WorldWideScience

Sample records for carlo shell model

  1. Monte Carlo Shell Model Mass Predictions

    International Nuclear Information System (INIS)

    The nuclear mass calculation is discussed in terms of large-scale shell model calculations. First, the development and limitations of the conventional shell model calculations are mentioned. In order to overcome the limitations, the Quantum Monte Carlo Diagonalization (QMCD) method has been proposed. The basic formulation and features of the QMCD method are presented as well as its application to the nuclear shell model, referred to as Monte Carlo Shell Model (MCSM). The MCSM provides us with a breakthrough in shell model calculations: the structure of low-lying states can be studied with realistic interactions for a nearly unlimited variety of nuclei. Thus, the MCSM can contribute significantly to the study of nuclear masses. An application to N∼20 unstable nuclei far from the β-stability line is mentioned

  2. Monte Carlo methods and applications for the nuclear shell model

    OpenAIRE

    Dean, D. J.; White, J A

    1998-01-01

    The shell-model Monte Carlo (SMMC) technique transforms the traditional nuclear shell-model problem into a path-integral over auxiliary fields. We describe below the method and its applications to four physics issues: calculations of sdpf- shell nuclei, a discussion of electron-capture rates in pf-shell nuclei, exploration of pairing correlations in unstable nuclei, and level densities in rare earth systems.

  3. Monte Carlo Shell Model for ab initio nuclear structure

    Directory of Open Access Journals (Sweden)

    Abe T.

    2014-03-01

    Full Text Available We report on our recent application of the Monte Carlo Shell Model to no-core calculations. At the initial stage of the application, we have performed benchmark calculations in the p-shell region. Results are compared with those in the Full Configuration Interaction and No-Core Full Configuration methods. These are found to be consistent with each other within quoted uncertainties when they could be quantified. The preliminary results in Nshell = 5 reveal the onset of systematic convergence pattern.

  4. Monte Carlo shell model for ab initio nuclear structure

    International Nuclear Information System (INIS)

    The Monte Carlo Shell Model (MCSM) has been developed mainly for conventional shell-model calculations with an assumed inert core. Recently the algorithm and code itself have been heavily revised and rewritten so as to accommodate massively parallel computing environments. Now we can apply the MCSM not only to conventional shell-model calculations but also to no-core calculations. The MCSM approach proceeds through a sequence of diagonalization steps within the Hilbert subspace spanned by the deformed Slater determinants in the HO single-particle basis. Importance truncated bases are stochastically sampled so as to minimize the energy variationally. By increasing the number of importance-truncated basis, the computed energy converges from above to the exact value and gives the variational upper bound. In benchmark calculations, there is a good agreement in p-shell nuclei between the results of the MCSM and of the FCI (Full Configuration Interaction) method. The N(shell)=5 results reveal the onset of systematic convergence pattern. Further work is needed to investigate the extrapolation to the infinite basis space in the N(shell) truncation

  5. Unified description of pf-shell nuclei by the Monte Carlo shell model calculations

    Energy Technology Data Exchange (ETDEWEB)

    Mizusaki, Takahiro; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Honma, Michio

    1998-03-01

    The attempts to solve shell model by new methods are briefed. The shell model calculation by quantum Monte Carlo diagonalization which was proposed by the authors is a more practical method, and it became to be known that it can solve the problem with sufficiently good accuracy. As to the treatment of angular momentum, in the method of the authors, deformed Slater determinant is used as the basis, therefore, for making angular momentum into the peculiar state, projected operator is used. The space determined dynamically is treated mainly stochastically, and the energy of the multibody by the basis formed as the result is evaluated and selectively adopted. The symmetry is discussed, and the method of decomposing shell model space into dynamically determined space and the product of spin and isospin spaces was devised. The calculation processes are shown with the example of {sup 50}Mn nuclei. The calculation of the level structure of {sup 48}Cr with known exact energy can be done with the accuracy of peculiar absolute energy value within 200 keV. {sup 56}Ni nuclei are the self-conjugate nuclei of Z=N=28. The results of the shell model calculation of {sup 56}Ni nucleus structure by using the interactions of nuclear models are reported. (K.I.)

  6. Collective excitations of nuclei in the Monte-Carlo shell model

    International Nuclear Information System (INIS)

    The formulation and recent applications of the Quantum Monte Carlo diagonalization (QMCD) method are reported. The QMCD has been proposed for solving the quantum many-body interacting systems, providing us with energy eigenvalues, transition matrix elements and wave functions. Its application to the nuclear shell model is referred to as the Monte Carlo Shell Model. By the Monte Carlo Shell Model calculations, the level structure of low-lying states can be studied with realistic interactions, providing a useful tool for nuclear spectroscopy. The Monte Carlo Shell Model has been applied to the study of a variety of nuclei, and can be characterized as the importance truncation scheme to the full diagonalization which is infeasible in many cases due to extremely large dimensions. Applications to the study of quadrupole collective states are discussed. (author)

  7. Odd-particle systems in the shell model Monte Carlo: circumventing a sign problem

    CERN Document Server

    Mukherjee, Abhishek

    2012-01-01

    We introduce a novel method within the shell model Monte Carlo approach to calculate the ground-state energy of a finite-size system with an odd number of particles by using the asymptotic behavior of the imaginary-time single-particle Green's functions. The method circumvents the sign problem that originates from the projection on an odd number of particles and has hampered direct application of the shell model Monte Carlo method to odd-particle systems. We apply this method to calculate pairing gaps of nuclei in the iron region. Our results are in good agreement with experimental pairing gaps.

  8. The shell model Monte Carlo approach to level densities: recent developments and perspectives

    CERN Document Server

    Alhassid, Y

    2016-01-01

    We review recent advances in the shell model Monte Carlo approach for the microscopic calculation of statistical and collective properties of nuclei. We discuss applications to the calculation of (i) level densities in nickel isotopes, implementing a recent method to circumvent the odd-particle sign problem; (ii) state densities in heavy nuclei; (iii) spin distributions of nuclear levels; and (iv) finite-temperature quadrupole distributions.

  9. The shell model Monte Carlo approach to level densities: Recent developments and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Alhassid, Y. [Yale University, Center for Theoretical Physics, Sloane Physics Laboratory, New Haven, Connecticut (United States)

    2015-12-15

    We review recent advances in the shell model Monte Carlo approach for the microscopic calculation of statistical and collective properties of nuclei. We discuss applications to the calculation of i) level densities in nickel isotopes, implementing a recent method to circumvent the odd-particle sign problem; ii) state densities in heavy nuclei; iii) spin distributions of nuclear levels; and iv) finite-temperature quadrupole distributions. (orig.)

  10. The shell model Monte Carlo approach to level densities: Recent developments and perspectives

    Science.gov (United States)

    Alhassid, Y.

    2015-12-01

    We review recent advances in the shell model Monte Carlo approach for the microscopic calculation of statistical and collective properties of nuclei. We discuss applications to the calculation of i) level densities in nickel isotopes, implementing a recent method to circumvent the odd-particle sign problem; ii) state densities in heavy nuclei; iii) spin distributions of nuclear levels; and iv) finite-temperature quadrupole distributions.

  11. Level densities of heavy nuclei in the shell model Monte Carlo approach

    Science.gov (United States)

    Alhassid, Y.; Bertsch, G. F.; Gilbreth, C. N.; Nakada, H.; Özen, C.

    2016-06-01

    Nuclear level densities are necessary input to the Hauser-Feshbach theory of compound nuclear reactions. However, the microscopic calculation of level densities in the presence of correlations is a challenging many-body problem. The configurationinteraction shell model provides a suitable framework for the inclusion of correlations and shell effects, but the large dimensionality of the many-particle model space has limited its application in heavy nuclei. The shell model Monte Carlo method enables calculations in spaces that are many orders of magnitude larger than spaces that can be treated by conventional diagonalization methods and has proven to be a powerful tool in the microscopic calculation of level densities. We discuss recent applications of the method in heavy nuclei.

  12. Collectivity in Heavy Nuclei in the Shell Model Monte Carlo Approach

    CERN Document Server

    Özen, C; Nakada, H

    2013-01-01

    The microscopic description of collectivity in heavy nuclei in the framework of the configuration-interaction shell model has been a major challenge. The size of the model space required for the description of heavy nuclei prohibits the use of conventional diagonalization methods. We have overcome this difficulty by using the shell model Monte Carlo (SMMC) method, which can treat model spaces that are many orders of magnitude larger than those that can be treated by conventional methods. We identify a thermal observable that can distinguish between vibrational and rotational collectivity and use it to describe the crossover from vibrational to rotational collectivity in families of even-even rare-earth isotopes. We calculate the state densities in these nuclei and find them to be in close agreement with experimental data. We also calculate the collective enhancement factors of the corresponding level densities and find that their decay with excitation energy is correlated with the pairing and shape phase tran...

  13. Recent Advances in the Microscopic Calculations of Level Densities by the Shell Model Monte Carlo Method

    CERN Document Server

    Alhassid, Y; Liu, S; Mukherjee, A; Nakada, H

    2014-01-01

    The shell model Monte Carlo (SMMC) method enables calculations in model spaces that are many orders of magnitude larger than those that can be treated by conventional methods, and is particularly suitable for the calculation of level densities in the presence of correlations. We review recent advances and applications of SMMC for the microscopic calculation of level densities. Recent developments include (i) a method to calculate accurately the ground-state energy of an odd-mass nucleus, circumventing a sign problem that originates in the projection on an odd number of particles, and (ii) a method to calculate directly level densities, which, unlike state densities, do not include the spin degeneracy of the levels. We calculated the level densities of a family of nickel isotopes $^{59-64}$Ni and of a heavy deformed rare-earth nucleus $^{162}$Dy and found them to be in close agreement with various experimental data sets.

  14. Constrained-path quantum Monte Carlo approach for non-yrast states within the shell model

    Energy Technology Data Exchange (ETDEWEB)

    Bonnard, J. [INFN, Sezione di Padova, Padova (Italy); LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France); Juillet, O. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France)

    2016-04-15

    The present paper intends to present an extension of the constrained-path quantum Monte Carlo approach allowing to reconstruct non-yrast states in order to reach the complete spectroscopy of nuclei within the interacting shell model. As in the yrast case studied in a previous work, the formalism involves a variational symmetry-restored wave function assuming two central roles. First, it guides the underlying Brownian motion to improve the efficiency of the sampling. Second, it constrains the stochastic paths according to the phaseless approximation to control sign or phase problems that usually plague fermionic QMC simulations. Proof-of-principle results in the sd valence space are reported. They prove the ability of the scheme to offer remarkably accurate binding energies for both even- and odd-mass nuclei irrespective of the considered interaction. (orig.)

  15. A constrained-path quantum Monte-Carlo approach for the nuclear shell model

    International Nuclear Information System (INIS)

    The shell model is a powerful theoretical framework for studying the nuclear structure. Unfortunately, the exponential scaling of the many-body space with the number of nucleons or the number of valence levels strongly restricts its applicability. The Quantum Monte-Carlo (QMC) methods may then be considered as a possible alternative to the direct diagonalization of the Hamiltonian. They are based on a stochastic reformulation of the Schroedinger equation to reduce the many-body problem to a set of one-body problems, numerically tractable, describing independent particles that evolve in fluctuating external fields. The originality of the QMC scheme proposed in the present thesis is the use of a variational approach, with symmetry restoration before variation, to guide the Brownian motion and to constrain it in order to control the sign/phase problem that generally occurs in the QMC samplings for fermions. The 'yrast' spectroscopy we obtain for sd- and fp-shell nuclei with realistic residual interactions agree remarkably well with the results from an exact diagonalization of the Hamiltonian. Moreover, an openness towards strongly correlated electronic systems is presented through new QMC schemes recently developed for the two-dimensional Hubbard model. In contrast with the traditional samplings, they guarantee positive-weighted trajectories regardless the on-site interaction strength or the doping of the lattice. We demonstrate that these schemes are in fact related to the stochastic approach applied to the nuclear shell model. The origin of the systematic errors that emerge in these methods, although free from sign/phase problem with the Hubbard Hamiltonian, is also discussed. (author)

  16. McSCIA: application of the Equivalence Theorem in a Monte Carlo radiative transfer model for spherical shell atmospheres

    Directory of Open Access Journals (Sweden)

    F. Spada

    2006-02-01

    Full Text Available A new multiple-scattering Monte Carlo 3-D radiative transfer model named McSCIA (Monte Carlo for SCIAmachy is presented. The backward technique is used to efficiently simulate narrow field of view instruments. The McSCIA algorithm has been formulated as a function of the Earth's radius, and can thus perform simulations for both plane-parallel and spherical atmospheres. The latter geometry is essential for the interpretation of limb satellite measurements, as performed by SCIAMACHY on board of ESA's Envisat. The model can simulate UV-vis-NIR radiation.

    First the ray-tracing algorithm is presented in detail, and then successfully validated against literature references, both in plane-parallel and in spherical geometry. A simple 1-D model is used to explain two different ways of treating absorption. One method uses the single scattering albedo while the other uses the equivalence theorem. The equivalence theorem is based on a separation of absorption and scattering. It is shown that both methods give, in a statistical way, identical results for a wide variety of scenarios. Both absorption methods are included in McSCIA, and it is shown that also for a 3-D case both formulations give identical results. McSCIA limb profiles for atmospheres with and without absorption compare well with the one of the state of the art Monte Carlo radiative transfer model MCC++.

    A simplification of the photon statistics may lead to very fast calculations of absorption features in the atmosphere. However, these simplifications potentially introduce biases in the results. McSCIA does not use simplifications and is therefore a relatively slow implementation of the equivalence theorem. For the first time, however, the validity of the equivalence theorem is demonstrated in a spherical 3-D radiative transfer model.

  17. Shell-model Monte Carlo simulations of the BCS-BEC crossover in few-fermion systems

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas; Mølmer, Klaus; Özen, C.;

    2009-01-01

    strength, particle number, and temperature. The subtle question of renormalization in a finite model space is addressed and the convergence of our method and its applicability across the BCS-BEC crossover is discussed. Our findings indicate that very good quantitative results can be obtained on the BCS...

  18. Thin shell model revisited

    CERN Document Server

    Gao, Sijie

    2014-01-01

    We reconsider some fundamental problems of the thin shell model. First, we point out that the "cut and paste" construction does not guarantee a well-defined manifold because there is no overlap of coordinates across the shell. When one requires that the spacetime metric across the thin shell is continuous, it also provides a way to specify the tangent space and the manifold. Other authors have shown that this specification leads to the conservation laws when shells collide. On the other hand, the well-known areal radius $r$ seems to be a perfect coordinate covering all regions of a spherically symmetric spacetime. However, we show by simple but rigorous arguments that $r$ fails to be a coordinate covering a neighborhood of the thin shell if the metric across the shell is continuous. When two spherical shells collide and merge into one, we show that it is possible that $r$ remains to be a good coordinate and the conservation laws hold. To make this happen, different spacetime regions divided by the shells must...

  19. Continuum Shell Model

    OpenAIRE

    Volya, Alexander; Zelevinsky, Vladimir

    2005-01-01

    The Continuum Shell Model is an old but recently revived method that traverses the boundary between nuclear many-body structure and nuclear reactions. The method is based on the non-Hermitian energy-dependent effective Hamiltonian. The formalism, interpretation of solutions and practical implementation of calculations are discussed in detail. The results of the traditional shell model are fully reproduced for bound states; resonance parameters and cross section calculations are presented for ...

  20. Relativistic shell model calculations

    Science.gov (United States)

    Furnstahl, R. J.

    1986-06-01

    Shell model calculations are discussed in the context of a relativistic model of nuclear structure based on renormalizable quantum field theories of mesons and baryons (quantum hadrodynamics). The relativistic Hartree approximation to the full field theory, with parameters determined from bulk properties of nuclear matter, predicts a shell structure in finite nuclei. Particle-hole excitations in finite nuclei are described in an RPA calculation based on this QHD ground state. The particle-hole interaction is prescribed by the Hartree ground state, with no additional parameters. Meson retardation is neglected in deriving the RPA equations, but it is found to have negligible effects on low-lying states. The full Dirac matrix structure is maintained throughout the calculation; no nonrelativistic reductions are made. Despite sensitive cancellations in the ground state calculation, reasonable excitation spectra are obtained for light nuclei. The effects of including charged mesons, problems with heavy nuclei, and prospects for improved and extended calculations are discussed.

  1. Temporal structures in shell models

    DEFF Research Database (Denmark)

    Okkels, F.

    2001-01-01

    The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...

  2. Wetting and layering transitions in a nano-shell structure: Monte Carlo study

    Science.gov (United States)

    Aouini, S.; Ziti, S.; Labrim, H.; Bahmad, L.

    2016-09-01

    The Monte Carlo simulations have been used to study the magnetic properties and the hysteresis of a nano-shell structure composed of four bands, comprising a ferromagnetic spins σ=±1/2 Ising model. The influence of the surface and inner magnetic fields is responsible for the wetting phenomena and the layering transitions. The behavior of the magnetizations as well as the ground state phase diagrams is presented. We also explore the effect of the external magnetic field, the temperature and the exchange coupling interactions on the hysteresis cycle.

  3. Recent Advances in Shell Evolution with Shell-Model Calculations

    CERN Document Server

    Utsuno, Yutaka; Tsunoda, Yusuke; Shimizu, Noritaka; Honma, Michio; Togashi, Tomoaki; Mizusaki, Takahiro

    2014-01-01

    Shell evolution in exotic nuclei is investigated with large-scale shell-model calculations. After presenting that the central and tensor forces produce distinctive ways of shell evolution, we show several recent results: (i) evolution of single-particle-like levels in antimony and cupper isotopes, (ii) shape coexistence in nickel isotopes understood in terms of configuration-dependent shell structure, and (iii) prediction of the evolution of the recently established $N=34$ magic number towards smaller proton numbers. In any case, large-scale shell-model calculations play indispensable roles in describing the interplay between single-particle character and correlation.

  4. Multi-Shell Shell Model for Heavy Nuclei

    OpenAIRE

    Sun, Yang; Wu, Cheng-Li

    2003-01-01

    Performing a shell model calculation for heavy nuclei has been a long-standing problem in nuclear physics. Here we propose one possible solution. The central idea of this proposal is to take the advantages of two existing models, the Projected Shell Model (PSM) and the Fermion Dynamical Symmetry Model (FDSM), to construct a multi-shell shell model. The PSM is an efficient method of coupling quasi-particle excitations to the high-spin rotational motion, whereas the FDSM contains a successful t...

  5. Shell Models of Magnetohydrodynamic Turbulence

    CERN Document Server

    Plunian, Franck; Frick, Peter

    2012-01-01

    Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accu...

  6. An investigation of ab initio shell-model interactions derived by no-core shell model

    Science.gov (United States)

    Wang, XiaoBao; Dong, GuoXiang; Li, QingFeng; Shen, CaiWan; Yu, ShaoYing

    2016-09-01

    The microscopic shell-model effective interactions are mainly based on the many-body perturbation theory (MBPT), the first work of which can be traced to Brown and Kuo's first attempt in 1966, derived from the Hamada-Johnston nucleon-nucleon potential. However, the convergence of the MBPT is still unclear. On the other hand, ab initio theories, such as Green's function Monte Carlo (GFMC), no-core shell model (NCSM), and coupled-cluster theory with single and double excitations (CCSD), have made many progress in recent years. However, due to the increasing demanding of computing resources, these ab initio applications are usually limited to nuclei with mass up to A = 16. Recently, people have realized the ab initio construction of valence-space effective interactions, which is obtained through a second-time renormalization, or to be more exactly, projecting the full-manybody Hamiltonian into core, one-body, and two-body cluster parts. In this paper, we present the investigation of such ab initio shell-model interactions, by the recent derived sd-shell effective interactions based on effective J-matrix Inverse Scattering Potential (JISP) and chiral effective-field theory (EFT) through NCSM. In this work, we have seen the similarity between the ab initio shellmodel interactions and the interactions obtained by MBPT or by empirical fitting. Without the inclusion of three-body (3-bd) force, the ab initio shell-model interactions still share similar defects with the microscopic interactions by MBPT, i.e., T = 1 channel is more attractive while T = 0 channel is more repulsive than empirical interactions. The progress to include more many-body correlations and 3-bd force is still badly needed, to see whether such efforts of ab initio shell-model interactions can reach similar precision as the interactions fitted to experimental data.

  7. Applications of Continuum Shell Model

    OpenAIRE

    Volya, Alexander

    2006-01-01

    The nuclear many-body problem at the limits of stability is considered in the framework of the Continuum Shell Model that allows a unified description of intrinsic structure and reactions. Technical details behind the method are highlighted and practical applications combining the reaction and structure pictures are presented.

  8. Shell Models of Superfluid Turbulence

    Science.gov (United States)

    Wacks, Daniel H.; Barenghi, Carlo F.

    2011-12-01

    Superfluid helium consists of two inter-penetrating fluids, a viscous normal fluid and an inviscid superfluid, coupled by a mutual friction. We develop a two-fluid shell model to study superfluid turbulence and investigate the energy spectra and the balance of fluxes between the two fluids in a steady state. At sufficiently low temperatures a 'bottle-neck' develops at high wavenumbers suggesting the need for a further dissipative effect, such as the Kelvin wave cascade.

  9. Cluster model of s- and p-shell hypernuclei

    Indian Academy of Sciences (India)

    Mohammad Shoeb; Alemiye Mamo; Amanuel Fessahatsion

    2007-06-01

    The binding energy ( ) of the s- and p-shell hypernuclei are calculated variationally in the cluster model and multidimensional integrations are performed using Monte Carlo. A variety of phenomenological -core potentials consistent with the -core energies and a wide range of simulated s-state potentials are taken as input. The of $_{ }^{6}$He is explained and $_{ }^{5}$He and $_{ }^{5}$H are predicted to be particle stable in the -core model. The results for s-shell hypernuclei are in excellent agreement with those of non-VMC calculations. The $_{}^{10}$Be in model is overbound for combinations of and potentials. A phenomenological dispersive three-body force, , consistent with the of $_{}^{9}$Be in the model underbinds $_{ }^{10}$Be. The incremental values for the s- and p-shell cannot be reconciled, consistent with the finding of earlier analyses.

  10. Recent shell-model results for exotic nuclei

    Directory of Open Access Journals (Sweden)

    Utsuno Yusuke

    2014-03-01

    Full Text Available We report on our recent advancement in the shell model and its applications to exotic nuclei, focusing on the shell evolution and large-scale calculations with the Monte Carlo shell model (MCSM. First, we test the validity of the monopole-based universal interaction (VMU as a shell-model interaction by performing large-scale shell-model calculations in two different mass regions using effective interactions which partly comprise VMU. Those calculations are successful and provide a deeper insight into the shell evolution beyond the single-particle model, in particular showing that the evolution of the spin-orbit splitting due to the tensor force plays a decisive role in the structure of the neutron-rich N ∼ 28 region and antimony isotopes. Next, we give a brief overview of recent developments in MCSM, and show that it is applicable to exotic nuclei that involve many valence orbits. As an example of its applications to exotic nuclei, shape coexistence in 32Mg is examined.

  11. Isogeometric shell formulation based on a classical shell model

    KAUST Repository

    Niemi, Antti

    2012-09-04

    This paper constitutes the first steps in our work concerning isogeometric shell analysis. An isogeometric shell model of the Reissner-Mindlin type is introduced and a study of its accuracy in the classical pinched cylinder benchmark problem presented. In contrast to earlier works [1,2,3,4], the formulation is based on a shell model where the displacement, strain and stress fields are defined in terms of a curvilinear coordinate system arising from the NURBS description of the shell middle surface. The isogeometric shell formulation is implemented using the PetIGA and igakit software packages developed by the authors. The igakit package is a Python package used to generate NURBS representations of geometries that can be utilised by the PetIGA finite element framework. The latter utilises data structures and routines of the portable, extensible toolkit for scientific computation (PETSc), [5,6]. The current shell implementation is valid for static, linear problems only, but the software package is well suited for future extensions to geometrically and materially nonlinear regime as well as to dynamic problems. The accuracy of the approach in the pinched cylinder benchmark problem and present comparisons against the h-version of the finite element method with bilinear elements. Quadratic, cubic and quartic NURBS discretizations are compared against the isoparametric bilinear discretization introduced in [7]. The results show that the quadratic and cubic NURBS approximations exhibit notably slower convergence under uniform mesh refinement as the thickness decreases but the quartic approximation converges relatively quickly within the standard variational framework. The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  12. Clustering aspects and the shell model

    CERN Document Server

    Arima, A

    2004-01-01

    In this talk I shall discuss the clustering aspect and the shell model. I shall first discuss the $\\alpha$-cluster aspects based on the shell model calculations. Then I shall discuss the spin zero ground state dominance in the presence of random interactions and a new type of cluster structure for fermions in a single-$j$ shell in the presence of only pairing interaction with the largest multiplicity.

  13. A model for planktic foraminiferal shell growth

    OpenAIRE

    Signes, M.; Bijma, Jelle; Hemleben, C.; Ott, R.

    1993-01-01

    In this paper we analyze the laws of growth that control planktic foraminiferal shell morpholoy. We assume that isometry is the key towards the understanding of their ontogeny. Hence, our "null hypothesis" is that these organisms construct isometric shells. To test this hypothesis, geometric models of their shells have been generated with a personal computer. It is demonstrated that early chambers in log-spirally coiled structures can not follow a strict isometric arrangement. In the real wor...

  14. Shell Model Depiction of Isospin Mixing in sd Shell

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Yi Hua; Smirnova, Nadya A. [CENBG (CNRS/IN2P3 - Universite Bordeaux 1) Chemin du Solarium, 33175 Gradignan (France); Caurier, Etienne [IPHC, IN2P3-CNRS et Universite Louis Pasteur, 67037 Strasbourg (France)

    2011-11-30

    We constructed a new empirical isospin-symmetry breaking (ISB) Hamiltonian in the sd(1s{sub 1/2}, 0d{sub 5/2} and 0d{sub 3/2}) shell-model space. In this contribution, we present its application to two important case studies: (i){beta}-delayed proton emission from {sup 22}Al and (ii) isospin-mixing correction to superallowed 0{sup +}{yields}0{sup +}{beta}-decay ft-values.

  15. Derivation of a poroelastic flexural shell model

    CERN Document Server

    Mikelic, Andro

    2015-01-01

    In this paper we investigate the limit behavior of the solution to quasi-static Biot's equations in thin poroelastic flexural shells as the thickness of the shell tends to zero and extend the results obtained for the poroelastic plate by Marciniak-Czochra and Mikeli\\'c. We choose Terzaghi's time corresponding to the shell thickness and obtain the strong convergence of the three-dimensional solid displacement, fluid pressure and total poroelastic stress to the solution of the new class of shell equations. The derived bending equation is coupled with the pressure equation and it contains the bending moment due to the variation in pore pressure across the shell thickness. The effective pressure equation is parabolic only in the normal direction. As additional terms it contains the time derivative of the middle-surface flexural strain. Derivation of the model presents an extension of the results on the derivation of classical linear elastic shells by Ciarlet and collaborators to the poroelastic shells case. The n...

  16. Monte Carlo Exploration of Warped Higgsless Models

    CERN Document Server

    Hewett, J L; Rizzo, T G

    2004-01-01

    We have performed a detailed Monte Carlo exploration of the parameter space for a warped Higgsless model of electroweak symmetry breaking in 5 dimensions. This model is based on the $SU(2)_L\\times SU(2)_R\\times U(1)_{B-L}$ gauge group in an AdS$_5$ bulk with arbitrary gauge kinetic terms on both the Planck and TeV branes. Constraints arising from precision electroweak measurements and collider data are found to be relatively easy to satisfy. We show, however, that the additional requirement of perturbative unitarity up to the cut-off, $\\simeq 10$ TeV, in $W_L^+W_L^-$ elastic scattering in the absence of dangerous tachyons eliminates all models. If successful models of this class exist, they must be highly fine-tuned.

  17. Monte Carlo modeling and meteor showers

    International Nuclear Information System (INIS)

    Prediction of short lived increases in the cosmic dust influx, the concentration in lower thermosphere of atoms and ions of meteor origin and the determination of the frequency of micrometeor impacts on spacecraft are all of scientific and practical interest and all require adequate models of meteor showers at an early stage of their existence. A Monte Carlo model of meteor matter ejection from a parent body at any point of space was worked out by other researchers. This scheme is described. According to the scheme, the formation of ten well known meteor streams was simulated and the possibility of genetic affinity of each of them with the most probable parent comet was analyzed. Some of the results are presented

  18. Monte Carlo modeling and meteor showers

    Science.gov (United States)

    Kulikova, N. V.

    1987-08-01

    Prediction of short lived increases in the cosmic dust influx, the concentration in lower thermosphere of atoms and ions of meteor origin and the determination of the frequency of micrometeor impacts on spacecraft are all of scientific and practical interest and all require adequate models of meteor showers at an early stage of their existence. A Monte Carlo model of meteor matter ejection from a parent body at any point of space was worked out by other researchers. This scheme is described. According to the scheme, the formation of ten well known meteor streams was simulated and the possibility of genetic affinity of each of them with the most probable parent comet was analyzed. Some of the results are presented.

  19. Monte Carlo Simulation of River Meander Modelling

    Science.gov (United States)

    Posner, A. J.; Duan, J. G.

    2010-12-01

    This study first compares the first order analytical solutions for flow field by Ikeda et. al. (1981) and Johanesson and Parker (1989b). Ikeda et. al.’s (1981) linear bank erosion model was implemented to predict the rate of bank erosion in which the bank erosion coefficient is treated as a stochastic variable that varies with physical properties of the bank (e.g. cohesiveness, stratigraphy, vegetation density). The developed model was used to predict the evolution of meandering planforms. Then, the modeling results were analyzed and compared to the observed data. Since the migration of meandering channel consists of downstream translation, lateral expansion, and downstream or upstream rotations. Several measures are formulated in order to determine which of the resulting planform is closest to the experimental measured one. Results from the deterministic model highly depend on the calibrated erosion coefficient. Since field measurements are always limited, the stochastic model yielded more realistic predictions of meandering planform evolutions. Due to the random nature of bank erosion coefficient, the meandering planform evolution is a stochastic process that can only be accurately predicted by a stochastic model. Quasi-2D Ikeda (1989) flow solution with Monte Carlo Simulation of Bank Erosion Coefficient.

  20. Monte Carlo modelling of TRIGA research reactor

    Science.gov (United States)

    El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.

    2010-10-01

    The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.

  1. Translational invariant shell model for Λ hypernuclei

    Directory of Open Access Journals (Sweden)

    Jolos R.V.

    2016-01-01

    Full Text Available We extend shell model for Λ hypernuclei suggested by Gal and Millener by including 2ћω excitations in the translation invariant version to estimate yields of different hyperfragments from primary p-shell hypernuclei. We are inspired by the first successful experiment done at MAMI which opens way to study baryon decay of hypernuclei. We use quantum numbers of group SU(4, [f], and SU(3, (λμ, to classify basis wave functions and calculate coefficients of fractional parentage.

  2. Breakup of finite thickness viscous shell microbubbles by ultrasound: A simplified zero-thickness shell model

    OpenAIRE

    HSIAO, Chao-Tsung; Chahine, Georges L.

    2013-01-01

    A simplified three-dimensional (3-D) zero-thickness shell model was developed to recover the non-spherical response of thick-shelled encapsulated microbubbles subjected to ultrasound excitation. The model was validated by comparison with previously developed models and was then used to study the mechanism of bubble break-up during non-spherical deformations resulting from the presence of a nearby rigid boundary. The effects of the shell thickness and the bubble standoff distanc...

  3. Theoretical foundations of the nuclear shell model

    International Nuclear Information System (INIS)

    In this paper microscopic derivations of the empirical shell-model effective interactions are reviewed. First the authors discuss a time-dependent formalism of the folded-diagram theory. Starting from a realistic nuclear Hamiltonian H = T + VNN, this theory enables the authors to obtain formally a reduced model-space effective Hamiltonian Heff = H0 + Veff. Heff reproduces some, but not all, eigenvalues of H. Veff can be written as a folder diagram series and can be calculated in terms of G-matrices and the irreducible diagrams of the vertex function. A method for accurately treating the Pauli exclusion operator for the G-matrix is described. The s-d shell matrix elements of Veff calculated with the Bonn and the Paris VNN are compared with the Kuo-Brown matrix elements and the empirical matrix elements of Wildenthal

  4. Nuclear level density: Shell-model approach

    Science.gov (United States)

    Sen'kov, Roman; Zelevinsky, Vladimir

    2016-06-01

    Knowledge of the nuclear level density is necessary for understanding various reactions, including those in the stellar environment. Usually the combinatorics of a Fermi gas plus pairing is used for finding the level density. Recently a practical algorithm avoiding diagonalization of huge matrices was developed for calculating the density of many-body nuclear energy levels with certain quantum numbers for a full shell-model Hamiltonian. The underlying physics is that of quantum chaos and intrinsic thermalization in a closed system of interacting particles. We briefly explain this algorithm and, when possible, demonstrate the agreement of the results with those derived from exact diagonalization. The resulting level density is much smoother than that coming from conventional mean-field combinatorics. We study the role of various components of residual interactions in the process of thermalization, stressing the influence of incoherent collision-like processes. The shell-model results for the traditionally used parameters are also compared with standard phenomenological approaches.

  5. Symmetries and deformations in the spherical shell model

    CERN Document Server

    Van Isacker, Piet

    2016-01-01

    We discuss symmetries of the spherical shell model that make contact with the geometric collective model of Bohr and Mottelson. The most celebrated symmetry of this kind is SU(3), which is the basis of Elliott's model of rotation. It corresponds to a deformed mean field induced by a quadrupole interaction in a single major oscillator shell N and can be generalized to include several major shells. As such, Elliott's SU(3) model establishes the link between the spherical shell model and the (quadrupole component of the) geometric collective model. We introduce the analogue symmetry induced by an octupole interaction in two major oscillator shells N-1 and N, leading to an octupole-deformed solution of the spherical shell model. We show that in the limit of large oscillator shells (large N) the algebraic octupole interaction tends to that of the geometric collective model.

  6. Symmetries and deformations in the spherical shell model

    Science.gov (United States)

    Van Isacker, P.; Pittel, S.

    2016-02-01

    We discuss symmetries of the spherical shell model that make contact with the geometric collective model of Bohr and Mottelson. The most celebrated symmetry of this kind is SU(3), which is the basis of Elliott’s model of rotation. It corresponds to a deformed mean field induced by a quadrupole interaction in a single major oscillator shell N and can be generalized to include several major shells. As such, Elliott’s SU(3) model establishes the link between the spherical shell model and the (quadrupole component of the) geometric collective model. We introduce the analogue symmetry induced by an octupole interaction in two major oscillator shells N-1 and N, leading to an octupole-deformed solution of the spherical shell model. We show that in the limit of large oscillator shells, N\\to ∞ , the algebraic octupole interaction tends to that of the geometric collective model.

  7. Neutrino nucleosynthesis in supernovae: Shell model predictions

    International Nuclear Information System (INIS)

    Almost all of the 3 · 1053 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. I will argue that these neutrinos interact with nuclei in the ejected shells of the supernovae to produce new elements. It appears that this nucleosynthesis mechanism is responsible for the galactic abundances of 7Li, 11B, 19F, 138La, and 180Ta, and contributes significantly to the abundances of about 15 other light nuclei. I discuss shell model predictions for the charged and neutral current allowed and first-forbidden responses of the parent nuclei, as well as the spallation processes that produce the new elements. 18 refs., 1 fig., 1 tab

  8. Exchange bias and asymmetric hysteresis loops from a microscopic model of core/shell nanoparticles

    International Nuclear Information System (INIS)

    We present Monte Carlo simulations of hysteresis loops of a model of a magnetic nanoparticle with a ferromagnetic core and an antiferromagnetic shell with varying values of the core/shell interface exchange coupling which aim to clarify the microscopic origin of exchange bias observed experimentally. We have found loop shifts in the field direction as well as displacements along the magnetization axis that increase in magnitude when increasing the interfacial exchange coupling. Overlap functions computed from the spin configurations along the loops have been obtained to explain the origin and magnitude of these features microscopically

  9. Shell Model States in the Continuum

    CERN Document Server

    Shirokov, A M; Mazur, I A; Vary, J P

    2016-01-01

    We suggest a method for calculating scattering phase shifts and energies and widths of resonances which utilizes only eigenenergies obtained in variational calculations with oscillator basis and their dependence on oscillator basis spacing $\\hbar\\Omega$. We make use of simple expressions for the $S$-matrix at eigenstates of a finite (truncated) Hamiltonian matrix in the oscillator basis obtained in the HORSE ($J$-matrix) formalism of quantum scattering theory. The validity of the suggested approach is verified in calculations with model Woods--Saxon potentials and applied to calculations of $n\\alpha$ resonances and non-resonant scattering using the no-core shell model.

  10. Dynamical symmetries of the shell model

    Energy Technology Data Exchange (ETDEWEB)

    Van Isacker, P

    2000-07-01

    The applications of spectrum generating algebras and of dynamical symmetries in the nuclear shell model are many and varied. They stretch back to Wigner's early work on the supermultiplet model and encompass important landmarks in our understanding of the structure of the atomic nucleus such as Racah's SU(2) pairing model and Elliot's SU(3) rotational model. One of the aims of this contribution has been to show the historical importance of the idea of dynamical symmetry in nuclear physics. Another has been to indicate that, in spite of being old, this idea continues to inspire developments that are at the forefront of today's research in nuclear physics. It has been argued in this contribution that the main driving features of nuclear structure can be represented algebraically but at the same time the limitations of the symmetry approach must be recognised. It should be clear that such approach can only account for gross properties and that any detailed description requires more involved numerical calculations of which we have seen many fine examples during this symposium. In this way symmetry techniques can be used as an appropriate starting point for detailed calculations. A noteworthy example of this approach is the pseudo-SU(3) model which starting from its initial symmetry Ansatz has grown into an adequate and powerful description of the nucleus in terms of a truncated shell model. (author)

  11. Quantum Monte Carlo methods algorithms for lattice models

    CERN Document Server

    Gubernatis, James; Werner, Philipp

    2016-01-01

    Featuring detailed explanations of the major algorithms used in quantum Monte Carlo simulations, this is the first textbook of its kind to provide a pedagogical overview of the field and its applications. The book provides a comprehensive introduction to the Monte Carlo method, its use, and its foundations, and examines algorithms for the simulation of quantum many-body lattice problems at finite and zero temperature. These algorithms include continuous-time loop and cluster algorithms for quantum spins, determinant methods for simulating fermions, power methods for computing ground and excited states, and the variational Monte Carlo method. Also discussed are continuous-time algorithms for quantum impurity models and their use within dynamical mean-field theory, along with algorithms for analytically continuing imaginary-time quantum Monte Carlo data. The parallelization of Monte Carlo simulations is also addressed. This is an essential resource for graduate students, teachers, and researchers interested in ...

  12. Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model

    DEFF Research Database (Denmark)

    Özen, C.; Zinner, Nikolaj Thomas

    2014-01-01

    The physics of a two-component cold fermi gas is now frequently addressed in laboratories. Usually this is done for large samples of tens to hundreds of thousands of particles. However, it is now possible to produce few-body systems (1-100 particles) in very tight traps where the shell structure...... of the external potential becomes important. A system of two-species fermionic cold atoms with an attractive zero-range interaction is analogous to a simple model of nucleus in which neutrons and protons interact only through a residual pairing interaction. In this article, we discuss how the problem of a two......-component atomic fermi gas in a tight external trap can be mapped to the nuclear shell model so that readily available many-body techniques in nuclear physics, such as the Shell Model Monte Carlo (SMMC) method, can be directly applied to the study of these systems. We demonstrate an application of the SMMC method...

  13. Pairing and realistic shell-model interactions

    OpenAIRE

    Covello, A; Gargano, A.; Kuo, T. T. S.

    2012-01-01

    This paper starts with a brief historical overview of pairing in nuclei, which fulfills the purpose of properly framing the main subject. This concerns the pairing properties of a realistic shell-model effective interaction which has proved very successful in describing nuclei around doubly magic 132Sn. We focus attention on the two nuclei 134Te and 134Sn with two valence protons and neutrons, respectively. Our study brings out the key role of one particle-one hole excitations in producing a ...

  14. Systematic study of shell-model effective interaction in sd shell

    International Nuclear Information System (INIS)

    The spin-tensor decomposition method has been used to analyze the shell model effective interactions in sd shell systematically. Almost all the interactions have been studied, including the microscopic interactions and phenomenological ones. It can be noticed that the discrepancies between the central forces of microscopic interactions with the ones of empirical interactions are remarkable. (authors)

  15. A shell model for turbulent dynamos

    Science.gov (United States)

    Nigro, G.; Perrone, D.; Veltri, P.

    2011-06-01

    A self-consistent nonlinear dynamo model is presented. The nonlinear behavior of the plasma at small scale is described by using a MHD shell model for fields fluctuations; this allow us to study the dynamo problem in a large parameter regime which characterizes the dynamo phenomenon in many natural systems and which is beyond the power of supercomputers at today. The model is able to reproduce dynamical situations in which the system can undergo transactions to different dynamo regimes. In one of these the large-scale magnetic field jumps between two states reproducing the magnetic polarity reversals. From the analysis of long time series of reversals we infer results about the statistics of persistence times, revealing the presence of hidden long-time correlations in the chaotic dynamo process.

  16. SD-Pair Shell Model for Identical Nuclear Systems

    Institute of Scientific and Technical Information of China (English)

    LUO Yan-An; PAN Feng; NING Ping-Zhi; Jerry P. Draayer

    2005-01-01

    @@ Typical spectra corresponding to vibrational, rotational and γ-soft cases were studied within the framework of nucleon-pair shell model truncated to SD-subspace. It is found that the three limiting cases all can be reproduced approximately. The analysis not only shows that the IBM indeed has a sound shell model foundation, but also confirms that the truncation scheme adopted in the SD-pair shell model seems to be reasonable.

  17. Multiscaling in superfluid turbulence: A shell-model study

    Science.gov (United States)

    Shukla, Vishwanath; Pandit, Rahul

    2016-10-01

    We examine the multiscaling behavior of the normal- and superfluid-velocity structure functions in three-dimensional superfluid turbulence by using a shell model for the three-dimensional (3D) Hall-Vinen-Bekharevich-Khalatnikov (HVBK) equations. Our 3D-HVBK shell model is based on the Gledzer-Okhitani-Yamada shell model. We examine the dependence of the multiscaling exponents on the normal-fluid fraction and the mutual-friction coefficients. Our extensive study of the 3D-HVBK shell model shows that the multiscaling behavior of the velocity structure functions in superfluid turbulence is more complicated than it is in fluid turbulence.

  18. Quantum Monte Carlo diagonalization method as a variational calculation

    Energy Technology Data Exchange (ETDEWEB)

    Mizusaki, Takahiro; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Honma, Michio

    1997-05-01

    A stochastic method for performing large-scale shell model calculations is presented, which utilizes the auxiliary field Monte Carlo technique and diagonalization method. This method overcomes the limitation of the conventional shell model diagonalization and can extremely widen the feasibility of shell model calculations with realistic interactions for spectroscopic study of nuclear structure. (author)

  19. Oscillating shells: A model for a variable cosmic object

    OpenAIRE

    Nunez, Dario

    1997-01-01

    A model for a possible variable cosmic object is presented. The model consists of a massive shell surrounding a compact object. The gravitational and self-gravitational forces tend to collapse the shell, but the internal tangential stresses oppose the collapse. The combined action of the two types of forces is studied and several cases are presented. In particular, we investigate the spherically symmetric case in which the shell oscillates radially around a central compact object.

  20. Oscillating shells A model for a variable cosmic object

    CERN Document Server

    Núñez, D

    1997-01-01

    A model for a possible variable cosmic object is presented. The model consists of a massive shell surrounding a compact object. The gravitational and self-gravitational forces tend to collapse the shell, but the internal tangential stresses oppose the collapse. The combined action of the two types of forces is studied and several cases are presented. In particular, we investigate the spherically symmetric case in which the shell oscillates radially around a central compact object.

  1. Modelling apical constriction in epithelia using elastic shell theory.

    Science.gov (United States)

    Jones, Gareth Wyn; Chapman, S Jonathan

    2010-06-01

    Apical constriction is one of the fundamental mechanisms by which embryonic tissue is deformed, giving rise to the shape and form of the fully-developed organism. The mechanism involves a contraction of fibres embedded in the apical side of epithelial tissues, leading to an invagination or folding of the cell sheet. In this article the phenomenon is modelled mechanically by describing the epithelial sheet as an elastic shell, which contains a surface representing the continuous mesh formed from the embedded fibres. Allowing this mesh to contract, an enhanced shell theory is developed in which the stiffness and bending tensors of the shell are modified to include the fibres' stiffness, and in which the active effects of the contraction appear as body forces in the shell equilibrium equations. Numerical examples are presented at the end, including the bending of a plate and a cylindrical shell (modelling neurulation) and the invagination of a spherical shell (modelling simple gastrulation). PMID:19859751

  2. A DFT study of infrared spectra and Monte Carlo predictions of the solvation shell of Praziquantel and β-cyclodextrin inclusion complex in liquid water

    Science.gov (United States)

    de Oliveira, C. X.; Ferreira, N. S.; Mota, G. V. S.

    2016-01-01

    In this paper, we report a theoretical study of the inclusion complexes of Praziquantel (PZQ) and β-cyclodextrin (β-CD) in liquid water. The starting geometry has been carried out by molecular mechanics simulations, and afterwards optimized in B3LYP level with a 6-311G(d) basis set. Monte Carlo simulations have been used to calculate the solvation shell of the PZQ/β-CD inclusion complexes. Moreover, the vibrational frequencies and the infrared intensities for the PZQ/β-CD complex were computed using the B3LYP method. It is demonstrated that this combined model can yield well-converged thermodynamic data even for a modest number of sample configurations, which makes the methodology particularly adequate for understanding the solute-solvent interaction used for generating the liquid structures of one solute surrounded by solvent molecules. The complex solvation shell showed an increase of the water molecule level in relation to the isolated PZQ molecule because of the hydrophilic effect of the CD molecule. The infrared spectra showed that the contribution that originated in the PZQ molecule was not predominant in the upper-wave number region in the drug/β-CD. The movement that purely originated in the PZQ molecule was localized in the absorption band, ranging from 1328 to 1688 cm- 1.

  3. Shell Model Description of Neutron-Deficient Sn Isotopes

    Institute of Scientific and Technical Information of China (English)

    Erdal Dikmen

    2009-01-01

    The shell model calculations in the sdgh major shell for the neutron-deficient 106,107,108,109Sn isotopes have been carried out by using CD-Bonn and Nijmegenl two-body effective nucleon-nucleon interactions. The single-shell states and the corresponding matrix elements needed for describing Sn isotopes are reconstructed to calculate the coefficient of fractional parantage by reducing the calculation requirements. This reconstruction allows us to do the shell model calculations of the neutron deficient Sn isotopes in very reasonable time. The results are compared to the recent high-resolution experimental data and found to be in good agreement with experiments.

  4. Off-shell BCJ Relation in Nonlinear Sigma Model

    CERN Document Server

    Chen, Gang; Liu, Hanqing

    2016-01-01

    We investigate relations among tree-level off-shell currents in nonlinear sigma model. Under Cayley parametrization, we propose and prove a general revised BCJ relation for even-point currents. Unlike the on-shell BCJ relation, the off-shell one behaves quite differently from Yang-Mills theory although the algebraic structure is the same. After performing the permutation summation in the revised BCJ relation, the sum is non-vanishing, instead, it equals to the sum of sub-current products with the BCJ coefficients under a specific ordering, which is presented by an explicit formula. Taking on-shell limit, this identity is reduced to the on-shell BCJ relation, and thus provides the full off-shell correspondence of tree-level BCJ relation in nonlinear sigma model.

  5. Mathematical model of deformation of orthotropic reinforced shells of revolution

    Directory of Open Access Journals (Sweden)

    V.V. Karpov

    2013-08-01

    Full Text Available In recent years there are more and more structures made of composite materials, especially in the form of thin-walled shells, being applied in various fields of technology. When using composite materials such as concrete or fiberglass, reinforcing elements are often placed along the axes of the curvilinear coordinate system of the shell, and in this case, the structure can be considered as orthotropic. There are a lot of papers on the calculation of orthotropic shells, but they do not adequately investigate a number of important factors that influence the stress-strain state of the shell and its stability. In particular, the calculation of reinforced shells does not take into account such factors as in-plane shear, shear and torsional stiffness of ribs, etc. The paper presents the mathematical model of deformation of thin orthotropic shells of revolution, based on the model of Timoshenko – Reissner. The model takes into account the design of reinforcement with the shear and torsional stiffness of the ribs, geometric nonlinearity and also the irregular shape of the shell. Possibility of application of methods and algorithms which are used in the study of isotropic shells is shown. The presented model investigates the stress-strain state and stability of thin orthotropic reinforced shells of revolution more adequate.

  6. Monte Carlo methods and models in finance and insurance

    CERN Document Server

    Korn, Ralf

    2010-01-01

    Offering a unique balance between applications and calculations, this book incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Romberg method, and the Heath-Platen estimator, as well as recent financial and actuarial models, such as the Cheyette and dynamic mortality models. The book enables readers to find the right algorithm for a desired application and illustrates complicated methods and algorithms with simple applicat

  7. Modelling cerebral blood oxygenation using Monte Carlo XYZ-PA

    Science.gov (United States)

    Zam, Azhar; Jacques, Steven L.; Alexandrov, Sergey; Li, Youzhi; Leahy, Martin J.

    2013-02-01

    Continuous monitoring of cerebral blood oxygenation is critically important for the management of many lifethreatening conditions. Non-invasive monitoring of cerebral blood oxygenation with a photoacoustic technique offers advantages over current invasive and non-invasive methods. We introduce a Monte Carlo XYZ-PA to model the energy deposition in 3D and the time-resolved pressures and velocity potential based on the energy absorbed by the biological tissue. This paper outlines the benefits of using Monte Carlo XYZ-PA for optimization of photoacoustic measurement and imaging. To the best of our knowledge this is the first fully integrated tool for photoacoustic modelling.

  8. Ly$\\alpha$ Spectra from Multiphase Outflows, and their Connection to Shell Models

    CERN Document Server

    Gronke, Max

    2016-01-01

    We perform Lyman-$\\alpha$ (Ly$\\alpha$) Monte-Carlo radiative transfer calculations on a suite of $2500$ models of multiphase, outflowing media, which are characterized by $14$ parameters. We focus on the Ly$\\alpha$ spectra emerging from these media, and investigate which properties are dominant in shaping the emerging Ly$\\alpha$ profile. Multiphase models give rise to a wide variety of emerging spectra, including single, double and triple peaked spectra. We find that the dominant parameters in shaping the spectra include (i) the cloud covering factor, $f_c$, in agreement with earlier studies, and (ii) the temperature and number density of residual HI in the hot ionized medium. We attempt to reproduce spectra emerging from multiphase models with `shell models' which are commonly used to fit observed Ly$\\alpha$ spectra, and investigate the connection between shell-model parameters and the physical parameters of the clumpy media. In shell models, the neutral hydrogen content of the shell is one of the key parame...

  9. Study of nuclei around Z=28 by large-scale shell model calculations

    International Nuclear Information System (INIS)

    We study Cr and Ni isotopes by using Monte Carlo shell model (MCSM) calculations in a pfg9d5 model space which consists of the 0f1p shell, 0g9/2 and 1d5/2 orbits, in order to treat magic numbers 28, 50 and a sub-magic number 40. In MCSM, a wave function is represented as a linear combination of angular-momentum- and parity-projected deformed Slater determinants (MCSM bases) and we can obtain eigenstates in a large model space such as pfg9d5 space. We showed the change of N=40 magic behaviour in Cr and Ni isotopes and three 0+ states of 68Ni with different shapes and close energies. The calculated excitation energies of 68Ni reproduce experimental values including non-yrast and negative-parity states

  10. Effective Interactions from No Core Shell Model

    International Nuclear Information System (INIS)

    We construct the many-body effective Hamiltonian for pf-shell by carrying out 2ℎ(Omega) NCSM calculations at the 2-body cluster level. We demonstrate how the effective Hamiltonian derived from realistic nucleon-nucleon (NN) potentials for the 2ℎ(Omega) NCSM space should be modified to properly account for the many-body correlations produced by truncating to the major pf-shell. We obtain two-body effective interactions for the pf-shell by using direct projection and use them to reproduce the results of large scale NCSM for other light Ca isotopes

  11. Ab Initio No-Core Shell Model

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, B R; Navratil, P; Vary, J P

    2011-04-11

    A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory ({chi}EFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The

  12. Ab Initio No-Core Shell Model

    International Nuclear Information System (INIS)

    A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory (χEFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The resulting NN

  13. Calibration and Monte Carlo modelling of neutron long counters

    CERN Document Server

    Tagziria, H

    2000-01-01

    The Monte Carlo technique has become a very powerful tool in radiation transport as full advantage is taken of enhanced cross-section data, more powerful computers and statistical techniques, together with better characterisation of neutron and photon source spectra. At the National Physical Laboratory, calculations using the Monte Carlo radiation transport code MCNP-4B have been combined with accurate measurements to characterise two long counters routinely used to standardise monoenergetic neutron fields. New and more accurate response function curves have been produced for both long counters. A novel approach using Monte Carlo methods has been developed, validated and used to model the response function of the counters and determine more accurately their effective centres, which have always been difficult to establish experimentally. Calculations and measurements agree well, especially for the De Pangher long counter for which details of the design and constructional material are well known. The sensitivit...

  14. Recent improvements on Monte Carlo modelling at ATLAS

    CERN Document Server

    Soualah, Rachik; The ATLAS collaboration

    2015-01-01

    The most recent findings on the Monte Carlo simulation of proton-proton collisions at ATLAS are presented. In this, the most recent combined MPI and shower tunes performed using 7 TeV ATLAS data are reported, as well as improved modeling of electroweak processes, and processes containing top using recent MC generators and PDF sets.

  15. Yet another Monte Carlo study of the Schwinger model

    International Nuclear Information System (INIS)

    Some methodological improvements are introduced in the quantum Monte Carlo simulation of the 1 + 1 dimensional quantum electrodynamics (the Schwinger model). Properties at finite temperatures are investigated, concentrating on the existence of the chirality transition and of the deconfinement transition. (author)

  16. MOSFET GATE CURRENT MODELLING USING MONTE-CARLO METHOD

    OpenAIRE

    Voves, J.; Vesely, J.

    1988-01-01

    The new technique for determining the probability of hot-electron travel through the gate oxide is presented. The technique is based on the Monte Carlo method and is used in MOSFET gate current modelling. The calculated values of gate current are compared with experimental results from direct measurements on MOSFET test chips.

  17. Energy transfers in shell models for magnetohydrodynamics turbulence.

    Science.gov (United States)

    Lessinnes, Thomas; Carati, Daniele; Verma, Mahendra K

    2009-06-01

    A systematic procedure to derive shell models for magnetohydrodynamic turbulence is proposed. It takes into account the conservation of ideal quadratic invariants such as the total energy, the cross helicity, and the magnetic helicity, as well as the conservation of the magnetic energy by the advection term in the induction equation. This approach also leads to simple expressions for the energy exchanges as well as to unambiguous definitions for the energy fluxes. When applied to the existing shell models with nonlinear interactions limited to the nearest-neighbor shells, this procedure reproduces well-known models but suggests a reinterpretation of the energy fluxes. PMID:19658594

  18. Generator coordinate method. Application to single-j shell model

    International Nuclear Information System (INIS)

    To prove availability of the generator coordinate method under consideration of many generator coordinates, both calculation results of this method and the shell model using exact diagonalization were compared. The calculation object is limited to the single-j shell model and simplified to quadruple deformation limit in disregard of paring correlation. The inner state of model nuclei was estimated by Nilsson model and used as the trial functions of the generator coordinate method. Three components of Euler angles and the surface vibration parameter γ were used as the generator coordinates. The results of four vacancies system agreed closely with the shell model. The system, of which half of shell was packed, showed behavior such as rigid rotor with triaxial asymmetrical deformation. This result was opposite to that of the meanfield approximation. (S.Y.)

  19. Monte Carlo Euler approximations of HJM term structure financial models

    KAUST Repository

    Björk, Tomas

    2012-11-22

    We present Monte Carlo-Euler methods for a weak approximation problem related to the Heath-Jarrow-Morton (HJM) term structure model, based on Itô stochastic differential equations in infinite dimensional spaces, and prove strong and weak error convergence estimates. The weak error estimates are based on stochastic flows and discrete dual backward problems, and they can be used to identify different error contributions arising from time and maturity discretization as well as the classical statistical error due to finite sampling. Explicit formulas for efficient computation of sharp error approximation are included. Due to the structure of the HJM models considered here, the computational effort devoted to the error estimates is low compared to the work to compute Monte Carlo solutions to the HJM model. Numerical examples with known exact solution are included in order to show the behavior of the estimates. © 2012 Springer Science+Business Media Dordrecht.

  20. Large space shell model calculations with small space results

    OpenAIRE

    Zamick, Larry; Yu, Xiafei

    2015-01-01

    We note that in large space shell model calculaiotns and experiment one sometimes get results, the form of which also appear in smaller space calculations. On the other hand there are some results which demand the large space approach.

  1. Elastic turbulence in a shell model of polymer solution

    CERN Document Server

    Ray, Samriddhi Sankar

    2016-01-01

    We show that, at low inertia and large elasticity, shell models of viscoelastic fluids develop a chaotic behaviour with properties similar to those of elastic turbulence. The low dimensionality of shell models allows us to explore a wide range both in polymer concentration and in Weissenberg number. Our results demonstrate that the physical mechanisms at the origin of elastic turbulence do not rely on the boundary conditions or on the geometry of the mean flow.

