of the corresponding treatment concepts. A staged procedure including primary closed reduction employing ligamentotaxis and fixation of the joints of the hindfoot via tibiocalcaneal metatarsal fixation offers a safe basis for consecutive imaging and the selection of specific approaches for definitive reconstruction. A simultaneous reconstruction and fixation of the fibula during the primary intervention are generally not recommended in order to avoid any limitations for subsequent reconstructive procedures. A time frame for definitive reconstruction covers a period of up to 3 weeks after trauma and allows a detailed planning considering the individual dynamics of the soft tissue situation and any logistic requirements. For the choice of the definitive treatment concept a wide range of procedures and implants are available. There are also valid concepts for primary treatment of defined fracture constellations while primary arthrodesis represents a solution in cases of major destruction of the joint surface. Knowledge of the multiple procedural variations for pilon fracture treatment creates the basis to optimize the treatment modalities and to take into account individual parameters of the fracture.

  12. Conventional treatment planning optimization using simulated annealing

    International Nuclear Information System (INIS)

    Morrill, S.M.; Langer, M.; Lane, R.G.

    1995-01-01

    Purpose: Simulated annealing (SA) allows for the implementation of realistic biological and clinical cost functions into treatment plan optimization. However, a drawback to the clinical implementation of SA optimization is that large numbers of beams appear in the final solution, some with insignificant weights, preventing the delivery of these optimized plans using conventional (limited to a few coplanar beams) radiation therapy. A preliminary study suggested two promising algorithms for restricting the number of beam weights. The purpose of this investigation was to compare these two algorithms using our current SA algorithm with the aim of producing a algorithm to allow clinically useful radiation therapy treatment planning optimization. Method: Our current SA algorithm, Variable Stepsize Generalized Simulated Annealing (VSGSA) was modified with two algorithms to restrict the number of beam weights in the final solution. The first algorithm selected combinations of a fixed number of beams from the complete solution space at each iterative step of the optimization process. The second reduced the allowed number of beams by a factor of two at periodic steps during the optimization process until only the specified number of beams remained. Results of optimization of beam weights and angles using these algorithms were compared using a standard cadre of abdominal cases. The solution space was defined as a set of 36 custom-shaped open and wedged-filtered fields at 10 deg. increments with a target constant target volume margin of 1.2 cm. For each case a clinically-accepted cost function, minimum tumor dose was maximized subject to a set of normal tissue binary dose-volume constraints. For this study, the optimized plan was restricted to four (4) fields suitable for delivery with conventional therapy equipment. Results: The table gives the mean value of the minimum target dose obtained for each algorithm averaged over 5 different runs and the comparable manual treatment

  13. Real-time interactive treatment planning

    International Nuclear Information System (INIS)

    Otto, Karl

    2014-01-01

    The goal of this work is to develop an interactive treatment planning platform that permits real-time manipulation of dose distributions including DVHs and other dose metrics. The hypothesis underlying the approach proposed here is that the process of evaluating potential dose distribution options and deciding on the best clinical trade-offs may be separated from the derivation of the actual delivery parameters used for the patient’s treatment. For this purpose a novel algorithm for deriving an Achievable Dose Estimate (ADE) was developed. The ADE algorithm is computationally efficient so as to update dose distributions in effectively real-time while accurately incorporating the limits of what can be achieved in practice. The resulting system is a software environment for interactive real-time manipulation of dose that permits the clinician to rapidly develop a fully customized 3D dose distribution. Graphical navigation of dose distributions is achieved by a sophisticated method of identifying contributing fluence elements, modifying those elements and re-computing the entire dose distribution. 3D dose distributions are calculated in ∼2–20 ms. Including graphics processing overhead, clinicians may visually interact with the dose distribution (e.g. ‘drag’ a DVH) and display updates of the dose distribution at a rate of more than 20 times per second. Preliminary testing on various sites shows that interactive planning may be completed in ∼1–5 min, depending on the complexity of the case (number of targets and OARs). Final DVHs are derived through a separate plan optimization step using a conventional VMAT planning system and were shown to be achievable within 2% and 4% in high and low dose regions respectively. With real-time interactive planning trade-offs between Target(s) and OARs may be evaluated efficiently providing a better understanding of the dosimetric options available to each patient in static or adaptive RT. (paper)

  14. Strategic planning of treatment for hyperthyroid disease

    International Nuclear Information System (INIS)

    Hoeffer, R.

    1994-01-01

    Strategic planning of treatment of hyperthyroid disease must correspond to the pathophysiological mechanism of elevation of thyroid hormone serum concentration, i.e. excess stimulation, autonomous thyroid function, destruction induced hyperthyoroxinemia. In cases of excess stimulation one should go to extremes to save the essentially 'normal' thyroid gland and life-long antithyroid drug treatment confronts with total ablation of the thyroid gland in non remitting disease. Size and quantity of regions of autonomously functioning follicles/cells will be the determinant of therapeutic strategy in cases of autonomous thyroid function. Selective surgery confronts with radioiodine treatment aiming at 'restitutio ad integrum'. In destruction induced hyperthyroxinemia antiintlammatory and symptomatic measures may help to bridge the time to the return of normal hormone concentrations. Based on these considerations a detailed therapeutic strategy for hyperthyroid disease can be designed. (author)

  15. Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions

    Science.gov (United States)

    Milanič, Matija; Majaron, Boris

    2011-12-01

    We present a three-dimensional Monte Carlo model of optical transport in skin with a novel approach to treatment of side boundaries of the volume of interest. This represents an effective way to overcome the inherent limitations of ``escape'' and ``mirror'' boundary conditions and enables high-resolution modeling of skin inclusions with complex geometries and arbitrary irradiation patterns. The optical model correctly reproduces measured values of diffuse reflectance for normal skin. When coupled with a sophisticated model of thermal transport and tissue coagulation kinetics, it also reproduces realistic values of radiant exposure thresholds for epidermal injury and for photocoagulation of port wine stain blood vessels in various skin phototypes, with or without application of cryogen spray cooling.

  16. Clinical treatment planning for subjects undergoing boron neutron capture therapy at Harvard-MIT

    International Nuclear Information System (INIS)

    Zamenhof, R.G.; Palmer, M.R.; Buse, P.M.

    2001-01-01

    Treatment planning is a crucial component of the Harvard-MIT boron neutron capture therapy (BNCT) clinical trials. Treatment planning can be divided into five stages: (1) pre-planning, based on CT and MRI scans obtained when the subject arrives at the hospital and on assumed boron-10 distribution parameters; (2) subject set-up, or simulation, in the MITR-II medical therapy room to determine the boundary conditions for possible set-up configurations; (3) re-planning, following the subject simulation; (4) final localization of the subject in the medical therapy room for BNCT; and (5) final post facto recalculation of the doses delivered based on firm knowledge of the blood boron-10 concentration profiles and the neutron flux histories from precise online monitoring. The computer-assisted treatment planning is done using a specially written BNCT treatment planning code called MacNCTPLAN. The code uses the Los Alamos National Laboratory's Monte Carlo n-particle radiation transport code MCNPv.4b as the dose calculation engine and advanced anatomical model simulation based on an automatic evaluation of CT scan data. Results are displayed as isodose contours and dose-volume histograms, the latter correlated precisely with corresponding anatomical CT or MRI image planes. Examples of typical treatment planning scenarios will be presented. (author)

  17. 3-D CT for cardiovascular treatment planning

    International Nuclear Information System (INIS)

    Wildermuth, S.; Leschka, S.; Duru, F.; Alkadhi, H.

    2005-01-01

    The recently developed 64-slice CT scanner together with the use of 2-D and 3-D reconstructions can aid the cardiovascular surgeon and interventional radiologist in visualizing exact geometric relationships to plan and execute complex procedures via minimally invasive or standard approaches.Cardiac 64-slice CT considerably benefits from the high temporal and spatial resolution allowing the reliable depiction of small coronary segments. Similarly, abdominal vascular 64-slice CT became possible within short examination times and allowing an optimal arterial contrast bolus exploitation. We demonstrate four representative cardiac and abdominal examples using the new 64-slice CT technology which reveal the impact of the new scanner generation for cardiovascular treatment planning. (orig.)

  18. Intracavitary radiation treatment planning and dose evaluation

    International Nuclear Information System (INIS)

    Anderson, L.L.; Masterson, M.E.; Nori, D.

    1987-01-01

    Intracavitary radiation therapy with encapsulated radionuclide sources has generally involved, since the advent of afterloading techniques, inserting the sources in tubing previously positioned within a body cavity near the region to be treated. Because of the constraints on source locations relative to the target region, the functions of treatment planning and dose evaluation, usually clearly separable in interstitial brachytherapy, tend to merge in intracavitary therapy. Dose evaluation is typically performed for multiple source-strength configurations in the process of planning and thus may be regarded as complete when a particular configuration has been selected. The input data for each dose evaluation, of course, must include reliable dose distribution information for the source-applicator combinations used. Ultimately, the goal is to discover the source-strength configuration that results in the closest possible approach to the dose distribution desired

  19. SU-F-T-377: Monte Carlo Re-Evaluation of Volumetric-Modulated Arc Plans of Advanced Stage Nasopharygeal Cancers Optimized with Convolution-Superposition Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K; Leung, R; Law, G; Wong, M; Lee, V; Tung, S; Cheung, S; Chan, M [Tuen Mun Hospital, Hong Kong (Hong Kong)

    2016-06-15

    Background: Commercial treatment planning system Pinnacle3 (Philips, Fitchburg, WI, USA) employs a convolution-superposition algorithm for volumetric-modulated arc radiotherapy (VMAT) optimization and dose calculation. Study of Monte Carlo (MC) dose recalculation of VMAT plans for advanced-stage nasopharyngeal cancers (NPC) is currently limited. Methods: Twenty-nine VMAT prescribed 70Gy, 60Gy, and 54Gy to the planning target volumes (PTVs) were included. These clinical plans achieved with a CS dose engine on Pinnacle3 v9.0 were recalculated by the Monaco TPS v5.0 (Elekta, Maryland Heights, MO, USA) with a XVMC-based MC dose engine. The MC virtual source model was built using the same measurement beam dataset as for the Pinnacle beam model. All MC recalculation were based on absorbed dose to medium in medium (Dm,m). Differences in dose constraint parameters per our institution protocol (Supplementary Table 1) were analyzed. Results: Only differences in maximum dose to left brachial plexus, left temporal lobe and PTV54Gy were found to be statistically insignificant (p> 0.05). Dosimetric differences of other tumor targets and normal organs are found in supplementary Table 1. Generally, doses outside the PTV in the normal organs are lower with MC than with CS. This is also true in the PTV54-70Gy doses but higher dose in the nasal cavity near the bone interfaces is consistently predicted by MC, possibly due to the increased backscattering of short-range scattered photons and the secondary electrons that is not properly modeled by the CS. The straight shoulders of the PTV dose volume histograms (DVH) initially resulted from the CS optimization are merely preserved after MC recalculation. Conclusion: Significant dosimetric differences in VMAT NPC plans were observed between CS and MC calculations. Adjustments of the planning dose constraints to incorporate the physics differences from conventional CS algorithm should be made when VMAT optimization is carried out directly

  20. A dose homogeneity and conformity evaluation between ViewRay and pinnacle-based linear accelerator IMRT treatment plans

    International Nuclear Information System (INIS)

    Saenz, Daniel L.; Paliwal, Bhudatt R.; Bayouth, John E.

    2014-01-01

    ViewRay, a novel technology providing soft-tissue imaging during radiotherapy is investigated for treatment planning capabilities assessing treatment plan dose homogeneity and conformity compared with linear accelerator plans. ViewRay offers both adaptive radiotherapy and image guidance. The combination of cobalt-60 ( 60 Co) with 0.35 Tesla magnetic resonance imaging (MRI) allows for magnetic resonance (MR)-guided intensity-modulated radiation therapy (IMRT) delivery with multiple beams. This study investigated head and neck, lung, and prostate treatment plans to understand what is possible on ViewRay to narrow focus toward sites with optimal dosimetry. The goal is not to provide a rigorous assessment of planning capabilities, but rather a first order demonstration of ViewRay planning abilities. Images, structure sets, points, and dose from treatment plans created in Pinnacle for patients in our clinic were imported into ViewRay. The same objectives were used to assess plan quality and all critical structures were treated as similarly as possible. Homogeneity index (HI), conformity index (CI), and volume receiving 60 Co ViewRay treatments planned with its Monte Carlo treatment planning software were comparable with 6 MV plans computed with convolution superposition algorithm on Pinnacle treatment planning system. (author)

  1. A dose homogeneity and conformity evaluation between ViewRay and pinnacle-based linear accelerator IMRT treatment plans.

    Science.gov (United States)

    Saenz, Daniel L; Paliwal, Bhudatt R; Bayouth, John E

    2014-04-01

    ViewRay, a novel technology providing soft-tissue imaging during radiotherapy is investigated for treatment planning capabilities assessing treatment plan dose homogeneity and conformity compared with linear accelerator plans. ViewRay offers both adaptive radiotherapy and image guidance. The combination of cobalt-60 (Co-60) with 0.35 Tesla magnetic resonance imaging (MRI) allows for magnetic resonance (MR)-guided intensity-modulated radiation therapy (IMRT) delivery with multiple beams. This study investigated head and neck, lung, and prostate treatment plans to understand what is possible on ViewRay to narrow focus toward sites with optimal dosimetry. The goal is not to provide a rigorous assessment of planning capabilities, but rather a first order demonstration of ViewRay planning abilities. Images, structure sets, points, and dose from treatment plans created in Pinnacle for patients in our clinic were imported into ViewRay. The same objectives were used to assess plan quality and all critical structures were treated as similarly as possible. Homogeneity index (HI), conformity index (CI), and volume receiving ViewRay treatments planned with its Monte Carlo treatment planning software were comparable with 6 MV plans computed with convolution superposition algorithm on Pinnacle treatment planning system.

  2. 71: Three dimensional radiation treatment planning system

    International Nuclear Information System (INIS)

    Purdy, J.A.; Wong, J.W.; Harms, W.B.; Drzymala, R.E.; Emami, B.

    1987-01-01

    A prototype 3-dimensional (3-D) radiation treatment planning (RTP) system has been developed and is in use. The system features a real-time display device and an array processor for computer intensive computations. The dose distribution can be displayed as 2-D isodose distributions superimposed on 2-D gray scale images of the patient's anatomy for any arbitrary plane and as a display of isodose surfaces in 3-D. In addition, dose-volume histograms can be generated. 7 refs.; 2 figs

  3. An FDTD code for hyperthermia treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Marrocco, G.; Bardati, F. [Rome Univ. Tor Vergata (Italy). Dipt. di Informatica, sistemi e produzione; Tognolatti, P. [L' Aquila Univ. (Italy). Dipt. di Ingegneria Elettrica

    1999-08-01

    Radio-frequency hyperthermia is an anticancer modality based on the heating of tumours by radiating sources. A set of antennas is frequently used to enhance power depositions in tissues. Treatments planning needs electromagnetic field computation within realistic body models. Since several simulation may be required the optimize the antenna-body configuration, the electromagnetic solver should be designed in such a way that new configuration of the antenna set-up can be solved without heavy changes of the basic numerical code. In this paper a numerical investigation on the effects of a segmentation technique will be presented, with reference to an FDTD computation and the heating of a paediatric tumour.

  4. Automatic liver contouring for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Li, Dengwang; Kapp, Daniel S; Xing, Lei; Liu, Li

    2015-01-01

    To develop automatic and efficient liver contouring software for planning 3D-CT and four-dimensional computed tomography (4D-CT) for application in clinical radiation therapy treatment planning systems.The algorithm comprises three steps for overcoming the challenge of similar intensities between the liver region and its surrounding tissues. First, the total variation model with the L1 norm (TV-L1), which has the characteristic of multi-scale decomposition and an edge-preserving property, is used for removing the surrounding muscles and tissues. Second, an improved level set model that contains both global and local energy functions is utilized to extract liver contour information sequentially. In the global energy function, the local correlation coefficient (LCC) is constructed based on the gray level co-occurrence matrix both of the initial liver region and the background region. The LCC can calculate the correlation of a pixel with the foreground and background regions, respectively. The LCC is combined with intensity distribution models to classify pixels during the evolutionary process of the level set based method. The obtained liver contour is used as the candidate liver region for the following step. In the third step, voxel-based texture characterization is employed for refining the liver region and obtaining the final liver contours.The proposed method was validated based on the planning CT images of a group of 25 patients undergoing radiation therapy treatment planning. These included ten lung cancer patients with normal appearing livers and ten patients with hepatocellular carcinoma or liver metastases. The method was also tested on abdominal 4D-CT images of a group of five patients with hepatocellular carcinoma or liver metastases. The false positive volume percentage, the false negative volume percentage, and the dice similarity coefficient between liver contours obtained by a developed algorithm and a current standard delineated by the expert group

  5. MO-FG-202-08: Real-Time Monte Carlo-Based Treatment Dose Reconstruction and Monitoring for Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z; Shi, F; Gu, X; Tan, J; Hassan-Rezaeian, N; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Graves, Y [University of California, San Diego, La Jolla, CA (United States)

    2016-06-15

    Purpose: This proof-of-concept study is to develop a real-time Monte Carlo (MC) based treatment-dose reconstruction and monitoring system for radiotherapy, especially for the treatments with complicated delivery, to catch treatment delivery errors at the earliest possible opportunity and interrupt the treatment only when an unacceptable dosimetric deviation from our expectation occurs. Methods: First an offline scheme is launched to pre-calculate the expected dose from the treatment plan, used as ground truth for real-time monitoring later. Then an online scheme with three concurrent threads is launched while treatment delivering, to reconstruct and monitor the patient dose in a temporally resolved fashion in real-time. Thread T1 acquires machine status every 20 ms to calculate and accumulate fluence map (FM). Once our accumulation threshold is reached, T1 transfers the FM to T2 for dose reconstruction ad starts to accumulate a new FM. A GPU-based MC dose calculation is performed on T2 when MC dose engine is ready and a new FM is available. The reconstructed instantaneous dose is directed to T3 for dose accumulation and real-time visualization. Multiple dose metrics (e.g. maximum and mean dose for targets and organs) are calculated from the current accumulated dose and compared with the pre-calculated expected values. Once the discrepancies go beyond our tolerance, an error message will be send to interrupt the treatment delivery. Results: A VMAT Head-and-neck patient case was used to test the performance of our system. Real-time machine status acquisition was simulated here. The differences between the actual dose metrics and the expected ones were 0.06%–0.36%, indicating an accurate delivery. ∼10Hz frequency of dose reconstruction and monitoring was achieved, with 287.94s online computation time compared to 287.84s treatment delivery time. Conclusion: Our study has demonstrated the feasibility of computing a dose distribution in a temporally resolved fashion

  6. Science-based strategic planning for hazardous fuel treatment.

    Science.gov (United States)

    D.L. Peterson; M.C. Johnson

    2007-01-01

    A scientific foundation coupled with technical support is needed to develop long-term strategic plans for fuel and vegetation treatments on public lands. These plans are developed at several spatial scales and are typically a component of fire management plans and other types of resource management plans. Such plans need to be compatible with national, regional, and...

  7. Superficial dose distribution in breast for tangential radiation treatment, Monte Carlo evaluation of Eclipse algorithms in case of phantom and patient geometries

    International Nuclear Information System (INIS)

    Chakarova, Roumiana; Gustafsson, Magnus; Bäck, Anna; Drugge, Ninni; Palm, Åsa; Lindberg, Andreas; Berglund, Mattias

    2012-01-01

    Purpose: The aim of this study is to examine experimentally and by the Monte Carlo method the accuracy of the Eclipse Pencil Beam Convolution (PBC) and Analytical Anisotropic Algorithm (AAA) algorithms in the superficial region (0–2 cm) of the breast for tangential photon beams in a phantom case as well as in a number of patient geometries. The aim is also to identify differences in how the patient computer tomography data are handled by the treatment planning system and in the Monte Carlo simulations in order to reduce influences of these effects on the evaluation. Materials and methods: Measurements by thermoluminescent dosimeters and gafchromic film are performed for six MV tangential irradiation of the cylindrical solid water phantom. Tangential treatment of seven patients is investigated considering open beams. Dose distributions are obtained by the Eclipse PBC and AAA algorithms. Monte Carlo calculations are carried out by BEAMnrc/DOSXYZnrc code package. Calculations are performed with a calculation grid of 1.25 × 1.25 × 5 mm 3 for PBC and 2 × 2 × 5 mm 3 for AAA and Monte Carlo, respectively. Dose comparison is performed in both dose and spatial domains by the normalized dose difference method. Results: Experimental profiles from the surface toward the geometrical center of the cylindrical phantom are obtained at the beam entrance and exit as well as laterally. Full dose is received beyond 2 mm in the lateral superficial region and beyond 7 mm at the beam entrance. Good agreement between experimental, Monte Carlo and AAA data is obtained, whereas PBC is seen to underestimate the entrance dose the first 3–4 mm and the lateral dose by more than 5% up to 8 mm depth. In the patient cases considered, AAA and Monte Carlo show agreement within 3% dose and 4 mm spatial tolerance. PBC systematically underestimates the dose at the breast apex. The dimensions of region out of tolerance vary with the local breast shape. Different interpretations of patient

  8. Treatment and Combination of Data Quality Monitoring Histograms to Perform Data vs. Monte Carlo Validation

    CERN Document Server

    Colin, Nolan

    2013-01-01

    In CMS's automated data quality validation infrastructure, it is not currently possible to assess how well Monte Carlo simulations describe data from collisions, if at all. In order to guarantee high quality data, a novel work flow was devised to perform `data vs. Monte Carlo' validation. Support for this comparison was added by allowing distributions from several Monte Carlo samples to be combined, matched to the data and then displayed in a histogram stack, overlaid with the experimental data.

  9. Clinical trial optimization: Monte Carlo simulation Markov model for planning clinical trials recruitment.

    Science.gov (United States)

    Abbas, Ismail; Rovira, Joan; Casanovas, Josep

    2007-05-01

    The patient recruitment process of clinical trials is an essential element which needs to be designed properly. In this paper we describe different simulation models under continuous and discrete time assumptions for the design of recruitment in clinical trials. The results of hypothetical examples of clinical trial recruitments are presented. The recruitment time is calculated and the number of recruited patients is quantified for a given time and probability of recruitment. The expected delay and the effective recruitment durations are estimated using both continuous and discrete time modeling. The proposed type of Monte Carlo simulation Markov models will enable optimization of the recruitment process and the estimation and the calibration of its parameters to aid the proposed clinical trials. A continuous time simulation may minimize the duration of the recruitment and, consequently, the total duration of the trial.

  10. Dosimetric control of radiotherapy treatments by Monte Carlo simulation of transmitted portal dose image

    International Nuclear Information System (INIS)

    Badel, Jean-Noel

    2009-01-01

    This research thesis addresses the dosimetric control of radiotherapy treatments by using amorphous silicon digital portal imagery. In a first part, the author reports the analysis of the dosimetric abilities of the imager (iViewGT) which is used in the radiotherapy department. The stability of the imager response on a short and on a long term has been studied. A relationship between the image grey level and the dose has been established for a reference irradiation field. The influence of irradiation parameters on the grey level variation with respect to the dose has been assessed. The obtained results show the possibility to use this system for dosimetry provided that a precise calibration is performed while taking the most influencing irradiation parameters into account, i.e. photon beam nominal energy, field size, and patient thickness. The author reports the development of a Monte Carlo simulation to model the imager response. It models the accelerator head by a generalized source point. Space and energy distributions of photons are calculated. This modelling can also be applied to the calculation of dose distribution within a patient, or to study physical interactions in the accelerator head. Then, the author explores a new approach to dose portal image prediction within the frame of an in vivo dosimetric control. He computes the image transmitted through the patient by Monte Carlo simulation, and measures the portal image of the irradiation field without the patient. Validation experiments are reported, and problems to be solved are highlighted (computation time, improvement of the collimator simulation) [fr

  11. Recovery post treatment: plans, barriers and motivators.

    Science.gov (United States)

    Duffy, Paul; Baldwin, Helen

    2013-01-30

    The increasing focus on achieving a sustained recovery from substance use brings with it a need to better understand the factors (recovery capital) that contribute to recovery following treatment. This work examined the factors those in recovery perceive to be barriers to (lack of capital) or facilitators of (presence of capital) sustained recovery post treatment. A purposive sample of 45 participants was recruited from 11 drug treatment services in northern England. Semi-structured qualitative interviews lasting between 30 and 90 minutes were conducted one to three months after participants completed treatment. Interviews examined key themes identified through previous literature but focused on allowing participants to explore their unique recovery journey. Interviews were transcribed and analysed thematically using a combination of deductive and inductive approaches. Participants generally reported high levels of confidence in maintaining their recovery with most planning to remain abstinent. There were indications of high levels of recovery capital. Aftercare engagement was high, often through self referral, with non substance use related activity felt to be particularly positive. Supported housing was critical and concerns were raised about the ability to afford to live independently with financial stability and welfare availability a key concern in general. Employment, often in the substance use treatment field, was a desire. However, it was a long term goal, with substantial risks associated with pursuing this too early. Positive social support was almost exclusively from within the recovery community although the re-building of relationships with family (children in particular) was a key motivator post treatment. Addressing internal factors and underlying issues i.e. 'human capital', provided confidence for continued recovery whilst motivators focused on external factors such as family and maintaining aspects of a 'normal' life i.e. 'social and physical

  12. Recovery post treatment: plans, barriers and motivators

    Directory of Open Access Journals (Sweden)

    Duffy Paul

    2013-01-01

    Full Text Available Abstract Background The increasing focus on achieving a sustained recovery from substance use brings with it a need to better understand the factors (recovery capital that contribute to recovery following treatment. This work examined the factors those in recovery perceive to be barriers to (lack of capital or facilitators of (presence of capital sustained recovery post treatment. Methods A purposive sample of 45 participants was recruited from 11 drug treatment services in northern England. Semi-structured qualitative interviews lasting between 30 and 90 minutes were conducted one to three months after participants completed treatment. Interviews examined key themes identified through previous literature but focused on allowing participants to explore their unique recovery journey. Interviews were transcribed and analysed thematically using a combination of deductive and inductive approaches. Results Participants generally reported high levels of confidence in maintaining their recovery with most planning to remain abstinent. There were indications of high levels of recovery capital. Aftercare engagement was high, often through self referral, with non substance use related activity felt to be particularly positive. Supported housing was critical and concerns were raised about the ability to afford to live independently with financial stability and welfare availability a key concern in general. Employment, often in the substance use treatment field, was a desire. However, it was a long term goal, with substantial risks associated with pursuing this too early. Positive social support was almost exclusively from within the recovery community although the re-building of relationships with family (children in particular was a key motivator post treatment. Conclusions Addressing internal factors and underlying issues i.e. ‘human capital’, provided confidence for continued recovery whilst motivators focused on external factors such as family and

  13. Volumetric visualization of anatomy for treatment planning

    International Nuclear Information System (INIS)

    Pelizzari, Charles A.; Grzeszczuk, Robert; Chen, George T. Y.; Heimann, Ruth; Haraf, Daniel J.; Vijayakumar, Srinivasan; Ryan, Martin J.

    1996-01-01

    Purpose: Delineation of volumes of interest for three-dimensional (3D) treatment planning is usually performed by contouring on two-dimensional sections. We explore the usage of segmentation-free volumetric rendering of the three-dimensional image data set for tumor and normal tissue visualization. Methods and Materials: Standard treatment planning computed tomography (CT) studies, with typically 5 to 10 mm slice thickness, and spiral CT studies with 3 mm slice thickness were used. The data were visualized using locally developed volume-rendering software. Similar to the method of Drebin et al., CT voxels are automatically assigned an opacity and other visual properties (e.g., color) based on a probabilistic classification into tissue types. Using volumetric compositing, a projection into the opacity-weighted volume is produced. Depth cueing, perspective, and gradient-based shading are incorporated to achieve realistic images. Unlike surface-rendered displays, no hand segmentation is required to produce detailed renditions of skin, muscle, or bony anatomy. By suitable manipulation of the opacity map, tissue classes can be made transparent, revealing muscle, vessels, or bone, for example. Manually supervised tissue masking allows irrelevant tissues overlying tumors or other structures of interest to be removed. Results: Very high-quality renditions are produced in from 5 s to 1 min on midrange computer workstations. In the pelvis, an anteroposterior (AP) volume rendered view from a typical planning CT scan clearly shows the skin and bony anatomy. A muscle opacity map permits clear visualization of the superficial thigh muscles, femoral veins, and arteries. Lymph nodes are seen in the femoral triangle. When overlying muscle and bone are cut away, the prostate, seminal vessels, bladder, and rectum are seen in 3D perspective. Similar results are obtained for thorax and for head and neck scans. Conclusion: Volumetric visualization of anatomy is useful in treatment

  14. SU-F-SPS-10: The Dosimetric Comparison of GammaKnife and Cyberknife Treatment Plans for Brain SRS Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sanli, E; Mabhouti, H; Cebe, M; Codel, G; Pacaci, P; Serin, E; Kucuk, N; Kucukmorkoc, E; Doyuran, M; Canoglu, D; Altinok, A; Acar, H; Caglar Ozkok, H [Medipol University, Istanbul, Istanbul (Turkey)

    2016-06-15

    Purpose: Brain stereotactic radiosurgery (SRS) involves the use of precisely directed, single session radiation to create a desired radiobiologic response within the brain target with acceptable minimal effects on surrounding structures or tissues. In this study, the dosimetric comparison of GammaKnife perfection and Cyberknife M6 treatment plans were made. Methods: Treatment plannings were done for GammaKnife perfection unit using Gammaplan treatment planning system (TPS) on the CT scan of head and neck randophantom simulating the treatment of sterotactic treatments for one brain metastasis. The dose distribution were calculated using TMR 10 algorithm. The treatment planning for the same target were also done for Cyberknife M6 machine using Multiplan (TPS) with Monte Carlo algorithm. Using the same film batch, the net OD to dose calibration curve was obtained using both machine by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution were measured using EBT3 film dosimeter. The measured and calculated doses were compared. Results: The dose distribution in the target and 2 cm beyond the target edge were calculated on TPSs and measured using EBT3 film. For cyberknife treatment plans, the gamma analysis passing rates between measured and calculated dose distributions were 99.2% and 96.7% for target and peripheral region of target respectively. For gammaknife treatment plans, the gamma analysis passing rates were 98.9% and 93.2% for target and peripheral region of target respectively. Conclusion: The study shows that dosimetrically comparable plans are achievable with Cyberknife and GammaKnife. Although TMR 10 algorithm predicts the target dose.

  15. SU-F-SPS-10: The Dosimetric Comparison of GammaKnife and Cyberknife Treatment Plans for Brain SRS Treatment

    International Nuclear Information System (INIS)

    Sanli, E; Mabhouti, H; Cebe, M; Codel, G; Pacaci, P; Serin, E; Kucuk, N; Kucukmorkoc, E; Doyuran, M; Canoglu, D; Altinok, A; Acar, H; Caglar Ozkok, H

    2016-01-01

    Purpose: Brain stereotactic radiosurgery (SRS) involves the use of precisely directed, single session radiation to create a desired radiobiologic response within the brain target with acceptable minimal effects on surrounding structures or tissues. In this study, the dosimetric comparison of GammaKnife perfection and Cyberknife M6 treatment plans were made. Methods: Treatment plannings were done for GammaKnife perfection unit using Gammaplan treatment planning system (TPS) on the CT scan of head and neck randophantom simulating the treatment of sterotactic treatments for one brain metastasis. The dose distribution were calculated using TMR 10 algorithm. The treatment planning for the same target were also done for Cyberknife M6 machine using Multiplan (TPS) with Monte Carlo algorithm. Using the same film batch, the net OD to dose calibration curve was obtained using both machine by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution were measured using EBT3 film dosimeter. The measured and calculated doses were compared. Results: The dose distribution in the target and 2 cm beyond the target edge were calculated on TPSs and measured using EBT3 film. For cyberknife treatment plans, the gamma analysis passing rates between measured and calculated dose distributions were 99.2% and 96.7% for target and peripheral region of target respectively. For gammaknife treatment plans, the gamma analysis passing rates were 98.9% and 93.2% for target and peripheral region of target respectively. Conclusion: The study shows that dosimetrically comparable plans are achievable with Cyberknife and GammaKnife. Although TMR 10 algorithm predicts the target dose

  16. Constrained treatment planning using sequential beam selection

    International Nuclear Information System (INIS)

    Woudstra, E.; Storchi, P.R.M.

    2000-01-01

    In this paper an algorithm is described for automated treatment plan generation. The algorithm aims at delivery of the prescribed dose to the target volume without violation of constraints for target, organs at risk and the surrounding normal tissue. Pre-calculated dose distributions for all candidate orientations are used as input. Treatment beams are selected in a sequential way. A score function designed for beam selection is used for the simultaneous selection of beam orientations and weights. In order to determine the optimum choice for the orientation and the corresponding weight of each new beam, the score function is first redefined to account for the dose distribution of the previously selected beams. Addition of more beams to the plan is stopped when the target dose is reached or when no additional dose can be delivered without violating a constraint. In the latter case the score function is modified by importance factor changes to enforce better sparing of the organ with the limiting constraint and the algorithm is run again. (author)

  17. Novel tracer for radiation treatment planning

    International Nuclear Information System (INIS)

    Schwarzenboeck, S.; Krause, B.J.; Herrmann, K.; Gaertner, F.; Souvatzoglou, M.; Klaesner, B.

    2011-01-01

    PET and PET/CT with innovative tracers gain increasing importance in diagnosis and therapy management, and radiation treatment planning in radio-oncology besides the widely established FDG. The introduction of [ 18 F]Fluorothymidine ([ 18 F]FLT) as marker of proliferation, [ 18 F]Fluoromisonidazole ([ 18 F]FMISO) and [ 18 F]Fluoroazomycin-Arabinoside ([ 18 F]FAZA) as tracer of hypoxia, [ 18 F]Fluoroethyltyrosine ([ 18 F]FET) and [ 11 C]Methionine for brain tumour imaging, [ 68 Ga]DOTATOC for somatostatin receptor imaging, [ 18 F]FDOPA for dopamine synthesis and radioactively labeled choline derivatives for imaging phospholipid metabolism have opened novel approaches to tumour imaging. Some of these tracers have already been implemented into radio-oncology: Amino acid PET and PET/CT have the potential to optimise radiation treatment planning of brain tumours through accurate delineation of tumour tissue from normal tissue, necrosis and edema. Hypoxia represents a major therapeutic problem in radiation therapy. Hypoxia imaging is very attractive as it may allow to increase the dose in hypoxic tumours potentially allowing for a better tumour control. Advances in hybrid imaging, i.e. the introduction of MR/PET, may also have an impact in radio-oncology through synergies related to the combination of molecular signals of PET and a high soft tissue contrast of MRI as well as functional MRI capabilities. (orig.)

  18. A feasibility study to calculate unshielded fetal doses to pregnant patients in 6-MV photon treatments using Monte Carlo methods and anatomically realistic phantoms

    International Nuclear Information System (INIS)

    Bednarz, Bryan; Xu, X. George

    2008-01-01

    A Monte Carlo-based procedure to assess fetal doses from 6-MV external photon beam radiation treatments has been developed to improve upon existing techniques that are based on AAPM Task Group Report 36 published in 1995 [M. Stovall et al., Med. Phys. 22, 63-82 (1995)]. Anatomically realistic models of the pregnant patient representing 3-, 6-, and 9-month gestational stages were implemented into the MCNPX code together with a detailed accelerator model that is capable of simulating scattered and leakage radiation from the accelerator head. Absorbed doses to the fetus were calculated for six different treatment plans for sites above the fetus and one treatment plan for fibrosarcoma in the knee. For treatment plans above the fetus, the fetal doses tended to increase with increasing stage of gestation. This was due to the decrease in distance between the fetal body and field edge with increasing stage of gestation. For the treatment field below the fetus, the absorbed doses tended to decrease with increasing gestational stage of the pregnant patient, due to the increasing size of the fetus and relative constant distance between the field edge and fetal body for each stage. The absorbed doses to the fetus for all treatment plans ranged from a maximum of 30.9 cGy to the 9-month fetus to 1.53 cGy to the 3-month fetus. The study demonstrates the feasibility to accurately determine the absorbed organ doses in the mother and fetus as part of the treatment planning and eventually in risk management

  19. SU-F-SPS-11: The Dosimetric Comparison of Truebeam 2.0 and Cyberknife M6 Treatment Plans for Brain SRS Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mabhouti, H; Sanli, E; Cebe, M; Codel, G; Pacaci, P; Serin, E; Kucuk, N; Kucukmorkoc, E; Doyuran, M; Canoglu, D; Altinok, A; Acar, H; Caglar Ozkok, H [Medipol University, Istanbul, Istanbul (Turkey)

    2016-06-15

    Purpose: Brain stereotactic radiosurgery involves the use of precisely directed, single session radiation to create a desired radiobiologic response within the brain target with acceptable minimal effects on surrounding structures or tissues. In this study, the dosimetric comparison of Truebeam 2.0 and Cyberknife M6 treatment plans were made. Methods: For Truebeam 2.0 machine, treatment planning were done using 2 full arc VMAT technique with 6 FFF beam on the CT scan of Randophantom simulating the treatment of sterotactic treatments for one brain metastasis. The dose distribution were calculated using Eclipse treatment planning system with Acuros XB algorithm. The treatment planning of the same target were also done for Cyberknife M6 machine with Multiplan treatment planning system using Monte Carlo algorithm. Using the same film batch, the net OD to dose calibration curve was obtained using both machine by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution were measured using EBT3 film dosimeter. The measured and calculated doses were compared. Results: The dose distribution in the target and 2 cm beyond the target edge were calculated on TPSs and measured using EBT3 film. For cyberknife plans, the gamma analysis passing rates between measured and calculated dose distributions were 99.2% and 96.7% for target and peripheral region of target respectively. For Truebeam plans, the gamma analysis passing rates were 99.1% and 95.5% for target and peripheral region of target respectively. Conclusion: Although, target dose distribution calculated accurately by Acuros XB and Monte Carlo algorithms, Monte carlo calculation algorithm predicts dose distribution around the peripheral region of target more accurately than Acuros algorithm.

