WorldWideScience

Sample records for cardiac proteome remodeling

  1. Effects of Hypertension and Exercise on Cardiac Proteome Remodelling

    Directory of Open Access Journals (Sweden)

    Bernardo A. Petriz

    2014-01-01

    Full Text Available Left ventricle hypertrophy is a common outcome of pressure overload stimulus closely associated with hypertension. This process is triggered by adverse molecular signalling, gene expression, and proteome alteration. Proteomic research has revealed that several molecular targets are associated with pathologic cardiac hypertrophy, including angiotensin II, endothelin-1 and isoproterenol. Several metabolic, contractile, and stress-related proteins are shown to be altered in cardiac hypertrophy derived by hypertension. On the other hand, exercise is a nonpharmacologic agent used for hypertension treatment, where cardiac hypertrophy induced by exercise training is characterized by improvement in cardiac function and resistance against ischemic insult. Despite the scarcity of proteomic research performed with exercise, healthy and pathologic heart proteomes are shown to be modulated in a completely different way. Hence, the altered proteome induced by exercise is mostly associated with cardioprotective aspects such as contractile and metabolic improvement and physiologic cardiac hypertrophy. The present review, therefore, describes relevant studies involving the molecular characteristics and alterations from hypertensive-induced and exercise-induced hypertrophy, as well as the main proteomic research performed in this field. Furthermore, proteomic research into the effect of hypertension on other target-demerged organs is examined.

  2. ATP-sensitive K+ channel knockout induces cardiac proteome remodeling predictive of heart disease susceptibility.

    Science.gov (United States)

    Arrell, D Kent; Zlatkovic, Jelena; Kane, Garvan C; Yamada, Satsuki; Terzic, Andre

    2009-10-01

    Forecasting disease susceptibility requires detection of maladaptive signatures prior to onset of overt symptoms. A case-in-point are cardiac ATP-sensitive K+ (K(ATP)) channelopathies, for which the substrate underlying disease vulnerability remains to be identified. Resolving molecular pathobiology, even for single genetic defects, mandates a systems platform to reliably diagnose disease predisposition. High-throughput proteomic analysis was here integrated with network biology to decode consequences of Kir6.2 K(ATP) channel pore deletion. Differential two-dimensional gel electrophoresis reproducibly resolved >800 protein species from hearts of asymptomatic wild-type and Kir6.2-knockout counterparts. K(ATP) channel ablation remodeled the cardiac proteome, significantly altering 71 protein spots, from which 102 unique identities were assigned following hybrid linear ion trap quadrupole-Orbitrap tandem mass spectrometry. Ontological annotation stratified the K(ATP) channel-dependent protein cohort into a predominant bioenergetic module (63 resolved identities), with additional focused sets representing signaling molecules (6), oxidoreductases (8), chaperones (6), and proteins involved in catabolism (6), cytostructure (8), and transcription and translation (5). Protein interaction mapping, in conjunction with expression level changes, localized a K(ATP) channel-associated subproteome within a nonstochastic scale-free network. Global assessment of the K(ATP) channel deficient environment verified the primary impact on metabolic pathways and revealed overrepresentation of markers associated with cardiovascular disease. Experimental imposition of graded stress precipitated exaggerated structural and functional myocardial defects in the Kir6.2-knockout, decreasing survivorship and validating the forecast of disease susceptibility. Proteomic cartography thus provides an integral view of molecular remodeling in the heart induced by K(ATP) channel deletion, establishing a

  3. ATP-Sensitive K+ Channel Knockout Induces Cardiac Proteome Remodeling Predictive of Heart Disease Susceptibility

    OpenAIRE

    Arrell, D. Kent; Zlatkovic, Jelena; Kane, Garvan C; Yamada, Satsuki; Terzic, Andre

    2009-01-01

    Forecasting disease susceptibility requires detection of maladaptive signatures prior to onset of overt symptoms. A case-in-point are cardiac ATP-sensitive K+ (KATP) channelopathies, for which the substrate underlying disease vulnerability remains to be identified. Resolving molecular pathobiology, even for single genetic defects, mandates a systems platform to reliably diagnose disease predisposition. High-throughput proteomic analysis was here integrated with network biology to decode conse...

  4. Mitochondrial Protein Dynamics in Cardiac Remodeling

    OpenAIRE

    Lau, Edward

    2014-01-01

    The cardiac mitochondrial proteome contains ~1,500 distinct proteins that carry out necessary metabolic and energetic processes in the heart. To sustain cardiac function, the mitochondrial proteome must be maintained in constant renewal, or turnover, especially under stress conditions. Disruptions of protein turnover can lead to protein damage and proteotoxicity, a hallmark of many heart disease etiologies. Current quantitative proteomics experiments largely focus on the measurement of the st...

  5. Cardiac extracellular matrix proteomics: Challenges, techniques, and clinical implications.

    Science.gov (United States)

    Chang, Chia Wei; Dalgliesh, Ailsa J; López, Javier E; Griffiths, Leigh G

    2016-01-01

    Extracellular matrix (ECM) has emerged as a dynamic tissue component, providing not only structural support, but also functionally participating in a wide range of signaling events during development, injury, and disease remodeling. Investigation of dynamic changes in cardiac ECM proteome is challenging due to the relative insolubility of ECM proteins, which results from their macromolecular nature, extensive post-translational modification (PTM), and tendency to form protein complexes. Finally, the relative abundance of cellular and mitochondrial proteins in cardiac tissue further complicates cardiac ECM proteomic approaches. Recent developments of various techniques to enrich and analyze ECM proteins are playing a major role in overcoming these challenges. Application of cardiac ECM proteomics in disease tissues can further provide spatial and temporal information relevant to disease diagnosis, prognosis, treatment, and engineering of therapeutic candidates for cardiac repair and regeneration. PMID:26200932

  6. Cardiac remodelling and RAS inhibition.

    Science.gov (United States)

    Ferrario, Carlos M

    2016-06-01

    Risk factors such as hypertension and diabetes are known to augment the activity and tissue expression of angiotensin II (Ang II), the major effector peptide of the renin-angiotensin system (RAS). Overstimulation of the RAS has been implicated in a chain of events that contribute to the pathogenesis of cardiovascular (CV) disease, including the development of cardiac remodelling. This chain of events has been termed the CV continuum. The concept of CV disease existing as a continuum was first proposed in 1991 and it is believed that intervention at any point within the continuum can modify disease progression. Treatment with antihypertensive agents may result in regression of left ventricular hypertrophy, with different drug classes exhibiting different degrees of efficacy. The greatest decrease in left ventricular mass is observed following treatment with angiotensin converting enzyme inhibitors (ACE-Is), which inhibit Ang II formation. Although ACE-Is and angiotensin receptor blockers (ARBs) provide significant benefits in terms of CV events and stroke, mortality remains high. This is partly due to a failure to completely suppress the RAS, and, as our knowledge has increased, an escape phenomenon has been proposed whereby the human sequence of the 12 amino acid substrate angiotensin-(1-12) is converted to Ang II by the mast cell protease, chymase. Angiotensin-(1-12) is abundant in a wide range of organs and has been shown to increase blood pressure in animal models, an effect abolished by the presence of ACE-Is or ARBs. This review explores the CV continuum, in addition to examining the influence of the RAS. We also consider novel pathways within the RAS and how new therapeutic approaches that target this are required to further reduce Ang II formation, and so provide patients with additional benefits from a more complete blockade of the RAS. PMID:27105891

  7. Cardiac Remodeling After Atrial Fibrillation Ablation

    Directory of Open Access Journals (Sweden)

    Li-Wei Lo, MD; Shih-Ann Chen, MD

    2013-06-01

    Full Text Available Radiofrequency catheter ablation procedures are considered a reasonable option for patients with symptomatic, drug refractory atrial fibrillation (AF. Ablation procedures have been reported to effectively restore sinus rhythm and provide long-term relief of symptoms. Both electrical and structural remodeling occurs with AF. A reversal of the electrical remodeling develops within 1 week after restoration to sinus rhythm following the catheter ablation. The recovery rate is faster in the right atrium than the left atrium. Reverse structural remodeling takes longer and is still present 2 to 4 months after restoration of sinus rhythm. The left atrial transport function also improves after successful catheter ablation of AF. Left atrial strain surveys from echocardiography are able to identify patients who respond to catheter ablation with significant reverse remodeling after ablation. Pre-procedural delayed enhancement magnetic resonance imaging is also able to determine the degree of atrial fibrosis and is another tool to predict the reverse remodeling after ablation. The remodeling process is complex if recurrence develops after ablation. Recent evidence shows that a combined reverse electrical and structural remodeling occurs after ablation of chronic AF when recurrence is paroxysmal AF. Progressive electrical remodeling without any structural remodeling develops in those with recurrence involving chronic AF. Whether progressive atrial remodeling is the cause or consequence during the recurrence of AF remains obscure and requires further study.

  8. Cardiac electrical remodeling in health and disease

    OpenAIRE

    Cutler, Michael J.; Jeyaraj, Darwin; Rosenbaum, David S.

    2011-01-01

    Electrical remodeling of the heart occurs in response to both functional (i.e. altered electrical activation) and structural (i.e. heart failure, myocardial infarction, etc.) stressors. These electrophysiological changes produce a substrate that is vulnerable to malignant ventricular arrhythmias. Understanding the cellular and molecular mechanisms of electrical remodeling is important in elucidating potential therapeutic targets designed to alter maladaptive electrical remodeling. For example...

  9. Ouabain induces cardiac remodeling in rats independent of blood pressure

    Institute of Scientific and Technical Information of China (English)

    Xing JIANG; Yan-ping REN; Zhuo-ren L(U)

    2007-01-01

    Aim: To investigate the ouabain's effects on cardiac remodeling in rats. Methods:Male Sprague-Dawley rats were treated with ouabain. Systolic blood pressure(SBP) was recorded weekly. After 4 and 6 weeks, echocardiography were performed,hemodynamic parameters were measured by invasive cardiac catheterization,changes in cardiac ultrastructure were analyzed using transmission electron microscopy, the collagen fraction of the left ventricle was assessed with Picrosirius red stain, and RT-PCR was applied to evaluate the mRNA level of myosin heavy chain-α and-β in the left ventricle. Results: Having been treated with ouabain for 4 weeks, there was no significant difference in the mean SBP of the two groups.However, left ventricular hypertrophy, myocardial ultrastructure deterioration,and extracellular matrix remodeling were induced by ouabain treatment; meanwhile,cardiac systolic and diastolic performance were both worsened. Moreover, the cardiac MHC-β mRNA was upregulated by ouabain treatment, whereas MHC-αmRNA was downregulated. After 4 weeks, the mean SBP in the ouabain group began to increase and was significantly higher than that in control group after 6 weeks (P<0.01); the rats' cardiac structure and function were worsened.Conclusion: These results suggested that ouabain induces alterations in cardiac structure and function, and the effects happened before the increase of blood pressure. The results indicated that ouabain induced cardiac remodeling in rats independent of blood pressure.

  10. Pentoxifylline Attenuates Cardiac Remodeling Induced by Tobacco Smoke Exposure

    Directory of Open Access Journals (Sweden)

    Marcos Minicucci

    2016-01-01

    Full Text Available Abstract Background: Tobacco smoke exposure is an important risk factor for cardiac remodeling. Under this condition, inflammation, oxidative stress, energy metabolism abnormalities, apoptosis, and hypertrophy are present. Pentoxifylline has anti‑inflammatory, anti-apoptotic, anti-thrombotic and anti-proliferative properties. Objective: The present study tested the hypothesis that pentoxifylline would attenuate cardiac remodeling induced by smoking. Methods: Wistar rats were distributed in four groups: Control (C, Pentoxifylline (PX, Tobacco Smoke (TS, and PX-TS. After two months, echocardiography, invasive blood pressure measurement, biochemical, and histological studies were performed. The groups were compared by two-way ANOVA with a significance level of 5%. Results: TS increased left atrium diameter and area, which was attenuated by PX. In the isolated heart study, TS lowered the positive derivate (+dp/dt, and this was attenuated by PX. The antioxidants enzyme superoxide dismutase and glutathione peroxidase were decreased in the TS group; PX recovered these activities. TS increased lactate dehydrogenase (LDH and decreased 3-hydroxyacyl Coenzyme A dehydrogenases (OH-DHA and citrate synthase (CS. PX attenuated LDH, 3-OH-DHA and CS alterations in TS-PX group. TS increased IL-10, ICAM-1, and caspase-3. PX did not influence these variables. Conclusion: TS induced cardiac remodeling, associated with increased inflammation, oxidative stress, apoptosis, and changed energy metabolism. PX attenuated cardiac remodeling by reducing oxidative stress and improving cardiac bioenergetics, but did not act upon cardiac cytokines and apoptosis.

  11. Hypothyroidism and its rapid correction alter cardiac remodeling.

    Directory of Open Access Journals (Sweden)

    Georges Hajje

    Full Text Available The cardiovascular effects of mild and overt thyroid disease include a vast array of pathological changes. As well, thyroid replacement therapy has been suggested for preserving cardiac function. However, the influence of thyroid hormones on cardiac remodeling has not been thoroughly investigated at the molecular and cellular levels. The purpose of this paper is to study the effect of hypothyroidism and thyroid replacement therapy on cardiac alterations. Thirty Wistar rats were divided into 2 groups: a control (n = 10 group and a group treated with 6-propyl-2-thiouracil (PTU (n = 20 to induce hypothyroidism. Ten of the 20 rats in the PTU group were then treated with L-thyroxine to quickly re-establish euthyroidism. The serum levels of inflammatory markers, such as C-reactive protein (CRP, tumor necrosis factor alpha (TNF-α, interleukin 6 (IL6 and pro-fibrotic transforming growth factor beta 1 (TGF-β1, were significantly increased in hypothyroid rats; elevations in cardiac stress markers, brain natriuretic peptide (BNP and cardiac troponin T (cTnT were also noted. The expressions of cardiac remodeling genes were induced in hypothyroid rats in parallel with the development of fibrosis, and a decline in cardiac function with chamber dilation was measured by echocardiography. Rapidly reversing the hypothyroidism and restoring the euthyroid state improved cardiac function with a decrease in the levels of cardiac remodeling markers. However, this change further increased the levels of inflammatory and fibrotic markers in the plasma and heart and led to myocardial cellular infiltration. In conclusion, we showed that hypothyroidism is related to cardiac function decline, fibrosis and inflammation; most importantly, the rapid correction of hypothyroidism led to cardiac injuries. Our results might offer new insights for the management of hypothyroidism-induced heart disease.

  12. Intradialytic Hypotension and Cardiac Remodeling: A Vicious Cycle

    Directory of Open Access Journals (Sweden)

    Chia-Ter Chao

    2015-01-01

    Full Text Available Hemodynamic instability during hemodialysis is a common but often underestimated issue in the nephrologist practice. Intradialytic hypotension, namely, a decrease of systolic or mean blood pressure to a certain level, prohibits the safe and smooth achievement of ultrafiltration and solute removal goal in chronic dialysis patients. Studies have elucidated the potential mechanisms involved in the development of Intradialytic hypotension, including excessive ultrafiltration and loss of compensatory mechanisms for blood pressure maintenance. Cardiac remodeling could also be one important piece of the puzzle. In this review, we intend to discuss the role of cardiac remodeling, including left ventricular hypertrophy, in the development of Intradialytic hypotension. In addition, we will also provide evidence that a bidirectional relationship might exist between Intradialytic hypotension and left ventricular hypertrophy in chronic dialysis patients. A more complete understanding of the complex interactions in between could assist the readers in formulating potential solutions for the reduction of both phenomena.

  13. Pay attention to cardiac remodeling in cancer cachexia.

    Science.gov (United States)

    Zheng, Yawen; Chen, Han; Li, Xiaoqing; Sun, Yuping

    2016-07-01

    Cancer cachexia is a complex and multifaceted disease state characterized by fatigue, weakness, and loss of skeletal muscle and adipose tissue. Recently, the profound negative effects of cancer cachexia on cardiac tissue draw much attention, which is likely to contribute to mortality in tumor-bearing animals. The mechanism of cardiac remodeling is not so clear and involved with a series of molecular alterations. In cancer cachexia model, progressive loss of left ventricular mass and decrease in myocardial function is observed and cardiac autonomic functions are altered. Levels of several emerging cardiovascular neurohormones are found elevating in patients with cancer, but it is still controversial whether the changes could reflect the heart injury accurately. The remedy for cardiac remodeling has been explored. It is showed that exercise can modulate signaling pathways activated by wasting cytokines and impact on the resulting outcomes on heart adaptation. Some drugs, such as bisoprolol, spironolactone, perindopril, tandospirone, and simvastatin, can mitigate adverse effects of the tumor on the heart and prolong survival. PMID:27108265

  14. Cardiac remodeling and physical training post myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    Michael; A; Garza; Emily; A; Wason; John; Q; Zhang

    2015-01-01

    After myocardial infarction(MI), the heart undergoes extensive myocardial remodeling through the accumulation of fibrous tissue in both the infarcted and noninfarcted myocardium, which distorts tissue structure, increases tissue stiffness, and accounts for ventricular dysfunction. There is growing clinical consensus that exercise training may beneficially alter the course of post-MI myocardial remodeling and improve cardiac function. This review summarizes the present state of knowledge regarding the effect of post-MI exercise training on infarcted hearts. Due to the degree of difficulty to study a viable human heart at both protein and molecular levels, most of the detailed studies have been performed by using animal models. Although there are some negative reports indicating that post-MI exercise may further cause deterioration of the wounded hearts, a growing body of research from both human and animal experiments demonstrates that post-MI exercise may beneficially alter the course of wound healing and improve cardiac function. Furthermore, the improved function is likely due to exercise training-induced mitigation of reninangiotensin-aldosterone system, improved balance between matrix metalloproteinase-1 and tissue inhibitor of matrix metalloproteinase-1, favorable myosin heavy chain isoform switch, diminished oxidative stress, enhanced antioxidant capacity, improved mitochondrial calcium handling, and boosted myocardial angiogenesis. Additionally, meta-analyses revealed that exercise-based cardiac rehabilitation has proven to be effective, and remains one of the least expensive therapies for both the prevention and treatment of cardiovascular disease, and prevents re-infarction.

  15. Aggravated Cardiac Remodeling post Aortocaval Fistula in Unilateral Nephrectomized Rats.

    Directory of Open Access Journals (Sweden)

    Jie Wu

    Full Text Available Aortocaval fistula (AV in rat is a unique model of volume-overload congestive heart failure and cardiac hypertrophy. Living donor kidney transplantation is regarded as beneficial to allograft recipients and not particularly detrimental to the donors. Impact of AV on animals with mild renal dysfunction is not fully understood. In this study, we explored the effects of AV in unilateral nephrectomized (UNX rats.Adult male Sprague-Dawley (SD rats were divided into Sham (n = 10, UNX (right kidney remove, n = 10, AV (AV established between the levels of renal arteries and iliac bifurcation, n = 18 and UNX+AV (AV at one week after UNX, n = 22, respectively. Renal outcome was measured by glomerular filtration rate, effective renal plasma flow, fractional excretion of sodium, albuminuria, plasma creatinine, and cystatin C. Focal glomerulosclerosis (FGS incidence was evaluated by renal histology. Cardiac function was measured by echocardiography and hemodynamic measurements.UNX alone induced compensatory left kidney enlargement, increased plasma creatinine and cystatin C levels, and slightly reduced glomerular filtration rate and increased FGS. AV induced significant cardiac enlargement and hypertrophy and reduced cardiac function and increased FGS, these changes were aggravated in UNX+AV rats.Although UNX only induces minor renal dysfunction, additional chronic volume overload placement during the adaptation phase of the remaining kidney is associated with aggravated cardiac dysfunction and remodeling in UNX rats, suggesting special medical care is required for UNX or congenital monokidney subjects in case of chronic volume overload as in the case of pregnancy and hyperthyroidism to prevent further adverse cardiorenal events in these individuals.

  16. Extracellular matrix remodelling in response to venous hypertension: proteomics of human varicose veins

    OpenAIRE

    Barallobre-Barreiro, Javier; Oklu, Rahmi; Lynch, Marc; Fava, Marika; Baig, Ferheen; Yin, Xiaoke; Barwari, Temo; Potier, David N.; Albadawi, Hassan; Jahangiri, Marjan; Porter, Karen E; Watkins, Michael T.; Misra, Sanjay; Stoughton, Julianne; Mayr, Manuel

    2016-01-01

    Aims Extracellular matrix remodelling has been implicated in a number of vascular conditions, including venous hypertension and varicose veins. However, to date, no systematic analysis of matrix remodelling in human veins has been performed. Methods and results To understand the consequences of venous hypertension, normal and varicose veins were evaluated using proteomics approaches targeting the extracellular matrix. Varicose saphenous veins removed during phlebectomy and normal saphenous ve...

  17. miR-222 is Necessary for Exercise-induced Cardiac Growth and Protects Against Pathological Cardiac Remodeling

    OpenAIRE

    Liu, Xiaojun; Xiao, Junjie; Zhu, Han; Wei, Xin; Platt, Colin; Damilano, Federico; Xiao, Chunyang; Bezzerides, Vassilios; Boström, Pontus; Che, Lin; Zhang, Chunxiang; Spiegelman, Bruce M.; Rosenzweig, Anthony

    2015-01-01

    Exercise induces physiological cardiac growth and protects the heart against pathological remodeling. Recent work suggests exercise also enhances the heart’s capacity for repair, which could be important for regenerative therapies. While microRNAs are important in certain cardiac pathologies, less is known about their functional roles in exercise-induced cardiac phenotypes. We profiled cardiac microRNA expression in two distinct models of exercise and found microRNA-222 (miR-222) was upregula...

  18. Telmisartan attenuates isoproterenol-induced cardiac remodeling in rats via regulation of cardiac adiponectin expression

    Institute of Scientific and Technical Information of China (English)

    Bing-yan GUO; Yong-jun LI; Rui HAN; Shao-1ing YANG; Ying-hui SHI; De-rong HAN; Hong ZHOU; Mei WANG

    2011-01-01

    Aim:To investigate whether telmisartan(Telm)pretreatment attenuates isoproterenol(Iso)-induced postinfarction remodeling(PIR)in rats, and whether the effect of Telm is associated with cardiac expression of adiponectin.Methods:PIR was induced in male Wistar rats with two consecutive injections of Iso(80 mg/kg,sc)at an interval of 24 h.Primary Culture of ventricular myocytes from neonatal rats was prepared.Iso-induced cardiomyocyte injury was assessed based on cell growth and lactate dehydrogenase(LDH)activity.Cardiac adiponectin expression was measured using qRT-PCR and immunoblot analysis.Results:In the rats with PIR.Telm(10 mg·kg-1·d-1,po for 65 d)suppressed lso-induced increases in gravimetric parameters.cardiomyocyte diameter and collagen volume fraction,but had no effect on Iso-induced myocardial hypertrophy and interstitial fibrosis.The protective effect of Telm was associated with enhanced protein expression of cardiac adiponectin.In cultured cardiomyocytes,Telm (5-20 μmol/L)inhibited the celI death and LDH release induced by lSO(10 μmol/L).and reversed Iso-induced reduction in adiponectinprotein expression.In cardiomyocytes exposed to Iso(20 μmol/L).GW9662(30 μmol/L),a selective antagonist of PPAR-v,blocked the effects of Telm Dretreatment on adiponectin protein expression,as well as the protective effects of Telm on Iso-induced celI injUry.Conclusion:Telm attenuates Iso-induced cardiac remodeling and cell injury,which is associated with induction of cardiac adiponectin expression.

  19. Large-scale characterization of the murine cardiac proteome.

    Science.gov (United States)

    Cosme, Jake; Emili, Andrew; Gramolini, Anthony O

    2013-01-01

    Cardiomyopathies are diseases of the heart that result in impaired cardiac muscle function. This dysfunction can progress to an inability to supply blood to the body. Cardiovascular diseases play a large role in overall global morbidity. Investigating the protein changes in the heart during disease can uncover pathophysiological mechanisms and potential therapeutic targets. Establishing a global protein expression "footprint" can facilitate more targeted studies of diseases of the heart.In the technical review presented here, we present methods to elucidate the heart's proteome through subfractionation of the cellular compartments to reduce sample complexity and improve detection of lower abundant proteins during multidimensional protein identification technology analysis. Analysis of the cytosolic, microsomal, and mitochondrial subproteomes separately in order to characterize the murine cardiac proteome is advantageous by simplifying complex cardiac protein mixtures. In combination with bioinformatic analysis and genome correlation, large-scale protein changes can be identified at the cellular compartment level in this animal model. PMID:23606244

  20. Fibroblast growth factor-2 regulates human cardiac myofibroblast-mediated extracellular matrix remodeling

    OpenAIRE

    Svystonyuk, Daniyil A; Ngu, Janet MC; Mewhort, Holly EM; Lipon, Brodie D; Teng, Guoqi; Guzzardi, David G; Malik, Getanshu; Belke, Darrell D.; Fedak, Paul WM

    2015-01-01

    Background Tissue fibrosis and chamber remodeling is a hallmark of the failing heart and the final common pathway for heart failure of diverse etiologies. Sustained elevation of pro-fibrotic cytokine transforming growth factor-beta1 (TGFβ1) induces cardiac myofibroblast-mediated fibrosis and progressive structural tissue remodeling. Objectives We examined the effects of low molecular weight fibroblast growth factor (LMW-FGF-2) on human cardiac myofibroblast-mediated extracellular matrix (ECM)...

  1. Cardiac remodeling and myocardial dysfunction in obese spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Linz Dominik

    2012-09-01

    Full Text Available Abstract Background The additive effects of obesity and metabolic syndrome on left ventricular (LV maladaptive remodeling and function in hypertension are not characterized. Methods We compared an obese spontaneously hypertensive rat model (SHR-ob with lean spontaneously hypertensive rats (SHR-lean and normotensive controls (Ctr. LV-function was investigated by cardiac magnetic resonance imaging and invasive LV-pressure measurements. LV-interstitial fibrosis was quantified and protein levels of phospholamban (PLB, Serca2a and glucose transporters (GLUT1 and GLUT4 were determined by immunohistochemistry. Results Systolic blood pressure was similar in SHR-lean and SHR-ob (252 ± 7 vs. 242 ± 7 mmHg, p = 0.398 but was higher when compared to Ctr (155 ± 2 mmHg, p  Conclusion In addition to hypertension alone, metabolic syndrome and obesity adds to the myocardial phenotype by aggravating diastolic dysfunction and a progression towards systolic dysfunction. SHR-ob may be a useful model to develop new interventional and pharmacological treatment strategies for hypertensive heart disease and metabolic disorders.