  2. Modeling plate shell structures using pyFormex

    DEFF Research Database (Denmark)

    Bagger, Anne; Verhegghe, Benedict; Hertz, Kristian Dahl

    2009-01-01

    A shell structure made of glass combines a light-weight structural concept with glass’ high permeability to light. If the geometry of the structure is plane-based facetted (plate shell structure), the glass elements will be plane panes, and these glass panes will comprise the primary load-bearing...... element analysis software Abaqus as a Python script, which translates the information to an Abaqus CAE-model. In pyFormex the model has been prepared for applying the meshing in Abaqus, by allocation of edge seeds, and by defining geometry sets for easy handling....... at Ghent University, has been used to accommodate a parametric generation of plate shell structures. This generation includes the basic facetted shell geometry, joint areas that reproduce given connection characteristics, loads and boundary conditions. From pyFormex the model is exported to the finite...

  3. Jacobi no-core shell model for p-shell nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Liebig, S.; Nogga, A. [Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Juelich (Germany); Forschungszentrum Juelich, JARA - High Performance Computing, Juelich (Germany); Meissner, U.G. [Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Juelich (Germany); Forschungszentrum Juelich, JARA - High Performance Computing, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany)

    2016-04-15

    We introduce an algorithm to obtain coefficients of fractional parentage for light p-shell nuclei. The coefficients enable one to use Jacobi coordinates in no-core shell model calculations separating off the center-of-mass motion. Fully antisymmetrized basis states are given together with recoupling coefficients that allow one to apply two- and three-nucleon operators. As an example, we study the dependence on the harmonic oscillator frequency of {sup 3}H, {sup 4}He, {sup 6}He, {sup 6}Li and {sup 7}Li and extract their binding and excitation energies. The coefficients will be made openly accessible as HDF5 data files. (orig.)

  4. Jacobi no-core shell model for p-shell nuclei

    Science.gov (United States)

    Liebig, S.; Meißner, U.-G.; Nogga, A.

    2016-04-01

    We introduce an algorithm to obtain coefficients of fractional parentage for light p-shell nuclei. The coefficients enable one to use Jacobi coordinates in no-core shell model calculations separating off the center-of-mass motion. Fully antisymmetrized basis states are given together with recoupling coefficients that allow one to apply two- and three-nucleon operators. As an example, we study the dependence on the harmonic oscillator frequency of 3H, 4He, 6He, 6Li and 7Li and extract their binding and excitation energies. The coefficients will be made openly accessible as HDF5 data files.

  5. Jacobi no-core shell model for p-shell nuclei

    CERN Document Server

    Liebig, S; Nogga, A

    2015-01-01

    We introduce an algorithm to obtain coefficients of fractional parentage for light $p$-shell nuclei. The coefficients enable to use Jacobi coordinates in no-core shell model calculations separating off the center-of-mass motion. Fully antisymmetrized basis states are given together with recoupling coefficients that allow one to apply two- and three-nucleon operators. As an example, we study the dependence on the harmonic oscillator frequency of $^3$H, $^4$He, $^6$He, $^6$Li and $^7$Li and extract their binding and excitation energies. The coefficients will be made openly accessible as HDF5 data files.

  6. Monte Carlo modelling of positron transport in real world applications

    International Nuclear Information System (INIS)

    Due to the unstable nature of positrons and their short lifetime, it is difficult to obtain high positron particle densities. This is why the Monte Carlo simulation technique, as a swarm method, is very suitable for modelling most of the current positron applications involving gaseous and liquid media. The ongoing work on the measurements of cross-sections for positron interactions with atoms and molecules and swarm calculations for positrons in gasses led to the establishment of good cross-section sets for positron interaction with gasses commonly used in real-world applications. Using the standard Monte Carlo technique and codes that can follow both low- (down to thermal energy) and high- (up to keV) energy particles, we are able to model different systems directly applicable to existing experimental setups and techniques. This paper reviews the results on modelling Surko-type positron buffer gas traps, application of the rotating wall technique and simulation of positron tracks in water vapor as a substitute for human tissue, and pinpoints the challenges in and advantages of applying Monte Carlo simulations to these systems.

  7. Monte Carlo modelling of positron transport in real world applications

    Science.gov (United States)

    Marjanović, S.; Banković, A.; Šuvakov, M.; Petrović, Z. Lj

    2014-05-01

    Due to the unstable nature of positrons and their short lifetime, it is difficult to obtain high positron particle densities. This is why the Monte Carlo simulation technique, as a swarm method, is very suitable for modelling most of the current positron applications involving gaseous and liquid media. The ongoing work on the measurements of cross-sections for positron interactions with atoms and molecules and swarm calculations for positrons in gasses led to the establishment of good cross-section sets for positron interaction with gasses commonly used in real-world applications. Using the standard Monte Carlo technique and codes that can follow both low- (down to thermal energy) and high- (up to keV) energy particles, we are able to model different systems directly applicable to existing experimental setups and techniques. This paper reviews the results on modelling Surko-type positron buffer gas traps, application of the rotating wall technique and simulation of positron tracks in water vapor as a substitute for human tissue, and pinpoints the challenges in and advantages of applying Monte Carlo simulations to these systems.

  8. A semianalytic Monte Carlo code for modelling LIDAR measurements

    Science.gov (United States)

    Palazzi, Elisa; Kostadinov, Ivan; Petritoli, Andrea; Ravegnani, Fabrizio; Bortoli, Daniele; Masieri, Samuele; Premuda, Margherita; Giovanelli, Giorgio

    2007-10-01

    LIDAR (LIght Detection and Ranging) is an optical active remote sensing technology with many applications in atmospheric physics. Modelling of LIDAR measurements appears useful approach for evaluating the effects of various environmental variables and scenarios as well as of different measurement geometries and instrumental characteristics. In this regard a Monte Carlo simulation model can provide a reliable answer to these important requirements. A semianalytic Monte Carlo code for modelling LIDAR measurements has been developed at ISAC-CNR. The backscattered laser signal detected by the LIDAR system is calculated in the code taking into account the contributions due to the main atmospheric molecular constituents and aerosol particles through processes of single and multiple scattering. The contributions by molecular absorption, ground and clouds reflection are evaluated too. The code can perform simulations of both monostatic and bistatic LIDAR systems. To enhance the efficiency of the Monte Carlo simulation, analytical estimates and expected value calculations are performed. Artificial devices (such as forced collision, local forced collision, splitting and russian roulette) are moreover foreseen by the code, which can enable the user to drastically reduce the variance of the calculation.

  9. Realistic Shell-Model Calculations for Nuclei in the Region of Shell Closures off Stability

    OpenAIRE

    Covello, A; Coraggio, L.; Gargano, A.

    1998-01-01

    We have performed realistic shell-model calculations for nuclei around doubly magic 100Sn and 132Sn using an effective interaction derived from the Bonn A nucleon-nucleon potential. The results are in remarkably good agreement with the experimental data showing the ability of our effective interaction to provide an accurate description of nuclear structure properties.

  10. Modeling the carbon isotope composition of bivalve shells (Invited)

    Science.gov (United States)

    Romanek, C.

    2010-12-01

    The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., organism and high (>90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions, equilibrium carbon isotope

  11. Geometrically nonlinear creeping mathematic models of shells with variable thickness

    Directory of Open Access Journals (Sweden)

    V.M. Zhgoutov

    2012-08-01

    Full Text Available Calculations of strength, stability and vibration of shell structures play an important role in the design of modern devices machines and structures. However, the behavior of thin-walled structures of variable thickness during which geometric nonlinearity, lateral shifts, viscoelasticity (creep of the material, the variability of the profile take place and thermal deformation starts up is not studied enough.In this paper the mathematical deformation models of variable thickness shells (smoothly variable and ribbed shells, experiencing either mechanical load or permanent temperature field and taking into account the geometrical nonlinearity, creeping and transverse shear, were developed. The refined geometrical proportions for geometrically nonlinear and steadiness problems are given.

  12. A predictive model of shell morphology in CdSe/CdS core/shell quantum dots

    International Nuclear Information System (INIS)

    Lattice mismatch in core/shell nanoparticles occurs when the core and shell materials have different lattice parameters. When there is a significant lattice mismatch, a coherent core-shell interface results in substantial lattice strain energy, which can affect the shell morphology. The shell can be of uniform thickness or can be rough, having thin and thick regions. A smooth shell minimizes the surface energy at the expense of increased lattice strain energy and a rough shell does the opposite. A quantitative treatment of the lattice strain energy in determining the shell morphology of CdSe/CdS core/shell nanoparticles is presented here. We use the inhomogeneity in hole tunneling rates through the shell to adsorbed hole acceptors to quantify the extent of shell thickness inhomogeneity. The results can be understood in terms of a model based on elastic continuum calculations, which indicate that the lattice strain energy depends on both core size and shell thickness. The model assumes thermodynamic equilibrium, i.e., that the shell morphology corresponds to a minimum total (lattice strain plus surface) energy. Comparison with the experimental results indicates that CdSe/CdS nanoparticles undergo an abrupt transition from smooth to rough shells when the total lattice strain energy exceeds about 27 eV or the strain energy density exceeds 0.59 eV/nm2. We also find that the predictions of this model are not followed for CdSe/CdS nanoparticles when the shell is deposited at very low temperature and therefore equilibrium is not established

  13. Monte Carlo Numerical Models for Nuclear Logging Applications

    Directory of Open Access Journals (Sweden)

    Fusheng Li

    2012-06-01

    Full Text Available Nuclear logging is one of most important logging services provided by many oil service companies. The main parameters of interest are formation porosity, bulk density, and natural radiation. Other services are also provided from using complex nuclear logging tools, such as formation lithology/mineralogy, etc. Some parameters can be measured by using neutron logging tools and some can only be measured by using a gamma ray tool. To understand the response of nuclear logging tools, the neutron transport/diffusion theory and photon diffusion theory are needed. Unfortunately, for most cases there are no analytical answers if complex tool geometry is involved. For many years, Monte Carlo numerical models have been used by nuclear scientists in the well logging industry to address these challenges. The models have been widely employed in the optimization of nuclear logging tool design, and the development of interpretation methods for nuclear logs. They have also been used to predict the response of nuclear logging systems for forward simulation problems. In this case, the system parameters including geometry, materials and nuclear sources, etc., are pre-defined and the transportation and interactions of nuclear particles (such as neutrons, photons and/or electrons in the regions of interest are simulated according to detailed nuclear physics theory and their nuclear cross-section data (probability of interacting. Then the deposited energies of particles entering the detectors are recorded and tallied and the tool responses to such a scenario are generated. A general-purpose code named Monte Carlo N– Particle (MCNP has been the industry-standard for some time. In this paper, we briefly introduce the fundamental principles of Monte Carlo numerical modeling and review the physics of MCNP. Some of the latest developments of Monte Carlo Models are also reviewed. A variety of examples are presented to illustrate the uses of Monte Carlo numerical models

  14. A Monte Carlo Model of Light Propagation in Nontransparent Tissue

    Institute of Scientific and Technical Information of China (English)

    姚建铨; 朱水泉; 胡海峰; 王瑞康

    2004-01-01

    To sharpen the imaging of structures, it is vital to develop a convenient and efficient quantitative algorithm of the optical coherence tomography (OCT) sampling. In this paper a new Monte Carlo model is set up and how light propagates in bio-tissue is analyzed in virtue of mathematics and physics equations. The relations,in which light intensity of Class 1 and Class 2 light with different wavelengths changes with their permeation depth,and in which Class 1 light intensity (signal light intensity) changes with the probing depth, and in which angularly resolved diffuse reflectance and diffuse transmittance change with the exiting angle, are studied. The results show that Monte Carlo simulation results are consistent with the theory data.

  15. Shell-model studies of the N=14 and 16 shell closures in neutron-rich nuclei

    Institute of Scientific and Technical Information of China (English)

    YUAN Cen-Xi; QI Chong; XU Fu-Rong

    2009-01-01

    Shell-model studies on the N = 14 and 16 shell closures in neutron-rich Be, C, O and Ne isotopes are presented. We calculate, with the WBT interaction, the excited states in these nuclei. The calculations agree with recent experiment data. Excited energies and B(E2) values are displayed to discuss the shell closures.Our results support the N = 16 shell closure in these isotopes, while indicating a disappearance of N = 14 shell closure in Be and C isotopes.

  16. A fitter use of Monte Carlo simulations in regression models

    Directory of Open Access Journals (Sweden)

    Alessandro Ferrarini

    2011-12-01

    Full Text Available In this article, I focus on the use of Monte Carlo simulations (MCS within regression models, being this application very frequent in biology, ecology and economy as well. I'm interested in enhancing a typical fault in this application of MCS, i.e. the inner correlations among independent variables are not used when generating random numbers that fit their distributions. By means of an illustrative example, I provide proof that the misuse of MCS in regression models produces misleading results. Furthermore, I also provide a solution for this topic.

  17. Strain in the mesoscale kinetic Monte Carlo model for sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.;

    2014-01-01

    Shrinkage strains measured from microstructural simulations using the mesoscale kinetic Monte Carlo (kMC) model for solid state sintering are discussed. This model represents the microstructure using digitized discrete sites that are either grain or pore sites. The algorithm used to simulate...... anisotropic strains for homogeneous powder compacts with aspect ratios different from unity. It is shown that the line direction biases shrinkage strains in proportion the compact dimension aspect ratios. A new algorithm that corrects this bias in strains is proposed; the direction for collapsing the column...

  18. Models for Self-Gravitating Photon Shells and Geons

    CERN Document Server

    Andréasson, Håkan; Thaller, Maximilian

    2015-01-01

    We prove existence of spherically symmetric, static, self-gravitating photon shells as solutions to the massless Einstein-Vlasov system. The solutions are highly relativistic in the sense that the ratio $2m(r)/r$ is close to $8/9$, where $m(r)$ is the Hawking mass and $r$ is the area radius. In 1955 Wheeler constructed, by numerical means, so called idealized spherically symmetric geons, i.e. solutions of the Einstein-Maxwell equations for which the energy momentum tensor is spherically symmetric on a time average. The structure of these solutions is such that the electromagnetic field is confined to a thin shell for which the ratio $2m/r$ is close to $8/9$, i.e., the solutions are highly relativistic photon shells. The solutions presented in this work provide an alternative model for photon shells or idealized spherically symmetric geons.

  19. Reservoir Modeling Combining Geostatistics with Markov Chain Monte Carlo Inversion

    DEFF Research Database (Denmark)

    Zunino, Andrea; Lange, Katrine; Melnikova, Yulia;

    2014-01-01

    We present a study on the inversion of seismic reflection data generated from a synthetic reservoir model. Our aim is to invert directly for rock facies and porosity of the target reservoir zone. We solve this inverse problem using a Markov chain Monte Carlo (McMC) method to handle the nonlinear......, multi-step forward model (rock physics and seismology) and to provide realistic estimates of uncertainties. To generate realistic models which represent samples of the prior distribution, and to overcome the high computational demand, we reduce the search space utilizing an algorithm drawn from...... geostatistics. The geostatistical algorithm learns the multiple-point statistics from prototype models, then generates proposal models which are tested by a Metropolis sampler. The solution of the inverse problem is finally represented by a collection of reservoir models in terms of facies and porosity, which...

  20. Parameter estimation in deformable models using Markov chain Monte Carlo

    Science.gov (United States)

    Chalana, Vikram; Haynor, David R.; Sampson, Paul D.; Kim, Yongmin

    1997-04-01

    Deformable models have gained much popularity recently for many applications in medical imaging, such as image segmentation, image reconstruction, and image registration. Such models are very powerful because various kinds of information can be integrated together in an elegant statistical framework. Each such piece of information is typically associated with a user-defined parameter. The values of these parameters can have a significant effect on the results generated using these models. Despite the popularity of deformable models for various applications, not much attention has been paid to the estimation of these parameters. In this paper we describe systematic methods for the automatic estimation of these deformable model parameters. These methods are derived by posing the deformable models as a Bayesian inference problem. Our parameter estimation methods use Markov chain Monte Carlo methods for generating samples from highly complex probability distributions.

  1. Few-body systems in a shell-model approach

    International Nuclear Information System (INIS)

    In this thesis, I introduce and compare an implementation of two different shell models for physical systems consisting of multiple identical bosons. In the main part, the shell model is used to study the energy spectra of bosons with contact interactions in a harmonic confinement as well as those of unconfined He clusters. The convergence of the shell-model results is investigated in detail as the size of the model space is increased. Furthermore, possible improvements such as the smearing of contact interactions or a unitary transformation of the potentials are utilised and assessed. Systems with up to twelve bosons are considered. Moreover, I test a procedure to determine scattering observables from the energy spectra of fermions in a harmonic confinement. Finally, the position and width of resonances are extracted from the dependence of the energy spectra on the oscillator length.

  2. 3D Monte Carlo radiation transfer modelling of photodynamic therapy

    Science.gov (United States)

    Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry

    2015-06-01

    The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.

  3. Dynamical Monte Carlo method for stochastic epidemic models

    CERN Document Server

    Aiello, O E

    2002-01-01

    A new approach to Dynamical Monte Carlo Methods is introduced to simulate markovian processes. We apply this approach to formulate and study an epidemic Generalized SIRS model. The results are in excellent agreement with the forth order Runge-Kutta method in a region of deterministic solution. Introducing local stochastic interactions, the Runge-Kutta method is not applicable, and we solve and check it self-consistently with a stochastic version of the Euler Method. The results are also analyzed under the herd-immunity concept.

  4. Gauge Potts model with generalized action: A Monte Carlo analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fanchiotti, H.; Canal, C.A.G.; Sciutto, S.J.

    1985-08-15

    Results of a Monte Carlo calculation on the q-state gauge Potts model in d dimensions with a generalized action involving planar 1 x 1, plaquette, and 2 x 1, fenetre, loop interactions are reported. For d = 3 and q = 2, first- and second-order phase transitions are detected. The phase diagram for q = 3 presents only first-order phase transitions. For d = 2, a comparison with analytical results is made. Here also, the behavior of the numerical simulation in the vicinity of a second-order transition is analyzed.

  5. Shell-model Hamiltonians from Density Functional Theory

    CERN Document Server

    Alhassid, Y; Fang, L; Sabbey, B

    2005-01-01

    The density functional theory of nuclear structure provides a many-particle wave function that is useful for static properties, but an extension of the theory is necessary to describe correlation effects or other dynamic properties. Here we propose a procedure to extend the theory by mapping the properties of the self-consistent mean-field Hamiltonian onto an effective shell-model Hamiltonian with two-body interactions. In this initial study, we consider the sd-shell nuclei Ne-20, Mg-24, Si-28, and Ar-36. Our first application is in the framework of the USD shell-model Hamiltonian, using its mean-field approximation to construct an effective Hamiltonian and partially recover correlation effects. We find that more than half of the correlation energy is due to the quadrupole interaction. We then follow a similar procedure but using the SLy4 Skyrme energy functional as our starting point and truncating the space to the spherical $sd$ shell. The constructed shell-model Hamiltonian is found to satisfy minimal cons...

  6. Quantum Monte Carlo study of bilayer ionic Hubbard model

    Science.gov (United States)

    Jiang, M.; Schulthess, T. C.

    2016-04-01

    The interaction-driven insulator-to-metal transition has been reported in the ionic Hubbard model (IHM) for moderate interaction U , while its metallic phase only occupies a narrow region in the phase diagram. To explore the enlargement of the metallic regime, we extend the ionic Hubbard model to two coupled layers and study the interplay of interlayer hybridization V and two types of intralayer staggered potentials Δ : one with the same (in-phase) and the other with a π -phase shift (antiphase) potential between layers. Our determinant quantum Monte Carlo (DQMC) simulations at lowest accessible temperatures demonstrate that the interaction-driven metallic phase between Mott and band insulators expands in the Δ -V phase diagram of bilayer IHM only for in-phase ionic potentials; while antiphase potential always induces an insulator with charge density order. This implies possible further extension of the ionic Hubbard model from the bilayer case here to a realistic three-dimensional model.

  7. Monte Carlo model for electron degradation in methane

    CERN Document Server

    Bhardwaj, Anil

    2015-01-01

    We present a Monte Carlo model for degradation of 1-10,000 eV electrons in an atmosphere of methane. The electron impact cross sections for CH4 are compiled and analytical representations of these cross sections are used as input to the model.model.Yield spectra, which provides information about the number of inelastic events that have taken place in each energy bin, is used to calculate the yield (or population) of various inelastic processes. The numerical yield spectra, obtained from the Monte Carlo simulations, is represented analytically, thus generating the Analytical Yield Spectra (AYS). AYS is employed to obtain the mean energy per ion pair and efficiencies of various inelastic processes.Mean energy per ion pair for neutral CH4 is found to be 26 (27.8) eV at 10 (0.1) keV. Efficiency calculation showed that ionization is the dominant process at energies >50 eV, for which more than 50% of the incident electron energy is used. Above 25 eV, dissociation has an efficiency of 27%. Below 10 eV, vibrational e...

  8. Evolutionary Sequential Monte Carlo Samplers for Change-Point Models

    Directory of Open Access Journals (Sweden)

    Arnaud Dufays

    2016-03-01

    Full Text Available Sequential Monte Carlo (SMC methods are widely used for non-linear filtering purposes. However, the SMC scope encompasses wider applications such as estimating static model parameters so much that it is becoming a serious alternative to Markov-Chain Monte-Carlo (MCMC methods. Not only do SMC algorithms draw posterior distributions of static or dynamic parameters but additionally they provide an estimate of the marginal likelihood. The tempered and time (TNT algorithm, developed in this paper, combines (off-line tempered SMC inference with on-line SMC inference for drawing realizations from many sequential posterior distributions without experiencing a particle degeneracy problem. Furthermore, it introduces a new MCMC rejuvenation step that is generic, automated and well-suited for multi-modal distributions. As this update relies on the wide heuristic optimization literature, numerous extensions are readily available. The algorithm is notably appropriate for estimating change-point models. As an example, we compare several change-point GARCH models through their marginal log-likelihoods over time.

  9. Monte Carlo modelling of VR-1 reactor core

    International Nuclear Information System (INIS)

    The possibilities of reactor core analysis by precise Monte Carlo codes are gradually increasing along with the accessibility of computing power. In the case of zero power research reactors, where temperature and burn-up effects remain negligible, model can approximate the reality to a very high degree. In such a case, most of calculation uncertainty can be caused by uncertainties in technical specifications of fuel and reactor internals. Thus performance of the modelling and its predictive power can be significantly improved via comparison with a large set of experimental data that can be acquired during reactor operation and via subtle tuning and improving the calculation model. The paper describes the case for neutronics calculations of VR-1 zero power reactor core. (author)

  10. Chaotic and regular instantons in helical shell models of turbulence

    CERN Document Server

    De Pietro, Massimo; Biferale, Luca

    2016-01-01

    Shell models of turbulence have a finite-time blowup, i.e. the enstrophy diverges while the single shell velocities stay finite, in the inviscid limit. The signature of this blowup is represented by self-similar instantonic structures traveling coherently through the inertial range. These solutions might influence the energy transfer and the anomalous scaling properties empirically observed for the forced and viscous models. In this paper we present a study of the instantonic solutions for a class of shell-models of turbulence based on the exact decomposition of the Navier-Stokes equations in helical eigenstates. We found that depending on the helical structure of the shell interactions instantons are chaotic or regular. Some instantonic solutions tend to recover mirror symmetry for scales small enough. All models that have anomalous scaling develop regular non-chaotic instantons. Vice-versa, models that have mean field non-anomalous scaling in the stationary regime are those that have chaotic instantons. Fin...

  11. Testing refined shell-model interactions in the sd shell: Coulomb excitation of Na26

    CERN Document Server

    Siebeck, B; Blazhev, A; Reiter, P; Altenkirch, R; Bauer, C; Butler, P A; De Witte, H; Elseviers, J; Gaffney, L P; Hess, H; Huyse, M; Kröll, T; Lutter, R; Pakarinen, J; Pietralla, N; Radeck, F; Scheck, M; Schneiders, D; Sotty, C; Van Duppen, P; Vermeulen, M; Voulot, D; Warr, N; Wenander, F

    2015-01-01

    Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal sd interaction (USD) describing nuclei within the sd shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transition matrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus Na26 with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive beam experiment with Na26 (T1/2=1,07s) was performed at the REX-ISOLDE facility (CERN) using Coulomb excitation at safe energies below the Coulomb barrier. Scattered particles were detected with an annular Si detector in coincidence with γ rays observed by the segmented MINIBALL array. Coulomb excitation cross sections...

  12. Longitudinal functional principal component modelling via Stochastic Approximation Monte Carlo

    KAUST Repository

    Martinez, Josue G.

    2010-06-01

    The authors consider the analysis of hierarchical longitudinal functional data based upon a functional principal components approach. In contrast to standard frequentist approaches to selecting the number of principal components, the authors do model averaging using a Bayesian formulation. A relatively straightforward reversible jump Markov Chain Monte Carlo formulation has poor mixing properties and in simulated data often becomes trapped at the wrong number of principal components. In order to overcome this, the authors show how to apply Stochastic Approximation Monte Carlo (SAMC) to this problem, a method that has the potential to explore the entire space and does not become trapped in local extrema. The combination of reversible jump methods and SAMC in hierarchical longitudinal functional data is simplified by a polar coordinate representation of the principal components. The approach is easy to implement and does well in simulated data in determining the distribution of the number of principal components, and in terms of its frequentist estimation properties. Empirical applications are also presented.

  13. Bursts and shocks in a continuum shell model

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Bohr, Tomas; Jensen, M.H.;

    1998-01-01

    We study a burst event, i.e., the evolution of an initial condition having support only in a finite interval of k-space, in the continuum shell model due to Parisi. We show that the continuum equation without forcing or dissipation can be explicitly written in characteristic form and that the right...

  14. Final Report Fermionic Symmetries and Self consistent Shell Model

    Energy Technology Data Exchange (ETDEWEB)

    Larry Zamick

    2008-11-07

    In this final report in the field of theoretical nuclear physics we note important accomplishments.We were confronted with "anomoulous" magnetic moments by the experimetalists and were able to expain them. We found unexpected partial dynamical symmetries--completely unknown before, and were able to a large extent to expain them.The importance of a self consistent shell model was emphasized.

  15. Shell Model and Mean-Field Description of Band Termination

    CERN Document Server

    Zalewski, M; Nazarewicz, W; Stoitcheva, G; Zdunczuk, H

    2007-01-01

    We study nuclear high-spin states undergoing the transition to the fully stretched configuration with maximum angular momentum I_max within the space of valence nucleons. To this end, we perform a systematic theoretical analysis of non-fully-stretched I_max-2 and I_max-1 f_{7/2}^n seniority isomers and d_{3/2}^{-1} f_{7/2}^{n+1} intruder states in the A~44 nuclei from the lower-fp shell. We employ two theoretical approaches: (i) the density functional theory based on the cranked self-consistent Skyrme-Hartree-Fock method, and (ii) the nuclear shell model in the full sdfp configuration space allowing for 1p-1h cross-shell excitations. We emphasize the importance of restoration of broken angular momentum symmetry inherently obscuring the mean-field treatment of high-spin states. Overall good agreement with experimental data is obtained.

  16. Statistical mechanics of shell models for 2D-Turbulence

    CERN Document Server

    Aurell, E; Crisanti, A; Frick, P; Paladin, G; Vulpiani, A

    1994-01-01

    We study shell models that conserve the analogues of energy and enstrophy, hence designed to mimic fluid turbulence in 2D. The main result is that the observed state is well described as a formal statistical equilibrium, closely analogous to the approach to two-dimensional ideal hydrodynamics of Onsager, Hopf and Lee. In the presence of forcing and dissipation we observe a forward flux of enstrophy and a backward flux of energy. These fluxes can be understood as mean diffusive drifts from a source to two sinks in a system which is close to local equilibrium with Lagrange multipliers (``shell temperatures'') changing slowly with scale. The dimensional predictions on the power spectra from a supposed forward cascade of enstrophy, and from one branch of the formal statistical equilibrium, coincide in these shell models at difference to the corresponding predictions for the Navier-Stokes and Euler equations in 2D. This coincidence have previously led to the mistaken conclusion that shell models exhibit a forward ...

  17. Large-scale shell model calculations for structure of Ni and Cu isotopes

    Science.gov (United States)

    Tsunoda, Yusuke; Otsuka, Takaharu; Shimizu, Noritaka; Honma, Michio; Utsuno, Yutaka

    2014-09-01

    We study nuclear structure of Ni and Cu isotopes, especially neutron-rich ones in the N ~ 40 region by Monte Carlo shell model (MCSM) calculations in pfg9d5 model space (0f7 / 2 , 1p3 / 2 , 0f5 / 2 , 1p1 / 2 , 0g9 / 2 , 1d5 / 2). Effects of excitation across N = 40 and other gaps are important to describe properties such as deformation, and we include this effects by using the pfg9d5 model space. We can calculate in this large model space without any truncation, as an advantage of MCSM. In the MCSM, a wave function is represented as a linear combination of angular-momentum- and parity-projected deformed Slater determinants. We can study intrinsic shapes of nuclei by using quadrupole deformations of MCSM basis states before projection. In doubly-magic 68Ni, there are oblate and prolate deformed bands as well as the spherical ground state from the calculation. Such shape coexistence can be explained by introducing the mechanism called Type II shell evolution, driven by changes of configurations within the same nucleus mainly due to the tensor force.

  18. Markov Chain Monte-Carlo Models of Starburst Clusters

    Science.gov (United States)

    Melnick, Jorge

    2015-01-01

    There are a number of stochastic effects that must be considered when comparing models to observations of starburst clusters: the IMF is never fully populated; the stars can never be strictly coeval; stars rotate and their photometric properties depend on orientation; a significant fraction of massive stars are in interacting binaries; and the extinction varies from star to star. The probability distributions of each of these effects are not a priori known, but must be extracted from the observations. Markov Chain Monte-Carlo methods appear to provide the best statistical approach. Here I present an example of stochastic age effects upon the upper mass limit of the IMF of the Arches cluster as derived from near-IR photometry.

  19. Monte Carlo Modeling of Crystal Channeling at High Energies

    CERN Document Server

    Schoofs, Philippe; Cerutti, Francesco

    Charged particles entering a crystal close to some preferred direction can be trapped in the electromagnetic potential well existing between consecutive planes or strings of atoms. This channeling effect can be used to extract beam particles if the crystal is bent beforehand. Crystal channeling is becoming a reliable and efficient technique for collimating beams and removing halo particles. At CERN, the installation of silicon crystals in the LHC is under scrutiny by the UA9 collaboration with the goal of investigating if they are a viable option for the collimation system upgrade. This thesis describes a new Monte Carlo model of planar channeling which has been developed from scratch in order to be implemented in the FLUKA code simulating particle transport and interactions. Crystal channels are described through the concept of continuous potential taking into account thermal motion of the lattice atoms and using Moliere screening function. The energy of the particle transverse motion determines whether or n...

  20. Accelerating Monte Carlo Markov chains with proxy and error models

    Science.gov (United States)

    Josset, Laureline; Demyanov, Vasily; Elsheikh, Ahmed H.; Lunati, Ivan

    2015-12-01

    In groundwater modeling, Monte Carlo Markov Chain (MCMC) simulations are often used to calibrate aquifer parameters and propagate the uncertainty to the quantity of interest (e.g., pollutant concentration). However, this approach requires a large number of flow simulations and incurs high computational cost, which prevents a systematic evaluation of the uncertainty in the presence of complex physical processes. To avoid this computational bottleneck, we propose to use an approximate model (proxy) to predict the response of the exact model. Here, we use a proxy that entails a very simplified description of the physics with respect to the detailed physics described by the "exact" model. The error model accounts for the simplification of the physical process; and it is trained on a learning set of realizations, for which both the proxy and exact responses are computed. First, the key features of the set of curves are extracted using functional principal component analysis; then, a regression model is built to characterize the relationship between the curves. The performance of the proposed approach is evaluated on the Imperial College Fault model. We show that the joint use of the proxy and the error model to infer the model parameters in a two-stage MCMC set-up allows longer chains at a comparable computational cost. Unnecessary evaluations of the exact responses are avoided through a preliminary evaluation of the proposal made on the basis of the corrected proxy response. The error model trained on the learning set is crucial to provide a sufficiently accurate prediction of the exact response and guide the chains to the low misfit regions. The proposed methodology can be extended to multiple-chain algorithms or other Bayesian inference methods. Moreover, FPCA is not limited to the specific presented application and offers a general framework to build error models.

  1. Shell Model Study on the Proton Pigmy Dipole Resonances in ~(17, 18)Ne

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The proton pygmy dipole resonances (PDRs) in proton rich nuclei 17, 18Ne have been investigated in the framework of interacting shell model. The shell model with the self-consistent Skyrme-Hartree-Fock wave functions has well reproduced

  2. Quasi Monte Carlo methods for optimization models of the energy industry with pricing and load processes

    International Nuclear Information System (INIS)

    We discuss progress in quasi Monte Carlo methods for numerical calculation integrals or expected values and justify why these methods are more efficient than the classic Monte Carlo methods. Quasi Monte Carlo methods are found to be particularly efficient if the integrands have a low effective dimension. That's why We also discuss the concept of effective dimension and prove on the example of a stochastic Optimization model of the energy industry that such models can posses a low effective dimension. Modern quasi Monte Carlo methods are therefore for such models very promising.

  3. Long-time behavior of MHD shell models

    OpenAIRE

    Frick, P.; Boffetta, G.; Giuliani, P.; Lozhkin, S.; Sokoloff, D.

    2000-01-01

    The long time behavior of velocity-magnetic field alignment is numerically investigated in the framework of MHD shell model. In the stationary forced case, the correlation parameter C displays a nontrivial behavior with long periods of high variability which alternates with periods of almost constant C. The temporal statistics of correlation is shown to be non Poissonian, and the pdf of constant sign periods displays clear power law tails. The possible relevance of the model for geomagnetic d...

  4. Ensemble bayesian model averaging using markov chain Monte Carlo sampling

    Energy Technology Data Exchange (ETDEWEB)

    Vrugt, Jasper A [Los Alamos National Laboratory; Diks, Cees G H [NON LANL; Clark, Martyn P [NON LANL

    2008-01-01

    Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery etal. Mon Weather Rev 133: 1155-1174, 2(05)) has recommended the Expectation-Maximization (EM) algorithm for BMA model training, even though global convergence of this algorithm cannot be guaranteed. In this paper, we compare the performance of the EM algorithm and the recently developed Differential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) algorithm for estimating the BMA weights and variances. Simulation experiments using 48-hour ensemble data of surface temperature and multi-model stream-flow forecasts show that both methods produce similar results, and that their performance is unaffected by the length of the training data set. However, MCMC simulation with DREAM is capable of efficiently handling a wide variety of BMA predictive distributions, and provides useful information about the uncertainty associated with the estimated BMA weights and variances.

  5. A REMARK ON FORMAL MODELS FOR NONLINEARLY ELASTIC MEMBRANE SHELLS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper gives all the two-dimensional membrane models obtained from formal asymptotic analysis of the three-dimensional geometrically exact nonlinear model of a thin elastic shell made with a Saint Venant-Kirchhoff material. Therefore, the other models can be quoted as flexural nonlinear ones. The author also gives the formal equations solved by the associated stress tensor and points out that only one of those models leads, by linearization, to the “classical” linear limiting membrane model, whose juetification has already been established by a convergence theorem.

  6. Optimizing Muscle Parameters in Musculoskeletal Modeling Using Monte Carlo Simulations

    Science.gov (United States)

    Hanson, Andrea; Reed, Erik; Cavanagh, Peter

    2011-01-01

    Astronauts assigned to long-duration missions experience bone and muscle atrophy in the lower limbs. The use of musculoskeletal simulation software has become a useful tool for modeling joint and muscle forces during human activity in reduced gravity as access to direct experimentation is limited. Knowledge of muscle and joint loads can better inform the design of exercise protocols and exercise countermeasure equipment. In this study, the LifeModeler(TM) (San Clemente, CA) biomechanics simulation software was used to model a squat exercise. The initial model using default parameters yielded physiologically reasonable hip-joint forces. However, no activation was predicted in some large muscles such as rectus femoris, which have been shown to be active in 1-g performance of the activity. Parametric testing was conducted using Monte Carlo methods and combinatorial reduction to find a muscle parameter set that more closely matched physiologically observed activation patterns during the squat exercise. Peak hip joint force using the default parameters was 2.96 times body weight (BW) and increased to 3.21 BW in an optimized, feature-selected test case. The rectus femoris was predicted to peak at 60.1% activation following muscle recruitment optimization, compared to 19.2% activation with default parameters. These results indicate the critical role that muscle parameters play in joint force estimation and the need for exploration of the solution space to achieve physiologically realistic muscle activation.

  7. Testing the spin-cutoff parameterization with shell-model calculations

    CERN Document Server

    Spinella, William M

    2013-01-01

    The nuclear level density, an important input to Hauser-Feshbach calculations, depends not only on excitation energy but also on angular momentum J. The J-dependence of the level density at fixed excitation energy E_x is usually parameterized via the spin-cutoff factor sigma. We carefully test the statistical accuracy of this parameterization for a large number of spectra computed using semi-realistic interactions in the interacting shell model, with a nonlinear least-squares fit of sigma and finding the error bar in sigma. The spin-cutoff parameterization works well as long as there are enough states to be statistical. In turn, the spin-cutoff factor can be related to the average value of J^2 at a fixed excitation energy, and we briefly investigate extracting from a thermal calculation such as one might do via Monte Carlo.

  8. Symmetry-guided large-scale shell-model theory

    Science.gov (United States)

    Launey, Kristina D.; Dytrych, Tomas; Draayer, Jerry P.

    2016-07-01

    In this review, we present a symmetry-guided strategy that utilizes exact as well as partial symmetries for enabling a deeper understanding of and advancing ab initio studies for determining the microscopic structure of atomic nuclei. These symmetries expose physically relevant degrees of freedom that, for large-scale calculations with QCD-inspired interactions, allow the model space size to be reduced through a very structured selection of the basis states to physically relevant subspaces. This can guide explorations of simple patterns in nuclei and how they emerge from first principles, as well as extensions of the theory beyond current limitations toward heavier nuclei and larger model spaces. This is illustrated for the ab initio symmetry-adapted no-core shell model (SA-NCSM) and two significant underlying symmetries, the symplectic Sp(3 , R) group and its deformation-related SU(3) subgroup. We review the broad scope of nuclei, where these symmetries have been found to play a key role-from the light p-shell systems, such as 6Li, 8B, 8Be, 12C, and 16O, and sd-shell nuclei exemplified by 20Ne, based on first-principle explorations; through the Hoyle state in 12C and enhanced collectivity in intermediate-mass nuclei, within a no-core shell-model perspective; up to strongly deformed species of the rare-earth and actinide regions, as investigated in earlier studies. A complementary picture, driven by symmetries dual to Sp(3 , R) , is also discussed. We briefly review symmetry-guided techniques that prove useful in various nuclear-theory models, such as Elliott model, ab initio SA-NCSM, symplectic model, pseudo- SU(3) and pseudo-symplectic models, ab initio hyperspherical harmonics method, ab initio lattice effective field theory, exact pairing-plus-shell model approaches, and cluster models, including the resonating-group method. Important implications of these approaches that have deepened our understanding of emergent phenomena in nuclei, such as enhanced

  9. Monte Carlo model for electron degradation in xenon gas

    CERN Document Server

    Mukundan, Vrinda

    2016-01-01

    We have developed a Monte Carlo model for studying the local degradation of electrons in the energy range 9-10000 eV in xenon gas. Analytically fitted form of electron impact cross sections for elastic and various inelastic processes are fed as input data to the model. Two dimensional numerical yield spectrum, which gives information on the number of energy loss events occurring in a particular energy interval, is obtained as output of the model. Numerical yield spectrum is fitted analytically, thus obtaining analytical yield spectrum. The analytical yield spectrum can be used to calculate electron fluxes, which can be further employed for the calculation of volume production rates. Using yield spectrum, mean energy per ion pair and efficiencies of inelastic processes are calculated. The value for mean energy per ion pair for Xe is 22 eV at 10 keV. Ionization dominates for incident energies greater than 50 eV and is found to have an efficiency of 65% at 10 keV. The efficiency for the excitation process is 30%...

  10. Shell Model Description of $^{102-108}$Sn Isotopes

    CERN Document Server

    Trivedi, T; Negi, D; Mehrotra, I

    2012-01-01

    We have performed shell model calculations for neutron deficient even $^{102-108}$Sn and odd $^{103-107}$Sn isotopes in $sdg_{7/2}h_{11/2}$ model space using two different interactions. The first set of interaction is due to Brown {\\it et al.} and second is due to Hoska {\\it et al}. The calculations have been performed using doubly magic $^{100}$Sn as core and valence neutrons are distributed over the single particle orbits 1$g_{7/2}$, 2$d_{5/2}$, 2$d_{3/2}$, 3$s_{1/2}$ and 1$h_{11/2}$. In more recent experimental work for $^{101}$Sn [Phys. Rev. Lett. {\\bf 105} (2010) 162502], the g.s. is predicted as 5/2$^+$ with excited 7/2$^+$ at 172 keV. We have also performed another two set of calculations by taking difference in single particle energies of 2$d_{5/2}$ and 1$g_{7/2}$ orbitals by 172 keV. The present state-of-the-art shell model calculations predicts fair agreements with the experimental data. These calculations serve as a test of nuclear shell model in the region far from stability for unstable Sn isotop...

  11. Super-hypernuclei in the quark-shell model

    International Nuclear Information System (INIS)

    A super-hypernucleus is a nucleus which consists of many strange quarks as well as up and down quarks. An important part of the results of our recent investigation on the mass spectrum and other properties of super-hypernuclei in the quark-shell model is reported. It is expected that not only certain exotic nuclei such as the 'dideltas' (Dδ++++ and Dδ----). but also certain super-hypernuclei such as the 'hexalambda' (Hλ) and the 'vigintiquattuoralambda' (Vqλ) may appear as quasi-stable nuclei. However, in the quark-shell model, there is no qualitative reason why the 'dihyperon' or 'H dibaryon' (H) should be quasi-stable or even stable. Many other predictions including a sudden increase of the K/π ratio due to the production of super-hypernuclei in heavy-ion collisions at high energies are also made. (author)

  12. Nuclear Level Density: Shell Model vs Mean Field

    CERN Document Server

    Sen'kov, Roman

    2015-01-01

    The knowledge of the nuclear level density is necessary for understanding various reactions including those in the stellar environment. Usually the combinatorics of Fermi-gas plus pairing is used for finding the level density. Recently a practical algorithm avoiding diagonalization of huge matrices was developed for calculating the density of many-body nuclear energy levels with certain quantum numbers for a full shell-model Hamiltonian. The underlying physics is that of quantum chaos and intrinsic thermalization in a closed system of interacting particles. We briefly explain this algorithm and, when possible, demonstrate the agreement of the results with those derived from exact diagonalization. The resulting level density is much smoother than that coming from the conventional mean-field combinatorics. We study the role of various components of residual interactions in the process of thermalization, stressing the influence of incoherent collision-like processes. The shell-model results for the traditionally...

  13. Optimal thermalization in a shell model of homogeneous turbulence

    CERN Document Server

    Thalabard, Simon

    2015-01-01

    We investigate the turbulence-induced dissipation of the large scales in a statistically homogeneous flow using an "optimal closure," which one of us (BT) has recently exposed in the context of Hamiltonian dynamics. This statistical closure employs a Gaussian model for the turbulent scales, with corresponding vanishing third cumulant, and yet it captures an intrinsic damping. The key to this apparent paradox lies in a clear distinction between true ensemble averages and their proxies, most easily grasped when one works directly with the Liouville equation rather than the cumulant hierarchy. We focus on a simple problem for which the optimal closure can be fully and exactly worked out: the relaxation arbitrarily far-from-equilibrium of a single energy shell towards Gibbs equilibrium in an inviscid shell model of 3D turbulence. The predictions of the optimal closure are validated against DNS and contrasted with those derived from EDQNM closure.

  14. Optimal thermalization in a shell model of homogeneous turbulence

    Science.gov (United States)

    Thalabard, Simon; Turkington, Bruce

    2016-04-01

    We investigate the turbulence-induced dissipation of the large scales in a statistically homogeneous flow using an ‘optimal closure,’ which one of us (BT) has recently exposed in the context of Hamiltonian dynamics. This statistical closure employs a Gaussian model for the turbulent scales, with corresponding vanishing third cumulant, and yet it captures an intrinsic damping. The key to this apparent paradox lies in a clear distinction between true ensemble averages and their proxies, most easily grasped when one works directly with the Liouville equation rather than the cumulant hierarchy. We focus on a simple problem for which the optimal closure can be fully and exactly worked out: the relaxation arbitrarily far-from-equilibrium of a single energy shell towards Gibbs equilibrium in an inviscid shell model of 3D turbulence. The predictions of the optimal closure are validated against DNS and contrasted with those derived from EDQNM closure.

  15. The continuum shell-model neutron states of 209Pb

    Indian Academy of Sciences (India)

    Ramendra Nath Majumdar

    2003-12-01

    The neutron strength distributions of the three high-spin 117/2, 2ℎ11/2 and 113/2 states of 209Pb have been obtained within the formalism of the core-polarisation effect where the effect of interaction of the neutron shell-model states of 209Pb with the collective vibrational states (originating also from the giant resonances) have been taken into consideration. The theoretical results have been discussed in the light of works on 117/2, 2ℎ11/2 and 113/2 neutron orbitals of 209Pb. The shell-model energies of the neutron states have been obtained by Skyrme–Hartree–Fock method.

  16. Anomalous scaling in a non-Gaussian random shell model for passive scalars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, we have introduced a shell-model of Kraichnan's passive scalar problem. Different from the original problem, the prescribed random velocity field is non-Gaussian and δ correlated in time, and its introduction is inspired by She and Lév(e)que (Phys. Rev. Lett. 72,336 (1994)). For comparison, we also give the passive scalar advected by the Gaussian random velocity field. The anomalous scaling exponents H(p) of passive scalar advected by these two kinds of random velocities above are determined for structure function with values of p up to 15 by Monte Carlo simulations of the random shell model, with Gear methods used to solve the stochastic differential equations. We find that the H(p) advected by the non-Gaussian random velocity is not more anomalous than that advected by the Gaussian random velocity. Whether the advecting velocity is non-Gaussian or Gaussian, similar scaling exponents of passive scalar are obtained with the same molecular diffusivity.

  17. Supernova Remnant Crossing a Density Jump: A Thin Shell Model

    OpenAIRE

    Chen, Yang; Zhang, Fan; Williams, Rosa M.; Wang, Q. Daniel

    2003-01-01

    The environments of supernova explosion are often inhomogeneous and there may be jumps in their density structure. We have developed a semi-analytic model under the thin-shell approximation for supernova remnants that evolve crossing a density jump in the ambient medium. The generic evolutionary relations are presented for the blast wave after impacting on a cavity wall, which may be produced by the energetic stellar wind from the supernova progenitor. The relations can also be extended to th...

  18. Lowest eigenvalue of the nuclear shell model Hamiltonian

    CERN Document Server

    Shen, J J; Arima, A

    2010-01-01

    In this paper we investigate regular patterns of matrix elements of the nuclear shell model Hamiltonian $H$, by sorting the diagonal matrix elements from the smaller to larger values. By using simple plots of non-zero matrix elements and lowest eigenvalues of artificially constructed "sub-matrices" $h$ of $H$, we propose a new and simple formula which predicts the lowest eigenvalue with remarkable precisions.

  19. Mixed-Symmetry Shell-Model Calculations in Nuclear Physics

    CERN Document Server

    Gueorguiev, V G

    2010-01-01

    We consider a novel approach to the nuclear shell model. The one-dimensional harmonic oscillator in a box is used to introduce the concept of an oblique-basis shell-model theory. By implementing the Lanczos method for diagonalization of large matrices, and the Cholesky algorithm for solving generalized eigenvalue problems, the method is applied to nuclei. The mixed-symmetry basis combines traditional spherical shell-model states with SU(3) collective configurations. We test the validity of this mixed-symmetry scheme on 24Mg and 44Ti. Results for 24Mg, obtained using the Wilthental USD intersection in a space that spans less than 10% of the full-space, reproduce the binding energy within 2% as well as an accurate reproduction of the low-energy spectrum and the structure of the states - 90% overlap with the exact eigenstates. In contrast, for an m-scheme calculation, one needs about 60% of the full space to obtain compatible results. Calculations for 44Ti support the mixed-mode scheme although the pure SU(3) ca...

  20. Image based Monte Carlo Modeling for Computational Phantom

    Science.gov (United States)

    Cheng, Mengyun; Wang, Wen; Zhao, Kai; Fan, Yanchang; Long, Pengcheng; Wu, Yican

    2014-06-01

    The evaluation on the effects of ionizing radiation and the risk of radiation exposure on human body has been becoming one of the most important issues for radiation protection and radiotherapy fields, which is helpful to avoid unnecessary radiation and decrease harm to human body. In order to accurately evaluate the dose on human body, it is necessary to construct more realistic computational phantom. However, manual description and verfication of the models for Monte carlo(MC)simulation are very tedious, error-prone and time-consuming. In addiation, it is difficult to locate and fix the geometry error, and difficult to describe material information and assign it to cells. MCAM (CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport Simulation) was developed as an interface program to achieve both CAD- and image-based automatic modeling by FDS Team (Advanced Nuclear Energy Research Team, http://www.fds.org.cn). The advanced version (Version 6) of MCAM can achieve automatic conversion from CT/segmented sectioned images to computational phantoms such as MCNP models. Imaged-based automatic modeling program(MCAM6.0) has been tested by several medical images and sectioned images. And it has been applied in the construction of Rad-HUMAN. Following manual segmentation and 3D reconstruction, a whole-body computational phantom of Chinese adult female called Rad-HUMAN was created by using MCAM6.0 from sectioned images of a Chinese visible human dataset. Rad-HUMAN contains 46 organs/tissues, which faithfully represented the average anatomical characteristics of the Chinese female. The dose conversion coefficients(Dt/Ka) from kerma free-in-air to absorbed dose of Rad-HUMAN were calculated. Rad-HUMAN can be applied to predict and evaluate dose distributions in the Treatment Plan System (TPS), as well as radiation exposure for human body in radiation protection.

  1. Combinatorial nuclear level density by a Monte Carlo method

    OpenAIRE

    Cerf, N.

    1993-01-01

    We present a new combinatorial method for the calculation of the nuclear level density. It is based on a Monte Carlo technique, in order to avoid a direct counting procedure which is generally impracticable for high-A nuclei. The Monte Carlo simulation, making use of the Metropolis sampling scheme, allows a computationally fast estimate of the level density for many fermion systems in large shell model spaces. We emphasize the advantages of this Monte Carlo approach, particularly concerning t...

  2. A Monte Carlo model of auroral hydrogen emission line profiles

    Directory of Open Access Journals (Sweden)

    J.-C. Gérard

    2005-06-01

    Full Text Available Hydrogen line profiles measured from space-borne or ground-based instruments provide useful information to study the physical processes occurring in the proton aurora and to estimate the proton flux characteristics. The line shape of the hydrogen lines is determined by the velocity distribution of H atoms along the line-of-sight of the instrument. Calculations of line profiles of auroral hydrogen emissions were obtained using a Monte Carlo kinetic model of proton precipitation into the auroral atmosphere. In this model both processes of energy degradation and scattering angle redistribution in momentum and charge transfer collisions of the high-energy proton/hydrogen flux with the ambient atmospheric gas are considered at the microphysical level. The model is based on measured cross sections and scattering angle distributions and on a stochastic interpretation of such collisions. Calculations show that collisional angular redistribution of the precipitating proton/hydrogen beam is the dominant process leading to the formation of extended wings and peak shifts in the hydrogen line profiles. All simulations produce a peak shift from the rest line wavelength decreasing with increasing proton energy. These model predictions are confirmed by analysis of ground-based H-β line observations from Poker Flat, showing an anti-correlation between the magnitude of the peak shift and the extent of the blue wing of the line. Our results also strongly suggest that the relative extension of the blue and red wings provides a much better indicator of the auroral proton characteristic energy than the position of the peak wavelength.

  3. A Monte Carlo model of the Varian IGRT couch top for RapidArc QA

    International Nuclear Information System (INIS)

    The objectives of this study are to evaluate the effect of couch attenuation on quality assurance (QA) results and to present a couch top model for Monte Carlo (MC) dose calculation for RapidArc treatments. The IGRT couch top is modelled in Eclipse as a thin skin of higher density material with a homogeneous fill of foam of lower density and attenuation. The IGRT couch structure consists of two longitudinal sections referred to as thick and thin. The Hounsfield Unit (HU) characterization of the couch structure was determined using a cylindrical phantom by comparing ion chamber measurements with the dose predicted by the treatment planning system (TPS). The optimal set of HU for the inside of the couch and the surface shell was found to be respectively −960 and −700 HU in agreement with Vanetti et al (2009 Phys. Med. Biol. 54 N157–66). For each plan, the final dose calculation was performed with the thin, thick and without the couch top. Dose differences up to 2.6% were observed with TPS calculated doses not including the couch and up to 3.4% with MC not including the couch and were found to be treatment specific. A MC couch top model was created based on the TPS geometrical model. The carbon fibre couch top skin was modelled using carbon graphite; the density was adjusted until good agreement with experimental data was observed, while the density of the foam inside was kept constant. The accuracy of the couch top model was evaluated by comparison with ion chamber measurements and TPS calculated dose combined with a 3D gamma analysis. Similar to the TPS case, a single graphite density can be used for both the thin and thick MC couch top models. Results showed good agreement with ion chamber measurements (within 1.2%) and with TPS (within 1%). For each plan, over 95% of the points passed the 3D gamma test. (note)

  4. Microscopic Shell Model Calculations for the Fluorine Isotopes

    Science.gov (United States)

    Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Vary, James P.; Shirokov, Andrey M.

    2015-10-01

    Using a formalism based on the No Core Shell Model (NCSM), we have determined miscroscopically the core and single-particle energies and the effective two-body interactions that are the input to standard shell model (SSM) calculations. The basic idea is to perform a succession of a Okubo-Lee-Suzuki (OLS) transformation, a NCSM calculation, and a second OLS transformation to a further reduced space, such as the sd-shell, which allows the separation of the many-body matrix elements into an ``inert'' core part plus a few valence-nucleons calculation. In the present investigation we use this technique to calculate the properties of the nuclides in the Fluorine isotopic chain, using the JISP16 nucleon-nucleon interaction. The obtained SSM input, along with the results of the SSM calculations for the Fluorine isotopes, will be presented. This work supported in part by TUBITAK-BIDEB, the US DOE, the US NSF, NERSC, and the Russian Ministry of Education and Science.

  5. Phases and phase transitions in the algebraic microscopic shell model

    Directory of Open Access Journals (Sweden)

    Georgieva A. I.

    2016-01-01

    Full Text Available We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott’s SU(3 basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3 basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  6. A wind-shell interaction model for multipolar planetary nebulae

    CERN Document Server

    Steffen, W; Esquivel, A; Garcia-Segura, G; Garcia-Diaz, Ma T; Lopez, J A; Magnor, M

    2013-01-01

    We explore the formation of multipolar structures in planetary and pre-planetary nebulae from the interaction of a fast post-AGB wind with a highly inhomogeneous and filamentary shell structure assumed to form during the final phase of the high density wind. The simulations were performed with a new hydrodynamics code integrated in the interactive framework of the astrophysical modeling package SHAPE. In contrast to conventional astrophysical hydrodynamics software, the new code does not require any programming intervention by the user for setting up or controlling the code. Visualization and analysis of the simulation data has been done in SHAPE without external software. The key conclusion from the simulations is that secondary lobes in planetary nebulae, such as Hubble 5 and K3-17, can be formed through the interaction of a fast low-density wind with a complex high density environment, such as a filamentary circumstellar shell. The more complicated alternative explanation of intermittent collimated outflow...

  7. The Shell Model as Unified View of Nuclear Structure

    CERN Document Server

    Caurier, E; Nowacki, F; Poves, A; Zuker, A P

    2004-01-01

    The last decade has witnessed both quantitative and qualitative progresses in Shell Model studies, which have resulted in remarkable gains in our understanding of the structure of the nucleus. Indeed, it is now possible to diagonalize matrices in determinantal spaces of dimensionality up to 10^9 using the Lanczos tridiagonal construction, whose formal and numerical aspects we will analyze. Besides, many new approximation methods have been developed in order to overcome the dimensionality limitations. Furthermore, new effective nucleon-nucleon interactions have been constructed that contain both two and three-body contributions. The former are derived from realistic potentials (i.e., consistent with two nucleon data). The latter incorporate the pure monopole terms necessary to correct the bad saturation and shell-formation properties of the realistic two-body forces. This combination appears to solve a number of hitherto puzzling problems. In the present review we will concentrate on those results which illust...

  8. Monte Carlo Modeling Electronuclear Processes in Cascade Subcritical Reactor

    CERN Document Server

    Bznuni, S A; Zhamkochyan, V M; Polyanskii, A A; Sosnin, A N; Khudaverdian, A G

    2000-01-01

    Accelerator driven subcritical cascade reactor composed of the main thermal neutron reactor constructed analogous to the core of the VVER-1000 reactor and a booster-reactor, which is constructed similar to the core of the BN-350 fast breeder reactor, is taken as a model example. It is shown by means of Monte Carlo calculations that such system is a safe energy source (k_{eff}=0.94-0.98) and it is capable of transmuting produced radioactive wastes (neutron flux density in the thermal zone is PHI^{max} (r,z)=10^{14} n/(cm^{-2} s^{-1}), neutron flux in the fast zone is respectively equal PHI^{max} (r,z)=2.25 cdot 10^{15} n/(cm^{-2} s^{-1}) if the beam current of the proton accelerator is k_{eff}=0.98 and I=5.3 mA). Suggested configuration of the "cascade" reactor system essentially reduces the requirements on the proton accelerator current.