  20. Doses determination in UCCA treatments with LDR brachytherapy using Monte Carlo methods

    International Nuclear Information System (INIS)

    Benites R, J. L.; Vega C, H. R.

    2017-10-01

    Using Monte Carlo methods, with the code MCNP5, a gynecological mannequin and a vaginal cylinder were modeled. The spatial distribution of absorbed dose rate in uterine cervical cancer (UCCA) treatments was determined under the modality of manual brachytherapy of low dose rate (B-LDR). The design of the model included the gynecological liquid water mannequin, a vaginal cylinder applicator of Lucite (PMMA) with hemisphere termination. The applicator was formed by a vaginal cylinder 10.3 cm long and 2 cm in diameter. This cylinder was mounted on a stainless steel tube 15.2 cm long by 0.6 cm in diameter. A linear array of four radioactive sources of Cesium 137 was inserted into the tube. 13 water cells of 0.5 cm in diameter were modeled around the vaginal cylinder and the absorbed dose was calculated in these. The distribution of the fluence of gamma photons in the mesh was calculated. It was found that the distribution of the absorbed dose is symmetric for cells located in the upper and lower part of the vaginal cylinder. The values of the absorbed dose rate were estimated for the date of manufacture of the sources. This result allows the use of the law of radioactive decay to determine the dose rate at any date of a gynecological treatment of B-LDR. (Author)

  1. Ferromagnetism in diluted magnetic semiconductors: A comparision between AB INITIO mean-field, RPA, and Monte Carlo treatments

    Czech Academy of Sciences Publication Activity Database

    Bouzerar, G.; Kudrnovský, Josef; Bergqist, L.; Bruno, P.

    2003-01-01

    Roč. 68, č. 8 (2003), s. 081203-1 - 081203-4 ISSN 0163-1829 R&D Projects: GA AV ČR IAA1010203 Grant - others:RTN(XX) HPRN-CT-2000-00143 Institutional research plan: CEZ:AV0Z1010914 Keywords : Curie temperature * diluted magnetic semiconductors * mean-field * RPA * Monte-Carlo Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.962, year: 2003

  2. Hexone Storage and Treatment Facility closure plan

    International Nuclear Information System (INIS)

    1992-11-01

    The HSTF is a storage and treatment unit subject to the requirements for the storage and treatment of dangerous waste. Closure is being conducted under interim status and will be completed pursuant to the requirements of Washington State Department of Ecology (Ecology) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 and WAC 173-303-640. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of WAC 173-303 or of this closure plan. The information on radionuclides is provided only for general knowledge where appropriate. The known hazardous/dangerous waste remaining at the site before commencing other closure activities consists of the still vessels, a tarry sludge in the storage tanks, and residual contamination in equipment, piping, filters, etc. The treatment and removal of waste at the HSTF are closure activities as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and WAC 173-303

  3. Application of the Monte Carlo method to the problem of expensive experiment planning

    International Nuclear Information System (INIS)

    Aleksandrov, V.M.; Sanina, S.B.

    1989-01-01

    Numerical method for determination of the optimal experiment plan by the criterion of maximizing the information worth is suggested. The method is based on statistical mathematical simulation of possible outcomes of the experiment and on the analysis of efficiency of subsequent solutions. It is shown that results of conducted statistical simulation contain the data, enabling to determine the direction of plan correction, which provides the increase of its efficiency. A major advantages of the method are that it enables to interpret evidently all its stages and can be used in many-dimensional problems

  4. Radiation treatment planning using a microcomputer

    International Nuclear Information System (INIS)

    Lunsqui, A.R.; Calil, S.J.; Rocha, J.R.O.; Alexandre, A.C.

    1990-01-01

    The radiation treatment planning requires a lenght manipulation of data from isodose charts to obtain the best irradiation technique. Over the past 25 years this tedious operation has been replaced by computerized methods. These can reduce the working time by at least 20 times. It is being developed at the Biomedical Engineering Center a software to generate a polychromatic image of dose distribution. By means of a digitizing board, the patient contour and the beam data are transfered to the computer and stored as polinomial and Fourier series respectively. To calculate the dose distribution, the irradiated region is represented by a variable size bidimensional dot matrix. The dose at each point is calculated by correcting and adding the stored data for each beam. An algorithm for color definition according to the dose intensity was developed to display on a computer monitor the resultant matrix. A hard copy can be obtained be means of a six color plotter. (author)

  5. Noncoplanar VMAT for nasopharyngeal tumors: Plan quality versus treatment time

    International Nuclear Information System (INIS)

    Wild, Esther; Bangert, Mark; Nill, Simeon; Oelfke, Uwe

    2015-01-01

    Purpose: The authors investigated the potential of optimized noncoplanar irradiation trajectories for volumetric modulated arc therapy (VMAT) treatments of nasopharyngeal patients and studied the trade-off between treatment plan quality and delivery time in radiation therapy. Methods: For three nasopharyngeal patients, the authors generated treatment plans for nine different delivery scenarios using dedicated optimization methods. They compared these scenarios according to dose characteristics, number of beam directions, and estimated delivery times. In particular, the authors generated the following treatment plans: (1) a 4π plan, which is a not sequenced, fluence optimized plan that uses beam directions from approximately 1400 noncoplanar directions and marks a theoretical upper limit of the treatment plan quality, (2) a coplanar 2π plan with 72 coplanar beam directions as pendant to the noncoplanar 4π plan, (3) a coplanar VMAT plan, (4) a coplanar step and shoot (SnS) plan, (5) a beam angle optimized (BAO) coplanar SnS IMRT plan, (6) a noncoplanar BAO SnS plan, (7) a VMAT plan with rotated treatment couch, (8) a noncoplanar VMAT plan with an optimized great circle around the patient, and (9) a noncoplanar BAO VMAT plan with an arbitrary trajectory around the patient. Results: VMAT using optimized noncoplanar irradiation trajectories reduced the mean and maximum doses in organs at risk compared to coplanar VMAT plans by 19% on average while the target coverage remains constant. A coplanar BAO SnS plan was superior to coplanar SnS or VMAT; however, noncoplanar plans like a noncoplanar BAO SnS plan or noncoplanar VMAT yielded a better plan quality than the best coplanar 2π plan. The treatment plan quality of VMAT plans depended on the length of the trajectory. The delivery times of noncoplanar VMAT plans were estimated to be 6.5 min in average; 1.6 min longer than a coplanar plan but on average 2.8 min faster than a noncoplanar SnS plan with comparable

  6. Noncoplanar VMAT for nasopharyngeal tumors: Plan quality versus treatment time

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Esther, E-mail: e.wild@dkfz.de; Bangert, Mark [Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Nill, Simeon [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom); Oelfke, Uwe [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, United Kingdom and Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany)

    2015-05-15

    Purpose: The authors investigated the potential of optimized noncoplanar irradiation trajectories for volumetric modulated arc therapy (VMAT) treatments of nasopharyngeal patients and studied the trade-off between treatment plan quality and delivery time in radiation therapy. Methods: For three nasopharyngeal patients, the authors generated treatment plans for nine different delivery scenarios using dedicated optimization methods. They compared these scenarios according to dose characteristics, number of beam directions, and estimated delivery times. In particular, the authors generated the following treatment plans: (1) a 4π plan, which is a not sequenced, fluence optimized plan that uses beam directions from approximately 1400 noncoplanar directions and marks a theoretical upper limit of the treatment plan quality, (2) a coplanar 2π plan with 72 coplanar beam directions as pendant to the noncoplanar 4π plan, (3) a coplanar VMAT plan, (4) a coplanar step and shoot (SnS) plan, (5) a beam angle optimized (BAO) coplanar SnS IMRT plan, (6) a noncoplanar BAO SnS plan, (7) a VMAT plan with rotated treatment couch, (8) a noncoplanar VMAT plan with an optimized great circle around the patient, and (9) a noncoplanar BAO VMAT plan with an arbitrary trajectory around the patient. Results: VMAT using optimized noncoplanar irradiation trajectories reduced the mean and maximum doses in organs at risk compared to coplanar VMAT plans by 19% on average while the target coverage remains constant. A coplanar BAO SnS plan was superior to coplanar SnS or VMAT; however, noncoplanar plans like a noncoplanar BAO SnS plan or noncoplanar VMAT yielded a better plan quality than the best coplanar 2π plan. The treatment plan quality of VMAT plans depended on the length of the trajectory. The delivery times of noncoplanar VMAT plans were estimated to be 6.5 min in average; 1.6 min longer than a coplanar plan but on average 2.8 min faster than a noncoplanar SnS plan with comparable

  7. MO-B-BRB-00: Optimizing the Treatment Planning Process

    International Nuclear Information System (INIS)

    2015-01-01

    The radiotherapy treatment planning process has evolved over the years with innovations in treatment planning, treatment delivery and imaging systems. Treatment modality and simulation technologies are also rapidly improving and affecting the planning process. For example, Image-guided-radiation-therapy has been widely adopted for patient setup, leading to margin reduction and isocenter repositioning after simulation. Stereotactic Body radiation therapy (SBRT) and Radiosurgery (SRS) have gradually become the standard of care for many treatment sites, which demand a higher throughput for the treatment plans even if the number of treatments per day remains the same. Finally, simulation, planning and treatment are traditionally sequential events. However, with emerging adaptive radiotherapy, they are becoming more tightly intertwined, leading to iterative processes. Enhanced efficiency of planning is therefore becoming more critical and poses serious challenge to the treatment planning process; Lean Six Sigma approaches are being utilized increasingly to balance the competing needs for speed and quality. In this symposium we will discuss the treatment planning process and illustrate effective techniques for managing workflow. Topics will include: Planning techniques: (a) beam placement, (b) dose optimization, (c) plan evaluation (d) export to RVS. Planning workflow: (a) import images, (b) Image fusion, (c) contouring, (d) plan approval (e) plan check (f) chart check, (g) sequential and iterative process Influence of upstream and downstream operations: (a) simulation, (b) immobilization, (c) motion management, (d) QA, (e) IGRT, (f) Treatment delivery, (g) SBRT/SRS (h) adaptive planning Reduction of delay between planning steps with Lean systems due to (a) communication, (b) limited resource, (b) contour, (c) plan approval, (d) treatment. Optimizing planning processes: (a) contour validation (b) consistent planning protocol, (c) protocol/template sharing, (d) semi

  8. MO-B-BRB-00: Optimizing the Treatment Planning Process

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The radiotherapy treatment planning process has evolved over the years with innovations in treatment planning, treatment delivery and imaging systems. Treatment modality and simulation technologies are also rapidly improving and affecting the planning process. For example, Image-guided-radiation-therapy has been widely adopted for patient setup, leading to margin reduction and isocenter repositioning after simulation. Stereotactic Body radiation therapy (SBRT) and Radiosurgery (SRS) have gradually become the standard of care for many treatment sites, which demand a higher throughput for the treatment plans even if the number of treatments per day remains the same. Finally, simulation, planning and treatment are traditionally sequential events. However, with emerging adaptive radiotherapy, they are becoming more tightly intertwined, leading to iterative processes. Enhanced efficiency of planning is therefore becoming more critical and poses serious challenge to the treatment planning process; Lean Six Sigma approaches are being utilized increasingly to balance the competing needs for speed and quality. In this symposium we will discuss the treatment planning process and illustrate effective techniques for managing workflow. Topics will include: Planning techniques: (a) beam placement, (b) dose optimization, (c) plan evaluation (d) export to RVS. Planning workflow: (a) import images, (b) Image fusion, (c) contouring, (d) plan approval (e) plan check (f) chart check, (g) sequential and iterative process Influence of upstream and downstream operations: (a) simulation, (b) immobilization, (c) motion management, (d) QA, (e) IGRT, (f) Treatment delivery, (g) SBRT/SRS (h) adaptive planning Reduction of delay between planning steps with Lean systems due to (a) communication, (b) limited resource, (b) contour, (c) plan approval, (d) treatment. Optimizing planning processes: (a) contour validation (b) consistent planning protocol, (c) protocol/template sharing, (d) semi

  9. Federal Facilities Compliance Act, Draft Site Treatment Plan: Compliance Plan Volume. Part 2, Volume 2

    International Nuclear Information System (INIS)

    1994-01-01

    This document presents the details of the implementation of the Site Treatment Plan developed by Ames Laboratory in compliance with the Federal Facilities Compliance Act. Topics discussed in this document include: implementation of the plan; milestones; annual updates to the plan; inclusion of new waste streams; modifications of the plan; funding considerations; low-level mixed waste treatment plan and schedules; and TRU mixed waste streams

  10. Specialized Monte Carlo codes versus general-purpose Monte Carlo codes

    International Nuclear Information System (INIS)

    Moskvin, Vadim; DesRosiers, Colleen; Papiez, Lech; Lu, Xiaoyi

    2002-01-01

    The possibilities of Monte Carlo modeling for dose calculations and optimization treatment are quite limited in radiation oncology applications. The main reason is that the Monte Carlo technique for dose calculations is time consuming while treatment planning may require hundreds of possible cases of dose simulations to be evaluated for dose optimization. The second reason is that general-purpose codes widely used in practice, require an experienced user to customize them for calculations. This paper discusses the concept of Monte Carlo code design that can avoid the main problems that are preventing wide spread use of this simulation technique in medical physics. (authors)

  11. Assessing the convergence of LHS Monte Carlo simulations of wastewater treatment models.

    Science.gov (United States)

    Benedetti, Lorenzo; Claeys, Filip; Nopens, Ingmar; Vanrolleghem, Peter A

    2011-01-01

    Monte Carlo (MC) simulation appears to be the only currently adopted tool to estimate global sensitivities and uncertainties in wastewater treatment modelling. Such models are highly complex, dynamic and non-linear, requiring long computation times, especially in the scope of MC simulation, due to the large number of simulations usually required. However, no stopping rule to decide on the number of simulations required to achieve a given confidence in the MC simulation results has been adopted so far in the field. In this work, a pragmatic method is proposed to minimize the computation time by using a combination of several criteria. It makes no use of prior knowledge about the model, is very simple, intuitive and can be automated: all convenient features in engineering applications. A case study is used to show an application of the method, and the results indicate that the required number of simulations strongly depends on the model output(s) selected, and on the type and desired accuracy of the analysis conducted. Hence, no prior indication is available regarding the necessary number of MC simulations, but the proposed method is capable of dealing with these variations and stopping the calculations after convergence is reached.

  12. Monte Carlo treatment of resonance-radiation imprisonment in fluorescent lamps—revisited

    Science.gov (United States)

    Anderson, James B.

    2016-12-01

    We reported in 1985 a Monte Carlo treatment of the imprisonment of the 253.7 nm resonance radiation from mercury in the mercury-argon discharge of fluorescent lamps. The calculated spectra of the emitted radiation were found in good agreement with measured spectra. The addition of the isotope mercury-196 to natural mercury was found, also in agreement with experiments, to increase lamp efficiency. In this paper we report the extension of the earlier work with increased accuracy, analysis of photon exit-time distributions, recycling of energy released in quenching, analysis of dynamic similarity for different lamp sizes, variation of Mrozowski transfer rates, prediction and analysis of the hyperfine ultra-violet spectra, and optimization of tailored mercury isotope mixtures for increased lamp efficiency. The spectra were found insensitive to the extent of quenching and recycling. The optimized mixtures were found to increase efficiencies by as much as 5% for several lamp configurations. Optimization without increasing the mercury-196 fraction was found to increase efficiencies by nearly 1% for several configurations.

  13. Monte Carlo treatment of resonance-radiation imprisonment in fluorescent lamps—revisited

    International Nuclear Information System (INIS)

    Anderson, James B

    2016-01-01

    We reported in 1985 a Monte Carlo treatment of the imprisonment of the 253.7 nm resonance radiation from mercury in the mercury–argon discharge of fluorescent lamps. The calculated spectra of the emitted radiation were found in good agreement with measured spectra. The addition of the isotope mercury-196 to natural mercury was found, also in agreement with experiments, to increase lamp efficiency. In this paper we report the extension of the earlier work with increased accuracy, analysis of photon exit-time distributions, recycling of energy released in quenching, analysis of dynamic similarity for different lamp sizes, variation of Mrozowski transfer rates, prediction and analysis of the hyperfine ultra-violet spectra, and optimization of tailored mercury isotope mixtures for increased lamp efficiency. The spectra were found insensitive to the extent of quenching and recycling. The optimized mixtures were found to increase efficiencies by as much as 5% for several lamp configurations. Optimization without increasing the mercury-196 fraction was found to increase efficiencies by nearly 1% for several configurations. (paper)

  14. SU-E-T-173: Clinical Comparison of Treatment Plans and Fallback Plans for Machine Downtime

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, W [University of Texas Health Science Center at San Antonio, San Antonio, TX (United States); Cancer Therapy and Research Center, San Antonio, TX (United States); Papanikolaou, P [University of Texas Health Science Center at San Antonio, San Antonio, TX (United States); Mavroidis, P [University of North Carolina, Chapel Hill, NC (United States); Stathakis, S [Cancer Therapy and Research Center, San Antonio, TX (United States)

    2015-06-15

    Purpose: The purpose of this study was to determine the clinical effectiveness and dosimetric quality of fallback planning in relation to machine downtime. Methods: Plans for a Varian Novalis TX were mimicked, and fallback plans using an Elekta VersaHD machine were generated using a dual arc template. Plans for thirty (n=30) patients of various treatment sites optimized and calculated using RayStation treatment planning system. For each plan, a fall back plan was created and compared to the original plan. A dosimetric evaluation was conducted using the homogeneity index, conformity index, as well as DVH analysis to determine the quality of the fallback plan on a different treatment machine. Fallback plans were optimized for 60 iterations using the imported dose constraints from the original plan DVH to give fallback plans enough opportunity to achieve the dose objectives. Results: The average conformity index and homogeneity index for the NovalisTX plans were 0.76 and 10.3, respectively, while fallback plan values were 0.73 and 11.4. (Homogeneity =1 and conformity=0 for ideal plan) The values to various organs at risk were lower in the fallback plans as compared to the imported plans across most organs at risk. Isodose difference comparisons between plans were also compared and the average dose difference across all plans was 0.12%. Conclusion: The clinical impact of fallback planning is an important aspect to effective treatment of patients. With the complexity of LINACS increasing every year, an option to continue treating during machine downtime remains an essential tool in streamlined treatment execution. Fallback planning allows the clinic to continue to run efficiently should a treatment machine become offline due to maintenance or repair without degrading the quality of the plan all while reducing strain on members of the radiation oncology team.

  15. A semiautomatic tool for prostate segmentation in radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Schulz, Jörn; Skrøvseth, Stein Olav; Tømmerås, Veronika Kristine; Marienhagen, Kirsten; Godtliebsen, Fred

    2014-01-01

    Delineation of the target volume is a time-consuming task in radiotherapy treatment planning, yet essential for a successful treatment of cancers such as prostate cancer. To facilitate the delineation procedure, the paper proposes an intuitive approach for 3D modeling of the prostate by slice-wise best fitting ellipses. The proposed estimate is initialized by the definition of a few control points in a new patient. The method is not restricted to particular image modalities but assumes a smooth shape with elliptic cross sections of the object. A training data set of 23 patients was used to calculate a prior shape model. The mean shape model was evaluated based on the manual contour of 10 test patients. The patient records of training and test data are based on axial T1-weighted 3D fast-field echo (FFE) sequences. The manual contours were considered as the reference model. Volume overlap (Vo), accuracy (Ac) (both ratio, range 0-1, optimal value 1) and Hausdorff distance (HD) (mm, optimal value 0) were calculated as evaluation parameters. The median and median absolute deviation (MAD) between manual delineation and deformed mean best fitting ellipses (MBFE) was Vo (0.9 ± 0.02), Ac (0.81 ± 0.03) and HD (4.05 ± 1.3)mm and between manual delineation and best fitting ellipses (BFE) was Vo (0.96 ± 0.01), Ac (0.92 ± 0.01) and HD (1.6 ± 0.27)mm. Additional results show a moderate improvement of the MBFE results after Monte Carlo Markov Chain (MCMC) method. The results emphasize the potential of the proposed method of modeling the prostate by best fitting ellipses. It shows the robustness and reproducibility of the model. A small sample test on 8 patients suggest possible time saving using the model

  16. Accuracy requirements in radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Buzdar, S. A.; Afzal, M.; Nazir, A.; Gadhi, M. A.

    2013-01-01

    Radiation therapy attempts to deliver ionizing radiation to the tumour and can improve the survival chances and/or quality of life of patients. There are chances of errors and uncertainties in the entire process of radiotherapy that may affect the accuracy and precision of treatment management and decrease degree of conformation. All expected inaccuracies, like radiation dose determination, volume calculation, complete evaluation of the full extent of the tumour, biological behaviour of specific tumour types, organ motion during radiotherapy, imaging, biological/molecular uncertainties, sub-clinical diseases, microscopic spread of the disease, uncertainty in normal tissue responses and radiation morbidity need sound appreciation. Conformity can be increased by reduction of such inaccuracies. With the yearly increase in computing speed and advancement in other technologies the future will provide the opportunity to optimize a greater number of variables and reduce the errors in the treatment planning process. In multi-disciplined task of radiotherapy, efforts are needed to overcome the errors and uncertainty, not only by the physicists but also by radiologists, pathologists and oncologists to reduce molecular and biological uncertainties. The radiation therapy physics is advancing towards an optimal goal that is definitely to improve accuracy where necessary and to reduce uncertainty where possible. (author)

  17. Radiation therapy tolerance doses for treatment planning

    International Nuclear Information System (INIS)

    Lyman, J.T.

    1987-01-01

    To adequately plan acceptable dose distributions for radiation therapy treatments it is necessary to ensure that normal structures do not receive unacceptable doses. Acceptable doses are generally those that are below a stated tolerance dose for development of some level of complication. To support the work sponsored by the National Cancer Institute, data for the tolerance of normal tissues or organs to low-LET radiation has been compiled from a number of sources. These tolerance dose data are ostensibly for uniform irradiation of all or part of an organ, and are for either 5% (TD 5 ) or 50% (TD 50 ) complication probability. The ''size'' of the irradiated organ is variously stated in terms of the absolute volume or the fraction of the organ volume irradiated, or the area or the length of the treatment field. The accuracy of these data is questionable. Much of the data represent doses that one or several experienced therapists have estimated could be safely given rather than quantitative analyses of clinical observations. Because these data have been obtained from multiple sources with possible different criteria for the definition of a complication, there are sometimes different values for what is apparently the same end point. 20 refs., 1 fig., 1 tab

  18. Volume visualization in radiation treatment planning.

    Science.gov (United States)

    Pelizzari, C A; Chen, G T

    2000-12-01

    Radiation treatment planning (RTP), historically an image-intensive discipline and one of the first areas in which 3D information from imaging was clinically applied, has become even more critically dependent on accurate 3D definition of target and non-target structures in recent years with the advent of conformal radiation therapy. In addition to the interactive display of wireframe or shaded surface models of anatomic objects, proposed radiation beams, beam modifying devices, and calculated dose distributions, recently significant use has been made of direct visualization of relevant anatomy from image data. Dedicated systems are commercially available for the purpose of geometrically optimizing beam placement, implementing in virtual reality the functionality of standard radiation therapy simulators. Such "CT simulation" systems rely heavily on 3D visualization and on reprojection of image data to produce simulated radiographs for comparison with either diagnostic-quality radiographs made on a simulator or megavoltage images made using the therapeutic beams themselves. Although calculation and analysis of dose distributions is an important component of radiation treatment design, geometric targeting with optimization based on 3D anatomic information is frequently performed as a separate step independent of dose calculations.

  19. Energy planning of a hospital using Mathematical Programming and Monte Carlo simulation for dealing with uncertainty in the economic parameters

    International Nuclear Information System (INIS)

    Mavrotas, George; Florios, Kostas; Vlachou, Dimitra

    2010-01-01

    For more than 40 years, Mathematical Programming is the traditional tool for energy planning at the national or regional level aiming at cost minimization subject to specific technological, political and demand satisfaction constraints. The liberalization of the energy market along with the ongoing technical progress increased the level of competition and forced energy consumers, even at the unit level, to make their choices among a large number of alternative or complementary energy technologies, fuels and/or suppliers. In the present work we develop a modelling framework for energy planning in units of the tertiary sector giving special emphasis to model reduction and to the uncertainty of the economic parameters. In the given case study, the energy rehabilitation of a hospital in Athens is examined and the installation of a cogeneration, absorption and compression unit is examined for the supply of the electricity, heating and cooling load. The basic innovation of the given energy model lies in the uncertainty modelling through the combined use of Mathematical Programming (namely, Mixed Integer Linear Programming, MILP) and Monte Carlo simulation that permits the risk management for the most volatile parameters of the objective function such as the fuel costs and the interest rate. The results come in the form of probability distributions that provide fruitful information to the decision maker. The effect of model reduction through appropriate data compression of the load data is also addressed.

  20. SU-F-T-444: Quality Improvement Review of Radiation Therapy Treatment Planning in the Presence of Dental Implants

    Energy Technology Data Exchange (ETDEWEB)

    Parenica, H; Ford, J [Texas A& M University, College Station, TX (United States); Mavroidis, P [University of North Carolina, Chapel Hill, NC, (United States); Li, Y; Stathakis, S [Cancer Therapy and Research Center, San Antonio, TX (United States); Papanikolaou, N [University of Texas Health Science Center at San Antonio, San Antonio, TX (United States)

    2016-06-15

    Purpose: To quantify and compare the effect of metallic dental implants (MDI) on dose distributions calculated using Collapsed Cone Convolution Superposition (CCCS) algorithm or a Monte Carlo algorithm (with and without correcting for the density of the MDI). Methods: Seven previously treated patients to the head and neck region were included in this study. The MDI and the streaking artifacts on the CT images were carefully contoured. For each patient a plan was optimized and calculated using the Pinnacle3 treatment planning system (TPS). For each patient two dose calculations were performed, a) with the densities of the MDI and CT artifacts overridden (12 g/cc and 1 g/cc respectively) and b) without density overrides. The plans were then exported to the Monaco TPS and recalculated using Monte Carlo dose calculation algorithm. The changes in dose to PTVs and surrounding Regions of Interest (ROIs) were examined between all plans. Results: The Monte Carlo dose calculation indicated that PTVs received 6% lower dose than the CCCS algorithm predicted. In some cases, the Monte Carlo algorithm indicated that surrounding ROIs received higher dose (up to a factor of 2). Conclusion: Not properly accounting for dental implants can impact both the high dose regions (PTV) and the low dose regions (OAR). This study implies that if MDI and the artifacts are not appropriately contoured and given the correct density, there is potential significant impact on PTV coverage and OAR maximum doses.

  1. SU-F-T-444: Quality Improvement Review of Radiation Therapy Treatment Planning in the Presence of Dental Implants

    International Nuclear Information System (INIS)

    Parenica, H; Ford, J; Mavroidis, P; Li, Y; Stathakis, S; Papanikolaou, N

    2016-01-01

    Purpose: To quantify and compare the effect of metallic dental implants (MDI) on dose distributions calculated using Collapsed Cone Convolution Superposition (CCCS) algorithm or a Monte Carlo algorithm (with and without correcting for the density of the MDI). Methods: Seven previously treated patients to the head and neck region were included in this study. The MDI and the streaking artifacts on the CT images were carefully contoured. For each patient a plan was optimized and calculated using the Pinnacle3 treatment planning system (TPS). For each patient two dose calculations were performed, a) with the densities of the MDI and CT artifacts overridden (12 g/cc and 1 g/cc respectively) and b) without density overrides. The plans were then exported to the Monaco TPS and recalculated using Monte Carlo dose calculation algorithm. The changes in dose to PTVs and surrounding Regions of Interest (ROIs) were examined between all plans. Results: The Monte Carlo dose calculation indicated that PTVs received 6% lower dose than the CCCS algorithm predicted. In some cases, the Monte Carlo algorithm indicated that surrounding ROIs received higher dose (up to a factor of 2). Conclusion: Not properly accounting for dental implants can impact both the high dose regions (PTV) and the low dose regions (OAR). This study implies that if MDI and the artifacts are not appropriately contoured and given the correct density, there is potential significant impact on PTV coverage and OAR maximum doses.

  2. Radiotherapy Treatment Planning for Testicular Seminoma

    International Nuclear Information System (INIS)

    Wilder, Richard B.; Buyyounouski, Mark K.; Efstathiou, Jason A.; Beard, Clair J.

    2012-01-01

    Virtually all patients with Stage I testicular seminoma are cured regardless of postorchiectomy management. For patients treated with adjuvant radiotherapy, late toxicity is a major concern. However, toxicity may be limited by radiotherapy techniques that minimize radiation exposure of healthy normal tissues. This article is an evidence-based review that provides radiotherapy treatment planning recommendations for testicular seminoma. The minority of Stage I patients who choose adjuvant treatment over surveillance may be considered for (1) para-aortic irradiation to 20 Gy in 10 fractions, or (2) carboplatin chemotherapy consisting of area under the curve, AUC = 7 × 1−2 cycles. Two-dimensional radiotherapy based on bony anatomy is a simple and effective treatment for Stage IIA or IIB testicular seminoma. Centers with expertise in vascular and nodal anatomy may consider use of anteroposterior–posteroanterior fields based on three-dimensional conformal radiotherapy instead. For modified dog-leg fields delivering 20 Gy in 10 fractions, clinical studies support placement of the inferior border at the top of the acetabulum. Clinical and nodal mapping studies support placement of the superior border of all radiotherapy fields at the top of the T12 vertebral body. For Stage IIA and IIB patients, an anteroposterior–posteroanterior boost is then delivered to the adenopathy with a 2-cm margin to the block edge. The boost dose consists of 10 Gy in 5 fractions for Stage IIA and 16 Gy in 8 fractions for Stage IIB. Alternatively, bleomycin, etoposide, and cisplatin chemotherapy for 3 cycles or etoposide and cisplatin chemotherapy for 4 cycles may be delivered to Stage IIA or IIB patients (e.g., if they have a horseshoe kidney, inflammatory bowel disease, or a history of radiotherapy).

  3. Radiotherapy Treatment Planning for Testicular Seminoma

    Energy Technology Data Exchange (ETDEWEB)

    Wilder, Richard B., E-mail: richardbwilder@yahoo.com [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL (United States); Buyyounouski, Mark K. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Efstathiou, Jason A. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Beard, Clair J. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Boston, MA (United States)

    2012-07-15

    Virtually all patients with Stage I testicular seminoma are cured regardless of postorchiectomy management. For patients treated with adjuvant radiotherapy, late toxicity is a major concern. However, toxicity may be limited by radiotherapy techniques that minimize radiation exposure of healthy normal tissues. This article is an evidence-based review that provides radiotherapy treatment planning recommendations for testicular seminoma. The minority of Stage I patients who choose adjuvant treatment over surveillance may be considered for (1) para-aortic irradiation to 20 Gy in 10 fractions, or (2) carboplatin chemotherapy consisting of area under the curve, AUC = 7 Multiplication-Sign 1-2 cycles. Two-dimensional radiotherapy based on bony anatomy is a simple and effective treatment for Stage IIA or IIB testicular seminoma. Centers with expertise in vascular and nodal anatomy may consider use of anteroposterior-posteroanterior fields based on three-dimensional conformal radiotherapy instead. For modified dog-leg fields delivering 20 Gy in 10 fractions, clinical studies support placement of the inferior border at the top of the acetabulum. Clinical and nodal mapping studies support placement of the superior border of all radiotherapy fields at the top of the T12 vertebral body. For Stage IIA and IIB patients, an anteroposterior-posteroanterior boost is then delivered to the adenopathy with a 2-cm margin to the block edge. The boost dose consists of 10 Gy in 5 fractions for Stage IIA and 16 Gy in 8 fractions for Stage IIB. Alternatively, bleomycin, etoposide, and cisplatin chemotherapy for 3 cycles or etoposide and cisplatin chemotherapy for 4 cycles may be delivered to Stage IIA or IIB patients (e.g., if they have a horseshoe kidney, inflammatory bowel disease, or a history of radiotherapy).

  4. Development of reference problems for neutron capture therapy treatment planning systems

    International Nuclear Information System (INIS)

    Albritton, J.R.; Kiger, W.S. III

    2006-01-01

    Currently, 5 different treatment planning systems (TPSs) are or have been used in clinical trials of Neutron Capture Therapy (NCT): MacNCTPlan, NCTPlan, BNCT Rtpe, SERA, and JCDS. This paper describes work performed to comprehensively test and compare 4 of these NCT treatment planning systems in order to facilitate the pooling of patient data from the different clinical sites for analysis of the clinical results as well as to provide an important quality assurance tool for existing and future TPSs. Two different phantoms were used to evaluate the planning systems: the modified Snyder head phantom and a large water-filled box, similar to that used in the International Dosimetry Exchange for NCT. The comparison of the resulting dose profile, isodose contours, and dose volume histograms to reference calculations performed with the Monte Carlo radiation transport code MCNP5 yielded many interesting differences. Each of the planning systems deviated from the reference calculations, with the newer systems (i.e., SERA and NCTPlan) most often yielding better agreement than their predecessors (i.e., BNCT Rtpe and MacNCTPlan). The combination of simple phantoms and sources with more complicated and realistic planning conditions has produced a well-rounded and useful suite of test problems for NCT treatment planning system analysis. (author)

  5. Radiation Planning Assistant - A Streamlined, Fully Automated Radiotherapy Treatment Planning System

    Science.gov (United States)

    Court, Laurence E.; Kisling, Kelly; McCarroll, Rachel; Zhang, Lifei; Yang, Jinzhong; Simonds, Hannah; du Toit, Monique; Trauernicht, Chris; Burger, Hester; Parkes, Jeannette; Mejia, Mike; Bojador, Maureen; Balter, Peter; Branco, Daniela; Steinmann, Angela; Baltz, Garrett; Gay, Skylar; Anderson, Brian; Cardenas, Carlos; Jhingran, Anuja; Shaitelman, Simona; Bogler, Oliver; Schmeller, Kathleen; Followill, David; Howell, Rebecca; Nelson, Christopher; Peterson, Christine; Beadle, Beth

    2018-01-01

    The Radiation Planning Assistant (RPA) is a system developed for the fully automated creation of radiotherapy treatment plans, including volume-modulated arc therapy (VMAT) plans for patients with head/neck cancer and 4-field box plans for patients with cervical cancer. It is a combination of specially developed in-house software that uses an application programming interface to communicate with a commercial radiotherapy treatment planning system. It also interfaces with a commercial secondary dose verification software. The necessary inputs to the system are a Treatment Plan Order, approved by the radiation oncologist, and a simulation computed tomography (CT) image, approved by the radiographer. The RPA then generates a complete radiotherapy treatment plan. For the cervical cancer treatment plans, no additional user intervention is necessary until the plan is complete. For head/neck treatment plans, after the normal tissue and some of the target structures are automatically delineated on the CT image, the radiation oncologist must review the contours, making edits if necessary. They also delineate the gross tumor volume. The RPA then completes the treatment planning process, creating a VMAT plan. Finally, the completed plan must be reviewed by qualified clinical staff. PMID:29708544

  6. Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning

    International Nuclear Information System (INIS)

    Unkelbach, Jan; Bortfeld, Thomas; Martin, Benjamin C.; Soukup, Martin

    2009-01-01

    Treatment plans optimized for intensity modulated proton therapy (IMPT) may be very sensitive to setup errors and range uncertainties. If these errors are not accounted for during treatment planning, the dose distribution realized in the patient may by strongly degraded compared to the planned dose distribution. The authors implemented the probabilistic approach to incorporate uncertainties directly into the optimization of an intensity modulated treatment plan. Following this approach, the dose distribution depends on a set of random variables which parameterize the uncertainty, as does the objective function used to optimize the treatment plan. The authors optimize the expected value of the objective function. They investigate IMPT treatment planning regarding range uncertainties and setup errors. They demonstrate that incorporating these uncertainties into the optimization yields qualitatively different treatment plans compared to conventional plans which do not account for uncertainty. The sensitivity of an IMPT plan depends on the dose contributions of individual beam directions. Roughly speaking, steep dose gradients in beam direction make treatment plans sensitive to range errors. Steep lateral dose gradients make plans sensitive to setup errors. More robust treatment plans are obtained by redistributing dose among different beam directions. This can be achieved by the probabilistic approach. In contrast, the safety margin approach as widely applied in photon therapy fails in IMPT and is neither suitable for handling range variations nor setup errors.