  2. Mechanisms of epoxyeicosatrienoic acids to improve cardiac remodeling in chronic renal failure disease.

    Science.gov (United States)

    Zhang, Kun; Wang, Ju; Zhang, Huanji; Chen, Jie; Zuo, Zhiyi; Wang, Jingfeng; Huang, Hui

    2013-02-15

    Both clinical and basic science studies have demonstrated that cardiac remodeling in patients with chronic renal failure (CRF) is very common. It is a key feature during the course of heart failure and an important risk factor for subsequent cardiac mortality. Traditional drugs or therapies rarely have effects on cardiac regression of CRF and cardiovascular events are still the first cause of death. Epoxyeicosatrienoic acids (EETs) are the products of arachidonic acids metabolized by cytochrome P450 epoxygenases. It has been found that EETs have important biological effects including anti-hypertension and anti-inflammation. Recent data suggest that EETs are involved in regulating cardiomyocyte injury, renal dysfunction, chronic kidney disease (CKD)-related risk factors and signaling pathways, all of which play key roles in cardiac remodeling induced by CRF. This review analyzes the literature to identify the possible mechanisms for EETs to improve cardiac remodeling induced by CRF and indicates the therapeutic potential of EETs in it. PMID:23313758

  3. Extracellular matrix remodelling in response to venous hypertension: proteomics of human varicose veins

    Science.gov (United States)

    Barallobre-Barreiro, Javier; Oklu, Rahmi; Lynch, Marc; Fava, Marika; Baig, Ferheen; Yin, Xiaoke; Barwari, Temo; Potier, David N.; Albadawi, Hassan; Jahangiri, Marjan; Porter, Karen E.; Watkins, Michael T.; Misra, Sanjay; Stoughton, Julianne; Mayr, Manuel

    2016-01-01

    Aims Extracellular matrix remodelling has been implicated in a number of vascular conditions, including venous hypertension and varicose veins. However, to date, no systematic analysis of matrix remodelling in human veins has been performed. Methods and results To understand the consequences of venous hypertension, normal and varicose veins were evaluated using proteomics approaches targeting the extracellular matrix. Varicose saphenous veins removed during phlebectomy and normal saphenous veins obtained during coronary artery bypass surgery were collected for proteomics analysis. Extracellular matrix proteins were enriched from venous tissues. The proteomics analysis revealed the presence of >150 extracellular matrix proteins, of which 48 had not been previously detected in venous tissue. Extracellular matrix remodelling in varicose veins was characterized by a loss of aggrecan and several small leucine-rich proteoglycans and a compensatory increase in collagen I and laminins. Gene expression analysis of the same tissues suggested that the remodelling process associated with venous hypertension predominantly occurs at the protein rather than the transcript level. The loss of aggrecan in varicose veins was paralleled by a reduced expression of aggrecanases. Chymase and tryptase β1 were among the up-regulated proteases. The effect of these serine proteases on the venous extracellular matrix was further explored by incubating normal saphenous veins with recombinant enzymes. Proteomics analysis revealed extensive extracellular matrix degradation after digestion with tryptase β1. In comparison, chymase was less potent and degraded predominantly basement membrane-associated proteins. Conclusion The present proteomics study provides unprecedented insights into the expression and degradation of structural and regulatory components of the vascular extracellular matrix in varicosis. PMID:27068509

  4. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model.

    OpenAIRE

    Jessica Jen-Chu Wang; Christoph Rau; Rozeta Avetisyan; Shuxun Ren; Romay, Milagros C.; Gabriel Stolin; Ke Wei Gong; Yibin Wang; Lusis, Aldons J.

    2016-01-01

    We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with ...

  5. Connexin43 Cardiac Gap Junction Remodeling: Lessons from Genetically Engineered Murine Models

    OpenAIRE

    Remo, Benjamin F.; Giovannone, Steven; Fishman, Glenn I.

    2012-01-01

    Sudden cardiac death is responsible for several hundred thousand deaths each year in the United States. Multiple lines of evidence suggest that perturbation of gap junction expression and function in the heart, or what has come to be known as cardiac gap junction remodeling, plays a key mechanistic role in the pathophysiology of clinically significant cardiac arrhythmias. Here we review recent studies from our laboratory using genetically engineered murine models to explore mechanisms implica...

  6. Role of matricellular proteins in cardiac tissue remodeling after myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    Yutaka; Matsui; Junko; Morimoto; Toshimitsu; Uede

    2010-01-01

    After onset of myocardial infarction(MI),the left ventricle(LV) undergoes a continuum of molecular,cellular,and extracellular responses that result in LV wall thinning,dilatation,and dysfunction.These dynamic changes in LV shape,size,and function are termed cardiac remodeling.If the cardiac healing after MI does not proceed properly,it could lead to cardiac rupture or maladaptive cardiac remodeling,such as further LV dilatation and dysfunction,and ultimately death.Although the precise molecular mechanisms in this cardiac healing process have not been fully elucidated,this process is strictly coordinated by the interaction of cells with their surrounding extracellular matrix(ECM) proteins.The components of ECM include basic structural proteins such as collagen,elastin and specialized proteins such as fibronectin,proteoglycans and matricellular proteins.Matricellular proteins are a class of non-structural and secreted proteins that probably exert regulatory functions through direct binding to cell surface receptors,other matrix proteins,and soluble extracellular factors such as growth factors and cytokines.This small group of proteins,which includesosteopontin,thrombospondin-1/2,tenascin,periostin,and secreted protein,acidic and rich in cysteine,shows a low level of expression in normal adult tissue,but is markedly upregulated during wound healing and tissue remodeling,including MI.In this review,we focus on the regulatory functions of matricellular proteins during cardiac tissue healing and remodeling after MI.

  7. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice

    DEFF Research Database (Denmark)

    Patrick, David M; Montgomery, Rusty L; Qi, Xiaoxia;

    2010-01-01

    cardiac hypertrophy and fibrosis in rodents in response to pressure overload. In contrast, we have shown here that miR-21-null mice are normal and, in response to a variety of cardiac stresses, display cardiac hypertrophy, fibrosis, upregulation of stress-responsive cardiac genes, and loss of cardiac......MicroRNAs inhibit mRNA translation or promote mRNA degradation by binding complementary sequences in 3' untranslated regions of target mRNAs. MicroRNA-21 (miR-21) is upregulated in response to cardiac stress, and its inhibition by a cholesterol-modified antagomir has been reported to prevent...... contractility comparable to wild. type littermates. Similarly, inhibition of miR-21 through intravenous delivery of a locked nucleic acid-modified (LNA-modified) antimiR oligonucleotide also failed to block the remodeling response of the heart to stress. We therefore conclude that miR-21 is not essential for...

  8. Cathepsin B gene disruption induced Leishmania donovani proteome remodeling implies cathepsin B role in secretome regulation.

    Directory of Open Access Journals (Sweden)

    Teklu Kuru Gerbaba

    Full Text Available Leishmania cysteine proteases are potential vaccine candidates and drug targets. To study the role of cathepsin B cysteine protease, we have generated and characterized cathepsin B null mutant L. donovani parasites. L. donovani cathepsin B null mutants grow normally in culture, but they show significantly attenuated virulence inside macrophages. Quantitative proteome profiling of wild type and null mutant parasites indicates cathepsin B disruption induced remodeling of L. donovani proteome. We identified 83 modulated proteins, of which 65 are decreased and 18 are increased in the null mutant parasites, and 66% (55/83 of the modulated proteins are L. donovani secreted proteins. Proteins involved in oxidation-reduction (trypanothione reductase, peroxidoxins, tryparedoxin, cytochromes and translation (ribosomal proteins are among those decreased in the null mutant parasites, and most of these proteins belong to the same complex network of proteins. Our results imply virulence role of cathepsin B via regulation of Leishmania secreted proteins.

  9. Cardiac remodelling and function with primary mitral valve insufficiency studied by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Aplin, Mark; Kyhl, Kasper; Bjerre, Jenny;

    2016-01-01

    AIMS: Evaluation of patients with primary mitral valve insufficiency (MI) is best supported by quantitative measures. Cardiovascular magnetic resonance imaging (CMR) offers flow and cardiac chamber volume quantification. We studied cardiac remodelling with CMR to determine MI regurgitation volumes...... (P < 0.05). In surgical patients, the MIVol correlated to the decrease in LV dimension after valve surgery (P < 0.02). CONCLUSION: CMR provides a reproducible quantitative technique for evaluation of MI, as MIVol and cardiac chamber volumes can be held against diagnostic cut-off values. The Aoflow...

  10. Adenoviral short hairpin RNA targeting phosphodiesterase 5 attenuates cardiac remodeling and cardiac dysfunction following myocardial infarction in mice

    Institute of Scientific and Technical Information of China (English)

    张健

    2014-01-01

    Objective To observe the impact of PDE5shRNA on cardiac remodeling and heart function following myocardial infarction in mice.Methods Myocardial infarction(MI)was induced in mice by left coronary artery ligation.Mice were randomly assigned to sham operation group(n=6),PDE5shRNA group(n=12),common adenovirus group(n=15)and DMEM group(n=8).Four weeks post-MI,the survival rate was evaluated.

  11. The Role of Nrf2-Mediated Pathway in Cardiac Remodeling and Heart Failure

    Directory of Open Access Journals (Sweden)

    Shanshan Zhou

    2014-01-01

    Full Text Available Heart failure (HF is frequently the consequence of sustained, abnormal neurohormonal, and mechanical stress and remains a leading cause of death worldwide. The key pathophysiological process leading to HF is cardiac remodeling, a term referring to maladaptation to cardiac stress at the molecular, cellular, tissue, and organ levels. HF and many of the conditions that predispose one to HF are associated with oxidative stress. Increased generation of reactive oxygen species (ROS in the heart can directly lead to increased necrosis and apoptosis of cardiomyocytes which subsequently induce cardiac remodeling and dysfunction. Nuclear factor-erythroid-2- (NF-E2- related factor 2 (Nrf2 is a transcription factor that controls the basal and inducible expression of a battery of antioxidant genes and other cytoprotective phase II detoxifying enzymes that are ubiquitously expressed in the cardiovascular system. Emerging evidence has revealed that Nrf2 and its target genes are critical regulators of cardiovascular homeostasis via the suppression of oxidative stress, which is the key player in the development and progression of HF. The purpose of this review is to summarize evidence that activation of Nrf2 enhances endogenous antioxidant defenses and counteracts oxidative stress-associated cardiac remodeling and HF.

  12. Sex-specific cardiac cardiolipin remodelling after doxorubicin treatment

    OpenAIRE

    Moulin, Maryline; Solgadi, Audrey; Veksler, Vladimir; Garnier, Anne; Ventura-Clapier, Renée; Chaminade, Pierre

    2015-01-01

    Background Imbalance in lipid metabolism and membrane lipid homeostasis has been observed in numerous diseases including heart failure and cardiotoxicity. Growing evidence links phospholipid alterations especially cardiolipins (CLs) to defects in mitochondrial function and energy metabolism in heart failure. We have shown recently that doxorubicin cardiotoxicity is more severe in male than female Wistar rats. We aimed to study whether this sex specificity is linked to differences in cardiac p...

  13. Proteomic responses of skeletal and cardiac muscle to exercise

    Science.gov (United States)

    Burniston, Jatin G.; Hoffman, Eric P.

    2016-01-01

    Summary Regular exercise is effective in the prevention of chronic diseases and confers a lower risk of death in individuals displaying risk factors such as hypertension and dyslipidaemia. Thus, knowledge of the molecular responses to exercise provides a valuable contrast for interpreting investigations of disease and can highlight novel therapeutic targets. While exercise is an everyday experience and can be conceptualized in simple terms, exercise is a complex physiological phenomena and investigation of exercise responses requires sophisticated analytical techniques and careful standardization of the exercise stimulus. Proteomic investigation of exercise is in its infancy but the ability to link changes in function with comprehensive changes in protein expression and post-translational modification holds great promise for advancing physiology. This review highlights recent pioneering work investigating the effects of exercise in skeletal and cardiac muscle that has uncovered novel mechanisms underling the benefits of physical activity. PMID:21679117

  14. Early remodeling of rat cardiac muscle induced by swimming training

    Directory of Open Access Journals (Sweden)

    Verzola R.M.M.

    2006-01-01

    Full Text Available The aim of the present investigation was to study the effect of acute swimming training with an anaerobic component on matrix metallopeptidase (MMP activity and myosin heavy chain gene expression in the rat myocardium. Animals (male Wistar rats, weighing approximately 180 g were trained for 6 h/day in 3 sessions of 2 h each for 1 to 5 consecutive days (N = 5 rats per group. Rats swam in basins 47 cm in diameter and 60 cm deep filled with water at 33 to 35ºC. After the training period a significant increase (P < 0.05 was observed in the heart weight normalized to body weight by about 22 and 35% in the groups that trained for 96 and 120 h, respectively. Blood lactate levels were significantly increased (P < 0.05 in all groups after all training sessions, confirming an anaerobic component. However, lactate levels decreased (P < 0.05 with days of training, suggesting that the animals became adapted to this protocol. Myosin heavy chain-ß gene expression, analyzed by real time PCR and normalized with GAPDH gene expression, showed a significant two-fold increase (P < 0.01 after 5 days of training. Zymography analysis of myocardium extracts indicated a single ~60-kDa activity band that was significantly increased (P < 0.05 after 72, 96, and 120 h, indicating an increased expression of MMP-2 and suggesting precocious remodeling. Furthermore, the presence of MMP-2 was confirmed by Western blot analysis, but not the presence of MMP-1 and MMP-3. Taken together, our results indicate that in these training conditions, the rat heart undergoes early biochemical and functional changes required for the adaptation to the new physiological condition by tissue remodeling.

  15. Optimized method for identification of the proteomes secreted by cardiac cells

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Van Eyk, J.E.

    2013-01-01

    Roč. 1005, č. 1005 (2013), s. 225-235. ISSN 1940-6029 Institutional support : RVO:68081715 Keywords : cardiac cells * secreted proteins * proteomic technology Subject RIV: CB - Analytical Chemistry, Separation

  16. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model.

    Directory of Open Access Journals (Sweden)

    Jessica Jen-Chu Wang

    2016-07-01

    Full Text Available We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with heritability estimates of left ventricular mass between 61% and 81%. Association analyses of cardiac remodeling traits, corrected for population structure, body size and heart rate, revealed 17 genome-wide significant loci, including several loci containing previously implicated genes. Cardiac tissue gene expression profiling, expression quantitative trait loci, expression-phenotype correlation, and coding sequence variation analyses were performed to prioritize candidate genes and to generate hypotheses for downstream mechanistic studies. Using this approach, we have validated a novel gene, Myh14, as a negative regulator of ISO-induced left ventricular mass hypertrophy in an in vivo mouse model and demonstrated the up-regulation of immediate early gene Myc, fetal gene Nppb, and fibrosis gene Lgals3 in ISO-treated Myh14 deficient hearts compared to controls.

  17. TRPV1 gene deletion exacerbates inflammation and atypical cardiac remodeling after myocardial infarction

    OpenAIRE

    Huang, Wei; Rubinstein, Jack; Prieto, Alejandro R.; Thang, Loc Vinh; Wang, Donna H.

    2008-01-01

    The transient receptor potential vanilloid (TRPV1) channels expressed in sensory afferent fibers innervating the heart may be activated by proton or endovanilloids released during myocardial ischemia (MI), leading to angina. Although our previous in vitro data indicate that TRPV1 activation may preserve cardiac function after ischemia-reperfusion (I/R) injury, the underlying mechanisms are largely unknown. To test the hypothesis that TRPV1 modulates inflammatory and early remodeling processes...

  18. Endocrine Alterations Are the Main Determinants of Cardiac Remodelling in Restrictive Anorexia Nervosa

    OpenAIRE

    Guido Carlomagno; Valentina Mercurio; Antonio Ruvolo; Ignazio Senatore; Irina Halinskaya; Valeria Fazio; Flora Affuso; Serafino Fazio

    2011-01-01

    Objective. Anorexia nervosa is a condition of reduced hemodynamic load, characterized by varying degrees of cardiac remodelling, only in part related to reduced body mass; the mechanism for such variability, as well as its clinical significance, remains unknown. Aim of the study was to assess the possible influence of a great number of clinical, biochemical, and endocrine factors on cardiovascular parameters in restrictive anorexia nervosa. Method. Twenty-five female patients hospitalized for...

  19. Gender Differences in Adiponectin Modulation of Cardiac Remodeling in Mice Deficient in Endothelial Nitric Oxide Synthase

    OpenAIRE

    Durand, Jorge L.; Nawrocki, Andrea R.; Scherer, Philipp E.; Jelicks, Linda A.

    2012-01-01

    Left ventricular hypertrophy (LVH) is a risk factor for cardiovascular disease, a leading cause of death. Alterations in endothelial nitric oxide synthase (eNOS), an enzyme involved in regulating vascular tone, and in adiponectin, an adipocyte-derived secretory factor, are associated with cardiac remodeling. Deficiency of eNOS is associated with hypertension and LVH. Adiponectin exhibits vaso-protective, anti-inflammatory, and anti-atherogenic properties. We hypothesized that increased levels...

  20. Aging and the cardiac collagen matrix: Novel mediators of fibrotic remodelling.

    Science.gov (United States)

    Horn, Margaux A; Trafford, Andrew W

    2016-04-01

    Cardiovascular disease is a leading cause of death worldwide and there is a pressing need for new therapeutic strategies to treat such conditions. The risk of developing cardiovascular disease increases dramatically with age, yet the majority of experimental research is executed using young animals. The cardiac extracellular matrix (ECM), consisting predominantly of fibrillar collagen, preserves myocardial integrity, provides a means of force transmission and supports myocyte geometry. Disruptions to the finely balanced control of collagen synthesis, post-synthetic deposition, post-translational modification and degradation may have detrimental effects on myocardial functionality. It is now well established that the aged heart is characterized by fibrotic remodelling, but the mechanisms responsible for this are incompletely understood. Furthermore, studies using aged animal models suggest that interstitial remodelling with disease may be age-dependent. Thus with the identification of new therapeutic strategies targeting fibrotic remodelling, it may be necessary to consider age-dependent mechanisms. In this review, we discuss remodelling of the cardiac collagen matrix as a function of age, whilst highlighting potential novel mediators of age-dependent fibrotic pathways. PMID:26578393

  1. Monocytes increase human cardiac myofibroblast-mediated extracellular matrix remodeling through TGF-β1.

    Science.gov (United States)

    Mewhort, Holly E M; Lipon, Brodie D; Svystonyuk, Daniyil A; Teng, Guoqi; Guzzardi, David G; Silva, Claudia; Yong, V Wee; Fedak, Paul W M

    2016-03-15

    Following myocardial infarction (MI), cardiac myofibroblasts remodel the extracellular matrix (ECM), preventing mechanical complications. However, prolonged myofibroblast activity leads to dysregulation of the ECM, maladaptive remodeling, fibrosis, and heart failure (HF). Chronic inflammation is believed to drive persistent myofibroblast activity; however, the mechanisms are unclear. We assessed the influence of peripheral blood monocytes on human cardiac myofibroblast activity in a three-dimensional (3D) ECM microenvironment. Human cardiac myofibroblasts isolated from surgical biopsies of the right atrium and left ventricle were seeded into 3D collagen matrices. Peripheral blood monocytes were isolated from healthy human donors and cocultured with myofibroblasts. Monocytes increased myofibroblast activity measured by collagen gel contraction (baseline: 57.6 ± 5.9% vs. coculture: 65.2 ± 7.1% contraction; P < 0.01) and increased local ECM remodeling quantified by confocal microscopy. Under coculture conditions that allow indirect cellular interaction via paracrine factors but prevent direct cell-cell contact, monocytes had minimal effects on myofibroblast activity (17.9 ± 11.1% vs. 6.4 ± 7.0% increase, respectively; P < 0.01). When cells were cultured under direct contact conditions, multiplex analysis of the coculture media revealed an increase in the paracrine factors TGF-β1 and matrix metalloproteinase 9 compared with baseline (122.9 ± 10.1 pg/ml and 3,496.0 ± 190.4 pg/ml, respectively, vs. 21.5 ± 16.3 pg/ml and 183.3 ± 43.9 pg/ml; P < 0.001). TGF-β blockade abolished the monocyte-induced increase in cardiac myofibroblast activity. These data suggest that direct cell-cell interaction between monocytes and cardiac myofibroblasts stimulates TGF-β-mediated myofibroblast activity and increases remodeling of local matrix. Peripheral blood monocyte interaction with human cardiac myofibroblasts stimulates myofibroblast activity through release of TGF-β1

  2. iTRAQ proteomic analysis of extracellular matrix remodeling in aortic valve disease.

    Science.gov (United States)

    Martin-Rojas, Tatiana; Mourino-Alvarez, Laura; Alonso-Orgaz, Sergio; Rosello-Lleti, Esther; Calvo, Enrique; Lopez-Almodovar, Luis Fernando; Rivera, Miguel; Padial, Luis R; Lopez, Juan Antonio; de la Cuesta, Fernando; Barderas, Maria G

    2015-01-01

    Degenerative aortic stenosis (AS) is the most common worldwide cause of valve replacement. The aortic valve is a thin, complex, layered connective tissue with compartmentalized extracellular matrix (ECM) produced by specialized cell types, which directs blood flow in one direction through the heart. There is evidence suggesting remodeling of such ECM during aortic stenosis development. Thus, a better characterization of the role of ECM proteins in this disease would increase our understanding of the underlying molecular mechanisms. Aortic valve samples were collected from 18 patients which underwent aortic valve replacement (50% males, mean age of 74 years) and 18 normal control valves were obtained from necropsies (40% males, mean age of 69 years). The proteome of the samples was analyzed by 2D-LC MS/MS iTRAQ methodology. The results showed an altered expression of 13 ECM proteins of which 3 (biglycan, periostin, prolargin) were validated by Western blotting and/or SRM analyses. These findings are substantiated by our previous results demonstrating differential ECM protein expression. The present study has demonstrated a differential ECM protein pattern in individuals with AS, therefore supporting previous evidence of a dynamic ECM remodeling in human aortic valves during AS development. PMID:26620461

  3. Temporal and Molecular Analyses of Cardiac Extracellular Matrix Remodeling following Pressure Overload in Adiponectin Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Keith Dadson

    Full Text Available Adiponectin, circulating levels of which are reduced in obesity and diabetes, mediates cardiac extracellular matrix (ECM remodeling in response to pressure overload (PO. Here, we performed a detailed temporal analysis of progressive cardiac ECM remodelling in adiponectin knockout (AdKO and wild-type (WT mice at 3 days and 1, 2, 3 and 4 weeks following the induction of mild PO via minimally invasive transverse aortic banding. We first observed that myocardial adiponectin gene expression was reduced after 4 weeks of PO, whereas increased adiponectin levels were detected in cardiac homogenates at this time despite decreased circulating levels of adiponectin. Scanning electron microscopy and Masson's trichrome staining showed collagen accumulation increased in response to 2 and 4 weeks of PO in WT mice, while fibrosis in AdKO mice was notably absent after 2 weeks but highly apparent after 4 weeks of PO. Time and intensity of fibroblast appearance after PO was not significantly different between AdKO and WT animals. Gene array analysis indicated that MMP2, TIMP2, collagen 1α1 and collagen 1α3 were induced after 2 weeks of PO in WT but not AdKO mice. After 4 weeks MMP8 was induced in both genotypes, MMP9 only in WT mice and MMP1α only in AdKO mice. Direct stimulation of primary cardiac fibroblasts with adiponectin induced a transient increase in total collagen detected by picrosirius red staining and collagen III levels synthesis, as well as enhanced MMP2 activity detected via gelatin zymography. Adiponectin also enhanced fibroblast migration and attenuated angiotensin-II induced differentiation to a myofibroblast phenotype. In conclusion, these data indicate that increased myocardial bioavailability of adiponectin mediates ECM remodeling following PO and that adiponectin deficiency delays these effects.

  4. Post-mortem cardiac diffusion tensor imaging: detection of myocardial infarction and remodeling of myofiber architecture

    Energy Technology Data Exchange (ETDEWEB)

    Winklhofer, Sebastian; Berger, Nicole; Stolzmann, Paul [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); University of Zurich, Department of Forensic Medicine and Radiology, Institute of Forensic Medicine, Zurich (Switzerland); Stoeck, Christian T.; Kozerke, Sebastian [Institute for Biomedical Engineering University and ETH Zurich, Zurich (Switzerland); Thali, Michael [University of Zurich, Department of Forensic Medicine and Radiology, Institute of Forensic Medicine, Zurich (Switzerland); Manka, Robert [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Institute for Biomedical Engineering University and ETH Zurich, Zurich (Switzerland); University Hospital Zurich, Clinic for Cardiology, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2014-11-15

    To investigate the accuracy of post-mortem diffusion tensor imaging (DTI) for the detection of myocardial infarction (MI) and to demonstrate the feasibility of helix angle (HA) calculation to study remodelling of myofibre architecture. Cardiac DTI was performed in 26 deceased subjects prior to autopsy for medicolegal reasons. Fractional anisotropy (FA) and mean diffusivity (MD) were determined. Accuracy was calculated on per-segment (AHA classification), per-territory, and per-patient basis, with pathology as reference standard. HAs were calculated and compared between healthy segments and those with MI. Autopsy demonstrated MI in 61/440 segments (13.9 %) in 12/26 deceased subjects. Healthy myocardial segments had significantly higher FA (p < 0.01) and lower MD (p < 0.001) compared to segments with MI. Multivariate logistic regression demonstrated that FA (p < 0.10) and MD (p = 0.01) with the covariate post-mortem time (p < 0.01) predicted MI with an accuracy of 0.73. Analysis of HA distribution demonstrated remodelling of myofibre architecture, with significant differences between healthy segments and segments with chronic (p < 0.001) but not with acute MI (p > 0.05). Post-mortem cardiac DTI enablesdifferentiation between healthy and infarcted myocardial segments by means of FA and MD. HA assessment allows for the demonstration of remodelling of myofibre architecture following chronic MI. (orig.)

  5. Amlodipine and Atorvastatin Improved Hypertensive Cardiac Remodeling through Regulation of MMPs/TIMPs in SHR Rats

    Directory of Open Access Journals (Sweden)

    Jingchao Lu

    2016-06-01

    Full Text Available Background: MMPs/TIMPs system is well known to play important roles in pressure overload-induced cardiac remodeling, and Amlodipine and Atorvastatin have been showed to exert favourable protective effects on cardiovascular disease, however, it is not clear whether Amlodipine and Atorvastatin can improve hypertensive cardiac remodeling and whether the MMPs/TIMPs system is involved. The present study aims to answer these questions. Methods: 36 weeks old male spontaneous hypertension (SHR rats were randomly divided into four groups: 1. SHR control group, 2. Amlodipine alone (10 mg/kg/d group, 3. Atorvastatin alone (10 mg/kg/d group, 4.Combination of Amlodipine and Atorvastatin (10 mg/kg/d for each group. Same gender, weight and age of Wistar-Kyoto (WKY rats with normal blood pressure were used as normal control. Drugs were administered by oral gavage over 12 weeks. The blood pressure and left ventricle mass index were measured. Enzyme activity of MMP-2 and MMP-9 was assessed with Gelatin zymography. MMP-2, MMP-9, TIMP-1 and TIMP-2 mRNA and protein expression was studied by RT-PCR and Western blot. Single factor ANOVA and LSD-t test were used in statistical analysis. Results: Treatment with Amlodipine alone or combination with atorvastatin significantly decreased blood pressure, left ventricle mass index in SHR rats (P Conclusion: Amlodipine and Atorvastatin could improve ventricular remodeling in SHR rats through intervention with the imbalance of MMP-2/TIMP-2 and MMP-9/TIMP-1 system.

