WorldWideScience

Sample records for cardiac tissue engineering

  1. Cardiac Tissue Engineering

    OpenAIRE

    MILICA RADISIC; GORDANA VUNJAK-NOVAKOVIC

    2009-01-01

    We hypothesized that clinically sized (1-5 mm thick),compact cardiac constructs containing physiologically high density of viable cells (~108 cells/cm3) can be engineered in vitro by using biomimetic culture systems capable of providing oxygen transport and electrical stimulation, designed to mimic those in native heart. This hypothesis was tested by culturing rat heart cells on polymer scaffolds, either with perfusion of culture medium (physiologic interstitial velocity, supplementation of p...

  2. Nanomaterials for Cardiac Myocyte Tissue Engineering

    OpenAIRE

    Rodolfo Amezcua; Ajay Shirolkar; Carolyn Fraze; David A. Stout

    2016-01-01

    Since their synthesizing introduction to the research community, nanomaterials have infiltrated almost every corner of science and engineering. Over the last decade, one such field has begun to look at using nanomaterials for beneficial applications in tissue engineering, specifically, cardiac tissue engineering. During a myocardial infarction, part of the cardiac muscle, or myocardium, is deprived of blood. Therefore, the lack of oxygen destroys cardiomyocytes, leaving dead tissue and possib...

  3. Nanomaterials for Cardiac Tissue Engineering Application

    Institute of Scientific and Technical Information of China (English)

    Yachen Zhang; Yong Tang; Ying Wang; Liying Zhang

    2011-01-01

    In recent years, the emerging cardiac tissue engineering provides a new therapeutic method for heart diseases. And in the tissue engineering, the scaffold material which can mimic the structure of the extracellular matrix properly is a key factor. The rapid expansion of nano-scaffolds during the past ten years has led to new perspectives and advances in biomedical research as well as in clinical practice. Here we search articles published in recent years extensively on cardiac tissue engineering scaffold materials and nanotechnology. And we review the traditional scaffold materials and the advances of the nano-scaffolds in cardiac tissue engineering. A thorough understanding of the nano-scaffolds would enable us to better exploit technologies to research the ideal scaffold material, and promote the cardiac tissue engineering using in the clinical practice as soon as possible.

  4. Electrical stimulation systems for cardiac tissue engineering.

    Science.gov (United States)

    Tandon, Nina; Cannizzaro, Christopher; Chao, Pen-Hsiu Grace; Maidhof, Robert; Marsano, Anna; Au, Hoi Ting Heidi; Radisic, Milica; Vunjak-Novakovic, Gordana

    2009-01-01

    We describe a protocol for tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cells with the application of pulsatile electrical fields designed to mimic those present in the native heart. Tissue culture is conducted in a customized chamber built to allow for cultivation of (i) engineered three-dimensional (3D) cardiac tissue constructs, (ii) cell monolayers on flat substrates or (iii) cells on patterned substrates. This also allows for analysis of the individual and interactive effects of pulsatile electrical field stimulation and substrate topography on cell differentiation and assembly. The protocol is designed to allow for delivery of predictable electrical field stimuli to cells, monitoring environmental parameters, and assessment of cell and tissue responses. The duration of the protocol is 5 d for two-dimensional cultures and 10 d for 3D cultures.

  5. Biomimetic material strategies for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  6. Biomimetic material strategies for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P., E-mail: nnimpp@nus.edu.sg [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Venugopal, J. [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Kai, Dan [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (Singapore); Ramakrishna, Seeram [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-04-08

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  7. Mechanostimulation Protocols for Cardiac Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Marco Govoni

    2013-01-01

    Full Text Available Owing to the inability of self-replacement by a damaged myocardium, alternative strategies to heart transplantation have been explored within the last decades and cardiac tissue engineering/regenerative medicine is among the present challenges in biomedical research. Hopefully, several studies witness the constant extension of the toolbox available to engineer a fully functional, contractile, and robust cardiac tissue using different combinations of cells, template bioscaffolds, and biophysical stimuli obtained by the use of specific bioreactors. Mechanical forces influence the growth and shape of every tissue in our body generating changes in intracellular biochemistry and gene expression. That is why bioreactors play a central role in the task of regenerating a complex tissue such as the myocardium. In the last fifteen years a large number of dynamic culture devices have been developed and many results have been collected. The aim of this brief review is to resume in a single streamlined paper the state of the art in this field.

  8. Distilling complexity to advance cardiac tissue engineering

    Science.gov (United States)

    Ogle, Brenda M.; Bursac, Nenad; Domian, Ibrahim; Huang, Ngan F; Menasché, Philippe; Murry, Charles; Pruitt, Beth; Radisic, Milica; Wu, Joseph C; Wu, Sean M; Zhang, Jianyi; Zimmermann, Wolfram-Hubertus; Vunjak-Novakovic, Gordana

    2016-01-01

    The promise of cardiac tissue engineering is in the ability to recapitulate in vitro the functional aspects of healthy heart and disease pathology as well as to design replacement muscle for clinical therapy. Parts of this promise have been realized; others have not. In a meeting of scientists in this field, five central challenges or “big questions” were articulated that, if addressed, could substantially advance the current state-of-the-art in modeling heart disease and realizing heart repair. PMID:27280684

  9. Optimization of electrical stimulation parameters for cardiac tissue engineering.

    Science.gov (United States)

    Tandon, Nina; Marsano, Anna; Maidhof, Robert; Wan, Leo; Park, Hyoungshin; Vunjak-Novakovic, Gordana

    2011-06-01

    In vitro application of pulsatile electrical stimulation to neonatal rat cardiomyocytes cultured on polymer scaffolds has been shown to improve the functional assembly of cells into contractile engineered cardiac tissues. However, to date, the conditions of electrical stimulation have not been optimized. We have systematically varied the electrode material, amplitude and frequency of stimulation to determine the conditions that are optimal for cardiac tissue engineering. Carbon electrodes, exhibiting the highest charge-injection capacity and producing cardiac tissues with the best structural and contractile properties, were thus used in tissue engineering studies. Engineered cardiac tissues stimulated at 3 V/cm amplitude and 3 Hz frequency had the highest tissue density, the highest concentrations of cardiac troponin-I and connexin-43 and the best-developed contractile behaviour. These findings contribute to defining bioreactor design specifications and electrical stimulation regime for cardiac tissue engineering.

  10. Bioactive polymers for cardiac tissue engineering

    Science.gov (United States)

    Wall, Samuel Thomas

    2007-05-01

    Prevalent in the US and worldwide, acute myocardial infarctions (AMI) can cause ischemic injuries to the heart that persist and lead to progressive degradation of the organ. Tissue engineering techniques exploiting biomaterials present a hopeful means of treating these injuries, either by mechanically stabilizing the injured ventricle, or by fostering cell growth to replace myocytes lost to damage. This thesis describes the development and testing of a synthetic extracellular matrix for cardiac tissue engineering applications. The first stage of this process was using an advanced finite element model of an injured ovine left ventricle to evaluate the potential benefits of injecting synthetic materials into the heart. These simulations indicated that addition of small amounts non-contractile material (on the order of 1--5% total wall volume) to infarct border zone regions reduced pathological systolic fiber stress to levels near those found in normal remote regions. Simulations also determined that direct addition to the infarct itself caused increases in ventricle ejection fraction while the underlying performance of the pump, ascertained by the Starling relation, was not improved. From these theoretical results, biomaterials were developed specifically for injection into the injured myocardium, and were characterized and tested for their mechanical properties and ability to sustain the proliferation of a stem cell population suitable for transplantation. Thermoresponsive synthetic copolymer hydrogels consisting of N-isopropylacrylamide and acrylic acid, p(NIPAAm-co-AAc), crosslinked with protease degradable amino acid sequences and modified with integrin binding ligands were synthesized, characterized in vitro, and used for myocardial implantation. These injectable materials could maintain a population of bone marrow derived mesenchymal stem cells in both two dimensional and three dimensional culture, and when tested in vivo in a murine infarct model they

  11. Characterization of electrical stimulation electrodes for cardiac tissue engineering.

    Science.gov (United States)

    Tandon, Nina; Cannizzaro, Chris; Figallo, Elisa; Voldman, Joel; Vunjak-Novakovic, Gordana

    2006-01-01

    Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. The goal of this study was to assess the conditions of electrical stimulation with respect to the electrode geometry, material properties and charge-transfer characteristics at the electrode-electrolyte interface. We compared various biocompatible materials, including nanoporous carbon, stainless steel, titanium and titanium nitride, for use in cardiac tissue engineering bioreactors. The faradaic and non-faradaic charge transfer mechanisms were assessed by electrochemical impedance spectroscopy (EIS), studying current injection characteristics, and examining surface properties of electrodes with scanning electron microscopy. Carbon electrodes were found to have the best current injection characteristics. However, these electrodes require careful handling because of their limited mechanical strength. The efficacy of various electrodes for use in 2-D and 3-D cardiac tissue engineering systems with neonatal rat cardiomyocytes is being determined by assessing cell viability, amplitude of contractions, excitation thresholds, maximum capture rate, and tissue morphology.

  12. Design of electrical stimulation bioreactors for cardiac tissue engineering.

    Science.gov (United States)

    Tandon, N; Marsano, A; Cannizzaro, C; Voldman, J; Vunjak-Novakovic, G

    2008-01-01

    Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. Carbon electrodes were found in past studies to have the best current injection characteristics. The goal of this study was to develop rational experimental design principles for the electrodes and stimulation regime, in particular electrode configuration, electrode ageing, and stimulation amplitude. Carbon rod electrodes were compared via electrochemical impedance spectroscopy (EIS) and we identified a safety range of 0 to 8 V/cm by comparing excitation thresholds and maximum capture rates for neonatal rat cardiomyocytes cultured with electrical stimulation. We conclude with recommendations for studies involving carbon electrodes for cardiac tissue engineering.

  13. Cardiac tissue engineering and regeneration using cell-based therapy

    Directory of Open Access Journals (Sweden)

    Alrefai MT

    2015-05-01

    Full Text Available Mohammad T Alrefai,1–3 Divya Murali,4 Arghya Paul,4 Khalid M Ridwan,1,2 John M Connell,1,2 Dominique Shum-Tim1,2 1Division of Cardiac Surgery, 2Division of Surgical Research, McGill University Health Center, Montreal, QC, Canada; 3King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; 4Department of Chemical and Petroleum Engineering, School of Engineering, University of Kansas, Lawrence, KS, USA Abstract: Stem cell therapy and tissue engineering represent a forefront of current research in the treatment of heart disease. With these technologies, advancements are being made into therapies for acute ischemic myocardial injury and chronic, otherwise nonreversible, myocardial failure. The current clinical management of cardiac ischemia deals with reestablishing perfusion to the heart but not dealing with the irreversible damage caused by the occlusion or stenosis of the supplying vessels. The applications of these new technologies are not yet fully established as part of the management of cardiac diseases but will become so in the near future. The discussion presented here reviews some of the pioneering works at this new frontier. Key results of allogeneic and autologous stem cell trials are presented, including the use of embryonic, bone marrow-derived, adipose-derived, and resident cardiac stem cells. Keywords: stem cells, cardiomyocytes, cardiac surgery, heart failure, myocardial ischemia, heart, scaffolds, organoids, cell sheet and tissue engineering

  14. Practical aspects of cardiac tissue engineering with electrical stimulation.

    Science.gov (United States)

    Cannizzaro, Christopher; Tandon, Nina; Figallo, Elisa; Park, Hyoungshin; Gerecht, Sharon; Radisic, Milica; Elvassore, Nicola; Vunjak-Novakovic, Gordana

    2007-01-01

    Heart disease is a leading cause of death in western society. Despite the success of heart transplantation, a chronic shortage of donor organs, along with the associated immunological complications of this approach, demands that alternative treatments be found. One such option is to repair, rather than replace, the heart with engineered cardiac tissue. Multiple studies have shown that to attain functional tissue, assembly signaling cues must be recapitulated in vitro. In their native environment, cardiomyocytes are directed to beat in synchrony by propagation of pacing current through the tissue. Recently, we have shown that electrical stimulation directs neonatal cardiomyocytes to assemble into native-like tissue in vitro. This chapter provides detailed methods we have employed in taking this "biomimetic" approach. After an initial discussion on how electric field stimulation can influence cell behavior, we examine the practical aspects of cardiac tissue engineering with electrical stimulation, such as electrode selection and cell seeding protocols, and conclude with what we feel are the remaining challenges to be overcome.

  15. Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy.

    Science.gov (United States)

    Hasan, Anwarul; Waters, Renae; Roula, Boustany; Dana, Rahbani; Yara, Seif; Alexandre, Toubia; Paul, Arghya

    2016-07-01

    Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field. PMID:26953627

  16. Biologically improved nanofibrous scaffolds for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Bhaarathy, V. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Lee Kong Chian School of Medicine, Nanyang Technological University, 138673 (Singapore); Venugopal, J., E-mail: nnijrv@nus.edu.sg [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Gandhimathi, C. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Ponpandian, N.; Mangalaraj, D. [Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Ramakrishna, S. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore)

    2014-11-01

    Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(L-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering. - Highlights: • Fabricated nanofibrous scaffolds are porous, beadless and uniform structures. • PLACL/SF/AV nanofibers improve the

  17. The role of tissue engineering and biomaterials in cardiac regenerative medicine

    OpenAIRE

    Zhao, Yimu; Feric, Nicole T.; Thavandiran, Nimalan; Nunes, Sara S.; Radisic, Milica

    2014-01-01

    In recent years, the development of three-dimensional engineered heart tissue (EHT) has made large strides forward due to advances in stem cell biology, materials science, pre-vascularization strategies and nanotechnology. As a result, the role of tissue engineering in cardiac regenerative medicine has become multi-faceted as new applications become feasible. Cardiac tissue engineering has long been established to have the potential to partially or fully restore cardiac function following car...

  18. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization.

    Science.gov (United States)

    Carrier, R L; Papadaki, M; Rupnick, M; Schoen, F J; Bursac, N; Langer, R; Freed, L E; Vunjak-Novakovic, G

    1999-09-01

    Cardiac tissue engineering has been motivated by the need to create functional tissue equivalents for scientific studies and cardiac tissue repair. We previously demonstrated that contractile cardiac cell-polymer constructs can be cultivated using isolated cells, 3-dimensional scaffolds, and bioreactors. In the present work, we examined the effects of (1) cell source (neonatal rat or embryonic chick), (2) initial cell seeding density, (3) cell seeding vessel, and (4) tissue culture vessel on the structure and composition of engineered cardiac muscle. Constructs seeded under well-mixed conditions with rat heart cells at a high initial density ((6-8) x 10(6) cells/polymer scaffold) maintained structural integrity and contained macroscopic contractile areas (approximately 20 mm(2)). Seeding in rotating vessels (laminar flow) rather than mixed flasks (turbulent flow) resulted in 23% higher seeding efficiency and 20% less cell damage as assessed by medium lactate dehydrogenase levels (p laminar and dynamic, yielded constructs with a more active, aerobic metabolism as compared to constructs cultured in mixed or static flasks. After 1-2 weeks of cultivation, tissue constructs expressed cardiac specific proteins and ultrastructural features and had approximately 2-6 times lower cellularity (p < 0.05) but similar metabolic activity per unit cell when compared to native cardiac tissue.

  19. Anisotropic silk biomaterials containing cardiac extracellular matrix for cardiac tissue engineering.

    Science.gov (United States)

    Stoppel, Whitney L; Hu, Dongjian; Domian, Ibrahim J; Kaplan, David L; Black, Lauren D

    2015-06-01

    Cardiac malformations and disease are the leading causes of death in the United States in live-born infants and adults, respectively. In both of these cases, a decrease in the number of functional cardiomyocytes often results in improper growth of heart tissue, wound healing complications, and poor tissue repair. The field of cardiac tissue engineering seeks to address these concerns by developing cardiac patches created from a variety of biomaterial scaffolds to be used in surgical repair of the heart. These scaffolds should be fully degradable biomaterial systems with tunable properties such that the materials can be altered to meet the needs of both in vitro culture (e.g. disease modeling) and in vivo application (e.g. cardiac patch). Current platforms do not utilize both structural anisotropy and proper cell-matrix contacts to promote functional cardiac phenotypes and thus there is still a need for critically sized scaffolds that mimic both the structural and adhesive properties of native tissue. To address this need, we have developed a silk-based scaffold platform containing cardiac tissue-derived extracellular matrix (cECM). These silk-cECM composite scaffolds have tunable architectures, degradation rates, and mechanical properties. Subcutaneous implantation in rats demonstrated that addition of the cECM to aligned silk scaffold led to 99% endogenous cell infiltration and promoted vascularization of a critically sized scaffold (10 × 5 × 2.5 mm) after 4 weeks in vivo. In vitro, silk-cECM scaffolds maintained the HL-1 atrial cardiomyocytes and human embryonic stem cell-derived cardiomyocytes and promoted a more functional phenotype in both cell types. This class of hybrid silk-cECM anisotropic scaffolds offers new opportunities for developing more physiologically relevant tissues for cardiac repair and disease modeling. PMID:25826196

  20. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  1. Gold nanoparticle-decellularized matrix hybrids for cardiac tissue engineering.

    Science.gov (United States)

    Shevach, Michal; Fleischer, Sharon; Shapira, Assaf; Dvir, Tal

    2014-10-01

    Decellularized matrices are valuable scaffolds for engineering functional cardiac patches for treating myocardial infarction. However, the lack of quick and efficient electrical coupling between adjacent cells may jeopardize the success of the treatment. To address this issue, we have deposited gold nanoparticles on fibrous decellularized omental matrices and investigated their morphology, conductivity, and degradation. We have shown that cardiac cells engineered within the hybrid scaffolds exhibited elongated and aligned morphology, massive striation, and organized connexin 43 electrical coupling proteins. Finally, we have shown that the hybrid patches demonstrated superior function as compared to pristine patches, including a stronger contraction force, lower excitation threshold, and faster calcium transients.

  2. Fabrication and characterization of bio-engineered cardiac pseudo tissues

    Energy Technology Data Exchange (ETDEWEB)

    Xu Tao; Boland, Thomas [Department of Bioengineering, 420 Rhodes Hall, Clemson University, Clemson, SC 29634 (United States); Baicu, Catalin; Aho, Michael; Zile, Michael, E-mail: tboland@clemson.ed [Department of Medicine, Medical University of South Carolina, Charleston, SC 29425 (United States)

    2009-09-15

    We report on fabricating functional three-dimensional (3D) tissue constructs using an inkjet based bio-prototyping method. With the use of modified inkjet printers, contractile cardiac hybrids that exhibit the forms of the 3D rectangular sheet and even the 'half heart' (with two connected ventricles) have been fabricated by arranging alternate layers of biocompatible alginate hydrogels and mammalian cardiac cells according to pre-designed 3D patterns. In this study, primary feline adult and H1 cardiomyocytes were used as model cardiac cells. Alginate hydrogels with controlled micro-shell structures were built by spraying cross-linkers in micro-drops onto un-gelled alginic acid. The cells remained viable in constructs as thick as 1 cm due to the programmed porosity. Microscopic and macroscopic contractile functions of these cardiomyocyte constructs were observed in vitro. These results suggest that the inkjet bio-prototyping method could be used for hierarchical design of functional cardiac pseudo tissues, balanced with porosity for mass transport and structural support.

  3. Human Cardiac Tissue Engineering: From Pluripotent Stem Cells to Heart Repair

    Science.gov (United States)

    Jackman, Christopher P.; Shadrin, Ilya Y.; Carlson, Aaron L.; Bursac, Nenad

    2014-01-01

    Engineered cardiac tissues hold great promise for use in drug and toxicology screening, in vitro studies of human physiology and disease, and as transplantable tissue grafts for myocardial repair. In this review, we discuss recent progress in cell-based therapy and functional tissue engineering using pluripotent stem cell-derived cardiomyocytes and we describe methods for delivery of cells into the injured heart. While significant hurdles remain, notable advances have been made in the methods to derive large numbers of pure human cardiomyocytes, mature their phenotype, and produce and implant functional cardiac tissues, bringing the field a step closer to widespread in vitro and in vivo applications. PMID:25599018

  4. The role of tissue engineering and biomaterials in cardiac regenerative medicine.

    Science.gov (United States)

    Zhao, Yimu; Feric, Nicole T; Thavandiran, Nimalan; Nunes, Sara S; Radisic, Milica

    2014-11-01

    In recent years, the development of 3-dimensional engineered heart tissue (EHT) has made large strides forward because of advances in stem cell biology, materials science, prevascularization strategies, and nanotechnology. As a result, the role of tissue engineering in cardiac regenerative medicine has become multifaceted as new applications become feasible. Cardiac tissue engineering has long been established to have the potential to partially or fully restore cardiac function after cardiac injury. However, EHTs may also serve as surrogate human cardiac tissue for drug-related toxicity screening. Cardiotoxicity remains a major cause of drug withdrawal in the pharmaceutical industry. Unsafe drugs reach the market because preclinical evaluation is insufficient to weed out cardiotoxic drugs in all their forms. Bioengineering methods could provide functional and mature human myocardial tissues, ie, physiologically relevant platforms, for screening the cardiotoxic effects of pharmaceutical agents and facilitate the discovery of new therapeutic agents. Finally, advances in induced pluripotent stem cells have made patient-specific EHTs possible, which opens up the possibility of personalized medicine. Herein, we give an overview of the present state of the art in cardiac tissue engineering, the challenges to the field, and future perspectives. PMID:25442432

  5. Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues

    Science.gov (United States)

    Fleischer, Sharon; Shevach, Michal; Feiner, Ron; Dvir, Tal

    2014-07-01

    Coiled perimysial fibers within the heart muscle provide it with the ability to contract and relax efficiently. Here, we report on a new nanocomposite scaffold for cardiac tissue engineering, integrating coiled electrospun fibers with gold nanoparticles. Cultivation of cardiac cells within the hybrid scaffolds promoted cell organization into elongated and aligned tissues generating a strong contraction force, high contraction rate and low excitation threshold.Coiled perimysial fibers within the heart muscle provide it with the ability to contract and relax efficiently. Here, we report on a new nanocomposite scaffold for cardiac tissue engineering, integrating coiled electrospun fibers with gold nanoparticles. Cultivation of cardiac cells within the hybrid scaffolds promoted cell organization into elongated and aligned tissues generating a strong contraction force, high contraction rate and low excitation threshold. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00300d

  6. 3D engineered cardiac tissue models of human heart disease: learning more from our mice.

    Science.gov (United States)

    Ralphe, J Carter; de Lange, Willem J

    2013-02-01

    Mouse engineered cardiac tissue constructs (mECTs) are a new tool available to study human forms of genetic heart disease within the laboratory. The cultured strips of cardiac cells generate physiologic calcium transients and twitch force, and respond to electrical pacing and adrenergic stimulation. The mECT can be made using cells from existing mouse models of cardiac disease, providing a robust readout of contractile performance and allowing a rapid assessment of genotype-phenotype correlations and responses to therapies. mECT represents an efficient and economical extension to the existing tools for studying cardiac physiology. Human ECTs generated from iPSCMs represent the next logical step for this technology and offer significant promise of an integrated, fully human, cardiac tissue model.

  7. Cardiac Meets Skeletal: What's New in Microfluidic Models for Muscle Tissue Engineering.

    Science.gov (United States)

    Visone, Roberta; Gilardi, Mara; Marsano, Anna; Rasponi, Marco; Bersini, Simone; Moretti, Matteo

    2016-01-01

    In the last few years microfluidics and microfabrication technique principles have been extensively exploited for biomedical applications. In this framework, organs-on-a-chip represent promising tools to reproduce key features of functional tissue units within microscale culture chambers. These systems offer the possibility to investigate the effects of biochemical, mechanical, and electrical stimulations, which are usually applied to enhance the functionality of the engineered tissues. Since the functionality of muscle tissues relies on the 3D organization and on the perfect coupling between electrochemical stimulation and mechanical contraction, great efforts have been devoted to generate biomimetic skeletal and cardiac systems to allow high-throughput pathophysiological studies and drug screening. This review critically analyzes microfluidic platforms that were designed for skeletal and cardiac muscle tissue engineering. Our aim is to highlight which specific features of the engineered systems promoted a typical reorganization of the engineered construct and to discuss how promising design solutions exploited for skeletal muscle models could be applied to improve cardiac tissue models and vice versa. PMID:27571058

  8. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function.

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  9. Encapsulation of cardiomyocytes in a fibrin hydrogel for cardiac tissue engineering.

    Science.gov (United States)

    Yuan Ye, Kathy; Sullivan, Kelly Elizabeth; Black, Lauren Deems

    2011-01-01

    Culturing cells in a three dimensional hydrogel environment is an important technique for developing constructs for tissue engineering as well as studying cellular responses under various culture conditions in vitro. The three dimensional environment more closely mimics what the cells observe in vivo due to the application of mechanical and chemical stimuli in all dimensions (1). Three-dimensional hydrogels can either be made from synthetic polymers such as PEG-DA (2) and PLGA (3) or a number of naturally occurring proteins such as collagen (4), hyaluronic acid (5) or fibrin (6,7). Hydrogels created from fibrin, a naturally occurring blood clotting protein, can polymerize to form a mesh that is part of the body's natural wound healing processes (8). Fibrin is cell-degradable and potentially autologous (9), making it an ideal temporary scaffold for tissue engineering. Here we describe in detail the isolation of neonatal cardiomyocytes from three day old rat pups and the preparation of the cells for encapsulation in fibrin hydrogel constructs for tissue engineering. Neonatal myocytes are a common cell source used for in vitro studies in cardiac tissue formation and engineering (4). Fibrin gel is created by mixing fibrinogen with the enzyme thrombin. Thrombin cleaves fibrinopeptides FpA and FpB from fibrinogen, revealing binding sites that interact with other monomers (10). These interactions cause the monomers to self-assemble into fibers that form the hydrogel mesh. Because the timing of this enzymatic reaction can be adjusted by altering the ratio of thrombin to fibrinogen, or the ratio of calcium to thrombin, one can injection mold constructs with a number of different geometries (11,12). Further we can generate alignment of the resulting tissue by how we constrain the gel during culture (13). After culturing the engineered cardiac tissue constructs for two weeks under static conditions, the cardiac cells have begun to remodel the construct and can generate a

  10. Electrical stimulation directs engineered cardiac tissue to an age-matched native phenotype

    Directory of Open Access Journals (Sweden)

    Richard A Lasher

    2012-12-01

    Full Text Available Quantifying structural features of native myocardium in engineered tissue is essential for creating functional tissue that can serve as a surrogate for in vitro testing or the eventual replacement of diseased or injured myocardium. We applied three-dimensional confocal imaging and image analysis to quantitatively describe the features of native and engineered cardiac tissue. Quantitative analysis methods were developed and applied to test the hypothesis that environmental cues direct engineered tissue toward a phenotype resembling that of age-matched native myocardium. The analytical approach was applied to engineered cardiac tissue with and without the application of electrical stimulation as well as to age-matched and adult native tissue. Individual myocytes were segmented from confocal image stacks and assigned a coordinate system from which measures of cell geometry and connexin-43 spatial distribution were calculated. The data were collected from 9 nonstimulated and 12 electrically stimulated engineered tissue constructs and 5 postnatal day 12 and 7 adult hearts. The myocyte volume fraction was nearly double in stimulated engineered tissue compared to nonstimulated engineered tissue (0.34 ± 0.14 vs 0.18 ± 0.06 but less than half of the native postnatal day 12 (0.90 ± 0.06 and adult (0.91 ± 0.04 myocardium. The myocytes under electrical stimulation were more elongated compared to nonstimulated myocytes and exhibited similar lengths, widths, and heights as in age-matched myocardium. Furthermore, the percentage of connexin-43-positive membrane staining was similar in the electrically stimulated, postnatal day 12, and adult myocytes, whereas it was significantly lower in the nonstimulated myocytes. Connexin-43 was found to be primarily located at cell ends for adult myocytes and irregularly but densely clustered over the membranes of nonstimulated, stimulated, and postnatal day 12 myocytes. These findings support our hypothesis and reveal

  11. Electrical stimulation directs engineered cardiac tissue to an age-matched native phenotype

    Directory of Open Access Journals (Sweden)

    Richard A Lasher

    2012-07-01

    Full Text Available Quantifying structural features of native myocardium in engineered tissue is essential for creating functional tissue that can serve as a surrogate for in vitro testing or the eventual replacement of diseased or injured myocardium. We applied three-dimensional confocal imaging and image analysis to quantitatively describe the features of native and engineered cardiac tissue. Quantitative analysis methods were developed and applied to test the hypothesis that environmental cues direct engineered tissue toward a phenotype resembling that of age-matched native myocardium. The analytical approach was applied to engineered cardiac tissue with and without the application of electrical stimulation as well as to age-matched and adult native tissue. Individual myocytes were segmented from confocal image stacks and assigned a coordinate system from which measures of cell geometry and connexin-43 spatial distribution were calculated. The data were collected from 9 nonstimulated and 12 electrically stimulated engineered tissue constructs and 5 postnatal day 12 and 7 adult hearts. The myocyte volume fraction was nearly double in stimulated engineered tissue compared to nonstimulated engineered tissue (0.34 ± 0.14 vs 0.18 ± 0.06 but less than half of the native postnatal day 12 (0.90 ± 0.06 and adult (0.91 ± 0.04 myocardium. The myocytes under electrical stimulation were more elongated compared to nonstimulated myocytes and exhibited similar lengths, widths, and heights as in age-matched myocardium. Furthermore, the percentage of connexin-43-positive membrane staining was similar in the electrically stimulated, postnatal day 12, and adult myocytes, whereas it was significantly lower in the nonstimulated myocytes. Connexin-43 was found to be primarily located at cell ends for adult myocytes and irregularly but densely clustered over the membranes of nonstimulated, stimulated, and postnatal day 12 myocytes. These findings support our hypothesis and reveal

  12. Vascularization strategies of engineered tissues and their application in cardiac regeneration.

    Science.gov (United States)

    Sun, Xuetao; Altalhi, Wafa; Nunes, Sara S

    2016-01-15

    The primary function of vascular networks is to transport blood and deliver oxygen and nutrients to tissues, which occurs at the interface of the microvasculature. Therefore, the formation of the vessels at the microcirculatory level, or angiogenesis, is critical for tissue regeneration and repair. Current strategies for vascularization of engineered tissues have incorporated multi-disciplinary approaches including engineered biomaterials, cells and angiogenic factors. Pre-vascularization of scaffolds composed of native matrix, synthetic polymers, or other biological materials can be achieved through the use of single cells in mono or co-culture, in combination or not with angiogenic factors or by the use of isolated vessels. The advance of these methods, together with a growing understanding of the biology behind vascularization, has facilitated the development of vascularization strategies for engineered tissues with therapeutic potential for tissue regeneration and repair. Here, we review the different cell-based strategies utilized to pre-vascularize engineered tissues and in making more complex vascularized cardiac tissues for regenerative medicine applications.

  13. Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture.

    Science.gov (United States)

    Feinberg, Adam W; Alford, Patrick W; Jin, Hongwei; Ripplinger, Crystal M; Werdich, Andreas A; Sheehy, Sean P; Grosberg, Anna; Parker, Kevin Kit

    2012-08-01

    The heart is a muscular organ with a wrapping, laminar structure embedded with neural and vascular networks, collagen fibrils, fibroblasts, and cardiac myocytes that facilitate contraction. We hypothesized that these non-muscle components may have functional benefit, serving as important structural alignment cues in inter- and intra-cellular organization of cardiac myocytes. Previous studies have demonstrated that alignment of engineered myocardium enhances calcium handling, but how this impacts actual force generation remains unclear. Quantitative assays are needed to determine the effect of alignment on contractile function and muscle physiology. To test this, micropatterned surfaces were used to build 2-dimensional myocardium from neonatal rat ventricular myocytes with distinct architectures: confluent isotropic (serving as the unaligned control), confluent anisotropic, and 20 μm spaced, parallel arrays of multicellular myocardial fibers. We combined image analysis of sarcomere orientation with muscular thin film contractile force assays in order to calculate the peak sarcomere-generated stress as a function of tissue architecture. Here we report that increasing peak systolic stress in engineered cardiac tissues corresponds with increasing sarcomere alignment. This change is larger than would be anticipated from enhanced calcium handling and increased uniaxial alignment alone. These results suggest that boundary conditions (heterogeneities) encoded in the extracellular space can regulate muscle tissue function, and that structural organization and cytoskeletal alignment are critically important for maximizing peak force generation.

  14. The role of Wnt regulation in heart development, cardiac repair and disease: A tissue engineering perspective.

    Science.gov (United States)

    Pahnke, Aric; Conant, Genna; Huyer, Locke Davenport; Zhao, Yimu; Feric, Nicole; Radisic, Milica

    2016-05-01

    Wingless-related integration site (Wnt) signaling has proven to be a fundamental mechanism in cardiovascular development as well as disease. Understanding its particular role in heart formation has helped to develop pluripotent stem cell differentiation protocols that produce relatively pure cardiomyocyte populations. The resultant cardiomyocytes have been used to generate heart tissue for pharmaceutical testing, and to study physiological and disease states. Such protocols in combination with induced pluripotent stem cell technology have yielded patient-derived cardiomyocytes that exhibit some of the hallmarks of cardiovascular disease and are therefore being used to model disease states. While FDA approval of new treatments typically requires animal experiments, the burgeoning field of tissue engineering could act as a replacement. This would necessitate the generation of reproducible three-dimensional cardiac tissues in a well-controlled environment, which exhibit native heart properties, such as cellular density, composition, extracellular matrix composition, and structure-function. Such tissues could also enable the further study of Wnt signaling. Furthermore, as Wnt signaling has been found to have a mechanistic role in cardiac pathophysiology, e.g. heart attack, hypertrophy, atherosclerosis, and aortic stenosis, its strategic manipulation could provide a means of generating reproducible and specific, physiological and pathological cardiac models. PMID:26626076

  15. Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip.

    Science.gov (United States)

    Grosberg, Anna; Alford, Patrick W; McCain, Megan L; Parker, Kevin Kit

    2011-12-21

    Traditionally, muscle physiology experiments require multiple tissue samples to obtain morphometric, electrophysiological, and contractility data. Furthermore, these experiments are commonly completed one at a time on cover slips of single cells, isotropic monolayers, or in isolated muscle strips. In all of these cases, variability of the samples hinders quantitative comparisons among experimental groups. Here, we report the design of a "heart on a chip" that exploits muscular thin film technology--biohybrid constructs of an engineered, anisotropic ventricular myocardium on an elastomeric thin film--to measure contractility, combined with a quantification of action potential propagation, and cytoskeletal architecture in multiple tissues in the same experiment. We report techniques for real-time data collection and analysis during pharmacological intervention. The chip is an efficient means of measuring structure-function relationships in constructs that replicate the hierarchical tissue architectures of laminar cardiac muscle.

  16. Cardiac arrhythmogenesis in urban air pollution: Optical mapping in a tissue-engineered model

    Science.gov (United States)

    Bien, Harold H.

    Recent epidemiological evidence has implicated particulate matter air pollution in cardiovascular disease. We hypothesized that inflammatory mediators released from lung macrophages after exposure to particulate matter predisposes the heart to disturbances in rhythm. Using a rational design approach, a fluorescent optical mapping system was devised to image spatiotemporal patterns of excitation in a tissue engineered model of cardiac tissue. Algorithms for automated data analysis and characterization of rhythm stability were developed, implemented, and verified. Baseline evaluation of spatiotemporal instability patterns in normal cardiac tissue was performed for comparison to an in-vitro model of particulate matter air pollution exposure. Exposure to particulate-matter activated alveolar macrophage conditioned media resulted in paradoxical functional changes more consistent with improved growth. These findings might be indicative of a "stress" response to particulate-matter induced pulmonary inflammation, or may be specific to the animal model (neonatal rat) employed. In the pursuit of elucidating the proposed pathway, we have also furthered our understanding of fundamental behaviors of arrhythmias in general and established a model where further testing might ultimately reveal the mechanism for urban air pollution associated cardiovascular morbidity.

  17. Direct Mechanical Stimulation of Stem Cells: A Beating Electromechanically Active Scaffold for Cardiac Tissue Engineering.

    Science.gov (United States)

    Gelmi, Amy; Cieslar-Pobuda, Artur; de Muinck, Ebo; Los, Marek; Rafat, Mehrdad; Jager, Edwin W H

    2016-06-01

    The combination of stem cell therapy with a supportive scaffold is a promising approach to improving cardiac tissue engineering. Stem cell therapy can be used to repair nonfunctioning heart tissue and achieve myocardial regeneration, and scaffold materials can be utilized in order to successfully deliver and support stem cells in vivo. Current research describes passive scaffold materials; here an electroactive scaffold that provides electrical, mechanical, and topographical cues to induced human pluripotent stem cells (iPS) is presented. The poly(lactic-co-glycolic acid) fiber scaffold coated with conductive polymer polypyrrole (PPy) is capable of delivering direct electrical and mechanical stimulation to the iPS. The electroactive scaffolds demonstrate no cytotoxic effects on the iPS as well as an increased expression of cardiac markers for both stimulated and unstimulated protocols. This study demonstrates the first application of PPy as a supportive electroactive material for iPS and the first development of a fiber scaffold capable of dynamic mechanical actuation.

  18. Direct Mechanical Stimulation of Stem Cells: A Beating Electromechanically Active Scaffold for Cardiac Tissue Engineering.

    Science.gov (United States)

    Gelmi, Amy; Cieslar-Pobuda, Artur; de Muinck, Ebo; Los, Marek; Rafat, Mehrdad; Jager, Edwin W H

    2016-06-01

    The combination of stem cell therapy with a supportive scaffold is a promising approach to improving cardiac tissue engineering. Stem cell therapy can be used to repair nonfunctioning heart tissue and achieve myocardial regeneration, and scaffold materials can be utilized in order to successfully deliver and support stem cells in vivo. Current research describes passive scaffold materials; here an electroactive scaffold that provides electrical, mechanical, and topographical cues to induced human pluripotent stem cells (iPS) is presented. The poly(lactic-co-glycolic acid) fiber scaffold coated with conductive polymer polypyrrole (PPy) is capable of delivering direct electrical and mechanical stimulation to the iPS. The electroactive scaffolds demonstrate no cytotoxic effects on the iPS as well as an increased expression of cardiac markers for both stimulated and unstimulated protocols. This study demonstrates the first application of PPy as a supportive electroactive material for iPS and the first development of a fiber scaffold capable of dynamic mechanical actuation. PMID:27126086

  19. ELECTROACTIVE AND NANOSTRUCTURED POLYMERS AS SCAFFOLD MATERIALS FOR NEURONAL AND CARDIAC TISSUE ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Conducting polymer, polyaniline (PANI), has been studied as a novel electroactive and electrically conductive material for tissue engineering applications. The biocompatibility of the conductive polymer can be improved by (I) covalently grafting various adhesive peptides onto the surface of prefabricated conducting polymer flms or into the polymer structures during the synthesis, (ii) co-electrospinning or blending with natural proteins to form conducting nanofibers or films, and (iii) preparing conducting polymers using biopolymers, such as collagen, as templates. In this paper, we mainly describe and review the approaches of covalently attaching oligopeptides to PANI and electrospinning PANI-gelatin blend nanofibers. The employment of such modified conducting polymers as substrates for enhanced cell attachment, proliferation and differentiation has been investigated with neuronal PC-12 cells and H9c2 cardiac myoblasts. For the electrospun PANIgelatin fibers, depending on the concentrations of PANI, H9c2 cells initially displayed different morphologies on the fibrous substrates, but after one week all cultures reached confluence of similar densities and morphologies. Furthermore, we observed, that conductive PANI, when maintained in an aqueous physiologic environment, retained a significant level of electrical conductivity for at least 100 h, even though this conductivity was decreasing over time. Preliminary data show that the application of micro-current stimulates the differentiation of PC-12 cells. All the results demonstrate the potential for using PANI as an electroactive polymer in the culture of excitable cells and open the possibility of using this material as an electroactive scaffold for cardiac and/or neuronal tissue engineering applications that require biocompatibility of conductive polymers.

  20. Minimally invasive injectable short nanofibers of poly(glycerol sebacate) for cardiac tissue engineering

    Science.gov (United States)

    Ravichandran, Rajeswari; Reddy Venugopal, Jayarama; Sundarrajan, Subramanian; Mukherjee, Shayanti; Sridhar, Radhakrishnan; Ramakrishna, Seeram

    2012-09-01

    Myocardial tissue lacks the ability to appreciably regenerate itself following myocardial infarction (MI) which ultimately results in heart failure. Current therapies can only retard the progression of disease and hence tissue engineering strategies are required to facilitate the engineering of a suitable biomaterial to repair MI. The aim of this study was to investigate the in vitro properties of an injectable biomaterial for the regeneration of infarcted myocardium. Fabrication of core/shell fibers was by co-axial electrospinning, with poly(glycerol sebacate) (PGS) as core material and poly-l-lactic acid (PLLA) as shell material. The PLLA was removed by treatment of the PGS/PLLA core/shell fibers with DCM:hexane (2:1) to obtain PGS short fibers. These PGS short fibers offer the advantage of providing a minimally invasive injectable technique for the regeneration of infarcted myocardium. The scaffolds were characterized by SEM, FTIR and contact angle and cell-scaffold interactions using cardiomyocytes. The results showed that the cardiac marker proteins actinin, troponin, myosin heavy chain and connexin 43 were expressed more on short PGS fibers compared to PLLA nanofibers. We hypothesized that the injection of cells along with short PGS fibers would increase cell transplant retention and survival within the infarct, compared to the standard cell injection system.

  1. Alginate-polyester comacromer based hydrogels as physiochemically and biologically favorable entities for cardiac tissue engineering.

    Science.gov (United States)

    Thankam, Finosh G; Muthu, Jayabalan

    2015-11-01

    The physiochemical and biological responses of tissue engineering hydrogels are crucial in determining their desired performance. A hybrid comacromer was synthesized by copolymerizing alginate and poly(mannitol fumarate-co-sebacate) (pFMSA). Three bimodal hydrogels pFMSA-AA, pFMSA-MA and pFMSA-NMBA were synthesized by crosslinking with Ca(2+) and vinyl monomers acrylic acid (AA), methacrylic acid (MA) and N,N'-methylene bisacrylamide (NMBA), respectively. Though all the hydrogels were cytocompatible and exhibited a normal cell cycle profile, pFMSA-AA exhibited superior physiochemical properties viz non-freezable water content (58.34%) and water absorption per unit mass (0.97 g water/g gel) and pore length (19.92±3.91 μm) in comparing with other two hydrogels. The increased non-freezable water content and water absorption of pFMSA-AA hydrogels greatly influenced its biological performance, which was evident from long-term viability assay and cell cycle proliferation. The physiochemical and biological favorability of pFMSA-AA hydrogels signifies its suitability for cardiac tissue engineering.

  2. Finite element analysis of an accordion-like honeycomb scaffold for cardiac tissue engineering.

    Science.gov (United States)

    Jean, Aurélie; Engelmayr, George C

    2010-11-16

    Optimizing the function of tissue engineered cardiac muscle is becoming more feasible with the development of microfabricated scaffolds amenable to mathematical modeling. In the current study, the elastic behavior of a recently developed poly(glycerol sebacate) (PGS) accordion-like honeycomb (ALH) scaffold [Engelmayr et al., 2008. Nature Materials 7 (12), 1003-1010] was analyzed. Specifically, 2D finite element (FE) models of the ALH unit cell (periodic boundary conditions) and tessellations (kinematic uniform boundary conditions) were utilized to determine a representative volume element (RVE) and to retrospectively predict the elastic effective stiffnesses. An RVE of 90 ALH unit cells (≃3.18×4.03mm) was found, indicating that previous experimental uni-axial test samples were mechanically representative. For ALH scaffolds microfabricated from PGS cured 7.5h at 160°C, FE predicted effective stiffnesses in the two orthogonal material directions (0.081±0.012 and 0.033±0.005MPa) matched published experimental data (0.083±0.004 and 0.031±0.002MPa) within 2.4% and 6.4%. Of potential use as a design criterion, model predicted global strain amplifications were lower in ALH (0.54 and 0.34) versus rectangular honeycomb (1.19 and 0.74) scaffolds, appearing to be inversely correlated with previously measured strains-to-failure. Important in matching the anisotropic mechanical properties of native cardiac muscle, FE predicted ALH scaffolds with 50μm wide PGS struts to be maximally anisotropic. The FE model will thus be useful in designing future variants of the ALH pore geometry that simultaneously provide proper cardiac anisotropy and reduced stiffness to enhance heart cell-mediated contractility.

  3. Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration.

    Science.gov (United States)

    Emmert, Maximilian Y; Hitchcock, Robert W; Hoerstrup, Simon P

    2014-04-01

    Ischemic Heart Disease (IHD) still represents the "Number One Killer" worldwide accounting for the death of numerous patients. However the capacity for self-regeneration of the adult heart is very limited and the loss of cardiomyocytes in the infarcted heart leads to continuous adverse cardiac-remodeling which often leads to heart-failure (HF). The concept of regenerative medicine comprising cell-based therapies, bio-engineering technologies and hybrid solutions has been proposed as a promising next-generation approach to address IHD and HF. Numerous strategies are under investigation evaluating the potential of regenerative medicine on the failing myocardium including classical cell-therapy concepts, three-dimensional culture techniques and tissue-engineering approaches. While most of these regenerative strategies have shown great potential in experimental studies, the translation into a clinical setting has either been limited or too rapid leaving many key questions unanswered. This review summarizes the current state-of-the-art, important challenges and future research directions as to regenerative approaches addressing IHD and resulting HF.

  4. Carbon Nanohorns Promote Maturation of Neonatal Rat Ventricular Myocytes and Inhibit Proliferation of Cardiac Fibroblasts: a Promising Scaffold for Cardiac Tissue Engineering

    Science.gov (United States)

    Wu, Yujing; Shi, Xiaoli; Li, Yi; Tian, Lei; Bai, Rui; Wei, Yujie; Han, Dong; Liu, Huiliang; Xu, Jianxun

    2016-06-01

    Cardiac tissue engineering (CTE) has developed rapidly, but a great challenge remains in finding practical scaffold materials for the construction of engineered cardiac tissues. Carbon nanohorns (CNHs) may be a potential candidate due to their special structure and properties. The purpose of this study was to assess the effect of CNHs on the biological behavior of neonatal rat ventricular myocytes (NRVMs) for CTE applications. CNHs were incorporated into collagen to form growth substrates for NRVMs. Transmission electron microscopy (TEM) observations demonstrated that CNHs exhibited a good affinity to collagen. Moreover, it was found that CNH-embedded substrates enhanced adhesion and proliferation of NRVMs. Immunohistochemical staining, western blot analysis, and intracellular calcium transient measurements indicated that the addition of CNHs significantly increased the expression and maturation of electrical and mechanical proteins (connexin-43 and N-cadherin). Bromodeoxyuridine staining and a Cell Counting Kit-8 assay showed that CNHs have the ability to inhibit the proliferation of cardiac fibroblasts. These findings suggest that CNHs can have a valuable effect on the construction of engineered cardiac tissues and may be a promising scaffold for CTE.

  5. Carbon Nanohorns Promote Maturation of Neonatal Rat Ventricular Myocytes and Inhibit Proliferation of Cardiac Fibroblasts: a Promising Scaffold for Cardiac Tissue Engineering.

    Science.gov (United States)

    Wu, Yujing; Shi, Xiaoli; Li, Yi; Tian, Lei; Bai, Rui; Wei, Yujie; Han, Dong; Liu, Huiliang; Xu, Jianxun

    2016-12-01

    Cardiac tissue engineering (CTE) has developed rapidly, but a great challenge remains in finding practical scaffold materials for the construction of engineered cardiac tissues. Carbon nanohorns (CNHs) may be a potential candidate due to their special structure and properties. The purpose of this study was to assess the effect of CNHs on the biological behavior of neonatal rat ventricular myocytes (NRVMs) for CTE applications. CNHs were incorporated into collagen to form growth substrates for NRVMs. Transmission electron microscopy (TEM) observations demonstrated that CNHs exhibited a good affinity to collagen. Moreover, it was found that CNH-embedded substrates enhanced adhesion and proliferation of NRVMs. Immunohistochemical staining, western blot analysis, and intracellular calcium transient measurements indicated that the addition of CNHs significantly increased the expression and maturation of electrical and mechanical proteins (connexin-43 and N-cadherin). Bromodeoxyuridine staining and a Cell Counting Kit-8 assay showed that CNHs have the ability to inhibit the proliferation of cardiac fibroblasts. These findings suggest that CNHs can have a valuable effect on the construction of engineered cardiac tissues and may be a promising scaffold for CTE. PMID:27263018

  6. Development and Implementation of Discrete Polymeric Microstructural Cues for Applications in Cardiac Tissue Engineering

    Science.gov (United States)

    Pinney, James Richardson

    Chronic fibrosis caused by acute myocardial infarction (MI) leads to increased morbidity and mortality due to cardiac dysfunction. Despite care in the acute setting of MI, subsequent development of scar tissue and a lack of treatments for this maladaptive response lead to a poor prognosis. This has increased burdens on the cost of healthcare due to chronic disability. Here a novel therapeutic strategy that aims to mitigate myocardial fibrosis by utilizing injectable polymeric microstructural cues to attenuate the fibrotic response and improve functional outcomes is presented. Additionally, applications of integrated chemical functionalizations into discrete, micro-scale polymer structures are discussed in the realm of tissue engineering in order to impart enhancements in in vivo localization, three-dimensional manipulation and drug delivery. Polymeric microstructures, termed "microrods" and "microcubes", were fabricated using photolithographic techniques and studied in three-dimensional culture models of the fibrotic environment and by direct injection into the infarct zone of adult Sprague-Dawley rats. In vitro gene expression and functional and histological results were analyzed, showing a dose-dependent down-regulation fibrotic indicators and improvement in cardiac function. Furthermore, iron oxide nanoparticles and functionalized fluorocarbons were incorporated into the polymeric microdevices to promote in situ visualization by magnetic resonance imaging as well as to facilitate the manipulation and alignment of microstructural cues in a tissue-realistic environment. Lastly, successful encapsulation of native MGF peptide within microrods is demonstrated with release over two weeks as a proof of concept in the ability to locally deliver myogenic or supportive pharmacotherapeutics to the injured myocardium. This work demonstrates the efficacy and versatility of discrete microtopographical cues to attenuate the fibrotic response after MI and suggests a novel

  7. Biphasic electrical field stimulation aids in tissue engineering of multicell-type cardiac organoids.

    Science.gov (United States)

    Chiu, Loraine L Y; Iyer, Rohin K; King, John-Paul; Radisic, Milica

    2011-06-01

    The main objectives of current work were (1) to compare the effects of monophasic or biphasic electrical field stimulation on structure and function of engineered cardiac organoids based on enriched cardiomyocytes (CM) and (2) to determine if electrical field stimulation will enhance electrical excitability of cardiac organoids based on multiple cell types. Organoids resembling cardiac myofibers were cultivated in Matrigel-coated microchannels fabricated of poly(ethylene glycol)-diacrylate. We found that field stimulation using symmetric biphasic square pulses at 2.5 V/cm, 1 Hz, 1 ms (per pulse phase) was an improved stimulation protocol, as compared to no stimulation and stimulation using monophasic square pulses of identical total amplitude and duration (5 V/cm, 1 Hz, 2 ms). This was supported by the highest success rate for synchronous contractions, low excitation threshold, the highest cell density, and the highest expression of Connexin-43 in the biphasic group. Subsequently, enriched CM were seeded on the networks of (1) cardiac fibroblasts (FB), (2) D4T endothelial cells (EC), or (3) a mixture of FB and EC that were precultured for 2 days prior to the addition of enriched CM. Biphasic field stimulation was also effective at improving electrical excitability of these cardiac organoids by improving the three-dimensional organization of the cells, increasing cellular elongation and enhancing Connexin-43 presence.

  8. Myocardial scaffold-based cardiac tissue engineering: application of coordinated mechanical and electrical stimulations.

    Science.gov (United States)

    Wang, Bo; Wang, Guangjun; To, Filip; Butler, J Ryan; Claude, Andrew; McLaughlin, Ronald M; Williams, Lakiesha N; de Jongh Curry, Amy L; Liao, Jun

    2013-09-01

    Recently, we developed an optimal decellularization protocol to generate 3D porcine myocardial scaffolds, which preserve the natural extracellular matrix structure, mechanical anisotropy, and vasculature templates and also show good cell recellularization and differentiation potential. In this study, a multistimulation bioreactor was built to provide coordinated mechanical and electrical stimulation for facilitating stem cell differentiation and cardiac construct development. The acellular myocardial scaffolds were seeded with mesenchymal stem cells (10(6) cells/mL) by needle injection and subjected to 5-azacytidine treatment (3 μmol/L, 24 h) and various bioreactor conditioning protocols. We found that after 2 days of culturing with mechanical (20% strain) and electrical stimulation (5 V, 1 Hz), high cell density and good cell viability were observed in the reseeded scaffold. Immunofluorescence staining demonstrated that the differentiated cells showed a cardiomyocyte-like phenotype by expressing sarcomeric α-actinin, myosin heavy chain, cardiac troponin T, connexin-43, and N-cadherin. Biaxial mechanical testing demonstrated that positive tissue remodeling took place after 2 days of bioreactor conditioning (20% strain + 5 V, 1 Hz); passive mechanical properties of the 2 day and 4 day tissue constructs were comparable to those of the tissue constructs produced by stirring reseeding followed by 2 weeks of static culturing, implying the effectiveness and efficiency of the coordinated simulations in promoting tissue remodeling. In short, the synergistic stimulations might be beneficial not only for the quality of cardiac construct development but also for patients by reducing the waiting time in future clinical scenarios.

  9. Insulin-like Growth Factor-I and Slow, Bi-directional Perfusion Enhance the Formation of Tissue-Engineered Cardiac Grafts

    OpenAIRE

    Cheng, Mingyu; Moretti, Matteo; Engelmayr, George C.; Freed, Lisa E.

    2008-01-01

    Biochemical and mechanical signals enabling cardiac regeneration can be elucidated using in vitro tissue-engineering models. We hypothesized that insulin-like growth factor-I (IGF) and slow, bi-directional perfusion could act independently and interactively to enhance the survival, differentiation, and contractile performance of tissue-engineered cardiac grafts. Heart cells were cultured on three-dimensional porous scaffolds in medium with or without supplemental IGF and in the presence or ab...

  10. Development of Electrically Conductive Double-Network Hydrogels via One-Step Facile Strategy for Cardiac Tissue Engineering.

    Science.gov (United States)

    Yang, Boguang; Yao, Fanglian; Hao, Tong; Fang, Wancai; Ye, Lei; Zhang, Yabin; Wang, Yan; Li, Junjie; Wang, Changyong

    2016-02-18

    Cardiac tissue engineering is an effective method to treat the myocardial infarction. However, the lack of electrical conductivity of biomaterials limits their applications. In this work, a homogeneous electronically conductive double network (HEDN) hydrogel via one-step facile strategy is developed, consisting of a rigid/hydrophobic/conductive network of chemical crosslinked poly(thiophene-3-acetic acid) (PTAA) and a flexible/hydrophilic/biocompatible network of photo-crosslinking methacrylated aminated gelatin (MAAG). Results suggest that the swelling, mechanical, and conductive properties of HEDN hydrogel can be modulated via adjusting the ratio of PTAA network to MAAG network. HEDN hydrogel has Young's moduli ranging from 22.7 to 493.1 kPa, and its conductivity (≈10(-4) S cm(-1)) falls in the range of reported conductivities for native myocardium tissue. To assess their biological activity, the brown adipose-derived stem cells (BADSCs) are seeded on the surface of HEDN hydrogel with or without electrical stimulation. Our data show that the HEDN hydrogel can support the survival and proliferation of BADSCs, and that it can improve the cardiac differentiation efficiency of BADSCs and upregulate the expression of connexin 43. Moreover, electrical stimulation can further improve this effect. Overall, it is concluded that the HEDN hydrogel may represent an ideal scaffold for cardiac tissue engineering.

  11. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Timothy J Cashman

    Full Text Available Hypertrophic cardiomyopathy (HCM is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS, which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and

  12. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy.

    Science.gov (United States)

    Cashman, Timothy J; Josowitz, Rebecca; Johnson, Bryce V; Gelb, Bruce D; Costa, Kevin D

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS), which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT) model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP) gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and screening new

  13. Advancing cardiovascular tissue engineering

    Science.gov (United States)

    Truskey, George A.

    2016-01-01

    Cardiovascular tissue engineering offers the promise of biologically based repair of injured and damaged blood vessels, valves, and cardiac tissue. Major advances in cardiovascular tissue engineering over the past few years involve improved methods to promote the establishment and differentiation of induced pluripotent stem cells (iPSCs), scaffolds from decellularized tissue that may produce more highly differentiated tissues and advance clinical translation, improved methods to promote vascularization, and novel in vitro microphysiological systems to model normal and diseased tissue function. iPSC technology holds great promise, but robust methods are needed to further promote differentiation. Differentiation can be further enhanced with chemical, electrical, or mechanical stimuli. PMID:27303643

  14. "The state of the heart": Recent advances in engineering human cardiac tissue from pluripotent stem cells.

    Science.gov (United States)

    Sirabella, Dario; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2015-08-01

    The pressing need for effective cell therapy for the heart has led to the investigation of suitable cell sources for tissue replacement. In recent years, human pluripotent stem cell research expanded tremendously, in particular since the derivation of human-induced pluripotent stem cells. In parallel, bioengineering technologies have led to novel approaches for in vitro cell culture. The combination of these two fields holds potential for in vitro generation of high-fidelity heart tissue, both for basic research and for therapeutic applications. However, this new multidisciplinary science is still at an early stage. Many questions need to be answered and improvements need to be made before clinical applications become a reality. Here we discuss the current status of human stem cell differentiation into cardiomyocytes and the combined use of bioengineering approaches for cardiac tissue formation and maturation in developmental studies, disease modeling, drug testing, and regenerative medicine.

  15. Encapsulation of Cardiomyocytes in a Fibrin Hydrogel for Cardiac Tissue Engineering

    OpenAIRE

    Ye, Kathy Yuan; Sullivan, Kelly Elizabeth; Black, Lauren Deems

    2011-01-01

    Culturing cells in a three dimensional hydrogel environment is an important technique for developing constructs for tissue engineering as well as studying cellular responses under various culture conditions in vitro. The three dimensional environment more closely mimics what the cells observe in vivo due to the application of mechanical and chemical stimuli in all dimensions 1. Three-dimensional hydrogels can either be made from synthetic polymers such as PEG-DA 2 and PLGA 3 or a number of na...

  16. Sulfated levan from Halomonas smyrnensis as a bioactive, heparin-mimetic glycan for cardiac tissue engineering applications.

    Science.gov (United States)

    Erginer, Merve; Akcay, Ayca; Coskunkan, Binnaz; Morova, Tunc; Rende, Deniz; Bucak, Seyda; Baysal, Nihat; Ozisik, Rahmi; Eroglu, Mehmet S; Agirbasli, Mehmet; Toksoy Oner, Ebru

    2016-09-20

    Chemical derivatives of levan from Halomonas smyrnensis AAD6(T) with low, medium and high levels of sulfation were synthesized and characterized by FTIR and 2D-NMR. Sulfated levan samples were found to exhibit anticoagulation activity via the intrinsic pathway like heparin in a dose-dependent manner. Exceptionally high heparin equivalent activity of levan sulfate was shown to proceed via thrombin inhibition where decreased Factor Xa activity with increasing concentration was observed in antithrombin tests and above a certain concentration, levan sulfate showed a better inhibitor activity than heparin. In vitro experimental results were then verified in silico by docking studies using equilibrium structures obtained by molecular dynamic simulations and results suggested a sulfation dependent binding mechanism. With its high biocompatibility and heparin mimetic activity, levan sulfate can be considered as a suitable functional biomaterial to design biologically active, functionalized, thin films and engineered smart scaffolds for cardiac tissue engineering applications. PMID:27261753

  17. Advances in tissue engineering

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Tissue engineering is a newly developed specialty involved in the construction of tissues and organs either in vitro or in vivo. Tremendous progress has been achieved over the past decade in tisse construction as well as in other related areas, such as bone marrow stromal cells, embryonic stem cells and tissue progenitor cells. In our laboratory, tissues of full-thickness skin, bone, cartilage and tendon have been successfully engineered, and the engineered tissues have repaired full-thickness skin wound, cranial bone defects, articular cartilage defects and tendon defects in animals. In basic research areas, bone marrow stromal cells have been induced and transformed into osteoblasts and chondrocytes in vitro. Mouse embryo stem cell lines we established have differentiated into neuron precursor, cardiac muscle cells and epithelial cells. Genetic modifications of seed cells for promoting cell proliferation, delaying cell aging and inducing immune tolerance have also been investigated.

  18. Electrospun type 1 collagen matrices preserving native ultrastructure using benign binary solvent for cardiac tissue engineering.

    Science.gov (United States)

    Elamparithi, Anuradha; Punnoose, Alan M; Kuruvilla, Sarah

    2016-08-01

    Electrospinning is a well-established technique that uses a high electric field to fabricate ultrafine fibrous scaffolds from both natural and synthetic polymers to mimic the cellular microenvironment. Collagen is one of the most preferred biopolymers, due to its widespread occurrence in nature and its biocompatibility. Electrospinning of collagen alone has been reported, with fluoroalcohols such as hexafluoroisopropanol (HFIP) and trifluoroethanol (TFE), but the resultant collagen lost its characteristic ultrastructural integrity of D-periodicity 67 nm banding, confirmed by transmission electron microscopy (TEM), and the fluoroalcohols used were toxic to the environment. In this study, we describe the use of glacial acetic acid and DMSO to dissolve collagen and generate electrospun nanofibers of collagen type 1, which is non-toxic and economical. TEM analysis revealed the characteristic feature of native collagen triple helical repeats, showing 67 nm D-periodicity banding pattern and confirming that the ultrastructural integrity of the collagen was maintained. Analysis by scanning electron microscopy (SEM) showed fiber diameters in the range of 200-1100 nm. Biocompatibility of the three-dimensional (3D) scaffolds was established by MTT assays using rat skeletal myoblasts (L6 cell line) and confocal microscopic analysis of immunofluorescent-stained sections of collagen scaffolds for muscle-specific markers such as desmin and actin. Primary neonatal rat ventricular cardiomyocytes (NRVCM) seeded onto the collagen scaffolds were able to maintain their contractile function for a period of 17 days and also expressed higher levels of desmin when compared with 2D cultures. We report for the first time that collagen type 1 can be electrospun without blending with copolymers using the novel benign solvent combination, and the method can be potentially explored for applications in tissue engineering. PMID:25960178

  19. Insulin-like growth factor-I and slow, bi-directional perfusion enhance the formation of tissue-engineered cardiac grafts.