  7. Optimization of rotational radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Tulovsky, Vladimir; Ringor, Michael; Papiez, Lech

    1995-01-01

    Purpose: Rotational therapy treatment planning for rotationally symmetric geometry of tumor and healthy tissue provides an important example of testing various approaches to optimizing dose distributions for therapeutic x-ray irradiations. In this article, dose distribution optimization is formulated as a variational problem. This problem is solved analytically and numerically. Methods and Materials: The classical Lagrange method is used to derive equations and inequalities that give necessary conditions for minimizing the mean-square deviation between the ideal dose distribution and the achievable dose distribution. The solution of the resulting integral equation with Cauchy kernel is used to derive analytical formulas for the minimizing irradiation intensity function. Results: The solutions are evaluated numerically and the graphs of the minimizing intensity functions and the corresponding dose distributions are presented. Conclusions: The optimal solutions obtained using the mean-square criterion lead to significant underdosage in some areas of the tumor volume. Possible solutions to this shortcoming are investigated and medically more appropriate criteria for optimization are proposed for future investigations

  8. Federal Facilities Compliance Act, Conceptual Site Treatment Plan. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-29

    This Conceptual Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed in this document include: general discussion of the plan, including the purpose and scope; technical aspects of preparing plans, including the rationale behind the treatability groupings and a discussion of characterization issues; treatment technology needs and treatment options for specific waste streams; low-level mixed waste options; TRU waste options; and future waste generation from restoration activities.

  9. 3-D conformal radiation therapy - Part I: Treatment planning

    International Nuclear Information System (INIS)

    Burman, Chandra M.; Mageras, Gikas S.

    1997-01-01

    Objective: In this presentation we will look into the basic components of 3-dimensional conformal treatment planning, and will discuss planning for some selected sites. We will also review some current and future trends in 3-D treatment planning. External beam radiation therapy is one of the arms of cancer treatment. In the recent years 3-D conformal therapy had significant impact on the practice of external beam radiation therapy. Conformal radiation therapy shapes the high-dose volume so as to conform to the target volume while minimizing the dose to the surrounding normal tissues. The advances that have been achieved in conformal therapy are in part due to the development of 3-D treatment planning, which in turn has capitalized on 3-D imaging for tumor and normal tissue localization, as well as on available computational power for the calculation of 3-D dose distributions, visualization of anatomical and dose volumes, and numerical evaluation of treatment plans. In this course we will give an overview of how 3-D conformal treatments are designed and transferred to the patient. Topics will include: 1) description of the major components of a 3-D treatment planning system, 2) techniques for designing treatments, 3) evaluation of treatment plans using dose distribution displays, dose-volume histograms and normal tissue complication probabilities, 4) implementation of treatments using shaped blocks and multileaf collimators, 5) verification of treatment delivery using portal films and electronic portal imaging devices. We will also discuss some current and future trends in 3-D treatment planning, such as field shaping with multileaf collimation, computerized treatment plan optimization, including the use of nonuniform beam profiles (intensity modulation), and incorporating treatment uncertainties due to patient positioning errors and organ motion into treatment planning process

  10. Doses determination in UCCA treatments with LDR brachytherapy using Monte Carlo methods; Determinacion de dosis en tratamientos de CaCU con braquiterapia LDR usando metodos Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Benites R, J. L. [Centro Estatal de Cancerologia de Nayarit, Comite de Investigacion, Calz. de la Cruz 118 sur, 63000 Tepic, Nayarit (Mexico); Vega C, H. R., E-mail: neutronesrapidos@gmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2017-10-15

    Using Monte Carlo methods, with the code MCNP5, a gynecological mannequin and a vaginal cylinder were modeled. The spatial distribution of absorbed dose rate in uterine cervical cancer (UCCA) treatments was determined under the modality of manual brachytherapy of low dose rate (B-LDR). The design of the model included the gynecological liquid water mannequin, a vaginal cylinder applicator of Lucite (PMMA) with hemisphere termination. The applicator was formed by a vaginal cylinder 10.3 cm long and 2 cm in diameter. This cylinder was mounted on a stainless steel tube 15.2 cm long by 0.6 cm in diameter. A linear array of four radioactive sources of Cesium 137 was inserted into the tube. 13 water cells of 0.5 cm in diameter were modeled around the vaginal cylinder and the absorbed dose was calculated in these. The distribution of the fluence of gamma photons in the mesh was calculated. It was found that the distribution of the absorbed dose is symmetric for cells located in the upper and lower part of the vaginal cylinder. The values of the absorbed dose rate were estimated for the date of manufacture of the sources. This result allows the use of the law of radioactive decay to determine the dose rate at any date of a gynecological treatment of B-LDR. (Author)

  11. Radiation therapy treatment planning: CT, MR imaging and three-dimensional planning

    International Nuclear Information System (INIS)

    Lichter, A.S.

    1987-01-01

    The accuracy and sophistication of radiation therapy treatment planning have increased rapidly in the last decade. Currently, CT-based treatment planning is standard throughout the country. Care must be taken when CT is used for treatment planning because of clear differences between diagnostic scans and scans intended for therapeutic management. The use of CT in radiation therapy planning is discussed and illustrated. MR imaging adds another dimension to treatment planning. The ability to use MR imaging directly in treatment planning involves an additional complex set of capabilities from a treatment planning system. The ability to unwarp the geometrically distorted MR image is a first step. Three-dimensional dose calculations are important to display the dose on sagittal and acoronal sections. The ability to integrate the MR and CT images into a unified radiographic image is critical. CT and MR images are two-dimensional representations of a three-dimensional problem. Through sophisticated computer graphics techniques, radiation therapists are now able to integrate a three-dimensional image of the patient into the treatment planning process. This allows the use of noncoplanar treatment plans and a detailed analysis of tumor and normal tissue anatomy; it is the first step toward a fully conformational treatment planning system. These concepts are illustrated and future research goals outlined

  12. Assessment of PlanIQ Feasibility DVH for head and neck treatment planning.

    Science.gov (United States)

    Fried, David V; Chera, Bhishamjit S; Das, Shiva K

    2017-09-01

    Designing a radiation plan that optimally delivers both target coverage and normal tissue sparing is challenging. There are limited tools to determine what is dosimetrically achievable and frequently the experience of the planner/physician is relied upon to make these determinations. PlanIQ software provides a tool that uses target and organ at risk (OAR) geometry to indicate the difficulty of achieving different points for organ dose-volume histograms (DVH). We hypothesized that PlanIQ Feasibility DVH may aid planners in reducing dose to OARs. Clinically delivered head and neck treatments (clinical plan) were re-planned (re-plan) putting high emphasis on maximally sparing the contralateral parotid gland, contralateral submandibular gland, and larynx while maintaining routine clinical dosimetric objectives. The planner was blinded to the results of the clinically delivered plan as well as the Feasibility DVHs from PlanIQ. The re-plan treatments were designed using 3-arc VMAT in Raystation (RaySearch Laboratories, Sweden). The planner was then given the results from the PlanIQ Feasibility DVH analysis and developed an additional plan incorporating this information using 4-arc VMAT (IQ plan). The DVHs across the three treatment plans were compared with what was deemed "impossible" by PlanIQ's Feasibility DVH (Impossible DVH). The impossible DVH (red) is defined as the DVH generated using the minimal dose that any voxel outside the targets must receive given 100% target coverage. The re-plans performed blinded to PlanIQ Feasibilty DVH achieved superior sparing of aforementioned OARs compared to the clinically delivered plans and resulted in discrepancies from the impossible DVHs by an average of 200-700 cGy. Using the PlanIQ Feasibility DVH led to additionalOAR sparing compared to both the re-plans and clinical plans and reduced the discrepancies from the impossible DVHs to an average of approximately 100 cGy. The dose reduction from clinical to re-plan and re-plan to

  13. Head-and-neck IMRT treatments assessed with a Monte Carlo dose calculation engine

    International Nuclear Information System (INIS)

    Seco, J; Adams, E; Bidmead, M; Partridge, M; Verhaegen, F

    2005-01-01

    IMRT is frequently used in the head-and-neck region, which contains materials of widely differing densities (soft tissue, bone, air-cavities). Conventional methods of dose computation for these complex, inhomogeneous IMRT cases involve significant approximations. In the present work, a methodology for the development, commissioning and implementation of a Monte Carlo (MC) dose calculation engine for intensity modulated radiotherapy (MC-IMRT) is proposed which can be used by radiotherapy centres interested in developing MC-IMRT capabilities for research or clinical evaluations. The method proposes three levels for developing, commissioning and maintaining a MC-IMRT dose calculation engine: (a) development of a MC model of the linear accelerator, (b) validation of MC model for IMRT and (c) periodic quality assurance (QA) of the MC-IMRT system. The first step, level (a), in developing an MC-IMRT system is to build a model of the linac that correctly predicts standard open field measurements for percentage depth-dose and off-axis ratios. Validation of MC-IMRT, level (b), can be performed in a rando phantom and in a homogeneous water equivalent phantom. Ultimately, periodic quality assurance of the MC-IMRT system is needed to verify the MC-IMRT dose calculation system, level (c). Once the MC-IMRT dose calculation system is commissioned it can be applied to more complex clinical IMRT treatments. The MC-IMRT system implemented at the Royal Marsden Hospital was used for IMRT calculations for a patient undergoing treatment for primary disease with nodal involvement in the head-and-neck region (primary treated to 65 Gy and nodes to 54 Gy), while sparing the spinal cord, brain stem and parotid glands. Preliminary MC results predict a decrease of approximately 1-2 Gy in the median dose of both the primary tumour and nodal volumes (compared with both pencil beam and collapsed cone). This is possibly due to the large air-cavity (the larynx of the patient) situated in the centre

  14. Dosimetry audit of radiotherapy treatment planning systems

    International Nuclear Information System (INIS)

    Bulski, Wojciech; Chelminski, Krzysztof; Rostkowska, Joanna

    2015-01-01

    In radiotherapy Treatment Planning Systems (TPS) various calculation algorithms are used. The accuracy of dose calculations has to be verified. Numerous phantom types, detectors and measurement methodologies are proposed to verify the TPS calculations with dosimetric measurements. A heterogeneous slab phantom has been designed within a Coordinated Research Project (CRP) of the IAEA. The heterogeneous phantom was developed in the frame of the IAEA CRP. The phantom consists of frame slabs made with polystyrene and exchangeable inhomogeneity slabs equivalent to bone or lung tissue. Special inserts allow to position thermoluminescent dosimeters (TLD) capsules within the polystyrene slabs below the bone or lung equivalent slabs and also within the lung equivalent material. Additionally, there are inserts that allow to position films or ionisation chamber in the phantom. Ten Polish radiotherapy centres (of 30 in total) were audited during on-site visits. Six different TPSs and five calculation algorithms were examined in the presence of inhomogeneities. Generally, most of the results from TLD were within 5 % tolerance. Differences between doses calculated by TPSs and measured with TLD did not exceed 4 % for bone and polystyrene equivalent materials. Under the lung equivalent material, on the beam axis the differences were lower than 5 %, whereas inside the lung equivalent material, off the beam axis, in some cases they were of around 7 %. The TLD results were confirmed with the ionisation chamber measurements. The comparison results of the calculations and the measurements allow to detect limitations of TPS calculation algorithms. The audits performed with the use of heterogeneous phantom and TLD seem to be an effective tool for detecting the limitations in the TPS performance or beam configuration errors at audited radiotherapy departments. (authors)

  15. Dosimetry audit of radiotherapy treatment planning systems.

    Science.gov (United States)

    Bulski, Wojciech; Chełmiński, Krzysztof; Rostkowska, Joanna

    2015-07-01

    In radiotherapy Treatment Planning Systems (TPS) various calculation algorithms are used. The accuracy of dose calculations has to be verified. Numerous phantom types, detectors and measurement methodologies are proposed to verify the TPS calculations with dosimetric measurements. A heterogeneous slab phantom has been designed within a Coordinated Research Project (CRP) of the IAEA. The heterogeneous phantom was developed in the frame of the IAEA CRP. The phantom consists of frame slabs made with polystyrene and exchangeable inhomogeneity slabs equivalent to bone or lung tissue. Special inserts allow to position thermoluminescent dosimeters (TLD) capsules within the polystyrene slabs below the bone or lung equivalent slabs and also within the lung equivalent material. Additionally, there are inserts that allow to position films or ionisation chamber in the phantom. Ten Polish radiotherapy centres (of 30 in total) were audited during on-site visits. Six different TPSs and five calculation algorithms were examined in the presence of inhomogeneities. Generally, most of the results from TLD were within 5 % tolerance. Differences between doses calculated by TPSs and measured with TLD did not exceed 4 % for bone and polystyrene equivalent materials. Under the lung equivalent material, on the beam axis the differences were lower than 5 %, whereas inside the lung equivalent material, off the beam axis, in some cases they were of around 7 %. The TLD results were confirmed with the ionisation chamber measurements. The comparison results of the calculations and the measurements allow to detect limitations of TPS calculation algorithms. The audits performed with the use of heterogeneous phantom and TLD seem to be an effective tool for detecting the limitations in the TPS performance or beam configuration errors at audited radiotherapy departments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Feature-based plan adaptation for fast treatment planning in scanned ion beam therapy

    International Nuclear Information System (INIS)

    Chen Wenjing; Gemmel, Alexander; Rietzel, Eike

    2013-01-01

    We propose a plan adaptation method for fast treatment plan generation in scanned ion beam therapy. Analysis of optimized treatment plans with carbon ions indicates that the particle number modulation of consecutive rasterspots in depth shows little variation throughout target volumes with convex shape. Thus, we extract a depth-modulation curve (DMC) from existing reference plans and adapt it for creation of new plans in similar treatment situations. The proposed method is tested with seven CT serials of prostate patients and three digital phantom datasets generated with the MATLAB code. Plans are generated with a treatment planning software developed by GSI using single-field uniform dose optimization for all the CT datasets to serve as reference plans and ‘gold standard’. The adapted plans are generated based on the DMC derived from the reference plans of the same patient (intra-patient), different patient (inter-patient) and phantoms (phantom-patient). They are compared with the reference plans and a re-positioning strategy. Generally, in 1 min on a standard PC, either a physical plan or a biological plan can be generated with the adaptive method provided that the new target contour is available. In all the cases, the V95 values of the adapted plans can achieve 97% for either physical or biological plans. V107 is always 0 indicating no overdosage, and target dose homogeneity is above 0.98 in all cases. The dose received by the organs at risk is comparable to the optimized plans. The plan adaptation method has the potential for on-line adaptation to deal with inter-fractional motion, as well as fast off-line treatment planning, with either the prescribed physical dose or the RBE-weighted dose. (paper)

  17. An Approach for Practical Multiobjective IMRT Treatment Planning

    International Nuclear Information System (INIS)

    Craft, David; Halabi, Tarek; Shih, Helen A.; Bortfeld, Thomas

    2007-01-01

    Purpose: To introduce and demonstrate a practical multiobjective treatment planning procedure for intensity-modulated radiation therapy (IMRT) planning. Methods and Materials: The creation of a database of Pareto optimal treatment plans proceeds in two steps. The first step solves an optimization problem that finds a single treatment plan which is close to a set of clinical aspirations. This plan provides an example of what is feasible, and is then used to determine mutually satisfiable hard constraints for the subsequent generation of the plan database. All optimizations are done using linear programming. Results: The two-step procedure is applied to a brain, a prostate, and a lung case. The plan databases created allow for the selection of a final treatment plan based on the observed tradeoffs between the various organs involved. Conclusions: The proposed method reduces the human iteration time common in IMRT treatment planning. Additionally, the database of plans, when properly viewed, allows the decision maker to make an informed final plan selection

  18. Photodynamic therapy in neurosurgery: a proof of concept of treatment planning system

    Science.gov (United States)

    Dupont, C.; Reyns, N.; Mordon, S.; Vermandel, M.

    2017-02-01

    Glioblastoma (GBM) is the most common primary brain tumor. PhotoDynamic Therapy (PDT) appears as an interesting research field to improve GBM treatment. Nevertheless, PDT cannot fit into the current therapeutic modalities according to several reasons: the lack of reliable and reproducible therapy schemes (devices, light delivery system), the lack of consensus on a photosensitizer and the absence of randomized and controlled multicenter clinical trial. The main objective of this study is to bring a common support for PDT planning. Here, we describe a proof of concept of Treatment Planning System (TPS) dedicated to interstitial PDT for GBM treatment. The TPS was developed with the integrated development environment C++ Builder XE8 and the environment ArtiMED, developed in our laboratory. This software enables stereotactic registration of DICOM images, light sources insertion and an accelerated CUDA GPU dosimetry modeling. Although, Monte-Carlo is more robust to describe light diffusion in biological tissue, analytical model accelerated by GPU remains relevant for dose preview or fast reverse planning processes. Finally, this preliminary work proposes a new tool to plan interstitial or intraoperative PDT treatment and might be included in the design of future clinical trials in order to deliver PDT straightforwardly and homogenously in investigator centers.

  19. Implementation and verification of nuclear interactions in a Monte-Carlo code for the Procom-ProGam proton therapy planning system

    International Nuclear Information System (INIS)

    Kostyuchenko, V.I.; Makarova, A.S.; Ryazantsev, O.B.; Samarin, S.I.; Uglov, A.S.

    2013-01-01

    Proton interaction with an exposed object material needs to be modeled with account for three basic processes: electromagnetic stopping of protons in matter, multiple coulomb scattering and nuclear interactions. Just the last type of processes is the topic of this paper. Monte Carlo codes are often used to simulate high-energy particle interaction with matter. However, nuclear interaction models implemented in these codes are rather extensive and their use in treatment planning systems requires huge computational resources. We have selected the IThMC code for its ability to reproduce experiments which measure the distribution of the projected ranges of nuclear secondary particles generated by proton beams in a multi-layer Faraday cup. The multi-layer Faraday cup detectors measure charge rather than dose and allow distinguishing between electromagnetic and nuclear interactions. The event generator used in the IThMC code is faster, but less accurate than any other used in testing. Our model of nuclear reactions demonstrates quite good agreement with experiment in the context of their effect on the Bragg peak in therapeutic applications

  20. Monte Carlo dose distributions for radiosurgery

    International Nuclear Information System (INIS)

    Perucha, M.; Leal, A.; Rincon, M.; Carrasco, E.

    2001-01-01

    The precision of Radiosurgery Treatment planning systems is limited by the approximations of their algorithms and by their dosimetrical input data. This fact is especially important in small fields. However, the Monte Carlo methods is an accurate alternative as it considers every aspect of particle transport. In this work an acoustic neurinoma is studied by comparing the dose distribution of both a planning system and Monte Carlo. Relative shifts have been measured and furthermore, Dose-Volume Histograms have been calculated for target and adjacent organs at risk. (orig.)

  1. A dose homogeneity and conformity evaluation between ViewRay and pinnacle-based linear accelerator IMRT treatment plans

    Directory of Open Access Journals (Sweden)

    Daniel L Saenz

    2014-01-01

    Full Text Available ViewRay, a novel technology providing soft-tissue imaging during radiotherapy is investigated for treatment planning capabilities assessing treatment plan dose homogeneity and conformity compared with linear accelerator plans. ViewRay offers both adaptive radiotherapy and image guidance. The combination of cobalt-60 (Co-60 with 0.35 Tesla magnetic resonance imaging (MRI allows for magnetic resonance (MR-guided intensity-modulated radiation therapy (IMRT delivery with multiple beams. This study investigated head and neck, lung, and prostate treatment plans to understand what is possible on ViewRay to narrow focus toward sites with optimal dosimetry. The goal is not to provide a rigorous assessment of planning capabilities, but rather a first order demonstration of ViewRay planning abilities. Images, structure sets, points, and dose from treatment plans created in Pinnacle for patients in our clinic were imported into ViewRay. The same objectives were used to assess plan quality and all critical structures were treated as similarly as possible. Homogeneity index (HI, conformity index (CI, and volume receiving <20% of prescription dose (DRx were calculated to assess the plans. The 95% confidence intervals were recorded for all measurements and presented with the associated bars in graphs. The homogeneity index (D5/D95 had a 1-5% inhomogeneity increase for head and neck, 3-8% for lung, and 4-16% for prostate. CI revealed a modest conformity increase for lung. The volume receiving 20% of the prescription dose increased 2-8% for head and neck and up to 4% for lung and prostate. Overall, for head and neck Co-60 ViewRay treatments planned with its Monte Carlo treatment planning software were comparable with 6 MV plans computed with convolution superposition algorithm on Pinnacle treatment planning system.

  2. Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation

    NARCIS (Netherlands)

    Vrugt, J.A.; Braak, ter C.J.F.; Clark, M.P.; Hyman, J.M.; Robinson, B.A.

    2008-01-01

    There is increasing consensus in the hydrologic literature that an appropriate framework for streamflow forecasting and simulation should include explicit recognition of forcing and parameter and model structural error. This paper presents a novel Markov chain Monte Carlo (MCMC) sampler, entitled

  3. WE-B-304-03: Biological Treatment Planning

    International Nuclear Information System (INIS)

    Orton, C.

    2015-01-01

    The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor control probability (TCP) with an acceptable normal tissue complication probability (NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. It has been suggested that treatment planning evaluation and optimization would be more effective if they were biologically and not dose/volume based, and this is the claim debated in this month’s Point/Counterpoint. After a brief overview of biologically and DVH based treatment planning by the Moderator Colin Orton, Joseph Deasy (for biological planning) and Charles Mayo (against biological planning) will begin the debate. Some of the arguments in support of biological planning include: this will result in more effective dose distributions for many patients DVH-based measures of plan quality are known to have little predictive value there is little evidence that either D95 or D98 of the PTV is a good predictor of tumor control sufficient validated outcome prediction models are now becoming available and should be used to drive planning and optimization Some of the arguments against biological planning include: several decades of experience with DVH-based planning should not be discarded we do not know enough about the reliability and errors associated with biological models the radiotherapy community in general has little direct experience with side by side comparisons of DVH vs biological metrics and outcomes it is unlikely that a clinician would accept extremely cold regions in a CTV or hot regions in a PTV, despite having acceptable TCP values Learning Objectives: To understand dose/volume based treatment planning and its potential limitations To understand biological metrics such as EUD, TCP, and NTCP To understand biologically based treatment planning and its potential limitations

  4. 2: Local area networks as a multiprocessor treatment planning system

    International Nuclear Information System (INIS)

    Neblett, D.L.; Hogan, S.E.

    1987-01-01

    The creation of a local area network (LAN) of interconnected computers provides an environment of multi computer processors that adds a new dimension to treatment planning. A LAN system provides the opportunity to have two or more computers working on the plan in parallel. With high speed interprocessor transfer, events such as the time consuming task of correcting several individual beams for contours and inhomogeneities can be performed simultaneously; thus, effectively creating a parallel multiprocessor treatment planning system

  5. Nitrate Waste Treatment Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Holterman, Luciana R. [Los Alamos National Laboratory; Martinez, Patrick Thomas [Los Alamos National Laboratory; Garcia, Terrence Kerwin [Los Alamos National Laboratory

    2017-07-05

    This plan is designed to outline the collection and analysis of nitrate salt-bearing waste samples required by the New Mexico Environment Department- Hazardous Waste Bureau in the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit (Permit).

  6. The Trimeric Model: A New Model of Periodontal Treatment Planning

    Science.gov (United States)

    Tarakji, Bassel

    2014-01-01

    Treatment of periodontal disease is a complex and multidisciplinary procedure, requiring periodontal, surgical, restorative, and orthodontic treatment modalities. Several authors attempted to formulate models for periodontal treatment that orders the treatment steps in a logical and easy to remember manner. In this article, we discuss two models of periodontal treatment planning from two of the most well-known textbook in the specialty of periodontics internationally. Then modify them to arrive at a new model of periodontal treatment planning, The Trimeric Model. Adding restorative and orthodontic interrelationships with periodontal treatment allows us to expand this model into the Extended Trimeric Model of periodontal treatment planning. These models will provide a logical framework and a clear order of the treatment of periodontal disease for general practitioners and periodontists alike. PMID:25177662

  7. Matlab Tools: An Alternative to Planning Systems in Brachytherapy Treatments

    International Nuclear Information System (INIS)

    Herrera, Higmar; Rodriguez, Mercedes; Rodriguez, Miguel

    2006-01-01

    This work proposes the use of the Matlab environment to obtain the treatment dose based on the reported data by Krishnaswamy and Liu et al. The comparison with reported measurements is showed for the Amersham source model. For the 3M source model, measurements with TLDs and a Monte Carlo simulation are compared to the data obtained by Matlab. The difference for the Amersham model is well under the 15% recommended by the IAEA and for the 3M model, although the difference is greater, the results are consistent. The good agreement to the reported data allows the Matlab calculations to be used in daily brachytherapy treatments

  8. Accounting for the fringe magnetic field from the bending magnet in a Monte Carlo accelerator treatment head simulation.

    Science.gov (United States)

    O'Shea, Tuathan P; Foley, Mark J; Faddegon, Bruce A

    2011-06-01

    Monte Carlo (MC) simulation can be used for accurate electron beam treatment planning and modeling. Measurement of large electron fields, with the applicator removed and secondary collimator wide open, has been shown to provide accurate simulation parameters, including asymmetry in the measured dose, for the full range of clinical field sizes and patient positions. Recently, disassembly of the treatment head of a linear accelerator has been used to refine the simulation of the electron beam, setting tightly measured constraints on source and geometry parameters used in simulation. The simulation did not explicitly include the known deflection of the electron beam by a fringe magnetic field from the bending magnet, which extended into the treatment head. Instead, the secondary scattering foil and monitor chamber were unrealistically laterally offset to account for the beam deflection. This work is focused on accounting for this fringe magnetic field in treatment head simulation. The magnetic field below the exit window of a Siemens Oncor linear accelerator was measured with a Tesla-meter from 0 to 12 cm from the exit window and 1-3 cm off-axis. Treatment head simulation was performed with the EGSnrc/BEAMnrc code, modified to incorporate the effect of the magnetic field on charged particle transport. Simulations were used to analyze the sensitivity of dose profiles to various sources of asymmetry in the treatment head. This included the lateral spot offset and beam angle at the exit window, the fringe magnetic field and independent lateral offsets of the secondary scattering foil and electron monitor chamber. Simulation parameters were selected within the limits imposed by measurement uncertainties. Calculated dose distributions were then compared with those measured in water. The magnetic field was a maximum at the exit window, increasing from 0.006 T at 6 MeV to 0.020 T at 21 MeV and dropping to approximately 5% of the maximum at the secondary scattering foil. It

  9. SU-D-BRD-04: The Impact of Automatic Radiation Therapy Plan Checks in Treatment Planning

    International Nuclear Information System (INIS)

    Gopan, O; Yang, F; Ford, E

    2015-01-01

    Purpose: The physics plan check verifies various aspects of a treatment plan after dosimetrists have finished creating the plan. Some errors in the plan which are caught by the physics check could be caught earlier in the departmental workflow. The purpose of this project was to evaluate a plan checking script that can be run within the treatment planning system (TPS) by the dosimetrists prior to plan approval and export to the record and verify system. Methods: A script was created in the Pinnacle TPS to automatically check 15 aspects of a plan for clinical practice conformity. The script outputs a list of checks which the plan has passed and a list of checks which the plan has failed so that appropriate adjustments can be made. For this study, the script was run on a total of 108 plans: IMRT (46/108), VMAT (35/108) and SBRT (27/108). Results: Of the plans checked by the script, 77/108 (71%) failed at least one of the fifteen checks. IMRT plans resulted in more failed checks (91%) than VMAT (51%) or SBRT (63%), due to the high failure rate of an IMRT-specific check, which checks that no IMRT segment < 5 MU. The dose grid size and couch removal checks caught errors in 10% and 14% of all plans – errors that ultimately may have resulted in harm to the patient. Conclusion: Approximately three-fourths of the plans being examined contain errors that could be caught by dosimetrists running an automated script embedded in the TPS. The results of this study will improve the departmental workflow by cutting down on the number of plans that, due to these types of errors, necessitate re-planning and re-approval of plans, increase dosimetrist and physician workload and, in urgent cases, inconvenience patients by causing treatment delays

  10. On the conversion of dose to bone to dose to water in radiotherapy treatment planning systems

    Directory of Open Access Journals (Sweden)

    Nick Reynaert

    2018-01-01

    Full Text Available Background and purpose: Conversion factors between dose to medium (Dm,m and dose to water (Dw,w provided by treatment planning systems that model the patient as water with variable electron density are currently based on stopping power ratios. In the current paper it will be illustrated that this conversion method is not correct. Materials and methods: Monte Carlo calculations were performed in a phantom consisting of a 2 cm bone layer surrounded by water. Dw,w was obtained by modelling the bone layer as water with the electron density of bone. Conversion factors between Dw,w and Dm,m were obtained and compared to stopping power ratios and ratios of mass-energy absorption coefficients in regions of electronic equilibrium and interfaces. Calculations were performed for 6 MV and 20 MV photon beams. Results: In the region of electronic equilibrium the stopping power ratio of water to bone (1.11 largely overestimates the conversion obtained using the Monte Carlo calculations (1.06. In that region the MC dose conversion corresponds to the ratio of mass energy absorption coefficients. Near the water to bone interface, the MC ratio cannot be determined from stopping powers or mass energy absorption coefficients. Conclusion: Stopping power ratios cannot be used for conversion from Dm,m to Dw,w provided by treatment planning systems that model the patient as water with variable electron density, either in regions of electronic equilibrium or near interfaces. In regions of electronic equilibrium mass energy absorption coefficient ratios should be used. Conversions at interfaces require detailed MC calculations. Keywords: Dose to water, Monte Carlo, Dosimetry, TPS comparison

  11. Energy modulated electron therapy: Design, implementation, and evaluation of a novel method of treatment planning and delivery

    Science.gov (United States)

    Al-Yahya, Khalid

    Energy modulated electron therapy (EMET) is a promising treatment modality that has the fundamental capabilities to enhance the treatment planning and delivery of superficially located targets. Although it offers advantages over x-ray intensity modulated radiation therapy (IMRT), EMET has not been widely implemented to the same level of accuracy, automation, and clinical routine as its x-ray counterpart. This lack of implementation is attributed to the absence of a remotely automated beam shaping system as well as the deficiency in dosimetric accuracy of clinical electron pencil beam algorithms in the presence of beam modifiers and tissue heterogeneities. In this study, we present a novel technique for treatment planning and delivery of EMET. The delivery is achieved using a prototype of an automated "few leaf electron collimator" (FLEC). It consists of four copper leaves driven by stepper motors which are synchronized with the x-ray jaws in order to form a series of collimated rectangular openings or "fieldlets". Based on Monte Carlo studies, the FLEC has been designed to serve as an accessory tool to the current accelerator equipment. The FLEC was constructed and its operation was fully automated and integrated with the accelerator through an in-house assembled control unit. The control unit is a portable computer system accompanied with customized software that delivers EMET plans after acquiring them from the optimization station. EMET plans are produced based on dose volume constraints that employ Monte Carlo pre-generated and patient-specific kernels which are utilized by an in-house developed optimization algorithm. The structure of the optimization software is demonstrated. Using Monte Carlo techniques to calculate dose allows for accurate modeling of the collimation system as well as the patient heterogeneous geometry and take into account their impact on optimization. The Monte Carlo calculations were validated by comparing them against output

  12. Three dimensional intensity modulated brachytherapy (IMBT): Dosimetry algorithm and inverse treatment planning

    International Nuclear Information System (INIS)

    Shi Chengyu; Guo Bingqi; Cheng, Chih-Yao; Esquivel, Carlos; Eng, Tony; Papanikolaou, Niko

    2010-01-01

    Purpose: The feasibility of intensity modulated brachytherapy (IMBT) to improve dose conformity for irregularly shaped targets has been previously investigated by researchers by means of using partially shielded sources. However, partial shielding does not fully explore the potential of IMBT. The goal of this study is to introduce the concept of three dimensional (3D) intensity modulated brachytherapy and solve two fundamental issues regarding the application of 3D IMBT treatment planning: The dose calculation algorithm and the inverse treatment planning method. Methods: A 3D IMBT treatment planning system prototype was developed using the MATLAB platform. This system consists of three major components: (1) A comprehensive IMBT source calibration method with dosimetric inputs from Monte Carlo (EGSnrc) simulations; (2) a ''modified TG-43'' (mTG-43) dose calculation formalism for IMBT dosimetry; and (3) a physical constraint based inverse IMBT treatment planning platform utilizing a simulated annealing optimization algorithm. The model S700 Axxent electronic brachytherapy source developed by Xoft, Inc. (Fremont, CA), was simulated in this application. Ten intracavitary accelerated partial breast irradiation (APBI) cases were studied. For each case, an ''isotropic plan'' with only optimized source dwell time and a fully optimized IMBT plan were generated and compared to the original plan in various dosimetric aspects, such as the plan quality, planning, and delivery time. The issue of the mechanical complexity of the IMBT applicator is not addressed in this study. Results: IMBT approaches showed superior plan quality compared to the original plans and the isotropic plans to different extents in all studied cases. An extremely difficult case with a small breast and a small distance to the ribs and skin, the IMBT plan minimized the high dose volume V 200 by 16.1% and 4.8%, respectively, compared to the original and the isotropic plans. The conformity index for the

  13. Three dimensional intensity modulated brachytherapy (IMBT): Dosimetry algorithm and inverse treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Cheng, Chih-Yao; Esquivel, Carlos; Eng, Tony; Papanikolaou, Niko [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 (United States); Department of Radiation Oncology, Oklahoma University Health Science Center, Oklahoma City, Oklahoma 73104 (United States); Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 (United States)

    2010-07-15

    Purpose: The feasibility of intensity modulated brachytherapy (IMBT) to improve dose conformity for irregularly shaped targets has been previously investigated by researchers by means of using partially shielded sources. However, partial shielding does not fully explore the potential of IMBT. The goal of this study is to introduce the concept of three dimensional (3D) intensity modulated brachytherapy and solve two fundamental issues regarding the application of 3D IMBT treatment planning: The dose calculation algorithm and the inverse treatment planning method. Methods: A 3D IMBT treatment planning system prototype was developed using the MATLAB platform. This system consists of three major components: (1) A comprehensive IMBT source calibration method with dosimetric inputs from Monte Carlo (EGSnrc) simulations; (2) a ''modified TG-43'' (mTG-43) dose calculation formalism for IMBT dosimetry; and (3) a physical constraint based inverse IMBT treatment planning platform utilizing a simulated annealing optimization algorithm. The model S700 Axxent electronic brachytherapy source developed by Xoft, Inc. (Fremont, CA), was simulated in this application. Ten intracavitary accelerated partial breast irradiation (APBI) cases were studied. For each case, an ''isotropic plan'' with only optimized source dwell time and a fully optimized IMBT plan were generated and compared to the original plan in various dosimetric aspects, such as the plan quality, planning, and delivery time. The issue of the mechanical complexity of the IMBT applicator is not addressed in this study. Results: IMBT approaches showed superior plan quality compared to the original plans and the isotropic plans to different extents in all studied cases. An extremely difficult case with a small breast and a small distance to the ribs and skin, the IMBT plan minimized the high dose volume V{sub 200} by 16.1% and 4.8%, respectively, compared to the original and the

  14. Three dimensional intensity modulated brachytherapy (IMBT): dosimetry algorithm and inverse treatment planning.

    Science.gov (United States)

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Esquivel, Carlos; Eng, Tony; Papanikolaou, Niko

    2010-07-01

    The feasibility of intensity modulated brachytherapy (IMBT) to improve dose conformity for irregularly shaped targets has been previously investigated by researchers by means of using partially shielded sources. However, partial shielding does not fully explore the potential of IMBT. The goal of this study is to introduce the concept of three dimensional (3D) intensity modulated brachytherapy and solve two fundamental issues regarding the application of 3D IMBT treatment planning: The dose calculation algorithm and the inverse treatment planning method. A 3D IMBT treatment planning system prototype was developed using the MATLAB platform. This system consists of three major components: (1) A comprehensive IMBT source calibration method with dosimetric inputs from Monte Carlo (EGSnrc) simulations; (2) a "modified TG-43" (mTG-43) dose calculation formalism for IMBT dosimetry; and (3) a physical constraint based inverse IMBT treatment planning platform utilizing a simulated annealing optimization algorithm. The model S700 Axxent electronic brachytherapy source developed by Xoft, Inc. (Fremont, CA), was simulated in this application. Ten intracavitary accelerated partial breast irradiation (APBI) cases were studied. For each case, an "isotropic plan" with only optimized source dwell time and a fully optimized IMBT plan were generated and compared to the original plan in various dosimetric aspects, such as the plan quality, planning, and delivery time. The issue of the mechanical complexity of the IMBT applicator is not addressed in this study. IMBT approaches showed superior plan quality compared to the original plans and tht isotropic plans to different extents in all studied cases. An extremely difficult case with a small breast and a small distance to the ribs and skin, the IMBT plan minimized the high dose volume V200 by 16.1% and 4.8%, respectively, compared to the original and the isotropic plans. The conformity index for the target was increased by 0.13 and 0

  15. Explicit optimization of plan quality measures in intensity-modulated radiation therapy treatment planning.

    Science.gov (United States)

    Engberg, Lovisa; Forsgren, Anders; Eriksson, Kjell; Hårdemark, Björn

    2017-06-01

    To formulate convex planning objectives of treatment plan multicriteria optimization with explicit relationships to the dose-volume histogram (DVH) statistics used in plan quality evaluation. Conventional planning objectives are designed to minimize the violation of DVH statistics thresholds using penalty functions. Although successful in guiding the DVH curve towards these thresholds, conventional planning objectives offer limited control of the individual points on the DVH curve (doses-at-volume) used to evaluate plan quality. In this study, we abandon the usual penalty-function framework and propose planning objectives that more closely relate to DVH statistics. The proposed planning objectives are based on mean-tail-dose, resulting in convex optimization. We also demonstrate how to adapt a standard optimization method to the proposed formulation in order to obtain a substantial reduction in computational cost. We investigated the potential of the proposed planning objectives as tools for optimizing DVH statistics through juxtaposition with the conventional planning objectives on two patient cases. Sets of treatment plans with differently balanced planning objectives were generated using either the proposed or the conventional approach. Dominance in the sense of better distributed doses-at-volume was observed in plans optimized within the proposed framework. The initial computational study indicates that the DVH statistics are better optimized and more efficiently balanced using the proposed planning objectives than using the conventional approach. © 2017 American Association of Physicists in Medicine.