  6. MicroRNA Expression Signature Is Altered in the Cardiac Remodeling Induced by High Fat Diets.

    Science.gov (United States)

    Guedes, Elaine Castilho; França, Gustavo Starvaggi; Lino, Caroline Antunes; Koyama, Fernanda Christtanini; Moreira, Luana do Nascimento; Alexandre, Juliana Gomes; Barreto-Chaves, Maria Luiza M; Galante, Pedro Alexandre Favoretto; Diniz, Gabriela Placoná

    2016-08-01

    Recent studies have revealed the involvement of microRNAs (miRNAs) in the control of cardiac hypertrophy and myocardial function. In addition, several reports have demonstrated that high fat (HF) diet induces cardiac hypertrophy and remodeling. In the current study, we investigated the effect of diets containing different percentages of fat on the cardiac miRNA expression signature. To address this question, male C57Bl/6 mice were fed with a low fat (LF) diet or two HF diets, containing 45 kcal% fat (HF45%) and 60 kcal% fat (HF60%) for 10 and 20 weeks. HF60% diet promoted an increase on body weight, fasting glycemia, insulin, leptin, total cholesterol, triglycerides, and induced glucose intolerance. HF feeding promoted cardiac remodeling, as evidenced by increased cardiomyocyte transverse diameter and interstitial fibrosis. RNA sequencing analysis demonstrated that HF feeding induced distinct miRNA expression patterns in the heart. HF45% diet for 10 and 20 weeks changed the abundance of 64 and 26 miRNAs in the heart, respectively. On the other hand, HF60% diet for 10 and 20 weeks altered the abundance of 27 and 88 miRNAs in the heart, respectively. Bioinformatics analysis indicated that insulin signaling pathway was overrepresented in response to HF diet. An inverse correlation was observed between cardiac levels of GLUT4 and miRNA-29c. Similarly, we found an inverse correlation between expression of GSK3β and the expression of miRNA-21a-3p, miRNA-29c-3p, miRNA-144-3p, and miRNA-195a-3p. In addition, miRNA-1 overexpression prevented cardiomyocyte hypertrophy. Taken together, our results revealed differentially expressed miRNA signatures in the heart in response to different HF diets. J. Cell. Physiol. 231: 1771-1783, 2016. © 2015 Wiley Periodicals, Inc. PMID:26638879

  7. Relationship Between Reverse Remodeling and Cardiopulmonary Exercise Capacity in Heart Failure Patients Undergoing Cardiac Resynchronization Therapy

    DEFF Research Database (Denmark)

    Mastenbroek, Mirjam H; Sant, Jetske Van't; Versteeg, Henneke;

    2016-01-01

    BACKGROUND: Studies on the relationship between left ventricular reverse remodeling and cardiopulmonary exercise capacity in heart failure patients undergoing cardiac resynchronization therapy (CRT) are scarce and inconclusive. METHODS AND RESULTS: Eighty-four patients with a 1st-time CRT......-defibrillator (mean age 65 ± 11; 73% male) underwent echocardiography and cardiopulmonary exercise testing (CPX) before implantation (baseline) and 6 months after implantation. At baseline, patients also completed a set of questionnaires measuring mental and physical health. The association between echocardiographic...... echocardiographic responders showed improvements in ventilatory efficiency during follow-up. Multivariable repeated measures analyses revealed that, besides reverse remodeling, New York Heart Association functional class II and good patient-reported health status before implantation were the most important...

  8. Signs of cardiac autonomic imbalance and proarrhythmic remodeling in FTO deficient mice.

    Directory of Open Access Journals (Sweden)

    Luca Carnevali

    Full Text Available In humans, variants of the fat mass and obesity associated (FTO gene have recently been associated with obesity. However, the physiological function of FTO is not well defined. Previous investigations in mice have linked FTO deficiency to growth retardation, loss of white adipose tissue, increased energy metabolism and enhanced systemic sympathetic activation. In this study we investigated for the first time the effects of global knockout of the mouse FTO gene on cardiac function and its autonomic neural regulation. ECG recordings were acquired via radiotelemetry in homozygous knockout (n = 12 and wild-type (n = 8 mice during resting and stress conditions, and analyzed by means of time- and frequency-domain indexes of heart rate variability. In the same animals, cardiac electrophysiological properties (assessed by epicardial mapping and structural characteristics were investigated. Our data indicate that FTO knockout mice were characterized by (i higher heart rate values during resting and stress conditions, (ii heart rate variability changes (increased LF to HF ratio, (iii larger vulnerability to stress-induced tachyarrhythmias, (iv altered ventricular repolarization, and (v cardiac hypertrophy compared to wild-type counterparts. We conclude that FTO deficiency in mice leads to an imbalance of the autonomic neural modulation of cardiac function in the sympathetic direction and to a potentially proarrhythmic remodeling of electrical and structural properties of the heart.

  9. Aerobic Training after Myocardial Infarction: Remodeling Evaluated by Cardiac Magnetic Resonance

    Directory of Open Access Journals (Sweden)

    Nataly Lino Izeli

    2016-04-01

    Full Text Available Abstract Background: Numerous studies show the benefits of exercise training after myocardial infarction (MI. Nevertheless, the effects on function and remodeling are still controversial. Objectives: To evaluate, in patients after (MI, the effects of aerobic exercise of moderate intensity on ventricular remodeling by cardiac magnetic resonance imaging (CMR. Methods: 26 male patients, 52.9 ± 7.9 years, after a first MI, were assigned to groups: trained group (TG, 18; and control group (CG, 8. The TG performed supervised aerobic exercise on treadmill twice a week, and unsupervised sessions on 2 additional days per week, for at least 3 months. Laboratory tests, anthropometric measurements, resting heart rate (HR, exercise test, and CMR were conducted at baseline and follow-up. Results: The TG showed a 10.8% reduction in fasting blood glucose (p = 0.01, and a 7.3-bpm reduction in resting HR in both sitting and supine positions (p < 0.0001. There was an increase in oxygen uptake only in the TG (35.4 ± 8.1 to 49.1 ± 9.6 mL/kg/min, p < 0.0001. There was a statistically significant decrease in the TG left ventricular mass (LVmass (128.7 ± 38.9 to 117.2 ± 27.2 g, p = 0.0032. There were no statistically significant changes in the values of left ventricular end-diastolic volume (LVEDV and ejection fraction in the groups. The LVmass/EDV ratio demonstrated a statistically significant positive remodeling in the TG (p = 0.015. Conclusions: Aerobic exercise of moderate intensity improved physical capacity and other cardiovascular variables. A positive remodeling was identified in the TG, where a left ventricular diastolic dimension increase was associated with LVmass reduction.

  10. Integration of genomics, proteomics, and imaging for cardiac stem cell therapy

    International Nuclear Information System (INIS)

    Cardiac stem cell therapy is beginning to mature as a valid treatment for heart disease. As more clinical trials utilizing stem cells emerge, it is imperative to establish the mechanisms by which stem cells confer benefit in cardiac diseases. In this paper, we review three methods - molecular cellular imaging, gene expression profiling, and proteomic analysis - that can be integrated to provide further insights into the role of this emerging therapy. (orig.)

  11. Specificity of secreted proteomes from cardiac stem cells and neonatal myocytes

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Chimenti, I.; Marban, E.; Van Eyk, J.

    2009-01-01

    Roč. 276, Suppl.1 (2009), s. 346. ISSN 1742-464X. [FEBS Congress /34./. 04.07.2009-09.07.2009, Prague] Institutional research plan: CEZ:AV0Z40310501 Keywords : cardiac stem cells * secreted paracrine/autocrine factors * proteomics Subject RIV: CB - Analytical Chemistry, Separation

  12. Identification and functionality of proteomes secreted by rat cardiac stem cells and neonatal cardiomyocytes

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Chimenti, I.; Marban, E.; Van Eyk, J.E.

    2010-01-01

    Roč. 10, č. 2 (2010), s. 245-253. ISSN 1615-9853 Institutional research plan: CEZ:AV0Z40310501 Keywords : animal proteomics * cardiac stem cells * neonatal cardiomyocytes Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.815, year: 2010

  13. Cardiac remodeling following percutaneous mitral valve repair. Initial results assessed by cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Radunski, U.K [University Heart Center, Hamburg (Germany). Cardiology; Franzen, O. [Rigshospitalet, Copenhagen (Denmark). Cardiology; Barmeyer, A. [Klinikum Dortmund (Germany). Kardiologie; and others

    2014-10-15

    Percutaneous mitral valve repair with the MitraClip device (Abbott Vascular, Redwood City, California, USA) is a novel therapeutic option in patients with mitral regurgitation. This study evaluated the feasibility of cardiac volume measurements by cardiovascular magnetic resonance imaging (CMR) to assess reverse myocardial remodeling in patients after MitraClip implantation. 12 patients underwent CMR at baseline (BL) before and at 6 months follow-up (FU) after MitraClip implantation. Cine-CMR was performed in short- and long-axes for the assessment of left ventricular (LV), right ventricular (RV) and left atrial (LA) volumes. Assessment of endocardial contours was not compromised by the device-related artifact. No significant differences in observer variances were observed for LV, RV and LA volume measurements between BL and FU. LV end-diastolic (median 127 [IQR 96-150] vs. 112 [86-150] ml/m{sup 2}; p=0.03) and LV end-systolic (82 [54-91] vs. 69 [48-99] ml/m{sup 2}; p=0.03) volume indices decreased significantly from BL to FU. No significant differences were found for RV end-diastolic (94 [75-103] vs. 99 [77-123] ml/m{sup 2}; p=0.91), RV end-systolic (48 [42-80] vs. 51 [40-81] ml/m{sup 2}; p=0.48), and LA (87 [55-124] vs. 92 [48-137]R ml/m{sup 2}; p=0.20) volume indices between BL and FU. CMR enables the assessment of cardiac volumes in patients after MitraClip implantation. Our CMR findings indicate that percutaneous mitral valve repair results in reverse LV but not in RV or LA remodeling.

  14. Gender-Based Differences in Cardiac Remodeling and ILK Expression after Myocardial Infarction

    Energy Technology Data Exchange (ETDEWEB)

    Sofia, Renato Rodrigues [Programa de Pós-graduação em Ciências da Reabilitação - Universidade Nove de Julho (Uninove), São Paulo, SP (Brazil); Departamento de Cardiologia - Universidade Federal de São Paulo, São Paulo, SP (Brazil); Serra, Andrey Jorge, E-mail: andreyserra@gmail.com; Silva, Jose Antonio Jr [Programa de Pós-graduação em Ciências da Reabilitação - Universidade Nove de Julho (Uninove), São Paulo, SP (Brazil); Antonio, Ednei Luiz [Departamento de Cardiologia - Universidade Federal de São Paulo, São Paulo, SP (Brazil); Manchini, Martha Trindade [Programa de Pós-graduação em Ciências da Reabilitação - Universidade Nove de Julho (Uninove), São Paulo, SP (Brazil); Oliveira, Fernanda Aparecida Alves de [Departamento de Cardiologia - Universidade Federal de São Paulo, São Paulo, SP (Brazil); Teixeira, Vicente Paulo Castro [Departamento de Patologia - Universidade Federal de São Paulo, São Paulo, SP (Brazil); Tucci, Paulo José Ferreira [Departamento de Cardiologia - Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-08-15

    Gender can influence post-infarction cardiac remodeling. To evaluate whether gender influences left ventricular (LV) remodeling and integrin-linked kinase (ILK) after myocardial infarction (MI). Female and male Wistar rats were assigned to one of three groups: sham, moderate MI (size: 20-39% of LV area), and large MI (size: ≥40% of LV area). MI was induced by coronary occlusion, and echocardiographic analysis was performed after six weeks to evaluate MI size as well as LV morphology and function. Real-time RT-PCR and Western blot were used to quantify ILK in the myocardium. MI size was similar between genders. MI resulted in systolic dysfunction and enlargement of end-diastolic as well as end-systolic dimension of LV as a function of necrotic area size in both genders. Female rats with large MI showed a lower diastolic and systolic dilatation than the respective male rats; however, LV dysfunction was similar between genders. Gene and protein levels of ILK were increased in female rats with moderate and large infarctions, but only male rats with large infarctions showed an altered ILK mRNA level. A negative linear correlation was evident between LV dimensions and ILK expression in female rats with large MI. Post-MI ILK expression is altered in a gender-specific manner, and higher ILK levels found in females may be sufficient to improve LV geometry but not LV function.

  15. Gender-Based Differences in Cardiac Remodeling and ILK Expression after Myocardial Infarction

    International Nuclear Information System (INIS)

    Gender can influence post-infarction cardiac remodeling. To evaluate whether gender influences left ventricular (LV) remodeling and integrin-linked kinase (ILK) after myocardial infarction (MI). Female and male Wistar rats were assigned to one of three groups: sham, moderate MI (size: 20-39% of LV area), and large MI (size: ≥40% of LV area). MI was induced by coronary occlusion, and echocardiographic analysis was performed after six weeks to evaluate MI size as well as LV morphology and function. Real-time RT-PCR and Western blot were used to quantify ILK in the myocardium. MI size was similar between genders. MI resulted in systolic dysfunction and enlargement of end-diastolic as well as end-systolic dimension of LV as a function of necrotic area size in both genders. Female rats with large MI showed a lower diastolic and systolic dilatation than the respective male rats; however, LV dysfunction was similar between genders. Gene and protein levels of ILK were increased in female rats with moderate and large infarctions, but only male rats with large infarctions showed an altered ILK mRNA level. A negative linear correlation was evident between LV dimensions and ILK expression in female rats with large MI. Post-MI ILK expression is altered in a gender-specific manner, and higher ILK levels found in females may be sufficient to improve LV geometry but not LV function

  16. Effect of carvedilol on cardiac function and left ventricular remodeling in rats after acute myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    张军; 贾国良; 王海昌

    2003-01-01

    Objective: To observe the effect of carvedilol injection on left ventricular function and collagen remodeling in rat with myocardial infarction. Methods: Sixty rats with a model of myocardial infarction were randomly divided into nine groups. The rats of therapeutical group were treated with carvedilol injection (2 mg/d intraperitoneal injection) and/or captopil (2 g/L drinking water). Acute myocardial infarction (AMI) group did not receive drug treatment. The animals were sacrificed at 4 weeks and 8 weeks after coronary artery ligation. The levels of plasma angiotensin Ⅱ and plasma aldosterone and left ventricle function were determined at different time. The collagen content and the ratio of type I and Ⅲ collagen of noninfarcted area were also assessed. Results: Compared with AMI group, the levels of plasma and myocardium angiotensin Ⅱ and plasma aldosterone in both carvedilol and captopil group decreased at the eighth week (P<0.05). In addition, carvedilol improved systolic and diastolic function (P<0.05). Compared with sham group, both collagen content and the ratio of type Ⅰ/Ⅲ collagen of noninfarcted area increased in AMI4 and AMI8 group (P<0.05). The hydroxyproline levels and the ratio of type Ⅰ/Ⅲ collagen significantly decreased after carvedilol and/or captopil treatment , compared with AMI group at 4 or 8 week (P<0.05). Conclusion: Carvedilol can improve cardiac function after myocardial infarction and has beneficial effect on left ventricular remodeling.

  17. Human relaxin gene expression delivered by bioreducible dendrimer polymer for post-infarct cardiac remodeling in rats.

    Science.gov (United States)

    Lee, Young Sook; Choi, Joung-Woo; Oh, Jung-Eun; Yun, Chae-Ok; Kim, Sung Wan

    2016-08-01

    In consensus, myocardial infarction (MI) is defined as irreversible cell death secondary to prolonged ischemia in heart. The aim of our study was to evaluate the therapeutic potential of anti-fibrotic human Relaxin-expressing plasmid DNA with hypoxia response element (HRE) 12 copies (HR1) delivered by a dendrimer type PAM-ABP polymer G0 (HR1/G0) after MI on functional, hemodynamic, geometric, and cardiac extracellular matrix (ECM) remodeling in rats. HR1/G0 demonstrated significantly improved LV systolic function, hemodynamic parameters, and geometry on 1 wk and 4 wks after MI in rats, compared with I/R group. The resolution of regional wall motional abnormalities and the increased blood flow of infarct-related coronary artery supported functional improvements of HR1/G0. Furthermore, HR1/G0 polyplex showed favorable post-infarct cardiac ECM remodeling reflected on the favorable cardiac ECM compositions. Overall, this is the first study, which presented an advanced platform for the gene therapy that reverses adverse cardiac remodeling after MI with a HR1 gene delivered by a bioreducible dendrimer polymer in the cardiac ECM. PMID:27174688

  18. Cardiac remodeling following percutaneous mitral valve repair - initial results assessed by cardiovascular magnetic resonance imaging

    DEFF Research Database (Denmark)

    Radunski, U K; Franzen, O; Barmeyer, A;

    2014-01-01

    PURPOSE: Percutaneous mitral valve repair with the MitraClip device (Abbott Vascular, Redwood City, California, USA) is a novel therapeutic option in patients with mitral regurgitation. This study evaluated the feasibility of cardiac volume measurements by cardiovascular magnetic resonance imaging...... mitral valve repair results in reverse LV but not in RV or LA remodeling. KEY POINTS: • Volume measurements by cardiovascular magnetic resonance imaging are feasible following percutaneous mitral valve repair despite device-related artifacts.• A significant reduction of left ventricular volume was found...... end-systolic (48 [42 - 80] vs. 51 [40 - 81] ml/m(2); p = 0.48), and LA (87 [55 - 124] vs. 92 [48 - 137] ml/m(2); p = 0.20) volume indices between BL and FU. CONCLUSION: CMR enables the assessment of cardiac volumes in patients after MitraClip implantation. Our CMR findings indicate that percutaneous...

  19. Deficiency of Smad7 enhances cardiac remodeling induced by angiotensin II infusion in a mouse model of hypertension.

    Directory of Open Access Journals (Sweden)

    Li Hua Wei

    Full Text Available Smad7 has been shown to negatively regulate fibrosis and inflammation, but its role in angiotensin II (Ang II-induced hypertensive cardiac remodeling remains unknown. Therefore, the present study investigated the role of Smad7 in hypertensive cardiopathy induced by angiotensin II infusion. Hypertensive cardiac disease was induced in Smad7 gene knockout (KO and wild-type (WT mice by subcutaneous infusion of Ang II (1.46 mg/kg/day for 28 days. Although equal levels of high blood pressure were developed in both Smad7 KO and WT mice, Smad7 KO mice developed more severe cardiac injury as demonstrated by impairing cardiac function including a significant increase in left ventricular (LV mass (P<0.01,reduction of LV ejection fraction(P<0.001 and fractional shortening(P<0.001. Real-time PCR, Western blot and immunohistochemistry detected that deletion of Smad7 significantly enhanced Ang II-induced cardiac fibrosis and inflammation, including upregulation of collagen I, α-SMA, interleukin-1β, TNF-α, and infiltration of CD3(+ T cells and F4/80(+ macrophages. Further studies revealed that enhanced activation of the Sp1-TGFβ/Smad3-NF-κB pathways and downregulation of miR-29 were mechanisms though which deletion of Smad7 promoted Ang II-mediated cardiac remodeling. In conclusions, Smad7 plays a protective role in AngII-mediated cardiac remodeling via mechanisms involving the Sp1-TGF-β/Smad3-NF.κB-miR-29 regulatory network.

  20. Interleukin-2/Anti-Interleukin-2 Immune Complex Attenuates Cardiac Remodeling after Myocardial Infarction through Expansion of Regulatory T Cells

    OpenAIRE

    Zhipeng Zeng; Kunwu Yu; Long Chen; Weihua Li; Hong Xiao; Zhengrong Huang

    2016-01-01

    CD4+CD25+Foxp3+ regulatory T cells (Treg cells) have protective effects in wound healing and adverse ventricular remodeling after myocardial infarction (MI). We hypothesize that the interleukin- (IL-) 2 complex comprising the recombinant mouse IL-2/anti-IL-2 mAb (JES6-1) attenuates cardiac remodeling after MI through the expansion of Treg. Mice were subjected to surgical left anterior descending coronary artery ligation and treated with either PBS or IL-2 complex. The IL-2 complex significant...

  1. Haptoglobin genotype is a determinant of survival and cardiac remodeling after myocardial infarction in diabetic mice

    Directory of Open Access Journals (Sweden)

    Frisch Avi

    2009-06-01

    Full Text Available Abstract Background We have recently demonstrated in man that a functional allelic polymorphism in the Haptoglobin (Hp gene plays a major role in determining survival and congestive heart failure after myocardial infarction (MI. We sought to recapitulate the effect of Hp type on outcomes and cardiac remodeling after MI in transgenic mice. Methods The Hp 2 allele exists only in man. Wild type C57Bl/6 mice carry the Hp 1 allele with high homology to the human Hp 1 allele. We genetically engineered a murine Hp 2 allele and targeted its insertion by homologous recombination to the murine Hp locus to create Hp 2 mice. Diabetes Mellitus (DM was induced with streptozotocin. MI was produced by occlusion of the left anterior descending artery in DM C57Bl/6 mice carrying the Hp 1 or Hp 2 allele. MI size was determined with TTC staining. Left ventricular (LV function and dimensions were assessed by 2-dimensional echocardiography. Results In the absence of DM, Hp 1-1 and Hp 2-2 mice had similar LV dimensions and LV function. MI size was similar in DM Hp 1-1 and 2-2 mice 24 hours after MI (50.2 ± 2.1%and 46.9 ± 5.5%, respectively, p = 0.6. However, DM Hp 1-1 mice had a significantly lower mortality rate than DM Hp 2-2 mice 30 days after MI (HR 0.41, 95% CI (0.19–0.95, p = 0.037 by log rank. LV chamber dimensions were significantly increased in DM Hp 2-2 mice compared to DM Hp 1-1 mice 30 days after MI (0.196 ± 0.01 cm2 vs. 0.163 ± 0.01 cm2, respectively; p = 0.029. Conclusion In DM mice the Hp 2-2 genotype is associated with increased mortality and more severe cardiac remodeling 30 days after MI.

  2. Cell death and serum markers of collagen metabolism during cardiac remodeling in Cavia porcellus experimentally infected with Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Yagahira E Castro-Sesquen

    Full Text Available We studied cell death by apoptosis and necrosis in cardiac remodeling produced by Trypanosoma cruzi infection. In addition, we evaluated collagen I, III, IV (CI, CIII and CIV deposition in cardiac tissue, and their relationship with serum levels of procollagen type I carboxy-terminal propeptide (PICP and procollagen type III amino-terminal propeptide (PIIINP. Eight infected and two uninfected guinea pigs were necropsied at seven time points up to one year post-infection. Cell death by necrosis and apoptosis was determined by histopathological observation and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. Deposition of cardiac collagen types was determined by immunohistochemistry and serum levels of PICP, PIIINP, and anti-T. cruzi IgG1 and IgG2 by ELISA. IgG2 (Th1 response predominated throughout the course of infection; IgG1 (Th2 response was detected during the chronic phase. Cardiac cell death by necrosis predominated over apoptosis during the acute phase; during the chronic phase, both apoptosis and necrosis were observed in cardiac cells. Apoptosis was also observed in lymphocytes, endothelial cells and epicardial adipose tissue, especially in the chronic phase. Cardiac levels of CI, CIII, CIV increased progressively, but the highest levels were seen in the chronic phase and were primarily due to increase in CIII and CIV. High serum levels of PICP and PIIINP were observed throughout the infection, and increased levels of both biomarkers were associated with cardiac fibrosis (p = 0.002 and p = 0.038, respectively. These results confirm the role of apoptosis in cell loss mainly during the chronic phase and the utility of PICP and PIIINP as biomarkers of fibrosis in cardiac remodeling during T. cruzi infection.

  3. Cell death and serum markers of collagen metabolism during cardiac remodeling in Cavia porcellus experimentally infected with Trypanosoma cruzi.

    Science.gov (United States)

    Castro-Sesquen, Yagahira E; Gilman, Robert H; Paico, Henry; Yauri, Verónica; Angulo, Noelia; Ccopa, Fredy; Bern, Caryn

    2013-01-01

    We studied cell death by apoptosis and necrosis in cardiac remodeling produced by Trypanosoma cruzi infection. In addition, we evaluated collagen I, III, IV (CI, CIII and CIV) deposition in cardiac tissue, and their relationship with serum levels of procollagen type I carboxy-terminal propeptide (PICP) and procollagen type III amino-terminal propeptide (PIIINP). Eight infected and two uninfected guinea pigs were necropsied at seven time points up to one year post-infection. Cell death by necrosis and apoptosis was determined by histopathological observation and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. Deposition of cardiac collagen types was determined by immunohistochemistry and serum levels of PICP, PIIINP, and anti-T. cruzi IgG1 and IgG2 by ELISA. IgG2 (Th1 response) predominated throughout the course of infection; IgG1 (Th2 response) was detected during the chronic phase. Cardiac cell death by necrosis predominated over apoptosis during the acute phase; during the chronic phase, both apoptosis and necrosis were observed in cardiac cells. Apoptosis was also observed in lymphocytes, endothelial cells and epicardial adipose tissue, especially in the chronic phase. Cardiac levels of CI, CIII, CIV increased progressively, but the highest levels were seen in the chronic phase and were primarily due to increase in CIII and CIV. High serum levels of PICP and PIIINP were observed throughout the infection, and increased levels of both biomarkers were associated with cardiac fibrosis (p = 0.002 and p = 0.038, respectively). These results confirm the role of apoptosis in cell loss mainly during the chronic phase and the utility of PICP and PIIINP as biomarkers of fibrosis in cardiac remodeling during T. cruzi infection. PMID:23409197

  4. Cardiac remodeling during and after renin-angiotensin system stimulation in Cyp1a1-Ren2 transgenic rats

    DEFF Research Database (Denmark)

    Heijnen, Bart Fj; Pelkmans, Leonie Pj; Danser, Ah Jan;

    2013-01-01

    administration of indole-3-carbinol (I3C). Young (four-weeks old) and adult (30-weeks old) IHR were fed I3C for four weeks (leading to systolic BP >200 mmHg). RAS-stimulation was stopped and animals were followed-up for a consecutive period. Cardiac function and geometry was determined echocardiographically and...... the hearts were excised for molecular and immunohistochemical analyses. Echocardiographic studies revealed that four weeks of RAS-stimulation incited a cardiac remodeling process characterized by increased left ventricular (LV) wall thickness, decreased LV volumes, and shortening of the left ventricle...