  9. Modelling laser light propagation in thermoplastics using Monte Carlo simulations

    Science.gov (United States)

    Parkinson, Alexander

    Laser welding has great potential as a fast, non-contact joining method for thermoplastic parts. In the laser transmission welding of thermoplastics, light passes through a semi-transparent part to reach the weld interface. There, it is absorbed as heat, which causes melting and subsequent welding. The distribution and quantity of light reaching the interface are important for predicting the quality of a weld, but are experimentally difficult to estimate. A model for simulating the path of this laser light through these light-scattering plastic parts has been developed. The technique uses a Monte-Carlo approach to generate photon paths through the material, accounting for absorption, scattering and reflection between boundaries in the transparent polymer. It was assumed that any light escaping the bottom surface contributed to welding. The photon paths are then scaled according to the input beam profile in order to simulate non-Gaussian beam profiles. A method for determining the 3 independent optical parameters to accurately predict transmission and beam power distribution at the interface was established using experimental data for polycarbonate at 4 different glass fibre concentrations and polyamide-6 reinforced with 20% long glass fibres. Exit beam profiles and transmissions predicted by the simulation were found to be in generally good agreement (R2>0.90) with experimental measurements. The simulations allowed the prediction of transmission and power distributions at other thicknesses as well as information on reflection, energy absorption and power distributions at other thicknesses for these materials.

  10. SKIRT: the design of a suite of input models for Monte Carlo radiative transfer simulations

    CERN Document Server

    Baes, Maarten

    2015-01-01

    The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can...

  11. Shell Model Study on High Spin States of 92Nb

    Institute of Scientific and Technical Information of China (English)

    WU; Yi-heng; WU; Xiao-guang; LI; Guang-sheng; LUO; Peng-wei; LIU; Jia-jian; HE; Chuang-ye; ZHENG; Yun; LI; Cong-bo; HU; Shi-peng; LI; Hong-wei; WANG; Jin-long

    2013-01-01

    High spin states of odd-odd nucleus 92Nb were investigated using the reaction 82Se(14N,4n)92Nb at a beam energy of 54 MeV.Spherical shell model calculations are performed in the model spaceπ(0f5/2,1p3/2,1p1/2,0g9/2)ν(1p1/2,0g9/2,1d5/2,0g7/2).It is suggested that the excitation of protons across the Z=38 core

  12. Effective Field Theory and the No-Core Shell Model

    Directory of Open Access Journals (Sweden)

    Stetcua I.

    2010-04-01

    Full Text Available In finite model space suitable for many-body calculations via the no-core shell model (NCSM, I illustrate the direct application of the effective field theory (EFT principles to solving the many-body Schrödinger equation. Two different avenues for fixing the low-energy constants naturally arising in an EFT approach are discussed. I review results for both nuclear and trapped atomic systems, using effective theories formally similar, albeit describing different underlying physics.

  13. Modeling radiation from the atmosphere of Io with Monte Carlo methods

    Science.gov (United States)

    Gratiy, Sergey

    Conflicting observations regarding the dominance of either sublimation or volcanism as the source of the atmosphere on Io and disparate reports on the extent of its spatial distribution and the absolute column abundance invite the development of detailed computational models capable of improving our understanding of Io's unique atmospheric structure and origin. To validate a global numerical model of Io's atmosphere against astronomical observations requires a 3-D spherical-shell radiative transfer (RT) code to simulate disk-resolved images and disk-integrated spectra from the ultraviolet to the infrared spectral region. In addition, comparison of simulated and astronomical observations provides important information to improve existing atmospheric models. In order to achieve this goal, a new 3-D spherical-shell forward/backward photon Monte Carlo code capable of simulating radiation from absorbing/emitting and scattering atmospheres with an underlying emitting and reflecting surface was developed. A new implementation of calculating atmospheric brightness in scattered sunlight is presented utilizing the notion of an "effective emission source" function. This allows for the accumulation of the scattered contribution along the entire path of a ray and the calculation of the atmospheric radiation when both scattered sunlight and thermal emission contribute to the observed radiation---which was not possible in previous models. A "polychromatic" algorithm was developed for application with the backward Monte Carlo method and was implemented in the code. It allows one to calculate radiative intensity at several wavelengths simultaneously, even when the scattering properties of the atmosphere are a function of wavelength. The application of the "polychromatic" method improves the computational efficiency because it reduces the number of photon bundles traced during the simulation. A 3-D gas dynamics model of Io's atmosphere, including both sublimation and volcanic

  14. Semiclassical origin of anomalous shell effect for tetrahedral deformation in radial power-law potential model

    CERN Document Server

    Arita, Ken-ichiro

    2014-01-01

    Shell structures in single-particle energy spectra are investigated against regular tetrahedral type deformation using radial power-law potential model. Employing a natural way of shape parametrization which interpolate sphere and regular tetrahedron, we find prominent shell effects at rather large tetrahedral deformations, which bring about shell energies much larger than the cases of spherical and quadrupole type shapes. We discuss the semiclassical origin of these anomalous shell structures using periodic orbit theory.

  15. All-glass shell scale models made with an adjustable mould

    OpenAIRE

    Belis, JLIF Jan; Pronk, ADC Arno; Schuurmans, WB; Blancke, T

    2011-01-01

    Ever since Lucio Blandini developed a doubly curved synclastic shell with adhesively bonded glass components, the concept of building a self-supporting glass-only shell has almost become within reach. In the current contribution a small-scaled experimental concept is presented of a self-supporting anticlastic all-glass shell scale model, created by means of an adaptable mould. First, different manufacturing parameters of relatively small shells are investigated, such as mould type, glass s...

  16. Holographic shell model: Stack data structure inside black holes?

    Science.gov (United States)

    Davidson, Aharon

    2014-03-01

    Rather than tiling the black hole horizon by Planck area patches, we suggest that bits of information inhabit, universally and holographically, the entire black core interior, a bit per a light sheet unit interval of order Planck area difference. The number of distinguishable (tagged by a binary code) configurations, counted within the context of a discrete holographic shell model, is given by the Catalan series. The area entropy formula is recovered, including Cardy's universal logarithmic correction, and the equipartition of mass per degree of freedom is proven. The black hole information storage resembles, in the count procedure, the so-called stack data structure.

  17. The Nuclear Shell Model Toward the Drip Lines

    CERN Document Server

    Poves, A; Nowacki, F; Sieja, K

    2011-01-01

    We describe the "islands of inversion" that occur when approaching the neutron drip line around the magic numbers N=20, N=28 and N=40 in the framework of the Interacting Shell Model in very large valence spaces. We explain these configuration inversions (and the associated shape transitions) as the result of the competition between the spherical mean field (monopole) which favors magicity and the correlations (multipole) which favor deformed intruder states. We also show that the N=20 and N=28 islands are in reallity a single one, which for the Magnesium isotopes is limited by N=18 and N=32.

  18. Shell-model structure of exotic nuclei beyond 132Sn

    OpenAIRE

    Covello, A; Coraggio, L.; Gargano, A.; Itaco, N.

    2007-01-01

    We report on a study of exotic nuclei around doubly magic 132Sn in terms of the shell model employing a realistic effective interaction derived from the CD-Bonn nucleon-nucleon potential. The short-range repulsion of the bare potential is renormalized by constructing a smooth low-momentum potential, V-low-k, that is used directly as input for the calculation of the effective interaction. In this paper we focus attention on the nuclei 134Sn and 135Sb which, with an N/Z ratio of 1.68 and 1.65, ...

  19. Projected shell model study of neutron-deficient 122Ce

    Indian Academy of Sciences (India)

    Rani Devi; B D Sehgal; S K Khosa

    2006-09-01

    The observed excited states of 122Ce nucleus have been studied in the frame-work of projected shell model (PSM). The yrast band has been studied up to spin 26 ħ. The first band crossing has been predicted above a rotational frequency of 0.4 MeV/ħ that corresponds to first backbending. The calculation reproduces the experimentally observed ground state band up to spin 14ħ. The electromagnetic quantities, transition quadrupole moments and -factors are predicted and there is a need to measure these quantities experimentally.

  20. Magnetic reversals in a modified shell model for magnetohydrodynamics turbulence

    Science.gov (United States)

    Nigro, Giuseppina; Carbone, Vincenzo

    2010-07-01

    The aim of the paper is the study of dynamo action using a simple nonlinear model in the framework of magnetohydrodynamic turbulence. The nonlinear behavior of the system is described by using a shell model for velocity field and magnetic field fluctuations, modified for the magnetic field at the largest scale by a term describing a supercritical pitchfork bifurcation. Turbulent fluctuations generate a dynamical situation where the large-scale magnetic field jumps between two states which represent the opposite polarities of the magnetic field. Despite its simplicity, the model has the capability to describe a long time series of reversals from which we infer results about the statistics of persistence times and scaling laws of cancellations between opposite polarities for different magnetic diffusivity coefficients. These properties of the model are compared with real paleomagnetic data, thus revealing the origin of long-range correlations in the process.

  1. Magnetic reversals in a modified shell model for magnetohydrodynamics turbulence.

    Science.gov (United States)

    Nigro, Giuseppina; Carbone, Vincenzo

    2010-07-01

    The aim of the paper is the study of dynamo action using a simple nonlinear model in the framework of magnetohydrodynamic turbulence. The nonlinear behavior of the system is described by using a shell model for velocity field and magnetic field fluctuations, modified for the magnetic field at the largest scale by a term describing a supercritical pitchfork bifurcation. Turbulent fluctuations generate a dynamical situation where the large-scale magnetic field jumps between two states which represent the opposite polarities of the magnetic field. Despite its simplicity, the model has the capability to describe a long time series of reversals from which we infer results about the statistics of persistence times and scaling laws of cancellations between opposite polarities for different magnetic diffusivity coefficients. These properties of the model are compared with real paleomagnetic data, thus revealing the origin of long-range correlations in the process. PMID:20866731

  2. Shell model of optimal passive-scalar mixing

    Science.gov (United States)

    Miles, Christopher; Doering, Charles

    2015-11-01

    Optimal mixing is significant to process engineering within industries such as food, chemical, pharmaceutical, and petrochemical. An important question in this field is ``How should one stir to create a homogeneous mixture while being energetically efficient?'' To answer this question, we consider an initially unmixed scalar field representing some concentration within a fluid on a periodic domain. This passive-scalar field is advected by the velocity field, our control variable, constrained by a physical quantity such as energy or enstrophy. We consider two objectives: local-in-time (LIT) optimization (what will maximize the mixing rate now?) and global-in-time (GIT) optimization (what will maximize mixing at the end time?). Throughout this work we use the H-1 mix-norm to measure mixing. To gain a better understanding, we provide a simplified mixing model by using a shell model of passive-scalar advection. LIT optimization in this shell model gives perfect mixing in finite time for the energy-constrained case and exponential decay to the perfect-mixed state for the enstrophy-constrained case. Although we only enforce that the time-average energy (or enstrophy) equals a chosen value in GIT optimization, interestingly, the optimal control keeps this value constant over time.

  3. Improved Monte Carlo model for multiple scattering calculations

    Institute of Scientific and Technical Information of China (English)

    Weiwei Cai; Lin Ma

    2012-01-01

    The coupling between the Monte Carlo (MC) method and geometrical optics to improve accuracy is investigated.The results obtained show improved agreement with previous experimental data,demonstrating that the MC method,when coupled with simple geometrical optics,can simulate multiple scattering with enhanced fidelity.

  4. Monte Carlo modeling of ultrasound probes for image guided radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Bazalova-Carter, Magdalena, E-mail: bazalova@uvic.ca [Department of Radiation Oncology, Stanford University, Stanford, California 94305 and Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 2Y2 (Canada); Schlosser, Jeffrey [SoniTrack Systems, Inc., Palo Alto, California 94304 (United States); Chen, Josephine [Department of Radiation Oncology, UCSF, San Francisco, California 94143 (United States); Hristov, Dimitre [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States)

    2015-10-15

    Purpose: To build Monte Carlo (MC) models of two ultrasound (US) probes and to quantify the effect of beam attenuation due to the US probes for radiation therapy delivered under real-time US image guidance. Methods: MC models of two Philips US probes, an X6-1 matrix-array transducer and a C5-2 curved-array transducer, were built based on their megavoltage (MV) CT images acquired in a Tomotherapy machine with a 3.5 MV beam in the EGSnrc, BEAMnrc, and DOSXYZnrc codes. Mass densities in the probes were assigned based on an electron density calibration phantom consisting of cylinders with mass densities between 0.2 and 8.0 g/cm{sup 3}. Beam attenuation due to the US probes in horizontal (for both probes) and vertical (for the X6-1 probe) orientation was measured in a solid water phantom for 6 and 15 MV (15 × 15) cm{sup 2} beams with a 2D ionization chamber array and radiographic films at 5 cm depth. The MC models of the US probes were validated by comparison of the measured dose distributions and dose distributions predicted by MC. Attenuation of depth dose in the (15 × 15) cm{sup 2} beams and small circular beams due to the presence of the probes was assessed by means of MC simulations. Results: The 3.5 MV CT number to mass density calibration curve was found to be linear with R{sup 2} > 0.99. The maximum mass densities in the X6-1 and C5-2 probes were found to be 4.8 and 5.2 g/cm{sup 3}, respectively. Dose profile differences between MC simulations and measurements of less than 3% for US probes in horizontal orientation were found, with the exception of the penumbra region. The largest 6% dose difference was observed in dose profiles of the X6-1 probe placed in vertical orientation, which was attributed to inadequate modeling of the probe cable. Gamma analysis of the simulated and measured doses showed that over 96% of measurement points passed the 3%/3 mm criteria for both probes placed in horizontal orientation and for the X6-1 probe in vertical orientation. The

  5. Development of Monte Carlo automatic modeling functions of MCAM for TRIPOLI-ITER application

    Science.gov (United States)

    Lu, L.; Lee, Y. K.; Zhang, J. J.; Li, Y.; Zeng, Q.; Wu, Y. C.

    2009-07-01

    TRIPOLI is a Monte Carlo particle transport code simulating the three-dimensional transport of neutrons and photons with the Monte Carlo method, and it can be used for many applications to nuclear devices with complex geometries; however, modeling of a complex geometry is a time-consuming and error-prone task. The recently developed functions of Monte Carlo Automatic Modeling (MCAM) system, which is an interface code that can facilitate Monte Carlo modeling by employing the CAD technology, have implemented the bidirectional conversion between the CAD model and the TRIPOLI computation model. In this study, different geometric representations of CAD system and TRIPOLI code and the methodology of bidirectional conversion between them were introduced. A TRIPOLI input file of International Thermonuclear Experimental Reactor (ITER) benchmark model, which was distributed to validate the Monte Carlo modeling tools, was created and applied to simulate D-T fusion neutron source sampling and calculate first wall loading. Then the results were compared with that of Monte Carlo N-Particle (MCNP) and the good agreements present the feasibility and validity.

  6. Alpha Decay in the Complex Energy Shell Model

    CERN Document Server

    Betan, R Id

    2012-01-01

    Alpha emission from a nucleus is a fundamental decay process in which the alpha particle formed inside the nucleus tunnels out through the potential barrier. We describe alpha decay of $^{212}$Po and $^{104}$Te by means of the configuration interaction approach. To compute the preformation factor and penetrability, we use the complex-energy shell model with a separable T=1 interaction. The single-particle space is expanded in a Woods-Saxon basis that consists of bound and unbound resonant states. Special attention is paid to the treatment of the norm kernel appearing in the definition of the formation amplitude that guarantees the normalization of the channel function. Without explicitly considering the alpha-cluster component in the wave function of the parent nucleus, we reproduce the experimental alpha-decay width of $^{212}$Po and predict an upper limit of T_{1/2}=5.5x10^{-7} sec for the half-life of $^{104}$Te. The complex-energy shell model in a large valence configuration space is capable of providing ...

  7. Shell model description of low-lying states in Po and Rn isotopes

    International Nuclear Information System (INIS)

    The nuclear structure of polonium and radon isotopes is theoretically studied in terms of the spherical shell model with the monopole- and quadrupole-pairing plus quadrupole-quadrupole effective interaction. The experimental energy levels of low-lying states are well reproduced. The shell model results are examined in detail in a pair-truncated shell model (PTSM). The analysis reveals the alignment of two protons in the 0h9/2 orbital at spin 8. (authors)

  8. Shell model description of low-lying states in Po and Rn isotopes

    Directory of Open Access Journals (Sweden)

    Higashiyama Koji

    2014-03-01

    Full Text Available Nuclear structure of the Po and Rn isotopes is theoretically studied in terms of the spherical shell model with the monopole- and quadrupole-pairing plus quadrupole-quadrupole effective interaction. The experimental energy levels of low-lying states are well reproduced. The shell model results are examined in detail in a pair-truncated shell model. The analysis reveals the alignment of two protons in the 0h9/2 orbital at spin 8.

  9. A Semi-Analytical Model for Buckling of Stiffened Cylindrical Shells

    OpenAIRE

    2013-01-01

    Cylindrical shells are common configurations within the technology. The transition from the side to the bottom on a ship has the shape of a fourth of a cylindrical shell. Both ring and stringer stiffeners can be added to the shell for support. Buckling of this type of structure is an important area of interest. The main purpose of this thesis has been to make a semi-analytical model that can describe how a ring stiffened shell and stringer stiffened shell respond during buckling. A va...

  10. Development of the Delta Shell as an integrated modeling environment

    Science.gov (United States)

    Donchyts, Gennadii; Baart, Fedor; Jagers, Bert

    2010-05-01

    Many engineering problem require the use of multiple numerical models from multiple disciplines. For example the use of river model for flow calculation coupled with groundwater model and rainfall-runoff model. These models need to be setup, coupled, run, results need to be visualized, input and output data need to be stored. For some of these steps a software or standards already exist, but there is a need for an environment allowing to perform all these steps.The goal of the present work is to create a modeling environment where models from different domains can perform all the sixe steps: setup, couple, run, visualize, store. This presentation deals with the different problems which arise when setting up a modelling framework, such as terminology, numerical aspects as well as the software development issues which arise. In order to solve these issues we use Domain Driven Design methods, available open standards and open source components. While creating an integrated modeling environment we have identified that a separation of the following domains is essential: a framework allowing to link and exchange data between models; a framework allowing to integrate different components of the environment; graphical user interface; GIS; hybrid relational and multi-dimensional data store; discipline-specific libraries: river hydrology, morphology, water quality, statistics; model-specific components Delta Shell environment which is the basis for several products such as HABITAT, SOBEK and the future Delft3D interface. It implements and integrates components covering the above mentioned domains by making use of open standards and open source components. Different components have been developed to fill in gaps. For exchaning data with the GUI an object oriented scientific framework in .NET was developed within Delta Shell somewhat similar to the JSR-275. For the GIS domain several OGC standards were used such as SFS, WCS and WFS. For storage the CF standard together with

  11. Simplified vibration analysis method of shells of revolution using beam model

    International Nuclear Information System (INIS)

    A simplified vibration analysis method for the shells of revolution using the beam model is now under consideration. In the beam model, the relations between the shear forces and horizontal deformations are used for the calculations of the shear area and the relations between the overturning moments and rotation angles are for those of the inertia moment. The calculations of the vibration characteristics of the cylindrical shell, spherical shell and the cylindrical shell with the spherical cap were conducted to verify the accuracy of the beam model. The natural frequencies and the vibration modes of the proposed method are in good agreement with that of the FEM analysis using the axisymmetrical shell model. The proposed method is easily applicable to the vibration analysis of actual shell structures. (author)

  12. U(5)-O(6) Phase Transition in the SD-Pair Shell Model

    Institute of Scientific and Technical Information of China (English)

    WANG Fu-Rong; LIU Lin; LUO Yan-An; PAN Feng; DRAAYER J. P.

    2008-01-01

    U(5)-O(6) transitional behaviour in the SD-pair shell model is studied. The results show that the U(5)-O(6) transitional patterns of the interacting boson model can be reproduced in the SD-pair shell model approximately.

  13. A Hybrid Monte Carlo Ant Colony Optimization Approach for Protein Structure Prediction in the HP Model

    OpenAIRE

    Giancarlo Mauri; Citrolo, Andrea G.

    2013-01-01

    The hydrophobic-polar (HP) model has been widely studied in the field of protein structure prediction (PSP) both for theoretical purposes and as a benchmark for new optimization strategies. In this work we introduce a new heuristics based on Ant Colony Optimization (ACO) and Markov Chain Monte Carlo (MCMC) that we called Hybrid Monte Carlo Ant Colony Optimization (HMCACO). We describe this method and compare results obtained on well known HP instances in the 3 dimensional cubic lattice to tho...

  14. Optical Monte Carlo modeling of a true portwine stain anatomy

    Science.gov (United States)

    Barton, Jennifer K.; Pfefer, T. Joshua; Welch, Ashley J.; Smithies, Derek J.; Nelson, Jerry; van Gemert, Martin J.

    1998-04-01

    A unique Monte Carlo program capable of accommodating an arbitrarily complex geometry was used to determine the energy deposition in a true port wine stain anatomy. Serial histologic sections taken from a biopsy of a dark red, laser therapy resistant stain were digitized and used to create the program input for simulation at wavelengths of 532 and 585 nm. At both wavelengths, the greatest energy deposition occurred in the superficial blood vessels, and subsequently decreased with depth as the laser beam was attenuated. However, more energy was deposited in the epidermis and superficial blood vessels at 532 nm than at 585 nm.

  15. Projected shell model study of quasiparticle structure of arsenic isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Preeti; Sharma, Chetan; Singh, Suram [Department of Physics and Electronics, University of Jammu, Jammu, 180006 (India); Bharti, Arun, E-mail: arunbharti_2003@yahoo.co.in [Department of Physics and Electronics, University of Jammu, Jammu, 180006 (India); Khosa, S.K. [Department of Physics and Electronics, University of Jammu, Jammu, 180006 (India); Bhat, G.H. [Department of Physics, University of Kashmir, Srinagar, 190006 (India); Sheikh, J.A. [Department of Physics, University of Kashmir, Srinagar, 190006 (India); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States)

    2013-11-20

    Odd-mass isotopic chain of {sup 67–79}As has been studied within the context of the projected shell model. Deformed single-particle states generated by the standard Nilsson potential are used to calculate various nuclear structure properties like yrast spectra, rotational frequencies and reduced transition probabilities. The study of band structures of these As nuclei based on the band diagrams indicates the presence of multi-quasiparticle structure in the high spin realm of these nuclei. Rotational alignment phenomenon has also been studied in terms of band crossing which is understood to occur due to the rotational alignment of g{sub 9/2} neutron pair. We also have compared the results of the present calculations with the available experimental as well as the other theoretical data and an overall good agreement has been achieved between the two.

  16. Partial Dynamical Symmetry in the Symplectic Shell Model

    CERN Document Server

    Escher, J; Escher, Jutta; Leviatan, Amiram

    2002-01-01

    We present an example of a partial dynamical symmetry (PDS) in an interacting fermion system and demonstrate the close relationship of the associated Hamiltonians with a realistic quadrupole-quadrupole interaction, thus shedding new light on this important interaction. Specifically, in the framework of the symplectic shell model of nuclei, we prove the existence of a family of fermionic Hamiltonians with partial SU(3) symmetry. We outline the construction process for the PDS eigenstates with good symmetry and give analytic expressions for the energies of these states and E2 transition strengths between them. Characteristics of both pure and mixed-symmetry PDS eigenstates are discussed and the resulting spectra and transition strengths are compared to those of real nuclei. The PDS concept is shown to be relevant to the description of prolate, oblate, as well as triaxially deformed nuclei. Similarities and differences between the fermion case and the previously established partial SU(3) symmetry in the Interact...

  17. Exploring uncertainty in glacier mass balance modelling with Monte Carlo simulation

    NARCIS (Netherlands)

    Machguth, H.; Purves, R.S.; Oerlemans, J.; Hoelzle, M.; Paul, F.

    2008-01-01

    By means of Monte Carlo simulations we calculated uncertainty in modelled cumulative mass balance over 400 days at one particular point on the tongue of Morteratsch Glacier, Switzerland, using a glacier energy balance model of intermediate complexity. Before uncertainty assessment, the model was tun

  18. Analytical positron range modelling in heterogeneous media for PET Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Wencke; Meikle, Steven R [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe NSW 1825 (Australia); Gregoire, Marie-Claude; Reilhac, Anthonin, E-mail: wlehnert@uni.sydney.edu.au [Australian Nuclear Science and Technology Organisation, Lucas Heights NSW 2234 (Australia)

    2011-06-07

    Monte Carlo simulation codes that model positron interactions along their tortuous path are expected to be accurate but are usually slow. A simpler and potentially faster approach is to model positron range from analytical annihilation density distributions. The aims of this paper were to efficiently implement and validate such a method, with the addition of medium heterogeneity representing a further challenge. The analytical positron range model was evaluated by comparing annihilation density distributions with those produced by the Monte Carlo simulator GATE and by quantitatively analysing the final reconstructed images of Monte Carlo simulated data. In addition, the influence of positronium formation on positron range and hence on the performance of Monte Carlo simulation was investigated. The results demonstrate that 1D annihilation density distributions for different isotope-media combinations can be fitted with Gaussian functions and hence be described by simple look-up-tables of fitting coefficients. Together with the method developed for simulating positron range in heterogeneous media, this allows for efficient modelling of positron range in Monte Carlo simulation. The level of agreement of the analytical model with GATE depends somewhat on the simulated scanner and the particular research task, but appears to be suitable for lower energy positron emitters, such as {sup 18}F or {sup 11}C. No reliable conclusion about the influence of positronium formation on positron range and simulation accuracy could be drawn.

  19. Microscopic imaging through turbid media Monte Carlo modeling and applications

    CERN Document Server

    Gu, Min; Deng, Xiaoyuan

    2015-01-01

    This book provides a systematic introduction to the principles of microscopic imaging through tissue-like turbid media in terms of Monte-Carlo simulation. It describes various gating mechanisms based on the physical differences between the unscattered and scattered photons and method for microscopic image reconstruction, using the concept of the effective point spread function. Imaging an object embedded in a turbid medium is a challenging problem in physics as well as in biophotonics. A turbid medium surrounding an object under inspection causes multiple scattering, which degrades the contrast, resolution and signal-to-noise ratio. Biological tissues are typically turbid media. Microscopic imaging through a tissue-like turbid medium can provide higher resolution than transillumination imaging in which no objective is used. This book serves as a valuable reference for engineers and scientists working on microscopy of tissue turbid media.

  20. Kinetic Monte Carlo modelling of neutron irradiation damage in iron

    Energy Technology Data Exchange (ETDEWEB)

    Gamez, L. [Instituto de Fusion Nuclear, UPM, Madrid (Spain); Departamento de Fisica Aplicada, ETSII, UPM, Madrid (Spain)], E-mail: linarejos.gamez@upm.es; Martinez, E. [Instituto de Fusion Nuclear, UPM, Madrid (Spain); Lawrence Livermore National Laboratory, LLNL, CA 94550 (United States); Perlado, J.M.; Cepas, P. [Instituto de Fusion Nuclear, UPM, Madrid (Spain); Caturla, M.J. [Departamento de Fisica Aplicada, Universidad de Alicante, Alicante (Spain); Victoria, M. [Instituto de Fusion Nuclear, UPM, Madrid (Spain); Marian, J. [Lawrence Livermore National Laboratory, LLNL, CA 94550 (United States); Arevalo, C. [Instituto de Fusion Nuclear, UPM, Madrid (Spain); Hernandez, M.; Gomez, D. [CIEMAT, Madrid (Spain)

    2007-10-15

    Ferritic steels (FeCr based alloys) are key materials needed to fulfill the requirements expected in future nuclear fusion facilities, both for magnetic and inertial confinement, and advanced fission reactors (GIV) and transmutation systems. Research in such field is actually a critical aspect in the European research program and abroad. Experimental and multiscale simulation methodologies are going hand by hand in increasing the knowledge of materials performance. At DENIM, it is progressing in some specific part of the well-linked simulation methodology both for defects energetics and diffusion, and for dislocation dynamics. In this study, results obtained from kinetic Monte Carlo simulations of neutron irradiated Fe under different conditions are presented, using modified ad hoc parameters. A significant agreement with experimental measurements has been found for some of the parameterization and mechanisms considered. The results of these simulations are discussed and compared with previous calculations.

  1. A systematic study of Lyman-Alpha transfer through outflowing shells: Model parameter estimation

    CERN Document Server

    Gronke, Max; Dijkstra, Mark

    2015-01-01

    Outflows promote the escape of Lyman-$\\alpha$ (Ly$\\alpha$) photons from dusty interstellar media. The process of radiative transfer through interstellar outflows is often modelled by a spherically symmetric, geometrically thin shell of gas that scatters photons emitted by a central Ly$\\alpha$ source. Despite its simplified geometry, this `shell model' has been surprisingly successful at reproducing observed Ly$\\alpha$ line shapes. In this paper we perform automated line fitting on a set of noisy simulated shell model spectra, in order to determine whether degeneracies exist between the different shell model parameters. While there are some significant degeneracies, we find that most parameters are accurately recovered, especially the HI column density ($N_{\\rm HI}$) and outflow velocity ($v_{\\rm exp}$). This work represents an important first step in determining how the shell model parameters relate to the actual physical properties of Ly$\\alpha$ sources. To aid further exploration of the parameter space, we ...

  2. Stress Resultant Based Elasto-Viscoplastic Thick Shell Model

    Directory of Open Access Journals (Sweden)

    Pawel Woelke

    2012-01-01

    Full Text Available The current paper presents enhancement introduced to the elasto-viscoplastic shell formulation, which serves as a theoretical base for the finite element code EPSA (Elasto-Plastic Shell Analysis [1–3]. The shell equations used in EPSA are modified to account for transverse shear deformation, which is important in the analysis of thick plates and shells, as well as composite laminates. Transverse shear forces calculated from transverse shear strains are introduced into a rate-dependent yield function, which is similar to Iliushin's yield surface expressed in terms of stress resultants and stress couples [12]. The hardening rule defined by Bieniek and Funaro [4], which allows for representation of the Bauschinger effect on a moment-curvature plane, was previously adopted in EPSA and is used here in the same form. Viscoplastic strain rates are calculated, taking into account the transverse shears. Only non-layered shells are considered in this work.

  3. Recent Developments in No-Core Shell-Model Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, P; Quaglioni, S; Stetcu, I; Barrett, B R

    2009-03-20

    We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.

  4. Modelling photon transport in non-uniform media for SPECT with a vectorized Monte Carlo code.

    Science.gov (United States)

    Smith, M F

    1993-10-01

    A vectorized Monte Carlo code has been developed for modelling photon transport in non-uniform media for single-photon-emission computed tomography (SPECT). The code is designed to compute photon detection kernels, which are used to build system matrices for simulating SPECT projection data acquisition and for use in matrix-based image reconstruction. Non-uniform attenuating and scattering regions are constructed from simple three-dimensional geometric shapes, in which the density and mass attenuation coefficients are individually specified. On a Stellar GS1000 computer, Monte Carlo simulations are performed between 1.6 and 2.0 times faster when the vector processor is utilized than when computations are performed in scalar mode. Projection data acquired with a clinical SPECT gamma camera for a line source in a non-uniform thorax phantom are well modelled by Monte Carlo simulations. The vectorized Monte Carlo code was used to stimulate a 99Tcm SPECT myocardial perfusion study, and compensations for non-uniform attenuation and the detection of scattered photons improve activity estimation. The speed increase due to vectorization makes Monte Carlo simulation more attractive as a tool for modelling photon transport in non-uniform media for SPECT. PMID:8248288

  5. Effective shell-model hamiltonians from realistic nucleon–nucleon potentials within a perturbative approach

    International Nuclear Information System (INIS)

    This paper discusses the derivation of an effective shell-model hamiltonian starting from a realistic nucleon–nucleon potential by way of perturbation theory. More precisely, we present the state of the art of this approach when the starting point is the perturbative expansion of the Q-hat-box vertex function. Questions arising from diagrammatics, intermediate-states and order-by-order convergences, and their dependence on the chosen nucleon–nucleon potential, are discussed in detail, and the results of numerical applications for the p-shell model space starting from chiral next-to-next-to-next-to-leading order potentials are shown. Moreover, an alternative graphical method to derive the effective hamiltonian, based on the Z-hat-box vertex function recently introduced by Suzuki et al., is applied to the case of a non-degenerate (0+2)ħω model space. Finally, our shell-model results are compared with the exact ones obtained from no-core shell-model calculations. - Highlights: ► The derivation of nuclear realistic shell-model effective hamiltonians is studied. ► Perturbation theory. ► Diagrammatics, intermediate-states and order-by-order convergences are investigated. ► Shell-model calculations in degenerate and non-degenerate model spaces are presented. ► Shell-model results are compared with the exact ones.

  6. Core-shell particles as model compound for studying fouling

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Nielsen, Troels Bach; Andersen, Morten Boel Overgaard;

    2008-01-01

    Synthetic colloidal particles with hard cores and soft, water-swollen shells were used to study cake formation during ultrafiltration. The total cake resistance was lowest for particles with thick shells, which indicates that interparticular forces between particles (steric hindrance...... and electrostatic repulsion) influenced cake formation. At low pressure the specific cake resistance could be predicted from the Kozeny-Carman equation. At higher pressures, the resistance increased due to cake compression. Both cake formation and compression were reversible. For particles with thick shells...... the permeate flux could be enhanced by lowering the pressure. Hence, the amount of water-swollen material influences both cake thickness and resistance....

  7. Simulating the co-encapsulation of drugs in a "smart" core-shell-shell polymer nanoparticle.

    Science.gov (United States)

    Buxton, Gavin A

    2014-03-01

    A coarse-grained lattice Monte Carlo method is used to simulate co-encapsulation and delivery of both a hydrophilic and hydrophobic drug from polymer nanoparticles. In particular, core-shell-shell polymer nanoparticles with acid-labile bonds are simulated, and the preferential release of the encapsulated drugs near more acidic tumors is captured. While these simple models lack the molecular details of a real system, they can reveal interesting insights concerning the effects of entropy and enthalpy in these systems.

  8. On two-dimensionalization of three-dimensional turbulence in shell models

    DEFF Research Database (Denmark)

    Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.

    2010-01-01

    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell...

  9. Sensitivity analysis of Salmonella enteritidis levels in contaminated shell eggs using a biphasic growth model.

    Science.gov (United States)

    Latimer, Heejeong K; Jaykus, Lee-Ann; Morales, Roberta A; Cowen, Peter; Crawford-Brown, Douglas

    2002-05-01

    Salmonella enteritidis (SE) is a common foodbome pathogen, the transmission of which is primarily associated with the consumption of contaminated Grade A shell eggs. In order to estimate the level of SE present in raw shell eggs, it is necessary to consider the protective effects of the egg albumin, which effectively inhibits SE growth in a time- and temperature-dependent manner. In this study, a SE growth model was produced by combining two mathematical equations that described both the extended lag phase of SE growth (food component) and a SE growth model (pathogen component). This biphasic growth model was then applied to various egg handling scenarios based on the farm-to-table continuum, including in-line and off-line processing facilities with consideration of key events in production, processing, transportation, and storage. Seasonal effects were also studied. Monte Carlo simulation was used to characterize variability in temperature and time parameter values influencing the level of SE to which individuals are exposed. The total level of SE consumed was estimated under best, most likely, and time-temperature abusive handling scenarios. The model estimated that, in most cases, there was no SE growth in contaminated eggs handled under most likely practices, because 10-70% of the yolk membrane remained intact. Under abusive handling scenarios, complete loss of yolk membrane integrity frequently occurred by the time eggs reach the distribution phase, followed by subsequent SE growth, which was often quite rapid. In general, the effect of season and processing method (in-line vs. off-line) was minimal. Further sensitivity analysis demonstrated that the initial SE contamination level significantly influenced the final exposure levels only under no-abuse or mildly abusive conditions. The results of our study suggest that, for maximum reduction of SE exposure level, cooling strategies should not only focus on the on-farm or processing phases, but should emphasize

  10. Nucleon-pair approximation to the nuclear shell model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.M., E-mail: ymzhao@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Arima, A. [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Musashi Gakuen, 1-26-1 Toyotamakami Nerima-ku, Tokyo 176-8533 (Japan)

    2014-12-01

    Atomic nuclei are complex systems of nucleons–protons and neutrons. Nucleons interact with each other via an attractive and short-range force. This feature of the interaction leads to a pattern of dominantly monopole and quadrupole correlations between like particles (i.e., proton–proton and neutron–neutron correlations) in low-lying states of atomic nuclei. As a consequence, among dozens or even hundreds of possible types of nucleon pairs, very few nucleon pairs such as proton and neutron pairs with spin zero, two (in some cases spin four), and occasionally isoscalar spin-aligned proton–neutron pairs, play important roles in low-energy nuclear structure. The nucleon-pair approximation therefore provides us with an efficient truncation scheme of the full shell model configurations which are otherwise too large to handle for medium and heavy nuclei in foreseeable future. Furthermore, the nucleon-pair approximation leads to simple pictures in physics, as the dimension of nucleon-pair subspace is always small. The present paper aims at a sound review of its history, formulation, validity, applications, as well as its link to previous approaches, with the focus on the new developments in the last two decades. The applicability of the nucleon-pair approximation and numerical calculations of low-lying states for realistic atomic nuclei are demonstrated with examples. Applications of pair approximations to other problems are also discussed.

  11. Modeling Elicitation effects in contingent valuation studies: a Monte Carlo Analysis of the bivariate approach

    OpenAIRE

    Genius, Margarita; Strazzera, Elisabetta

    2005-01-01

    A Monte Carlo analysis is conducted to assess the validity of the bivariate modeling approach for detection and correction of different forms of elicitation effects in Double Bound Contingent Valuation data. Alternative univariate and bivariate models are applied to several simulated data sets, each one characterized by a specific elicitation effect, and their performance is assessed using standard selection criteria. The bivariate models include the standard Bivariate Probit model, and an al...

  12. Converting Boundary Representation Solid Models to Half-Space Representation Models for Monte Carlo Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Davis JE, Eddy MJ, Sutton TM, Altomari TJ

    2007-03-01

    Solid modeling computer software systems provide for the design of three-dimensional solid models used in the design and analysis of physical components. The current state-of-the-art in solid modeling representation uses a boundary representation format in which geometry and topology are used to form three-dimensional boundaries of the solid. The geometry representation used in these systems is cubic B-spline curves and surfaces--a network of cubic B-spline functions in three-dimensional Cartesian coordinate space. Many Monte Carlo codes, however, use a geometry representation in which geometry units are specified by intersections and unions of half-spaces. This paper describes an algorithm for converting from a boundary representation to a half-space representation.

  13. Monte Carlo: an application to modeling remote sensing of vegetation - coherent and incoherent models

    Science.gov (United States)

    Bruscaglioni, Piero; Poggi, P.; Macelloni, Giovanni; Paloscia, Simonetta

    2003-04-01

    This paper describes an application of the Monte Carlo method to the evaluation of backscattering response to microwave sounding of vegetation. After a brief introductory discussion on the different approaches commonly employed to the numerical simulation of scattering from vegetation, we describe our model based on representing the vegetation medium as a collection of elementary scatterers of simple shapes, and dealing directly with electromagnetic field interaction with these elements. Plant structures are built assembling the single elements by the Lindenmayer systems fractal technique. We presents some examples of computations on models of different kinds of vegetation showing the potential of modeling in understanding scattering behavior. A brief discussion on the issue of second order scattering effects is also included.

  14. Auxiliary-field quantum Monte Carlo methods in nuclei

    CERN Document Server

    Alhassid, Y

    2016-01-01

    Auxiliary-field quantum Monte Carlo methods enable the calculation of thermal and ground state properties of correlated quantum many-body systems in model spaces that are many orders of magnitude larger than those that can be treated by conventional diagonalization methods. We review recent developments and applications of these methods in nuclei using the framework of the configuration-interaction shell model.

  15. Implementation of a Monte Carlo based inverse planning model for clinical IMRT with MCNP code

    Science.gov (United States)

    He, Tongming Tony

    In IMRT inverse planning, inaccurate dose calculations and limitations in optimization algorithms introduce both systematic and convergence errors to treatment plans. The goal of this work is to practically implement a Monte Carlo based inverse planning model for clinical IMRT. The intention is to minimize both types of error in inverse planning and obtain treatment plans with better clinical accuracy than non-Monte Carlo based systems. The strategy is to calculate the dose matrices of small beamlets by using a Monte Carlo based method. Optimization of beamlet intensities is followed based on the calculated dose data using an optimization algorithm that is capable of escape from local minima and prevents possible pre-mature convergence. The MCNP 4B Monte Carlo code is improved to perform fast particle transport and dose tallying in lattice cells by adopting a selective transport and tallying algorithm. Efficient dose matrix calculation for small beamlets is made possible by adopting a scheme that allows concurrent calculation of multiple beamlets of single port. A finite-sized point source (FSPS) beam model is introduced for easy and accurate beam modeling. A DVH based objective function and a parallel platform based algorithm are developed for the optimization of intensities. The calculation accuracy of improved MCNP code and FSPS beam model is validated by dose measurements in phantoms. Agreements better than 1.5% or 0.2 cm have been achieved. Applications of the implemented model to clinical cases of brain, head/neck, lung, spine, pancreas and prostate have demonstrated the feasibility and capability of Monte Carlo based inverse planning for clinical IMRT. Dose distributions of selected treatment plans from a commercial non-Monte Carlo based system are evaluated in comparison with Monte Carlo based calculations. Systematic errors of up to 12% in tumor doses and up to 17% in critical structure doses have been observed. The clinical importance of Monte Carlo based

  16. LASER-DOPPLER VELOCIMETRY AND MONTE-CARLO SIMULATIONS ON MODELS FOR BLOOD PERFUSION IN TISSUE

    NARCIS (Netherlands)

    DEMUL, FFM; KOELINK, MH; KOK, ML; HARMSMA, PJ; GREVE, J; GRAAFF, R; AARNOUDSE, JG

    1995-01-01

    Laser Doppler flow measurements and Monte Carlo simulations on small blood perfusion flow models at 780 nm are presented and compared. The dimensions of the optical sample volume are investigated as functions of the distance of the laser to the detector and as functions of the angle of penetration o

  17. Hamiltonian Monte Carlo study of (1+1)-dimensional models with restricted supersymmetry on the lattice

    International Nuclear Information System (INIS)

    Lattice versions with restricted suppersymmetry of simple (1+1)-dimensional supersymmetric models are numerically studied using a local hamiltonian Monte Carlo method. The pattern of supersymmetry breaking closely follows the expectations of Bartels and Bronzan obtain in an alternative lattice formulation. (orig.)

  18. Monte Carlo tools for Beyond the Standard Model Physics , April 14-16

    DEFF Research Database (Denmark)

    Badger...[], Simon; Christensen, Christian Holm; Dalsgaard, Hans Hjersing;

    2011-01-01

    This workshop aims to gather together theorists and experimentalists interested in developing and using Monte Carlo tools for Beyond the Standard Model Physics in an attempt to be prepared for the analysis of data focusing on the Large Hadron Collider. Since a large number of excellent tools alre...

  19. SKIRT: The design of a suite of input models for Monte Carlo radiative transfer simulations

    Science.gov (United States)

    Baes, M.; Camps, P.

    2015-09-01

    The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can be either analytical toy models or numerical models defined on grids or a set of particles) and the extensive use of decorators that combine and alter these building blocks to more complex structures. For a number of decorators, e.g. those that add spiral structure or clumpiness, we provide a detailed description of the algorithms that can be used to generate random positions. Advantages of this decorator-based design include code transparency, the avoidance of code duplication, and an increase in code maintainability. Moreover, since decorators can be chained without problems, very complex models can easily be constructed out of simple building blocks. Finally, based on a number of test simulations, we demonstrate that our design using customised random position generators is superior to a simpler design based on a generic black-box random position generator.

  20. Conditional Moment Tests for Normality in Bivariate Limited Dependent Variable Models: a Monte Carlo Study

    OpenAIRE

    Riccardo LUCCHETTI; Pigini, Claudia

    2011-01-01

    In this paper, we run a Monte Carlo analysis of the finite-sample performance of an Information Matrix Test put forward by Smith (1985) for bivariate censored models. We use the bivariate probit model and Heckman selection model as examples.;Approximating the finite-sample distribution of this test statistic by its asymptotic distribution can lead to very misleading results: its size is severely distorted even in samples that common practice would judge to be perfectly adequate for asymptotic...

  1. Monte Carlo model of CO adsorption on supported Pt nanoparticle

    International Nuclear Information System (INIS)

    For molecular simulations with thousands of atoms it is desirable to use a lattice gas model because it is fast and easy-to-use for computations. Unfortunately, simulation of adsorption on heterogeneous surfaces within this model is rather complicated due to a large variety of available adsorption site types. We propose the combined model with lattice representation of adsorbent atoms and arbitrary location of adsorbate atoms. Using this model simulation of CO adsorption on supported Pt nanoparticles has been performed. With the proposed approach the above-mentioned difficulties were successfully overcome.

  2. Ab initio no-core shell model with continuum

    Science.gov (United States)

    Navratil, Petr

    2008-04-01

    The ab initio no-core shell model (NCSM) is a many-body approach to nuclear structure of light nuclei. The NCSM adopts an effective interaction theory to transform fundamental inter-nucleon interactions into effective interactions for a specified nucleus in a selected harmonic oscillator basis space [1]. The method is capable of predicting nuclear structure from inter-nucleon forces derived from quantum chromodynamics by means of chiral effective field theory [2]. NCSM extensions to the microscopic description of nuclear reactions are now under development. In my talk, I will first discuss our recent calculations of the ^4He total photo-absorption cross section using two- and three-nucleon interactions from chiral effective field theory [3]. I will then outline our effort to augment the NCSM by the resonating group method (RGM) technique to develop a new method capable of describing simultaneously both bound states and nuclear reactions on light nuclei [4]. This approach, which preserves translational symmetry and the Pauli principle, will allow us to calculate cross sections of reactions important for astrophysics and describe weakly-bound systems from first principles. I will present our first phase shift results for neutron scattering off ^3H, ^4He and ^7Li and proton scattering off ^3He, ^4He and ^7Be using realistic nucleon-nucleon potentials. 3mm [1] P. Navr'atil, J. P. Vary and B. R. Barrett, Phys. Rev. C 62, 054311 (2000). [2] P. Navr'atil and V. G. Gueorguiev and J. P. Vary, W. E. Ormand and A. Nogga, Phys. Rev. Lett. 99, 042501 (2007). [3] S. Quaglioni and P. Navr'atil, Phys. Lett. B 652, 370 (2007). [4] S. Quaglioni and P. Navr'atil, arXiv:0712.0855.

  3. Monte Carlo methodologies for neutron streaming in diffusion calculations - Application to directional diffusion coefficients and leakage models in XS generation

    OpenAIRE

    Dorval, Eric

    2016-01-01

    Neutron transport calculations by Monte Carlo methods are finding increased application in nuclear reactor simulations. In particular, a versatile approach entails the use of a 2-step pro-cedure, with Monte Carlo as a few-group cross section data generator at lattice level, followed by deterministic multi-group diffusion calculations at core level. In this thesis, the Serpent 2 Monte Carlo reactor physics burnup calculation code is used in order to test a set of diffusion coefficient model...

  4. Shell Correction and Pairing Energies in the Dinuclear System Model

    Institute of Scientific and Technical Information of China (English)

    WANG Nan; LI Jun-Qing; ZHAO En-Guang

    2008-01-01

    We investigate the dependences of the potential energy surfaces(PES)and the fusion probabilities for some cold fusion reactions leading to super-heavy elements on the nuclear shell effect and pairing energy.It is found that the shell effect plays an important role in the fusion of the super-heavy element while pairing energy's contribution is insignificant.The fusion probabilities and evaporation residue cross sections as functions of the Ge-isotope projectile bombarding 208 Pb are also investigated.It is found that evaporation residue cross sections do not always increase with the increasing neutron number of Ge-isotope.

  5. From Kuo–Brown to today's realistic shell-model calculations

    International Nuclear Information System (INIS)

    This paper is an homage to the seminal work of Gerry Brown and Tom Kuo, where shell model calculations were performed for 18O and 18F using an effective interaction derived from the Hamada–Johnston nucleon–nucleon potential. That work has been the first successful attempt to provide a description of nuclear structure properties starting from the free nucleon–nucleon potential. We shall compare the approach employed in the 1966 paper with the derivation of a modern realistic shell-model interaction for sd-shell nuclei, evidencing the progress that has been achieved during the last decades

  6. From Kuo–Brown to today's realistic shell-model calculations

    Energy Technology Data Exchange (ETDEWEB)

    Coraggio, L. [Istituto Nazionale di Fisica Nucleare, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Covello, A. [Dipartimento di Fisica, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Gargano, A. [Istituto Nazionale di Fisica Nucleare, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Itaco, N. [Istituto Nazionale di Fisica Nucleare, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Dipartimento di Fisica, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy)

    2014-08-15

    This paper is an homage to the seminal work of Gerry Brown and Tom Kuo, where shell model calculations were performed for {sup 18}O and {sup 18}F using an effective interaction derived from the Hamada–Johnston nucleon–nucleon potential. That work has been the first successful attempt to provide a description of nuclear structure properties starting from the free nucleon–nucleon potential. We shall compare the approach employed in the 1966 paper with the derivation of a modern realistic shell-model interaction for sd-shell nuclei, evidencing the progress that has been achieved during the last decades.

  7. Particle-Number Projected Hartree-Fock-Bogoliubov Study with Effective Shell Model Interactions

    CERN Document Server

    Maqbool, I; Ganai, P A; Ring, P

    2010-01-01

    We perform particle-number projected mean-field study using the recently developed symmetry-projected Hartree-Fock-Bogoliubov (HFB) equations. Realistic calculations have been performed in sd- and fp-shell nuclei using the shell model empirical intearctions, USD and GXPFIA. It is demonstrated that the mean-field results for energy surfaces, obtained with these shell model interactions, are quite similar to those obtained using the density functional approaches. Further, it is shown that particle-number projected results, for neutron rich isotopes, can lead to different ground-state shapes in comparison to the bare HFB calculations.

  8. Shell-model representations of the proton-neutron symplectic model

    Energy Technology Data Exchange (ETDEWEB)

    Ganev, H.G. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2015-07-15

    The representation theory of the recently introduced proton-neutron symplectic model in the many-particle Hilbert space is considered. The relation of the Sp(12, R) irreducible representations (irreps) with the shell-model classification of the basis states is considered by extending of the state space to the direct product space of SU{sub p} (3) x SU{sub n} (3) irreps, generalizing in this way the Elliott's SU(3) model for the case of two-component system. The Sp(12, R) model appears then as a natural multi-major-shell extension of the generalized proton-neutron SU(3) scheme, which takes into account the core collective excitations of monopole and quadrupole, as well as dipole type associated with the giant resonance vibrational degrees of freedom. Each Sp(12, R) irreducible representation is determined by a symplectic bandhead or an intrinsic U(6) space which can be fixed by the underlying proton-neutron shell-model structure, so the theory becomes completely compatible with the Pauli principle. It is shown that this intrinsic U(6) structure is of vital importance for the appearance of the low-lying collective bands without involving a mixing of different symplectic irreps. The full range of low-lying collective states can then be described by the microscopically based intrinsic U(6) structure, renormalized by coupling to the giant resonance vibrations. (orig.)

  9. Perturbation analysis for Monte Carlo continuous cross section models

    International Nuclear Information System (INIS)

    Sensitivity analysis, including both its forward and adjoint applications, collectively referred to hereinafter as Perturbation Analysis (PA), is an essential tool to complete Uncertainty Quantification (UQ) and Data Assimilation (DA). PA-assisted UQ and DA have traditionally been carried out for reactor analysis problems using deterministic as opposed to stochastic models for radiation transport. This is because PA requires many model executions to quantify how variations in input data, primarily cross sections, affect variations in model's responses, e.g. detectors readings, flux distribution, multiplication factor, etc. Although stochastic models are often sought for their higher accuracy, their repeated execution is at best computationally expensive and in reality intractable for typical reactor analysis problems involving many input data and output responses. Deterministic methods however achieve computational efficiency needed to carry out the PA analysis by reducing problem dimensionality via various spatial and energy homogenization assumptions. This however introduces modeling error components into the PA results which propagate to the following UQ and DA analyses. The introduced errors are problem specific and therefore are expected to limit the applicability of UQ and DA analyses to reactor systems that satisfy the introduced assumptions. This manuscript introduces a new method to complete PA employing a continuous cross section stochastic model and performed in a computationally efficient manner. If successful, the modeling error components introduced by deterministic methods could be eliminated, thereby allowing for wider applicability of DA and UQ results. Two MCNP models demonstrate the application of the new method - a Critical Pu Sphere (Jezebel), a Pu Fast Metal Array (Russian BR-1). The PA is completed for reaction rate densities, reaction rate ratios, and the multiplication factor. (author)

  10. How random are matrix elements of the nuclear shell model Hamiltonian?

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper we study the general behavior of matrix elements of the nuclear shell model Hamiltonian.We find that nonzero off-diagonal elements exhibit a regular pattern,if one sorts the diagonal matrix elements from smaller to larger values.The correlation between eigenvalues and diagonal matrix elements for the shell model Hamiltonian is more remarkable than that for random matrices with the same distribution unless the dimension is small.

  11. How random are matrix elements of the nuclear shell model Hamiltonian?

    Institute of Scientific and Technical Information of China (English)

    SHEN JiaJie; ZHAO YuMing

    2009-01-01

    In this paper we study the general behavior of matrix elements of the nuclear shell model Hamiltonlan.We find that nonzero off-diagonal elements exhibit a regular pattern,if one sorts the diagonal matrix elements from smaller to larger values.The correlation between eigenvalues and diagonal matrix elements for the shell model Hamiltonian is more remarkable than that for random matrices with the same distribution unless the dimension is small.

  12. Comparison of three-shell and simplified volume conductor models in magnetoencephalography.

    Science.gov (United States)

    Stenroos, Matti; Hunold, Alexander; Haueisen, Jens

    2014-07-01

    Experimental MEG source imaging studies have typically been carried out with either a spherically symmetric head model or a single-shell boundary-element (BEM) model that is shaped according to the inner skull surface. The concepts and comparisons behind these simplified models have led to misunderstandings regarding the role of skull and scalp in MEG. In this work, we assess the forward-model errors due to different skull/scalp approximations and due to differences and errors in model geometries. We built five anatomical models of a volunteer using a set of T1-weighted MR scans and three common toolboxes. Three of the models represented typical models in experimental MEG, one was manually constructed, and one contained a major segmentation error at the skull base. For these anatomical models, we built forward models using four simplified approaches and a three-shell BEM approach that has been used as reference in previous studies. Our reference model contained in addition the skull fine-structure (spongy bone). We computed signal topographies for cortically constrained sources in the left hemisphere and compared the topographies using relative error and correlation metrics. The results show that the spongy bone has a minimal effect on MEG topographies, and thus the skull approximation of the three-shell model is justified. The three-shell model performed best, followed by the corrected-sphere and single-shell models, whereas the local-spheres and single-sphere models were clearly worse. The three-shell model was the most robust against the introduced segmentation error. In contrast to earlier claims, there was no noteworthy difference in the computation times between the realistically-shaped and sphere-based models, and the manual effort of building a three-shell model and a simplified model is comparable. We thus recommend the realistically-shaped three-shell model for experimental MEG work. In cases where this is not possible, we recommend a realistically

  13. Monte Carlo Based Toy Model for Fission Process

    CERN Document Server

    Kurniadi, R; Viridi, S

    2014-01-01

    Fission yield has been calculated notoriously by two calculations approach, macroscopic approach and microscopic approach. This work will proposes another calculation approach which the nucleus is treated as a toy model. The toy model of fission yield is a preliminary method that use random number as a backbone of the calculation. Because of nucleus as a toy model hence the fission process does not represent real fission process in nature completely. Fission event is modeled by one random number. The number is assumed as width of distribution probability of nucleon position in compound nuclei when fission process is started. The toy model is formed by Gaussian distribution of random number that randomizes distance like between particle and central point. The scission process is started by smashing compound nucleus central point into two parts that are left central and right central points. These three points have different Gaussian distribution parameters such as mean ({\\mu}CN, {\\mu}L, {\\mu}R), and standard d...

  14. An Analytic Linear Accelerator Source Model for Monte Carlo Dose Calculations. I. Model Representation and Construction

    CERN Document Server

    Tian, Zhen; Folkerts, Michael; Shi, Feng; Jiang, Steve B; Jia, Xun

    2015-01-01

    Monte Carlo (MC) simulation is considered as the most accurate method for radiation dose calculations. Accuracy of a source model for a linear accelerator is critical for the overall dose calculation accuracy. In this paper, we presented an analytical source model that we recently developed for GPU-based MC dose calculations. A key concept called phase-space-ring (PSR) was proposed. It contained a group of particles that are of the same type and close in energy and radial distance to the center of the phase-space plane. The model parameterized probability densities of particle location, direction and energy for each primary photon PSR, scattered photon PSR and electron PSR. For a primary photon PSRs, the particle direction is assumed to be from the beam spot. A finite spot size is modeled with a 2D Gaussian distribution. For a scattered photon PSR, multiple Gaussian components were used to model the particle direction. The direction distribution of an electron PSRs was also modeled as a 2D Gaussian distributi...

  15. Recommended direct simulation Monte Carlo collision model parameters for modeling ionized air transport processes

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-02-15

    A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach. The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.