    Science.gov (United States)

    Cheng, Mingyu; Moretti, Matteo; Engelmayr, George C; Freed, Lisa E

    2009-03-01

    Biochemical and mechanical signals enabling cardiac regeneration can be elucidated using in vitro tissue-engineering models. We hypothesized that insulin-like growth factor-I (IGF) and slow, bi-directional perfusion could act independently and interactively to enhance the survival, differentiation, and contractile performance of tissue-engineered cardiac grafts. Heart cells were cultured on three-dimensional porous scaffolds in medium with or without supplemental IGF and in the presence or absence of slow, bi-directional perfusion that enhanced transport and provided shear stress. Structural, molecular, and electrophysiologic properties of the resulting grafts were quantified on culture day 8. IGF had independent, beneficial effects on apoptosis (p < 0.01), cellular viability (p < 0.01), contractile amplitude (p < 0.01), and excitation threshold (p < 0.01). Perfusion independently affected the four aforementioned parameters and also increased amounts of cardiac troponin-I (p < 0.01), connexin-43 (p < 0.05), and total protein (p < 0.01) in the grafts. Interactive effects of IGF and perfusion on apoptosis were also present (p < 0.01). Myofibrillogenesis and spontaneous contractility were present only in grafts cultured with perfusion, although contractility was inducible by electrical field stimulation of grafts from all groups. Our findings demonstrate that multi-factorial stimulation of tissue-engineered cardiac grafts using IGF and perfusion resulted in independent and interactive effects on heart cell survival, differentiation, and contractility. PMID:18759675

  20. Micro- and nanotechnology in cardiovascular tissue engineering

    Science.gov (United States)

    Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-12-01

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  1. The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages.

    Science.gov (United States)

    Masumoto, Hidetoshi; Nakane, Takeichiro; Tinney, Joseph P; Yuan, Fangping; Ye, Fei; Kowalski, William J; Minakata, Kenji; Sakata, Ryuzo; Yamashita, Jun K; Keller, Bradley B

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) are a robust source for cardiac regenerative therapy due to their potential to support autologous and allogeneic transplant paradigms. The in vitro generation of three-dimensional myocardial tissue constructs using biomaterials as an implantable hiPSC-derived myocardium provides a path to realize sustainable myocardial regeneration. We generated engineered cardiac tissues (ECTs) from three cellular compositions of cardiomyocytes (CMs), endothelial cells (ECs), and vascular mural cells (MCs) differentiated from hiPSCs. We then determined the impact of cell composition on ECT structural and functional properties. In vitro force measurement showed that CM+EC+MC ECTs possessed preferential electromechanical properties versus ECTs without vascular cells indicating that incorporation of vascular cells augmented tissue maturation and function. The inclusion of MCs facilitated more mature CM sarcomeric structure, preferential alignment, and activated multiple tissue maturation pathways. The CM+EC+MC ECTs implanted onto infarcted, immune tolerant rat hearts engrafted, displayed both host and graft-derived vasculature, and ameliorated myocardial dysfunction. Thus, a composition of CMs and multiple vascular lineages derived from hiPSCs and incorporated into ECTs promotes functional maturation and demonstrates myocardial replacement and perfusion relevant for clinical translation. PMID:27435115

  2. 在心肌组织工程构建中的心肌干细胞:认识现状与预测未来%Cardiac stem cells in cardiac tissue engineering:present and future

    Institute of Scientific and Technical Information of China (English)

    李润琴; 黄春

    2014-01-01

    new way. Because of the smal number of myocardial cells, how to purification, culture, identification and proliferation wil be further studied to meet the need for regenerative medicine and tissue engineering. Cardiac stem cellresearch wil open a new approach for cardiac tissue engineering.

  3. Elasticity of developing cardiac tissue

    Science.gov (United States)

    Majkut, Stephanie; Swift, Joe; Krieger, Christine; Discher, Dennis

    2011-03-01

    Proper development and function of the heart from the tissue to cellular scale depends on a compliant ECM. Here we study the maturation of embryonic cardiac tissue mechanics in parallel with the effects of extracellular mechanics on individual cardiomyocyte function throughout early development. We used micropipette aspiration to measure local and bulk elastic moduli (E) of embryonic avian heart tissue from days 2-12. We observe stiffening of the early heart tube from E = 1 kPa at day 1 to E = 2 kPa at day 4, reaching neonatal values by day 12. Treating heart tubes with blebbistatin led to 30% decrease in E, indicating a significant but partial actomyosin contribution to mechanics at these stages. We performed a proteomic analysis of intact and decellularized 2-4 day heart tubes by mass spectrometry to quantify the ECM present at these stages. Isolated cardiomyocytes from 2-4 day chick embryos were cultured on collagen-coated PA gels of various stiffnesses. Beating magnitude was modulated by substrates with E = 1-2 kPa, similar to physiological E at those stages.

  4. Cell and Tissue Engineering

    CERN Document Server

    2012-01-01

    “Cell and Tissue Engineering” introduces the principles and new approaches in cell and tissue engineering. It includes both the fundamentals and the current trends in cell and tissue engineering, in a way useful both to a novice and an expert in the field. The book is composed of 13 chapters all of which are written by the leading experts. It is organized to gradually assemble an insight in cell and tissue function starting form a molecular nano-level, extending to a cellular micro-level and finishing at the tissue macro-level. In specific, biological, physiological, biophysical, biochemical, medical, and engineering aspects are covered from the standpoint of the development of functional substitutes of biological tissues for potential clinical use. Topics in the area of cell engineering include cell membrane biophysics, structure and function of the cytoskeleton, cell-extracellular matrix interactions, and mechanotransduction. In the area of tissue engineering the focus is on the in vitro cultivation of ...

  5. Engineering Complex Tissues

    OpenAIRE

    Mikos, Antonios G.; Herring, Susan W.; OCHAREON, PANNEE; Elisseeff, Jennifer; Lu, Helen H.; Kandel, Rita; Schoen, Frederick J.; Toner, Mehmet; Mooney, David; ATALA, ANTHONY; VAN DYKE, MARK E.; Kaplan, David; Vunjak-Novakovic, Gordana

    2006-01-01

    This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and ...

  6. Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application

    International Nuclear Information System (INIS)

    There has been a growing trend towards applying conducting polymers for electrically excitable cells to increase electrical signal propagation within the cell-loaded substrates. A novel biodegradable electroactive polyurethane containing aniline pentamer (AP-PU) was synthesized and fully characterized by spectroscopic methods. To tune the physico-chemical properties and biocompatibility, the AP-PU was blended with polycaprolactone (PCL). The presence of electroactive moieties and the electroactivity behavior of the prepared films were confirmed by UV–visible spectroscopy and cyclic voltammetry. A conventional four probe analysis demonstrated the electrical conductivity of the films in the semiconductor range (∼ 10−5 S/cm). MTT assays using L929 mouse fibroblast and human umbilical vein endothelial cells (HUVECs) showed that the prepared blend (PB) displayed more cytocompatibility compared with AP-PU due to the introduction of a biocompatible PCL moiety. The in vitro cell culture also confirmed that PB was as supportive as tissue culture plate. The antioxidant activity of the AP-PU was proved using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay by employing UV–vis spectroscopy. In vitro degradation tests conducted in phosphate-buffered saline, pH 7.4 and pH 5.5, proved that the films were also biodegradable. The results of this study have highlighted the potential application of this bioelectroactive polyurethane as a platform substrate to study the effect of electrical signals on cell activities and to direct desirable cell function for tissue engineering applications. - Highlights: • Straight forward methodology for synthesis of electroactive polyurethane • Biodegradability and non-toxicity through proper selection of starting materials • Supporting cell proliferation and attachment combined with antioxidant property

  7. Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application

    Energy Technology Data Exchange (ETDEWEB)

    Baheiraei, Nafiseh [Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, 1417755469 Tehran (Iran, Islamic Republic of); Yeganeh, Hamid, E-mail: h.yeganeh@ippi.ac.ir [Department of Polyurethane, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran (Iran, Islamic Republic of); Ai, Jafar [Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, 1417755469 Tehran (Iran, Islamic Republic of); Brain and Spinal Injury Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Gharibi, Reza [Department of Polyurethane, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran (Iran, Islamic Republic of); Azami, Mahmoud; Faghihi, Faezeh [Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, 1417755469 Tehran (Iran, Islamic Republic of)

    2014-11-01

    There has been a growing trend towards applying conducting polymers for electrically excitable cells to increase electrical signal propagation within the cell-loaded substrates. A novel biodegradable electroactive polyurethane containing aniline pentamer (AP-PU) was synthesized and fully characterized by spectroscopic methods. To tune the physico-chemical properties and biocompatibility, the AP-PU was blended with polycaprolactone (PCL). The presence of electroactive moieties and the electroactivity behavior of the prepared films were confirmed by UV–visible spectroscopy and cyclic voltammetry. A conventional four probe analysis demonstrated the electrical conductivity of the films in the semiconductor range (∼ 10{sup −5} S/cm). MTT assays using L929 mouse fibroblast and human umbilical vein endothelial cells (HUVECs) showed that the prepared blend (PB) displayed more cytocompatibility compared with AP-PU due to the introduction of a biocompatible PCL moiety. The in vitro cell culture also confirmed that PB was as supportive as tissue culture plate. The antioxidant activity of the AP-PU was proved using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay by employing UV–vis spectroscopy. In vitro degradation tests conducted in phosphate-buffered saline, pH 7.4 and pH 5.5, proved that the films were also biodegradable. The results of this study have highlighted the potential application of this bioelectroactive polyurethane as a platform substrate to study the effect of electrical signals on cell activities and to direct desirable cell function for tissue engineering applications. - Highlights: • Straight forward methodology for synthesis of electroactive polyurethane • Biodegradability and non-toxicity through proper selection of starting materials • Supporting cell proliferation and attachment combined with antioxidant property.

  8. Three-dimensional cardiac tissue fabrication based on cell sheet technology.

    Science.gov (United States)

    Masuda, Shinako; Shimizu, Tatsuya

    2016-01-15

    Cardiac tissue engineering is a promising therapeutic strategy for severe heart failure. However, conventional tissue engineering methods by seeding cells into biodegradable scaffolds have intrinsic limitations such as inflammatory responses and fibrosis arising from the degradation of scaffolds. On the other hand, we have developed cell sheet engineering as a scaffold-free approach for cardiac tissue engineering. Confluent cultured cells are harvested as an intact cell sheet using a temperature-responsive culture surface. By layering cardiac cell sheets, it is possible to form electrically communicative three-dimensional cardiac constructs. Cell sheet transplantation onto damaged hearts in several animal models has revealed improvements in heart functions. Because of the lack of vasculature, the thickness of viable cardiac cell sheet-layered tissues is limited to three layers. Pre-vascularized structure formation within cardiac tissue and multi-step transplantation methods has enabled the formation of thick vascularized tissues in vivo. Furthermore, development of original bioreactor systems with vascular beds has allowed reconstruction of three-dimensional cardiac tissues with a functional vascular structure in vitro. Large-scale culture systems to generate pluripotent stem cell-derived cardiac cells can create large numbers of cardiac cell sheets. Three-dimensional cardiac tissues fabricated by cell sheet engineering may be applied to treat heart disease and tissue model construction.

  9. Vascularised Tissue Engineering Construct

    Directory of Open Access Journals (Sweden)

    Irza Sukmana

    2012-01-01

    Full Text Available The guidance of endothelial cell organization into a capillary network has been a long-standing challenge in tissue engineering. Some research efforts have been made to develop methods to promote capillary networks inside engineered tissue constructs. Capillary and vascular networks that would mimic blood microvessel function can be used to subsequently facilitate oxygen and nutrient transfer as well as waste removal. Vascularization of engineering tissue construct is one of the most favorable strategies to overpass nutrient and oxygen supply limitation, which is often the major hurdle in developing thick and complex tissue and artificial organ. This paper addresses recent advances and future challenges in developing three-dimensional culture systems to promote tissue construct vascularization allowing mimicking blood microvessel development and function encountered in vivo. Bioreactors systems that have been used to create fully vascularized functional tissue constructs will also be outlined.

  10. Tissue Engineering in Dentistry.

    OpenAIRE

    Neel, E. A.; W. Chrzanowski; Salih, V. M.; Kim, H. W.; Knowles, J. C.

    2014-01-01

    Objectives of this review is to inform practitioners with the most updated information on tissue engineering and its potential applications in dentistry. Data The authors used “PUBMED” to find relevant literature written in English and published from the beginning of tissue engineering until today. A combination of keywords was used as the search terms e.g., “tissue engineering”, “approaches”, “strategies” “dentistry”, “dental stem cells”, “dentino-pulp complex”, “guided tissue rege...

  11. Tissue engineered periodontal products.

    Science.gov (United States)

    Bartold, P M; Gronthos, S; Ivanovski, S; Fisher, A; Hutmacher, D W

    2016-02-01

    Attainment of periodontal regeneration is a significant clinical goal in the management of advanced periodontal defects arising from periodontitis. Over the past 30 years numerous techniques and materials have been introduced and evaluated clinically and have included guided tissue regeneration, bone grafting materials, growth and other biological factors and gene therapy. With the exception of gene therapy, all have undergone evaluation in humans. All of the products have shown efficacy in promoting periodontal regeneration in animal models but the results in humans remain variable and equivocal concerning attaining complete biological regeneration of damaged periodontal structures. In the early 2000s, the concept of tissue engineering was proposed as a new paradigm for periodontal regeneration based on molecular and cell biology. At this time, tissue engineering was a new and emerging field. Now, 14 years later we revisit the concept of tissue engineering for the periodontium and assess how far we have come, where we are currently situated and what needs to be done in the future to make this concept a reality. In this review, we cover some of the precursor products, which led to our current position in periodontal tissue engineering. The basic concepts of tissue engineering with special emphasis on periodontal tissue engineering products is discussed including the use of mesenchymal stem cells in bioscaffolds and the emerging field of cell sheet technology. Finally, we look into the future to consider what CAD/CAM technology and nanotechnology will have to offer. PMID:25900048

  12. Enamel Tissue Engineering

    OpenAIRE

    Honda, Masaki J.; Hata, Ken-ichiro

    2010-01-01

    For a long time metal and resin have been investigated as potential sources to replace enamel. In our laboratory, we are focusing on producing enamel by tissue engineering methods as these techniques are believed to be an extremely powerful approach to replacing enamel. This goal has remained elusive until recently when we finally identified a new tissue engineering method to generate enamel using a specialized enamel organ culture technique and transplantation system. However, two problems s...

  13. Regulating tissue engineering

    Directory of Open Access Journals (Sweden)

    Meredith Lloyd-Evans

    2004-05-01

    Full Text Available Tissue engineering is a radical new approach to the repair and replacement of damaged or diseased body tissues. Cells, often seeded into or shaped around a biomaterial matrix, are used to replace damaged or diseased tissue or stimulate repair by the body. Because it is an area of tremendous focus and achievement, there is a risk that technical developments will outstrip the capacity of existing regulatory frameworks to cope with these novel products. Australia, the USA, and Canada are somewhat ahead of Japan in establishing a feasible regulatory approach. All four are currently ahead of the European Union (EU, but individual European countries and the EU as a whole are catching up. However, for the foreseeable future, it may still be possible in certain European countries to use autologous cell therapies in hospitals and market allogeneic tissue-engineered products, especially skin replacements, without regulatory control.

  14. Engineering graded tissue interfaces.

    Science.gov (United States)

    Phillips, Jennifer E; Burns, Kellie L; Le Doux, Joseph M; Guldberg, Robert E; García, Andrés J

    2008-08-26

    Interfacial zones between tissues provide specialized, transitional junctions central to normal tissue function. Regenerative medicine strategies focused on multiple cell types and/or bi/tri-layered scaffolds do not provide continuously graded interfaces, severely limiting the integration and biological performance of engineered tissue substitutes. Inspired by the bone-soft tissue interface, we describe a biomaterial-mediated gene transfer strategy for spatially regulated genetic modification and differentiation of primary dermal fibroblasts within tissue-engineered constructs. We demonstrate that zonal organization of osteoblastic and fibroblastic cellular phenotypes can be engineered by a simple, one-step seeding of fibroblasts onto scaffolds containing a spatial distribution of retrovirus encoding the osteogenic transcription factor Runx2/Cbfa1. Gradients of immobilized retrovirus, achieved via deposition of controlled poly(L-lysine) densities, resulted in spatial patterns of transcription factor expression, osteoblastic differentiation, and mineralized matrix deposition. Notably, this graded distribution of mineral deposition and mechanical properties was maintained when implanted in vivo in an ectopic site. Development of this facile and robust strategy is significant toward the regeneration of continuous interfacial zones that mimic the cellular and microstructural characteristics of native tissue.

  15. Biomaterials in tissue engineering.

    Science.gov (United States)

    Hubbell, J A

    1995-06-01

    Biomaterials play a pivotal role in field of tissue engineering. Biomimetic synthetic polymers have been created to elicit specific cellular functions and to direct cell-cell interactions both in implants that are initially cell-free, which may serve as matrices to conduct tissue regeneration, and in implants to support cell transplantation. Biomimetic approaches have been based on polymers endowed with bioadhesive receptor-binding peptides and mono- and oligosaccharides. These materials have been patterned in two- and three-dimensions to generate model multicellular tissue architectures, and this approach may be useful in future efforts to generate complex organizations of multiple cell types. Natural polymers have also played an important role in these efforts, and recombinant polymers that combine the beneficial aspects of natural polymers with many of the desirable features of synthetic polymers have been designed and produced. Biomaterials have been employed to conduct and accelerate otherwise naturally occurring phenomena, such as tissue regeneration in wound healing in the otherwise healthy subject; to induce cellular responses that might not be normally present, such as healing in a diseased subject or the generation of a new vascular bed to receive a subsequent cell transplant; and to block natural phenomena, such as the immune rejection of cell transplants from other species or the transmission of growth factor signals that stimulate scar formation. This review introduces the biomaterials and describes their application in the engineering of new tissues and the manipulation of tissue responses. PMID:9634795

  16. Stereolithography in tissue engineering.

    Science.gov (United States)

    Skoog, Shelby A; Goering, Peter L; Narayan, Roger J

    2014-03-01

    Several recent research efforts have focused on use of computer-aided additive fabrication technologies, commonly referred to as additive manufacturing, rapid prototyping, solid freeform fabrication, or three-dimensional printing technologies, to create structures for tissue engineering. For example, scaffolds for tissue engineering may be processed using rapid prototyping technologies, which serve as matrices for cell ingrowth, vascularization, as well as transport of nutrients and waste. Stereolithography is a photopolymerization-based rapid prototyping technology that involves computer-driven and spatially controlled irradiation of liquid resin. This technology enables structures with precise microscale features to be prepared directly from a computer model. In this review, use of stereolithography for processing trimethylene carbonate, polycaprolactone, and poly(D,L-lactide) poly(propylene fumarate)-based materials is considered. In addition, incorporation of bioceramic fillers for fabrication of bioceramic scaffolds is reviewed. Use of stereolithography for processing of patient-specific implantable scaffolds is also discussed. In addition, use of photopolymerization-based rapid prototyping technology, known as two-photon polymerization, for production of tissue engineering scaffolds with smaller features than conventional stereolithography technology is considered.

  17. Tissue engineering the kidney.

    Science.gov (United States)

    Hammerman, Marc R

    2003-04-01

    The means by which kidney function can be replaced in humans include dialysis and renal allotransplantation. Dialytic therapies are lifesaving, but often poorly tolerated. Transplantation of human kidneys is limited by the availability of donor organs. During the past decades, a number of different approaches have been applied toward tissue engineering the kidney as a means to replace renal function. The goals of one or another of them included the recapitulation of renal filtration, reabsorptive and secretory functions, and replacement of endocrine/metabolic activities. This review will delineate the progress to date recorded for five approaches: (1) integration of new nephrons into the kidney; (2) growing new kidneys in situ; (3) use of stem cells; (4) generation of histocompatible tissues using nuclear transplantation; and (5) bioengineering of an artificial kidney. All five approaches utilize cellular therapy. The first four employ transplantation as well, and the fifth uses dialysis.

  18. Tissue bionics: examples in biomimetic tissue engineering

    International Nuclear Information System (INIS)

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic

  19. Tissue bionics: examples in biomimetic tissue engineering.

    Science.gov (United States)

    Green, David W

    2008-09-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic.

  20. Material-based engineering strategies for cardiac regeneration.

    Science.gov (United States)

    Marion, Mieke H van; Bax, Noortje A M; Spreeuwel, Ariane C C van; van der Schaft, Daisy W J; Bouten, Carlijn V C

    2014-01-01

    Cardiac tissue is composed of muscle and non-muscle cells, surrounded by extracellular matrix (ECM) and spatially organized into a complex three-dimensional (3D) architecture to allow for coordinated contraction and electrical pulse propagation. Despite emerging evidence for cardiomyocyte turnover in mammalian hearts, the regenerative capacity of human cardiac tissue is insufficient to recover from damage, e.g. resulting from myocardial infarction (MI). Instead, the heart 'repairs' lost or injured tissue by ongoing synthesis and remodeling of scar tissue. Conventional therapies and timely (stem) cell delivery to the injured tissue markedly improve short-term function and remodeling, but do not attenuate later stage adverse remodeling, leading to functional deterioration and eventually failure of the heart. Material-based therapies have been successfully used to mechanically support and constrain the post-MI failing heart, preventing it from further remodeling and dilation. When designed to deliver the right microenvironment for endogenous or exogenous cells, as well as the mechanical and topological cues to guide neo-tissue formation, material-based therapies may even reverse remodeling and boost cardiac regeneration. This paper reviews the up-to-date status of material-based cardiac regeneration with special emphasis on 1) the use of bare biomaterials to deliver passive constraints that unload the heart, 2) the use of materials and cells to create engineered cardiac constructs for replacement, support, or regeneration of damaged myocardium, and 3) the development of bio-inspired and bioactive materials that aim to enhance the endogenous regenerative capacity of the heart. As the therapies should function in the infarcted heart, the damaged host environment and engineered in vitro test systems that mimic this environment, are reviewed as well.

  1. Injectable Tissue-Engineered Soft Tissue for Tissue Augmentation

    OpenAIRE

    Rhee, Sung-Mi; You, Hi-Jin; Han, Seung-Kyu

    2014-01-01

    Soft tissue augmentation is a process of implanting tissues or materials to treat wrinkles or soft tissue defects in the body. Over the years, various materials have evolved to correct soft tissue defects, including a number of tissues and polymers. Autogenous dermis, autogenous fat, autogenous dermis-fat, allogenic dermis, synthetic implants, and fillers have been widely accepted for soft tissue augmentations. Tissue engineering technology has also been introduced and opened a new venue of o...

  2. Computational Modeling in Tissue Engineering

    CERN Document Server

    2013-01-01

    One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in:  (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each...

  3. Integrated Biomaterials in Tissue Engineering

    CERN Document Server

    Ramalingam, Murugan; Ramakrishna, Seeram; Kobayashi, Hisatoshi; Haikel, Youssef

    2012-01-01

    "Integrated Biomaterials in Tissue Engineering" features all aspects from fundamental principles to current technological advances in biomaterials at the macro/micro/nano/molecular scales suitable for tissue engineering and regenerative medicine. The book is unique as it provides all important aspects dealing with the basic science involved in structure and properties, techniques and technological innovations in material processing and characterizations, and applications of biomaterials in tissue engineering and regenerative medicine.

  4. Electrospun multifunctional tissue engineering scaffolds

    Science.gov (United States)

    Wang, Chong; Wang, Min

    2014-03-01

    Tissue engineering holds great promises in providing successful treatments of human body tissue loss that current methods are unable to treat or unable to achieve satisfactory clinical outcomes. In scaffold-based tissue engineering, a highperformance scaffold underpins the success of a tissue engineering strategy and a major direction in the field is to create multifunctional tissue engineering scaffolds for enhanced biological performance and for regenerating complex body tissues. Electrospinning can produce nanofibrous scaffolds that are highly desirable for tissue engineering. The enormous interest in electrospinning and electrospun fibrous structures by the science, engineering and medical communities has led to various developments of the electrospinning technology and wide investigations of electrospun products in many industries, including biomedical engineering, over the past two decades. It is now possible to create novel, multicomponent tissue engineering scaffolds with multiple functions. This article provides a concise review of recent advances in the R & D of electrospun multifunctional tissue engineering scaffolds. It also presents our philosophy and research in the designing and fabrication of electrospun multicomponent scaffolds with multiple functions.

  5. Adipose Tissue Engineering for Soft Tissue Regeneration

    OpenAIRE

    Choi, Jennifer H.; Gimble, Jeffrey M.; Lee, Kyongbum; Marra, Kacey G.; Rubin, J. Peter; Yoo, James J; Vunjak-Novakovic, Gordana; Kaplan, David L.

    2010-01-01

    Current treatment modalities for soft tissue defects caused by various pathologies and trauma include autologous grafting and commercially available fillers. However, these treatment methods present a number of challenges and limitations, such as donor-site morbidity and volume loss over time. As such, improved therapeutic modalities need to be developed. Tissue engineering techniques offer novel solutions to these problems through development of bioactive tissue constructs that can regenerat...

  6. Biomaterials & scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Fergal J. O'Brien

    2011-03-01

    Full Text Available Every day thousands of surgical procedures are performed to replace or repair tissue that has been damaged through disease or trauma. The developing field of tissue engineering (TE aims to regenerate damaged tissues by combining cells from the body with highly porous scaffold biomaterials, which act as templates for tissue regeneration, to guide the growth of new tissue. This article describes the functional requirements, and types, of materials used in developing state of the art of scaffolds for tissue engineering applications. Furthermore, it describes the challenges and where future research and direction is required in this rapidly advancing field.

  7. Biomaterials for tissue engineering: summary

    Science.gov (United States)

    Christenson, L.; Mikos, A. G.; Gibbons, D. F.; Picciolo, G. L.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    This article summarizes presentations and discussion at the workshop "Enabling Biomaterial Technology for Tissue Engineering," which was held during the Fifth World Biomaterials Congress in May 1996. Presentations covered the areas of material substrate architecture, barrier effects, and cellular response, including analysis of biomaterials challenges involved in producing specific tissue-engineered products.

  8. Tissue Engineering of the Penis

    Directory of Open Access Journals (Sweden)

    Manish N. Patel

    2011-01-01

    Full Text Available Congenital disorders, cancer, trauma, or other conditions of the genitourinary tract can lead to significant organ damage or loss of function, necessitating eventual reconstruction or replacement of the damaged structures. However, current reconstructive techniques are limited by issues of tissue availability and compatibility. Physicians and scientists have begun to explore tissue engineering and regenerative medicine strategies for repair and reconstruction of the genitourinary tract. Tissue engineering allows the development of biological substitutes which could potentially restore normal function. Tissue engineering efforts designed to treat or replace most organs are currently being undertaken. Most of these efforts have occurred within the past decade. However, before these engineering techniques can be applied to humans, further studies are needed to ensure the safety and efficacy of these new materials. Recent progress suggests that engineered urologic tissues and cell therapy may soon have clinical applicability.

  9. Recombinant proteins secreted from tissue-engineered bioartificial muscle improve cardiac dysfunction and suppress cardiomyocyte apoptosis in rats with heart failure

    Institute of Scientific and Technical Information of China (English)

    RONG Shu-ling; WANG Yong-jin; WANG Xiao-lin; LU Yong-xin; WU Yin; LIU Qi-yun; MI Shao-hua; XU Yu-lan

    2010-01-01

    Background Tissue-engineered bioartificial muscle-based gene therapy represents a promising approach for the treatment of heart diseases. Experimental and clinical studies suggest that systemic administration of insulin-like growth factor-1 (IGF-1) protein or overexpression of IGF-1 in the heart exerts a favorable effect on cardiovascular function. This study aimed to investigate a chronic stage after myocardial infarction (MI) and the potential therapeutic effects of delivering a human IGF-1 gene by tissue-engineered bioartificial muscles (BAMs) following coronary artery ligation in Sprague-Dawley rats.Methods Ligation of the left coronary artery or sham operation was performed. Primary skeletal myoblasts were retrovirally transduced to synthesize and secrete recombinant human insulin-like growth factor-1 (rhIGF-1), and green fluorescent protein (GFP), and tissue-engineered into implantable BAMs. The rats that underwent ligation were randomly assigned to 2 groups: MI-IGF group (n=6) and MI-GFP group (n=6). The MI-IGF group received rhIGF-secreting BAM (IGF-BAMs) transplantation, and the MI-GFP group received GFP-secreting BAM (GFP-BAMs) transplantation. Another group of rats served as the sham operation group, which was also randomly assigned to 2 subgroups: S-IGF group (n=6)and S-GFP group (n=6). The S-IGF group underwent IGF-1-BAM transplantation, and S-GFP group underwent GFP-BAM transplantation. IGF-1-BAMs and GFP-BAMs were implanted subcutaneously into syngeneic rats after two weeks of operation was performed. Four weeks after the treatment, hemodynamics was performed. IGF-1 was measured by radioimmunoassay, and then the rats were sacrificed and ventricular samples were subjected to immunohistochemistry. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to examine the mRNA expression of bax and Bcl-2. TNF-α and caspase 3 expression in myocardium was examined by Western blotting.Results Primary rat myoblasts were retrovirally transduced to

  10. Micro- and nanotechnology in cardiovascular tissue engineering.

    Science.gov (United States)

    Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-12-01

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  11. Challenges in Soft Tissue Engineering

    OpenAIRE

    Yuksel, Eser; Choo, Joshua; Wettergreen, Matthew; Liebschner, Michael

    2005-01-01

    Soft tissue engineering strategies targeting restoration of volume loss have inherent critical challenges as they relate to the problem of restoration of defects with a high volume to surface ratio. We outline the problems associated with the limitations of translational applications regarding soft tissue engineering strategies as follows: cell survival, mechanical challenges: macroenvironment (scaffold collapse and on-the-shelf availability), compositional considerations: microenvironment, i...

  12. Commercial considerations in tissue engineering.

    Science.gov (United States)

    Mansbridge, Jonathan

    2006-10-01

    Tissue engineering is a field with immense promise. Using the example of an early tissue-engineered skin implant, Dermagraft, factors involved in the successful commercial development of devices of this type are explored. Tissue engineering has to strike a balance between tissue culture, which is a resource-intensive activity, and business considerations that are concerned with minimizing cost and maximizing customer convenience. Bioreactor design takes place in a highly regulated environment, so factors to be incorporated into the concept include not only tissue culture considerations but also matters related to asepsis, scaleup, automation and ease of use by the final customer. Dermagraft is an allogeneic tissue. Stasis preservation, in this case cryopreservation, is essential in allogeneic tissue engineering, allowing sterility testing, inventory control and, in the case of Dermagraft, a cellular stress that may be important for hormesis following implantation. Although the use of allogeneic cells provides advantages in manufacturing under suitable conditions, it raises the spectre of immunological rejection. Such rejection has not been experienced with Dermagraft. Possible reasons for this and the vision of further application of allogeneic tissues are important considerations in future tissue-engineered cellular devices. This review illustrates approaches that indicate some of the criteria that may provide a basis for further developments. Marketing is a further requirement for success, which entails understanding of the mechanism of action of the procedure, and is illustrated for Dermagraft. The success of a tissue-engineered product is dependent on many interacting operations, some discussed here, each of which must be performed simultaneously and well.

  13. Commercial considerations in tissue engineering.

    Science.gov (United States)

    Mansbridge, Jonathan

    2006-10-01

    Tissue engineering is a field with immense promise. Using the example of an early tissue-engineered skin implant, Dermagraft, factors involved in the successful commercial development of devices of this type are explored. Tissue engineering has to strike a balance between tissue culture, which is a resource-intensive activity, and business considerations that are concerned with minimizing cost and maximizing customer convenience. Bioreactor design takes place in a highly regulated environment, so factors to be incorporated into the concept include not only tissue culture considerations but also matters related to asepsis, scaleup, automation and ease of use by the final customer. Dermagraft is an allogeneic tissue. Stasis preservation, in this case cryopreservation, is essential in allogeneic tissue engineering, allowing sterility testing, inventory control and, in the case of Dermagraft, a cellular stress that may be important for hormesis following implantation. Although the use of allogeneic cells provides advantages in manufacturing under suitable conditions, it raises the spectre of immunological rejection. Such rejection has not been experienced with Dermagraft. Possible reasons for this and the vision of further application of allogeneic tissues are important considerations in future tissue-engineered cellular devices. This review illustrates approaches that indicate some of the criteria that may provide a basis for further developments. Marketing is a further requirement for success, which entails understanding of the mechanism of action of the procedure, and is illustrated for Dermagraft. The success of a tissue-engineered product is dependent on many interacting operations, some discussed here, each of which must be performed simultaneously and well. PMID:17005024

  14. Tissue Engineering of the Penis

    OpenAIRE

    Patel, Manish N.; Atala, Anthony

    2011-01-01

    Congenital disorders, cancer, trauma, or other conditions of the genitourinary tract can lead to significant organ damage or loss of function, necessitating eventual reconstruction or replacement of the damaged structures. However, current reconstructive techniques are limited by issues of tissue availability and compatibility. Physicians and scientists have begun to explore tissue engineering and regenerative medicine strategies for repair and reconstruction of the genitourinary tract. Tissu...

  15. Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery.

    Science.gov (United States)

    Llucià-Valldeperas, A; Sanchez, B; Soler-Botija, C; Gálvez-Montón, C; Prat-Vidal, C; Roura, S; Rosell-Ferrer, J; Bragos, R; Bayes-Genis, A

    2015-11-01

    A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. Our aim was to examine the effect of electrical stimulation on the cardiodifferentiation potential of cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs). Three different electrical stimulation protocols were tested; the selected protocol consisted of 2 ms monophasic square-wave pulses of 50 mV/cm at 1 Hz over 14 days. Cardiac and subcutaneous ATDPCs were grown on biocompatible patterned surfaces. Cardiomyogenic differentiation was examined by real-time PCR and immunocytofluorescence. In cardiac ATDPCs, MEF2A and GATA-4 were significantly upregulated at day 14 after stimulation, while subcutaneous ATDPCs only exhibited increased Cx43 expression. In response to electrical stimulation, cardiac ATDPCs elongated, and both cardiac and subcutaneous ATDPCs became aligned following the linear surface pattern of the construct. Cardiac ATDPC length increased by 11.3%, while subcutaneous ATDPC length diminished by 11.2% (p = 0.013 and p = 0.030 vs unstimulated controls, respectively). Compared to controls, electrostimulated cells became aligned better to the patterned surfaces when the pattern was perpendicular to the electric field (89.71 ± 28.47º for cardiac ATDPCs and 92.15 ± 15.21º for subcutaneous ATDPCs). Electrical stimulation of cardiac ATDPCs caused changes in cell phenotype and genetic machinery, making them more suitable for cardiac regeneration approaches. Thus, it seems advisable to use electrical cell training before delivery as a cell suspension or within engineered tissue.

  16. Neovaskularisation und Tissue Engineering

    OpenAIRE

    Nguyen The, Hoang

    2010-01-01

    Präfabrikation von axial neovaskularisierten Hautlappen, die einen weiteren Entwicklungsschritt in der rekonstruktiven Chirurgie darstellen und durch deren Anwendung auf den Bereich des “Tissue Engineerings“ sich vitale, dreidimensionale Strukturen originalgetreu züchten lassen. In experimentellen Studien am Kaninchen wurde die Neovaskularisation bei 156 Bauchhautlappen mit unterschiedlichen Modellvarianten des implantierten Gefäßstiels nach 4, 8, 12, 16 und 20 Tagen der Präfabrikation unters...

  17. Bone tissue engineering

    OpenAIRE

    Black, Cameron R. M.; Goriainov, Vitali; Gibbs, David; Kanczler, Janos; Tare, Rahul S; Richard O. C. Oreffo

    2015-01-01

    Medical advances have led to a welcome increase in life expectancy. However, accompanying longevity introduces new challenges: increases in age-related diseases and associated reductions in quality of life. The loss of skeletal tissue that can accompany trauma, injury, disease or advancing years can result in significant morbidity and significant socio-economic cost and emphasise the need for new, more reliable skeletal regeneration strategies. To address the unmet need for bone augmentation,...

  18. Incretin attenuates diabetes-induced damage in rat cardiac tissue.

    Science.gov (United States)

    AbdElmonem Elbassuoni, Eman

    2014-09-01

    Glucagon-like peptide-1 (GLP-1), as a member of the incretin family, has a role in glucose homeostasis, its receptors distributed throughout the body, including the heart. The aim was to investigate cardiac lesions following diabetes induction, and the potential effect of GLP-1 on this type of lesions and the molecular mechanism driving this activity. Adult male rats were classified into: normal, diabetic, 4-week high-dose exenatide-treated diabetic rats, 4-week low-dose exenatide-treated diabetic rats, and 1-week exenatide-treated diabetic rats. The following parameters were measured: in blood: glucose, insulin, lactate dehydrogenase (LDH), total creatine kinase (CK), creatine kinase MB isoenzyme (CK-MB), and CK-MB relative index; in cardiac tissue: lipid peroxide (LPO) and some antioxidant enzymes. The untreated diabetic group displayed significant increases in blood level of glucose, LDH, and CK-MB, and cardiac tissue LPO, and a significant decrease in cardiac tissue antioxidant enzymes. GLP-1 supplementation in diabetic rats definitely decreased the hyperglycemia and abolished the detrimental effects of diabetes on the cardiac tissue. The effect of GLP-1 on blood glucose and on the heart also appeared after a short supplementation period (1 week). It can be concluded that GLP-1 has beneficial effects on diabetes-induced oxidative cardiac tissue damage, most probably via its antioxidant effect directly acting on cardiac tissue and independent of its hypoglycemic effect. PMID:25011640

  19. Gene Technology in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Xiao-Dan Sun

    2006-01-01

    Full Text Available Scaffold, cells and signaling factors are regarded as the three essential components in tissue engineering. With the development of molecular and cell biology, gene technology is beginning to show a promising position in tissue engineering as it can influence these essential components at DNA-level. By introducing plasmid DNA or genes encoding certain signaling factors (growth factors/cytokines into the cells, required growth factors/cytokines can be expressed and secreted spatially and temporally by the transfected cells, which will promote the differentiation, proliferation and organization of the cells on the scaffold. Protein-based scaffolds which have specific structures can also be prepared genetically to induce attachment and spreading of the cells. This paper reviews research work of gene technology developed in tissue engineering.

  20. Multiphoton tomography for tissue engineering

    Science.gov (United States)

    König, Karsten

    2008-02-01

    Femtosecond laser multiphoton tomography has been employed in the field of tissue engineering to perform 3D high-resolution imaging of the extracellular matrix proteins elastin and collagen as well as of living cells without any fixation, slicing, and staining. Near infrared 80 MHz picojoule femtosecond laser pulses are able to excite the endogenous fluorophores NAD(P)H, flavoproteins, melanin, and elastin via a non-resonant two-photon excitation process. In addition, collagen can be imaged by second harmonic generation. Using a two-PMT detection system, the ratio of elastin to collagen was determined during optical sectioning. A high submicron spatial resolution and 50 picosecond temporal resolution was achieved using galvoscan mirrors and piezodriven focusing optics as well as a time-correlated single photon counting module with a fast microchannel plate detector and fast photomultipliers. Multiphoton tomography has been used to optimize the tissue engineering of heart valves and vessels in bioincubators as well as to characterize artificial skin. Stem cell characterization and manipulation are of major interest for the field of tissue engineering. Using the novel sub-20 femtosecond multiphoton nanoprocessing laser microscope FemtOgene, the differentiation of human stem cells within spheroids has been in vivo monitored with submicron resolution. In addition, the efficient targeted transfection has been demonstrated. Clinical studies on the interaction of tissue-engineered products with the natural tissue environment can be performed with in vivo multiphoton tomograph DermaInspect.

  1. Pre-transplantation specification of stem cells to cardiac lineage for regeneration of cardiac tissue.

    Science.gov (United States)

    Mayorga, Maritza; Finan, Amanda; Penn, Marc

    2009-03-01

    Myocardial infarction (MI) is a lead cause of mortality in the Western world. Treatment of acute MI is focused on restoration of antegrade flow which inhibits further tissue loss, but does not restore function to damaged tissue. Chronic therapy for injured myocardial tissue involves medical therapy that attempts to minimize pathologic remodeling of the heart. End stage therapy for chronic heart failure (CHF) involves inotropic therapy to increase surviving cardiac myocyte function or mechanical augmentation of cardiac performance. Not until the point of heart transplantation, a limited resource at best, does therapy focus on the fundamental problem of needing to replace injured tissue with new contractile tissue. In this setting, the potential for stem cell therapy has garnered significant interest for its potential to regenerate or create new contractile cardiac tissue. While to date adult stem cell therapy in clinical trials has suggested potential benefit, there is waning belief that the approaches used to date lead to regeneration of cardiac tissue. As the literature has better defined the pathways involved in cardiac differentiation, preclinical studies have suggested that stem cell pretreatment to direct stem cell differentiation prior to stem cell transplantation may be a more efficacious strategy for inducing cardiac regeneration. Here we review the available literature on pre-transplantation conditioning of stem cells in an attempt to better understand stem cell behavior and their readiness in cell-based therapy for myocardial regeneration.

  2. Two-photon induced collagen cross-linking in bioartificial cardiac tissue

    Science.gov (United States)

    Kuetemeyer, Kai; Kensah, George; Heidrich, Marko; Meyer, Heiko; Martin, Ulrich; Gruh, Ina; Heisterkamp, Alexander

    2011-08-01

    Cardiac tissue engineering is a promising strategy for regenerative therapies to overcome the shortage of donor organs for transplantation. Besides contractile function, the stiffness of tissue engineered constructs is crucial to generate transplantable tissue surrogates with sufficient mechanical stability to withstand the high pressure present in the heart. Although several collagen cross-linking techniques have proven to be efficient in stabilizing biomaterials, they cannot be applied to cardiac tissue engineering, as cell death occurs in the treated area. Here, we present a novel method using femtosecond (fs) laser pulses to increase the stiffness of collagen-based tissue constructs without impairing cell viability. Raster scanning of the fs laser beam over riboflavin-treated tissue induced collagen cross-linking by two-photon photosensitized singlet oxygen production. One day post-irradiation, stress-strain measurements revealed increased tissue stiffness by around 40% being dependent on the fibroblast content in the tissue. At the same time, cells remained viable and fully functional as demonstrated by fluorescence imaging of cardiomyocyte mitochondrial activity and preservation of active contraction force. Our results indicate that two-photon induced collagen cross-linking has great potential for studying and improving artificially engineered tissue for regenerative therapies.

  3. Myocardial tissue engineering using electrospun nanofiber composites

    Science.gov (United States)

    Kim, Pyung-Hwan; Cho, Je-Yoel

    2016-01-01

    Emerging trends for cardiac tissue engineering are focused on increasing the biocompatibility and tissue regeneration ability of artificial heart tissue by incorporating various cell sources and bioactive molecules. Although primary cardiomyocytes can be successfully implanted, clinical applications are restricted due to their low survival rates and poor proliferation. To develop successful cardiovascular tissue regeneration systems, new technologies must be introduced to improve myocardial regeneration. Electrospinning is a simple, versatile technique for fabricating nanofibers. Here, we discuss various biodegradable polymers (natural, synthetic, and combinatorial polymers) that can be used for fiber fabrication. We also describe a series of fiber modification methods that can increase cell survival, proliferation, and migration and provide supporting mechanical properties by mimicking micro-environment structures, such as the extracellular matrix (ECM). In addition, the applications and types of nanofiber-based scaffolds for myocardial regeneration are described. Finally, fusion research methods combined with stem cells and scaffolds to improve biocompatibility are discussed. [BMB Reports 2016; 49(1): 26-36] PMID:26497579

  4. Tissue Engineered Human Skin Equivalents

    OpenAIRE

    Zheng Zhang; Michniak-Kohn, Bozena B.

    2012-01-01

    Human skin not only serves as an important barrier against the penetration of exogenous substances into the body, but also provides a potential avenue for the transport of functional active drugs/reagents/ingredients into the skin (topical delivery) and/or the body (transdermal delivery). In the past three decades, research and development in human skin equivalents have advanced in parallel with those in tissue engineering and regenerative medicine. The human skin equivalents are used commerc...

  5. Extracellular matrix and tissue engineering applications

    NARCIS (Netherlands)

    Fernandes, Hugo; Moroni, Lorenzo; Blitterswijk, van Clemens; Boer, de Jan

    2009-01-01

    The extracellular matrix is a key component during regeneration and maintenance of tissues and organs, and it therefore plays a critical role in successful tissue engineering as well. Tissue engineers should recognise that engineering technology can be deduced from natural repair processes. Due to a

  6. Coaxial electrospun fibers: applications in drug delivery and tissue engineering.

    Science.gov (United States)

    Lu, Yang; Huang, Jiangnan; Yu, Guoqiang; Cardenas, Romel; Wei, Suying; Wujcik, Evan K; Guo, Zhanhu

    2016-09-01

    Coelectrospinning and emulsion electrospinning are two main methods for preparing core-sheath electrospun nanofibers in a cost-effective and efficient manner. Here, physical phenomena and the effects of solution and processing parameters on the coaxial fibers are introduced. Coaxial fibers with specific drugs encapsulated in the core can exhibit a sustained and controlled release. Their exhibited high surface area and three-dimensional nanofibrous network allows the electrospun fibers to resemble native extracellular matrices. These features of the nanofibers show that they have great potential in drug delivery and tissue engineering applications. Proteins, growth factors, antibiotics, and many other agents have been successfully encapsulated into coaxial fibers for drug delivery. A main advantage of the core-sheath design is that after the process of electrospinning and release, these drugs remain bioactive due to the protection of the sheath. Applications of coaxial fibers as scaffolds for tissue engineering include bone, cartilage, cardiac tissue, skin, blood vessels and nervous tissue, among others. A synopsis of novel coaxial electrospun fibers, discussing their applications in drug delivery and tissue engineering, is covered pertaining to proteins, growth factors, antibiotics, and other drugs and applications in the fields of bone, cartilage, cardiac, skin, blood vessel, and nervous tissue engineering, respectively. WIREs Nanomed Nanobiotechnol 2016, 8:654-677. doi: 10.1002/wnan.1391 For further resources related to this article, please visit the WIREs website. PMID:26848106

  7. Photoacoustic microscopy in tissue engineering

    Directory of Open Access Journals (Sweden)

    Xin Cai

    2013-03-01

    Full Text Available Photoacoustic tomography (PAT is an attractive modality for noninvasive, volumetric imaging of scattering media such as biological tissues. By choosing the ultrasonic detection frequency, PAT enables scalable spatial resolution with an imaging depth of up to ∼7 cm while maintaining a high depth-to-resolution ratio of ∼200 and consistent optical absorption contrasts. Photoacoustic microscopy (PAM, the microscopic embodiment of PAT, aims to image at millimeter depth and micrometer-scale resolution. PAM is well-suited for characterizing three-dimensional scaffold-based samples, including scaffolds themselves, cells, and blood vessels, both qualitatively and quantitatively. Here we review our previous work on applications of PAM in tissue engineering and then discuss its future developments.

  8. Tissue engineering of cartilages using biomatrices

    DEFF Research Database (Denmark)

    Melrose, J.; Chuang, C.; Whitelock, J.

    2008-01-01

    Tissue engineering is an exciting new cross-disciplinary methodology which applies the principles of engineering and structure-function relationships between normal and pathological tissues to develop biological substitute to restore, maintain or improve tissue function. Tissue engineering...... engineering approaches and many of these are discussed and their in vitro and in vivo applications covered in this review. Tissue engineering is entering an exciting era; significant advances have been made; however, many technical challenges remain to be solved before this technology becomes widely...

  9. Membrane supported scaffold : architectures for tissue engineering

    OpenAIRE

    Bettahalli, Narasimha Murthy Srivatsa

    2011-01-01

    Tissue engineering aims at restoring or regenerating a damaged tissue. Often the tissue recreation occurs by combining cells, derived from a patient biopsy, onto a 3D porous matrix, functioning as a scaffold. One of the current limitations of tissue engineering is the inability to provide sufficient nutrient and oxygen supply in developing 3D in-vitro culture. In human body the vasculature is embedded into almost every tissues and organs. They transport blood, and thus nutrients and waste pro...

  10. 3D Printing for Tissue Engineering

    OpenAIRE

    Richards, Dylan Jack; Tan, Yu; Jia, Jia; Yao, Hai; Mei, Ying

    2013-01-01

    Tissue engineering aims to fabricate functional tissue for applications in regenerative medicine and drug testing. More recently, 3D printing has shown great promise in tissue fabrication with a structural control from micro- to macro-scale by using a layer-by-layer approach. Whether through scaffold-based or scaffold-free approaches, the standard for 3D printed tissue engineering constructs is to provide a biomimetic structural environment that facilitates tissue formation and promotes host ...

  11. Cardiac Time Intervals by Tissue Doppler Imaging M-Mode

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Mogelvang, Rasmus; de Knegt, Martina Chantal;

    2016-01-01

    PURPOSE: To define normal values of the cardiac time intervals obtained by tissue Doppler imaging (TDI) M-mode through the mitral valve (MV). Furthermore, to evaluate the association of the myocardial performance index (MPI) obtained by TDI M-mode (MPITDI) and the conventional method of obtaining...... MPI (MPIConv), with established echocardiographic and invasive measures of systolic and diastolic function. METHODS: In a large community based population study (n = 974), where all are free of any cardiovascular disease and cardiovascular risk factors, cardiac time intervals, including isovolumic...... the MPITDI and MPIConv measured. RESULTS: IVRT, IVRT/ET and MPI all increased significantly with increasing age in both genders (pcardiac function. MPITDI...

  12. Dynamics of wave fronts and filaments in anisotropic cardiac tissue

    CERN Document Server

    Dierckx, Hans J F M

    2015-01-01

    The heartbeat is mediated between cardiac cells by waves of electrical depolarisation. During cardiac arrhythmias, electrical activity was found to be organised in scroll waves which rotate around a dynamical filament curve. In this thesis, a curved-space approach is used to mathematically capture anisotropy of wave propagation. We derive for the first time the covariant laws of motion for traveling wave fronts and scroll wave filaments in anisotropic excitable media such as cardiac tissue. We show that locally varying anisotropy yields non-zero Riemann tensor components, which may alter the stability of scroll wave filaments. The instability of scroll wave filaments has been linked to transition from ventricular tachycardia to fibrillation.

  13. Adipose and mammary epithelial tissue engineering.

    Science.gov (United States)

    Zhu, Wenting; Nelson, Celeste M

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast.

  14. Optical control of excitation waves in cardiac tissue

    Science.gov (United States)

    Burton, Rebecca A. B.; Klimas, Aleksandra; Ambrosi, Christina M.; Tomek, Jakub; Corbett, Alex; Entcheva, Emilia; Bub, Gil

    2015-12-01

    In nature, macroscopic excitation waves are found in a diverse range of settings including chemical reactions, metal rust, yeast, amoeba and the heart and brain. In the case of living biological tissue, the spatiotemporal patterns formed by these excitation waves are different in healthy and diseased states. Current electrical and pharmacological methods for wave modulation lack the spatiotemporal precision needed to control these patterns. Optical methods have the potential to overcome these limitations, but to date have only been demonstrated in simple systems, such as the Belousov-Zhabotinsky chemical reaction. Here, we combine dye-free optical imaging with optogenetic actuation to achieve dynamic control of cardiac excitation waves. Illumination with patterned light is demonstrated to optically control the direction, speed and spiral chirality of such waves in cardiac tissue. This all-optical approach offers a new experimental platform for the study and control of pattern formation in complex biological excitable systems.

  15. Biomimetic strategies for engineering composite tissues.

    Science.gov (United States)

    Lee, Nancy; Robinson, Jennifer; Lu, Helen

    2016-08-01

    The formation of multiple tissue types and their integration into composite tissue units presents a frontier challenge in regenerative engineering. Tissue-tissue synchrony is crucial in providing structural support for internal organs and enabling daily activities. This review highlights the state-of-the-art in composite tissue scaffold design, and explores how biomimicry can be strategically applied to avoid over-engineering the scaffold. Given the complexity of biological tissues, determining the most relevant parameters for recapitulating native structure-function relationships through strategic biomimicry will reduce the burden for clinical translation. It is anticipated that these exciting efforts in composite tissue engineering will enable integrative and functional repair of common soft tissue injuries and lay the foundation for total joint or limb regeneration. PMID:27010653

  16. Developing 3D microstructures for tissue engineering

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan

    casting process to generate various large scale tissue engineering constructs with single pore geometry with the desired mechanical stiffness and porosity. In addition, a new technique was developed to fa bricate dual-pore scaffolds for various tissue-engineering applications where 3D printing...

  17. Cardiac tissue ablation with catheter-based microwave heating.

    Science.gov (United States)

    Rappaport, C

    2004-11-01

    The common condition of atrial fibrillation is often treated by cutting diseased cardiac tissue to disrupt abnormal electrical conduction pathways. Heating abnormal tissue with electromagnetic power provides a minimally invasive surgical alternative to treat these cardiac arrhythmias. Radio frequency ablation has become the method of choice of many physicians. Recently, microwave power has also been shown to have great therapeutic benefit in medical treatment requiring precise heating of biological tissue. Since microwave power tends to be deposited throughout the volume of biological media, microwave heating offers advantages over other heating modalities that tend to heat primarily the contacting surface. It is also possible to heat a deeper volume of tissue with more precise control using microwaves than with purely thermal conduction or RF electrode heating. Microwave Cardiac Ablation (MCA) is used to treat heart tissue that allows abnormal electrical conduction by heating it to the point of inactivation. Microwave antennas that fit within catheter systems can be positioned close to diseased tissue. Specialized antenna designs that unfurl from the catheter within the heart can then radiate specifically shaped fields, which overcome problems such as excessive surface heating at the contact point. The state of the art in MCA is reviewed in this paper and a novel catheter-based unfurling wide aperture antenna is described. This antenna consists of the centre conductor of a coaxial line, shaped into a spiral and insulated from blood and tissue by a non-conductive fluid filled balloon. Initially stretched straight inside a catheter for transluminal guiding, once in place at the cardiac target, the coiled spiral antenna is advanced into the inflated balloon. Power is applied in the range of 50-150 W at the reserved industrial, scientific and medical (ISM) frequency of 915 MHz for 30-90 s to create an irreversible lesion. The antenna is then retracted back into the

  18. Engineering tissue with BioMEMS.

    Science.gov (United States)

    Borenstein, Jeffrey T; Vunjak-Novakovic, Gordana

    2011-11-01

    In summary, microfluidic-BioMEMS platforms are increasingly contributing to tissue engineering in many different ways. First, the accurate control of the cell environment in settings suitable for cell screening and with imaging compatibility is greatly advancing our ability to optimize cell sources for a variety of tissue-engineering applications. Second, the microfluidic technology is ideal for the formation of perfusable networks, either to study their stability and maturation or to use these networks as templates for engineering vascularized tissues. Third, the approaches based on microfluidic and BioMEMS devices enable engineering and the study of minimally functional modules of complex tissues, such as liver sinusoid, kidney nephron, and lung bronchiole. This brief article highlighted some of the unique advantages of this elegant technology using representative examples of tissue-engineering research. We focused on some of the universal needs of the area of tissue engineering: tissue vascularization, faithful recapitulation in vitro of functional units of our tissues and organs, and predictable selection and differentiation of stem cells that are being addressed using the power and versatility of microfluidic-BioMEMS platforms.

  19. Human induced pluripotent stem cell-derived beating cardiac tissues on paper.

    Science.gov (United States)

    Wang, Li; Xu, Cong; Zhu, Yujuan; Yu, Yue; Sun, Ning; Zhang, Xiaoqing; Feng, Ke; Qin, Jianhua

    2015-11-21

    There is a growing interest in using paper as a biomaterial scaffold for cell-based applications. In this study, we made the first attempt to fabricate a paper-based array for the culture, proliferation, and direct differentiation of human induced pluripotent stem cells (hiPSCs) into functional beating cardiac tissues and create "a beating heart on paper." This array was simply constructed by binding a cured multi-well polydimethylsiloxane (PDMS) mold with common, commercially available paper substrates. Three types of paper material (print paper, chromatography paper and nitrocellulose membrane) were tested for adhesion, proliferation and differentiation of human-derived iPSCs. We found that hiPSCs grew well on these paper substrates, presenting a three-dimensional (3D)-like morphology with a pluripotent property. The direct differentiation of human iPSCs into functional cardiac tissues on paper was also achieved using our modified differentiation approach. The cardiac tissue retained its functional activities on the coated print paper and chromatography paper with a beating frequency of 40-70 beats per min for up to three months. Interestingly, human iPSCs could be differentiated into retinal pigment epithelium on nitrocellulose membrane under the conditions of cardiac-specific induction, indicating the potential roles of material properties and mechanical cues that are involved in regulating stem cell differentiation. Taken together, these results suggest that different grades of paper could offer great opportunities as bioactive, low-cost, and 3D in vitro platforms for stem cell-based high-throughput drug testing at the tissue/organ level and for tissue engineering applications.

  20. Composite scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Moutos, Franklin T; Guilak, Farshid

    2008-01-01

    Tissue engineering remains a promising therapeutic strategy for the repair or regeneration of diseased or damaged tissues. Previous approaches have typically focused on combining cells and bioactive molecules (e.g., growth factors, cytokines and DNA fragments) with a biomaterial scaffold that functions as a template to control the geometry of the newly formed tissue, while facilitating the attachment, proliferation, and differentiation of embedded cells. Biomaterial scaffolds also play a crucial role in determining the functional properties of engineered tissues, including biomechanical characteristics such as inhomogeneity, anisotropy, nonlinearity or viscoelasticity. While single-phase, homogeneous materials have been used extensively to create numerous types of tissue constructs, there continue to be significant challenges in the development of scaffolds that can provide the functional properties of load-bearing tissues such as articular cartilage. In an attempt to create more complex scaffolds that promote the regeneration of functional engineered tissues, composite scaffolds comprising two or more distinct materials have been developed. This paper reviews various studies on the development and testing of composite scaffolds for the tissue engineering of articular cartilage, using techniques such as embedded fibers and textiles for reinforcement, embedded solid structures, multi-layered designs, or three-dimensionally woven composite materials. In many cases, the use of composite scaffolds can provide unique biomechanical and biological properties for the development of functional tissue engineering scaffolds.

  1. Rapid Prototyping Technology of Tissue Engineering Scaffold

    Institute of Scientific and Technical Information of China (English)

    管金鹏

    2014-01-01

    In the modern medicine field, the transplant of organ and tissue is a big problem due to serious shortage of donor organ. Artificial organ and tissue is one of solutions. With the development of science, various tissue manufacture techniques emerged. Hereinto, due to its versatility both in materials and structure, rapid prototyping technology has become one of the important methods for tissue engineering scaffold fabrication in this field.

  2. Imaging in cellular and tissue engineering

    CERN Document Server

    Yu, Hanry

    2013-01-01

    Details on specific imaging modalities for different cellular and tissue engineering applications are scattered throughout articles and chapters in the literature. Gathering this information into a single reference, Imaging in Cellular and Tissue Engineering presents both the fundamentals and state of the art in imaging methods, approaches, and applications in regenerative medicine. The book underscores the broadening scope of imaging applications in cellular and tissue engineering. It covers a wide range of optical and biological applications, including the repair or replacement of whole tiss

  3. Analysis of cardiac tissue by gold cluster ion bombardment

    Science.gov (United States)

    Aranyosiova, M.; Chorvatova, A.; Chorvat, D.; Biro, Cs.; Velic, D.

    2006-07-01

    Specific molecules in cardiac tissue of spontaneously hypertensive rats are studied by using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The investigation determines phospholipids, cholesterol, fatty acids and their fragments in the cardiac tissue, with special focus on cardiolipin. Cardiolipin is a unique phospholipid typical for cardiomyocyte mitochondrial membrane and its decrease is involved in pathologic conditions. In the positive polarity, the fragments of phosphatydilcholine are observed in the mass region of 700-850 u. Peaks over mass 1400 u correspond to intact and cationized molecules of cardiolipin. In animal tissue, cardiolipin contains of almost exclusively 18 carbon fatty acids, mostly linoleic acid. Linoleic acid at 279 u, other fatty acids, and phosphatidylglycerol fragments, as precursors of cardiolipin synthesis, are identified in the negative polarity. These data demonstrate that SIMS technique along with Au 3+ cluster primary ion beam is a good tool for detection of higher mass biomolecules providing approximately 10 times higher yield in comparison with Au +.

  4. Engineering a growth factor embedded nanofiber matrix niche to promote vascularization for functional cardiac regeneration.