  16. Tissue classifications in Monte Carlo simulations of patient dose for photon beam tumor treatments

    Science.gov (United States)

    Lin, Mu-Han; Chao, Tsi-Chian; Lee, Chung-Chi; Tung-Chieh Chang, Joseph; Tung, Chuan-Jong

    2010-07-01

    The purpose of this work was to study the calculated dose uncertainties induced by the material classification that determined the interaction cross-sections and the water-to-material stopping-power ratios. Calculations were made for a head- and neck-cancer patient treated with five intensity-modulated radiotherapy fields using 6 MV photon beams. The patient's CT images were reconstructed into two voxelized patient phantoms based on different CT-to-material classification schemes. Comparisons of the depth-dose curve of the anterior-to-posterior field and the dose-volume-histogram of the treatment plan were used to evaluate the dose uncertainties from such schemes. The results indicated that any misassignment of tissue materials could lead to a substantial dose difference, which would affect the treatment outcome. To assure an appropriate material assignment, it is desirable to have different conversion tables for various parts of the body. The assignment of stopping-power ratio should be based on the chemical composition and the density of the material.

  17. Tissue classifications in Monte Carlo simulations of patient dose for photon beam tumor treatments

    International Nuclear Information System (INIS)

    Lin, Mu-Han; Chao, Tsi-Chian; Lee, Chung-Chi; Tung-Chieh Chang, Joseph; Tung, Chuan-Jong

    2010-01-01

    The purpose of this work was to study the calculated dose uncertainties induced by the material classification that determined the interaction cross-sections and the water-to-material stopping-power ratios. Calculations were made for a head- and neck-cancer patient treated with five intensity-modulated radiotherapy fields using 6 MV photon beams. The patient's CT images were reconstructed into two voxelized patient phantoms based on different CT-to-material classification schemes. Comparisons of the depth-dose curve of the anterior-to-posterior field and the dose-volume-histogram of the treatment plan were used to evaluate the dose uncertainties from such schemes. The results indicated that any misassignment of tissue materials could lead to a substantial dose difference, which would affect the treatment outcome. To assure an appropriate material assignment, it is desirable to have different conversion tables for various parts of the body. The assignment of stopping-power ratio should be based on the chemical composition and the density of the material.

  18. Virtual reality image applications for treatment planning in prosthodontic dentistry.

    Science.gov (United States)

    Ogawa, Takumi; Ikawa, Tomoko; Shigeta, Yuko; Kasama, Shintaro; Ando, Eriko; Fukushima, Shunji; Hattori, Asaki; Suzuki, Naoki

    2011-01-01

    For successful occlusal reconstruction, the prosthodontists must take several points into consideration, such as those involving issues with functional and morphological findings and aesthetics. They then must unify this information into a coherent treatment plan. In this present study we focused on prosthodontic treatment and investigated how treatment planning and simulation could be applied to two cases. The personal occlusion condition can be reproduced on the virtual articulator in VR space. In addition, various simulations can be performed that involve prosthetesis design.

  19. Volume definition system for treatment planning

    International Nuclear Information System (INIS)

    Alakuijala, Jyrki; Pekkarinen, Ari; Puurunen, Harri

    1997-01-01

    Purpose: Volume definition is a difficult and time consuming task in 3D treatment planning. We have studied a systems approach for constructing an efficient and reliable set of tools for volume definition. Our intent is to automate body outline, air cavities and bone volume definition and accelerate definition of other anatomical structures. An additional focus is on assisting in definition of CTV and PTV. The primary goals of this work are to cut down the time used in contouring and to improve the accuracy of volume definition. Methods: We used the following tool categories: manual, semi-automatic, automatic, structure management, target volume definition, and visualization tools. The manual tools include mouse contouring tools with contour editing possibilities and painting tools with a scaleable circular brush and an intelligent brush. The intelligent brush adapts its shape to CT value boundaries. The semi-automatic tools consist of edge point chaining, classical 3D region growing of single segment and competitive volume growing of multiple segments. We tuned the volume growing function to take into account both local and global region image values, local volume homogeneity, and distance. Heuristic seeding followed with competitive volume growing finds the body outline, couch and air automatically. The structure management tool stores ICD-O coded structures in a database. The codes have predefined volume growing parameters and thus are able to accommodate the volume growing dissimilarity function for different volume types. The target definition tools include elliptical 3D automargin for CTV to PTV transformation and target volume interpolation and extrapolation by distance transform. Both the CTV and the PTV can overlap with anatomical structures. Visualization tools show the volumes as contours or color wash overlaid on an image and displays voxel rendering or translucent triangle mesh rendering in 3D. Results: The competitive volume growing speeds up the

  20. Manpower Planning for Wastewater Treatment Plants.

    Science.gov (United States)

    Davies, J. Kenneth; And Others

    This document discusses the components necessary in the development of a forecasting process by which manpower needs can be determined and the development of action programs by which the projected needs may be satisfied. The primary focus of this manual is directed at that person in a state agency who has the responsibility for planning the…

  1. Progress of radiotherapy by three-dimensional treatment planning

    International Nuclear Information System (INIS)

    Imada, Hajime; Nomoto, Satoshi; Takahashi, Hiroyuki; Nakata, Hajime

    1998-01-01

    The recent progress of three-dimensional radiation treatment planning was reviewed. And clinical cases such as lung cancer and breast cancer are introduced. In the University of Occupational and Development Health, the treatment system FOCUS which is made up of CT simulator and linac was used mainly. Three-dimensional treatment planning was carried for about 90% of 330 patients who underwent radiotherapy for one year. The target becomes to be accurate and dose distribution with all CT slices in radiation field can be confirmed by using three-dimensional radiation treatment planning apparatus. High dose irradiation localized to tumor part is possible. Relations between total dose and volume of normal tissue and/or tumor can be estimated numerically and easily by DVH. A prediction of indication and affection became possible by this procedure. In conclusion, generalization of three-dimensional radiation treatment planning will bring progress of more effective radiotherapy with less adverse reaction. (K.H.). 21 refs

  2. Automated treatment planning engine for prostate seed implant brachytherapy

    International Nuclear Information System (INIS)

    Yu Yan; Zhang, J.B.Y.; Brasacchio, Ralph A.; Okunieff, Paul G.; Rubens, Deborah J.; Strang, John G.; Soni, Arvind; Messing, Edward M.

    1999-01-01

    Purpose: To develop a computer-intelligent planning engine for automated treatment planning and optimization of ultrasound- and template-guided prostate seed implants. Methods and Materials: The genetic algorithm was modified to reflect the 2D nature of the implantation template. A multi-objective decision scheme was used to rank competing solutions, taking into account dose uniformity and conformity to the planning target volume (PTV), dose-sparing of the urethra and the rectum, and the sensitivity of the resulting dosimetry to seed misplacement. Optimized treatment plans were evaluated using selected dosimetric quantifiers, dose-volume histogram (DVH), and sensitivity analysis based on simulated seed placement errors. These dosimetric planning components were integrated into the Prostate Implant Planning Engine for Radiotherapy (PIPER). Results: PIPER has been used to produce a variety of plans for prostate seed implants. In general, maximization of the minimum peripheral dose (mPD) for given implanted total source strength tended to produce peripherally weighted seed patterns. Minimization of the urethral dose further reduced the loading in the central region of the PTV. Isodose conformity to the PTV was achieved when the set of objectives did not reflect seed positioning uncertainties; the corresponding optimal plan generally required fewer seeds and higher source strength per seed compared to the manual planning experience. When seed placement uncertainties were introduced into the set of treatment planning objectives, the optimal plan tended to reach a compromise between the preplanned outcome and the likelihood of retaining the preferred outcome after implantation. The reduction in the volatility of such seed configurations optimized under uncertainty was verified by sensitivity studies. Conclusion: An automated treatment planning engine incorporating real-time sensitivity analysis was found to be a useful tool in dosimetric planning for prostate

  3. Proposed Site Treatment Plan (PSTP). STP reference document

    International Nuclear Information System (INIS)

    1995-01-01

    The Department of Energy (DOE) is required by Section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (FFCAct), to prepare a plan describing the development of treatment capacities and technologies for treating mixed waste (hazardous/radioactive waste). DOE decided to prepare its site treatment plan in a three phased approach. The first phase, called the Conceptual Site Treatment Plan (CSTP), was issued in October 1993. At the Savannah River Site (SRS) the CSTP described mixed waste streams generated at SRS and listed treatment scenarios for each waste stream utilizing an onsite, offsite DOE, and offsite or onsite commercial or vendor treatment option. The CSTP is followed by the Draft Site Treatment Plan (DSTP), due to be issued in August 1994. The DSTP, the current activity., will narrow the options discussed in the CSTP to a preferred treatment option, if possible, and will include waste streams proposed to be shipped to SRS from other DOE facilities as well as waste streams SRS may send offsite for treatment. The SRS DSTP process has been designed to address treatment options for each of the site's mixed waste streams. The SRS Proposed Site Treatment Plan (PSTP) is due to be issued in February 1995. The compliance order would be derived from the PSTP

  4. Inverse treatment planning based on MRI for HDR prostate brachytherapy

    International Nuclear Information System (INIS)

    Citrin, Deborah; Ning, Holly; Guion, Peter; Li Guang; Susil, Robert C.; Miller, Robert W.; Lessard, Etienne; Pouliot, Jean; Xie Huchen; Capala, Jacek; Coleman, C. Norman; Camphausen, Kevin; Menard, Cynthia

    2005-01-01

    Purpose: To develop and optimize a technique for inverse treatment planning based solely on magnetic resonance imaging (MRI) during high-dose-rate brachytherapy for prostate cancer. Methods and materials: Phantom studies were performed to verify the spatial integrity of treatment planning based on MRI. Data were evaluated from 10 patients with clinically localized prostate cancer who had undergone two high-dose-rate prostate brachytherapy boosts under MRI guidance before and after pelvic radiotherapy. Treatment planning MRI scans were systematically evaluated to derive a class solution for inverse planning constraints that would reproducibly result in acceptable target and normal tissue dosimetry. Results: We verified the spatial integrity of MRI for treatment planning. MRI anatomic evaluation revealed no significant displacement of the prostate in the left lateral decubitus position, a mean distance of 14.47 mm from the prostatic apex to the penile bulb, and clear demarcation of the neurovascular bundles on postcontrast imaging. Derivation of a class solution for inverse planning constraints resulted in a mean target volume receiving 100% of the prescribed dose of 95.69%, while maintaining a rectal volume receiving 75% of the prescribed dose of <5% (mean 1.36%) and urethral volume receiving 125% of the prescribed dose of <2% (mean 0.54%). Conclusion: Systematic evaluation of image spatial integrity, delineation uncertainty, and inverse planning constraints in our procedure reduced uncertainty in planning and treatment

  5. Generating AN Optimum Treatment Plan for External Beam Radiation Therapy.

    Science.gov (United States)

    Kabus, Irwin

    1990-01-01

    The application of linear programming to the generation of an optimum external beam radiation treatment plan is investigated. MPSX, an IBM linear programming software package was used. All data originated from the CAT scan of an actual patient who was treated for a pancreatic malignant tumor before this study began. An examination of several alternatives for representing the cross section of the patient showed that it was sufficient to use a set of strategically placed points in the vital organs and tumor and a grid of points spaced about one half inch apart for the healthy tissue. Optimum treatment plans were generated from objective functions representing various treatment philosophies. The optimum plans were based on allowing for 216 external radiation beams which accounted for wedges of any size. A beam reduction scheme then reduced the number of beams in the optimum plan to a number of beams small enough for implementation. Regardless of the objective function, the linear programming treatment plan preserved about 95% of the patient's right kidney vs. 59% for the plan the hospital actually administered to the patient. The clinician, on the case, found most of the linear programming treatment plans to be superior to the hospital plan. An investigation was made, using parametric linear programming, concerning any possible benefits derived from generating treatment plans based on objective functions made up of convex combinations of two objective functions, however, this proved to have only limited value. This study also found, through dual variable analysis, that there was no benefit gained from relaxing some of the constraints on the healthy regions of the anatomy. This conclusion was supported by the clinician. Finally several schemes were found that, under certain conditions, can further reduce the number of beams in the final linear programming treatment plan.

  6. Treatment planning of implants in posterior quadrants.

    Science.gov (United States)

    Jivraj, S; Chee, W

    2006-07-08

    Differences in anatomy and biomechanics make treatment of posterior quadrants with dental implants substantially different to that of anterior areas. Without implants, when posterior teeth were lost, treatment options included a long span fixed partial denture or a removable prosthesis, especially when no terminal abutment was available. Today, with the use of implants, options are available that allow preservation of unrestored teeth.(1) When teeth are missing, implant supported restorations can be considered the treatment of choice from the perspective of occlusal support, preservation of adjacent teeth and avoidance of a removable partial denture.

  7. Photon beam modelling with Pinnacle3 Treatment Planning System for a Rokus M Co-60 Machine

    International Nuclear Information System (INIS)

    Dulcescu, Mihaela; Murgulet Cristian

    2008-01-01

    The basic relationships of the convolution/superposition dose calculation technique are reviewed, and a modelling technique that can be used for obtaining a satisfactory beam model for a commercially available convolution/superposition-based treatment planning system is described. A fluence energy spectrum for a Co-60 treatment machine obtained from a Monte Carlo simulation was used for modelling the fluence spectrum for a Rokus M machine. In order to achieve this model we measured the depth dose distribution and the dose profiles with a Wellhofer dosimetry system. The primary fluence was iteratively modelled by comparing the computed depth dose curves and beam profiles with the depth dose curves and crossbeam profiles measured in a water phantom. The objective of beam modelling is to build a model of the primary fluence that the patient is exposed to, which can then be used for the calculation of the dose deposited in the patient. (authors)

  8. Optimal partial-arcs in VMAT treatment planning

    International Nuclear Information System (INIS)

    Wala, Jeremiah; Salari, Ehsan; Chen Wei; Craft, David

    2012-01-01

    We present a method for improving the delivery efficiency of VMAT by extending the recently published VMAT treatment planning algorithm vmerge to automatically generate optimal partial-arc plans. A high-quality initial plan is created by solving a convex multicriteria optimization problem using 180 equi-spaced beams. This initial plan is used to form a set of dose constraints, and a set of partial-arc plans is created by searching the space of all possible partial-arc plans that satisfy these constraints. For each partial-arc, an iterative fluence map merging and sequencing algorithm (vmerge) is used to improve the delivery efficiency. Merging continues as long as the dose quality is maintained above a user-defined threshold. The final plan is selected as the partial-arc with the lowest treatment time. The complete algorithm is called pmerge. Partial-arc plans are created using pmerge for a lung, liver and prostate case, with final treatment times of 127, 245 and 147 s. Treatment times using full arcs with vmerge are 211, 357 and 178 s. The mean doses to the critical structures for the vmerge and pmerge plans are kept within 5% of those in the initial plan, and the target volume covered by the prescription isodose is maintained above 98% for the pmerge and vmerge plans. Additionally, we find that the angular distribution of fluence in the initial plans is predictive of the start and end angles of the optimal partial-arc. We conclude that VMAT delivery efficiency can be improved by employing partial-arcs without compromising dose quality, and that partial-arcs are most applicable to cases with non-centralized targets. (paper)

  9. MO-H-19A-01: FEATURED PRESENTATION - Treatment Planning Tool for Radiotherapy with Very High-Energy Electron Beams

    International Nuclear Information System (INIS)

    Bazalova, M; Qu, B; Palma, B; Loo, B; Maxim, P; Hynning, E; Hardemark, B

    2014-01-01

    Purpose: To develop a tool for treatment planning optimization for fast radiotherapy delivered with very high-energy electron beams (VHEE) and to compare VHEE plans to state-of-the-art plans for challenging pelvis and H'N cases. Methods: Treatment planning for radiotherapy delivered with VHEE scanning pencil beams was performed by integrating EGSnrc Monte Carlo (MC) dose calculations with spot scanning optimization run in a research version of RayStation. A Matlab GUI for MC beamlet generation was developed, in which treatment parameters such as the pencil beam size and spacing, energy and number of beams can be selected. Treatment planning study for H'N and pelvis cases was performed and the effect of treatment parameters on the delivered dose distributions was evaluated and compared to the clinical treatment plans. The pelvis case with a 691cm3 PTV was treated with 2-arc 15MV VMAT and the H'N case with four PTVs with total volume of 531cm3 was treated with 4-arc 6MV VMAT. Results: Most studied VHEE plans outperformed VMAT plans. The best pelvis 80MeV VHEE plan with 25 beams resulted in 12% body dose sparing and 8% sparing to the bowel and right femur compared to the VMAT plan. The 100MeV plan was superior to the 150MeV plan. Mixing 100 and 150MeV improved dose sparing to the bladder by 7% compared to either plan. Plans with 16 and 36 beams did not significantly affect the dose distributions compared to 25 beam plans. The best H'N 100MeV VHEE plan decreased mean doses to the brainstem, chiasm, and both globes by 10-42% compared to the VMAT plan. Conclusion: The pelvis and H'N cases suggested that sixteen 100MeV beams might be sufficient specifications of a novel VHEE treatment machine. However, optimum machine parameters will be determined with the presented VHEE treatment-planning tool for a large number of clinical cases. BW Loo and P Maxim received research support from RaySearch Laboratories. E Hynning and B Hardemark are employees of

  10. Conversion of helical tomotherapy plans to step-and-shoot IMRT plans--Pareto front evaluation of plans from a new treatment planning system.

    Science.gov (United States)

    Petersson, Kristoffer; Ceberg, Crister; Engström, Per; Benedek, Hunor; Nilsson, Per; Knöös, Tommy

    2011-06-01

    The resulting plans from a new type of treatment planning system called SharePlan have been studied. This software allows for the conversion of treatment plans generated in a TomoTherapy system for helical delivery, into plans deliverable on C-arm linear accelerators (linacs), which is of particular interest for clinics with a single TomoTherapy unit. The purpose of this work was to evaluate and compare the plans generated in the SharePlan system with the original TomoTherapy plans and with plans produced in our clinical treatment planning system for intensity-modulated radiation therapy (IMRT) on C-arm linacs. In addition, we have analyzed how the agreement between SharePlan and TomoTherapy plans depends on the number of beams and the total number of segments used in the optimization. Optimized plans were generated for three prostate and three head-and-neck (H&N) cases in the TomoTherapy system, and in our clinical treatment planning systems (TPS) used for IMRT planning with step-and-shoot delivery. The TomoTherapy plans were converted into step-and-shoot IMRT plans in SharePlan. For each case, a large number of Pareto optimal plans were created to compare plans generated in SharePlan with plans generated in the Tomotherapy system and in the clinical TPS. In addition, plans were generated in SharePlan for the three head-and-neck cases to evaluate how the plan quality varied with the number of beams used. Plans were also generated with different number of beams and segments for other patient cases. This allowed for an evaluation of how to minimize the number of required segments in the converted IMRT plans without compromising the agreement between them and the original TomoTherapy plans. The plans made in SharePlan were as good as or better than plans from our clinical system, but they were not as good as the original TomoTherapy plans. This was true for both the head-and-neck and the prostate cases, although the differences between the plans for the latter were

  11. Treatment planning considerations in contrast-enhanced radiotherapy: energy and beam aperture optimization

    Energy Technology Data Exchange (ETDEWEB)

    Garnica-Garza, H M, E-mail: hgarnica@cinvestav.mx [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional Unidad Monterrey, Via del Conocimiento 201 Parque de Investigacion e Innovacion Tecnologica, Apodaca NL CP 66600 (Mexico)

    2011-01-21

    It has been shown that the use of kilovoltage x-rays in conjunction with a contrast agent incorporated into the tumor can lead to acceptable treatment plans with regard to the absorbed dose distribution produced in the target as well as in the tissue and organs at risk surrounding it. In this work, several key aspects related to the technology and irradiation techniques necessary to clinically implement this treatment modality are addressed by means of Monte Carlo simulation. The Zubal phantom was used to model a prostate radiotherapy treatment, a challenging site due to the depth of the prostate and the presence of bony structures that must be traversed by the x-ray beam on its way to the target. It is assumed that the concentration levels of the enhancing agent present in the tumor are at or below 10 mg per 1 g of tissue. The Monte Carlo code PENELOPE was used to model a commercial x-ray tube having a tungsten target. X-ray energy spectra for several combinations of peak electron energy and added filtration were obtained. For each energy spectrum, a treatment plan was calculated, with the PENELOPE Monte Carlo code, by modeling the irradiation of the patient as 72 independent conformal beams distributed at intervals of 5{sup 0} around the phantom in order to model a full x-ray source rotation. The Cimmino optimization algorithm was then used to find the optimum beam weight and energy for different treatment strategies. It is shown that for a target dose prescription of 72 Gy covering the whole tumor, the maximum rectal wall and bladder doses are kept below 52 Gy for the largest concentration of contrast agent of 10 mg per 1 g of tissue. It is also shown that concentrations of as little as 5 mg per 1 g of tissue also render dose distributions with excellent sparing of the organs at risk. A treatment strategy to address the presence of non-uniform distributions of the contrast agent in the target is also modeled and discussed.

  12. Towards biology-oriented treatment planning in hadrontherapy

    Czech Academy of Sciences Publication Activity Database

    Kundrát, Pavel

    2006-01-01

    Roč. 122, 1-4 (2006), s. 480-482 ISSN 0144-8420 R&D Projects: GA ČR GA202/05/2728 Institutional research plan: CEZ:AV0Z10100502 Keywords : treatment planning * hadron radiotherapy Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.446, year: 2006

  13. 300 Area waste acid treatment system closure plan. Revision 1

    International Nuclear Information System (INIS)

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan

  14. 300 Area waste acid treatment system closure plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  15. Telemedicine in radiotherapy treatment planning: requirements and applications

    International Nuclear Information System (INIS)

    Olsen, D.R.; Bruland, O.S.; Davis, B.J.

    2000-01-01

    Telemedicine facilitates decentralized radiotherapy services by allowing remote treatment planning and quality assurance of treatment delivery. A prerequisite is digital storage of relevant data and an efficient and reliable telecommunication system between satellite units and the main radiotherapy clinic. The requirements of a telemedicine system in radiotherapy is influenced by the level of support needed. In this paper we differentiate between three categories of telemedicine support in radiotherapy. Level 1 features video conferencing and display of radiotherapy images and dose plans. Level 2 involves replication of selected data from the radiotherapy database - facilitating remote treatment planning and evaluation. Level 3 includes real-time, remote operations, e.g. target volume delineation and treatment planning performed by the team at the satellite unit under supervision and guidance from more experienced colleagues at the main clinic. (author)

  16. The influence of cephalometrics on orthodontic treatment planning

    NARCIS (Netherlands)

    Nijkamp, P.G.; Habets, L.L.M.H.; Aartman, I.H.A.; Zentner, A.

    2008-01-01

    SUMMARY Since its introduction, cephalometrics, i.e. cephalometric radiography and analysis, has been used for orthodontic treatment planning. However, the effectiveness of this diagnostic method remains questionable. A randomized crossover study was designed to assess the infl uence of

  17. SU-E-T-56: Brain Metastasis Treatment Plans for Contrast-Enhanced Synchrotron Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Obeid, L; Adam, J [Grenoble Institut des Neurosciences, La Tronche, Rhone-Alpes (France); Tessier, A [Centre Hospitalier Universitaire, La Tronche, Rhone-Alpes (France); Vautrin, M; Benkebil, M [DOSIsoft, Cachan, Ile de France (France); Sihanath, R [Centre Hospitalier Universitaire, La Tronche, Rhone- Alpes (France)

    2014-06-01

    Purpose: Iodine-enhanced radiotherapy is an innovative treatment combining the selective accumulation of an iodinated contrast agent in brain tumors with irradiations using monochromatic medium energy x-rays. The aim of this study is to compare dynamic stereotactic arc-therapy and iodineenhanced SSRT. Methods: Five patients bearing brain metastasis received a standard helical 3D-scan without iodine. A second scan was acquired 13 min after an 80 g iodine infusion. Two SSRT treatment plans (with/without iodine) were performed for each patient using a dedicated Monte Carlo (MC) treatment planning system (TPS) based on the ISOgray TPS. Ten coplanar beams (6×6 cm2, shaped with collimator) were simulated. MC statistical error objective was less than 5% in the 50% isodose. The dynamic arc-therapy plan was achieved on the Iplan Brainlab TPS. The treatment plan validation criteria were fixed such that 100% of the prescribed dose is delivered at the beam isocentre and the 70% isodose contains the whole target volume. The comparison elements were the 70% isodose volume, the average and maximum doses delivered to organs at risk (OAR): brainstem, optical nerves, chiasma, eyes, skull bone and healthy brain parenchyma. Results: The stereotactic dynamic arc-therapy remains the best technique in terms of dose conformation. Iodine-enhanced SSRT presents similar performances to dynamic arc-therapy with increased brainstem and brain parenchyma sparing. One disadvantage of SSRT is the high dose to the skull bone. Iodine accumulation in metastasis may increase the dose by 20–30%, allowing a normal tissue sparing effect at constant prescribed dose. Treatment without any iodine enhancement (medium-energy stereotactic radiotherapy) is not relevant with degraded HDVs (brain, parenchyma and skull bone) comparing to stereotactic dynamic arc-therapy. Conclusion: Iodine-enhanced SSRT exhibits a good potential for brain metastasis treatment regarding the dose distribution and OAR criteria.

  18. Treatment planning for laser-accelerated very-high energy electrons

    International Nuclear Information System (INIS)

    Fuchs, T; Szymanowski, H; Oelfke, U; Glinec, Y; Rechatin, C; Faure, J; Malka, V

    2009-01-01

    In recent experiments, quasi-monoenergetic and well-collimated very-high energy electron (VHEE) beams were obtained by laser-plasma accelerators. We investigate their potential use for radiation therapy. Monte Carlo simulations are used to study the influence of the experimental characteristics such as beam energy, energy spread and initial angular distribution on the dose distributions. It is found that magnetic focusing of the electron beam improves the lateral penumbra. The dosimetric properties of the laser-accelerated VHEE beams are implemented in our inverse treatment planning system for intensity-modulated treatments. The influence of the beam characteristics on the quality of a prostate treatment plan is evaluated. In comparison to a clinically approved 6 MV IMRT photon plan, a better target coverage is achieved. The quality of the sparing of organs at risk is found to be dependent on the depth. The bladder and rectum are better protected due to the sharp lateral penumbra at low depths, whereas the femoral heads receive a larger dose because of the large scattering amplitude at larger depths.

  19. "SABER": A new software tool for radiotherapy treatment plan evaluation.

    Science.gov (United States)

    Zhao, Bo; Joiner, Michael C; Orton, Colin G; Burmeister, Jay

    2010-11-01

    Both spatial and biological information are necessary in order to perform true optimization of a treatment plan and for predicting clinical outcome. The goal of this work is to develop an enhanced treatment plan evaluation tool which incorporates biological parameters and retains spatial dose information. A software system is developed which provides biological plan evaluation with a novel combination of features. It incorporates hyper-radiosensitivity using the induced-repair model and applies the new concept of dose convolution filter (DCF) to simulate dose wash-out effects due to cell migration, bystander effect, and/or tissue motion during treatment. Further, the concept of spatial DVH (sDVH) is introduced to evaluate and potentially optimize the spatial dose distribution in the target volume. Finally, generalized equivalent uniform dose is derived from both the physical dose distribution (gEUD) and the distribution of equivalent dose in 2 Gy fractions (gEUD2) and the software provides three separate models for calculation of tumor control probability (TCP), normal tissue complication probability (NTCP), and probability of uncomplicated tumor control (P+). TCP, NTCP, and P+ are provided as a function of prescribed dose and multivariable TCP, NTCP, and P+ plots are provided to illustrate the dependence on individual parameters used to calculate these quantities. Ten plans from two clinical treatment sites are selected to test the three calculation models provided by this software. By retaining both spatial and biological information about the dose distribution, the software is able to distinguish features of radiotherapy treatment plans not discernible using commercial systems. Plans that have similar DVHs may have different spatial and biological characteristics and the application of novel tools such as sDVH and DCF within the software may substantially change the apparent plan quality or predicted plan metrics such as TCP and NTCP. For the cases examined

  20. Four-dimensional Monte Carlo simulations demonstrating how the extent of intensity-modulation impacts motion effects in proton therapy lung treatments

    International Nuclear Information System (INIS)

    Dowdell, Stephen; Paganetti, Harald; Grassberger, Clemens

    2013-01-01

    Purpose: To compare motion effects in intensity modulated proton therapy (IMPT) lung treatments with different levels of intensity modulation.Methods: Spot scanning IMPT treatment plans were generated for ten lung cancer patients for 2.5Gy(RBE) and 12Gy(RBE) fractions and two distinct energy-dependent spot sizes (σ∼8–17 mm and ∼2–4 mm). IMPT plans were generated with the target homogeneity of each individual field restricted to 20% ). These plans were compared to full IMPT (IMPT full ), which had no restriction on the single field homogeneity. 4D Monte Carlo simulations were performed upon the patient 4DCT geometry, including deformable image registration and incorporating the detailed timing structure of the proton delivery system. Motion effects were quantified via comparison of the results of the 4D simulations (4D-IMPT 20% , 4D-IMPT full ) with those of a 3D Monte Carlo simulation (3D-IMPT 20% , 3D-IMPT full ) upon the planning CT using the equivalent uniform dose (EUD), V 95 and D 1 -D 99 . The effects in normal lung were quantified using mean lung dose (MLD) and V 90% .Results: For 2.5Gy(RBE), the mean EUD for the large spot size is 99.9%± 2.8% for 4D-IMPT 20% compared to 100.1%± 2.9% for 4D-IMPT full . The corresponding values are 88.6%± 8.7% (4D-IMPT 20% ) and 91.0%± 9.3% (4D-IMPT full ) for the smaller spot size. The EUD value is higher in 69.7% of the considered deliveries for 4D-IMPT full . The V 95 is also higher in 74.7% of the plans for 4D-IMPT full , implying that IMPT full plans experience less underdose compared to IMPT 20% . However, the target dose homogeneity is improved in the majority (67.8%) of plans for 4D-IMPT 20% . The higher EUD and V 95 suggests that the degraded homogeneity in IMPT full is actually due to the introduction of hot spots in the target volume, perhaps resulting from the sharper in-target dose gradients. The greatest variations between the IMPT 20% and IMPT full deliveries are observed for patients with the

  1. Image registration: An essential part of radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Rosenman, Julian G.; Miller, Elizabeth P.; Tracton, Gregg; Cullip, Tim J.

    1998-01-01

    Purpose: We believe that a three-dimensional (3D) registration of nonplanning (diagnostic) imaging data with the planning computed tomography (CT) offers a substantial improvement in tumor target identification for many radiation therapy patients. The purpose of this article is to review and discuss our experience to date. Methods and Materials: We reviewed the charts and treatment planning records of all patients that underwent 3D radiation treatment planning in our department from June 1994 to December 1995, to learn which patients had image registration performed and why it was thought they would benefit from this approach. We also measured how much error would have been introduced into the target definition if the nonplanning imaging data had not been available and only the planning CT had been used. Results: Between June 1994 and December 1995, 106 of 246 (43%) of patients undergoing 3D treatment planning had image registration. Four reasons for performing registration were identified. First, some tumor volumes have better definition on magnetic resonance imaging (MRI) than on CT. Second, a properly contrasted diagnostic CT sometimes can show the tumor target better than can the planning CT. Third, the diagnostic CT or MR may have been preoperative, with the postoperative planning CT no longer showing the tumor. Fourth, the patient may have undergone cytoreductive chemotherapy so that the postchemotherapy planning CT no longer showed the original tumor volume. In patients in whom the planning CT did not show the tumor volume well an analysis was done to determine how the treatment plan was changed with the addition of a better tumor-defining nonplanning CT or MR. We have found that the use of this additional imaging modality changed the tumor location in the treatment plan at least 1.5 cm for half of the patients, and up to 3.0 cm for ((1)/(4)) of the patients. Conclusions: Multimodality and/or sequential imaging can substantially aid in better tumor

  2. 300 Area waste acid treatment system closure plan

    International Nuclear Information System (INIS)

    LUKE, S.N.

    1999-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999

  3. 300 Area waste acid treatment system closure plan

    Energy Technology Data Exchange (ETDEWEB)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  4. Evaluation of a commercial biologically based IMRT treatment planning system

    International Nuclear Information System (INIS)

    Semenenko, Vladimir A.; Reitz, Bodo; Day, Ellen; Qi, X. Sharon; Miften, Moyed; Li, X. Allen

    2008-01-01

    A new inverse treatment planning system (TPS) for external beam radiation therapy with high energy photons is commercially available that utilizes both dose-volume-based cost functions and a selection of cost functions which are based on biological models. The purpose of this work is to evaluate quality of intensity-modulated radiation therapy (IMRT) plans resulting from the use of biological cost functions in comparison to plans designed using a traditional TPS employing dose-volume-based optimization. Treatment planning was performed independently at two institutions. For six cancer patients, including head and neck (one case from each institution), prostate, brain, liver, and rectal cases, segmental multileaf collimator IMRT plans were designed using biological cost functions and compared with clinically used dose-based plans for the same patients. Dose-volume histograms and dosimetric indices, such as minimum, maximum, and mean dose, were extracted and compared between the two types of treatment plans. Comparisons of the generalized equivalent uniform dose (EUD), a previously proposed plan quality index (fEUD), target conformity and heterogeneity indices, and the number of segments and monitor units were also performed. The most prominent feature of the biologically based plans was better sparing of organs at risk (OARs). When all plans from both institutions were combined, the biologically based plans resulted in smaller EUD values for 26 out of 33 OARs by an average of 5.6 Gy (range 0.24 to 15 Gy). Owing to more efficient beam segmentation and leaf sequencing tools implemented in the biologically based TPS compared to the dose-based TPS, an estimated treatment delivery time was shorter in most (five out of six) cases with some plans showing up to 50% reduction. The biologically based plans were generally characterized by a smaller conformity index, but greater heterogeneity index compared to the dose-based plans. Overall, compared to plans based on dose

  5. Sodium-Bearing Waste Treatment, Applied Technology Plan

    International Nuclear Information System (INIS)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-01-01

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology

  6. Sodium-Bearing Waste Treatment, Applied Technology Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-06-01

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology.

  7. Planning of emergency medical treatment in nuclear power plant

    International Nuclear Information System (INIS)

    Kusama, Tomoko

    1989-01-01

    Medical staffs and health physicists have shown deep concerning at the emergency plans of nuclear power plants after the TMI nuclear accident. The most important and basic countermeasure for accidents was preparing appropriate and concrete organization and plans for treatment. We have planed emergency medical treatment for radiation workers in a nuclear power plant institute. The emergency medical treatment at institute consisted of two stages, that is on-site emergency treatment at facility medical service. In first step of planning in each stage, we selected and treatment at facility medical service. In first step of planning in each stage, we selected and analyzed all possible accidents in the institute and discussed on practical treatments for some possible accidents. The manuals of concrete procedure of emergency treatment for some accidents were prepared following discussion and facilities and equipment for medical treatment and decontamination were provided. All workers in the institute had periodical training and drilling of on-site emergency treatment and mastered technique of first aid. Decontamination and operation rooms were provided in the facillity medical service. The main functions at the facility medical service have been carried out by industrial nurses. Industrial nurses have been in close co-operation with radiation safety officers and medical doctors in regional hospital. (author)

  8. Volumetric Modulated Arc Therapy (VMAT) Treatment Planning for Superficial Tumors

    International Nuclear Information System (INIS)

    Zacarias, Albert S.; Brown, Mellonie F.; Mills, Michael D.

    2010-01-01

    The physician's planning objective is often a uniform dose distribution throughout the planning target volume (PTV), including superficial PTVs on or near the surface of a patient's body. Varian's Eclipse treatment planning system uses a progressive resolution optimizer (PRO), version 8.2.23, for RapidArc dynamic multileaf collimator volumetric modulated arc therapy planning. Because the PRO is a fast optimizer, optimization convergence errors (OCEs) produce dose nonuniformity in the superficial area of the PTV. We present a postsurgical cranial case demonstrating the recursive method our clinic uses to produce RapidArc treatment plans. The initial RapidArc treatment plan generated using one 360 o arc resulted in substantial dose nonuniformity in the superficial section of the PTV. We demonstrate the use of multiple arcs to produce improved dose uniformity in this region. We also compare the results of this superficial dose compensation method to the results of a recursive method of dose correction that we developed in-house to correct optimization convergence errors in static intensity-modulated radiation therapy treatment plans. The results show that up to 4 arcs may be necessary to provide uniform dose to the surface of the PTV with the current version of the PRO.

  9. SBNCT plan: A 3-dimensional treatment planning system for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Reinstein, L.E.; Ramsay, E.B.; Gajewski, J.; Ramamoorthy, S.; Meek, A.G.