  5. Increased cardiac myocyte PDE5 levels in human and murine pressure overload hypertrophy cntribute to adverse LV remodeling

    OpenAIRE

    Vandenwijngaert, Sara; Pokreisz, Peter; Hermans, Hadewich; Gillijns, Hilde; Pellens, Marijke; Bax, Noortje A M; Coppiello, Giulia; Oosterlinck, Wouter; Balogh, Agnes; Papp, Zoltan; Bouten, Carlijn V. C.; Bartunek, Jozef; D'Hooge, Jan; Luttun, Aernout; Verbeken, Erik

    2013-01-01

    Background: The intracellular second messenger cGMP protects the heart under pathological conditions. We examined expression of phosphodiesterase 5 (PDE5), an enzyme that hydrolyzes cGMP, in human and mouse hearts subjected to sustained left ventricular (LV) pressure overload. We also determined the role of cardiac myocyte-specific PDE5 expression in adverse LV remodeling in mice after transverse aortic constriction (TAC). Methodology/Principal Findings: In patients with severe aortic stenosi...

  6. Tissue-Specific Remodeling of the Mitochondrial Proteome in Type 1 Diabetic Akita Mice

    OpenAIRE

    Bugger, Heiko; Dong CHEN; Riehle, Christian; Soto, Jamie; Theobald, Heather A.; Hu, Xiao X; Ganesan, Balasubramanian; Bart C Weimer; Abel, E. Dale

    2009-01-01

    OBJECTIVE To elucidate the molecular basis for mitochondrial dysfunction, which has been implicated in the pathogenesis of diabetes complications. RESEARCH DESIGN AND METHODS Mitochondrial matrix and membrane fractions were generated from liver, brain, heart, and kidney of wild-type and type 1 diabetic Akita mice. Comparative proteomics was performed using label-free proteome expression analysis. Mitochondrial state 3 respirations and ATP synthesis were measured, and mitochondrial morphology ...

  7. Exogenous nerve growth factor supplementation elevates myocardial immunoreactivity and attenuates cardiac remodeling in pressure-overload rats

    Institute of Scientific and Technical Information of China (English)

    Bing He; and Yuming Li; Fan Ye; Xin Zhou; He Li; Xiaoqing Xun; Xiaoqing Ma; Xudong Liu; Zhihong Wang; Pengxiao Xu

    2012-01-01

    It is postulated that supplementation of exogenous nerve growth factor (NGF) might mediate improvement of the cardiac sympathetic nerve function in heart failure (HF).Local intramuscular injection of NGF near the cardiac sympathetic ganglia could influence the innervation pattern,norepinephrine transporter (NET) gene expression,and improve the cardiac remodeling in experimental HF animals.In this study,we injected NGF into the scalenus medius muscles of Sprague-Dawley rats with abdominal aortic constriction (AC).The nerve innervated pattern,left ventricular morphology,and function following injection in rats with AC were investigated respectively by immunohistochemistry and echocardiography.Levels of mRNA expression of NET,growth associated protein 43 (GAP 43),NGF and its receptors TrkA and p75NTR,and brain natriuretic peptide (BNP) were measured by realtime polymerase chain reaction.The results showed that myocardial NGF mRNA levels were comparable in rats with AC.Short-term supplementation of exogenous NGF raised the myocardial NGF immunoreactivity,but did not cause hyperinnervation and NET mRNA upregulation in the AC rats.Furthermore,myocardial TrkA mRNA was found to be remarkably decreased and p75NTR mRNA was increased.Myocardial TrkA downregulation may play a beneficial effect for avoiding the hyperinnervation,and it is reasonable to postulate that p75NTR can function as an NGF receptor in the absence of TrkA.Interestingly,local NGF administration into the neck muscles near the ganglia could attenuate cardiac remodeling and downregulate BNP mRNA.These results suggest that exogenous NGF can reach the target tissue along the axons anterogradely,and improve the cardiac remodeling.

  8. Effect of Different Styles of Coronary Heart Disease and Its Risk Factors on Cardiac Remodeling and Dysfunction

    Institute of Scientific and Technical Information of China (English)

    Wang Xuelihong; Guo Xuewei; Ma Yushan; Su Shuangshan; Guo Xiangyu

    2006-01-01

    Objectives To evaluate the effect of different styles of coronary heart disease (CHD),different regions of acute myocardial infarction (AMI),its risk factors and branches of coronary stenosis on left ventricular remodeling and dysfunction by applying echocardiography. Methods 251 patients with CHD and 96 patients without CHD (NoCHD) were verified by selective coronary angiography. CHD patients were divided into stable angina pectoris(SAP) 26, unstable angina pectoris(UAP) 53, acute myocardial infarction (AMI) 140 and old myocardial infarction (OMI) 30 based on clinical situation, cTnT, cardiac enzyme and ECG. AMI patients were further divided into subgroups including acute anterior myocardial infarct (Aa,n =53), acute inferior myocardial infarction(Ai, n=54)and Aa+Ai(n=33) based on ECG. Cardiac parameters:end-diastolic interventricular septum thickness (IVSd),end-diastolic left ventricular internal diameter(LVd ),left ventricular mass (LM), end-diastolic left ventricular volume (EDV), end-systolic left ventricular volume (ESV) and left ventricular ejection fraction(LVEF) were measured by ACUSON 128XP/10 echocardiography.Multiples linear regression analyses were performed to test statistical associations between LVEF and the involved branches of coronary stenosis, blood pressure, lipids, glucose and etc after onset of myocardial infarction. Results EDV and ESV were increased and LVEF decreased on patients with AMI,OMI and UAP (P<0.05-0.0001). LM was mainly increased in patients with OMI (P<0.01) and LVd was mainly enlarged in patients with AMI. EF was significantly decreased and EDV, ESV, LM and LVd were remarkably increased in AMI patients with Aa and Aa+Ai. With the multiple linear regression analyses by SPSS software, we found that LVEF was negatively correlated to the involved branches of coronary stenosis as well as to systolic blood pressure after onset of myocardial infarction while there was no significant correlation between LVEF and other factors. LVEF

  9. Aerobic exercise improves the inflammatory profile correlated with cardiac remodeling and function in chronic heart failure rats

    Directory of Open Access Journals (Sweden)

    Ramiro B. Nunes

    2013-06-01

    Full Text Available OBJECTIVE: The aim of the present study was to evaluate the effect of 8 weeks of aerobic exercise training on cardiac functioning and remodeling and on the plasma levels of inflammatory cytokines in chronic heart failure rats. METHODS: Wistar rats were subjected to myocardial infarction or sham surgery and assigned to 4 groups: chronic heart failure trained (n = 7, chronic heart failure sedentary (n = 6, sham trained (n = 8 and sham sedentary (n = 8. Four weeks after the surgical procedures, the rats were subjected to aerobic training in the form of treadmill running (50 min/day, 5 times per week, 16 m/min. At the end of 8 weeks, the rats were placed under anesthesia, the hemodynamic variables were recorded and blood samples were collected. Cardiac hypertrophy was evaluated using the left ventricular weight/body weight ratio, and the collagen volume fraction was assessed using histology. RESULTS: The chronic heart failure trained group showed a reduction in left ventricular end-diastolic pressure, a lower left ventricular weight/body weight ratio and a lower collagen volume fraction compared with the chronic heart failure sedentary group. In addition, exercise training reduced the plasma levels of TNF-α and IL-6 and increased the plasma level of IL-10. CONCLUSION: An 8-week aerobic exercise training program improved the inflammatory profile and cardiac function and attenuated cardiac remodeling in chronic heart failure rats.

  10. Postnatal ablation of Foxm1 from cardiomyocytes causes late onset cardiac hypertrophy and fibrosis without exacerbating pressure overload-induced cardiac remodeling.

    Directory of Open Access Journals (Sweden)

    Craig Bolte

    Full Text Available Heart disease remains a leading cause of morbidity and mortality in the industrialized world. Hypertrophic cardiomyopathy is the most common genetic cardiovascular disorder and the most common cause of sudden cardiac death. Foxm1 transcription factor (also known as HFH-11B, Trident, Win or MPP2 plays an important role in the pathogenesis of various cancers and is a critical mediator of post-injury repair in multiple organs. Foxm1 has been previously shown to be essential for heart development and proliferation of embryonic cardiomyocytes. However, the role of Foxm1 in postnatal heart development and in cardiac injury has not been evaluated. To delete Foxm1 in postnatal cardiomyocytes, αMHC-Cre/Foxm1(fl/fl mice were generated. Surprisingly, αMHC-Cre/Foxm1(fl/fl mice exhibited normal cardiomyocyte proliferation at postnatal day seven and had no defects in cardiac structure or function but developed cardiac hypertrophy and fibrosis late in life. The development of cardiomyocyte hypertrophy and cardiac fibrosis in aged Foxm1-deficient mice was associated with reduced expression of Hey2, an important regulator of cardiac homeostasis, and increased expression of genes critical for cardiac remodeling, including MMP9, αSMA, fibronectin and vimentin. We also found that following aortic constriction Foxm1 mRNA and protein were induced in cardiomyocytes. However, Foxm1 deletion did not exacerbate cardiac hypertrophy or fibrosis following chronic pressure overload. Our results demonstrate that Foxm1 regulates genes critical for age-induced cardiomyocyte hypertrophy and cardiac fibrosis.

  11. Protein kinase G signaling in cardiac pathophysiology: Impact of proteomics on clinical trials.

    Science.gov (United States)

    Kirk, Jonathan A; Holewinski, Ronald J; Crowgey, Erin L; Van Eyk, Jennifer E

    2016-03-01

    The protective role of cyclic guanosine monophosphate (cGMP)-stimulated protein kinase G (PKG) in the heart makes it an attractive target for therapeutic drug development to treat a variety of cardiac diseases. Phosphodiesterases degrade cGMP, thus phosphodiesterase inhibitors that can increase PKG are of translational interest and the subject of ongoing human trials. PKG signaling is complex, however, and understanding its downstream phosphorylation targets and upstream regulation are necessary steps toward safe and efficacious drug development. Proteomic technologies have paved the way for assays that allow us to peer broadly into signaling minutia, including protein quantity changes and phosphorylation events. However, there are persistent challenges to the proteomic study of PKG, such as the impact of the expression of different PKG isoforms, changes in its localization within the cell, and alterations caused by oxidative stress. PKG signaling is also dependent upon sex and potentially the genetic and epigenetic background of the individual. Thus, the rigorous application of proteomics to the field will be necessary to address how these effectors can alter PKG signaling and interfere with pharmacological interventions. This review will summarize PKG signaling, how it is being targeted clinically, and the proteomic challenges and techniques that are being used to study it. PMID:26670943

  12. Interleukin-2/Anti-Interleukin-2 Immune Complex Attenuates Cardiac Remodeling after Myocardial Infarction through Expansion of Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Zhipeng Zeng

    2016-01-01

    Full Text Available CD4+CD25+Foxp3+ regulatory T cells (Treg cells have protective effects in wound healing and adverse ventricular remodeling after myocardial infarction (MI. We hypothesize that the interleukin- (IL- 2 complex comprising the recombinant mouse IL-2/anti-IL-2 mAb (JES6-1 attenuates cardiac remodeling after MI through the expansion of Treg. Mice were subjected to surgical left anterior descending coronary artery ligation and treated with either PBS or IL-2 complex. The IL-2 complex significantly attenuates ventricular remodeling, as demonstrated by reduced infarct size, improved left ventricular (LV function, and attenuated cardiomyocyte apoptosis. The IL-2 complex increased the percentage of CD4+CD25+Foxp3+ Treg cells, which may be recruited to the infarcted heart, and decreased the frequencies of IFN-γ- and IL-17-producing CD4+ T helper (Th cells among the CD4+Foxp3− T cells in the spleen. Furthermore, the IL-2 complex inhibited the gene expression of proinflammatory cytokines as well as macrophage infiltrates in the infarcted myocardium and induced the differentiation of macrophages from M1 to M2 phenotype in border zone of infarcted myocardium. Our studies indicate that the IL-2 complex may serve as a promising therapeutic approach to attenuate adverse remodeling after MI through expanding Treg cells specifically.

  13. Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Eva Mathieu

    Full Text Available BACKGROUND: To improve the efficacy of bone marrow-derived mesenchymal stem cell (MSC therapy targeted to infarcted myocardium, we investigated whether a self-setting silanized hydroxypropyl methylcellulose (Si-HPMC hydrogel seeded with MSC (MSC+hydrogel could preserve cardiac function and attenuate left ventricular (LV remodeling during an 8-week follow-up study in a rat model of myocardial infarction (MI. METHODOLOGY/PRINCIPAL FINDING: Si-HPMC hydrogel alone, MSC alone or MSC+hydrogel were injected into the myocardium immediately after coronary artery ligation in female Lewis rats. Animals in the MSC+hydrogel group showed an increase in cardiac function up to 28 days after MI and a mid-term prevention of cardiac function alteration at day 56. Histological analyses indicated that the injection of MSC+hydrogel induced a decrease in MI size and an increase in scar thickness and ultimately limited the transmural extent of MI. These findings show that intramyocardial injection of MSC+hydrogel induced short-term recovery of ventricular function and mid-term attenuation of remodeling after MI. CONCLUSION/SIGNIFICANCE: These beneficial effects may be related to the specific scaffolding properties of the Si-HPMC hydrogel that may provide the ability to support MSC injection and engraftment within myocardium.

  14. A mighty small heart: the cardiac proteome of adult Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Anthony Cammarato

    Full Text Available Drosophila melanogaster is emerging as a powerful model system for the study of cardiac disease. Establishing peptide and protein maps of the Drosophila heart is central to implementation of protein network studies that will allow us to assess the hallmarks of Drosophila heart pathogenesis and gauge the degree of conservation with human disease mechanisms on a systems level. Using a gel-LC-MS/MS approach, we identified 1228 protein clusters from 145 dissected adult fly hearts. Contractile, cytostructural and mitochondrial proteins were most abundant consistent with electron micrographs of the Drosophila cardiac tube. Functional/Ontological enrichment analysis further showed that proteins involved in glycolysis, Ca(2+-binding, redox, and G-protein signaling, among other processes, are also over-represented. Comparison with a mouse heart proteome revealed conservation at the level of molecular function, biological processes and cellular components. The subsisting peptidome encompassed 5169 distinct heart-associated peptides, of which 1293 (25% had not been identified in a recent Drosophila peptide compendium. PeptideClassifier analysis was further used to map peptides to specific gene-models. 1872 peptides provide valuable information about protein isoform groups whereas a further 3112 uniquely identify specific protein isoforms and may be used as a heart-associated peptide resource for quantitative proteomic approaches based on multiple-reaction monitoring. In summary, identification of excitation-contraction protein landmarks, orthologues of proteins associated with cardiovascular defects, and conservation of protein ontologies, provides testimony to the heart-like character of the Drosophila cardiac tube and to the utility of proteomics as a complement to the power of genetics in this growing model of human heart disease.

  15. A transgenic platform for testing drugs intended for reversal of cardiac remodeling identifies a novel 11βHSD1 inhibitor rescuing hypertrophy independently of re-vascularization.

    Directory of Open Access Journals (Sweden)

    Oren Gordon

    Full Text Available RATIONALE: Rescuing adverse myocardial remodeling is an unmet clinical goal and, correspondingly, pharmacological means for its intended reversal are urgently needed. OBJECTIVES: To harness a newly-developed experimental model recapitulating progressive heart failure development for the discovery of new drugs capable of reversing adverse remodeling. METHODS AND RESULTS: A VEGF-based conditional transgenic system was employed in which an induced perfusion deficit and a resultant compromised cardiac function lead to progressive remodeling and eventually heart failure. Ability of candidate drugs administered at sequential remodeling stages to reverse hypertrophy, enlarged LV size and improve cardiac function was monitored. Arguing for clinical relevance of the experimental system, clinically-used drugs operating on the Renin-Angiotensin-Aldosterone-System (RAAS, namely, the ACE inhibitor Enalapril and the direct renin inhibitor Aliskerin fully reversed remodeling. Remodeling reversal by these drugs was not accompanied by neovascularization and reached a point-of-no-return. Similarly, the PPARγ agonist Pioglitazone was proven capable of reversing all aspects of cardiac remodeling without affecting the vasculature. Extending the arsenal of remodeling-reversing drugs to pathways other than RAAS, a specific inhibitor of 11β-hydroxy-steroid dehydrogenase type 1 (11β HSD1, a key enzyme required for generating active glucocorticoids, fully rescued myocardial hypertrophy. This was associated with mitigating the hypertrophy-associated gene signature, including reversing the myosin heavy chain isoform switch but in a pattern distinguishable from that associated with neovascularization-induced reversal. CONCLUSIONS: A system was developed suitable for identifying novel remodeling-reversing drugs operating in different pathways and for gaining insights into their mechanisms of action, exemplified here by uncoupling their vascular affects.

  16. A Proteomics Approach to Identify New Putative Cardiac Intercalated Disk Proteins

    Science.gov (United States)

    Soni, Siddarth; Raaijmakers, Antonia J. A.; Raaijmakers, Linsey M.; Damen, J. Mirjam A.; van Stuijvenberg, Leonie; Vos, Marc A.; Heck, Albert J. R.

    2016-01-01

    Aims Synchronous beating of the heart is dependent on the efficient functioning of the cardiac intercalated disk (ID). The ID is composed of a complex protein network enabling electrical continuity and chemical communication between individual cardiomyocytes. Recently, several different studies have shed light on increasingly prevalent cardiac diseases involving the ID. Insufficient knowledge of its composition makes it difficult to study these disease mechanisms in more detail and therefore here we aim expand the ID proteome. Here, using a combination of general membrane enrichment, in-depth quantitative proteomics and an intracellular location driven bioinformatics approach, we aim to discover new putative ID proteins in rat ventricular tissue. Methods and Results General membrane isolation, enriched amongst others also with ID proteins as based on presence of the established markers connexin-43 and n-cadherin, was performed using centrifugation. By mass spectrometry, we quantitatively evaluated the level of 3455 proteins in the enriched membrane fraction (EMF) and its counterpart, the soluble cytoplasmic fraction. These data were stringently filtered to generate a final set of 97 enriched, putative ID proteins. These included Cx43 and n-cadherin, but also many interesting novel candidates. We selected 4 candidates (Flotillin-2 (FLOT2), Nexilin (NEXN), Popeye-domain-containg-protein 2 (POPDC2) and thioredoxin-related-transmembrane-protein 2 (TMX2)) and confirmed their co-localization with n-cadherin in the ID of human and rat heart cryo-sections, and isolated dog cardiomyocytes. Conclusion The presented proteomics dataset of putative new ID proteins is a valuable resource for future research into this important molecular intersection of the heart. PMID:27148881

  17. A Proteomics Approach to Identify New Putative Cardiac Intercalated Disk Proteins.

    Directory of Open Access Journals (Sweden)

    Siddarth Soni

    Full Text Available Synchronous beating of the heart is dependent on the efficient functioning of the cardiac intercalated disk (ID. The ID is composed of a complex protein network enabling electrical continuity and chemical communication between individual cardiomyocytes. Recently, several different studies have shed light on increasingly prevalent cardiac diseases involving the ID. Insufficient knowledge of its composition makes it difficult to study these disease mechanisms in more detail and therefore here we aim expand the ID proteome. Here, using a combination of general membrane enrichment, in-depth quantitative proteomics and an intracellular location driven bioinformatics approach, we aim to discover new putative ID proteins in rat ventricular tissue.General membrane isolation, enriched amongst others also with ID proteins as based on presence of the established markers connexin-43 and n-cadherin, was performed using centrifugation. By mass spectrometry, we quantitatively evaluated the level of 3455 proteins in the enriched membrane fraction (EMF and its counterpart, the soluble cytoplasmic fraction. These data were stringently filtered to generate a final set of 97 enriched, putative ID proteins. These included Cx43 and n-cadherin, but also many interesting novel candidates. We selected 4 candidates (Flotillin-2 (FLOT2, Nexilin (NEXN, Popeye-domain-containg-protein 2 (POPDC2 and thioredoxin-related-transmembrane-protein 2 (TMX2 and confirmed their co-localization with n-cadherin in the ID of human and rat heart cryo-sections, and isolated dog cardiomyocytes.The presented proteomics dataset of putative new ID proteins is a valuable resource for future research into this important molecular intersection of the heart.

  18. Targeted disruption of the heat shock protein 20–phosphodiesterase 4D (PDE4D interaction protects against pathological cardiac remodelling in a mouse model of hypertrophy

    Directory of Open Access Journals (Sweden)

    Tamara P. Martin

    2014-01-01

    Full Text Available Phosphorylated heat shock protein 20 (HSP20 is cardioprotective. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs and a mouse model of pressure overload mediated hypertrophy, we show that peptide disruption of the HSP20–phosphodiesterase 4D (PDE4D complex results in attenuation of action potential prolongation and protection against adverse cardiac remodelling. The later was evidenced by improved contractility, decreased heart weight to body weight ratio, and reduced interstitial and perivascular fibrosis. This study demonstrates that disruption of the specific HSP20–PDE4D interaction leads to attenuation of pathological cardiac remodelling.

  19. iPSC-derived human cardiac progenitor cells improve ventricular remodelling via angiogenesis and interstitial networking of infarcted myocardium.

    Science.gov (United States)

    Ja, Kp Myu Mia; Miao, Qingfeng; Zhen Tee, Nicole Gui; Lim, Sze Yun; Nandihalli, Manasi; J A Ramachandra, Chrishan; Mehta, Ashish; Shim, Winston

    2016-02-01

    We investigate the effects of myocardial transplantation of human induced pluripotent stem cell (iPSC)-derived progenitors and cardiomyocytes into acutely infarcted myocardium in severe combined immune deficiency mice. A total of 2 × 10(5) progenitors, cardiomyocytes or cell-free saline were injected into peri-infarcted anterior free wall. Sham-operated animals received no injection. Myocardial function was assessed at 2-week and 4-week post-infarction by using echocardiography and pressure-volume catheterization. Early myocardial remodelling was observed at 2-week with echocardiography derived stroke volume (SV) in saline (20.45 ± 7.36 μl, P EDV: 23.24 ± 5.01 μl, P EDV: 26.45 ± 5.69 μl, P EDV: 15.26 ± 2.96 μl; ESV: 8.41 ± 2.94 μl). In contrast, cardiac progenitors (EDV: 20.09 ± 7.76 μl; ESV: 13.98 ± 6.74 μl) persistently protected chamber geometry against negative cardiac remodelling. Similarly, as compared to sham control (54.64 ± 11.37%), LV ejection fraction was preserved in progenitor group from 2-(38.68 ± 7.34%) to 4-week (39.56 ± 13.26%) while cardiomyocyte (36.52 ± 11.39%, P < 0.05) and saline (35.34 ± 11.86%, P < 0.05) groups deteriorated early at 2-week. Improvements of myocardial function in the progenitor group corresponded to increased vascularization (16.12 ± 1.49/mm(2) to 25.48 ± 2.08/mm(2) myocardial tissue, P < 0.05) and coincided with augmented networking of cardiac telocytes in the interstitial space of infarcted zone. PMID:26612359

  20. Low carbohydrate/high-fat diet attenuates cardiac hypertrophy, remodeling, and altered gene expression in hypertension

    Science.gov (United States)

    The effects of dietary fat intake on the development of left ventricular hypertrophy and accompanying structural and molecular remodeling in response to hypertension are not understood. The present study compared the effects of a high-fat versus a low-fat diet on development of left ventricular hype...

  1. Triterpenoid dihydro-CDDO-trifluoroethyl amide protects against maladaptive cardiac remodeling and dysfunction in mice: a critical role of Nrf2.

    Directory of Open Access Journals (Sweden)

    Yifan Xing

    Full Text Available BACKGROUND AND AIMS: Nuclear factor E2-related factor 2 (Nrf2 appears to be an attractive therapeutic target for the treatment of cardiac disease. We investigated whether a synthetic triterpenoid derivative of dihydro-CDDO-trifluoroethylamide (dh404, a novel Nrf2 activator, protects against pathological cardiac responses to hemodynamic stress in mice. METHODS: Cardiac maladaptive remodeling and dysfunction were established by transverse aortic constriction (TAC in mice. Hypertrophic growth of rat neonatal cardiomyocytes was induced by angiotensin II (Ang II. Cell death of rat neonatal cardiomyocytes was induced with hydrogen peroxide (H₂O₂. Cellular proliferation of rat neonatal cardiac fibroblasts was induced by Ang II, norepinephrine (NE and phenylephrine (PE. Protein expression was assessed by immunochemical staining and Western blots. Gene expression was determined by real time reverse transcription-polymerase chain reaction (Q-PCR. RESULTS: TAC suppressed myocardial Nrf2 expression, increased myocardial 4-hydroxy-2-nonenal and 8-hydroxydeoxyguanosine levels, and induced cardiac hypertrophy, fibrosis and apoptosis, and overt heart failure and death in mice. Administration of dh404 inhibited the pathological cardiac remodeling and dysfunction, and reduced the mortality. Moreover, dhd404 elevated myocardial levels of Nrf2 and Nrf2 nuclear translocation with a dramatic suppression of the oxidative stress in the heart. Dh404 inhibited hypertrophic growth and death in primary culture of rat neonatal cardiomyocytes and suppressed proliferation in primary culture of rat neonatal cardiac fibroblasts. However, these effects of dh404 were blunted by knocking down of Nrf2. CONCLUSION: These findings demonstrate that dh404 prevents pathological cardiac remodeling and dysfunction by activating Nrf2, indicating a therapeutic potential of dh404 for cardiac disease.

  2. Carbon monoxide pollution promotes cardiac remodeling and ventricular arrhythmia in healthy rats.

    OpenAIRE

    Andre, Lucas; Boissière, Julien; Reboul, Cyril; Perrier, Romain; Zalvidea, Santiago; Meyer, Gregory; Thireau, Jérôme; Tanguy, Stéphane; Bideaux, Patrice; Hayot, Maurice; Boucher, François; Obert, Philippe; Cazorla, Olivier; Richard, Sylvain

    2010-01-01

    RATIONALE: Epidemiologic studies associate atmospheric carbon monoxide (CO) pollution with adverse cardiovascular outcomes and increased cardiac mortality risk. However, there is a lack of data regarding cellular mechanisms in healthy individuals. OBJECTIVES: To investigate the chronic effects of environmentally relevant CO levels on cardiac function in a well-standardized healthy animal model. METHODS: Wistar rats were exposed for 4 weeks to filtered air (CO < 1 ppm) or air enriched with CO ...