  16. Markov chain Monte Carlo methods in directed graphical models

    DEFF Research Database (Denmark)

    Højbjerre, Malene

    Directed graphical models present data possessing a complex dependence structure, and MCMC methods are computer-intensive simulation techniques to approximate high-dimensional intractable integrals, which emerge in such models with incomplete data. MCMC computations in directed graphical models h...... conclude that a cervical smear analysed by DNA typing is the best to screen for cervical cancer. The analysis presents some general ideas for comparison of diagnostic tests....... with-in person and with-in family dependences.     In the second study we compare four different screening methods for cervical cancer. The methods have been performed on a number of women, and the data possess a complicated dependence structure due to the replicate test results for the same woman. We...

  17. TRIPOLI-4{sup ®} Monte Carlo code ITER A-lite neutronic model validation

    Energy Technology Data Exchange (ETDEWEB)

    Jaboulay, Jean-Charles, E-mail: jean-charles.jaboulay@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Cayla, Pierre-Yves; Fausser, Clement [MILLENNIUM, 16 Av du Québec Silic 628, F-91945 Villebon sur Yvette (France); Damian, Frederic; Lee, Yi-Kang; Puma, Antonella Li; Trama, Jean-Christophe [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France)

    2014-10-15

    3D Monte Carlo transport codes are extensively used in neutronic analysis, especially in radiation protection and shielding analyses for fission and fusion reactors. TRIPOLI-4{sup ®} is a Monte Carlo code developed by CEA. The aim of this paper is to show its capability to model a large-scale fusion reactor with complex neutron source and geometry. A benchmark between MCNP5 and TRIPOLI-4{sup ®}, on the ITER A-lite model was carried out; neutron flux, nuclear heating in the blankets and tritium production rate in the European TBMs were evaluated and compared. The methodology to build the TRIPOLI-4{sup ®} A-lite model is based on MCAM and the MCNP A-lite model. Simplified TBMs, from KIT, were integrated in the equatorial-port. A good agreement between MCNP and TRIPOLI-4{sup ®} is shown; discrepancies are mainly included in the statistical error.

  18. Simulation model based on Monte Carlo method for traffic assignment in local area road network

    Institute of Scientific and Technical Information of China (English)

    Yuchuan DU; Yuanjing GENG; Lijun SUN

    2009-01-01

    For a local area road network, the available traffic data of traveling are the flow volumes in the key intersections, not the complete OD matrix. Considering the circumstance characteristic and the data availability of a local area road network, a new model for traffic assignment based on Monte Carlo simulation of intersection turning movement is provided in this paper. For good stability in temporal sequence, turning ratio is adopted as the important parameter of this model. The formulation for local area road network assignment problems is proposed on the assumption of random turning behavior. The traffic assignment model based on the Monte Carlo method has been used in traffic analysis for an actual urban road network. The results comparing surveying traffic flow data and determining flow data by the previous model verify the applicability and validity of the proposed methodology.

  19. Experimental study and Monte Carlo modeling of the Cherenkov effect

    Energy Technology Data Exchange (ETDEWEB)

    Mishev, A.; Angelov, I.; Duverger, E.; Gschwind, R.; Makovicka, L. E-mail: libor.makovicka@pu-pm.univ-fcomte.fr; Stamenov, J

    2001-12-01

    Studies realised at the Institute for Nuclear Research and Nuclear Energy (INRNE) particularly in cosmic ray detection and construction of Muonic Cherenkov Telescope at the South West University 'Neofit Rilski' Blagoevgrad show the need to develop a theoretical model based on observed phenomena and to refinement of this for detection system optimisation. The Cherenkov effect was introduced in EGS4 code system. The first simulations realised in collaboration between the french and the bulgarian team were consecrated to different geometries of water tank in total reflection. An additional modeling of photons mean trajectory and the mean number of reflections in the tank were made. This simple model was compared with experimental data realised with {sup 60}Co gamma source, the telescope and the most efficient water tank. A trajectory simulation of Cherenkov photons in water tank was made. An efficiency estimation of the detector registration was calculated. The atmospheric model was introduced in EGS4 code and a comparison between CORSIKA5.62 and EGS4 codes was made.

  20. Monte Carlo fixed-lag smoothing in state-space models

    OpenAIRE

    Cuzol, A.; Mémin, E.

    2013-01-01

    International audience This paper presents an algorithm for Monte Carlo fixed-lag smoothing in state-space models de-fined by a diffusion process observed through noisy discrete-time measurements. Based on a par-ticles approximation of the filtering and smoothing distributions, the method relies on a simulation technique of conditioned diffusions. The proposed sequential smoother can be applied to general 5 non linear and multidimensional models, like the ones used in environmental applica...

  1. Monte Carlo fixed-lag smoothing in state-space models

    OpenAIRE

    Cuzol, A.; Mémin, E.

    2014-01-01

    This paper presents an algorithm for Monte Carlo fixed-lag smoothing in state-space models defined by a diffusion process observed through noisy discrete-time measurements. Based on a particle approximation of the filtering and smoothing distributions, the method relies on a simulation technique of conditioned diffusions. The proposed sequential smoother can be applied to general nonlinear and multidimensional models, like the ones used in environmental applications. The smo...

  2. Monte Carlo fixed-lag smoothing in state-space models

    OpenAIRE

    Cuzol, Anne; Mémin, Etienne

    2014-01-01

    International audience This paper presents an algorithm for Monte Carlo fixed-lag smoothing in state-space models de-fined by a diffusion process observed through noisy discrete-time measurements. Based on a par-ticles approximation of the filtering and smoothing distributions, the method relies on a simulation technique of conditioned diffusions. The proposed sequential smoother can be applied to general 5 non linear and multidimensional models, like the ones used in environmental applica...

  3. Monte Carlo ice flow modeling projects a new stable configuration for Columbia Glacier, Alaska, c. 2020

    OpenAIRE

    W. Colgan; W. T. Pfeffer; H. Rajaram; W. Abdalati; J. Balog

    2012-01-01

    Due to the abundance of observational datasets collected since the onset of its retreat (c. 1983), Columbia Glacier, Alaska, provides an exciting modeling target. We perform Monte Carlo simulations of the form and flow of Columbia Glacier, using a 1-D (depth-integrated) flowline model, over a wide range of parameter values and forcings. An ensemble filter is imposed following spin-up to ensure that only simulations that accurately reproduce observed pre-retreat glacier geome...

  4. USTIFICATION OF A TWO-DIMENSIONAL NONLINEAR SHELL MODEL OF KOITER'S TYPE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A two-dimensional nonlinear shell model"of Koiter's type"has recently been proposed by the first author. It is shown here that, according to two mutually exclusive sets of assumptions bearing on the associated manifold of admissible inextensional displacements, the leading term of a formal asymptotic expansion of the solution of this two-dimensional model, with the thickness as the"small" parameter, satisfies either the two-dimensional equations of a nonlinearly elastic "membrane" shell or those of a nonlinearly elastic "flexural" shell. These conclusions being identical to those recently drawn by B. Miara, then by V. Lods and B. Miara, for the leading term of a formal asymptotic expansion of the solution of the equations of three-dimensional nonlinear elasticity, again with the thickness as the "small" parameter, the nonlinear shell model of Koiter's type considered here is thus justified, at least formally.

  5. A Shell/3D Modeling Technique for the Analysis of Delaminated Composite Laminates

    Science.gov (United States)

    Krueger, Ronald; OBrien, T. Kevin

    2000-01-01

    A shell/3D modeling technique was developed for which a local solid finite element model is used only in the immediate vicinity of the delamination front. The goal was to combine the accuracy of the full three-dimensional solution with the computational efficiency of a shell finite element model. Multi-point constraints provided a kinematically compatible interface between the local 3D model and the global structural model which has been meshed with shell finite elements. Double Cantilever Beam, End Notched Flexure, and Single Leg Bending specimens were analyzed first using full 3D finite element models to obtain reference solutions. Mixed mode strain energy release rate distributions were computed using the virtual crack closure technique. The analyses were repeated using the shell/3D technique to study the feasibility for pure mode I, mode II and mixed mode I/II cases. Specimens with a unidirectional layup and with a multidirectional layup were simulated. For a local 3D model, extending to a minimum of about three specimen thicknesses on either side of the delamination front, the results were in good agreement with mixed mode strain energy release rates obtained from computations where the entire specimen had been modeled with solid elements. For large built-up composite structures the shell/3D modeling technique offers a great potential for reducing the model size, since only a relatively small section in the vicinity of the delamination front needs to be modeled with solid elements.

  6. Monte Carlo calculations of the finite density Thirring model

    CERN Document Server

    Alexandru, Andrei; Bedaque, Paulo F; Ridgway, Gregory W; Warrington, Neill C

    2016-01-01

    We present results of the numerical simulation of the two-dimensional Thirring model at finite density and temperature. The severe sign problem is dealt with by deforming the domain of integration into complex field space. This is the first example where a fermionic sign problem is solved in a quantum field theory by using the holomorphic gradient flow approach, a generalization of the Lefschetz thimble method.

  7. Monte Carlo simulation based toy model for fission process

    Science.gov (United States)

    Kurniadi, Rizal; Waris, Abdul; Viridi, Sparisoma

    2016-09-01

    Nuclear fission has been modeled notoriously using two approaches method, macroscopic and microscopic. This work will propose another approach, where the nucleus is treated as a toy model. The aim is to see the usefulness of particle distribution in fission yield calculation. Inasmuch nucleus is a toy, then the Fission Toy Model (FTM) does not represent real process in nature completely. The fission event in FTM is represented by one random number. The number is assumed as width of distribution probability of nucleon position in compound nuclei when fission process is started. By adopting the nucleon density approximation, the Gaussian distribution is chosen as particle distribution. This distribution function generates random number that randomizes distance between particles and a central point. The scission process is started by smashing compound nucleus central point into two parts that are left central and right central points. The yield is determined from portion of nuclei distribution which is proportional with portion of mass numbers. By using modified FTM, characteristic of particle distribution in each fission event could be formed before fission process. These characteristics could be used to make prediction about real nucleons interaction in fission process. The results of FTM calculation give information that the γ value seems as energy.

  8. Spherical Shell Cosmological Model and Uniformity of Cosmic Microwave Background Radiation

    CERN Document Server

    Vlahovic, Branislav

    2012-01-01

    Considered is spherical shell as a model for visible universe and parameters that such model must have to comply with the observable data. The topology of the model requires that motion of all galaxies and light must be confined inside a spherical shell. Consequently the observable universe cannot be defined as a sphere centered on the observer, rather it is an arc length within the volume of the spherical shell. The radius of the shell is 4.46 $\\pm$ 0.06 Gpc, which is for factor $\\pi$ smaller than radius of a corresponding 3-sphere. However the event horizon, defined as the arc length inside the shell, has the size of 14.0 $\\pm$ 0.2 Gpc, which is in agreement with the observable data. The model predicts, without inflation theory, the isotropy and uniformity of the CMB. It predicts the correct value for the Hubble constant $H_0$ = 67.26 $\\pm$ 0.90 km/s/Mpc, the cosmic expansion rate $H(z)$, and the speed of the event horizon in agreement with observations. The theoretical suport for shell model comes from gen...

  9. Modeling of hysteresis loops by Monte Carlo simulation

    Science.gov (United States)

    Nehme, Z.; Labaye, Y.; Sayed Hassan, R.; Yaacoub, N.; Greneche, J. M.

    2015-12-01

    Recent advances in MC simulations of magnetic properties are rather devoted to non-interacting systems or ultrafast phenomena, while the modeling of quasi-static hysteresis loops of an assembly of spins with strong internal exchange interactions remains limited to specific cases. In the case of any assembly of magnetic moments, we propose MC simulations on the basis of a three dimensional classical Heisenberg model applied to an isolated magnetic slab involving first nearest neighbors exchange interactions and uniaxial anisotropy. Three different algorithms were successively implemented in order to simulate hysteresis loops: the classical free algorithm, the cone algorithm and a mixed one consisting of adding some global rotations. We focus particularly our study on the impact of varying the anisotropic constant parameter on the coercive field for different temperatures and algorithms. A study of the angular acceptation move distribution allows the dynamics of our simulations to be characterized. The results reveal that the coercive field is linearly related to the anisotropy providing that the algorithm and the numeric conditions are carefully chosen. In a general tendency, it is found that the efficiency of the simulation can be greatly enhanced by using the mixed algorithm that mimic the physics of collective behavior. Consequently, this study lead as to better quantified coercive fields measurements resulting from physical phenomena of complex magnetic (nano)architectures with different anisotropy contributions.

  10. Comparing analytical and Monte Carlo optical diffusion models in phosphor-based X-ray detectors

    Science.gov (United States)

    Kalyvas, N.; Liaparinos, P.

    2014-03-01

    Luminescent materials are employed as radiation to light converters in detectors of medical imaging systems, often referred to as phosphor screens. Several processes affect the light transfer properties of phosphors. Amongst the most important is the interaction of light. Light attenuation (absorption and scattering) can be described either through "diffusion" theory in theoretical models or "quantum" theory in Monte Carlo methods. Although analytical methods, based on photon diffusion equations, have been preferentially employed to investigate optical diffusion in the past, Monte Carlo simulation models can overcome several of the analytical modelling assumptions. The present study aimed to compare both methodologies and investigate the dependence of the analytical model optical parameters as a function of particle size. It was found that the optical photon attenuation coefficients calculated by analytical modeling are decreased with respect to the particle size (in the region 1- 12 μm). In addition, for particles sizes smaller than 6μm there is no simultaneous agreement between the theoretical modulation transfer function and light escape values with respect to the Monte Carlo data.

  11. An analytical model for backscattered luminance in fog: comparisons with Monte Carlo computations and experimental results

    International Nuclear Information System (INIS)

    We propose an analytical model for backscattered luminance in fog and derive an expression for the visibility signal-to-noise ratio as a function of meteorological visibility distance. The model uses single scattering processes. It is based on the Mie theory and the geometry of the optical device (emitter and receiver). In particular, we present an overlap function and take the phase function of fog into account. The results of the backscattered luminance obtained with our analytical model are compared to simulations made using the Monte Carlo method based on multiple scattering processes. An excellent agreement is found in that the discrepancy between the results is smaller than the Monte Carlo standard uncertainties. If we take no account of the geometry of the optical device, the results of the model-estimated backscattered luminance differ from the simulations by a factor 20. We also conclude that the signal-to-noise ratio computed with the Monte Carlo method and our analytical model is in good agreement with experimental results since the mean difference between the calculations and experimental measurements is smaller than the experimental uncertainty

  12. Stability of core–shell nanowires in selected model solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kalska-Szostko, B., E-mail: kalska@uwb.edu.pl; Wykowska, U.; Basa, A.; Zambrzycka, E.

    2015-03-30

    Highlights: • Stability of the core–shell nanowires in environmental solutions were tested. • The most and the least aggressive solutions were determined. • The influence of different solutions on magnetic nanowires core was found out. - Abstract: This paper presents the studies of stability of magnetic core–shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods.

  13. Monte Carlo modeling of ion beam induced secondary electrons.

    Science.gov (United States)

    Huh, U; Cho, W; Joy, D C

    2016-09-01

    Ion induced secondary electrons (iSE) can produce high-resolution images ranging from a few eV to 100keV over a wide range of materials. The interpretation of such images requires knowledge of the secondary electron yields (iSE δ) for each of the elements and materials present and as a function of the incident beam energy. Experimental data for helium ions are currently limited to 40 elements and six compounds while other ions are not well represented. To overcome this limitation, we propose a simple procedure based on the comprehensive work of Berger et al. Here we show that between the energy range of 10-100keV the Berger et al. data for elements and compounds can be accurately represented by a single universal curve. The agreement between the limited experimental data that is available and the predictive model is good, and has been found to provide reliable yield data for a wide range of elements and compounds. PMID:27337603

  14. A CAD based automatic modeling method for primitive solid based Monte Carlo calculation geometry

    International Nuclear Information System (INIS)

    The Multi-Physics Coupling Analysis Modeling Program (MCAM), developed by FDS Team, China, is an advanced modeling tool aiming to solve the modeling challenges for multi-physics coupling simulation. The automatic modeling method for SuperMC, the Super Monte Carlo Calculation Program for Nuclear and Radiation Process, was recently developed and integrated in MCAM5.2. This method could bi-convert between CAD model and SuperMC input file. While converting from CAD model to SuperMC model, the CAD model was decomposed into several convex solids set, and then corresponding SuperMC convex basic solids were generated and output. While inverting from SuperMC model to CAD model, the basic primitive solids was created and related operation was done to according the SuperMC model. This method was benchmarked with ITER Benchmark model. The results showed that the method was correct and effective. (author)

  15. A sequential Monte Carlo model of the combined GB gas and electricity network

    International Nuclear Information System (INIS)

    A Monte Carlo model of the combined GB gas and electricity network was developed to determine the reliability of the energy infrastructure. The model integrates the gas and electricity network into a single sequential Monte Carlo simulation. The model minimises the combined costs of the gas and electricity network, these include gas supplies, gas storage operation and electricity generation. The Monte Carlo model calculates reliability indices such as loss of load probability and expected energy unserved for the combined gas and electricity network. The intention of this tool is to facilitate reliability analysis of integrated energy systems. Applications of this tool are demonstrated through a case study that quantifies the impact on the reliability of the GB gas and electricity network given uncertainties such as wind variability, gas supply availability and outages to energy infrastructure assets. Analysis is performed over a typical midwinter week on a hypothesised GB gas and electricity network in 2020 that meets European renewable energy targets. The efficacy of doubling GB gas storage capacity on the reliability of the energy system is assessed. The results highlight the value of greater gas storage facilities in enhancing the reliability of the GB energy system given various energy uncertainties. -- Highlights: •A Monte Carlo model of the combined GB gas and electricity network was developed. •Reliability indices are calculated for the combined GB gas and electricity system. •The efficacy of doubling GB gas storage capacity on reliability of the energy system is assessed. •Integrated reliability indices could be used to assess the impact of investment in energy assets

  16. A viscoplastic model of expanding cylindrical shells subjected to internal explosive detonations

    Energy Technology Data Exchange (ETDEWEB)

    Martineau, R.L.

    1998-04-01

    Magnetic flux compression generators rely on the expansion of thin ductile shells to generate magnetic fields. These thin shells are filled with high explosives, which when detonated, cause the shell to expand to over 200% strain at strain-rates on the order of 10{sup 4} s{sup {minus}1}. Experimental data indicate the development and growth of multiple plastic instabilities which appear in a quasi-periodic pattern on the surfaces of the shells. These quasi-periodic instabilities are connected by localized zones of intense shear that are oriented approximately 45{degree} from the outward radial direction. The quasi-periodic instabilities continue to develop and eventually become through-cracks, causing the shell to fragment. A viscoplastic constitutive model is formulated to model the high strain-rate expansion and provide insight into the development of plastic instabilities. The formulation of the viscoplastic constitutive model includes the effects of shock heating and damage in the form of microvoid nucleation, growth, and coalescence in the expanding shell. This model uses the Johnson-Cook strength model with the Mie-Grueneisen equation of state and a modified Gurson yield surface. The constitutive model includes the modifications proposed by Tvergaard and the plastic strain controlled nucleation introduced by Neeleman. The constitutive model is implemented as a user material subroutine into ABAQUS/Explicit, which is a commercially available nonlinear explicit dynamic finite element program. A cylindrical shell is modeled using both axisymmetric and plane strain elements. Two experiments were conducted involving plane wave detonated, explosively filled, copper cylinders. Instability, displacement, and velocity data were recorded using a fast framing camera and a Fabry-Perot interferometer. Good agreement is shown between the numerical results and experimental data. An additional explosively bulged cylinder experiment was also performed and a photomicrograph of

  17. Monte Carlo Model of TRIGA Reactor to Support Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zerovnik, G.; Snoj, L.; Trkov, A. [Reactor Physics Department, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia)

    2011-07-01

    The TRIGA reactor at Jozef Stefan Institute is used as a neutron source for neutron activation analysis. The accuracy of the method depends on the accuracy of the neutron spectrum characterization. Therefore, computational models on different scales have been developed: Monte Carlo full reactor model, model of an irradiation channel and deterministic code for self-shielding factor calculations. The models have been validated by comparing against experiment and thus provide a very strong support for neutron activation analysis of samples irradiated at the TRIGA reactor. (author)

  18. The massive Schwinger model on the lattice studied via a local Hamiltonian Monte-Carlo method

    International Nuclear Information System (INIS)

    A local Hamiltonian Monte-Carlo method is used to study the massive Schwinger model. A non-vanishing quark condensate is found and the dependence of the condensate and the string tension on the background field is calculated. These results reproduce well the expected continuum results. We study also the first-order phase transition which separates the weak and strong coupling regimes and find evidence for the behaviour conjectured by Coleman. (author)

  19. Monte Carlo simulation of the three-dimensional XY model with bilinear-biquadratic exchange interaction

    OpenAIRE

    Nagata, H; Žukovič, M.; Idogaki, T.

    2013-01-01

    The three-dimensional XY model with bilinear-biquadratic exchange interactions $J$ and $J'$, respectively, has been studied by Monte Carlo simulations. From the detailed analysis of the thermal variation of various physical quantities, as well as the order parameter and energy histogram analysis, the phase diagram including two different ordered phases has been determined. There is a single phase boundary from a paramagnetic to a dipole-quadrupole ordered phase, which is of second order in a ...

  20. SCOUT: A Fast Monte-Carlo Modeling Tool of Scintillation Camera Output

    OpenAIRE

    Hunter, William C. J.; Barrett, Harrison H.; Lewellen, Thomas K.; Miyaoka, Robert S.; Muzi, John P.; Li, Xiaoli; McDougald, Wendy; MacDonald, Lawrence R.

    2010-01-01

    We have developed a Monte-Carlo photon-tracking and readout simulator called SCOUT to study the stochastic behavior of signals output from a simplified rectangular scintillation-camera design. SCOUT models the salient processes affecting signal generation, transport, and readout. Presently, we compare output signal statistics from SCOUT to experimental results for both a discrete and a monolithic camera. We also benchmark the speed of this simulation tool and compare it to existing simulation...

  1. SCOUT: a fast Monte-Carlo modeling tool of scintillation camera output†

    OpenAIRE

    Hunter, William C. J.; Barrett, Harrison H.; Muzi, John P.; McDougald, Wendy; MacDonald, Lawrence R.; Miyaoka, Robert S.; Lewellen, Thomas K.

    2013-01-01

    We have developed a Monte-Carlo photon-tracking and readout simulator called SCOUT to study the stochastic behavior of signals output from a simplified rectangular scintillation-camera design. SCOUT models the salient processes affecting signal generation, transport, and readout of a scintillation camera. Presently, we compare output signal statistics from SCOUT to experimental results for both a discrete and a monolithic camera. We also benchmark the speed of this simulation tool and compare...

  2. Topological excitations and Monte-Carlo simulation of the Abelian-Higgs model

    International Nuclear Information System (INIS)

    The phase structure and topological excitations, in particular the magnetic monopole current density, are investigated in a Monte-Carlo simulation of the lattice version of the four-dimensional Abelian-Higgs model. The monopole current density is found to be large in the confinement phase and rapidly decreasing in the Coulomb and Higgs phases. This result supports the view that confinement is neglected with the condensation of monopole-antimonopole pairs

  3. Mean field theory of nuclei and shell model. Present status and future outlook

    International Nuclear Information System (INIS)

    Many of the recent topics of the nuclear structure are concerned on the problems of unstable nuclei. It has been revealed experimentally that the nuclear halos and the neutron skins as well as the cluster structures or the molecule-like structures can be present in the unstable nuclei, and the magic numbers well established in the stable nuclei disappear occasionally while new ones appear. The shell model based on the mean field approximation has been successfully applied to stable nuclei to explain the nuclear structure as the finite many body system quantitatively and it is considered as the standard model at present. If the unstable nuclei will be understood on the same model basis or not is a matter related to fundamental principle of nuclear structure theories. In this lecture, the fundamental concept and the framework of the theory of nuclear structure based on the mean field theory and the shell model are presented to make clear the problems and to suggest directions for future researches. At first fundamental properties of nuclei are described under the subtitles: saturation and magic numbers, nuclear force and effective interactions, nuclear matter, and LS splitting. Then the mean field theory is presented under subtitles: the potential model, the mean field theory, Hartree-Fock approximation for nuclear matter, density dependent force, semiclassical mean field theory, mean field theory and symmetry, Skyrme interaction and density functional, density matrix expansion, finite range interactions, effective masses, and motion of center of mass. The subsequent section is devoted to the shell model with the subtitles: beyond the mean field approximation, core polarization, effective interaction of shell model, one-particle wave function, nuclear deformation and shell model, and shell model of cross shell. Finally structure of unstable nuclei is discussed with the subtitles: general remark on the study of unstable nuclear structure, asymptotic behavior of wave

  4. Continuous energy Monte Carlo calculations for randomly distributed spherical fuels based on statistical geometry model

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Isao [Osaka Univ., Suita (Japan); Mori, Takamasa; Nakagawa, Masayuki; Itakura, Hirofumi

    1996-03-01

    The method to calculate neutronics parameters of a core composed of randomly distributed spherical fuels has been developed based on a statistical geometry model with a continuous energy Monte Carlo method. This method was implemented in a general purpose Monte Carlo code MCNP, and a new code MCNP-CFP had been developed. This paper describes the model and method how to use it and the validation results. In the Monte Carlo calculation, the location of a spherical fuel is sampled probabilistically along the particle flight path from the spatial probability distribution of spherical fuels, called nearest neighbor distribution (NND). This sampling method was validated through the following two comparisons: (1) Calculations of inventory of coated fuel particles (CFPs) in a fuel compact by both track length estimator and direct evaluation method, and (2) Criticality calculations for ordered packed geometries. This method was also confined by applying to an analysis of the critical assembly experiment at VHTRC. The method established in the present study is quite unique so as to a probabilistic model of the geometry with a great number of spherical fuels distributed randomly. Realizing the speed-up by vector or parallel computations in future, it is expected to be widely used in calculation of a nuclear reactor core, especially HTGR cores. (author).

  5. Monte Carlo method of radiative transfer applied to a turbulent flame modeling with LES

    Science.gov (United States)

    Zhang, Jin; Gicquel, Olivier; Veynante, Denis; Taine, Jean

    2009-06-01

    Radiative transfer plays an important role in the numerical simulation of turbulent combustion. However, for the reason that combustion and radiation are characterized by different time scales and different spatial and chemical treatments, the radiation effect is often neglected or roughly modelled. The coupling of a large eddy simulation combustion solver and a radiation solver through a dedicated language, CORBA, is investigated. Two formulations of Monte Carlo method (Forward Method and Emission Reciprocity Method) employed to resolve RTE have been compared in a one-dimensional flame test case using three-dimensional calculation grids with absorbing and emitting media in order to validate the Monte Carlo radiative solver and to choose the most efficient model for coupling. Then the results obtained using two different RTE solvers (Reciprocity Monte Carlo method and Discrete Ordinate Method) applied on a three-dimensional flame holder set-up with a correlated-k distribution model describing the real gas medium spectral radiative properties are compared not only in terms of the physical behavior of the flame, but also in computational performance (storage requirement, CPU time and parallelization efficiency). To cite this article: J. Zhang et al., C. R. Mecanique 337 (2009).

  6. Kinetic Model for a Spherical Rolling Robot with Soft Shell in a Beeline Motion

    Directory of Open Access Journals (Sweden)

    Sheng Zhang

    2014-02-01

    Full Text Available A simplified kinetic model called Spring Pendulum is developed for a spherical rolling robot with soft shell in order to meet the needs of attitude stabilization and controlling for the robot. The elasticity and plasticity of soft shell is represented by some uniform springs connected to the bracket in this model. The expression of the kinetic model is deduced from Newtonian mechanics principles. Testing data of the driving angle acquired from a prototype built by authors indicate that testing data curve accords to the theoretic kinetic characteristic curve, so the kinetic model is validated

  7. Monte Carlo Calculation of the Thermodynamic Properties of a Quantum Model : A One-Dimensional Fermion Lattice Model

    NARCIS (Netherlands)

    Raedt, Hans De; Lagendijk, Ad

    1981-01-01

    Starting from a genuine discrete version of the Feynman path-integral representation for the partition function, calculations have been made of the energy, specific heat, and the static density-density correlation functions for a one-dimensional lattice model at nonzero temperatures. A Monte Carlo t

  8. Partial Conservation Law in a Schematic Single j Shell Model

    CERN Document Server

    Pereira, Wesley; Zamick, Larry; Escuderos, Alberto; Neergård, Kai

    2016-01-01

    We report the discovery of a partial conservation law obeyed by a schematic Hamiltonian of two protons and two neutrons in a j shell. In our Hamiltonian the interaction matrix element of two nucleons with combined angular momentum J is linear in J for even J and constant for odd J. It turns out that in some stationary states the sum J_p + J_n of the angular momenta J_p and J_n of the proton and neutron pairs is conserved. The energies of these states are given by a linear function of J_p + J_n. The systematics of their occurrence is described and explained.

  9. Monte Carlo tests of the Rasch model based on scalability coefficients

    DEFF Research Database (Denmark)

    Christensen, Karl Bang; Kreiner, Svend

    2010-01-01

    For item responses fitting the Rasch model, the assumptions underlying the Mokken model of double monotonicity are met. This makes non-parametric item response theory a natural starting-point for Rasch item analysis. This paper studies scalability coefficients based on Loevinger's H coefficient...... that summarizes the number of Guttman errors in the data matrix. These coefficients are shown to yield efficient tests of the Rasch model using p-values computed using Markov chain Monte Carlo methods. The power of the tests of unequal item discrimination, and their ability to distinguish between local dependence...

  10. A Monte Carlo simulation for kinetic chemotaxis models: an application to the traveling population wave

    CERN Document Server

    Yasuda, Shugo

    2015-01-01

    A Monte Carlo simulation for the chemotactic bacteria is developed on the basis of the kinetic modeling, i.e., the Boltzmann transport equation, and applied to the one-dimensional traveling population wave in a micro channel.In this method, the Monte Carlo method, which calculates the run-and-tumble motions of bacteria, is coupled with a finite volume method to solve the macroscopic transport of the chemical cues in the field. The simulation method can successfully reproduce the traveling population wave of bacteria which was observed experimentally. The microscopic dynamics of bacteria, e.g., the velocity autocorrelation function and velocity distribution function of bacteria, are also investigated. It is found that the bacteria which form the traveling population wave create quasi-periodic motions as well as a migratory movement along with the traveling population wave. Simulations are also performed with changing the sensitivity and modulation parameters in the response function of bacteria. It is found th...

  11. Modeling Replenishment of Ultrathin Liquid Perfluoropolyether Z Films on Solid Surfaces Using Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    M. S. Mayeed

    2014-01-01

    Full Text Available Applying the reptation algorithm to a simplified perfluoropolyether Z off-lattice polymer model an NVT Monte Carlo simulation has been performed. Bulk condition has been simulated first to compare the average radius of gyration with the bulk experimental results. Then the model is tested for its ability to describe dynamics. After this, it is applied to observe the replenishment of nanoscale ultrathin liquid films on solid flat carbon surfaces. The replenishment rate for trenches of different widths (8, 12, and 16 nms for several molecular weights between two films of perfluoropolyether Z from the Monte Carlo simulation is compared to that obtained solving the diffusion equation using the experimental diffusion coefficients of Ma et al. (1999, with room condition in both cases. Replenishment per Monte Carlo cycle seems to be a constant multiple of replenishment per second at least up to 2 nm replenished film thickness of the trenches over the carbon surface. Considerable good agreement has been achieved here between the experimental results and the dynamics of molecules using reptation moves in the ultrathin liquid films on solid surfaces.

  12. High accuracy modeling for advanced nuclear reactor core designs using Monte Carlo based coupled calculations

    Science.gov (United States)

    Espel, Federico Puente

    The main objective of this PhD research is to develop a high accuracy modeling tool using a Monte Carlo based coupled system. The presented research comprises the development of models to include the thermal-hydraulic feedback to the Monte Carlo method and speed-up mechanisms to accelerate the Monte Carlo criticality calculation. Presently, deterministic codes based on the diffusion approximation of the Boltzmann transport equation, coupled with channel-based (or sub-channel based) thermal-hydraulic codes, carry out the three-dimensional (3-D) reactor core calculations of the Light Water Reactors (LWRs). These deterministic codes utilize nuclear homogenized data (normally over large spatial zones, consisting of fuel assembly or parts of fuel assembly, and in the best case, over small spatial zones, consisting of pin cell), which is functionalized in terms of thermal-hydraulic feedback parameters (in the form of off-line pre-generated cross-section libraries). High accuracy modeling is required for advanced nuclear reactor core designs that present increased geometry complexity and material heterogeneity. Such high-fidelity methods take advantage of the recent progress in computation technology and coupled neutron transport solutions with thermal-hydraulic feedback models on pin or even on sub-pin level (in terms of spatial scale). The continuous energy Monte Carlo method is well suited for solving such core environments with the detailed representation of the complicated 3-D problem. The major advantages of the Monte Carlo method over the deterministic methods are the continuous energy treatment and the exact 3-D geometry modeling. However, the Monte Carlo method involves vast computational time. The interest in Monte Carlo methods has increased thanks to the improvements of the capabilities of high performance computers. Coupled Monte-Carlo calculations can serve as reference solutions for verifying high-fidelity coupled deterministic neutron transport methods

  13. Modeling weight variability in a pan coating process using Monte Carlo simulations.

    Science.gov (United States)

    Pandey, Preetanshu; Katakdaunde, Manoj; Turton, Richard

    2006-10-06

    The primary objective of the current study was to investigate process variables affecting weight gain mass coating variability (CV(m) ) in pan coating devices using novel video-imaging techniques and Monte Carlo simulations. Experimental information such as the tablet location, circulation time distribution, velocity distribution, projected surface area, and spray dynamics was the main input to the simulations. The data on the dynamics of tablet movement were obtained using novel video-imaging methods. The effects of pan speed, pan loading, tablet size, coating time, spray flux distribution, and spray area and shape were investigated. CV(m) was found to be inversely proportional to the square root of coating time. The spray shape was not found to affect the CV(m) of the process significantly, but an increase in the spray area led to lower CV(m) s. Coating experiments were conducted to verify the predictions from the Monte Carlo simulations, and the trends predicted from the model were in good agreement. It was observed that the Monte Carlo simulations underpredicted CV(m) s in comparison to the experiments. The model developed can provide a basis for adjustments in process parameters required during scale-up operations and can be useful in predicting the process changes that are needed to achieve the same CV(m) when a variable is altered.

  14. Finite Element Modeling of a Fluid Filled Cylindrical Shell with Active Constrained Layer Damping

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi; ZHANG Zhi-yi; TONG Zong-peng; HUA Hong-xing

    2005-01-01

    On the basis of the piezoelectric theory, Mindlin plate theory, viscoelastic theory and ideal fluid equa tion, the finite element modeling of a fluid-filled cylindrical shell with active constrained layer damping (ACLD) was discussed. Energy methods and Lagrange's equation were used to obtain dynamic equations of the cylindrical shell with ACLD treatments, which was modeled as well with the finite element method. The GHM (Golla-Hughes-McTavish) method was applied to model the frequency dependent damping of viscoelastic material. Ideal and incompressible fluid was considered to establish the dynamic equations of the fluid-filled cylindrical shell with ACLD treatments, Numerical results obtained from the finite element analysis were compared with those from an experiment. The comparison shows that the proposed modeling method is accurate and reliable.

  15. The fundamental solution for a consistent complex model of the shallow shell equations

    Directory of Open Access Journals (Sweden)

    Matthew P. Coleman

    1999-09-01

    Full Text Available The calculation of the Fourier transforms of the fundamental solution in shallow shell theory ostensibly was accomplished by J. L. Sanders [J. Appl. Mech. 37 (1970, 361-366]. However, as is shown in detail in this paper, the complex model used by Sanders is, in fact, inconsistent. This paper provides a consistent version of Sanders's complex model, along with the Fourier transforms of the fundamental solution for this corrected model. The inverse Fourier transforms are then calculated for the particular cases of the shallow spherical and circular cylindrical shells, and the results of the latter are seen to be in agreement with results appearing elsewhere in the literature.

  16. Shear-flexible finite-element models of laminated composite plates and shells

    Science.gov (United States)

    Noor, A. K.; Mathers, M. D.

    1975-01-01

    Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.

  17. Models of spherical shells as sources of Majumdar-Papapetrou type spacetimes

    CERN Document Server

    García-Reyes, Gonzalo

    2016-01-01

    By starting with a seed Newtonian potential-density pair we construct relativistic thick spherical shell models for a Majumdar-Papapetrou type conformastatic spacetime. As simple example, we considerer a family of Plummer type relativistic spherical shells. These objects are then used to model a system composite by a dust disk and a halo of matter. We study the equatorial circular motion of test particles around the structures. Also the stability of the orbits is analyzed for radial perturbation using an extension of the Rayleigh criterion. The models considered satisfying all the energy conditions.

  18. Measurements of inner-shell characteristic X-ray yields of thick W, Mo and Zr targets by low-energy electron impact and comparison with Monte Carlo simulations

    International Nuclear Information System (INIS)

    Highlights: •We measured characteristic X-ray yields of thick W, Mo, Zr by 5–29 keV electrons. •Our measured data are in general in good agreement with the MC results with ∼10%. •Error of 10% of characteristic X-ray yields will produce errors of 2–7% for BIXS. -- Abstract: Inner-shell characteristic X-ray yields are one of the important ingredients in the β-ray induced X-ray spectrometry (BIXS) technique which can be used to perform tritium content and depth distribution analyses in plasma facing materials (PLMs) and other tritium-containing materials, such as W, Mo, Zr. In this paper, the measurements of K, L, M-shell X-ray yields Y(E) of pure thick W (Z = 74), Mo (Z = 42) and Zr (Z = 40) element targets produced by electron impact in the energy range of 5–29 keV are presented. The experimental data for Y(E) are compared with the corresponding predictions from Monte Carlo (MC) calculations using the general purpose MC code PENELOPE. In general, a good agreement is obtained between the experiment and the MC calculations for the variation of Y(E) with the impact energy both in shape and in magnitude with ∼10%. The effect of uncertainty of inner-shell characteristic X-ray yields on the BIXS technique is also discussed

  19. Effective shell model Hamiltonians from density functional theory: quadrupolar and pairing correlations

    CERN Document Server

    Rodriguez-Guzman, R; Bertsch, George F

    2007-01-01

    We describe a procedure for mapping a self-consistent mean-field theory (also known as density functional theory) into a shell model Hamiltonian that includes quadrupole-quadrupole and monopole pairing interactions in a truncated space. We test our method in the deformed N=Z sd-shell nuclei Ne-20, Mg-24 and Ar-36, starting from the Hartree-Fock plus BCS approximation of the USD shell model interaction. A similar procedure is then followed using the SLy4 Skyrme energy density functional in the particle-hole channel plus a zero-range density-dependent force in the pairing channel. Using the ground-state solution of this density functional theory at the Hartree-Fock plus BCS level, an effective shell model Hamiltonian is constructed. We use this mapped Hamiltonian to extract quadrupolar and pairing correlation energies beyond the mean field approximation. The rescaling of the mass quadrupole operator in the truncated shell model space is found to be almost independent of the coupling strength used in the pairing...

  20. A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness.

    Science.gov (United States)

    Lechtman, E; Mashouf, S; Chattopadhyay, N; Keller, B M; Lai, P; Cai, Z; Reilly, R M; Pignol, J-P

    2013-05-21

    Radiosensitization using gold nanoparticles (AuNPs) has been shown to vary widely with cell line, irradiation energy, AuNP size, concentration and intracellular localization. We developed a Monte Carlo-based AuNP radiosensitization predictive model (ARP), which takes into account the detailed energy deposition at the nano-scale. This model was compared to experimental cell survival and macroscopic dose enhancement predictions. PC-3 prostate cancer cell survival was characterized after irradiation using a 300 kVp photon source with and without AuNPs present in the cell culture media. Detailed Monte Carlo simulations were conducted, producing individual tracks of photoelectric products escaping AuNPs and energy deposition was scored in nano-scale voxels in a model cell nucleus. Cell survival in our predictive model was calculated by integrating the radiation induced lethal event density over the nucleus volume. Experimental AuNP radiosensitization was observed with a sensitizer enhancement ratio (SER) of 1.21 ± 0.13. SERs estimated using the ARP model and the macroscopic enhancement model were 1.20 ± 0.12 and 1.07 ± 0.10 respectively. In the hypothetical case of AuNPs localized within the nucleus, the ARP model predicted a SER of 1.29 ± 0.13, demonstrating the influence of AuNP intracellular localization on radiosensitization.

  1. Small oscillations of a pressurized, elastic, spherical shell: Model and experiments

    Science.gov (United States)

    Kuo, K. A.; Hunt, H. E. M.; Lister, John R.

    2015-12-01

    This paper presents a model for the small oscillations of a pressurized, elastic, spherical shell subject to internal and external fluid effects. The shell has three features: a pressure difference across the skin; a thin, tensioned shell; and a double curved interfacial surface. An analytical solution for the natural frequencies and mode shapes, incorporating the inertia both of the shell and the surrounding fluids, is derived. Two key parameters that quantify the effect of pre-stress and fluid inertia on the shell's behaviour are identified. When the skin tension is set to zero and the inertial effects of the fluid are removed, the results converge to the analytical solution for an elastic spherical shell, and when the skin elasticity is neglected, the results converge to the constant-tension solution of a bubble. The analytical solution is used to predict the natural frequencies of a small balloon, based on a value for the elastic modulus that is determined using inflation measurements. These predictions are compared to experimental measurements of balloon vibrations using impact-hammer testing, and good agreement is seen.

  2. Core-scale solute transport model selection using Monte Carlo analysis

    CERN Document Server

    Malama, Bwalya; James, Scott C

    2013-01-01

    Model applicability to core-scale solute transport is evaluated using breakthrough data from column experiments conducted with conservative tracers tritium (H-3) and sodium-22, and the retarding solute uranium-232. The three models considered are single-porosity, double-porosity with single-rate mobile-immobile mass-exchange, and the multirate model, which is a deterministic model that admits the statistics of a random mobile-immobile mass-exchange rate coefficient. The experiments were conducted on intact Culebra Dolomite core samples. Previously, data were analyzed using single- and double-porosity models although the Culebra Dolomite is known to possess multiple types and scales of porosity, and to exhibit multirate mobile-immobile-domain mass transfer characteristics at field scale. The data are reanalyzed here and null-space Monte Carlo analysis is used to facilitate objective model selection. Prediction (or residual) bias is adopted as a measure of the model structural error. The analysis clearly shows ...

  3. A Monte Carlo Renormalization Group Approach to the Bak-Sneppen model

    OpenAIRE

    Mikeska, Bernhard

    1996-01-01

    A recent renormalization group approach to a modified Bak-Sneppen model is discussed. We propose a self-consistency condition for the blocking scheme to be essential for a successful RG-method applied to self-organized criticality. A new method realizing the RG-approach to the Bak-Sneppen model is presented. It is based on the Monte-Carlo importance sampling idea. The new technique performs much faster than the original proposal. Using this technique we cross-check and improve previous results.

  4. Refined hierarchical kinematics quasi-3D Ritz models for free vibration analysis of doubly curved FGM shells and sandwich shells with FGM core

    Science.gov (United States)

    Fazzolari, Fiorenzo A.; Carrera, Erasmo

    2014-02-01

    In this paper, the Ritz minimum energy method, based on the use of the Principle of Virtual Displacements (PVD), is combined with refined Equivalent Single Layer (ESL) and Zig Zag (ZZ) shell models hierarchically generated by exploiting the use of Carrera's Unified Formulation (CUF), in order to engender the Hierarchical Trigonometric Ritz Formulation (HTRF). The HTRF is then employed to carry out the free vibration analysis of doubly curved shallow and deep functionally graded material (FGM) shells. The PVD is further used in conjunction with the Gauss theorem to derive the governing differential equations and related natural boundary conditions. Donnell-Mushtari's shallow shell-type equations are given as a particular case. Doubly curved FGM shells and doubly curved sandwich shells made up of isotropic face sheets and FGM core are investigated. The proposed shell models are widely assessed by comparison with the literature results. Two benchmarks are provided and the effects of significant parameters such as stacking sequence, boundary conditions, length-to-thickness ratio, radius-to-length ratio and volume fraction index on the circular frequency parameters and modal displacements are discussed.

  5. Development of a Monte Carlo model for the Brainlab microMLC

    Science.gov (United States)

    Belec, Jason; Patrocinio, Horacio; Verhaegen, Frank

    2005-03-01

    Stereotactic radiosurgery with several static conformal beams shaped by a micro multileaf collimator (μMLC) is used to treat small irregularly shaped brain lesions. Our goal is to perform Monte Carlo calculations of dose distributions for certain treatment plans as a verification tool. A dedicated μMLC component module for the BEAMnrc code was developed as part of this project and was incorporated in a model of the Varian CL2300 linear accelerator 6 MV photon beam. As an initial validation of the code, the leaf geometry was visualized by tracing particles through the component module and recording their position each time a leaf boundary was crossed. The leaf dimensions were measured and the leaf material density and interleaf air gap were chosen to match the simulated leaf leakage profiles with film measurements in a solid water phantom. A comparison between Monte Carlo calculations and measurements (diode, radiographic film) was performed for square and irregularly shaped fields incident on flat and homogeneous water phantoms. Results show that Monte Carlo calculations agree with measured dose distributions to within 2% and/or 1 mm except for field size smaller than 1.2 cm diameter where agreement is within 5% due to uncertainties in measured output factors.

  6. Development of a Monte Carlo model for the Brainlab microMLC

    Energy Technology Data Exchange (ETDEWEB)

    Belec, Jason; Patrocinio, Horacio; Verhaegen, Frank [Medical Physics Department, McGill University Health Centre, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec, H3G1A4 (Canada)

    2005-03-07

    Stereotactic radiosurgery with several static conformal beams shaped by a micro multileaf collimator ({mu}MLC) is used to treat small irregularly shaped brain lesions. Our goal is to perform Monte Carlo calculations of dose distributions for certain treatment plans as a verification tool. A dedicated {mu}MLC component module for the BEAMnrc code was developed as part of this project and was incorporated in a model of the Varian CL2300 linear accelerator 6 MV photon beam. As an initial validation of the code, the leaf geometry was visualized by tracing particles through the component module and recording their position each time a leaf boundary was crossed. The leaf dimensions were measured and the leaf material density and interleaf air gap were chosen to match the simulated leaf leakage profiles with film measurements in a solid water phantom. A comparison between Monte Carlo calculations and measurements (diode, radiographic film) was performed for square and irregularly shaped fields incident on flat and homogeneous water phantoms. Results show that Monte Carlo calculations agree with measured dose distributions to within 2% and/or 1 mm except for field size smaller than 1.2 cm diameter where agreement is within 5% due to uncertainties in measured output factors.

  7. Development of a Monte Carlo model for the Brainlab microMLC.

    Science.gov (United States)

    Belec, Jason; Patrocinio, Horacio; Verhaegen, Frank

    2005-03-01

    Stereotactic radiosurgery with several static conformal beams shaped by a micro multileaf collimator (microMLC) is used to treat small irregularly shaped brain lesions. Our goal is to perform Monte Carlo calculations of dose distributions for certain treatment plans as a verification tool. A dedicated microMLC component module for the BEAMnrc code was developed as part of this project and was incorporated in a model of the Varian CL2300 linear accelerator 6 MV photon beam. As an initial validation of the code, the leaf geometry was visualized by tracing particles through the component module and recording their position each time a leaf boundary was crossed. The leaf dimensions were measured and the leaf material density and interleaf air gap were chosen to match the simulated leaf leakage profiles with film measurements in a solid water phantom. A comparison between Monte Carlo calculations and measurements (diode, radiographic film) was performed for square and irregularly shaped fields incident on flat and homogeneous water phantoms. Results show that Monte Carlo calculations agree with measured dose distributions to within 2% and/or 1 mm except for field size smaller than 1.2 cm diameter where agreement is within 5% due to uncertainties in measured output factors. PMID:15798255

  8. A double-step truncation procedure for large-scale shell-model calculations

    CERN Document Server

    Coraggio, L; Itaco, N

    2016-01-01

    We present a procedure that is helpful to reduce the computational complexity of large-scale shell-model calculations, by preserving as much as possible the role of the rejected degrees of freedom in an effective approach. Our truncation is driven first by the analysis of the effective single-particle energies of the original large-scale shell-model hamiltonian, so to locate the relevant degrees of freedom to describe a class of isotopes or isotones, namely the single-particle orbitals that will constitute a new truncated model space. The second step is to perform an unitary transformation of the original hamiltonian from its model space into the truncated one. This transformation generates a new shell-model hamiltonian, defined in a smaller model space, that retains effectively the role of the excluded single-particle orbitals. As an application of this procedure, we have chosen a realistic shell-model hamiltonian defined in a large model space, set up by seven and five proton and neutron single-particle orb...

  9. Applying sequential Monte Carlo methods into a distributed hydrologic model: lagged particle filtering approach with regularization

    Directory of Open Access Journals (Sweden)

    S. J. Noh

    2011-04-01

    Full Text Available Applications of data assimilation techniques have been widely used to improve hydrologic prediction. Among various data assimilation techniques, sequential Monte Carlo (SMC methods, known as "particle filters", provide the capability to handle non-linear and non-Gaussian state-space models. In this paper, we propose an improved particle filtering approach to consider different response time of internal state variables in a hydrologic model. The proposed method adopts a lagged filtering approach to aggregate model response until uncertainty of each hydrologic process is propagated. The regularization with an additional move step based on Markov chain Monte Carlo (MCMC is also implemented to preserve sample diversity under the lagged filtering approach. A distributed hydrologic model, WEP is implemented for the sequential data assimilation through the updating of state variables. Particle filtering is parallelized and implemented in the multi-core computing environment via open message passing interface (MPI. We compare performance results of particle filters in terms of model efficiency, predictive QQ plots and particle diversity. The improvement of model efficiency and the preservation of particle diversity are found in the lagged regularized particle filter.

  10. On Spectral Laws of 2D--Turbulence in Shell Models

    OpenAIRE

    Frick, Peter; Aurell, Erik

    1993-01-01

    We consider a class of shell models of 2D-turbulence. They conserve inertially the analogues of energy and enstrophy, two quadratic forms in the shell amplitudes. Inertially conserving two quadratic integrals leads to two spectral ranges. We study in detail the one characterized by a forward cascade of enstrophy and spectrum close to Kraichnan's $k^{-3}$--law. In an inertial range over more than 15 octaves, the spectrum falls off as $k^{-3.05\\pm 0.01}$, with the same slope in all models. We i...

  11. Quantum spin models with long-range interactions and tunnelings: a quantum Monte Carlo study

    Science.gov (United States)

    Maik, Michał; Hauke, Philipp; Dutta, Omjyoti; Zakrzewski, Jakub; Lewenstein, Maciej

    2012-11-01

    We use a quantum Monte Carlo method to investigate various classes of two-dimensional spin models with long-range interactions at low temperatures. In particular, we study a dipolar XXZ model with U(1) symmetry that appears as a hard-core boson limit of an extended Hubbard model describing polarized dipolar atoms or molecules in an optical lattice. Tunneling, in such a model, is short-range, whereas density-density couplings decay with distance following a cubic power law. We also investigate an XXZ model with long-range couplings of all three spin components—such a model describes a system of ultracold ions in a lattice of microtraps. We describe an approximate phase diagram for such systems at zero and at finite temperature, and compare their properties. In particular, we compare the extent of crystalline, superfluid and supersolid phases. Our predictions apply directly to current experiments with mesoscopic numbers of polar molecules and trapped ions.

  12. Shell Tectonics: A Mechanical Model for Strike-slip Displacement on Europa

    Science.gov (United States)

    Rhoden, Alyssa Rose; Wurman, Gilead; Huff, Eric M.; Manga, Michael; Hurford, Terry A.

    2012-01-01

    We introduce a new mechanical model for producing tidally-driven strike-slip displacement along preexisting faults on Europa, which we call shell tectonics. This model differs from previous models of strike-slip on icy satellites by incorporating a Coulomb failure criterion, approximating a viscoelastic rheology, determining the slip direction based on the gradient of the tidal shear stress rather than its sign, and quantitatively determining the net offset over many orbits. This model allows us to predict the direction of net displacement along faults and determine relative accumulation rate of displacement. To test the shell tectonics model, we generate global predictions of slip direction and compare them with the observed global pattern of strike-slip displacement on Europa in which left-lateral faults dominate far north of the equator, right-lateral faults dominate in the far south, and near-equatorial regions display a mixture of both types of faults. The shell tectonics model reproduces this global pattern. Incorporating a small obliquity into calculations of tidal stresses, which are used as inputs to the shell tectonics model, can also explain regional differences in strike-slip fault populations. We also discuss implications for fault azimuths, fault depth, and Europa's tectonic history.

  13. Monte Carlo Modelling of Single-Crystal Diffuse Scattering from Intermetallics

    Directory of Open Access Journals (Sweden)

    Darren J. Goossens

    2016-02-01

    Full Text Available Single-crystal diffuse scattering (SCDS reveals detailed structural insights into materials. In particular, it is sensitive to two-body correlations, whereas traditional Bragg peak-based methods are sensitive to single-body correlations. This means that diffuse scattering is sensitive to ordering that persists for just a few unit cells: nanoscale order, sometimes referred to as “local structure”, which is often crucial for understanding a material and its function. Metals and alloys were early candidates for SCDS studies because of the availability of large single crystals. While great progress has been made in areas like ab initio modelling and molecular dynamics, a place remains for Monte Carlo modelling of model crystals because of its ability to model very large systems; important when correlations are relatively long (though still finite in range. This paper briefly outlines, and gives examples of, some Monte Carlo methods appropriate for the modelling of SCDS from metallic compounds, and considers data collection as well as analysis. Even if the interest in the material is driven primarily by magnetism or transport behaviour, an understanding of the local structure can underpin such studies and give an indication of nanoscale inhomogeneity.

  14. Monte Carlo simulation of an arc therapy treatment by means of a PC distribution model

    International Nuclear Information System (INIS)

    It would be always desirable to have an independent assessment of a planning system. Monte Carlo (MC) offers an accurate way of checking dose distribution in non homogeneous volumes. Nevertheless, its main drawback is the long processing times needed. A distribution model to simulate arc-therapy treatments with Monte Carlo techniques has been developed. This model divides the individual tasks with a physical sense. In this way, not only the CPU time is substantially reduced but a detailed analysis can be achieved. A distribution program modifies the input parameters in the code to send a different task to each processor. This model has been installed on a PC network without any resident software. This model works independently of the operating system pre-installed. The PC acting as a server exports the required operating system (Linux), the MC code and the input data, as well as it stores all the results. Some very complex radiosurgery treatments simulated using this model leads a CPU time about one hour. (orig.)

  15. Multi-shell model of ion-induced nucleic acid condensation

    Science.gov (United States)

    Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois; Baker, Nathan A.; Onufriev, Alexey V.

    2016-04-01

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into "external" and "internal" ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the "external" shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the "internal" shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent "ion binding

  16. Comparison of screening-level and Monte Carlo approaches for wildlife food web exposure modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pastorok, R.; Butcher, M.; LaTier, A.; Ginn, T. [PTI Environmental Services, Bellevue, WA (United States)

    1995-12-31

    The implications of using quantitative uncertainty analysis (e.g., Monte Carlo) and site-specific tissue residue data for wildlife exposure modeling were examined with data on trace elements at the Clark Fork River Superfund Site. Exposure of white-tailed deer, red fox, and American kestrel was evaluated using three approaches. First, a screening-level exposure model was based on conservative estimates of exposure parameters, including estimates of dietary residues derived from bioconcentration factors (BCFs) and soil chemistry. A second model without Monte Carlo was based on site-specific data for tissue residues of trace elements (As, Cd, Cu, Pb, Zn) in key dietary species and plausible assumptions for habitat spatial segmentation and other exposure parameters. Dietary species sampled included dominant grasses (tufted hairgrass and redtop), willows, alfalfa, barley, invertebrates (grasshoppers, spiders, and beetles), and deer mice. Third, the Monte Carlo analysis was based on the site-specific residue data and assumed or estimated distributions for exposure parameters. Substantial uncertainties are associated with several exposure parameters, especially BCFS, such that exposure and risk may be greatly overestimated in screening-level approaches. The results of the three approaches are compared with respect to realism, practicality, and data gaps. Collection of site-specific data on trace elements concentrations in plants and animals eaten by the target wildlife receptors is a cost-effective way to obtain realistic estimates of exposure. Implications of the results for exposure and risk estimates are discussed relative to use of wildlife exposure modeling and evaluation of remedial actions at Superfund sites.

  17. Shell supports

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2004-01-01

    A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....

  18. A shell-neutral modeling approach yields sustainable oyster harvest estimates: a retrospective analysis of the Louisiana state primary seed grounds

    Science.gov (United States)

    Soniat, Thomas M.; Klinck, John M.; Powell, Eric N.; Cooper, Nathan; Abdelguerfi, Mahdi; Hofmann, Eileen E.; Dahal, Janak; Tu, Shengru; Finigan, John; Eberline, Benjamin S.; La Peyre, Jerome F.; LaPeyre, Megan K.; Qaddoura, Fareed

    2012-01-01

    A numerical model is presented that defines a sustainability criterion as no net loss of shell, and calculates a sustainable harvest of seed (shell-neutral models can be used to estimate sustainable harvest and manage cultch through shell planting when actual harvest exceeds sustainable harvest. For exclusive restoration efforts (no fishing allowed), the model provides a metric for restoration success-namely, shell accretion. Oyster fisheries that remove shell versus reef restorations that promote shell accretion, although divergent in their goals, are convergent in their management; both require vigilant attention to shell budgets.