    Science.gov (United States)

    Lakshmanan, Rajesh; Kumaraswamy, Priyadharshini; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2016-08-01

    The major loss of tissue extracellular matrix (ECM) after myocardial ischemia is a serious burden that gradually leads to heart failure. Due to lack of available treatment methods to restore the cardiac function, various research strategies have come up to treat the ischemic myocardium. However these have met with limited success due to the complexity of the cardiac tissue, which exhibits a nanofibrous collagenous matrix with spatio-temporal localization of a combination of growth factors. To mimic the topographical and chemical cues of the natural cardiac tissue, we have fabricated a growth factor embedded nanofibrous scaffold through electrospinning. In our previous work, we have reported a nanofibrous matrix made of PLCL and PEOz with an average diameter of 500 nm. The scaffold properties were specifically characterized in vitro for cardio-compatibility. In the present study, we have loaded dual growth factors VEGF and bFGF in the nanofiber matrix and investigated its suitability for cardiac tissue engineering. The encapsulation and release of dual growth factors from the matrix were studied using XPS and ELISA. Bioactivity of the loaded growth factors towards proliferation and migration of endothelial cells (HUVECs) was evaluated through MTS and Boyden chamber assays respectively. The efficiency of growth factors on the nanofibrous matrix to activate signaling molecules was studied in HUVECs through gene expression analysis. Preclinical evaluation of the growth factor embedded nanofibrous patch in a rabbit acute myocardial infarction (AMI) model was studied and cardiac function assessment was made through ECG and echocardiography. The evidence for angiogenesis in the patch secured regions was analyzed through histopathology and immunohistochemistry. Our results confirm the effectiveness of growth factor embedded nanofiber matrix in restoration of cardiac function after ischemia when compared to conventional patch material thereby exhibiting promise as a

  5. Engineering a growth factor embedded nanofiber matrix niche to promote vascularization for functional cardiac regeneration.

    Science.gov (United States)

    Lakshmanan, Rajesh; Kumaraswamy, Priyadharshini; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2016-08-01

    The major loss of tissue extracellular matrix (ECM) after myocardial ischemia is a serious burden that gradually leads to heart failure. Due to lack of available treatment methods to restore the cardiac function, various research strategies have come up to treat the ischemic myocardium. However these have met with limited success due to the complexity of the cardiac tissue, which exhibits a nanofibrous collagenous matrix with spatio-temporal localization of a combination of growth factors. To mimic the topographical and chemical cues of the natural cardiac tissue, we have fabricated a growth factor embedded nanofibrous scaffold through electrospinning. In our previous work, we have reported a nanofibrous matrix made of PLCL and PEOz with an average diameter of 500 nm. The scaffold properties were specifically characterized in vitro for cardio-compatibility. In the present study, we have loaded dual growth factors VEGF and bFGF in the nanofiber matrix and investigated its suitability for cardiac tissue engineering. The encapsulation and release of dual growth factors from the matrix were studied using XPS and ELISA. Bioactivity of the loaded growth factors towards proliferation and migration of endothelial cells (HUVECs) was evaluated through MTS and Boyden chamber assays respectively. The efficiency of growth factors on the nanofibrous matrix to activate signaling molecules was studied in HUVECs through gene expression analysis. Preclinical evaluation of the growth factor embedded nanofibrous patch in a rabbit acute myocardial infarction (AMI) model was studied and cardiac function assessment was made through ECG and echocardiography. The evidence for angiogenesis in the patch secured regions was analyzed through histopathology and immunohistochemistry. Our results confirm the effectiveness of growth factor embedded nanofiber matrix in restoration of cardiac function after ischemia when compared to conventional patch material thereby exhibiting promise as a

  6. 3-dimensional bioprinting for tissue engineering applications.

    Science.gov (United States)

    Gu, Bon Kang; Choi, Dong Jin; Park, Sang Jun; Kim, Min Sup; Kang, Chang Mo; Kim, Chun-Ho

    2016-01-01

    The 3-dimensional (3D) printing technologies, referred to as additive manufacturing (AM) or rapid prototyping (RP), have acquired reputation over the past few years for art, architectural modeling, lightweight machines, and tissue engineering applications. Among these applications, tissue engineering field using 3D printing has attracted the attention from many researchers. 3D bioprinting has an advantage in the manufacture of a scaffold for tissue engineering applications, because of rapid-fabrication, high-precision, and customized-production, etc. In this review, we will introduce the principles and the current state of the 3D bioprinting methods. Focusing on some of studies that are being current application for biomedical and tissue engineering fields using printed 3D scaffolds. PMID:27114828

  7. Electrospun Nanofibrous Materials for Neural Tissue Engineering

    OpenAIRE

    Yee-Shuan Lee; Treena Livingston Arinzeh

    2011-01-01

    The use of biomaterials processed by the electrospinning technique has gained considerable interest for neural tissue engineering applications. The tissue engineering strategy is to facilitate the regrowth of nerves by combining an appropriate cell type with the electrospun scaffold. Electrospinning can generate fibrous meshes having fiber diameter dimensions at the nanoscale and these fibers can be nonwoven or oriented to facilitate neurite extension via contact guidance. This article review...

  8. Introduction to tissue engineering applications and challenges

    CERN Document Server

    Birla, Ravi

    2014-01-01

    Covering a progressive medical field, Tissue Engineering describes the innovative process of regenerating human cells to restore or establish normal function in defective organs. As pioneering individuals look ahead to the possibility of generating entire organ systems, students may turn to this textbook for a comprehensive understanding and preparation for the future of regenerative medicine. This book explains chemical stimulations, the bioengineering of specific organs, and treatment plans for chronic diseases. It is a must-read for tissue engineering students and practitioners.

  9. Mechanobiology and Cartilage Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    Céline; HUSELSTEIN; Natalia; de; ISLA; Sylvaine; MULLER; Jean-Franois; STOLTZ

    2005-01-01

    1 IntroductionThe cartilage is a hydrated connective tissue in joints that withstands and distributes mechanical forces. Chondrocytes utilize mechanical signals to maintain tissue homeostasis. They regulate their metabolic activity through complex biological and biophysical interactions with the extracellular matrix (ECM). Although some of the mechanisms of mechanotransduction are known today, there are certainly many others left unrevealed. Different topics of chondrocytes mechanobiology have led to the de...

  10. Hard-Soft Tissue Interface Engineering.

    Science.gov (United States)

    Armitage, Oliver E; Oyen, Michelle L

    2015-01-01

    The musculoskeletal system is comprised of three distinct tissue categories: structural mineralized tissues, actuating muscular soft tissues, and connective tissues. Where connective tissues - ligament, tendon and cartilage - meet with bones, a graded interface in mechanical properties occurs that allows the transmission of load without creating stress concentrations that would cause tissue damage. This interface typically occurs over less than 1 mm and contains a three order of magnitude difference in elastic stiffness, in addition to changes in cell type and growth factor concentrations among others. Like all engineered tissues, the replication of these interfaces requires the production of scaffolds that will provide chemical and mechanical cues, resulting in biologically accurate cellular differentiation. For interface tissues however, the scaffold must provide spatially graded chemical and mechanical cues over sub millimetre length scales. Naturally, this complicates the manufacture of the scaffolds and every stage of their subsequent cell seeding and growth, as each region has different optimal conditions. Given the higher degree of difficulty associated with replicating interface tissues compared to surrounding homogeneous tissues, it is likely that the development of complex musculoskeletal tissue systems will continue to be limited by the engineering of connective tissues interfaces with bone.

  11. Single domain antibodies in tissue engineering

    NARCIS (Netherlands)

    Rodrigues, Emilie Dooms

    2014-01-01

    The aim of this thesis is to demonstrate the potential of VHH in tissue engineering applications, with a focus on bone and cartilage tissue regeneration. After a general introduction to this thesis in chapter 1, the selection of VHH targeting growth factors is described in chapter 2. VHH were select

  12. Tissue engineering chamber promotes adipose tissue regeneration in adipose tissue engineering models through induced aseptic inflammation.

    Science.gov (United States)

    Peng, Zhangsong; Dong, Ziqing; Chang, Qiang; Zhan, Weiqing; Zeng, Zhaowei; Zhang, Shengchang; Lu, Feng

    2014-11-01

    Tissue engineering chamber (TEC) makes it possible to generate significant amounts of mature, vascularized, stable, and transferable adipose tissue. However, little is known about the role of the chamber in tissue engineering. Therefore, to investigate the role of inflammatory response and the change in mechanotransduction started by TEC after implantation, we placed a unique TEC model on the surface of the groin fat pads in rats to study the expression of cytokines and tissue development in the TEC. The number of infiltrating cells was counted, and vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1) expression levels in the chamber at multiple time points postimplantation were analyzed by enzyme-linked immunosorbent assay. Tissue samples were collected at various time points and labeled for specific cell populations. The result showed that new adipose tissue formed in the chamber at day 60. Also, the expression of MCP-1 and VEGF in the chamber decreased slightly from an early stage as well as the number of the infiltrating cells. A large number of CD34+/perilipin- perivascular cells could be detected at day 30. Also, the CD34+/perilipin+ adipose precursor cell numbers increased sharply by day 45 and then decreased by day 60. CD34-/perilipin+ mature adipocytes were hard to detect in the chamber content at day 30, but their number increased and then peaked at day 60. Ki67-positive cells could be found near blood vessels and their number decreased sharply over time. Masson's trichrome showed that collagen was the dominant component of the chamber content at early stage and was replaced by newly formed small adipocytes over time. Our findings suggested that the TEC implantation could promote the proliferation of adipose precursor cells derived from local adipose tissue, increase angiogenesis, and finally lead to spontaneous adipogenesis by inducing aseptic inflammation and changing local mechanotransduction.

  13. Electrical Pacing of Cardiac Tissue Including Potassium Inward Rectification.

    Science.gov (United States)

    Galappaththige, Suran; Roth, Bradley J

    2015-01-01

    In this study cardiac tissue is stimulated electrically through a small unipolar electrode. Numerical simulations predict that around an electrode are adjacent regions of depolarization and hyperpolarization. Experiments have shown that during pacing of resting cardiac tissue the hyperpolarization is often inhibited. Our goal is to determine if the inward rectifying potassium current (IK1) causes the inhibition of hyperpolarization. Numerical simulations were carried out using the bidomain model with potassium dynamics specified to be inward rectifying. In the simulations, adjacent regions of depolarization and hyperpolarization were observed surrounding the electrode. For cathodal currents the virtual anode produces a hyperpolarization that decreases over time. For long duration pulses the current-voltage curve is non-linear, with very small hyperpolarization compared to depolarization. For short pulses, the hyperpolarization is more prominent. Without the inward potassium rectification, the current voltage curve is linear and the hyperpolarization is evident for both long and short pulses. In conclusion, the inward rectification of the potassium current explains the inhibition of hyperpolarization for long duration stimulus pulses, but not for short duration pulses.

  14. Electrical Pacing of Cardiac Tissue Including Potassium Inward Rectification.

    Directory of Open Access Journals (Sweden)

    Suran Galappaththige

    Full Text Available In this study cardiac tissue is stimulated electrically through a small unipolar electrode. Numerical simulations predict that around an electrode are adjacent regions of depolarization and hyperpolarization. Experiments have shown that during pacing of resting cardiac tissue the hyperpolarization is often inhibited. Our goal is to determine if the inward rectifying potassium current (IK1 causes the inhibition of hyperpolarization. Numerical simulations were carried out using the bidomain model with potassium dynamics specified to be inward rectifying. In the simulations, adjacent regions of depolarization and hyperpolarization were observed surrounding the electrode. For cathodal currents the virtual anode produces a hyperpolarization that decreases over time. For long duration pulses the current-voltage curve is non-linear, with very small hyperpolarization compared to depolarization. For short pulses, the hyperpolarization is more prominent. Without the inward potassium rectification, the current voltage curve is linear and the hyperpolarization is evident for both long and short pulses. In conclusion, the inward rectification of the potassium current explains the inhibition of hyperpolarization for long duration stimulus pulses, but not for short duration pulses.

  15. Decellularized musculofascial extracellular matrix for tissue engineering

    OpenAIRE

    Wang, Lina; Johnson, Joshua A; Chang, David W.; Zhang, Qixu

    2013-01-01

    Ideal scaffolds that represent native extracellular matrix (ECM) properties of musculofascial tissues have great importance in musculofascial tissue engineering. However, detailed characterization of musculofascial tissues’ ECM (particularly, of fascia) from large animals is still lacking. In this study, we developed a decellularization protocol for processing pig composite musculofascial tissues. Decellularized muscle (D-muscle) and decellularized fascia (D-fascia), which are two important c...

  16. Cell interactions in bone tissue engineering

    OpenAIRE

    Pirraco, Rogério; Marques, A. P.; Reis, R. L.

    2010-01-01

    Bone fractures, where the innate regenerative bone response is compromised, represent between 4 and 8 hundred thousands of the total fracture cases, just in the United States. Bone tissue engineering (TE) brought the notion that, in cases such as those, it was preferable to boost the healing process of bone tissue instead of just adding artificial parts that could never properly replace the native tissue. However, despite the hype, bone TE so far could not live up to its promises and...

  17. Cell interactions in bone tissue engineering

    OpenAIRE

    Pirraco, R. P.; Marques, A. P.; Reis, R. L.

    2009-01-01

    Abstract Bone fractures, where the innate regenerative bone response is compromised, represent between 4 and 8 hundred thousands of the total fracture cases, just in the United States. Bone tissue engineering (TE) brought the notion that, in cases such as those, it was preferable to boost the healing process of bone tissue instead of just adding artificial parts that could never properly replace the native tissue. However, despite the hype, bone TE so far could not live up to its promises and...

  18. How Can Nanotechnology Help to Repair the Body? Advances in Cardiac, Skin, Bone, Cartilage and Nerve Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Juan Antonio Marchal

    2013-03-01

    Full Text Available Nanotechnologists have become involved in regenerative medicine via creation of biomaterials and nanostructures with potential clinical implications. Their aim is to develop systems that can mimic, reinforce or even create in vivo tissue repair strategies. In fact, in the last decade, important advances in the field of tissue engineering, cell therapy and cell delivery have already been achieved. In this review, we will delve into the latest research advances and discuss whether cell and/or tissue repair devices are a possibility. Focusing on the application of nanotechnology in tissue engineering research, this review highlights recent advances in the application of nano-engineered scaffolds designed to replace or restore the followed tissues: (i skin; (ii cartilage; (iii bone; (iv nerve; and (v cardiac.

  19. Stem Cells and Progenitor Cells for Tissue-Engineered Solutions to Congenital Heart Defects

    OpenAIRE

    Yang Gao; Jacot, Jeffrey G.

    2015-01-01

    Synthetic patches and fixed grafts currently used in the repair of congenital heart defects are nonliving, noncontractile, and not electrically responsive, leading to increased risk of complication, reoperation, and sudden cardiac death. Studies suggest that tissue-engineered patches made from living, functional cells could grow with the patient, facilitate healing, and help recover cardiac function. In this paper, we review the research into possible sources of cardiomyocytes and other cardi...

  20. Engineering skeletal muscle tissue in bioreactor systems

    Institute of Scientific and Technical Information of China (English)

    An Yang; Li Dong

    2014-01-01

    Objective To give a concise review of the current state of the art in tissue engineering (TE) related to skeletal muscle and kinds of bioreactor environment.Data sources The review was based on data obtained from the published articles and guidelines.Study selection A total of 106 articles were selected from several hundred original articles or reviews.The content of selected articles is in accordance with our purpose and the authors are authorized scientists in the study of engineered muscle tissue in bioreactor.Results Skeletal muscle TE is a promising interdisciplinary field which aims at the reconstruction of skeletal muscle loss.Although numerous studies have indicated that engineering skeletal muscle tissue may be of great importance in medicine in the near future,this technique still represents a limited degree of success.Since tissue-engineered muscle constructs require an adequate connection to the vascular system for efficient transport of oxygen,carbon dioxide,nutrients and waste products.Moreover,functional and clinically applicable muscle constructs depend on adequate neuromuscular junctions with neural calls.Third,in order to engineer muscle tissue successfully,it may be beneficial to mimic the in vivo environment of muscle through association with adequate stimuli from bioreactors.Conclusion Vascular system and bioreactors are necessary for development and maintenance of engineered muscle in order to provide circulation within the construct.

  1. Stem cells in bone tissue engineering

    International Nuclear Information System (INIS)

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  2. Stem cells in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Jeong Min [Department of Preventive and Social Dentistry and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik [Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Mantalaris, Anathathios, E-mail: yshwang@khu.ac.k [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2010-12-15

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  3. Engineering complex orthopaedic tissues via strategic biomimicry.

    Science.gov (United States)

    Qu, Dovina; Mosher, Christopher Z; Boushell, Margaret K; Lu, Helen H

    2015-03-01

    The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, wherein overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g., bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g., bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g., bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will

  4. Imaging challenges in biomaterials and tissue engineering.

    Science.gov (United States)

    Appel, Alyssa A; Anastasio, Mark A; Larson, Jeffery C; Brey, Eric M

    2013-09-01

    Biomaterials are employed in the fields of tissue engineering and regenerative medicine (TERM) in order to enhance the regeneration or replacement of tissue function and/or structure. The unique environments resulting from the presence of biomaterials, cells, and tissues result in distinct challenges in regards to monitoring and assessing the results of these interventions. Imaging technologies for three-dimensional (3D) analysis have been identified as a strategic priority in TERM research. Traditionally, histological and immunohistochemical techniques have been used to evaluate engineered tissues. However, these methods do not allow for an accurate volume assessment, are invasive, and do not provide information on functional status. Imaging techniques are needed that enable non-destructive, longitudinal, quantitative, and three-dimensional analysis of TERM strategies. This review focuses on evaluating the application of available imaging modalities for assessment of biomaterials and tissue in TERM applications. Included is a discussion of limitations of these techniques and identification of areas for further development.

  5. Protein-engineered biomaterials: highly tunable tissue engineering scaffolds.

    Science.gov (United States)

    Sengupta, Debanti; Heilshorn, Sarah C

    2010-06-01

    A common goal in tissue engineering is to attain the ability to tailor specific cell-scaffold interactions and thereby gain control over cell behavior. The tunable nature of protein-engineered biomaterials enables independent tailoring of a range of biomaterial properties, creating an attractive alternative to synthetic polymeric scaffolds or harvested natural scaffolds. Protein-engineered biomaterials are comprised of modular peptide domains with various functionalities that are encoded into a DNA plasmid, transfected into an organism of choice, and expressed and purified to yield a biopolymer with exact molecular-level sequence specification. Because of the modular design strategy of protein-engineered biomaterials, these scaffolds can be easily modified to enable optimization for specific tissue engineering applications. By including multiple peptide domains with different functionalities in a single, modular biomaterial, the scaffolds can be designed to mimic the diverse properties of the natural extracellular matrix, including cell adhesion, cell signaling, elasticity, and biodegradability. Recently, the field of protein-engineered biomaterials has expanded to include functional modules that are not normally present in the extracellular matrix, thus expanding the scope and functionality of these materials. For example, these modules can include noncanonical amino acids, inorganic-binding domains, and DNA-binding sequences. The modularity, tunability, and sequence specificity of protein-engineered biomaterials make them attractive candidates for use as substrates for a variety of tissue engineering applications. PMID:20141386

  6. The materials used in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Tereshchenko, V. P., E-mail: tervp@ngs.ru; Kirilova, I. A.; Sadovoy, M. A.; Larionov, P. M. [Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Novosibirsk (Russian Federation)

    2015-11-17

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers are the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.

  7. Concise Review : Engineering Myocardial Tissue: The Convergence of Stem Cells Biology and Tissue Engineering Technology

    NARCIS (Netherlands)

    Buikema, Jan Willem; Van der Meer, Peter; Sluijter, Joost P. G.; Domian, Ibrahim J.

    2013-01-01

    Advanced heart failure represents a leading public health problem in the developed world. The clinical syndrome results from the loss of viable and/or fully functional myocardial tissue. Designing new approaches to augment the number of functioning human cardiac muscle cells in the failing heart ser

  8. Strategies for cell engineering in tissue repair.

    Science.gov (United States)

    Brown, R A; Smith, K D; Angus McGrouther, D

    1997-01-01

    Cellular and tissue engineering are new areas of research, currently attracting considerable interest because of the remarkable potential they have for clinical application. Some claims have indeed been dramatic, including the possibility of growing complete, artificial organs, such as the liver. However, amid such long-term aspirations there is the very real possibility that small tissues (artificial grafts) may be fabricated in the near future for use in reconstructive surgery. Logically, we should focus on how it is possible to produce modest, engineered tissues for tissue repair. It is evident that strategies to date either depend on innate information within implanted cells, to reform the target tissue or aim to provide appropriate environmental cues or guidance to direct cell behavior. It is argued here that present knowledge of tissue repair biology points us toward the latter approach, providing external cues which will direct how cells should organize the new tissue. This will be particularly true where we need to reproduce microscopic and ultrastructural features of the original tissue architecture. A number of such cues have been identified, and methods are already available, including substrate chemistry, substrate contact guidance, mechanical loading, and biochemical mediators to provide these cues. Examples of these are already being used with some success to control the formation of tissue structures.

  9. Composite tissue engineering on polycaprolactone nanofiber scaffolds.

    Science.gov (United States)

    Reed, Courtney R; Han, Li; Andrady, Anthony; Caballero, Montserrat; Jack, Megan C; Collins, James B; Saba, Salim C; Loboa, Elizabeth G; Cairns, Bruce A; van Aalst, John A

    2009-05-01

    Tissue engineering has largely focused on single tissue-type reconstruction (such as bone); however, the basic unit of healing in any clinically relevant scenario is a compound tissue type (such as bone, periosteum, and skin). Nanofibers are submicron fibrils that mimic the extracellular matrix, promoting cellular adhesion, proliferation, and migration. Stem cell manipulation on nanofiber scaffolds holds significant promise for future tissue engineering. This work represents our initial efforts to create the building blocks for composite tissue reflecting the basic unit of healing. Polycaprolactone (PCL) nanofibers were electrospun using standard techniques. Human foreskin fibroblasts, murine keratinocytes, and periosteal cells (4-mm punch biopsy) harvested from children undergoing palate repair were grown in appropriate media on PCL nanofibers. Human fat-derived mesenchymal stem cells were osteoinduced on PCL nanofibers. Cell growth was assessed with fluorescent viability staining; cocultured cells were differentiated using antibodies to fibroblast- and keratinocyte-specific surface markers. Osteoinduction was assessed with Alizarin red S. PCL nanofiber scaffolds supported robust growth of fibroblasts, keratinocytes, and periosteal cells. Cocultured periosteal cells (with fibroblasts) and keratinocytes showed improved longevity of the keratinocytes, though growth of these cell types was randomly distributed throughout the scaffold. Robust osteoinduction was noted on PCL nanofibers. Composite tissue engineering using PCL nanofiber scaffolds is possible, though the major obstacles to the trilaminar construct are maintaining an appropriate interface between the tissue types and neovascularization of the composite structure. PMID:19387150

  10. Nanostructured Biomaterials for Tissue Engineered Bone Tissue Reconstruction

    Directory of Open Access Journals (Sweden)

    Bressan Eriberto

    2012-01-01

    Full Text Available Bone tissue engineering strategies are emerging as attractive alternatives to autografts and allografts in bone tissue reconstruction, in particular thanks to their association with nanotechnologies. Nanostructured biomaterials, indeed, mimic the extracellular matrix (ECM of the natural bone, creating an artificial microenvironment that promotes cell adhesion, proliferation and differentiation. At the same time, the possibility to easily isolate mesenchymal stem cells (MSCs from different adult tissues together with their multi-lineage differentiation potential makes them an interesting tool in the field of bone tissue engineering. This review gives an overview of the most promising nanostructured biomaterials, used alone or in combination with MSCs, which could in future be employed as bone substitutes. Recent works indicate that composite scaffolds made of ceramics/metals or ceramics/polymers are undoubtedly more effective than the single counterparts in terms of osteoconductivity, osteogenicity and osteoinductivity. A better understanding of the interactions between MSCs and nanostructured biomaterials will surely contribute to the progress of bone tissue engineering.

  11. Stem Cells and Tissue Engineering

    CERN Document Server

    Pavlovic, Mirjana

    2013-01-01

    Stem cells are the building blocks for all other cells in an organism. The human body has about 200 different types of cells and any of those cells can be produced by a stem cell. This fact emphasizes the significance of stem cells in transplantational medicine, regenerative therapy and bioengineering. Whether embryonic or adult, these cells can be used for the successful treatment of a wide range of diseases that were not treatable before, such as osteogenesis imperfecta in children, different forms of leukemias, acute myocardial infarction, some neural damages and diseases, etc. Bioengineering, e.g. successful manipulation of these cells with multipotential capacity of differentiation toward appropriate patterns and precise quantity, are the prerequisites for successful outcome and treatment. By combining in vivo and in vitro techniques, it is now possible to manage the wide spectrum of tissue damages and organ diseases. Although the stem-cell therapy is not a response to all the questions, it provides more...

  12. Bone tissue engineering using 3D printing

    Directory of Open Access Journals (Sweden)

    Susmita Bose

    2013-12-01

    Full Text Available With the advent of additive manufacturing technologies in the mid 1980s, many applications benefited from the faster processing of products without the need for specific tooling or dies. However, the application of such techniques in the area of biomedical devices has been slow due to the stringent performance criteria and concerns related to reproducibility and part quality, when new technologies are in their infancy. However, the use of additive manufacturing technologies in bone tissue engineering has been growing in recent years. Among the different technology options, three dimensional printing (3DP is becoming popular due to the ability to directly print porous scaffolds with designed shape, controlled chemistry and interconnected porosity. Some of these inorganic scaffolds are biodegradable and have proven ideal for bone tissue engineering, sometimes even with site specific growth factor/drug delivery abilities. This review article focuses on recent advances in 3D printed bone tissue engineering scaffolds along with current challenges and future directions.

  13. Composite Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Min Wang

    2006-01-01

    Full Text Available Biomaterial and scaffold development underpins the advancement of tissue engineering. Traditional scaffolds based on biodegradable polymers such as poly(lactic acid and poly(lactic acid-co-glycolic acid are weak and non-osteoconductive. For bone tissue engineering, polymer-based composite scaffolds containing bioceramics such as hydroxyapatite can be produced and used. The bioceramics can be either incorporated in the scaffolds as a dispersed secondary phase or form a thin coating on the pore surface of polymer scaffolds. This bioceramic phase renders the scaffolds bioactive and also strengthens the scaffolds. There are a number of methods that can be used to produce bioceramic-polymer composite scaffolds. This paper gives an overview of our efforts in developing composite scaffolds for bone tissue engineering.

  14. Biomaterials for tissue engineering of skin

    Directory of Open Access Journals (Sweden)

    Sheila MacNeil

    2008-05-01

    Full Text Available Tissue-engineered skin has been in clinical use for 25 years and has developed greatly during this time. This review looks at the role biomaterials need to play in providing for epidermal cover, dermal replacement, and epidermal/dermal replacement, and describes the major problems that remain. The majority of biomaterials in clinical use are based on natural or extracted collagen. The clinical challenges in using these materials are highlighted throughout – specifically safety issues, improving the take of cultured cells on wound beds, improving the rate of neovascularization of tissue-engineered skin, and developing scaffolds that resist contraction and fibrosis.

  15. Tissue engineering: current strategies and future directions.

    Science.gov (United States)

    Olson, Jennifer L; Atala, Anthony; Yoo, James J

    2011-04-01

    Novel therapies resulting from regenerative medicine and tissue engineering technology may offer new hope for patients with injuries, end-stage organ failure, or other clinical issues. Currently, patients with diseased and injured organs are often treated with transplanted organs. However, there is a shortage of donor organs that is worsening yearly as the population ages and as the number of new cases of organ failure increases. Scientists in the field of regenerative medicine and tissue engineering are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that can restore and maintain normal function in diseased and injured tissues. In addition, the stem cell field is a rapidly advancing part of regenerative medicine, and new discoveries in this field create new options for this type of therapy. For example, new types of stem cells, such as amniotic fluid and placental stem cells that can circumvent the ethical issues associated with embryonic stem cells, have been discovered. The process of therapeutic cloning and the creation of induced pluripotent cells provide still other potential sources of stem cells for cell-based tissue engineering applications. Although stem cells are still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous, adult cells have already entered the clinical setting, indicating that regenerative medicine holds much promise for the future. PMID:22111050

  16. Drug releasing systems in cardiovascular tissue engineering

    OpenAIRE

    Spadaccio, Cristiano; Chello, Massimo; Trombetta, Marcella; Rainer, Alberto; Toyoda, Yoshiya; Genovese, Jorge A

    2008-01-01

    Abstract Heart disease and atherosclerosis are the leading causes of morbidity and mortality worldwide. The lack of suitable autologous grafts has produced a need for artificial grafts; however, current artificial grafts carry significant limitations, including thrombosis, infection, limited durability and the inability to grow. Tissue engineering of blood vessels, cardiovascular structures and whole organs is a promising approach for creating replacement tissues to repair congenital defects ...

  17. Multimodal evaluation of tissue-engineered cartilage

    OpenAIRE

    Mansour, Joseph M.; Welter, Jean F.

    2013-01-01

    Tissue engineering (TE) has promise as a biological solution and a disease modifying treatment for arthritis. Although cartilage can be generated by TE, substantial inter- and intra-donor variability makes it impossible to guarantee optimal, reproducible results. TE cartilage must be able to perform the functions of native tissue, thus mechanical and biological properties approaching those of native cartilage are likely a pre-requisite for successful implantation. A quality-control assessment...

  18. Injectable Biomaterials for Adipose Tissue Engineering

    OpenAIRE

    Young, D. Adam; Christman, Karen L.

    2012-01-01

    Adipose tissue engineering has recently gained significant attention from materials scientists as a result of the exponential growth of soft tissue filler procedures being performed within the clinic. While several injectable materials are currently being marketed for filling subcutaneous voids, they often face limited longevity due to rapid resorption. Their inability to encourage natural adipose formation or ingrowth necessitates repeated injections for a prolonged effect, and thus classifi...

  19. Adult stem cells applied to tissue engineering and regenerative medicine.

    Science.gov (United States)

    Cuenca-López, M D; Zamora-Navas, P; García-Herrera, J M; Godino, M; López-Puertas, J M; Guerado, E; Becerra, J; Andrades, J A

    2008-01-01

    Regeneration takes place in the body at a moment or another throughout life. Bone, cartilage, and tendons (the key components of the structure and articulation in the body) have a limited capacity for self-repair and, after traumatic injury or disease, the regenerative power of adult tissue is often insufficient. When organs or tissues are irreparably damaged, they may be replaced by an artificial device or by a donor organ. However, the number of available donor organs is considerably limited. Generation of tissue-engineered replacement organs by extracting stem cells from the patient, growing them and modifying them in clinical conditions after re-introduction in the body represents an ideal source for corrective treatment. Mesenchymal stem cells (MSCs) are the multipotential progenitors that give rise to skeletal cells, vascular smooth muscle cells, muscle (skeletal and cardiac muscle), adipocytes (fat tissue) and hematopoietic (blood)-supportive stromal cells. MSCs are found in multiple connective tissues, in adult bone marrow, skeletal muscles and fat pads. The wide representation in adult tissues may be related to the existence of a circulating blood pool or that MSCs are associated to the vascular system.

  20. Peptide Amphiphiles in Corneal Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Martina Miotto

    2015-08-01

    Full Text Available The increasing interest in effort towards creating alternative therapies have led to exciting breakthroughs in the attempt to bio-fabricate and engineer live tissues. This has been particularly evident in the development of new approaches applied to reconstruct corneal tissue. The need for tissue-engineered corneas is largely a response to the shortage of donor tissue and the lack of suitable alternative biological scaffolds preventing the treatment of millions of blind people worldwide. This review is focused on recent developments in corneal tissue engineering, specifically on the use of self-assembling peptide amphiphiles for this purpose. Recently, peptide amphiphiles have generated great interest as therapeutic molecules, both in vitro and in vivo. Here we introduce this rapidly developing field, and examine innovative applications of peptide amphiphiles to create natural bio-prosthetic corneal tissue in vitro. The advantages of peptide amphiphiles over other biomaterials, namely their wide range of functions and applications, versatility, and transferability are also discussed to better understand how these fascinating molecules can help solve current challenges in corneal regeneration.

  1. Translational challenges in bone tissue engineering

    NARCIS (Netherlands)

    Geuze, R.E.

    2012-01-01

    The research performed for this thesis focused at strategies to improve bone graft substitutes for future clinical applicability. We started by investigating the value of cell based tissue engineered constructs. First we showed that at the ectopic location, bone formation was only present when BLI s

  2. Cell–scaffold interaction within engineered tissue

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiping; Liu, Yuanyuan, E-mail: Yuanyuan_liu@shu.edu.cn; Jiang, Zhenglong; Chen, Weihua; Yu, Yongzhe; Hu, Qingxi

    2014-05-01

    The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. - Highlights: • The scaffold is not only for providing a surface for cell residence but also for determining cell phenotype and retaining structural integrity. • The mechanical property of scaffold can be affected by activities of cell. • The scaffold provides a microenvironment for cell attachment, growth, and migration.

  3. Principles of Tissue Engineering for Food

    NARCIS (Netherlands)

    Post, M.; Weele, van der Cor

    2014-01-01

    The technology required for tissue-engineering food is the same as for medical applications, and in fact is derived from it. There are major differences in the implementation of those technologies, primarily related to the enormous scale required for food production and the different economical fram

  4. Biodegradable synthetic polymers for tissue engineering

    Directory of Open Access Journals (Sweden)

    Gunatillake P. A.

    2003-05-01

    Full Text Available This paper reviews biodegradable synthetic polymers focusing on their potential in tissue engineering applications. The major classes of polymers are briefly discussed with regard to synthesis, properties and biodegradability, and known degradation modes and products are indicated based on studies reported in the literature. A vast majority of biodegradable polymers studied belongs to the polyester family, which includes polyglycolides and polylactides. Some disadvantages of these polymers in tissue engineering applications are their poor biocompatibility, release of acidic degradation products, poor processability and loss of mechanical properties very early during degradation. Other degradable polymers such as polyorthoesters, polyanhydrides, polyphosphazenes, and polyurethanes are also discussed and their advantages and disadvantages summarised. With advancements in tissue engineering it has become necessary to develop polymers that meet more demanding requirements. Recent work has focused on developing injectable polymer compositions based on poly (propylene fumarate and poly (anhydrides to meet these requirements in orthopaedic tissue engineering. Polyurethanes have received recent attention for development of degradable polymers because of their great potential in tailoring polymer structure to achieve mechanical properties and biodegradability to suit a variety of applications.

  5. Biodegradable elastomeric scaffolds for soft tissue engineering

    NARCIS (Netherlands)

    Pego, Ana Paula; Poot, André A.; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    Elastomeric copolymers of 1,3-trimethylene carbonate (TMC) and ε-caprolactone (CL) and copolymers of TMC and D,L-lactide (DLLA) have been evaluated as candidate materials for the preparation of biodegradable scaffolds for soft tissue engineering. TMC-DLLA copolymers are amorphous and degrade more r

  6. Biomaterials in tooth tissue engineering: a review.

    Science.gov (United States)

    Sharma, Sarang; Srivastava, Dhirendra; Grover, Shibani; Sharma, Vivek

    2014-01-01

    Biomaterials play a crucial role in the field of tissue engineering. They are utilized for fabricating frameworks known as scaffolds, matrices or constructs which are interconnected porous structures that establish a cellular microenvironment required for optimal tissue regeneration. Several natural and synthetic biomaterials have been utilized for fabrication of tissue engineering scaffolds. Amongst different biomaterials, polymers are the most extensively experimented and employed materials. They can be tailored to provide good interconnected porosity, large surface area, adequate mechanical strengths, varying surface characterization and different geometries required for tissue regeneration. A single type of material may however not meet all the requirements. Selection of two or more biomaterials, optimization of their physical, chemical and mechanical properties and advanced fabrication techniques are required to obtain scaffold designs intended for their final application. Current focus is aimed at designing biomaterials such that they will replicate the local extra cellular environment of the native organ and enable cell-cell and cell-scaffold interactions at micro level required for functional tissue regeneration. This article provides an insight into the different biomaterials available and the emerging use of nano engineering principles for the construction of bioactive scaffolds in tooth regeneration.

  7. Hydrogel Composite Materials for Tissue Engineering Scaffolds

    Science.gov (United States)

    Shapiro, Jenna M.; Oyen, Michelle L.

    2013-04-01

    Hydrogels are appealing for biomaterials applications due to their compositional similarity with highly hydrated natural biological tissues. However, for structurally demanding tissue engineering applications, hydrogel use is limited by poor mechanical properties. Here, composite materials approaches are considered for improving hydrogel properties while attempting to more closely mimic natural biological tissue structures. A variety of composite material microstructures is explored, based on multiple hydrogel constituents, particle reinforcement, electrospun nanometer to micrometer diameter polymer fibers with single and multiple fiber networks, and combinations of these approaches to form fully three-dimensional fiber-reinforced hydrogels. Natural and synthetic polymers are examined for formation of a range of scaffolds and across a range of engineered tissue applications. Following a discussion of the design and fabrication of composite scaffolds, interactions between living biological cells and composite scaffolds are considered across the full life cycle of tissue engineering from scaffold fabrication to in vivo use. We conclude with a summary of progress in this area to date and make recommendations for continuing research and for advanced hydrogel scaffold development.

  8. Esophageal tissue engineering: Current status and perspectives.

    Science.gov (United States)

    Poghosyan, T; Catry, J; Luong-Nguyen, M; Bruneval, P; Domet, T; Arakelian, L; Sfeir, R; Michaud, L; Vanneaux, V; Gottrand, F; Larghero, J; Cattan, P

    2016-02-01

    Tissue engineering, which consists of the combination and in vivo implantation of elements required for tissue remodeling toward a specific organ phenotype, could be an alternative for classical techniques of esophageal replacement. The current hybrid approach entails creation of an esophageal substitute composed of an acellular matrix and autologous epithelial and muscle cells provides the most successful results. Current research is based on the use of mesenchymal stem cells, whose potential for differentiation and proangioogenic, immune-modulator and anti-inflammatory properties are important assets. In the near future, esophageal substitutes could be constructed from acellular "intelligent matrices" that contain the molecules necessary for tissue regeneration; this should allow circumvention of the implantation step and still obtain standardized in vivo biological responses. At present, tissue engineering applications to esophageal replacement are limited to enlargement plasties with absorbable, non-cellular matrices. Nevertheless, the application of existing clinical techniques for replacement of other organs by tissue engineering in combination with a multiplication of translational research protocols for esophageal replacement in large animals should soon pave the way for health agencies to authorize clinical trials. PMID:26711880

  9. Injectable biomaterials for adipose tissue engineering

    International Nuclear Information System (INIS)

    Adipose tissue engineering has recently gained significant attention from materials scientists as a result of the exponential growth of soft tissue filler procedures being performed within the clinic. While several injectable materials are currently being marketed for filling subcutaneous voids, they often face limited longevity due to rapid resorption. Their inability to encourage natural adipose formation or ingrowth necessitates repeated injections for a prolonged effect and thus classifies them as temporary fillers. As a result, a significant need for injectable materials that not only act as fillers but also promote in vivo adipogenesis is beginning to be realized. This paper will discuss the advantages and disadvantages of commercially available soft tissue fillers. It will then summarize the current state of research using injectable synthetic materials, biopolymers and extracellular matrix-derived materials for adipose tissue engineering. Furthermore, the successful attributes observed across each of these materials will be outlined along with a discussion of the current difficulties and future directions for adipose tissue engineering. (paper)

  10. Engineering prokaryotic channels for control of mammalian tissue excitability

    Science.gov (United States)

    Nguyen, Hung X.; Kirkton, Robert D.; Bursac, Nenad

    2016-01-01

    The ability to directly enhance electrical excitability of human cells is hampered by the lack of methods to efficiently overexpress large mammalian voltage-gated sodium channels (VGSC). Here we describe the use of small prokaryotic sodium channels (BacNav) to create de novo excitable human tissues and augment impaired action potential conduction in vitro. Lentiviral co-expression of specific BacNav orthologues, an inward-rectifying potassium channel, and connexin-43 in primary human fibroblasts from the heart, skin or brain yields actively conducting cells with customizable electrophysiological phenotypes. Engineered fibroblasts (‘E-Fibs') retain stable functional properties following extensive subculture or differentiation into myofibroblasts and rescue conduction slowing in an in vitro model of cardiac interstitial fibrosis. Co-expression of engineered BacNav with endogenous mammalian VGSCs enhances action potential conduction and prevents conduction failure during depolarization by elevated extracellular K+, decoupling or ischaemia. These studies establish the utility of engineered BacNav channels for induction, control and recovery of mammalian tissue excitability. PMID:27752065

  11. Multimodal evaluation of tissue-engineered cartilage.

    Science.gov (United States)

    Mansour, Joseph M; Welter, Jean F

    2013-02-01

    Tissue engineering (TE) has promise as a biological solution and a disease modifying treatment for arthritis. Although cartilage can be generated by TE, substantial inter- and intra-donor variability makes it impossible to guarantee optimal, reproducible results. TE cartilage must be able to perform the functions of native tissue, thus mechanical and biological properties approaching those of native cartilage are likely a pre-requisite for successful implantation. A quality-control assessment of these properties should be part of the implantation release criteria for TE cartilage. Release criteria should certify that selected tissue properties have reached certain target ranges, and should be predictive of the likelihood of success of an implant in vivo. Unfortunately, it is not currently known which properties are needed to establish release criteria, nor how close one has to be to the properties of native cartilage to achieve success. Achieving properties approaching those of native cartilage requires a clear understanding of the target properties and reproducible assessment methodology. Here, we review several main aspects of quality control as it applies to TE cartilage. This includes a look at known mechanical and biological properties of native cartilage, which should be the target in engineered tissues. We also present an overview of the state of the art of tissue assessment, focusing on native articular and TE cartilage. Finally, we review the arguments for developing and validating non-destructive testing methods for assessing TE products. PMID:23606823

  12. 3D bioprinting for engineering complex tissues.

    Science.gov (United States)

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies.

  13. Tumor Engineering: The Other Face of Tissue Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Ghajar, Cyrus M; Bissell, Mina J

    2010-03-09

    Advances in tissue engineering have been accomplished for years by employing biomimetic strategies to provide cells with aspects of their original microenvironment necessary to reconstitute a unit of both form and function for a given tissue.We believe that the most critical hallmark of cancer is loss of integration of architecture and function; thus, it stands to reason that similar strategies could be employed to understand tumor biology. In this commentary, we discuss work contributed by Fischbach-Teschl and colleagues to this special issue of Tissue Engineering in the context of 'tumor engineering', that is, the construction of complex cell culture models that recapitulate aspects of the in vivo tumor microenvironment to study the dynamics of tumor development, progression, and therapy on multiple scales. We provide examples of fundamental questions that could be answered by developing such models, and encourage the continued collaboration between physical scientists and life scientists not only for regenerative purposes, but also to unravel the complexity that is the tumor microenvironment. In 1993, Vacanti and Langer cast a spotlight on the growing gap between patients in need of organ transplants and the amount of available donor organs; they reaffirmed that tissue engineering could eventually address this problem by 'applying principles of engineering and the life sciences toward the development of biological substitutes. Mortality figures and direct health care costs for cancer patients rival those of patients who experience organ failure. Cancer is the second leading cause of death in the United States (Source: American Cancer Society) and it is estimated that direct medical costs for cancer patients approach $100B yearly in the United States alone (Source: National Cancer Institute). In addition, any promising therapy that emerges from the laboratory costs roughly $1.7B to take from bench to bedside. Whereas we have indeed waged war on

  14. Tubular heart valves from decellularized engineered tissue.

    Science.gov (United States)

    Syedain, Zeeshan H; Meier, Lee A; Reimer, Jay M; Tranquillo, Robert T

    2013-12-01

    A novel tissue-engineered heart valve (TEHV) was fabricated from a decellularized tissue tube mounted on a frame with three struts, which upon back-pressure cause the tube to collapse into three coapting "leaflets." The tissue was completely biological, fabricated from ovine fibroblasts dispersed within a fibrin gel, compacted into a circumferentially aligned tube on a mandrel, and matured using a bioreactor system that applied cyclic distension. Following decellularization, the resulting tissue possessed tensile mechanical properties, mechanical anisotropy, and collagen content that were comparable to native pulmonary valve leaflets. When mounted on a custom frame and tested within a pulse duplicator system, the tubular TEHV displayed excellent function under both aortic and pulmonary conditions, with minimal regurgitant fractions and transvalvular pressure gradients at peak systole, as well as well as effective orifice areas exceeding those of current commercially available valve replacements. Short-term fatigue testing of one million cycles with pulmonary pressure gradients was conducted without significant change in mechanical properties and no observable macroscopic tissue deterioration. This study presents an attractive potential alternative to current tissue valve replacements due to its avoidance of chemical fixation and utilization of a tissue conducive to recellularization by host cell infiltration.

  15. Application of Stem Cells in Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Stem cells have become an important source of seed cells for tissue engineering because they are relatively easy to expand in vitro and can be induced to differentiate into various cell types in vitro or in vivo. In the current stage, most stem cell researches focus on in vitro studies, including in vitro induction and phenotype characterization. Our center has made a great deal of effort in the in vivo study by using stem cells as seed cells for tissue construction. We have used bone marrow stem cells (BMS...

  16. 3D Printing and Biofabrication for Load Bearing Tissue Engineering.

    Science.gov (United States)

    Jeong, Claire G; Atala, Anthony

    2015-01-01

    Cell-based direct biofabrication and 3D bioprinting is becoming a dominant technological platform and is suggested as a new paradigm for twenty-first century tissue engineering. These techniques may be our next step in surpassing the hurdles and limitations of conventional scaffold-based tissue engineering, and may offer the industrial potential of tissue engineered products especially for load bearing tissues. Here we present a topically focused review regarding the fundamental concepts, state of the art, and perspectives of this new technology and field of biofabrication and 3D bioprinting, specifically focused on tissue engineering of load bearing tissues such as bone, cartilage, osteochondral and dental tissue engineering.

  17. Tissue and Animal Models of Sudden Cardiac Death

    OpenAIRE

    Sallam, Karim; Li, Yingxin; Sager, Philip T.; Steven R. Houser; Wu, Joseph C.

    2015-01-01

    Sudden Cardiac Death (SCD) is a common cause of death in patients with structural heart disease, genetic mutations or acquired disorders affecting cardiac ion channels. A wide range of platforms exist to model and study disorders associated with SCD. Human clinical studies are cumbersome and are thwarted by the extent of investigation that can be performed on human subjects. Animal models are limited by their degree of homology to human cardiac electrophysiology including ion channel expressi...

  18. Reentry Near the Percolation Threshold in a Heterogeneous Discrete Model for Cardiac Tissue

    Science.gov (United States)

    Alonso, Sergio; Bär, Markus

    2013-04-01

    Arrhythmias in cardiac tissue are related to irregular electrical wave propagation in the heart. Cardiac tissue is formed by a discrete cell network, which is often heterogeneous. A localized region with a fraction of nonconducting links surrounded by homogeneous conducting tissue can become a source of reentry and ectopic beats. Extensive simulations in a discrete model of cardiac tissue show that a wave crossing a heterogeneous region of cardiac tissue can disintegrate into irregular patterns, provided the fraction of nonconducting links is close to the percolation threshold of the cell network. The dependence of the reentry probability on this fraction, the system size, and the degree of excitability can be inferred from the size distribution of nonconducting clusters near the percolation threshold.

  19. Electrospun Nanofibrous Materials for Neural Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Yee-Shuan Lee

    2011-02-01

    Full Text Available The use of biomaterials processed by the electrospinning technique has gained considerable interest for neural tissue engineering applications. The tissue engineering strategy is to facilitate the regrowth of nerves by combining an appropriate cell type with the electrospun scaffold. Electrospinning can generate fibrous meshes having fiber diameter dimensions at the nanoscale and these fibers can be nonwoven or oriented to facilitate neurite extension via contact guidance. This article reviews studies evaluating the effect of the scaffold’s architectural features such as fiber diameter and orientation on neural cell function and neurite extension. Electrospun meshes made of natural polymers, proteins and compositions having electrical activity in order to enhance neural cell function are also discussed.

  20. Electrospun Nanofibers for Neural and Tissue Engineering

    Science.gov (United States)

    Xia, Younan

    2009-03-01

    Electrospinning has been exploited for almost one century to process polymers and other materials into nanofibers with controllable compositions, diameters, porosities, and porous structures for a variety of applications. Owing to its small size, high porosity, and large surface area, a nonwoven mat of electrospun nanofibers can serve as an ideal scaffold to mimic the extra cellular matrix for cell attachment and nutrient transportation. The nanofiber itself can also be functionalized through encapsulation or attachment of bioactive species such as extracellular matrix proteins, enzymes, and growth factors. In addition, the nanofibers can be further assembled into a variety of arrays or architectures by manipulating their alignment, stacking, or folding. All these attributes make electrospinning a powerful tool for generating nanostructured materials for a range of biomedical applications that include controlled release, drug delivery, and tissue engineering. This talk will focus on the use of electrospun nanofibers as scaffolds for neural and bone tissue engineering.

  1. Tissue engineering and regeneration using biodegradable scaffolds.

    Science.gov (United States)

    Zhang, X; Zhang, Y

    2015-12-01

    A number of people across the world suffer from various diseases or genetic defects and many of these patients die because of the lack of the availability of ideal tissue substitute and/or treatment. An important aspect of the disease is its association with the loss of tissue function. Many end-stage diseases and/or complete organ failure often require total or partial organ transplantation to restore functionality. However, such transplantation surgeries are not always successful because of the organ/ tissue rejection and also the scarcity of donors. Regenerative medicine and tissue engineering aim to improve or repair the function of a dysfunctional tissue or organ. In spite of the many advances in tissue engineering methods, the field of regenerative medicine still awaits acceptable designs of bioscaffolds that are clinically tenable. Design of scaffolds and the nature of biomaterial used to make the scaffolds dictate cell behavior and function. Several approaches are currently being tried to optimize the design and improve the quality of the biomaterials. Innervation, vascularization and proper cell differentiation that are influenced by the biomaterials, are few challenges that need to be optimized along with the choice of stem cells that can be employed. Extracellular matrix scaffolds have proven to be a better choice for cartilage and bone repair while the fibrin, polyglycolate and polylactate etc are still being developed. Future research and technological innovations are still needed for a better choice of biomaterials that can support the tissue regeneration without causing any immune or inflammatory response from the host and which last for longer periods. PMID:25634586

  2. Silk: A Potential Medium for Tissue Engineering

    OpenAIRE

    Sobajo, Cassandra; Behzad, Farhad; Yuan, Xue-Feng; Bayat, Ardeshir

    2008-01-01

    Objective: Human skin is a complex bilayered organ that serves as a protective barrier against the environment. The loss of integrity of skin by traumatic experiences such as burns and ulcers may result in considerable disability or ultimately death. Therefore, in skin injuries, adequate dermal substitutes are among primary care targets, aimed at replacing the structural and functional properties of native skin. To date, there are very few single application tissue-engineered dermal construct...

  3. Tissue Engineering Strategies in Ligament Regeneration

    Directory of Open Access Journals (Sweden)

    Caglar Yilgor

    2012-01-01

    Full Text Available Ligaments are dense fibrous connective tissues that connect bones to other bones and their injuries are frequently encountered in the clinic. The current clinical approaches in ligament repair and regeneration are limited to autografts, as the gold standard, and allografts. Both of these techniques have their own drawbacks that limit the success in clinical setting; therefore, new strategies are being developed in order to be able to solve the current problems of ligament grafting. Tissue engineering is a novel promising technique that aims to solve these problems, by producing viable artificial ligament substitutes in the laboratory conditions with the potential of transplantation to the patients with a high success rate. Direct cell and/or growth factor injection to the defect site is another current approach aiming to enhance the repair process of the native tissue. This review summarizes the current approaches in ligament tissue engineering strategies including the use of scaffolds, their modification techniques, as well as the use of bioreactors to achieve enhanced regeneration rates, while also discussing the advances in growth factor and cell therapy applications towards obtaining enhanced ligament regeneration.

  4. Oxygen Delivering Biomaterials for Tissue Engineering

    Science.gov (United States)

    Farris, Ashley L.; Rindone, Alexandra N.; Grayson, Warren L.

    2016-01-01

    Tissue engineering (TE) has provided promising strategies for regenerating tissue defects, but few TE approaches have been translated for clinical applications. One major barrier in TE is providing adequate oxygen supply to implanted tissue scaffolds, since oxygen diffusion from surrounding vasculature in vivo is limited to the periphery of the scaffolds. Moreover, oxygen is also an important signaling molecule for controlling stem cell differentiation within TE scaffolds. Various technologies have been developed to increase oxygen delivery in vivo and enhance the effectiveness of TE strategies. Such technologies include hyperbaric oxygen therapy, perfluorocarbon- and hemoglobin-based oxygen carriers, and oxygen-generating, peroxide-based materials. Here, we provide an overview of the underlying mechanisms and how these technologies have been utilized for in vivo TE applications. Emerging technologies and future prospects for oxygen delivery in TE are also discussed to evaluate the progress of this field towards clinical translation.

  5. Electrospinning of Nanofibers for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Haifeng Liu

    2013-01-01

    Full Text Available Electrospinning is a method in which materials in solution are formed into nano- and micro-sized continuous fibers. Recent interest in this technique stems from both the topical nature of nanoscale material fabrication and the considerable potential for use of these nanoscale fibres in a range of applications including, amongst others, a range of biomedical applications processes such as drug delivery and the use of scaffolds to provide a framework for tissue regeneration in both soft and hard tissue applications systems. The objectives of this review are to describe the theory behind the technique, examine the effect of changing the process parameters on fiber morphology, and discuss the application and impact of electrospinning on the fields of vascular, neural, bone, cartilage, and tendon/ligament tissue engineering.

  6. Carbon nanotubes instruct physiological growth and functionally mature syncytia: nongenetic engineering of cardiac myocytes.

    Science.gov (United States)

    Martinelli, Valentina; Cellot, Giada; Toma, Francesca Maria; Long, Carlin S; Caldwell, John H; Zentilin, Lorena; Giacca, Mauro; Turco, Antonio; Prato, Maurizio; Ballerini, Laura; Mestroni, Luisa

    2013-07-23

    Myocardial tissue engineering currently represents one of the most realistic strategies for cardiac repair. We have recently discovered the ability of carbon nanotube scaffolds to promote cell division and maturation in cardiomyocytes. Here, we test the hypothesis that carbon nanotube scaffolds promote cardiomyocyte growth and maturation by altering the gene expression program, implementing the cell electrophysiological properties and improving networking and maturation of functional syncytia. In our study, we combine microscopy, biological and electrophysiological methodologies, and calcium imaging, to verify whether neonatal rat ventricular myocytes cultured on substrates of multiwall carbon nanotubes acquire a physiologically more mature phenotype compared to control (gelatin). We show that the carbon nanotube substrate stimulates the induction of a gene expression profile characteristic of terminal differentiation and physiological growth, with a 2-fold increase of α-myosin heavy chain (P carbon nanotubes appear to exert a protective effect against the pathologic stimulus of phenylephrine. Finally, cardiomyocytes on carbon nanotubes demonstrate a more mature electrophysiological phenotype of syncytia and intracellular calcium signaling. Thus, carbon nanotubes interacting with cardiomyocytes have the ability to promote physiological growth and functional maturation. These properties are unique in the current vexing field of tissue engineering, and offer unprecedented perspectives in the development of innovative therapies for cardiac repair.

  7. Retraction of "Clinically established hemostatic scaffold (tissue fleece) as biomatrix in tissue- and organ-engineering research".

    Science.gov (United States)

    2012-07-01

    The Editors of Tissue Engineering are officially retracting the published article entitled "Clinically established hemostatic scaffold (tissue fleece) as biomatrix in tissue- and organ-engineering research," by Kofidis T, Akhyari P, Wachsmann B, Mueller-Stahl K, Boublik J, Ruhparwar A, Mertsching H, Balsam L, Robbins R, Haverich A. Tissue Eng 2003 Jun;9(3):517–523. This article is being retracted due to the discovery of multiple publications of identical data in the following three journals: Kofidis T, Akhyari P, Boublik J, Theodorou P, Martin U, Ruhparwar A, Fischer S, Eschenhagen T, Kubis HP, Kraft T, Leyh R, Haverich A. In vitro engineering of heart muscle: artificial myocardial tissue. J Thorac Cardiovasc Surg 2002 Jul;124(1):63–69. Kofidis T, Akhyari P, Wachsmann B, Boublik J, Mueller-Stahl K, Leyh R, Fischer S, Haverich A. A novel bioartificial myocardial tissue and its prospective use in cardiac surgery. Eur J Cardiothorac Surg 2002 Aug;22(2):238–243. Kofidis T, Balsam L, de Bruin J, Robbins RC. Distinct cell-to-fiber junctions are critical for the establishment of cardiotypical phenotype in a 3D bioartificial environment. Med Eng Phys 2004 Mar;26(2):157–163. Tissue Engineering is committed to the highest standards of scientific content and integrity, and does not tolerate such improprieties.

  8. Construction of Tissue Engineering Artificial Cornea with Skin Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Yuan LIU; Yan JIN

    2005-01-01

    @@ 1 Introduction The clinical need for an alternative to donor corneal tissue has encouraged much interests in recent years. An artificial cornea must fulfill the functions of the cornea it replaces. More recently, the idea of a bio-engineered cornea has risen. Corneal equivalents have been reconstructed by tissue engineering method. Aim of this study is to construct an artificial rabbit cornea by employing tissue engineering method and to determine if skin stem cells have a role in tissue engineered cornea construction.

  9. Role of paracrine factors in stem and progenitor cell mediated cardiac repair and tissue fibrosis

    Directory of Open Access Journals (Sweden)

    Burchfield Jana S

    2008-10-01

    Full Text Available Abstract A new era has begun in the treatment of ischemic disease and heart failure. With the discovery that stem cells from diverse organs and tissues, including bone marrow, adipose tissue, umbilical cord blood, and vessel wall, have the potential to improve cardiac function beyond that of conventional pharmacological therapy comes a new field of research aiming at understanding the precise mechanisms of stem cell-mediated cardiac repair. Not only will it be important to determine the most efficacious cell population for cardiac repair, but also whether overlapping, common mechanisms exist. Increasing evidence suggests that one mechanism of action by which cells provide tissue protection and repair may involve paracrine factors, including cytokines and growth factors, released from transplanted stem cells into the surrounding tissue. These paracrine factors have the potential to directly modify the healing process in the heart, including neovascularization, cardiac myocyte apoptosis, inflammation, fibrosis, contractility, bioenergetics, and endogenous repair.

  10. Adipose tissue extract promotes adipose tissue regeneration in an adipose tissue engineering chamber model.

    Science.gov (United States)

    Lu, Zijing; Yuan, Yi; Gao, Jianhua; Lu, Feng

    2016-05-01

    An adipose tissue engineering chamber model of spontaneous adipose tissue generation from an existing fat flap has been described. However, the chamber does not completely fill with adipose tissue in this model. Here, the effect of adipose tissue extract (ATE) on adipose tissue regeneration was investigated. In vitro, the adipogenic and angiogenic capacities of ATE were evaluated using Oil Red O and tube formation assays on adipose-derived stem cells (ASCs) and rat aortic endothelial cells (RAECs), respectively. In vivo, saline or ATE was injected into the adipose tissue engineering chamber 1 week after its implantation. At different time points post-injection, the contents were morphometrically, histologically, and immunohistochemically evaluated, and the expression of growth factors and adipogenic genes was analyzed by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR. With the exception of the baseline control group, in which fat flaps were not inserted into a chamber, the total volume of fat flap tissue increased significantly in all groups, especially in the ATE group. Better morphology and structure, a thinner capsule, and more vessels were observed in the ATE group than in the control group. Expression of angiogenic growth factors and adipogenic markers were significantly higher in the ATE group. ATE therefore significantly promoted adipose tissue regeneration and reduced capsule formation in an adipose tissue engineering chamber model. These data suggest that ATE provides a more angiogenic and adipogenic microenvironment for adipose tissue formation by releasing various cytokines and growth factors that also inhibit capsule formation.

  11. The Application of Tissue Engineering Procedures to Repair the Larynx

    Science.gov (United States)

    Ringel, Robert L.; Kahane, Joel C.; Hillsamer, Peter J.; Lee, Annie S.; Badylak, Stephen F.

    2006-01-01

    The field of tissue engineering/regenerative medicine combines the quantitative principles of engineering with the principles of the life sciences toward the goal of reconstituting structurally and functionally normal tissues and organs. There has been relatively little application of tissue engineering efforts toward the organs of speech, voice,…

  12. A multistep procedure to prepare pre-vascularized cardiac tissue constructs using adult stem sells, dynamic cell cultures, and porous scaffolds.

    Science.gov (United States)

    Pagliari, Stefania; Tirella, Annalisa; Ahluwalia, Arti; Duim, Sjoerd; Goumans, Marie-Josè; Aoyagi, Takao; Forte, Giancarlo

    2014-01-01

    The vascularization of tissue engineered products represents a key issue in regenerative medicine which needs to be addressed before the translation of these protocols to the bedside can be foreseen. Here we propose a multistep procedure to prepare pre-vascularized three-dimensional (3D) cardiac bio-substitutes using dynamic cell cultures and highly porous biocompatible gelatin scaffolds. The strategy adopted exploits the peculiar differentiation potential of two distinct subsets of adult stem cells to obtain human vascularized 3D cardiac tissues. In the first step of the procedure, human mesenchymal stem cells (hMSCs) are seeded onto gelatin scaffolds to provide interconnected vessel-like structures, while human cardiomyocyte progenitor cells (hCMPCs) are stimulated in vitro to obtain their commitment toward the cardiac phenotype. The use of a modular bioreactor allows the perfusion of the whole scaffold, providing superior performance in terms of cardiac tissue maturation and cell survival. Both the cell culture on natural-derived polymers and the continuous medium perfusion of the scaffold led to the formation of a densely packaged proto-tissue composed of vascular-like and cardiac-like cells, which might complete maturation process and interconnect with native tissue upon in vivo implantation. In conclusion, the data obtained through the approach here proposed highlight the importance to provide stem cells with complementary signals in vitro able to resemble the complexity of cardiac microenvironment.