  3. Single-Nucleotide Variations in Cardiac Arrhythmias: Prospects for Genomics and Proteomics Based Biomarker Discovery and Diagnostics

    Directory of Open Access Journals (Sweden)

    Ayman Abunimer

    2014-03-01

    Full Text Available Cardiovascular diseases are a large contributor to causes of early death in developed countries. Some of these conditions, such as sudden cardiac death and atrial fibrillation, stem from arrhythmias—a spectrum of conditions with abnormal electrical activity in the heart. Genome-wide association studies can identify single nucleotide variations (SNVs that may predispose individuals to developing acquired forms of arrhythmias. Through manual curation of published genome-wide association studies, we have collected a comprehensive list of 75 SNVs associated with cardiac arrhythmias. Ten of the SNVs result in amino acid changes and can be used in proteomic-based detection methods. In an effort to identify additional non-synonymous mutations that affect the proteome, we analyzed the post-translational modification S-nitrosylation, which is known to affect cardiac arrhythmias. We identified loss of seven known S-nitrosylation sites due to non-synonymous single nucleotide variations (nsSNVs. For predicted nitrosylation sites we found 1429 proteins where the sites are modified due to nsSNV. Analysis of the predicted S-nitrosylation dataset for over- or under-representation (compared to the complete human proteome of pathways and functional elements shows significant statistical over-representation of the blood coagulation pathway. Gene Ontology (GO analysis displays statistically over-represented terms related to muscle contraction, receptor activity, motor activity, cystoskeleton components, and microtubule activity. Through the genomic and proteomic context of SNVs and S-nitrosylation sites presented in this study, researchers can look for variation that can predispose individuals to cardiac arrhythmias. Such attempts to elucidate mechanisms of arrhythmia thereby add yet another useful parameter in predicting susceptibility for cardiac diseases.

  4. A proteomic and genetic analysis of the Neurospora crassa conidia cell wall proteins identifies two glycosyl hydrolases involved in cell wall remodeling.

    Science.gov (United States)

    Ao, Jie; Aldabbous, Mash'el; Notaro, Marysa J; Lojacono, Mark; Free, Stephen J

    2016-09-01

    A proteomic analysis of the conidial cell wall identified 35 cell wall proteins. A comparison with the proteome of the vegetative hyphae showed that 16 cell wall proteins were shared, and that these shared cell wall proteins were cell wall biosynthetic proteins or cell wall structural proteins. Deletion mutants for 34 of the genes were analyzed for phenotypes indicative of conidial cell wall defects. Mutants for two cell wall glycosyl hydrolases, the CGL-1 β-1,3-glucanase (NCU07523) and the NAG-1 exochitinase (NCU10852), were found to have a conidial separation phenotype. These two enzymes function in remodeling the cell wall between adjacent conidia to facilitate conidia formation and dissemination. Using promoter::RFP and promoter::GFP constructs, we demonstrated that the promoters for 15 of the conidia-specific cell wall genes, including cgl-1 and nag-1, provided for conidia-specific gene expression or for a significant increase in their expression during conidiation. PMID:27381444

  5. TWEAK-Fn14 cytokine-receptor axis: a new player of myocardial remodeling and cardiac failure

    Directory of Open Access Journals (Sweden)

    Tatyana eNovoyatleva

    2014-02-01

    Full Text Available Tumor necrosis factor (TNF has been firmly established as a pathogenic factor in heart failure, a significant socio-economic burden. In this review we will explore the role of other members of the TNF/TNF receptor superfamily (TNFSF/TNFRSF in cardiovascular diseases (CVDs focusing on TWEAK and its receptor Fn14, new players in myocardial remodeling and heart failure. The TWEAK/Fn14 pathway controls a variety of cellular activities such as proliferation, differentiation and apoptosis and has diverse biological functions in pathological mechanisms like inflammation and fibrosis that are associated with CVDs. Furthermore, it has recently been shown that the TWEAK/Fn14 axis is a positive regulator of cardiac hypertrophy and that deletion of Fn14 receptor protects from right heart fibrosis and dysfunction. We discuss the potential use of the TWEAK/Fn14 axis as biomarker for CVDs as well as therapeutic target for future treatment of human heart failure based on supporting data from animal models and in vitro studies. Collectively, existing data strongly suggest the TWEAK/Fn14 axis as a potential new therapeutic target for achieving cardiac protection in patients with CVDs.

  6. High intensity interval and endurance training have opposing effects on markers of heart failure and cardiac remodeling in hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Tanya M Holloway

    Full Text Available There has been re-emerging interest and significant work dedicated to investigating the metabolic effects of high intensity interval training (HIIT in recent years. HIIT is considered to be a time efficient alternative to classic endurance training (ET that elicits similar metabolic responses in skeletal muscle. However, there is a lack of information on the impact of HIIT on cardiac muscle in disease. Therefore, we determined the efficacy of ET and HIIT to alter cardiac muscle characteristics involved in the development of diastolic dysfunction, such as ventricular hypertrophy, fibrosis and angiogenesis, in a well-established rodent model of hypertension-induced heart failure before the development of overt heart failure. ET decreased left ventricle fibrosis by ~40% (P < 0.05, and promoted a 20% (P<0.05 increase in the left ventricular capillary/fibre ratio, an increase in endothelial nitric oxide synthase protein (P<0.05, and a decrease in hypoxia inducible factor 1 alpha protein content (P<0.05. In contrast, HIIT did not decrease existing fibrosis, and HIIT animals displayed a 20% increase in left ventricular mass (P<0.05 and a 20% decrease in cross sectional area (P<0.05. HIIT also increased brain natriuretic peptide by 50% (P<0.05, in the absence of concomitant angiogenesis, strongly suggesting pathological cardiac remodeling. The current data support the longstanding belief in the effectiveness of ET in hypertension. However, HIIT promoted a pathological adaptation in the left ventricle in the presence of hypertension, highlighting the need for further research on the widespread effects of HIIT in the presence of disease.

  7. Proteomics

    DEFF Research Database (Denmark)

    Tølbøll, Trine Højgaard; Danscher, Anne Mette; Andersen, Pia Haubro;

    2012-01-01

    grouped manually to one or more of five major functional groups related to metabolism, cell structure, immunity, apoptosis and angiogenesis. These were chosen to represent basic cell functions and biological processes potentially involved in the pathogenesis of CHD. The LC–MS/MS-based proteomic analysis...... presented here is the largest published survey, so far, of the bovine claw tissue proteome....

  8. Multiscale characterization of cardiac remodeling induced by intrauterine growth restriction, at organ, cellular and subcellular level

    OpenAIRE

    González Tendero, Anna

    2014-01-01

    Tesi realitzada a l'Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) INTRODUCTION: Intrauterine growth restriction (IUGR) due to placental insufficiency affects up to 7-10% of pregnancies and is a major cause of perinatal mortality and long term morbidity. IUGR results in low birth weight, which is associated with increased risk of cardiovascular mortality in adulthood, and is thought to be mediated by fetal cardiovascular programming. IUGR fetuses show signs of cardiac s...

  9. Myocardial stress and hypertrophy: a complex interface between biophysics and cardiac remodeling

    OpenAIRE

    Grossman, William; Paulus, Walter J.

    2013-01-01

    Pressure and volume overload results in concentric and eccentric hypertrophy of cardiac ventricular chambers with, respectively, parallel and series replication of sarcomeres. These divergent patterns of hypertrophy were related 40 years ago to disparate wall stresses in both conditions, with systolic wall stress eliciting parallel replication of sarcomeres and diastolic wall stress, series replication. These observations are relevant to clinical practice, as they relate to the excessive hype...

  10. High Molecular Weight Fibroblast Growth Factor-2 in the Human Heart Is a Potential Target for Prevention of Cardiac Remodeling

    Science.gov (United States)

    Santiago, Jon-Jon; McNaughton, Leslie J.; Koleini, Navid; Ma, Xin; Bestvater, Brian; Nickel, Barbara E.; Fandrich, Robert R.; Wigle, Jeffrey T.; Freed, Darren H.; Arora, Rakesh C.; Kardami, Elissavet

    2014-01-01

    Fibroblast growth factor 2 (FGF-2) is a multifunctional protein synthesized as high (Hi-) and low (Lo-) molecular weight isoforms. Studies using rodent models showed that Hi- and Lo-FGF-2 exert distinct biological activities: after myocardial infarction, rat Lo-FGF-2, but not Hi-FGF-2, promoted sustained cardioprotection and angiogenesis, while Hi-FGF-2, but not Lo-FGF-2, promoted myocardial hypertrophy and reduced contractile function. Because there is no information regarding Hi-FGF-2 in human myocardium, we undertook to investigate expression, regulation, secretion and potential tissue remodeling-associated activities of human cardiac (atrial) Hi-FGF-2. Human patient-derived atrial tissue extracts, as well as pericardial fluid, contained Hi-FGF-2 isoforms, comprising, respectively, 53%(±20 SD) and 68% (±25 SD) of total FGF-2, assessed by western blotting. Human atrial tissue-derived primary myofibroblasts (hMFs) expressed and secreted predominantly Hi-FGF-2, at about 80% of total. Angiotensin II (Ang II) up-regulated Hi-FGF-2 in hMFs, via activation of both type 1 and type 2 Ang II receptors; the ERK pathway; and matrix metalloprotease-2. Treatment of hMFs with neutralizing antibodies selective for human Hi-FGF-2 (neu-AbHi-FGF-2) reduced accumulation of proteins associated with fibroblast-to-myofibroblast conversion and fibrosis, including α-smooth muscle actin, extra-domain A fibronectin, and procollagen. Stimulation of hMFs with recombinant human Hi-FGF-2 was significantly more potent than Lo-FGF-2 in upregulating inflammation-associated proteins such as pro-interleukin-1β and plasminogen-activator-inhibitor-1. Culture media conditioned by hMFs promoted cardiomyocyte hypertrophy, an effect that was prevented by neu-AbHi-FGF-2 in vitro. In conclusion, we have documented that Hi-FGF-2 represents a substantial fraction of FGF-2 in human cardiac (atrial) tissue and in pericardial fluid, and have shown that human Hi-FGF-2, unlike Lo-FGF-2, promotes deleterious

  11. Modest elevation in BNP in asymptomatic hypertensive patients reflects sub-clinical cardiac remodeling, inflammation and extracellular matrix changes.

    LENUS (Irish Health Repository)

    Phelan, Dermot

    2012-11-01

    In asymptomatic subjects B-type natriuretic peptide (BNP) is associated with adverse cardiovascular outcomes even at levels well below contemporary thresholds used for the diagnosis of heart failure. The mechanisms behind these observations are unclear. We examined the hypothesis that in an asymptomatic hypertensive population BNP would be associated with sub-clinical evidence of cardiac remodeling, inflammation and extracellular matrix (ECM) alterations. We performed transthoracic echocardiography and sampled coronary sinus (CS) and peripheral serum from patients with low (n = 14) and high BNP (n = 27). Peripheral BNP was closely associated with CS levels (r = 0.92, p<0.001). CS BNP correlated significantly with CS levels of markers of collagen type I and III turnover including: PINP (r = 0.44, p = 0.008), CITP (r = 0.35, p = 0.03) and PIIINP (r = 0.35, p = 0.001), and with CS levels of inflammatory cytokines including: TNF-α (r = 0.49, p = 0.002), IL-6 (r = 0.35, p = 0.04), and IL-8 (r = 0.54, p<0.001). The high BNP group had greater CS expression of fibro-inflammatory biomarkers including: CITP (3.8±0.7 versus 5.1±1.9, p = 0.007), TNF-α (3.2±0.5 versus 3.7±1.1, p = 003), IL-6 (1.9±1.3 versus 3.4±2.7, p = 0.02) and hsCRP (1.2±1.1 versus 2.4±1.1, p = 0.04), and greater left ventricular mass index (97±20 versus 118±26 g\\/m(2), p = 0.03) and left atrial volume index (18±2 versus 21±4, p = 0.008). Our data provide insight into the mechanisms behind the observed negative prognostic impact of modest elevations in BNP and suggest that in an asymptomatic hypertensive cohort a peripheral BNP measurement may be a useful marker of an early, sub-clinical pathological process characterized by cardiac remodeling, inflammation and ECM alterations.

  12. High molecular weight fibroblast growth factor-2 in the human heart is a potential target for prevention of cardiac remodeling.

    Directory of Open Access Journals (Sweden)

    Jon-Jon Santiago

    Full Text Available Fibroblast growth factor 2 (FGF-2 is a multifunctional protein synthesized as high (Hi- and low (Lo- molecular weight isoforms. Studies using rodent models showed that Hi- and Lo-FGF-2 exert distinct biological activities: after myocardial infarction, rat Lo-FGF-2, but not Hi-FGF-2, promoted sustained cardioprotection and angiogenesis, while Hi-FGF-2, but not Lo-FGF-2, promoted myocardial hypertrophy and reduced contractile function. Because there is no information regarding Hi-FGF-2 in human myocardium, we undertook to investigate expression, regulation, secretion and potential tissue remodeling-associated activities of human cardiac (atrial Hi-FGF-2. Human patient-derived atrial tissue extracts, as well as pericardial fluid, contained Hi-FGF-2 isoforms, comprising, respectively, 53%(±20 SD and 68% (±25 SD of total FGF-2, assessed by western blotting. Human atrial tissue-derived primary myofibroblasts (hMFs expressed and secreted predominantly Hi-FGF-2, at about 80% of total. Angiotensin II (Ang II up-regulated Hi-FGF-2 in hMFs, via activation of both type 1 and type 2 Ang II receptors; the ERK pathway; and matrix metalloprotease-2. Treatment of hMFs with neutralizing antibodies selective for human Hi-FGF-2 (neu-AbHi-FGF-2 reduced accumulation of proteins associated with fibroblast-to-myofibroblast conversion and fibrosis, including α-smooth muscle actin, extra-domain A fibronectin, and procollagen. Stimulation of hMFs with recombinant human Hi-FGF-2 was significantly more potent than Lo-FGF-2 in upregulating inflammation-associated proteins such as pro-interleukin-1β and plasminogen-activator-inhibitor-1. Culture media conditioned by hMFs promoted cardiomyocyte hypertrophy, an effect that was prevented by neu-AbHi-FGF-2 in vitro. In conclusion, we have documented that Hi-FGF-2 represents a substantial fraction of FGF-2 in human cardiac (atrial tissue and in pericardial fluid, and have shown that human Hi-FGF-2, unlike Lo-FGF-2, promotes

  13. Modest elevation in BNP in asymptomatic hypertensive patients reflects sub-clinical cardiac remodeling, inflammation and extracellular matrix changes.

    Directory of Open Access Journals (Sweden)

    Dermot Phelan

    Full Text Available In asymptomatic subjects B-type natriuretic peptide (BNP is associated with adverse cardiovascular outcomes even at levels well below contemporary thresholds used for the diagnosis of heart failure. The mechanisms behind these observations are unclear. We examined the hypothesis that in an asymptomatic hypertensive population BNP would be associated with sub-clinical evidence of cardiac remodeling, inflammation and extracellular matrix (ECM alterations. We performed transthoracic echocardiography and sampled coronary sinus (CS and peripheral serum from patients with low (n = 14 and high BNP (n = 27. Peripheral BNP was closely associated with CS levels (r = 0.92, p<0.001. CS BNP correlated significantly with CS levels of markers of collagen type I and III turnover including: PINP (r = 0.44, p = 0.008, CITP (r = 0.35, p = 0.03 and PIIINP (r = 0.35, p = 0.001, and with CS levels of inflammatory cytokines including: TNF-α (r = 0.49, p = 0.002, IL-6 (r = 0.35, p = 0.04, and IL-8 (r = 0.54, p<0.001. The high BNP group had greater CS expression of fibro-inflammatory biomarkers including: CITP (3.8±0.7 versus 5.1±1.9, p = 0.007, TNF-α (3.2±0.5 versus 3.7±1.1, p = 003, IL-6 (1.9±1.3 versus 3.4±2.7, p = 0.02 and hsCRP (1.2±1.1 versus 2.4±1.1, p = 0.04, and greater left ventricular mass index (97±20 versus 118±26 g/m(2, p = 0.03 and left atrial volume index (18±2 versus 21±4, p = 0.008. Our data provide insight into the mechanisms behind the observed negative prognostic impact of modest elevations in BNP and suggest that in an asymptomatic hypertensive cohort a peripheral BNP measurement may be a useful marker of an early, sub-clinical pathological process characterized by cardiac remodeling, inflammation and ECM alterations.

  14. Sirtuin1-p53, forkhead box O3a, p38 and post-infarct cardiac remodeling in the spontaneously diabetic Goto-Kakizaki rat

    Directory of Open Access Journals (Sweden)

    Kytö Ville

    2010-01-01

    Full Text Available Abstract Background Diabetes is associated with changes in myocardial stress-response pathways and is recognized as an independent risk factor for cardiac remodeling. Using spontaneously diabetic Goto Kakizaki rats as a model of type 2 DM we investigated whether post-translational modifications in the Akt - FOXO3a pathway, Sirt1 - p53 pathway and the mitogen activated protein kinase p38 regulator are involved in post-infarct cardiac remodeling Methods Experimental myocardial infarction (MI was induced by left anterior descending coronary artery ligation in spontaneously diabetic Goto-Kakizaki rats and non-diabetic Wistar controls. Cardiac function was studied by echocardiography. Myocardial hypertrophy, cardiomyocyte apoptosis and cardiac fibrosis were determined histologically 12 weeks post MI or Sham operation. Western blotting was used to study Caspase-3, Bax, Sirt1, acetylation of p53 and phosphorylation of p38, Akt and FOXO3a. Electrophoretic mobility shift assay was used to assess FOXO3a activity and its nuclear localization. Results Post-infarct heart failure in diabetic GK rats was associated with pronounced cardiomyocyte hypertrophy, increased interstitial fibrosis and sustained cardiomyocyte apoptosis as compared with their non-diabetic Wistar controls. In the GK rat myocardium, Akt- and FOXO3a-phosphorylation was decreased and nuclear localization of FOXO3a was increased concomitantly with increased PTEN protein expression. Furthermore, increased Sirt1 protein expression was associated with decreased p53 acetylation, and phosphorylation of p38 was increased in diabetic rats with MI. Conclusions Post-infarct heart failure in diabetic GK rats was associated with more pronounced cardiac hypertrophy, interstitial fibrosis and sustained cardiomyocyte apoptosis as compared to their non-diabetic controls. The present study suggests important roles for Akt-FOXO3a, Sirt1 - p53 and p38 MAPK in the regulation of post-infarct cardiac remodeling

  15. (Prorenin receptor triggers distinct angiotensin II-independent extracellular matrix remodeling and deterioration of cardiac function.

    Directory of Open Access Journals (Sweden)

    Anne-Mari Moilanen

    Full Text Available BACKGROUND: Activation of the renin-angiotensin-system (RAS plays a key pathophysiological role in heart failure in patients with hypertension and myocardial infarction. However, the function of (prorenin receptor ((PRR is not yet solved. We determined here the direct functional and structural effects of (PRR in the heart. METHODOLOGY/PRINCIPAL FINDINGS: (PRR was overexpressed by using adenovirus-mediated gene delivery in normal adult rat hearts up to 2 weeks. (PRR gene delivery into the anterior wall of the left ventricle decreased ejection fraction (P<0.01, fractional shortening (P<0.01, and intraventricular septum diastolic and systolic thickness, associated with approximately 2-fold increase in left ventricular (PRR protein levels at 2 weeks. To test whether the worsening of cardiac function and structure by (PRR gene overexpression was mediated by angiotensin II (Ang II, we infused an AT(1 receptor blocker losartan via osmotic minipumps. Remarkably, cardiac function deteriorated in losartan-treated (PRR overexpressing animals as well. Intramyocardial (PRR gene delivery also resulted in Ang II-independent activation of extracellular-signal-regulated kinase1/2 phosphorylation and myocardial fibrosis, and the expression of transforming growth factor-β1 and connective tissue growth factor genes. In contrast, activation of heat shock protein 27 phosphorylation and apoptotic cell death by (PRR gene delivery was Ang II-dependent. Finally, (PRR overexpression significantly increased direct protein-protein interaction between (PRR and promyelocytic zinc-finger protein. CONCLUSIONS/SIGNIFICANCE: These results indicate for the first time that (PRR triggers distinct Ang II-independent myocardial fibrosis and deterioration of cardiac function in normal adult heart and identify (PRR as a novel therapeutic target to optimize RAS blockade in failing hearts.

  16. Functional suppression of Kcnq1 leads to early sodium channel remodelling and cardiac conduction system dysmorphogenesis

    Czech Academy of Sciences Publication Activity Database

    De la Rosa, A. J.; Domínguez, J. N.; Sedmera, D.; Šaňková, Barbora; Hove-Madsen, L.; Franco, D.; Aránega, A. E.

    2013-01-01

    Roč. 98, č. 3 (2013), s. 504-514. ISSN 0008-6363 R&D Projects: GA ČR(CZ) GA304/08/0615; GA ČR(CZ) GAP302/11/1308; GA ČR(CZ) GD204/09/H084; GA ČR(CZ) GA13-12412S Institutional research plan: CEZ:AV0Z50110509 Institutional support : RVO:67985823 Keywords : ion channels * Long-QT syndrome * sudden death * cardiac hypertrophy Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 5.808, year: 2013

  17. Myocardial Galectin-3 Expression Is Associated with Remodeling of the Pressure-Overloaded Heart and May Delay the Hypertrophic Response without Affecting Survival, Dysfunction, and Cardiac Fibrosis.

    Science.gov (United States)

    Frunza, Olga; Russo, Ilaria; Saxena, Amit; Shinde, Arti V; Humeres, Claudio; Hanif, Waqas; Rai, Vikrant; Su, Ya; Frangogiannis, Nikolaos G

    2016-05-01

    The β-galactoside-binding animal lectin galectin-3 is predominantly expressed by activated macrophages and is a promising biomarker for patients with heart failure. Galectin-3 regulates inflammatory and fibrotic responses; however, its role in cardiac remodeling remains unclear. We hypothesized that galectin-3 may be up-regulated in the pressure-overloaded myocardium and regulate hypertrophy and fibrosis. In normal mouse myocardium, galectin-3 was constitutively expressed in macrophages and was localized in atrial but not ventricular cardiomyocytes. In a mouse model of transverse aortic constriction, galectin-3 expression was markedly up-regulated in the pressure-overloaded myocardium. Early up-regulation of galectin-3 was localized in subpopulations of macrophages and myofibroblasts; however, after 7 to 28 days of transverse aortic constriction, a subset of cardiomyocytes in fibrotic areas contained large amounts of galectin-3. In vitro, cytokine stimulation suppressed galectin-3 synthesis by macrophages and cardiac fibroblasts. Correlation studies revealed that cardiomyocyte- but not macrophage-specific galectin-3 localization was associated with adverse remodeling and dysfunction. Galectin-3 knockout mice exhibited accelerated cardiac hypertrophy after 7 days of pressure overload, whereas female galectin-3 knockouts had delayed dilation after 28 days of transverse aortic constriction. However, galectin-3 loss did not affect survival, systolic and diastolic dysfunction, cardiac fibrosis, and cardiomyocyte hypertrophy in the pressure-overloaded heart. Despite its potential role as a prognostic biomarker, galectin-3 is not a critical modulator of cardiac fibrosis but may delay the hypertrophic response. PMID:26948424

  18. Proteomics

    DEFF Research Database (Denmark)

    Dam, Svend; Stougaard, Jens

    2014-01-01

    Proteomics is an efficient tool to identify proteins present in specific tissues, cell types, or organelles. The resulting proteome reference maps and/or comparative analyses provide overviews of regulated proteins between wild type and mutants or between different conditions together with a...... comprehensive list of proteins. Post translation modifications (PTMs), such as glycosylation and phosphorylation, are pivotal for protein stability and function. Several strategies for enrichment of PTMs have been developed where targeted proteomic approaches are used to identify these PTMs. The sequenced and...... annotated Lotus japonicus (Lotus) genome has been essential for obtaining high-quality protein identifications from proteomics studies. Furthermore, additional genomics and transcriptomics studies from several Lotus species/ecotypes support putative gene structures and these can be further supported using...

  19. Long Non-Coding RNA Malat-1 Is Dispensable during Pressure Overload-Induced Cardiac Remodeling and Failure in Mice.

    Directory of Open Access Journals (Sweden)

    Tim Peters

    Full Text Available Long non-coding RNAs (lncRNAs are a class of RNA molecules with diverse regulatory functions during embryonic development, normal life, and disease in higher organisms. However, research on the role of lncRNAs in cardiovascular diseases and in particular heart failure is still in its infancy. The exceptionally well conserved nuclear lncRNA Metastasis associated in lung adenocarcinoma transcript 1 (Malat-1 is a regulator of mRNA splicing and highly expressed in the heart. Malat-1 modulates hypoxia-induced vessel growth, activates ERK/MAPK signaling, and scavenges the anti-hypertrophic microRNA-133. We therefore hypothesized that Malat-1 may act as regulator of cardiac hypertrophy and failure during cardiac pressure overload induced by thoracic aortic constriction (TAC in mice.Absence of Malat-1 did not affect cardiac hypertrophy upon pressure overload: Heart weight to tibia length ratio significantly increased in WT mice (sham: 5.78±0.55, TAC 9.79±1.82 g/mm; p<0.001 but to a similar extend also in Malat-1 knockout (KO mice (sham: 6.21±1.12, TAC 8.91±1.74 g/mm; p<0.01 with no significant difference between genotypes. As expected, TAC significantly reduced left ventricular fractional shortening in WT (sham: 38.81±6.53%, TAC: 23.14±11.99%; p<0.01 but to a comparable degree also in KO mice (sham: 37.01±4.19%, TAC: 25.98±9.75%; p<0.05. Histological hallmarks of myocardial remodeling, such as cardiomyocyte hypertrophy, increased interstitial fibrosis, reduced capillary density, and immune cell infiltration, did not differ significantly between WT and KO mice after TAC. In line, the absence of Malat-1 did not significantly affect angiotensin II-induced cardiac hypertrophy, dysfunction, and overall remodeling. Above that, pressure overload by TAC significantly induced mRNA levels of the hypertrophy marker genes Nppa, Nppb and Acta1, to a similar extend in both genotypes. Alternative splicing of Ndrg2 after TAC was apparent in WT (isoform ratio

  20. High-fat Diet Promotes Cardiac Remodeling in an Experimental Model of Obesity

    Directory of Open Access Journals (Sweden)

    Fernando Martins

    2015-01-01

    Full Text Available AbstractBackground:Although nutritional, metabolic and cardiovascular abnormalities are commonly seen in experimental studies of obesity, it is uncertain whether these effects result from the treatment or from body adiposity.Objective:To evaluate the influence of treatment and body composition on metabolic and cardiovascular aspects in rats receiving high saturated fat diet.Methods:Sixteen Wistar rats were used, distributed into two groups, the control (C group, treated with isocaloric diet (2.93 kcal/g and an obese (OB group, treated with high-fat diet (3.64 kcal/g. The study period was 20 weeks. Analyses of nutritional behavior, body composition, glycemia, cholesterolemia, lipemia, systolic arterial pressure, echocardiography, and cardiac histology were performed.Results:High-fat diet associates with manifestations of obesity, accompanied by changes in glycemia, cardiomyocyte hypertrophy, and myocardial interstitial fibrosis. After adjusting for adiposity, the metabolic effects were normalized, whereas differences in morphometric changes between groups were maintained.Conclusion:It was concluded that adiposity body composition has a stronger association with metabolic disturbances in obese rodents, whereas the high-fat dietary intervention is found to be more related to cardiac morphological changes in experimental models of diet-induced obesity.