    1993-01-01

    The need for accurate and comprehensive 3-dimensional treatment planning for boron neutron capture therapy (BNCT) has been debated for the past several years. Although many argue against the need for elaborate and expensive treatment planning programs which mimic conventional radiotherapy planning systems, it is clear that in order to realize significant gains over conventional fractionated radiation therapy, patients must be treated to the edge of normal tissue tolerance. Just how close to this edge is dictated by the uncertainties in dosimetry. Hence the focus of BNCT planning is the determination of dose distribution throughout normal tissue volumes. Although precise geometric manipulation of the epithermal neutron beam is not achievable, the following variables play an important role in BNCT optimization: patient orientation, dose fractionation, number of fields, megawatt-minutes per fraction, use of surface bolus, and use of collimation. Other variables which are not as easily adjustable and would not, therefore, be part of treatment planning optimization, include external patient contour, internal patient heterogeneities, boron compound distributions, and RBE's. The boron neutron capture therapy planning system developed at SUNY Stony Brook (SBNCT-Plan) was designed as an interactive graphic tool to assist the radiation oncologist in generating the optimum plan for a neutron capture treatment

  10. SU-F-303-17: Real Time Dose Calculation of MRI Guided Co-60 Radiotherapy Treatments On Free Breathing Patients, Using a Motion Model and Fast Monte Carlo Dose Calculation

    International Nuclear Information System (INIS)

    Thomas, D; O’Connell, D; Lamb, J; Cao, M; Yang, Y; Agazaryan, N; Lee, P; Low, D

    2015-01-01

    Purpose: To demonstrate real-time dose calculation of free-breathing MRI guided Co−60 treatments, using a motion model and Monte-Carlo dose calculation to accurately account for the interplay between irregular breathing motion and an IMRT delivery. Methods: ViewRay Co-60 dose distributions were optimized on ITVs contoured from free-breathing CT images of lung cancer patients. Each treatment plan was separated into 0.25s segments, accounting for the MLC positions and beam angles at each time point. A voxel-specific motion model derived from multiple fast-helical free-breathing CTs and deformable registration was calculated for each patient. 3D images for every 0.25s of a simulated treatment were generated in real time, here using a bellows signal as a surrogate to accurately account for breathing irregularities. Monte-Carlo dose calculation was performed every 0.25s of the treatment, with the number of histories in each calculation scaled to give an overall 1% statistical uncertainty. Each dose calculation was deformed back to the reference image using the motion model and accumulated. The static and real-time dose calculations were compared. Results: Image generation was performed in real time at 4 frames per second (GPU). Monte-Carlo dose calculation was performed at approximately 1frame per second (CPU), giving a total calculation time of approximately 30 minutes per treatment. Results show both cold- and hot-spots in and around the ITV, and increased dose to contralateral lung as the tumor moves in and out of the beam during treatment. Conclusion: An accurate motion model combined with a fast Monte-Carlo dose calculation allows almost real-time dose calculation of a free-breathing treatment. When combined with sagittal 2D-cine-mode MRI during treatment to update the motion model in real time, this will allow the true delivered dose of a treatment to be calculated, providing a useful tool for adaptive planning and assessing the effectiveness of gated treatments

  11. Dosimetric calculations by Monte Carlo for treatments of radiosurgery with the Leksell Gamma Knife, homogeneous and non homogeneous cases

    International Nuclear Information System (INIS)

    Rojas C, E.L.; Lallena R, A.M.

    2004-01-01

    In this work dose profiles are calculated that are obtained modeling treatments of radiosurgery with the Leksell Gamma Knife. This was made with the simulation code Monte Carlo Penelope for an homogeneous mannequin and one not homogeneous. Its were carried out calculations with the irradiation focus coinciding with the center of the mannequin as in near areas to the bone interface. Each one of the calculations one carries out for the 4 skull treatment that it includes the Gamma Knife and using a model simplified of their 201 sources of 60 Co. It was found that the dose profiles differ of the order of 2% when the isocenter coincides with the center of the mannequin and they ascend to near 5% when the isocenter moves toward the skull. (Author)

  12. Radiobiologically based treatment plan evaluation for prostate seed implants

    Directory of Open Access Journals (Sweden)

    Sotirios Stathakis

    2011-07-01

    Full Text Available Purpose: Accurate prostate low dose-rate brachytherapy treatment plan evaluation is important for future care decisions. Presently, an evaluation is based on dosimetric quantifiers for the tumor and organs at risk. However, these do not account for effects of varying dose-rate, tumor repopulation and other biological effects. In this work, incorporation of the biological response is used to obtain more clinically relevant treatment plan evaluation.Material and methods: Eleven patients were evaluated. Each patient received a 145 Gy implant. Iodine-125 seeds were used and the treatment plans were created on the Prowess system. Based on CT images the post-implant plan was created. In the post-plan, the tumor, urethra, bladder and rectum were contoured. The biologically effective dose was used to determine the tumor control probability and the normal tissue complication probabilities for the urethra, bladder, rectum and surrounding tissue. Results: The average tumor control probability and complication probabilities for the urethra, bladder, rectum and surrounding tissue were 99%, 29%, 0%, 12% and 6%, respectively. These measures provide a simpler means for evaluation and since they include radiobiological factors, they provide more reliable estimation of the treatment outcome. Conclusions: The goal of this work was to create more clinically relevant prostate seed-implant evaluation by incorporating radiobiological measures. This resulted in a simpler descriptor of treatment plan quality and was consistent with patient outcomes.

  13. Modulated electron radiotherapy treatment planning using a photon multileaf collimator for post-mastectomized chest walls

    International Nuclear Information System (INIS)

    Salguero, Francisco Javier; Palma, Bianey; Arrans, Rafael; Rosello, Joan; Leal, Antonio

    2009-01-01

    Background and purpose: To evaluate the feasibility of using a photon MLC (xMLC) for modulated electron radiotherapy treatment (MERT) as an alternative to conventional post-mastectomy chest wall (CW) irradiation. A Monte Carlo (MC) based planning system was developed to overcome the inaccuracy of the 'pencil beam' algorithm. MC techniques are known to accurately calculate the dose distributions of electron beams, allowing the explicit simulation of electron interactions within the MLC. Materials and methods: Four real clinical CW cases were planned using MERT which were compared with the conventional electron treatments based on blocks and by a straightforward approach using the MLC, and not the blocks (as an intermediate step to MERT) to shape the same segments with SSD between 60 and 70 cm depending on PTV size. MC calculations were verified with an array of ionization chambers and radiochromic films in a solid water phantom. Results: Tests based on gamma analysis between MC dose distributions and radiochromic film measurements showed an excellent agreement. Differences in the absolute dose measured with a plane-parallel chamber at a reference point were below 3% for all cases. MERT solution showed a better PTV coverage and a significant reduction of the doses to the organs at risk (OARs). Conclusion: MERT can effectively improve the current electron treatments by obtaining a better PTV coverage and sparing healthy tissues. More directly, block-shaped treatments could be replaced by MLC-shaped non-modulated segments providing similar results.

  14. On treatment of uncertainty in system planning

    International Nuclear Information System (INIS)

    Flage, R.; Aven, T.

    2009-01-01

    In system planning and operation considerable efforts and resources are spent to reduce uncertainties, as a part of project management, uncertainty management and safety management. The basic idea seems to be that uncertainties are purely negative and should be reduced. In this paper we challenge this way of thinking, using a common industry practice as an example. In accordance with this industry practice, three uncertainty interval categories are used: ±40% intervals for the feasibility phase, ±30% intervals for the concept development phase and ±20% intervals for the engineering phase. The problem is that such a regime could easily lead to a conservative management regime encouraging the use of existing methods and tools, as new activities and novel solutions and arrangements necessarily mean increased uncertainties. In the paper we suggest an alternative approach based on uncertainty and risk descriptions, but having no predefined uncertainty reduction structures. The approach makes use of risk assessments and economic optimisation tools such as the expected net present value, but acknowledges the need for broad risk management processes which extend beyond the analyses. Different concerns need to be balanced, including economic aspects, uncertainties and risk, and practicability

  15. Advances in Monte-Carlo code TRIPOLI-4®'s treatment of the electromagnetic cascade

    Science.gov (United States)

    Mancusi, Davide; Bonin, Alice; Hugot, François-Xavier; Malouch, Fadhel

    2018-01-01

    TRIPOLI-4® is a Monte-Carlo particle-transport code developed at CEA-Saclay (France) that is employed in the domains of nuclear-reactor physics, criticality-safety, shielding/radiation protection and nuclear instrumentation. The goal of this paper is to report on current developments, validation and verification made in TRIPOLI-4 in the electron/positron/photon sector. The new capabilities and improvements concern refinements to the electron transport algorithm, the introduction of a charge-deposition score, the new thick-target bremsstrahlung option, the upgrade of the bremsstrahlung model and the improvement of electron angular straggling at low energy. The importance of each of the developments above is illustrated by comparisons with calculations performed with other codes and with experimental data.

  16. Monte Carlo dose calculations for BNCT treatment of diffuse human lung tumours

    International Nuclear Information System (INIS)

    Altieri, S.; Bortolussi, S.; Bruschi, P.

    2006-01-01

    In order to test the possibility to apply BNCT in the core of diffuse lung tumours, dose distribution calculations were made. The simulations were performed with the Monte Carlo code MCNP.4c2, using the male computational phantom Adam, version 07/94. Volumes of interest were voxelized for the tally requests, and results were obtained for tissues with and without Boron. Different collimated neutron sources were tested in order to establish the proper energies, as well as single and multiple beams to maximize neutron flux uniformity inside the target organs. Flux and dose distributions are reported. The use of two opposite epithermal neutron collimated beams insures good levels of dose homogeneity inside the lungs, with a substantially lower radiation dose delivered to surrounding structures. (author)

  17. Comparison of absorbed dose in the cervix carcinoma therapy by brachytherapy of high dose rate using the conventional planning and Monte Carlo simulation; Comparacao da dose absorvida no tratamento do cancer ginecologico por braquiterapia de alta taxa de dose utilizando o planejamento convencional do tratamento e simulacao de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Aneli Oliveira da

    2010-07-01

    This study aims to compare the doses received for patients submitted to brachytherapy High Dose Rate (HDR) brachytherapy, a method of treatment of the cervix carcinoma, performed in the planning system PLATO BPS with the doses obtained by Monte Carlo simulation using the radiation transport code MCNP 5 and one female anthropomorphic phantom based on voxel, the FAX. The implementation of HDR brachytherapy treatment for the cervix carcinoma consists of the insertion of an intrauterine probe and an intravaginal probe (ring or ovoid) and then two radiographs are obtained, anteroposterior (AP) and lateral (LAT) to confirm the position of the applicators in the patient and to allow the treatment planning and the determination of the absorbed dose at points of interest: rectum, bladder, sigmoid and point A, which corresponds anatomically to the crossings of the uterine arteries with ureters The absorbed doses obtained with the code MCNP 5, with the exception of the absorbed dose in the rectum and sigmoid for the simulation considering a point source of {sup 192}Ir, are lower than the absorbed doses from PLATO BPS calculations because the MCNP 5 considers the chemical compositions and densities of FAX body, not considering the medium as water. When considering the Monte Carlo simulation for a source with dimensions equal to that used in the brachytherapy irradiator used in this study, the values of calculated absorbed dose to the bladder, to the rectum, to the right point A and to the left point A were respectively lower than those determined by the treatment planning system in 33.29, 5.01, 22.93 and 19.04%. These values are almost all larger than the maximum acceptable deviation between patient planned and administered doses (5 %). With regard to the rectum and bladder, which are organs that must be protected, the present results are in favor of the radiological protection of patients. The point A, that is on the isodose of 100%, used to tumor treatment, the results

  18. In situ gas treatment technology demonstration test plan

    International Nuclear Information System (INIS)

    Thornton, E.C.; Miller, R.D.

    1996-01-01

    This document defines the objectives and requirements associated with undertaking a field demonstration of an in situ gas treatment appoach to remediation chromate-contaminated soil. The major tasks presented in this plan include the design and development of the surface gas treatment system, performance of permitting activities, and completion of site preparation and field testing activities

  19. Practical application of the tool calculation Monte Carlo MCVerif for checking for radiotherapy treatment

    International Nuclear Information System (INIS)

    Laliena Bielsa, V. M.; Garcia Romero, A.; Villa Gazulla, D.; Ortega Pardilla, P.; Calvo Carrillo, S.; Millan Cebrian, E.; Hernandez Vitorial, A.; Canellas Aznoz, M.

    2013-01-01

    The object of this work is to verify a patient group representative of the usual techniques of 3D conformal radiotherapy and IMRT performed in the radiotherapy service our hospital and thus validate the algorithm used commercial planning system. (Author)

  20. A comparison between anisotropic analytical and multigrid superposition dose calculation algorithms in radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Wu, Vincent W.C.; Tse, Teddy K.H.; Ho, Cola L.M.; Yeung, Eric C.Y.

    2013-01-01

    Monte Carlo (MC) simulation is currently the most accurate dose calculation algorithm in radiotherapy planning but requires relatively long processing time. Faster model-based algorithms such as the anisotropic analytical algorithm (AAA) by the Eclipse treatment planning system and multigrid superposition (MGS) by the XiO treatment planning system are 2 commonly used algorithms. This study compared AAA and MGS against MC, as the gold standard, on brain, nasopharynx, lung, and prostate cancer patients. Computed tomography of 6 patients of each cancer type was used. The same hypothetical treatment plan using the same machine and treatment prescription was computed for each case by each planning system using their respective dose calculation algorithm. The doses at reference points including (1) soft tissues only, (2) bones only, (3) air cavities only, (4) soft tissue-bone boundary (Soft/Bone), (5) soft tissue-air boundary (Soft/Air), and (6) bone-air boundary (Bone/Air), were measured and compared using the mean absolute percentage error (MAPE), which was a function of the percentage dose deviations from MC. Besides, the computation time of each treatment plan was recorded and compared. The MAPEs of MGS were significantly lower than AAA in all types of cancers (p<0.001). With regards to body density combinations, the MAPE of AAA ranged from 1.8% (soft tissue) to 4.9% (Bone/Air), whereas that of MGS from 1.6% (air cavities) to 2.9% (Soft/Bone). The MAPEs of MGS (2.6%±2.1) were significantly lower than that of AAA (3.7%±2.5) in all tissue density combinations (p<0.001). The mean computation time of AAA for all treatment plans was significantly lower than that of the MGS (p<0.001). Both AAA and MGS algorithms demonstrated dose deviations of less than 4.0% in most clinical cases and their performance was better in homogeneous tissues than at tissue boundaries. In general, MGS demonstrated relatively smaller dose deviations than AAA but required longer computation time

  1. A preliminary Monte Carlo study for the treatment head of a carbon-ion radiotherapy facility using TOPAS

    Science.gov (United States)

    Liu, Hongdong; Zhang, Lian; Chen, Zhi; Liu, Xinguo; Dai, Zhongying; Li, Qiang; Xu, Xie George

    2017-09-01

    In medical physics it is desirable to have a Monte Carlo code that is less complex, reliable yet flexible for dose verification, optimization, and component design. TOPAS is a newly developed Monte Carlo simulation tool which combines extensive radiation physics libraries available in Geant4 code, easyto-use geometry and support for visualization. Although TOPAS has been widely tested and verified in simulations of proton therapy, there has been no reported application for carbon ion therapy. To evaluate the feasibility and accuracy of TOPAS simulations for carbon ion therapy, a licensed TOPAS code (version 3_0_p1) was used to carry out a dosimetric study of therapeutic carbon ions. Results of depth dose profile based on different physics models have been obtained and compared with the measurements. It is found that the G4QMD model is at least as accurate as the TOPAS default BIC physics model for carbon ions, but when the energy is increased to relatively high levels such as 400 MeV/u, the G4QMD model shows preferable performance. Also, simulations of special components used in the treatment head at the Institute of Modern Physics facility was conducted to investigate the Spread-Out dose distribution in water. The physical dose in water of SOBP was found to be consistent with the aim of the 6 cm ridge filter.

  2. SU-F-T-564: 3 Year Experience of Treatment Plan QualityAssurance for Vero SBRT Patients

    International Nuclear Information System (INIS)

    Su, Z; Li, Z; Mamalui, M

    2016-01-01

    Purpose: To verify treatment plan monitor units from iPlan treatment planning system for Vero Stereotactic Body Radiotherapy (SBRT) treatment using both software-based and (homogeneous and heterogeneous) phantom-based approaches. Methods: Dynamic conformal arcs (DCA) were used for SBRT treatment of oligometastasis patients using Vero linear accelerator. For each plan, Monte Carlo calculated treatment plans MU (prescribed dose to water with 1% variance) is verified first by RadCalc software with 3% difference threshold. Beyond 3% differences, treatment plans were copied onto (homogeneous) Scanditronix phantom for non-lung patients and copied onto (heterogeneous) CIRS phantom for lung patients and the corresponding plan dose was measured using a cc01 ion chamber. The difference between the planed and measured dose was recorded. For the past 3 years, we have treated 180 patients with 315 targets. Out of these patients, 99 targets treatment plan RadCalc calculation exceeded 3% threshold and phantom based measurements were performed with 26 plans using Scanditronix phantom and 73 plans using CIRS phantom. Mean and standard deviation of the dose differences were obtained and presented. Results: For all patient RadCalc calculations, the mean dose difference is 0.76% with a standard deviation of 5.97%. For non-lung patient plan Scanditronix phantom measurements, the mean dose difference is 0.54% with standard deviation of 2.53%; for lung patient plan CIRS phantom measurements, the mean dose difference is −0.04% with a standard deviation of 1.09%; The maximum dose difference is 3.47% for Scanditronix phantom measurements and 3.08% for CIRS phantom measurements. Conclusion: Limitations in secondary MU check software lead to perceived large dose discrepancies for some of the lung patient SBRT treatment plans. Homogeneous and heterogeneous phantoms were used in plan quality assurance for non-lung patients and lung patients, respectively. Phantom based QA showed the relative

  3. SU-F-T-564: 3 Year Experience of Treatment Plan QualityAssurance for Vero SBRT Patients

    Energy Technology Data Exchange (ETDEWEB)

    Su, Z; Li, Z [University of Florida, Jacksonville, FL (United States); Mamalui, M [University of Florida/Radiation Oncology, Jacksonville, FL (United States)

    2016-06-15

    Purpose: To verify treatment plan monitor units from iPlan treatment planning system for Vero Stereotactic Body Radiotherapy (SBRT) treatment using both software-based and (homogeneous and heterogeneous) phantom-based approaches. Methods: Dynamic conformal arcs (DCA) were used for SBRT treatment of oligometastasis patients using Vero linear accelerator. For each plan, Monte Carlo calculated treatment plans MU (prescribed dose to water with 1% variance) is verified first by RadCalc software with 3% difference threshold. Beyond 3% differences, treatment plans were copied onto (homogeneous) Scanditronix phantom for non-lung patients and copied onto (heterogeneous) CIRS phantom for lung patients and the corresponding plan dose was measured using a cc01 ion chamber. The difference between the planed and measured dose was recorded. For the past 3 years, we have treated 180 patients with 315 targets. Out of these patients, 99 targets treatment plan RadCalc calculation exceeded 3% threshold and phantom based measurements were performed with 26 plans using Scanditronix phantom and 73 plans using CIRS phantom. Mean and standard deviation of the dose differences were obtained and presented. Results: For all patient RadCalc calculations, the mean dose difference is 0.76% with a standard deviation of 5.97%. For non-lung patient plan Scanditronix phantom measurements, the mean dose difference is 0.54% with standard deviation of 2.53%; for lung patient plan CIRS phantom measurements, the mean dose difference is −0.04% with a standard deviation of 1.09%; The maximum dose difference is 3.47% for Scanditronix phantom measurements and 3.08% for CIRS phantom measurements. Conclusion: Limitations in secondary MU check software lead to perceived large dose discrepancies for some of the lung patient SBRT treatment plans. Homogeneous and heterogeneous phantoms were used in plan quality assurance for non-lung patients and lung patients, respectively. Phantom based QA showed the relative

  4. Dosimetric consequences of planning lung treatments on 4DCT average reconstruction to represent a moving tumour

    International Nuclear Information System (INIS)

    Dunn, L.F.; Taylor, M.L.; Kron, T.; Franich, R.

    2010-01-01

    Full text: Anatomic motion during a radiotherapy treatment is one of the more significant challenges in contemporary radiation therapy. For tumours of the lung, motion due to patient respiration makes both accurate planning and dose delivery difficult. One approach is to use the maximum intensity projection (MIP) obtained from a 40 computed tomography (CT) scan and then use this to determine the treatment volume. The treatment is then planned on a 4DCT average reco struction, rather than assuming the entire ITY has a uniform tumour density. This raises the question: how well does planning on a 'blurred' distribution of density with CT values greater than lung density but less than tumour density match the true case of a tumour moving within lung tissue? The aim of this study was to answer this question, determining the dosimetric impact of using a 4D-CT average reconstruction as the basis for a radiotherapy treatment plan. To achieve this, Monte-Carlo sim ulations were undertaken using GEANT4. The geometry consisted of a tumour (diameter 30 mm) moving with a sinusoidal pattern of amplitude = 20 mm. The tumour's excursion occurs within a lung equivalent volume beyond a chest wall interface. Motion was defined parallel to a 6 MY beam. This was then compared to a single oblate tumour of a magnitude determined by the extremes of the tumour motion. The variable density of the 4DCT average tumour is simulated by a time-weighted average, to achieve the observed density gradient. The generic moving tumour geometry is illustrated in the Figure.

  5. Precision IORT - Image guided intraoperative radiation therapy (igIORT) using online treatment planning including tissue heterogeneity correction.

    Science.gov (United States)

    Schneider, Frank; Bludau, Frederic; Clausen, Sven; Fleckenstein, Jens; Obertacke, Udo; Wenz, Frederik

    2017-05-01

    To the present date, IORT has been eye and hand guided without treatment planning and tissue heterogeneity correction. This limits the precision of the application and the precise documentation of the location and the deposited dose in the tissue. Here we present a set-up where we use image guidance by intraoperative cone beam computed tomography (CBCT) for precise online Monte Carlo treatment planning including tissue heterogeneity correction. An IORT was performed during balloon kyphoplasty using a dedicated Needle Applicator. An intraoperative CBCT was registered with a pre-op CT. Treatment planning was performed in Radiance using a hybrid Monte Carlo algorithm simulating dose in homogeneous (MCwater) and heterogeneous medium (MChet). Dose distributions on CBCT and pre-op CT were compared with each other. Spinal cord and the metastasis doses were evaluated. The MCwater calculations showed a spherical dose distribution as expected. The minimum target dose for the MChet simulations on pre-op CT was increased by 40% while the maximum spinal cord dose was decreased by 35%. Due to the artefacts on the CBCT the comparison between MChet simulations on CBCT and pre-op CT showed differences up to 50% in dose. igIORT and online treatment planning improves the accuracy of IORT. However, the current set-up is limited by CT artefacts. Fusing an intraoperative CBCT with a pre-op CT allows the combination of an accurate dose calculation with the knowledge of the correct source/applicator position. This method can be also used for pre-operative treatment planning followed by image guided surgery. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Knowledge-based radiation therapy (KBRT) treatment planning versus planning by experts: validation of a KBRT algorithm for prostate cancer treatment planning

    International Nuclear Information System (INIS)

    Nwankwo, Obioma; Mekdash, Hana; Sihono, Dwi Seno Kuncoro; Wenz, Frederik; Glatting, Gerhard

    2015-01-01

    A knowledge-based radiation therapy (KBRT) treatment planning algorithm was recently developed. The purpose of this work is to investigate how plans that are generated with the objective KBRT approach compare to those that rely on the judgment of the experienced planner. Thirty volumetric modulated arc therapy plans were randomly selected from a database of prostate plans that were generated by experienced planners (expert plans). The anatomical data (CT scan and delineation of organs) of these patients and the KBRT algorithm were given to a novice with no prior treatment planning experience. The inexperienced planner used the knowledge-based algorithm to predict the dose that the OARs receive based on their proximity to the treated volume. The population-based OAR constraints were changed to the predicted doses. A KBRT plan was subsequently generated. The KBRT and expert plans were compared for the achieved target coverage and OAR sparing. The target coverages were compared using the Uniformity Index (UI), while 5 dose-volume points (D 10 , D 30, D 50 , D 70 and D 90 ) were used to compare the OARs (bladder and rectum) doses. Wilcoxon matched-pairs signed rank test was used to check for significant differences (p < 0.05) between both datasets. The KBRT and expert plans achieved mean UI values of 1.10 ± 0.03 and 1.10 ± 0.04, respectively. The Wilcoxon test showed no statistically significant difference between both results. The D 90 , D 70, D 50 , D 30 and D 10 values of the two planning strategies, and the Wilcoxon test results suggests that the KBRT plans achieved a statistically significant lower bladder dose (at D 30 ), while the expert plans achieved a statistically significant lower rectal dose (at D 10 and D 30 ). The results of this study show that the KBRT treatment planning approach is a promising method to objectively incorporate patient anatomical variations in radiotherapy treatment planning

  7. Photon penetration depth in human brain for light stimulation and treatment: A realistic Monte Carlo simulation study

    Directory of Open Access Journals (Sweden)

    Ting Li

    2017-09-01

    Full Text Available Light has been clinically utilized as a stimulation in medical treatment, such as Low-level laser therapy and photodynamic therapy, which has been more and more widely accepted in public. The penetration depth of the treatment light is important for precision treatment and safety control. The issue of light penetration has been highlighted in biomedical optics field for decades. However, quantitative research is sparse and even there are conflicts of view on the capability of near-infrared light penetration into brain tissue. This study attempts to quantitatively revisit this issue by innovative high-realistic 3D Monte Carlo modeling of stimulated light penetration within high-precision Visible Chinese human head. The properties of light, such as its wavelength, illumination profile and size are concern in this study. We made straightforward and quantitative comparisons among the effects by the light properties (i.e., wavelengths: 660, 810 and 980nm; beam types: Gaussian and flat beam; beam diameters: 0, 2, 4 and 6cm which are in the range of light treatment. The findings include about 3% of light dosage within brain tissue; the combination of Gaussian beam and 810nm light make the maximum light penetration (>5cm, which allows light to cross through gray matter into white mater. This study offered us, the first time as we know, quantitative guide for light stimulation parameter optimization in medical treatment.

  8. Linking computer-aided design (CAD) to Geant4-based Monte Carlo simulations for precise implementation of complex treatment head geometries

    International Nuclear Information System (INIS)

    Constantin, Magdalena; Constantin, Dragos E; Keall, Paul J; Narula, Anisha; Svatos, Michelle; Perl, Joseph

    2010-01-01

    Most of the treatment head components of medical linear accelerators used in radiation therapy have complex geometrical shapes. They are typically designed using computer-aided design (CAD) applications. In Monte Carlo simulations of radiotherapy beam transport through the treatment head components, the relevant beam-generating and beam-modifying devices are inserted in the simulation toolkit using geometrical approximations of these components. Depending on their complexity, such approximations may introduce errors that can be propagated throughout the simulation. This drawback can be minimized by exporting a more precise geometry of the linac components from CAD and importing it into the Monte Carlo simulation environment. We present a technique that links three-dimensional CAD drawings of the treatment head components to Geant4 Monte Carlo simulations of dose deposition. (note)

  9. Prostate HDR brachytherapy catheter displacement between planning and treatment delivery

    International Nuclear Information System (INIS)

    Whitaker, May; Hruby, George; Lovett, Aimee; Patanjali, Nitya

    2011-01-01

    Background and purpose: HDR brachytherapy is used as a conformal boost for treating prostate cancer. Given the large doses delivered, it is critical that the volume treated matches that planned. Our outpatient protocol comprises two 9 Gy fractions, two weeks apart. We prospectively assessed catheter displacement between CT planning and treatment delivery. Materials and methods: Three fiducial markers and the catheters were implanted under transrectal ultrasound guidance. Metal marker wires were inserted into 4 reference catheters before CT; marker positions relative to each other and to the marker wires were measured from the CT scout. Measurements were repeated immediately prior to treatment delivery using pelvic X-ray with marker wires in the same reference catheters. Measurements from CT scout and film were compared. For displacements of 5 mm or more, indexer positions were adjusted prior to treatment delivery. Results: Results are based on 48 implants, in 25 patients. Median time from planning CT to treatment delivery was 254 min (range 81–367 min). Median catheter displacement was 7.5 mm (range −2.9–23.9 mm), 67% of implants had displacement of 5 mm or greater. Displacements were predominantly caudal. Conclusions: Catheter displacement can occur in the 1–3 h between the planning CT scan and treatment. It is recommended that departments performing HDR prostate brachytherapy verify catheter positions immediately prior to treatment delivery.

  10. Orthognathic Surgery: Planning and treatment with illustration on six cases

    International Nuclear Information System (INIS)

    AiRuhaimi, K; Nwoku, A. L; Shaikh, H. S

    1991-01-01

    Almost all conferences for plastic and maxillofacial surgery discuss reports on several methods of orthognathic surgery, planning, success results, and complications of the different procedures carried out to correct patient's soft and hard tissues frontal profiles and occlusal discrepancies. Various principles are involved in the diagnosis and treatment of facial deformities. However, the most important consideration, after all, is the final accepted aesthetic and functional requirements and stability of the moved segments. The objective of this paper is to give the basic principles of treatment planning for correcting facial discrepancies, surgical approach to different cases, and the methods to increase stability of the moved segments. Six cases are included to illustrate the different aspects of treatment planning, surgical management, and stabilization methods. (author)

  11. Development of Consensus Treatment Plans for Juvenile Localized Scleroderma

    Science.gov (United States)

    Li, Suzanne C.; Torok, Kathryn S.; Pope, Elena; Dedeoglu, Fatma; Hong, Sandy; Jacobe, Heidi T.; Rabinovich, C. Egla; Laxer, Ronald M.; Higgins, Gloria C.; Ferguson, Polly J.; Lasky, Andrew; Baszis, Kevin; Becker, Mara; Campillo, Sarah; Cartwright, Victoria; Cidon, Michael; Inman, Christi J; Jerath, Rita; O'Neil, Kathleen M.; Vora, Sheetal; Zeft, Andrew; Wallace, Carol A.; Ilowite, Norman T.; Fuhlbrigge, Robert C

    2013-01-01

    Objective To develop standardized treatment plans, clinical assessments, and response criteria for active, moderate to high severity juvenile localized scleroderma (jLS). Background jLS is a chronic inflammatory skin disorder associated with substantial morbidity and disability. Although a wide range of therapeutic strategies have been reported in the literature, a lack of agreement on treatment specifics and accepted methods for clinical assessment of have made it difficult to compare approaches and identify optimal therapy. Methods A core group of pediatric rheumatologists, dermatologists and a lay advisor was engaged by the Childhood Arthritis and Rheumatology Research Alliance (CARRA) to develop standardized treatment plans and assessment parameters for jLS using consensus methods/nominal group techniques. Recommendations were validated in two face-to-face conferences with a larger group of practitioners with expertise in jLS and with the full membership of CARRA, which encompasses the majority of pediatric rheumatologists in the U.S and Canada. Results Consensus was achieved on standardized treatment plans that reflect the prevailing treatment practices of CARRA members. Standardized clinical assessment methods and provisional treatment response criteria were also developed. Greater than 90% of pediatric rheumatologists responding to a survey (67% of CARRA membership) affirmed the final recommendations and agreed to utilize these consensus plans to treat patients with jLS. Conclusions Using consensus methodology, we have developed standardized treatment plans and assessment methods for jLS. The high level of support among pediatric rheumatologists will support future comparative effectiveness studies and enable the development of evidence-based guidelines for the treatment of jLS. PMID:22505322

  12. SU-D-BRD-03: Improving Plan Quality with Automation of Treatment Plan Checks

    International Nuclear Information System (INIS)

    Covington, E; Younge, K; Chen, X; Lee, C; Matuszak, M; Kessler, M; Acosta, E; Orow, A; Filpansick, S; Moran, J; Keranen, W

    2015-01-01

    Purpose: To evaluate the effectiveness of an automated plan check tool to improve first-time plan quality as well as standardize and document performance of physics plan checks. Methods: The Plan Checker Tool (PCT) uses the Eclipse Scripting API to check and compare data from the treatment planning system (TPS) and treatment management system (TMS). PCT was created to improve first-time plan quality, reduce patient delays, increase efficiency of our electronic workflow, and to standardize and partially automate plan checks in the TPS. A framework was developed which can be configured with different reference values and types of checks. One example is the prescribed dose check where PCT flags the user when the planned dose and the prescribed dose disagree. PCT includes a comprehensive checklist of automated and manual checks that are documented when performed by the user. A PDF report is created and automatically uploaded into the TMS. Prior to and during PCT development, errors caught during plan checks and also patient delays were tracked in order to prioritize which checks should be automated. The most common and significant errors were determined. Results: Nineteen of 33 checklist items were automated with data extracted with the PCT. These include checks for prescription, reference point and machine scheduling errors which are three of the top six causes of patient delays related to physics and dosimetry. Since the clinical roll-out, no delays have been due to errors that are automatically flagged by the PCT. Development continues to automate the remaining checks. Conclusion: With PCT, 57% of the physics plan checklist has been partially or fully automated. Treatment delays have declined since release of the PCT for clinical use. By tracking delays and errors, we have been able to measure the effectiveness of automating checks and are using this information to prioritize future development. This project was supported in part by P01CA059827

  13. SU-D-BRD-03: Improving Plan Quality with Automation of Treatment Plan Checks

    Energy Technology Data Exchange (ETDEWEB)

    Covington, E; Younge, K; Chen, X; Lee, C; Matuszak, M; Kessler, M; Acosta, E; Orow, A; Filpansick, S; Moran, J [University of Michigan Hospital and Health System, Ann Arbor, MI (United States); Keranen, W [Varian Medical Systems, Palo Alto, CA (United States)

    2015-06-15

    Purpose: To evaluate the effectiveness of an automated plan check tool to improve first-time plan quality as well as standardize and document performance of physics plan checks. Methods: The Plan Checker Tool (PCT) uses the Eclipse Scripting API to check and compare data from the treatment planning system (TPS) and treatment management system (TMS). PCT was created to improve first-time plan quality, reduce patient delays, increase efficiency of our electronic workflow, and to standardize and partially automate plan checks in the TPS. A framework was developed which can be configured with different reference values and types of checks. One example is the prescribed dose check where PCT flags the user when the planned dose and the prescribed dose disagree. PCT includes a comprehensive checklist of automated and manual checks that are documented when performed by the user. A PDF report is created and automatically uploaded into the TMS. Prior to and during PCT development, errors caught during plan checks and also patient delays were tracked in order to prioritize which checks should be automated. The most common and significant errors were determined. Results: Nineteen of 33 checklist items were automated with data extracted with the PCT. These include checks for prescription, reference point and machine scheduling errors which are three of the top six causes of patient delays related to physics and dosimetry. Since the clinical roll-out, no delays have been due to errors that are automatically flagged by the PCT. Development continues to automate the remaining checks. Conclusion: With PCT, 57% of the physics plan checklist has been partially or fully automated. Treatment delays have declined since release of the PCT for clinical use. By tracking delays and errors, we have been able to measure the effectiveness of automating checks and are using this information to prioritize future development. This project was supported in part by P01CA059827.

  14. MINERVA - a multi-modal radiation treatment planning system

    Energy Technology Data Exchange (ETDEWEB)

    Wemple, C.A. E-mail: cew@enel.gov; Wessol, D.E.; Nigg, D.W.; Cogliati, J.J.; Milvich, M.L.; Frederickson, C.; Perkins, M.; Harkin, G.J

    2004-11-01

    Researchers at the Idaho National Engineering and Environmental Laboratory and Montana State University have undertaken development of MINERVA, a patient-centric, multi-modal, radiation treatment planning system. This system can be used for planning and analyzing several radiotherapy modalities, either singly or combined, using common modality independent image and geometry construction and dose reporting and guiding. It employs an integrated, lightweight plugin architecture to accommodate multi-modal treatment planning using standard interface components. The MINERVA design also facilitates the future integration of improved planning technologies. The code is being developed with the Java Virtual Machine for interoperability. A full computation path has been established for molecular targeted radiotherapy treatment planning, with the associated transport plugin developed by researchers at the Lawrence Livermore National Laboratory. Development of the neutron transport plugin module is proceeding rapidly, with completion expected later this year. Future development efforts will include development of deformable registration methods, improved segmentation methods for patient model definition, and three-dimensional visualization of the patient images, geometry, and dose data. Transport and source plugins will be created for additional treatment modalities, including brachytherapy, external beam proton radiotherapy, and the EGSnrc/BEAMnrc codes for external beam photon and electron radiotherapy.