  13. A Multistep Procedure To Prepare Pre-Vascularized Cardiac Tissue Constructs Using Adult Stem Sells, Dynamic Cell Cultures And Porous Scaffolds

    Directory of Open Access Journals (Sweden)

    Stefania ePagliari

    2014-06-01

    Full Text Available The vascularization of tissue engineered products represents a key issue in regenerative medicine which needs to be addressed before the translation of these protocols to the bedside can be foreseen. Here we propose a multistep procedure to prepare pre-vascularized three-dimensional (3D cardiac bio-substitutes using dynamic cell cultures and highly porous biocompatible gelatin scaffolds. The strategy adopted exploits the peculiar differentiation potential of two distinct subsets of adult stem cells to obtain human vascularized 3D cardiac tissues. In the first step of the procedure, human mesenchymal stem cells (hMSCs are seeded onto gelatin scaffolds to provide interconnected vessel-like structures, while human cardiomyocyte progenitor cells (hCMPCs are stimulated in vitro to obtain their commitment towards the cardiac phenotype. The use of a modular bioreactor allows the perfusion of the whole scaffold, providing superior performance in terms of cardiac tissue maturation and cell survival. Both the cell culture on natural-derived polymers and the continuous medium perfusion of the scaffold led to the formation of a densely packaged proto-tissue composed of vascular-like and cardiac-like cells, which might complete maturation process and interconnect with native tissue upon in vivo implantation. In conclusion, the data obtained through the approach here proposed highlight the importance to provide stem cells with complementary signals in vitro able to resemble the complexity of cardiac microenvironment.

  14. Biomaterial systems for orthopedic tissue engineering

    Science.gov (United States)

    Spoerke, Erik David

    2003-06-01

    The World Health Organization has estimated that one out of seven Americans suffers from a musculoskeletal impairment, annually incurring 28.6 million musculoskeletal injuries---more than half of all injuries. Bone tissue engineering has evolved rapidly to address this continued health concern. In the last decade, the focus of orthopedic biomaterials design has shifted from the use of common engineering metals and plastics to smart materials designed to mimic nature and elicit favorable bioresponse. Working within this new paradigm, this thesis explores unique chemical and materials systems for orthopedic tissue engineering. Improving on current titanium implant technologies, porous titanium scaffolds were utilized to better approximate the mechanical and structural properties of natural bone. These foam scaffolds were enhanced with bioactive coatings, designed to enhance osteoblastic implant colonization. The biopolymer poly(L-lysine) was incorporated into both hydroxypatite and octacalcium phosphate mineral phases to create modified organoapatite and pLys-CP coatings respectively. These coatings were synthesized and characterized on titanium surfaces, including porous structures such as titanium mesh and titanium foam. In addition, in vitro osteoblastic cell culture experiments probed the biological influences of these coatings. Organoapatite (OA) accelerated preosteoblastic colonization of titanium mesh and improved cellular ingrowth into titanium foam. Alternatively, the thin, uniform pLys-CP coating demonstrated significant potential as a substrate for chemically binding biological molecules and supramolecular assemblies. Biologically, pLys-CP demonstrated enhanced cellular attachment over titanium and inorganic calcium phosphate controls. Supramolecular self-assembled nanofiber assemblies were also explored both as stand-alone tissue engineering gels and as titanium coatings. Self-supporting nanofiber gels induced accelerated, biomimetic mineralization

  15. Heterogeneity of Scaffold Biomaterials in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Lauren Edgar

    2016-05-01

    Full Text Available Tissue engineering (TE offers a potential solution for the shortage of transplantable organs and the need for novel methods of tissue repair. Methods of TE have advanced significantly in recent years, but there are challenges to using engineered tissues and organs including but not limited to: biocompatibility, immunogenicity, biodegradation, and toxicity. Analysis of biomaterials used as scaffolds may, however, elucidate how TE can be enhanced. Ideally, biomaterials should closely mimic the characteristics of desired organ, their function and their in vivo environments. A review of biomaterials used in TE highlighted natural polymers, synthetic polymers, and decellularized organs as sources of scaffolding. Studies of discarded organs supported that decellularization offers a remedy to reducing waste of donor organs, but does not yet provide an effective solution to organ demand because it has shown varied success in vivo depending on organ complexity and physiological requirements. Review of polymer-based scaffolds revealed that a composite scaffold formed by copolymerization is more effective than single polymer scaffolds because it allows copolymers to offset disadvantages a single polymer may possess. Selection of biomaterials for use in TE is essential for transplant success. There is not, however, a singular biomaterial that is universally optimal.

  16. Design, fabrication and application of tissue engineering used cells scaffold

    Institute of Scientific and Technical Information of China (English)

    WANG Shenguo; BEI Jianzhong

    2001-01-01

    @@ FUNCTIONS OF CELLS SCAFFOLD IN THE TISSUE ENGINEERINGCell, cells scaffold and the construction of tissue and organ are three main factors for the Tissue Engineering. A main function of cells scaffold in tissue engineering is to provide an environment for cells propagation.

  17. Tumor Engineering: The Other Face of Tissue Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Ghajar, Cyrus M; Bissell, Mina J

    2010-03-09

    Advances in tissue engineering have been accomplished for years by employing biomimetic strategies to provide cells with aspects of their original microenvironment necessary to reconstitute a unit of both form and function for a given tissue.We believe that the most critical hallmark of cancer is loss of integration of architecture and function; thus, it stands to reason that similar strategies could be employed to understand tumor biology. In this commentary, we discuss work contributed by Fischbach-Teschl and colleagues to this special issue of Tissue Engineering in the context of 'tumor engineering', that is, the construction of complex cell culture models that recapitulate aspects of the in vivo tumor microenvironment to study the dynamics of tumor development, progression, and therapy on multiple scales. We provide examples of fundamental questions that could be answered by developing such models, and encourage the continued collaboration between physical scientists and life scientists not only for regenerative purposes, but also to unravel the complexity that is the tumor microenvironment. In 1993, Vacanti and Langer cast a spotlight on the growing gap between patients in need of organ transplants and the amount of available donor organs; they reaffirmed that tissue engineering could eventually address this problem by 'applying principles of engineering and the life sciences toward the development of biological substitutes. Mortality figures and direct health care costs for cancer patients rival those of patients who experience organ failure. Cancer is the second leading cause of death in the United States (Source: American Cancer Society) and it is estimated that direct medical costs for cancer patients approach $100B yearly in the United States alone (Source: National Cancer Institute). In addition, any promising therapy that emerges from the laboratory costs roughly $1.7B to take from bench to bedside. Whereas we have indeed waged war on

  18. Elastomeric PGS scaffolds in arterial tissue engineering.

    Science.gov (United States)

    Lee, Kee-Won; Wang, Yadong

    2011-01-01

    Cardiovascular disease is one of the leading cause of mortality in the US and especially, coronary artery disease increases with an aging population and increasing obesity. Currently, bypass surgery using autologous vessels, allografts, and synthetic grafts are known as a commonly used for arterial substitutes. However, these grafts have limited applications when an inner diameter of arteries is less than 6 mm due to low availability, thrombotic complications, compliance mismatch, and late intimal hyperplasia. To overcome these limitations, tissue engineering has been successfully applied as a promising alternative to develop small-diameter arterial constructs that are nonthrombogenic, robust, and compliant. Several previous studies have developed small-diameter arterial constructs with tri-lamellar structure, excellent mechanical properties and burst pressure comparable to native arteries. While high tensile strength and burst pressure by increasing collagen production from a rigid material or cell sheet scaffold, these constructs still had low elastin production and compliance, which is a major problem to cause graft failure after implantation. Considering these issues, we hypothesized that an elastometric biomaterial combined with mechanical conditioning would provide elasticity and conduct mechanical signals more efficiently to vascular cells, which increase extracellular matrix production and support cellular orientation. The objective of this report is to introduce a fabrication technique of porous tubular scaffolds and a dynamic mechanical conditioning for applying them to arterial tissue engineering. We used a biodegradable elastomer, poly (glycerol sebacate) (PGS) for fabricating porous tubular scaffolds from the salt fusion method. Adult primary baboon smooth muscle cells (SMCs) were seeded on the lumen of scaffolds, which cultured in our designed pulsatile flow bioreactor for 3 weeks. PGS scaffolds had consistent thickness and randomly distributed macro

  19. Tissue Engineering Organs for Space Biology Research

    Science.gov (United States)

    Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.

  20. Piezoelectric polymers as biomaterials for tissue engineering applications.

    Science.gov (United States)

    Ribeiro, Clarisse; Sencadas, Vítor; Correia, Daniela M; Lanceros-Méndez, Senentxu

    2015-12-01

    Tissue engineering often rely on scaffolds for supporting cell differentiation and growth. Novel paradigms for tissue engineering include the need of active or smart scaffolds in order to properly regenerate specific tissues. In particular, as electrical and electromechanical clues are among the most relevant ones in determining tissue functionality in tissues such as muscle and bone, among others, electroactive materials and, in particular, piezoelectric ones, show strong potential for novel tissue engineering strategies, in particular taking also into account the existence of these phenomena within some specific tissues, indicating their requirement also during tissue regeneration. This referee reports on piezoelectric materials used for tissue engineering applications. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and a start point for novel research pathways in the most relevant and challenging open questions.

  1. Biomaterials and tissue engineering in reconstructive surgery

    Indian Academy of Sciences (India)

    D F Williams

    2003-06-01

    This paper provides an account of the rationale for the development of implantable medical devices over the last half-century and explains the criteria that have controlled the selection of biomaterials for these critical applications. In spite of some good successes and excellent materials, there are still serious limitations to the performance of implants today, and the paper explains these limitations and develops this theme in order to describe the recent innovations in tissue engineering, which involves a different approach to reconstruction of the body.

  2. Fibrin Gel as an Injectable Biodegradable Scaffold and Cell Carrier for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Yuting Li

    2015-01-01

    Full Text Available Due to the increasing needs for organ transplantation and a universal shortage of donated tissues, tissue engineering emerges as a useful approach to engineer functional tissues. Although different synthetic materials have been used to fabricate tissue engineering scaffolds, they have many limitations such as the biocompatibility concerns, the inability to support cell attachment, and undesirable degradation rate. Fibrin gel, a biopolymeric material, provides numerous advantages over synthetic materials in functioning as a tissue engineering scaffold and a cell carrier. Fibrin gel exhibits excellent biocompatibility, promotes cell attachment, and can degrade in a controllable manner. Additionally, fibrin gel mimics the natural blood-clotting process and self-assembles into a polymer network. The ability for fibrin to cure in situ has been exploited to develop injectable scaffolds for the repair of damaged cardiac and cartilage tissues. Additionally, fibrin gel has been utilized as a cell carrier to protect cells from the forces during the application and cell delivery processes while enhancing the cell viability and tissue regeneration. Here, we review the recent advancement in developing fibrin-based biomaterials for the development of injectable tissue engineering scaffold and cell carriers.

  3. Cardiac elastography: detecting pathological changes in myocardium tissues

    Science.gov (United States)

    Konofagou, Elisa E.; Harrigan, Timothy; Solomon, Scott

    2003-05-01

    Estimation of the mechanical properties of the cardiac muscle has been shown to play a crucial role in the detection of cardiovascular disease. Elastography was recently shown feasible on RF cardiac data in vivo. In this paper, the role of elastography in the detection of ischemia/infarct is explored with simulations and in vivo experiments. In finite-element simulations of a portion of the cardiac muscle containing an infarcted region, the cardiac cycle was simulated with successive compressive and tensile strains ranging between -30% and 20%. The incremental elastic modulus was also mapped uisng adaptive methods. We then demonstrated this technique utilizing envelope-detected sonographic data (Hewlett-Packard Sonos 5500) in a patient with a known myocardial infarction. In cine-loop and M-Mode elastograms from both normal and infarcted regions in simulations and experiments, the infarcted region was identifed by the up to one order of magnitude lower incremental axial displacements and strains, and higher modulus. Information on motion, deformation and mechanical property should constitute a unique tool for noninvasive cardiac diagnosis.

  4. Patterned melt electrospun substrates for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, Paul D; Joergensen, Nanna T [School of Biological Sciences, University of Southampton, Bassett Cr East, Southampton SO16 7PX (United Kingdom); Groll, Juergen; Moeller, Martin [Deutsches Wollforschungsinstitut, Pauwelsstrasse 8, D 52074 Aachen (Germany)], E-mail: dalton@dwi.rwth-aachen.de

    2008-09-01

    Tissue engineering scaffolds can be built with patterning techniques that allow discrete placement of structures. In this study, electrospun fibres are collected in focused spots; the patterning and drawing of a cell adhesive scaffold is shown. Blends of biodegradable poly(ethylene glycol)-block-poly({epsilon}-caprolactone) (PEG-b-PCL) and PCL were melt electrospun onto glass collectors, and the optimal electrospinning parameters determined. The quality of the fibre was largely influenced by the flow rate of the melt to the spinneret; however, this can be adjusted with the voltage. A collection distance between 3 cm and 5 cm was optimal, and at 10 cm the fibres became unfocused in their deposition although the diameter remained similar (0.96 {+-} 0.19 {mu}m). Aligned lines of electrospun fibres 200-400 {mu}m in width could be applied onto the slide with an x-y stage, continuously and discretely. Lines of electrospun fibres could be applied on top of one another and were very uniform in diameter. Fibroblasts adhered primarily in the fibre region, due to the poor cell adhesion to the PEG substrate. Improvements in depositing hydrophilic electrospun fibres that wet and adhere to in vitro substrates and the use of stage automation for the writing interface could provide scaffold-building devices suitable for tissue engineering applications.

  5. Development and progress of engineering of skeletal muscle tissue

    OpenAIRE

    Zhou, GQ; Liao, H.

    2009-01-01

    Engineering skeletal muscle tissue remains still a challenge, and numerous studies have indicated that this technique may be of great importance in medicine in the near future. This article reviews some of the recent findings resulting from tissue engineering science related to the contractile behavior and the phenotypes of muscle tissue cells in different three-dimensional environment, and discusses how tissue engineering could be used to create and regenerate skeletal muscle, as well as the...

  6. Tissue engineering skeletal muscle for orthopaedic applications

    Science.gov (United States)

    Payumo, Francis C.; Kim, Hyun D.; Sherling, Michael A.; Smith, Lee P.; Powell, Courtney; Wang, Xiao; Keeping, Hugh S.; Valentini, Robert F.; Vandenburgh, Herman H.

    2002-01-01

    With current technology, tissue-engineered skeletal muscle analogues (bioartificial muscles) generate too little active force to be clinically useful in orthopaedic applications. They have been engineered genetically with numerous transgenes (growth hormone, insulinlike growth factor-1, erythropoietin, vascular endothelial growth factor), and have been shown to deliver these therapeutic proteins either locally or systemically for months in vivo. Bone morphogenetic proteins belonging to the transforming growth factor-beta superfamily are osteoinductive molecules that drive the differentiation pathway of mesenchymal cells toward the chondroblastic or osteoblastic lineage, and stimulate bone formation in vivo. To determine whether skeletal muscle cells endogenously expressing bone morphogenetic proteins might serve as a vehicle for systemic bone morphogenetic protein delivery in vivo, proliferating skeletal myoblasts (C2C12) were transduced with a replication defective retrovirus containing the gene for recombinant human bone morphogenetic protein-6 (C2BMP-6). The C2BMP-6 cells constitutively expressed recombinant human bone morphogenetic protein-6 and synthesized bioactive recombinant human bone morphogenetic protein-6, based on increased alkaline phosphatase activity in coincubated mesenchymal cells. C2BMP-6 cells did not secrete soluble, bioactive recombinant human bone morphogenetic protein-6, but retained the bioactivity in the cell layer. Therefore, genetically-engineered skeletal muscle cells might serve as a platform for long-term delivery of osteoinductive bone morphogenetic proteins locally.

  7. Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering.

    Science.gov (United States)

    Zhao, Xin; Lang, Qi; Yildirimer, Lara; Lin, Zhi Yuan; Cui, Wenguo; Annabi, Nasim; Ng, Kee Woei; Dokmeci, Mehmet R; Ghaemmaghami, Amir M; Khademhosseini, Ali

    2016-01-01

    Natural hydrogels are promising scaffolds to engineer epidermis. Currently, natural hydrogels used to support epidermal regeneration are mainly collagen- or gelatin-based, which mimic the natural dermal extracellular matrix but often suffer from insufficient and uncontrollable mechanical and degradation properties. In this study, a photocrosslinkable gelatin (i.e., gelatin methacrylamide (GelMA)) with tunable mechanical, degradation, and biological properties is used to engineer the epidermis for skin tissue engineering applications. The results reveal that the mechanical and degradation properties of the developed hydrogels can be readily modified by varying the hydrogel concentration, with elastic and compressive moduli tuned from a few kPa to a few hundred kPa, and the degradation times varied from a few days to several months. Additionally, hydrogels of all concentrations displayed excellent cell viability (>90%) with increasing cell adhesion and proliferation corresponding to increases in hydrogel concentrations. Furthermore, the hydrogels are found to support keratinocyte growth, differentiation, and stratification into a reconstructed multilayered epidermis with adequate barrier functions. The robust and tunable properties of GelMA hydrogels suggest that the keratinocyte laden hydrogels can be used as epidermal substitutes, wound dressings, or substrates to construct various in vitro skin models.

  8. [Epicardial adipose tissue and its role in cardiac physiology and disease].

    Science.gov (United States)

    Toczyłowski, Kacper; Gruca, Michał; Baranowski, Marcin

    2013-06-20

    Adipose tissue secretes a number of cytokines, referred to as adipokines. Intensive studies conducted over the last two decades showed that adipokines exert broad effects on cardiac metabolism and function. In addition, the available data strongly suggests that these cytokines play an important role in development of cardiovascular diseases. Epicardial adipose tissue (EAT) has special properties that distinguish it from other deposits of visceral fat. Overall, there appears to be a close functional and anatomic relationship between the EAT and the cardiac muscle. They share the same coronary blood supply, and there is no structure separating the adipose tissue from the myocardium or coronary arteries. The role of EAT in osierdziocardiac physiology remains unclear. Its putative functions include buffering coronary arteries against the torsion induced by the arterial pulse wave and cardiac contraction, regulating fatty acid homeostasis in the coronary microcirculation, thermogenesis, and neuroprotection of the cardiac autonomic ganglia and nerves. Obesity (particularly the abdominal phenotype) leads to elevated EAT content, and the available data suggests that high amount of this fat depot is associated with increased risk of ischemic heart disease, cardiac hypertrophy and diastolic dysfunction. The mass of EAT is small compared to other fat deposits in the body. Nevertheless, its close anatomic relationship to the heart suggests that this organ is highly exposed to EAT-derived adipokines which makes this tissue a very promising area of research. In this paper we review the current knowledge on the role of EAT in cardiac physiology and development of heart disease.

  9. Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving.

    Science.gov (United States)

    Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein; Khademhosseini, Ali

    2016-04-01

    Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, microarchitecture, and mechanical properties of the fabrics play important roles in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. PMID:26924450

  10. [Study progress of dental pulp stem cells in tissue engineering].

    Science.gov (United States)

    Shiyu, Shi; Jiamin, Xie

    2015-12-01

    In recent years, modern tissue engineering is becoming emerging and developing rapidly, and the acquisition, cultivation and differentiation of seed cells is the premise and foundation of the construction of tissue engineering, so more and more scholars pay attention to stem cells as seed cells for tissue engineering construction. Dental pulp stem cells (DPSCs) is a kind of adult stem cells derived from dental pulp, and as a new kind of seed cells of tissue engineering, the study of DPSCs presents important significance in tissue and organ regeneration. In this review, we introduced the progress of studies on dental pulp stem cells and discussed their clinical application prospects. PMID:27051964

  11. Biodegradable Polymers in Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Leon E. Govaert

    2009-07-01

    Full Text Available The use ofdegradable polymers in medicine largely started around the mid 20th century with their initial use as in vivo resorbing sutures. Thorough knowledge on this topic as been gained since then and the potential applications for these polymers were, and still are, rapidly expanding. After improving the properties of lactic acid-based polymers, these were no longer studied only from a scientific point of view, but also for their use in bone surgery in the 1990s. Unfortunately, after implanting these polymers, different foreign body reactions ranging from the presence of white blood cells to sterile sinuses with resorption of the original tissue were observed. This led to the misconception that degradable polymers would, in all cases, lead to inflammation and/or osteolysis at the implantation site. Nowadays, we have accumulated substantial knowledge on the issue of biocompatibility of biodegradable polymers and are able to tailor these polymers for specific applications and thereby strongly reduce the occurrence of adverse tissue reactions. However, the major issue of biofunctionality, when mechanical adaptation is taken into account, has hitherto been largely unrecognized. A thorough understanding of how to improve the biofunctionality, comprising biomechanical stability, but also visualization and sterilization of the material, together with the avoidance of fibrotic tissue formation and foreign body reactions, may greatly enhance the applicability and safety of degradable polymers in a wide area of tissue engineering applications. This review will address our current understanding of these biofunctionality factors, and will subsequently discuss the pitfalls remaining and potential solutions to solve these problems.

  12. Connexin43 Cardiac Gap Junction Remodeling: Lessons from Genetically Engineered Murine Models

    OpenAIRE

    Remo, Benjamin F.; Giovannone, Steven; Fishman, Glenn I.

    2012-01-01

    Sudden cardiac death is responsible for several hundred thousand deaths each year in the United States. Multiple lines of evidence suggest that perturbation of gap junction expression and function in the heart, or what has come to be known as cardiac gap junction remodeling, plays a key mechanistic role in the pathophysiology of clinically significant cardiac arrhythmias. Here we review recent studies from our laboratory using genetically engineered murine models to explore mechanisms implica...

  13. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.

    Science.gov (United States)

    Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul

    2012-08-01

    Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.

  14. Acute pergolide exposure stiffens engineered valve interstitial cell tissues and reduces contractility in vitro.

    Science.gov (United States)

    Capulli, Andrew K; MacQueen, Luke A; O'Connor, Blakely B; Dauth, Stephanie; Parker, Kevin Kit

    2016-01-01

    Medications based on ergoline-derived dopamine and serotonin agonists are associated with off-target toxicities that include valvular heart disease (VHD). Reports of drug-induced VHD resulted in the withdrawal of appetite suppressants containing fenfluramine and phentermine from the US market in 1997 and pergolide, a Parkinson's disease medication, in 2007. Recent evidence suggests that serotonin receptor activity affected by these medications modulates cardiac valve interstitial cell activation and subsequent valvular remodeling, which can lead to cardiac valve fibrosis and dysfunction similar to that seen in carcinoid heart disease. Failure to identify these risks prior to market and continued use of similar drugs reaffirm the need to improve preclinical evaluation of drug-induced VHD. Here, we present two complimentary assays to measure stiffness and contractile stresses generated by engineered valvular tissues in vitro. As a case study, we measured the effects of acute (24 h) pergolide exposure to engineered porcine aortic valve interstitial cell (AVIC) tissues. Pergolide exposure led to increased tissue stiffness, but it decreased both basal and active contractile tone stresses generated by AVIC tissues. Pergolide exposure also disrupted AVIC tissue organization (i.e., tissue anisotropy), suggesting that the mechanical properties and contractile functionality of these tissues are governed by their ability to maintain their structure. We expect further use of these assays to identify off-target drug effects that alter the phenotypic balance of AVICs, disrupt their ability to maintain mechanical homeostasis, and lead to VHD. PMID:27174867

  15. Scaffolds for central nervous system tissue engineering

    Science.gov (United States)

    He, Jin; Wang, Xiu-Mei; Spector, Myron; Cui, Fu-Zhai

    2012-03-01

    Traumatic injuries to the brain and spinal cord of the central nervous system (CNS) lead to severe and permanent neurological deficits and to date there is no universally accepted treatment. Owing to the profound impact, extensive studies have been carried out aiming at reducing inflammatory responses and overcoming the inhibitory environment in the CNS after injury so as to enhance regeneration. Artificial scaffolds may provide a suitable environment for axonal regeneration and functional recovery, and are of particular importance in cases in which the injury has resulted in a cavitary defect. In this review we discuss development of scaffolds for CNS tissue engineering, focusing on mechanism of CNS injuries, various biomaterials that have been used in studies, and current strategies for designing and fabricating scaffolds.

  16. Bioprinted Scaffolds for Cartilage Tissue Engineering.

    Science.gov (United States)

    Kang, Hyun-Wook; Yoo, James J; Atala, Anthony

    2015-01-01

    Researchers are focusing on bioprinting technology as a viable option to overcome current difficulties in cartilage tissue engineering. Bioprinting enables a three-dimensional (3-D), free-form, computer-designed structure using biomaterials, biomolecules, and/or cells. The inner and outer shape of a scaffold can be controlled by this technology with great precision. Here, we introduce a hybrid bioprinting technology that is a co-printing process of multiple materials including high-strength synthetic polymer and cell-laden hydrogel. The synthetic polymer provides mechanical support for shape maintenance and load bearing, while the hydrogel provides the biological environment for artificial cartilage regeneration. This chapter introduces the procedures for printing of a 3-D scaffold using our hybrid bioprinting technology and includes the source materials for preparation of 3-D printing. PMID:26445837

  17. Ethical aspects of tissue engineering: a review.

    Science.gov (United States)

    de Vries, Rob B M; Oerlemans, Anke; Trommelmans, Leen; Dierickx, Kris; Gordijn, Bert

    2008-12-01

    Tissue engineering (TE) is a promising new field of medical technology. However, like other new technologies, it is not free of ethical challenges. Identifying these ethical questions at an early stage is not only part of science's responsibility toward society, but also in the interest of the field itself. In this review, we map which ethical issues related to TE have already been documented in the scientific literature. The issues that turn out to dominate the debate are the use of human embryonic stem cells and therapeutic cloning. Nevertheless, a variety of other ethical aspects are mentioned, which relate to different phases in the development of the field. In addition, we discuss a number of ethical issues that have not yet been raised in the literature.

  18. Evaluation of cardiac functions of cirrhotic children using serum brain natriuretic peptide and tissue Doppler imaging

    OpenAIRE

    Aya M Fattouh; El-Shabrawi, Mortada H; Enas H Mahmoud; Wafaa O Ahmed

    2016-01-01

    Background: Cirrhotic cardiomyopathy (CCM) is described as the presence of cardiac dysfunction in cirrhotic patients. In children with chronic liver disease, CCM has been very rarely investigated. The Aim of the Study: Is to evaluate the cardiac function of cirrhotic children to identify those with CCM. Patients and Methods: Fifty-two cirrhotic patients and 53 age and sex matched controls were assessed using serum brain-type natriuretic peptide (BNP), conventional echocardiography, and tissue...

  19. Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy

    OpenAIRE

    Chao Huang; Sachse, Frank B.; Hitchcock, Robert W.; Kaza, Aditya K.

    2016-01-01

    Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in d...

  20. In Vivo Measurement of Levofloxacin Penetration into Lung Tissue after Cardiac Surgery†

    OpenAIRE

    Hutschala, Doris; Skhirtladze, Keso; Zuckermann, Andreas; Wisser, Wilfried; Jaksch, Peter; Mayer-Helm, Bernhard Xaver; Burgmann, Heinz; Wolner, Ernst; Müller, Markus; Tschernko, Edda M.

    2005-01-01

    Nosocomial pneumonia is a severe complication after cardiac surgery (CS). Levofloxacin, a fluoroquinolone, qualifies for the therapy of postoperative pneumonia. However, penetration properties of levofloxacin into the lung tissue could be substantially affected by CS: atelectasis, low cardiac output after CS, high volume loads, and inflammatory capillary leak potentially influence drug distribution. The aim of our study was to gain information on interstitial antibiotic concentrations in lung...

  1. Role of matricellular proteins in cardiac tissue remodeling after myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    Yutaka; Matsui; Junko; Morimoto; Toshimitsu; Uede

    2010-01-01

    After onset of myocardial infarction(MI),the left ventricle(LV) undergoes a continuum of molecular,cellular,and extracellular responses that result in LV wall thinning,dilatation,and dysfunction.These dynamic changes in LV shape,size,and function are termed cardiac remodeling.If the cardiac healing after MI does not proceed properly,it could lead to cardiac rupture or maladaptive cardiac remodeling,such as further LV dilatation and dysfunction,and ultimately death.Although the precise molecular mechanisms in this cardiac healing process have not been fully elucidated,this process is strictly coordinated by the interaction of cells with their surrounding extracellular matrix(ECM) proteins.The components of ECM include basic structural proteins such as collagen,elastin and specialized proteins such as fibronectin,proteoglycans and matricellular proteins.Matricellular proteins are a class of non-structural and secreted proteins that probably exert regulatory functions through direct binding to cell surface receptors,other matrix proteins,and soluble extracellular factors such as growth factors and cytokines.This small group of proteins,which includesosteopontin,thrombospondin-1/2,tenascin,periostin,and secreted protein,acidic and rich in cysteine,shows a low level of expression in normal adult tissue,but is markedly upregulated during wound healing and tissue remodeling,including MI.In this review,we focus on the regulatory functions of matricellular proteins during cardiac tissue healing and remodeling after MI.

  2. Functional tissue engineering of ligament healing

    Directory of Open Access Journals (Sweden)

    Hsu Shan-Ling

    2010-05-01

    Full Text Available Abstract Ligaments and tendons are dense connective tissues that are important in transmitting forces and facilitate joint articulation in the musculoskeletal system. Their injury frequency is high especially for those that are functional important, like the anterior cruciate ligament (ACL and medial collateral ligament (MCL of the knee as well as the glenohumeral ligaments and the rotator cuff tendons of the shoulder. Because the healing responses are different in these ligaments and tendons after injury, the consequences and treatments are tissue- and site-specific. In this review, we will elaborate on the injuries of the knee ligaments as well as using functional tissue engineering (FTE approaches to improve their healing. Specifically, the ACL of knee has limited capability to heal, and results of non-surgical management of its midsubstance rupture have been poor. Consequently, surgical reconstruction of the ACL is regularly performed to gain knee stability. However, the long-term results are not satisfactory besides the numerous complications accompanied with the surgeries. With the rapid development of FTE, there is a renewed interest in revisiting ACL healing. Approaches such as using growth factors, stem cells and scaffolds have been widely investigated. In this article, the biology of normal and healing ligaments is first reviewed, followed by a discussion on the issues related to the treatment of ACL injuries. Afterwards, current promising FTE methods are presented for the treatment of ligament injuries, including the use of growth factors, gene delivery, and cell therapy with a particular emphasis on the use of ECM bioscaffolds. The challenging areas are listed in the future direction that suggests where collection of energy could be placed in order to restore the injured ligaments and tendons structurally and functionally.

  3. Endochondral bone tissue engineering using embryonic stem cells

    OpenAIRE

    Jukes, Jojanneke M.; Both, Sanne Karijn; Leusink, Anouk; Sterk, Lotus M. Th.; Blitterswijk, van, W.J.; Boer, de, J.W.

    2008-01-01

    Embryonic stem cells can provide an unlimited supply of pluripotent cells for tissue engineering applications. Bone tissue engineering by directly differentiating ES cells (ESCs) into osteoblasts has been unsuccessful so far. Therefore, we investigated an alternative approach, based on the process of endochondral ossification. A cartilage matrix was formed in vitro by mouse ESCs seeded on a scaffold. When these cartilage tissue-engineered constructs (CTECs) were implanted s.c., the cartilage ...

  4. Cell-Based Strategies for Meniscus Tissue Engineering

    OpenAIRE

    Wei Niu; Weimin Guo; Shufeng Han; Yun Zhu; Shuyun Liu; Quanyi Guo

    2016-01-01

    Meniscus injuries remain a significant challenge due to the poor healing potential of the inner avascular zone. Following a series of studies and clinical trials, tissue engineering is considered a promising prospect for meniscus repair and regeneration. As one of the key factors in tissue engineering, cells are believed to be highly beneficial in generating bionic meniscus structures to replace injured ones in patients. Therefore, cell-based strategies for meniscus tissue engineering play a ...

  5. Tissue engineering strategies to study cartilage development, degeneration and regeneration.

    Science.gov (United States)

    Bhattacharjee, Maumita; Coburn, Jeannine; Centola, Matteo; Murab, Sumit; Barbero, Andrea; Kaplan, David L; Martin, Ivan; Ghosh, Sourabh

    2015-04-01

    Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm.

  6. Construction of Tissue Engineering Artificial Cornea with Skin Stem Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionThe clinical need for an alternative to donor corneal tissue has encouraged much interests in recent years. An artificial cornea must fulfill the functions of the cornea it replaces. More recently, the idea of a bio-engineered cornea has risen. Corneal equivalents have been reconstructed by tissue engineering method. Aim of this study is to construct an artificial rabbit cornea by employing tissue engineering method and to determine if skin stem cells have a role in tissue engineered cornea co...

  7. Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering

    CERN Document Server

    Sultana, Naznin

    2013-01-01

    This book addresses the principles, methods and applications of biodegradable polymer based scaffolds for bone tissue engineering. The general principle of bone tissue engineering is reviewed and the traditional and novel scaffolding materials, their properties and scaffold fabrication techniques are explored. By acting as temporary synthetic extracellular matrices for cell accommodation, proliferation, and differentiation, scaffolds play a pivotal role in tissue engineering. This book does not only provide the comprehensive summary of the current trends in scaffolding design but also presents the new trends and directions for scaffold development for the ever expanding tissue engineering applications.

  8. Straining mode-dependent collagen remodeling in engineered cardiovascular tissue

    NARCIS (Netherlands)

    Rubbens, M.P.; Mol, A.; Marion, M.H. van; Hanemaaijer, R.; Bank, R.A.; Baaijens, F.P.T.; Bouten, C.V.C.

    2009-01-01

    Similar to native cardiovascular tissues, the mechanical properties of engineered cardiovascular constructs depend on the composition and quality of the extracellular matrix, which is a net result of matrix remodeling processes within the tissue. To improve tissue remodeling, and hence tissue mechan

  9. Scaffold Sheet Design Strategy for Soft Tissue Engineering

    OpenAIRE

    Liping Tang; Dipendra Gyawali; Yi Zhang; Paul Thevenot; Tran, Richard T.; Jian Yang

    2010-01-01

    Creating heterogeneous tissue constructs with an even cell distribution and robust mechanical strength remain important challenges to the success of in vivo tissue engineering. To address these issues, we are developing a scaffold sheet tissue engineering strategy consisting of thin (~200 μm), strong, elastic, and porous crosslinked urethane- doped polyester (CUPE) scaffold sheets that are bonded together chemically or through cell culture. Suture retention of the tissue constructs (four shee...

  10. Cardiac-induced physiologic noise in tissue is a direct observation of cardiac-induced fluctuations.

    Science.gov (United States)

    Bhattacharyya, Pallab K; Lowe, Mark J

    2004-01-01

    Recent studies have shown that in certain cases, cardiac and respiratory rate fluctuations in BOLD-weighted MRI time courses may be an artifact unique to rapid sampled acquisitions and may not be present in longer repetition-time acquisitions. The implication of this is that, in these cases, cardiac and respiratory rate fluctuations are not aliased into data that undersample these effects and do not affect the resulting time course measurements. In this study, we show that these cases are specific to regions of large cerebrospinal fluid content and are not generally true for gray matter regions of the brain. We demonstrate that in many brain regions of interest, these fluctuations are directly observed as BOLD fluctuations and thus will affect measurements that undersample these effects.

  11. Optimization of nanoparticles for cardiovascular tissue engineering

    Science.gov (United States)

    Izadifar, Mohammad; Kelly, Michael E.; Haddadi, Azita; Chen, Xiongbiao

    2015-06-01

    Nano-particulate delivery systems have increasingly been playing important roles in cardiovascular tissue engineering. Properties of nanoparticles (e.g. size, polydispersity, loading capacity, zeta potential, morphology) are essential to system functions. Notably, these characteristics are regulated by fabrication variables, but in a complicated manner. This raises a great need to optimize fabrication process variables to ensure the desired nanoparticle characteristics. This paper presents a comprehensive experimental study on this matter, along with a novel method, the so-called Geno-Neural approach, to analyze, predict and optimize fabrication variables for desired nanoparticle characteristics. Specifically, ovalbumin was used as a protein model of growth factors used in cardiovascular tissue regeneration, and six fabrication variables were examined with regard to their influence on the characteristics of nanoparticles made from high molecular weight poly(lactide-co-glycolide). The six-factor five-level central composite rotatable design was applied to the conduction of experiments, and based on the experimental results, a geno-neural model was developed to determine the optimum fabrication conditions. For desired particle sizes of 150, 200, 250 and 300 nm, respectively, the optimum conditions to achieve the low polydispersity index, higher negative zeta potential and higher loading capacity were identified based on the developed geno-neural model and then evaluated experimentally. The experimental results revealed that the polymer and the external aqueous phase concentrations and their interactions with other fabrication variables were the most significant variables to affect the size, polydispersity index, zeta potential, loading capacity and initial burst release of the nanoparticles, while the electron microscopy images of the nanoparticles showed their spherical geometries with no sign of large pores or cracks on their surfaces. The release study revealed

  12. Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering.

    Science.gov (United States)

    Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2015-12-01

    In this study, a simple three-dimensional (3D) suspension culture method for the expansion and cardiac differentiation of human induced pluripotent stem cells (hiPSCs) is reported. The culture methods were easily adapted from two-dimensional (2D) to 3D culture without any additional manipulations. When hiPSCs were directly applied to 3D culture from 2D in a single-cell suspension, only a few aggregated cells were observed. However, after 3 days, culture of the small hiPSC aggregates in a spinner flask at the optimal agitation rate created aggregates which were capable of cell passages from the single-cell suspension. Cell numbers increased to approximately 10-fold after 12 days of culture. The undifferentiated state of expanded hiPSCs was confirmed by flow cytometry, immunocytochemistry and quantitative RT-PCR, and the hiPSCs differentiated into three germ layers. When the hiPSCs were subsequently cultured in a flask using cardiac differentiation medium, expression of cardiac cell-specific genes and beating cardiomyocytes were observed. Furthermore, the culture of hiPSCs on Matrigel-coated dishes with serum-free medium containing activin A, BMP4 and FGF-2 enabled it to generate robust spontaneous beating cardiomyocytes and these cells expressed several cardiac cell-related genes, including HCN4, MLC-2a and MLC-2v. This suggests that the expanded hiPSCs might maintain the potential to differentiate into several types of cardiomyocytes, including pacemakers. Moreover, when cardiac cell sheets were fabricated using differentiated cardiomyocytes, they beat spontaneously and synchronously, indicating electrically communicative tissue. This simple culture system might enable the generation of sufficient amounts of beating cardiomyocytes for use in cardiac regenerative medicine and tissue engineering.

  13. Fabrication of engineered heart tissue grafts from alginate/collagen barium composite microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Bai, X P; Zheng, H X; Fang, R; Wang, T R; Li, Y; Tian, W M [Department of Life Science and Engineering, Harbin Institute of Technology, Harbin, 150080 (China); Hou, X L [The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 (China); Chen, X B, E-mail: tianweiming@gmail.com [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon (Canada)

    2011-08-15

    Cardiac tissue engineering holds great promise for the treatment of myocardial infarction. However, insufficient cell migration into the scaffolds used and inflammatory reactions due to scaffold biodegradation remain as issues to be addressed. Engineered heart tissue (EHT) grafts fabricated by means of a cell encapsulation technique provide cells with a tissue-like environment, thereby potentially enhancing cellular processes such as migration, proliferation, and differentiation, and tissue regeneration. This paper presents a study on the fabrication and characterization of EHT grafts from novel alginate/collagen composite microbeads by means of cell encapsulation. Specifically, the microbeads were fabricated from alginate and collagen by barium ion cross-linking, with neonatal rat cardiomyocytes encapsulated in the composite microbeads during the fabrication of the EHT grafts. To evaluate the suitablity of these EHT grafts for heart muscle repair, the growth of cardiac cells in the microbeads was examined by means of confocal microscopy and staining with DAPI and F-actin. The EHT grafts were analyzed by scanning electron microscopy and transmission electron microscopy, and the contractile function of the EHT grafts monitored using a digital video camera at different time points. The results show the proliferation of cardiac cells in the microbeads and formation of interconnected multilayer heart-like tissues, the presence of well-organized and dense cell structures, the presence of intercalated discs and spaced Z lines, and the spontaneous synchronized contractility of EHT grafts (at a rate of 20-30 beats min{sup -1} after two weeks in culture). Taken together, these observations demonstrate that the novel alginate/collagen composite microbeads can provide a tissue-like microenvironment for cardiomyocytes that is suitable for fabricating native heart-like tissues.

  14. [Strategies to choose scaffold materials for tissue engineering].

    Science.gov (United States)

    Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui

    2016-02-01

    Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which

  15. Bioreactors Drive Advances in Tissue Engineering

    Science.gov (United States)

    2012-01-01

    It was an unlikely moment for inspiration. Engineers David Wolf and Ray Schwarz stopped by their lab around midday. Wolf, of Johnson Space Center, and Schwarz, with NASA contractor Krug Life Sciences (now Wyle Laboratories Inc.), were part of a team tasked with developing a unique technology with the potential to enhance medical research. But that wasn t the focus at the moment: The pair was rounding up colleagues interested in grabbing some lunch. One of the lab s other Krug engineers, Tinh Trinh, was doing something that made Wolf forget about food. Trinh was toying with an electric drill. He had stuck the barrel of a syringe on the bit; it spun with a high-pitched whirr when he squeezed the drill s trigger. At the time, a multidisciplinary team of engineers and biologists including Wolf, Schwarz, Trinh, and project manager Charles D. Anderson, who formerly led the recovery of the Apollo capsules after splashdown and now worked for Krug was pursuing the development of a technology called a bioreactor, a cylindrical device used to culture human cells. The team s immediate goal was to grow human kidney cells to produce erythropoietin, a hormone that regulates red blood cell production and can be used to treat anemia. But there was a major barrier to the technology s success: Moving the liquid growth media to keep it from stagnating resulted in turbulent conditions that damaged the delicate cells, causing them to quickly die. The team was looking forward to testing the bioreactor in space, hoping the device would perform more effectively in microgravity. But on January 28, 1986, the Space Shuttle Challenger broke apart shortly after launch, killing its seven crewmembers. The subsequent grounding of the shuttle fleet had left researchers with no access to space, and thus no way to study the effects of microgravity on human cells. As Wolf looked from Trinh s syringe-capped drill to where the bioreactor sat on a workbench, he suddenly saw a possible solution to both

  16. A hybrid stimulation strategy for suppression of spiral waves in cardiac tissue

    Energy Technology Data Exchange (ETDEWEB)

    Xu Binbin, E-mail: xubinbin@hotmail.fr [LE2I, CNRS UMR 5158, Universite de Bourgogne, Dijon (France); Jacquir, Sabir, E-mail: sjacquir@u-bourgogne.fr [LE2I, CNRS UMR 5158, Universite de Bourgogne, Dijon (France); Laurent, Gabriel; Bilbault, Jean-Marie [LE2I, CNRS UMR 5158, Universite de Bourgogne, Dijon (France); Binczak, Stephane, E-mail: stbinc@u-bourgogne.fr [LE2I, CNRS UMR 5158, Universite de Bourgogne, Dijon (France)

    2011-08-15

    Highlights: > Simulation of a cardiac tissue by a modified 2D FitzHugh-Nagumo model. > Stimulation of monophasic impulsions from a grid of electrodes to the cardiac tissue. > Propose a method by modifying the tissue's sodium channels and electrical stimulation. > The method leading to suppress spiral waves without generating new ones. > Optimal parameters of a successful suppression of spiral waves are investigated. - Abstract: Atrial fibrillation (AF) is the most common cardiac arrhythmia whose mechanisms are thought to be mainly due to the self perpetuation of spiral waves (SW). To date, available treatment strategies (antiarrhythmic drugs, radiofrequency ablation of the substrate, electrical cardioversion) to restore and to maintain a normal sinus rhythm have limitations and are associated with AF recurrences. The aim of this study was to assess a way of suppressing SW by applying multifocal electrical stimulations in a simulated cardiac tissue using a 2D FitzHugh-Nagumo model specially convenient for AF investigations. We identified stimulation parameters for successful termination of SW. However, SW reinduction, following the electrical stimuli, leads us to develop a hybrid strategy based on sodium channel modification for the simulated tissue.

  17. Acellular organ scaffolds for tumor tissue engineering

    Science.gov (United States)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  18. An Ultrastructural Analysis of Collagen in Tissue Engineered Arteries

    OpenAIRE

    Dahl, Shannon L. M.; Vaughn, Megann E.; Niklason, Laura E.

    2007-01-01

    Collagen is the structural molecule that is most correlated with strength in blood vessels. In this study, we compared the properties of collagen in engineered and native blood vessels. Transmission electron microscopy (TEM) was used to image sections of engineered and native arteries. Band periodicities of engineered and native collagen fibrils indicated that spacing between collagen molecules was similar in engineered and native tissues. Engineered arteries, however, had thinner collagen fi...

  19. Zebrafish Heart Regeneration as a Model for Cardiac Tissue Repair

    OpenAIRE

    Major, Robert J.; Poss, Kenneth D.

    2007-01-01

    Heart disease remains the leading cause of mortality throughout the world. Mammals have an extremely limited capacity to repair lost or damaged heart tissue, thus encouraging biologists to seek out models for heart regeneration. Zebrafish exhibit a robust regenerative capacity in a variety of tissues including the fin, spinal cord, retina, and heart, making it the sole regenerative vertebrate organism currently amenable to genetic manipulation. Future studies will utilize functional approache...

  20. Translational Approaches in Tissue Engineering and Regenerative Medicine

    CERN Document Server

    Mao, Jeremy J

    2007-01-01

    This landmark book identifies the current and forthcoming roadblocks to scientific research and technological development in stem cell research, tissue engineering, wound healing, and in-vivo animal models. The book is the first to focus on the translational aspect of tissue engineering and regenerative medicine and bridges the gap between laboratory discovery and clinical applications.

  1. Perspectives of Chitin and Chitosan Nanofibrous Scaffolds in Tissue Engineering

    OpenAIRE

    Jayakumar, R.; Nair, S. V.; Furuike, T.; Tamura, H.

    2010-01-01

    This review summarized the preparation and tissue engineering applications of chitin and chitosan based nanofibers. Additional studies are necessary before clinical applications and for commercialization of the chitin and chitosan based nanofibers. We hope that this review article will bring new innovative types of chitin and chitosan nanofibers for tissue engineering applications in the future.

  2. Application of microtechnologies for the vascularization of engineered tissues

    Directory of Open Access Journals (Sweden)

    Gauvin Robert

    2011-10-01

    Full Text Available Abstract Recent advances in medicine and healthcare allow people to live longer, increasing the need for the number of organ transplants. However, the number of organ donors has not been able to meet the demand, resulting in an organ shortage. The field of tissue engineering has emerged to produce organs to overcome this limitation. While tissue engineering of connective tissues such as skin and blood vessels have currently reached clinical studies, more complex organs are still far away from commercial availability due to pending challenges with in vitro engineering of 3D tissues. One of the major limitations of engineering large tissue structures is cell death resulting from the inability of nutrients to diffuse across large distances inside a scaffold. This task, carried out by the vasculature inside the body, has largely been described as one of the foremost important challenges in engineering 3D tissues since it remains one of the key steps for both in vitro production of tissue engineered construct and the in vivo integration of a transplanted tissue. This short review highlights the important challenges for vascularization and control of the microcirculatory system within engineered tissues, with particular emphasis on the use of microfabrication approaches.

  3. Tissue engineering in periodontal regeneration: A brief review

    Directory of Open Access Journals (Sweden)

    Sarita Dabra

    2012-01-01

    Full Text Available Periodontal disease is a major public health issue and the development of effective therapies to treat the disease and regenerate periodontal tissue is an important goal of today′s medicine. Regeneration of periodontal tissue is perhaps one of the most complex process to occur in the body. Langer and colleagues proposed tissue engineering as a possible technique for regenerating the lost periodontal tissues. Tissue engineering is a multidisciplinary field, which involves the application of the principles and methods of engineering and life sciences to help in the development of biological substitutes to restore, maintain or improve the function of damaged tissues and organs. A Google/Medline search was conducted and relevant literature evaluating the potential role of the tissue engineering in periodontal regeneration, which included histological studies and controlled clinical trials, was reviewed. A comprehensive search was designed. The articles were independently screened for eligibility. Articles with authentic controls and proper randomization and pertaining specifically to their role in periodontal regeneration were included. The available literature was analyzed and compiled. The analysis indicate tissue engineering to be a promising, as well as an effective novel approach to reconstruct and engineer the periodontal apparatus. Here, we represent several articles, as well as recent texts that make up a special and an in-depth review on the subject. The purpose behind writing this brief review has been to integrate the evidence of research related to tissue engineering so as to implement them in our daily practice.

  4. Powder-based 3D printing for bone tissue engineering.

    Science.gov (United States)

    Brunello, G; Sivolella, S; Meneghello, R; Ferroni, L; Gardin, C; Piattelli, A; Zavan, B; Bressan, E

    2016-01-01

    Bone tissue engineered 3-D constructs customized to patient-specific needs are emerging as attractive biomimetic scaffolds to enhance bone cell and tissue growth and differentiation. The article outlines the features of the most common additive manufacturing technologies (3D printing, stereolithography, fused deposition modeling, and selective laser sintering) used to fabricate bone tissue engineering scaffolds. It concentrates, in particular, on the current state of knowledge concerning powder-based 3D printing, including a description of the properties of powders and binder solutions, the critical phases of scaffold manufacturing, and its applications in bone tissue engineering. Clinical aspects and future applications are also discussed. PMID:27086202

  5. Powder-based 3D printing for bone tissue engineering.

    Science.gov (United States)

    Brunello, G; Sivolella, S; Meneghello, R; Ferroni, L; Gardin, C; Piattelli, A; Zavan, B; Bressan, E

    2016-01-01

    Bone tissue engineered 3-D constructs customized to patient-specific needs are emerging as attractive biomimetic scaffolds to enhance bone cell and tissue growth and differentiation. The article outlines the features of the most common additive manufacturing technologies (3D printing, stereolithography, fused deposition modeling, and selective laser sintering) used to fabricate bone tissue engineering scaffolds. It concentrates, in particular, on the current state of knowledge concerning powder-based 3D printing, including a description of the properties of powders and binder solutions, the critical phases of scaffold manufacturing, and its applications in bone tissue engineering. Clinical aspects and future applications are also discussed.

  6. Real time assessment of RF cardiac tissue ablation with optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Demos, S G; Sharareh, S

    2008-03-20

    An optical spectroscopy approach is demonstrated allowing for critical parameters during RF ablation of cardiac tissue to be evaluated in real time. The method is based on incorporating in a typical ablation catheter transmitting and receiving fibers that terminate at the tip of the catheter. By analyzing the spectral characteristics of the NIR diffusely reflected light, information is obtained on such parameters as, catheter-tissue proximity, lesion formation, depth of penetration of the lesion, formation of char during the ablation, formation of coagulum around the ablation site, differentiation of ablated from healthy tissue, and recognition of micro-bubble formation in the tissue.

  7. Low oxygen concentrations impair tissue development in tissue-engineered cardiovascular constructs

    NARCIS (Netherlands)

    Vlimmeren, M.A.A. van; Driessen-Mol, A.; Oomens, C.W.J.; Broek, M. van den; Stoop, R.; Bouten, C.V.C.; Baaijens, F.P.T.

    2012-01-01

    Cardiovascular tissue engineering has shown considerable progress, but in vitro tissue conditioning to stimulate the development of a functional extracellular matrix still needs improvement. We investigated the environmental factor oxygen concentration for its potential to increase the amount of col

  8. Epicardial adipose tissue and its role in cardiac physiology and disease 

    Directory of Open Access Journals (Sweden)

    Kacper Toczyłowski

    2013-06-01

    Full Text Available Adipose tissue secretes a number of cytokines, referred to as adipokines. Intensive studies conducted over the last two decades showed that adipokines exert broad effects on cardiac metabolism and function. In addition, the available data strongly suggests that these cytokines play an important role in development of cardiovascular diseases. Epicardial adipose tissue (EAT has special properties that distinguish it from other deposits of visceral fat. Overall, there appears to be a close functional and anatomic relationship between the EAT and the cardiac muscle. They share the same coronary blood supply, and there is no structure separating the adipose tissue from the myocardium or coronary arteries. The role of EAT in osierdziocardiac physiology remains unclear. Its putative functions include buffering coronary arteries against the torsion induced by the arterial pulse wave and cardiac contraction, regulating fatty acid homeostasis in the coronary microcirculation, thermogenesis, and neuroprotection of the cardiac autonomic ganglia and nerves. Obesity (particularly the abdominal phenotype leads to elevated EAT content, and the available data suggests that high amount of this fat depot is associated with increased risk of ischemic heart disease, cardiac hypertrophy and diastolic dysfunction. The mass of EAT is small compared to other fat deposits in the body. Nevertheless, its close anatomic relationship to the heart suggests that this organ is highly exposed to EAT-derived adipokines which makes this tissue a very promising area of research. In this paper we review the current knowledge on the role of EAT in cardiac physiology and development of heart disease.

  9. Skeletal muscle tissue engineering: strategies for volumetric constructs

    OpenAIRE

    Cittadella Vigodarzere, Giorgio; Mantero, Sara

    2014-01-01

    Skeletal muscle tissue is characterized by high metabolic requirements, defined structure and high regenerative potential. As such, it constitutes an appealing platform for tissue engineering to address volumetric defects, as proven by recent works in this field. Several issues common to all engineered constructs constrain the variety of tissues that can be realized in vitro, principal among them the lack of a vascular system and the absence of reliable cell sources; as it is, the only succes...

  10. Skeletal muscle tissue engineering: strategies for volumetric constructs

    OpenAIRE

    Giorgio eCittadella Vigodarzere; Sara eMantero

    2014-01-01

    Skeletal muscle tissue is characterized by high metabolic requirements, defined structure and high regenerative potential. As such, it constitutes an appealing platform for tissue engineering to address volumetric defects, as proven by recent works in this field.Several issues common to all engineered constructs constrain the variety of tissues that can be realized in vitro, principal among them the lack of a vascular system and the absence of reliable cell sources; as it is, the only success...

  11. Molecular Tissue Engineering:Concepts,Status and Challenge

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Tissue engineering has confronted many difficulties mainly as follows:1)How to modulate the adherence,proliferation,and oriented differentiation of seed cells, especially that of stemcells. 2) Massive preparation and sustained controllable delivery of tissue inducing factors or plasmid DNA, such as growth factors, angiogenesis stimulators,and so on. 3) Development of "intelligent biomimetic materials" as extracellular matrix with a good superficial and structural compatibility as well as biological activity to stimulate predictable, controllable and desirable responses under defined conditions.Molecular biology is currently one of the most exciting fields of research across life sciences,and the advances in it also bring a bright future for tissue engineering to overcome these difficulties.In recent years,tissue engineering benefits a lot from molecular biology.Only a comprehensive understanding of the involved ingredients of tissue engineering (cells,tissue inducing factors,genes,biomaterials) and the subtle relationships between them at molecular level can lead to a successful manipulation of reparative processes and a better biological substitute.Molecular tissue engineering,the offspring of the tissue engineering and molecular biology,has gained an increasing importance in recent years.It offers the promise of not simply replacing tissue,but improving the restoration.The studies presented in this article put forward this new concept for the first time and provide an insight into the basic principles,status and challenges of this emerging technology.

  12. Measurements of pericardial adipose tissue using contrast enhanced cardiac multidetector computed tomography—comparison with cardiac magnetic resonance imaging

    DEFF Research Database (Denmark)

    Elming, Marie Bayer; Lønborg, Jacob; Rasmussen, Thomas;

    2013-01-01

    Recent studies have suggested that pericardial adipose tissue (PAT) located in close vicinity to the epicardial coronary arteries may play a role in the development of coronary artery disease. PAT has primarily been measured with cardiac magnetic resonance imaging (CMRI) or with non...... tested, and the smallest difference in PAT was noted when -30 to -190 HU were used in MDCT measures. The median difference between MDCT and CMRI for the assessment of PAT was 9 ml (SD 50) suggesting a reasonable robust method for the assessment of PAT in a large-scale study. Pericardial adipose tissue...... and CMRI scans were performed. The optimal fit for measuring PAT using contrast MDCT was developed and validated by the corresponding measures on CMRI. The median for PAT volume in patients was 175 ml (SD 68) and 153 ml (SD 60) measured by MDCT and CMRI respectively. Four different attenuation values were...

  13. A multistep procedure to prepare pre-vascularized cardiac tissue constructs using adult stem sells, dynamic cell cultures, and porous scaffolds

    OpenAIRE

    Stefania ePagliari; Annalisa eTirella; Arti eAhluwalia; Sjoerd eDuim; Marie-Josè eGoumans; Takao eAoyagi; Giancarlo eForte

    2014-01-01

    The vascularization of tissue engineered products represents a key issue in regenerative medicine which needs to be addressed before the translation of these protocols to the bedside can be foreseen. Here we propose a multistep procedure to prepare pre-vascularized three-dimensional (3D) cardiac bio-substitutes using dynamic cell cultures and highly porous biocompatible gelatin scaffolds. The strategy adopted exploits the peculiar differentiation potential of two distinct subsets of adult ste...

  14. Bioreactors in tissue engineering - principles, applications and commercial constraints.

    Science.gov (United States)

    Hansmann, Jan; Groeber, Florian; Kahlig, Alexander; Kleinhans, Claudia; Walles, Heike

    2013-03-01

    Bioreactor technology is vital for tissue engineering. Usually, bioreactors are used to provide a tissue-specific physiological in vitro environment during tissue maturation. In addition to this most obvious application, bioreactors have the potential to improve the efficiency of the overall tissue-engineering concept. To date, a variety of bioreactor systems for tissue-specific applications have been developed. Of these, some systems are already commercially available. With bioreactor technology, various functional tissues of different types were generated and cultured in vitro. Nevertheless, these efforts and achievements alone have not yet led to many clinically successful tissue-engineered implants. We review possible applications for bioreactor systems within a tissue-engineering process and present basic principles and requirements for bioreactor development. Moreover, the use of bioreactor systems for the expansion of clinically relevant cell types is addressed. In contrast to cell expansion, for the generation of functional three-dimensional tissue equivalents, additional physical cues must be provided. Therefore, bioreactors for musculoskeletal tissue engineering are discussed. Finally, bioreactor technology is reviewed in the context of commercial constraints.

  15. Nano scaffolds and stem cell therapy in liver tissue engineering

    Science.gov (United States)

    Montaser, Laila M.; Fawzy, Sherin M.

    2015-08-01

    Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.

  16. Cell-Based Strategies for Meniscus Tissue Engineering

    Science.gov (United States)

    Niu, Wei; Guo, Weimin; Han, Shufeng; Zhu, Yun; Liu, Shuyun; Guo, Quanyi

    2016-01-01

    Meniscus injuries remain a significant challenge due to the poor healing potential of the inner avascular zone. Following a series of studies and clinical trials, tissue engineering is considered a promising prospect for meniscus repair and regeneration. As one of the key factors in tissue engineering, cells are believed to be highly beneficial in generating bionic meniscus structures to replace injured ones in patients. Therefore, cell-based strategies for meniscus tissue engineering play a fundamental role in meniscal regeneration. According to current studies, the main cell-based strategies for meniscus tissue engineering are single cell type strategies; cell coculture strategies also were applied to meniscus tissue engineering. Likewise, on the one side, the zonal recapitulation strategies based on mimicking meniscal differing cells and internal architectures have received wide attentions. On the other side, cell self-assembling strategies without any scaffolds may be a better way to build a bionic meniscus. In this review, we primarily discuss cell seeds for meniscus tissue engineering and their application strategies. We also discuss recent advances and achievements in meniscus repair experiments that further improve our understanding of meniscus tissue engineering. PMID:27274735

  17. Cell-Based Strategies for Meniscus Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Wei Niu

    2016-01-01

    Full Text Available Meniscus injuries remain a significant challenge due to the poor healing potential of the inner avascular zone. Following a series of studies and clinical trials, tissue engineering is considered a promising prospect for meniscus repair and regeneration. As one of the key factors in tissue engineering, cells are believed to be highly beneficial in generating bionic meniscus structures to replace injured ones in patients. Therefore, cell-based strategies for meniscus tissue engineering play a fundamental role in meniscal regeneration. According to current studies, the main cell-based strategies for meniscus tissue engineering are single cell type strategies; cell coculture strategies also were applied to meniscus tissue engineering. Likewise, on the one side, the zonal recapitulation strategies based on mimicking meniscal differing cells and internal architectures have received wide attentions. On the other side, cell self-assembling strategies without any scaffolds may be a better way to build a bionic meniscus. In this review, we primarily discuss cell seeds for meniscus tissue engineering and their application strategies. We also discuss recent advances and achievements in meniscus repair experiments that further improve our understanding of meniscus tissue engineering.

  18. Fourier transform infrared spectroscopic imaging of cardiac tissue to detect collagen deposition after myocardial infarction

    Science.gov (United States)

    Cheheltani, Rabee; Rosano, Jenna M.; Wang, Bin; Sabri, Abdel Karim; Pleshko, Nancy; Kiani, Mohammad F.

    2012-05-01

    Myocardial infarction often leads to an increase in deposition of fibrillar collagen. Detection and characterization of this cardiac fibrosis is of great interest to investigators and clinicians. Motivated by the significant limitations of conventional staining techniques to visualize collagen deposition in cardiac tissue sections, we have developed a Fourier transform infrared imaging spectroscopy (FT-IRIS) methodology for collagen assessment. The infrared absorbance band centered at 1338 cm-1, which arises from collagen amino acid side chain vibrations, was used to map collagen deposition across heart tissue sections of a rat model of myocardial infarction, and was compared to conventional staining techniques. Comparison of the size of the collagen scar in heart tissue sections as measured with this methodology and that of trichrome staining showed a strong correlation (R=0.93). A Pearson correlation model between local intensity values in FT-IRIS and immuno-histochemical staining of collagen type I also showed a strong correlation (R=0.86). We demonstrate that FT-IRIS methodology can be utilized to visualize cardiac collagen deposition. In addition, given that vibrational spectroscopic data on proteins reflect molecular features, it also has the potential to provide additional information about the molecular structure of cardiac extracellular matrix proteins and their alterations.