  1. Hypoxic remodelling of Ca{sup 2+} stores does not alter human cardiac myofibroblast invasion

    Energy Technology Data Exchange (ETDEWEB)

    Riches, K.; Hettiarachchi, N.T.; Porter, K.E. [Leeds Institute for Genetics, Health and Therapeutics, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT (United Kingdom); Peers, C., E-mail: c.s.peers@leeds.ac.uk [Leeds Institute for Genetics, Health and Therapeutics, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2010-12-17

    Research highlights: {yields} Bradykinin promotes migration and proliferation of myofibroblasts. {yields} Such activity is Ca{sup 2+}-dependent and occurs under hypoxic conditions. {yields} Hypoxia increased myofibroblast Ca{sup 2+} stores but not influx evoked by bradykinin. {yields} Myofibroblast migration and proliferation was unaffected by hypoxia. -- Abstract: Cardiac fibroblasts are the most abundant cell type in the heart, and play a key role in the maintenance and repair of the myocardium following damage such as myocardial infarction by transforming into a cardiac myofibroblast (CMF) phenotype. Repair occurs through controlled proliferation and migration, which are Ca{sup 2+} dependent processes, and often requires the cells to operate within a hypoxic environment. Angiotensin converting enzyme (ACE) inhibitors reduce infarct size through the promotion of bradykinin (BK) stability. Although CMF express BK receptors, their activity under the reduced O{sub 2} conditions that occur following infarct are entirely unexplored. Using Fura-2 microfluorimetry on primary human CMF, we found that hypoxia significantly increased the mobilisation of Ca{sup 2+} from intracellular stores in response to BK whilst capacitative Ca{sup 2+} entry (CCE) remained unchanged. The enhanced store mobilisation was due to a striking increase in CMF intracellular Ca{sup 2+}-store content under hypoxic conditions. However, BK-induced CMF migration or proliferation was not affected following hypoxic exposure, suggesting that Ca{sup 2+} influx rather than mobilisation is of primary importance in CMF migration and proliferation.

  2. Relationship of cardiac arrhythmias to myocar- dial remodeling and expression of adhesion molecules in patients with mitral valve prolapse

    Directory of Open Access Journals (Sweden)

    A.V. Yagoda

    Conclusion. Myocardial remodeling and dysregulation of cell adhesion proteins are recorded in young patients with MVP and arrhythmias. Relaionship of severity of arrhythmic syndrome to myocardial remodeling and VCAM-1 level was revealed.

  3. Whole-thorax irradiation induces hypoxic respiratory failure, pleural effusions and cardiac remodeling

    International Nuclear Information System (INIS)

    To study the mechanisms of death following a single lethal dose of thoracic radiation, WAG/RijCmcr (Wistar) rats were treated with 15 Gy to the whole thorax and followed until they were morbid or sacrificed for invasive assays at 6 weeks. Lung function was assessed by breathing rate and arterial oxygen saturation. Lung structure was evaluated histologically. Cardiac structure and function were examined by echocardiography. The frequency and characteristics of pleural effusions were determined. Morbidity from 15 Gy radiation occurred in all rats 5 to 8 weeks after exposure, coincident with histological pneumonitis. Increases in breathing frequencies peaked at 6 weeks, when profound arterial hypoxia was also recorded. Echocardiography analysis at 6 weeks showed pulmonary hypertension and severe right ventricular enlargement with impaired left ventricular function and cardiac output. Histologic sections of the heart revealed only rare foci of lymphocytic infiltration. Total lung weight more than doubled. Pleural effusions were present in the majority of the irradiated rats and contained elevated protein, but low lactate dehydrogenase, when compared with serum from the same animal. Pleural effusions had a higher percentage of macrophages and large monocytes than neutrophils and contained mast cells that are rarely present in other pathological states. Lethal irradiation to rat lungs leads to hypoxia with infiltration of immune cells, edema and pleural effusion. These changes may contribute to pulmonary vascular and parenchymal injury that result in secondary changes in heart structure and function. We report that conditions resembling congestive heart failure contribute to death during radiation pneumonitis, which indicates new targets for therapy. (author)

  4. Cardiac-Restricted IGF-1Ea Overexpression Reduces the Early Accumulation of Inflammatory Myeloid Cells and Mediates Expression of Extracellular Matrix Remodelling Genes after Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Enrique Gallego-Colon

    2015-01-01

    Full Text Available Strategies to limit damage and improve repair after myocardial infarct remain a major therapeutic goal in cardiology. Our previous studies have shown that constitutive expression of a locally acting insulin-like growth factor-1 Ea (IGF-1Ea propeptide promotes functional restoration after cardiac injury associated with decreased scar formation. In the current study, we investigated the underlying molecular and cellular mechanisms behind the enhanced functional recovery. We observed improved cardiac function in mice overexpressing cardiac-specific IGF-1Ea as early as day 7 after myocardial infarction. Analysis of gene transcription revealed that supplemental IGF-1Ea regulated expression of key metalloproteinases (MMP-2 and MMP-9, their inhibitors (TIMP-1 and TIMP-2, and collagen types (Col 1α1 and Col 1α3 in the first week after injury. Infiltration of inflammatory cells, which direct the remodelling process, was also altered; in particular there was a notable reduction in inflammatory Ly6C+ monocytes at day 3 and an increase in anti-inflammatory CD206+ macrophages at day 7. Taken together, these results indicate that the IGF-1Ea transgene shifts the balance of innate immune cell populations early after infarction, favouring a reduction in inflammatory myeloid cells. This correlates with reduced extracellular matrix remodelling and changes in collagen composition that may confer enhanced scar elasticity and improved cardiac function.

  5. Role of Bradykinin on Left Ventricular Remodeling and Cardiac Function after Myocardial Infarction in Rats

    Institute of Scientific and Technical Information of China (English)

    Hai-zhu ZHANG; Li-quan LEI; Chang-cong CUI; Jian LIU

    2009-01-01

    Objectives To investigate the influences of bradykinin (BK) on hemodynamics, left ventricular hypertrophy and interstitial collagen metabolism after myocardial infarction (MI) in rats and the contribution of BK in angiotensin-con-verting enzyme (ACE) inhibition therapy. Methods By means of hemodynamic measurements, morphometric study of myocyte hypertrophy and SDS-PAGE technique ,the effects of enalapril pressure (500μg·kg-1·day-1) ,enalapril(500μg·kg-1·day-1) with BK B2 receptor antagonist Hoe-140 (500μg·kg-1·day-1),angiotensin Ⅱ (AgII) type 1 (AT1) receptor antagonist losartan(3mg·kg-1·day-1)on mean arterial pressure (MAP) ,left ventricular end-dias-tolic pressure (LVEDP), as well as maximum positive left ventricular pressure change (+ dp/dtmax), Ⅴ(m) n, col-lagen content and the ratio of type Ⅰ to type Ⅲ collagen (Ⅰ / Ⅲ) of noninfarcted area were observed in rats after MI. Treatments were started on the 3rd day after MI and continued for another 28 days. Results Enalapril reduced LV-EDP, Ⅴ(m) n and collagen content as well as collagen Ⅰ/Ⅲ compared with the untreated MI group (P < 0. 05), and all of these effects of enalapril were partly blunted by concomitant treatment with hoe-140 (P < 0. 05). Losartan was less effective than enalapril (P < 0. 05). However, three treatment groups had no significant differences in + dp/dtmax and had similar reductions in MAP compared with untreated MI group. Conclusions BK can improve cardiac function and prevent left ventricular hypertrophy with myocardial fibrosis independent of blood pressure. The mechanisms of ACEI are both blockade of Ang Ⅱ formation and inhibition of BK degradation.

  6. Hydrogen Sulfide Mitigates Cardiac Remodeling During Myocardial Infarction via Improvement of Angiogenesis

    Directory of Open Access Journals (Sweden)

    Natia Qipshidze, Naira Metreveli, Paras K. Mishra, David Lominadze, Suresh C. Tyagi

    2012-01-01

    Full Text Available Exogenous hydrogen sulfide (H2S leads to down-regulation of inflammatory responses and provides myocardial protection during acute ischemia/reperfusion injury; however its role during chronic heart failure (CHF due to myocardial infarction (MI is yet to be unveiled. We previously reported that H2S inhibits antiangiogenic factors such, as endostatin and angiostatin, but a little is known about its effect on parstatin (a fragment of proteinase-activated receptor-1, PAR-1. We hypothesize that H2S inhibits parstatin formation and promotes VEGF activation, thus promoting angiogenesis and significantly limiting the extent of MI injury. To verify this hypothesis MI was created in 12 week-old male mice by ligation of left anterior descending artery (LAD. Sham surgery was performed except LAD ligation. After the surgery mice were treated with sodium hydrogen sulfide (30 μmol/l NaHS, a donor for H2S, in drinking water for 4 weeks. The LV tissue was analyzed for VEGF, flk-1 and flt-1, endostatin, angiostatin and parstatin. The expression of VEGF, flk-1 and flt-1 were significantly increased in treated mice while the level of endostatin, angiostatin and parstatin were decreased compared to in untreated mice. The echocardiography in mice treated with H2S showed the improvement of heart function compared to in untreated mice. The X-ray and Doppler blood flow measurements showed enhancement of cardiac-angiogenesis in mice treated with H2S. This observed cytoprotection was associated with an inhibition of anti-angiogenic proteins and stimulation of angiogenic factors. We established that administration of H2S at the time of MI ameliorated infarct size and preserved LV function during development of MI in mice. These results suggest that H2S is cytoprotective and angioprotective during evolution of MI.

  7. Adaptations to iron deficiency: cardiac functional responsiveness to norepinephrine, arterial remodeling, and the effect of beta-blockade on cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    Walker LeeAnn

    2002-01-01

    Full Text Available Abstract Background Iron deficiency (ID results in ventricular hypertrophy, believed to involve sympathetic stimulation. We hypothesized that with ID 1 intravenous norepinephrine would alter heart rate (HR and contractility, 2 abdominal aorta would be larger and more distensible, and 3 the beta-blocker propanolol would reduce hypertrophy. Methods 1 30 CD rats were fed an ID or replete diet for 1 week or 1 month. Norepinephrine was infused via jugular vein; pressure was monitored at carotid artery. Saline infusions were used as a control. The pressure trace was analyzed for HR, contractility, systolic and diastolic pressures. 2 Abdominal aorta catheters inflated the aorta, while digital microscopic images were recorded at stepwise pressures to measure arterial diameter and distensibility. 3 An additional 10 rats (5 ID, 5 control were given a daily injection of propanolol or saline. After 1 month, the hearts were excised and weighed. Results Enhanced contractility, but not HR, was associated with ID hypertrophic hearts. Systolic and diastolic blood pressures were consistent with an increase in arterial diameter associated with ID. Aortic diameter at 100 mmHg and distensibility were increased with ID. Propanolol was associated with an increase in heart to body mass ratio. Conclusions ID cardiac hypertrophy results in an increased inotropic, but not chronotropic response to the sympathetic neurotransmitter, norepinephrine. Increased aortic diameter is consistent with a flow-dependent vascular remodeling; increased distensibility may reflect decreased vascular collagen content. The failure of propanolol to prevent hypertrophy suggests that ID hypertrophy is not mediated via beta-adrenergic neurotransmission.

  8. Renal denervation mitigates cardiac remodeling and renal damage in Dahl rats: a comparison with β-receptor blockade.

    Science.gov (United States)

    Watanabe, Heitaro; Iwanaga, Yoshitaka; Miyaji, Yuki; Yamamoto, Hiromi; Miyazaki, Shunichi

    2016-04-01

    Chronic activation of the sympathetic nervous system (SNS) contributes to cardiac remodeling and the transition to heart failure (HF). Renal sympathetic denervation (RDN) may ameliorate this damage by improving renal function and sympathetic cardioregulation in hypertensive HF patients with renal injury. The efficacy may be comparable to that of chronic β-blocker treatment. Dahl salt-sensitive hypertensive rats were subjected to RDN in the hypertrophic stage. Another group of Dahl rats were subjected to sham operations and treated chronically with vehicle (CONT) or β-blocker bisoprolol (BISO). Neither RDN nor BISO altered the blood pressure; however, BISO significantly reduced the heart rate (HR). Both RDN and BISO significantly prolonged survival (22.2 and 22.4 weeks, respectively) compared with CONT (18.3 weeks). Echocardiography revealed reduced left ventricular (LV) hypertrophy and improved LV function, and histological analysis demonstrated the amelioration of LV myocyte hypertrophy and fibrosis in the RDN and BISO rats at the HF stage. Tyrosine hydroxylase and β1-adrenergic receptor (ADR) expression levels in the LV myocardium significantly increased only in the RDN rats, whereas the α1b-, α1d- and α2c-ADR expression levels increased only in the BISO rats. In both groups, renal damage and dysfunction were also reduced, and this reduction was accompanied by the suppression of endothelin-1, renin and angiotensin-converting enzyme mRNAs. RDN ameliorated the progression of both myocardial and renal damage in the hypertensive rats independent of blood pressure changes. The overall effects were similar to those of β-receptor blockade with favorable effects on HR and α-ADR expression. These findings may be associated with the restoration of the myocardial SNS and renal protection. PMID:26631854

  9. The Combined Effect of Endurance Training and Various Doses of Atorvastatin on Cardiac Remodeling after Myocardial Infarction in Male Rats

    Directory of Open Access Journals (Sweden)

    Hadi Abdi

    2015-12-01

    Full Text Available Introduction: Statins and exercise have beneficial effects in preventing cardiovascular diseases. However, prolonged use of statins particularly at high doses has unpleasant side effects. This study aimed to investigate the combined effect of endurance training and three doses of Atorvastatin on cardiac remodeling after myocardial infarction in male rats.Methods: 75 male wistar rats (weighing 210-250g were randomly divided to 9 groups. Sham, control, endurance training, Atorvastatin (5, 10 and 15 mg/kg, and exercise plus Atorvastatin (5, 10 and 15 mg/kg: Myocardial infarction was induced by subcutaneous injection of isoprenaline (150 mg/kg in two consecutive days. Drug and training intervention was initiated 2 days after infarction and continued for 4 weeks. In order to assess the necrosis lesion and fibrosis tissue, hematoxylin & eosin and masson trichrome staining were used respectively.Results: The combination of endurance training and various doses of Atorvastatin significantly reduced the amount of necrosis and fibrosis tissue compared with the control group (P<0.01. Endurance exercise training alone did not cause significant changes in the extent of necrosis damage, but significantly increased fibrosis tissue compared with the control group (P<0.001. Various doses of Atorvastatin alone significantly reduced necrosis damage (P<0.001, but the difference between these groups and the control group in terms of fibrous tissue was statistically significant only at dose of 15 mg/kg (P<0.001.Conclusion: The results of this study showed that the combination of training and various doses of Atorvastatin are more effective in improving of tissue damage caused by myocardial infarction than exercise and Atorvastatin alone. However, the use of endurance training with medical therapy can not reduce the dose of Atorvastatin.

  10. Serum MMP-8: A Novel Indicator of Left Ventricular Remodeling and Cardiac Outcome in Patients after Acute Myocardial Infarction

    OpenAIRE

    Marie Fertin; Gilles Lemesle; Annie Turkieh; Olivia Beseme; Maggy Chwastyniak; Philippe Amouyel; Christophe Bauters; Florence Pinet

    2013-01-01

    OBJECTIVE: Left ventricular (LV) remodeling following myocardial infarction (MI) is characterized by progressive alterations of structure and function, named LV remodeling. Although several risk factors such as infarct size have been identified, LV remodeling remains difficult to predict in clinical practice. Changes within the extracellular matrix, involving matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), are an integral part of left ventricular (LV) rem...

  11. Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc

    OpenAIRE

    Heineke, Joerg; Ruetten, Hartmut; Willenbockel, Christian; Gross, Sandra C.; Naguib, Marian; Schaefer, Arnd; Kempf, Tibor; Hilfiker-Kleiner, Denise; Caroni, Pico; Kraft, Theresia; Kaiser, Robert A.; Molkentin, Jeffery D; Drexler, Helmut; Wollert, Kai C.

    2005-01-01

    Adverse left ventricular (LV) remodeling after myocardial infarction (MI) is a major cause for heart failure. Molecular modifiers of the remodeling process remain poorly defined. Patients with heart failure after MI have reduced LV expression levels of muscle LIM protein (MLP), a component of the sarcomeric Z-disk that is involved in the integration of stress signals in cardiomyocytes. By using heterozygous MLP mutant (MLP+/—) mice, we explored the role of MLP in post-MI remodeling. LV dimens...

  12. Effects of Long-term Ramipril on Ventricular Remodeling, Cardiac Function and Survival in Rat Congestive Heart Failure after Myocardial Infarction

    Institute of Scientific and Technical Information of China (English)

    陶则伟; 黄元伟

    2004-01-01

    Objectives The purpose of this study was to investigate the effects of long-term ramipril on ventricular remodeling, cardiac function and survival in rat congestive heart failure after myocardial infarction. Methods Myocardial infarction (MI) was caused by ligation of the left anterior descending coronary artery in rats. 7 days after the surgery, the surviving rats were randomly assigned to the following treatment protocols: 1) MI rats with no therapy, 2) MI rats treated with ramipril 3 mg/kg per day, 3) Sham-operated control rats, and 4) Sham-operated rats treated with ramipril 3 mg/kg per day. At 22 weeks, cardiac hemodynamic parameters such as MAP, LVSP, ±dP/dtmax and LVEDP were measured,and cardiac morphometric parameters such as HW,LVW and LVCA were measured, mRNA of cardiacmolecule genes, such as βMHC, BNP, collagen Ⅰ and Ⅲ, and TGF-β1, were quantified, and survival rates were calculated. Results Compared with sham-operated rats, MI rats without therapy showed significant increases in cardiac morphological parameters as well as in mRAN expressions of cardiac molecule genes (P<0.01); while their hemodynamic parameters were significantly impaired (P<0.01), and survival rate shortened (P<0.05). Compared with MI rats with no therapy, MI rats treated with ramipril showed significant attenuation of mRAN expressions of cardiac molecule genes (P<0.01); while their hemodynamic parameters were significantly impaired (P<0.01), and survival rate shortened (P<0.05). Compared with MI rats with no therapy, MI rats treated with ramipril showed significant attenuation of mRAN expressions of cardiac molecule genes (P<0.01); while their hemodynamic parameters were significantly improved (P<0.05 or P<0.01), and survival rates prolonged (P<0.05). Conclusions Treatment with long-term ramipril may improve LV remodeling, cardiac function and survival in rat congestive heart failure after MI.

  13. Adenoviral short hairpin RNA therapy targeting phosphodiesterase 5a relieves cardiac remodeling and dysfunction following myocardial infarction

    OpenAIRE

    Li, Longhu; Haider, Husnain Kh; WANG, Linlin; Lu, Gang; Ashraf, Muhammad

    2012-01-01

    We previously showed that treatment with tadalafil, a long-acting phosphodiesterase-5a (PDE5a) inhibitor, effectively prevented adverse left ventricular (LV) remodeling of the infarcted heart. We hypothesized that short-hairpin RNA (shRNA) therapy targeting PDE5a would simulate the effects of pharmacological intervention for treatment of postinfarction LV remodeling and dysfunction. Experimental model of myocardial infarction was developed in female mice by permanent ligation of left coronary...

  14. Heart Mitochondrial Proteome Study Elucidates Changes in Cardiac Energy Metabolism and Antioxidant PRDX3 in Human Dilated Cardiomyopathy

    Science.gov (United States)

    Roselló-Lletí, Esther; Tarazón, Estefanía; Barderas, María G.; Ortega, Ana; Otero, Manuel; Molina-Navarro, Maria Micaela; Lago, Francisca; González-Juanatey, Jose Ramón; Salvador, Antonio; Portolés, Manuel; Rivera, Miguel

    2014-01-01

    Background Dilated cardiomyopathy (DCM) is a public health problem with no available curative treatment, and mitochondrial dysfunction plays a critical role in its development. The present study is the first to analyze the mitochondrial proteome in cardiac tissue of patients with DCM to identify potential molecular targets for its therapeutic intervention. Methods and Results 16 left ventricular (LV) samples obtained from explanted human hearts with DCM (n = 8) and control donors (n = 8) were extracted to perform a proteomic approach to investigate the variations in mitochondrial protein expression. The proteome of the samples was analyzed by quantitative differential electrophoresis and Mass Spectrometry. These changes were validated by classical techniques and by novel and precise selected reaction monitoring analysis and RNA sequencing approach increasing the total heart samples up to 25. We found significant alterations in energy metabolism, especially in molecules involved in substrate utilization (ODPA, ETFD, DLDH), energy production (ATPA), other metabolic pathways (AL4A1) and protein synthesis (EFTU), obtaining considerable and specific relationships between the alterations detected in these processes. Importantly, we observed that the antioxidant PRDX3 overexpression is associated with impaired ventricular function. PRDX3 is significantly related to LV end systolic and diastolic diameter (r = 0.73, p value<0.01; r = 0.71, p value<0.01), fractional shortening, and ejection fraction (r = −0.61, p value<0.05; and r = −0.62, p value<0.05, respectively). Conclusion This work could be a pivotal study to gain more knowledge on the cellular mechanisms related to the pathophysiology of this disease and may lead to the development of etiology-specific heart failure therapies. We suggest new molecular targets for therapeutic interventions, something that up to now has been lacking. PMID:25397948

  15. Heart mitochondrial proteome study elucidates changes in cardiac energy metabolism and antioxidant PRDX3 in human dilated cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Esther Roselló-Lletí

    Full Text Available Dilated cardiomyopathy (DCM is a public health problem with no available curative treatment, and mitochondrial dysfunction plays a critical role in its development. The present study is the first to analyze the mitochondrial proteome in cardiac tissue of patients with DCM to identify potential molecular targets for its therapeutic intervention.16 left ventricular (LV samples obtained from explanted human hearts with DCM (n = 8 and control donors (n = 8 were extracted to perform a proteomic approach to investigate the variations in mitochondrial protein expression. The proteome of the samples was analyzed by quantitative differential electrophoresis and Mass Spectrometry. These changes were validated by classical techniques and by novel and precise selected reaction monitoring analysis and RNA sequencing approach increasing the total heart samples up to 25. We found significant alterations in energy metabolism, especially in molecules involved in substrate utilization (ODPA, ETFD, DLDH, energy production (ATPA, other metabolic pathways (AL4A1 and protein synthesis (EFTU, obtaining considerable and specific relationships between the alterations detected in these processes. Importantly, we observed that the antioxidant PRDX3 overexpression is associated with impaired ventricular function. PRDX3 is significantly related to LV end systolic and diastolic diameter (r = 0.73, p value<0.01; r = 0.71, p value<0.01, fractional shortening, and ejection fraction (r = -0.61, p value<0.05; and r = -0.62, p value<0.05, respectively.This work could be a pivotal study to gain more knowledge on the cellular mechanisms related to the pathophysiology of this disease and may lead to the development of etiology-specific heart failure therapies. We suggest new molecular targets for therapeutic interventions, something that up to now has been lacking.

  16. Serum MMP-8: a novel indicator of left ventricular remodeling and cardiac outcome in patients after acute myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Marie Fertin

    Full Text Available OBJECTIVE: Left ventricular (LV remodeling following myocardial infarction (MI is characterized by progressive alterations of structure and function, named LV remodeling. Although several risk factors such as infarct size have been identified, LV remodeling remains difficult to predict in clinical practice. Changes within the extracellular matrix, involving matrix metalloproteinases (MMPs and tissue inhibitors of metalloproteinases (TIMPs, are an integral part of left ventricular (LV remodeling after myocardial infarction (MI. We investigated the temporal profile of circulating MMPs and TIMPs and their relations with LV remodeling at 1 year and clinical outcome at 3 years in post-MI patients. METHODS: This prospective multicentre study included 246 patients with a first anterior MI. Serial echocardiographic studies were performed at hospital discharge, 3 months, and 1 year after MI, and analysed at a core laboratory. LV remodeling was defined as the percent change in LV end-diastolic volume (EDV from baseline to 1 year. Serum samples were obtained at hospital discharge, 1, 3, and 12 months. Multiplex technology was used for analysis of MMP-1, -2, -3, -8, -9, -13, and TIMP-1, -2, -3, -4 serum levels. RESULTS: Baseline levels of MMP-8 and MMP-9 were positively associated with changes in LVEDV (P = 0.01 and 0.02, respectively. When adjusted for major baseline characteristics, MMP-8 levels remained an independent predictor LV remodeling (P = 0.025. By univariate analysis, there were positive relations between cardiovascular death or hospitalization for heart failure during the 3-year follow-up and the baseline levels of MMP-2 (P = 0.03, MMP-8 (P = 0.002, and MMP-9 (P = 0.03. By multivariate analysis, MMP-8 was the only MMP remaining significantly associated with clinical outcome (P = 0.02. CONCLUSION: Baseline serum MMP-8 is a significant predictor of LV remodeling and cardiovascular outcome after MI and may help to improve

  17. A Proteomics Approach to Identify New Putative Cardiac Intercalated Disk Proteins

    OpenAIRE

    Soni, Siddarth; Raaijmakers, Antonia J. A.; Raaijmakers, Linsey M.; Damen, J. Mirjam A.; van Stuijvenberg, Leonie; Vos, Marc A.; Heck, Albert J.R.; van Veen, Toon A. B.; Scholten, Arjen

    2016-01-01

    Aims Synchronous beating of the heart is dependent on the efficient functioning of the cardiac intercalated disk (ID). The ID is composed of a complex protein network enabling electrical continuity and chemical communication between individual cardiomyocytes. Recently, several different studies have shed light on increasingly prevalent cardiac diseases involving the ID. Insufficient knowledge of its composition makes it difficult to study these disease mechanisms in more detail and therefore ...

  18. High Intensity Interval and Endurance Training Have Opposing Effects on Markers of Heart Failure and Cardiac Remodeling in Hypertensive Rats

    OpenAIRE

    Holloway, Tanya M.; Bloemberg, Darin; da Silva, Mayne L.; Simpson, Jeremy A.; Quadrilatero, Joe; Spriet, Lawrence L.

    2015-01-01

    There has been re-emerging interest and significant work dedicated to investigating the metabolic effects of high intensity interval training (HIIT) in recent years. HIIT is considered to be a time efficient alternative to classic endurance training (ET) that elicits similar metabolic responses in skeletal muscle. However, there is a lack of information on the impact of HIIT on cardiac muscle in disease. Therefore, we determined the efficacy of ET and HIIT to alter cardiac muscle characterist...