  15. A comparison of Monte Carlo and Fermi-Eyges-Hogstrom estimates of heart and lung dose from breast electron boost treatment

    International Nuclear Information System (INIS)

    Coleman, Joy; Park, Catherine; Villarreal-Barajas, J. Eduardo; Petti, Paula; Faddegon, Bruce

    2005-01-01

    Purpose: Electrons are commonly used in the treatment of breast cancer primarily to deliver a tumor bed boost. We compared the use of the Monte Carlo (MC) method and the Fermi-Eyges-Hogstrom (FEH) algorithm to calculate the dose distribution of electron treatment to normal tissues. Methods and materials: Ten patients with left-sided breast cancer treated with breast-conservation therapy at the University of California, San Francisco, were included in this study. Each patient received an electron boost to the surgical bed to a dose of 1,600 cGy in 200 cGy fractions prescribed to 80% of the maximum. Doses to the left ventricle (LV) and the ipsilateral lung (IL) were calculated using the EGS4 MC system and the FEH algorithm implemented on the commercially available Pinnacle treatment planning system. An anthromorphic phantom was irradiated with radiochromic film in place to verify the accuracy of the MC system. Results: Dose distributions calculated with the MC algorithm agreed with the film measurements within 3% or 3 mm. For all patients in the study, the dose to the LV and IL was relatively low as calculated by MC. That is, the maximum dose received by up to 98% of the LV volume was 30 cGy and differences in maximum dose of < 35 cGy/day to the LV and 80 cGy/day to the IL. Conclusions: From our series, using clinical judgment to prescribe the boost to the surgical bed after breast-conserving treatment results in low doses to the underlying LV and IL. When calculated dose distributions are desired, MC is the most accurate, but FEH can still be used

  16. Draft Site Treatment Plan (DSTP), Volumes I and II

    International Nuclear Information System (INIS)

    D'Amelio, J.

    1994-01-01

    Site Treatment Plans (STP) are required for facilities at which the DOE generates or stores mixed waste. This Draft Site Treatment Plan (DSTP) the second step in a three-phase process, identifies the currently preferred options for treating mixed waste at the Savannah River Site (SRS) or for developing treatment technologies where technologies do not exist or need modification. The DSTP reflects site-specific preferred options, developed with the state's input and based on existing available information. To the extent possible, the DSTP identifies specific treatment facilities for treating the mixed waste and proposes schedules. Where the selection of specific treatment facilities is not possible, schedules for alternative activities such as waste characterization and technology assessment are provided. All schedule and cost information presented is preliminary and is subject to change. The DSTP is comprised of two volumes: this Compliance Plan Volume and the Background Volume. This Compliance Plan Volume proposes overall schedules with target dates for achieving compliance with the land disposal restrictions (LDR) of RCRA and procedures for converting the target dates into milestones to be enforced under the Order. The more detailed discussion of the options contained in the Background Volume is provided for informational purposes only

  17. Proton energy and scattering angle radiographs to improve proton treatment planning : a Monte Carlo study

    NARCIS (Netherlands)

    Biegun, Aleksandra; Takatsu, Jun; Nakaji, Taku; van Goethem, Marc-Jan; van der Graaf, Emiel; Koffeman, E.; Visser, Jan; Brandenburg, Sijtze

    2016-01-01

    The novel proton radiography imaging technique has a large potential to be used in direct measurement of the proton energy loss (proton stopping power, PSP) in various tissues in the patient. The uncertainty of PSPs, currently obtained from translation of X-ray Computed Tomography (xCT) images,

  18. Dose optimization based on linear programming implemented in a system for treatment planning in Monte Carlo

    International Nuclear Information System (INIS)

    Ureba, A.; Palma, B. A.; Leal, A.

    2011-01-01

    Develop a more efficient method of optimization in relation to time, based on linear programming designed to implement a multi objective penalty function which also permits a simultaneous solution integrated boost situations considering two white volumes simultaneously.

  19. Plug pattern optimization for gamma knife radiosurgery treatment planning

    International Nuclear Information System (INIS)

    Zhang Pengpeng; Wu, Jackie; Dean, David; Xing Lei; Xue Jinyue; Maciunas, Robert; Sibata, Claudio

    2003-01-01

    Purpose: To develop a novel dose optimization algorithm for improving the sparing of critical structures during gamma knife radiosurgery by shaping the plug pattern of each individual shot. Method and Materials: We first use a geometric information (medial axis) aided guided evolutionary simulated annealing (GESA) optimization algorithm to determine the number of shots and isocenter location, size, and weight of each shot. Then we create a plug quality score system that checks the dose contribution to the volume of interest by each plug in the treatment plan. A positive score implies that the corresponding source could be open to improve tumor coverage, whereas a negative score means the source could be blocked for the purpose of sparing normal and critical structures. The plug pattern is then optimized via the GESA algorithm that is integrated with this score system. Weight and position of each shot are also tuned in this procedure. Results: An acoustic tumor case is used to evaluate our algorithm. Compared to the treatment plan generated without plug patterns, adding an optimized plug pattern into the treatment planning process boosts tumor coverage index from 95.1% to 97.2%, reduces RTOG conformity index from 1.279 to 1.167, lowers Paddick's index from 1.34 to 1.20, and trims the critical structure receiving more than 30% maximum dose from 16 mm 3 to 6 mm 3 . Conclusions: Automated GESA-based plug pattern optimization of gamma knife radiosurgery frees the treatment planning team from the manual forward planning procedure and provides an optimal treatment plan

  20. Current calibration, treatment, and treatment planning techniques among institutions participating in the Children's Oncology Group

    International Nuclear Information System (INIS)

    Urie, Marcia; FitzGerald, T.J.; Followill, David; Laurie, Fran; Marcus, Robert; Michalski, Jeff

    2003-01-01

    Purpose: To report current technology implementation, radiation therapy physics and treatment planning practices, and results of treatment planning exercises among 261 institutions belonging to the Children's Oncology Group (COG). Methods and Materials: The Radiation Therapy Committee of the newly formed COG mandated that each institution demonstrate basic physics and treatment planning abilities by satisfactorily completing a questionnaire and four treatment planning exercises designed by the Quality Assurance Review Center. The planning cases are (1) a maxillary sinus target volume (for two-dimensional planning), (2) a Hodgkin's disease mantle field (for irregular-field and off-axis dose calculations), (3) a central axis blocked case, and (4) a craniospinal irradiation case. The questionnaire and treatment plans were submitted (as of 1/30/02) by 243 institutions and completed satisfactorily by 233. Data from this questionnaire and analyses of the treatment plans with monitor unit calculations are presented. Results: Of the 243 clinics responding, 54% use multileaf collimators routinely, 94% use asymmetric jaws routinely, and 13% use dynamic wedges. Nearly all institutions calibrate their linear accelerators following American Association of Physicists in Medicine protocols, currently 16% with TG-51 and 81% with TG-21 protocol. Treatment planning systems are relied on very heavily for all calculations, including monitor units. Techniques and results of each of the treatment planning exercises are presented. Conclusions: Together, these data provide a unique compilation of current (2001) radiation therapy practices in institutions treating pediatric patients. Overall, the COG facilities have the equipment and the personnel to perform high-quality radiation therapy. With ongoing quality assurance review, radiation therapy compliance with COG protocols should be high

  1. IMRT treatment plans and functional planning with functional lung imaging from 4D-CT for thoracic cancer patients

    Directory of Open Access Journals (Sweden)

    Huang Tzung-Chi

    2013-01-01

    Full Text Available Abstract Background and purpose Currently, the inhomogeneity of the pulmonary function is not considered when treatment plans are generated in thoracic cancer radiotherapy. This study evaluates the dose of treatment plans on highly-functional volumes and performs functional treatment planning by incorporation of ventilation data from 4D-CT. Materials and methods Eleven patients were included in this retrospective study. Ventilation was calculated using 4D-CT. Two treatment plans were generated for each case, the first one without the incorporation of the ventilation and the second with it. The dose of the first plans was overlapped with the ventilation and analyzed. Highly-functional regions were avoided in the second treatment plans. Results For small targets in the first plans (PTV  Conclusion Radiation treatments affect functional lung more seriously in large tumor cases. With compromise of dose to other critical organs, functional treatment planning to reduce dose in highly-functional lung volumes can be achieved

  2. Very high-energy electron (VHEE) beams in radiation therapy; Treatment plan comparison between VHEE, VMAT, and PPBS.

    Science.gov (United States)

    Schüler, Emil; Eriksson, Kjell; Hynning, Elin; Hancock, Steven L; Hiniker, Susan M; Bazalova-Carter, Magdalena; Wong, Tony; Le, Quynh-Thu; Loo, Billy W; Maxim, Peter G

    2017-06-01

    The aim of this study was to evaluate the performance of very high-energy electron beams (VHEE) in comparison to clinically derived treatment plans generated with volumetric modulated arc therapy (VMAT) and proton pencil beam scanning (PPBS) technology. We developed a custom optimization script that could be applied automatically across modalities to eliminate operator bias during IMRT optimization. Four clinical cases were selected (prostate cancer, lung cancer, pediatric brain tumor, and head and neck cancer (HNC)). The VHEE beams were calculated in the EGSnrc/DOSXYZnrc Monte Carlo code for 100 and 200 MeV beams. Treatment plans with VHEE, VMAT, and PPBS were optimized in a research version of RayStation using an in-house developed script to minimize operator bias between the different techniques. The in-house developed script generated similar or superior plans to the clinically used plans. In the comparisons between the modalities, the integral dose was lowest for the PPBS-generated plans in all cases. For the prostate case, the 200 MeV VHEE plan showed reduced integral dose and reduced organ at risk (OAR) dose compared to the VMAT plan. For all other cases, both the 100 and the 200 MeV VHEE plans were superior to the VMAT plans, and the VHEE plans showed better conformity and lower spinal cord dose in the pediatric brain case and lower brain stem dose in the HNC case when compared to the PPBS plan. The automated optimization developed in this study generated similar or superior plans as compared to the clinically used plan and represents an unbiased approach to compare treatment plans generated for different modalities. In the present study, we also show that VHEE plans are similar or superior to VMAT plans with reduced mean OAR dose and increased target conformity for a variety of clinical cases, and VHEE plans can even achieve reductions in OAR doses compared to PPBS plans for shallow targets. With increased VHEE energy, better conformity and even higher

  3. Automatic treatment plan re-optimization for adaptive radiotherapy guided with the initial plan DVHs

    International Nuclear Information System (INIS)

    Li, Nan; Zarepisheh, Masoud; Uribe-Sanchez, Andres; Moore, Kevin; Tian, Zhen; Zhen, Xin; Graves, Yan Jiang; Gautier, Quentin; Mell, Loren; Jia, Xun; Jiang, Steve; Zhou, Linghong

    2013-01-01

    Adaptive radiation therapy (ART) can reduce normal tissue toxicity and/or improve tumor control through treatment adaptations based on the current patient anatomy. Developing an efficient and effective re-planning algorithm is an important step toward the clinical realization of ART. For the re-planning process, manual trial-and-error approach to fine-tune planning parameters is time-consuming and is usually considered unpractical, especially for online ART. It is desirable to automate this step to yield a plan of acceptable quality with minimal interventions. In ART, prior information in the original plan is available, such as dose–volume histogram (DVH), which can be employed to facilitate the automatic re-planning process. The goal of this work is to develop an automatic re-planning algorithm to generate a plan with similar, or possibly better, DVH curves compared with the clinically delivered original plan. Specifically, our algorithm iterates the following two loops. An inner loop is the traditional fluence map optimization, in which we optimize a quadratic objective function penalizing the deviation of the dose received by each voxel from its prescribed or threshold dose with a set of fixed voxel weighting factors. In outer loop, the voxel weighting factors in the objective function are adjusted according to the deviation of the current DVH curves from those in the original plan. The process is repeated until the DVH curves are acceptable or maximum iteration step is reached. The whole algorithm is implemented on GPU for high efficiency. The feasibility of our algorithm has been demonstrated with three head-and-neck cancer IMRT cases, each having an initial planning CT scan and another treatment CT scan acquired in the middle of treatment course. Compared with the DVH curves in the original plan, the DVH curves in the resulting plan using our algorithm with 30 iterations are better for almost all structures. The re-optimization process takes about 30

  4. Imaging modalities in radiation treatment planning of brain tumors

    International Nuclear Information System (INIS)

    Georgiev, D.

    2009-01-01

    The radiation therapy is a standard treatment after surgery for most of malignant and some of benignant brain tumors. The restriction in acquiring local tumor control is an inability in realization of high dose without causing radiation necrosis in irradiated area and sparing normal tissues. The development of imaging modalities during the last years is responsible for better treatment results and lower early and late toxicity. Essential is the role of image methods not only in the diagnosis and also in the precise anatomical (during last years also functional) localisation, spreading of the tumor, treatment planning process and the effects of the treatment. Target delineation is one of the great geometrical uncertainties in the treatment planning process. Early studies on the use of CT in treatment planning documented that tumor coverage without CT was clearly inadequate in 20% of the patients and marginal in another 27 %. The image fusion of CT, MBI and PET and also the use of contrast materia helps to get over those restrictions. The use of contrast material enhances the signal in 10 % of the patients with glioblastoma multiform and in a higher percentage of the patients with low-grade gliomas

  5. Uncertainties in model-based outcome predictions for treatment planning

    International Nuclear Information System (INIS)

    Deasy, Joseph O.; Chao, K.S. Clifford; Markman, Jerry

    2001-01-01

    Purpose: Model-based treatment-plan-specific outcome predictions (such as normal tissue complication probability [NTCP] or the relative reduction in salivary function) are typically presented without reference to underlying uncertainties. We provide a method to assess the reliability of treatment-plan-specific dose-volume outcome model predictions. Methods and Materials: A practical method is proposed for evaluating model prediction based on the original input data together with bootstrap-based estimates of parameter uncertainties. The general framework is applicable to continuous variable predictions (e.g., prediction of long-term salivary function) and dichotomous variable predictions (e.g., tumor control probability [TCP] or NTCP). Using bootstrap resampling, a histogram of the likelihood of alternative parameter values is generated. For a given patient and treatment plan we generate a histogram of alternative model results by computing the model predicted outcome for each parameter set in the bootstrap list. Residual uncertainty ('noise') is accounted for by adding a random component to the computed outcome values. The residual noise distribution is estimated from the original fit between model predictions and patient data. Results: The method is demonstrated using a continuous-endpoint model to predict long-term salivary function for head-and-neck cancer patients. Histograms represent the probabilities for the level of posttreatment salivary function based on the input clinical data, the salivary function model, and the three-dimensional dose distribution. For some patients there is significant uncertainty in the prediction of xerostomia, whereas for other patients the predictions are expected to be more reliable. In contrast, TCP and NTCP endpoints are dichotomous, and parameter uncertainties should be folded directly into the estimated probabilities, thereby improving the accuracy of the estimates. Using bootstrap parameter estimates, competing treatment

  6. Effects of spot parameters in pencil beam scanning treatment planning.

    Science.gov (United States)

    Kraan, Aafke Christine; Depauw, Nicolas; Clasie, Ben; Giunta, Marina; Madden, Tom; Kooy, Hanne M

    2018-01-01

    Spot size σ (in air at isocenter), interspot spacing d, and spot charge q influence dose delivery efficiency and plan quality in Intensity Modulated Proton Therapy (IMPT) treatment planning. The choice and range of parameters varies among different manufacturers. The goal of this work is to demonstrate the influence of the spot parameters on dose quality and delivery in IMPT treatment plans, to show their interdependence, and to make practitioners aware of the spot parameter values for a certain facility. Our study could help as a guideline to make the trade-off between treatment quality and time in existing PBS centers and in future systems. We created plans for seven patients and a phantom, with different tumor sites and volumes, and compared the effect of small-, medium-, and large-spot widths (σ = 2.5, 5, and 10 mm) and interspot distances (1σ, 1.5σ, and 1.75σ) on dose, spot charge, and treatment time. Moreover, we quantified how postplanning charge threshold cuts affect plan quality and the total number of spots to deliver, for different spot widths and interspot distances. We show the effect of a minimum charge (or MU) cutoff value for a given proton delivery system. Spot size had a strong influence on dose: larger spots resulted in more protons delivered outside the target region. We observed dose differences of 2-13 Gy (RBE) between 2.5 mm and 10 mm spots, where the amount of extra dose was due to dose penumbra around the target region. Interspot distance had little influence on dose quality for our patient group. Both parameters strongly influence spot charge in the plans and thus the possible impact of postplanning charge threshold cuts. If such charge thresholds are not included in the treatment planning system (TPS), it is important that the practitioner validates that a given combination of lower charge threshold, interspot spacing, and spot size does not result in a plan degradation. Low average spot charge occurs for small spots, small interspot

  7. [Endodontically treated teeth. Success--failure. Endorestorative treatment plan].

    Science.gov (United States)

    Zabalegui, B

    1990-01-01

    More and more often the general dentist is finding the presence of endodontically treated teeth during his treatment planning procedure. He has to ask himself if the endo-treated tooth functions and will continue to function function successfully, when deciding which final endo-restorative procedure to apply. For this reason the dentist or the endodontist with whom he works should clinically evaluate these teeth, establish a diagnostic criteria of their success or failure and a treatment plan according to the prognosis. The purpose of this article is to offer an organized clinical view of the steps to follow when evaluating an endodontically treated tooth and how to establish a final endo-restorative plan.

  8. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references

  9. Treatment planning aspects for tumours in the region of parotid

    International Nuclear Information System (INIS)

    Narayanan, S.S.; Saju, Sherly; Deshpande, D.D.; Agarwal, J.P.; Dinshaw, K.A.

    2001-01-01

    The treatment of carcinoma of parotid/external ear needs careful planning in respect of dose to the normal organs surrounding the tumour such as eye(s), pituitary and normal brain. In many centres, generally, manual contours are generated for a two dimensional planning, wherein Anterior-Posterior (A-P) oblique fields (patient in Lateral Position) are planned. However, such a field orientation is not always useful in terms of minimum possible dose to the said normal organs, especially for eye. In this centre, a different field arrangement has been attempted, which helps in dose reduction to the normal structures to a large extent in comparison with the conventional 2D planning method

  10. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  11. BDTPS The BNCT Treatment Planning System jointly developed at DIMNP and JRC/IE

    CERN Document Server

    Daquino, G G; Mazzini, M; Moss, R; Muzi, L; International Workshop on "Neutron Capture Therapy: State of the art"

    2003-01-01

    The idea to couple the Treatment Planning System (TPS) to the information on the real boron distribution in the patient is the main added value of the new methodology set-up at DIMNP of University of Pisa, in collaboration with the JRC of Petten (NL). The methodology has been implemented in the new TPS, called BDTPS (Boron Distribution Treatment Planning System), which takes into account the actual boron distribution in the patient brain, while the standard TPS assumes a uniform boron distribution, absolutely far from the reality. Nowadays, Positron Emission Tomography (PET) is able to provide this in vivo information. The new TPS, based on the Monte Carlo technique, has been validated comparing the main BNCT parameters (thermal flux, boron dose, etc.) as measured during the irradiation of a special heterogeneous boron phantom (HEBOM), ad hoc designed, as calculated by the BDTPS and by the standard TPS SERA. An evident SERA overestimation of the thermal neutron flux, as well as the boron dose, has been detect...

  12. SU-F-T-373: Monte Carlo Versus Pencil Beam Dose Calculation for Spine SBRT Treatments Using HybridARC and Sliding Windows IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Venencia, C; Pino, M; Caussa, L; Garrigo, E [Instituto de Radioterapia - Fundacion Marie Curie, Cordoba (Argentina); Molineu, A [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: The purpose of this work was to quantify the dosimetric impact of Monte Carlo (MC) dose calculation algorithm compared to Pencil Beam (PB) on Spine SBRT with HybridARC (HA) and sliding windows IMRT (dMLC) treatment modality. Methods: A 6MV beam (1000MU/min) produced by a Novalis TX (BrainLAB-Varian) equipped with HDMLC was used. HA uses 1 arc plus 8 IMRT beams (arc weight between 60–40%) and dIMRT 15 beams. Plans were calculated using iPlan v.4.5.3 (BrainLAB) and the treatment dose prescription was 27Gy in 3 fractions. Dose calculation was done by PB (4mm spatial resolution) with heterogeneity correction and MC dose to water (4mm spatial resolution and 4% mean variance). PTV and spinal cord dose comparison were done. Study was done on 12 patients. IROC Spine Phantom was used to validate HA and quantify dose variation using PB and MC algorithm. Results: The difference between PB and MC for PTV D98%, D95%, Dmean, D2% were 2.6% [−5.1, 6.8], 0.1% [−4.2, 5.4], 0.9% [−1.5, 3.8] and 2.4% [−0.5, 8.3]. The difference between PB and MC for spinal cord Dmax, D1.2cc and D0.35cc were 5.3% [−6.4, 18.4], 9% [−7.0, 17.0] and 7.6% [−0.6, 14.8] respectively. IROC spine phantom shows PTV TLD dose variation of 0.98% for PB and 1.01% for MC. Axial and sagittal film plane gamma index (5%-3mm) was 95% and 97% for PB and 95% and 99% for MC. Conclusion: PB slightly underestimates the dose for the PTV. For the spinal cord PB underestimates the dose and dose differences could be as high as 18% which could have unexpected clinical impact. CI shows no variation between PB and MC for both treatment modalities Treatment modalities have no impact with the dose calculation algorithms used. Following the IROC pass-fail criteria, treatment acceptance requirement was fulfilled for PB and MC.

  13. Interocclusal Registration for Diagnosis and Treatment Planning for ...

    African Journals Online (AJOL)

    2017-09-14

    Sep 14, 2017 ... implant case where multiple posterior teeth are missing and need to be replaced by implant restorations. In the case ... Keywords: Interocclusal Records, Diagnosis and Treatment Plan, Implant. Restorations. Interocclusal ... then removed to leave a window in the acrylic resin. The appliance was finished ...

  14. Savannah River Site approved site treatment plan, 2000 annual update

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, B.

    2000-04-20

    The Compliance Plan Volume (Volume 1) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions. Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume 2) and is provided for information.

  15. Including the Consumer and Environment in Occupational Therapy Treatment Planning.

    Science.gov (United States)

    Brown, Catana; Bowen, Robin E.

    1998-01-01

    Occupational therapists (n=29) completed treatment plans based on case study data. Analysis indicated they often identified goals not addressed by the consumer/client. They significantly selected more simulated than real activities and more activities designed to change the person rather than the environment. (SK)

  16. Inclusion of geometric uncertainties in treatment plan evaluation

    NARCIS (Netherlands)

    van Herk, Marcel; Remeijer, Peter; Lebesque, Joos V.

    2002-01-01

    PURPOSE: To correctly evaluate realistic treatment plans in terms of absorbed dose to the clinical target volume (CTV), equivalent uniform dose (EUD), and tumor control probability (TCP) in the presence of execution (random) and preparation (systematic) geometric errors. MATERIALS AND METHODS: The

  17. Savannah River Site Approved Site Treatment Plan, 1998 Annual Update

    International Nuclear Information System (INIS)

    Lawrence, B.

    1999-01-01

    The Compliance Plan Volume (Volume I) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions. Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume II) and is provided for information

  18. Savannah River Site approved site treatment plan, 2000 annual update

    International Nuclear Information System (INIS)

    Lawrence, B.

    2000-01-01

    The Compliance Plan Volume (Volume 1) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions. Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume 2) and is provided for information

  19. A simple planning technique of craniospinal irradiation in the eclipse treatment planning system

    Directory of Open Access Journals (Sweden)

    Hemalatha Athiyaman

    2014-01-01

    Full Text Available A new planning method for Craniospinal Irradiation by Eclipse treatment planning system using Field alignment, Field-in-Field technique was developed. Advantage of this planning method was also studied retrospectively for previously treated five patients of medulloblastoma with variable spine length. Plan consists of half beam blocked parallel opposed cranium, and a single posterior cervicospine field was created by sharing the same isocenter, which obviates divergence matching. Further, a single symmetrical field was created to treat remaining Lumbosacral spine. Matching between a inferior diverging edge of cervicospine field and superior diverging edge of a Lumbosacral field was done using the field alignment option. ′Field alignment′ is specific option in the Eclipse Treatment Planning System, which automatically matches the field edge divergence as per field alignment rule. Multiple segments were applied in both the spine field to manage with hot and cold spots created by varying depth of spinal cord. Plan becomes fully computerized using this field alignment option and multiple segments. Plan evaluation and calculated mean modified Homogeneity Index (1.04 and 0.1 ensured that dose to target volume is homogeneous and critical organ doses were within tolerance. Dose variation at the spinal field junction was verified using ionization chamber array (I′MatriXX for matched, overlapped and gap junction spine fields; the delivered dose distribution confirmed the ideal clinical match, over exposure and under exposure at the junction, respectively. This method is simple to plan, executable in Record and Verify mode and can be adopted for various length of spinal cord with only two isocenter in shorter treatment time.

  20. Treatment planning for MLC based robotic radiosurgery for brain metastases: plan comparison with circular fields and suggestions for planning strategies

    Directory of Open Access Journals (Sweden)

    Schmitt Daniela

    2017-09-01

    Full Text Available To evaluate the possible range of application of the new InCise2 MLC for the CyberKnife M6 system in brain radiosurgery, a plan comparison was made for 10 brain metastases sized between 1.5 and 9cm3 in 10 patients treated in a single fraction each. The target volumes consist of a PTV derived by expanding the GTV by 1mm and were chosen to have diversity in the cohort regarding regularity of shape, location and the structures needed to be blocked for beam transmission in the vicinity. For each case, two treatment plans were optimized: one using the MLC and one using the IRIS-collimator providing variable circular fields. Plan re-quirements were: dose prescription to the 70% isodose line (18 or 20Gy, 100% GTV coverage, ≥98% PTV coverage, undisturbed central high dose region (95% of maximum dose and a conformity index as low as possible. Plan com-parison parameters were: conformity index (CI, high-dose gradient index (GIH, low-dose gradient index (GIL, total number of monitor units (MU and expected treatment time (TT. For all cases, clinically acceptable plans could be gen-erated with the following results (mean±SD for CI, GIH, GIL, MU and TT, respectively for the MLC plans: 1.09±0.03, 2.77±0.26, 2.61±0.08, 4514±830MU and 27±5min and for the IRIS plans: 1.05±0.01, 3.00±0.35, 2.46±0.08, 8557±1335MU and 42±7min. In summary, the MLC plans were on average less conformal and had a shallower dose gradient in the low dose region, but a steeper dose gradient in the high dose region. This is accompanied by a smaller vol-ume receiving 10Gy. A plan by plan comparison shows that usage of the MLC can spare about one half of the MUs and one third of treatment time. From these experiences and results suggestions for MLC planning strategy can be de-duced.

  1. Monte Carlo assessment of boron neutron capture therapy for the treatment of breast cancer

    Directory of Open Access Journals (Sweden)

    Mundy Daniel W.

    2005-01-01

    Full Text Available For a large number of women who are diagnosed with breast cancer every year the avail able treatment options are effective, though physically and mentally taxing. This work is a starting point of a study of the efficacy of boron neutron capture therapy as an alternative treatment for HER-2+ breast tumors. Using HER-2-specific monoclonal anti bodies coupled with a boron-rich oligomeric phosphate diester, it may be possible to deliver sufficient amounts of 10B to a tumor of the breast to al low for selective cell destruction via irradiation by thermal neutrons. A comprehensive computational model (MCNP for thermal neutron irradiation of the breast is described, as well as the results of calculations made using this model, in order to determine the optimum boron concentration within the tumor for an effective boron neutron capture therapy treatment, as compared with traditional X-ray radiotherapy. The results indicate that a boron concentration of 50-60 mg per gram of tumor tissue is optimal when considering treatment times, dose distributions and skin sparing. How ever these results are based upon best-guess assumptions that must be experimentally verified.

  2. A Modified Treatment of Sources in Implicit Monte Carlo Radiation Transport

    International Nuclear Information System (INIS)

    Gentile, N.A.; Trahan, T.J.

    2011-01-01

    We describe a modification of the treatment of photon sources in the IMC algorithm. We describe this modified algorithm in the context of thermal emission in an infinite medium test problem at equilibrium and show that it completely eliminates statistical noise.

  3. Clinical Significance: a Therapeutic Approach Topsychological Assessment in Treatment Planning

    Directory of Open Access Journals (Sweden)

    Afolabi Olusegun Emmanuel

    2015-06-01

    Full Text Available Psychological assessment has long been reported as a key component of clinical psychology. This paper examines the complexities surrounding the clinical significance of therapeutic approach to treatment planning. To achieve this objective, the paper searched and used the PsycINFO and PubMed databases and the reference sections of chapters and journal articles to analysed, 1 a strong basis for the usage of therapeutic approach to psychological assessment in treatment plans, 2 explained the conceptual meaning of clinical significant change in therapeutic assessment, 3 answered some of the questions regarding practicability and the clinical significance of therapeutic approach to treatment plans, particularly during or before treatment, 4 linked therapeutic assessment to change in clients’ clinical impression, functioning and therapeutic needs 5 analysed the empirically documenting clinically significant change in therapeutic assessment. Finally, the study suggested that though therapeutic assessment is not sufficient for the systematic study of psychotherapy outcome and process, it is still consistent with both the layman and professional expectations regarding treatment outcome and also provides a precise method for classifying clients as ‘changed’ or ‘unchanged’ on the basis of clinical significance criteria.

  4. Upright 3D Treatment Planning Using a Vertical CT

    International Nuclear Information System (INIS)

    Shah, Anand P.; Strauss, Jonathan B.; Kirk, Michael C.; Chen, Sea S.; Kroc, Thomas K.; Zusag, Thomas W.

    2009-01-01

    In this report, we describe a novel technique used to plan and administer external beam radiation therapy to a patient in the upright position. A patient required reirradiation for thymic carcinoma but was unable to tolerate the supine position due to bilateral phrenic nerve injury and paralysis of the diaphragm. Computed tomography (CT) images in the upright position were acquired at the Northern Illinois University Institute for Neutron Therapy at Fermilab. The CT data were imported into a standard 3-dimensional (3D) treatment planning system. Treatment was designed to deliver 24 Gy to the target volume while respecting normal tissue tolerances. A custom chair that locked into the treatment table indexing system was constructed for immobilization, and port films verified the reproducibility of setup. Radiation was administered using mixed photon and electron AP fields

  5. Online Adaptive Hyperthermia Treatment Planning During Locoregional Heating to Suppress Treatment-Limiting Hot Spots

    NARCIS (Netherlands)

    Kok, H. Petra; Korshuize-van Straten, Linda; Bakker, Akke; de Kroon-Oldenhof, Rianne; Geijsen, Elisabeth D.; Stalpers, Lukas J. A.; Crezee, Johannes

    2017-01-01

    Adequate tumor temperatures during hyperthermia are essential for good clinical response, but excessive heating of normal tissue should be avoided. This makes locoregional heating using phased array systems technically challenging. Online application of hyperthermia treatment planning could help to

  6. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy

    International Nuclear Information System (INIS)

    Paganetti, Harald; Jiang, Hongyu; Parodi, Katia; Slopsema, Roelf; Engelsman, Martijn

    2008-01-01

    The goal of this work was to facilitate the clinical use of Monte Carlo proton dose calculation to support routine treatment planning and delivery. The Monte Carlo code Geant4 was used to simulate the treatment head setup, including a time-dependent simulation of modulator wheels (for broad beam modulation) and magnetic field settings (for beam scanning). Any patient-field-specific setup can be modeled according to the treatment control system of the facility. The code was benchmarked against phantom measurements. Using a simulation of the ionization chamber reading in the treatment head allows the Monte Carlo dose to be specified in absolute units (Gy per ionization chamber reading). Next, the capability of reading CT data information was implemented into the Monte Carlo code to model patient anatomy. To allow time-efficient dose calculation, the standard Geant4 tracking algorithm was modified. Finally, a software link of the Monte Carlo dose engine to the patient database and the commercial planning system was established to allow data exchange, thus completing the implementation of the proton Monte Carlo dose calculation engine ('DoC++'). Monte Carlo re-calculated plans are a valuable tool to revisit decisions in the planning process. Identification of clinically significant differences between Monte Carlo and pencil-beam-based dose calculations may also drive improvements of current pencil-beam methods. As an example, four patients (29 fields in total) with tumors in the head and neck regions were analyzed. Differences between the pencil-beam algorithm and Monte Carlo were identified in particular near the end of range, both due to dose degradation and overall differences in range prediction due to bony anatomy in the beam path. Further, the Monte Carlo reports dose-to-tissue as compared to dose-to-water by the planning system. Our implementation is tailored to a specific Monte Carlo code and the treatment planning system XiO (Computerized Medical Systems Inc

  7. 4D Proton treatment planning strategy for mobile lung tumors

    International Nuclear Information System (INIS)

    Kang Yixiu; Zhang Xiaodong; Chang, Joe Y.; Wang He; Wei Xiong; Liao Zhongxing; Komaki, Ritsuko; Cox, James D.; Balter, Peter A.; Liu, Helen; Zhu, X. Ronald; Mohan, Radhe; Dong Lei

    2007-01-01

    Purpose: To investigate strategies for designing compensator-based 3D proton treatment plans for mobile lung tumors using four-dimensional computed tomography (4DCT) images. Methods and Materials: Four-dimensional CT sets for 10 lung cancer patients were used in this study. The internal gross tumor volume (IGTV) was obtained by combining the tumor volumes at different phases of the respiratory cycle. For each patient, we evaluated four planning strategies based on the following dose calculations: (1) the average (AVE) CT; (2) the free-breathing (FB) CT; (3) the maximum intensity projection (MIP) CT; and (4) the AVE CT in which the CT voxel values inside the IGTV were replaced by a constant density (AVE R IGTV). For each strategy, the resulting cumulative dose distribution in a respiratory cycle was determined using a deformable image registration method. Results: There were dosimetric differences between the apparent dose distribution, calculated on a single CT dataset, and the motion-corrected 4D dose distribution, calculated by combining dose distributions delivered to each phase of the 4DCT. The AVE R IGTV plan using a 1-cm smearing parameter had the best overall target coverage and critical structure sparing. The MIP plan approach resulted in an unnecessarily large treatment volume. The AVE and FB plans using 1-cm smearing did not provide adequate 4D target coverage in all patients. By using a larger smearing value, adequate 4D target coverage could be achieved; however, critical organ doses were increased. Conclusion: The AVE R IGTV approach is an effective strategy for designing proton treatment plans for mobile lung tumors

  8. Approved Site Treatment Plan, Volumes 1 and 2. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, E.H.; Molen, G.; Noller, D.

    1996-03-22

    The US Department of Energy, Savannah River Operations Office (DOE-SR), has prepared the Site Treatment Plan (STP) for Savannah River Site (SRS) mixed wastes in accordance with RCRA Section 3021(b), and SCDHEC has approved the STP (except for certain offsite wastes) and issued an order enforcing the STP commitments in Volume 1. DOE-SR and SCDHEC agree that this STP fulfills the requirements contained in the FFCAct, RCRA Section 3021, and therefore, pursuant to Section 105(a) of the FFCAct (RCRA Section 3021(b)(5)), DOE`s requirements are to implement the plan for the development of treatment capacities and technologies pursuant to RCRA Section 3021. Emerging and new technologies not yet considered may be identified to manage waste more safely, effectively, and at lower cost than technologies currently identified in the plan. DOE will continue to evaluate and develop technologies that offer potential advantages in public acceptance, privatization, consolidation, risk abatement, performance, and life-cycle cost. Should technologies that offer such advantages be identified, DOE may request a revision/modification of the STP in accordance with the provisions of Consent Order 95-22-HW. The Compliance Plan Volume (Volume 1) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions (LDR). Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume 2) and is provided for information.

  9. Savannah River Site Approved Site Treatment Plan, 1998 Annual Update

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, B. [Westinghouse Savannah River Company, AIKEN, SC (United States); Berry, M.

    1998-03-01

    The U.S. Department of Energy, Savannah River Operations Office (DOE- SR),has prepared the Site Treatment Plan (STP) for Savannah River Site (SRS) mixed wastes in accordance with RCRA Section 3021(b), and SCDHEC has approved the STP (except for certain offsite wastes) and issued an order enforcing the STP commitments in Volume I. DOE-SR and SCDHEC agree that this STP fulfills the requirements contained in the FFCAct, RCRA Section 3021, and therefore,pursuant to Section 105(a) of the FFCAct (RCRA Section 3021(b)(5)), DOE`s requirements are to implement the plan for the development of treatment capacities and technologies pursuant to RCRA Section 3021.Emerging and new technologies not yet considered may be identified to manage waste more safely, effectively, and at lower cost than technologies currently identified in the plan. DOE will continue to evaluate and develop technologies that offer potential advantages in public acceptance, privatization, consolidation, risk abatement, performance, and life-cycle cost. Should technologies that offer such advantages be identified, DOE may request a revision/modification of the STP in accordance with the provisions of Consent Order 95-22-HW.The Compliance Plan Volume (Volume I) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions (LDR). Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume II) and is provided for information.

  10. Approved Site Treatment Plan, Volumes 1 and 2. Revision 4

    International Nuclear Information System (INIS)

    Helmich, E.H.; Molen, G.; Noller, D.