  19. Subcutaneous Tissue Thickness is an Independent Predictor of Image Noise in Cardiac CT

    OpenAIRE

    Staniak, Henrique Lane; Sharovsky, Rodolfo; Pereira, Alexandre Costa; de Castro, Cláudio Campi; Isabela M. Benseñor; Paulo A Lotufo; Bittencourt, Márcio Sommer

    2014-01-01

    Background Few data on the definition of simple robust parameters to predict image noise in cardiac computed tomography (CT) exist. Objectives To evaluate the value of a simple measure of subcutaneous tissue as a predictor of image noise in cardiac CT. Methods 86 patients underwent prospective ECG-gated coronary computed tomographic angiography (CTA) and coronary calcium scoring (CAC) with 120 kV and 150 mA. The image quality was objectively measured by the image noise in the aorta in the car...

  20. Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues.

    Science.gov (United States)

    Ozturk, Mehmet S; Chen, Chao-Wei; Ji, Robin; Zhao, Lingling; Nguyen, Bao-Ngoc B; Fisher, John P; Chen, Yu; Intes, Xavier

    2016-03-01

    Optimization of regenerative medicine strategies includes the design of biomaterials, development of cell-seeding methods, and control of cell-biomaterial interactions within the engineered tissues. Among these steps, one paramount challenge is to non-destructively image the engineered tissues in their entirety to assess structure, function, and molecular expression. It is especially important to be able to enable cell phenotyping and monitor the distribution and migration of cells throughout the bulk scaffold. Advanced fluorescence microscopic techniques are commonly employed to perform such tasks; however, they are limited to superficial examination of tissue constructs. Therefore, the field of tissue engineering and regenerative medicine would greatly benefit from the development of molecular imaging techniques which are capable of non-destructive imaging of three-dimensional cellular distribution and maturation within a tissue-engineered scaffold beyond the limited depth of current microscopic techniques. In this review, we focus on an emerging depth-resolved optical mesoscopic imaging technique, termed laminar optical tomography (LOT) or mesoscopic fluorescence molecular tomography (MFMT), which enables longitudinal imaging of cellular distribution in thick tissue engineering constructs at depths of a few millimeters and with relatively high resolution. The physical principle, image formation, and instrumentation of LOT/MFMT systems are introduced. Representative applications in tissue engineering include imaging the distribution of human mesenchymal stem cells embedded in hydrogels, imaging of bio-printed tissues, and in vivo applications. PMID:26645079

  1. Determination of cardiac output, tissue blood flow, volume and lipid content in Sprague-Dawley rats

    International Nuclear Information System (INIS)

    One critical aspect of physiologically-based pharmacokinetic (PBPK) model development is the choice of values for organ blood flows, cardiac output and tissue volumes for input into models. These values vary depending upon the strain, size, age, and sex of animal for which a PBPK model is being developed. Tissue blood flows, cardiac output, tissue volume, and lipid content were determined in male S-D rats, (350-375 g, N=8). A radiolabel microsphere method utilizing Scandium (46Sc), Tin (113Sn),and Gadolinium (153Gd) was used to determine blood flow. Each rat received 3 radiolabeled injections. After the third injection, animals were sacrificed, and radioactivity in each tissue was determined in a 3-channel gamma counter. Tissues sampled include brain, heart, kidneys, liver, lungs, spleen, pancreas, adrenals, stomach, intestines, colon, testis, bone and skeletal muscle. Cardiac output was 142 ml/min. Blood flow values for eliminating organs were 0.49 (liver), 16.52 (kidney), and 1.77 (lung) ml/min/g tissue. Tissues which had significantly increased blood flow during the dark cycle included femur, abdonimal fat, triceps brachii and abdominal muscles, stomach, spleen and lung. Dissectable fat, organ volume, and organ lipid content were determined in a separate group of rats (N= 8). Volume and lipid content were determined for the same tissues as blood flow. Body fat was 7.35% of bw and extractable lipid content of eliminating organs was 42.3 (liver), 43.4 (kidney), and 35.9 (lung) mg/g tissue. Precise measurements should improve the accuracy of PBPK model predictions, and therfore help in reducing uncertainites in risk assessment of volatile organics and other pollutnats

  2. Tissue Engineered Medical Products (TEMPs): Historische ontwikkelingen en toekomstverwachtingen

    OpenAIRE

    Wassenaar C; Geertsma RE; LGM; VTV

    2001-01-01

    In addition to medical devices, pharmaceutical products and human tissues/organs for transplantation, a relatively new group of products for medical applications can be defined. These products, referred to as Tissue Engineered Medical Products (TEMPs), are constructed by the incorporation of human or animal tissues or cells into or on a carrier (matrix) material. The ultimate aim is to replace affected tissues (or organs) in cases where the limited repair mechanisms offered by the human organ...

  3. Polycaprolactone Scaffolds Fabricated via Bioextrusion for Tissue Engineering Applications

    OpenAIRE

    Marco Domingos; Dinuccio Dinucci; Stefania Cometa; Michele Alderighi; Paulo Jorge Bártolo; Federica Chiellini

    2009-01-01

    The most promising approach in Tissue Engineering involves the seeding of porous, biocompatible/biodegradable scaffolds, with donor cells to promote tissue regeneration. Additive biomanufacturing processes are increasingly recognized as ideal techniques to produce 3D structures with optimal pore size and spatial distribution, providing an adequate mechanical support for tissue regeneration while shaping in-growing tissues. This paper presents a novel extrusion-based system to produce 3D scaff...

  4. A Review of Three-Dimensional Printing in Tissue Engineering.

    Science.gov (United States)

    Sears, Nick A; Seshadri, Dhruv R; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth

    2016-08-01

    Recent advances in three-dimensional (3D) printing technologies have led to a rapid expansion of applications from the creation of anatomical training models for complex surgical procedures to the printing of tissue engineering constructs. In addition to achieving the macroscale geometry of organs and tissues, a print layer thickness as small as 20 μm allows for reproduction of the microarchitectures of bone and other tissues. Techniques with even higher precision are currently being investigated to enable reproduction of smaller tissue features such as hepatic lobules. Current research in tissue engineering focuses on the development of compatible methods (printers) and materials (bioinks) that are capable of producing biomimetic scaffolds. In this review, an overview of current 3D printing techniques used in tissue engineering is provided with an emphasis on the printing mechanism and the resultant scaffold characteristics. Current practical challenges and technical limitations are emphasized and future trends of bioprinting are discussed. PMID:26857350

  5. In vitro biological and mechanical evaluation of various scaffold materials for myocardial tissue engineering.

    Science.gov (United States)

    Herrmann, Florian E M; Lehner, Anja; Hollweck, Trixi; Haas, Ulrike; Fano, Cornelia; Fehrenbach, David; Kozlik-Feldmann, Rainer; Wintermantel, Erich; Eissner, Gunther; Hagl, Christian; Akra, Bassil

    2014-04-01

    A cardiac patch is a construct devised in regenerative medicine to replace necrotic heart tissue after myocardial infarctions. The cardiac patch consists of a scaffold seeded with stem cells. To identify the best scaffold for cardiac patch construction we compared polyurethane, Collagen Cell Carriers, ePTFE, and ePTFE SSP1-RGD regarding their receptiveness to seeding with mesenchymal stem cells isolated from umbilical cord tissue. Seeding was tested at an array of cell seeding densities. The bioartificial patches were cultured for up to 35 days and evaluated by scanning electron microscopy, microscopy of histological stains, fluorescence microscopy, and mitochondrial assays. Polyurethane was the only biomaterial which resulted in an organized multilayer (seeding density: 0.750 × 10(6) cells/cm(2)). Cultured over 35 days at this seeding density the mitochondrial activity of the cells on polyurethane patches continually increased. There was no decrease in the E Modulus of polyurethane once seeded with cells. Seeding of CCC could only be realized at a low seeding density and both ePTFE and ePTFE SSP1-RGD were found to be unreceptive to seeding. Of the tested scaffolds polyurethane thus crystallized as the most appropriate for seeding with mesenchymal stem cells in the framework of myocardial tissue engineering.

  6. Tissue-Engineered Blood Vessels in Pediatric Cardiac Surgery

    OpenAIRE

    Shinoka, Toshiharu; Breuer, Christopher

    2008-01-01

    Pediatric cardiovascular surgeons often encounter patients requiring surgical intervention utilizing foreign materials to repair complex lesions. However, the materials that are commonly used lack growth potential, and long-term results have revealed several material-related failures, such as stenosis, thromboembolization, calcium deposition, and risk of infection. To solve these problems, in particular for children who require the implantation of dynamic material with growth potential, we so...

  7. Progress and opportunities for tissue-engineered skin

    Science.gov (United States)

    MacNeil, Sheila

    2007-02-01

    Tissue-engineered skin is now a reality. For patients with extensive full-thickness burns, laboratory expansion of skin cells to achieve barrier function can make the difference between life and death, and it was this acute need that drove the initiation of tissue engineering in the 1980s. A much larger group of patients have ulcers resistant to conventional healing, and treatments using cultured skin cells have been devised to restart the wound-healing process. In the laboratory, the use of tissue-engineered skin provides insight into the behaviour of skin cells in healthy skin and in diseases such as vitiligo, melanoma, psoriasis and blistering disorders.

  8. Culturing Mouse Cardiac Valves in the Miniature Tissue Culture System.

    Science.gov (United States)

    Kruithof, Boudewijn P T; Lieber, Samuel C; Kruithof-de Julio, Marianna; Gaussin, Vincian; Goumans, Marie José

    2015-01-01

    Heart valve disease is a major burden in the Western world and no effective treatment is available. This is mainly due to a lack of knowledge of the molecular, cellular and mechanical mechanisms underlying the maintenance and/or loss of the valvular structure. Current models used to study valvular biology include in vitro cultures of valvular endothelial and interstitial cells. Although, in vitro culturing models provide both cellular and molecular mechanisms, the mechanisms involved in the 3D-organization of the valve remain unclear. While in vivo models have provided insight into the molecular mechanisms underlying valvular development, insight into adult valvular biology is still elusive. In order to be able to study the regulation of the valvular 3D-organization on tissue, cellular and molecular levels, we have developed the Miniature Tissue Culture System. In this ex vivo flow model the mitral or the aortic valve is cultured in its natural position in the heart. The natural configuration and composition of the leaflet are maintained allowing the most natural response of the valvular cells to stimuli. The valves remain viable and are responsive to changing environmental conditions. This MTCS may provide advantages on studying questions including but not limited to, how does the 3D organization affect valvular biology, what factors affect 3D organization of the valve, and which network of signaling pathways regulates the 3D organization of the valve. PMID:26555276

  9. Self-synthesized extracellular matrix contributes to mature adipose tissue regeneration in a tissue engineering chamber.

    Science.gov (United States)

    Zhan, Weiqing; Chang, Qiang; Xiao, Xiaolian; Dong, Ziqing; Zeng, Zhaowei; Gao, Jianhua; Lu, Feng

    2015-01-01

    The development of an engineered adipose tissue substitute capable of supporting reliable, predictable, and complete fat tissue regeneration would be of value in plastic and reconstructive surgery. For adipogenesis, a tissue engineering chamber provides an optimized microenvironment that is both efficacious and reproducible; however, for reasons that remain unclear, tissues regenerated in a tissue engineering chamber consist mostly of connective rather than adipose tissue. Here, we describe a chamber-based system for improving the yield of mature adipose tissue and discuss the potential mechanism of adipogenesis in tissue-chamber models. Adipose tissue flaps with independent vascular pedicles placed in chambers were implanted into rabbits. Adipose volume increased significantly during the observation period (week 1, 2, 3, 4, 16). Histomorphometry revealed mature adipose tissue with signs of adipose tissue remolding. The induced engineered constructs showed high-level expression of adipogenic (peroxisome proliferator-activated receptor γ), chemotactic (stromal cell-derived factor 1a), and inflammatory (interleukin 1 and 6) genes. In our system, the extracellular matrix may have served as a scaffold for cell migration and proliferation, allowing mature adipose tissue to be obtained in a chamber microenvironment without the need for an exogenous scaffold. Our results provide new insights into key elements involved in the early development of adipose tissue regeneration.

  10. Efficient generation of human embryonic stem cell-derived cardiac progenitors based on tissue-specific enhanced green fluorescence protein expression.

    Science.gov (United States)

    Szebényi, Kornélia; Péntek, Adrienn; Erdei, Zsuzsa; Várady, György; Orbán, Tamás I; Sarkadi, Balázs; Apáti, Ágota

    2015-01-01

    Cardiac progenitor cells (CPCs) are committed to the cardiac lineage but retain their proliferative capacity before becoming quiescent mature cardiomyocytes (CMs). In medical therapy and research, the use of human pluripotent stem cell-derived CPCs would have several advantages compared with mature CMs, as the progenitors show better engraftment into existing heart tissues, and provide unique potential for cardiovascular developmental as well as for pharmacological studies. Here, we demonstrate that the CAG promoter-driven enhanced green fluorescence protein (EGFP) reporter system enables the identification and isolation of embryonic stem cell-derived CPCs. Tracing of CPCs during differentiation confirmed up-regulation of surface markers, previously described to identify cardiac precursors and early CMs. Isolated CPCs express cardiac lineage-specific transcripts, still have proliferating capacity, and can be re-aggregated into embryoid body-like structures (CAG-EGFP(high) rEBs). Expression of troponin T and NKX2.5 mRNA is up-regulated in long-term cultured CAG-EGFP(high) rEBs, in which more than 90% of the cells become Troponin I positive mature CMs. Moreover, about one third of the CAG-EGFP(high) rEBs show spontaneous contractions. The method described here provides a powerful tool to generate expandable cultures of pure human CPCs that can be used for exploring early markers of the cardiac lineage, as well as for drug screening or tissue engineering applications.

  11. Tendon Tissue Engineering: Progress, Challenges, and Translation to the Clinic

    Science.gov (United States)

    Shearn, Jason T.; Kinneberg, Kirsten R.C.; Dyment, Nathaniel A.; Galloway, Marc T.; Kenter, Keith; Wylie, Christopher; Butler, David L.

    2013-01-01

    The tissue engineering field has made great strides in understanding how different aspects of tissue engineered constructs (TECs) and the culture process affect final tendon repair. However, there remain significant challenges in developing strategies that will lead to a clinically effective and commercially successful product. In an effort to increase repair quality, a better understanding of normal development, and how it differs from adult tendon healing, may provide strategies to improve tissue engineering. As tendon tissue engineering continues to improve, the field needs to employ more clinically relevant models of tendon injury such as degenerative tendons. We need to translate successes to larger animal models to begin exploring the clinical implications of our treatments. By advancing the models used to validate our TECs, we can help convince our toughest customer, the surgeon, that our products will be clinically efficacious. As we address these challenges in musculoskeletal tissue engineering, the field still needs to address the commercialization of products developed in the laboratory. TEC commercialization faces numerous challenges because each injury and patient is unique. This review aims to provide tissue engineers with a summary of important issues related to engineering tendon repairs and potential strategies for producing clinically successful products. PMID:21625053

  12. Recent insights on applications of pullulan in tissue engineering.

    Science.gov (United States)

    Singh, Ram Sarup; Kaur, Navpreet; Rana, Vikas; Kennedy, John F

    2016-11-20

    Tissue engineering is a recently emerging line of act which assists the regeneration of damaged tissues, unable to self-repair themselves and in turn, enhances the natural healing potential of patients. The repair of injured tissue can be induced with the help of some artificially created polymer scaffolds for successful tissue regeneration. The pullulan composite scaffolds can be used to enhance the proliferation and differentiation of cells for tissue regeneration. The unique pattern of pullulan with α-(1→4) and α-(1→6) linkages along with the presence of nine hydroxyl groups on its surface, endows the polymer with distinctive physical features required for tissue engineering. Pullulan can be used for vascular engineering, bone repair and skin tissue engineering. Pullulan composite scaffolds can also be used for treatment of injured femoral condyle bone, skull bone and full thickness skin wound of murine models, transversal mandibular and tibial osteotomy in goat, etc. This review article highlights the latest developments on applications of pullulan and its derivatives in tissue engineering. PMID:27561517

  13. Defining the mid-diastolic imaging period for cardiac CT – lessons from tissue Doppler echocardiography

    Directory of Open Access Journals (Sweden)

    Otton James M

    2013-02-01

    Full Text Available Abstract Background Aggressive dose reduction strategies for cardiac CT require the prospective selection of limited cardiac phases. At lower heart rates, the period of mid-diastole is typically selected for image acquisition. We aimed to identify the effect of heart rate on the optimal CT acquisition phase within the period of mid-diastole. Methods We utilized high temporal resolution tissue Doppler to precisely measure coronary motion within diastole. Tissue-Doppler waveforms of the myocardium corresponding to the location of the circumflex artery (100 patients and mid-right coronary arteries (50 patients and the duration and timing of coronary motion were measured. Using regression analysis an equation was derived for the timing of the period of minimal coronary motion within the RR interval. In a validation set of 50 clinical cardiac CT examinations, we assessed coronary motion artifact and the effect of using a mid-diastolic imaging target that was adjusted according to heart rate vs a fixed 75% phase target. Results Tissue Doppler analysis shows the period of minimal cardiac motion suitable for CT imaging decreases almost linearly as the RR interval decreases, becoming extinguished at an average heart rate of 91 bpm for the circumflex (LCX and 78 bpm for the right coronary artery (RCA. The optimal imaging phase has a strong linear relationship with RR duration (R2 = 0.92 LCX, 0.89 RCA. The optimal phase predicted by regression analysis of the tissue-Doppler waveforms increases from 74% at a heart rate of 55 bpm to 77% at 75 bpm. In the clinical CT validation set, the optimal CT acquisition phase similarly occurred later with increasing heart rate. When the selected cardiac phase was adjusted according to heart rate the result was closer to the optimal phase than using a fixed 75% phase. While this effect was statistically significant (p  Conclusion High temporal resolution imaging of coronary motion can be used to predict the optimal

  14. Transplantation of genetically engineered cardiac fibroblasts producing recombinant human erythropoietin to repair the infarcted myocardium

    Directory of Open Access Journals (Sweden)

    Ruvinov Emil

    2008-11-01

    Full Text Available Abstract Background Erythropoietin possesses cellular protection properties. The aim of the present study was to test the hypothesis that in situ expression of recombinant human erythropoietin (rhEPO would improve tissue repair in rat after myocardial infarction (MI. Methods and results RhEPO-producing cardiac fibroblasts were generated ex vivo by transduction with retroviral vector. The anti-apoptotic effect of rhEPO-producing fibroblasts was evaluated by co-culture with rat neonatal cardiomyocytes exposed to H2O2-induced oxidative stress. Annexin V/PI assay and DAPI staining showed that compared with control, rhEPO forced expression markedly attenuated apoptosis and improved survival of cultured cardiomyocytes. To test the effect of rhEPO on the infarcted myocardium, Sprague-Dawley rats were subjected to permanent coronary artery occlusion, and rhEPO-producing fibroblasts, non-transduced fibroblasts, or saline, were injected into the scar tissue seven days after infarction. One month later, immunostaining identified rhEPO expression in the implanted engineered cells but not in controls. Compared with non-transduced fibroblasts or saline injection, implanted rhEPO-producing fibroblasts promoted vascularization in the scar, and prevented cell apoptosis. By two-dimensional echocardiography and postmortem morphometry, transplanted EPO-engineered fibroblasts did not prevent left ventricular (LV dysfunction and adverse LV remodeling 5 and 9 weeks after MI. Conclusion In situ expression of rhEPO enhances vascularization and reduces cell apoptosis in the infarcted myocardium. However, local EPO therapy is insufficient for functional improvement after MI in rat.

  15. Generating New Blood Flow : Integrating Developmental Biology and Tissue Engineering

    NARCIS (Netherlands)

    Krenning, Guido; Moonen, Jan-Renier A. J.; van Luyn, Marja J. A.; Harmsen, Martin C.

    2008-01-01

    Vascular tissue engineering aims to restore blood flow by seeding artificial tubular scaffolds with endothelial and smooth muscle cells, thus creating bioartificial blood vessels. Herein, the progenitors of smooth muscle and endothelial cells hold great promise because they efficiently differentiate

  16. Production of extracellular matrix powder for tissue engineering

    Directory of Open Access Journals (Sweden)

    Sanambar Sadighi

    2014-09-01

    Conclusion: The results show that our decellularization method produced an adipose ECM scaffold rich of collagen fibers, suitable and effective substrate for use in soft tissue engineering and regenerative medicine.

  17. Tissue Engineering for Intervertebral Disk Degeneration

    OpenAIRE

    Leung, VYL; Chan, D; Chan, BP; Cheung, KMC; Tam, V

    2011-01-01

    Many challenges confront intervertebral disk engineering owing to complexity and the presence of extraordinary stresses. Rebuilding a disk of native function could be useful for removal of the symptoms and correction of altered spine kinematics. Improvement in understanding of disk properties and techniques for disk engineering brings promise to the fabrication of a functional motion segment for the treatment of disk degeneration. Increasing sophistication of techniques available in biomedica...

  18. 3D Nanoprinting Technologies for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Jin Woo Lee

    2015-01-01

    Full Text Available Tissue engineering recovers an original function of tissue by replacing the damaged part with a new tissue or organ regenerated using various engineering technologies. This technology uses a scaffold to support three-dimensional (3D tissue formation. Conventional scaffold fabrication methods do not control the architecture, pore shape, porosity, or interconnectivity of the scaffold, so it has limited ability to stimulate cell growth and to generate new tissue. 3D printing technologies may overcome these disadvantages of traditional fabrication methods. These technologies use computers to assist in design and fabrication, so the 3D scaffolds can be fabricated as designed and standardized. Particularly, because nanofabrication technology based on two-photon absorption (2PA and on controlled electrospinning can generate structures with submicron resolution, these methods have been evaluated in various areas of tissue engineering. Recent combinations of 3D nanoprinting technologies with methods from molecular biology and cell dynamics have suggested new possibilities for improved tissue regeneration. If the interaction between cells and scaffold system with biomolecules can be understood and controlled and if an optimal 3D environment for tissue regeneration can be realized, 3D nanoprinting will become an important tool in tissue engineering.

  19. Tendon Tissue Engineering: Progress, Challenges, and Translation to the Clinic

    OpenAIRE

    Jason T Shearn; Kinneberg, Kirsten R. C.; Dyment, Nathaniel A; Galloway, Marc T.; Kenter, Keith; Wylie, Christopher; David L Butler

    2011-01-01

    The tissue engineering field has made great strides in understanding how different aspects of tissue engineered constructs (TECs) and the culture process affect final tendon repair. However, there remain significant challenges in developing strategies that will lead to a clinically effective and commercially successful product. In an effort to increase repair quality, a better understanding of normal development, and how it differs from adult tendon healing, may provide strategies to improve ...

  20. Translational Models for Musculoskeletal Tissue Engineering and Regenerative Medicine

    OpenAIRE

    Sah, Robert L.; Ratcliffe, Anthony

    2010-01-01

    The National Institutes of Health–sponsored workshop “Translational Models for Musculoskeletal Tissue Engineering and Regenerative Medicine” was held to describe the utility of various translational models for engineered tissues and regenerative medicine therapies targeting intervertebral disc, cartilage, meniscus, ligament, tendon, muscle, and bone. Participants included leaders in the various topics, as well as National Institutes of Health and Food and Drug Administration. The Food and Dru...

  1. Impedance-based monitoring for tissue engineering applications

    DEFF Research Database (Denmark)

    Canali, Chiara; Heiskanen, Arto; Martinsen, Ø.G.;

    2015-01-01

    Impedance is a promising technique for sensing the overall process of tissue engineering. Different electrode configurations can be used to characterize the scaffold that supports cell organization in terms of hydrogel polymerization and degree of porosity, monitoring cell loading, cell prolifera......Impedance is a promising technique for sensing the overall process of tissue engineering. Different electrode configurations can be used to characterize the scaffold that supports cell organization in terms of hydrogel polymerization and degree of porosity, monitoring cell loading, cell...

  2. Induced Pluripotent Stem Cells for Neural Tissue Engineering

    OpenAIRE

    Wang, Aijun; Tang, Zhenyu; Park, In-Hyun; Zhu, Yiqian; Patel, Shyam; Daley, George Q.; Song, Li

    2011-01-01

    Induced pluripotent stem cells (iPSCs) hold great promise for cell therapies and tissue engineering. Neural crest stem cells (NCSCs) are multipotent and represent a valuable system to investigate iPSC differentiation and therapeutic potential. Here we derived NCSCs from human iPSCs and embryonic stem cells (ESCs), and investigated the potential of NCSCs for neural tissue engineering. The differentiation of iPSCs and the expansion of derived NCSCs varied in different cell lines, but all NCSC l...

  3. Tissue Engineering for the Neonatal and Pediatric Patients

    Directory of Open Access Journals (Sweden)

    Amulya K. Saxena

    2012-01-01

    Full Text Available Of all the surgical specialties, the remit of the pediatric surgeon encompasses the widest range of organ systems and includes disorders from the fetus to the adolescent. As such, the recent emergence of tissue engineering is of particular interest to the pediatric surgical community. The individual challenges of tissue engineering depend largely on the nature and function of the target tissue. In general, the main issues currently under investigation include the sourcing of an appropriate cell source, design of biomaterials for guided tissue growth, provision of a biomolecular stimulus to enhance cellular functions and the development of bioreactors to allow for prolonged periods of cell culture under specific physiological conditions. This review aims to provide a general overview of tissue engineering in the major organ systems, including the cardiovascular, digestive, urinary, respiratory, musculoskeletal, nervous, integumentary and lymphatic systems. Special attention is paid to pediatrics as well as recent clinical applications.

  4. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2016-09-01

    Full Text Available Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering.

  5. OPTOGENETICS: A NOVEL APPROACH IN PACING HAERT TISSUE AND ENGENDER PROPAGATING CARDIAC IMPULSES

    Directory of Open Access Journals (Sweden)

    Pasam Naga Abhinay

    2012-04-01

    Full Text Available The cardiac pacemaker controls the rhythmicity of heart contractions and these can be substituted by battery-operated devices as last resource. Optogenetics involves insertion of light-sensitive proteins into human embryonic stem cell to encode DNA making mammalian tissues light-sensitive. The first discovered protein of this type is Channelrhodopsin2 (ChR2, which is widely used in neuroscience. The limitation of electrical stimulation of heart, a standard technique can be overcome by using ChR2.The various methods involved in optogenetics and energy needs were discussed in this section. Initially, optogenetics is confined only to neuronal system, later on extended to heart and other organs. This method involves precise localized stimulation and constant prolonged depolarization of cardiomyocytes and cardiac tissue resulting in alterations of pacemaking, Ca2+ homeostasis, electrical coupling and arrhythmogenic spontaneous extra beats.

  6. Engineering spinal fusion: evaluating ceramic materials for cell based tissue engineered approaches

    NARCIS (Netherlands)

    Wilson, C.E.

    2011-01-01

    The principal aim of this thesis was to advance the development of tissue engineered posterolateral spinal fusion by investigating the potential of calcium phosphate ceramic materials to support cell based tissue engineered bone formation. This was accomplished by developing several novel model syst

  7. A bioreactor system for clinically relevant bone tissue engineering

    NARCIS (Netherlands)

    Janssen, Franciscus Wilhelmus

    2010-01-01

    Tissue engineering of bone by combining mesenchymal stem cells (MSCs) with a suitable ceramic carrier provides a potential alternative for autologous bone grafts. However, for large scale-production, the current two dimensional (2D) multiplication process in tissue culture flasks has some serious dr

  8. Challenges and opportunities for tissue-engineering polarized epithelium.

    Science.gov (United States)

    Paz, Ana C; Soleas, John; Poon, James C H; Trieu, Dennis; Waddell, Thomas K; McGuigan, Alison P

    2014-02-01

    The epithelium is one of the most important tissue types in the body and the specific organization of the epithelial cells in these tissues is important for achieving appropriate function. Since many tissues contain an epithelial component, engineering functional epithelium and understanding the factors that control epithelial maturation and organization are important for generating whole artificial organ replacements. Furthermore, disruption of the cellular organization leads to tissue malfunction and disease; therefore, engineered epithelium could provide a valuable in vitro model to study disease phenotypes. Despite the importance of epithelial tissues, a surprisingly limited amount of effort has been focused on organizing epithelial cells into artificial polarized epithelium with an appropriate structure that resembles that seen in vivo. In this review, we provide an overview of epithelial tissue organization and highlight the importance of cell polarization to achieve appropriate epithelium function. We next describe the in vitro models that exist to create polarized epithelium and summarize attempts to engineer artificial epithelium for clinical use. Finally, we highlight the opportunities that exist to translate strategies from tissue engineering other tissues to generate polarized epithelium with a functional structure.

  9. Engineered Polymeric Hydrogels for 3D Tissue Models

    Directory of Open Access Journals (Sweden)

    Sujin Park

    2016-01-01

    Full Text Available Polymeric biomaterials are widely used in a wide range of biomedical applications due to their unique properties, such as biocompatibility, multi-tunability and easy fabrication. Specifically, polymeric hydrogel materials are extensively utilized as therapeutic implants and therapeutic vehicles for tissue regeneration and drug delivery systems. Recently, hydrogels have been developed as artificial cellular microenvironments because of the structural and physiological similarity to native extracellular matrices. With recent advances in hydrogel materials, many researchers are creating three-dimensional tissue models using engineered hydrogels and various cell sources, which is a promising platform for tissue regeneration, drug discovery, alternatives to animal models and the study of basic cell biology. In this review, we discuss how polymeric hydrogels are used to create engineered tissue constructs. Specifically, we focus on emerging technologies to generate advanced tissue models that precisely recapitulate complex native tissues in vivo.

  10. Cardiac tissue enriched factors serum response factor and GATA-4 are mutual coregulators

    Science.gov (United States)

    Belaguli, N. S.; Sepulveda, J. L.; Nigam, V.; Charron, F.; Nemer, M.; Schwartz, R. J.

    2000-01-01

    Combinatorial interaction among cardiac tissue-restricted enriched transcription factors may facilitate the expression of cardiac tissue-restricted genes. Here we show that the MADS box factor serum response factor (SRF) cooperates with the zinc finger protein GATA-4 to synergistically activate numerous myogenic and nonmyogenic serum response element (SRE)-dependent promoters in CV1 fibroblasts. In the absence of GATA binding sites, synergistic activation depends on binding of SRF to the proximal CArG box sequence in the cardiac and skeletal alpha-actin promoter. GATA-4's C-terminal activation domain is obligatory for synergistic coactivation with SRF, and its N-terminal domain and first zinc finger are inhibitory. SRF and GATA-4 physically associate both in vivo and in vitro through their MADS box and the second zinc finger domains as determined by protein A pullout assays and by in vivo one-hybrid transfection assays using Gal4 fusion proteins. Other cardiovascular tissue-restricted GATA factors, such as GATA-5 and GATA-6, were equivalent to GATA-4 in coactivating SRE-dependent targets. Thus, interaction between the MADS box and C4 zinc finger proteins, a novel regulatory paradigm, mediates activation of SRF-dependent gene expression.

  11. Impact of Detergent-Based Decellularization Methods on Porcine Tissues for Heart Valve Engineering.

    Science.gov (United States)

    Roosens, Annelies; Somers, Pamela; De Somer, Filip; Carriel, Victor; Van Nooten, Guido; Cornelissen, Ria

    2016-09-01

    To date an optimal decellularization protocol of heart valve leaflets (HVL) and pericardia (PER) with an adequate preservation of the extracellular matrix (ECM) is still lacking. This study compares a 4 day Triton X-100-based protocol with faster SDC-based protocols for the decellularization of cardiac tissues. Decellularized and non-treated HVL and PER were processed for histological, biochemical and mechanical analysis to determine the effect of these agents on the structure, ECM components, and biomechanical properties. Tissues treated with SDC-based protocols still showed nuclear material, whereas tissues treated with Triton X-100 1% + ENZ ± TRYP were completely cell free. For both decellularized tissues, an almost complete washout of glycosaminoglycans, a reduction of soluble collagen and an alteration of the surface ultrastructure was observed. Interestingly, only the elastic fibers of pericardial tissue were affected and this tissue had a decreased maximum load. This study showed that both detergents had a similar impact on the ECM. However, Triton X-100 1% +DNase/RNase (ENZ) ± Trypsin (TRYP) is the only protocol that generated completely cell free bioscaffolds. Also, our study clearly demonstrated that the decellularization agents have more impact on pericardial tissues than on heart valve leaflets. Thus, for the purpose of tissue engineering of heart valves, it is advisable to use valvular rather than pericardial matrices. PMID:26842626

  12. Cardiac adipose tissue and its relationship to diabetes mellitus and cardiovascular disease

    Institute of Scientific and Technical Information of China (English)

    Adam; M; Noyes; Kirandeep; Dua; Ramprakash; Devadoss; Lovely; Chhabra

    2014-01-01

    Type-2 diabetes mellitus(T2DM) plays a central role in the development of cardiovascular disease(CVD). However, its relationship to epicardial adipose tissue(EAT) and pericardial adipose tissue(PAT) in particular is important in the pathophysiology of coronary artery disease. Owing to its close proximity to the heart and coronary vasculature, EAT exerts a direct metabolic impact by secreting proinflammatory adipokines and free fatty acids, which promote CVD locally. In this review, we have discussed the relationship between T2 DM and cardiac fat deposits, particularly EAT and PAT, which together exert a big impact on the cardiovascular health.

  13. Subcutaneous Tissue Thickness is an Independent Predictor of Image Noise in Cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Staniak, Henrique Lane; Sharovsky, Rodolfo [Hospital Universitário - Universidade de São Paulo, São Paulo, SP (Brazil); Pereira, Alexandre Costa [Hospital das Clínicas - Universidade de São Paulo, São Paulo, SP (Brazil); Castro, Cláudio Campi de; Benseñor, Isabela M.; Lotufo, Paulo A. [Hospital Universitário - Universidade de São Paulo, São Paulo, SP (Brazil); Faculdade de Medicina - Universidade de São Paulo, São Paulo, SP (Brazil); Bittencourt, Márcio Sommer, E-mail: msbittencourt@mail.harvard.edu [Hospital Universitário - Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-01-15

    Few data on the definition of simple robust parameters to predict image noise in cardiac computed tomography (CT) exist. To evaluate the value of a simple measure of subcutaneous tissue as a predictor of image noise in cardiac CT. 86 patients underwent prospective ECG-gated coronary computed tomographic angiography (CTA) and coronary calcium scoring (CAC) with 120 kV and 150 mA. The image quality was objectively measured by the image noise in the aorta in the cardiac CTA, and low noise was defined as noise < 30HU. The chest anteroposterior diameter and lateral width, the image noise in the aorta and the skin-sternum (SS) thickness were measured as predictors of cardiac CTA noise. The association of the predictors and image noise was performed by using Pearson correlation. The mean radiation dose was 3.5 ± 1.5 mSv. The mean image noise in CT was 36.3 ± 8.5 HU, and the mean image noise in non-contrast scan was 17.7 ± 4.4 HU. All predictors were independently associated with cardiac CTA noise. The best predictors were SS thickness, with a correlation of 0.70 (p < 0.001), and noise in the non-contrast images, with a correlation of 0.73 (p < 0.001). When evaluating the ability to predict low image noise, the areas under the ROC curve for the non-contrast noise and for the SS thickness were 0.837 and 0.864, respectively. Both SS thickness and CAC noise are simple accurate predictors of cardiac CTA image noise. Those parameters can be incorporated in standard CT protocols to adequately adjust radiation exposure.

  14. Characterization of Sulfated Alginate Hybrid Gels for Tissue Engineering

    OpenAIRE

    Aaen, Ragnhild

    2015-01-01

    Tissue engineering is a field aiming to replace damaged tissue while reducing the great need of organ donors the world is facing today. Alginates are linear co-polymers consisting of the two monosaccharides β-D-mannuronic acid (M), and its 5-epimer α-L-guluronic acid (G). They can form hydrogels, and are candidates for use in tissue engineering scaffolds. Alginate is readily available at a low cost, and its hydrogels meet requirements of scaffolds such as mechanical strength and good biocomp...

  15. Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances

    Directory of Open Access Journals (Sweden)

    Julien Barthes

    2014-01-01

    Full Text Available In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells’ behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.

  16. Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances

    Science.gov (United States)

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future. PMID:25143954

  17. The Application of Sheet Technology in Cartilage Tissue Engineering.

    Science.gov (United States)

    Ge, Yang; Gong, Yi Yi; Xu, Zhiwei; Lu, Yanan; Fu, Wei

    2016-04-01

    Cartilage tissue engineering started to act as a promising, even essential alternative method in the process of cartilage repair and regeneration, considering adult avascular structure has very limited self-renewal capacity of cartilage tissue in adults and a bottle-neck existed in conventional surgical treatment methods. Recent progressions in tissue engineering realized the development of more feasible strategies to treat cartilage disorders. Of these strategies, cell sheet technology has shown great clinical potentials in the regenerative areas such as cornea and esophagus and is increasingly considered as a potential way to reconstruct cartilage tissues for its non-use of scaffolds and no destruction of matrix secreted by cultured cells. Acellular matrix sheet technologies utilized in cartilage tissue engineering, with a sandwich model, can ingeniously overcome the drawbacks that occurred in a conventional acellular block, where cells are often blocked from migrating because of the non-nanoporous structure. Electrospun-based sheets with nanostructures that mimic the natural cartilage matrix offer a level of control as well as manipulation and make them appealing and widely used in cartilage tissue engineering. In this review, we focus on the utilization of these novel and promising sheet technologies to construct cartilage tissues with practical and beneficial functions. PMID:26414455

  18. Electrical stimulation: a novel tool for tissue engineering.

    Science.gov (United States)

    Balint, Richard; Cassidy, Nigel J; Cartmell, Sarah H

    2013-02-01

    New advances in tissue engineering are being made through the application of different types of electrical stimuli to influence cell proliferation and differentiation. Developments made in the last decade have allowed us to improve the structure and functionality of tissue-engineered products through the use of growth factors, hormones, drugs, physical stimuli, bioreactor use, and two-dimensional (2-D) and three-dimensional (3-D) artificial extracellular matrices (with various material properties and topography). Another potential type of stimulus is electricity, which is important in the physiology and development of the majority of all human tissues. Despite its great potential, its role in tissue regeneration and its ability to influence cell migration, orientation, proliferation, and differentiation has rarely been considered in tissue engineering. This review highlights the importance of endogenous electrical stimulation, gathering the current knowledge on its natural occurrence and role in vivo, discussing the novel methods of delivering this stimulus and examining its cellular and tissue level effects, while evaluating how the technique could benefit the tissue engineering discipline in the future.

  19. Stem and progenitor cells: advancing bone tissue engineering.

    Science.gov (United States)

    Tevlin, R; Walmsley, G G; Marecic, O; Hu, Michael S; Wan, D C; Longaker, M T

    2016-04-01

    Unlike many other postnatal tissues, bone can regenerate and repair itself; nevertheless, this capacity can be overcome. Traditionally, surgical reconstructive strategies have implemented autologous, allogeneic, and prosthetic materials. Autologous bone--the best option--is limited in supply and also mandates an additional surgical procedure. In regenerative tissue engineering, there are myriad issues to consider in the creation of a functional, implantable replacement tissue. Importantly, there must exist an easily accessible, abundant cell source with the capacity to express the phenotype of the desired tissue, and a biocompatible scaffold to deliver the cells to the damaged region. A literature review was performed using PubMed; peer-reviewed publications were screened for relevance in order to identify key advances in stem and progenitor cell contribution to the field of bone tissue engineering. In this review, we briefly introduce various adult stem cells implemented in bone tissue engineering such as mesenchymal stem cells (including bone marrow- and adipose-derived stem cells), endothelial progenitor cells, and induced pluripotent stem cells. We then discuss numerous advances associated with their application and subsequently focus on technological advances in the field, before addressing key regenerative strategies currently used in clinical practice. Stem and progenitor cell implementation in bone tissue engineering strategies have the ability to make a major impact on regenerative medicine and reduce patient morbidity. As the field of regenerative medicine endeavors to harness the body's own cells for treatment, scientific innovation has led to great advances in stem cell-based therapies in the past decade.

  20. Smooth muscle strips for intestinal tissue engineering.

    Directory of Open Access Journals (Sweden)

    Christopher M Walthers

    Full Text Available Functionally contracting smooth muscle is an essential part of the engineered intestine that has not been replicated in vitro. The purpose of this study is to produce contracting smooth muscle in culture by maintaining the native smooth muscle organization. We employed intact smooth muscle strips and compared them to dissociated smooth muscle cells in culture for 14 days. Cells isolated by enzymatic digestion quickly lost maturity markers for smooth muscle cells and contained few enteric neural and glial cells. Cultured smooth muscle strips exhibited periodic contraction and maintained neural and glial markers. Smooth muscle strips cultured for 14 days also exhibited regular fluctuation of intracellular calcium, whereas cultured smooth muscle cells did not. After implantation in omentum for 14 days on polycaprolactone scaffolds, smooth muscle strip constructs expressed high levels of smooth muscle maturity markers as well as enteric neural and glial cells. Intact smooth muscle strips may be a useful component for engineered intestinal smooth muscle.

  1. Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms

    Directory of Open Access Journals (Sweden)

    Wan Nurlina Wan Yahya

    2014-07-01

    Full Text Available Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration.

  2. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering.

    Science.gov (United States)

    Brugmans, Marieke M C P; Soekhradj-Soechit, R Sarita; van Geemen, Daphne; Cox, Martijn; Bouten, Carlijn V C; Baaijens, Frank P T; Driessen-Mol, Anita

    2016-01-01

    Synthetic polymers are widely used to fabricate porous scaffolds for the regeneration of cardiovascular tissues. To ensure mechanical integrity, a balance between the rate of scaffold absorption and tissue formation is of high importance. A higher rate of tissue formation is expected in fast-degrading materials than in slow-degrading materials. This could be a result of synthetic cells, which aim to compensate for the fast loss of mechanical integrity of the scaffold by deposition of collagen fibers. Here, we studied the effect of fast-degrading polyglycolic acid scaffolds coated with poly-4-hydroxybutyrate (PGA-P4HB) and slow-degrading poly-ɛ-caprolactone (PCL) scaffolds on amount of tissue, composition, and mechanical characteristics in time, and compared these engineered values with values for native human heart valves. Electrospun PGA-P4HB and PCL scaffolds were either kept unseeded in culture or were seeded with human vascular-derived cells. Tissue formation, extracellular matrix (ECM) composition, remaining scaffold weight, tissue-to-scaffold weight ratio, and mechanical properties were analyzed every week up to 6 weeks. Mass of unseeded PCL scaffolds remained stable during culture, whereas PGA-P4HB scaffolds degraded rapidly. When seeded with cells, both scaffold types demonstrated increasing amounts of tissue with time, which was more pronounced for PGA-P4HB-based tissues during the first 2 weeks; however, PCL-based tissues resulted in the highest amount of tissue after 6 weeks. This study is the first to provide insight into the tissue-to-scaffold weight ratio, therewith allowing for a fair comparison between engineered tissues cultured on scaffolds as well as between native heart valve tissues. Although the absolute amount of ECM components differed between the engineered tissues, the ratio between ECM components was similar after 6 weeks. PCL-based tissues maintained their shape, whereas the PGA-P4HB-based tissues deformed during culture. After 6 weeks

  3. Extraction and Assembly of Tissue-Derived Gels for Cell Culture and Tissue Engineering

    OpenAIRE

    Uriel, Shiri; Labay, Edwardine; Francis-Sedlak, Megan; Moya, Monica L.; Weichselbaum, Ralph R.; Ervin, Natalia; Cankova, Zdravka; Eric M Brey

    2008-01-01

    Interactions with the extracellular matrix (ECM) play an important role in regulating cell function. Cells cultured in, or on, three-dimensional ECM recapitulate similar features to those found in vivo that are not present in traditional two-dimensional culture. In addition, both natural and synthetic materials containing ECM components have shown promise in a number of tissue engineering applications. Current materials available for cell culture and tissue engineering do not adequately refle...

  4. An adipoinductive role of inflammation in adipose tissue engineering: key factors in the early development of engineered soft tissues.

    Science.gov (United States)

    Lilja, Heidi E; Morrison, Wayne A; Han, Xiao-Lian; Palmer, Jason; Taylor, Caroline; Tee, Richard; Möller, Andreas; Thompson, Erik W; Abberton, Keren M

    2013-05-15

    Tissue engineering and cell implantation therapies are gaining popularity because of their potential to repair and regenerate tissues and organs. To investigate the role of inflammatory cytokines in new tissue development in engineered tissues, we have characterized the nature and timing of cell populations forming new adipose tissue in a mouse tissue engineering chamber (TEC) and characterized the gene and protein expression of cytokines in the newly developing tissues. EGFP-labeled bone marrow transplant mice and MacGreen mice were implanted with TEC for periods ranging from 0.5 days to 6 weeks. Tissues were collected at various time points and assessed for cytokine expression through ELISA and mRNA analysis or labeled for specific cell populations in the TEC. Macrophage-derived factors, such as monocyte chemotactic protein-1 (MCP-1), appear to induce adipogenesis by recruiting macrophages and bone marrow-derived precursor cells to the TEC at early time points, with a second wave of nonbone marrow-derived progenitors. Gene expression analysis suggests that TNFα, LCN-2, and Interleukin 1β are important in early stages of neo-adipogenesis. Increasing platelet-derived growth factor and vascular endothelial cell growth factor expression at early time points correlates with preadipocyte proliferation and induction of angiogenesis. This study provides new information about key elements that are involved in early development of new adipose tissue.

  5. Colloidal gas aphron foams: A novel approach to a hydrogel based tissue engineered myocardial patch

    Science.gov (United States)

    Johnson, Elizabeth Edna

    Cardiovascular disease currently affects an estimated 58 million Americans and is the leading cause of death in the US. Over 2.3 million Americans are currently living with heart failure a leading cause of which is acute myocardial infarction, during which a part of the heart muscle is damaged beyond repair. There is a great need to develop treatments for damaged heart tissue. One potential therapy involves replacement of nonfunctioning scar tissue with a patch of healthy, functioning tissue. A tissue engineered cardiac patch would be ideal for such an application. Tissue engineering techniques require the use of porous scaffolds, which serve as a 3-D template for initial cell attachment and grow-th leading to tissue formation. The scaffold must also have mechanical properties closely matching those of the tissues at the site of implantation. Our research presents a new approach to meet these design requirements. A unique interaction between poly(vinyl alcohol) and amino acids has been discovered by our lab, resulting in the production of novel gels. These unique synthetic hydrogels along with one natural hydrogel, alginate (derived from brown seaweed), have been coupled with a new approach to tissue scaffold fabrication using solid colloidal gas aphrons (CGAs). CGAs are colloidal foams containing uniform bubbles with diameters on the order of micrometers. Upon solidification the GCAs form a porous, 3-D network suitable for a tissue scaffold. The project encompasses four specific aims: (I) characterize hydrogel formation mechanism, (II) use colloidal gas aphrons to produce hydrogel scaffolds, (III) chemically and physically characterize scaffold materials and (IV) optimize and evaluate scaffold biocompatibility.

  6. Optimal iodine staining of cardiac tissue for X-ray computed tomography.

    Directory of Open Access Journals (Sweden)

    Timothy D Butters

    Full Text Available X-ray computed tomography (XCT has been shown to be an effective imaging technique for a variety of materials. Due to the relatively low differential attenuation of X-rays in biological tissue, a high density contrast agent is often required to obtain optimal contrast. The contrast agent, iodine potassium iodide ([Formula: see text], has been used in several biological studies to augment the use of XCT scanning. Recently I2KI was used in XCT scans of animal hearts to study cardiac structure and to generate 3D anatomical computer models. However, to date there has been no thorough study into the optimal use of I2KI as a contrast agent in cardiac muscle with respect to the staining times required, which has been shown to impact significantly upon the quality of results. In this study we address this issue by systematically scanning samples at various stages of the staining process. To achieve this, mouse hearts were stained for up to 58 hours and scanned at regular intervals of 6-7 hours throughout this process. Optimal staining was found to depend upon the thickness of the tissue; a simple empirical exponential relationship was derived to allow calculation of the required staining time for cardiac samples of an arbitrary size.

  7. Skeletal muscle tissue engineering: strategies for volumetric constructs

    Directory of Open Access Journals (Sweden)

    Giorgio eCittadella Vigodarzere

    2014-09-01

    Full Text Available Skeletal muscle tissue is characterized by high metabolic requirements, defined structure and high regenerative potential. As such, it constitutes an appealing platform for tissue engineering to address volumetric defects, as proven by recent works in this field.Several issues common to all engineered constructs constrain the variety of tissues that can be realized in vitro, principal among them the lack of a vascular system and the absence of reliable cell sources; as it is, the only successful tissue engineering constructs are not characterized by active function, present limited cellular survival at implantation and possess low metabolic requirements.Recently, functionally competent constructs have been engineered, with vascular structures supporting their metabolic requirements. In addition to the use of biochemical cues, physical means, mechanical stimulation and the application of electric tension have proven effective in stimulating the differentiation of cells and the maturation of the constructs; while the use of co-cultures provided fine control of cellular developments through paracrine activity. This review will provide a brief analysis of some of the most promising improvements in the field, with particular attention to the techniques that could prove easily transferable to other branches of tissue engineering.

  8. Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues

    Science.gov (United States)

    Rodriguez-Arco, Laura; Rodriguez, Ismael A.; Carriel, Victor; Bonhome-Espinosa, Ana B.; Campos, Fernando; Kuzhir, Pavel; Duran, Juan D. G.; Lopez-Lopez, Modesto T.

    2016-04-01

    The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications.The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we

  9. Tissue-engineering strategies to repair joint tissue in osteoarthritis: nonviral gene-transfer approaches.

    Science.gov (United States)

    Madry, Henning; Cucchiarini, Magali

    2014-10-01

    Loss of articular cartilage is a common clinical consequence of osteoarthritis (OA). In the past decade, substantial progress in tissue engineering, nonviral gene transfer, and cell transplantation have provided the scientific foundation for generating cartilaginous constructs from genetically modified cells. Combining tissue engineering with overexpression of therapeutic genes enables immediate filling of a cartilage defect with an engineered construct that actively supports chondrogenesis. Several pioneering studies have proved that spatially defined nonviral overexpression of growth-factor genes in constructs of solid biomaterials or hydrogels is advantageous compared with gene transfer or scaffold alone, both in vitro and in vivo. Notably, these investigations were performed in models of focal cartilage defects, because advanced cartilage-repair strategies based on the principles of tissue engineering have not advanced sufficiently to enable resurfacing of extensively degraded cartilage as therapy for OA. These studies serve as prototypes for future technological developments, because they raise the possibility that cartilage constructs engineered from genetically modified chondrocytes providing autocrine and paracrine stimuli could similarly compensate for the loss of articular cartilage in OA. Because cartilage-tissue-engineering strategies are already used in the clinic, combining tissue engineering and nonviral gene transfer could prove a powerful approach to treat OA.

  10. Novel opportunities and challenges offered by nanobiomaterials in tissue engineering

    Directory of Open Access Journals (Sweden)

    Fabrizio Gelain

    2008-08-01

    Full Text Available Fabrizio GelainBioscience and Biotechnology Department, University of Milan-Bicocca, Milan, ItalyAbstract: Over the last decades, tissue engineering has demonstrated an unquestionable potential to regenerate damaged tissues and organs. Some tissue-engineered solutions recently entered the clinics (eg, artificial bladder, corneal epithelium, engineered skin, but most of the pathologies of interest are still far from being solved. The advent of stem cells opened the door to large-scale production of “raw living matter” for cell replacement and boosted the overall sector in the last decade. Still reliable synthetic scaffolds fairly resembling the nanostructure of extracellular matrices, showing mechanical properties comparable to those of the tissues to be regenerated and capable of being modularly functionalized with biological active motifs, became feasible only in the last years thanks to newly introduced nanotechnology techniques of material design, synthesis, and characterization. Nanostructured synthetic matrices look to be the next generation scaffolds, opening new powerful pathways for tissue regeneration and introducing new challenges at the same time. We here present a detailed overview of the advantages, applications, and limitations of nanostructured matrices with a focus on both electrospun and self-assembling scaffolds.Keywords: self-assembling peptide, electrospinning, tissue engineering, functionalization

  11. Effect of Twisted Fiber Anisotropy in Cardiac Tissue on Ablation with Pulsed Electric Fields

    Science.gov (United States)

    Xie, Fei; Zemlin, Christian W.

    2016-01-01

    Background Ablation of cardiac tissue with pulsed electric fields is a promising alternative to current thermal ablation methods, and it critically depends on the electric field distribution in the heart. Methods We developed a model that incorporates the twisted anisotropy of cardiac tissue and computed the electric field distribution in the tissue. We also performed experiments in rabbit ventricles to validate our model. We find that the model agrees well with the experimentally determined ablation volume if we assume that all tissue that is exposed to a field greater than 3 kV/cm is ablated. In our numerical analysis, we considered how tissue thickness, degree of anisotropy, and electrode configuration affect the geometry of the ablated volume. We considered two electrode configurations: two parallel needles inserted into the myocardium (“penetrating needles” configuration) and one circular electrode each on epi- and endocardium, opposing each other (“epi-endo” configuration). Results For thick tissues (10 mm) and moderate anisotropy ratio (a = 2), we find that the geometry of the ablated volume is almost unaffected by twisted anisotropy, i.e. it is approximately translationally symmetric from epi- to endocardium, for both electrode configurations. Higher anisotropy ratio (a = 10) leads to substantial variation in ablation width across the wall; these variations were more pronounced for the penetrating needle configuration than for the epi-endo configuration. For thinner tissues (4 mm, typical for human atria) and higher anisotropy ratio (a = 10), the epi-endo configuration yielded approximately translationally symmetric ablation volumes, while the penetrating electrodes configuration was much more sensitive to fiber twist. Conclusions These results suggest that the epi-endo configuration will be reliable for ablation of atrial fibrillation, independently of fiber orientation, while the penetrating electrode configuration may experience problems when the

  12. Advantages and challenges offered by biofunctional core-shell fiber systems for tissue engineering and drug delivery.

    Science.gov (United States)

    Sperling, Laura E; Reis, Karina P; Pranke, Patricia; Wendorff, Joachim H

    2016-08-01

    Whereas highly porous scaffolds composed of electrospun nanofibers can mimick major features of the extracellular matrix in tissue engineering, they lack the ability to incorporate and release biocompounds (drugs, growth factors) safely in a controlled way. Here, electrospun core-shell fibers (core made from water and aqueous solutions of hydrophilic polymers and the shell from materials with well-defined release mechanisms) offer unique advantages in comparison with those that have helped make porous nanofibrillar scaffolds highly successful in tissue engineering. This review considers the preparation and biofunctionalization of such core-shell fibers as well as applications in various areas, including neural, vascular, cardiac, cartilage and bone tissue engineering, and touches on the topic of clinical trials. PMID:27155458

  13. Unidirectional Pinning and Hysteresis of Spatially Discordant Alternans in Cardiac Tissue

    CERN Document Server

    Skardal, Per Sebastian; Restrepo, Juan G

    2011-01-01

    Spatially discordant alternans is a widely observed pattern of voltage and calcium signals in cardiac tissue that can precipitate lethal cardiac arrhythmia. Using spatially coupled iterative maps of the beat-to-beat dynamics, we explore this pattern's dynamics in the regime of a calcium-dominated period-doubling instability at the single cell level. We find a novel nonlinear bifurcation associated with the formation of a discontinuous jump in the amplitude of calcium alternans at nodal lines separating discordant regions. We show that this jump unidirectionally pins nodal lines by preventing their motion away from the pacing site following a pacing rate decrease, but permitting motion towards this site following a rate increase. This unidirectional pinning leads to strongly history-dependent nodal line motion that is strongly arrhythmogenic.

  14. Pacemaker interactions induce reentrant wave dynamics in engineered cardiac culture

    Science.gov (United States)

    Borek, Bartłomiej; Shajahan, T. K.; Gabriels, James; Hodge, Alex; Glass, Leon; Shrier, Alvin

    2012-09-01

    Pacemaker interactions can lead to complex wave dynamics seen in certain types of cardiac arrhythmias. We use experimental and mathematical models of pacemakers in heterogeneous excitable media to investigate how pacemaker interactions can be a mechanism for wave break and reentrant wave dynamics. Embryonic chick ventricular cells are cultured invitro so as to create a dominant central pacemaker site that entrains other pacemakers in the medium. Exposure of those cultures to a potassium channel blocker, E-4031, leads to emergence of peripheral pacemakers that compete with each other and with the central pacemaker. Waves emitted by faster pacemakers break up over the slower pacemaker to form reentrant waves. Similar dynamics are observed in a modified FitzHugh-Nagumo model of heterogeneous excitable media with two distinct sites of pacemaking. These findings elucidate a mechanism of pacemaker-induced reentry in excitable media.

  15. Electrospun Scaffolds for Corneal Tissue Engineering: A Review

    Directory of Open Access Journals (Sweden)

    Bin Kong

    2016-07-01

    Full Text Available Corneal diseases constitute the second leading cause of vision loss and affect more than 10 million people globally. As there is a severe shortage of fresh donated corneas and an unknown risk of immune rejection with traditional heterografts, it is very important and urgent to construct a corneal equivalent to replace pathologic corneal tissue. Corneal tissue engineering has emerged as a practical strategy to develop corneal tissue substitutes, and the design of a scaffold with mechanical properties and transparency similar to that of natural cornea is paramount for the regeneration of corneal tissues. Nanofibrous scaffolds produced by electrospinning have high surface area–to-volume ratios and porosity that simulate the structure of protein fibers in native extra cellular matrix (ECM. The versatilities of electrospinning of polymer components, fiber structures, and functionalization have made the fabrication of nanofibrous scaffolds with suitable mechanical strength, transparency and biological properties for corneal tissue engineering feasible. In this paper, we review the recent developments of electrospun scaffolds for engineering corneal tissues, mainly including electrospun materials (single and blended polymers, fiber structures (isotropic or anisotropic, functionalization (improved mechanical properties and transparency, applications (corneal cell survival, maintenance of phenotype and formation of corneal tissue and future development perspectives.

  16. MR elastography monitoring of tissue-engineered constructs.

    Science.gov (United States)

    Othman, Shadi F; Curtis, Evan T; Plautz, Sarah A; Pannier, Angela K; Butler, Stephanie D; Xu, Huihui

    2012-03-01

    The objective of tissue engineering (TE) is to create functional replacements for various tissues; the mechanical properties of these engineered constructs are critical to their function. Several techniques have been developed for the measurement of the mechanical properties of tissues and organs; however, current methods are destructive. The field of TE will benefit immensely if biomechanical models developed by these techniques could be combined with existing imaging modalities to enable noninvasive, dynamic assessment of mechanical properties during tissue growth. Specifically, MR elastography (MRE), which is based on the synchronization of a mechanical actuator with a phase contrast imaging pulse sequence, has the capacity to measure tissue strain generated by sonic cyclic displacement. The captured displacement is presented in shear wave images from which the complex shear moduli can be extracted or simplified by a direct measure, termed the shear stiffness. MRE has been extended to the microscopic scale, combining clinical MRE with high-field magnets, stronger magnetic field gradients and smaller, more sensitive, radiofrequency coils, enabling the interrogation of smaller samples, such as tissue-engineered constructs. The following topics are presented in this article: (i) current mechanical measurement techniques and their limitations in TE; (ii) a description of the MRE system, MRE theory and how it can be applied for the measurement of mechanical properties of tissue-engineered constructs; (iii) a summary of in vitro MRE work for the monitoring of osteogenic and adipogenic tissues originating from human adult mesenchymal stem cells (MSCs); (iv) preliminary in vivo studies of MRE of tissues originating from mouse MSCs implanted subcutaneously in immunodeficient mice with an emphasis on in vivo MRE challenges; (v) future directions to resolve current issues with in vivo MRE in the context of how to improve the future role of MRE in TE.

  17. Stem Cells and Scaffolds for Vascularizing Engineered Tissue Constructs

    Science.gov (United States)

    Luong, E.; Gerecht, S.

    The clinical impact of tissue engineering depends upon our ability to direct cells to form tissues with characteristic structural and mechanical properties from the molecular level up to organized tissue. Induction and creation of functional vascular networks has been one of the main goals of tissue engineering either in vitro, for the transplantation of prevascularized constructs, or in vivo, for cellular organization within the implantation site. In most cases, tissue engineering attempts to recapitulate certain aspects of normal development in order to stimulate cell differentiation and functional tissue assembly. The induction of tissue growth generally involves the use of biodegradable and bioactive materials designed, ideally, to provide a mechanical, physical, and biochemical template for tissue regeneration. Human embryonic stem cells (hESCs), derived from the inner cell mass of a developing blastocyst, are capable of differentiating into all cell types of the body. Specifically, hESCs have the capability to differentiate and form blood vessels de novo in a process called vasculogenesis. Human ESC-derived endothelial progenitor cells (EPCs) and endothelial cells have substantial potential for microvessel formation, in vitro and in vivo. Human adult EPCs are being isolated to understand the fundamental biology of how these cells are regulated as a population and to explore whether these cells can be differentiated and reimplanted as a cellular therapy in order to arrest or even reverse damaged vasculature. This chapter focuses on advances made toward the generation and engineering of functional vascular tissue, focusing on both the scaffolds - the synthetic and biopolymer materials - and the cell sources - hESCs and hEPCs.

  18. Gelatin-Based Materials in Ocular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    James B. Rose

    2014-04-01

    Full Text Available Gelatin has been used for many years in pharmaceutical formulation, cell culture and tissue engineering on account of its excellent biocompatibility, ease of processing and availability at low cost. Over the last decade gelatin has been extensively evaluated for numerous ocular applications serving as cell-sheet carriers, bio-adhesives and bio-artificial grafts. These different applications naturally have diverse physical, chemical and biological requirements and this has prompted research into the modification of gelatin and its derivatives. The crosslinking of gelatin alone or in combination with natural or synthetic biopolymers has produced a variety of scaffolds that could be suitable for ocular applications. This review focuses on methods to crosslink gelatin-based materials and how the resulting materials have been applied in ocular tissue engineering. Critical discussion of recent innovations in tissue engineering and regenerative medicine will highlight future opportunities for gelatin-based materials in ophthalmology.