  19. Quantitative photoacoustic tomography using forward and adjoint Monte Carlo models of radiance

    CERN Document Server

    Hochuli, Roman; Arridge, Simon; Cox, Ben

    2016-01-01

    Forward and adjoint Monte Carlo (MC) models of radiance are proposed for use in model-based quantitative photoacoustic tomography. A 2D radiance MC model using a harmonic angular basis is introduced and validated against analytic solutions for the radiance in heterogeneous media. A gradient-based optimisation scheme is then used to recover 2D absorption and scattering coefficients distributions from simulated photoacoustic measurements. It is shown that the functional gradients, which are a challenge to compute efficiently using MC models, can be calculated directly from the coefficients of the harmonic angular basis used in the forward and adjoint models. This work establishes a framework for transport-based quantitative photoacoustic tomography that can fully exploit emerging highly parallel computing architectures.

  20. MARMOSET: The Path from LHC Data to the New Standard Model via On-Shell Effective Theories

    Energy Technology Data Exchange (ETDEWEB)

    Arkani-Hamed, Nima; Schuster, Philip; Toro, Natalia; /Harvard U., Phys. Dept.; Thaler, Jesse; /UC, Berkeley /LBL, Berkeley; Wang, Lian-Tao; /Princeton U.; Knuteson, Bruce; /MIT, LNS; Mrenna, Stephen; /Fermilab

    2007-03-01

    We describe a coherent strategy and set of tools for reconstructing the fundamental theory of the TeV scale from LHC data. We show that On-Shell Effective Theories (OSETs) effectively characterize hadron collider data in terms of masses, production cross sections, and decay modes of candidate new particles. An OSET description of the data strongly constrains the underlying new physics, and sharply motivates the construction of its Lagrangian. Simulating OSETs allows efficient analysis of new-physics signals, especially when they arise from complicated production and decay topologies. To this end, we present MARMOSET, a Monte Carlo tool for simulating the OSET version of essentially any new-physics model. MARMOSET enables rapid testing of theoretical hypotheses suggested by both data and model-building intuition, which together chart a path to the underlying theory. We illustrate this process by working through a number of data challenges, where the most important features of TeV-scale physics are reconstructed with as little as 5 fb{sup -1} of simulated LHC signals.

  1. Applying sequential Monte Carlo methods into a distributed hydrologic model: lagged particle filtering approach with regularization

    Directory of Open Access Journals (Sweden)

    S. J. Noh

    2011-10-01

    Full Text Available Data assimilation techniques have received growing attention due to their capability to improve prediction. Among various data assimilation techniques, sequential Monte Carlo (SMC methods, known as "particle filters", are a Bayesian learning process that has the capability to handle non-linear and non-Gaussian state-space models. In this paper, we propose an improved particle filtering approach to consider different response times of internal state variables in a hydrologic model. The proposed method adopts a lagged filtering approach to aggregate model response until the uncertainty of each hydrologic process is propagated. The regularization with an additional move step based on the Markov chain Monte Carlo (MCMC methods is also implemented to preserve sample diversity under the lagged filtering approach. A distributed hydrologic model, water and energy transfer processes (WEP, is implemented for the sequential data assimilation through the updating of state variables. The lagged regularized particle filter (LRPF and the sequential importance resampling (SIR particle filter are implemented for hindcasting of streamflow at the Katsura catchment, Japan. Control state variables for filtering are soil moisture content and overland flow. Streamflow measurements are used for data assimilation. LRPF shows consistent forecasts regardless of the process noise assumption, while SIR has different values of optimal process noise and shows sensitive variation of confidential intervals, depending on the process noise. Improvement of LRPF forecasts compared to SIR is particularly found for rapidly varied high flows due to preservation of sample diversity from the kernel, even if particle impoverishment takes place.

  2. Fission yield calculation using toy model based on Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jubaidah, E-mail: jubaidah@student.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia); Physics Department, Faculty of Mathematics and Natural Science – State University of Medan. Jl. Willem Iskandar Pasar V Medan Estate – North Sumatera, Indonesia 20221 (Indonesia); Kurniadi, Rizal, E-mail: rijalk@fi.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia)

    2015-09-30

    Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (R{sub c}), mean of left curve (μ{sub L}) and mean of right curve (μ{sub R}), deviation of left curve (σ{sub L}) and deviation of right curve (σ{sub R}). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90

  3. Fission yield calculation using toy model based on Monte Carlo simulation

    International Nuclear Information System (INIS)

    Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (Rc), mean of left curve (μL) and mean of right curve (μR), deviation of left curve (σL) and deviation of right curve (σR). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90

  4. Review of dynamical models for external dose calculations based on Monte Carlo simulations in urbanised areas

    International Nuclear Information System (INIS)

    After an accidental release of radionuclides to the inhabited environment the external gamma irradiation from deposited radioactivity contributes significantly to the radiation exposure of the population for extended periods. For evaluating this exposure pathway, three main model requirements are needed: (i) to calculate the air kerma value per photon emitted per unit source area, based on Monte Carlo (MC) simulations; (ii) to describe the distribution and dynamics of radionuclides on the diverse urban surfaces; and (iii) to combine all these elements in a relevant urban model to calculate the resulting doses according to the actual scenario. This paper provides an overview about the different approaches to calculate photon transport in urban areas and about several dose calculation codes published. Two types of Monte Carlo simulations are presented using the global and the local approaches of photon transport. Moreover, two different philosophies of the dose calculation, the 'location factor method' and a combination of relative contamination of surfaces with air kerma values are described. The main features of six codes (ECOSYS, EDEM2M, EXPURT, PARATI, TEMAS, URGENT) are highlighted together with a short model-model features intercomparison

  5. Monte Carlo Modeling of Cascade Gamma Rays in 86Y PET imaging: Preliminary results

    OpenAIRE

    Zhu, Xuping; El Fakhri, Georges

    2009-01-01

    86Y is a PET agent that could be used as an ideal surrogate to allow personalized dosimetry in 90Y radionuclide therapy. However, 86Y also emits cascade gamma rays. We have developed a Monte Carlo program based on SimSET to model cascade gamma rays in PET imaging. The new simulation was validated with the GATE simulation package. Agreements within 15% were found in spatial resolution, apparent scatter fraction (ratio of coincidences outside peak regions in line source sinograms), singles and ...

  6. A study of potential energy curves from the model space quantum Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuka, Yuhki; Ten-no, Seiichiro, E-mail: tenno@cs.kobe-u.ac.jp [Department of Computational Sciences, Graduate School of System Informatics, Kobe University, Nada-ku, Kobe 657-8501 (Japan)

    2015-12-07

    We report on the first application of the model space quantum Monte Carlo (MSQMC) to potential energy curves (PECs) for the excited states of C{sub 2}, N{sub 2}, and O{sub 2} to validate the applicability of the method. A parallel MSQMC code is implemented with the initiator approximation to enable efficient sampling. The PECs of MSQMC for various excited and ionized states are compared with those from the Rydberg-Klein-Rees and full configuration interaction methods. The results indicate the usefulness of MSQMC for precise PECs in a wide range obviating problems concerning quasi-degeneracy.

  7. Time-implicit Monte-Carlo collision algorithm for particle-in-cell electron transport models

    International Nuclear Information System (INIS)

    A time-implicit Monte-Carlo collision algorithm has been developed to allow particle-in-cell electron transport models to be applied to arbitrarily collisional systems. The algorithm is formulated for electrons moving in response to electric and magnetic accelerations and subject to collisional drag and scattering due to a background plasma. The correct fluid or streaming transport results are obtained in the respective limits of strongly- or weakly-collisional systems, and reasonable behavior is produced even for time steps greatly exceeding the magnetic-gyration and collisional-scattering times

  8. Studies on top-quark Monte Carlo modelling for Top2016

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    This note summarises recent studies on Monte Carlo simulation setups of top-quark pair production used by the ATLAS experiment and presents a new method to deal with interference effects for the $Wt$ single-top-quark production which is compared against previous techniques. The main focus for the top-quark pair production is on the improvement of the modelling of the Powheg generator interfaced to the Pythia8 and Herwig7 shower generators. The studies are done using unfolded data at centre-of-mass energies of 7, 8, and 13 TeV.

  9. Exact modeling of the torus geometry with Monte Carlo transport code

    International Nuclear Information System (INIS)

    It is valuable to model torus geometry exactry for the neutronics design of fusion reactor in order to assess neutronics characteristics such as tritium breeding ratio, heat generation rate, etc, near the plasma. Monte Carlo code MORSE-GG which plays important role in the radiation streaming calculation of fusion reactors had been able to deal with the geometry composed of second order surfaces. The MORSE-GG program is modified to be able to deal with torus geometry which has fourth order surface by solving biquadratic equations, hoping that MORSE-GG code becomes more effective for the neutronics calculation of the Tokamak fusion reactor. (author)

  10. Variational Monte Carlo study of magnetic states in the periodic Anderson model

    Science.gov (United States)

    Kubo, Katsunori

    2015-03-01

    We study the magnetic states of the periodic Anderson model with a finite Coulomb interaction between f electrons on a square lattice by applying variational Monte Carlo method. We consider Gutzwiller wavefunctions for the paramagnetic, antiferromagnetic, ferromagnetic, and charge density wave states. We find an antiferromagnetic phase around half-filling. There is a phase transition accompanying change in the Fermi-surface topology in this antiferromagnetic phase. We also study a case away from half-filling, and find a ferromagnetic state as the ground state there.

  11. Model uncertainties of local-thermodynamic-equilibrium K-shell spectroscopy

    Science.gov (United States)

    Nagayama, T.; Bailey, J. E.; Mancini, R. C.; Iglesias, C. A.; Hansen, S. B.; Blancard, C.; Chung, H. K.; Colgan, J.; Cosse, Ph.; Faussurier, G.; Florido, R.; Fontes, C. J.; Gilleron, F.; Golovkin, I. E.; Kilcrease, D. P.; Loisel, G.; MacFarlane, J. J.; Pain, J.-C.; Rochau, G. A.; Sherrill, M. E.; Lee, R. W.

    2016-09-01

    Local-thermodynamic-equilibrium (LTE) K-shell spectroscopy is a common tool to diagnose electron density, ne, and electron temperature, Te, of high-energy-density (HED) plasmas. Knowing the accuracy of such diagnostics is important to provide quantitative conclusions of many HED-plasma research efforts. For example, Fe opacities were recently measured at multiple conditions at the Sandia National Laboratories Z machine (Bailey et al., 2015), showing significant disagreement with modeled opacities. Since the plasma conditions were measured using K-shell spectroscopy of tracer Mg (Nagayama et al., 2014), one concern is the accuracy of the inferred Fe conditions. In this article, we investigate the K-shell spectroscopy model uncertainties by analyzing the Mg spectra computed with 11 different models at the same conditions. We find that the inferred conditions differ by ±20-30% in ne and ±2-4% in Te depending on the choice of spectral model. Also, we find that half of the Te uncertainty comes from ne uncertainty. To refine the accuracy of the K-shell spectroscopy, it is important to scrutinize and experimentally validate line-shape theory. We investigate the impact of the inferred ne and Te model uncertainty on the Fe opacity measurements. Its impact is small and does not explain the reported discrepancies.

  12. Realistic PET Monte Carlo Simulation With Pixelated Block Detectors, Light Sharing, Random Coincidences and Dead-Time Modeling

    OpenAIRE

    Guérin, Bastein; Fakhri, Georges El

    2008-01-01

    We have developed and validated a realistic simulation of random coincidences, pixelated block detectors, light sharing among crystal elements and dead-time in 2D and 3D positron emission tomography (PET) imaging based on the SimSET Monte Carlo simulation software. Our simulation was validated by comparison to a Monte Carlo transport code widely used for PET modeling, GATE, and to measurements made on a PET scanner.

  13. Monte Carlo evaluation of biological variation: Random generation of correlated non-Gaussian model parameters

    Science.gov (United States)

    Hertog, Maarten L. A. T. M.; Scheerlinck, Nico; Nicolaï, Bart M.

    2009-01-01

    When modelling the behaviour of horticultural products, demonstrating large sources of biological variation, we often run into the issue of non-Gaussian distributed model parameters. This work presents an algorithm to reproduce such correlated non-Gaussian model parameters for use with Monte Carlo simulations. The algorithm works around the problem of non-Gaussian distributions by transforming the observed non-Gaussian probability distributions using a proposed SKN-distribution function before applying the covariance decomposition algorithm to generate Gaussian random co-varying parameter sets. The proposed SKN-distribution function is based on the standard Gaussian distribution function and can exhibit different degrees of both skewness and kurtosis. This technique is demonstrated using a case study on modelling the ripening of tomato fruit evaluating the propagation of biological variation with time.

  14. Iterative optimisation of Monte Carlo detector models using measurements and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Marzocchi, O., E-mail: olaf@marzocchi.net [European Patent Office, Rijswijk (Netherlands); Leone, D., E-mail: debora.leone@kit.edu [Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2015-04-11

    This work proposes a new technique to optimise the Monte Carlo models of radiation detectors, offering the advantage of a significantly lower user effort and therefore an improved work efficiency compared to the prior techniques. The method consists of four steps, two of which are iterative and suitable for automation using scripting languages. The four steps consist in the acquisition in the laboratory of measurement data to be used as reference; the modification of a previously available detector model; the simulation of a tentative model of the detector to obtain the coefficients of a set of linear equations; the solution of the system of equations and the update of the detector model. Steps three and four can be repeated for more accurate results. This method avoids the “try and fail” approach typical of the prior techniques.

  15. SCOUT: a fast Monte-Carlo modeling tool of scintillation camera output

    Science.gov (United States)

    Hunter, William C. J.; Barrett, Harrison H.; Muzi, John P.; McDougald, Wendy; MacDonald, Lawrence R.; Miyaoka, Robert S.; Lewellen, Thomas K.

    2013-06-01

    We have developed a Monte-Carlo photon-tracking and readout simulator called SCOUT to study the stochastic behavior of signals output from a simplified rectangular scintillation-camera design. SCOUT models the salient processes affecting signal generation, transport, and readout of a scintillation camera. In this work, we compare output signal statistics from SCOUT to experimental results for both a discrete and a monolithic camera. We also benchmark the speed of this simulation tool and compare it to existing simulation tools. We find this modeling tool to be relatively fast and predictive of experimental results. Depending on the modeled camera geometry, we found SCOUT to be 4 to 140 times faster than other modeling tools.

  16. Calibration of a gamma spectrometer for natural radioactivity measurement. Experimental measurements and Monte Carlo modelling

    International Nuclear Information System (INIS)

    The thesis proceeded in the context of dating by thermoluminescence. This method requires laboratory measurements of the natural radioactivity. For that purpose, we have been using a germanium spectrometer. To refine the calibration of this one, we modelled it by using a Monte-Carlo computer code: Geant4. We developed a geometrical model which takes into account the presence of inactive zones and zones of poor charge-collection within the germanium crystal. The parameters of the model were adjusted by comparison with experimental results obtained with a source of 137Cs. It appeared that the form of the inactive zones is less simple than is presented in the specialized literature. This model was widened to the case of a more complex source, with cascade effect and angular correlations between photons: the 60Co. Lastly, applied to extended sources, it gave correct results and allowed us to validate the simulation of matrix effect. (author)

  17. Iterative optimisation of Monte Carlo detector models using measurements and simulations

    Science.gov (United States)

    Marzocchi, O.; Leone, D.

    2015-04-01

    This work proposes a new technique to optimise the Monte Carlo models of radiation detectors, offering the advantage of a significantly lower user effort and therefore an improved work efficiency compared to the prior techniques. The method consists of four steps, two of which are iterative and suitable for automation using scripting languages. The four steps consist in the acquisition in the laboratory of measurement data to be used as reference; the modification of a previously available detector model; the simulation of a tentative model of the detector to obtain the coefficients of a set of linear equations; the solution of the system of equations and the update of the detector model. Steps three and four can be repeated for more accurate results. This method avoids the "try and fail" approach typical of the prior techniques.

  18. Evaluation of angular scattering models for electron-neutral collisions in Monte Carlo simulations

    Science.gov (United States)

    Janssen, J. F. J.; Pitchford, L. C.; Hagelaar, G. J. M.; van Dijk, J.

    2016-10-01

    In Monte Carlo simulations of electron transport through a neutral background gas, simplifying assumptions related to the shape of the angular distribution of electron-neutral scattering cross sections are usually made. This is mainly because full sets of differential scattering cross sections are rarely available. In this work simple models for angular scattering are compared to results from the recent quantum calculations of Zatsarinny and Bartschat for differential scattering cross sections (DCS’s) from zero to 200 eV in argon. These simple models represent in various ways an approach to forward scattering with increasing electron energy. The simple models are then used in Monte Carlo simulations of range, straggling, and backscatter of electrons emitted from a surface into a volume filled with a neutral gas. It is shown that the assumptions of isotropic elastic scattering and of forward scattering for the inelastic collision process yield results within a few percent of those calculated using the DCS’s of Zatsarinny and Bartschat. The quantities which were held constant in these comparisons are the elastic momentum transfer and total inelastic cross sections.

  19. Research on Reliability Modelling Method of Machining Center Based on Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    Chuanhai Chen

    2013-03-01

    Full Text Available The aim of this study is to get the reliability of series system and analyze the reliability of machining center. So a modified method of reliability modelling based on Monte Carlo simulation for series system is proposed. The reliability function, which is built by the classical statistics method based on the assumption that machine tools were repaired as good as new, may be biased in the real case. The reliability functions of subsystems are established respectively and then the reliability model is built according to the reliability block diagram. Then the fitting reliability function of machine tools is established using the failure data of sample generated by Monte Carlo simulation, whose inverse reliability function is solved by the linearization technique based on radial basis function. Finally, an example of the machining center is presented using the proposed method to show its potential application. The analysis results show that the proposed method can provide an accurate reliability model compared with the conventional method.

  20. Shell model tests of the interacting boson model description of nuclear collective motion

    International Nuclear Information System (INIS)

    The results of a large shell-model calculation of a pseudo-nucleus which displays striking behavior suggestive of rotational phenomena are presented. In these calculations, a specific and physically reasonable single-particle structure is given to the wave functions, and an explicit two-body residual interaction is used. The calculations show the coupling of key low-lying neutron and proton states of valence particles can lead to collective rotational features which appear to be more distinct and which extend to higher angular momenta as the number of particles increases and that those states which are rotational are dominated by states formed by coupling J = 0 and J = 2 two-particle states. Considerable supporting evidence is offered for the validity of the assumptions of the interacting boson model. 2 references

  1. Relaxational dynamics and precursor domains in the non-linear shell model

    International Nuclear Information System (INIS)

    The dynamics of a two dimensional shell model with double-well core-shell interaction is simulated by means of a molecular dynamics technique. Snapshots of the lattice displacement pattern reveal the presence of precursor order domains near the ferroelectric transition while the dynamical structure factor exhibits a quasielastic component in addition to the ferroelectric soft mode peak. On the other hand, the local dynamics of particles is characterized by two different time scales corresponding to the coexistence of inter and intra-well motion. All these features are in qualitative agreement with experimental observations in several ferroelectric materials. (author). 29 refs, 4 figs

  2. Light Nuclei in the Framework of the Symplectic No-core Shell Model

    OpenAIRE

    Draayer, Jerry P.; Dytrych, Tomas; Sviratcheva, Kristina D.; Bahri, Chairul; Vary, James P.

    2007-01-01

    A symplectic no-core shell model (Sp-NCSM) is constructed with the goal of extending the {\\it ab-initio} NCSM to include strongly deformed higher-oscillator-shell configurations and to reach heavier nuclei that cannot be studied currently because the spaces encountered are too large to handle, even with the best of modern-day computers. This goal is achieved by integrating two powerful concepts: the {\\it ab-initio} NCSM with that of the $\\mathrm{Sp}(3,\\mathbb{R})\\supset\\mathrm{SU}(3)$ group-t...

  3. Semiempirical Shell Model Tabulated Masses for Translead Elements with Magic Proton Number Z = 126

    OpenAIRE

    Liran, S.; Marinov, A.(Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria); Zeldes, N.

    2001-01-01

    We present two tables of calculated masses of translead nuclei, for 351 nuclei with N from 94 to 126 and Z from 82 to 100, and for 1969 nuclei with N from 126 to 184 and Z from 82 to 126. The tables are calculated from a semiempirical shell-model mass equation based on Z = 126 as a proton magic number which seems to be highly extrapolatable inside shell regions. Useful separation and decay energies are given as well. Some properties of the calculated masses and applications to superheavy elem...

  4. ANALYSES ON NONLINEAR COUPLING OF MAGNETO-THERMO-ELASTICITY OF FERROMAGNETIC THIN SHELL-Ⅱ: FINITE ELEMENT MODELING AND APPLICATION

    Institute of Scientific and Technical Information of China (English)

    Xingzhe Wang; Xiaojing Zheng

    2009-01-01

    Based on the generalized variational principle of magneto-thermo-elasticity of a ferromagnetic thin shell established (see, Analyses on nonlinear coupling of magneto-thermo-elasticity of ferromagnetic thin shell-Ⅰ), the present paper developed a finite element modeling for the mechanical-magneto-thermal multi-field coupling of a ferromagnetic thin shell. The numerical modeling composes of finite element equations for three sub-systems of magnetic, thermal and deformation fields, as well as iterative methods for nonlinearities of the geometrical large-deflection and the multi-field coupling of the ferromagnetic shell. As examples, the numerical simulations on magneto-elastic behaviors of a ferromagnetic cylindrical shell in an applied magnetic field, and magneto-thermo-elastic behaviors of the shell in applied magnetic and thermal fields are carried out. The results are in good agreement with the experimental ones.

  5. How the viscous subrange determines inertial range properties in turbulence shell models

    NARCIS (Netherlands)

    Schoerghofer, N.; Kadanoff, L.; Lohse, D.

    1995-01-01

    We calculate static solutions of the `GOY¿ shell model of turbulence and do a linear stability analysis. The asymptotic limit of large Reynolds numbers is analyzed. A phase diagram is presented which shows the range of stability of the static solution. We see an unexpected oscillatory dependence of

  6. Shell model for time-correlated random advection of passive scalars

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Muratore-Ginanneschi, P.

    1999-01-01

    We study a minimal shell model for the advection of a passive scalar by a Gaussian time-correlated velocity field. The anomalous scaling properties of the white noise limit are studied analytically. The effect of the time correlations are investigated using perturbation theory around the white...

  7. Large-scale shell-model study of the Sn isotopes

    Directory of Open Access Journals (Sweden)

    Osnes Eivind

    2015-01-01

    Full Text Available We summarize the results of an extensive study of the structure of the Sn isotopes using a large shell-model space and effective interactions evaluated from realistic two-nucleon potentials. For a fuller account, see ref. [1].

  8. Non-perturbative model for the half-off-shell $gamma N N$ vertex

    NARCIS (Netherlands)

    Kondratyuk, S.; Scholten, O.

    1999-01-01

    Submitted to: Phys. Rev. C Abstract: Form factors in the nucleon-photon vertex with one off-shell nucleon are calculated by dressing the vertex with pion loops up to infinite order. Cutting rules and dispersion relations are implemented in the model. Using the prescription of minimal substitution we

  9. An application of the 3-dimensional q-deformed harmonic oscillator to the nuclear shell model

    CERN Document Server

    Raychev, P P; Lo-Iudice, N; Terziev, P A

    1998-01-01

    An analysis of the construction of a q-deformed version of the 3-dimensional harmonic oscillator, which is based on the application of q-deformed algebras, is presented. The results together with their applicability to the shell model are compared with the predictions of the modified harmonic oscillator.

  10. The First 24 Years of Reverse Monte Carlo Modelling, Budapest, Hungary, 20-22 September 2012

    Science.gov (United States)

    Keen, David A.; Pusztai, László

    2013-11-01

    This special issue contains a collection of papers reflecting the content of the fifth workshop on reverse Monte Carlo (RMC) methods, held in a hotel on the banks of the Danube in the Budapest suburbs in the autumn of 2012. Over fifty participants gathered to hear talks and discuss a broad range of science based on the RMC technique in very convivial surroundings. Reverse Monte Carlo modelling is a method for producing three-dimensional disordered structural models in quantitative agreement with experimental data. The method was developed in the late 1980s and has since achieved wide acceptance within the scientific community [1], producing an average of over 90 papers and 1200 citations per year over the last five years. It is particularly suitable for the study of the structures of liquid and amorphous materials, as well as the structural analysis of disordered crystalline systems. The principal experimental data that are modelled are obtained from total x-ray or neutron scattering experiments, using the reciprocal space structure factor and/or the real space pair distribution function (PDF). Additional data might be included from extended x-ray absorption fine structure spectroscopy (EXAFS), Bragg peak intensities or indeed any measured data that can be calculated from a three-dimensional atomistic model. It is this use of total scattering (diffuse and Bragg), rather than just the Bragg peak intensities more commonly used for crystalline structure analysis, which enables RMC modelling to probe the often important deviations from the average crystal structure, to probe the structures of poorly crystalline or nanocrystalline materials, and the local structures of non-crystalline materials where only diffuse scattering is observed. This flexibility across various condensed matter structure-types has made the RMC method very attractive in a wide range of disciplines, as borne out in the contents of this special issue. It is however important to point out that since

  11. Modelling and Dynamic Response of Steel Reticulated Shell under Blast Loading

    Directory of Open Access Journals (Sweden)

    Ximei Zhai

    2013-01-01

    Full Text Available Explicit finite element programme LS-DYNA was used to simulate a long-span steel reticulated shell under blast loading to investigate the structural dynamic responses in this paper. The elaborate finite element model of the Kiewitt-8 single-layer reticulated shell with span of 40 m subjected to central blast loading was established and all the process from the detonation of the explosive charge to the demolition, including the propagation of the blast wave and its interaction with structure was reproduced. The peak overpressure from the numerical analysis was compared with empirical formulas to verify the credibility and applicability of numerical simulation for blast loading. The dynamic responses of the structure under blast loading with different TNT equivalent weights of explosive and rise-span ratios were obtained. In addition, the response types of Kiewitt-8 single-layer reticulated shell subjected to central explosive blast loading were defined.

  12. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 3

    International Nuclear Information System (INIS)

    The third in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: the experimental data provide design information directly applicable to nozzles in cylindrical vessels; and the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 3 had a 10 in. OD and the nozzle had a 1.29 in. OD, giving a d0/D0 ratio of 0.129. The OD/thickness ratios for the cylinder and the nozzle were 50 and 7.68 respectively. Thirteen separate loading cases were analyzed. In each, one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for all the loadings were obtained using 158 three-gage strain rosettes located on the inner and outer surfaces. The loading cases were also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)

  13. Laboratory Measurement and Theoretical Modeling of K-shell X-ray Lines from Inner-shell Excited and Ionized Ions of Oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Gu, M; Schmidt, M; Beiersdorfer, P; Chen, H; Thorn, D B; Tr?bert, E; Behar, E; Kahn, S M

    2005-02-05

    We present high resolution laboratory spectra of K-shell X-ray lines from inner-shell excited and ionized ions of oxygen, obtained with a reflection grating spectrometer on the electron beam ion trap (EBIT-I) at the Lawrence Livermore National Laboratory. Only with a multi-ion model including all major atomic collisional and radiative processes, are we able to identify the observed K-shell transitions of oxygen ions from O III to O VI. The wavelengths and associated errors for some of the strongest transitions are given, taking into account both the experimental and modeling uncertainties. The present data should be useful in identifying the absorption features present in astrophysical sources, such as active galactic nuclei and X-ray binaries. They are also useful in providing benchmarks for the testing of theoretical atomic structure calculations.

  14. The fundamental solution for a consistent complex model of the shallow shell equations

    OpenAIRE

    Matthew P. Coleman

    1999-01-01

    The calculation of the Fourier transforms of the fundamental solution in shallow shell theory ostensibly was accomplished by J. L. Sanders [J. Appl. Mech. 37 (1970), 361-366]. However, as is shown in detail in this paper, the complex model used by Sanders is, in fact, inconsistent. This paper provides a consistent version of Sanders's complex model, along with the Fourier transforms of the fundamental solution for this corrected model. The inverse Fourier transforms are then calculated for th...

  15. Anomalous Scaling from Controlled Closure in a Shell Model of Turbulence

    OpenAIRE

    L'vov, Victor S.; Pierotti, Daniela; Pomyalov, Anna; Procaccia, Itamar

    1998-01-01

    We present a model of hydrodynamic turbulence for which the program of computing the scaling exponents from first principles can be developed in a controlled fashion. The model consists of $N$ suitably coupled copies of the "Sabra" shell model of turbulence. The couplings are chosen to include two components: random and deterministic, with a relative importance that is characterized by a parameter called $\\epsilon$. It is demonstrated, using numerical simulations of up to 25 copies and 28 she...

  16. Fitting complex population models by combining particle filters with Markov chain Monte Carlo.

    Science.gov (United States)

    Knape, Jonas; de Valpine, Perry

    2012-02-01

    We show how a recent framework combining Markov chain Monte Carlo (MCMC) with particle filters (PFMCMC) may be used to estimate population state-space models. With the purpose of utilizing the strengths of each method, PFMCMC explores hidden states by particle filters, while process and observation parameters are estimated using an MCMC algorithm. PFMCMC is exemplified by analyzing time series data on a red kangaroo (Macropus rufus) population in New South Wales, Australia, using MCMC over model parameters based on an adaptive Metropolis-Hastings algorithm. We fit three population models to these data; a density-dependent logistic diffusion model with environmental variance, an unregulated stochastic exponential growth model, and a random-walk model. Bayes factors and posterior model probabilities show that there is little support for density dependence and that the random-walk model is the most parsimonious model. The particle filter Metropolis-Hastings algorithm is a brute-force method that may be used to fit a range of complex population models. Implementation is straightforward and less involved than standard MCMC for many models, and marginal densities for model selection can be obtained with little additional effort. The cost is mainly computational, resulting in long running times that may be improved by parallelizing the algorithm. PMID:22624307

  17. Proceedings of a symposium on the occasion of the 40th anniversary of the nuclear shell model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.S.H.; Wiringa, R.B. (eds.)

    1990-03-01

    This report contains papers on the following topics: excitation of 1p-1h stretched states with the (p,n) reaction as a test of shell-model calculations; on Z=64 shell closure and some high spin states of {sup 149}Gd and {sup 159}Ho; saturating interactions in {sup 4}He with density dependence; are short-range correlations visible in very large-basis shell-model calculations ; recent and future applications of the shell model in the continuum; shell model truncation schemes for rotational nuclei; the particle-hole interaction and high-spin states near A-16; magnetic moment of doubly closed shell +1 nucleon nucleus {sup 41}Sc(I{sup {pi}}=7/2{sup {minus}}); the new magic nucleus {sup 96}Zr; comparing several boson mappings with the shell model; high spin band structures in {sup 165}Lu; optical potential with two-nucleon correlations; generalized valley approximation applied to a schematic model of the monopole excitation; pair approximation in the nuclear shell model; and many-particle, many-hole deformed states.

  18. Monte-Carlo modeling of exchange bias properties in amorphous magnets

    International Nuclear Information System (INIS)

    We explore the effect of interfacial disorder on exchange bias properties of a soft ferromagnet with a negligible intrinsic anisotropy exchange coupled to a hard amorphous magnet with a random magnetic anisotropy, based on an extensive Monte Carlo simulation. The interfacial disorder is introduced by using a '±J’' model. As compared to the conventionally crystalline ferromagnet/antiferromagnet bilayers, pronounced values and sign inversion in the exchange field are obtained at low temperature after cooling even under a weak field. However, the coercivity in the amorphous system not only shows smaller values, but also exhibits an opposite trend. Different from the ordered crystalline systems, the intrinsic properties of the Harris–Plischke–Zuckermann Hamiltonian rather than the domain structure determine the coercive fields and the shapes of hysteresis loops with different temperatures and cooling fields in the random magnetic anisotropy model, and hence the exchange bias. This theoretical work opens a new avenue for magnetism of the exchange bias and for its applications. - Highlights: • Hard amorphous magnets with random magnetic anisotropy are studied. • Exchange bias may be pronounced and positive after cooling under weak fields. • A reduced coercivity exhibiting a peak behavior is observed in amorphous magnets. • An extensive Monte Carlo simulation with a constrained acceptance rate is used

  19. Monte-Carlo modeling of exchange bias properties in amorphous magnets

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yong; Du, An, E-mail: duanneu@126.com

    2015-11-01

    We explore the effect of interfacial disorder on exchange bias properties of a soft ferromagnet with a negligible intrinsic anisotropy exchange coupled to a hard amorphous magnet with a random magnetic anisotropy, based on an extensive Monte Carlo simulation. The interfacial disorder is introduced by using a '±J’' model. As compared to the conventionally crystalline ferromagnet/antiferromagnet bilayers, pronounced values and sign inversion in the exchange field are obtained at low temperature after cooling even under a weak field. However, the coercivity in the amorphous system not only shows smaller values, but also exhibits an opposite trend. Different from the ordered crystalline systems, the intrinsic properties of the Harris–Plischke–Zuckermann Hamiltonian rather than the domain structure determine the coercive fields and the shapes of hysteresis loops with different temperatures and cooling fields in the random magnetic anisotropy model, and hence the exchange bias. This theoretical work opens a new avenue for magnetism of the exchange bias and for its applications. - Highlights: • Hard amorphous magnets with random magnetic anisotropy are studied. • Exchange bias may be pronounced and positive after cooling under weak fields. • A reduced coercivity exhibiting a peak behavior is observed in amorphous magnets. • An extensive Monte Carlo simulation with a constrained acceptance rate is used.

  20. Optical model for port-wine stain skin and its Monte Carlo simulation

    Science.gov (United States)

    Xu, Lanqing; Xiao, Zhengying; Chen, Rong; Wang, Ying

    2008-12-01

    Laser irradiation is the most acceptable therapy for PWS patient at present time. Its efficacy is highly dependent on the energy deposition rules in skin. To achieve optimal PWS treatment parameters a better understanding of light propagation in PWS skin is indispensable. Traditional Monte Carlo simulations using simple geometries such as planar layer tissue model can not provide energy deposition in the skin with enlarged blood vessels. In this paper the structure of normal skin and the pathological character of PWS skin was analyzed in detail and the true structure were simplified into a hybrid layered mathematical model to character two most important aspects of PWS skin: layered structure and overabundant dermal vessels. The basic laser-tissue interaction mechanisms in skin were investigated and the optical parameters of PWS skin tissue at the therapeutic wavelength. Monte Carlo (MC) based techniques were choused to calculate the energy deposition in the skin. Results can be used in choosing optical dosage. Further simulations can be used to predict optimal laser parameters to achieve high-efficacy laser treatment of PWS.

  1. FINITE ELEMENT FOR STRESS-STRAIN STATE MODELING OF TWO-LAYERED AXIALLY SYMMETRIC SHELLS

    Directory of Open Access Journals (Sweden)

    K. S. Kurochka

    2015-07-01

    Full Text Available Subject of Research. Computation of composite material designs requires application of numerical methods. The finiteelement method usage is connected with surface approximation problems. Application of volumetric and laminar elements leads to systems with large sizes and a great amount of computation. The objective of this paper is to present an equivalent two-layer mathematical model for evaluation of displacements and stresses of cross-ply laminated cone shells subjected to uniformly distributed load. An axially symmetric element for shell problems is described. Method. Axially symmetric finite element is proposed to be applied in calculations with use of correlation for the inner work of each layer separately. It gives the possibility to take into account geometric and physical nonlinearities and non-uniformity in the layers of the shell. Discrete mathematical model is created on the base of the finite-element method with the use of possible motions principle and Kirchhoff–Love assumptions. Hermite element is chosen as a finite one. Cone shell deflection is considered as the quantity sought for. Main Results. One-layered and two-layered cone shells have been considered for proposed mathematical model verification with known analytical and numerical analytical solutions, respectively. The axial displacements of the two-layered cone are measured with an error not exceeding 5.4 % for the number of finite elements equal to 30. The proposed mathematical model requires fewer nodes to define the finite element meshing of the system and much less computation time. Thereby time for finding solution decreases considerably. Practical Relevance. Proposed model is applicable for computation of multilayered designs under axially symmetric loads: composite high-pressure bottles, cylinder shaped fiberglass pipes, reservoirs for explosives and flammable materials, oil and gas storage tanks.

  2. Application of Monte Carlo method in modelling physical and physico-chemical processes

    International Nuclear Information System (INIS)

    The seminar was held on September 9 and 10, 1982 at the Faculty of Nuclear Science and Technical Engineering of the Czech Technical University in Prague. The participants heard 11 papers of which 7 were inputed in INIS. The papers dealt with the use of the Monte Carlo method for modelling the transport and scattering of gamma radiation in layers of materials, the application of low-energy gamma radiation for the determination of secondary X radiation flux, the determination of self-absorption corrections for a 4π chamber, modelling the response function of a scintillation detector and the optimization of geometrical configuration in measuring material density using backscattered gamma radiation. The possibility was studied of optimizing modelling with regard to computer time, and the participants were informed of comouterized nuclear data libraries. (M.D.)

  3. Effects of human model configuration in Monte Carlo calculations on organ doses from CT examinations

    International Nuclear Information System (INIS)

    A new dosimetry system, WAZA-ARI, is being developed to estimate radiation dose from Computed Tomography (CT) examination in Japan. The dose estimation in WAZA-ARI utilizes organ dose data, which have been derived by Monte Carlo calculations using Particle and Heavy Ion Transport code System, PHITS. A Japanese adult male phantom, JM phantom, is adapted as a reference human model in the calculations, because the physique and inner organ masses agree well with the average values for Japanese adult males. On the other hand, each patient has arbitrary physical characteristics. Thus, the effects of human body configuration on organ doses are studied by applying another Japanese male model and the reference phantom by the International Commission on Radiological Protection (ICRP) to PHITS. In addition, this paper describes computation conditions for the three human models, which are constructed in the format of voxel phantom with different resolutions. (author)

  4. Monte Carlo studies of dynamical compactification of extra dimensions in a model of nonperturbative string theory

    CERN Document Server

    Anagnostopoulos, Konstantinos N; Nishimura, Jun

    2015-01-01

    The IIB matrix model has been proposed as a non-perturbative definition of superstring theory. In this work, we study the Euclidean version of this model in which extra dimensions can be dynamically compactified if a scenario of spontaneously breaking the SO(10) rotational symmetry is realized. Monte Carlo calculations of the Euclidean IIB matrix model suffer from a very strong complex action problem due to the large fluctuations of the complex phase of the Pfaffian which appears after integrating out the fermions. We employ the factorization method in order to achieve effective sampling. We report on preliminary results that can be compared with previous studies of the rotational symmetry breakdown using the Gaussian expansion method.

  5. Dynamic Value at Risk: A Comparative Study Between Heteroscedastic Models and Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    José Lamartine Távora Junior

    2006-12-01

    Full Text Available The objective of this paper was to analyze the risk management of a portfolio composed by Petrobras PN, Telemar PN and Vale do Rio Doce PNA stocks. It was verified if the modeling of Value-at-Risk (VaR through the place Monte Carlo simulation with volatility of GARCH family is supported by hypothesis of efficient market. The results have shown that the statistic evaluation in inferior to dynamics, evidencing that the dynamic analysis supplies support to the hypothesis of efficient market of the Brazilian share holding market, in opposition of some empirical evidences. Also, it was verified that the GARCH models of volatility is enough to accommodate the variations of the shareholding Brazilian market, since the model is capable to accommodate the great dynamic of the Brazilian market.

  6. Spin density distribution in open-shell transition metal systems: A comparative post-Hartree-Fock, Density Functional Theory and quantum Monte Carlo study of the CuCl2 molecule

    CERN Document Server

    Caffarel, Michel; Scemama, Anthony; Ramírez-Solís, Alejandro

    2014-01-01

    We present a comparative study of the spatial distribution of the spin density (SD) of the ground state of CuCl2 using Density Functional Theory (DFT), quantum Monte Carlo (QMC), and post-Hartree-Fock wavefunction theory (WFT). A number of studies have shown that an accurate description of the electronic structure of the lowest-lying states of this molecule is particularly challenging due to the interplay between the strong dynamical correlation effects in the 3d shell of the copper atom and the delocalization of the 3d hole over the chlorine atoms. It is shown here that qualitatively different results for SD are obtained from these various quantum-chemical approaches. At the DFT level, the spin density distribution is directly related to the amount of Hartree-Fock exchange introduced in hybrid functionals. At the QMC level, Fixed-node Diffusion Monte Carlo (FN-DMC) results for SD are strongly dependent on the nodal structure of the trial wavefunction employed (here, Hartree-Fock or Kohn-Sham with a particula...

  7. Core-scale solute transport model selection using Monte Carlo analysis

    Science.gov (United States)

    Malama, Bwalya; Kuhlman, Kristopher L.; James, Scott C.

    2013-06-01

    Model applicability to core-scale solute transport is evaluated using breakthrough data from column experiments conducted with conservative tracers tritium (3H) and sodium-22 (22Na ), and the retarding solute uranium-232 (232U). The three models considered are single-porosity, double-porosity with single-rate mobile-immobile mass-exchange, and the multirate model, which is a deterministic model that admits the statistics of a random mobile-immobile mass-exchange rate coefficient. The experiments were conducted on intact Culebra Dolomite core samples. Previously, data were analyzed using single-porosity and double-porosity models although the Culebra Dolomite is known to possess multiple types and scales of porosity, and to exhibit multirate mobile-immobile-domain mass transfer characteristics at field scale. The data are reanalyzed here and null-space Monte Carlo analysis is used to facilitate objective model selection. Prediction (or residual) bias is adopted as a measure of the model structural error. The analysis clearly shows single-porosity and double-porosity models are structurally deficient, yielding late-time residual bias that grows with time. On the other hand, the multirate model yields unbiased predictions consistent with the late-time -5/2 slope diagnostic of multirate mass transfer. The analysis indicates the multirate model is better suited to describing core-scale solute breakthrough in the Culebra Dolomite than the other two models.

  8. Experimental study of thermohydraulic processes and gas distribution in a model of the containment shell of the AST-500 reactor

    International Nuclear Information System (INIS)

    Experiments were made on a setup consisting of a large-scale twin-assembly model of the primary circuit of an integral reactor and of a model of a containment shell which is a means for confining the outflow of coolant from the reactor. The large-scale model of an AST-500 reactor has vertical dimensions close to the actual dimensions and similar coefficients of hydraulic resistance and volume ratios of the principal elements the circuit with natural circulation. The model of the containment shell is a vertical cylindrical vessel with a size of 426 x 12 mm, a height of 9.78 m, and a volume of 1.24 m3. The volume scale of the reactor model and of the model of the containment shell is 1:170. The elements of the latter model are made from steel 20. The models of the reactor and of the containment shell are joined through two pipelines with a size of 57 x 3.5 mm and shut-off valves with a diameter of 50 mm mounted thereon. A total of 70 experiments were made to simulate leakage of the primary circuit of the integrated reactor and the outflow of coolant into the containment shell. The authors have provided detailed information on the large-scale model, have described the experimental conditions, and have reported on the main results of their study of the development of an accident involving the loss of coolant in the reactor-containment shell system. The present article reports on a study of the thermohydraulic processes and the gas distribution in the containment shell. Since the designs of the model and of the actual containment shell of the AST-500 reactor are not identical, the authors assume that the results reported can be used in appropriate computer programs describing the processes which occur in containment vessels of atomic power stations (containment shells, protective shells, sealed assemblies)

  9. A geometrical model for the Monte Carlo simulation of the TrueBeam linac

    International Nuclear Information System (INIS)

    Monte Carlo simulation of linear accelerators (linacs) depends on the accurate geometrical description of the linac head. The geometry of the Varian TrueBeam linac is not available to researchers. Instead, the company distributes phase-space files of the flattening-filter-free (FFF) beams tallied at a plane located just upstream of the jaws. Yet, Monte Carlo simulations based on third-party tallied phase spaces are subject to limitations. In this work, an experimentally based geometry developed for the simulation of the FFF beams of the Varian TrueBeam linac is presented. The Monte Carlo geometrical model of the TrueBeam linac uses information provided by Varian that reveals large similarities between the TrueBeam machine and the Clinac 2100 downstream of the jaws. Thus, the upper part of the TrueBeam linac was modeled by introducing modifications to the Varian Clinac 2100 linac geometry. The most important of these modifications is the replacement of the standard flattening filters by ad hoc thin filters. These filters were modeled by comparing dose measurements and simulations. The experimental dose profiles for the 6 MV and 10 MV FFF beams were obtained from the Varian Golden Data Set and from in-house measurements performed with a diode detector for radiation fields ranging from 3  ×  3 to 40  ×  40 cm2 at depths of maximum dose of 5 and 10 cm. Indicators of agreement between the experimental data and the simulation results obtained with the proposed geometrical model were the dose differences, the root-mean-square error and the gamma index. The same comparisons were performed for dose profiles obtained from Monte Carlo simulations using the phase-space files distributed by Varian for the TrueBeam linac as the sources of particles. Results of comparisons show a good agreement of the dose for the ansatz geometry similar to that obtained for the simulations with the TrueBeam phase-space files for all fields and depths considered, except for the

  10. Using a Monte Carlo model to predict dosimetric properties of small radiotherapy photon fields

    International Nuclear Information System (INIS)

    Accurate characterization of small-field dosimetry requires measurements to be made with precisely aligned specialized detectors and is thus time consuming and error prone. This work explores measurement differences between detectors by using a Monte Carlo model matched to large-field data to predict properties of smaller fields. Measurements made with a variety of detectors have been compared with calculated results to assess their validity and explore reasons for differences. Unshielded diodes are expected to produce some of the most useful data, as their small sensitive cross sections give good resolution whilst their energy dependence is shown to vary little with depth in a 15 MV linac beam. Their response is shown to be constant with field size over the range 1-10 cm, with a correction of 3% needed for a field size of 0.5 cm. BEAMnrc has been used to create a 15 MV beam model, matched to dosimetric data for square fields larger than 3 cm, and producing small-field profiles and percentage depth doses (PDDs) that agree well with unshielded diode data for field sizes down to 0.5 cm. For fields sizes of 1.5 cm and above, little detector-to-detector variation exists in measured output factors, however for a 0.5 cm field a relative spread of 18% is seen between output factors measured with different detectors--values measured with the diamond and pinpoint detectors lying below that of the unshielded diode, with the shielded diode value being higher. Relative to the corrected unshielded diode measurement, the Monte Carlo modeled output factor is 4.5% low, a discrepancy that is probably due to the focal spot fluence profile and source occlusion modeling. The large-field Monte Carlo model can, therefore, currently be used to predict small-field profiles and PDDs measured with an unshielded diode. However, determination of output factors for the smallest fields requires a more detailed model of focal spot fluence and source occlusion.

  11. Experimental Study and Monte Carlo Modeling of Calcium Borosilicate Glasses Leaching

    International Nuclear Information System (INIS)

    During aqueous alteration of glass an alteration layer appears on the glass surface. The properties of this alteration layer are of great importance for understanding and predicting the long-term behavior of high-level radioactive waste glasses. Numerical modeling can be very useful for understanding the impact of the glass composition on its aqueous reactivity and long-term properties but it is quite difficult to model these complex glasses. In order to identify the effect of the calcium content on glass alteration, seven oxide glass compositions (57SiO2 17B2O3 (22-x)Na2OxCaO 4ZrO2; 0 < x < 11) were investigated and a Monte Carlo model was developed to describe their leaching behavior. The specimens were altered at constant temperature (T = 90 deg. C) at a glass-surface-area-to-solution-volume (SA/V) ratio of 15 cm-1 in a buffered solution (pH 9.2). Under these conditions all the variations observed in the leaching behavior are attributable to composition effects. Increasing the calcium content in the glass appears to be responsible for a sharp drop in the final leached boron fraction. In parallel with this experimental work, a Monte Carlo model was developed to investigate the effect of calcium content on the leaching behavior especially on the initial stage of alteration. Monte Carlo simulations performed with this model are in good agreement with the experimental results. The dependence of the alteration rate on the calcium content can be described by a quadratic function: fitting the simulated points gives a minimum alteration rate at about 7.7 mol% calcium. This value is consistent with the figure of 8.2 mol% obtained from the experimental work. The model was also used to investigate the role of calcium in the glass structure and it pointed out that calcium act preferentially as a network modifier rather than a charge compensator in this kind of glasses. (authors)

  12. Computing excess functions of ionic solutions: the smaller-ion shell model versus the primitive model. 2. Ion-size parameters.

    Science.gov (United States)

    Fraenkel, Dan

    2015-01-13

    A recent Monte Carlo (MC) simulation study of the primitive model (PM) of ionic solutions ( Abbas, Z. et al. J. Phys. Chem. B 2009 , 113 , 5905 ) has resulted in an extensive "mapping" of real aqueous solutions of 1-1, 2-1, and 3-1 binary electrolytes and a list of "recommended ionic radii" for many ions. For the smaller cations, the model-experiment fitting process gave much larger radii than the respective crystallographic radii, and those cations were therefore claimed to be hydrated. In Part 1 (DOI 10.1021/ct5006938 ) of the present work, the above study for the unrestricted PM - dubbed MC-UPM - has been confronted with the Smaller-ion Shell (SiS) treatment ( Fraenkel, D. Mol. Phys. 2010 , 108 , 1435 ), or "DH-SiS", by comparing the range and quality of model-experiment fits of the mean ionic activity coefficient as a function of ionic concentration. Here I compare the ion-size parameters (ISPs) of "best fit" of the two models and argue that since ISPs derived from DH-SiS are identical with (or close to) crystallographic or thermochemical ionic diameters for both cations and anions, and they do not depend on the counterion - they are more reliable, as physicochemical entities, than the PM-derived "recommended ionic radii".

  13. Calibration and validation of a Monte Carlo model for PGNAA of chlorine in soil

    International Nuclear Information System (INIS)

    A prompt gamma-ray neutron activation analysis (PGNAA) system was used to calibrate and validate a Monte Carlo model as a proof of principle for the quantification of chlorine in soil. First, the response of an n-type HPGe detector to point sources of 60Co and 152Eu was determined experimentally and used to calibrate an MCNP4a model of the detector. The refined MCNP4a detector model can predict the absolute peak detection efficiency within 12% in the energy range of 120-1400 keV. Second, a PGNAA system consisting of a light-water moderated 252Cf (1.06 μg) neutron source, and the shielded and collimated HPGe detector was used to collect prompt gamma-ray spectra from Savannah River Site (SRS) soil spiked with chlorine. The spectra were used to calculate the minimum detectable concentration (MDC) of chlorine and the prompt gamma-ray detection probability. Using the 252Cf based PGNAA system, the MDC for Cl in the SRS soil is 4400 μg/g for an 1800-second irradiation based on the analysis of the 6110 keV prompt gamma-ray. MCNP4a was used to predict the PGNAA detection probability, which was accomplished by modeling the neutron and gamma-ray transport components separately. In the energy range of 788 to 6110 keV, the MCNP4a predictions of the prompt gamma-ray detection probability were generally within 60% of the experimental value, thus validating the Monte Carlo model. (author)

  14. The Density Matrix Renormalization Group Method and Large-Scale Nuclear Shell-Model Calculations

    CERN Document Server

    Dimitrova, S S; Pittel, S; Stoitsov, M V

    2002-01-01

    The particle-hole Density Matrix Renormalization Group (p-h DMRG) method is discussed as a possible new approach to large-scale nuclear shell-model calculations. Following a general description of the method, we apply it to a class of problems involving many identical nucleons constrained to move in a single large j-shell and to interact via a pairing plus quadrupole interaction. A single-particle term that splits the shell into degenerate doublets is included so as to accommodate the physics of a Fermi surface in the problem. We apply the p-h DMRG method to this test problem for two $j$ values, one for which the shell model can be solved exactly and one for which the size of the hamiltonian is much too large for exact treatment. In the former case, the method is able to reproduce the exact results for the ground state energy, the energies of low-lying excited states, and other observables with extreme precision. In the latter case, the results exhibit rapid exponential convergence, suggesting the great promi...

  15. A Monte Carlo method for critical systems in infinite volume: the planar Ising model

    CERN Document Server

    Herdeiro, Victor

    2016-01-01

    In this paper we propose a Monte Carlo method for generating finite-domain marginals of critical distributions of statistical models in infinite volume. The algorithm corrects the problem of the long-range effects of boundaries associated to generating critical distributions on finite lattices. It uses the advantage of scale invariance combined with ideas of the renormalization group in order to construct a type of "holographic" boundary condition that encodes the presence of an infinite volume beyond it. We check the quality of the distribution obtained in the case of the planar Ising model by comparing various observables with their infinite-plane prediction. We accurately reproduce planar two-, three- and four-point functions of spin and energy operators. We also define a lattice stress-energy tensor, and numerically obtain the associated conformal Ward identities and the Ising central charge.

  16. Monte Carlo study of Lefschetz thimble structure in one-dimensional Thirring model at finite density

    CERN Document Server

    Fujii, Hirotsugu; Kikukawa, Yoshio

    2015-01-01

    We consider the one-dimensional massive Thirring model formulated on the lattice with staggered fermions and an auxiliary compact vector (link) field, which is exactly solvable and shows a phase transition with increasing the chemical potential of fermion number: the crossover at a finite temperature and the first order transition at zero temperature. We complexify its path-integration on Lefschetz thimbles and examine its phase transition by hybrid Monte Carlo simulations on the single dominant thimble. We observe a discrepancy between the numerical and exact results in the crossover region for small inverse coupling $\\beta$ and/or large lattice size $L$, while they are in good agreement at the lower and higher density regions. We also observe that the discrepancy persists in the continuum limit keeping the temperature finite and it becomes more significant toward the low-temperature limit. This numerical result is consistent with our analytical study of the model's thimble structure. And these results imply...

  17. Atucha-2 PHWR Monte Carlo MCNP5 and KENO-VI models development and application

    International Nuclear Information System (INIS)

    The geometrical complexity and the peculiarities of Atucha-2 PHWR require the adoption of advanced Monte Carlo codes for performing realistic neutronic simulations. Core models of Atucha-2 PHWR were developed using both MCNP5 and KENOVI codes. The developed models were applied for calculating reactor criticality states at beginning of life, reactor cell constants and control rods volumes. The last two applications were relevant for performing successive three dimensional neutron kinetic analyses since it was necessary to correctly evaluate the effect of each oblique control rod in each cell discretizing the reactor. These corrective factors were then applied to the cell cross sections calculated by the two dimensional deterministic lattice physics code HELIOS. (authors)

  18. A new Monte Carlo model for predicting the mechanical properties of fiber yarns

    Science.gov (United States)

    Wei, Xiaoding; Ford, Matthew; Soler-Crespo, Rafael A.; Espinosa, Horacio D.

    2015-11-01

    Understanding the complicated failure mechanisms of hierarchical composites such as fiber yarns is essential for advanced materials design. In this study, we developed a new Monte Carlo model for predicting the mechanical properties of fiber yarns that includes statistical variation in fiber strength. Furthermore, a statistical shear load transfer law based on the shear lag analysis was derived and implemented to simulate the interactions between adjacent fibers and provide a more accurate tensile stress distribution along the overlap distance. Simulations on two types of yarns, made from different raw materials and based on distinct processing approaches, predict yarn strength values that compare favorably with experimental measurements. Furthermore, the model identified very distinct dominant failure mechanisms for the two materials, providing important insights into design features that can improve yarn strength.

  19. Measurement and Monte Carlo modeling of the spatial response of scintillation screens

    Energy Technology Data Exchange (ETDEWEB)

    Pistrui-Maximean, S.A. [CNDRI (NDT using Ionizing Radiation) Laboratory, INSA-Lyon, 69621 Villeurbanne (France)], E-mail: spistrui@gmail.com; Letang, J.M. [CNDRI (NDT using Ionizing Radiation) Laboratory, INSA-Lyon, 69621 Villeurbanne (France)], E-mail: jean-michel.letang@insa-lyon.fr; Freud, N. [CNDRI (NDT using Ionizing Radiation) Laboratory, INSA-Lyon, 69621 Villeurbanne (France); Koch, A. [Thales Electron Devices, 38430 Moirans (France); Walenta, A.H. [Detectors and Electronics Department, FB Physik, Siegen University, 57068 Siegen (Germany); Montarou, G. [Corpuscular Physics Laboratory, Blaise Pascal University, 63177 Aubiere (France); Babot, D. [CNDRI (NDT using Ionizing Radiation) Laboratory, INSA-Lyon, 69621 Villeurbanne (France)

    2007-11-01

    In this article, we propose a detailed protocol to carry out measurements of the spatial response of scintillation screens and to assess the agreement with simulated results. The experimental measurements have been carried out using a practical implementation of the slit method. A Monte Carlo simulation model of scintillator screens, implemented with the toolkit Geant4, has been used to study the influence of the acquisition setup parameters and to compare with the experimental results. An algorithm of global stochastic optimization based on a localized random search method has been implemented to adjust the optical parameters (optical scattering and absorption coefficients). The algorithm has been tested for different X-ray tube voltages (40, 70 and 100 kV). A satisfactory convergence between the results simulated with the optimized model and the experimental measurements is obtained.

  20. Validation of Monte Carlo model of HPGe detector for field-station measurement of airborne radioactivity

    Science.gov (United States)

    Šolc, J.; Kovář, P.; Dryák, P.

    2016-03-01

    A Monte Carlo (MC) model of a mechanically-cooled High Purity Germanium detection system IDM-200-V™ manufactured by ORTEC® was created, optimized and validated within the scope of the Joint Research Project ENV57 ``Metrology for radiological early warning networks in Europe''. The validation was performed for a planar source homogeneously distributed on a filter placed on top of the detector end cap and for point sources positioned farther from the detector by comparing simulated full-energy peak (FEP) detection efficiencies with the ones measured with two or three different pieces of the IDM detector. True coincidence summing correction factors were applied to the measured FEP efficiencies. Relative differences of FEP efficiencies laid within 8% that is fully satisfactory for the intended use of the detectors as instruments for airborne radioactivity measurement in field-stations. The validated MC model of the IDM-200-V™ detector is now available for further MC calculations planned in the ENV57 project.