    1996-01-01

    The US Department of Energy, Savannah River Operations Office (DOE-SR), has prepared the Site Treatment Plan (STP) for Savannah River Site (SRS) mixed wastes in accordance with RCRA Section 3021(b), and SCDHEC has approved the STP (except for certain offsite wastes) and issued an order enforcing the STP commitments in Volume 1. DOE-SR and SCDHEC agree that this STP fulfills the requirements contained in the FFCAct, RCRA Section 3021, and therefore, pursuant to Section 105(a) of the FFCAct (RCRA Section 3021(b)(5)), DOE's requirements are to implement the plan for the development of treatment capacities and technologies pursuant to RCRA Section 3021. Emerging and new technologies not yet considered may be identified to manage waste more safely, effectively, and at lower cost than technologies currently identified in the plan. DOE will continue to evaluate and develop technologies that offer potential advantages in public acceptance, privatization, consolidation, risk abatement, performance, and life-cycle cost. Should technologies that offer such advantages be identified, DOE may request a revision/modification of the STP in accordance with the provisions of Consent Order 95-22-HW. The Compliance Plan Volume (Volume 1) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions (LDR). Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume 2) and is provided for information

  11. Monte Carlo simulation tool for online treatment monitoring in hadrontherapy with in-beam PET: A patient study.

    Science.gov (United States)

    Fiorina, E; Ferrero, V; Pennazio, F; Baroni, G; Battistoni, G; Belcari, N; Cerello, P; Camarlinghi, N; Ciocca, M; Del Guerra, A; Donetti, M; Ferrari, A; Giordanengo, S; Giraudo, G; Mairani, A; Morrocchi, M; Peroni, C; Rivetti, A; Da Rocha Rolo, M D; Rossi, S; Rosso, V; Sala, P; Sportelli, G; Tampellini, S; Valvo, F; Wheadon, R; Bisogni, M G

    2018-05-07

    Hadrontherapy is a method for treating cancer with very targeted dose distributions and enhanced radiobiological effects. To fully exploit these advantages, in vivo range monitoring systems are required. These devices measure, preferably during the treatment, the secondary radiation generated by the beam-tissue interactions. However, since correlation of the secondary radiation distribution with the dose is not straightforward, Monte Carlo (MC) simulations are very important for treatment quality assessment. The INSIDE project constructed an in-beam PET scanner to detect signals generated by the positron-emitting isotopes resulting from projectile-target fragmentation. In addition, a FLUKA-based simulation tool was developed to predict the corresponding reference PET images using a detailed scanner model. The INSIDE in-beam PET was used to monitor two consecutive proton treatment sessions on a patient at the Italian Center for Oncological Hadrontherapy (CNAO). The reconstructed PET images were updated every 10 s providing a near real-time quality assessment. By half-way through the treatment, the statistics of the measured PET images were already significant enough to be compared with the simulations with average differences in the activity range less than 2.5 mm along the beam direction. Without taking into account any preferential direction, differences within 1 mm were found. In this paper, the INSIDE MC simulation tool is described and the results of the first in vivo agreement evaluation are reported. These results have justified a clinical trial, in which the MC simulation tool will be used on a daily basis to study the compliance tolerances between the measured and simulated PET images. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Implementation of three dimensional treatment planning system for external radiotherapy

    International Nuclear Information System (INIS)

    Major, Tibor; Kurup, P.G.G.; Stumpf, Janos

    1997-01-01

    A three dimensional (3D) treatment planning system was installed at Apollo Cancer Hospital, Chennai, India in 1995. This paper gives a short description of the system including hardware components, calculation algorithm, measured data requirements and specific three dimensional features. The concept and the structure of the system are shortly described. The first impressions along with critical opinions and the experiences are gained during the data acquisition are mentioned. Some improvements in the user interface are suggested. It is emphasized that although a 3D system offers more detailed and accurate dose distributions compared to a 2D system, it also introduces a greatly increased workload for the planning staff. (author)

  13. Multi types DG expansion dynamic planning in distribution system under stochastic conditions using Covariance Matrix Adaptation Evolutionary Strategy and Monte-Carlo simulation

    International Nuclear Information System (INIS)

    Sadeghi, Mahmood; Kalantar, Mohsen

    2014-01-01

    Highlights: • Defining a DG dynamic planning problem. • Applying a new evolutionary algorithm called “CMAES” in planning process. • Considering electricity price and fuel price variation stochastic conditions. • Scenario generation and reduction with MCS and backward reduction programs. • Considering approximately all of the costs of the distribution system. - Abstract: This paper presents a dynamic DG planning problem considering uncertainties related to the intermittent nature of the DG technologies such as wind turbines and solar units in addition to the stochastic economic conditions. The stochastic economic situation includes the uncertainties related to the fuel and electricity price of each year. The Monte Carlo simulation is used to generate the possible scenarios of uncertain situations and the produced scenarios are reduced through backward reduction program. The aim of this paper is to maximize the revenue of the distribution system through the benefit cost analysis alongside the encouraging and punishment functions. In order to close to reality, the different growth rates for the planning period are selected. In this paper the Covariance Matrix Adaptation Evolutionary Strategy is introduced and is used to find the best planning scheme of the DG units. The different DG types are considered in the planning problem. The main assumption of this paper is that the DISCO is the owner of the distribution system and the DG units. The proposed method is tested on a 9 bus test distribution system and the results are compared with the known genetic algorithm and PSO methods to show the applicability of the CMAES method in this problem

  14. A quality assurance index for brachytherapy treatment plan verification

    International Nuclear Information System (INIS)

    Simpson, J.B.; Clarke, J.P.

    2000-01-01

    A method is described which provides an independent verification of a brachytherapy treatment plan. The method is applicable to any common geometric configuration and utilises a simple equation derived from a common form of nonlinear regression. The basis for the index value is the relationship between the treatment time, prescribed dose, source strength and plan geometry. This relationship may be described mathematically as: Total Treatment Time ∝ Prescribed Dose/Source Strength x (a geometric term) with the geometric term incorporating three geometric components, namely the distance from source positions to points of dose normalisation (d), the total length of the dwell positions (L), and the number of source trains or catheters (N). A general equation of the form GF = k (d) -α (L) -β (N) -y is used to describe the plan geometry, where GF is what we have termed the geometric factor, k is a constant of proportionality and the exponents are derived from the non-linear regression process. The resulting index is simple to calculate prior to patient treatment and sensitive enough to identify significant error whilst being robust enough to allow for a normal degree of geometric distortion

  15. Orthodontic treatment plan changed by 3D images

    International Nuclear Information System (INIS)

    Yordanova, G.; Stanimirov, P.

    2014-01-01

    Clinical application of CBCT is most often enforced in dental phenomenon of impacted teeth, hyperodontia, transposition, ankyloses or root resorption and other pathologies in the maxillofacial area. The goal, we put ourselves, is to show how the information from 3D images changes the protocol of the orthodontic treatment. The material, we presented six our clinical cases and the change in the plan of the treatment, which has used after analyzing the information carried on the three planes of CBCT. These cases are casuistic in the orthodontic practice and require individual approach to each of them during their analysis and decision taken. The discussion made by us is in line with reveal of the impacted teeth, where we need to evaluate their vertical depth and mediodistal ratios with the bond structures. At patients with hyperodontia, the assessment is of outmost importance to decide which of the teeth to be extracted and which one to be arranged into the dental arch. The conclusion we make is that diagnostic information is essential for decisions about treatment plan. The exact graphs will lead to better treatment plan and more predictable results. (authors) Key words: CBCT. IMPACTED CANINES. HYPERODONTIA. TRANSPOSITION

  16. Epilepsy Treatment Simplified through Mobile Ketogenic Diet Planning.

    Science.gov (United States)

    Li, Hanzhou; Jauregui, Jeffrey L; Fenton, Cagla; Chee, Claire M; Bergqvist, A G Christina

    2014-07-01

    The Ketogenic Diet (KD) is an effective, alternative treatment for refractory epilepsy. This high fat, low protein and carbohydrate diet mimics the metabolic and hormonal changes that are associated with fasting. To maximize the effectiveness of the KD, each meal is precisely planned, calculated, and weighed to within 0.1 gram for the average three-year duration of treatment. Managing the KD is time-consuming and may deter caretakers and patients from pursuing or continuing this treatment. Thus, we investigated methods of planning KD faster and making the process more portable through mobile applications. Nutritional data was gathered from the United States Department of Agriculture (USDA) Nutrient Database. User selected foods are converted into linear equations with n variables and three constraints: prescribed fat content, prescribed protein content, and prescribed carbohydrate content. Techniques are applied to derive the solutions to the underdetermined system depending on the number of foods chosen. The method was implemented on an iOS device and tested with varieties of foods and different number of foods selected. With each case, the application's constructed meal plan was within 95% precision of the KD requirements. In this study, we attempt to reduce the time needed to calculate a meal by automating the computation of the KD via a linear algebra model. We improve upon previous KD calculators by offering optimal suggestions and incorporating the USDA database. We believe this mobile application will help make the KD and other dietary treatment preparations less time consuming and more convenient.

  17. Monte Carlo simulation to study the doses in an accelerator BNCT treatment

    International Nuclear Information System (INIS)

    Burlon, Alejandro A.; Valda, Alejandro A.; Somacal, Hector R.; Kreiner, Andres J.; Minsky, Daniel M.

    2003-01-01

    In this work the 7 Li(p, n) 7 Be reaction has been studied as a neutron source for accelerator-based BNCT (Boron Neutron Capture Therapy). In order to optimize the design of the neutron production target and the beam shaping assembly, extensive MCNP simulations have been performed. These simulations include a thick Li metal target, a whole-body phantom, a moderator-reflector assembly (Al/AlF 3 as moderator and graphite as reflector) and the treatment room. The doses were evaluated for two proton bombarding energies of 1.92 MeV (near to the threshold of the reaction) and 2.3 MeV (near to the resonance of the reaction) and for three Al/ALF 3 moderator thicknesses (18, 26 and 34 cm). To assess the doses, a comparison using a Tumor Control Probability (TCP) model was done. In a second instance, the effect of the specific skin radiosensitivity (an RBE of 2.5 for the 10 B(n,α) 7 Li reaction) and a 10 B uptake of 17 ppm was considered for the scalp. Finally, the simulations show the advantage of irradiating with near-resonance-energy protons (2.3 MeV) because of the high neutron yield at this energy, leading to the lowest treatment times. Moreover, the 26 cm Al/AlF 3 moderator has shown the best performance among the studied cases. (author)

  18. Dosimetry and treatment planning of Occu-Prosta 125I seeds for intraocular lesions

    International Nuclear Information System (INIS)

    Chaudhari, Suresh; Deshpande, Sudesh; Anand, Vivek; De, Sandeep; Kannan, V.; Saxena, Sanjay; Dash, A.; Basu, Mahua; Samant, Preetam

    2008-01-01

    Intraocular malignant lesions are frequently encountered in clinical practice. Plaque brachytherapy represents an effective means of treatment for intraocular lesions. Recently Radiopharmaceutical Division, BARC, Mumbai, has indigenously fabricated reasonable-cost 125 I sources. Here we are presenting the preliminary experience of dosimetry of sources, configuration of treatment planning system (TPS) and quality assurance (QA) for eye plaque therapy with Occu-Prosta 125 I seeds, treated in our hospital, for a patient with ocular lesions. 125 I seeds were calibrated using well-type chamber. BrachyVision TPS was configured with Monte Carlo computed radial dose functions and anisotropy functions for 125 I sources. Dose calculated by TPS at different points in central axis and off axis was compared with manually calculated dose. Eye plaque was fabricated of 17 karat pure gold, locally. The seeds were arranged in an outer ring near the edge of the plaque and in concentric rings throughout the plaque. The sources were manually digitized on the TPS, and dose distribution was calculated in three dimensions. Measured activity using cross-calibrated well-type chamber was within ± 10% of the activity specified by the supplier. Difference in TPS-calculated dose and manually calculated dose was within 5%. Treatment time calculated by TPS was in concordance with published data for similar plaque arrangement. (author)

  19. Radiation treatment planning techniques for lymphoma of the stomach

    International Nuclear Information System (INIS)

    Della Biancia, Cesar; Hunt, Margie; Furhang, Eli; Wu, Elisa; Yahalom, Joachim

    2005-01-01

    Purpose: Involved-field radiation therapy of the stomach is often used in the curative treatment of gastric lymphoma. Yet, the optimal technique to irradiate the stomach with minimal morbidity has not been well established. This study was designed to evaluate treatment planning alternatives for stomach irradiation, including intensity-modulated radiation therapy (IMRT), to determine which approach resulted in improved dose distribution and to identify patient-specific anatomic factors that might influence a treatment planning choice. Methods and Materials: Fifteen patients with lymphoma of the stomach (14 mucosa-associated lymphoid tissue lymphomas and 1 diffuse large B-cell lymphoma) were categorized into 3 types, depending on the geometric relationship between the planning target volume (PTV) and kidneys. AP/PA and 3D conformal radiation therapy (3DCRT) plans were generated for each patient. IMRT was planned for 4 patients with challenging geometric relationship between the PTV and the kidneys to determine whether it was advantageous to use IMRT. Results: For type I patients (no overlap between PTV and kidneys), there was essentially no benefit from using 3DCRT over AP/PA. However, for patients with PTVs in close proximity to the kidneys (type II) or with high degree of overlap (type III), the 4-field 3DCRT plans were superior, reducing the kidney V 15Gy by approximately 90% for type II and 50% for type III patients. For type III, the use of a 3DCRT plan rather than an AP/PA plan decreased the V 15Gy by approximately 65% for the right kidney and 45% for the left kidney. In the selected cases, IMRT led to a further decrease in left kidney dose as well as in mean liver dose. Conclusions: The geometric relationship between the target and kidneys has a significant impact on the selection of the optimum beam arrangement. Using 4-field 3DCRT markedly decreases the kidney dose. The addition of IMRT led to further incremental improvements in the left kidney and liver

  20. MORSE-CGT Monte Carlo radiation transport code with the capability of the torus geometric treatment

    International Nuclear Information System (INIS)

    Deng Li

    1990-01-01

    The combinatorial geometry package CGT with the capability of the torus geometric treatment is introduced. It is get by developing the combinatorial geometry package CG. The CGT package can be transplanted to those codes which the CG package is being used and makes them also with the capability. The MORSE-CGT code can be used to solve the neutron, gamma-ray or coupled neutron-gamma-ray transport problems and time dependence for both shielding and criticality problems in torus system or system which is produced by arbitrary finite combining torus with torus or other bodies in CG package and it can also be used to design the blanket and compute shielding for TOKAMAK Fusion-Fission Hybrid Reactor

  1. Treatment optimization of a brain tumor in BNCT by Monte Carlo method

    International Nuclear Information System (INIS)

    Nejat, S.; Binesh, A.; Karimian, A.

    2012-01-01

    Brain cancers are one of the most important diseases. BNCT (Boron Neutron Capture Therapy) is used to brain tumor treatment. In this method the 1 0B (n,α) 7 Li reaction is used. The purpose of this study is absorbed dose evaluation of tumoral and healthy parts of brain. To achieve this aim the brain was simulated by a cylindrical phantom with the dimensions of 20 cm in diameter and height. In BNCT treatment the BSH (Na 2 B 12 H 11 SH) is injected to the human body and absorbed in the healthy and tumoral parts by the ratios of 18 and 65 ppm respectively. So in this research the absorption of BSH in tumoral and healthy parts of brain was considered as the mentioned ratio. Then the neutron with the energy range of 50 eV - 10 keV was exposed to the brain and maximum absorbed dose in healthy and tumoral parts of brain were calculated for a cylindrical tumor with the thickness of about 1 cm which was considered in 5.5 cm depth of brain. This research showed the suitable energy to treat this tumor by BNCT is interval 4 keV- 6keV. The average of dose which is met with healthy and tumor tissue was gained for 6 keV energy of brain 1.18x10 -12 cGy/n and 5.98x10 -12 cGy/n respectively. Maximum of dose which is met with healthy tissue was 4.3 Gy which is much less than standard amount 12.6 Gy. Therefore BNCT method is known as an effective way in the therapy of this kind of tumor. (authors)

  2. In Vivo Diode Dosimetry for Imrt Treatments Generated by Pinnacle Treatment Planning System

    International Nuclear Information System (INIS)

    Alaei, Parham; Higgins, Patrick D.; Gerbi, Bruce J.

    2009-01-01

    Dose verification using diodes has been proposed and used for intensity modulated radiation therapy (IMRT) treatments. We have previously evaluated diode response for IMRT deliveries planned with the Eclipse/Helios treatment planning system. The Pinnacle treatment planning system generates plans that are delivered in a different fashion than Eclipse. Whereas the Eclipse-generated segments are delivered in organized progression from one side of each field to the other, Pinnacle-generated segments are delivered in a much more randomized fashion to different areas within the field. This makes diode measurements at a point more challenging because the diode may be exposed fully or partially to multiple small segments during one single field's treatment as opposed to being exposed to very few segments scanning across the diode during an Eclipse-generated delivery. We have evaluated in vivo dosimetry for Pinnacle-generated IMRT plans and characterized the response of the diode to various size segments on phantom. We present results of patient measurements on approximately 300 fields, which show that 76% of measurements agree to within 10% of the treatment-plan generated calculated doses. Of the other 24%, about 11% are within 15% of the calculated dose. Comparison of these with phantom measurements indicates that many of the discrepancies are due to diode positioning on patients and increased diode response at short source-to-surface distances (SSDs), with the remainder attributable to other factors such as segment size and partial irradiation of the diode

  3. Advance care planning: the impact of Ceiling of Treatment plans in patients with Coordinate My Care.

    Science.gov (United States)

    Broadhurst, Helen Lucy; Droney, Joanne; Callender, Tom; Shaw, Amanda; Riley, Julia

    2018-03-22

    The aim of this evaluation is to describe the components and results of urgent care planning in Coordinate My Care (CMC), a digital clinical service for patients with life-limiting illness, for use if a patient is unable to make or express choices. Ceiling of treatment (CoT) plans were created detailing where the patient would like to receive their care and how aggressive medical interventions should be. A retrospective service evaluation was completed of all CMC records created between December 2015 and September 2016 (n=6854). CMC records were divided into two cohorts: those with a CoT plan and those without. The factors associated with these cohorts were reviewed including age, diagnosis, resuscitation status and preferences for place of death (PPD). Analysis of the non-mandatory free text section was carried out. Two-thirds of patients had recorded decisions about CoT. Regardless of which CoT option was chosen, for most patients, PPD was home or care home. Patients with a CoT plan were more likely to have a documented resuscitation status.Patients with a CoT were more likely to die in their PPD (82%vs71%, OR 1.79, pcare planning. Three facets of urgent care planning identified include PPD, CoT and resuscitation status. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. The role of Cobalt-60 source in Intensity Modulated Radiation Therapy: From modeling finite sources to treatment planning and conformal dose delivery

    Science.gov (United States)

    Dhanesar, Sandeep Kaur

    Cobalt-60 (Co-60) units played an integral role in radiation therapy from the mid-1950s to the 1970s. Although they continue to be used to treat cancer in some parts of the world, their role has been significantly reduced due to the invention of medical linear accelerators. A number of groups have indicated a strong potential for Co-60 units in modern radiation therapy. The Medical Physics group at the Cancer Center of the Southeastern Ontario and Queen's University has shown the feasibility of Intensity Modulated Radiation Therapy (IMRT) via simple conformal treatment planning and dose delivery using a Co-60 unit. In this thesis, initial Co-60 tomotherapy planning investigations on simple uniform phantoms are extended to actual clinical cases based on patient CT data. The planning is based on radiation dose data from a clinical Co-60 unit fitted with a multileaf collimator (MLC) and modeled in the EGSnrc Monte Carlo system. An in house treatment planning program is used to calculate IMRT dose distributions. Conformal delivery in a single slice on a uniform phantom based on sequentially delivered pencil beams is verified by Gafchromic film. Volumetric dose distributions for Co-60 serial tomotherapy are then generated for typical clinical sites that had been treated at our clinic by conventional 6MV IMRT using Varian Eclipse treatment plans. The Co-60 treatment plans are compared with the clinical IMRT plans using conventional matrices such as dose volume histograms (DVH). Dose delivery based on simultaneously opened MLC leaves is also explored and a novel MLC segmentation method is proposed. In order to increase efficiency of dose calculations, a novel convolution based fluence model for treatment planning is also proposed. The ion chamber measurements showed that the Monte Carlo modeling of the beam data under the MIMiC MLC is accurate. The film measurements from the uniform phantom irradiations confirm that IMRT plans from our in-house treatment planning system

  5. SU-F-T-128: Dose-Volume Constraints for Particle Therapy Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R; Smith, W; Hendrickson, K; Meyer, J; Cao, N; Lee, E; Gopan, O; Sandison, G; Parvathaneni, U; Laramore, G [University of Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: Determine equivalent Organ at Risk (OAR) tolerance dose (TD) constraints for MV x-rays and particle therapy. Methods: Equivalent TD estimates for MV x-rays are determined from an isoeffect, regression-analysis of published and in-house constraints for various fractionation schedules (n fractions). The analysis yields an estimate of (α/β) for an OAR. To determine equivalent particle therapy constraints, the MV x-ray TD(n) values are divided by the RBE for DSB induction (RBE{sub DSB}) or cell survival (RBE{sub S}). Estimates of (RBE{sub DSB}) are computed using the Monte Carlo Damage Simulation, and estimates of RBES are computed using the Repair-Misrepair-Fixation (RMF) model. A research build of the RayStation™ treatment planning system implementing the above model is used to estimate (RBE{sub DSB}) for OARs of interest in 16 proton therapy patient plans (head and neck, thorax, prostate and brain). Results: The analysis gives an (α/β) estimate of about 20 Gy for the trachea and heart and 2–4 Gy for the esophagus, spine, and brachial plexus. Extrapolation of MV x-ray constraints (n = 1) to fast neutrons using RBE{sub DSB} = 2.7 are in excellent agreement with clinical experience (n = 10 to 20). When conventional (n > 30) x-ray treatments are used as the reference radiation, fast neutron RBE increased to a maximum of 6. For comparison to a constant RBE of 1.1, the RayStation™ analysis gave estimates of proton RBE{sub DSB} from 1.03 to 1.33 for OARs of interest. Conclusion: The presented system of models is a convenient formalism to synthesize from multiple sources of information a set of self-consistent plan constraints for MV x-ray and hadron therapy treatments. Estimates of RBE{sub DSB} from the RayStation™ analysis differ substantially from 1.1 and vary among patients and treatment sites. A treatment planning system that incorporates patient and anatomy-specific corrections in proton RBE would create opportunities to increase the therapeutic

  6. Current status of quality assurance of treatment planning systems

    International Nuclear Information System (INIS)

    Mijnheer, B.J.

    1997-01-01

    A review is given of the current status of quality assurance of treatment planning systems. At this moment only one comprehensive report is available. In order to review national activities a questionnaire has been distributed amongst national societies of medical physicists. From the 23 responding countries, 8 indicated that only limited efforts are underway, 8 answered that a working group is evaluating their specific national requirements while in 5 countries a document is drafted. The highlights of these reports have been summarized. (author)

  7. Patients with hip prosthesis: radiotherapy treatment planning considerations

    International Nuclear Information System (INIS)

    Ganesh, K.M.; Supe, Sanjay S.

    2000-01-01

    The number of patients with hip prosthesis undergoing radiotherapy for pelvic cancer worldwide is increasing. This might be of importance depending on the materials in the prosthesis and whether any of the treatment fields are involved in the prosthesis. Radiotherapy planning involving the pelvic region of patients having total hip prosthesis has been found to be difficult due to the effect of the prosthesis on the dose distribution. This review is intended to project dosimetric considerations and possible solutions to this uncommon problem

  8. 3D Computer aided treatment planning in endodontics.

    Science.gov (United States)

    van der Meer, Wicher J; Vissink, Arjan; Ng, Yuan Ling; Gulabivala, Kishor

    2016-02-01

    Obliteration of the root canal system due to accelerated dentinogenesis and dystrophic calcification can challenge the achievement of root canal treatment goals. This paper describes the application of 3D digital mapping technology for predictable navigation of obliterated canal systems during root canal treatment to avoid iatrogenic damage of the root. Digital endodontic treatment planning for anterior teeth with severely obliterated root canal systems was accomplished with the aid of computer software, based on cone beam computer tomography (CBCT) scans and intra-oral scans of the dentition. On the basis of these scans, endodontic guides were created for the planned treatment through digital designing and rapid prototyping fabrication. The custom-made guides allowed for an uncomplicated and predictable canal location and management. The method of digital designing and rapid prototyping of endodontic guides allows for reliable and predictable location of root canals of teeth with calcifically metamorphosed root canal systems. The endodontic directional guide facilitates difficult endodontic treatments at little additional cost. Copyright © 2016. Published by Elsevier Ltd.

  9. Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT).

    Science.gov (United States)

    Men, Chunhua; Romeijn, H Edwin; Jia, Xun; Jiang, Steve B

    2010-11-01

    To develop a novel aperture-based algorithm for volumetric modulated are therapy (VMAT) treatment plan optimization with high quality and high efficiency. The VMAT optimization problem is formulated as a large-scale convex programming problem solved by a column generation approach. The authors consider a cost function consisting two terms, the first enforcing a desired dose distribution and the second guaranteeing a smooth dose rate variation between successive gantry angles. A gantry rotation is discretized into 180 beam angles and for each beam angle, only one MLC aperture is allowed. The apertures are generated one by one in a sequential way. At each iteration of the column generation method, a deliverable MLC aperture is generated for one of the unoccupied beam angles by solving a subproblem with the consideration of MLC mechanic constraints. A subsequent master problem is then solved to determine the dose rate at all currently generated apertures by minimizing the cost function. When all 180 beam angles are occupied, the optimization completes, yielding a set of deliverable apertures and associated dose rates that produce a high quality plan. The algorithm was preliminarily tested on five prostate and five head-and-neck clinical cases, each with one full gantry rotation without any couch/collimator rotations. High quality VMAT plans have been generated for all ten cases with extremely high efficiency. It takes only 5-8 min on CPU (MATLAB code on an Intel Xeon 2.27 GHz CPU) and 18-31 s on GPU (CUDA code on an NVIDIA Tesla C1060 GPU card) to generate such plans. The authors have developed an aperture-based VMAT optimization algorithm which can generate clinically deliverable high quality treatment plans at very high efficiency.

  10. Probabilistic Analysis for Capacity Planning in Smart Grid at Residential Low Voltage Level by Monte-Carlo Method

    NARCIS (Netherlands)

    Du, W.

    2011-01-01

    Smart Grid integrates sustainable energy sources and allows mutual communications between electricity distribution operators and electricity consumers. Electricity demand and supply becomes more complex in Smart Grid. It is more challenging for DNOs in grid asset capacity planning, especially at low

  11. Clinical use of the hyperthermia treatment planning system HyperPlan to predict effectiveness and toxicity

    International Nuclear Information System (INIS)

    Sreenivasa, Geetha; Gellermann, Johanna; Rau, Beate; Nadobny, Jacek; Schlag, Peter; Deuflhard, Peter; Felix, Roland; Wust, Peter

    2003-01-01

    Purpose: The main aim is to prove the clinical practicability of the hyperthermia treatment planning system HyperPlan on a β-test level. Data and observations obtained from clinical hyperthermia are compared with the numeric methods FE (finite element) and FDTD (finite difference time domain), respectively. Methods and Materials: The planning system HyperPlan is built on top of the modular, object-oriented platform for visualization and model generation AMIRA. This system already contains powerful algorithms for image processing, geometric modeling, and three-dimensional graphics display. A number of hyperthermia-specific modules are provided, enabling the creation of three-dimensional tetrahedral patient models suitable for treatment planning. Two numeric methods, FE and FDTD, are implemented in HyperPlan for solving Maxwell's equations. Both methods base their calculations on segmented (contour based) CT or MR image data. A tetrahedral grid is generated from the segmented tissue boundaries, consisting of approximately 80,000 tetrahedrons per patient. The FE method necessitates, primarily, this tetrahedral grid for the calculation of the E-field. The FDTD method, on the other hand, calculates the E-field on a cubical grid, but also requires a tetrahedral grid for correction at electrical interfaces. In both methods, temperature distributions are calculated on the tetrahedral grid by solving the bioheat transfer equation with the FE method. Segmentation, grid generation, E-field, and temperature calculation can be carried out in clinical practice at an acceptable time expenditure of about 1-2 days. Results: All 30 patients we analyzed with cervical, rectal, and prostate carcinoma exhibit a good correlation between the model calculations and the attained clinical data regarding acute toxicity (hot spots), prediction of easy-to-heat or difficult-to-heat patients, and the dependency on various other individual parameters. We could show sufficient agreement between

  12. Monte Carlo simulation for the transport beamline

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Attili, A.; Marchetto, F.; Russo, G. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino (Italy); Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Tramontana, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy)

    2013-07-26

    In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.

  13. Monte Carlo simulation for the transport beamline

    International Nuclear Information System (INIS)

    Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A.; Attili, A.; Marchetto, F.; Russo, G.; Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Carpinelli, M.; Tramontana, A.

    2013-01-01

    In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery

  14. MO-D-BRB-01: Pediatric Treatment Planning I: Overview of Planning Strategies and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Olch, A. [Childrens Hospital of LA (United States)

    2015-06-15

    Most Medical Physicists working in radiotherapy departments see few pediatric patients. This is because, fortunately, children get cancer at a rate nearly 100 times lower than adults. Children have not smoked, abused alcohol, or been exposed to environmental carcinogens for decades, and of course, have not fallen victim to the aging process. Children get very different cancers than adults. Breast or prostate cancers, typical in adults, are rarely seen in children but instead a variety of tumors occur in children that are rarely seen in adults; examples are germinomas, ependymomas and primitive neuroectodermal tumors, which require treatment of the child’s brain or neuroblastoma, requiring treatment in the abdomen. The treatment of children with cancer using radiation therapy is one of the most challenging planning and delivery problems facing the physicist. This is because bones, brain, breast tissue, and other organs are more sensitive to radiation in children than in adults. Because most therapy departments treat mostly adults, when the rare 8 year-old patient comes to the department for treatment, the physicist may not understand the clinical issues of his disease which drive the planning and delivery decisions. Additionally, children are more prone than adults to developing secondary cancers after radiation. For bilateral retinoblastoma for example, an irradiated child has a 40% chance of developing a second cancer by age 50. The dosimetric tradeoffs made during the planning process are complex and require careful consideration for children treated with radiotherapy. In the first presentation, an overview of childhood cancers and their corresponding treatment techniques will be given. These can be some of the most complex treatments that are delivered in the radiation therapy department. These cancers include leukemia treated with total body irradiation, medulloblastoma, treated with craniospinal irradiation plus a conformal boost to the posterior fossa

  15. MO-D-BRB-02: SBRT Treatment Planning and Delivery

    International Nuclear Information System (INIS)

    Yang, Y.

    2016-01-01

    Increased use of SBRT and hypofractionation in radiation oncology practice has posted a number of challenges to medical physicist, ranging from planning, image-guided patient setup and on-treatment monitoring, to quality assurance (QA) and dose delivery. This symposium is designed to provide current knowledge necessary for the safe and efficient implementation of SBRT in various linac platforms, including the emerging digital linacs equipped with high dose rate FFF beams. Issues related to 4D CT, PET and MRI simulations, 3D/4D CBCT guided patient setup, real-time image guidance during SBRT dose delivery using gated/un-gated VMAT/IMRT, and technical advancements in QA of SBRT (in particular, strategies dealing with high dose rate FFF beams) will be addressed. The symposium will help the attendees to gain a comprehensive understanding of the SBRT workflow and facilitate their clinical implementation of the state-of-art imaging and planning techniques. Learning Objectives: Present background knowledge of SBRT, describe essential requirements for safe implementation of SBRT, and discuss issues specific to SBRT treatment planning and QA. Update on the use of multi-dimensional and multi-modality imaging for reliable guidance of SBRT. Discuss treatment planning and QA issues specific to SBRT. Provide a comprehensive overview of emerging digital linacs and summarize the key geometric and dosimetric features of the new generation of linacs for substantially improved SBRT. NIH/NCI; Varian Medical Systems; F. Yin, Duke University has a research agreement with Varian Medical Systems. In addition to research grant, I had a technology license agreement with Varian Medical Systems

  16. MO-D-BRB-02: SBRT Treatment Planning and Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. [Stanford University Cancer Center (United States)

    2016-06-15

    Increased use of SBRT and hypofractionation in radiation oncology practice has posted a number of challenges to medical physicist, ranging from planning, image-guided patient setup and on-treatment monitoring, to quality assurance (QA) and dose delivery. This symposium is designed to provide current knowledge necessary for the safe and efficient implementation of SBRT in various linac platforms, including the emerging digital linacs equipped with high dose rate FFF beams. Issues related to 4D CT, PET and MRI simulations, 3D/4D CBCT guided patient setup, real-time image guidance during SBRT dose delivery using gated/un-gated VMAT/IMRT, and technical advancements in QA of SBRT (in particular, strategies dealing with high dose rate FFF beams) will be addressed. The symposium will help the attendees to gain a comprehensive understanding of the SBRT workflow and facilitate their clinical implementation of the state-of-art imaging and planning techniques. Learning Objectives: Present background knowledge of SBRT, describe essential requirements for safe implementation of SBRT, and discuss issues specific to SBRT treatment planning and QA. Update on the use of multi-dimensional and multi-modality imaging for reliable guidance of SBRT. Discuss treatment planning and QA issues specific to SBRT. Provide a comprehensive overview of emerging digital linacs and summarize the key geometric and dosimetric features of the new generation of linacs for substantially improved SBRT. NIH/NCI; Varian Medical Systems; F. Yin, Duke University has a research agreement with Varian Medical Systems. In addition to research grant, I had a technology license agreement with Varian Medical Systems.

  17. Comparison of dose calculations between pencil-beam and Monte Carlo algorithms of the iPlan RT in arc therapy using a homogenous phantom with 3DVH software

    International Nuclear Information System (INIS)

    Song, Jin Ho; Shin, Hun-Joo; Kay, Chul Seung; Chae, Soo-Min; Son, Seok Hyun

    2013-01-01

    To create an arc therapy plan, certain current general calculation algorithms such as pencil-beam calculation (PBC) are based on discretizing the continuous arc into multiple fields to simulate an arc. The iPlan RT™ treatment planning system incorporates not only a PBC algorithm, but also a more recent Monte Carlo calculation (MCC) algorithm that does not need beam discretization. The objective of this study is to evaluate the dose differences in a homogenous phantom between PBC and MCC by using a three-dimensional (3D) diode array detector (ArcCHECK™) and 3DVH software. A cylindrically shaped ‘target’ region of interest (ROI) and a ‘periphery ROI’ surrounding the target were designed. An arc therapy plan was created to deliver 600 cGy to the target within a 350° rotation angle, calculated using the PBC and MCC algorithms. The radiation doses were measured by the ArcCHECK, and reproduced by the 3DVH software. Through this process, we could compare the accuracy of both algorithms with regard to the 3D gamma passing rate (for the entire area and for each ROI). Comparing the PBC and MCC planned dose distributions directly, the 3D gamma passing rates for the entire area were 97.7% with the gamma 3%/3 mm criterion. Comparing the planned dose to the measured dose, the 3D gamma passing rates were 98.8% under the PBC algorithm and 100% under the MCC algorithm. The difference was statistically significant (p = 0.034). Furthermore the gamma passing rate decreases 7.5% in the PBC when using the 2%/2 mm criterion compared to only a 0.4% decrease under the MCC. Each ROI as well as the entire area showed statistically significant higher gamma passing rates under the MCC algorithm. The failure points that did not satisfy the gamma criteria showed a regular pattern repeated every 10°. MCC showed better accuracy than the PBC of the iPlan RT in calculating the dose distribution in arc therapy, which was validated with the ArcCHECK and the 3DVH software. This may

  18. Radiotherapy beyond cancer: Target localization in real-time MRI and treatment planning for cardiac radiosurgery

    International Nuclear Information System (INIS)

    Ipsen, S.; Blanck, O.; Rades, D.; Oborn, B.; Bode, F.; Liney, G.; Hunold, P.; Schweikard, A.; Keall, P. J.