  19. Osteoblasts and their applications in bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Rupani A

    2012-05-01

    Full Text Available Asha Rupani1, Richard Balint2, Sarah H Cartmell1,21Institute of Science and Technology in Medicine, Keele University, Hartshill, Stoke-on-Trent, UK; 2Materials Science Centre, The University of Manchester, Manchester, UKAbstract: Tissue engineering is an emerging therapy that offers a new solution to patients suffering from bone loss. It utilizes cells derived from such sources as a patient's own bone or bone marrow, which are laboratory-isolated, grown (so they multiply in number, and placed onto a degradable material, or scaffold, that has mechanical/chemical properties appropriate to the bone section that it is replacing. The cells plus the scaffold are then grown in a container, or bioreactor, which is necessary as it provides the correct environment required for the cells to proliferate, differentiate, and to produce extracellular matrix. The following review focuses on the use of osteoblasts for bone tissue engineering.Keywords: osteoblast, bone, tissue engineering, regenerative medicine, orthopaedic

  20. Pericyte-targeting drug delivery and tissue engineering

    Science.gov (United States)

    Kang, Eunah; Shin, Jong Wook

    2016-01-01

    Pericytes are contractile mural cells that wrap around the endothelial cells of capillaries and venules. Depending on the triggers by cellular signals, pericytes have specific functionality in tumor microenvironments, properties of potent stem cells, and plasticity in cellular pathology. These features of pericytes can be activated for the promotion or reduction of angiogenesis. Frontier studies have exploited pericyte-targeting drug delivery, using pericyte-specific peptides, small molecules, and DNA in tumor therapy. Moreover, the communication between pericytes and endothelial cells has been applied to the induction of vessel neoformation in tissue engineering. Pericytes may prove to be a novel target for tumor therapy and tissue engineering. The present paper specifically reviews pericyte-specific drug delivery and tissue engineering, allowing insight into the emerging research targeting pericytes. PMID:27313454

  1. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  2. Application of adult stem cells in neural tissue engineering

    Institute of Scientific and Technical Information of China (English)

    Lihong Piao; Wei Wang

    2006-01-01

    OBJECTTIVE:To investigate the progress in finding,isolation and culture.proliferation and differentiation,and application in neural tissue engineering of adult stem cells(ASCs).DATA SOURCES:Using the terms"adult stem cells,nerve,tissue engineering".we searched the PubMed for adult stem ceils-related studies published in English from January 2001 to August 2006.Meanwhile,we also performed a China National Knowledge Infrastructure(CNKI)search for homochronous correlative literatures on the computer by inputting the terms"adult stem cells,nerve,tissue engineering"in Chinese.texts were searched for.Inclusive criteria:①Literatures about the sources,distribution,culture.proliferation and differentiation.and application in the repair of neural ASCs by tissue engineering.②Articles recommended either by randomized.blind or by other methods were not excluded.Exclusive criteria:①Embryonic stem cells.②Review,repetitive study,case report,Meta analysis. DATA EXTRACTION:Totally 1 278 articles related to ASCs were collected,32 were involved and the other 1 246 were excluded. DATA SYNTHESIS:Adult stem cell has the ability of self-renewal.unceasing proliferation and transdifferentiation.It has wide source,which does not involved in ethical problems.It has advantages over embryonic stem cell.Studies on the isolation and culture,induction and differentiation and application in neural ASCs by tissue engineering contribute to obtaining considerable ASCs,so as to provide experimental and theoretical bases for CONCLUSION:ASCs play a very important role in neural tissue engineering.

  3. The Use of Adipose Tissue-Derived Progenitors in Bone Tissue Engineering - a Review

    Science.gov (United States)

    Bhattacharya, Indranil; Ghayor, Chafik; Weber, Franz E.

    2016-01-01

    2500 years ago, Hippocrates realized that bone can heal without scaring. The natural healing potential of bone is, however, restricted to small defects. Extended bone defects caused by trauma or during tumor resections still pose a huge problem in orthopedics and cranio-maxillofacial surgery. Bone tissue engineering strategies using stem cells, growth factors, and scaffolds could overcome the problems with the treatment of extended bone defects. In this review, we give a short overview on bone tissue engineering with emphasis on the use of adipose tissue-derived stem cells and small molecules.

  4. Epicardial Adipose Tissue Is Associated with Plaque Burden and Composition and Provides Incremental Value for the Prediction of Cardiac Outcome. A Clinical Cardiac Computed Tomography Angiography Study.

    Directory of Open Access Journals (Sweden)

    Gitsios Gitsioudis

    Full Text Available We sought to investigate the association of epicardial adipose tissue (eCAT volume with plaque burden, circulating biomarkers and cardiac outcomes in patients with intermediate risk for coronary artery disease (CAD.177 consecutive outpatients at intermediate risk for CAD and completed biomarker analysis including high-sensitive Troponin T (hs-TnT and hs-CRP underwent 256-slice cardiac computed tomography angiography (CCTA between June 2008 and October 2011. Patients with lumen narrowing ≥50% exhibited significantly higher eCAT volume than patients without any CAD or lumen narrowing 3 risk factors, presence of CAD, hs-CRP and hs-TnT.Epicardial adipose tissue volume is independently associated with plaque burden and maximum luminal narrowing by CCTA and may serve as an independent predictor for cardiac outcomes in patients at intermediate risk for CAD.

  5. Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy.

    Science.gov (United States)

    Huang, Chao; Sachse, Frank B; Hitchcock, Robert W; Kaza, Aditya K

    2016-01-01

    Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000). We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81) and nodal tissue (n = 81). In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2 ± 0.3% and 98.0 ± 0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2 ± 0.3% and 94.0 ± 2.4%, respectively). Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease.

  6. Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy

    Science.gov (United States)

    Huang, Chao; Sachse, Frank B.; Hitchcock, Robert W.; Kaza, Aditya K.

    2016-01-01

    Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000). We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81) and nodal tissue (n = 81). In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2±0.3% and 98.0±0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2±0.3% and 94.0±2.4%, respectively). Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease. PMID:26808149

  7. Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy.

    Directory of Open Access Journals (Sweden)

    Chao Huang

    Full Text Available Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000. We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81 and nodal tissue (n = 81. In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2 ± 0.3% and 98.0 ± 0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2 ± 0.3% and 94.0 ± 2.4%, respectively. Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease.

  8. Engineering muscle tissue for the fetus: getting ready for a strong life

    Directory of Open Access Journals (Sweden)

    George Joseph Christ

    2015-04-01

    Full Text Available Congenital malformations frequently involve either skeletal, smooth or cardiac tissues. When large parts of those tissues are damaged, the repair of the malformations is challenged by the fact that so much autologous tissue is missing. Current treatments require the use of prostheses or other therapies and are associated with a significant morbidity and mortality. Nonetheless, affected children have generally good survival rates and mostly normal schooling. As such, new therapeutic modalities need to represent significant improvements with clear safety profiles. Regenerative medicine and tissue engineering technologies have the potential to dramatically improve the treatment of any disease or disorder involving a lack of viable tissue. With respect to congenital soft tissue anomalies, the development of, for example, implantable muscle constructs would provide not only the usual desired elasticity and contractile proprieties, but should also be able to grow with the fetus and/or in the postnatal life. Such an approach would eliminate the need for multiple surgeries. However, the more widespread clinical applications of regenerative medicine and tissue engineering technologies require identification of the optimal indications, as well as further elucidation of the precise mechanisms and best methods (cells, scaffolds/biomaterials for achieving large functional tissue regeneration in those clinical indications. In short, despite some amazing scientific progress, significant safety and efficacy hurdles remain. However, the rapid preclinical advances in the field bode well for future applications. As such, translational researchers and clinicians alike need be informed and prepared to utilize these new techniques for the benefit of their patients, as soon as they are available. To this end, we review herein, the clinical need(s, potential applications, and the relevant preclinical studies that are currently guiding the field toward novel

  9. Tissue Engineering the Cornea: The Evolution of RAFT

    Directory of Open Access Journals (Sweden)

    Hannah J. Levis

    2015-01-01

    Full Text Available Corneal blindness affects over 10 million people worldwide and current treatment strategies often involve replacement of the defective layer with healthy tissue. Due to a worldwide donor cornea shortage and the absence of suitable biological scaffolds, recent research has focused on the development of tissue engineering techniques to create alternative therapies. This review will detail how we have refined the simple engineering technique of plastic compression of collagen to a process we now call Real Architecture for 3D Tissues (RAFT. The RAFT production process has been standardised, and steps have been taken to consider Good Manufacturing Practice compliance. The evolution of this process has allowed us to create biomimetic epithelial and endothelial tissue equivalents suitable for transplantation and ideal for studying cell-cell interactions in vitro.

  10. HEPATIC TISSUE ENGINEERING (MODERN STATE OF THIS PROBLEM

    Directory of Open Access Journals (Sweden)

    Y.S. Gulay

    2014-01-01

    Full Text Available In this article it was discussed the problem of creation implanted hepatic tissue engineering designs as a modern stage of complex investigation for working out bioartifi cial liver support systems. It was determined that for the positive decision of numerous biological and technological problems it is necessary: to use matrices with determined properties, which mimic properties of hepatic extracellular matrix; to use technology for stereotype sowing of these matrices by both parenchymal and non-parenchymal hepatic cells and to improve the technologies for making and assembling of hepatic tissue-engineering designs.

  11. Tissue-Engineered Skeletal Muscle Organoids for Reversible Gene Therapy

    Science.gov (United States)

    Vandenburgh, Herman; DelTatto, Michael; Shansky, Janet; Lemaire, Julie; Chang, Albert; Payumo, Francis; Lee, Peter; Goodyear, Amy; Raven, Latasha

    1996-01-01

    Genetically modified murine skeletal myoblasts were tissue engineered in vitro into organ-like structures (organoids) containing only postmitotic myofibers secreting pharmacological levels of recombinant human growth hormone (rhGH). Subcutaneous organoid Implantation under tension led to the rapid and stable appearance of physiological sera levels of rhGH for up to 12 weeks, whereas surgical removal led to its rapid disappearance. Reversible delivery of bioactive compounds from postimtotic cells in tissue engineered organs has several advantages over other forms of muscle gene therapy.

  12. Materials and surface modification for tissue engineered vascular scaffolds.

    Science.gov (United States)

    Li, Zhong-Kui; Wu, Zhong-Shi; Lu, Ting; Yuan, Hao-Yong; Tang, Hao; Tang, Zhen-Jie; Tan, Ling; Wang, Bin; Yan, Si-Ming

    2016-10-01

    Although vascular implantation has been used as an effective treatment for cardiovascular disease for many years, off-the-shelf and regenerable vascular scaffolds are still not available. Tissue engineers have tested various materials and methods of surface modification in the attempt to develop a scaffold that is more suitable for implantation. Extracellular matrix-based natural materials and biodegradable polymers, which are the focus of this review, are considered to be suitable materials for production of tissue-engineered vascular grafts. Various methods of surface modification that have been developed will also be introduced, their impacts will be summarized and assessed, and challenges for further research will briefly be discussed. PMID:27484610

  13. Plant-Derived Human Collagen Scaffolds for Skin Tissue Engineering

    Science.gov (United States)

    Willard, James J.; Drexler, Jason W.; Das, Amitava; Roy, Sashwati; Shilo, Shani; Shoseyov, Oded

    2013-01-01

    Tissue engineering scaffolds are commonly formed using proteins extracted from animal tissues, such as bovine hide. Risks associated with the use of these materials include hypersensitivity and pathogenic contamination. Human-derived proteins lower the risk of hypersensitivity, but possess the risk of disease transmission. Methods engineering recombinant human proteins using plant material provide an alternate source of these materials without the risk of disease transmission or concerns regarding variability. To investigate the utility of plant-derived human collagen (PDHC) in the development of engineered skin (ES), PDHC and bovine hide collagen were formed into tissue engineering scaffolds using electrospinning or freeze-drying. Both raw materials were easily formed into two common scaffold types, electrospun nonwoven scaffolds and lyophilized sponges, with similar architectures. The processing time, however, was significantly lower with PDHC. PDHC scaffolds supported primary human cell attachment and proliferation at an equivalent or higher level than the bovine material. Interleukin-1 beta production was significantly lower when activated THP-1 macrophages where exposed to PDHC electrospun scaffolds compared to bovine collagen. Both materials promoted proper maturation and differentiation of ES. These data suggest that PDHC may provide a novel source of raw material for tissue engineering with low risk of allergic response or disease transmission. PMID:23298216

  14. Pericyte-targeting drug delivery and tissue engineering

    Directory of Open Access Journals (Sweden)

    Kang E

    2016-05-01

    Full Text Available Eunah Kang,1 Jong Wook Shin2 1School of Chemical Engineering and Material Science, 2Division of Allergic and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, Chung-Ang University, Dongjak-Gu, Seoul, South Korea Abstract: Pericytes are contractile mural cells that wrap around the endothelial cells of capillaries and venules. Depending on the triggers by cellular signals, pericytes have specific functionality in tumor microenvironments, properties of potent stem cells, and plasticity in cellular pathology. These features of pericytes can be activated for the promotion or reduction of angiogenesis. Frontier studies have exploited pericyte-targeting drug delivery, using pericyte-specific peptides, small molecules, and DNA in tumor therapy. Moreover, the communication between pericytes and endothelial cells has been applied to the induction of vessel neoformation in tissue engineering. Pericytes may prove to be a novel target for tumor therapy and tissue engineering. The present paper specifically reviews pericyte-specific drug delivery and tissue engineering, allowing insight into the emerging research targeting pericytes. Keywords: pericytes, pericyte-targeting drug delivery, tissue engineering, platelet-derived growth factor, angiogenesis, vascular remodeling

  15. Outlook for Tissue Engineering of the Tympanic Membrane.

    Science.gov (United States)

    Villar-Fernandez, Maria A; Lopez-Escamez, Jose A

    2015-01-21

    Tympanic membrane perforation is a common problem leading to hearing loss. Despite the autoregenerative activity of the eardrum, chronic perforations require surgery using different materials, from autologous tissue - fascia, cartilage, fat or perichondrium - to paper patch. However, both, surgical procedures (myringoplasty or tympanoplasty) and the materials employed, have a number of limitations. Therefore, the advances in this field are incorporating the principles of tissue engineering, which includes the use of scaffolds, biomolecules and cells. This discipline allows the development of new biocompatible materials that reproduce the structure and mechanical properties of the native tympanic membrane, while it seeks to implement new therapeutic approaches that can be performed in an outpatient setting. Moreover, the creation of an artificial tympanic membrane commercially available would reduce the duration of the surgery and costs. The present review analyzes the current treatment of tympanic perforations and examines the techniques of tissue engineering, either to develop bioartificial constructs, or for tympanic regeneration by using different scaffold materials, bioactive molecules and cells. Finally, it considers the aspects regarding the design of scaffolds, release of biomolecules and use of cells that must be taken into account in the tissue engineering of the eardrum. The possibility of developing new biomaterials, as well as constructs commercially available, makes tissue engineering a discipline with great potential, capable of overcoming the drawbacks of current surgical procedures. PMID:26557361

  16. Outlook for tissue engineering of the tympanic membrane

    Directory of Open Access Journals (Sweden)

    Maria A. Villar-Fernandez

    2015-01-01

    Full Text Available Tympanic membrane perforation is a common problem leading to hearing loss. Despite the autoregenerative activity of the eardrum, chronic perforations require surgery using different materials, from autologous tissue - fascia, cartilage, fat or perichondrium - to paper patch. However, both, surgical procedures (myringoplasty or tympanoplasty and the materials employed, have a number of limitations. Therefore, the advances in this field are incorporating the principles of tissue engineering, which includes the use of scaffolds, biomolecules and cells. This discipline allows the development of new biocompatible materials that reproduce the structure and mechanical properties of the native tympanic membrane, while it seeks to implement new therapeutic approaches that can be performed in an outpatient setting. Moreover, the creation of an artificial tympanic membrane commercially available would reduce the duration of the surgery and costs. The present review analyzes the current treatment of tympanic perforations and examines the techniques of tissue engineering, either to develop bioartificial constructs, or for tympanic regeneration by using different scaffold materials, bioactive molecules and cells. Finally, it considers the aspects regarding the design of scaffolds, release of biomolecules and use of cells that must be taken into account in the tissue engineering of the eardrum. The possibility of developing new biomaterials, as well as constructs commercially available, makes tissue engineering a discipline with great potential, capable of overcoming the drawbacks of current surgical procedures.

  17. Stem Cell-assisted Approaches for Cartilage Tissue Engineering

    OpenAIRE

    Park, In-Kyu; Cho, Chong-Su

    2010-01-01

    The regeneration of damaged articular cartilage remains challenging due to its poor intrinsic capacity for repair. Tissue engineering of articular cartilage is believed to overcome the current limitations of surgical treatment by offering functional regeneration in the defect region. Selection of proper cell sources and ECM-based scaffolds, and incorporation of growth factors or mechanical stimuli are of primary importance to successfully produce artificial cartilage for tissue repair. When d...

  18. Tissue engineering of bone: the reconstructive surgeon's point of view

    OpenAIRE

    Kneser, U; Schaefer, D. J.; Polykandriotis, E; Horch, R E

    2007-01-01

    Bone defects represent a medical and socioeconomic challenge. Different types of biomaterials are applied for reconstructive indications and receive rising interest. However, autologous bone grafts are still considered as the gold standard for reconstruction of extended bone defects. The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. Tissue engineering is, according to its historic definition, an “interdisciplin...

  19. Partially Nanofibrous Architecture of 3D Tissue Engineering Scaffolds

    OpenAIRE

    Wei, Guobao; Ma, Peter X.

    2009-01-01

    An ideal tissue-engineering scaffold should provide suitable pores and appropriate pore surface to induce desired cellular activities and to guide 3D tissue regeneration. In the present work, we have developed macroporous polymer scaffolds with varying pore wall architectures from smooth (solid), microporous, partially nanofibrous, to entirely nanofibrous ones. All scaffolds are designed to have well-controlled interconnected macropores, resulting from leaching sugar sphere template. We exami...

  20. Biomechanical Models and Experi ments in Bone Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    Christian; ODDOU; Julien; PIERRE; Karim; OUDINA; Hervé; PETITE

    2005-01-01

    1 IntroductionThe understanding of the interactions between convective and diffusive phenomena of fluid dynamics origin, on the one side, associate reactive effects of biochemical nature, on the other, is a fundamental challenge and key problem in the context of bone tissue engineering. From the mastering of the complex biological phenomena related to the substrate degradation and remodelling of the extra cellular matrix that take place during the in vitro tissue culturing processes using cell seeded implan...

  1. Tissue Engineering Bone Using Autologous Progenitor Cells in the Peritoneum

    OpenAIRE

    Jinhui Shen; Ashwin Nair; Ramesh Saxena; Cheng Cheng Zhang; Joseph Borrelli; Liping Tang

    2014-01-01

    Despite intensive research efforts, there remains a need for novel methods to improve the ossification of scaffolds for bone tissue engineering. Based on a common phenomenon and known pathological conditions of peritoneal membrane ossification following peritoneal dialysis, we have explored the possibility of regenerating ossified tissue in the peritoneum. Interestingly, in addition to inflammatory cells, we discovered a large number of multipotent mesenchymal stem cells (MSCs) in the periton...

  2. Review: Polymeric-Based 3D Printing for Tissue Engineering

    OpenAIRE

    Wu, Geng-Hsi; Hsu, Shan-hui

    2015-01-01

    Three-dimensional (3D) printing, also referred to as additive manufacturing, is a technology that allows for customized fabrication through computer-aided design. 3D printing has many advantages in the fabrication of tissue engineering scaffolds, including fast fabrication, high precision, and customized production. Suitable scaffolds can be designed and custom-made based on medical images such as those obtained from computed tomography. Many 3D printing methods have been employed for tissue ...

  3. Outlook for Tissue Engineering of the Tympanic Membrane

    OpenAIRE

    Villar-Fernandez, Maria A.; Lopez-Escamez, Jose A.

    2015-01-01

    Tympanic membrane perforation is a common problem leading to hearing loss. Despite the autoregenerative activity of the eardrum, chronic perforations require surgery using different materials, from autologous tissue - fascia, cartilage, fat or perichondrium - to paper patch. However, both, surgical procedures (myringoplasty or tympanoplasty) and the materials employed, have a number of limitations. Therefore, the advances in this field are incorporating the principles of tissue engineering, w...

  4. Adipose-derived stem cells and periodontal tissue engineering.

    Science.gov (United States)

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  5. X-ray phase contrast imaging of calcified tissue and biomaterial structure in bioreactor engineered tissues.

    Science.gov (United States)

    Appel, Alyssa A; Larson, Jeffery C; Garson, Alfred B; Guan, Huifeng; Zhong, Zhong; Nguyen, Bao-Ngoc B; Fisher, John P; Anastasio, Mark A; Brey, Eric M

    2015-03-01

    Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. Techniques that allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing to their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (µCT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC µCT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. These results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors.

  6. X-ray Phase Contrast Imaging of Calcified Tissue and Biomaterial Structure in Bioreactor Engineered Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Alyssa A. [Illinois Inst. of Technology, Chicago, IL (United States); Edward Hines Jr. VA Hospital, IL (United States); Larson, Jeffery C. [Illinois Inst. of Technology, Chicago, IL (United States); Edward Hines Jr. VA Hospital, IL (United States); Garson, III, Alfred B. [George Washington Univ., Washington, DC (United States); Guan, Huifeng [George Washington Univ., Washington, DC (United States); Zhong, Zhong [Brookhaven National Lab. (BNL), Upton, NY (United States); Nguyen, Bao-Ngoc [Univ. of Maryland, College Park, MD (United States); Fisher, John P. [Univ. of Maryland, College Park, MD (United States); Anastasio, Mark A. [George Washington Univ., Washington, DC (United States); Brey, Eric M. [Illinois Inst. of Technology, Chicago, IL (United States); Edward Hines Jr. VA Hospital, IL (United States)

    2014-11-04

    Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. These techniques allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems and will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing to their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (µCT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC µCT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. Furthermore, these results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors.

  7. Controlling activation site density by low-energy far-field stimulation in cardiac tissue

    Science.gov (United States)

    Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi

    2012-06-01

    Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites (“virtual electrodes”) in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.

  8. Unpinning of rotating spiral waves in cardiac tissues by circularly polarized electric fields

    Science.gov (United States)

    Feng, Xia; Gao, Xiang; Pan, De-Bei; Li, Bing-Wei; Zhang, Hong

    2014-04-01

    Spiral waves anchored to obstacles in cardiac tissues may cause lethal arrhythmia. To unpin these anchored spirals, comparing to high-voltage side-effect traditional therapies, wave emission from heterogeneities (WEH) induced by the uniform electric field (UEF) has provided a low-voltage alternative. Here we provide a new approach using WEH induced by the circularly polarized electric field (CPEF), which has higher success rate and larger application scope than UEF, even with a lower voltage. And we also study the distribution of the membrane potential near an obstacle induced by CPEF to analyze its mechanism of unpinning. We hope this promising approach may provide a better alternative to terminate arrhythmia.

  9. A Novel Albumin-Based Tissue Scaffold for Autogenic Tissue Engineering Applications

    Science.gov (United States)

    Li, Pei-Shan; -Liang Lee, I.; Yu, Wei-Lin; Sun, Jui-Sheng; Jane, Wann-Neng; Shen, Hsin-Hsin

    2014-07-01

    Tissue scaffolds provide a framework for living tissue regeneration. However, traditional tissue scaffolds are exogenous, composed of metals, ceramics, polymers, and animal tissues, and have a defined biocompatibility and application. This study presents a new method for obtaining a tissue scaffold from blood albumin, the major protein in mammalian blood. Human, bovine, and porcine albumin was polymerised into albumin polymers by microbial transglutaminase and was then cast by freeze-drying-based moulding to form albumin tissue scaffolds. Scanning electron microscopy and material testing analyses revealed that the albumin tissue scaffold possesses an extremely porous structure, moderate mechanical strength, and resilience. Using a culture of human mesenchymal stem cells (MSCs) as a model, we showed that MSCs can be seeded and grown in the albumin tissue scaffold. Furthermore, the albumin tissue scaffold can support the long-term osteogenic differentiation of MSCs. These results show that the albumin tissue scaffold exhibits favourable material properties and good compatibility with cells. We propose that this novel tissue scaffold can satisfy essential needs in tissue engineering as a general-purpose substrate. The use of this scaffold could lead to the development of new methods of artificial fabrication of autogenic tissue substitutes.

  10. Nanotechnology, Cell Culture and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kazutoshi Haraguchi

    2011-01-01

    Full Text Available We have fabricated new types of polymer hydrogels and polymer nanocomposites, i.e., nanocomposite gels (NC gels and soft, polymer nanocomposites (M-NCs: solid, with novel organic/inorganic network structures. Both NC gels and M-NCs were synthesized by in-situ free-radical polymerization in the presence of exfoliated clay platelets in aqueous systems and were obtained in various forms such as film, sheet, tube, coating, etc. and sizes with a wide range of clay contents. Here, disk-like inorganic clay nanoparticles act as multi-functional crosslinkers to form new types of network systems. Both NC gels and M-NCs have extraordinary optical and mechanical properties including ultra-high reversible extensibility, as well as a number of new characteristics relating to optical anisotropy, polymer/clay morphology, biocompatibility, stimuli-sensitive surfaces, micro-patterning, etc. For examples, the biological testing of medical devices, comprised of a sensitization test, an irritation test, an intracutaneous test and an in vitro cytotoxicity test,was carried out for NC gels and M-NCs. The safety of NC gels and M-NCs was confirmed in all tests. Also, the interaction of living tissue with NC gel was investigated in vivo by implantation in live goats; neither inflammation nor concrescence occurred around the NC gels. Furthermore, it was found that both N-NC gels consisting of poly(N-isopropylacrylamide(PNIPA/clay network and M-NCs consisting of poly(2-methoxyethyacrylate(PMEA/clay network show characteristic cell culture and subsequent cell detachment on their surfaces, although it was almost impossible to culture cells on conventional, chemically-crosslinked PNIPA hydrogels and chemically crossslinked PMEA, regardless of their crosslinker concentration. Various kinds of cells, such ashumanhepatoma cells (HepG2, normal human dermal fibroblast (NHDF, and human umbilical vein endothelial cells (HUVEC, could be cultured to be confluent on the surfaces of N

  11. The Multi-Domain Fibroblast/Myocyte Coupling in the Cardiac Tissue: A Theoretical Study.

    Science.gov (United States)

    Greisas, Ariel; Zlochiver, Sharon

    2016-09-01

    Cardiac fibroblast proliferation and concomitant collagenous matrix accumulation (fibrosis) develop during multiple cardiac pathologies. Recent studies have demonstrated direct electrical coupling between myocytes and fibroblasts in vitro, and assessed the electrophysiological implications of such coupling. However, in the living tissues, such coupling has not been demonstrated, and only indirect coupling via the extracellular space is likely to exist. In this study we employed a multi-domain model to assess the modulation of the cardiac electrophysiological properties by neighboring fibroblasts assuming only indirect coupling. Numerical simulations in 1D and 2D human atrial models showed that extracellular coupling sustains a significant impact on conduction velocity (CV) and a less significant effect on the action potential duration. Both CV and the slope of the CV restitution increased with increasing fibroblast density. This effect was more substantial for lower extracellular conductance. In 2D, spiral waves exhibited reduced frequency with increasing fibroblast density, and the propensity of wavebreaks and complex dynamics at high pacing rates significantly increased. PMID:27150222

  12. The interplay between tissue growth and scaffold degradation in engineered tissue constructs

    KAUST Repository

    O’Dea, R. D.

    2012-09-18

    In vitro tissue engineering is emerging as a potential tool to meet the high demand for replacement tissue, caused by the increased incidence of tissue degeneration and damage. A key challenge in this field is ensuring that the mechanical properties of the engineered tissue are appropriate for the in vivo environment. Achieving this goal will require detailed understanding of the interplay between cell proliferation, extracellular matrix (ECM) deposition and scaffold degradation. In this paper, we use a mathematical model (based upon a multiphase continuum framework) to investigate the interplay between tissue growth and scaffold degradation during tissue construct evolution in vitro. Our model accommodates a cell population and culture medium, modelled as viscous fluids, together with a porous scaffold and ECM deposited by the cells, represented as rigid porous materials. We focus on tissue growth within a perfusion bioreactor system, and investigate how the predicted tissue composition is altered under the influence of (1) differential interactions between cells and the supporting scaffold and their associated ECM, (2) scaffold degradation, and (3) mechanotransduction-regulated cell proliferation and ECM deposition. Numerical simulation of the model equations reveals that scaffold heterogeneity typical of that obtained from μCT scans of tissue engineering scaffolds can lead to significant variation in the flow-induced mechanical stimuli experienced by cells seeded in the scaffold. This leads to strong heterogeneity in the deposition of ECM. Furthermore, preferential adherence of cells to the ECM in favour of the artificial scaffold appears to have no significant influence on the eventual construct composition; adherence of cells to these supporting structures does, however, lead to cell and ECM distributions which mimic and exaggerate the heterogeneity of the underlying scaffold. Such phenomena have important ramifications for the mechanical integrity of

  13. Burn Injury: A Challenge for Tissue Engineers

    Directory of Open Access Journals (Sweden)

    Yerneni LK

    2009-01-01

    growth of human keratinocyte stem cells capable of producing epithelia for large-scale grafting in burns and maintain long-term functionality as a self-renewing tissue. The normal functioning of such an in vitro constructed graft under long-term artificial growth conditions is limited by the difficulties of maintaining the epidermal stem cell compartment. An apparent answer to this problem of stem cell depletion during autograft preparation would be to start with a pure population of progenitor stem cells and derive sustainable autograft from them. We have been aiming to this solution and currently attempting to isolate a pool of epidermal progenitor cells using Mebiol gel, which is a Thermo-Reversible Gelation polymer and was shown by others to support the growth of multi-potent skin-derived epithelial progenitor-1 cells. Additionally, the usefulness of Mebiol gel in maintaining epidermal stem cell compartment without FBS and/or animal origin feeder cells is being investigated by our group.

  14. Current opportunities and challenges in skeletal muscle tissue engineering

    NARCIS (Netherlands)

    Koning, Merel; Harmsen, Martin C; van Luyn, Marja J A; Werker, Paul M N

    2009-01-01

    The purpose of this article is to give a concise review of the current state of the art in tissue engineering (TE) of skeletal muscle and the opportunities and challenges for future clinical applicability. The endogenous progenitor cells of skeletal muscle, i.e. satellite cells, show a high pronenes

  15. The importance of new processing techniques in tissue engineering

    Science.gov (United States)

    Lu, L.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1996-01-01

    The use of polymer scaffolds in tissue engineering is reviewed and processing techniques are examined. The discussion of polymer-scaffold processing explains fiber bonding, solvent casting and particulate leaching, membrane lamination, melt molding, polymer/ceramic fiber composite-foam processing, phase separation, and high-pressure processing.

  16. Non-viral gene therapy for bone tissue engineering

    NARCIS (Netherlands)

    Wegman, F.

    2013-01-01

    In bone tissue engineering bone morphogentic protein-2 (BMP-2) is one of the most commonly used growth factors. It induces stem cells to differentiate into the osteogenic lineage to form new bone. Clinically however, high dosages of protein are administered due to fast degradation, which is associat

  17. A review of rapid prototyping techniques for tissue engineering purposes

    NARCIS (Netherlands)

    Peltola, Sanna M.; Melchels, Ferry P. W.; Grijpma, Dirk W.; Kellomaki, Minna

    2008-01-01

    Rapid prototyping (RP) is a common name for several techniques, which read in data from computer-aided design (CAD) drawings and manufacture automatically three-dimensional objects layer-by-layer according to the virtual design. The utilization of RP in tissue engineering enables the production of t

  18. A high throughput mechanical screening device for cartilage tissue engineering.

    Science.gov (United States)

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L

    2014-06-27

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput.

  19. Chitosan Scaffolds Containing Hyaluronic Acid for Cartilage Tissue Engineering

    NARCIS (Netherlands)

    Correia, Clara R.; Moreira Teixeira, Liliana S.; Moroni, Lorenzo; Reis, Rui L.; Blitterswijk, van Clemens A.; Karperien, Marcel; Mano, João F.

    2011-01-01

    Scaffolds derived from natural polysaccharides are very promising in tissue engineering applications and regenerative medicine, as they resemble glycosaminoglycans in the extracellular matrix (ECM). In this study, we have prepared freeze-dried composite scaffolds of chitosan (CHT) and hyaluronic aci

  20. Assessing infection risk in implanted tissue-engineered devices

    NARCIS (Netherlands)

    Kuijer, Roel; Jansen, Edwin J. P.; Emans, Pieter J.; Bulstra, Sjoerd K.; Riesle, Jens; Pieper, Jeroen; Grainger, David W.; Busscher, Henk J.

    2007-01-01

    Peri-operative contamination is the major cause of biomaterial-associated infections, highly complicating surgical patient outcomes. While this risk in traditional implanted biomaterials is well-recognised, newer cell-seeded, biologically conducive tissue-engineered (TE) constructs now targeted for

  1. Mathematically defined tissue engineering scaffold architectures prepared by stereolithography

    NARCIS (Netherlands)

    Melchels, Ferry P. W.; Bertoldi, Katia; Gabbrielli, Ruggero; Velders, Aldrik H.; Feijen, Jan; Grijpma, Dirk W.

    2010-01-01

    The technologies employed for the preparation of conventional tissue engineering scaffolds restrict the materials choice and the extent to which the architecture can be designed. Here we show the versatility of stereolithography with respect to materials and freedom of design. Porous scaffolds are d

  2. Stem Cell-assisted Approaches for Cartilage Tissue Engineering.

    Science.gov (United States)

    Park, In-Kyu; Cho, Chong-Su

    2010-05-01

    The regeneration of damaged articular cartilage remains challenging due to its poor intrinsic capacity for repair. Tissue engineering of articular cartilage is believed to overcome the current limitations of surgical treatment by offering functional regeneration in the defect region. Selection of proper cell sources and ECM-based scaffolds, and incorporation of growth factors or mechanical stimuli are of primary importance to successfully produce artificial cartilage for tissue repair. When designing materials for cartilage tissue engineering, biodegradability and biocompatibility are the key factors in selecting material candidates, for either synthetic or natural polymers. The unique environment of cartilage makes it suitable to use a hydrogel with high water content in the cross-linked or thermosensitive (injectable) form. Moreover, design of composite scaffolds from two polymers with complementary physicochemical and biological properties has been explored to provide residing chondrocytes with a combination of the merits that each component contributes.

  3. Collagen-Based Biomaterials for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    François Berthod

    2010-03-01

    Full Text Available Collagen is the most widely distributed class of proteins in the human body. The use of collagen-based biomaterials in the field of tissue engineering applications has been intensively growing over the past decades. Multiple cross-linking methods were investigated and different combinations with other biopolymers were explored in order to improve tissue function. Collagen possesses a major advantage in being biodegradable, biocompatible, easily available and highly versatile. However, since collagen is a protein, it remains difficult to sterilize without alterations to its structure. This review presents a comprehensive overview of the various applications of collagen-based biomaterials developed for tissue engineering, aimed at providing a functional material for use in regenerative medicine from the laboratory bench to the patient bedside.

  4. A new approach to heart valve tissue engineering

    DEFF Research Database (Denmark)

    Kaasi, Andreas; Cestari, Idágene A.; Stolf, Noedir A G.;

    2011-01-01

    and flow were registered downstream of the TE valve. The circuit was filled with culture medium and fitted in a standard 5% CO(2) incubator set at 37 °C. Pressure and flow waveforms were similar to those obtained under physiological conditions for the pulmonary circulation. The 'cardiomimetic' approach......The 'biomimetic' approach to tissue engineering usually involves the use of a bioreactor mimicking physiological parameters whilst supplying nutrients to the developing tissue. Here we present a new heart valve bioreactor, having as its centrepiece a ventricular assist device (VAD), which exposes...... chamber. Subsequently, applied vacuum to the pneumatic chamber causes the blood chamber to fill. A mechanical heart valve was placed in the VAD's inflow position. The tissue engineered (TE) valve was placed in the outflow position. The VAD was coupled in series with a Windkessel compliance chamber...

  5. Microstereolithography-based computer-aided manufacturing for tissue engineering.

    Science.gov (United States)

    Cho, Dong-Woo; Kang, Hyun-Wook

    2012-01-01

    Various solid freeform fabrication technologies have been introduced for constructing three-dimensional (3-D) freeform structures. Of these, microstereolithography (MSTL) technology performs the best in 3-D space because it not only has high resolution, but also fast fabrication speed. Using this technology, 3-D structures with mesoscale size and microscale resolution are achievable. Many researchers have been trying to apply this technology to tissue engineering to construct medically applicable scaffolds, which require a 3-D shape that fits a defect with a mesoscale size and microscale inner architecture for efficient regeneration of artificial tissue. This chapter introduces the principles of MSTL technology and representative systems. It includes fabrication and computer-aided design/computer-aided manufacturing (CAD/CAM) processes to show the automation process by which measurements from medical images are used to fabricate the required 3-D shape. Then, various tissue engineering applications based on MSTL are summarized.

  6. Detection of Trypanosoma cruzi DNA within murine cardiac tissue sections by in situ polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Joshua E Lane

    2003-04-01

    Full Text Available The use of in situ techniques to detect DNA and RNA sequences has proven to be an invaluable technique with paraffin-embedded tissue. Advances in non-radioactive detection systems have further made these procedures shorter and safer. We report the detection of Trypanosoma cruzi, the causative agent of Chagas disease, via indirect and direct in situ polymerace chain reaction within paraffin-embedded murine cardiac tissue sections. The presence of three T. cruzi specific DNA sequences were evaluated: a 122 base pair (bp sequence localized within the minicircle network, a 188 bp satellite nuclear repetitive sequence and a 177 bp sequence that codes for a flagellar protein. In situ hybridization alone was sensitive enough to detect all three T. cruzi specific DNA sequences.

  7. Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2016-07-01

    Full Text Available Materials based on biodegradable polyesters, such as poly(butylene terephthalate (PBT or poly(butylene terephthalate-co-poly(alkylene glycol terephthalate (PBTAT, have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16, that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering.

  8. Plasma tissue inhibitor of matrix metalloproteinase-1 (TIMP-1): an independent predictor of poor response to cardiac resynchronization therapy

    OpenAIRE

    Tolosana, Jose María; Mont, Lluís; Sitges, Marta; Berruezo, Antonio; Delgado, Victoria; Vidal, Bàrbara; Tamborero, David; Morales, Manel; Batlle, Montserrat; Roig, Eulalia; Castel, M. Angeles; Pérez-Villa, Félix; Godoy, Miguel; Brugada, Josep

    2010-01-01

    Aims Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) play a role in left ventricular structural remodelling. The aim of our study was to analyse MMP-2 and TIMP-1 levels as predictors of poor response to cardiac resynchronization therapy (CRT). Methods and results A cohort of 42 CRT patients from our centre was prospectively evaluated at baseline and after 12-month follow-up. MMP-2 and TIMP-1 assays were performed prior to CRT implant. Cardiac resynchronization therapy res...

  9. Feasibility of a nanomaterial-tissue patch for vascular and cardiac reconstruction.

    Science.gov (United States)

    Ostdiek, Allison M; Ivey, Jan R; Hansen, Sarah A; Gopaldas, Raja; Grant, Sheila A

    2016-04-01

    Vascular and cardiac reconstruction involves the use of biological patches to treat trauma and defects. An in vivo study was performed to determine the remodeling and biologic effects of novel nanostructured vascular patches with and without gold nanoparticles. Porcine vascular tissue was decellularized and conjugated with gold nanoparticles to evaluate if integration would occur while avoiding rupture and stenosis. Swine underwent a bilateral patch angioplasty of the carotid arteries with experimental patches on the right and control patches of bovine pericardium on the left. Animals were sacrificed after surgery and at 3 and 9 weeks. Ultrasound was performed during surgery, every 3 weeks, and before euthanasia. Endothelial regeneration was examined using Evans Blue dye and histology using Trichrome and H&E. There was a 100% success rate of implantation with 0% mortality. All patches were patent on ultrasound. At 3 weeks, experimental patches had regenerating endothelial cell growth and normal healing responses. At 9 weeks, the experimental patches demonstrated excellent integration. Histology demonstrated cellular in-growth into the experimental patches and no major immune reactions. This is one of the first studies to demonstrate the feasibility of nanomaterial-tissue patches for vascular and cardiac reconstruction.

  10. Feasibility of a nanomaterial-tissue patch for vascular and cardiac reconstruction.

    Science.gov (United States)

    Ostdiek, Allison M; Ivey, Jan R; Hansen, Sarah A; Gopaldas, Raja; Grant, Sheila A

    2016-04-01

    Vascular and cardiac reconstruction involves the use of biological patches to treat trauma and defects. An in vivo study was performed to determine the remodeling and biologic effects of novel nanostructured vascular patches with and without gold nanoparticles. Porcine vascular tissue was decellularized and conjugated with gold nanoparticles to evaluate if integration would occur while avoiding rupture and stenosis. Swine underwent a bilateral patch angioplasty of the carotid arteries with experimental patches on the right and control patches of bovine pericardium on the left. Animals were sacrificed after surgery and at 3 and 9 weeks. Ultrasound was performed during surgery, every 3 weeks, and before euthanasia. Endothelial regeneration was examined using Evans Blue dye and histology using Trichrome and H&E. There was a 100% success rate of implantation with 0% mortality. All patches were patent on ultrasound. At 3 weeks, experimental patches had regenerating endothelial cell growth and normal healing responses. At 9 weeks, the experimental patches demonstrated excellent integration. Histology demonstrated cellular in-growth into the experimental patches and no major immune reactions. This is one of the first studies to demonstrate the feasibility of nanomaterial-tissue patches for vascular and cardiac reconstruction. PMID:25891427

  11. Design of a Novel Composite H2 S-Releasing Hydrogel for Cardiac Tissue Repair.

    Science.gov (United States)

    Mauretti, Arianna; Neri, Annalisa; Kossover, Olga; Seliktar, Dror; Nardo, Paolo Di; Melino, Sonia

    2016-06-01

    The design of 3D scaffolds is a crucial step in the field of regenerative medicine. Scaffolds should be degradable and bioresorbable as well as display good porosity, interconnecting pores, and topographic features; these properties favour tissue integration and vascularization. These requirements could be fulfilled by hybrid hydrogels using a combination of natural and synthetic components. Here, the mechanical and biological properties of a polyethylene glycol-fibrinogen hydrogel (PFHy) are improved in order to favour the proliferation and differentiation of human Sca-1(pos) cardiac progenitor cells (hCPCs). PFHys are modified by embedding air- or perfluorohexane-filled bovine serum albumin microbubbles (MBs) and characterized. Changes in cell morphology are observed in MBs-PFHys, suggesting that MBs could enhance the formation of bundles of cells and influence the direction of the spindle growth. The properties of MBs as carriers of active macromolecules are also exploited. For the first time, enzyme-coated MBs have been used as systems for the production of hydrogen sulfide (H2 S)-releasing scaffolds. Novel H2 S-releasing PFHys are produced, which are able to improve the growth of hCPCs. This novel 3D cell-scaffold system will allow the assessment of the effects of H2 S on the cardiac muscle regeneration with its potential applications in tissue repair. PMID:26857526

  12. Creating tissues from textiles: scalable nonwoven manufacturing techniques for fabrication of tissue engineering scaffolds.

    Science.gov (United States)

    Tuin, S A; Pourdeyhimi, B; Loboa, E G

    2016-02-23

    Electrospun nonwovens have been used extensively for tissue engineering applications due to their inherent similarities with respect to fibre size and morphology to that of native extracellular matrix (ECM). However, fabrication of large scaffold constructs is time consuming, may require harsh organic solvents, and often results in mechanical properties inferior to the tissue being treated. In order to translate nonwoven based tissue engineering scaffold strategies to clinical use, a high throughput, repeatable, scalable, and economic manufacturing process is needed. We suggest that nonwoven industry standard high throughput manufacturing techniques (meltblowing, spunbond, and carding) can meet this need. In this study, meltblown, spunbond and carded poly(lactic acid) (PLA) nonwovens were evaluated as tissue engineering scaffolds using human adipose derived stem cells (hASC) and compared to electrospun nonwovens. Scaffolds were seeded with hASC and viability, proliferation, and differentiation were evaluated over the course of 3 weeks. We found that nonwovens manufactured via these industry standard, commercially relevant manufacturing techniques were capable of supporting hASC attachment, proliferation, and both adipogenic and osteogenic differentiation of hASC, making them promising candidates for commercialization and translation of nonwoven scaffold based tissue engineering strategies.

  13. Bioreactors as Engineering Support to Treat Cardiac Muscle and Vascular Disease

    Directory of Open Access Journals (Sweden)

    Diana Massai

    2013-01-01

    Full Text Available Cardiovascular disease is the leading cause of morbidity and mortality in the Western World. The inability of fully differentiated, load-bearing cardiovascular tissues to in vivo regenerate and the limitations of the current treatment therapies greatly motivate the efforts of cardiovascular tissue engineering to become an effective clinical strategy for injured heart and vessels. For the effective production of organized and functional cardiovascular engineered constructs in vitro, a suitable dynamic environment is essential, and can be achieved and maintained within bioreactors. Bioreactors are technological devices that, while monitoring and controlling the culture environment and stimulating the construct, attempt to mimic the physiological milieu. In this study, a review of the current state of the art of bioreactor solutions for cardiovascular tissue engineering is presented, with emphasis on bioreactors and biophysical stimuli adopted for investigating the mechanisms influencing cardiovascular tissue development, and for eventually generating suitable cardiovascular tissue replacements.

  14. Cardiovascular tissue engineering and regeneration based on adipose tissue-derived stem/stromal cells

    OpenAIRE

    Parvizi, Mojtaba

    2016-01-01

    Currently, the pre-clinical field is rapidly progressing in search of new therapeutic modalities that replace or complement current medication to treat cardiovascular disease. Among these are the single or combined use of stem cells, biomaterials and instructive factors, which together form the triad of tissue engineering and regenerative medicine. Stem cell therapy is a promising approach for repair, remodeling and even regenerate tissue of otherwise irreparable damage, such as after myocard...

  15. Influence of different fixation protocols on the preservation and dimensions of cardiac tissue.

    Science.gov (United States)

    Hołda, Mateusz K; Klimek-Piotrowska, Wiesława; Koziej, Mateusz; Piątek, Katarzyna; Hołda, Jakub

    2016-08-01

    Recent extensive progress in invasive cardiac procedures has triggered a wave of dozens of heart morphometric anatomical studies that are carried out largely using autopsied samples fixed in formaldehyde solution prior to observations and measurements. In reality, very little is known about changes in heart tissue dimensions during fixation. The aim of this study was therefore to investigate how fixation affects the dimensions of cardiac tissue, and if different types and concentrations of reagents affect this phenomenon. A total of 40 pig heart samples were investigated, and seven different measuring sites were permanently marked in every heart prior to fixation. Four study groups (n = 10 each) were assembled that differed only in concentration and the type of fixative: (i) 2% formaldehyde solution; (ii) 4% formaldehyde solution (formalin); (iii) 10% formaldehyde solution; (iv) alcoholic formalin. The samples were measured before and after fixation at the following time points: 24 h, 72 h and 168 h. It was found that different fixatives significantly affected different parameters. Almost all of the heart dimensions that were measured stabilized after 24 h; later changes were statistically insignificant in the point-to-point comparison. Change in the length of the interatrial septum surface was not altered significantly in any of the fixatives after 24 h of preservation. It was found that 10% formaldehyde increased the thickness of muscular tissue only after 24 h; this thickening was reduced after 72 h and was insignificant at 168 h. Other heart parameters in this group do not present significant changes over the entire fixation time duration. In conclusion, the 10% formaldehyde phosphate-buffered solution appeared to be the best fixative among the fixatives that were studied for cardiac morphometric purposes; this solution caused the smallest changes in tissue dimensions. Measurements should be obtained at least after 1 week of preservation

  16. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  17. Tissue Engineering Using Transfected Growth-Factor Genes

    Science.gov (United States)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  18. Cellular strategies to promote vascularisation in tissue engineering applications

    Directory of Open Access Journals (Sweden)

    R Costa-Almeida

    2014-07-01

    Full Text Available Vascularisation is considered to be one of the greatest challenges in tissue engineering. Different strategies exist but cell-based approaches have emerged as a promising therapy to achieve successful vascularisation. The use of endothelial cells to engineer vascularised tissues has been extensively investigated. This field of research has evolved with the discovery of endothelial progenitor cells, a subpopulation with a high regenerative potential. However, the survival of endothelial cell populations alone seems to be impaired. To overcome this problem, co-culture systems, involving supporting cells, like mural cells, fibroblasts, or more tissue-specific cells have been developed. Endothelial cells benefit from the extracellular matrix components and growth factors produced by the supporting cells, which results in neovessel stabilisation and maturation. The use of endothelial progenitor cells in co-culture systems appears to be a promising strategy to promote vascularisation in approaches of increasing complexity. Herein, the authors provide an overview of the cellular strategies that can be used for increasing vascularisation in tissue engineering and regeneration.

  19. 3D printing of functional biomaterials for tissue engineering.

    Science.gov (United States)

    Zhu, Wei; Ma, Xuanyi; Gou, Maling; Mei, Deqing; Zhang, Kang; Chen, Shaochen

    2016-08-01

    3D printing is emerging as a powerful tool for tissue engineering by enabling 3D cell culture within complex 3D biomimetic architectures. This review discusses the prevailing 3D printing techniques and their most recent applications in building tissue constructs. The work associated with relatively well-known inkjet and extrusion-based bioprinting is presented with the latest advances in the fields. Emphasis is put on introducing two relatively new light-assisted bioprinting techniques, including digital light processing (DLP)-based bioprinting and laser based two photon polymerization (TPP) bioprinting. 3D bioprinting of vasculature network is particularly discussed for its foremost significance in maintaining tissue viability and promoting functional maturation. Limitations to current bioprinting approaches, as well as future directions of bioprinting functional tissues are also discussed. PMID:27043763

  20. Spiral-wave turbulence and its control in the presence of inhomogeneities in four mathematical models of cardiac tissue.

    Directory of Open Access Journals (Sweden)

    T K Shajahan

    Full Text Available Regular electrical activation waves in cardiac tissue lead to the rhythmic contraction and expansion of the heart that ensures blood supply to the whole body. Irregularities in the propagation of these activation waves can result in cardiac arrhythmias, like ventricular tachycardia (VT and ventricular fibrillation (VF, which are major causes of death in the industrialised world. Indeed there is growing consensus that spiral or scroll waves of electrical activation in cardiac tissue are associated with VT, whereas, when these waves break to yield spiral- or scroll-wave turbulence, VT develops into life-threatening VF: in the absence of medical intervention, this makes the heart incapable of pumping blood and a patient dies in roughly two-and-a-half minutes after the initiation of VF. Thus studies of spiral- and scroll-wave dynamics in cardiac tissue pose important challenges for in vivo and in vitro experimental studies and for in silico numerical studies of mathematical models for cardiac tissue. A major goal here is to develop low-amplitude defibrillation schemes for the elimination of VT and VF, especially in the presence of inhomogeneities that occur commonly in cardiac tissue. We present a detailed and systematic study of spiral- and scroll-wave turbulence and spatiotemporal chaos in four mathematical models for cardiac tissue, namely, the Panfilov, Luo-Rudy phase 1 (LRI, reduced Priebe-Beuckelmann (RPB models, and the model of ten Tusscher, Noble, Noble, and Panfilov (TNNP. In particular, we use extensive numerical simulations to elucidate the interaction of spiral and scroll waves in these models with conduction and ionic inhomogeneities; we also examine the suppression of spiral- and scroll-wave turbulence by low-amplitude control pulses. Our central qualitative result is that, in all these models, the dynamics of such spiral waves depends very sensitively on such inhomogeneities. We also study two types of control schemes that have been

  1. Reentry produced by small-scale heterogeneities in a discrete model of cardiac tissue

    Science.gov (United States)

    Alonso, Sergio; Bär, Markus

    2016-06-01

    Reentries are reexcitations of cardiac tissue after the passing of an excitation wave which can cause dangerous arrhythmias like tachycardia or life-threatening heart failures like fibrillation. The heart is formed by a network of cells connected by gap junctions. Under ischemic conditions some of the cells lose their connections, because gap junctions are blocked and the excitability is decreased. We model a circular region of the tissue where a fraction of connections among individual cells are removed and substituted by non-conducting material in a two-dimensional (2D) discrete model of a heterogeneous excitable medium with local kinetics based on electrophysiology. Thus, two neighbouring cells are connected (disconnected) with a probability ϕ (1 - ϕ). Such a region is assumed to be surrounded by homogeneous tissue. The circular heterogeneous area is shown to act as a source of new waves which reenter into the tissue and reexcitate the whole domain. We employ the Fenton-Karma equations to model the action potential for the local kinetics of the discrete nodes to study the statistics of the reentries in two dimensional networks with different topologies. We conclude that the probability of reentry is determined by the proximity of the fraction of disrupted connections between neighboring nodes (“cells”) in the heterogeneous region to the percolation threshold.

  2. Multisite Tissue Oxygenation Monitoring Indicates Organ-Specific Flow Distribution and Oxygen Delivery Related to Low Cardiac Output in Preterm Infants With Clinical Sepsis

    NARCIS (Netherlands)

    van der Laan, Michelle E; Roofthooft, Marc; Fries, Marian W A; Schat, Trijntje E; Bos, Arend F; Berger, Rolf M F; Kooi, Elisabeth M W

    2016-01-01

    OBJECTIVES: Cardiac output may be compromised in preterm infants with sepsis. Whether low cardiac output is associated with low tissue oxygen supply in these patients is unclear. The aim of the current study was to assess the association between cardiac output, assessed by echocardiography, and tiss

  3. Tissue engineering and regenerative medicine: history, progress, and challenges.

    Science.gov (United States)

    Berthiaume, François; Maguire, Timothy J; Yarmush, Martin L

    2011-01-01

    The past three decades have seen the emergence of an endeavor called tissue engineering and regenerative medicine in which scientists, engineers, and physicians apply tools from a variety of fields to construct biological substitutes that can mimic tissues for diagnostic and research purposes and can replace (or help regenerate) diseased and injured tissues. A significant portion of this effort has been translated to actual therapies, especially in the areas of skin replacement and, to a lesser extent, cartilage repair. A good amount of thoughtful work has also yielded prototypes of other tissue substitutes such as nerve conduits, blood vessels, liver, and even heart. Forward movement to clinical product, however, has been slow. Another offshoot of these efforts has been the incorporation of some new exciting technologies (e.g., microfabrication, 3D printing) that may enable future breakthroughs. In this review we highlight the modest beginnings of the field and then describe three application examples that are in various stages of development, ranging from relatively mature (skin) to ongoing proof-of-concept (cartilage) to early stage (liver). We then discuss some of the major issues that limit the development of complex tissues, some of which are fundamentals-based, whereas others stem from the needs of the end users.

  4. Tissue engineering and regenerative medicine in musculoskeletal oncology.

    Science.gov (United States)

    Holzapfel, Boris Michael; Wagner, Ferdinand; Martine, Laure Christine; Reppenhagen, Stephan; Rudert, Maximilian; Schuetz, Michael; Denham, Jim; Schantz, Jan-Thorsten; Hutmacher, Dietmar Werner

    2016-09-01

    Currently used surgical techniques to reconstruct tissue defects after resection of musculoskeletal tumours are associated with high complication rates. This drives a strong demand for innovative therapeutic concepts that are able to improve the clinical outcomes of patients suffering from bone and soft tissue tumours. Tissue engineering and regenerative medicine (TE&RM) provides a technology platform based on biochemical, molecular, cellular and biomaterials modules to selectively direct tissue healing processes for improved defect regeneration. At the same time, precautionary measures have to be taken when these instruments are used in cancer patients to prevent any promotion of tumour growth or metastatic spread. On the other hand, several innovative TE&RM tools are being developed such as multi-functionalized biomaterials, drug-delivering nanomaterials or genetically engineered stem cells that per se have the potential to mediate anti-cancer effects, act synergistically with currently used chemotherapeutics and/or radiotherapy regimens and reduce their side effects. Recently, scientists became conscious that TE&RM strategies may not only be utilized to advance contemporary tissue reconstruction techniques but also to develop personalized diagnostic tools and clinically relevant disease models for cancer patients. Eventually, prospective randomized clinical trials combined with comparative outcome analyses are a conditio sine qua non to shape the benefits of personalized regenerative therapies for the standardized management of patients with musculoskeletal tumours.

  5. Optically Controlled Oscillators in an Engineered Bioelectric Tissue

    Science.gov (United States)

    McNamara, Harold M.; Zhang, Hongkang; Werley, Christopher A.; Cohen, Adam E.

    2016-07-01

    Complex electrical dynamics in excitable tissues occur throughout biology, but the roles of individual ion channels can be difficult to determine due to the complex nonlinear interactions in native tissue. Here, we ask whether we can engineer a tissue capable of basic information storage and processing, where all functional components are known and well understood. We develop a cell line with four transgenic components: two to enable collective propagation of electrical waves and two to enable optical perturbation and optical readout of membrane potential. We pattern the cell growth to define simple cellular ring oscillators that run stably for >2 h (˜104 cycles ) and that can store data encoded in the direction of electrical circulation. Using patterned optogenetic stimulation, we probe the biophysical attributes of this synthetic excitable tissue in detail, including dispersion relations, curvature-dependent wave front propagation, electrotonic coupling, and boundary effects. We then apply the biophysical characterization to develop an optically reconfigurable bioelectric oscillator. These results demonstrate the feasibility of engineering bioelectric tissues capable of complex information processing with optical input and output.

  6. Carbon nanotubes leading the way forward in new generation 3D tissue engineering.

    Science.gov (United States)

    Hopley, Erin Leigh; Salmasi, Shima; Kalaskar, Deepak M; Seifalian, Alexander M

    2014-01-01

    Statistics from the NHS Blood and Transplant Annual Review show that total organ transplants have increased to 4213 in 2012, while the number of people waiting to receive an organ rose to 7613 that same year. Human donors as the origin of transplanted organs no longer meet the ever-increasing demand, and so interest has shifted to synthetic organ genesis as a form of supply. This focus has given rise to new generation tissue and organ engineering, in the hope of one day designing 3D organs in vitro. While research in this field has been conducted for several decades, leading to the first synthetic trachea transplant in 2011, scaffold design for optimising complex tissue growth is still underexplored and underdeveloped. This is mostly the result of the complexity required in scaffolds, as they need to mimic the cells' native extracellular matrix. This is an intricate nanostructured environment that provides cells with physical and chemical stimuli for optimum cell attachment, proliferation and differentiation. Carbon nanotubes are a popular addition to synthetic scaffolds and have already begun to revolutionise regenerative medicine. Discovered in 1991, these are traditionally used in various areas of engineering and technology; however, due to their excellent mechanical, chemical and electrical properties their potential is now being explored in areas of drug delivery, in vivo biosensor application and tissue engineering. The incorporation of CNTs into polymer scaffolds displays a variety of structural and chemical enhancements, some of which include: increased scaffold strength and flexibility, improved biocompatibility, reduction in cancerous cell division, induction of angiogenesis, reduced thrombosis, and manipulation of gene expression in developing cells. Moreover CNTs' tensile properties open doors for dynamic scaffold design, while their thermal and electrical properties provide opportunities for the development of neural, bone and cardiac tissue constructs

  7. Gene-enhanced tissue engineering for dental hard tissue regeneration: (1 overview and practical considerations

    Directory of Open Access Journals (Sweden)

    Mason James M

    2006-05-01

    Full Text Available Abstract Gene-based therapies for tissue regeneration involve delivering a specific gene to a target tissue with the goal of changing the phenotype or protein expression profile of the recipient cell; the ultimate goal being to form specific tissues required for regeneration. One of the principal advantages of this approach is that it provides for a sustained delivery of physiologic levels of the growth factor of interest. This manuscript will review the principals of gene-enhanced tissue engineering and the techniques of introducing DNA into cells. Part 2 will review recent advances in gene-based therapies for dental hard tissue regeneration, specifically as it pertains to dentin regeneration/pulp capping and periodontal regeneration.

  8. Biodegradable polymeric microcarriers with controllable porous structure for tissue engineering.

    Science.gov (United States)

    Shi, Xudong; Sun, Lei; Jiang, Jian; Zhang, Xiaolin; Ding, Wenjun; Gan, Zhihua

    2009-12-01

    Porous microspheres fabricated by biodegradable polymers show great potential as microcarriers for cell cultivation in tissue engineering. Herein biodegradable poly(DL-lactide) (PLA) was used to fabricate porous microspheres through a modified double emulsion solvent evaporation method. The influence of fabrication parameters, such as the stirring speed of the primary and secondary emulsion, the polymer concentration of the oil phase, and solvent type, as well as the post-hydrolysis treatment of the porous structure of the PLA microspheres are discussed. Good attachment and an active spread of MG-63 cells on the microspheres is observed, which indicates that the PLA microspheres with controllable porous structure are of great potential as cell delivery carriers for tissue engineering. PMID:19821453

  9. Polymer Composites Reinforced by Nanotubes as Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available The interest in polymer based composites for tissue engineering applications has been increasing in recent years. Nanotubes materials, including carbon nanotubes (CNTs and noncarbonic nanotubes, with unique electrical, mechanical, and surface properties, such as high aspect ratio, have long been recognized as effective reinforced materials for enhancing the mechanical properties of polymer matrix. This review paper is an attempt to present a coherent yet concise review on the mechanical and biocompatibility properties of CNTs and noncarbonic nanotubes/polymer composites, such as Boron nitride nanotubes (BNNTs and Tungsten disulfide nanotubes (WSNTs reinforced polymer composites which are used as scaffolds for tissue engineering. We also introduced different preparation methods of CNTs/polymer composites, such as in situ polymerization, solution mixing, melt blending, and latex technology, each of them has its own advantages.