  19. Combined score using clinical, electrocardiographic, and echocardiographic parameters to predict left ventricular remodeling in patients having had cardiac resynchronization therapy six months earlier.

    Science.gov (United States)

    Brunet-Bernard, Anne; Maréchaux, Sylvestre; Fauchier, Laurent; Guiot, Aurélie; Fournet, Maxime; Reynaud, Amélie; Schnell, Frédéric; Leclercq, Christophe; Mabo, Philippe; Donal, Erwan

    2014-06-15

    The aim of this study was to evaluate whether a scoring system integrating clinical, electrocardiographic, and echocardiographic measurements can predict left ventricular reverse remodeling after cardiac resynchronization therapy (CRT). The derivation cohort consisted of 162 patients with heart failure implanted with a CRT device. Baseline clinical, electrocardiographic, and echocardiographic characteristics were entered into univariate and multivariate models to predict reverse remodeling as defined by a ≥15% reduction in left ventricular end-systolic volume at 6 months (60%). Combinations of predictors were then tested under different scoring systems. A new 7-point CRT response score termed L2ANDS2: Left bundle branch block (2 points), Age >70 years, Nonischemic origin, left ventricular end-diastolic Diameter 5 had a high positive likelihood ratio (+LR = 5.64), whereas a score <2 had a high negative likelihood ratio (-LR = 0.19). In conclusion, this L2ANDS2 score provides an easy-to-use tool for the clinician to assess the pretest probability of a patient being a CRT responder. PMID:24793667

  20. Nonthyroidal Illness Syndrome in Cardiac Illness Involves Elevated Concentrations of 3,5-Diiodothyronine and Correlates with Atrial Remodeling

    Science.gov (United States)

    Dietrich, Johannes W.; Müller, Patrick; Schiedat, Fabian; Schlömicher, Markus; Strauch, Justus; Chatzitomaris, Apostolos; Klein, Harald H.; Mügge, Andreas; Köhrle, Josef; Rijntjes, Eddy; Lehmphul, Ina

    2015-01-01

    Background Although hyperthyroidism predisposes to atrial fibrillation, previous trials have suggested decreased triiodothyronine (T3) concentrations to be associated with postoperative atrial fibrillation (POAF). Therapy with thyroid hormones (TH), however, did not reduce the risk of POAF. This study reevaluates the relation between thyroid hormone status, atrial electromechanical function and POAF. Methods Thirty-nine patients with sinus rhythm and no history of atrial fibrillation or thyroid disease undergoing cardiac surgery were prospectively enrolled. Serum concentrations of thyrotropin, free (F) and total (T) thyroxine (T4) and T3, reverse (r)T3, 3-iodothyronamine (3-T1AM) and 3,5-diiodothyronine (3,5-T2) were measured preoperatively, complemented by evaluation of echocardiographic and electrophysiological parameters of cardiac function. Holter-ECG and telemetry were used to screen for POAF for 10 days following cardiac surgery. Results Seven of 17 patients who developed POAF demonstrated nonthyroidal illness syndrome (NTIS; defined as low T3 and/or low T4 syndrome), compared to 2 of 22 (p < 0.05) patients who maintained sinus rhythm. In patients with POAF, serum FT3 concentrations were significantly decreased, but still within their reference ranges. 3,5-T2 concentrations directly correlated with rT3 concentrations and inversely correlated with FT3 concentrations. Furthermore, 3,5-T2 concentrations were significantly elevated in patients with NTIS and in subjects who eventually developed POAF. In multivariable logistic regression FT3, 3,5-T2, total atrial conduction time, left atrial volume index and Fas ligand were independent predictors of POAF. Conclusion This study confirms reduced FT3 concentrations in patients with POAF and is the first to report on elevated 3,5-T2 concentrations in cardiac NTIS. The pathogenesis of NTIS therefore seems to involve more differentiated allostatic mechanisms. PMID:26279999

  1. Sudden cardiac death in dogs with remodeled hearts is associated with larger beat-to-beat variability of repolarization

    DEFF Research Database (Denmark)

    Thomsen, Morten Bækgaard; Truin, Michiel; van Opstal, Jurren M;

    2005-01-01

    diminished reserve and larger propensity for repolarization-dependent ventricular arrhythmia. A subset of chronic AVB dogs (10%) suffers sudden cardiac death (SCD). With the assumption that repolarization defects constitute a potentially lethal proarrhythmic substrate, we hypothesized that BVR in SCD dogs...... group. All other electrophysiological parameters (RR, QT and MAP durations) were comparable for the two groups. Extending the number of animals and groups confirmed a larger BVR in the SCD group (SCD: 5.1 +/- 2.7; n = 11 versus control: 2.5 +/- 0.4 ms; n = 61; P <0.05) and showed reverse-use dependence...

  2. The muscle-enriched gene SYNPO2L is associated with cardiac remodeling%新基因SYNPO2L参与心肌重构

    Institute of Scientific and Technical Information of China (English)

    王晓建; 甄一松; 王继征; 苏明; 祝领; 王长鑫; 俞莉萍; 刘继斌; 惠汝太

    2012-01-01

    目的 肌肉富集表达基因在心肌重构的发生发展中发挥重要的作用.为了深入理解心肌重构的分子机制、为临床提供治疗和干预的靶点,我们需要寻找参与心肌重构的新基因.方法和结果 我们使用自主研发的CardiacScan对多个人源组织表达谱数据库进行扫描,发现了一个新的肌肉富集表达基因——SYNPO2L.RT-PCR显示,SYNPO2L在小鼠的心脏和骨骼肌高表达.实时荧光定量PCR显示,在跑步训练诱导的小鼠生理性心肌重构模型中,SYNPO2L的表达下降为对照组的0.6倍(P<0.05).在主动脉缩窄手术诱导的病理性心肌重构中,SYNPO2L的表达逐渐升高,并在术后9周(心功能失代偿阶段)升高为对照组的2.4倍(P<0.0001).结论 SYNPO2L是一个新的在肌肉富集表达的基因,参与了多种不同形式的心肌重构过程,可能在心肌重构中发挥重要的作用.%Purpose Muscle-enriched gene play an improtant role in the development of cardiac remodeling and heart failure. Up to date, however, the number of muscle-enriched gene is limited. Therefore, we need to clone more muscle-enriched genes. Methods and Results To explore novel muscle-enriched genes, we scaned three human multiple-tissue transcriptional databases using self-developed program Card iacScan. SYNPO2L was identified as novlc muslce-enriched gene. Real-time PCR analysis demonstrated that expression of SYNPO2L was down-regulated by 0.6 fold (P<0.0S) in physiological cardiac hypertrophy induced by treadmill training, but up-regulated by 2.4 fold(P<0.0001) in heart failure induced by transverse aortic constriction surgery. Conclusion SYNPO2L is a novle muscle-enriched gene which is involved in cardiac remodeling.

  3. High Intensity Interval and Endurance Training Have Opposing Effects on Markers of Heart Failure and Cardiac Remodeling in Hypertensive Rats

    Science.gov (United States)

    Holloway, Tanya M.; Bloemberg, Darin; da Silva, Mayne L.; Simpson, Jeremy A.; Quadrilatero, Joe; Spriet, Lawrence L.

    2015-01-01

    There has been re-emerging interest and significant work dedicated to investigating the metabolic effects of high intensity interval training (HIIT) in recent years. HIIT is considered to be a time efficient alternative to classic endurance training (ET) that elicits similar metabolic responses in skeletal muscle. However, there is a lack of information on the impact of HIIT on cardiac muscle in disease. Therefore, we determined the efficacy of ET and HIIT to alter cardiac muscle characteristics involved in the development of diastolic dysfunction, such as ventricular hypertrophy, fibrosis and angiogenesis, in a well-established rodent model of hypertension-induced heart failure before the development of overt heart failure. ET decreased left ventricle fibrosis by ~40% (P HIIT did not decrease existing fibrosis, and HIIT animals displayed a 20% increase in left ventricular mass (PHIIT also increased brain natriuretic peptide by 50% (PHIIT promoted a pathological adaptation in the left ventricle in the presence of hypertension, highlighting the need for further research on the widespread effects of HIIT in the presence of disease. PMID:25803693

  4. Improvement of cardiac function and reversal of gap junction remodeling by Neuregulin-1β in volume-overloaded rats with heart failure

    Institute of Scientific and Technical Information of China (English)

    Xue-Hui Wang; Xiao-Zhen Zhuo; Ya-Juan Ni; Min Gong; Ting-Zhong Wang; Qun Lu; Ai-Qun Ma

    2012-01-01

    Objective We performed experiments using Neuregulin-1β (NRG-1β) treatment to determine a mechanism for the protective role derived from its beneficial effects by remodeling gap junctions (GJs) during heart failure (HF). Methods Rat models of HF were established by aortocaval fistula. Forty-eight rats were divided randomly into the HF (HF, n = 16), NRG-1β treatment (NRG, n = 16), and sham operation (S, n = 16) group. The rats in the NRG group were administered NRG-1β (10 μg/kg per day) for 7 days via the tail vein, whereas the other groups were injected with the same doses of saline. Twelve weeks after operation, Connexin 43 (Cx43) expression in single myocytes obtained from the left ventricle was determined by immunocytochemistry. Total protein was extracted from frozen left ventricular tissues for immunoblotting assay, and the ultrastructure of myocytes was observed by transmission electron microscopy. Results Compared with the HF group, the cardiac function of rats in the NRG group was markedly improved, irregular distribution and deceased Cx43 expression were relieved. The ultrastructure of myocytes was seriously damaged in HF rats, and NRG-1β reduced these pathological damages. Conclusions Short-term NRG-1β treatment can rescue pump failure in experimental models of volume overload-induced HF, which is related to the recovery of GJs structure and the improvement of Cx43 expression.

  5. Assessment of cardiac remodeling in asymptomatic mitral regurgitation for surgery timing: a comparative study of echocardiography and magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Ozdogan Oner

    2010-08-01

    Full Text Available Abstract Background Early surgery is recommended for asymptomatic severe mitral regurgitation (MR, because of increased postoperative left ventricular (LV dysfunction in patients with late surgery. On the other hand, recent reports emphasized a "watchful waiting" process for the determination of the proper time of mitral valve surgery. In our study, we compared magnetic resonance imaging (MRI and transthoracic echocardiography to evaluate the LV and left atrial (LA remodeling; for better definitions of patients that may benefit from early valve surgery. Methods Twenty-one patients with moderate to severe asymptomatic MR were evaluated by echocardiography and MRI. LA and LV ejection fractions (EFs were calculated by echocardiography and MRI. Pulmonary veins (PVs were measured from vein orifices in diastole and systole from the tangential of an imaginary circle that completed LA wall. Right upper PV indices were calculated with the formula; (Right upper PV diastolic diameter- Right upper PV systolic diameter/Right upper PV diastolic diameter. Results In 9 patients there were mismatches between echocardiography and MRI measurements of LV EF. LV EFs were calculated ≥60% by echocardiography, meanwhile 0.05. However, both right upper PV indices (0.16 ± 0.06 vs. 0.24 ± 0.08, p: 0.024 and LA EFs (0.19 ± 0.09 vs. 0.33 ± 0.14, p: 0.025 were significantly decreased in patients with depressed EFs when compared to patients with normal EFs. Conclusions MRI might be preferred when small changes in functional parameters like LV EF, LA EF, and PV index are of clinical importance to disease management like asymptomatic MR patients that we follow up for appropriate surgery timing.

  6. Embryonic Stem Cell-Derived Cardiomyocyte Heterogeneity and the Isolation of Immature and Committed Cells for Cardiac Remodeling and Regeneration

    Directory of Open Access Journals (Sweden)

    Kenneth R. Boheler

    2011-01-01

    Full Text Available Pluripotent stem cells represent one promising source for cell replacement therapy in heart, but differentiating embryonic stem cell-derived cardiomyocytes (ESC-CMs are highly heterogeneous and show a variety of maturation states. In this study, we employed an ESC clonal line that contains a cardiac-restricted ncx1 promoter-driven puromycin resistance cassette together with a mass culture system to isolate ESC-CMs that display traits characteristic of very immature CMs. The cells display properties of proliferation, CM-restricted markers, reduced mitochondrial mass, and hypoxia-resistance. Following transplantation into rodent hearts, bioluminescence imaging revealed that immature cells, but not more mature CMs, survived for at least one month following injection. These data and comparisons with more mature cells lead us to conclude that immature hypoxia resistant ESC-CMs can be isolated in mass in vitro and, following injection into heart, form grafts that may mediate long-term recovery of global and regional myocardial contractile function following infarction.

  7. Postmyocardial Infarct Remodeling and Heart Failure: Potential Contributions from Pro- and Antiaging Factors

    Directory of Open Access Journals (Sweden)

    Halliday A. Idikio

    2011-01-01

    Full Text Available Myocardial infarction and adverse postinfarct remodeling in older persons lead to poor outcome and need greater understanding of the contributions of age-related factors on abnormal cardiac function and management. In this perspective, how normal aging processes could contribute to the events of post-myocardial infarction and remodeling is reviewed. Post-myocardial infarction and remodeling involve cardiomechanical factors and neurohormonal response. Many factors prevent or accelerate aging including immunosenescence, recruitment and regeneration of stem cells, telomere shortening, oxidative damage, antiaging hormones klotho and melatonin, nutrition, and Sirtiun protein family, and these factors could affect post-MI remodeling and heart failure. Interest in stem cell repair of myocardial infarcts to mitigate post-MI remodeling needs more information on aging of stem cells, and potential effects on stem cell use in infarct repair. Integrating genomics and proteomics methods may help find clinically novel therapy in the management of post-MI remodeling and heart failure in aged individuals.

  8. Potassium Channel Interacting Protein 2 (KChIP2) is not a transcriptional regulator of cardiac electrical remodeling.

    Science.gov (United States)

    Winther, Sine V; Tuomainen, Tomi; Borup, Rehannah; Tavi, Pasi; Antoons, Gudrun; Thomsen, Morten B

    2016-01-01

    The heart-failure relevant Potassium Channel Interacting Protein 2 (KChIP2) augments CaV1.2 and KV4.3. KChIP3 represses CaV1.2 transcription in cardiomyocytes via interaction with regulatory DNA elements. Hence, we tested nuclear presence of KChIP2 and if KChIP2 translocates into the nucleus in a Ca(2+) dependent manner. Cardiac biopsies from human heart-failure patients and healthy donor controls showed that nuclear KChIP2 abundance was significantly increased in heart failure; however, this was secondary to a large variation of total KChIP2 content. Administration of ouabain did not increase KChIP2 content in nuclear protein fractions in anesthetized mice. KChIP2 was expressed in cell lines, and Ca(2+) ionophores were applied in a concentration- and time-dependent manner. The cell lines had KChIP2-immunoreactive protein in the nucleus in the absence of treatments to modulate intracellular Ca(2+) concentration. Neither increasing nor decreasing intracellular Ca(2+) concentrations caused translocation of KChIP2. Microarray analysis did not identify relief of transcriptional repression in murine KChIP2(-/-) heart samples. We conclude that although there is a baseline presence of KChIP2 in the nucleus both in vivo and in vitro, KChIP2 does not directly regulate transcriptional activity. Moreover, the nuclear transport of KChIP2 is not dependent on Ca(2+). Thus, KChIP2 does not function as a conventional transcription factor in the heart. PMID:27349185

  9. Intrinsic Cardiac Autonomic Ganglionated Plexi within Epicardial Fats Modulate the Atrial Substrate Remodeling: Experiences with Atrial Fibrillation Patients Receiving Catheter Ablation

    Science.gov (United States)

    Singhal, Rahul; Lo, Li-Wei; Lin, Yenn-Jiang Lin; Chang, Shih-Lin; Hu, Yu-Feng; Chao, Tze-Fan; Chung, Fa-Po; Chiou, Cheun-Wang; Tsao, Hsuan-Ming; Chen, Shih-Ann

    2016-01-01

    Background A recent study reported the close relationship between high dominant frequent (DF) sites [atrial fibrillation (AF) nest] and the intrinsic cardiac autonomic nervous system. The aim of this study was to investigate the correlation between the regional distribution of epicardial fat and the properties of the biatrial substrates in AF patients. Methods We studied 32 patients with paroxysmal (n = 23) and persistent (n = 9) AF. The epicardial fat volume around the left atrium (LA) was evaluated using 64-slice multidetector computed tomography and the topographic distribution of the fat volume was assessed. The biatrial DFs, voltages, and total activation times (TATs) were obtained during sinus rhythm. Results Out of the 8 divided LA regions, a significant linear correlation existed between the LA fat and mean DF values in the right upper anterior LA, left upper anterior LA, right lower anterior LA, right upper posterior LA, left upper posterior LA, and left lower posterior LA. There was no significant correlation between the regional LA fat distribution and regional LA peak-to-peak bipolar voltage and TAT. During a mean follow-up of 17 ± 8 months, 22 of the 32 (69%) patients were free of AF. In the multivariate analysis, only the mean LA DF was found to be a significant predictor of recurrence. Conclusions There was a close association between the regional distribution of the LA epicardial fat and the atrial substrate manifesting high frequency during sinus rhythm (AF nest). Those nests were related to ablation outcome. Hence, epicardial fat may play a significant role in atrial substrate remodeling and thereby in the pathogenesis and maintenance of AF. PMID:27122948

  10. Identification of hub genes of cardiac remodeling by weighted gene co-expression network analysis%用权重基因共表达网络分析识别心脏重构关键节点基因

    Institute of Scientific and Technical Information of China (English)

    钟诗龙; 余细勇; 伍虹; 杨敏; 刘晓颖; 郑志伟; 林秋雄; 符永恒; 麦丽萍; 周志凌

    2011-01-01

    Cardiac remodeling after acute myocardial infarction is the main pathologic change of chronic heart failure. The balance of ACEI and ACE2 plays an important role in pathogenesis and treatment of chronic heart failure. However its upstream regulation mechanism is unclear. This study aimed to identify the hub genes of cardiac remodeling by mining publically available data sets using weighted gene co-expression network analysis ( WGCNA ) and to study their relationship with ACEI and ACE2 gene. Methods Two genome-wide expression data sets, GSE7487 and GSE738 . of cardiac remodeling after myocardial infarction were downloaded from NCBI GEO database.WGCNA was used to construct gene coexpression network. identify the modules and hub genes associated with cardiac remodeling. The correlation of expression of hub genes with ACEI and ACE2 was calculated and verified in an animal model of cardiac remodeling after myocardial infarction. Result Seventeen modules were found in GSE7487 and among which, 6 were significantlv correlated with cardiac remodeling and enriched in 16 KEGG pathways. Sixteen modules were found in GSE738 and among which, 5 were significantly correlated with cardiac remodeling and enriched in 15 KEGG pathways, 10 of which were the same as in the first dataset. Many signaling pathways involved pathological cardiac hypertrophy , oxidative phosphorylation ,and metabolism. A number of key regulatory genes of cardiac remodeling were further identified through module connectivity and gene significance. One of the key regulatory genes, calcium-dependent phosphatase regulon ( RCANI ). was found to be highly correlated with ACEI, but not ACE2. Their relationships were confirmed in an animal model. Conclusions Weighted gene co-expression network analysis is a robust systematic biological tool and can be used to identify the key regulatory genes of cardiac remodeling efficiently.RCANI may play an important role in regulating the balance of ACE1-ACE2 in renin

  11. A Transgenic Platform for Testing Drugs Intended for Reversal of Cardiac Remodeling Identifies a Novel 11βHSD1 Inhibitor Rescuing Hypertrophy Independently of Re-Vascularization

    OpenAIRE

    Oren Gordon; Zhiheng He; Dan Gilon; Sabine Gruener; Sherrie Pietranico-Cole; Amit Oppenheim; Eli Keshet

    2014-01-01

    RATIONALE: Rescuing adverse myocardial remodeling is an unmet clinical goal and, correspondingly, pharmacological means for its intended reversal are urgently needed. OBJECTIVES: To harness a newly-developed experimental model recapitulating progressive heart failure development for the discovery of new drugs capable of reversing adverse remodeling. METHODS AND RESULTS: A VEGF-based conditional transgenic system was employed in which an induced perfusion deficit and a resultant compromised ca...

  12. Top-Down Quantitative Proteomics Identified Phosphorylation of Cardiac Troponin I as a Candidate Biomarker for Chronic Heart Failure

    OpenAIRE

    Zhang, Jiang; Guy, Moltu J.; Norman, Holly S.; Chen, Yi-Chen; Xu, Qingge; Dong, Xintong; Guner, Huseyin; Wang, Sijian; Kohmoto, Takushi; Young, Ken H; Moss, Richard L.; Ge, Ying

    2011-01-01

    The rapid increase in the prevalence of chronic heart failure (CHF) worldwide underscores an urgent need to identify biomarkers for the early detection of CHF. Post-translational modifications (PTMs) are associated with many critical signaling events during disease progression and thus offer a plethora of candidate biomarkers. We have employed top-down quantitative proteomics methodology for comprehensive assessment of PTMs in whole proteins extracted from normal and diseased tissues. We have...

  13. Myocardial area at risk after ST-elevation myocardial infarction measured with the late gadolinium enhancement after scar remodeling and T2-weighted cardiac magnetic resonance imaging

    DEFF Research Database (Denmark)

    Lønborg, Jacob; Engstrøm, Thomas; Mathiasen, Anders B;

    2012-01-01

    To evaluate the myocardial area at risk (AAR) measured by the endocardial surface area (ESA) method on late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) when applied after scar remodeling (3 months after index infarction) compared to T2-weighted CMR imaging. One hundred and...

  14. Myocardial area at risk after ST-elevation myocardial infarction measured with the late gadolinium enhancement after scar remodeling and T2-weighted cardiac magnetic resonance imaging

    DEFF Research Database (Denmark)

    Lønborg, Jacob; Engstrøm, Thomas; Mathiasen, Anders B;

    2011-01-01

    To evaluate the myocardial area at risk (AAR) measured by the endocardial surface area (ESA) method on late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) when applied after scar remodeling (3 months after index infarction) compared to T2-weighted CMR imaging. One hundred and...

  15. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in...

  16. The association between biventricular pacing and cardiac resynchronization therapy-defibrillator efficacy when compared with implantable cardioverter defibrillator on outcomes and reverse remodelling

    DEFF Research Database (Denmark)

    Ruwald, Anne-Christine; Kutyifa, Valentina; Ruwald, Martin H;

    2015-01-01

    AIMS: Previous studies on biventricular (BIV) pacing and cardiac resynchronization therapy-defibrillator (CRT-D) efficacy have used arbitrarily chosen BIV pacing percentages, and no study has employed implantable cardioverter defibrillator (ICD) patients as a control group. METHODS AND RESULTS...

  17. Rationale and design of the Multidisciplinary Approach to Novel Therapies in Cardiology Oncology Research Trial (MANTICORE 101 - Breast): a randomized, placebo-controlled trial to determine if conventional heart failure pharmacotherapy can prevent trastuzumab-mediated left ventricular remodeling among patients with HER2+ early breast cancer using cardiac MRI

    International Nuclear Information System (INIS)

    MANTICORE 101 - Breast (Multidisciplinary Approach to Novel Therapies in Cardiology Oncology Research) is a randomized trial to determine if conventional heart failure pharmacotherapy (angiotensin converting enzyme inhibitor or beta-blocker) can prevent trastuzumab-mediated left ventricular remodeling, measured with cardiac MRI, among patients with HER2+ early breast cancer. One hundred and fifty-nine patients with histologically confirmed HER2+ breast cancer will be enrolled in a parallel 3-arm, randomized, placebo controlled, double-blind design. After baseline assessments, participants will be randomized in a 1:1:1 ratio to an angiotensin-converting enzyme inhibitor (perindopril), beta-blocker (bisoprolol), or placebo. Participants will receive drug or placebo for 1 year beginning 7 days before trastuzumab therapy. Dosages for all groups will be systematically up-titrated, as tolerated, at 1 week intervals for a total of 3 weeks. The primary objective of this randomized clinical trial is to determine if conventional heart failure pharmacotherapy can prevent trastuzumab-mediated left ventricular remodeling among patients with HER2+ early breast cancer, as measured by 12 month change in left ventricular end-diastolic volume using cardiac MRI. Secondary objectives include 1) determine the evolution of left ventricular remodeling on cardiac MRI in patients with HER2+ early breast cancer, 2) understand the mechanism of trastuzumab mediated cardiac toxicity by assessing for the presence of myocardial injury and apoptosis on serum biomarkers and cardiac MRI, and 3) correlate cardiac biomarkers of myocyte injury and extra-cellular matrix remodeling with left ventricular remodeling on cardiac MRI in patients with HER2+ early breast cancer. Cardiac toxicity as a result of cancer therapies is now recognized as a significant health problem of increasing prevalence. To our knowledge, MANTICORE will be the first randomized trial testing proven heart failure pharmacotherapy in

  18. Rationale and design of the Multidisciplinary Approach to Novel Therapies in Cardiology Oncology Research Trial (MANTICORE 101 - Breast: a randomized, placebo-controlled trial to determine if conventional heart failure pharmacotherapy can prevent trastuzumab-mediated left ventricular remodeling among patients with HER2+ early breast cancer using cardiac MRI

    Directory of Open Access Journals (Sweden)

    Ezekowitz Justin

    2011-07-01

    Full Text Available Abstract Background MANTICORE 101 - Breast (Multidisciplinary Approach to Novel Therapies in Cardiology Oncology Research is a randomized trial to determine if conventional heart failure pharmacotherapy (angiotensin converting enzyme inhibitor or beta-blocker can prevent trastuzumab-mediated left ventricular remodeling, measured with cardiac MRI, among patients with HER2+ early breast cancer. Methods/Design One hundred and fifty-nine patients with histologically confirmed HER2+ breast cancer will be enrolled in a parallel 3-arm, randomized, placebo controlled, double-blind design. After baseline assessments, participants will be randomized in a 1:1:1 ratio to an angiotensin-converting enzyme inhibitor (perindopril, beta-blocker (bisoprolol, or placebo. Participants will receive drug or placebo for 1 year beginning 7 days before trastuzumab therapy. Dosages for all groups will be systematically up-titrated, as tolerated, at 1 week intervals for a total of 3 weeks. The primary objective of this randomized clinical trial is to determine if conventional heart failure pharmacotherapy can prevent trastuzumab-mediated left ventricular remodeling among patients with HER2+ early breast cancer, as measured by 12 month change in left ventricular end-diastolic volume using cardiac MRI. Secondary objectives include 1 determine the evolution of left ventricular remodeling on cardiac MRI in patients with HER2+ early breast cancer, 2 understand the mechanism of trastuzumab mediated cardiac toxicity by assessing for the presence of myocardial injury and apoptosis on serum biomarkers and cardiac MRI, and 3 correlate cardiac biomarkers of myocyte injury and extra-cellular matrix remodeling with left ventricular remodeling on cardiac MRI in patients with HER2+ early breast cancer. Discussion Cardiac toxicity as a result of cancer therapies is now recognized as a significant health problem of increasing prevalence. To our knowledge, MANTICORE will be the first

  19. 先心病心脏重构患者血清血管紧张素转化酶2水平研究%The Serum Levels of Angiotensin-converting Enzyme2 in Patients of Congenital Heart Disease with Cardiac Remodeling

    Institute of Scientific and Technical Information of China (English)

    郭玥; 吕宁; 尹小龙

    2013-01-01

    目的 观察先心病(congenital heart disease,CHD)伴心脏重构(Cardiac remodeling)患者血管紧张素转化酶2 (angiotensin-convertirg enzyrre 2,ACE2)含量和活性的变化,探讨它们与心脏重构的关系.方法 收集被确诊为先心病的患者104例, (其中无心脏重构组80例,合并心脏重构组24例),正常对照组33例.抽取受试者静脉血,应用酶联免疫吸附法(ELISA)检测血清ACE2酶含量,用比色法检测ACE2酶活性的水平,所得实验数据使用SPSS统计软件进行分析.结果 (1)正常对照组、先心病无心脏重构组、先心病心脏重构组ACE2酶含量测定值分别为(15.79± 5.03) U/L、(18.85±6.46) U/L、(14.80±4.58) U/L.正常对照组与先心病无心脏重构组比较,ACE2含量差异有统计学意义(P<0.05);正常对照组与先心病心脏重构组比较,ACE2含量无差异(P>0.05);先心病无心脏重构组与心脏重构组比较,ACE2含量差异有统计学意义(P<0.01); (2)正常对照组、先心病无心脏重构组、先心病心脏重构组ACE2酶活性测定值分别为(1.75±0.82) U/L、(1.85±0.62) U/L、(158±0.52) U/L,3组间比较差异无统计学意义(P>0.05).结论 (1)先心病无心脏重构患者血清中的ACE2酶含量显著升高; (2)先心病无心脏重构患者与心脏重构患者血清中ACE2酶活性无变化.%Objective To observe the Angiotensin-converting enzyme2 (ACE2) protein contents and activity in the serum of patients with Congenital Heart Disease (CHD) combined with cardiac remodeling (CR) , and investigate the correlation of those with cardiac remodeling. Methods 104 patients with Congenital Heart Disease and 33 normal control patients were collected. The patients with congenital heart disease were divided into 80 cases of non-cardiac remodeling group, and 24 cases of cardiac remodeling group. The serum levels of ACE2 protein were detected by enzyme-linked immunosorbent assay ( ELISA) , ACE2 activity was detected by colorimetric

  20. Accelerated cardiac remodeling in desmoplakin transgenic mice in response to endurance exercise is associated with perturbed Wnt/β-catenin signaling.