    2014-01-01

    Purpose: Atrial fibrillation (AFib) is the most common cardiac arrhythmia that affects millions of patients world-wide. AFib is usually treated with minimally invasive, time consuming catheter ablation techniques. While recently noninvasive radiosurgery to the pulmonary vein antrum (PVA) in the left atrium has been proposed for AFib treatment, precise target location during treatment is challenging due to complex respiratory and cardiac motion. A MRI linear accelerator (MRI-Linac) could solve the problems of motion tracking and compensation using real-time image guidance. In this study, the authors quantified target motion ranges on cardiac magnetic resonance imaging (MRI) and analyzed the dosimetric benefits of margin reduction assuming real-time motion compensation was applied. Methods: For the imaging study, six human subjects underwent real-time cardiac MRI under free breathing. The target motion was analyzed retrospectively using a template matching algorithm. The planning study was conducted on a CT of an AFib patient with a centrally located esophagus undergoing catheter ablation, representing an ideal case for cardiac radiosurgery. The target definition was similar to the ablation lesions at the PVA created during catheter treatment. Safety margins of 0 mm (perfect tracking) to 8 mm (untracked respiratory motion) were added to the target, defining the planning target volume (PTV). For each margin, a 30 Gy single fraction IMRT plan was generated. Additionally, the influence of 1 and 3 T magnetic fields on the treatment beam delivery was simulated using Monte Carlo calculations to determine the dosimetric impact of MRI guidance for two different Linac positions. Results: Real-time cardiac MRI showed mean respiratory target motion of 10.2 mm (superior–inferior), 2.4 mm (anterior–posterior), and 2 mm (left–right). The planning study showed that increasing safety margins to encompass untracked respiratory motion leads to overlapping structures even in the

  19. Radiotherapy beyond cancer: Target localization in real-time MRI and treatment planning for cardiac radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Ipsen, S. [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia and Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck 23562 (Germany); Blanck, O.; Rades, D. [Department of Radiation Oncology, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck 23562 (Germany); Oborn, B. [Illawarra Cancer Care Centre (ICCC), Wollongong, New South Wales 2500, Australia and Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, New South Wales 2500 (Australia); Bode, F. [Medical Department II, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck 23562 (Germany); Liney, G. [Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, New South Wales 2170 (Australia); Hunold, P. [Department of Radiology and Nuclear Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck 23562 (Germany); Schweikard, A. [Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck 23562 (Germany); Keall, P. J., E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006 (Australia)

    2014-12-15

    Purpose: Atrial fibrillation (AFib) is the most common cardiac arrhythmia that affects millions of patients world-wide. AFib is usually treated with minimally invasive, time consuming catheter ablation techniques. While recently noninvasive radiosurgery to the pulmonary vein antrum (PVA) in the left atrium has been proposed for AFib treatment, precise target location during treatment is challenging due to complex respiratory and cardiac motion. A MRI linear accelerator (MRI-Linac) could solve the problems of motion tracking and compensation using real-time image guidance. In this study, the authors quantified target motion ranges on cardiac magnetic resonance imaging (MRI) and analyzed the dosimetric benefits of margin reduction assuming real-time motion compensation was applied. Methods: For the imaging study, six human subjects underwent real-time cardiac MRI under free breathing. The target motion was analyzed retrospectively using a template matching algorithm. The planning study was conducted on a CT of an AFib patient with a centrally located esophagus undergoing catheter ablation, representing an ideal case for cardiac radiosurgery. The target definition was similar to the ablation lesions at the PVA created during catheter treatment. Safety margins of 0 mm (perfect tracking) to 8 mm (untracked respiratory motion) were added to the target, defining the planning target volume (PTV). For each margin, a 30 Gy single fraction IMRT plan was generated. Additionally, the influence of 1 and 3 T magnetic fields on the treatment beam delivery was simulated using Monte Carlo calculations to determine the dosimetric impact of MRI guidance for two different Linac positions. Results: Real-time cardiac MRI showed mean respiratory target motion of 10.2 mm (superior–inferior), 2.4 mm (anterior–posterior), and 2 mm (left–right). The planning study showed that increasing safety margins to encompass untracked respiratory motion leads to overlapping structures even in the

  20. Radiotherapy beyond cancer: target localization in real-time MRI and treatment planning for cardiac radiosurgery.

    Science.gov (United States)

    Ipsen, S; Blanck, O; Oborn, B; Bode, F; Liney, G; Hunold, P; Rades, D; Schweikard, A; Keall, P J

    2014-12-01

    Atrial fibrillation (AFib) is the most common cardiac arrhythmia that affects millions of patients world-wide. AFib is usually treated with minimally invasive, time consuming catheter ablation techniques. While recently noninvasive radiosurgery to the pulmonary vein antrum (PVA) in the left atrium has been proposed for AFib treatment, precise target location during treatment is challenging due to complex respiratory and cardiac motion. A MRI linear accelerator (MRI-Linac) could solve the problems of motion tracking and compensation using real-time image guidance. In this study, the authors quantified target motion ranges on cardiac magnetic resonance imaging (MRI) and analyzed the dosimetric benefits of margin reduction assuming real-time motion compensation was applied. For the imaging study, six human subjects underwent real-time cardiac MRI under free breathing. The target motion was analyzed retrospectively using a template matching algorithm. The planning study was conducted on a CT of an AFib patient with a centrally located esophagus undergoing catheter ablation, representing an ideal case for cardiac radiosurgery. The target definition was similar to the ablation lesions at the PVA created during catheter treatment. Safety margins of 0 mm (perfect tracking) to 8 mm (untracked respiratory motion) were added to the target, defining the planning target volume (PTV). For each margin, a 30 Gy single fraction IMRT plan was generated. Additionally, the influence of 1 and 3 T magnetic fields on the treatment beam delivery was simulated using Monte Carlo calculations to determine the dosimetric impact of MRI guidance for two different Linac positions. Real-time cardiac MRI showed mean respiratory target motion of 10.2 mm (superior-inferior), 2.4 mm (anterior-posterior), and 2 mm (left-right). The planning study showed that increasing safety margins to encompass untracked respiratory motion leads to overlapping structures even in the ideal scenario, compromising

  1. MO-C-BRF-01: Pediatric Treatment Planning I: Overview of Planning Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Olch, A [Childrens Hospital of LA, Los Angeles, CA (United States); Hua, C [St. Jude Childrens Research Hospital, Memphis, TN (United States)

    2014-06-15

    Most Medical Physicists working in radiotherapy departments see few pediatric patients. This is because, fortunately, children get cancer at a rate nearly 100 times lower than adults. Children have not smoked, abused alcohol, or been exposed to environmental carcinogens for decades, and of course, have not fallen victim to the aging process. Children get very different cancers than adults. Breast or prostate cancers, typical in adults, are rarely seen in children but instead a variety of tumors occur in children that are rarely seen in adults; examples are germinomas, ependymomas and primitive neuroectodermal tumors, which require treatment of the child's brain or neuroblastoma, requiring treatment in the abdomen. The treatment of children with cancer using radiation therapy is one of the most challenging planning and delivery problems facing the physicist. This is because bones, brain, breast tissue, and other organs are more sensitive to radiation in children than in adults. Because most therapy departments treat mostly adults, when the rare 8 year-old patient comes to the department for treatment, the physicist may not understand the clinical issues of his disease which drive the planning and delivery decisions. Additionally, children are more prone than adults to developing secondary cancers after radiation. This fact has important implications for the choice of delivery techniques, especially when considering IMRT. For bilateral retinoblastoma for example, an irradiated child has a 50% chance of developing a second cancer by age 50. In the first presentation, an overview of childhood cancers and their corresponding treatment techniques will be given. These can be some of the most complex treatments that are delivered in the radiation therapy department. These cancers include leukemia treated with total body irradiation, medulloblastoma, treated with craniospinal irradiation plus a conformal boost to the posterior fossa, neuroblastoma, requiring focal

  2. Hemangiopericytoma - The need for a protocol-based treatment plan

    Directory of Open Access Journals (Sweden)

    Murugesan Krishnan

    2011-01-01

    Full Text Available Hemangiopericytoma is a vascular tumor which comprises only 1% of all vascular tumors. The frequency of occurrence in the head and neck accounts for about 16-33% of all hemangiopericytomas. In this paper we discuss the surgical management, the difficulties in decision-making and treatment-planning in a case of a maxillary tumor in a five-year-old boy with a two-year follow-up. A five-year-old boy presented with a large unilateral maxillary tumor with nasal obstruction. Computed tomography revealed a heterogeneous mass completely occupying the right maxillary sinus and displacing the lateral wall of the nose and nasal septum. The lesion was diagnosed as hemangiopericytoma after histopathological confirmation. The option of surgical resection (total maxillectomy was carried out after evaluating the available literature. Various treatment modalities like surgery, chemotherapy and radiotherapy were taken into consideration as the tumor has an aggressive nature. Due to the inadequate literature on definitive treatment options for these types of tumors, there was difficulty in arriving at a protocol-based treatment plan.

  3. Oral diagnosis and treatment planning: part 5. Preventive and treatment planning for dental caries.

    Science.gov (United States)

    Yip, K; Smales, R

    2012-09-01

    The practice of operative dentistry continues to evolve, to reflect the many changes occurring in society and in dental diseases and conditions. However, the belief that all questionable and early carious lesions should be restored still persists. This belief is largely based upon the concept that the removal of all carious tissue followed by meticulous restoration of the tooth is the treatment of choice for dental caries. Yet restorations are not permanent and do not cure caries, as the causes remain. On the other hand, preventive measures can remove or partially remove the causes, thereby reducing the risks for future caries recurrence at the same site or elsewhere in the mouth.

  4. Sci—Thur PM: Planning and Delivery — 06: Real-Time Interactive Treatment Planning

    International Nuclear Information System (INIS)

    Matthews, Q; Mestrovic, A; Otto, K

    2014-01-01

    Purpose: To describe and evaluate a novel system for generalized Real-Time Interactive Planning (RTIP) applied to head and neck (H and N) VMAT. Methods: The clinician interactively manipulates dose distributions using DVHs, isodoses, or rate of dose fall-off, which may be subjected to user-defined constraints. Dose is calculated using a fast Achievable Dose Estimate (ADE) algorithm, which simulates the limits of what can be achieved during treatment. After each manipulation contributing fluence elements are modified and the dose distribution updates in effectively real-time. For H and N VMAT planning, structure sets for 11 patients were imported into RTIP. Each dose distribution was interactively modified to minimize OAR dose while constraining target DVHs. The resulting RTIP DVHs were transferred to the Eclipse™ VMAT optimizer, and conventional VMAT optimization was performed. Results: Dose calculation and update times for the ADE algorithm ranged from 2.4 to 22.6 milliseconds, thus facilitating effectively real-time manipulation of dose distributions. For each of the 11 H and N VMAT cases, the RTIP process took ∼2–10 minutes. All RTIP plans exhibited acceptable PTV coverage, mean dose, and max dose. 10 of 11 RTIP plans achieved substantially improved sparing of one or more OARs without compromising dose to targets or other OARs. Importantly, 10 of the 11 RTIP plans required only one or two post-RTIP optimizations. Conclusions: RTIP is a novel system for manipulating and updating achievable dose distributions in real-time. H and N VMAT plans generated using RTIP demonstrate improved OAR sparing and planning efficiency. Disclosures: One author has a commercial interest in the presented materials

  5. Toward a web-based real-time radiation treatment planning system in a cloud computing environment.

    Science.gov (United States)

    Na, Yong Hum; Suh, Tae-Suk; Kapp, Daniel S; Xing, Lei

    2013-09-21

    To exploit the potential dosimetric advantages of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), an in-depth approach is required to provide efficient computing methods. This needs to incorporate clinically related organ specific constraints, Monte Carlo (MC) dose calculations, and large-scale plan optimization. This paper describes our first steps toward a web-based real-time radiation treatment planning system in a cloud computing environment (CCE). The Amazon Elastic Compute Cloud (EC2) with a master node (named m2.xlarge containing 17.1 GB of memory, two virtual cores with 3.25 EC2 Compute Units each, 420 GB of instance storage, 64-bit platform) is used as the backbone of cloud computing for dose calculation and plan optimization. The master node is able to scale the workers on an 'on-demand' basis. MC dose calculation is employed to generate accurate beamlet dose kernels by parallel tasks. The intensity modulation optimization uses total-variation regularization (TVR) and generates piecewise constant fluence maps for each initial beam direction in a distributed manner over the CCE. The optimized fluence maps are segmented into deliverable apertures. The shape of each aperture is iteratively rectified to be a sequence of arcs using the manufacture's constraints. The output plan file from the EC2 is sent to the simple storage service. Three de-identified clinical cancer treatment plans have been studied for evaluating the performance of the new planning platform with 6 MV flattening filter free beams (40 × 40 cm(2)) from the Varian TrueBeam(TM) STx linear accelerator. A CCE leads to speed-ups of up to 14-fold for both dose kernel calculations and plan optimizations in the head and neck, lung, and prostate cancer cases considered in this study. The proposed system relies on a CCE that is able to provide an infrastructure for parallel and distributed computing. The resultant plans from the cloud computing are

  6. Toward a web-based real-time radiation treatment planning system in a cloud computing environment

    International Nuclear Information System (INIS)

    Na, Yong Hum; Kapp, Daniel S; Xing, Lei; Suh, Tae-Suk

    2013-01-01

    To exploit the potential dosimetric advantages of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), an in-depth approach is required to provide efficient computing methods. This needs to incorporate clinically related organ specific constraints, Monte Carlo (MC) dose calculations, and large-scale plan optimization. This paper describes our first steps toward a web-based real-time radiation treatment planning system in a cloud computing environment (CCE). The Amazon Elastic Compute Cloud (EC2) with a master node (named m2.xlarge containing 17.1 GB of memory, two virtual cores with 3.25 EC2 Compute Units each, 420 GB of instance storage, 64-bit platform) is used as the backbone of cloud computing for dose calculation and plan optimization. The master node is able to scale the workers on an ‘on-demand’ basis. MC dose calculation is employed to generate accurate beamlet dose kernels by parallel tasks. The intensity modulation optimization uses total-variation regularization (TVR) and generates piecewise constant fluence maps for each initial beam direction in a distributed manner over the CCE. The optimized fluence maps are segmented into deliverable apertures. The shape of each aperture is iteratively rectified to be a sequence of arcs using the manufacture’s constraints. The output plan file from the EC2 is sent to the simple storage service. Three de-identified clinical cancer treatment plans have been studied for evaluating the performance of the new planning platform with 6 MV flattening filter free beams (40 × 40 cm 2 ) from the Varian TrueBeam TM STx linear accelerator. A CCE leads to speed-ups of up to 14-fold for both dose kernel calculations and plan optimizations in the head and neck, lung, and prostate cancer cases considered in this study. The proposed system relies on a CCE that is able to provide an infrastructure for parallel and distributed computing. The resultant plans from the cloud computing are

  7. Evolution of dose calculation models for proton-therapy treatment planning

    International Nuclear Information System (INIS)

    Vidal, Marie

    2011-01-01

    This work was achieved in collaboration between the Institut Curie proton-therapy Center of Orsay (ICPO), the DOSIsoft company and the CREATIS laboratory, in order to develop a new dose calculation model for the new ICPO treatment room. A new accelerator and gantry room from the IBA company were installed during the up-grade project of the proton-therapy center, with the intention of enlarging the cancer localizations treated at ICPO. Developing a package of methods and new dose calculation algorithms to adapt them to the new specific characteristics of the delivered beams by the IBA system is the first goal of this PhD work. They all aim to be implemented in the DOSIsoft treatment planning software, Isogray. First, the double scattering technique is treated in taking into account major differences between the IBA system and the ICPO fixed beam lines passive system. Secondly, a model is explored for the scanned beams modality. The second objective of this work is improving the Ray-Tracing and Pencil-Beam dose calculation models already in use. For the double scattering and uniform scanning techniques, the patient personalized collimator at the end of the beam line causes indeed a patient dose distribution contamination. A reduction method of that phenomenon was set up for the passive beam system. An analytical model was developed which describes the contamination function with parameters validated through Monte-Carlo simulations on the GATE platform. It allows us to apply those methods to active scanned beams [fr

  8. Total skin electron therapy treatment verification: Monte Carlo simulation and beam characteristics of large non-standard electron fields

    International Nuclear Information System (INIS)

    Pavon, Ester Carrasco; Sanchez-Doblado, Francisco; Leal, Antonio; Capote, Roberto; Lagares, Juan Ignacio; Perucha, Maria; Arrans, Rafael

    2003-01-01

    Total skin electron therapy (TSET) is a complex technique which requires non-standard measurements and dosimetric procedures. This paper investigates an essential first step towards TSET Monte Carlo (MC) verification. The non-standard 6 MeV 40 x 40 cm 2 electron beam at a source to surface distance (SSD) of 100 cm as well as its horizontal projection behind a polymethylmethacrylate (PMMA) screen to SSD = 380 cm were evaluated. The EGS4 OMEGA-BEAM code package running on a Linux home made 47 PCs cluster was used for the MC simulations. Percentage depth-dose curves and profiles were calculated and measured experimentally for the 40 x 40 cm 2 field at both SSD = 100 cm and patient surface SSD = 380 cm. The output factor (OF) between the reference 40 x 40 cm 2 open field and its horizontal projection as TSET beam at SSD = 380 cm was also measured for comparison with MC results. The accuracy of the simulated beam was validated by the good agreement to within 2% between measured relative dose distributions, including the beam characteristic parameters (R 50 , R 80 , R 100 , R p , E 0 ) and the MC calculated results. The energy spectrum, fluence and angular distribution at different stages of the beam (at SSD = 100 cm, at SSD = 364.2 cm, behind the PMMA beam spoiler screen and at treatment surface SSD = 380 cm) were derived from MC simulations. Results showed a final decrease in mean energy of almost 56% from the exit window to the treatment surface. A broader angular distribution (FWHM of the angular distribution increased from 13deg at SSD 100 cm to more than 30deg at the treatment surface) was fully attributable to the PMMA beam spoiler screen. OF calculations and measurements agreed to less than 1%. The effect of changing the electron energy cut-off from 0.7 MeV to 0.521 MeV and air density fluctuations in the bunker which could affect the MC results were shown to have a negligible impact on the beam fluence distributions. Results proved the applicability of using MC

  9. Quantification of the influence of the choice of the algorithm and planning system on the calculation of a treatment plan

    International Nuclear Information System (INIS)

    Moral, F. del; Ramos, A.; Salgado, M.; Andrade, B; Munoz, V.

    2010-01-01

    In this work an analysis of the influence of the choice of the algorithm or planning system, on the calculus of the same treatment plan is introduced. For this purpose specific software has been developed for comparing plans of a series of IMRT cases of prostate and head and neck cancer calculated using the convolution, superposition and fast superposition algorithms implemented in the XiO 4.40 planning system (CMS). It has also been used for the comparison of the same treatment plan for lung pathology calculated in XiO with the mentioned algorithms, and calculated in the Plan 4.1 planning system (Brainlab) using its pencil beam algorithm. Differences in dose among the treatment plans have been quantified using a set of metrics. The recommendation for the dosimetrist of a careful choice of the algorithm has been numerically confirmed. (Author).

  10. Incorporating model parameter uncertainty into inverse treatment planning

    International Nuclear Information System (INIS)

    Lian Jun; Xing Lei

    2004-01-01

    Radiobiological treatment planning depends not only on the accuracy of the models describing the dose-response relation of different tumors and normal tissues but also on the accuracy of tissue specific radiobiological parameters in these models. Whereas the general formalism remains the same, different sets of model parameters lead to different solutions and thus critically determine the final plan. Here we describe an inverse planning formalism with inclusion of model parameter uncertainties. This is made possible by using a statistical analysis-based frameset developed by our group. In this formalism, the uncertainties of model parameters, such as the parameter a that describes tissue-specific effect in the equivalent uniform dose (EUD) model, are expressed by probability density function and are included in the dose optimization process. We found that the final solution strongly depends on distribution functions of the model parameters. Considering that currently available models for computing biological effects of radiation are simplistic, and the clinical data used to derive the models are sparse and of questionable quality, the proposed technique provides us with an effective tool to minimize the effect caused by the uncertainties in a statistical sense. With the incorporation of the uncertainties, the technique has potential for us to maximally utilize the available radiobiology knowledge for better IMRT treatment

  11. Treatment planning systems dosimetry auditing project in Portugal.

    Science.gov (United States)

    Lopes, M C; Cavaco, A; Jacob, K; Madureira, L; Germano, S; Faustino, S; Lencart, J; Trindade, M; Vale, J; Batel, V; Sousa, M; Bernardo, A; Brás, S; Macedo, S; Pimparel, D; Ponte, F; Diaz, E; Martins, A; Pinheiro, A; Marques, F; Batista, C; Silva, L; Rodrigues, M; Carita, L; Gershkevitsh, E; Izewska, J

    2014-02-01

    The Medical Physics Division of the Portuguese Physics Society (DFM_SPF) in collaboration with the IAEA, carried out a national auditing project in radiotherapy, between September 2011 and April 2012. The objective of this audit was to ensure the optimal usage of treatment planning systems. The national results are presented in this paper. The audit methodology simulated all steps of external beam radiotherapy workflow, from image acquisition to treatment planning and dose delivery. A thorax CIRS phantom lend by IAEA was used in 8 planning test-cases for photon beams corresponding to 15 measuring points (33 point dose results, including individual fields in multi-field test cases and 5 sum results) in different phantom materials covering a set of typical clinical delivery techniques in 3D Conformal Radiotherapy. All 24 radiotherapy centers in Portugal have participated. 50 photon beams with energies 4-18 MV have been audited using 25 linear accelerators and 32 calculation algorithms. In general a very good consistency was observed for the same type of algorithm in all centres and for each beam quality. The overall results confirmed that the national status of TPS calculations and dose delivery for 3D conformal radiotherapy is generally acceptable with no major causes for concern. This project contributed to the strengthening of the cooperation between the centres and professionals, paving the way to further national collaborations. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Comparison of DVH data from multiple radiotherapy treatment planning systems

    International Nuclear Information System (INIS)

    Ebert, M A; Kearvell, R; Hooton, B; Spry, N A; Bydder, S A; Joseph, D J; Haworth, A; Hug, B

    2010-01-01

    This study examined the variation of dose-volume histogram (DVH) data sourced from multiple radiotherapy treatment planning systems (TPSs). Treatment plan exports were obtained from 33 Australian and New Zealand centres during a dosimetry study. Plan information, including DVH data, was exported from the TPS at each centre and reviewed in a digital review system (SWAN). The review system was then used to produce an independent calculation of DVH information for each delineated structure. The relationships between DVHs extracted from each TPS and independently calculated were examined, particularly in terms of the influence of CT scan slice and pixel widths, the resolution of dose calculation grids and the TPS manufacturer. Calculation of total volume and DVH data was consistent between SWAN and each TPS, with the small discrepancies found tending to increase with decreasing structure size. This was significantly influenced by the TPS model used to derive the data. For target structures covered with relatively uniform dose distributions, there was a significant difference between the minimum dose in each TPS-exported DVH and that calculated independently. (note)

  13. B Plant treatment, storage, and disposal (TSD) units inspection plan

    International Nuclear Information System (INIS)

    Beam, T.G.

    1996-01-01

    This inspection plan is written to meet the requirements of WAC 173-303 for operations of a TSD facility. Owners/operators of TSD facilities are required to inspection their facility and active waste management units to prevent and/or detect malfunctions, discharges and other conditions potentially hazardous to human health and the environment. A written plan detailing these inspection efforts must be maintained at the facility in accordance with Washington Administrative Code (WAC), Chapter 173-303, ''Dangerous Waste Regulations'' (WAC 173-303), a written inspection plan is required for the operation of a treatment, storage and disposal (TSD) facility and individual TSD units. B Plant is a permitted TSD facility currently operating under interim status with an approved Part A Permit. Various operational systems and locations within or under the control of B Plant have been permitted for waste management activities. Included are the following TSD units: Cell 4 Container Storage Area; B Plant Containment Building; Low Level Waste Tank System; Organic Waste Tank System; Neutralized Current Acid Waste (NCAW) Tank System; Low Level Waste Concentrator Tank System. This inspection plan complies with the requirements of WAC 173-303. It addresses both general TSD facility and TSD unit-specific inspection requirements. Sections on each of the TSD units provide a brief description of the system configuration and the permitted waste management activity, a summary of the inspection requirements, and details on the activities B Plant uses to maintain compliance with those requirements

  14. A Simulation Study for Radiation Treatment Planning Based on the Atomic Physics of the Proton-Boron Fusion Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sunmi; Yoon, Do-Kun; Shin, Han-Back; Jung, Joo-Young; Kim, Moo-Sub; Kim, Kyeong-Hyeon; Jang, Hong-Seok; Suh, Tae Suk [the Catholic University of Korea, Seoul (Korea, Republic of)

    2017-03-15

    The purpose of this research is to demonstrate, based on a Monte Carlo simulation code, the procedure of radiation treatment planning for proton-boron fusion therapy (PBFT). A discrete proton beam (60 - 120 MeV) relevant to the Bragg peak was simulated using a Monte Carlo particle extended (MCNPX, Ver. 2.6.0, National Laboratory, Los Alamos NM, USA) simulation code. After computed tomography (CT) scanning of a virtual water phantom including air cavities, the acquired CT images were converted using the simulation source code. We set the boron uptake regions (BURs) in the simulated water phantom to achieve the proton-boron fusion reaction. Proton sources irradiated the BUR, in the phantom. The acquired dose maps were overlapped with the original CT image of the phantom to analyze the dose volume histogram (DVH). We successfully confirmed amplifications of the proton doses (average: 130%) at the target regions. From the DVH result for each simulation, we acquired a relatively accurate dose map for the treatment. A simulation was conducted to characterize the dose distribution and verify the feasibility of proton boron fusion therapy (PBFT). We observed a variation in proton range and developed a tumor targeting technique for treatment that was more accurate and powerful than both conventional proton therapy and boron-neutron capture therapy.

  15. Automation of radiation treatment planning. Evaluation of head and neck cancer patient plans created by the Pinnacle"3 scripting and Auto-Planning functions

    International Nuclear Information System (INIS)

    Speer, Stefan; Weiss, Alexander; Bert, Christoph; Klein, Andreas; Kober, Lukas; Yohannes, Indra

    2017-01-01

    Intensity-modulated radiotherapy (IMRT) techniques are now standard practice. IMRT or volumetric-modulated arc therapy (VMAT) allow treatment of the tumor while simultaneously sparing organs at risk. Nevertheless, treatment plan quality still depends on the physicist's individual skills, experiences, and personal preferences. It would therefore be advantageous to automate the planning process. This possibility is offered by the Pinnacle"3 treatment planning system (Philips Healthcare, Hamburg, Germany) via its scripting language or Auto-Planning (AP) module. AP module results were compared to in-house scripts and manually optimized treatment plans for standard head and neck cancer plans. Multiple treatment parameters were scored to judge plan quality (100 points = optimum plan). Patients were initially planned manually by different physicists and re-planned using scripts or AP. Script-based head and neck plans achieved a mean of 67.0 points and were, on average, superior to manually created (59.1 points) and AP plans (62.3 points). Moreover, they are characterized by reproducibility and lower standard deviation of treatment parameters. Even less experienced staff are able to create at least a good starting point for further optimization in a short time. However, for particular plans, experienced planners perform even better than scripts or AP. Experienced-user input is needed when setting up scripts or AP templates for the first time. Moreover, some minor drawbacks exist, such as the increase of monitor units (+35.5% for scripted plans). On average, automatically created plans are superior to manually created treatment plans. For particular plans, experienced physicists were able to perform better than scripts or AP; thus, the benefit is greatest when time is short or staff inexperienced. (orig.) [de

  16. Automation of radiation treatment planning : Evaluation of head and neck cancer patient plans created by the Pinnacle3 scripting and Auto-Planning functions.

    Science.gov (United States)

    Speer, Stefan; Klein, Andreas; Kober, Lukas; Weiss, Alexander; Yohannes, Indra; Bert, Christoph

    2017-08-01

    Intensity-modulated radiotherapy (IMRT) techniques are now standard practice. IMRT or volumetric-modulated arc therapy (VMAT) allow treatment of the tumor while simultaneously sparing organs at risk. Nevertheless, treatment plan quality still depends on the physicist's individual skills, experiences, and personal preferences. It would therefore be advantageous to automate the planning process. This possibility is offered by the Pinnacle 3 treatment planning system (Philips Healthcare, Hamburg, Germany) via its scripting language or Auto-Planning (AP) module. AP module results were compared to in-house scripts and manually optimized treatment plans for standard head and neck cancer plans. Multiple treatment parameters were scored to judge plan quality (100 points = optimum plan). Patients were initially planned manually by different physicists and re-planned using scripts or AP. Script-based head and neck plans achieved a mean of 67.0 points and were, on average, superior to manually created (59.1 points) and AP plans (62.3 points). Moreover, they are characterized by reproducibility and lower standard deviation of treatment parameters. Even less experienced staff are able to create at least a good starting point for further optimization in a short time. However, for particular plans, experienced planners perform even better than scripts or AP. Experienced-user input is needed when setting up scripts or AP templates for the first time. Moreover, some minor drawbacks exist, such as the increase of monitor units (+35.5% for scripted plans). On average, automatically created plans are superior to manually created treatment plans. For particular plans, experienced physicists were able to perform better than scripts or AP; thus, the benefit is greatest when time is short or staff inexperienced.

  17. Dosimetric calculations by Monte Carlo for treatments of radiosurgery with the Leksell Gamma Knife, homogeneous and non homogeneous cases; Calculos dosimetricos por Monte Carlo para tratamientos de radiocirugia con el Leksell Gamma Knife, casos homogeneo y no homogeneo

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E.L. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Lallena R, A.M. [Universidad de Granada (Spain)

    2004-07-01

    In this work dose profiles are calculated that are obtained modeling treatments of radiosurgery with the Leksell Gamma Knife. This was made with the simulation code Monte Carlo Penelope for an homogeneous mannequin and one not homogeneous. Its were carried out calculations with the irradiation focus coinciding with the center of the mannequin as in near areas to the bone interface. Each one of the calculations one carries out for the 4 skull treatment that it includes the Gamma Knife and using a model simplified of their 201 sources of {sup 60} Co. It was found that the dose profiles differ of the order of 2% when the isocenter coincides with the center of the mannequin and they ascend to near 5% when the isocenter moves toward the skull. (Author)

  18. Nevada Test Site Site Treatment Plan. Revision 2

    International Nuclear Information System (INIS)

    1996-03-01

    Treatment Plans (STPS) are required for facilities at which the US Department of Energy (DOE) or stores mixed waste, defined by the Federal Facility Compliance Act (FFCAct) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act and a radioactive material subject to the Atomic Energy Act. On April 6, 1993, DOE published a Federal Register notice (58 FR 17875) describing its proposed process for developing the STPs in three phases including a Conceptual, a Draft, and a Proposed Site Treatment Plan (PSTP). All of the DOE Nevada Operations Office STP iterations have been developed with the state of Nevada's input. The options and schedules reflect a ''bottoms-up'' approach and have been evaluated for impacts on other DOE sites, as well as impacts to the overall DOE program. Changes may have occurred in the preferred option and associated schedules between the PSTP, which was submitted to the state of Nevada and US Environmental Protection Agency April 1995, and the Final STP (hereafter referred to as the STP) as treatment evaluations progressed. The STP includes changes that have occurred since the submittal of the PSTP as a result of state-to-state and DOE-to-state discussions

  19. 3-Dimentional radiotherapy versus conventional treatment plans for gastric cancer

    Directory of Open Access Journals (Sweden)

    Aghili M

    2010-11-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: The current standard of adjuvant management for gastric cancer after curative resection based on the results of intergroup 0116 is concurrent chemoradiation. Current guidelines for designing these challenging fields still include two-dimensional simulation with simple AP-PA parallel opposed design. However, the implementation of radiotherapy (RT remains a concern. Our objective was to compare three-dimensional (3D techniques to the more commonly used AP-PA technique."n"nMethods: A total of 24 patients with stages II-IV adenocarcinoma of the stomach were treated with adjuvant postoperative chemoradiation with simple AP-PA technique, using Cobalt-60. Total radiation dose was 50.4Gy. Landmark-based fields were simulated to assess PTV coverage. For each patient, three additional radiotherapy treatment plans were generated using three-dimensional (3D technique. The four treatment plans were then compared for target volume coverage and dose to normal tissues (liver, spinal cord, kidneys using dose volume histogram (DVH analysis."n"nResults: The three-dimensional planning techniques provided 10% superior PTV coverage compared to conventional AP-PA fields (p<0.001. Comparative DVHs for the right kidney, left kidney

  20. Plutonium Finishing Plan (PFP) Treatment and Storage Unit Interim Status Closure Plan

    International Nuclear Information System (INIS)

    PRIGNANO, A.L.

    2000-01-01

    This document describes the planned activities and performance standards for closing the Plutonium Finishing Plant (PFP) Treatment and Storage Unit. The PFP Treatment and Storage Unit is located within the 234-52 Building in the 200 West Area of the Hanford Facility. Although this document is prepared based upon Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the PFP Treatment and Storage Unit manages transuranic mixed (TRUM) waste, there are many controls placed on management of the waste. Based on the many controls placed on management of TRUM waste, releases of TRUM waste are not anticipated to occur in the PFP Treatment and Storage Unit. Because the intention is to clean close the PFP Treatment and Storage Unit, postclosure activities are not applicable to this closure plan. To clean close the unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or is environmentally impractical, the closure plan will be modified to address required postclosure activities. The PFP Treatment and Storage Unit will be operated to immobilize and/or repackage plutonium-bearing waste in a glovebox process. The waste to be processed is in a solid physical state (chunks and coarse powder) and will be sealed into and out of the glovebox in closed containers. The containers of immobilized waste will be stored in the glovebox and in additional permitted storage locations at PFP. The waste will be managed to minimize the potential for spills outside the glovebox, and to preclude spills from reaching soil. Containment surfaces will be maintained to ensure

  1. The impact of dose calculation algorithms on partial and whole breast radiation treatment plans

    International Nuclear Information System (INIS)

    Basran, Parminder S; Zavgorodni, Sergei; Berrang, Tanya; Olivotto, Ivo A; Beckham, Wayne

    2010-01-01

    This paper compares the calculated dose to target and normal tissues when using pencil beam (PBC), superposition/convolution (AAA) and Monte Carlo (MC) algorithms for whole breast (WBI) and accelerated partial breast irradiation (APBI) treatment plans. Plans for 10 patients who met all dosimetry constraints on a prospective APBI protocol when using PBC calculations were recomputed with AAA and MC, keeping the monitor units and beam angles fixed. Similar calculations were performed for WBI plans on the same patients. Doses to target and normal tissue volumes were tested for significance using the paired Student's t-test. For WBI plans the average dose to target volumes when using PBC calculations was not significantly different than AAA calculations, the average PBC dose to the ipsilateral breast was 10.5% higher than the AAA calculations and the average MC dose to the ipsilateral breast was 11.8% lower than the PBC calculations. For ABPI plans there were no differences in dose to the planning target volume, ipsilateral breast, heart, ipsilateral lung, or contra-lateral lung. Although not significant, the maximum PBC dose to the contra-lateral breast was 1.9% higher than AAA and the PBC dose to the clinical target volume was 2.1% higher than AAA. When WBI technique is switched to APBI, there was significant reduction in dose to the ipsilateral breast when using PBC, a significant reduction in dose to the ipsilateral lung when using AAA, and a significant reduction in dose to the ipsilateral breast and lung and contra-lateral lung when using MC. There is very good agreement between PBC, AAA and MC for all target and most normal tissues when treating with APBI and WBI and most of the differences in doses to target and normal tissues are not clinically significant. However, a commonly used dosimetry constraint, as recommended by the ASTRO consensus document for APBI, that no point in the contra-lateral breast volume should receive >3% of the prescribed dose needs

  2. Comparison of step and shoot IMRT treatment plans generated by three inverse treatment planning systems; Comparacion de tratamientos de IMRT estatica generados por tres sistemas de planificacion inversa

    Energy Technology Data Exchange (ETDEWEB)

    Perez Moreno, J. M.; Zucca Aparicio, D.; Fernandez leton, P.; Garcia Ruiz-Zorrilla, J.; Minambres Moro, A.

    2011-07-01

    One of the most important issues of intensity modulated radiation therapy (IMRT) treatments using the step-and-shoot technique is the number of segments and monitor units (MU) for treatment delivery. These parameters depend heavily on the inverse optimization module of the treatment planning system (TPS) used. Three commercial treatment planning systems: CMS XiO, iPlan and Prowess Panther have been evaluated. With each of them we have generated a treatment plan for the same group of patients, corresponding to clinical cases. Dosimetric results, MU calculated and number of segments were compared. Prowess treatment planning system generates plans with a number of segments significantly lower than other systems, while MU are less than a half. It implies important reductions in leakage radiation and delivery time. Degradation in the final dose calculation of dose is very small, because it directly optimizes positions of multileaf collimator (MLC). (Author) 13 refs.

  3. IMRT treatment planning-A comparative inter-system and inter-centre planning exercise of the ESTRO QUASIMODO group

    International Nuclear Information System (INIS)

    Bohsung, Joerg; Gillis, Sofie; Arrans, Rafael; Bakai, Annemarie; De Wagter, Carlos; Knoeoes, Tommy; Mijnheer, Ben J.; Paiusco, Marta; Perrin, Bruce A.; Welleweerd, Hans; Williams, Peter

    2005-01-01

    Background and purpose: The purpose of this work was a comparison of realistic IMRT plans based on the same CT-image data set and a common predefined set of dose objectives for the planning target volume and the organs at risk. This work was part of the larger European QUASIMODO IMRT verification project. Materials and methods: Eleven IMRT plans were produced by nine different European groups, each applying a representative set of clinically used IMRT treatment planning systems. The plans produced were to be deliverable in a clinically acceptable treatment time with the local technical equipment. All plans were characterized using a set of different quality measures such as dose-volume histograms, number of monitor units and treatment time. Results: Only one plan was able to fulfil all dose objectives strictly; six plans failed some of the objectives but were still considered to be clinically acceptable; four plans were not able to reach the objectives. Additional quality scores such as the number of monitor units and treatment time showed large variations, which mainly depend on the delivery technique. Conclusion: The presented planning study showed that with nearly all presently available IMRT planning and delivery systems comparable dose distributions could be achieved if the planning goals are clearly defined in advance

  4. A new plan-scoring method using normal tissue complication probability for personalized treatment plan decisions in prostate cancer

    Science.gov (United States)

    Kim, Kwang Hyeon; Lee, Suk; Shim, Jang Bo; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Kim, Chul Yong; Cao, Yuan Jie; Chang, Kyung Hwan

    2018-01-01

    The aim of this study was to derive a new plan-scoring index using normal tissue complication probabilities to verify different plans in the selection of personalized treatment. Plans for 12 patients treated with tomotherapy were used to compare scoring for ranking. Dosimetric and biological indexes were analyzed for the plans for a clearly distinguishable group ( n = 7) and a similar group ( n = 12), using treatment plan verification software that we developed. The quality factor ( QF) of our support software for treatment decisions was consistent with the final treatment plan for the clearly distinguishable group (average QF = 1.202, 100% match rate, n = 7) and the similar group (average QF = 1.058, 33% match rate, n = 12). Therefore, we propose a normal tissue complication probability (NTCP) based on the plan scoring index for verification of different plans for personalized treatment-plan selection. Scoring using the new QF showed a 100% match rate (average NTCP QF = 1.0420).