  10. Towards autotrophic tissue engineering: Photosynthetic gene therapy for regeneration.

    Science.gov (United States)

    Chávez, Myra Noemi; Schenck, Thilo Ludwig; Hopfner, Ursula; Centeno-Cerdas, Carolina; Somlai-Schweiger, Ian; Schwarz, Christian; Machens, Hans-Günther; Heikenwalder, Mathias; Bono, María Rosa; Allende, Miguel L; Nickelsen, Jörg; Egaña, José Tomás

    2016-01-01

    The use of artificial tissues in regenerative medicine is limited due to hypoxia. As a strategy to overcome this drawback, we have shown that photosynthetic biomaterials can produce and provide oxygen independently of blood perfusion by generating chimeric animal-plant tissues during dermal regeneration. In this work, we demonstrate the safety and efficacy of photosynthetic biomaterials in vivo after engraftment in a fully immunocompetent mouse skin defect model. Further, we show that it is also possible to genetically engineer such photosynthetic scaffolds to deliver other key molecules in addition to oxygen. As a proof-of-concept, biomaterials were loaded with gene modified microalgae expressing the angiogenic recombinant protein VEGF. Survival of the algae, growth factor delivery and regenerative potential were evaluated in vitro and in vivo. This work proposes the use of photosynthetic gene therapy in regenerative medicine and provides scientific evidence for the use of engineered microalgae as an alternative to deliver recombinant molecules for gene therapy.

  11. 3D-Printed Biopolymers for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Xiaoming Li

    2014-01-01

    Full Text Available 3D printing technology has recently gained substantial interest for potential applications in tissue engineering due to the ability of making a three-dimensional object of virtually any shape from a digital model. 3D-printed biopolymers, which combine the 3D printing technology and biopolymers, have shown great potential in tissue engineering applications and are receiving significant attention, which has resulted in the development of numerous research programs regarding the material systems which are available for 3D printing. This review focuses on recent advances in the development of biopolymer materials, including natural biopolymer-based materials and synthetic biopolymer-based materials prepared using 3D printing technology, and some future challenges and applications of this technology are discussed.

  12. Electrospun nanofibrous materials for tissue engineering and drug delivery

    Directory of Open Access Journals (Sweden)

    Wenguo Cui, Yue Zhou and Jiang Chang

    2010-01-01

    Full Text Available The electrospinning technique, which was invented about 100 years ago, has attracted more attention in recent years due to its possible biomedical applications. Electrospun fibers with high surface area to volume ratio and structures mimicking extracellular matrix (ECM have shown great potential in tissue engineering and drug delivery. In order to develop electrospun fibers for these applications, different biocompatible materials have been used to fabricate fibers with different structures and morphologies, such as single fibers with different composition and structures (blending and core-shell composite fibers and fiber assemblies (fiber bundles, membranes and scaffolds. This review summarizes the electrospinning techniques which control the composition and structures of the nanofibrous materials. It also outlines possible applications of these fibrous materials in skin, blood vessels, nervous system and bone tissue engineering, as well as in drug delivery.

  13. Fabrication and Application of Nanofibrous Scaffolds in Tissue Engineering

    Science.gov (United States)

    Li, Wan-Ju; Tuan, Rocky S.

    2009-01-01

    Nanofibers fabricated by electrospinning are morphological mimics of fibrous components of the native extracellular matrix, making nanofibrous scaffolds ideal for three-dimensional cell culture and tissue engineering applications. Although electrospinning is not a conventional technique in cell biology, the experimental set-up may be constructed in a relatively straightforward manner and the procedure can be carried by individuals with limited engineering experience. We detail here a protocol for electrospinning of nanofibers and provide relevant specific details concerning the optimization of fiber formation. The protocol also includes conditions required for preparing biodegradable polymer solutions for the fabrication of non-woven and aligned nanofibrous scaffolds suitable for various cell/tissue applications. In addition, the information on effective cell loading into nanofibrous scaffolds is provided. Instructions for building the electrospinning apparatus are also included. PMID:19283731

  14. Mathematically defined tissue engineering scaffold architectures prepared by stereolithography.

    Science.gov (United States)

    Melchels, Ferry P W; Bertoldi, Katia; Gabbrielli, Ruggero; Velders, Aldrik H; Feijen, Jan; Grijpma, Dirk W

    2010-09-01

    The technologies employed for the preparation of conventional tissue engineering scaffolds restrict the materials choice and the extent to which the architecture can be designed. Here we show the versatility of stereolithography with respect to materials and freedom of design. Porous scaffolds are designed with computer software and built with either a poly(D,L-lactide)-based resin or a poly(D,L-lactide-co-epsilon-caprolactone)-based resin. Characterisation of the scaffolds by micro-computed tomography shows excellent reproduction of the designs. The mechanical properties are evaluated in compression, and show good agreement with finite element predictions. The mechanical properties of scaffolds can be controlled by the combination of material and scaffold pore architecture. The presented technology and materials enable an accurate preparation of tissue engineering scaffolds with a large freedom of design, and properties ranging from rigid and strong to highly flexible and elastic.

  15. Esophageal tissue engineering: A new approach for esophageal replacement

    Institute of Scientific and Technical Information of China (English)

    Giorgia Totonelli; Panagiotis Maghsoudlou; Jonathan M Fishman; Giuseppe Orlando; Tahera Ansari; Paul Sibbons; Martin A Birchall

    2012-01-01

    A number of congenital and acquired disorders require esophageal tissue replacement.Various surgical techniques,such as gastric and colonic interposition,are standards of treatment,but frequently complicated by stenosis and other problems.Regenerative medicine approaches facilitate the use of biological constructs to replace or regenerate normal tissue function.We review the literature of esophageal tissue engineering,discuss its implications,compare the methodologies that have been employed and suggest possible directions for the future.Medline,Embase,the Cochrane Library,National Research Register and ClinicalTrials.gov databases were searched with the following search terms:stem cell and esophagus,esophageal replacement,esophageal tissue engineering,esophageal substitution.Reference lists of papers identified were also examined and experts in this field contacted for further information.All full-text articles in English of all potentially relevant abstracts were reviewed.Tissue engineering has involved acellular scaffolds that were either transplanted with the aim of being repopulated by host cells or seeded prior to transplantation.When acellular scaffolds were used to replace patch and short tubular defects they allowed epithelial and partial muscular migration whereas when employed for long tubular defects the results were poor leading to an increased rate of stenosis and mortality.Stenting has been shown as an effective means to reduce stenotic changes and promote cell migration,whilst omental wrapping to induce vascularization of the construct has an uncertain benefit.Decellularized matrices have been recently suggested as the optimal choice for scaffolds,but smart polymers that will incorporate signalling to promote cell-scaffold interaction may provide a more reproducible and available solution.Results in animal models that have used seeded scaffolds strongly suggest that seeding of both muscle and epithelial cells on scaffolds prior to implantation is a

  16. Enhancing Clinical Islet Transplantation through Tissue Engineering Strategies

    OpenAIRE

    Giraldo, Jaime A.; Weaver, Jessica D; Stabler, Cherie L

    2010-01-01

    Clinical islet transplantation (CIT), the infusion of allogeneic islets within the liver, has the potential to provide precise and sustainable control of blood glucose levels for the treatment of type 1 diabetes. The success and long-term outcomes of CIT, however, are limited by obstacles such as a nonoptimal transplantation site and severe inflammatory and immunological responses to the transplant. Tissue engineering strategies are poised to combat these challenges. In this review, emerging ...

  17. Stabilized Collagen Scaffolds for Heart Valve Tissue Engineering

    OpenAIRE

    Tedder, Mary E.; Liao, Jun; Weed, Benjamin; Stabler, Christopher; Zhang, Henry; Simionescu, Agneta; Simionescu, Dan T.

    2008-01-01

    Scaffolds for heart valve tissue engineering must function immediately after implantation but also need to tolerate cell infiltration and gradual remodeling. We hypothesized that moderately cross-linked collagen scaffolds would fulfill these requirements. To test our hypothesis, scaffolds prepared from decellularized porcine pericardium were treated with penta-galloyl glucose (PGG), a collagen-binding polyphenol, and tested for biodegradation, biaxial mechanical properties, and in vivo biocom...

  18. Polymeric Materials for Tissue Engineering of Arterial Substitutes

    OpenAIRE

    Ravi, Swathi; QU, ZHENG; Chaikof, Elliot L.

    2009-01-01

    Cardiovascular disease is the leading cause of mortality in the United States. The limited availability of healthy autologous vessels for bypass grafting procedures has led to the fabrication of prosthetic vascular conduits. Synthetic polymeric materials, while providing the appropriate mechanical strength, lack the compliance and biocompatibility that bioresorbable and naturally occurring protein polymers offer. Vascular tissue engineering approaches have emerged in order to meet the challen...

  19. Developments in bone tissue engineering research for spinal fusion

    OpenAIRE

    van Gaalen, S.M.

    2010-01-01

    Many orthopaedic procedures require fusion of a bony defect. Sometimes a bone graft is needed for this fusion. Autograft bone is considered the golden standard. The harvesting of this bone is time consuming and may have serious side effects, such as chronic donor site pain. Available alternatives are reviewed and discussed based on their benefits and drawbacks. As an alternative, bone Tissue Engineering (TE), i.e. osteoprogenitor cells seeded on porous ceramic scaffolds, for spinal fusion was...

  20. Neural tissue engineering using embryonic and induced pluripotent stem cells

    OpenAIRE

    Willerth, Stephanie M.

    2011-01-01

    With the recent start of the first clinical trial evaluating a human embryonic stem cell-derived therapy for the treatment of acute spinal cord injury, it is important to review the current literature examining the use of embryonic stem cells for neural tissue engineering applications with a focus on diseases and disorders that affect the central nervous system. Embryonic stem cells exhibit pluripotency and thus can differentiate into any cell type found in the body, including those found in ...

  1. Bridging the Divide between Neuroprosthetic Design, Tissue Engineering and Neurobiology

    OpenAIRE

    Jennie Leach; Achyuta, Anil Kumar H.; Murthy, Shashi K

    2010-01-01

    Neuroprosthetic devices have made a major impact in the treatment of a variety of disorders such as paralysis and stroke. However, a major impediment in the advancement of this technology is the challenge of maintaining device performance during chronic implantation (months to years) due to complex intrinsic host responses such as gliosis or glial scarring. The objective of this review is to bring together research communities in neurobiology, tissue engineering, and neuroprosthetics to addre...

  2. Magnetic scaffolds enriched with bioactive nanoparticles for tissue engineering.

    Science.gov (United States)

    Skaat, Hadas; Ziv-Polat, Ofra; Shahar, Abraham; Last, David; Mardor, Yael; Margel, Shlomo

    2012-03-01

    Novel magnetic fibrin hydrogel scaffolds for cell implantation and tissue engineering are reported. The magnetic scaffolds are produced by the interaction between thrombin-conjugated maghemite nanoparticles of narrow size distribution and fibrinogen. These scaffolds, enriched with growth factor conjugated fluorescent maghemite nanoparticles, provide a supporting 3D environment for massive proliferation of various cell types, and can be successfully visualized by MRI. PMID:23184719

  3. Gellan gum : hydroxyapatite composite hydrogels for bone tissue engineering

    OpenAIRE

    Manda-Guiba, G. M.; Oliveira, Mariana B.; Mano, J.F; Marques, A.P; Joaquim M. Oliveira; Correlo, V. M.; Reis, R. L.

    2012-01-01

    The modification of polymeric matrices by adding calcium-phosphate derivatives has been proven an effective strategy for tailoring the properties of scaffolds employed in bone tissue engineering. In this regard and, considering the biomechanics of bone as well as the durotactic response of osteoblasts, this study builds on the hypothesis that the preparation of novel Gellan Gum (GG)-Hydroxyapatite (HA) hydrogel composites could benefit the mechanical profile of matrices as well as the cell-su...

  4. From Stem to Roots: tissue engineering in Endodontics

    OpenAIRE

    Chandki, Rita; Kala, M.; Banthia, Priyank; Banthia, Ruchi

    2012-01-01

    The vitality of dentin-pulp complex is fundamental to the life of tooth and is a priority for targeting clinical management strategies. Loss of the tooth, jawbone or both, due to periodontal disease, dental caries, trauma or some genetic disorders, affects not only basic mouth functions but aesthetic appearance and quality of life. One novel approach to restore tooth structure is based on biology: regenerative endodontic procedure by application of tissue engineering. Regenerative endodontics...

  5. Recent advances in application of biosensors in tissue engineering.

    Science.gov (United States)

    Hasan, Anwarul; Nurunnabi, Md; Morshed, Mahboob; Paul, Arghya; Polini, Alessandro; Kuila, Tapas; Al Hariri, Moustafa; Lee, Yong-kyu; Jaffa, Ayad A

    2014-01-01

    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications. PMID:25165697

  6. Visualization of vascular ultrastructure during osteogenesis by tissue engineering technique

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kaigang; ZENG Bingfang; ZHANG Changqing

    2007-01-01

    The aim of this Paper was to observe and visualize the changes in osteoblasts by electron microscopy during osteogenesis using tissue engineering technique.We also studied the feasibility of improving tissue vascularization of the engineered bone by using small intestine submucosa (SIS)as the scaffold.Bone mesenchyrnal stem cells (BMSCs)were isolated by gradient centrifugation method.Bone mesenchymal stem cells were seeded in the SIS,and the scaffold-cell constructs were cultured in vitro for 2 weeks.Small intestine submucosa without BMSCs served as control.Both SIS scaffolds were then implanted subcutaneously in the dorsa of athymic mice.The implants were harvested after in vivo incubation for 4,8 and 12 weeks.The changes in osteoblasts and vascularization were observed under a transmission electron microscope and a scanning electron microscope.The BMSCs grew quite well,differentiating on the surface of the SIS and secreting a great deal of extracellular matrices.The scaffold-cell constructs formed a lot of bone and blood vessels in vivo.The scaffold degraded after 12 weeks.No osteoblasts,but vascularization and fibroblasts were observed,in the control.The SIS can be used as a scaffold for constructing tissue-engineered bone as it can improve the formation of bone and vessels in vivo.

  7. Statistical characterization of engineered tissues using confocal mosaic technology

    Science.gov (United States)

    Levitz, David; Ardeshiri, Ardalan; Ahmed, Jabeer; Gareau, Daniel S.; Jacques, Steven L.

    2010-02-01

    Characterization of engineered tissues using optical methods often involves tradeoff between the fraction of total volume that is imaged and the spatial resolution. The limitation is not technological but rather practical, having more to do with effective probe designs and computer memory storage for large datasets. In this paper, we propose using confocal mosaicing, a technique used to characterize large volumes of excisioned biopsies from Mohs surgeries, to characterizing collagen gels. This technique stitches together high-resolution 3D images of a series adjacent millimeter sized regions that collectively make up areas that are ~cm2. Image acquisition time is approximately 5 min. The resulting high-resolution images closely resemble hematoxylin and eosin histological sections, only obtained without the time-consuming embedding and sectioning steps. Disk-shaped collagen gels that are 1 ml volume and ~1.5 cm diameter were prepared with smooth muscle cells and imaged at days 1 and 5. Using the digital staining technique, we were able to survey the spatial distribution of cells in the hydrogel and assess spatial heterogeneity in 3D from the fluorescence data. The reflectance data provided information on collagen fibril structure and matrix remodeling by the cells. Digital staining presented the data in a way that is easily interpreted by tissue engineers. Altogether, we believe confocal mosaicing and digital staining represents an important technological novelty that significantly advances nondestructive optical evaluation of engineered tissues.

  8. Recent Advances in Application of Biosensors in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Anwarul Hasan

    2014-01-01

    Full Text Available Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications.

  9. A Novel Seeding and Conditioning Bioreactor for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Julia Schulte

    2014-07-01

    Full Text Available Multiple efforts have been made to develop small-diameter tissue engineered vascular grafts using a great variety of bioreactor systems at different steps of processing. Nevertheless, there is still an extensive need for a compact all-in-one system providing multiple and simultaneous processing. The aim of this project was to develop a new device to fulfill the major requirements of an ideal system that allows simultaneous seeding, conditioning, and perfusion. The newly developed system can be actuated in a common incubator and consists of six components: a rotating cylinder, a pump, a pulse generator, a control unit, a mixer, and a reservoir. Components that are in direct contact with cell media, cells, and/or tissue allow sterile processing. Proof-of-concept experiments were performed with polyurethane tubes and collagen tubes. The scaffolds were seeded with fibroblasts and endothelial cells that were isolated from human saphenous vein segments. Scanning electron microscopy and immunohistochemistry showed better seeding success of polyurethane scaffolds in comparison to collagen. Conditioning of polyurethane tubes with 100 dyn/cm2 resulted in cell detachments, whereas a moderate conditioning program with stepwise increase of shear stress from 10 to 40 dyn/cm2 induced a stable and confluent cell layer. The new bioreactor is a powerful tool for quick and easy testing of various scaffold materials for the development of tissue engineered vascular grafts. The combination of this bioreactor with native tissue allows testing of medical devices and medicinal substances under physiological conditions that is a good step towards reduction of animal testing. In the long run, the bioreactor could turn out to produce tissue engineered vascular grafts for human applications “at the bedside”.

  10. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chao; Yang, Qiang [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhu, Meifeng [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Du, Lilong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhang, Jiamin [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ma, Xinlong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Xu, Baoshan, E-mail: xubaoshan99@126.com [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Wang, Lianyong, E-mail: wly@nankai.edu.cn [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2014-04-01

    Intervertebral discs (IVDs) are structurally complex tissue that hold the vertebrae together and provide mobility to spine. The nucleus pulposus (NP) degeneration often results in degenerative IVD disease that is one of the most common causes of back and neck pain. Tissue engineered nucleus pulposus offers an alternative approach to regain the function of the degenerative IVD. The aim of this study is to determine the feasibility of porous silk fibroin (SF) scaffolds fabricated by paraffin-sphere-leaching methods with freeze-drying in the application of nucleus pulposus regeneration. The prepared scaffold possessed high porosity of 92.38 ± 5.12% and pore size of 165.00 ± 8.25 μm as well as high pore interconnectivity and appropriate mechanical properties. Rabbit NP cells were seeded and cultured on the SF scaffolds. Scanning electron microscopy, histology, biochemical assays and mechanical tests revealed that the porous scaffolds could provide an appropriate microstructure and environment to support adhesion, proliferation and infiltration of NP cells in vitro as well as the generation of extracellular matrix. The NP cell–scaffold construction could be preliminarily formed after subcutaneously implanted in a nude mice model. In conclusion, The SF porous scaffold offers a potential candidate for tissue engineered NP tissue. - Highlights: • Paraffin microsphere-leaching method is used to fabricate silk fibroin scaffold. • The scaffold has appropriate mechanical property, porosity and pore size • The scaffold supports growth and infiltration of nucleus pulposus cells. • Nucleus pulposus cells can secrete extracellular matrix in the scaffolds. • The scaffold is a potential candidate for tissue engineered nucleus pulposus.

  11. Prognostic value of cardiac time intervals measured by tissue Doppler imaging M-mode in the general population

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Mogelvang, Rasmus; Jensen, Jan Skov

    2015-01-01

    OBJECTIVE: Tissue Doppler imaging (TDI) M-mode through the mitral leaflet is an easy and precise method to estimate the cardiac time intervals. The aim was to evaluate the usability of the cardiac time intervals in predicting major cardiovascular events (MACE) in the general population. METHODS......: In a large prospective community-based study, cardiac function was evaluated in 1915 participants by both conventional echocardiography and TDI. The cardiac time intervals, including the isovolumic relaxation time (IVRT), isovolumic contraction time (IVCT) and ejection time (ET), were obtained by TDI M...... echocardiographic parameters resulted in a significant increase in the c-statistics (0.76 vs 0.75 ptime intervals that include...

  12. Nanoscale tissue engineering: spatial control over cell-materials interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wheeldon, Ian; Farhadi, Arash; Bick, Alexander G; Khademhosseini, Ali [Center for Biomedical Engineering, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Jabbari, Esmaiel, E-mail: alik@rics.bwh.harvard.edu [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2011-05-27

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness these interactions through nanoscale biomaterials engineering in order to study and direct cellular behavior. Here, we review two- and three-dimensional (2- and 3D) nanoscale tissue engineering technologies, and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffold technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D. However, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and that can control the temporal changes in the cellular microenvironment. (topical review)

  13. Nanoscale tissue engineering: spatial control over cell-materials interactions

    International Nuclear Information System (INIS)

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness these interactions through nanoscale biomaterials engineering in order to study and direct cellular behavior. Here, we review two- and three-dimensional (2- and 3D) nanoscale tissue engineering technologies, and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffold technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D. However, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and that can control the temporal changes in the cellular microenvironment. (topical review)

  14. Mechanical cues in orofacial tissue engineering and regenerative medicine.

    Science.gov (United States)

    Brouwer, Katrien M; Lundvig, Ditte M S; Middelkoop, Esther; Wagener, Frank A D T G; Von den Hoff, Johannes W

    2015-01-01

    Cleft lip and palate patients suffer from functional, aesthetical, and psychosocial problems due to suboptimal regeneration of skin, mucosa, and skeletal muscle after restorative cleft surgery. The field of tissue engineering and regenerative medicine (TE/RM) aims to restore the normal physiology of tissues and organs in conditions such as birth defects or after injury. A crucial factor in cell differentiation, tissue formation, and tissue function is mechanical strain. Regardless of this, mechanical cues are not yet widely used in TE/RM. The effects of mechanical stimulation on cells are not straight-forward in vitro as cellular responses may differ with cell type and loading regime, complicating the translation to a therapeutic protocol. We here give an overview of the different types of mechanical strain that act on cells and tissues and discuss the effects on muscle, and skin and mucosa. We conclude that presently, sufficient knowledge is lacking to reproducibly implement external mechanical loading in TE/RM approaches. Mechanical cues can be applied in TE/RM by fine-tuning the stiffness and architecture of the constructs to guide the differentiation of the seeded cells or the invading surrounding cells. This may already improve the treatment of orofacial clefts and other disorders affecting soft tissues.

  15. Cardiac Time Intervals Measured by Tissue Doppler Imaging M-mode

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Mogelvang, Rasmus; Schnohr, Peter;

    2016-01-01

    function was evaluated in 1915 participants by using both conventional echocardiography and tissue Doppler imaging (TDI). The cardiac time intervals, including the isovolumic relaxation time (IVRT), isovolumic contraction time (IVCT), and ejection time (ET), were obtained by TDI M-mode through the mitral...... leaflet. IVCT/ET, IVRT/ET, and myocardial performance index [MPI=(IVRT+IVCT)/ET] were calculated. After multivariable adjustment for clinical variables the IVRT, IVRT/ET, and MPI, remained significantly impaired in persons with hypertension (n=826) compared with participants without hypertension (n=1082......). Additionally, they displayed a significant dose-response relationship, between increasing severity of elevated blood pressure and increasing left ventricular mass index (P

  16. Unstable spiral waves and local Euclidean symmetry in a model of cardiac tissue

    Energy Technology Data Exchange (ETDEWEB)

    Marcotte, Christopher D.; Grigoriev, Roman O. [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-06-15

    This paper investigates the properties of unstable single-spiral wave solutions arising in the Karma model of two-dimensional cardiac tissue. In particular, we discuss how such solutions can be computed numerically on domains of arbitrary shape and study how their stability, rotational frequency, and spatial drift depend on the size of the domain as well as the position of the spiral core with respect to the boundaries. We also discuss how the breaking of local Euclidean symmetry due to finite size effects as well as the spatial discretization of the model is reflected in the structure and dynamics of spiral waves. This analysis allows identification of a self-sustaining process responsible for maintaining the state of spiral chaos featuring multiple interacting spirals.

  17. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering.

    Science.gov (United States)

    Yang, Maobin; Zhang, Hongming; Gangolli, Riddhi

    2014-05-01

    Bone and dental tissues in craniofacial region work as an important aesthetic and functional unit. Reconstruction of craniofacial tissue defects is highly expected to ensure patients to maintain good quality of life. Tissue engineering and regenerative medicine have been developed in the last two decades, and been advanced with the stem cell technology. Bone marrow derived mesenchymal stem cells are one of the most extensively studied post-natal stem cell population, and are widely utilized in cell-based therapy. Dental tissue derived mesenchymal stem cells are a relatively new stem cell population that isolated from various dental tissues. These cells can undergo multilineage differentiation including osteogenic and odontogenic differentiation, thus provide an alternative source of mesenchymal stem cells for tissue engineering. In this review, we discuss the important issues in mesenchymal stem cell biology including the origin and functions of mesenchymal stem cells, compare the properties of these two types of mesenchymal cells, update recent basic research and clinic applications in this field, and address important future challenges.

  18. Tissue Engineering a Biological Repair Strategy for Lumbar Disc Herniation.

    Science.gov (United States)

    O'Connell, Grace D; Leach, J Kent; Klineberg, Eric O

    2015-01-01

    The intervertebral disc is a critical part of the intersegmental soft tissue of the spinal column, providing flexibility and mobility, while absorbing large complex loads. Spinal disease, including disc herniation and degeneration, may be a significant contributor to low back pain. Clinically, disc herniations are treated with both nonoperative and operative methods. Operative treatment for disc herniation includes removal of the herniated material when neural compression occurs. While this strategy may have short-term advantages over nonoperative methods, the remaining disc material is not addressed and surgery for mild degeneration may have limited long-term advantage over nonoperative methods. Furthermore, disc herniation and surgery significantly alter the mechanical function of the disc joint, which may contribute to progression of degeneration in surrounding tissues. We reviewed recent advances in tissue engineering and regenerative medicine strategies that may have a significant impact on disc herniation repair. Our review on tissue engineering strategies focuses on cell-based and inductive methods, each commonly combined with material-based approaches. An ideal clinically relevant biological repair strategy will significantly reduce pain and repair and restore flexibility and motion of the spine. PMID:26634189

  19. Tissue-engineering as an adjunct to pelvic reconstructive surgery

    DEFF Research Database (Denmark)

    Jangö, Hanna

    This PhD-thesis is based on animal studies and comprises three original papers and unpublished data. The studies were conducted during my employment as a research fellow at the Department of Obstetrics and Gynecology, Herlev University Hospital, Denmark. New strategies for surgical reconstruction...... functional tissue using stem cells, scaffolds and trophic factors. The aim of this thesis was to investigate the potential adjunctive use of a tissue-engineering technique for pelvic reconstructive surgery using two synthetic biodegradable materials; methoxypolyethyleneglycol-poly(lactic-co-glycolic acid......) (MPEG-PLGA) and electrospun polycaprolactone (PCL) - with or without seeded muscle stem cells in the form of autologous fresh muscle fiber fragments (MFFs).To simulate different POP repair scenarios different animal models were used. In Study 1 and 2, MPEG-PLGA was evaluated in a native tissue repair...

  20. An integrated in vitro model of perfused tumor and cardiac tissue

    OpenAIRE

    Moya, Monica; Tran, David; George, Steven C.

    2013-01-01

    Cancer and cardiovascular disease remain the two leading causes of death in the United States. Progress in treatment to reduce morbidity and mortality will include the development of new drugs. Recent advances in induced pluripotent stem cell technology, tissue engineering, and microfabrication techniques have created a unique opportunity to develop three-dimensional (3D) microphysiological systems that more accurately reflect in vivo human biology when compared with two-dimensional flat syst...

  1. Engineering Parameters in Bioreactor’s Design: A Critical Aspect in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Nasim Salehi-Nik

    2013-01-01

    Full Text Available Bioreactors are important inevitable part of any tissue engineering (TE strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors.

  2. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes

    Science.gov (United States)

    Pilarczyk, Götz; Raulf, Alexandra; Gunkel, Manuel; Fleischmann, Bernd K.; Lemor, Robert; Hausmann, Michael

    2016-01-01

    The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC)-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds. PMID:26751484

  3. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Götz Pilarczyk

    2016-01-01

    Full Text Available The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds.

  4. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes.

    Science.gov (United States)

    Pilarczyk, Götz; Raulf, Alexandra; Gunkel, Manuel; Fleischmann, Bernd K; Lemor, Robert; Hausmann, Michael

    2016-01-01

    The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC)-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds. PMID:26751484

  5. Regulation of Connective Tissue Growth Factor and Cardiac Fibrosis by an SRF/MicroRNA-133a Axis.

    Directory of Open Access Journals (Sweden)

    Aude Angelini

    Full Text Available Myocardial fibrosis contributes to the remodeling of heart and the loss of cardiac function leading to heart failure. SRF is a transcription factor implicated in the regulation of a large variety of genes involved in cardiac structure and function. To investigate the impact of an SRF overexpression in heart, we developed a new cardiac-specific and tamoxifen-inducible SRF overexpression mouse model by the Cre/loxP strategy. Here, we report that a high level overexpression of SRF leads to severe modifications of cardiac cytoarchitecture affecting the balance between cardiomyocytes and cardiac fibroblasts and also a profound alteration of cardiac gene expression program. The drastic development of fibrosis was characterized by intense sirius red staining and associated with an increased expression of genes encoding extracellular matrix proteins such as fibronectin, procollagen type 1α1 and type 3α1 and especially connective tissue growth factor (CTGF. Furthermore miR-133a, one of the most predominant cardiac miRNAs, is strongly downregulated when SRF is overexpressed. By comparison a low level overexpression of SRF has minor impact on these different processes. Investigation with miR-133a, antimiR-133a and AdSRF-VP16 experiments in H9c2 cardiac cells demonstrated that: 1-miR-133a acts as a repressor of SRF and CTGF expression; 2-a simultaneous overexpression of SRF by AdSRF-VP16 and inhibition of miR-133a by a specific antimiR increase CTGF expression; 3-miR-133a overexpression can block the upregulation of CTGF induced by AdSRF-VP16. Taken together, these findings reveal a key role of the SRF/CTGF/miR-133a axis in the regulation of cardiac fibrosis.

  6. 3D conductive nanocomposite scaffold for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Shahini A

    2013-12-01

    Full Text Available Aref Shahini,1 Mostafa Yazdimamaghani,2 Kenneth J Walker,2 Margaret A Eastman,3 Hamed Hatami-Marbini,4 Brenda J Smith,5 John L Ricci,6 Sundar V Madihally,2 Daryoosh Vashaee,1 Lobat Tayebi2,7 1School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, 2School of Chemical Engineering, 3Department of Chemistry, 4School of Mechanical and Aerospace Engineering, 5Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA; 6Department of Biomaterials and Biomimetics, New York University, New York, NY; 7School of Material Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK, USA Abstract: Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene poly(4-styrene sulfonate (PEDOT:PSS, in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent

  7. Tissue-Doppler assessment of cardiac left ventricular function during short-term adjuvant epirubicin therapy for breast cancer

    DEFF Research Database (Denmark)

    Appel, Jon M; Sogaard, Peter; Mortensen, Christiane E;

    2011-01-01

    It has been hypothesized that the extent of acute anthracycline-induced cardiotoxicity reflects the risk for late development of heart failure. The aim of this study was to examine if short-term changes in cardiac function can be detected even after low-dose adjuvant epirubicin therapy for breast...... cancer when using Doppler tissue imaging of longitudinal left ventricular function....

  8. Scanning-fiber-based imaging method for tissue engineering

    Science.gov (United States)

    Hofmann, Matthias C.; Whited, Bryce M.; Mitchell, Josh; Vogt, William C.; Criswell, Tracy; Rylander, Christopher; Rylander, Marissa Nichole; Soker, Shay; Wang, Ge; Xu, Yong

    2012-06-01

    A scanning-fiber-based method developed for imaging bioengineered tissue constructs such as synthetic carotid arteries is reported. Our approach is based on directly embedding one or more hollow-core silica fibers within the tissue scaffold to function as micro-imaging channels (MIC). The imaging process is carried out by translating and rotating an angle-polished fiber micro-mirror within the MIC to scan excitation light across the tissue scaffold. The locally emitted fluorescent signals are captured using an electron multiplying CCD camera and then mapped into fluorophore distributions according to fiber micro-mirror positions. Using an optical phantom composed of fluorescent microspheres, tissue scaffolds, and porcine skin, we demonstrated single-cell-level imaging resolution (20 to 30 μm) at an imaging depth that exceeds the photon transport mean free path by one order of magnitude. This result suggests that the imaging depth is no longer constrained by photon scattering, but rather by the requirement that the fluorophore signal overcomes the background ``noise'' generated by processes such as scaffold autofluorescence. Finally, we demonstrated the compatibility of our imaging method with tissue engineering by visualizing endothelial cells labeled with green fluorescent protein through a ~500 μm thick and highly scattering electrospun scaffold.

  9. Tissue engineering and regenerative medicine: past, present, and future.

    Science.gov (United States)

    Salgado, António J; Oliveira, Joaquim M; Martins, Albino; Teixeira, Fábio G; Silva, Nuno A; Neves, Nuno M; Sousa, Nuno; Reis, Rui L

    2013-01-01

    Tissue and organ repair still represents a clinical challenge. Tissue engineering and regenerative medicine (TERM) is an emerging field focused on the development of alternative therapies for tissue/organ repair. This highly multidisciplinary field, in which bioengineering and medicine merge, is based on integrative approaches using scaffolds, cell populations from different sources, growth factors, nanomedicine, gene therapy, and other techniques to overcome the limitations that currently exist in the clinics. Indeed, its overall objective is to induce the formation of new functional tissues, rather than just implanting spare parts. This chapter aims at introducing the reader to the concepts and techniques of TERM. It begins by explaining how TERM have evolved and merged into TERM, followed by a short overview of some of its key aspects such as the combinations of scaffolds with cells and nanomedicine, scaffold processing, and new paradigms of the use of stem cells for tissue repair/regeneration, which ultimately could represent the future of new therapeutic approaches specifically aimed at clinical applications. PMID:24083429

  10. Vital roles of stem cells and biomaterials in skin tissue engineering

    OpenAIRE

    Mohd Hilmi, Abu Bakar; Halim, Ahmad Sukari

    2015-01-01

    Tissue engineering essentially refers to technology for growing new human tissue and is distinct from regenerative medicine. Currently, pieces of skin are already being fabricated for clinical use and many other tissue types may be fabricated in the future. Tissue engineering was first defined in 1987 by the United States National Science Foundation which critically discussed the future targets of bioengineering research and its consequences. The principles of tissue engineering are to initia...

  11. Robotic Scaffolds for Tissue Engineering and Organ Growth

    Science.gov (United States)

    Stoica, Adrian

    2011-01-01

    The aim of tissue engineering (TE) is to restore tissue and organ functions with minimal host rejection. TE is seen as a future solution to solve the crisis of donor organs for transplant, which faces a shortage expected only to increase in the future. In this innovation, a flexible and configurable scaffold has been conceived that mechanically stresses cells that are seeded on it, stimulating them to increased growth. The influence of mechanical stress/ loading on cell growth has been observed on all forms of cells. For example, for cartilages, studies in animals, tissue explants, and engineered tissue scaffolds have all shown that cartilage cells (chondrocytes) modify their extracellular matrix in response to loading. The chondrocyte EMC production response to dynamics of the physical environment (in vivo cartilage development) illustrates a clear benefit (better growth) when stressed. It has been shown that static and dynamic compression regulates PRG4 biosynthesis by cartilage explants. Mechanical tissue stimulation is beneficial and (flexible) scaffolds with movable components, which are able to induce mechanical stimulation, offer advantages over the fixed, rigid scaffold design. In addition to improved cell growth from physical/mechanical stimulation, additional benefits include the ability to increase in size while preserving shape, or changing shape. By making scaffolds flexible, allowing relative movement between their components, adding sensing (e.g., for detecting response of cells to drug release and to mechanical actions), building controls for drug release and movement, and building even simple algorithms for mapping sensing to action, these structures can actually be made into biocompatible and biodegradable robots. Treating them as robots is a perspective shift that may offer advantages in the design and exploitation of these structures of the future.

  12. Bioreactors for tissue engineering--a new role for perfusionists?

    Science.gov (United States)

    Sistino, Joseph J

    2003-09-01

    Tissue engineering is an exciting new area of medicine with rapid growth and expansion over the last decade. It has the potential to have a profound impact on the practice of medicine and influence the economic development in the industry of biotechnology. In almost every specialty of medicine, the ability to generate replacement cells and develop tissues will change the focus from artificial organs and transplantation to growing replacement organs from the patient's own stem cells. Once these organs are at a size that requires perfusion to maintain oxygen and nutrient delivery, then automated perfusion systems termed "bioreactors" will be necessary to sustain the organ until harvesting. The design of these "bioreactors" will have a crucial role in the maintenance of cellular function throughout the growth period. The perfusion schemes necessary to determine the optimal conditions have not been well elucidated and will undergo extensive research over the next decade. The key to progress in this endeavor will development of long-term perfusion techniques and identifying the ideal pressures, flow rates, type of flow (pulsatile/nonpulsatile), and perfusate solution. Perfusionists are considered experts in the field of whole body perfusion, and it is possible that they can participate in the development and operation of these "bioreactors." Additional education of perfusionists in the area of tissue engineering is necessary in order for them to become integral parts of this exciting new area of medicine.

  13. Coaxial additive manufacture of biomaterial composite scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    An inherent difficulty associated with the application of suitable bioscaffolds for tissue engineering is the incorporation of adequate mechanical characteristics into the materials which recapitulate that of the native tissue, whilst maintaining cell proliferation and nutrient transfer qualities. Biomaterial composites fabricated using rapid prototyping techniques can potentially improve the functionality and patient-specific processing of tissue engineering scaffolds. In this work, a technique for the coaxial melt extrusion printing of core-shell scaffold structures was designed, implemented and assessed with respect to the repeatability, cell efficacy and scaffold porosity obtainable. Encapsulated alginate hydrogel/thermoplastic polycaprolactone (Alg-PCL) cofibre scaffolds were fabricated. Selective laser melting was used to produce a high resolution stainless steel 316 L coaxial extrusion nozzle, exhibiting diameters of 300 μm/900 μm for the inner and outer nozzles respectively. We present coaxial melt extrusion printed scaffolds of Alg-PCL cofibres with ∼0.4 volume fraction alginate, with total fibre diameter as low as 600 μm and core material offset as low as 10% of the total diameter. Furthermore the tuneability of scaffold porosity, pore size and interconnectivity, as well as the preliminary inclusion, compatibility and survival of an L-929 mouse fibroblast cell-line within the scaffolds were explored. This preliminary cell work highlighted the need for optimal material selection and further design reiteration in future research. (paper)

  14. Stabilized collagen scaffolds for heart valve tissue engineering.

    Science.gov (United States)

    Tedder, Mary E; Liao, Jun; Weed, Benjamin; Stabler, Christopher; Zhang, Henry; Simionescu, Agneta; Simionescu, Dan T

    2009-06-01

    Scaffolds for heart valve tissue engineering must function immediately after implantation but also need to tolerate cell infiltration and gradual remodeling. We hypothesized that moderately cross-linked collagen scaffolds would fulfill these requirements. To test our hypothesis, scaffolds prepared from decellularized porcine pericardium were treated with penta-galloyl glucose (PGG), a collagen-binding polyphenol, and tested for biodegradation, biaxial mechanical properties, and in vivo biocompatibility. For controls, we used un-cross-linked scaffolds and glutaraldehyde-treated scaffolds. Results confirmed complete pericardium decellularization and the ability of scaffolds to encourage fibroblast chemotaxis and to aid in creation of anatomically correct valve-shaped constructs. Glutaraldehyde cross-linking fully stabilized collagen but did not allow for tissue remodeling and calcified when implanted subdermally in rats. PGG-treated collagen was initially resistant to collagenase and then degraded gradually, indicating partial stabilization. Moreover, PGG-treated pericardium exhibited excellent biaxial mechanical properties, did not calcify in vivo, and supported infiltration by host fibroblasts and subsequent matrix remodeling. In conclusion, PGG-treated acellular pericardium is a promising scaffold for heart valve tissue engineering. PMID:18928400

  15. Tissue-engineered models of human tumors for cancer research

    Science.gov (United States)

    Villasante, Aranzazu; Vunjak-Novakovic, Gordana

    2015-01-01

    Introduction Drug toxicity often goes undetected until clinical trials, which are the most costly and dangerous phase of drug development. Both the cultures of human cells and animal studies have limitations that cannot be overcome by incremental improvements in drug-testing protocols. A new generation of bioengineered tumors is now emerging in response to these limitations, with potential to transform drug screening by providing predictive models of tumors within their tissue context, for studies of drug safety and efficacy. An area that could greatly benefit from these models is cancer research. Areas covered In this review, the authors first describe the engineered tumor systems, using Ewing's sarcoma as an example of human tumor that cannot be predictably studied in cell culture and animal models. Then, they discuss the importance of the tissue context for cancer progression and outline the biomimetic principles for engineering human tumors. Finally, they discuss the utility of bioengineered tumor models for cancer research and address the challenges in modeling human tumors for use in drug discovery and testing. Expert opinion While tissue models are just emerging as a new tool for cancer drug discovery, they are already demonstrating potential for recapitulating, in vitro, the native behavior of human tumors. Still, numerous challenges need to be addressed before we can have platforms with a predictive power appropriate for the pharmaceutical industry. Some of the key needs include the incorporation of the vascular compartment, immune system components, and mechanical signals that regulate tumor development and function. PMID:25662589

  16. Prospect of Stem Cells in Bone Tissue Engineering: A Review

    Directory of Open Access Journals (Sweden)

    Azizeh-Mitra Yousefi

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs have been the subject of many studies in recent years, ranging from basic science that looks into MSCs properties to studies that aim for developing bioengineered tissues and organs. Adult bone marrow-derived mesenchymal stem cells (BM-MSCs have been the focus of most studies due to the inherent potential of these cells to differentiate into various cell types. Although, the discovery of induced pluripotent stem cells (iPSCs represents a paradigm shift in our understanding of cellular differentiation. These cells are another attractive stem cell source because of their ability to be reprogramed, allowing the generation of multiple cell types from a single cell. This paper briefly covers various types of stem cell sources that have been used for tissue engineering applications, with a focus on bone regeneration. Then, an overview of some recent studies making use of MSC-seeded 3D scaffold systems for bone tissue engineering has been presented. The emphasis has been placed on the reported scaffold properties that tend to improve MSCs adhesion, proliferation, and osteogenic differentiation outcomes.

  17. Coaxial additive manufacture of biomaterial composite scaffolds for tissue engineering.

    Science.gov (United States)

    Cornock, R; Beirne, S; Thompson, B; Wallace, G G

    2014-06-01

    An inherent difficulty associated with the application of suitable bioscaffolds for tissue engineering is the incorporation of adequate mechanical characteristics into the materials which recapitulate that of the native tissue, whilst maintaining cell proliferation and nutrient transfer qualities. Biomaterial composites fabricated using rapid prototyping techniques can potentially improve the functionality and patient-specific processing of tissue engineering scaffolds. In this work, a technique for the coaxial melt extrusion printing of core-shell scaffold structures was designed, implemented and assessed with respect to the repeatability, cell efficacy and scaffold porosity obtainable. Encapsulated alginate hydrogel/thermoplastic polycaprolactone (Alg-PCL) cofibre scaffolds were fabricated. Selective laser melting was used to produce a high resolution stainless steel 316 L coaxial extrusion nozzle, exhibiting diameters of 300 μm/900 μm for the inner and outer nozzles respectively. We present coaxial melt extrusion printed scaffolds of Alg-PCL cofibres with ~0.4 volume fraction alginate, with total fibre diameter as low as 600 μm and core material offset as low as 10% of the total diameter. Furthermore the tuneability of scaffold porosity, pore size and interconnectivity, as well as the preliminary inclusion, compatibility and survival of an L-929 mouse fibroblast cell-line within the scaffolds were explored. This preliminary cell work highlighted the need for optimal material selection and further design reiteration in future research. PMID:24658021

  18. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood

  19. Tissue engineering as a potential alternative or adjunct to surgical reconstruction in treating pelvic organ prolapse

    DEFF Research Database (Denmark)

    Boennelycke, M; Gräs, Søren; Lose, G

    2013-01-01

    Cell-based tissue engineering strategies could potentially provide attractive alternatives to surgical reconstruction of native tissue or the use of surgical implants in treating pelvic organ prolapse (POP).......Cell-based tissue engineering strategies could potentially provide attractive alternatives to surgical reconstruction of native tissue or the use of surgical implants in treating pelvic organ prolapse (POP)....

  20. Chitosan for Gene Delivery and Orthopedic Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Sally-Ann Cryan

    2013-05-01

    Full Text Available Gene therapy involves the introduction of foreign genetic material into cells in order exert a therapeutic effect. The application of gene therapy to the field of orthopaedic tissue engineering is extremely promising as the controlled release of therapeutic proteins such as bone morphogenetic proteins have been shown to stimulate bone repair. However, there are a number of drawbacks associated with viral and synthetic non-viral gene delivery approaches. One natural polymer which has generated interest as a gene delivery vector is chitosan. Chitosan is biodegradable, biocompatible and non-toxic. Much of the appeal of chitosan is due to the presence of primary amine groups in its repeating units which become protonated in acidic conditions. This property makes it a promising candidate for non-viral gene delivery. Chitosan-based vectors have been shown to transfect a number of cell types including human embryonic kidney cells (HEK293 and human cervical cancer cells (HeLa. Aside from its use in gene delivery, chitosan possesses a range of properties that show promise in tissue engineering applications; it is biodegradable, biocompatible, has anti-bacterial activity, and, its cationic nature allows for electrostatic interaction with glycosaminoglycans and other proteoglycans. It can be used to make nano- and microparticles, sponges, gels, membranes and porous scaffolds. Chitosan has also been shown to enhance mineral deposition during osteogenic differentiation of MSCs in vitro. The purpose of this review is to critically discuss the use of chitosan as a gene delivery vector with emphasis on its application in orthopedic tissue engineering.

  1. Electrospinning polymer blends for biomimetic scaffolds for ACL tissue engineering

    Science.gov (United States)

    Garcia, Vanessa Lizeth

    The anterior cruciate ligament (ACL) rupture is one of the most common knee injuries. Current ACL reconstructive strategies consist of using an autograft or an allograft to replace the ligament. However, limitations have led researchers to create tissue engineered grafts, known as scaffolds, through electrospinning. Scaffolds made of natural and synthetic polymer blends have the potential to promote cell adhesion while having strong mechanical properties. However, enzymes found in the knee are known to degrade tissues and affect the healing of intra-articular injuries. Results suggest that the natural polymers used in this study modify the thermal properties and tensile strength of the synthetic polymers when blended. Scanning electron microscopy display bead-free and enzyme biodegradability of the fibers. Raman spectroscopy confirms the presence of the natural and synthetic polymers in the scaffolds while, amino acid analysis present the types of amino acids and their concentrations found in the natural polymers.

  2. Micro and nanotechnologies in heart valve tissue engineering.

    Science.gov (United States)

    Hasan, Anwarul; Saliba, John; Pezeshgi Modarres, Hassan; Bakhaty, Ahmed; Nasajpour, Amir; Mofrad, Mohammad R K; Sanati-Nezhad, Amir

    2016-10-01

    Due to the increased morbidity and mortality resulting from heart valve diseases, there is a growing demand for off-the-shelf implantable tissue engineered heart valves (TEHVs). Despite the significant progress in recent years in improving the design and performance of TEHV constructs, viable and functional human implantable TEHV constructs have remained elusive. The recent advances in micro and nanoscale technologies including the microfabrication, nano-microfiber based scaffolds preparation, 3D cell encapsulated hydrogels preparation, microfluidic, micro-bioreactors, nano-microscale biosensors as well as the computational methods and models for simulation of biological tissues have increased the potential for realizing viable, functional and implantable TEHV constructs. In this review, we aim to present an overview of the importance and recent advances in micro and nano-scale technologies for the development of TEHV constructs. PMID:27414719

  3. Basic Potential of Carbon Nanotubes in Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Hisao Haniu

    2012-01-01

    Full Text Available Carbon nanotubes (CNTs are attracting interest in various fields of science because they possess a high surface area-to-volume ratio and excellent electronic, mechanical, and thermal properties. Various medical applications of CNTs are expected, and the properties of CNTs have been greatly improved for use in biomaterials. However, the safety of CNTs remains unclear, which impedes their medical application. Our group is evaluating the biological responses of multiwall CNTs (MWCNTs in vivo and in vitro for the promotion of tissue regeneration as safe scaffold materials. We recently showed that intracellular accumulation is important for the cytotoxicity of CNTs, and we reported the active physiological functions CNTs in cells. In this review, we describe the effects of CNTs in vivo and in vitro observed by our group from the standpoint of tissue engineering, and we introduce the findings of other research groups.

  4. Biomimetic strengthening polylactide scaffold materials for bone tissue engineering

    Institute of Scientific and Technical Information of China (English)

    XU Guofu; MOU Shenzhou; ZHOU Lingping; LIAO Susan; YIN Zhimin; CUI Fuzhai

    2007-01-01

    In this paper,a new polylactide(PLA)-based scaffold composite by biomimetic synthesis was designed.The novel composite mainly consists ofnano-hydroxyapatite (n-HA),which is the main inorganic content in natural bone tissue for the PLA.The crystal degree of the n-HA in the composite is low and the crystal size is very small,which is similar to that of natural bone.The compressive strength of the composite is higher than that of the PLA scaffold.Using the osteoblast culture technique,we detected cell behaviors on the biomaterial in vitro by SEM,and the cell affinity of the composite was found to be higher than that of the PLA scaffold.The biomimetic three-dimensional porous composite can serve as a kind of excellent scaffold material for bone tissue engineering because of its microstructure and properties.

  5. Human Engineered Heart Tissue: Analysis of Contractile Force

    OpenAIRE

    Ingra Mannhardt; Kaja Breckwoldt; David Letuffe-Brenière; Sebastian Schaaf; Herbert Schulz; Christiane Neuber; Anika Benzin; Tessa Werner; Alexandra Eder; Thomas Schulze; Birgit Klampe; Torsten Christ; Marc N. Hirt; Norbert Huebner; Alessandra Moretti1

    2016-01-01

    Analyzing contractile force, the most important and best understood function of cardiomyocytes in vivo is not established in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). This study describes the generation of 3D, strip-format, force-generating engineered heart tissues (EHT) from hiPSC-CM and their physiological and pharmacological properties. CM were differentiated from hiPSC by a growth factor-based three-stage protocol. EHTs were generated and analyzed histological...

  6. The stem cell and tissue engineering research in Chinese ophthalmology

    Institute of Scientific and Technical Information of China (English)

    GE Jian; LIU Jingbo

    2007-01-01

    Much has been considerably developed recently in the ophthalmic research of stem cell (SC) and tissue engineering (TE).They have become closer to the clinical practice,standardized and observable.Leading edge research of SC and TE on the ocular surface reconstruction,neuroregeneration and protection,and natural animal model has become increasingly available.However,challenges remain on the way,especially on the aspects of function reconstruction and specific differentiation.This paper reviews the new developments in this area with an intention of identifying research priorities for the future.

  7. Nanoscale biomaterial interface modification for advanced tissue engineering applications

    International Nuclear Information System (INIS)

    Recently, various stem cells, including mesenchymal stem cells (MSCs), have been found to have considerable potential for application in tissue engineering and future advanced therapies due to their biological capability to differentiate into specific lineages. Modified surface properties, such as composition, nano-roughness and wettability, affect the most important processes at the biomaterial interface. The aim of the present is work is to study the stem cells' (MSCs) adhesive potential, morphology, phenotypical characteristics in in vitro tests, and to distinguish betwen the different factors influencing the cell/biomaterial interaction, such as nano-topography, surface chemistry and surface free energy.

  8. Tissue Engineering Strategies as Tools for Personalized Meningioma Treatment.

    Science.gov (United States)

    Ferroni, Letizia; Della Puppa, Alessandro; D'Avella, Domenico; Isola, Maurizio; Scienza, Renato; Gardin, Chiara; Zavan, Barbara

    2015-07-01

    Pharmacogenomics, the science of how genetic makeup influences an individual's reaction to drugs, is an innovative tool for providing critical insights into how a patient will respond to a particular treatment. In the present work, we constructed cancer-like tissues to be used as tools for determining the most effective drug for an individual patient. Using tissue engineering strategies, we generated two different solid tumor-like tissues in vitro, a neuronal tumor (meningioma) and a nonmelanoma skin cancer. Samples were tested by both histological and genetic approaches (using a comparative genomic hybridization array, and the relative World Health Organization classification of the samples was compared with the results obtained by the molecular analyses. Our data confirmed the ability of the cells to maintain their phenotype in three-dimensional scaffolds as well as the strong relationship between chromosomal alterations and histological malignancy grades. We then validated the in vitro construction of tumor-like tissues as a potential tool for developing personalized drug treatments. PMID:25894852

  9. Polycaprolactone Scaffolds Fabricated via Bioextrusion for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Marco Domingos

    2009-01-01

    Full Text Available The most promising approach in Tissue Engineering involves the seeding of porous, biocompatible/biodegradable scaffolds, with donor cells to promote tissue regeneration. Additive biomanufacturing processes are increasingly recognized as ideal techniques to produce 3D structures with optimal pore size and spatial distribution, providing an adequate mechanical support for tissue regeneration while shaping in-growing tissues. This paper presents a novel extrusion-based system to produce 3D scaffolds with controlled internal/external geometry for TE applications.The BioExtruder is a low-cost system that uses a proper fabrication code based on the ISO programming language enabling the fabrication of multimaterial scaffolds. Poly(ε-caprolactone was the material chosen to produce porous scaffolds, made by layers of directionally aligned microfilaments. Chemical, morphological, and in vitro biological evaluation performed on the polymeric constructs revealed a high potential of the BioExtruder to produce 3D scaffolds with regular and reproducible macropore architecture, without inducing relevant chemical and biocompatibility alterations of the material.

  10. Epidermal stem cells and skin tissue engineering in hairfollicle regeneration

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The reconstitution of a fully organized and functionalhair follicle from dissociated cells propagated underdefined tissue culture conditions is a challenge stillpending in tissue engineering. The loss of hair folliclescaused by injuries or pathologies such as alopecia notonly affects the patients' psychological well-being, butalso endangers certain inherent functions of the skin. Itis then of great interest to find different strategies aimingto regenerate or neogenerate the hair follicle underconditions proper of an adult individual. Based uponcurrent knowledge on the epithelial and dermal cells andtheir interactions during the embryonic hair generationand adult hair cycling, many researchers have tried toobtain mature hair follicles using different strategies andapproaches depending on the causes of hair loss. Thisreview summarizes current advances in the differentexperimental strategies to regenerate or neogenerate hairfollicles, with emphasis on those involving neogenesisof hair follicles in adult individuals using isolated cellsand tissue engineering. Most of these experiments wereperformed using rodent cells, particularly from embryonicor newborn origin. However, no successful strategy togenerate human hair follicles from adult cells has yetbeen reported. This review identifies several issues thatshould be considered to achieve this objective. Perhapsthe most important challenge is to provide threedimensionalculture conditionsmimicking the structure ofliving tissue. Improving culture conditions that allow theexpansion of specific cells while protecting their inductiveproperties, as well as methods for selecting populationsof epithelial stem cells, should give us the necessary toolsto overcome the difficulties that constrain human hairfollicle neogenesis. An analysis of patent trends showsthat the number of patent applications aimed at hairfollicle regeneration and neogenesis has been increasingduring the last decade. This field is attractive not only

  11. Nonequilibrium arrhythmic states and transitions in a mathematical model for diffuse fibrosis in human cardiac tissue.

    Directory of Open Access Journals (Sweden)

    Rupamanjari Majumder

    Full Text Available We present a comprehensive numerical study of spiral- and scroll-wave dynamics in a state-of-the-art mathematical model for human ventricular tissue with fiber rotation, transmural heterogeneity, myocytes, and fibroblasts. Our mathematical model introduces fibroblasts randomly, to mimic diffuse fibrosis, in the ten Tusscher-Noble-Noble-Panfilov (TNNP model for human ventricular tissue; the passive fibroblasts in our model do not exhibit an action potential in the absence of coupling with myocytes; and we allow for a coupling between nearby myocytes and fibroblasts. Our study of a single myocyte-fibroblast (MF composite, with a single myocyte coupled to N(f fibroblasts via a gap-junctional conductance G(gap, reveals five qualitatively different responses for this composite. Our investigations of two-dimensional domains with a random distribution of fibroblasts in a myocyte background reveal that, as the percentage P(f of fibroblasts increases, the conduction velocity of a plane wave decreases until there is conduction failure. If we consider spiral-wave dynamics in such a medium we find, in two dimensions, a variety of nonequilibrium states, temporally periodic, quasiperiodic, chaotic, and quiescent, and an intricate sequence of transitions between them; we also study the analogous sequence of transitions for three-dimensional scroll waves in a three-dimensional version of our mathematical model that includes both fiber rotation and transmural heterogeneity. We thus elucidate random-fibrosis-induced nonequilibrium transitions, which lead to conduction block for spiral waves in two dimensions and scroll waves in three dimensions. We explore possible experimental implications of our mathematical and numerical studies for plane-, spiral-, and scroll-wave dynamics in cardiac tissue with fibrosis.

  12. Does UV irradiation affect polymer properties relevant to tissue engineering?

    Science.gov (United States)

    Fischbach, Claudia; Tessmar, Jörg; Lucke, Andrea; Schnell, Edith; Schmeer, Georg; Blunk, Torsten; Göpferich, Achim

    2001-10-01

    For most tissue engineering approaches aiming at the repair or generation of living tissues the interaction of cells and polymeric biomaterials is of paramount importance. Prior to contact with cells or tissues, biomaterials have to be sterilized. However, many sterilization procedures such as steam autoclave or heat sterilization are known to strongly affect polymer properties. UV irradiation is used as an alternative sterilization method in many tissue engineering laboratories on a routine basis, however, potential alterations of polymer properties have not been extensively considered. In this study we investigated the effects of UV irradiation on spin-cast films made from biodegradable poly( D, L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers (Me.PEG-PLA) which have recently been developed for controlled cell-biomaterial interaction. After 2 h of UV irradiation, which is sufficient for sterilization, no alterations in cell adhesion to polymer films were detected, as demonstrated with 3T3-L1 preadipocytes. This correlated with unchanged film topography and molecular weight distribution. However, extended UV irradiation for 5-24 h elicited drastic responses regarding Me.PEG-PLA polymer properties and interactions with biological elements: Large increases in unspecific protein adsorption and subsequent cell adhesion were observed. Changes in polymer surface properties could be correlated with the observed alterations in cell/protein-polymer interactions. Atomic force microscopy analysis of polymer films revealed a marked "smoothing" of the polymer surface after UV irradiation. Investigations using GPC, 1H-NMR, mass spectrometry, and a PEG-specific colorimetric assay demonstrated that polymer film composition was time-dependently affected by exposure to UV irradiation, i.e., that large amounts of PEG were lost from the copolymer surface. The data indicate that sterilization using UV irradiation for 2 h is an appropriate technique for the

  13. Cardiac Dot Engine:makes cardiac MR scanning much easier%心脏智多星平台:将心脏扫描化繁为简

    Institute of Scientific and Technical Information of China (English)

    孙治国

    2013-01-01

    Comparing with head, spine and abdomen MR scanning, cardiac MRI is much less applied for clinical diagnosis, one of the important reasons of which is that cardiac MR scanning is more complicated, therefore, many MR technicians don’t know how to do the patient positioning or how to conduct the whole cardiac scanning process. Cardiac Dot Engine, latest developed by Siemens, provides the solution successfully and makes the cardiac MR scanning much easier.%心脏MR扫描在临床应用中占的比例远小于头部、脊柱和腹部等其他部位,一个很重要的原因就是心脏扫描比较复杂,很多操作者不太熟悉心脏扫描如何定位或不了解完整的心脏扫描流程。西门子新开发的心脏智多星平台成功地解决了上述问题,让复杂的心脏MR扫描变得简单。

  14. Collagen in Human Tissues: Structure, Function, and Biomedical Implications from a Tissue Engineering Perspective

    Science.gov (United States)

    Balasubramanian, Preethi; Prabhakaran, Molamma P.; Sireesha, Merum; Ramakrishna, Seeram

    The extracellular matrix is a complex biological structure encoded with various proteins, among which the collagen family is the most significant and abundant of all, contributing 30-35% of the whole-body protein. "Collagen" is a generic term for proteins that forms a triple-helical structure with three polypeptide chains, and around 29 types of collagen have been identified up to now. Although most of the members of the collagen family form such supramolecular structures, extensive diversity exists between each type of collagen. The diversity is not only based on the molecular assembly and supramolecular structures of collagen types but is also observed within its tissue distribution, function, and pathology. Collagens possess complex hierarchical structures and are present in various forms such as collagen fibrils (1.5-3.5 nm wide), collagen fibers (50-70 nm wide), and collagen bundles (150-250 nm wide), with distinct properties characteristic of each tissue providing elasticity to skin, softness of the cartilage, stiffness of the bone and tendon, transparency of the cornea, opaqueness of the sclera, etc. There exists an exclusive relation between the structural features of collagen in human tissues (such as the collagen composition, collagen fibril length and diameter, collagen distribution, and collagen fiber orientation) and its tissue-specific mechanical properties. In bone, a transverse collagen fiber orientation prevails in regions of higher compressive stress whereas longitudinally oriented collagen fibers correlate to higher tensile stress. The immense versatility of collagen compels a thorough understanding of the collagen types and this review discusses the major types of collagen found in different human tissues, highlighting their tissue-specific uniqueness based on their structure and mechanical function. The changes in collagen during a specific tissue damage or injury are discussed further, focusing on the many tissue engineering applications for

  15. Elastic, permeability and swelling properties of human intervertebral disc tissues: A benchmark for tissue engineering.