  1. Business Scenario Evaluation Method Using Monte Carlo Simulation on Qualitative and Quantitative Hybrid Model

    Science.gov (United States)

    Samejima, Masaki; Akiyoshi, Masanori; Mitsukuni, Koshichiro; Komoda, Norihisa

    We propose a business scenario evaluation method using qualitative and quantitative hybrid model. In order to evaluate business factors with qualitative causal relations, we introduce statistical values based on propagation and combination of effects of business factors by Monte Carlo simulation. In propagating an effect, we divide a range of each factor by landmarks and decide an effect to a destination node based on the divided ranges. In combining effects, we decide an effect of each arc using contribution degree and sum all effects. Through applied results to practical models, it is confirmed that there are no differences between results obtained by quantitative relations and results obtained by the proposed method at the risk rate of 5%.

  2. Monte Carlo markovian modeling of modal competition in dual-wavelength semiconductor lasers

    Science.gov (United States)

    Chusseau, Laurent; Philippe, Fabrice; Jean-Marie, Alain

    2014-03-01

    Monte Carlo markovian models of a dual-mode semiconductor laser with quantum well (QW) or quantum dot (QD) active regions are proposed. Accounting for carriers and photons as particles that may exchange energy in the course of time allows an ab initio description of laser dynamics such as the mode competition and intrinsic laser noise. We used these models to evaluate the stability of the dual-mode regime when laser characteristics are varied: mode gains and losses, non-radiative recombination rates, intraband relaxation time, capture time in QD, transfer of excitation between QD via the wetting layer. . . As a major result, a possible steady-sate dualmode regime is predicted for specially designed QD semiconductor lasers thereby acting as a CW microwave or terahertz-beating source whereas it does not occur for QW lasers.

  3. Spreaders and sponges define metastasis in lung cancer: a Markov chain Monte Carlo mathematical model.

    Science.gov (United States)

    Newton, Paul K; Mason, Jeremy; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Norton, Larry; Kuhn, Peter

    2013-05-01

    The classic view of metastatic cancer progression is that it is a unidirectional process initiated at the primary tumor site, progressing to variably distant metastatic sites in a fairly predictable, although not perfectly understood, fashion. A Markov chain Monte Carlo mathematical approach can determine a pathway diagram that classifies metastatic tumors as "spreaders" or "sponges" and orders the timescales of progression from site to site. In light of recent experimental evidence highlighting the potential significance of self-seeding of primary tumors, we use a Markov chain Monte Carlo (MCMC) approach, based on large autopsy data sets, to quantify the stochastic, systemic, and often multidirectional aspects of cancer progression. We quantify three types of multidirectional mechanisms of progression: (i) self-seeding of the primary tumor, (ii) reseeding of the primary tumor from a metastatic site (primary reseeding), and (iii) reseeding of metastatic tumors (metastasis reseeding). The model shows that the combined characteristics of the primary and the first metastatic site to which it spreads largely determine the future pathways and timescales of systemic disease. PMID:23447576

  4. Monte Carlo climate change forecasts with a global coupled ocean-atmosphere model

    International Nuclear Information System (INIS)

    The Monte Carlo approach, which has increasingly been used during the last decade in the field of extended range weather forecasting, has been applied for climate change experiments. Four integrations with a global coupled ocean-atmosphere model have been started from different initial conditions, but with the same greenhouse gas forcing according to the IPCC scenario A. All experiments have been run for a period of 50 years. The results indicate that the time evolution of the global mean warming depends strongly on the initial state of the climate system. It can vary between 6 and 31 years. The Monte Carlo approach delivers information about both the mean response and the statistical significance of the response. While the individual members of the ensemble show a considerable variation in the climate change pattern of temperature after 50 years, the ensemble mean climate change pattern closely resembles the pattern obtained in a 100 year integration and is, at least over most of the land areas, statistically significant. The ensemble averaged sea-level change due to thermal expansion is significant in the global mean and locally over wide regions of the Pacific. The hydrological cycle is also significantly enhanced in the global mean, but locally the changes in precipitation and soil moisture are masked by the variability of the experiments. (orig.)

  5. Development of self-learning Monte Carlo technique for more efficient modeling of nuclear logging measurements

    International Nuclear Information System (INIS)

    The self-learning Monte Carlo technique has been implemented to the commonly used general purpose neutron transport code MORSE, in order to enhance sampling of the particle histories that contribute to a detector response. The parameters of all the biasing techniques available in MORSE, i.e. of splitting, Russian roulette, source and collision outgoing energy importance sampling, path length transformation and additional biasing of the source angular distribution are optimized. The learning process is iteratively performed after each batch of particles, by retrieving the data concerning the subset of histories that passed the detector region and energy range in the previous batches. This procedure has been tested on two sample problems in nuclear geophysics, where an unoptimized Monte Carlo calculation is particularly inefficient. The results are encouraging, although the presented method does not directly minimize the variance and the convergence of our algorithm is restricted by the statistics of successful histories from previous random walk. Further applications for modeling of the nuclear logging measurements seem to be promising. 11 refs., 2 figs., 3 tabs. (author)

  6. Event-driven Monte Carlo: Exact dynamics at all time scales for discrete-variable models

    Science.gov (United States)

    Mendoza-Coto, Alejandro; Díaz-Méndez, Rogelio; Pupillo, Guido

    2016-06-01

    We present an algorithm for the simulation of the exact real-time dynamics of classical many-body systems with discrete energy levels. In the same spirit of kinetic Monte Carlo methods, a stochastic solution of the master equation is found, with no need to define any other phase-space construction. However, unlike existing methods, the present algorithm does not assume any particular statistical distribution to perform moves or to advance the time, and thus is a unique tool for the numerical exploration of fast and ultra-fast dynamical regimes. By decomposing the problem in a set of two-level subsystems, we find a natural variable step size, that is well defined from the normalization condition of the transition probabilities between the levels. We successfully test the algorithm with known exact solutions for non-equilibrium dynamics and equilibrium thermodynamical properties of Ising-spin models in one and two dimensions, and compare to standard implementations of kinetic Monte Carlo methods. The present algorithm is directly applicable to the study of the real-time dynamics of a large class of classical Markovian chains, and particularly to short-time situations where the exact evolution is relevant.

  7. Triaxial projected shell model study of chiral rotation in odd-odd nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, G.H. [Department of Physics, University of Kashmir, Srinagar, 190 006 (India); Sheikh, J.A. [Department of Physics, University of Kashmir, Srinagar, 190 006 (India); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Palit, R., E-mail: palit@tifr.res.in [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Colaba, Mumbai, 400 005 (India)

    2012-01-20

    Chiral rotation observed in {sup 128}Cs is studied using the newly developed microscopic triaxial projected shell model (TPSM) approach. The observed energy levels and the electromagnetic transition probabilities of the nearly degenerate chiral dipole bands in this isotope are well reproduced by the present model. This demonstrates the broad applicability of the TPSM approach, based on a schematic interaction and angular-momentum projection technique, to explain a variety of low- and high-spin phenomena in triaxial rotating nuclei.

  8. Four shells atomic model to computer the counting efficiency of electron-capture nuclides

    International Nuclear Information System (INIS)

    The present paper develops a four-shells atomic model in order to obtain the efficiency of detection in liquid scintillation courting, Mathematical expressions are given to calculate the probabilities of the 229 different atomic rearrangements so as the corresponding effective energies. This new model will permit the study of the influence of the different parameters upon the counting efficiency for nuclides of high atomic number. (Author) 7 refs

  9. An extended empirical model for L- and M-shell ionizations of atoms

    CERN Document Server

    Talukder, M R

    2011-01-01

    An extension of the analytical model of Talukder et al (Int. J. Mass Spectrom. 269 (2008) 118) is proposed to estimate electron impact single L- and M-shell ionization cross sections of atoms with incident energy from threshold to ultra-relativistic range. Comparisons are made with other theoretical calculations. It is found that this model agrees well with the experimental data and quantum calculations.

  10. General transformation of α cluster model wave function to jj-coupling shell model in various 4N nuclei

    Science.gov (United States)

    Itagaki, N.; Matsuno, H.; Suhara, T.

    2016-09-01

    The antisymmetrized quasi-cluster model (AQCM) is a method to describe transitions from the α cluster wave functions to jj-coupling shell model wave functions. In this model, the cluster-shell transition is characterized by only two parameters: R representing the distance between α clusters and Λ describing the breaking of α clusters. The contribution of the spin-orbit interaction, very important in the jj-coupling shell model, can be taken into account starting with the α cluster model wave function. In this article we show the generality of AQCM by extending the application to heavier regions: various 4N nuclei from 4He to 100Sn. The characteristic magic numbers of the jj-coupling shell model, 28 and 50, are described starting with the α cluster model. The competition of two different configurations is discussed in 20Ne (16O + one quasi-cluster and 12C + two quasi-clusters) and 28Si (pentagon shape of five quasi-clusters and 12C + 16O). Also, we compare the energy curves for the α + 40Ca cluster configuration calculated with and without the α breaking effect in 44Ti.

  11. Application of the Sea-Level Affecting Marshes Model (SLAMM 5.0) to Shell Keys National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Sea-Level Affecting Marshes Model (SLAMM) report presents a model for projecting the effects of sea-level rise on coastal marshes and related habitats on Shell...

  12. William, a voxel model of child anatomy from tomographic images for Monte Carlo dosimetry calculations

    International Nuclear Information System (INIS)

    Full text: Medical imaging provides two-dimensional pictures of the human internal anatomy from which may be constructed a three-dimensional model of organs and tissues suitable for calculation of dose from radiation. Diagnostic CT provides the greatest exposure to radiation per examination and the frequency of CT examination is high. Esti mates of dose from diagnostic radiography are still determined from data derived from geometric models (rather than anatomical models), models scaled from adult bodies (rather than bodies of children) and CT scanner hardware that is no longer used. The aim of anatomical modelling is to produce a mathematical representation of internal anatomy that has organs of realistic size, shape and positioning. The organs and tissues are represented by a great many cuboidal volumes (voxels). The conversion of medical images to voxels is called segmentation and on completion every pixel in an image is assigned to a tissue or organ. Segmentation is time consuming. An image processing pack age is used to identify organ boundaries in each image. Thirty to forty tomographic voxel models of anatomy have been reported in the literature. Each model is of an individual, or a composite from several individuals. Images of children are particularly scarce. So there remains a need for more paediatric anatomical models. I am working on segmenting ''William'' who is 368 PET-CT images from head to toe of a seven year old boy. William will be used for Monte Carlo dose calculations of dose from CT examination using a simulated modern CT scanner.

  13. Effect of nonlinearity in hybrid kinetic Monte Carlo-continuum models.

    Science.gov (United States)

    Balter, Ariel; Lin, Guang; Tartakovsky, Alexandre M

    2012-01-01

    Recently there has been interest in developing efficient ways to model heterogeneous surface reactions with hybrid computational models that couple a kinetic Monte Carlo (KMC) model for a surface to a finite-difference model for bulk diffusion in a continuous domain. We consider two representative problems that validate a hybrid method and show that this method captures the combined effects of nonlinearity and stochasticity. We first validate a simple deposition-dissolution model with a linear rate showing that the KMC-continuum hybrid agrees with both a fully deterministic model and its analytical solution. We then study a deposition-dissolution model including competitive adsorption, which leads to a nonlinear rate, and show that in this case the KMC-continuum hybrid and fully deterministic simulations do not agree. However, we are able to identify the difference as a natural result of the stochasticity coming from the KMC surface process. Because KMC captures inherent fluctuations, we consider it to be more realistic than a purely deterministic model. Therefore, we consider the KMC-continuum hybrid to be more representative of a real system.

  14. Multiscaling in Hall-magnetohydrodynamic turbulence: insights from a shell model.

    Science.gov (United States)

    Banerjee, Debarghya; Ray, Samriddhi Sankar; Sahoo, Ganapati; Pandit, Rahul

    2013-10-25

    We show that a shell-model version of the three-dimensional Hall-magnetohydrodynamic (3D Hall-MHD) equations provides a natural theoretical model for investigating the multiscaling behaviors of velocity and magnetic structure functions. We carry out extensive numerical studies of this shell model, obtain the scaling exponents for its structure functions, in both the low-k and high-k power-law ranges of three-dimensional Hall-magnetohydrodynamic, and find that the extended-self-similarity procedure is helpful in extracting the multiscaling nature of structure functions in the high-k regime, which otherwise appears to display simple scaling. Our results shed light on intriguing solar-wind measurements.

  15. Monte Carlo Techniques for the Comprehensive Modeling of Isotopic Inventories in Future Nuclear Systems and Fuel Cycles. Final Report

    International Nuclear Information System (INIS)

    The development of Monte Carlo techniques for isotopic inventory analysis has been explored in order to facilitate the modeling of systems with flowing streams of material through varying neutron irradiation environments. This represents a novel application of Monte Carlo methods to a field that has traditionally relied on deterministic solutions to systems of first-order differential equations. The Monte Carlo techniques were based largely on the known modeling techniques of Monte Carlo radiation transport, but with important differences, particularly in the area of variance reduction and efficiency measurement. The software that was developed to implement and test these methods now provides a basis for validating approximate modeling techniques that are available to deterministic methodologies. The Monte Carlo methods have been shown to be effective in reproducing the solutions of simple problems that are possible using both stochastic and deterministic methods. The Monte Carlo methods are also effective for tracking flows of materials through complex systems including the ability to model removal of individual elements or isotopes in the system. Computational performance is best for flows that have characteristic times that are large fractions of the system lifetime. As the characteristic times become short, leading to thousands or millions of passes through the system, the computational performance drops significantly. Further research is underway to determine modeling techniques to improve performance within this range of problems. This report describes the technical development of Monte Carlo techniques for isotopic inventory analysis. The primary motivation for this solution methodology is the ability to model systems of flowing material being exposed to varying and stochastically varying radiation environments. The methodology was developed in three stages: analog methods which model each atom with true reaction probabilities (Section 2), non-analog methods

  16. Modeling the self-assembly of functionalized fullerenes on solid surfaces using Monte Carlo simulations

    Science.gov (United States)

    Bubnis, Gregory J.

    Since their discovery 25 years ago, carbon fullerenes have been widely studied for their unique physicochemical properties and for applications including organic electronics and photovoltaics. For these applications it is highly desirable for crystalline fullerene thin films to spontaneously self-assemble on surfaces. Accordingly, many studies have functionalized fullerenes with the aim of tailoring their intermolecular interactions and controlling interactions with the solid substrate. The success of these rational design approaches hinges on the subtle interplay of intermolecular forces and molecule-substrate interactions. Molecular modeling is well-suited to studying these interactions by directly simulating self-assembly. In this work, we consider three different fullerene functionalization approaches and for each approach we carry out Monte Carlo simulations of the self-assembly process. In all cases, we use a "coarse-grained" molecular representation that preserves the dominant physical interactions between molecules and maximizes computational efficiency. The first approach we consider is the traditional gold-thiolate SAM (self-assembled monolayer) strategy which tethers molecules to a gold substrate via covalent sulfur-gold bonds. For this we study an asymmetric fullerene thiolate bridged by a phenyl group. Clusters of 40 molecules are simulated on the Au(111) substrate at different temperatures and surface coverage densities. Fullerenes and S atoms are found to compete for Au(111) surface sites, and this competition prevents self-assembly of highly ordered monolayers. Next, we investigate self-assembled monolayers formed by fullerenes with hydrogen-bonding carboxylic acid substituents. We consider five molecules with different dimensions and symmetries. Monte Carlo cooling simulations are used to find the most stable solid structures of clusters adsorbed to Au(111). The results show cases where fullerene-Au(111) attraction, fullerene close-packing, and

  17. Exploring uncertainty in glacier mass balance modelling with Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    H. Machguth

    2008-06-01

    Full Text Available By means of Monte Carlo simulations we calculated uncertainty in modelled cumulative mass balance over 400 days at one particular point on the tongue of Morteratsch Glacier, Switzerland, using a glacier energy balance model of intermediate complexity. Before uncertainty assessment, the model was tuned to observed mass balance for the investigated time period and its robustness was tested by comparing observed and modelled mass balance over 11 years, yielding very small deviations. Both systematic and random uncertainties are assigned to twelve input parameters and their respective values estimated from the literature or from available meteorological data sets. The calculated overall uncertainty in the model output is dominated by systematic errors and amounts to 0.7 m w.e. or approximately 10% of total melt over the investigated time span. In order to provide a first order estimate on variability in uncertainty depending on the quality of input data, we conducted a further experiment, calculating overall uncertainty for different levels of uncertainty in measured global radiation and air temperature. Our results show that the output of a well calibrated model is subject to considerable uncertainties, in particular when applied for extrapolation in time and space where systematic errors are likely to be an important issue.

  18. Exploring uncertainty in glacier mass balance modelling with Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    H. Machguth

    2008-12-01

    Full Text Available By means of Monte Carlo simulations we calculated uncertainty in modelled cumulative mass balance over 400 days at one particular point on the tongue of Morteratsch Glacier, Switzerland, using a glacier energy balance model of intermediate complexity. Before uncertainty assessment, the model was tuned to observed mass balance for the investigated time period and its robustness was tested by comparing observed and modelled mass balance over 11 years, yielding very small deviations. Both systematic and random uncertainties are assigned to twelve input parameters and their respective values estimated from the literature or from available meteorological data sets. The calculated overall uncertainty in the model output is dominated by systematic errors and amounts to 0.7 m w.e. or approximately 10% of total melt over the investigated time span. In order to provide a first order estimate on variability in uncertainty depending on the quality of input data, we conducted a further experiment, calculating overall uncertainty for different levels of uncertainty in measured global radiation and air temperature. Our results show that the output of a well calibrated model is subject to considerable uncertainties, in particular when applied for extrapolation in time and space where systematic errors are likely to be an important issue.

  19. New software library of geometrical primitives for modelling of solids used in Monte Carlo detector simulations

    CERN Document Server

    CERN. Geneva

    2012-01-01

    We present our effort for the creation of a new software library of geometrical primitives, which are used for solid modelling in Monte Carlo detector simulations. We plan to replace and unify current geometrical primitive classes in the CERN software projects Geant4 and ROOT with this library. Each solid is represented by a C++ class with methods suited for measuring distances of particles from the surface of a solid and for determination as to whether the particles are located inside, outside or on the surface of the solid. We use numerical tolerance for determining whether the particles are located on the surface. The class methods also contain basic support for visualization. We use dedicated test suites for validation of the shape codes. These include also special performance and numerical value comparison tests for help with analysis of possible candidates of class methods as well as to verify that our new implementation proposals were designed and implemented properly. Currently, bridge classes are u...

  20. FPGA Hardware Acceleration of Monte Carlo Simulations for the Ising Model

    CERN Document Server

    Ortega-Zamorano, Francisco; Cannas, Sergio A; Jerez, José M; Franco, Leonardo

    2016-01-01

    A two-dimensional Ising model with nearest-neighbors ferromagnetic interactions is implemented in a Field Programmable Gate Array (FPGA) board.Extensive Monte Carlo simulations were carried out using an efficient hardware representation of individual spins and a combined global-local LFSR random number generator. Consistent results regarding the descriptive properties of magnetic systems, like energy, magnetization and susceptibility are obtained while a speed-up factor of approximately 6 times is achieved in comparison to previous FPGA-based published works and almost $10^4$ times in comparison to a standard CPU simulation. A detailed description of the logic design used is given together with a careful analysis of the quality of the random number generator used. The obtained results confirm the potential of FPGAs for analyzing the statistical mechanics of magnetic systems.

  1. Quantum Monte Carlo simulations of the one-dimensional extended Hubbard model

    International Nuclear Information System (INIS)

    We report preliminary results of an investigation of the thermodynamic properties of the extended Hubbard model in one- dimension, calculated with the world-line Monte Carlo method described by Hirsch et al. With strictly continuous world-lines, we are able to measure the expectation of operators that conserve fermion number locally, such as the energy and (spatial) occupation number. By permitting the world-lines to be ''broken'' stochastically, we may also measure the expectation of operators that conserve fermion number only globally, such as the single-particle Green's function. For a 32 site lattice we present preliminary calculations of the average electron occupancy as a function of wavenumber when U = 4, V = 0 and β = 16. For a half-filled band we find no indications of a Fermi surface. Slightly away from half-filling, we find Fermi-surface-like behavior similar to that found in other numerical investigations. 8 refs., 3 figs

  2. Phase diagram of the Cu-O model in the oxide superconductors: Variational Monte Carlo study

    Science.gov (United States)

    Yanagisawa, Takashi; Koike, Soh; Yamaji, Kunihiko

    2000-07-01

    A variational Monte Carlo method is formulated to study the ground state of the model for the Cu-O plane in the oxide superconductors. The possibility of superconductivity is investigated employing the Gutzwiller-projected BCS and SDW wave functions with respect to dependences on electron density ρ and transfer tpp between neighboring oxygen orbitals. Near half-filling the SDW state is most stable for both the hole and electron doping cases. Away from half-filling when hole doping ratio δ∼0.2, the d-wave superconducting state turns out to be more favorable than the SDW state. The superconducting condensation energy is in reasonable agreement with the experimental value obtained from the critical magnetic field Hc.

  3. Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models

    CERN Document Server

    Peixoto, Tiago P

    2014-01-01

    We present an efficient algorithm for the inference of stochastic block models in large networks. The algorithm can be used as an optimized Markov chain Monte Carlo (MCMC) method, with a fast mixing time and a much reduced susceptibility to getting trapped in metastable states, or as a greedy agglomerative heuristic, with an almost linear $O(N\\ln^2N)$ complexity, where $N$ is the number of nodes in the network, independent on the number of blocks being inferred. We show that the heuristic is capable of delivering results which are indistinguishable from the more exact and numerically expensive MCMC method in many artificial and empirical networks, despite being much faster. The method is entirely unbiased towards any specific mixing pattern, and in particular it does not favor assortative community structures.

  4. A Thermodynamic Model for Square-well Chain Fluid: Theory and Monte Carlo Simulation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A thermodynamic model for the freely jointed square-well chain fluids was developed based on the thermodynamic perturbation theory of Barker-Henderson, Zhang and Wertheim. In this derivation Zhang's expressions for square-well monomers improved from Barker-Henderson compressibility approximation were adopted as the reference fluid, and Wertheim's polymerization method was used to obtain the free energy term due to the bond connectivity. An analytic expression for the Helmholtz free energy of the square-well chain fluids was obtained. The expression without adjustable parameters leads to the thermodynamic consistent predictions of the compressibility factors, residual internal energy and constant-volume heat capacity for dimer,4-mer, 8-mer and 16-mer square-well fluids. The results are in good agreement with the Monte Carlo simulation. To obtain the MC data of residual internal energy and the constant-volume heat capacity needed, NVT MC simulations were performed for these square-well chain fluids.

  5. Magnetic phase diagram of the anisotropic double-exchange model: a Monte Carlo study

    International Nuclear Information System (INIS)

    The magnetic phase diagram of highly anisotropic double-exchange model systems is investigated as a function of the ratio of the anisotropic hopping integrals, i.e., tc/tab, on a three-dimensional lattice by using Monte Carlo calculations. The magnetic domain structure at low temperature is found to be a generic property of the strong anisotropy region. Moreover, the tc/tab ratio is crucial in determining the anisotropic charge transport due to the relative spin orientation of the magnetic domains. As a result, we show the anisotropic hopping integral is the most likely cause of the magnetic domain structure. It is noted that the competition between the reduced interlayer double-exchange coupling and the thermal frustration of the ordered two-dimensional ferromagnetic layer seems to be crucial in understanding the properties of layered manganites

  6. World-line quantum Monte Carlo algorithm for a one-dimensional Bose model

    Energy Technology Data Exchange (ETDEWEB)

    Batrouni, G.G. (Thinking Machines Corporation, 245 First Street, Cambridge, Massachusetts 02142 (United States)); Scalettar, R.T. (Physics Department, University of California, Davis, California 95616 (United States))

    1992-10-01

    In this paper we provide a detailed description of the ground-state phase diagram of interacting, disordered bosons on a lattice. We describe a quantum Monte Carlo algorithm that incorporates in an efficient manner the required bosonic wave-function symmetry. We consider the ordered case, where we evaluate the compressibility gap and show the lowest three Mott insulating lobes. We obtain the critical ratio of interaction strength to hopping at which the onset of superfluidity occurs for the first lobe, and the critical exponents {nu} and {ital z}. For the disordered model we show the effect of randomness on the phase diagram and the superfluid correlations. We also measure the response of the superfluid density, {rho}{sub {ital s}}, to external perturbations. This provides an unambiguous characterization of the recently observed Bose and Anderson glass phases.

  7. Multi-shell model of ion-induced nucleic acid condensation

    Energy Technology Data Exchange (ETDEWEB)

    Tolokh, Igor S.; Drozdetski, Aleksander; Pollack, Lois; Baker, Nathan A.; Onufriev, Alexey

    2016-04-21

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes in- duced by tri-valent cobalt hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. The duplex aggregation free energy is de- composed into attraction and repulsion components represented by simple analytic expressions. The source of the short-range attraction between NA duplexes in the aggregated phase is the in- teraction of CoHex ions in the overlapping regions of the “external” shells with the oppositely charged duplexes. The attraction depends on CoHex binding affinity to the “external” shell of nearly neutralized duplex and the number of ions in the shell overlapping volume. For a given NA duplex sequence and structure, these parameters are estimated from molecular dynamics simula- tion. The attraction is opposed by the residual repulsion of nearly neutralized duplexes as well as duplex configurational entropy loss upon aggregation. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA conden- sation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. The model also predicts that longer NA fragments will condense easier than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation, lends support to proposed NA condensation picture based on the multivalent “ion binding shells”.

  8. Accuracy of dynamic calculations using shell models under local impulse loading

    International Nuclear Information System (INIS)

    Depending on soil conditions and load cases in dynamic calculations of nuclear power plants today more exact mathematical models may be used. For axisymmetric structures like reactor buildings, steel containments, circular tanks or coolant towers mathematical idealisations are used which especially deal with axisymmetric shell models. The calculations for these structures mentioned above, in the last 10 years, were generally carried out by applying specialised and qualified FE-programs. In order to qualify the results obtained using axisymmetric shell models as well the approved computer program MESY (Schrader 1976, 1978) several comparisons between computation and measurements were performed. As an example for these comparisons, impulse loadings, such as aircraft impact, applied by means of a pendulum on the HDR reactor will be shown. The analytical results were obtained prior to the general tests based on a loading function measured in a preliminary test step. In these calculations 11 harmonics were considered in the frequency range up to 80 Hz. Typical results will be shown and discussed, particularly the distribution of the maximum acceleration in the meridional and circumferential direction of the building. The analytical results for the structural response obtained using axisymmetric shell models conform satisfactorily to test results, especially in the area of load introduction in both (meridian and circumferential) directions. (orig.)

  9. Large-scale shell-model calculations on the spectroscopy of $N<126$ Pb isotopes

    CERN Document Server

    Qi, Chong; Fu, G J

    2016-01-01

    Large-scale shell-model calculations are carried out in the model space including neutron-hole orbitals $2p_{1/2}$, $1f_{5/2}$, $2p_{3/2}$, $0i_{13/2}$, $1f_{7/2}$ and $0h_{9/2}$ to study the structure and electromagnetic properties of neutron deficient Pb isotopes. An optimized effective interaction is used. Good agreement between full shell-model calculations and experimental data is obtained for the spherical states in isotopes $^{194-206}$Pb. The lighter isotopes are calculated with an importance-truncation approach constructed based on the monopole Hamiltonian. The full shell-model results also agree well with our generalized seniority and nucleon-pair-approximation truncation calculations. The deviations between theory and experiment concerning the excitation energies and electromagnetic properties of low-lying $0^+$ and $2^+$ excited states and isomeric states may provide a constraint on our understanding of nuclear deformation and intruder configuration in this region.

  10. Deformed shell model study of heavy N=Z nuclei and dark matter detection

    CERN Document Server

    Sahu, R

    2016-01-01

    Deformed shell model (DSM) based on Hartree-Fock intrinsic states is applied to address two current problems of interest. Firstly, in the $f_{5/2}pg_{9/2}$ model space with jj44b effective interaction along with isospin projection, DSM is used to describe the structure of the recently observed low-lying $T=0$ and $T=1$ bands in the heavy odd-odd N=Z nucleus $^{66}$As. DSM results are close to the data and also to the shell model results. For the $T=1$ band, DSM predicts structural change at $8^+$ just as in the shell model. In addition, the lowest two $T=0$ bands are found to have quasi-deuteron structure above a $^{64}$Ge core and the $5^+$ and $9^+$ levels of the third $T=0$ band are found to be isomeric states. Secondly, in a first application of DSM to dark matter, detection rates for the lightest supersymmetric particle (a dark matter candidate) are calculated with $^{73}$Ge as the detector.

  11. Nuclear binding energies: Global collective structure and local shell-model correlations

    International Nuclear Information System (INIS)

    Nuclear binding energies and two-neutron separation energies are analysed starting from the liquid-drop model and the nuclear shell model in order to describe the global trends of the above observables. We subsequently concentrate on the Interacting Boson Model (IBM) and discuss a new method in order to provide a consistent description of both, ground-state and excited-state properties. We address the artefacts that appear when crossing mid-shell using the IBM formulation and perform detailed numerical calculations for nuclei situated in the 50-82 shell. We also concentrate on local deviations from the above global trends in binding energy and two-neutron separation energies that appear in the neutron-deficient Pb region. We address possible effects on the binding energy, caused by mixing of low-lying 0+ intruder states into the ground state, using configuration mixing in the IBM framework. We also study ground-state properties using a macroscopic-microscopic model. Detailed comparisons with recent experimental data in the Pb region are amply discussed

  12. Generalization of α-Decay Cluster-Model to Nuclei Near Spherical and Deformed Shell Closures

    Institute of Scientific and Technical Information of China (English)

    XUChang; RENZhong-Zhou

    2004-01-01

    The cluster model of a-decay is extended to the regions around doubly magic spherical nucleus 208Pb and around deformed shell closure 270Hs, respectively. The effects of spherical shell closures (N=126 and Z=82) on α-decay are investigated by introducing an N-dependent α-preformation factor and a Z-dependent one inspired by a microscopic model. Good agreement between the theoretical a-decay half-lives and the measured ones is obtained for the spherical nuclei near the doubly magic nucleus 208Pb, where the nuclear shell effect is included in the expression of α-preformation factor. The cluster model is also generalized for the decay of deformed nuclei. The branching ratios of α-decays from the ground state of a parent nucleus to the ground state (0+) of its deformed daughter nucleus and to the first excited state (2+) are calculated in the framework of the cluster model. The results indicate that a measurement of α spectroscopy is a feasible method to extract the information of nuclear deformation of superheavy nuclei around the deformed nucleus 270Hs.

  13. Generalization of α-Decay Cluster-Model to Nuclei Near Spherical and Deformed Shell Closures

    Institute of Scientific and Technical Information of China (English)

    XU Chang; REN Zhong-Zhou

    2004-01-01

    The cluster model of α-decay is extended to the regions around doubly magic spherical nucleus 208pb and around deformed shell closure 270Hs, respectively. The effects of spherical shell closures (N = 126 and Z = 82) on α-decay are investigated by introducing an N-dependent α-preformation factor and a Z-dependent one inspired by a microscopic model. Good agreement between the theoretical α-decay half-lives and the measured ones is obtained for the spherical nuclei near the doubly magic nucleus 208 Pb, where the nuclear shell effect is included in the expression of α-preformation factor. The cluster model is also generalized for the decay of deformed nuclei. The branching ratios of a-decays from the ground state of a parent nucleus to the ground state (0+) of its deformed daughter nucleus and to the first excited state (2+) are .calculated in the framework of the cluster model. The results indicate that a measurement of c spectroscopy is a feasible method to extract the information of nuclear deformation of superheavy nuclei around the deformed nucleus 270 Hs.

  14. Comparison of two reconstructed protocols using Monte Carlo modelling of cardiac SPECT

    International Nuclear Information System (INIS)

    Full text: The performance of two reconstruction protocols were evaluated using Monte Carlo (Voxld) modelling of the heart via the Zubal phantom 8.6 million photons were simulated for the myocardium al accumulated in 32x128 pixel projections over 180 degrees. Relative activity concentration in myocardium, liver and bowel was 1.1 and 0.5 respectively. The generated projections were reconstructed. a) Using ADAC software, projections are corrected for scatter using dual energy window approach and resolution compensation performed based on the frequency distance principle. Maximum likelihood (ML) reconstruction (16 iterations) is performed on the corrected projections incorporating a reconstructed map of attenuation coefficients. Post-reconstruction Butterworth filtering (order: 10, fc=0.66 Nyquist was performed. b) Using ordered subset ML software (Macquarie University reconstruction (6 iterations: subset size 8) incorporates attenuation correction and compensation for resolution. Scatter is estimated using transmission-based model and is incorporated as a constant offset in the forward projection step. We measured a bias of 26% (method a) and 14% (method b) in the reconstructed slices compared to the original myocardium activity. The myocardium to ventricle contrast was 0.71 (method a) and 0.68 (method b). These results suggest that although qualitative results are similar, there is a major difference in quantitative accuracy. Further Monte Carlo simulations demonstrate that the ratio of scatter energy window (111 125 keV) to photopeak (126-154 keV) counts varies significantly for different projections (0.57 - 0.96). This suggest that the use of a constant ratio in the dual energy window approach may be a major source of error

  15. The structure of the spherical tensor forces in the USD and GXPF1A shell model Hamiltonians

    Institute of Scientific and Technical Information of China (English)

    WANG Han-Kui; GAO Zao-Chun; CHEN Yong-Shou; GUO Jian-You; CHEN Yong-Jing; TU Ya

    2011-01-01

    The realistic shell model Hamiltonians, USD and GXPF1A, have been transformed from the particle-particle (normal) representation to the particle-hole representation (multipole-multipole)by using the known formulation in Ref. [1].The obtained multipole-multipole terms were compared with the known spherical tensor forces, including the coupled ones. It is the first time the contributions of the coupled tensor forces to the shell model Hamiltonian have been investigated. It has been shown that some coupled-tensor forces, such as [r2Y2σ]1,also give important contributions to the shell model Hamiltonian.

  16. Structure of liposome encapsulating proteins characterized by X-ray scattering and shell-modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Mitsuhiro, E-mail: mhirai@gunma-u.ac.jp; Kimura, Ryota; Takeuchi, Kazuki; Hagiwara, Yoshihiko [Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510 (Japan); Kawai-Hirai, Rika [Gunma University, 3-39-15 Shouwa, Maebashi 371-8512 (Japan); Ohta, Noboru [JASRI, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Igarashi, Noriyuki; Shimuzu, Nobutaka [KEK-PF, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2013-11-01

    Wide-angle X-ray scattering data using a third-generation synchrotron radiation source are presented. Lipid liposomes are promising drug delivery systems because they have superior curative effects owing to their high adaptability to a living body. Lipid liposomes encapsulating proteins were constructed and the structures examined using synchrotron radiation small- and wide-angle X-ray scattering (SR-SWAXS). The liposomes were prepared by a sequential combination of natural swelling, ultrasonic dispersion, freeze-throw, extrusion and spin-filtration. The liposomes were composed of acidic glycosphingolipid (ganglioside), cholesterol and phospholipids. By using shell-modeling methods, the asymmetric bilayer structure of the liposome and the encapsulation efficiency of proteins were determined. As well as other analytical techniques, SR-SWAXS and shell-modeling methods are shown to be a powerful tool for characterizing in situ structures of lipid liposomes as an important candidate of drug delivery systems.

  17. Study of nickel nuclei by (p,d) and (p,t) reactions. Shell model interpretation

    International Nuclear Information System (INIS)

    The experimental techniques employed at the Nuclear Science Institute (Grenoble) and at Michigan State University are described. The development of the transition amplitude calculation of the one-or two-nucleon transfer reactions is described first, after which the principle of shell model calculations is outlined. The choices of configuration space and two-body interactions are discussed. The DWBA method of analysis is studied in more detail. The effects of different approximations and the influence of the parameters are examined. Special attention is paid to the j-dependence of the form of the angular distributions, on effect not explained in the standard DWBA framework. The results are analysed and a large section is devoted to a comparative study of the experimental results obtained and those from other nuclear reactions. The spectroscopic data obtained are compared with the results of shell model calculations

  18. On Spectral Laws of 2D-Turbulence in Shell Models

    CERN Document Server

    Frick, P; Frick, Peter; Aurell, Erik

    1993-01-01

    We consider a class of shell models of 2D-turbulence. They conserve inertially the analogues of energy and enstrophy, two quadratic forms in the shell amplitudes. Inertially conserving two quadratic integrals leads to two spectral ranges. We study in detail the one characterized by a forward cascade of enstrophy and spectrum close to Kraichnan's $k^{-3}$--law. In an inertial range over more than 15 octaves, the spectrum falls off as $k^{-3.05\\pm 0.01}$, with the same slope in all models. We identify a ``spurious'' intermittency effect, in that the energy spectrum over a rather wide interval adjoing the viscous cut-off, is well approximated by a power-law with fall-off significantly steeper than $k^{-3}$.

  19. Analytical models of icosahedral shells for 3D optical imaging of viruses

    CERN Document Server

    Jafarpour, Aliakbar

    2014-01-01

    A modulated icosahedral shell with an inclusion is a concise description of many viruses, including recently-discovered large double-stranded DNA ones. Many X-ray scattering patterns of such viruses show major polygonal fringes, which can be reproduced in image reconstruction with a homogeneous icosahedral shell. A key question regarding a low-resolution reconstruction is how to introduce further changes to the 3D profile in an efficient way with only a few parameters. Here, we derive and compile different analytical models of such an object with consideration of practical optical setups and typical structures of such viruses. The benefits of such models include 1) inherent filtering and suppressing different numerical errors of a discrete grid, 2) providing a concise and meaningful set of descriptors for feature extraction in high-throughput classification/sorting and higher-resolution cumulative reconstructions, 3) disentangling (physical) resolution from (numerical) discretization step and having a vector ...

  20. Modeling and optimal vibration control of conical shell with piezoelectric actuators

    Institute of Scientific and Technical Information of China (English)

    Wang Weiyuan; Wei Yingjie; Wang Cong; Zou Zhenzhu

    2008-01-01

    In this paper numerical simulations of active vibration control for conical shell structure with distributed piezoelectric actuators is presented. The dynamic equations of conical shell structure are derived using the finite element model (FEM) based on Mindlin's plate theory. The results of modal calculations with FEM model are accurate enough for engineering applications in comparison with experiment results. The Electromechanical influence of distributed piezoelectric actuators is treated as a boundary condition for estimating the control force. The independent modal space control (IMSC) method is adopted and the optimal linear quadratic state feedback control is implemented so that the best control performance with the least control cost can be achieved. Optimal control effects are compared with controlled responses with other non-optimal control parameters. Numerical simulation results are given to demonstrate the effectiveness of the control scheme.

  1. Dynamo onset as a first-order transition: lessons from a shell model for magnetohydrodynamics.

    Science.gov (United States)

    Sahoo, Ganapati; Mitra, Dhrubaditya; Pandit, Rahul

    2010-03-01

    We carry out systematic and high-resolution studies of dynamo action in a shell model for magnetohydrodynamic (MHD) turbulence over wide ranges of the magnetic Prandtl number PrM and the magnetic Reynolds number ReM. Our study suggests that it is natural to think of dynamo onset as a nonequilibrium first-order phase transition between two different turbulent, but statistically steady, states. The ratio of the magnetic and kinetic energies is a convenient order parameter for this transition. By using this order parameter, we obtain the stability diagram (or nonequilibrium phase diagram) for dynamo formation in our MHD shell model in the (PrM-1,ReM) plane. The dynamo boundary, which separates dynamo and no-dynamo regions, appears to have a fractal character. We obtain a hysteretic behavior of the order parameter across this boundary and suggestions of nucleation-type phenomena. PMID:20365864

  2. Stochastic shell models driven by a multiplicative fractional Brownian-motion

    Science.gov (United States)

    Bessaih, Hakima; Garrido-Atienza, María J.; Schmalfuss, Björn

    2016-04-01

    We prove existence and uniqueness of the solution of a stochastic shell-model. The equation is driven by an infinite dimensional fractional Brownian-motion with Hurst-parameter H ∈(1 / 2 , 1) , and contains a non-trivial coefficient in front of the noise which satisfies special regularity conditions. The appearing stochastic integrals are defined in a fractional sense. First, we prove the existence and uniqueness of variational solutions to approximating equations driven by piecewise linear continuous noise, for which we are able to derive important uniform estimates in some functional spaces. Then, thanks to a compactness argument and these estimates, we prove that these variational solutions converge to a limit solution, which turns out to be the unique pathwise mild solution associated to the shell-model with fractional noise as driving process.

  3. Microscopic shell-model description of an exotic nucleus ^{16}C

    CERN Document Server

    Fujii, S; Mizusaki, T; Otsuka, T; Sebe, T

    2007-01-01

    The structure of neutron-rich carbon isotopes ^{14, 16, 18}C is described by introducing a new microscopic method of the no-core shell-model type. The model space is composed of the 0s, 0p, 1s0d, and 1p0f shells. The effective interaction is microscopically derived from the CD-Bonn potential and the Coulomb force through a unitary transformation. Calculated low-lying energy levels of ^{16}C agree well with the experiment. The B(E2;2_{1}^{+} \\to 0_{1}^{+}) value is calculated with the bare charges. The anomalously hindered B(E2) value for ^{16}C, measured recently, is reproduced.

  4. Study of Monte Carlo Simulation Method for Methane Phase Diagram Prediction using Two Different Potential Models

    KAUST Repository

    Kadoura, Ahmad

    2011-06-06

    Lennard‐Jones (L‐J) and Buckingham exponential‐6 (exp‐6) potential models were used to produce isotherms for methane at temperatures below and above critical one. Molecular simulation approach, particularly Monte Carlo simulations, were employed to create these isotherms working with both canonical and Gibbs ensembles. Experiments in canonical ensemble with each model were conducted to estimate pressures at a range of temperatures above methane critical temperature. Results were collected and compared to experimental data existing in literature; both models showed an elegant agreement with the experimental data. In parallel, experiments below critical temperature were run in Gibbs ensemble using L‐J model only. Upon comparing results with experimental ones, a good fit was obtained with small deviations. The work was further developed by adding some statistical studies in order to achieve better understanding and interpretation to the estimated quantities by the simulation. Methane phase diagrams were successfully reproduced by an efficient molecular simulation technique with different potential models. This relatively simple demonstration shows how powerful molecular simulation methods could be, hence further applications on more complicated systems are considered. Prediction of phase behavior of elemental sulfur in sour natural gases has been an interesting and challenging field in oil and gas industry. Determination of elemental sulfur solubility conditions helps avoiding all kinds of problems caused by its dissolution in gas production and transportation processes. For this purpose, further enhancement to the methods used is to be considered in order to successfully simulate elemental sulfur phase behavior in sour natural gases mixtures.

  5. Modeling of composite latex particle morphology by off-lattice Monte Carlo simulation.

    Science.gov (United States)

    Duda, Yurko; Vázquez, Flavio

    2005-02-01

    Composite latex particles have shown a great range of applications such as paint resins, varnishes, water borne adhesives, impact modifiers, etc. The high-performance properties of this kind of materials may be explained in terms of a synergistical combination of two different polymers (usually a rubber and a thermoplastic). A great variety of composite latex particles with very different morphologies may be obtained by two-step emulsion polymerization processes. The formation of specific particle morphology depends on the chemical and physical nature of the monomers used during the synthesis, the process temperature, the reaction initiator, the surfactants, etc. Only a few models have been proposed to explain the appearance of the composite particle morphologies. These models have been based on the change of the interfacial energies during the synthesis. In this work, we present a new three-component model: Polymer blend (flexible and rigid chain particles) is dispersed in water by forming spherical cavities. Monte Carlo simulations of the model in two dimensions are used to determine the density distribution of chains and water molecules inside the suspended particle. This approach allows us to study the dependence of the morphology of the composite latex particles on the relative hydrophilicity and flexibility of the chain molecules as well as on their density and composition. It has been shown that our simple model is capable of reproducing the main features of the various morphologies observed in synthesis experiments.

  6. Study of rotational bands of 129La usingthe projected shell model

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The projected shell model is applied to the nucleus 129La.The present results of theoretical calculations about the one-quasiproton bandsare compared with experimental data. The agreement with both the yrastπh11/2 band πg7/2 band is satisfactory.We also assign the πg7/2(X)[νh11/2]2 configuration with an oblate shape for one of bands in 129La.

  7. Lattice dynamics and spin-phonon interactions in multiferroic RMn2O5: Shell model calculations

    Science.gov (United States)

    Litvinchuk, A. P.

    2009-08-01

    The results of the shell model lattice dynamics calculations of multiferroic RMn2O5 materials (space group Pbam) are reported. Theoretical even-parity eigenmode frequencies are compared with those obtained experimentally in polarized Raman scattering experiments for R=Ho,Dy. Analysis of displacement patterns allows to identify vibrational modes which facilitate spin-phonon coupling by modulating the Mn-Mn exchange interaction and provides explanation of the observed anomalous temperature behavior of phonons.

  8. Rayleigh-Taylor finger instability mixing in hydrodynamic shell convection models

    OpenAIRE

    Mocak, Miroslav; Mueller, Ewald

    2010-01-01

    Mixing processes in stars driven by composition gradients as a result of the Rayleigh-Taylor instability are not anticipated. They are supported only by hydrodynamic studies of stellar convection. We find that such mixing occurs below the bottom edge of convection zones in our multidimensional hydrodynamic shell convection models. It operates at interfaces created by off-center nuclear burning, where less dense gas with higher mean molecular weight is located above denser gas with a lower mea...

  9. Spectral statistics of rare-earth nuclei: Investigation of shell model configuration effect

    CERN Document Server

    Sabri, H

    2015-01-01

    The spectral statistics of even-even rare-earth nuclei are investigated by using all the available empirical data for Ba, Ce, Nd, Sm, Gd, Dy, Er, Yb and Hf isotopes. The Berry- Robnik distribution and Maximum Likelihood estimation technique are used for analyses. An obvious deviation from GOE is observed for considered nuclei and there are some suggestions about the effect due to mass, deformation parameter and shell model configurations.

  10. An application of the three-dimensional q-deformed harmonic oscillator to the shell model

    Energy Technology Data Exchange (ETDEWEB)

    Raychev, P.P. [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Monte S Angelo, via Cintia, I-80125 Napoli (Italy); Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigrad Road, BG-1784 Sofia (Bulgaria); Roussev, R.P.; Terziev, P.A. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigrad Road, BG-1784 Sofia (Bulgaria); Lo Iudice, N. [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Monte S Angelo, via Cintia, I-80125 Napoli (Italy)

    1998-10-01

    A procedure for the construction of a q-deformed version of the Hamiltonian of the three-dimensional harmonic oscillator (HO), based on the application of q-deformed algebras, is presented. The spectrum of this Hamiltonian is not degenerated in the quantum number of the q-deformed angular momentum. The results together with their applicability to the shell model are compared with the predictions of the modified HO. (author)

  11. A new analytical model for vibration of a cylindrical shell and cardboard liner with focus on interfacial distributed damping

    Science.gov (United States)

    Plattenburg, Joseph; Dreyer, Jason T.; Singh, Rajendra

    2016-06-01

    This paper proposes a new analytical model for a thin cylindrical shell that utilizes a homogeneous cardboard liner to increase modal damping. Such cardboard liners are frequently used as noise and vibration control devices for cylindrical shell-like structures in automotive drive shafts. However, most prior studies on such lined structures have only investigated the associated damping mechanisms in an empirical manner. Only finite element models and experimental methods have been previously used for characterization, whereas no analytical studies have addressed sliding friction interaction at the shell-liner interface. The proposed theory, as an extension of a prior experimental study, uses the Rayleigh-Ritz method and incorporates material structural damping along with frequency-dependent viscous and Coulomb interfacial damping formulations for the shell-liner interaction. Experimental validation of the proposed model, using a thin cylindrical shell with three different cardboard liner thicknesses, is provided to validate the new model, and to characterize the damping parameters. Finally, the model is used to investigate the effect of the liner and the damping parameters on the modal attenuation of the shell vibration, in particular for the higher-order coupled shell modes.

  12. 3D MODELS COMPARISON OF COMPLEX SHELL IN UNDERWATER AND DRY ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    S. Troisi

    2015-04-01

    Full Text Available In marine biology the shape, morphology, texture and dimensions of the shells and organisms like sponges and gorgonians are very important parameters. For example, a particular type of gorgonian grows every year only few millimeters; this estimation was conducted without any measurement instrument but it has been provided after successive observational studies, because this organism is very fragile: the contact could compromise its structure and outliving. Non-contact measurement system has to be used to preserve such organisms: the photogrammetry is a method capable to assure high accuracy without contact. Nevertheless, the achievement of a 3D photogrammetric model of complex object (as gorgonians or particular shells is a challenge in normal environments, either with metric camera or with consumer camera. Indeed, the successful of automatic target-less image orientation and the image matching algorithms is strictly correlated to the object texture properties and of camera calibration quality as well. In the underwater scenario, the environment conditions strongly influence the results quality; in particular, water’s turbidity, the presence of suspension, flare and other optical aberrations decrease the image quality reducing the accuracy and increasing the noise on the 3D model. Furthermore, seawater density variability influences its refraction index and consequently the interior orientation camera parameters. For this reason, the camera calibration has to be performed in the same survey conditions. In this paper, a comparison between the 3D models of a Charonia Tritonis shell are carried out through surveys conducted both in dry and underwater environments.

  13. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 2

    International Nuclear Information System (INIS)

    Model 2 in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. Both the cylinder and the nozzle of model 2 had outside diameters of 10 in., giving a d0/D0 ratio of 1.0, and both had outside diameter/thickness ratios of 100. Sixteen separate loading cases in which one end of the cylinder was rigidly held were analyzed. An internal pressure loading, three mutually perpendicular force components, and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. In addition to these 13 loadings, 3 additional loads were applied to the nozzle (in-plane bending moment, out-of-plane bending moment, and axial force) with the free end of the cylinder restrained. The experimental stress distributions for each of the 16 loadings were obtained using 152 three-gage strain rosettes located on the inner and outer surfaces. All the 16 loading cases were also analyzed theoretically using a finite-element shell analysis. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good general agreement, and it is felt that the analysis would be satisfactory for most engineering purposes. (auth)

  14. Finite-element modeling of an acoustic cloak for three-dimensional flexible shells with structural excitation

    Science.gov (United States)

    Ramadan, M.; Akl, W.; Elnady, T.; Elsabbagh, A.

    2011-06-01

    A finite-element model for three-dimensional acoustic cloaks in both cylindrical and spherical coordinates is presented. The model is developed through time-harmonic analysis to study pressure and velocity field distributions as well as the cloak's performance. The model developed accounts for the fluid-structure interaction of thin fluid-loaded shells. A plane strain model is used for the thin shell. Mechanical harmonic excitation is applied to the fluid-loaded shell to investigate the effect of mechanical oscillation of the shell on the performance of the acoustic cloak. In developing this model, a deeper insight into the acoustic cloak phenomena presented by Cummer and Shurig in 2007 is presented. Different nonlinear coordinate transformations are presented to study their effect on the acoustic cloak performance.

  15. Monte Carlo source model for photon beam radiotherapy: photon source characteristics

    International Nuclear Information System (INIS)

    A major barrier to widespread clinical implementation of Monte Carlo dose calculation is the difficulty in characterizing the radiation source within a generalized source model. This work aims to develop a generalized three-component source model (target, primary collimator, flattening filter) for 6- and 18-MV photon beams that match full phase-space data (PSD). Subsource by subsource comparison of dose distributions, using either source PSD or the source model as input, allows accurate source characterization and has the potential to ease the commissioning procedure, since it is possible to obtain information about which subsource needs to be tuned. This source model is unique in that, compared to previous source models, it retains additional correlations among PS variables, which improves accuracy at nonstandard source-to-surface distances (SSDs). In our study, three-dimensional (3D) dose calculations were performed for SSDs ranging from 50 to 200 cm and for field sizes from 1x1 to 30x30 cm2 as well as a 10x10 cm2 field 5 cm off axis in each direction. The 3D dose distributions, using either full PSD or the source model as input, were compared in terms of dose-difference and distance-to-agreement. With this model, over 99% of the voxels agreed within ±1% or 1 mm for the target, within 2% or 2 mm for the primary collimator, and within ±2.5% or 2 mm for the flattening filter in all cases studied. For the dose distributions, 99% of the dose voxels agreed within 1% or 1 mm when the combined source model--including a charged particle source and the full PSD as input--was used. The accurate and general characterization of each photon source and knowledge of the subsource dose distributions should facilitate source model commissioning procedures by allowing scaling the histogram distributions representing the subsources to be tuned

  16. MCHIT - Monte Carlo model for proton and heavy-ion therapy

    CERN Document Server

    Pshenichnov, Igor; Greiner, Walter

    2007-01-01

    We study the propagation of nucleons and nuclei in tissue-like media within a Monte Carlo Model for Heavy-ion Therapy (MCHIT) based on the GEANT4 toolkit (version 8.2). The model takes into account fragmentation of projectile nuclei and secondary interactions of produced nuclear fragments. Model predictions are validated with available experimental data obtained for water and PMMA phantoms irradiated by monoenergetic carbon-ion beams. The MCHIT model describes well (1) the depth-dose distributions in water and PMMA, (2) the doses measured for fragments of certain charge, (3) the distributions of positron emitting nuclear fragments produced by carbon-ion beams, and (4) the energy spectra of secondary neutrons measured at different angles to the beam direction. Radial dose profiles for primary nuclei and for different projectile fragments are calculated and discussed as possible input for evaluation of biological dose distributions. It is shown that at the periphery of the transverse dose profile close to the B...

  17. Modeling of molecular nitrogen collisions and dissociation processes for direct simulation Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Neal, E-mail: neal.parsons@cd-adapco.com; Levin, Deborah A., E-mail: deblevin@illinois.edu [Department of Aerospace Engineering, The Pennsylvania State University, 233 Hammond Building, University Park, Pennsylvania 16802 (United States); Duin, Adri C. T. van, E-mail: acv13@engr.psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 136 Research East, University Park, Pennsylvania 16802 (United States); Zhu, Tong, E-mail: tvz5037@psu.edu [Department of Aerospace Engineering, The Pennsylvania State University, 136 Research East, University Park, Pennsylvania 16802 (United States)

    2014-12-21

    The Direct Simulation Monte Carlo (DSMC) method typically used for simulating hypersonic Earth re-entry flows requires accurate total collision cross sections and reaction probabilities. However, total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, so their reliability is unknown for the high temperatures observed in hypersonic flows. Existing DSMC reaction models accurately reproduce experimental equilibrium reaction rates, but the applicability of these rates to the strong thermal nonequilibrium observed in hypersonic shocks is unknown. For hypersonic flows, these modeling issues are particularly relevant for nitrogen, the dominant species of air. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method is used to accurately compute collision and reaction cross sections for the N{sub 2}({sup 1}Σ{sub g}{sup +})-N{sub 2}({sup 1}Σ{sub g}{sup +}) collision pair for conditions expected in hypersonic shocks using a new potential energy surface developed using a ReaxFF fit to recent advanced ab initio calculations. The MD/QCT-computed reaction probabilities were found to exhibit better physical behavior and predict less dissociation than the baseline total collision energy reaction model for strong nonequilibrium conditions expected in a shock. The MD/QCT reaction model compared well with computed equilibrium reaction rates and shock-tube data. In addition, the MD/QCT-computed total cross sections were found to agree well with established variable hard sphere total cross sections.

  18. Solution of deterministic-stochastic epidemic models by dynamical Monte Carlo method

    Science.gov (United States)

    Aièllo, O. E.; Haas, V. J.; daSilva, M. A. A.; Caliri, A.

    2000-07-01

    This work is concerned with dynamical Monte Carlo (MC) method and its application to models originally formulated in a continuous-deterministic approach. Specifically, a susceptible-infected-removed-susceptible (SIRS) model is used in order to analyze aspects of the dynamical MC algorithm and achieve its applications in epidemic contexts. We first examine two known approaches to the dynamical interpretation of the MC method and follow with the application of one of them in the SIRS model. The working method chosen is based on the Poisson process where hierarchy of events, properly calculated waiting time between events, and independence of the events simulated, are the basic requirements. To verify the consistence of the method, some preliminary MC results are compared against exact steady-state solutions and other general numerical results (provided by Runge-Kutta method): good agreement is found. Finally, a space-dependent extension of the SIRS model is introduced and treated by MC. The results are interpreted under and in accordance with aspects of the herd-immunity concept.