    Science.gov (United States)

    Cortes, Daniel H; Jacobs, Nathan T; DeLucca, John F; Elliott, Dawn M

    2014-06-27

    The aim of functional tissue engineering is to repair and replace tissues that have a biomechanical function, i.e., connective orthopaedic tissues. To do this, it is necessary to have accurate benchmarks for the elastic, permeability, and swelling (i.e., biphasic-swelling) properties of native tissues. However, in the case of the intervertebral disc, the biphasic-swelling properties of individual tissues reported in the literature exhibit great variation and even span several orders of magnitude. This variation is probably caused by differences in the testing protocols and the constitutive models used to analyze the data. Therefore, the objective of this study was to measure the human lumbar disc annulus fibrosus (AF), nucleus pulposus (NP), and cartilaginous endplates (CEP) biphasic-swelling properties using a consistent experimental protocol and analyses. The testing protocol was composed of a swelling period followed by multiple confined compression ramps. To analyze the confined compression data, the tissues were modeled using a biphasic-swelling model, which augments the standard biphasic model through the addition of a deformation-dependent osmotic pressure term. This model allows considering the swelling deformations and the contribution of osmotic pressure in the analysis of the experimental data. The swelling stretch was not different between the disc regions (AF: 1.28±0.16; NP: 1.73±0.74; CEP: 1.29±0.26), with a total average of 1.42. The aggregate modulus (Ha) of the extra-fibrillar matrix was higher in the CEP (390kPa) compared to the NP (100kPa) or AF (30kPa). The permeability was very different across tissue regions, with the AF permeability (64 E(-16)m(4)/Ns) higher than the NP and CEP (~5.5 E(-16)m(4)/Ns). Additionally, a normalized time-constant (3000s) for the stress relaxation was similar for all the disc tissues. The properties measured in this study are important as benchmarks for tissue engineering and for modeling the disc's mechanical

  16. Direct hydrogel encapsulation of pluripotent stem cells enables ontomimetic differentiation and growth of engineered human heart tissues.

    Science.gov (United States)

    Kerscher, Petra; Turnbull, Irene C; Hodge, Alexander J; Kim, Joonyul; Seliktar, Dror; Easley, Christopher J; Costa, Kevin D; Lipke, Elizabeth A

    2016-03-01

    Human engineered heart tissues have potential to revolutionize cardiac development research, drug-testing, and treatment of heart disease; however, implementation is limited by the need to use pre-differentiated cardiomyocytes (CMs). Here we show that by providing a 3D poly(ethylene glycol)-fibrinogen hydrogel microenvironment, we can directly differentiate human pluripotent stem cells (hPSCs) into contracting heart tissues. Our straight-forward, ontomimetic approach, imitating the process of development, requires only a single cell-handling step, provides reproducible results for a range of tested geometries and size scales, and overcomes inherent limitations in cell maintenance and maturation, while achieving high yields of CMs with developmentally appropriate temporal changes in gene expression. We demonstrate that hPSCs encapsulated within this biomimetic 3D hydrogel microenvironment develop into functional cardiac tissues composed of self-aligned CMs with evidence of ultrastructural maturation, mimicking heart development, and enabling investigation of disease mechanisms and screening of compounds on developing human heart tissue. PMID:26826618

  17. Tissue engineering of a bioartificial kidney: a universal donor organ.

    Science.gov (United States)

    Humes, H D

    1996-08-01

    Cell therapy and tissue engineering may well likely dominate medical therapeutics in the next century. Growing a functional glomerular filter and tubule reabsorber from a combination of cells, biomaterials, and synthetic polymers to replace renal excretory and regulatory functions is a specific example of these evolving technologies. The kidney was the first organ whose function was substituted by an artificial device. The kidney was also the first organ to be successfully transplanted. The ability to replace renal function with these revolutionary technologies in the past was due to the fact that renal excretory function is based on natural physical forces which govern solute and fluid movement from the body compartment to the external environment. The need for coordinated mechanical or electrical activities got renal substitution was not required. Accordingly, the kidney may well be the first organ to be available as a tissue-engineered implantable device as a fully functional replacement part for the human body. The prospects of a "universal donor" bioartificial kidney for the treatment of end-stage renal disease are clearly achievable as we approach the next millennium.

  18. Pigmented Silk Nanofibrous Composite for Skeletal Muscle Tissue Engineering.

    Science.gov (United States)

    Manchineella, Shivaprasad; Thrivikraman, Greeshma; Khanum, Khadija K; Ramamurthy, Praveen C; Basu, Bikramjit; Govindaraju, T

    2016-05-01

    Skeletal muscle tissue engineering (SMTE) employs designed biomaterial scaffolds for promoting myogenic differentiation of myoblasts to functional myotubes. Oxidative stress plays a significant role in the biocompatibility of biomaterials as well as in the fate of myoblasts during myogenesis and is also associated with pathological conditions such as myotonic dystrophy. The inherent electrical excitability of muscle cells inspired the use of electroactive scaffolds for SMTE. Conducting polymers attracted the attention of researchers for their use in muscle tissue engineering. However, poor biocompatibility, biodegradability and development of oxidative stress associated immunogenic response limits the extensive use of synthetic conducting polymers for SMTE. In order to address the limitations of synthetic polymers, intrinsically electroactive and antioxidant silk fibroin/melanin composite films and electrospun fiber mats were fabricated and evaluated as scaffolds for promoting myogenesis in vitro. Melanin incorporation modulated the thermal stability, electrical conductivity of scaffolds, fiber alignment in electrospun mats and imparted good antioxidant properties to the scaffolds. The composite electrospun scaffolds promoted myoblast assembly and differentiation into uniformly aligned high aspect ratio myotubes. The results highlight the significance of scaffold topography along with conductivity in promoting myogenesis and the potential application of silk nanofibrous composite as electoractive platform for SMTE. PMID:27226037

  19. Sonication induced silk fibroin cryogels for tissue engineering applications

    Science.gov (United States)

    Kadakia, P. U.; Jain, E.; Hixon, K. R.; Eberlin, C. T.; Sell, S. A.

    2016-05-01

    In this study, we report a method to form macroporous silk fibroin (SF) scaffolds through a combination of ultrasonication followed by cryogelation at subzero temperatures. The resultant sonication induced SF cryogels encompassed larger pore sizes (151 ± 56 μm) and higher mechanical stability (127.15 ± 24.71 kPa) than their hydrogel counterparts made at room temperature. Furthermore, the addition of dopants like Manuka honey and bone char in SF cryogels did not affect cryogel synthesis but decreased the pore size in a concentration dependent manner. With no crack propagation at 50% strain and promising stability under cyclic loads, mineralization and cellular infiltration potential were analyzed for bone tissue engineering purposes. Although the scaffolds showed limited mineralization, encouraging cellular infiltration results yield promise for other tissue engineering applications. The use of mild processing conditions, a simplistic procedure, and the lack of organic solvents or chemical cross-linkers renders the combination of sonication and cryogelation as an attractive fabrication technique for 3D SF macroporous scaffolds.

  20. Study on Different Modification Methods of Collagen for Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    XU Xin-yu

    2008-01-01

    Because of the excellent biocompatibility and its specific amino sequences, collagen is an ideal biomedical material for tissue engineering applications. But collagen is usually lack of mechanical strength to form a rigid 3-D matrix and lack of ability to resist collagenase. In order to be a tissue engineering scaffold, collagen must strengthen its structures by modifying with chemical crosslinkers. Chemical crosslinkers used for modif-ying collagen fibers include glutaraldehyde (GA), epoxy compounds (PC) and carbodiim-ides (EDC). The aim of this study is to choose the best chemical crosslinker from the three reagents. In terms of the resistance to collagenase degradation, chemical cross-link-ing with PC provided the best protection; in terms of the mechanical characterization, chemical cross-linking with GA provided the best;and in terms of the biocompatibility, chemical cross-linking with EDC provided the best. There is not a reagent which has all merits for collagen crosslinking, so we should select the crosslinking reagent as the de-mands of use ask.

  1. Review: photopolymerizable and degradable biomaterials for tissue engineering applications.

    Science.gov (United States)

    Ifkovits, Jamie L; Burdick, Jason A

    2007-10-01

    Photopolymerizable and degradable biomaterials are finding widespread application in the field of tissue engineering for the engineering of tissues such as bone, cartilage, and liver. The spatial and temporal control afforded by photoinitiated polymerizations has allowed for the development of injectable materials that can deliver cells and growth factors, as well as for the fabrication of scaffolding with complex structures. The materials developed for these applications range from entirely synthetic polymers (e.g., poly(ethylene glycol)) to purely natural polymers (e.g., hyaluronic acid) that are modified with photoreactive groups, with degradation based on the hydrolytic or enzymatic degradation of bonds in the polymer backbone or crosslinks. The degradation behavior also ranges from purely bulk to entirely surface degrading, based on the nature of the backbone chemistry and type of degradable units. The mechanical properties of these polymers are primarily based on factors such as the network crosslinking density and polymer concentration. As we better understand biological features necessary to control cellular behavior, smarter materials are being developed that can incorporate and mimic many of these factors. PMID:17658993

  2. Bridging the divide between neuroprosthetic design, tissue engineering and neurobiology

    Directory of Open Access Journals (Sweden)

    Jennie Leach

    2010-02-01

    Full Text Available Neuroprosthetic devices have made a major impact in the treatment of a variety of disorders such as paralysis and stroke. However, a major impediment in the advancement of this technology is the challenge of maintaining device performance during chronic implantation (months to years due to complex intrinsic host responses such as gliosis or glial scarring. The objective of this review is to bring together research communities in neurobiology, tissue engineering, and neuroprosthetics to address the major obstacles encountered in the translation of neuroprosthetics technology into long-term clinical use. This article draws connections between specific challenges faced by current neuroprosthetics technology and recent advances in the areas of nerve tissue engineering and neurobiology. Within the context of the device-nervous system interface and central nervous system (CNS implants, areas of synergistic opportunity are discussed, including platforms to present cells with multiple cues, controlled delivery of bioactive factors, three-dimensional constructs and in vitro models of gliosis and brain injury, nerve regeneration strategies, and neural stem/progenitor cell (NPC biology. Finally, recent insights gained from the fields of developmental neurobiology and cancer biology are discussed as examples of exciting new biological knowledge that may provide fresh inspiration towards novel technologies to address the complexities associated with long-term neuroprosthetic device performance.

  3. Modularity in developmental biology and artificial organs: a missing concept in tissue engineering.

    Science.gov (United States)

    Lenas, Petros; Luyten, Frank P; Doblare, Manuel; Nicodemou-Lena, Eleni; Lanzara, Andreina Elena

    2011-06-01

    Tissue engineering is reviving itself, adopting the concept of biomimetics of in vivo tissue development. A basic concept of developmental biology is the modularity of the tissue architecture according to which intermediates in tissue development constitute semiautonomous entities. Both engineering and nature have chosen the modular architecture to optimize the product or organism development and evolution. Bioartificial tissues do not have a modular architecture. On the contrary, artificial organs of modular architecture have been already developed in the field of artificial organs. Therefore the conceptual support of tissue engineering by the field of artificial organs becomes critical in its new endeavor of recapitulating in vitro the in vivo tissue development.

  4. Mechanobiology and Mechanotherapy of Adipose Tissue-Effect of Mechanical Force on Fat Tissue Engineering.

    Science.gov (United States)

    Yuan, Yi; Gao, Jianhua; Ogawa, Rei

    2015-12-01

    Our bodies are subjected to various mechanical forces, which in turn affect both the structure and function of our bodies. In particular, these mechanical forces play an important role in tissue growth and regeneration. Adipocytes and adipose-derived stem cells are both mechanosensitive and mechanoresponsive. The aim of this review is to summarize the relationship between mechanobiology and adipogenesis. PubMed was used to search for articles using the following keywords: mechanobiology, adipogenesis, adipose-derived stem cells, and cytoskeleton. In vitro and in vivo experiments have shown that adipogenesis is strongly promoted/inhibited by various internal and external mechanical forces, and that these effects are mediated by changes in the cytoskeleton of adipose-derived stem cells and/or various signaling pathways. Thus, adipose tissue engineering could be enhanced by the careful application of mechanical forces. It was shown recently that mature adipose tissue regenerates in an adipose tissue-engineering chamber. This observation has great potential for the reconstruction of soft tissue deficiencies, but the mechanisms behind it remain to be elucidated. On the basis of our understanding of mechanobiology, we hypothesize that the chamber removes mechanical force on the fat that normally impose high cytoskeletal tension. The reduction in tension in adipose stem cells triggers their differentiation into adipocytes. The improvement in our understanding of the relationship between mechanobiology and adipogenesis means that in the near future, we may be able to increase or decrease body fat, as needed in the clinic, by controlling the tension that is loaded onto fat.

  5. Design of a biaxial mechanical loading bioreactor for tissue engineering.

    Science.gov (United States)

    Bilgen, Bahar; Chu, Danielle; Stefani, Robert; Aaron, Roy K

    2013-04-25

    We designed a loading device that is capable of applying uniaxial or biaxial mechanical strain to a tissue engineered biocomposites fabricated for transplantation. While the device primarily functions as a bioreactor that mimics the native mechanical strains, it is also outfitted with a load cell for providing force feedback or mechanical testing of the constructs. The device subjects engineered cartilage constructs to biaxial mechanical loading with great precision of loading dose (amplitude and frequency) and is compact enough to fit inside a standard tissue culture incubator. It loads samples directly in a tissue culture plate, and multiple plate sizes are compatible with the system. The device has been designed using components manufactured for precision-guided laser applications. Bi-axial loading is accomplished by two orthogonal stages. The stages have a 50 mm travel range and are driven independently by stepper motor actuators, controlled by a closed-loop stepper motor driver that features micro-stepping capabilities, enabling step sizes of less than 50 nm. A polysulfone loading platen is coupled to the bi-axial moving platform. Movements of the stages are controlled by Thor-labs Advanced Positioning Technology (APT) software. The stepper motor driver is used with the software to adjust load parameters of frequency and amplitude of both shear and compression independently and simultaneously. Positional feedback is provided by linear optical encoders that have a bidirectional repeatability of 0.1 μm and a resolution of 20 nm, translating to a positional accuracy of less than 3 μm over the full 50 mm of travel. These encoders provide the necessary position feedback to the drive electronics to ensure true nanopositioning capabilities. In order to provide the force feedback to detect contact and evaluate loading responses, a precision miniature load cell is positioned between the loading platen and the moving platform. The load cell has high accuracies of 0

  6. Exact coherent structures and chaotic dynamics in a model of cardiac tissue

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Greg; Marcotte, Christopher D.; Grigoriev, Roman O., E-mail: roman.grigoriev@physics.gatech.edu [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430 (United States)

    2015-03-15

    Unstable nonchaotic solutions embedded in the chaotic attractor can provide significant new insight into chaotic dynamics of both low- and high-dimensional systems. In particular, in turbulent fluid flows, such unstable solutions are referred to as exact coherent structures (ECS) and play an important role in both initiating and sustaining turbulence. The nature of ECS and their role in organizing spatiotemporally chaotic dynamics, however, is reasonably well understood only for systems on relatively small spatial domains lacking continuous Euclidean symmetries. Construction of ECS on large domains and in the presence of continuous translational and/or rotational symmetries remains a challenge. This is especially true for models of excitable media which display spiral turbulence and for which the standard approach to computing ECS completely breaks down. This paper uses the Karma model of cardiac tissue to illustrate a potential approach that could allow computing a new class of ECS on large domains of arbitrary shape by decomposing them into a patchwork of solutions on smaller domains, or tiles, which retain Euclidean symmetries locally.

  7. Differentially expressed genes in embryonic cardiac tissues of mice lacking Folr1 gene activity

    Directory of Open Access Journals (Sweden)

    Schwartz Robert J

    2007-11-01

    Full Text Available Abstract Background Heart anomalies are the most frequently observed among all human congenital defects. As with the situation for neural tube defects (NTDs, it has been demonstrated that women who use multivitamins containing folic acid peri-conceptionally have a reduced risk for delivering offspring with conotruncal heart defects 123. Cellular folate transport is mediated by a receptor or binding protein and by an anionic transporter protein system. Defective function of the Folr1 (also known as Folbp1; homologue of human FRα gene in mice results in inadequate transport, accumulation, or metabolism of folate during cardiovascular morphogenesis. Results We have observed cardiovascular abnormalities including outflow tract and aortic arch arterial defects in genetically compromised Folr1 knockout mice. In order to investigate the molecular mechanisms underlying the failure to complete development of outflow tract and aortic arch arteries in the Folr1 knockout mouse model, we examined tissue-specific gene expression difference between Folr1 nullizygous embryos and morphologically normal heterozygous embryos during early cardiac development (14-somite stage, heart tube looping (28-somite stage, and outflow track septation (38-somite stage. Microarray analysis was performed as a primary screening, followed by investigation using quantitative real-time PCR assays. Gene ontology analysis highlighted the following ontology groups: cell migration, cell motility and localization of cells, structural constituent of cytoskeleton, cell-cell adhesion, oxidoreductase, protein folding and mRNA processing. This study provided preliminary data and suggested potential candidate genes for further description and investigation. Conclusion The results suggested that Folr1 gene ablation and abnormal folate homeostasis altered gene expression in developing heart and conotruncal tissues. These changes affected normal cytoskeleton structures, cell migration and

  8. Deterministic lateral displacement as a means to enrich large cells for tissue engineering.

    Science.gov (United States)

    Green, James V; Radisic, Milica; Murthy, Shashi K

    2009-11-01

    The enrichment or isolation of selected cell types from heterogeneous suspensions is required in the area of tissue engineering. State of the art techniques utilized for this separation include preplating and sieve-based approaches that have limited ranges of purity and variable yield. Here, we present a deterministic lateral displacement (DLD) microfluidic device that is capable of separating large epithelial cells (17.3 +/- 2.7 in diameter) from smaller fibroblast cells (13.7 +/- 3.0 microm in diameter) as a potential alternative approach. The mixed suspension examined is intended to represent the content of digested rat cardiac tissue, which contains equal proportions of cardiomyocyte (17.0 +/- 4.0 microm diameter) and nonmyocyte populations (12.0 +/- 3.0 microm diameter). High purity separation (>97%) of the larger cell type is achieved with 90% yield in a rapid and single-pass process. The significance of this work lies in the recognition that DLD design principles can be applied for the microfluidic enrichment of large cells, up to the 40 microm diameter level examined in this work.

  9. Polycaprolactone scaffold engineered for sustained release of resveratrol: therapeutic enhancement in bone tissue engineering

    OpenAIRE

    Kamath MS; Ahmed SS; Dhanasekaran M; Winkins Santosh S

    2013-01-01

    Manjunath Srinivas Kamath,1 Shiek SSJ Ahmed,2 M Dhanasekaran,3 S Winkins Santosh11Department of Biotechnology, School of Bioengineering, SRM University, 2Department of Biotechnology, Chettinad Hospital and Research Institute, 3Department of Stem Cells, Life Line Rigid Hospital Pvt Ltd, Kilpauk, Tamil Nadu, IndiaAbstract: Biomaterials-based three-dimensional scaffolds are being extensively investigated in bone tissue engineering. A potential scaffold should be osteoconductive, osteoinductive, ...

  10. Biological and engineering design considerations for vascular tissue engineered blood vessels (TEBVs)

    OpenAIRE

    Fernandez, Cristina E.; Achneck, Hardean E.; Reichert, William M.; Truskey, George A.

    2014-01-01

    Considerable advances have occurred in the development of tissue-engineered blood vessels (TEBVs) to repair or replace injured blood vessels, or as in vitro systems for drug toxicity testing. Here we summarize approaches to produce TEBVs and review current efforts to (1) identify suitable cell sources for the endothelium and vascular smooth muscle cells, (2) design the scaffold to mimic the arterial mechanical properties and (3) regulate the functional state of the cells of the vessel wall. I...

  11. Decellularized Human Maxillary Sinus Schneiderian Membrane as a Potential Scaffold for Tissue Engineering

    OpenAIRE

    Saeedeh KhajehAhmadi; Amin Rahpeyma; Nasser MahdaviShahri

    2013-01-01

    Introduction: Biological matrix has received special attention in recent medical and biological researches. Cells of tissue are supported by extracellular matrix (ECM). Extracellular matrix is used as a scaffold for morphogenesis, proliferation, migration, and differentiation in tissue engineering. Extracellular matrix of natural tissues can be used as a scaffold for reconstructing biological tissues in tissue engineering. Human maxillary sinus membrane consists of cells and ECM which contain...

  12. PLDLA/PCL-T Scaffold for Meniscus Tissue Engineering.

    Science.gov (United States)

    Esposito, Andrea Rodrigues; Moda, Marlon; Cattani, Silvia Mara de Melo; de Santana, Gracy Mara; Barbieri, Juliana Abreu; Munhoz, Monique Moron; Cardoso, Túlio Pereira; Barbo, Maria Lourdes Peris; Russo, Teresa; D'Amora, Ugo; Gloria, Antonio; Ambrosio, Luigi; Duek, Eliana Aparecida de Rezende

    2013-04-01

    The inability of the avascular region of the meniscus to regenerate has led to the use of tissue engineering to treat meniscal injuries. The aim of this study was to evaluate the ability of fibrochondrocytes preseeded on PLDLA/PCL-T [poly(L-co-D,L-lactic acid)/poly(caprolactone-triol)] scaffolds to stimulate regeneration of the whole meniscus. Porous PLDLA/PCL-T (90/10) scaffolds were obtained by solvent casting and particulate leaching. Compressive modulus of 9.5±1.0 MPa and maximum stress of 4.7±0.9 MPa were evaluated. Fibrochondrocytes from rabbit menisci were isolated, seeded directly on the scaffolds, and cultured for 21 days. New Zealand rabbits underwent total meniscectomy, after which implants consisting of cell-free scaffolds or cell-seeded scaffolds were introduced into the medial knee meniscus; the negative control group consisted of rabbits that received no implant. Macroscopic and histological evaluations of the neomeniscus were performed 12 and 24 weeks after implantation. The polymer scaffold implants adapted well to surrounding tissues, without apparent rejection, infection, or chronic inflammatory response. Fibrocartilaginous tissue with mature collagen fibers was observed predominantly in implants with seeded scaffolds compared to cell-free implants after 24 weeks. Similar results were not observed in the control group. Articular cartilage was preserved in the polymeric implants and showed higher chondrocyte cell number than the control group. These findings show that the PLDLA/PCL-T 90/10 scaffold has potential for orthopedic applications since this material allowed the formation of fibrocartilaginous tissue, a structure of crucial importance for repairing injuries to joints, including replacement of the meniscus and the protection of articular cartilage from degeneration. PMID:23593566

  13. PLDLA/PCL-T Scaffold for Meniscus Tissue Engineering.

    Science.gov (United States)

    Esposito, Andrea Rodrigues; Moda, Marlon; Cattani, Silvia Mara de Melo; de Santana, Gracy Mara; Barbieri, Juliana Abreu; Munhoz, Monique Moron; Cardoso, Túlio Pereira; Barbo, Maria Lourdes Peris; Russo, Teresa; D'Amora, Ugo; Gloria, Antonio; Ambrosio, Luigi; Duek, Eliana Aparecida de Rezende

    2013-04-01

    The inability of the avascular region of the meniscus to regenerate has led to the use of tissue engineering to treat meniscal injuries. The aim of this study was to evaluate the ability of fibrochondrocytes preseeded on PLDLA/PCL-T [poly(L-co-D,L-lactic acid)/poly(caprolactone-triol)] scaffolds to stimulate regeneration of the whole meniscus. Porous PLDLA/PCL-T (90/10) scaffolds were obtained by solvent casting and particulate leaching. Compressive modulus of 9.5±1.0 MPa and maximum stress of 4.7±0.9 MPa were evaluated. Fibrochondrocytes from rabbit menisci were isolated, seeded directly on the scaffolds, and cultured for 21 days. New Zealand rabbits underwent total meniscectomy, after which implants consisting of cell-free scaffolds or cell-seeded scaffolds were introduced into the medial knee meniscus; the negative control group consisted of rabbits that received no implant. Macroscopic and histological evaluations of the neomeniscus were performed 12 and 24 weeks after implantation. The polymer scaffold implants adapted well to surrounding tissues, without apparent rejection, infection, or chronic inflammatory response. Fibrocartilaginous tissue with mature collagen fibers was observed predominantly in implants with seeded scaffolds compared to cell-free implants after 24 weeks. Similar results were not observed in the control group. Articular cartilage was preserved in the polymeric implants and showed higher chondrocyte cell number than the control group. These findings show that the PLDLA/PCL-T 90/10 scaffold has potential for orthopedic applications since this material allowed the formation of fibrocartilaginous tissue, a structure of crucial importance for repairing injuries to joints, including replacement of the meniscus and the protection of articular cartilage from degeneration.

  14. Development of porous scaffolds for bone tissue engineering

    Science.gov (United States)

    Ramay, Hassna Rehman

    In bone tissue engineering, biodegradable scaffolds are used as a temporary biological and mechanical support for new tissue growth. A scaffold must have good biocompatibility, controllable degradation rate, and enough mechanical strength to support bone cell attachment, differentiation, and proliferation as it gradually degrades and finally is completely replaced by new bone tissues. Biological studies and clinical practices have established that a three-dimensional interconnected porous structure is necessary to allow cell attachment, proliferation, and differentiation, and to provide pathways for biofluids. However, the mechanical strength of a material generally decreases as increasing porosity. The conflicting interests between biological and mechanical requirements thus pose a challenge in developing porous scaffolds for load-bearing bone tissue engineering. Two types of ceramic scaffolds, (1) Hydroxaypatite and (2) Hydroxaypatite/tricalcium phosphate, are prepared in this study utilizing a novel technique that combines the gel casting and polymer sponge methods. This technique provides better control over material microstructure and can produce scaffolds with enhanced mechanical toughness and strength. The hydroxyapatite scaffolds prepared by this technique have an open, uniform and interconnected porous structure (˜porosity = 76%) with compressive modulus of 7 GPa, comparable to that of cortical bone, and compressive strength of 5 MPa, comparable to that of cancellous bone. The second type of ceramic scaffold is a biphasic nano composite with tricalcium phosphate as the main matrix reinforced with hydroxyapatite (HA) nano-fibers. The porous scaffold attained a compressive strength of 9.6 MPa (˜porosity = 73%), comparable to the high-end value of cancellous bone. The toughness of the scaffold increased from 1.00 to 1.72 kN/m (˜porosity = 73%), as the addition of HA nano-fibers increased up to 5 wt.%. Polymer scaffolds are prepared using a solid

  15. Clay nanotube-biopolymer composite scaffolds for tissue engineering

    Science.gov (United States)

    Naumenko, Ekaterina A.; Guryanov, Ivan D.; Yendluri, Raghuvara; Lvov, Yuri M.; Fakhrullin, Rawil F.

    2016-03-01

    Porous biopolymer hydrogels doped at 3-6 wt% with 50 nm diameter/0.8 μm long natural clay nanotubes were produced without any cross-linkers using the freeze-drying method. The enhancement of mechanical strength (doubled pick load), higher water uptake and thermal properties in chitosan-gelatine-agarose hydrogels doped with halloysite was demonstrated. SEM and AFM imaging has shown the even distribution of nanotubes within the scaffolds. We used enhanced dark-field microscopy to visualise the distribution of halloysite nanotubes in the implantation area. In vitro cell adhesion and proliferation on the nanocomposites occur without changes in viability and cytoskeleton formation. In vivo biocompatibility and biodegradability evaluation in rats has confirmed that the scaffolds promote the formation of novel blood vessels around the implantation sites. The scaffolds show excellent resorption within six weeks after implantation in rats. Neo-vascularization observed in newly formed connective tissue placed near the scaffold allows for the complete restoration of blood flow. These phenomena indicate that the halloysite-doped scaffolds are biocompatible as demonstrated both in vitro and in vivo. The chitosan-gelatine-agarose doped clay nanotube nanocomposite scaffolds fabricated in this work are promising candidates for tissue engineering applications.Porous biopolymer hydrogels doped at 3-6 wt% with 50 nm diameter/0.8 μm long natural clay nanotubes were produced without any cross-linkers using the freeze-drying method. The enhancement of mechanical strength (doubled pick load), higher water uptake and thermal properties in chitosan-gelatine-agarose hydrogels doped with halloysite was demonstrated. SEM and AFM imaging has shown the even distribution of nanotubes within the scaffolds. We used enhanced dark-field microscopy to visualise the distribution of halloysite nanotubes in the implantation area. In vitro cell adhesion and proliferation on the nanocomposites occur

  16. Control of Scar Tissue Formation in the Cornea: Strategies in Clinical and Corneal Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Samantha L. Wilson

    2012-09-01

    Full Text Available Corneal structure is highly organized and unified in architecture with structural and functional integration which mediates transparency and vision. Disease and injury are the second most common cause of blindness affecting over 10 million people worldwide. Ninety percent of blindness is permanent due to scarring and vascularization. Scarring caused via fibrotic cellular responses, heals the tissue, but fails to restore transparency. Controlling keratocyte activation and differentiation are key for the inhibition and prevention of fibrosis. Ophthalmic surgery techniques are continually developing to preserve and restore vision but corneal regression and scarring are often detrimental side effects and long term continuous follow up studies are lacking or discouraging. Appropriate corneal models may lead to a reduced need for corneal transplantation as presently there are insufficient numbers or suitable tissue to meet demand. Synthetic optical materials are under development for keratoprothesis although clinical use is limited due to implantation complications and high rejection rates. Tissue engineered corneas offer an alternative which more closely mimic the morphological, physiological and biomechanical properties of native corneas. However, replication of the native collagen fiber organization and retaining the phenotype of stromal cells which prevent scar-like tissue formation remains a challenge. Careful manipulation of culture environments are under investigation to determine a suitable environment that simulates native ECM organization and stimulates keratocyte migration and generation.

  17. Multiaxial mechanical response and constitutive modeling of esophageal tissues: Impact on esophageal tissue engineering.

    Science.gov (United States)

    Sommer, Gerhard; Schriefl, Andreas; Zeindlinger, Georg; Katzensteiner, Andreas; Ainödhofer, Herwig; Saxena, Amulya; Holzapfel, Gerhard A

    2013-12-01

    Congenital defects of the esophagus are relatively frequent, with 1 out of 2500 babies suffering from such a defect. A new method of treatment by implanting tissue engineered esophagi into newborns is currently being developed and tested using ovine esophagi. For the reconstruction of the biological function of native tissues with engineered esophagi, their cellular structure as well as their mechanical properties must be considered. Since very limited mechanical and structural data for the esophagus are available, the aim of this study was to investigate the multiaxial mechanical behavior of the ovine esophagus and the underlying microstructure. Therefore, uniaxial tensile, biaxial tensile and extension-inflation tests on esophagi were performed. The underlying microstructure was examined in stained histological sections through standard optical microscopy techniques. Moreover, the uniaxial ultimate tensile strength and residual deformations of the tissue were determined. Both the mucosa-submucosa and the muscle layers showed nonlinear and anisotropic mechanical behavior during uniaxial, biaxial and inflation testing. Cyclical inflation of the intact esophageal tube caused marked softening of the passive esophagi in the circumferential direction. The rupture strength of the mucosa-submucosa layer was much higher than that of the muscle layer. Overall, the ovine esophagus showed a heterogeneous and anisotropic behavior with different mechanical properties for the individual layers. The intact and layer-specific multiaxial properties were characterized using a well-known three-dimensional microstructurally based strain-energy function. This novel and complete set of data serves the basis for a better understanding of tissue remodeling in diseased esophagi and can be used to perform computer simulations of surgical interventions or medical-device applications.

  18. Mechanical Dyssynchrony by Tissue Doppler Cross-Correlation is Associated with Risk for Complex Ventricular Arrhythmias after Cardiac Resynchronization Therapy

    DEFF Research Database (Denmark)

    Tayal, Bhupendar; Gorcsan, John; Delgado-Montero, Antonia;

    2015-01-01

    BACKGROUND: Tissue Doppler cross-correlation analysis has been shown to be associated with long-term survival after cardiac resynchronization defibrillator therapy (CRT-D). Its association with ventricular arrhythmia (VA) is unknown. METHODS: From two centers 151 CRT-D patients (New York Heart.......0; 95% CI, 1.8-13.5; P = .002). CONCLUSIONS: Persistent and new mechanical dyssynchrony after CRT-D was associated with subsequent complex VA. Dyssynchrony after CRT-D is a marker of poor prognosis....

  19. Physical characterization of hydroxyapatite porous scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, S., E-mail: smsilva@ineb.up.pt [INEB - Instituto de Engenharia Biomedica, Divisao de Biomateriais, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto (Portugal); Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalurgica e Materiais, Porto (Portugal); Rodriguez, M.A.; Pena, P.; De Aza, A.H.; De Aza, S. [Instituto de Ceramica y Vidrio, CSIC, 28049-Cantoblanco, Madrid (Spain); Ferraz, M.P. [INEB - Instituto de Engenharia Biomedica, Divisao de Biomateriais, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto (Portugal); Faculdade de Ciencias da Saude da Universidade Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto (Portugal); Monteiro, F.J. [INEB - Instituto de Engenharia Biomedica, Divisao de Biomateriais, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto (Portugal); Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalurgica e Materiais, Porto (Portugal)

    2009-06-01

    The present study refers to the preparation and characterization of porous hydroxyapatite scaffolds to be used as matrices for bone regeneration or as specific release vehicles. Ceramics are widely used for bone tissue engineering purposes and in this study, hydroxyapatite porous scaffolds were produced using the polymer replication method. Polyurethane sponges were used as templates and impregnated with a ceramic slurry at different ratios, and sintered at 1300 deg. C following a specific thermal cycle. The characteristics of the hydroxyapatite porous scaffolds and respective powder used as starting material, were investigated by using scanning electron microscopy, particle size distribution, X-ray diffraction, Fourier transformed infrared spectroscopy and compressive mechanical testing techniques. It was possible to produce highly porous hydroxyapatite scaffolds presenting micro and macropores and pore interconnectivity.

  20. Polyelectrolyte-complex nanostructured fibrous scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Devendra [Department of Civil Engineering, North Dakota State University, Fargo, ND 58105 (United States); Katti, Kalpana S., E-mail: Kalpana.Katti@ndsu.edu [Department of Civil Engineering, North Dakota State University, Fargo, ND 58105 (United States); Katti, Dinesh R. [Department of Civil Engineering, North Dakota State University, Fargo, ND 58105 (United States)

    2009-08-31

    In the current work, polyelectrolyte complex (PEC) fibrous scaffolds for tissue engineering have been synthesized and a mechanism of their formation has been investigated. The scaffolds are synthesized using polygalacturonic acid and chitosan using the freeze drying methodology. Highly interconnected pores of sizes in the range of 5-20 {mu}m are observed in the scaffolds. The thickness of the fibers was found to be in the range of 1-2 {mu}m. Individual fibers have a nanogranular structure as observed using AFM imaging. In these scaffolds, PEC nanoparticles assemble together at the interface of ice crystals during freeze drying process. Further investigation shows that the freezing temperature and concentration have a remarkable effect on structure of scaffolds. Biocompatibility studies show that scaffold containing chitosan, polygalacturonic acid and hydroxyapatite promotes cell adhesion and proliferation. On the other hand, cells on scaffolds fabricated without hydroxyapatite nanoparticles showed poor adhesion.

  1. Chitosan-collagen/organomontmorillonite scaffold for bone tissue engineering

    Science.gov (United States)

    Cao, Xianshuo; Wang, Jun; Liu, Min; Chen, Yong; Cao, Yang; Yu, Xiaolong

    2015-12-01

    A novel composite scaffold based on chitosan-collagen/organomontmorillonite (CS-COL/OMMT) was prepared to improve swelling ratio, biodegradation ratio, biomineralization and mechanical properties for use in tissue engineering applications. In order to expend the basal spacing, montmorillonite (MMT) was modified with sodium dodecyl sulfate (SDS) and was characterized by XRD, TGA and FTIR. The results indicated that the anionic surfactants entered into interlayer of MMT and the basal spacing of MMT was expanded to 3.85 nm. The prepared composite scaffolds were characterized by FTIR, XRD and SEM. The swelling ratio, biodegradation ratio and mechanical properties of composite scaffolds were also studied. The results demonstrated that the scaffold decreased swelling ratio, degradation ratio and improved mechanical and biomineralization properties because of OMMT.

  2. Engineering muscle tissues on microstructured polyelectrolyte multilayer films.

    Science.gov (United States)

    Monge, Claire; Ren, Kefeng; Berton, Kevin; Guillot, Raphael; Peyrade, David; Picart, Catherine

    2012-08-01

    The use of surface coating on biomaterials can render the original substratum with new functionalities that can improve the chemical, physical, and mechanical properties as well as enhance cellular cues such as attachment, proliferation, and differentiation. In this work, we combined biocompatible polydimethylsiloxane (PDMS) with a biomimetic polyelectrolyte multilayer (PEM) film made of poly(L-lysine) and hyaluronic acid (PLL/HA) for skeletal muscle tissue engineering. By microstructuring PDMS in grooves of a different width (5, 10, 30, and 100 μm) and by modulating the stiffness of the (PLL/HA) films, we guided skeletal muscle cell differentiation into myotubes. We found optimal conditions for both the formation of parallel-oriented myotubes and their maturation. Significantly, the myoblasts were collectively prealigned to the grooves before their differentiation. Before fusion, the highest aspect ratio and orientation of nuclei were observed for the 5 and 10 μm wide micropatterns. The formation of myotubes was observed regardless of the size of the micropatterns, and we found that their typical width was 10-12 μm. Their maturation was characterized by the immunolabeling of type II isomyosin. The amount of myosin striation was not affected by the topography, except for the 5 μm wide micropatterns. We highlighted the spatial constraints that led to an important nuclei deformation and further impairment of maturation within the 5 μm grooves. Altogether, our results show that the PEM film combined with PDMS is a powerful tool that is used for skeletal muscle engineering. This work opens perspectives for the development of skeletal muscle tissue in contact with films containing bioactive peptides or growth factors as well as for the study of pathogenic myotubes. PMID:22607460

  3. [Epithelium constitution for esophageal tissue engineering using electrospinning technology].

    Science.gov (United States)

    Chen, Ling; Lv, Jingjing; Yu, Xuechan; Kang, Cheng; Zhu, Yabin

    2013-12-01

    The basement membrane (BM) is crucial in regulating the physical and biological activities of esophageal epithelial cells which attach to the underlying BM. In order to simulate the natural construction of BM, we prepared the fibrous scaffolds using biodegradable polylactide (PLA) and silk fibroin (SF) as the materials via electrospinning technology. BM's proteins containing collagen (IV), laminin, entactin and proteoglycan were extracted from porcine esophagus and coated on the eletrospun fibers. Morphology, mechanical strength, biodegradability and cytocompatibility of the coated and uncoated scaffolds were tested and evaluated using scanning electron micrography, mechanical test system, immunofluorescence assay and western blotting with CK14 as the primary antibody. The fibrous scaffold PLA or PLA/SF, generated from the present protocol had good formation and mechanical and biodegradable properties. After coating with BM's proteins, the scaffold could enhance the growth and differentiation of esophageal epithelial cells, which would contribute to remodel and regenerate the tissue engineered epithelium and further contribute to engineer the whole esophagus in future.

  4. Generation of bioartificial heart tissue by combining a three-dimensional gel-based cardiac construct with decellularized small intestinal submucosa.

    Science.gov (United States)

    Vukadinovic-Nikolic, Zlata; Andrée, Birgit; Dorfman, Suzanne E; Pflaum, Michael; Horvath, Tibor; Lux, Marco; Venturini, Letizia; Bär, Antonia; Kensah, George; Lara, Angelica Roa; Tudorache, Igor; Cebotari, Serghei; Hilfiker-Kleiner, Denise; Haverich, Axel; Hilfiker, Andres

    2014-02-01

    The in vitro generation of a bioartificial cardiac construct (CC) represents a promising tool for the repair of ischemic heart tissue. Several approaches to engineer cardiac tissue in vitro have been conducted. The main drawback of these studies is the insufficient size of the resulting construct for clinical applications. The focus of this study was the generation of an artificial three-dimensional (3D), contractile, and suturable myocardial patch by combining a gel-based CC with decellularized porcine small intestinal submucosa (SIS), thereby engineering an artificial tissue of 11 cm² in size. The alignment and morphology of rat neonatal cardiomyocytes (rCMs) in SIS-CC complexes were investigated as well as the re-organization of primary endothelial cells which were co-isolated in the rCM preparation. The ability of a rat heart endothelial cell line (RHE-A) to re-cellularize pre-existing vessel structures within the SIS or a biological vascularized matrix (BioVaM) was determined. SIS-CC contracted spontaneously, uniformly, and rhythmically with an average rate of 200 beats/min in contrast to undirected contractions observed in CC without SIS support. rCM exhibited an elongated morphology with well-defined sarcomeric structures oriented along the longitudinal axis in the SIS-CC, whereas round-shaped and random-arranged rCM were observed in CC. Electric coupling of rCM was demonstrated by microelectrode array measurements. A dense network of CD31⁺/eNOS⁺ cells was detected as permeating the whole construct. Superficial supplementation of RHE-A cells to SIS-CC led to the migration of these cells through the CC, resulting in the re-population of pre-existing vessel structures within the decelluarized SIS. By infusion of RHE-A cells into the BioVaM venous and arterial pedicles, a re-population of the BioVaM vessel bed as well as distribution of RHE-A cells throughout the CC was achieved. Rat endothelial cells within the CC were in contact with RHE-A cells

  5. Rat adipose tissue-derived stem cells transplantation attenuates cardiac dysfunction post infarction and biopolymers enhance cell retention.

    Directory of Open Access Journals (Sweden)

    Maria E Danoviz

    Full Text Available BACKGROUND: Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI. METHODOLOGY/PRINCIPAL FINDINGS: 99mTc-labeled ASCs (1x10(6 cells isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C, or culture medium (ASC/M as vehicle, and cell body distribution was assessed 24 hours later by gamma-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8+/-2.0 and 26.8+/-2.4% vs. 4.8+/-0.7%, respectively. Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT and control groups (culture medium, fibrin, or collagen alone. Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW, a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. CONCLUSIONS: We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administering co-injection of ASCs with biopolymers.

  6. Rat Adipose Tissue-Derived Stem Cells Transplantation Attenuates Cardiac Dysfunction Post Infarction and Biopolymers Enhance Cell Retention

    Science.gov (United States)

    Danoviz, Maria E.; Nakamuta, Juliana S.; Marques, Fabio L. N.; dos Santos, Leonardo; Alvarenga, Erica C.; dos Santos, Alexandra A.; Antonio, Ednei L.; Schettert, Isolmar T.; Tucci, Paulo J.; Krieger, Jose E.

    2010-01-01

    Background Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs) with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI). Methodology/Principal Findings 99mTc-labeled ASCs (1×106 cells) isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C), or culture medium (ASC/M) as vehicle, and cell body distribution was assessed 24 hours later by γ-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8±2.0 and 26.8±2.4% vs. 4.8±0.7%, respectively). Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV) perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT) and control groups (culture medium, fibrin, or collagen alone). Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV) and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW), a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. Conclusions We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administrating co-injection of ASCs with biopolymers. PMID:20711471

  7. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering

    Science.gov (United States)

    Prabhakaran, Molamma P.; Venugopal, J.; Chan, Casey K.; Ramakrishna, S.

    2008-11-01

    The development of biodegradable polymeric scaffolds with surface properties that dominate interactions between the material and biological environment is of great interest in biomedical applications. In this regard, poly-ɛ-caprolactone (PCL) nanofibrous scaffolds were fabricated by an electrospinning process and surface modified by a simple plasma treatment process for enhancing the Schwann cell adhesion, proliferation and interactions with nanofibers necessary for nerve tissue formation. The hydrophilicity of surface modified PCL nanofibrous scaffolds (p-PCL) was evaluated by contact angle and x-ray photoelectron spectroscopy studies. Naturally derived polymers such as collagen are frequently used for the fabrication of biocomposite PCL/collagen scaffolds, though the feasibility of procuring large amounts of natural materials for clinical applications remains a concern, along with their cost and mechanical stability. The proliferation of Schwann cells on p-PCL nanofibrous scaffolds showed a 17% increase in cell proliferation compared to those on PCL/collagen nanofibrous scaffolds after 8 days of cell culture. Schwann cells were found to attach and proliferate on surface modified PCL nanofibrous scaffolds expressing bipolar elongations, retaining their normal morphology. The results of our study showed that plasma treated PCL nanofibrous scaffolds are a cost-effective material compared to PCL/collagen scaffolds, and can potentially serve as an ideal tissue engineered scaffold, especially for peripheral nerve regeneration.

  8. Human Engineered Heart Tissue: Analysis of Contractile Force

    Directory of Open Access Journals (Sweden)

    Ingra Mannhardt

    2016-07-01

    Full Text Available Analyzing contractile force, the most important and best understood function of cardiomyocytes in vivo is not established in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM. This study describes the generation of 3D, strip-format, force-generating engineered heart tissues (EHT from hiPSC-CM and their physiological and pharmacological properties. CM were differentiated from hiPSC by a growth factor-based three-stage protocol. EHTs were generated and analyzed histologically and functionally. HiPSC-CM in EHTs showed well-developed sarcomeric organization and alignment, and frequent mitochondria. Systematic contractility analysis (26 concentration-response curves reveals that EHTs replicated canonical response to physiological and pharmacological regulators of inotropy, membrane- and calcium-clock mediators of pacemaking, modulators of ion-channel currents, and proarrhythmic compounds with unprecedented precision. The analysis demonstrates a high degree of similarity between hiPSC-CM in EHT format and native human heart tissue, indicating that human EHTs are useful for preclinical drug testing and disease modeling.

  9. Mechanical characteristics of native tendon slices for tissue engineering scaffold.

    Science.gov (United States)

    Qin, Ting-Wu; Chen, Qingshan; Sun, Yu-Long; Steinmann, Scott P; Amadio, Peter C; An, Kai-Nan; Zhao, Chunfeng

    2012-04-01

    The purpose of this study was to characterize the mechanical behavior of tendon slices with different thicknesses. Tendon slices of 100, 200, 300, 400, and 500 μm thickness were mechanically tested. The 300 μm slices were further tested for strength and modulus after 21,000-cycle fatigue testing under different applied strain levels (0, 1, 3, 5, 8, 10, and 12%). The tendon slice structure, morphology, and viability of bone marrow stromal cells (BMSCs) seeded onto the slices were also examined with histology, scanning electron microscopy, and vital cell labeling, respectively. Tendon slices 300 μm or more in thickness had similar ultimate tensile strength and Young's modulus to the intact tendon bundle. A strain of 5% or less did not cause any structural damage, nor did it change the mechanical properties of a 300 μm-thick tendon slice after 21,000-cycle fatigue testing. BMSCs were viable between and on the tendon slices after 2 weeks in tissue culture. This study demonstrated that, if tendon slices are used as a scaffold for tendon tissue engineering, slices 300 μm or more in thickness would be preferable from a mechanical strength point of view. If mechanical stimulation is performed for seeded-cell preparations, 5% strain or less would be appropriate.

  10. Human Engineered Heart Tissue: Analysis of Contractile Force.

    Science.gov (United States)

    Mannhardt, Ingra; Breckwoldt, Kaja; Letuffe-Brenière, David; Schaaf, Sebastian; Schulz, Herbert; Neuber, Christiane; Benzin, Anika; Werner, Tessa; Eder, Alexandra; Schulze, Thomas; Klampe, Birgit; Christ, Torsten; Hirt, Marc N; Huebner, Norbert; Moretti, Alessandra; Eschenhagen, Thomas; Hansen, Arne

    2016-07-12

    Analyzing contractile force, the most important and best understood function of cardiomyocytes in vivo is not established in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). This study describes the generation of 3D, strip-format, force-generating engineered heart tissues (EHT) from hiPSC-CM and their physiological and pharmacological properties. CM were differentiated from hiPSC by a growth factor-based three-stage protocol. EHTs were generated and analyzed histologically and functionally. HiPSC-CM in EHTs showed well-developed sarcomeric organization and alignment, and frequent mitochondria. Systematic contractility analysis (26 concentration-response curves) reveals that EHTs replicated canonical response to physiological and pharmacological regulators of inotropy, membrane- and calcium-clock mediators of pacemaking, modulators of ion-channel currents, and proarrhythmic compounds with unprecedented precision. The analysis demonstrates a high degree of similarity between hiPSC-CM in EHT format and native human heart tissue, indicating that human EHTs are useful for preclinical drug testing and disease modeling. PMID:27211213

  11. Tissue Engineered Skeletal Myofibers can Directly "Sense" Gravitational Force Changes

    Science.gov (United States)

    Vandenburgh, Herman H.; Shansky, J.; DelTatto, M.; Lee, Peter; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures. Embryonic avian muscle cells were isolated and BAMs tissue engineered as described previously. The myoblasts proliferate and fuse into aligned postmitotic myofibers after ten to fourteen days in vitro. A cylindrical muscle-like structure containing several thousand myofibers is formed which is approximately 30 mm in length, 2-3 mm in diameter, and attached at each end. For the Space Shuttle experiments, the BAMs were transferred to 55 mL bioreactor cartridges (6 BAMs/cartridge). At Kennedy Space Center, the cartridges were mounted in two Space Tissue Loss (STL) Modules (three to four cartridges per Module) and either maintained as ground controls or loaded in a Mid-Deck locker of the Space Shuttle. The BAM cartridges were continuously perfused during the experiment at 1.5 mL/ min with tissue culture medium. Eighteen BAMs were flown for nine days on Mission STS66 while eighteen BAMs served as ground controls. The complete experiment was repeated on Mission STS77 with twenty four BAMs in each group. BAMs could be maintained in a healthy state for at least 30 days in the perfusion bioreactor cartridges. The BAM muscle fibers directly detected both the

  12. Cartilage tissue engineering using pre-aggregated human articular chondrocytes

    Directory of Open Access Journals (Sweden)

    F Wolf

    2008-12-01

    Full Text Available In this study, we first aimed at determining whether human articular chondrocytes (HAC proliferate in aggregates in the presence of strong chondrocyte mitogens. We then investigated if the aggregated cells have an enhanced chondrogenic capacity as compared to cells cultured in monolayer. HAC from four donors were cultured in tissue culture dishes either untreated or coated with 1% agarose in the presence of TGFb-1, FGF-2 and PDGF-BB. Proliferation and stage of differentiation were assessed by measuring respectively DNA contents and type II collagen mRNA. Expanded cells were induced to differentiate in pellets or in Hyaff®-11 meshes and the formed tissues were analysed biochemically for glycosaminoglycans (GAG and DNA, and histologically by Safranin O staining. The amount of DNA in aggregate cultures increased significantly from day 2 to day 6 (by 3.2-fold, but did not further increase with additional culture time. Expression of type II collagen mRNA was about two orders of magnitude higher in aggregated HAC as compared to monolayer expanded cells. Pellets generated by aggregated HAC were generally more intensely stained for GAG than those generated by monolayer-expanded cells. Scaffolds seeded with aggregates accumulated more GAG (1.3-fold than scaffolds seeded with monolayer expanded HAC. In conclusion, this study showed that HAC culture in aggregates does not support a relevant degree of expansion. However, aggregation of expanded HAC prior to loading into a porous scaffold enhances the quality of the resulting tissues and could thus be introduced as an intermediate culture phase in the manufacture of engineered cartilage grafts.

  13. Polyacylurethanes as Novel Degradable Cell Carrier Materials for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Arend Jan Schouten

    2011-10-01

    Full Text Available Polycaprolactone (PCL polyester and segmented aliphatic polyester urethanes based on PCL soft segment have been thoroughly investigated as biodegradable scaffolds for tissue engineering. Although proven beneficial as long term implants, these materials degrade very slowly and are therefore not suitable in applications in which scaffold support is needed for a shorter time. A recently developed class of polyacylurethanes (PAUs is expected to fulfill such requirements. Our aim was to assess in vitro the degradation of PAUs and evaluate their suitability as temporary scaffold materials to support soft tissue repair. With both a mass loss of 2.5–3.0% and a decrease in molar mass of approx. 35% over a period of 80 days, PAUs were shown to degrade via both bulk and surface erosion mechanisms. Fourier Transform Infra Red (FTIR spectroscopy was successfully applied to study the extent of PAUs microphase separation during in vitro degradation. The microphase separated morphology of PAU1000 (molar mass of the oligocaprolactone soft segment = 1000 g/mol provided this polymer with mechano-physical characteristics that would render it a suitable material for constructs and devices. PAU1000 exhibited excellent haemocompatibility in vitro. In addition, PAU1000 supported both adhesion and proliferation of vascular endothelial cells and this could be further enhanced by pre-coating of PAU1000 with fibronectin (Fn. The contact angle of PAU1000 decreased both with in vitro degradation and by incubation in biological fluids. In endothelial cell culture medium the contact angle reached 60°, which is optimal for cell adhesion. Taken together, these results support the application of PAU1000 in the field of soft tissue repair as a temporary degradable scaffold.

  14. Exploring Instructive Physiological Signaling with the Bioelectric Tissue Simulation Engine

    Science.gov (United States)

    Pietak, Alexis; Levin, Michael

    2016-01-01

    Bioelectric cell properties have been revealed as powerful targets for modulating stem cell function, regenerative response, developmental patterning, and tumor reprograming. Spatio-temporal distributions of endogenous resting potential, ion flows, and electric fields are influenced not only by the genome and external signals but also by their own intrinsic dynamics. Ion channels and electrical synapses (gap junctions) both determine, and are themselves gated by, cellular resting potential. Thus, the origin and progression of bioelectric patterns in multicellular tissues is complex, which hampers the rational control of voltage distributions for biomedical interventions. To improve understanding of these dynamics and facilitate the development of bioelectric pattern control strategies, we developed the BioElectric Tissue Simulation Engine (BETSE), a finite volume method multiphysics simulator, which predicts bioelectric patterns and their spatio-temporal dynamics by modeling ion channel and gap junction activity and tracking changes to the fundamental property of ion concentration. We validate performance of the simulator by matching experimentally obtained data on membrane permeability, ion concentration and resting potential to simulated values, and by demonstrating the expected outcomes for a range of well-known cases, such as predicting the correct transmembrane voltage changes for perturbation of single cell membrane states and environmental ion concentrations, in addition to the development of realistic transepithelial potentials and bioelectric wounding signals. In silico experiments reveal factors influencing transmembrane potential are significantly different in gap junction-networked cell clusters with tight junctions, and identify non-linear feedback mechanisms capable of generating strong, emergent, cluster-wide resting potential gradients. The BETSE platform will enable a deep understanding of local and long-range bioelectrical dynamics in tissues, and

  15. Exploring Instructive Physiological Signaling with the Bioelectric Tissue Simulation Engine.

    Science.gov (United States)

    Pietak, Alexis; Levin, Michael

    2016-01-01

    Bioelectric cell properties have been revealed as powerful targets for modulating stem cell function, regenerative response, developmental patterning, and tumor reprograming. Spatio-temporal distributions of endogenous resting potential, ion flows, and electric fields are influenced not only by the genome and external signals but also by their own intrinsic dynamics. Ion channels and electrical synapses (gap junctions) both determine, and are themselves gated by, cellular resting potential. Thus, the origin and progression of bioelectric patterns in multicellular tissues is complex, which hampers the rational control of voltage distributions for biomedical interventions. To improve understanding of these dynamics and facilitate the development of bioelectric pattern control strategies, we developed the BioElectric Tissue Simulation Engine (BETSE), a finite volume method multiphysics simulator, which predicts bioelectric patterns and their spatio-temporal dynamics by modeling ion channel and gap junction activity and tracking changes to the fundamental property of ion concentration. We validate performance of the simulator by matching experimentally obtained data on membrane permeability, ion concentration and resting potential to simulated values, and by demonstrating the expected outcomes for a range of well-known cases, such as predicting the correct transmembrane voltage changes for perturbation of single cell membrane states and environmental ion concentrations, in addition to the development of realistic transepithelial potentials and bioelectric wounding signals. In silico experiments reveal factors influencing transmembrane potential are significantly different in gap junction-networked cell clusters with tight junctions, and identify non-linear feedback mechanisms capable of generating strong, emergent, cluster-wide resting potential gradients. The BETSE platform will enable a deep understanding of local and long-range bioelectrical dynamics in tissues, and

  16. Increased interstitial loading reduces the effect of microstructural variations in cardiac tissue.

    Science.gov (United States)

    Hubbard, Marjorie Letitia; Henriquez, Craig S

    2010-04-01

    Electrical propagation in diseased and aging hearts is strongly influenced by structural changes that occur in both the intracellular and interstitial spaces of cardiac tissue; however, very few studies have investigated how interactions between the two spaces affect propagation at the microscale. In this study, we used one-dimensional microstructural computer models of interconnected ventricular myocytes to systematically investigate how increasing the effective interstitial resistivity (rho(oeff)) influences action potential propagation in fibers with variations in intracellular properties such as cell coupling and cell length. Changes in rho(oeff) were incorporated into a monodomain model using a correction to the intracellular properties that was based on bidomain simulations. The results showed that increasing rho(oeff) in poorly coupled one-dimensional fibers alters the distribution of electrical load at the microscale and causes propagation to become more continuous. In the poorly coupled fiber, this continuous state is characterized by decreased gap junction delay, sustained conduction velocity, increased sodium current, reduced maximum upstroke velocity, and increased safety factor. Long, poorly coupled cells experience greater loading effects than short cells and show the greatest initial response to changes in rho(oeff). In inhomogeneous fibers with adjacent well-coupled and poorly coupled regions, increasing rho(oeff) in the poorly coupled region also reduces source-load mismatch, which delays the onset of conduction block and reduces the dispersion of repolarization at the transition between the two regions. Increasing the rho(oeff) minimizes the effect of cell-to-cell variations and may influence the pattern of activation in critical regimes characterized by low intercellular coupling, microstructural heterogeneity, and reduced or abnormal membrane excitability. PMID:20097772

  17. The Value of Conventional Echocardiographic and Tissue Doppler Imaging in the Diagnosis of Cardiac Amyloidosis

    Institute of Scientific and Technical Information of China (English)

    Li ZHANG; Mingxing XIE; Xinfang WANG; Yali YANG; Junhong HUANG; Ming CHENG; Feixiang XIANG; Qing LU

    2008-01-01

    Transthoracic echocardiographic characteristics of 17 cases of cardiac amyloidosis (CA),a rare disease in China, were analyzed in order to improve the understanding of the disease. Seventeen cases of biopsy-proven CA, admitted to Wuhan Union Hospital from June 1994 to September 2008 were retrospectively reviewed. Twenty normal volunteers served as control group. Left atrial and ventricular functions and mitral inflow velocity were measured by two-dimensional, and Doppler echocardiography, and tissue Doppler imaging (TDI)-derived peak systolic wall motion velocities (Sv), peak early diastolic wall motion velocities (Ev), and peak late diastolic wall motion (Av) were measured at the septunm. Lateral, inferior and anterior comers of mitral annulus from the apical 4- and 2 chamber views. Compared with the control group, the interventricular septal thickness (IVSd), the left ventricular posterior wall (LVPWd), right ventricular transverse diameter (RVTDd) near the end of diastole and the interauricular septum thickness (IASs), left atrial anteroposterior diameter (LAADs), right atrial transverse diameter (RATDs) near the end of systole were increased significantly (all P<0.05) and left ventricular ejection fraction (LVEF) decreased (P<0.05) in the CA group.Compared with the control group, Sv, Ev at each wall and Av at almost all walls were significantly decreased in the CA group. In the CA group, Myocardial echoes of interventricular septum and free wall of left ventricle were enhanced evidently and distributed unevenly. The echoes presented as ground glass-like images, with some spotty hyper echoes. Both atria were enlarged, and LVEF decreased, with diastolic function impaired, and mild-moderate hydropericardium found in the CA group. It was concluded that echocardiography was a relatively sensitive and highly specific non-invasive method for the diagnosis of CA.

  18. 1984: On monitoring cell fate in three-dimensional polymeric scaffolds for tissue engineering applications

    OpenAIRE

    Leferink, Anne Marijke

    2014-01-01

    In cartilage and bone engineering there is a high need for methods to replace traditional tissue and organ transplantation approaches to overcome the currently faced problems of donor shortage and invasiveness of the transplantation procedure. Although many promising advances have been made in the past decades in in vitro tissue engineering, quality control remains a challenge. Most conventional methods to assess the quality of a tissue engineered construct, e.g. by studying cell fate and tis...

  19. Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering.

    Science.gov (United States)

    Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Dusséaux, Antoine; Hung, Clark T; Ateshian, Gerard A

    2016-02-01

    This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process.

  20. ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity.

    Science.gov (United States)

    Patel, Vaibhav B; Mori, Jun; McLean, Brent A; Basu, Ratnadeep; Das, Subhash K; Ramprasath, Tharmarajan; Parajuli, Nirmal; Penninger, Josef M; Grant, Maria B; Lopaschuk, Gary D; Oudit, Gavin Y

    2016-01-01

    Obesity is increasing in prevalence and is strongly associated with metabolic and cardiovascular disorders. The renin-angiotensin system (RAS) has emerged as a key pathogenic mechanism for these disorders; angiotensin (Ang)-converting enzyme 2 (ACE2) negatively regulates RAS by metabolizing Ang II into Ang 1-7. We studied the role of ACE2 in obesity-mediated cardiac dysfunction. ACE2 null (ACE2KO) and wild-type (WT) mice were fed a high-fat diet (HFD) or a control diet and studied at 6 months of age. Loss of ACE2 resulted in decreased weight gain but increased glucose intolerance, epicardial adipose tissue (EAT) inflammation, and polarization of macrophages into a proinflammatory phenotype in response to HFD. Similarly, human EAT in patients with obesity and heart failure displayed a proinflammatory macrophage phenotype. Exacerbated EAT inflammation in ACE2KO-HFD mice was associated with decreased myocardial adiponectin, decreased phosphorylation of AMPK, increased cardiac steatosis and lipotoxicity, and myocardial insulin resistance, which worsened heart function. Ang 1-7 (24 µg/kg/h) administered to ACE2KO-HFD mice resulted in ameliorated EAT inflammation and reduced cardiac steatosis and lipotoxicity, resulting in normalization of heart failure. In conclusion, ACE2 plays a novel role in heart disease associated with obesity wherein ACE2 negatively regulates obesity-induced EAT inflammation and cardiac insulin resistance.