  19. A Monte Carlo risk assessment model for acrylamide formation in French fries.

    Science.gov (United States)

    Cummins, Enda; Butler, Francis; Gormley, Ronan; Brunton, Nigel

    2009-10-01

    The objective of this study is to estimate the likely human exposure to the group 2a carcinogen, acrylamide, from French fries by Irish consumers by developing a quantitative risk assessment model using Monte Carlo simulation techniques. Various stages in the French-fry-making process were modeled from initial potato harvest, storage, and processing procedures. The model was developed in Microsoft Excel with the @Risk add-on package. The model was run for 10,000 iterations using Latin hypercube sampling. The simulated mean acrylamide level in French fries was calculated to be 317 microg/kg. It was found that females are exposed to smaller levels of acrylamide than males (mean exposure of 0.20 microg/kg bw/day and 0.27 microg/kg bw/day, respectively). Although the carcinogenic potency of acrylamide is not well known, the simulated probability of exceeding the average chronic human dietary intake of 1 microg/kg bw/day (as suggested by WHO) was 0.054 and 0.029 for males and females, respectively. A sensitivity analysis highlighted the importance of the selection of appropriate cultivars with known low reducing sugar levels for French fry production. Strict control of cooking conditions (correlation coefficient of 0.42 and 0.35 for frying time and temperature, respectively) and blanching procedures (correlation coefficient -0.25) were also found to be important in ensuring minimal acrylamide formation. PMID:19659557

  20. Development of a randomized 3D cell model for Monte Carlo microdosimetry simulations

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, Michael; Bezak, Eva; Penfold, Scott [School of Chemistry and Physics, University of Adelaide, North Terrace, Adelaide 5005, South Australia (Australia) and Department of Medical Physics, Royal Adelaide Hospital, North Terrace, Adelaide 5000, South Australia (Australia)

    2012-06-15

    Purpose: The objective of the current work was to develop an algorithm for growing a macroscopic tumor volume from individual randomized quasi-realistic cells. The major physical and chemical components of the cell need to be modeled. It is intended to import the tumor volume into GEANT4 (and potentially other Monte Carlo packages) to simulate ionization events within the cell regions. Methods: A MATLAB Copyright-Sign code was developed to produce a tumor coordinate system consisting of individual ellipsoidal cells randomized in their spatial coordinates, sizes, and rotations. An eigenvalue method using a mathematical equation to represent individual cells was used to detect overlapping cells. GEANT4 code was then developed to import the coordinate system into GEANT4 and populate it with individual cells of varying sizes and composed of the membrane, cytoplasm, reticulum, nucleus, and nucleolus. Each region is composed of chemically realistic materials. Results: The in-house developed MATLAB Copyright-Sign code was able to grow semi-realistic cell distributions ({approx}2 Multiplication-Sign 10{sup 8} cells in 1 cm{sup 3}) in under 36 h. The cell distribution can be used in any number of Monte Carlo particle tracking toolkits including GEANT4, which has been demonstrated in this work. Conclusions: Using the cell distribution and GEANT4, the authors were able to simulate ionization events in the individual cell components resulting from 80 keV gamma radiation (the code is applicable to other particles and a wide range of energies). This virtual microdosimetry tool will allow for a more complete picture of cell damage to be developed.

  1. Radio to $\\gamma$-Ray Emission from Shell-type Supernova Remnants Predictions from Non-linear Shock Acceleration Models

    CERN Document Server

    Baring, M G; Reynolds, S P; Grenier, I; Goret, P; Baring, Matthew G.; Ellison, Donald C.; Reynolds, Stephen P; Grenier, Isabelle; Goret, Philippe

    1999-01-01

    Supernova remnants (SNRs) are widely believed to be the principal source of galactic cosmic rays. Such energetic particles can produce gamma-rays and lower energy photons via interactions with the ambient plasma. In this paper, we present results from a Monte Carlo simulation of non-linear shock structure and acceleration coupled with photon emission in shell-like SNRs. These non-linearities are a by-product of the dynamical influence of the accelerated cosmic rays on the shocked plasma and result in distributions of cosmic rays which deviate from pure power-laws. Such deviations are crucial to acceleration efficiency and spectral considerations, producing GeV/TeV intensity ratios that are quite different from test particle predictions. The Sedov scaling solution for SNR expansions is used to estimate important shock parameters for input into the Monte Carlo simulation. We calculate ion and electron distributions that spawn neutral pion decay, bremsstrahlung, inverse Compton, and synchrotron emission, yieldin...

  2. Large-scale shell-model analysis of the neutrinoless $\\beta\\beta$ decay of $^{48}$Ca

    CERN Document Server

    Iwata, Y; Otsuka, T; Utsuno, Y; Menendez, J; Honma, M; Abe, T

    2016-01-01

    We present the nuclear matrix element for the neutrinoless double-beta decay of $^{48}$Ca based on large-scale shell-model calculations including two harmonic oscillator shells ($sd$ and $pf$ shells). The excitation spectra of $^{48}$Ca and $^{48}$Ti, and the two-neutrino double-beta decay of $^{48}$Ca are reproduced in good agreement to experiment. We find that the neutrinoless double-beta decay nuclear matrix element is enhanced by about 30\\% compared to $pf$-shell calculations. This reduces the decay lifetime by almost a factor of two. The matrix-element increase is mostly due to pairing correlations associated with cross-shell $sd$-$pf$ excitations. We also investigate possible implications for heavier neutrinoless double-beta decay candidates.

  3. EURADOS intercomparison on measurements and Monte Carlo modelling for the assessment of Americium in a USTUR leg phantom

    International Nuclear Information System (INIS)

    A collaboration of the EURADOS working group on 'Internal Dosimetry' and the United States Transuranium and Uranium Registries (USTUR) has taken place to carry out an intercomparison on measurements and Monte Carlo modelling determining americium deposited in the bone of a USTUR leg phantom. Preliminary results and conclusions of this intercomparison exercise are presented here. (authors)

  4. ANALYSES ON NONLINEAR COUPLING OF MAGNETO-THERMO-ELASTICITY OF FERROMAGNETIC THIN SHELL-Ⅰ: GENERALIZED VARIATIONAL THEORETICAL MODELING

    Institute of Scientific and Technical Information of China (English)

    Xingzhe Wang; Xiaojing Zheng

    2009-01-01

    Based on the generalized variational principle of magneto-thermo-elasticity of the ferromagnetic elastic medium, a nonlinear coupling theoretical modeling for a ferromagnetic thin shell is developed. All governing equations and boundary conditions for the ferromagnetic shell are obtained from the variational manipulations on the magnetic scalar potential, temperature and the elastic displacement related to the total energy functional. The multi-field couplings and geometrical nonlinearity of the ferromagnetic thin shell are taken into account in the modeling. The general modeling can be further deduced to existing models of the magneto-elasticity and the thermo-elasticity of a ferromagnetic shell and magneto-thermo-elasticity of a ferromagnetic plate, which axe coincident with the ones in literature.

  5. Microscopic foundation of the interacting boson model in the sd-shell nuclei

    International Nuclear Information System (INIS)

    Starting from an isospin invariant shell-model hamiltonian, we describe a method for deriving microscopically the IBM-hamiltonian appropriate to light sd-shell nuclei. The key ingredients of our approach are: a) The Belyaev-Zelevinsky-Marshalek (BZM) bosonization procedure; b) two successive unitary transformations that extract the 'maximally decoupled' collective bosons with angular momenta J = 0 (s+ππ, s+νν, s+πν) and J = 2 (d+ππ, d+νν, d+πν(T = 0), d+πν(T = 1)). The method is applied to obtain the low-energy spectra and the electron scattering form factors for the 01+ → 21+ transitions in 20Ne and 24Mg. Good agreement with the exact shell-model results is achieved. The inclusion of proton-neutron bosons (s+πν, d+πν(T = 1), d+πν(T = 0)), as well as the renormalization of boson parameters due to the non-collective degrees of freedom, are shown to play a crucial role. (orig.)

  6. Large scale shell model calculations for even-even $^{62-66}$Fe isotopes

    CERN Document Server

    Srivastava, P C

    2009-01-01

    The recently measured experimental data of Legnaro National Laboratories on neutron rich even isotopes of $^{62-66}$Fe with A=62,64,66 have been interpreted in the framework of large scale shell model. Calculations have been performed with a newly derived effective interaction GXPF1A in full $\\it{fp}$ space without truncation. The experimental data is very well explained for $^{62}$Fe, satisfactorily reproduced for $^{64}$Fe and poorly fitted for $^{66}$Fe. The increasing collectivity reflected in experimental data when approaching N=40 is not reproduced in calculated values. This indicates that whereas the considered valence space is adequate for $^{62}$Fe, inclusion of higher orbits from $\\it{sdg}$ shell is required for describing $^{66}$Fe.

  7. β-decay half-life of V50 calculated by the shell model

    Science.gov (United States)

    Haaranen, M.; Srivastava, P. C.; Suhonen, J.; Zuber, K.

    2014-10-01

    In this work we survey the detectability of the β- channel of 2350V leading to the first excited 2+ state in 2450Cr. The electron-capture (EC) half-life corresponding to the transition of 2350V to the first excited 2+ state in 2250Ti had been measured earlier. Both of the mentioned transitions are 4th-forbidden non-unique. We have performed calculations of all the involved wave functions by using the nuclear shell model with the GXPF1A interaction in the full f-p shell. The computed half-life of the EC branch is in good agreement with the measured one. The predicted half-life for the β- branch is in the range ≈2×1019 yr whereas the present experimental lower limit is 1.5×1018 yr. We discuss also the experimental lay-out needed to detect the β--branch decay.

  8. The Mass Shell of the Nelson Model without Cut-Offs

    CERN Document Server

    Bachmann, S; Pizzo, A

    2011-01-01

    The massless Nelson model describes non-relativistic, spinless quantum particles interacting with a relativistic, massless, scalar quantum field. The interaction is linear in the field. We analyze the one particle sector. First, we construct the renormalized mass shell of the non-relativistic particle for an arbitrarily small infrared cut-off that turns off the interaction with the low energy modes of the field. No ultraviolet cut-off is imposed. Second, we implement a suitable Bogolyubov transformation of the Hamiltonian in the infrared regime. This transformation depends on the total momentum of the system and is non-unitary as the infrared cut-off is removed. For the transformed Hamiltonian we construct the mass shell in the limit where both the ultraviolet and the infrared cut-off are removed. Our approach is constructive and leads to explicit expansion formulae which are amenable to rigorously control the S-matrix elements.

  9. Monte Carlo simulation of OLS and linear mixed model inference of phenotypic effects on gene expression

    Science.gov (United States)

    2016-01-01

    Background Self-contained tests estimate and test the association between a phenotype and mean expression level in a gene set defined a priori. Many self-contained gene set analysis methods have been developed but the performance of these methods for phenotypes that are continuous rather than discrete and with multiple nuisance covariates has not been well studied. Here, I use Monte Carlo simulation to evaluate the performance of both novel and previously published (and readily available via R) methods for inferring effects of a continuous predictor on mean expression in the presence of nuisance covariates. The motivating data are a high-profile dataset which was used to show opposing effects of hedonic and eudaimonic well-being (or happiness) on the mean expression level of a set of genes that has been correlated with social adversity (the CTRA gene set). The original analysis of these data used a linear model (GLS) of fixed effects with correlated error to infer effects of Hedonia and Eudaimonia on mean CTRA expression. Methods The standardized effects of Hedonia and Eudaimonia on CTRA gene set expression estimated by GLS were compared to estimates using multivariate (OLS) linear models and generalized estimating equation (GEE) models. The OLS estimates were tested using O’Brien’s OLS test, Anderson’s permutation \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${r}_{F}^{2}$\\end{document}rF2-test, two permutation F-tests (including GlobalAncova), and a rotation z-test (Roast). The GEE estimates were tested using a Wald test with robust standard errors. The performance (Type I, II, S, and M errors) of all tests was investigated using a Monte Carlo simulation of data explicitly modeled on the re-analyzed dataset. Results GLS estimates are inconsistent between data

  10. Monte Carlo simulations for a Lotka-type model with reactant surface diffusion and interactions.

    Science.gov (United States)

    Zvejnieks, G; Kuzovkov, V N

    2001-05-01

    The standard Lotka-type model, which was introduced for the first time by Mai et al. [J. Phys. A 30, 4171 (1997)] for a simplified description of autocatalytic surface reactions, is generalized here for a case of mobile and energetically interacting reactants. The mathematical formalism is proposed for determining the dependence of transition rates on the interaction energy (and temperature) for the general mathematical model, and the Lotka-type model, in particular. By means of Monte Carlo computer simulations, we have studied the impact of diffusion (with and without energetic interactions between reactants) on oscillatory properties of the A+B-->2B reaction. The diffusion leads to a desynchronization of oscillations and a subsequent decrease of oscillation amplitude. The energetic interaction between reactants has a dual effect depending on the type of mobile reactants. In the limiting case of mobile reactants B the repulsion results in a decrease of amplitudes. However, these amplitudes increase if reactants A are mobile and repulse each other. A simplified interpretation of the obtained results is given.

  11. Monte Carlo Uncertainty Quantification Using Quasi-1D SRM Ballistic Model

    Directory of Open Access Journals (Sweden)

    Davide Viganò

    2016-01-01

    Full Text Available Compactness, reliability, readiness, and construction simplicity of solid rocket motors make them very appealing for commercial launcher missions and embarked systems. Solid propulsion grants high thrust-to-weight ratio, high volumetric specific impulse, and a Technology Readiness Level of 9. However, solid rocket systems are missing any throttling capability at run-time, since pressure-time evolution is defined at the design phase. This lack of mission flexibility makes their missions sensitive to deviations of performance from nominal behavior. For this reason, the reliability of predictions and reproducibility of performances represent a primary goal in this field. This paper presents an analysis of SRM performance uncertainties throughout the implementation of a quasi-1D numerical model of motor internal ballistics based on Shapiro’s equations. The code is coupled with a Monte Carlo algorithm to evaluate statistics and propagation of some peculiar uncertainties from design data to rocker performance parameters. The model has been set for the reproduction of a small-scale rocket motor, discussing a set of parametric investigations on uncertainty propagation across the ballistic model.

  12. Modeling Monte Carlo of multileaf collimators using the code GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Alex C.H.; Lima, Fernando R.A., E-mail: oliveira.ach@yahoo.com, E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Lima, Luciano S.; Vieira, Jose W., E-mail: lusoulima@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil)

    2014-07-01

    Radiotherapy uses various techniques and equipment for local treatment of cancer. The equipment most often used in radiotherapy to the patient irradiation is linear accelerator (Linac). Among the many algorithms developed for evaluation of dose distributions in radiotherapy planning, the algorithms based on Monte Carlo (MC) methods have proven to be very promising in terms of accuracy by providing more realistic results. The MC simulations for applications in radiotherapy are divided into two parts. In the first, the simulation of the production of the radiation beam by the Linac is performed and then the phase space is generated. The phase space contains information such as energy, position, direction, etc. of millions of particles (photons, electrons, positrons). In the second part the simulation of the transport of particles (sampled phase space) in certain configurations of irradiation field is performed to assess the dose distribution in the patient (or phantom). Accurate modeling of the Linac head is of particular interest in the calculation of dose distributions for intensity modulated radiation therapy (IMRT), where complex intensity distributions are delivered using a multileaf collimator (MLC). The objective of this work is to describe a methodology for modeling MC of MLCs using code Geant4. To exemplify this methodology, the Varian Millennium 120-leaf MLC was modeled, whose physical description is available in BEAMnrc Users Manual (20 11). The dosimetric characteristics (i.e., penumbra, leakage, and tongue-and-groove effect) of this MLC were evaluated. The results agreed with data published in the literature concerning the same MLC. (author)

  13. SMMC studies of N=Z pf-shell nuclei with pairing-plus-quadrupole Hamiltonian

    OpenAIRE

    Langanke, K.; Vogel, P.; Zheng, Dao-Chen

    1997-01-01

    We perform Shell Model Monte Carlo calculations of selected N=Z pf-shell nuclei with a schematic hamiltonian containing isovector pairing and quadrupole-quadrupole interactions. Compared to realistic interactions, this hamiltonian does not give rise to the SMMC ``sign problem'', while at the same time resembles essential features of the realistic interactions. We study pairing correlations in the ground states of N=Z nuclei and investigate the thermal dependence of selected observables for th...

  14. Modeling N2O Emissions From Temperate Agroecosystems: A Literature Review Using Monte Carlo Sampling

    Science.gov (United States)

    Tonitto, C.

    2006-12-01

    In this work, we model annual N2O flux based on field experiments in temperate agroecosystems reported in the literature. Understanding potential N2O flux as a consequence of ecosystem management is important for mitigating global change. While loss of excess N as N2 has no environmental consequences, loss as N2O contributes to the greenhouse effect; over a 100 year time horizon N2O has 310 times the global warming potential (GWP) of CO2. Nitrogen trace gas flux remains difficult to accurately quantify under field conditions due to temporal and spatial limitations of sampling. Trace gas measurement techniques often rely on small chambers sampled at regular intervals. This measurement scheme can undersample stochastic events, such as high precipitation, which correspond to periods of high N trace gas flux. We apply Monte Carlo sampling of field measurements to project N2O losses under different crops and soil textures. Three statistical models are compared: 1) annual N2O flux as a function of process rates derived from temporally aggregated field observations, 2) annual N2O flux incorporating the probability of precipitation events, and 3) annual N2O flux as a function of crop growth. Using the temporally aggregated model, predicted annual N2O flux was highest for corn and wheat, which receive higher fertilizer inputs relative to barley and ryegrass. Within a cropping system, clayey soil textures resulted in the highest N2O flux. The incorporation of precipitation events in the model has the greatest effect on clayey soils. Relative to the aggregated model the inclusion of precipitation events changed predicted mean annual N2O flux from 31 to 49 kg N ha-1 for corn grown on clay loam and shifted the 75% confidence interval (CI) from 20-42 to 38-61 kg N ha-1. In contrast, comparisons between the aggregated and precipitation event models resulted in indistinguishable predictions of mean annual N2O loss for corn grown on silty loam and loam soils. Similarly, application

  15. Models of the SL9 Impacts I. Ballistic Monte-Carlo Plume

    CERN Document Server

    Harrington, J; Harrington, Joseph; Deming, Drake

    2001-01-01

    We model the Comet Shoemaker-Levy 9 - Jupiter impact plumes to calculate synthetic plume views, atmospheric infall fluxes, and debris patterns. Our plume is a swarm of ballistic particles with one of several mass-velocity distributions (MVD). The swarm is ejected instantaneously and uniformly into a cone from its apex. Upon falling to the ejection altitude, particles slide with horizontal deceleration following one of several schemes. The model ignores hydrodynamic and Coriolis effects. We adjust plume tilt, opening angle, and minimum velocity, and choose MVD and sliding schemes, to create impact patterns that match observations. Our best match uses the power-law MVD from the numerical impact model of Zahnle and Mac Low, with velocity cutoffs at 4.5 and 11.8 km/sec, cone opening angle of 75 degrees, cone tilt of 30 degrees from vertical, and a sliding constant deceleration of 1.74 m/sec^2. A mathematically-derived feature of Zahnle and Mac Low's published cumulative MVD is a thin shell of mass at the maximum ...

  16. Onion-shell model for cosmic ray electrons and radio synchrotron emission in supernova remnants

    International Nuclear Information System (INIS)

    The spectrum of cosmic ray electrons, accelerated in the shock front of a supernova remnant (SNR), is calculated in the test-particle approximation using an onion-shell model. Particle diffusion within the evolving remnant is explicity taken into account. The particle spectrum becomes steeper with increasing radius as well as SNR age. Simple models of the magnetic field distribution allow a prediction of the intensity and spectrum of radio synchrotron emission and their radial variation. The agreement with existing observations is satisfactory in several SNR's but fails in other cases. Radiative cooling may be an important effect, especially in SNR's exploding in a dense interstellar medium

  17. Reflection Asymmetric Shell Model for the Description of Octupole Rotational Bands

    Institute of Scientific and Technical Information of China (English)

    GAO Zao-Chun; CHEN Yong-Shou

    2001-01-01

    The reflection asymmetric shell model has been formulated to describe the high spin states of octupole-deformed nuclei. The long-range separable forces of quadrupole, octupole and hexadecapole, as well as monopole and quadrupole pairing, are included in the Hamiltonian. The bases, on which the Hamiltonian is diagonalized, are the eigenstates of angular momentum and parity obtained by projecting the octupole-deformed multi-quasiparticle states onto good angular momentum and good parity. The general features of rotational octupole bands in eveneven nuclei can be reproduced by the model and the calculated result is in good agreement with experiment.

  18. Exotic muon-to-positron conversion in nuclei: partial transition sum evaluation by using shell model

    International Nuclear Information System (INIS)

    A comprehensive study of the exotic (μ-,e+) conversion in 27Al, 27Al(μ-,e+)27Na is presented. The relevant operators are deduced assuming one-pion and two-pion modes in the framework of intermediate neutrino mixing models, paying special attention to the light neutrino case. The total rate is calculated by summing over partial transition strengths for all kinematically accessible final states derived with s-d shell model calculations employing the well-known Wildenthal realistic interaction

  19. Shell model estimate of electric dipole moments in medium and heavy nuclei

    Directory of Open Access Journals (Sweden)

    Teruya E.

    2014-03-01

    Full Text Available It is evidence for an extension of the Standard Model in particle physics, if static electric dipole moments (EDMs are measured for any elementary particle. The nuclear EDM arises mainly from two sources: one comes from asymmetric charge distribution in a nucleus and the other is due to the nucleon intrinsic EDM. We estimate the nuclear EDMs from two sources for the 1/21+ states in Xe isotopes by a shell model approach using full orbitals between magic numbers 50 and 82.

  20. Atomically thin spherical shell-shaped superscatterers based on a Bohr model.

    Science.gov (United States)

    Li, Rujiang; Lin, Xiao; Lin, Shisheng; Liu, Xu; Chen, Hongsheng

    2015-12-18

    Graphene monolayers can be used for atomically thin three-dimensional shell-shaped superscatterer designs. Due to the excitation of the first-order resonance of transverse magnetic (TM) graphene plasmons, the scattering cross section of the bare subwavelength dielectric particle is enhanced significantly by five orders of magnitude. The superscattering phenomenon can be intuitively understood and interpreted with a Bohr model. In addition, based on the analysis of the Bohr model, it is shown that contrary to the TM case, superscattering is hard to achieve by exciting the resonance of transverse electric (TE) graphene plasmons due to their poor field confinements.

  1. Atomically thin spherical shell-shaped superscatterers based on Bohr model

    CERN Document Server

    Li, Rujiang; Lin, Shisheng; Liu, Xu; Chen, Hongsheng

    2015-01-01

    Graphene monolayers can be used for atomically thin three-dimensional shell-shaped superscatterer designs. Due to the excitation of the first-order resonance of transverse magnetic (TM) graphene plasmons, the scattering cross section of the bare subwavelength dielectric particle is enhanced significantly by five orders of magnitude. The superscattering phenomenon can be intuitively understood and interpreted with Bohr model. Besides, based on the analysis of Bohr model, it is shown that contrary to the TM case, superscattering is hard to occur by exciting the resonance of transverse electric (TE) graphene plasmons due to their poor field confinements.

  2. Single-site Lennard-Jones models via polynomial chaos surrogates of Monte Carlo molecular simulation

    Science.gov (United States)

    Kadoura, Ahmad; Siripatana, Adil; Sun, Shuyu; Knio, Omar; Hoteit, Ibrahim

    2016-06-01

    In this work, two Polynomial Chaos (PC) surrogates were generated to reproduce Monte Carlo (MC) molecular simulation results of the canonical (single-phase) and the NVT-Gibbs (two-phase) ensembles for a system of normalized structureless Lennard-Jones (LJ) particles. The main advantage of such surrogates, once generated, is the capability of accurately computing the needed thermodynamic quantities in a few seconds, thus efficiently replacing the computationally expensive MC molecular simulations. Benefiting from the tremendous computational time reduction, the PC surrogates were used to conduct large-scale optimization in order to propose single-site LJ models for several simple molecules. Experimental data, a set of supercritical isotherms, and part of the two-phase envelope, of several pure components were used for tuning the LJ parameters (ɛ, σ). Based on the conducted optimization, excellent fit was obtained for different noble gases (Ar, Kr, and Xe) and other small molecules (CH4, N2, and CO). On the other hand, due to the simplicity of the LJ model used, dramatic deviations between simulation and experimental data were observed, especially in the two-phase region, for more complex molecules such as CO2 and C2 H6.

  3. Dynamical Models for NGC 6503 using a Markov Chain Monte Carlo Technique

    CERN Document Server

    Puglielli, David; Courteau, Stéphane

    2010-01-01

    We use Bayesian statistics and Markov chain Monte Carlo (MCMC) techniques to construct dynamical models for the spiral galaxy NGC 6503. The constraints include surface brightness profiles which display a Freeman Type II structure; HI and ionized gas rotation curves; the stellar rotation, which is nearly coincident with the ionized gas curve; and the line of sight stellar dispersion, with a sigma-drop at the centre. The galaxy models consist of a Sersic bulge, an exponential disc with an optional inner truncation and a cosmologically motivated dark halo. The Bayesian/MCMC technique yields the joint posterior probability distribution function for the input parameters. We examine several interpretations of the data: the Type II surface brightness profile may be due to dust extinction, to an inner truncated disc or to a ring of bright stars; and we test separate fits to the gas and stellar rotation curves to determine if the gas traces the gravitational potential. We test each of these scenarios for bar stability...

  4. Single-site Lennard-Jones models via polynomial chaos surrogates of Monte Carlo molecular simulation

    KAUST Repository

    Kadoura, Ahmad

    2016-06-01

    In this work, two Polynomial Chaos (PC) surrogates were generated to reproduce Monte Carlo (MC) molecular simulation results of the canonical (single-phase) and the NVT-Gibbs (two-phase) ensembles for a system of normalized structureless Lennard-Jones (LJ) particles. The main advantage of such surrogates, once generated, is the capability of accurately computing the needed thermodynamic quantities in a few seconds, thus efficiently replacing the computationally expensive MC molecular simulations. Benefiting from the tremendous computational time reduction, the PC surrogates were used to conduct large-scale optimization in order to propose single-site LJ models for several simple molecules. Experimental data, a set of supercritical isotherms, and part of the two-phase envelope, of several pure components were used for tuning the LJ parameters (ε, σ). Based on the conducted optimization, excellent fit was obtained for different noble gases (Ar, Kr, and Xe) and other small molecules (CH4, N2, and CO). On the other hand, due to the simplicity of the LJ model used, dramatic deviations between simulation and experimental data were observed, especially in the two-phase region, for more complex molecules such as CO2 and C2 H6.

  5. Monte Carlo model of neutral-particle transport in diverted plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Heifetz, D.; Post, D.; Petravic, M.; Weisheit, J.; Bateman, G.

    1981-11-01

    The transport of neutral atoms and molecules in the edge and divertor regions of fusion experiments has been calculated using Monte-Carlo techniques. The deuterium, tritium, and helium atoms are produced by recombination in the plasma and at the walls. The relevant collision processes of charge exchange, ionization, and dissociation between the neutrals and the flowing plasma electrons and ions are included, along with wall reflection models. General two-dimensional wall and plasma geometries are treated in a flexible manner so that varied configurations can be easily studied. The algorithm uses a pseudo-collision method. Splitting with Russian roulette, suppression of absorption, and efficient scoring techniques are used to reduce the variance. The resulting code is sufficiently fast and compact to be incorporated into iterative treatments of plasma dynamics requiring numerous neutral profiles. The calculation yields the neutral gas densities, pressures, fluxes, ionization rates, momentum transfer rates, energy transfer rates, and wall sputtering rates. Applications have included modeling of proposed INTOR/FED poloidal divertor designs and other experimental devices.

  6. Monte Carlo modelling of singles-mode transmission data for small animal PET scanners

    International Nuclear Information System (INIS)

    The attenuation corrections factors (ACFs), which are necessary for quantitatively accurate PET imaging, can be obtained using singles-mode transmission scanning. However, contamination from scatter is a largely unresolved problem for these data. We present an extension of the Monte Carlo simulation tool, GATE, for singles-mode transmission data and its validation using experimental data from the microPET R4 and Focus 120 scanners. We first validated our simulated PET scanner for coincidence-mode data where we found that experimental resolution and scatter fractions (SFs) agreed well for simulations that included positron interactions and scatter in the source material. After modifying GATE to model singles-mode data, we compared simulated and experimental ACFs and SFs for three different sized water cylinders using 57Co (122 keV photon emitter) and 68Ge (positron emitter) transmission sources. We also propose a simple correction for a large background contamination we identified in the 68Ge singles-mode data due to intrinsic 176Lu radioactivity present in the detector crystals. For simulation data, the SFs agreed to within 1.5% and 2.5% of experimental values for background-corrected 68Ge and 57Co transmission data, respectively. This new simulation tool accurately models the photon interactions and data acquisition for singles-mode transmission scans

  7. Development of an unstructured mesh based geometry model in the Serpent 2 Monte Carlo code

    International Nuclear Information System (INIS)

    This paper presents a new unstructured mesh based geometry type, developed in the Serpent 2 Monte Carlo code as a by-product of another study related to multi-physics applications and coupling to CFD codes. The new geometry type is intended for the modeling of complicated and irregular objects, which are not easily constructed using the conventional CSG based approach. The capability is put to test by modeling the 'Stanford Critical Bunny' – a variation of a well-known 3D test case for methods used in the world of computer graphics. The results show that the geometry routine in Serpent 2 can handle the unstructured mesh, and that the use of delta-tracking results in a considerable reduction in the overall calculation time as the geometry is refined. The methodology is still very much under development, with the final goal of implementing a geometry routine capable of reading standardized geometry formats used by 3D design and imaging tools in industry and medical physics. (author)

  8. Properties of Carbon-Oxygen White Dwarfs From Monte Carlo Stellar Models

    CERN Document Server

    Fields, C E; Petermann, I; Iliadis, C; Timmes, F X

    2016-01-01

    We investigate properties of carbon-oxygen white dwarfs with respect to the composite uncertainties in the reaction rates using the stellar evolution toolkit, Modules for Experiments in Stellar Astrophysics (MESA) and the probability density functions in the reaction rate library STARLIB. These are the first Monte Carlo stellar evolution studies that use complete stellar models. Focusing on 3 M$_{\\odot}$ models evolved from the pre main-sequence to the first thermal pulse, we survey the remnant core mass, composition, and structure properties as a function of 26 STARLIB reaction rates covering hydrogen and helium burning using a Principal Component Analysis and Spearman Rank-Order Correlation. Relative to the arithmetic mean value, we find the width of the 95\\% confidence interval to be $\\Delta M_{{\\rm 1TP}}$ $\\approx$ 0.019 M$_{\\odot}$ for the core mass at the first thermal pulse, $\\Delta$$t_{\\rm{1TP}}$ $\\approx$ 12.50 Myr for the age, $\\Delta \\log(T_{{\\rm c}}/{\\rm K}) \\approx$ 0.013 for the central temperat...

  9. Quantum and Molecular Mechanical (QM/MM) Monte Carlo Techniques for Modeling Condensed-Phase Reactions.

    Science.gov (United States)

    Acevedo, Orlando; Jorgensen, Wiliiam L

    2014-09-01

    A recent review (Acc. Chem. Res. 2010, 43:142-151) examined our use and development of a combined quantum and molecular mechanical (QM/MM) technique for modelling organic and enzymatic reactions. Advances included the PDDG/PM3 semiempirical QM (SQM) method, computation of multi-dimensional potentials of mean force (PMF), incorporation of on-the-fly QM in Monte Carlo simulations, and a polynomial quadrature method for rapidly treating proton-transfer reactions. The current article serves as a follow up on our progress. Highlights include new reactions, alternative SQM methods, a polarizable OPLS force field, and novel solvent environments, e.g., "on water" and room temperature ionic liquids. The methodology is strikingly accurate across a wide range of condensed-phase and antibody-catalyzed reactions including substitution, decarboxylation, elimination, isomerization, and pericyclic classes. Comparisons are made to systems treated with continuum-based solvents and ab initio or density functional theory (DFT) methods. Overall, the QM/MM methodology provides detailed characterization of reaction paths, proper configurational sampling, several advantages over implicit solvent models, and a reasonable computational cost. PMID:25431625

  10. A stochastic Markov chain approach for tennis: Monte Carlo simulation and modeling

    Science.gov (United States)

    Aslam, Kamran

    This dissertation describes the computational formulation of probability density functions (pdfs) that facilitate head-to-head match simulations in tennis along with ranking systems developed from their use. A background on the statistical method used to develop the pdfs , the Monte Carlo method, and the resulting rankings are included along with a discussion on ranking methods currently being used both in professional sports and in other applications. Using an analytical theory developed by Newton and Keller in [34] that defines a tennis player's probability of winning a game, set, match and single elimination tournament, a computational simulation has been developed in Matlab that allows further modeling not previously possible with the analytical theory alone. Such experimentation consists of the exploration of non-iid effects, considers the concept the varying importance of points in a match and allows an unlimited number of matches to be simulated between unlikely opponents. The results of these studies have provided pdfs that accurately model an individual tennis player's ability along with a realistic, fair and mathematically sound platform for ranking them.

  11. A geometrical model for the Monte Carlo simulation of the TrueBeam linac

    CERN Document Server

    Rodriguez, Miguel; Fogliata, Antonella; Cozzi, Luca; Sauerwein, Wolfgang; Brualla, Lorenzo

    2015-01-01

    Monte Carlo (MC) simulation of linacs depends on the accurate geometrical description of the head. The geometry of the Varian TrueBeam linac is not available to researchers. Instead, the company distributes phase-space files (PSFs) of the flattening-filter-free (FFF) beams tallied upstream the jaws. Yet, MC simulations based on third party tallied PSFs are subject to limitations. We present an experimentally-based geometry developed for the simulation of the FFF beams of the TrueBeam linac. The upper part of the TrueBeam linac was modeled modifying the Clinac 2100 geometry. The most important modification is the replacement of the standard flattening filters by {\\it ad hoc} thin filters which were modeled by comparing dose measurements and simulations. The experimental dose profiles for the 6~MV and 10~MV FFF beams were obtained from the Varian Golden Data Set and from in-house measurements for radiation fields ranging from $3\\times3$ to $40\\times40$ cm$^2$. The same comparisons were done for dose profiles ob...

  12. Inverse Monte Carlo in a multilayered tissue model: merging diffuse reflectance spectroscopy and laser Doppler flowmetry

    Science.gov (United States)

    Fredriksson, Ingemar; Burdakov, Oleg; Larsson, Marcus; Strömberg, Tomas

    2013-12-01

    The tissue fraction of red blood cells (RBCs) and their oxygenation and speed-resolved perfusion are estimated in absolute units by combining diffuse reflectance spectroscopy (DRS) and laser Doppler flowmetry (LDF). The DRS spectra (450 to 850 nm) are assessed at two source-detector separations (0.4 and 1.2 mm), allowing for a relative calibration routine, whereas LDF spectra are assessed at 1.2 mm in the same fiber-optic probe. Data are analyzed using nonlinear optimization in an inverse Monte Carlo technique by applying an adaptive multilayered tissue model based on geometrical, scattering, and absorbing properties, as well as RBC flow-speed information. Simulations of 250 tissue-like models including up to 2000 individual blood vessels were used to evaluate the method. The absolute root mean square (RMS) deviation between estimated and true oxygenation was 4.1 percentage units, whereas the relative RMS deviations for the RBC tissue fraction and perfusion were 19% and 23%, respectively. Examples of in vivo measurements on forearm and foot during common provocations are presented. The method offers several advantages such as simultaneous quantification of RBC tissue fraction and oxygenation and perfusion from the same, predictable, sampling volume. The perfusion estimate is speed resolved, absolute (% RBC×mm/s), and more accurate due to the combination with DRS.

  13. Momentum transfer Monte Carlo model for the simulation of laser speckle contrast imaging (Conference Presentation)

    Science.gov (United States)

    Regan, Caitlin; Hayakawa, Carole K.; Choi, Bernard

    2016-03-01

    Laser speckle imaging (LSI) enables measurement of relative blood flow in microvasculature and perfusion in tissues. To determine the impact of tissue optical properties and perfusion dynamics on speckle contrast, we developed a computational simulation of laser speckle contrast imaging. We used a discrete absorption-weighted Monte Carlo simulation to model the transport of light in tissue. We simulated optical excitation of a uniform flat light source and tracked the momentum transfer of photons as they propagated through a simulated tissue geometry. With knowledge of the probability distribution of momentum transfer occurring in various layers of the tissue, we calculated the expected laser speckle contrast arising with coherent excitation using both reflectance and transmission geometries. We simulated light transport in a single homogeneous tissue while independently varying either absorption (.001-100mm^-1), reduced scattering (.1-10mm^-1), or anisotropy (0.05-0.99) over a range of values relevant to blood and commonly imaged tissues. We observed that contrast decreased by 49% with an increase in optical scattering, and observed a 130% increase with absorption (exposure time = 1ms). We also explored how speckle contrast was affected by the depth (0-1mm) and flow speed (0-10mm/s) of a dynamic vascular inclusion. This model of speckle contrast is important to increase our understanding of how parameters such as perfusion dynamics, vessel depth, and tissue optical properties affect laser speckle imaging.

  14. Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, M., E-mail: mpfeiffer@irs.uni-stuttgart.de; Nizenkov, P., E-mail: nizenkov@irs.uni-stuttgart.de; Mirza, A., E-mail: mirza@irs.uni-stuttgart.de; Fasoulas, S., E-mail: fasoulas@irs.uni-stuttgart.de [Institute of Space Systems, University of Stuttgart, Pfaffenwaldring 29, D-70569 Stuttgart (Germany)

    2016-02-15

    Relaxation processes of polyatomic molecules are modeled and implemented in an in-house Direct Simulation Monte Carlo code in order to enable the simulation of atmospheric entry maneuvers at Mars and Saturn’s Titan. The description of rotational and vibrational relaxation processes is derived from basic quantum-mechanics using a rigid rotator and a simple harmonic oscillator, respectively. Strategies regarding the vibrational relaxation process are investigated, where good agreement for the relaxation time according to the Landau-Teller expression is found for both methods, the established prohibiting double relaxation method and the new proposed multi-mode relaxation. Differences and applications areas of these two methods are discussed. Consequently, two numerical methods used for sampling of energy values from multi-dimensional distribution functions are compared. The proposed random-walk Metropolis algorithm enables the efficient treatment of multiple vibrational modes within a time step with reasonable computational effort. The implemented model is verified and validated by means of simple reservoir simulations and the comparison to experimental measurements of a hypersonic, carbon-dioxide flow around a flat-faced cylinder.

  15. Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases

    Science.gov (United States)

    Pfeiffer, M.; Nizenkov, P.; Mirza, A.; Fasoulas, S.

    2016-02-01

    Relaxation processes of polyatomic molecules are modeled and implemented in an in-house Direct Simulation Monte Carlo code in order to enable the simulation of atmospheric entry maneuvers at Mars and Saturn's Titan. The description of rotational and vibrational relaxation processes is derived from basic quantum-mechanics using a rigid rotator and a simple harmonic oscillator, respectively. Strategies regarding the vibrational relaxation process are investigated, where good agreement for the relaxation time according to the Landau-Teller expression is found for both methods, the established prohibiting double relaxation method and the new proposed multi-mode relaxation. Differences and applications areas of these two methods are discussed. Consequently, two numerical methods used for sampling of energy values from multi-dimensional distribution functions are compared. The proposed random-walk Metropolis algorithm enables the efficient treatment of multiple vibrational modes within a time step with reasonable computational effort. The implemented model is verified and validated by means of simple reservoir simulations and the comparison to experimental measurements of a hypersonic, carbon-dioxide flow around a flat-faced cylinder.

  16. Modeling the Thermal Conductivity of Nanocomposites Using Monte-Carlo Methods and Realistic Nanotube Configurations

    Science.gov (United States)

    Bui, Khoa; Papavassiliou, Dimitrios

    2012-02-01

    The effective thermal conductivity (Keff) of carbon nanotube (CNT) composites is affected by the thermal boundary resistance (TBR) and by the dispersion pattern and geometry of the CNTs. We have previously modeled CNTs as straight cylinders and found that the TBR between CNTs (TBRCNT-CNT) can suppress Keff at high volume fractions of CNTs [1]. Effective medium theory results assume that the CNTs are in a perfect dispersion state and exclude the TBRCNT-CNT [2]. In this work, we report on the development of an algorithm for generating CNTs with worm-like geometry in 3D, and with different persistence lengths. These worm-like CNTs are then randomly placed in a periodic box representing a realistic state, since the persistence length of a CNT can be obtained from microscopic images. The use of these CNT geometries in conjunction with off-lattice Monte Carlo simulations [1] in order to study the effective thermal properties of nanocomposites will be discussed, as well as the effects of the persistence length on Keff and comparisons to straight cylinder models. References [1] K. Bui, B.P. Grady, D.V. Papavassiliou, Chem. Phys. Let., 508(4-6), 248-251, 2011 [2] C.W. Nan, G. Liu, Y. Lin, M. Li, App. Phys. Let., 85(16), 3549-3551, 2006

  17. A hybrid Monte Carlo model for the energy response functions of X-ray photon counting detectors

    Science.gov (United States)

    Wu, Dufan; Xu, Xiaofei; Zhang, Li; Wang, Sen

    2016-09-01

    In photon counting computed tomography (CT), it is vital to know the energy response functions of the detector for noise estimation and system optimization. Empirical methods lack flexibility and Monte Carlo simulations require too much knowledge of the detector. In this paper, we proposed a hybrid Monte Carlo model for the energy response functions of photon counting detectors in X-ray medical applications. GEANT4 was used to model the energy deposition of X-rays in the detector. Then numerical models were used to describe the process of charge sharing, anti-charge sharing and spectral broadening, which were too complicated to be included in the Monte Carlo model. Several free parameters were introduced in the numerical models, and they could be calibrated from experimental measurements such as X-ray fluorescence from metal elements. The method was used to model the energy response function of an XCounter Flite X1 photon counting detector. The parameters of the model were calibrated with fluorescence measurements. The model was further tested against measured spectrums of a VJ X-ray source to validate its feasibility and accuracy.

  18. Monte-Carlo Radiative Transfer Model of the Diffuse Galactic Light

    Science.gov (United States)

    Seon, Kwang-Il

    2015-02-01

    Monte-Carlo radiative models of the diffuse Galactic light (DGL) in our Galaxy are calcu-lated using the dust radiative transfer code MoCafe, which is three-dimensional and takes full account of multiple scattering. The code is recently updated to use a fast voxel traversal algorithm, which has dramatically increased the computing speed. The radiative transfer models are calculated with the gen-erally accepted dust scale-height of 0.1 kpc. The stellar scale-heights are assumed to be 0.1 or 0.35 kpc, appropriate for far-ultraviolet (FUV) and optical wavelengths, respectively. The face-on optical depth, measured perpendicular to the Galactic plane, is also varied from 0.2 to 0.6, suitable to the optical to FUV wavelengths, respectively. We find that the DGL at high Galactic latitudes is mostly due to backward or large-angle scattering of starlight originating from the local stars within a radial distance of r latitude DGL at the FUV wavelength band would be mostly caused by the stars located at a distance of r . 0.5 kpc and the optical DGL near the Galactic plane mainly originates from stars within a distance range of 1 . r . 2 kpc. We also calculate the radiative transfer models in a clumpy two-phase medium. The clumpy two-phase models provide lower intensities at high Galactic latitudes compared to the uniform density models, because of the lower effective optical depth in clumpy media. However, no significant difference in the intensity at the Galactic plane is found.

  19. Monte Carlo simulation model for economic evaluation of rubble mound breakwater protection in Harbors

    Institute of Scientific and Technical Information of China (English)

    Richard M. Males; Jeffrey A. Melby

    2011-01-01

    The US Army Corps of Engineers has a mission to conduct a wide array of programs in the arenas of water resources,including coastal protection.Coastal projects must be evaluated according to sound economic principles,and considerations of risk assessment and sea level change must be included in the analysis.Breakwaters are typically nearshore structures designed to reduce wave action in the lee of the structure,resulting in calmer waters within the protected area,with attendant benefits in terms of usability by navigation interests,shoreline protection,reduction of wave runup and onshore flooding,and protection of navigation channels from sedimentation and wave action.A common method of breakwater construction is the rubble mound breakwater,constructed in a trapezoidal cross section with gradually increasing stone sizes from the core out.Rubble mound breakwaters are subject to degradation from storms,particularly for antiquated designs with under-sized stones insufficient to protect against intense wave energy.Storm waves dislodge the stones,resulting in lowering of crest height and associated protective capability for wave reduction.This behavior happens over a long period of time,so a lifecycle model (that can analyze the damage progression over a period of years) is appropriate.Because storms are highly variable,a model that can support risk analysis is also needed.Economic impacts are determined by the nature of the wave climate in the protected area,and by the nature of the protected assets.Monte Carlo simulation (MCS)modeling that incorporates engineering and economic impacts is a worthwhile method for handling the many complexities involved in real world problems.The Corps has developed and utilized a number of MCS models to compare project alternatives in terms of their costs and benefits.This paper describes one such model,Coastal Structure simulation (CSsim) that has been developed specifically for planning level analysis of breakwaters.

  20. The structure of molten CuCl: Reverse Monte Carlo modeling with high-energy X-ray diffraction data and molecular dynamics of a polarizable ion model.

    Science.gov (United States)

    Alcaraz, Olga; Trullàs, Joaquim; Tahara, Shuta; Kawakita, Yukinobu; Takeda, Shin'ichi

    2016-09-01

    The results of the structural properties of molten copper chloride are reported from high-energy X-ray diffraction measurements, reverse Monte Carlo modeling method, and molecular dynamics simulations using a polarizable ion model. The simulated X-ray structure factor reproduces all trends observed experimentally, in particular the shoulder at around 1 Å(-1) related to intermediate range ordering, as well as the partial copper-copper correlations from the reverse Monte Carlo modeling, which cannot be reproduced by using a simple rigid ion model. It is shown that the shoulder comes from intermediate range copper-copper correlations caused by the polarized chlorides. PMID:27609000

  1. The structure of molten CuCl: Reverse Monte Carlo modeling with high-energy X-ray diffraction data and molecular dynamics of a polarizable ion model

    Science.gov (United States)

    Alcaraz, Olga; Trullàs, Joaquim; Tahara, Shuta; Kawakita, Yukinobu; Takeda, Shin'ichi

    2016-09-01

    The results of the structural properties of molten copper chloride are reported from high-energy X-ray diffraction measurements, reverse Monte Carlo modeling method, and molecular dynamics simulations using a polarizable ion model. The simulated X-ray structure factor reproduces all trends observed experimentally, in particular the shoulder at around 1 Å-1 related to intermediate range ordering, as well as the partial copper-copper correlations from the reverse Monte Carlo modeling, which cannot be reproduced by using a simple rigid ion model. It is shown that the shoulder comes from intermediate range copper-copper correlations caused by the polarized chlorides.

  2. The Monte Carlo atmospheric radiative transfer model McArtim: Introduction and validation of Jacobians and 3D features

    International Nuclear Information System (INIS)

    A new Monte Carlo atmospheric radiative transfer model is presented which is designed to support the interpretation of UV/vis/near-IR spectroscopic measurements of scattered Sun light in the atmosphere. The integro differential equation describing the underlying transport process and its formal solution are discussed. A stochastic approach to solve the differential equation, the Monte Carlo method, is deduced and its application to the formal solution is demonstrated. It is shown how model photon trajectories of the resulting ray tracing algorithm are used to estimate functionals of the radiation field such as radiances, actinic fluxes and light path integrals. In addition, Jacobians of the former quantities with respect to optical parameters of the atmosphere are analyzed. Model output quantities are validated against measurements, by self-consistency tests and through inter comparisons with other radiative transfer models.

  3. Assesment of advanced step models for steady state Monte Carlo burnup calculations in application to prismatic HTGR

    Directory of Open Access Journals (Sweden)

    Kępisty Grzegorz

    2015-09-01

    Full Text Available In this paper, we compare the methodology of different time-step models in the context of Monte Carlo burnup calculations for nuclear reactors. We discuss the differences between staircase step model, slope model, bridge scheme and stochastic implicit Euler method proposed in literature. We focus on the spatial stability of depletion procedure and put additional emphasis on the problem of normalization of neutron source strength. Considered methodology has been implemented in our continuous energy Monte Carlo burnup code (MCB5. The burnup simulations have been performed using the simplified high temperature gas-cooled reactor (HTGR system with and without modeling of control rod withdrawal. Useful conclusions have been formulated on the basis of results.

  4. Parallel Monte Carlo transport modeling in the context of a time-dependent, three-dimensional multi-physics code

    Energy Technology Data Exchange (ETDEWEB)

    Procassini, R.J. [Lawrence Livermore National lab., CA (United States)

    1997-12-31

    The fine-scale, multi-space resolution that is envisioned for accurate simulations of complex weapons systems in three spatial dimensions implies flop-rate and memory-storage requirements that will only be obtained in the near future through the use of parallel computational techniques. Since the Monte Carlo transport models in these simulations usually stress both of these computational resources, they are prime candidates for parallelization. The MONACO Monte Carlo transport package, which is currently under development at LLNL, will utilize two types of parallelism within the context of a multi-physics design code: decomposition of the spatial domain across processors (spatial parallelism) and distribution of particles in a given spatial subdomain across additional processors (particle parallelism). This implementation of the package will utilize explicit data communication between domains (message passing). Such a parallel implementation of a Monte Carlo transport model will result in non-deterministic communication patterns. The communication of particles between subdomains during a Monte Carlo time step may require a significant level of effort to achieve a high parallel efficiency.

  5. Shell structure of superheavy nuclei in self-consistent mean-field models

    CERN Document Server

    Bender, M; Reinhard, P G; Maruhn, J A; Greiner, W

    1999-01-01

    We study the extrapolation of nuclear shell structure to the region of superheavy nuclei in self-consistent mean-field models -- the Skyrme-Hartree-Fock approach and the relativistic mean-field model -- using a large number of parameterizations. Results obtained with the Folded-Yukawa potential are shown for comparison. We focus on differences in the isospin dependence of the spin-orbit interaction and the effective mass between the models and their influence on single-particle spectra. While all relativistic models give a reasonable description of spin-orbit splittings, all non-relativistic models show a wrong trend with mass number. The spin-orbit splitting of heavy nuclei might be overestimated by 40%-80%. Spherical doubly-magic superheavy nuclei are found at (Z=114,N=184), (Z=120,N=172) or (Z=126,N=184) depending on the parameterization. The Z=114 proton shell closure, which is related to a large spin-orbit splitting of proton 2f states, is predicted only by forces which by far overestimate the proton spi...

  6. Simulating Photon Scattering Effects in Structurally Detailed Ventricular Models Using a Monte Carlo Approach

    Directory of Open Access Journals (Sweden)

    Martin J Bishop

    2014-09-01

    Full Text Available Light scattering during optical imaging of electrical activation within the heart is known to significantlydistort the optically-recorded action potential (AP upstroke, as well as affecting the magnitude of the measured response of ventricular tissue to strong electric shocks. Modelling approaches based on the photondiffusion equation have recently been instrumental in quantifying and helping to understand the origin of the resulting distortion. However, they are unable to faithfully represent regions of non-scattering media, such assmall cavities within the myocardium which are filled with perfusate during experiments. Stochastic Monte Carlo (MC approaches allow simulation and tracking of individual photon `packets' as they propagate through tissuewith differing scattering properties. Here, we present a novel application of the MC method of photon scattering simulation, applied for the first time to the simulation of cardiac optical mapping signals withinunstructured, tetrahedral, finite element computational ventricular models. The method faithfully allows simulation of optical signals over highly-detailed, anatomically-complex MR-based models, includingrepresentations of fine-scale anatomy and intramural cavities. We show that optical action potential upstroke is prolonged close to large subepicardial vessels than further away from vessels, at times having a distinct `humped' morphology.Furthermore, we uncover a novel mechanism by which photon scattering effects around vessels cavities interact with `virtual-electrode' regions of strong de-/hyper-polarised tissue surrounding cavitiesduring shocks, significantly reducing the apparent optically-measured epicardial polarisation. We therefore demonstrate the importance of this novel optical mapping simulation approach along with highly anatomically-detailed models to fully investigate electrophysiological phenomena driven by fine-scale structural heterogeneity.

  7. Direct Monte Carlo and multifluid modeling of the circumnuclear dust coma. Spherical grain dynamics revisited

    Science.gov (United States)

    Crifo, J.-F.; Loukianov, G. A.; Rodionov, A. V.; Zakharov, V. V.

    2005-07-01

    This paper describes the first computations of dust distributions in the vicinity of an active cometary nucleus, using a multidimensional Direct Simulation Monte Carlo Method (DSMC). The physical model is simplistic: spherical grains of a broad range of sizes are liberated by H 2O sublimation from a selection of nonrotating sunlit spherical nuclei, and submitted to the nucleus gravity, the gas drag, and the solar radiation pressure. The results are compared to those obtained by the previously described Dust Multi-Fluid Method (DMF) and demonstrate an excellent agreement in the regions where the DMF is usable. Most importantly, the DSMC allows the discovery of hitherto unsuspected dust coma properties in those cases which cannot be treated by the DMF. This leads to a thorough reconsideration of the properties of the near-nucleus dust dynamics. In particular, the results show that (1) none of the three forces considered here can be neglected a priori, in particular not the radiation pressure; (2) hitherto unsuspected new families of grain trajectories exist, for instance trajectories leading from the nightside surface to the dayside coma; (3) a wealth of balistic-like trajectories leading from one point of the surface to another point exist; on the dayside, such trajectories lead to the formation of "mini-volcanoes." The present model and results are discussed carefully. It is shown that (1) the neglected forces (inertia associated with a nucleus rotation, solar tidal force) are, in general, not negligible everywhere, and (2) when allowing for these additional forces, a time-dependent model will, in general, have to be used. The future steps of development of the model are outlined.

  8. Development and Application of MCNP5 and KENO-VI Monte Carlo Models for the Atucha-2 PHWR Analysis

    OpenAIRE

    O. Mazzantini; F. D'Auria; M. Pecchia; Parisi, C

    2011-01-01

    The geometrical complexity and the peculiarities of Atucha-2 PHWR require the adoption of advanced Monte Carlo codes for performing realistic neutronic simulations. Core models of Atucha-2 PHWR were developed using both MCNP5 and KENO-VI codes. The developed models were applied for calculating reactor criticality states at beginning of life, reactor cell constants, and control rods volumes. The last two applications were relevant for performing successive three dimensional neutron kinetic ana...

  9. A Monte Carlo/response surface strategy for sensitivity analysis: application to a dynamic model of vegetative plant growth

    Science.gov (United States)

    Lim, J. T.; Gold, H. J.; Wilkerson, G. G.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1989-01-01

    We describe the application of a strategy for conducting a sensitivity analysis for a complex dynamic model. The procedure involves preliminary screening of parameter sensitivities by numerical estimation of linear sensitivity coefficients, followed by generation of a response surface based on Monte Carlo simulation. Application is to a physiological model of the vegetative growth of soybean plants. The analysis provides insights as to the relative importance of certain physiological processes in controlling plant growth. Advantages and disadvantages of the strategy are discussed.

  10. Monitor backscatter factors for the Varian 21EX and TrueBeam linear accelerators: measurements and Monte Carlo modeling

    OpenAIRE

    Zavgorodni, Sergei; Alhakeem, Eyad; Townson, Reid

    2013-01-01

    Purpose/Objective: Backscattered radiation (BSR) into linac monitor chamber has to be accounted for in radiotherapy dose calculations. In Monte Carlo (MC) calculations, the BSR can be modeled explicitly, but only when treatment head geometry is available. In this study, monitor backscatter factors (MBSFs), defined as the ratio of the charge collected in the monitor chamber for a reference field to that of a given field, have been evaluated experimentally and incorporated into MC modelling of ...

  11. A geometrical model for the Monte Carlo simulation of the TrueBeam linac

    OpenAIRE

    Rodríguez Niedenführ, Miquel; Sempau Roma, Josep; Fogliata, Antonella; Cozzi, L.; Sauerwein, W.; Brualla, L

    2015-01-01

    Monte Carlo simulation of linear accelerators (linacs) depends on the accurate geometrical description of the linac head. The geometry of the Varian TrueBeam linac is not available to researchers. Instead, the company distributes phase-space files of the flattening-filter-free (FFF) beams tallied at a plane located just upstream of the jaws. Yet, Monte Carlo simulations based on third-party tallied phase spaces are subject to limitations. In this work, an experimentally based geometry develop...

  12. Multistep Lattice-Voxel method utilizing lattice function for Monte-Carlo treatment planning with pixel based voxel model.

    Science.gov (United States)

    Kumada, H; Saito, K; Nakamura, T; Sakae, T; Sakurai, H; Matsumura, A; Ono, K

    2011-12-01

    Treatment planning for boron neutron capture therapy generally utilizes Monte-Carlo methods for calculation of the dose distribution. The new treatment planning system JCDS-FX employs the multi-purpose Monte-Carlo code PHITS to calculate the dose distribution. JCDS-FX allows to build a precise voxel model consisting of pixel based voxel cells in the scale of 0.4×0.4×2.0 mm(3) voxel in order to perform high-accuracy dose estimation, e.g. for the purpose of calculating the dose distribution in a human body. However, the miniaturization of the voxel size increases calculation time considerably. The aim of this study is to investigate sophisticated modeling methods which can perform Monte-Carlo calculations for human geometry efficiently. Thus, we devised a new voxel modeling method "Multistep Lattice-Voxel method," which can configure a voxel model that combines different voxel sizes by utilizing the lattice function over and over. To verify the performance of the calculation with the modeling method, several calculations for human geometry were carried out. The results demonstrated that the Multistep Lattice-Voxel method enabled the precise voxel model to reduce calculation time substantially while keeping the high-accuracy of dose estimation.

  13. Model-based failure detection for cylindrical shells from noisy vibration measurements.

    Science.gov (United States)

    Candy, J V; Fisher, K A; Guidry, B L; Chambers, D H

    2014-12-01

    Model-based processing is a theoretically sound methodology to address difficult objectives in complex physical problems involving multi-channel sensor measurement systems. It involves the incorporation of analytical models of both physical phenomenology (complex vibrating structures, noisy operating environment, etc.) and the measurement processes (sensor networks and including noise) into the processor to extract the desired information. In this paper, a model-based methodology is developed to accomplish the task of online failure monitoring of a vibrating cylindrical shell externally excited by controlled excitations. A model-based processor is formulated to monitor system performance and detect potential failure conditions. The objective of this paper is to develop a real-time, model-based monitoring scheme for online diagnostics in a representative structural vibrational system based on controlled experimental data. PMID:25480059

  14. Long and double hop kinetic Monte Carlo: Techniques to speed up atomistic modeling without losing accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Bragado, Ignacio [Synopsys Inc. 700 E. Middlefield Road, 94043 Mountain View, CA (United States)], E-mail: nacho@synopsys.com; Zographos, Nikolas [Synopsys Switzerland LLC, Affolternstrasse 52, 8050 Zurich (Switzerland); Jaraiz, Martin [Dept. Electronica. ETSIT. Universidad de Valladolid, Valladolid (Spain)

    2008-12-05

    According to the ITRS, the development of predictive TCAD models and simulators is one of the keystone for future CMOS technologies. The kinetic Monte Carlo (kMC) technique is particularly well placed between the poles of physical ab initio but very slow simulations, and more empirical, fast simulations by partial differential equations. Nevertheless, in other to fulfill the necessities of the semiconductor industry, faster kMC simulations would be desirable. This work shows techniques to increase the simulation speed of kMC simulations an average of 2 x while still maintaining accuracy. These techniques modify the original kMC method by using different jump distances and performing two jumps at once during the same simulation cycle. We also show the problems and limitations of these strategies, how to detect them, and how to overcome them, if possible. Finally, a comprehensive set of simulations - including amorphization, recrystallization, extended defect ripening, diffusion and activation/deactivation of several dopants used in CMOS technologies - with and without speed up techniques are compared to experimental SIMS to elucidate how reliable these techniques are.

  15. New software library of geometrical primitives for modeling of solids used in Monte Carlo detector simulations

    International Nuclear Information System (INIS)

    We present our effort for the creation of a new software library of geometrical primitives, which are used for solid modeling in Monte Carlo detector simulations. We plan to replace and unify the current implementations for geometrical primitive classes in the software projects Geant4 and ROOT with this library. Each solid is implemented as a C++ class providing methods to compute distances of rays to the surface of a solid or to find whether a position is located inside, outside or on the surface of the solid. A numerical tolerance is used for determining whether a position is on the surface. The class methods also contain basic support for visualization. We use dedicated test suites for the validation of the code; these also include performance and consistency tests used for the analysis of candidate implementations of class methods for the new library. We have implemented simple adapter classes to allow the use of the new optimized solids with Geant4 and ROOT geometries.

  16. Monte Carlo simulation of domain growth in the kinetic Ising model on the connection machine

    Science.gov (United States)

    Amar, Jacques G.; Sullivan, Francis

    1989-10-01

    A fast multispin algorithm for the Monte Carlo simulation of the two-dimensional spin-exchange kinetic Ising model, previously described by Sullivan and Mountain and used by Amar et al. has been adapted for use on the Connection Machine and applied as a first test in a calculation of domain growth. Features of the code include: (a) the use of demon bits, (b) the simulation of several runs simultaneously to improve the efficiency of the code, (c) the use of virtual processors to simulate easily and efficiently a larger system size, (d) the use of the (NEWS) grid for last communication between neighbouring processors and updating of boundary layers, (e) the implementation of an efficient random number generator much faster than that provided by Thinking Machines Corp., and (f) the use of the LISP function "funcall" to select which processors to update. Overall speed of the code when run on a (128x128) processor machine is about 130 million attempted spin-exchanges per second, about 9 times faster than the comparable code, using hardware vectorised-logic operations and 64-bit multispin coding on the Cyber 205. The same code can be used on a larger machine (65 536 processors) and should produce speeds in excess of 500 million attempted spin-exchanges per second.

  17. Modeling the Biophysical Effects in a Carbon Beam Delivery Line using Monte Carlo Simulation

    CERN Document Server

    Cho, Ilsung; Cho, Sungho; Kim, Eun Ho; Song, Yongkeun; Shin, Jae-ik; Jung, Won-Gyun

    2016-01-01

    Relative biological effectiveness (RBE) plays an important role in designing a uniform dose response for ion beam therapy. In this study the biological effectiveness of a carbon ion beam delivery system was investigated using Monte Carlo simulation. A carbon ion beam delivery line was designed for the Korea Heavy Ion Medical Accelerator (KHIMA) project. The GEANT4 simulation tool kit was used to simulate carbon beam transporting into media. An incident energy carbon ion beam in the range between 220 MeV/u and 290 MeV/u was chosen to generate secondary particles. The microdosimetric-kinetic (MK) model is applied to describe the RBE of 10% survival in human salivary gland (HSG) cells. The RBE weighted dose was estimated as a function of the penetrating depth of the water phantom along the incident beam direction. A biologically photon-equivalent Spread Out Bragg Peak (SOBP) was designed using the RBE weighted absorbed dose. Finally, the RBE of mixed beams was predicted as a function of the water phantom depth.

  18. Reliability of Monte Carlo simulations in modeling neutron yields from a shielded fission source

    Science.gov (United States)

    McArthur, Matthew S.; Rees, Lawrence B.; Czirr, J. Bart

    2016-08-01

    Using the combination of a neutron-sensitive 6Li glass scintillator detector with a neutron-insensitive 7Li glass scintillator detector, we are able to make an accurate measurement of the capture rate of fission neutrons on 6Li. We used this detector with a 252Cf neutron source to measure the effects of both non-borated polyethylene and 5% borated polyethylene shielding on detection rates over a range of shielding thicknesses. Both of these measurements were compared with MCNP calculations to determine how well the calculations reproduced the measurements. When the source is highly shielded, the number of interactions experienced by each neutron prior to arriving at the detector is large, so it is important to compare Monte Carlo modeling with actual experimental measurements. MCNP reproduces the data fairly well, but it does generally underestimate detector efficiency both with and without polyethylene shielding. For non-borated polyethylene it underestimates the measured value by an average of 8%. This increases to an average of 11% for borated polyethylene.

  19. Validation of a Monte Carlo model for a GMX detector used for measurements of environmental radioactivity

    International Nuclear Information System (INIS)

    In an Environmental Radioactivity Laboratory, samples from several products are analyzed, in order to determine the amount of radioactive products they contain. A usual method is the gamma activity measurement of these samples, which typically requires the use of High Purity Germanium Detectors (HPGe). GMX (n-type) detectors can be found among this group of detectors. They have a high efficiency for low energy emissions. As any detector, it must be calibrated, in energy, efficiency and resolution (FWHM). To do this calibration, a gamma standard solution is used, whose composition and activity are certified by a reference laboratory. This source contains several radionuclides, providing a wide energy spectrum. The simulation of the detection process with MCNP5, a code based on the Monte Carlo method, is a useful tool in an Environmental Radioactivity Laboratory, since it can reproduce the experimental conditions of the essay, without manipulating radioactive sources, and consequently reducing radioactive wastes. On the other hand, the simulation of the detector calibration permits to analyze the influence of different variables on detector efficiency. In this paper, the simulation of the calibration of the GMX detector used in the Environmental Radioactivity Laboratory of the Polytechnic University of Valencia (UPV) is presented. Results obtained with this simulation are compared with laboratory measurements, in order to validate the model. (author)

  20. Monte Carlo simulations of two-dimensional Hubbard models with string bond tensor-network states

    Science.gov (United States)

    Song, Jeong-Pil; Wee, Daehyun; Clay, R. T.

    2015-03-01

    We study charge- and spin-ordered states in the two-dimensional extended Hubbard model on a triangular lattice at 1/3 filling. While the nearest-neighbor Coulomb repulsion V induces charge-ordered states, the competition between on-site U and nearest-neighbor V interactions lead to quantum phase transitions to an antiferromagnetic spin-ordered phase with honeycomb charge order. In order to avoid the fermion sign problem and handle frustrations here we use quantum Monte Carlo methods with the string-bond tensor network ansatz for fermionic systems in two dimensions. We determine the phase boundaries of the several spin- and charge-ordered states and show a phase diagram in the on-site U and the nearest-neighbor V plane. The numerical accuracy of the method is compared with exact diagonalization results in terms of the size of matrices D. We also test the use of lattice symmetries to improve the string-bond ansatz. Work at Mississippi State University was supported by the US Department of Energy grant DE-FG02-06ER46315.

  1. Modeling the biophysical effects in a carbon beam delivery line by using Monte Carlo simulations

    Science.gov (United States)

    Cho, Ilsung; Yoo, SeungHoon; Cho, Sungho; Kim, Eun Ho; Song, Yongkeun; Shin, Jae-ik; Jung, Won-Gyun

    2016-09-01

    The Relative biological effectiveness (RBE) plays an important role in designing a uniform dose response for ion-beam therapy. In this study, the biological effectiveness of a carbon-ion beam delivery system was investigated using Monte Carlo simulations. A carbon-ion beam delivery line was designed for the Korea Heavy Ion Medical Accelerator (KHIMA) project. The GEANT4 simulation tool kit was used to simulate carbon-ion beam transport into media. An incident energy carbon-ion beam with energy in the range between 220 MeV/u and 290 MeV/u was chosen to generate secondary particles. The microdosimetric-kinetic (MK) model was applied to describe the RBE of 10% survival in human salivary-gland (HSG) cells. The RBE weighted dose was estimated as a function of the penetration depth in the water phantom along the incident beam's direction. A biologically photon-equivalent Spread Out Bragg Peak (SOBP) was designed using the RBE-weighted absorbed dose. Finally, the RBE of mixed beams was predicted as a function of the depth in the water phantom.

  2. Monte-Carlo event generation for a two-Higgs-doublet model with maximal CP symmetry

    CERN Document Server

    Brehmer, Johann

    2012-01-01

    Recently a two-Higgs-doublet model with maximal symmetry under generalised CP transformations, the MCPM, has been proposed. The theory features a unique fermion mass spectrum which, although not describing nature precisely, provides a good approximation. It also predicts the existence of five Higgs bosons with a particular signature. In this thesis I implemented the MCPM into the Monte-Carlo event generation package MadGraph, allowing the simulation of any MCPM tree-level process. The generated events are in a standardised format and can be used for further analysis with tools such as PYTHIA or GEANT, eventually leading to the comparison with experimental data and the exclusion or discovery of the theory. The implementation was successfully validated in different ways. It was then used for a first comparison of the MCPM signal events with the SM background and previous searches for new physics, hinting that the data expected at the LHC in the next years might provide exclusion limits or show signatures of thi...

  3. Risk analysis of gravity dam instability using credibility theory Monte Carlo simulation model.

    Science.gov (United States)

    Xin, Cao; Chongshi, Gu

    2016-01-01

    Risk analysis of gravity dam stability involves complicated uncertainty in many design parameters and measured data. Stability failure risk ratio described jointly by probability and possibility has deficiency in characterization of influence of fuzzy factors and representation of the likelihood of risk occurrence in practical engineering. In this article, credibility theory is applied into stability failure risk analysis of gravity dam. Stability of gravity dam is viewed as a hybrid event considering both fuzziness and randomness of failure criterion, design parameters and measured data. Credibility distribution function is conducted as a novel way to represent uncertainty of influence factors of gravity dam stability. And combining with Monte Carlo simulation, corresponding calculation method and procedure are proposed. Based on a dam section, a detailed application of the modeling approach on risk calculation of both dam foundation and double sliding surfaces is provided. The results show that, the present method is feasible to be applied on analysis of stability failure risk for gravity dams. The risk assessment obtained can reflect influence of both sorts of uncertainty, and is suitable as an index value. PMID:27386264

  4. Modeling High Energy (I-131) Pinhole Collimator for Small Animal Gamma Camera by Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Young Jun; Kim, Kyeong Min; Kim, Jin Su; Park, Ji Ae; Lee, Young Sub; Yoo, A-ram; Kim, Jong Guk [Korea Institute of Radiologic and Medical Sciences, Seoul (Korea, Republic of); Lee, Hak Jae; Lee, Ki Sung [Korea University, Seoul (Korea, Republic of)

    2011-05-15

    In medical nuclear imaging, I-131 takes important role in not only the diagnostic image, but also the quantitative evaluation in nuclear medicine therapy. However, due to the relatively high energy peak of I-131[364 keV (82 %), 326 keV (0.27 %), 503 keV (0.36 %), 637 keV (7.18 %), 643 keV (0.22 %), 723 keV (1.77 %)], it is difficult to construct high resolution, high sensitivity preclinical gamma camera. Especially, 637 keV, 723 keV energy, penetration and scattering occur in relatively high possibility. In this manner, penetration and scattering of high energy gamma ray in collimator degrades image quality fatally. According to the characteristics, it is essential to design collimator which can minimize the degrading factor, and preserve the gamma ray for imaging at the same time. In this study, we designed and simulated the structure of pinhole collimator for a small animal high energy gamma camera by Monte Carlo simulation (GATE 6.0). In this model, the diameter, channel length of pinhole and the thickness of collimator are the main issue for determining the system sensitivity. Thus, in this study, we observed the difference in the number of photons on the scintillator which pass through the collimator that determined by those three factors

  5. Fullrmc, a rigid body Reverse Monte Carlo modeling package enabled with machine learning and artificial intelligence.

    Science.gov (United States)

    Aoun, Bachir

    2016-05-01

    A new Reverse Monte Carlo (RMC) package "fullrmc" for atomic or rigid body and molecular, amorphous, or crystalline materials is presented. fullrmc main purpose is to provide a fully modular, fast and flexible software, thoroughly documented, complex molecules enabled, written in a modern programming language (python, cython, C and C++ when performance is needed) and complying to modern programming practices. fullrmc approach in solving an atomic or molecular structure is different from existing RMC algorithms and software. In a nutshell, traditional RMC methods and software randomly adjust atom positions until the whole system has the greatest consistency with a set of experimental data. In contrast, fullrmc applies smart moves endorsed with reinforcement machine learning to groups of atoms. While fullrmc allows running traditional RMC modeling, the uniqueness of this approach resides in its ability to customize grouping atoms in any convenient way with no additional programming efforts and to apply smart and more physically meaningful moves to the defined groups of atoms. In addition, fullrmc provides a unique way with almost no additional computational cost to recur a group's selection, allowing the system to go out of local minimas by refining a group's position or exploring through and beyond not allowed positions and energy barriers the unrestricted three dimensional space around a group.

  6. Monte Carlo study of decorated dislocation loops in FeNiMnCu model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bonny, G., E-mail: gbonny@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Terentyev, D. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Zhurkin, E.E. [Saint-Petersburg State Polytechnical University, Experimental Nuclear Physics Department, Institute of Physics, Nanotechnologies and Telecommunications, 29 Polytekhnicheskaya Str., 195251 St. Petersburg (Russian Federation); Malerba, L. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium)

    2014-09-15

    Radiation-induced embrittlement of bainitic steels is the lifetime limiting factor of reactor pressure vessels in existing nuclear light water reactors. The primary mechanism of embrittlement is the obstruction of dislocation motion by nano-metric defects in the bulk of the material due to irradiation. Such features are known to be solute clusters that may be attached to point defect clusters. In this work we study the thermal stability of solute clusters near edge dislocation lines and loops with Burgers vector b = ½[1 1 1] and b = [1 0 0] in FeNiMnCu model alloys by means of Metropolis Monte Carlo simulations. It is concluded that small dislocation loops may indeed act as points for heterogeneous nucleation of solute precipitates in reactor pressure vessel steels and increase their thermodynamic stability up to and above normal reactor operating temperatures. We also found that, in the presence of dislocation-type defects, the Ni content determines the thermodynamic driving force for precipitation, rather than the Mn content.

  7. Fullrmc, a rigid body Reverse Monte Carlo modeling package enabled with machine learning and artificial intelligence.

    Science.gov (United States)

    Aoun, Bachir

    2016-05-01

    A new Reverse Monte Carlo (RMC) package "fullrmc" for atomic or rigid body and molecular, amorphous, or crystalline materials is presented. fullrmc main purpose is to provide a fully modular, fast and flexible software, thoroughly documented, complex molecules enabled, written in a modern programming language (python, cython, C and C++ when performance is needed) and complying to modern programming practices. fullrmc approach in solving an atomic or molecular structure is different from existing RMC algorithms and software. In a nutshell, traditional RMC methods and software randomly adjust atom positions until the whole system has the greatest consistency with a set of experimental data. In contrast, fullrmc applies smart moves endorsed with reinforcement machine learning to groups of atoms. While fullrmc allows running traditional RMC modeling, the uniqueness of this approach resides in its ability to customize grouping atoms in any convenient way with no additional programming efforts and to apply smart and more physically meaningful moves to the defined groups of atoms. In addition, fullrmc provides a unique way with almost no additional computational cost to recur a group's selection, allowing the system to go out of local minimas by refining a group's position or exploring through and beyond not allowed positions and energy barriers the unrestricted three dimensional space around a group. PMID:26800289

  8. Atomic kinetic Monte Carlo modeling of multi-component Fe dilute alloys under irradiation

    International Nuclear Information System (INIS)

    The ageing of pressure vessel steels under radiation has been correlated with the formation of more or less dilute solute clusters which are investigated in this work using a multi-scale approach based on ab initio and atomistic kinetic Monte Carlo (AKMC) simulations. The microstructure evolution of Fe alloys is modeled by AKMC on a lattice, using pair interactions adjusted on DFT (Density Functional Theory) calculations. Several substitutional elements (Cu, Ni, Mn, Si, P) and foreign interstitials (C, N) are taken into account to describe the alloy. The point defect created by the irradiation, i.e. the vacancies and self interstitials have a tendency to form clusters. The evolution of these clusters is governed by the migration energy of the individual point defects which is very heavy in terms of computing time due to the large number of AKMC steps required. The structure of all the possible objects that can form is complex and some optimized and accelerated methods will be presented. The results obtained are in agreement with the experimental trends and indicate that the formation of solute clusters takes place via segregation mechanisms on the point defect clusters

  9. Comparison of serological and milk tests for bovine brucellosis using a Monte Carlo simulation model

    Directory of Open Access Journals (Sweden)

    V. Caporale

    2004-01-01

    Full Text Available European Union (EU Directive 97/12/EC allows the trade of cattle within the EU of animals originating from an 'officially brucellosis-free herd'. To qualify for this status, a number of different programmes must be implemented. Each EU Member Country is free to decide which procedure to use to qualify herds. The authors conducted a study to compare the merits and costs of testing programmes given in the Directive and of some alternative testing strategies. The effectiveness of testing programmes was evaluated by a Monte Carlo simulation model. Programmes listed in the Directive do not appear to have identical sensitivity and specificity. Simulations of the programmes showed that milk testing may be more effective and efficient than blood testing to identify infected herds. Results indicated that it could be advisable that legislation, rather than defining very detailed procedures both for laboratory tests and testing programmes, should establish minimal requirements in terms of efficacy of testing procedures (i.e. the probability of detecting an infected herd.

  10. Monte Carlo modelling of the propagation and annihilation of nucleosynthesis positrons in the Galaxy

    CERN Document Server

    Alexis, A; Martin, P; Ferriere, K

    2014-01-01

    We want to estimate whether the positrons produced by the beta plus decay of 26Al, 44Ti and 56Ni synthesised in massive stars and supernovae are sufficient to explain the 511 keV annihilation emission observed in our Galaxy. Such a possibility has often been put forward in the past. We developed a Monte Carlo Galactic propagation code for ~MeV positrons in which the Galactic interstellar medium, the Galactic magnetic field (GMF) and the propagation are finely described. This code allows us to simulate the spatial distribution of the 511 keV annihilation emission. We test several GMFs models and several positron escape fractions from type-Ia supernova for 56Ni positrons. We consider the collisional ballistic transport mode and then compare the simulated 511 keV intensity spatial distributions to the INTEGRAL/SPI data. Whatever the GMF configuration and the escape fraction chosen for 56Ni positrons, the 511 keV intensity distributions are very similar. The main reason is that ~MeV positrons do not propagate ver...

  11. Monte Carlo modeling (MCML) of light propagation in skin layers for detection of fat thickness

    Science.gov (United States)

    Nilubol, Chonnipa; Treerattrakoon, Kiatnida; Mohammed, Waleed S.

    2010-05-01

    Nowadays, most activities require lesser physical actions, which could ultimately lead to accumulation of excessive body fat. The main roles of body fat are to store energy and acts as various kinds of insulators for the body. The thickness of fat layers can be measured to indicate fat-body weight ratio. Exceeding the body-mass index (BMI) could lead to many illnesses regarding obesity. Consequently, many studies have proposed various principles and techniques to measure the amount of fat within one's body. In this paper, infrared interactance in skin layers is studied for investigation of the influence of fat thickness upon photon travelling pattern in skin tissues using Monte Carlo model (MCML). Photon propagation is numerically simulated in simplified multi-layered tissues. The optical coefficients of each skin layers are accounted for different traveling paths of photons that move through random motion. The thickness of fat layer is varied, and changing in optical parameters is observed. Then the statistically obtained data are computed and analyzed for the effect of the fat layer upon reflection percentage using different wavelengths. The calculations have shown increment in the slope of change of reflection percentage versus fat thickness, when using infrared compare to visible light. This technique can be used to construct a mobile device that is capable of measuring the volume fraction of melanin and blood in the epidermis layer and dermis layer, to calculate for the necessary optical coefficients that would be necessary for measurement of fat thickness.

  12. Modeling and simulation of radiation from hypersonic flows with Monte Carlo methods

    Science.gov (United States)

    Sohn, Ilyoup

    approximately 1 % was achieved with an efficiency about three times faster than the NEQAIR code. To perform accurate and efficient analyses of chemically reacting flowfield - radiation interactions, the direct simulation Monte Carlo (DSMC) and the photon Monte Carlo (PMC) radiative transport methods are used to simulate flowfield - radiation coupling from transitional to peak heating freestream conditions. The non-catalytic and fully catalytic surface conditions were modeled and good agreement of the stagnation-point convective heating between DSMC and continuum fluid dynamics (CFD) calculation under the assumption of fully catalytic surface was achieved. Stagnation-point radiative heating, however, was found to be very different. To simulate three-dimensional radiative transport, the finite-volume based PMC (FV-PMC) method was employed. DSMC - FV-PMC simulations with the goal of understanding the effect of radiation on the flow structure for different degrees of hypersonic non-equilibrium are presented. It is found that except for the highest altitudes, the coupling of radiation influences the flowfield, leading to a decrease in both heavy particle translational and internal temperatures and a decrease in the convective heat flux to the vehicle body. The DSMC - FV-PMC coupled simulations are compared with the previous coupled simulations and correlations obtained using continuum flow modeling and one-dimensional radiative transport. The modeling of radiative transport is further complicated by radiative transitions occurring during the excitation process of the same radiating gas species. This interaction affects the distribution of electronic state populations and, in turn, the radiative transport. The radiative transition rate in the excitation/de-excitation processes and the radiative transport equation (RTE) must be coupled simultaneously to account for non-local effects. The QSS model is presented to predict the electronic state populations of radiating gas species taking

  13. Monte Carlo Based Calibration and Uncertainty Analysis of a Coupled Plant Growth and Hydrological Model

    Science.gov (United States)

    Houska, Tobias; Multsch, Sebastian; Kraft, Philipp; Frede, Hans-Georg; Breuer, Lutz

    2014-05-01

    Computer simulations are widely used to support decision making and planning in the agriculture sector. On the one hand, many plant growth models use simplified hydrological processes and structures, e.g. by the use of a small number of soil layers or by the application of simple water flow approaches. On the other hand, in many hydrological models plant growth processes are poorly represented. Hence, fully coupled models with a high degree of process representation would allow a more detailed analysis of the dynamic behaviour of the soil-plant interface. We used the Python programming language to couple two of such high process oriented independent models and to calibrate both models simultaneously. The Catchment Modelling Framework (CMF) simulated soil hydrology based on the Richards equation and the Van-Genuchten-Mualem retention curve. CMF was coupled with the Plant growth Modelling Framework (PMF), which predicts plant growth on the basis of radiation use efficiency, degree days, water shortage and dynamic root biomass allocation. The Monte Carlo based Generalised Likelihood Uncertainty Estimation (GLUE) method was applied to parameterize the coupled model and to investigate the related uncertainty of model predictions to it. Overall, 19 model parameters (4 for CMF and 15 for PMF) were analysed through 2 x 106 model runs randomly drawn from an equally distributed parameter space. Three objective functions were used to evaluate the model performance, i.e. coefficient of determination (R2), bias and model efficiency according to Nash Sutcliffe (NSE). The model was applied to three sites with different management in Muencheberg (Germany) for the simulation of winter wheat (Triticum aestivum L.) in a cross-validation experiment. Field observations for model evaluation included soil water content and the dry matters of roots, storages, stems and leaves. Best parameter sets resulted in NSE of 0.57 for the simulation of soil moisture across all three sites. The shape

  14. Monte Carlo based beam model using a photon MLC for modulated electron radiotherapy

    International Nuclear Information System (INIS)

    Purpose: Modulated electron radiotherapy (MERT) promises sparing of organs at risk for certain tumor sites. Any implementation of MERT treatment planning requires an accurate beam model. The aim of this work is the development of a beam model which reconstructs electron fields shaped using the Millennium photon multileaf collimator (MLC) (Varian Medical Systems, Inc., Palo Alto, CA) for a Varian linear accelerator (linac). Methods: This beam model is divided into an analytical part (two photon and two electron sources) and a Monte Carlo (MC) transport through the MLC. For dose calculation purposes the beam model has been coupled with a macro MC dose calculation algorithm. The commissioning process requires a set of measurements and precalculated MC input. The beam model has been commissioned at a source to surface distance of 70 cm for a Clinac 23EX (Varian Medical Systems, Inc., Palo Alto, CA) and a TrueBeam linac (Varian Medical Systems, Inc., Palo Alto, CA). For validation purposes, measured and calculated depth dose curves and dose profiles are compared for four different MLC shaped electron fields and all available energies. Furthermore, a measured two-dimensional dose distribution for patched segments consisting of three 18 MeV segments, three 12 MeV segments, and a 9 MeV segment is compared with corresponding dose calculations. Finally, measured and calculated two-dimensional dose distributions are compared for a circular segment encompassed with a C-shaped segment. Results: For 15 × 34, 5 × 5, and 2 × 2 cm2 fields differences between water phantom measurements and calculations using the beam model coupled with the macro MC dose calculation algorithm are generally within 2% of the maximal dose value or 2 mm distance to agreement (DTA) for all electron beam energies. For a more complex MLC pattern, differences between measurements and calculations are generally within 3% of the maximal dose value or 3 mm DTA for all electron beam energies. For the two

  15. Core/shell CdS/ZnS nanoparticles: Molecular modelling and characterization by photocatalytic decomposition of Methylene Blue

    Energy Technology Data Exchange (ETDEWEB)

    Praus, Petr, E-mail: petr.praus@vsb.cz [Department of Analytical Chemistry and Material Testing, VŠB-Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba (Czech Republic); Regional Materials Science and Technology Centre, VŠB-Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava (Czech Republic); Svoboda, Ladislav [Department of Analytical Chemistry and Material Testing, VŠB-Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba (Czech Republic); Tokarský, Jonáš [Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba (Czech Republic); IT4Innovations Centre of Excellence, VŠB-Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba (Czech Republic); Hospodková, Alice [Department of Semiconductors, Institute of Physics ASCR, v. v. i., The Academy of Science of the Czech Republic, Na Slovance 1999/2, 182 21 Prague 8 (Czech Republic); Klemm, Volker [Institute of Materials Science, TU Bergakademie Freiberg, Gustav-Zeuner-Street 5, D-09599 Freiberg (Germany)

    2014-02-15

    Core/shell CdS/ZnS nanoparticles were modelled in the Material Studio environment and synthesized by one-pot procedure. The core CdS radius size and thickness of the ZnS shell composed of 1–3 ZnS monolayers were predicted from the molecular models. From UV–vis absorption spectra of the CdS/ZnS colloid dispersions transition energies of CdS and ZnS nanostructures were calculated. They indicated penetration of electrons and holes from the CdS core into the ZnS shell and relaxation strain in the ZnS shell structure. The transitions energies were used for calculation of the CdS core radius by the Schrödinger equation. Both the relaxation strain in ZnS shells and the size of the CdS core radius were predicted by the molecular modelling. The ZnS shell thickness and a degree of the CdS core coverage were characterized by the photocatalytic decomposition of Methylene Blue (MB) using CdS/ZnS nanoparticles as photocatalysts. The observed kinetic constants of the MB photodecomposition (k{sub obs}) were evaluated and a relationship between k{sub obs} and the ZnS shell thickness was derived. Regression results revealed that 86% of the CdS core surface was covered with ZnS and the average thickness of ZnS shell was about 12% higher than that predicted by molecular modelling.

  16. Properties of Carbon-Oxygen White Dwarfs From Monte Carlo Stellar Models

    Science.gov (United States)

    Fields, C. E.; Farmer, R.; Petermann, I.; Iliadis, C.; Timmes, F. X.

    2016-05-01

    We investigate properties of carbon-oxygen white dwarfs with respect to the composite uncertainties in the reaction rates using the stellar evolution toolkit, Modules for Experiments in Stellar Astrophysics (MESA) and the probability density functions in the reaction rate library STARLIB. These are the first Monte Carlo stellar evolution studies that use complete stellar models. Focusing on 3 {M}⊙ models evolved from the pre main-sequence to the first thermal pulse, we survey the remnant core mass, composition, and structure properties as a function of 26 STARLIB reaction rates covering hydrogen and helium burning using a Principal Component Analysis and Spearman Rank-Order Correlation. Relative to the arithmetic mean value, we find the width of the 95% confidence interval to be {{Δ }}{M}{{1TP}} ≈ 0.019 {M}⊙ for the core mass at the first thermal pulse, Δ{t}{{1TP}} ≈ 12.50 Myr for the age, {{Δ }}{log}({T}{{c}}/{{K}}) ≈ 0.013 for the central temperature, {{Δ }}{log}({ρ }{{c}}/{{g}} {{cm}}-3) ≈ 0.060 for the central density, {{Δ }}{Y}{{e,c}} ≈ 2.6 × 10-5 for the central electron fraction, {{Δ }}{X}{{c}}{(}22{{Ne}}) ≈ 5.8 × 10-4, {{Δ }}{X}{{c}}{(}12{{C}}) ≈ 0.392, and {{Δ }}{X}{{c}}{(}16{{O}}) ≈ 0.392. Uncertainties in the experimental 12C(α ,γ {)}16{{O}}, triple-α, and 14N({\\text{}}p,γ {)}15{{O}} reaction rates dominate these variations. We also consider a grid of 1-6 {M}⊙ models evolved from the pre main-sequence to the final white dwarf to probe the sensitivity of the initial-final mass relation to experimental uncertainties in the hydrogen and helium reaction rates.

  17. Energy and momentum preserving Coulomb collision model for kinetic Monte Carlo simulations of plasma steady states in toroidal fusion devices

    Science.gov (United States)

    Runov, A. M.; Kasilov, S. V.; Helander, P.

    2015-11-01

    A kinetic Monte Carlo model suited for self-consistent transport studies is proposed and tested. The Monte Carlo collision operator is based on a widely used model of Coulomb scattering by a drifting Maxwellian and a new algorithm enforcing the momentum and energy conservation laws. The difference to other approaches consists in a specific procedure of calculating the background Maxwellian parameters, which does not require ensemble averaging and, therefore, allows for the use of single-particle algorithms. This possibility is useful in transport balance (steady state) problems with a phenomenological diffusive ansatz for the turbulent transport, because it allows a direct use of variance reduction methods well suited for single particle algorithms. In addition, a method for the self-consistent calculation of the electric field is discussed. Results of testing of the new collision operator using a set of 1D examples, and preliminary results of 2D modelling in realistic tokamak geometry, are presented.

  18. Shell-model calculations for A=18 nuclei with a finite charge-dependent potential

    Energy Technology Data Exchange (ETDEWEB)

    Deka, A.K.; Mahanta, P.

    1976-05-01

    Shell-model calculations of T = 1 isospin states of A = 18 nuclei have been performed with a realistic, finite, and charge-dependent potential. The charge dependence is found to influence the reduced integrals calculated by using the separation method and the reference spectrum method. The two-body matrix elements and the energy levels show good agreement with the results of other realistic potentials, particularly with those of the Hamada-Johnston potential. An estimate of the charge dependence of the potential is also made and compared with similar results. (AIP)

  19. Thin‐shell modeling of neotectonics in the Azores‐Gibraltar Region

    OpenAIRE

    Jiménez-Munt, Ivone; Bird, M.; Fernàndez, Manel

    2001-01-01

    We applied the thin‐shell neotectonic modeling method to study the neotectonics of the Africa/Eurasia plate boundary in the Azores‐Gibraltar region. The plate boundary consists of a simple fault system running from Azores to the Gorringe Bank where it branches along the Betics and Rift‐Tell thrust fronts. Major faults in west Iberia and NW Africa have also been incorporated. Results are compared with seismic strain rates, fault slip rates and stress orientations. The best estimate for the fau...

  20. Study of rotational bands of 131La using the angular momentum projected shell model

    International Nuclear Information System (INIS)

    The angular momentum projected shell model (PSM) was applied to the study of nuclide 131La. the results of theoretical calculations about the rotational bands with configurations πd5/2, πg7/2, πh11/2, πh11/2 direct x [νh11/2]2 and πg7/2 direct x [νh11/2]2 were compared with experimental data. The nuclear shape for every rotational band was then specified

  1. Recent developments of the projected shell model based on many-body techniques

    Directory of Open Access Journals (Sweden)

    Sun Yang

    2015-01-01

    Full Text Available Recent developments of the projected shell model (PSM are summarized. Firstly, by using the Pfaffian algorithm, the multi-quasiparticle configuration space is expanded to include 6-quasiparticle states. The yrast band of 166Hf at very high spins is studied as an example, where the observed third back-bending in the moment of inertia is well reproduced and explained. Secondly, an angular-momentum projected generate coordinate method is developed based on PSM. The evolution of the low-lying states, including the second 0+ state, of the soft Gd, Dy, and Er isotopes to the well-deformed ones is calculated, and compared with experimental data.

  2. Rotational damping in a multi-$j$ shell particles-rotor model

    OpenAIRE

    Guo, Lu; Meng, Jie; Zhao, Enguang; Sakata, Fumihiko

    2004-01-01

    The damping of collective rotational motion is investigated by means of particles-rotor model in which the angular momentum coupling is treated exactly and the valence nucleons are in a multi-$j$ shell mean-field. It is found that the onset energy of rotational damping is around 1.1 MeV above yrast line, and the number of states which form rotational band structure is thus limited. The number of calculated rotational bands around 30 at a given angular momentum agrees qualitatively with experi...

  3. Phonon Dispersion and Thermodynamics Properties of CaF2 via Shell Model Molecular Dynamics Simulations

    Institute of Scientific and Technical Information of China (English)

    CHENG Yan; HU CuiE; ZENG Zhao-Yi; GONG Min; GOU Qing-Quan

    2009-01-01

    The phonon and thermodynamics properties of face-centered cubic CaF2 at high pressure and high tem-perature are investigated by using the shell model interatomic pair potential within General Utility Lattice Program (GULP). The phonon dispersion curves and the corresponding density of state (PDOS) in this work are consistent with the experimental data and other theoretical results. The transverse optical (TO) and longitudinal optical (LO) mode splitting as well as heat capacity at constant volume Cv and entropy S versus pressure and temperature are also obtained.

  4. Shell Model Analysis of Ξ-Hypernuclei Spectra for Mass A=12 and A=16

    Institute of Scientific and Technical Information of China (English)

    TAN Yu-Hong; LUO Yan-An; NING Ping-Zhi; CAI Chong-Hai

    2000-01-01

    The excitation spectra for(12Ξ_Be) and (1Ξ6_C) are obtained in the frame of a shell model. The experimental values of the ground state binding energies of the Ξ- hyperon in (12Ξ_Be) and (1Ξ6_ C) are used to determine the well depth of the Ξ-nucleus potential. The information on the residual interaction is emphasized. It is found that the residual interaction does not have much effect on the spectra of the Ξ--hypernucleus.

  5. Elastic Constants of Superconducting MgB2 from Molecular Dynamics Simulations with Shell Model

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The elastic constants of superconducting MgB2 are calculated using a molecular dynamics method (MD)with shell model. The lattice parameters, five independent elastic constants, equations of state (EOS), Debye temperature, and bulk modulus of MgB2 are obtained. Meanwhile, the dependence of the bulk modulus B, the lattice parameters a and c, and the unit cell volume V on the applied pressure are presented. It is demonstrated that the method introduced here can well reproduce the experimental results with a reasonable accuracy.

  6. Shielded attractive shell model again: resummed thermodynamic perturbation theory for central force potential

    Science.gov (United States)

    Reščič, J.; Kalyuzhnyi, Y. V.; Cummings, P. T.

    2016-10-01

    The approach developed earlier to describe the dimerizing shielded attractive shell (SAS) primitive model of chemical association due to Cummings and Stell is generalized and extended to include a description of a polymerizing SAS model. Our extension is based on the combination of the resummed thermodynamic perturbation theory for central force (RTPT-CF) associating potential and self consistent scheme, which takes into account the changes in the system free volume due to association. Theoretical results for thermodynamical properties of the model at different bonding length, density and temperature are compared against newly generated computer simulation results. The theory gives very accurate predictions for the model with bonding length L * from the range 0  <  L *  <  0.6 at all values of the density and temperature studied, including the limit of infinitely large temperature.

  7. Shielded attractive shell model again: resummed thermodynamic perturbation theory for central force potential.

    Science.gov (United States)

    Reščič, J; Kalyuzhnyi, Y V; Cummings, P T

    2016-10-19

    The approach developed earlier to describe the dimerizing shielded attractive shell (SAS) primitive model of chemical association due to Cummings and Stell is generalized and extended to include a description of a polymerizing SAS model. Our extension is based on the combination of the resummed thermodynamic perturbation theory for central force (RTPT-CF) associating potential and self consistent scheme, which takes into account the changes in the system free volume due to association. Theoretical results for thermodynamical properties of the model at different bonding length, density and temperature are compared against newly generated computer simulation results. The theory gives very accurate predictions for the model with bonding length L (*) from the range 0  <  L (*)  <  0.6 at all values of the density and temperature studied, including the limit of infinitely large temperature. PMID:27545613

  8. No-Core Shell Model for 48-Ca, 48-Sc and 48-Ti

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, S; Stoica, S; Vary, J P; Navratil, P

    2004-10-26

    The authors report the first no-core shell model results for {sup 48}Ca, {sup 48}Sc and {sup 48}Ti with derived and modified two-body Hamiltonians. We use an oscillator basis with a limited {bar h}{Omega} range around 40/A{sup 1/3} = 11 MeV and a limited model space up to 1 {bar h}{Omega}. No single-particle energies are used. They find that the charge dependence of the bulk binding energy of eight A = 48 nuclei is reasonably described with an effective Hamiltonian derived from the CD-Bonn interaction while there is an overall underbinding by about 0.4 MeV/nucleon. However, resulting spectra exhibit deficiencies that are anticipated due to: (1) basis space limitations and/or the absence of effective many-body interactions; and, (2) the absence of genuine three-nucleon interactions. They introduce phenomenological modifications to obtain fits to total binding and low-lying spectra. The resulting no-core shell model opens a path for applications to experiments such as the double-beta ({beta}{beta}) decay process.

  9. Anomalous Scaling from Controlled Closure in a Shell Model of Turbulence

    CERN Document Server

    Lvov, V S; Pomyalov, A; Procaccia, I; L'vov, Victor S.; Pierotti, Daniela; Pomyalov, Anna; Procaccia, Itamar

    1998-01-01

    We present a model of hydrodynamic turbulence for which the program of computing the scaling exponents from first principles can be developed in a controlled fashion. The model consists of $N$ suitably coupled copies of the "Sabra" shell model of turbulence. The couplings are chosen to include two components: random and deterministic, with a relative importance that is characterized by a parameter called $\\epsilon$. It is demonstrated, using numerical simulations of up to 25 copies and 28 shells that in the $N\\to functions whose scaling exponents are anomalous. The theoretical calculation of the scaling exponents follows verbatim the closure procedure suggested recently for the Navier-Stokes problem, with the additional advantage that in the $N\\to procedure. The main result of this paper is a finite and closed set of scale-invariant equations for the 2nd and 3rd order statistical objects of the theory. This set of equations takes into account terms up to order $\\epsilon^4$ and neglects terms of order $\\epsilo...

  10. Stochastic Monte-Carlo Markov Chain Inversions on Models Regionalized Using Receiver Functions

    Science.gov (United States)

    Larmat, C. S.; Maceira, M.; Kato, Y.; Bodin, T.; Calo, M.; Romanowicz, B. A.; Chai, C.; Ammon, C. J.

    2014-12-01

    There is currently a strong interest in stochastic approaches to seismic modeling - versus deterministic methods such as gradient methods - due to the ability of these methods to better deal with highly non-linear problems. Another advantage of stochastic methods is that they allow the estimation of the a posteriori probability distribution of the derived parameters, meaning the envisioned Bayesian inversion of Tarantola allowing the quantification of the solution error. The cost to pay of stochastic methods is that they require testing thousands of variations of each unknown parameter and their associated weights to ensure reliable probabilistic inferences. Even with the best High-Performance Computing resources available, 3D stochastic full waveform modeling at the regional scale still remains out-of-reach. We are exploring regionalization as one way to reduce the dimension of the parameter space, allowing the identification of areas in the models that can be treated as one block in a subsequent stochastic inversion. Regionalization is classically performed through the identification of tectonic or structural elements. Lekic & Romanowicz (2011) proposed a new approach with a cluster analysis of the tomographic velocity models instead. Here we present the results of a clustering analysis on the P-wave receiver-functions used in the subsequent inversion. Different clustering algorithms and quality of clustering are tested for different datasets of North America and China. Preliminary results with the kmean clustering algorithm show that an interpolated receiver function wavefield (Chai et al., GRL, in review) improve the agreement with the geological and tectonic regions of North America compared to the traditional approach of stacked receiver functions. After regionalization, 1D profile for each region is stochastically inferred using a parallelized code based on Monte-Carlo Markov Chains (MCMC), and modeling surfacewave-dispersion and receiver

  11. Monte Carlo analysis of an ODE Model of the Sea Urchin Endomesoderm Network

    Directory of Open Access Journals (Sweden)

    Klipp Edda

    2009-08-01

    Full Text Available Abstract Background Gene Regulatory Networks (GRNs control the differentiation, specification and function of cells at the genomic level. The levels of interactions within large GRNs are of enormous depth and complexity. Details about many GRNs are emerging, but in most cases it is unknown to what extent they control a given process, i.e. the grade of completeness is uncertain. This uncertainty stems from limited experimental data, which is the main bottleneck for creating detailed dynamical models of cellular processes. Parameter estimation for each node is often infeasible for very large GRNs. We propose a method, based on random parameter estimations through Monte-Carlo simulations to measure completeness grades of GRNs. Results We developed a heuristic to assess the completeness of large GRNs, using ODE simulations under different conditions and randomly sampled parameter sets to detect parameter-invariant effects of perturbations. To test this heuristic, we constructed the first ODE model of the whole sea urchin endomesoderm GRN, one of the best studied large GRNs. We find that nearly 48% of the parameter-invariant effects correspond with experimental data, which is 65% of the expected optimal agreement obtained from a submodel for which kinetic parameters were estimated and used for simulations. Randomized versions of the model reproduce only 23.5% of the experimental data. Conclusion The method described in this paper enables an evaluation of network topologies of GRNs without requiring any parameter values. The benefit of this method is exemplified in the first mathematical analysis of the complete Endomesoderm Network Model. The predictions we provide deliver candidate nodes in the network that are likely to be erroneous or miss unknown connections, which may need additional experiments to improve the network topology. This mathematical model can serve as a scaffold for detailed and more realistic models. We propose that our method can

  12. Monte Carlo Modeling of Cascade Gamma Rays in 86Y PET imaging: Preliminary results

    Science.gov (United States)

    Zhu, Xuping; El Fakhri, Georges

    2011-01-01

    86Y is a PET agent that could be used as an ideal surrogate to allow personalized dosimetry in 90Y radionuclide therapy. However, 86Y also emits cascade gamma rays. We have developed a Monte Carlo program based on SimSET to model cascade gamma rays in PET imaging. The new simulation was validated with the GATE simulation package. Agreements within 15% were found in spatial resolution, apparent scatter fraction (ratio of coincidences outside peak regions in line source sinograms), singles and coincidences statistics and detected photons energy distribution within the PET energy window. A 20% discrepancy was observed in the absolute scatter fraction, likely caused by differences in the tracking of higher-energy cascade gamma photons. On average the new simulation is 6 times faster than GATE, and the computing time can be further improved by using variance reduction techniques currently available in SimSET. Comparison with phantom acquisitions showed agreements in spatial resolutions and the general shape of projection profiles; however, the standard scatter correction method on the scanner is not directly applicable for 86Y PET as it leads to incorrect scatter fractions. The new simulation was used to characterize 86Y PET. Compared with conventional 18F PET, in which major contamination at low count rates comes from scattered events, cascade gamma-involved events are more important in 86Y PET. The two types of contaminations have completely different distribution patterns, which should be considered for the corrections of their effects. Our approach will be further improved in the future in the modeling of random coincidences and tracking of high energy photons, and simulation results will be used for the development of correction methods in 86Y PET. PMID:19521011

  13. Monte Carlo modeling of cascade gamma rays in {sup 86}Y PET imaging: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Xuping; El Fakhri, Georges [Radiology Department, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, MA (United States)], E-mail: xzhu4@Partners.org, E-mail: elfakhri@pet.mgh.harvard.edu

    2009-07-07

    {sup 86}Y is a PET agent that could be used as an ideal surrogate to allow personalized dosimetry in {sup 90}Y radionuclide therapy. However, {sup 86}Y also emits cascade gamma rays. We have developed a Monte Carlo program based on SimSET (Simulation System for Emission Tomography) to model cascade gamma rays in PET imaging. The new simulation was validated with the GATE simulation package. Agreements within 15% were found in spatial resolution, apparent scatter fraction (ratio of coincidences outside peak regions in line source sinograms), single and coincidence statistics and detected photons energy distribution within the PET energy window. A discrepancy of 20% was observed in the absolute scatter fraction, likely caused by differences in the tracking of higher energy cascade gamma photons. On average, the new simulation is 6 times faster than GATE, and the computing time can be further improved by using variance reduction techniques currently available in SimSET. Comparison with phantom acquisitions showed agreements in spatial resolutions and the general shape of projection profiles; however, the standard scatter correction method on the scanner is not directly applicable to {sup 86}Y PET as it leads to incorrect scatter fractions. The new simulation was used to characterize {sup 86}Y PET. Compared with conventional {sup 18}F PET, in which major contamination at low count rates comes from scattered events, cascade gamma-involved events are more important in {sup 86}Y PET. The two types of contaminations have completely different distribution patterns, which should be considered for the corrections of their effects. Our approach will be further improved in the future in the modeling of random coincidences and tracking of high-energy photons, and simulation results will be used for the development of correction methods in {sup 86}Y PET.

  14. Range verification methods in particle therapy: underlying physics and Monte Carlo modelling

    Directory of Open Access Journals (Sweden)

    Aafke Christine Kraan

    2015-07-01

    Full Text Available Hadron therapy allows for highly conformal dose distributions and better sparing of organs-at-risk, thanks to the characteristic dose deposition as function of depth. However, the quality of hadron therapy treatments is closely connected with the ability to predict and achieve a given beam range in the patient. Currently, uncertainties in particle range lead to the employment of safety margins, at the expense of treatment quality. Much research in particle therapy is therefore aimed at developing methods to verify the particle range in patients.Non-invasive in-vivo monitoring of the particle range can be performed by detecting secondary radiation, emitted from the patient as a result of nuclear interactions of charged hadrons with tissue, including beta+ emitters, prompt photons, and charged fragments. The correctness of the dose delivery can be verified by comparing measured and pre-calculated distributions of the secondary particles. The reliability of Monte Carlo (MC predictions is a key issue. Correctly modelling the production of secondaries is a non-trivial task, because it involves nuclear physics interactions at energies, where no rigorous theories exist to describe them. The goal of this review is to provide a comprehensive overview of various aspects in modelling the physics processes for range verification with secondary particles produced in proton, carbon, and heavier ion irradiation. We discuss electromagnetic and nuclear interactions of charged hadrons in matter, which is followed by a summary of some widely used MC codes in hadron therapy. Then we describe selected examples of how these codes have been validated and used in three range verification techniques: PET, prompt gamma, and charged particle detection. We include research studies and clinically applied methods. For each of the techniques we point out advantages and disadvantages, as well as clinical challenges still to be addressed, focusing on MC simulation aspects.

  15. Stochastic geometrical model and Monte Carlo optimization methods for building reconstruction from InSAR data

    Science.gov (United States)

    Zhang, Yue; Sun, Xian; Thiele, Antje; Hinz, Stefan

    2015-10-01

    Synthetic aperture radar (SAR) systems, such as TanDEM-X, TerraSAR-X and Cosmo-SkyMed, acquire imagery with high spatial resolution (HR), making it possible to observe objects in urban areas with high detail. In this paper, we propose a new top-down framework for three-dimensional (3D) building reconstruction from HR interferometric SAR (InSAR) data. Unlike most methods proposed before, we adopt a generative model and utilize the reconstruction process by maximizing a posteriori estimation (MAP) through Monte Carlo methods. The reason for this strategy refers to the fact that the noisiness of SAR images calls for a thorough prior model to better cope with the inherent amplitude and phase fluctuations. In the reconstruction process, according to the radar configuration and the building geometry, a 3D building hypothesis is mapped to the SAR image plane and decomposed to feature regions such as layover, corner line, and shadow. Then, the statistical properties of intensity, interferometric phase and coherence of each region are explored respectively, and are included as region terms. Roofs are not directly considered as they are mixed with wall into layover area in most cases. When estimating the similarity between the building hypothesis and the real data, the prior, the region term, together with the edge term related to the contours of layover and corner line, are taken into consideration. In the optimization step, in order to achieve convergent reconstruction outputs and get rid of local extrema, special transition kernels are designed. The proposed framework is evaluated on the TanDEM-X dataset and performs well for buildings reconstruction.

  16. Parallel kinetic Monte Carlo simulation framework incorporating accurate models of adsorbate lateral interactions

    Science.gov (United States)

    Nielsen, Jens; d'Avezac, Mayeul; Hetherington, James; Stamatakis, Michail

    2013-12-01

    Ab initio kinetic Monte Carlo (KMC) simulations have been successfully applied for over two decades to elucidate the underlying physico-chemical phenomena on the surfaces of heterogeneous catalysts. These simulations necessitate detailed knowledge of the kinetics of elementary reactions constituting the reaction mechanism, and the energetics of the species participating in the chemistry. The information about the energetics is encoded in the formation energies of gas and surface-bound species, and the lateral interactions between adsorbates on the catalytic surface, which can be modeled at different levels of detail. The majority of previous works accounted for only pairwise-additive first nearest-neighbor interactions. More recently, cluster-expansion Hamiltonians incorporating long-range interactions and many-body terms have been used for detailed estimations of catalytic rate [C. Wu, D. J. Schmidt, C. Wolverton, and W. F. Schneider, J. Catal. 286, 88 (2012)]. In view of the increasing interest in accurate predictions of catalytic performance, there is a need for general-purpose KMC approaches incorporating detailed cluster expansion models for the adlayer energetics. We have addressed this need by building on the previously introduced graph-theoretical KMC framework, and we have developed Zacros, a FORTRAN2003 KMC package for simulating catalytic chemistries. To tackle the high computational cost in the presence of long-range interactions we introduce parallelization with OpenMP. We further benchmark our framework by simulating a KMC analogue of the NO oxidation system established by Schneider and co-workers [J. Catal. 286, 88 (2012)]. We show that taking into account only first nearest-neighbor interactions may lead to large errors in the prediction of the catalytic rate, whereas for accurate estimates thereof, one needs to include long-range terms in the cluster expansion.

  17. Water leaching of borosilicate glasses: experiments, modeling and Monte Carlo simulations

    International Nuclear Information System (INIS)

    This work is concerned with the corrosion of borosilicate glasses with variable oxide contents. The originality of this study is the complementary use of experiments and numerical simulations. This study is expected to contribute to a better understanding of the corrosion of nuclear waste confinement glasses. First, the corrosion of glasses containing only silicon, boron and sodium oxides has been studied. The kinetics of leaching show that the rate of leaching and the final degree of corrosion sharply depend on the boron content through a percolation mechanism. For some glass contents and some conditions of leaching, the layer which appears at the glass surface stops the release of soluble species (boron and sodium). This altered layer (also called the gel layer) has been characterized with nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. Second, additional elements have been included in the glass composition. It appears that calcium, zirconium or aluminum oxides strongly modify the final degree of corrosion so that the percolation properties of the boron sub-network is no more a sufficient explanation to account for the behavior of these glasses. Meanwhile, we have developed a theoretical model, based on the dissolution and the reprecipitation of the silicon. Kinetic Monte Carlo simulations have been used in order to test several concepts such as the boron percolation, the local reactivity of weakly soluble elements and the restructuring of the gel layer. This model has been fully validated by comparison with the results on the three oxide glasses. Then, it has been used as a comprehensive tool to investigate the paradoxical behavior of the aluminum and zirconium glasses: although these elements slow down the corrosion kinetics, they lead to a deeper final degree of corrosion. The main contribution of this work is that the final degree of corrosion of borosilicate glasses results from the competition of two opposite mechanisms

  18. Aqueous corrosion of borosilicate glasses: experiments, modeling and Monte-Carlo simulations

    International Nuclear Information System (INIS)

    This work is concerned with the corrosion of borosilicate glasses with variable oxide contents. The originality of this study is the complementary use of experiments and numerical simulations. This study is expected to contribute to a better understanding of the corrosion of nuclear waste confinement glasses. First, the corrosion of glasses containing only silicon, boron and sodium oxides has been studied. The kinetics of leaching show that the rate of leaching and the final degree of corrosion sharply depend on the boron content through a percolation mechanism. For some glass contents and some conditions of leaching, the layer which appears at the glass surface stops the release of soluble species (boron and sodium). This altered layer (also called the gel layer) has been characterized with nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. Second, additional elements have been included in the glass composition. It appears that calcium, zirconium or aluminum oxides strongly modify the final degree of corrosion so that the percolation properties of the boron sub-network is no more a sufficient explanation to account for the behavior of these glasses. Meanwhile, we have developed a theoretical model, based on the dissolution and the reprecipitation of the silicon. Kinetic Monte Carlo simulations have been used in order to test several concepts such as the boron percolation, the local reactivity of weakly soluble elements and the restructuring of the gel layer. This model has been fully validated by comparison with the results on the three oxide glasses. Then, it has been used as a comprehensive tool to investigate the paradoxical behavior of the aluminum and zirconium glasses: although these elements slow down the corrosion kinetics, they lead to a deeper final degree of corrosion. The main contribution of this work is that the final degree of corrosion of borosilicate glasses results from the competition of two opposite mechanisms

  19. An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations

    Science.gov (United States)

    Tian, Zhen; Li, Yongbao; Folkerts, Michael; Shi, Feng; Jiang, Steve B.; Jia, Xun

    2015-10-01

    Recently, there has been a lot of research interest in developing fast Monte Carlo (MC) dose calculation methods on graphics processing unit (GPU) platforms. A good linear accelerator (linac) source model is critical for both accuracy and efficiency considerations. In principle, an analytical source model should be more preferred for GPU-based MC dose engines than a phase-space file-based model, in that data loading and CPU-GPU data transfer can be avoided. In this paper, we presented an analytical field-independent source model specifically developed for GPU-based MC dose calculations, associated with a GPU-friendly sampling scheme. A key concept called phase-space-ring (PSR) was proposed. Each PSR contained a group of particles that were of the same type, close in energy and reside in a narrow ring on the phase-space plane located just above the upper jaws. The model parameterized the probability densities of particle location, direction and energy for each primary photon PSR, scattered photon PSR and electron PSR. Models of one 2D Gaussian distribution or multiple Gaussian components were employed to represent the particle direction distributions of these PSRs. A method was developed to analyze a reference phase-space file and derive corresponding model parameters. To efficiently use our model in MC dose calculations on GPU, we proposed a GPU-friendly sampling strategy, which ensured that the particles sampled and transported simultaneously are of the same type and close in energy to alleviate GPU thread divergences. To test the accuracy of our model, dose distributions of a set of open fields in a water phantom were calculated using our source model and compared to those calculated using the reference phase-space files. For the high dose gradient regions, the average distance-to-agreement (DTA) was within 1 mm and the maximum DTA within 2 mm. For relatively low dose gradient regions, the root-mean-square (RMS) dose difference was within 1.1% and the maximum

  20. Study of the validity of a combined potential model using the Hybrid Reverse Monte Carlo method in Fluoride glass system

    Directory of Open Access Journals (Sweden)

    M. Kotbi

    2013-03-01

    Full Text Available The choice of appropriate interaction models is among the major disadvantages of conventional methods such as Molecular Dynamics (MD and Monte Carlo (MC simulations. On the other hand, the so-called Reverse Monte Carlo (RMC method, based on experimental data, can be applied without any interatomic and/or intermolecular interactions. The RMC results are accompanied by artificial satellite peaks. To remedy this problem, we use an extension of the RMC algorithm, which introduces an energy penalty term into the acceptance criteria. This method is referred to as the Hybrid Reverse Monte Carlo (HRMC method. The idea of this paper is to test the validity of a combined potential model of coulomb and Lennard-Jones in a Fluoride glass system BaMnMF7 (M = Fe,V using HRMC method. The results show a good agreement between experimental and calculated characteristics, as well as a meaningful improvement in partial pair distribution functions (PDFs. We suggest that this model should be used in calculating the structural properties and in describing the average correlations between components of fluoride glass or a similar system. We also suggest that HRMC could be useful as a tool for testing the interaction potential models, as well as for conventional applications.