    Science.gov (United States)

    Martherus, Ruben; Jain, Rahul; Takagi, Ken; Mendsaikhan, Uzmee; Turdi, Subat; Osinska, Hanna; James, Jeanne F; Kramer, Kristen; Purevjav, Enkhsaikhan; Towbin, Jeffrey A

    2016-01-15

    Arrhythmogenic ventricular cardiomyopathy (AVC) is a frequent underlying cause for arrhythmias and sudden cardiac death especially during intense exercise. The mechanisms involved remain largely unknown. The purpose of this study was to investigate how chronic endurance exercise contributes to desmoplakin (DSP) mutation-induced AVC pathogenesis. Transgenic mice with overexpression of desmoplakin, wild-type (Tg-DSP(WT)), or the R2834H mutant (Tg-DSP(R2834H)) along with control nontransgenic (NTg) littermates were kept sedentary or exposed to a daily running regimen for 12 wk. Cardiac function and morphology were analyzed using echocardiography, electrocardiography, histology, immunohistochemistry, RNA, and protein analysis. At baseline, 4-wk-old mice from all groups displayed normal cardiac function. When subjected to exercise, all mice retained normal cardiac function and left ventricular morphology; however, Tg-DSP(R2834H) mutants displayed right ventricular (RV) dilation and wall thinning, unlike NTg and Tg-DSP(WT). The Tg-DSP(R2834H) hearts demonstrated focal fat infiltrations in RV and cytoplasmic aggregations consisting of desmoplakin, plakoglobin, and connexin 43. These aggregates coincided with disruption of the intercalated disks, intermediate filaments, and microtubules. Although Tg-DSP(R2834H) mice already displayed high levels of p-GSK3-β(Ser9) and p-AKT1(Ser473) under sedentary conditions, decrease of nuclear GSK3-β and AKT1 levels with reduced p-GSK3-β(Ser9), p-AKT1(Ser473), and p-AKT1(Ser308) and loss of nuclear junctional plakoglobin was apparent after exercise. In contrast, Tg-DSP(WT) showed upregulation of p-AKT1(Ser473), p-AKT1(Ser308), and p-GSK3-β(Ser9) in response to exercise. Our data suggest that endurance exercise accelerates AVC pathogenesis in Tg-DSP(R2834H) mice and this event is associated with perturbed AKT1 and GSK3-β signaling. Our study suggests a potential mechanism-based approach to exercise management in patients with AVC

  1. Mechanical cardiac remodeling and new-onset atrial fibrillation in long-term follow-up of subjects with chronic Chagas' disease

    Directory of Open Access Journals (Sweden)

    P.R. Benchimol-Barbosa

    2009-03-01

    Full Text Available Atrial fibrillation (AF affects subjects with Chagas' disease and is an indicator of poor prognosis. We investigated clinical, echocardiographic and electrocardiographic variables of Chagas' disease in a long-term longitudinal study as predictors of a new-onset AF episode lasting >24 h, nonfatal embolic stroke and cardiac death. Fifty adult outpatients (34 to 74 years old, 62% females staged according to the Los Andes classification were enrolled. During a follow-up of (mean ± SD 84.2 ± 39.0 months, 9 subjects developed AF (incidence: 3.3 ± 1.0%/year, 5 had nonfatal stroke (incidence: 1.3 ± 1.0%/year, and nine died (mortality rate: 2.3 ± 0.8%/year. The progression rate of left ventricular mass and left ventricular ejection fraction was significantly greater in subjects who experienced AF (16.4 ± 20.0 g/year and -8.6 ± 7.6%/year, respectively than in those who did not (8.2 ± 8.4 g/year; P = 0.03, and -3.0 ± 2.5%/year; P = 0.04, respectively. In univariate analysis, left atrial diameter ≥3.2 cm (P = 0.002, pulmonary arterial hypertension (P = 0.035, frequent premature supraventricular and ventricular contraction counts/24 h (P = 0.005 and P = 0.007, respectively, ventricular couplets/24 h (P = 0.002, and ventricular tachycardia (P = 0.004 were long-term predictors of AF. P-wave signal-averaged ECG revealed a limited long-term predictive value for AF. In chronic Chagas' disease, large left atrial diameter, pulmonary arterial hypertension, frequent supraventricular and ventricular premature beats, and ventricular tachycardia are long-term predictors of AF. The rate of left ventricular mass enlargement and systolic function deterioration impact AF incidence in this population.

  2. Influence on left cardiac remodeling and left ventricular function in coronary heart disease by performing percutaneous transluminal coronary angioplasty and stent implantation and drug re-intervention therapy%冠心病PTCA+支架术及药物再干预对左心重构和左室功能的影响

    Institute of Scientific and Technical Information of China (English)

    赵文强; 王俊; 谢红珍; 吴艳君; 潘啸东

    2008-01-01

    Objective To study influence of percutaneous transluminal coronary angioplasty (PTCA) and stent implantation on left cardiac remodeling and left ventricular function and clinical effect of drug re-inter- vention in coronary heart disease. Methods 98 patients with coronary heart disease were divided into 4 groups one year after performing percutaneous coronary intervention (PCI), clinical and echocardiographic indexes of left cardiac remodeling and left ventricular function were examined by comparison of 4 groups of post-PCI versus pre-PCI, influences of different PCI strategy and different drug re-interventions on left cardiac remodeling and left cardiac function were analysed. Results NYHA cardiac function grade,6 minute's walk test,left atrial volume index( LAVI), left ventricular diastolic-end volume index (LVDEVI), eject fraction (EF), ventricular Wall movement loss fraction(WMLF) in 4 groups of post-PCI were better than those in pre-PCI(all P < 0.001). Those in 6 months group and 12 months group of post-PCI were also better than those in 1 week group of post-PCI(all P<0.01). LAVI, LVEDVI, EF and WMLF were significantly different among different groups of PCI strategy, and better by comparison of Group simvastatin and Group irbesartan versus group of routine drug, but little different by Group tirofiban versus group of routine drug in patients undergoing drug re-intervention of post-PCL Concluslan Left cardiac remodeling and left ventricular function in coronary heart disease have a significant improvement in post-PCIone year, suitable PCI strategy and drug re-intervention have further influence on bettering left cardiac remodeling and left ventricular function.%目的 研究PTCA+支架术对左心重构和左室功能的影响及药物再干预的效果.方法 对98例冠心病患者经皮冠状动脉介入治疗(PCI)术后1年内4组与术前左心重构、左室功能的临床与超声指标对比研究,对不同PCI策略和不同药物干预效应与

  3. Cardiac Remodelling in Thermally Acclimated Fish

    OpenAIRE

    Fenna, Andrew

    2013-01-01

    Fish are subject to a variety of long and short term environmental and physical insults during their life; however they manage to adapt, ensuring physiological processes remain effective, enabling the animal to thrive in a wide range of conditions. One major environmental fluctuation that can occur rapidly or over a long period of time is temperature. Teleost fish, such as the rainbow trout (Oncorhynchus mykiss) are ectothermic, meaning their body temperature is regulated by environmental tem...

  4. Effect of simvastatin on cardiac function and left ventricular remodeling in patients with heart failure%辛伐他汀对心力衰竭患者心脏功能及左心室重构的影响

    Institute of Scientific and Technical Information of China (English)

    李国锋; 孙立伟; 黎笑冰

    2011-01-01

    Objectives To observing the effect of simvastatin on cardiac function and left ventricular remodeling in patients with heart failure. Methods Sixty one cases with non-ischemic heart failure were randomly divided into observation group (n=30) and control group (n=31 ) in The People's Hospital of Dongguan from Jan 2008 to Jul 2009. The two groups were given conventional therapy. Observation group was given simvastatin 20 mg/d in a course of 6 months. Heart function and biochemical changes of the two groups were observed and compared. Results After 6 months of treatment, the New York Heart Association (NYHA) classification [(2.0±0.4) grade vs. (2.5±0.4) grade, P<0.01 ]and left ventricular ejection fraction (LVEF)[58.7% ± 5.2% vs. 43.0% ± 5.7%, P<0.01 ]of observation group were improved significantly (P<0.01). NYHA classification of control group was improved [(2.1 ±0.4) grade vs. (2.4±0.4) grade, P<0.05]. LVEF of control group showed improved tendence, but had no significance (47.6% ± 5.3% vs. 40.9% ± 6.3%, P=0.052). Conclusions Patients with non-ischemic heart failure treated with simvastatin on the base of conventional treatment can significantly improve cardiac function and left ventricular remodeling, and it is safe and effective.%目的 观察小剂量辛伐他汀对心力衰竭患者心脏功能及左心室重构的影响.方法 选取2008年1月至2009年7月东莞市人民医院确诊为非缺血性心力衰竭的患者61例为研究对象.按电脑随机数字表法将入选对象分为观察组(n=30)与对照组(n=31),观察组在标准心力衰竭治疗基础上加服辛伐他汀(20 mg/d,治疗期6个月).比较两组治疗前后患者心脏功能、生化指标的变化.结果 经过6个月的治疗,观察组纽约心脏协会心功能分级[(2.0±0.4)级vs.(2.5±0.4)级,P<0.01]和左心室射血分数(58.7%±5.2% vs.43.0%±5.7%,P<0.01)显著改善,差异有统计学意义;对照组纽约心脏协会心功能

  5. Functional role of anion channels in cardiac diseases

    Institute of Scientific and Technical Information of China (English)

    Da-yue DUAN; Luis LH LIU; Nathan BOZEAT; Z Maggie HUANG; Sunny Y XIANG; Guan-lei WANG; Linda YE; Joseph R HUME

    2005-01-01

    In comparison to cation (K+, Na+, and Ca2+) channels, much less is currently known about the functional role of anion (Cl-) channels in cardiovascular physiology and pathophysiology. Over the past 15 years, various types of Cl- currents have been recorded in cardiac cells from different species including humans. All cardiac Cl- channels described to date may be encoded by five different Cl- channel genes: the PKA- and PKC-activated cystic fibrosis tansmembrane conductance regulator (CFTR), the volume-regulated ClC-2 and ClC-3, and the Ca2+-activated CLCA or Bestrophin. Recent studies using multiple approaches to examine the functional role of Cl- channels in the context of health and disease have demonstrated that Cl- channels might contribute to: 1) arrhythmogenesis in myocardial injury; 2) cardiac ischemic preconditioning; and 3) the adaptive remodeling of the heart during myocardial hypertrophy and heart failure. Therefore,anion channels represent very attractive novel targets for therapeutic approaches to the treatment of heart diseases. Recent evidence suggests that Cl- channels,like cation channels, might function as a multiprotein complex or functional module.In the post-genome era, the emergence of functional proteomics has necessitated a new paradigm shift to the structural and functional assessment of integrated Cl- channel multiprotein complexes in the heart, which could provide new insight into our understanding of the underlying mechanisms responsible for heart disease and protection.

  6. Transplantation proteomics

    OpenAIRE

    Traum, Avram Z.; Schachter, Asher D.

    2005-01-01

    The field of proteomics is developing at a rapid pace in the post-genome era. Translational proteomics investigations aim to apply a combination of established methods and new technologies to learn about protein expression profiles predictive of clinical events, therapeutic response, and underlying mechanisms. However, in contrast to genetic studies and in parallel with gene expression studies, the dynamic nature of the proteome in conjunction with the challenges of accounting for post-transl...

  7. Cardiac electrical stunning is a common feature of cardiac arrhythmias.

    Science.gov (United States)

    Li, Guangping; Liu, Tong; Liu, Enzhao

    2006-01-01

    There are many published papers focused on the topic of atrial electrical remodeling, which defined as the shortening and dispersion of effective refractory period (ERP) in patients with paroxysmal or persistent tachyarrhythmias or in animals with long-term rapid atrial pacing. Heart failure could produce the electrical remodeling of sinus node, manifesting the prolongation of corrected sinus node recovery time and sinus cycle length. It might be attributed to decreased hyperpolarization-activated cyclic nucleotide expression of sinus node. Rapid atrial pacing for only 10-15 min, simulating transient atrial tachyarrhythmias, alters sinus node function in human. Termination of atrial flutter by ablation induces reversible changes in sinus node function. After atrial fibrillation (AF) ablation, there was a significant improvement of sinus node function, with an increase in the mean heart rate, maximal heart rate and heart rate range significantly. Reverse electrical remodeling of the ERP occurs at different rates in different regions of the atrium. Previous experiments showed that electrical remodeling of atrial myocardium could be induced by autonomic nervous transmitters and suggested that autonomic nerve activity was an important factor to promote AF episodes. We postulated that electrical remodeling and reverse electrical remodeling are common features of the heart, including atrium, ventricle, sinus node, and conductive system. Inappropriate very rapid or slow electrical depolarization may cause electrical remodeling of the heart, but appropriate rates of electrical depolarization and cessation of rapid stimulation may contribute to the reverse electrical remodeling. So, we forward that a concept defined as cardiac electrical stunning, including electrical remodeling and reverse electrical remodeling, should be a common characteristic and mechanism of cardiac arrhythmias. PMID:16759818

  8. Proteomic analysis of age dependent nitration of rat cardiac proteins by solution isoelectric focusing coupled to nano-HPLC tandem mass spectrometry

    OpenAIRE

    Hong, Sung Jung; Gokulrangan, Giridharan; Schöneich, Christian

    2007-01-01

    Protein nitration occurs as a result of oxidative stress induced by reactive oxygen (ROS) and reactive nitrogen species (RNS). Therefore, protein nitration serves as a hallmark for protein oxidation in vivo. We have previously reported on age dependent protein nitration in cardiac tissue of Fisher 344 BN-F1 rats analyzed by two-dimensional gel electrophoresis; however, only one specific nitration site was identified (Kanski et al., 2005a). In the present report, we used solution phase isoelec...

  9. Prevention of disease progression by cardiac resynchronization therapy in patients with asymptomatic or mildly symptomatic left ventricular dysfunction: insights from the European cohort of the REVERSE (Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction) trial

    DEFF Research Database (Denmark)

    Daubert, Claude; Gold, Michael R; Abraham, William T;

    2009-01-01

    dimensions were decreased in this patient population in New York Heart Association functional classes I or II. These observations suggest that CRT prevents the progression of disease in patients with asymptomatic or mildly symptomatic LV dysfunction. (REsynchronization reVErses Remodeling in Systolic Left v...

  10. Postmyocardial Infarct Remodeling and Heart Failure: Potential Contributions from Pro- and Antiaging Factors

    OpenAIRE

    Idikio, Halliday A.

    2011-01-01

    Myocardial infarction and adverse postinfarct remodeling in older persons lead to poor outcome and need greater understanding of the contributions of age-related factors on abnormal cardiac function and management. In this perspective, how normal aging processes could contribute to the events of post-myocardial infarction and remodeling is reviewed. Post-myocardial infarction and remodeling involve cardiomechanical factors and neurohormonal response. Many factors prevent or accelerate aging...

  11. Involvement of peroxisome proliferator-activated receptors in cardiac and vascular remodeling in a novel minipig model of insulin resistance and atherosclerosis induced by consumption of a high-fat/cholesterol diet

    OpenAIRE

    Yongming, Pan; Zhaowei, Cai; Yichao, Ma; Keyan, Zhu; Liang, Chen; Fangming, Chen; Xiaoping, Xu; Quanxin, Ma; Minli, Chen

    2015-01-01

    Background A long-term high-fat/cholesterol (HFC) diet leads to insulin resistance (IR), which is associated with inflammation, atherosclerosis (AS), cardiac sympathovagal imbalance, and cardiac dysfunction. Peroxisome proliferator-activated receptors (PPARs) and nuclear factor ĸB (NF-κB) are involved in the development of IR-AS. Thus, we elucidated the pathological molecular mechanism of IR-AS by feeding an HFC diet to Tibetan minipigs to induce IR and AS. Methods Male Tibetan minipigs were ...

  12. What Is Cancer Proteomics?

    Science.gov (United States)

    ... What is Proteomics? Video Tutorial What is Cancer Proteomics? Print This Page The term "proteome" refers to ... that a cell or organism undergoes. The term "proteomics" is a large-scale comprehensive study of a ...

  13. Proteomic Biomarkers of Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Natacha Diaz-Prieto

    2008-01-01

    Full Text Available Biomarkers provide a powerful approach to understanding the spectrum of cardiovascular diseases. They have application in screening, diagnostic, prognostication, prediction of recurrences and monitoring of therapy. The “omics” tool are becoming very useful in the development of new biomarkers in cardiovascular diseases. Among them, proteomics is especially fitted to look for new proteins in health and disease and is playing a significant role in the development of new diagnostic tools in cardiovascular diagnosis and prognosis. This review provides an overview of progress in applying proteomics to atherosclerosis. First, we describe novel proteins identified analysing atherosclerotic plaques directly. Careful analysis of proteins within the atherosclerotic vascular tissue can provide a repertoire of proteins involved in vascular remodelling and atherogenesis. Second, we discuss recent data concerning proteins secreted by atherosclerotic plaques. The definition of the atheroma plaque secretome resides in that proteins secreted by arteries can be very good candidates of novel biomarkers. Finally we describe proteins that have been differentially expressed (versus controls by individual cells which constitute atheroma plaques (endothelial cells, vascular smooth muscle cells, macrophages and foam cells as well as by circulating cells (monocytes, platelets or novel biomarkers present in plasma.

  14. Proteomic Biomarkers of Atherosclerosis.

    Science.gov (United States)

    Vivanco, F; Padial, L R; Darde, V M; de la Cuesta, F; Alvarez-Llamas, G; Diaz-Prieto, Natacha; Barderas, M G

    2008-01-01

    SUMMARY: Biomarkers provide a powerful approach to understanding the spectrum of cardiovascular diseases. They have application in screening, diagnostic, prognostication, prediction of recurrences and monitoring of therapy. The "omics" tool are becoming very useful in the development of new biomarkers in cardiovascular diseases. Among them, proteomics is especially fitted to look for new proteins in health and disease and is playing a significant role in the development of new diagnostic tools in cardiovascular diagnosis and prognosis. This review provides an overview of progress in applying proteomics to atherosclerosis. First, we describe novel proteins identified analysing atherosclerotic plaques directly. Careful analysis of proteins within the atherosclerotic vascular tissue can provide a repertoire of proteins involved in vascular remodelling and atherogenesis. Second, we discuss recent data concerning proteins secreted by atherosclerotic plaques. The definition of the atheroma plaque secretome resides in that proteins secreted by arteries can be very good candidates of novel biomarkers. Finally we describe proteins that have been differentially expressed (versus controls) by individual cells which constitute atheroma plaques (endothelial cells, vascular smooth muscle cells, macrophages and foam cells) as well as by circulating cells (monocytes, platelets) or novel biomarkers present in plasma. PMID:19578499

  15. Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 1D Simulation Study

    OpenAIRE

    Gómez García, Juan Francisco; Romero Pérez, Lucia; Ferrero De Loma-Osorio, José María; Trenor Gomis, Beatriz Ana

    2014-01-01

    Background: Heart failure is a final common pathway or descriptor for various cardiac pathologies. It is associated with sudden cardiac death, which is frequently caused by ventricular arrhythmias. Electrophysiological remodeling, intercellular uncoupling, fibrosis and autonomic imbalance have been identified as major arrhythmogenic factors in heart failure etiology and progression. Objective: In this study we investigate in silico the role of electrophysiological and structur...

  16. Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5'-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells.

    Science.gov (United States)

    Chang, Wenguang; Zhang, Ming; Meng, Zhaojie; Yu, Yang; Yao, Fan; Hatch, Grant M; Chen, Li

    2015-12-15

    Diabetic cardiomyopathy is the major cause of death in type 2 diabetic patients. Berberine is an isoquinoline alkaloid extract from traditional chinese herbs and its hypoglycemic and hypolipidemic effects make it a promising drug for treatment of type 2 diabetes. We examined if berberine improved cardiac function and attenuated cardiac hypertrophy and fibrosis in high fat diet and streptozotocin induced-type 2 diabetic rats in vivo and reduced expression of hypertrophy markers in palmitate-induced hypertrophic H9c2 cells in vitro. Treatment of diabetic animals with berberine partially improved cardiac function and restored fasting blood insulin, fasting blood glucose, total cholesterol, and triglyceride levels to that of control. In addition, berberine treatment of diabetic animals increased cardiac 5'-adenosine monophosphate-activated protein kinase (AMPK) and protein kinase B (AKT) activation and reduced glycogen synthase kinase 3 beta (GSK3β) activation compared to control. Palmitate incubation of H9c2 cells resulted in cellular hypertrophy and decreased expression of alpha-myosin heavy chain (α-MHC) and increased expression of beta-myosin heavy chain (β-MHC) compared to controls. Berberine treatment of palmitate-incubated H9c2 cells reduced hypertrophy, increased α-MHC expression and decreased β-MHC expression. In addition, berberine treatment of palmitate-incubated H9c2 cells increased AMPK and AKT activation and reduced GSK3β activation. The presence of the AMPK inhibitor Compound C attenuated the effects of berberine. The results strongly indicate that berberine treatment may be protective against the development of diabetic cardiomyopathy. PMID:26522928

  17. Immunoregulation of bone remodelling

    Science.gov (United States)

    Singh, Ajai; Mehdi, Abbass A; Srivastava, Rajeshwer N; Verma, Nar Singh

    2012-01-01

    Remodeling, a continuous physiological process maintains the strength of the bones, which maintains a delicate balance between bone formation and resorption process. This review gives an insight to the complex interaction and correlation between the bone remodeling and the corresponding changes in host immunological environment and also summarises the most recent developments occuring in the understanding of this complex field. T cells, both directly and indirectly increase the expression of receptor activator of nuclear factor kB ligand (RANKL); a vital step in the activation of osteoclasts, thus positively regulates the osteoclastogenesis. Though various cytokines, chemikines, transcription factors and co-stimulatory molecules are shared by both skeletal and immune systems, but researches are being conducted to establish and analyse their role and / or control on this complex but vital process. The understanding of this part of research may open new horizons in the management of inflammatory and autoimmune diseases, resulting into bone loss and that of osteoporosis also. PMID:22837895

  18. 二尖瓣环位移对肥厚性重构患者左室收缩功能的评估作用%Evaluation of left ventricular systolic dysfunction by mitral annular displacement in patients with cardiac hypertrophy and remodeling

    Institute of Scientific and Technical Information of China (English)

    吴卫华; 黄艳; 陆静; 马兰; 魏松霞; 谢晓奕; 刘奇志; 王雷; 杨玲

    2011-01-01

    目的 应用超声二维斑点追踪显像技术测定二尖瓣环位移(MAD),探讨其在评估肥厚性重构所致的早期左室收缩功能减退方面的临床应用价值.方法 选择86例左室射血分数(LVEF)正常(>50%)的各类心肌肥厚(左室壁厚度≥12 mm)患者作为研究对象.采用Philips Sonos iE33超声仪进行检查,先通过M型超声计算出相对室壁厚度(RWT),然后取心尖四腔观分别采集二维和实时三维全容积(RT3D)图像.应用QLAB 6.2在机量化分析软件分别获取MAD相关参数(包括二尖瓣环中点位移和左室长轴缩短率)和经RT3D图像测得左室射血分数(RT3D-LVEF);计算三维心肌重构指标,包括左室舒末容积指数(LVEDVI)和左室质量指数(LVMI).将心肌肥厚患者中RWT<0.45且LVMI在正常范围内的患者归入肥厚正常几何构型组(HNG组),其余归入肥厚重构组(HR组);以46名年龄相匹配的健康志愿者作为正常对照组.结果 HNG组、HR组和正常对照组的RT3D-LVEF均在正常范围内,两两比较差异均无统计学意义(P>0.05).HR组的MAD各值和LVEDVI均显著低于HNG组和正常对照组,差异均有统计学意义(P<0.01或P<0.05);HNG组与正常对照组MAD相关参数值和LVEDVI比较差异均无统计学意义(P>0.05).Bland-Altman分析显示MAD各值的可重复性较高.结论 在心肌肥厚性重构患者中,与LVEF比较,MAD能更早地反映患者的左室收缩功能减退情况.%Objective To investigate the value of mitral annular displacement (MAD) by two-dimensional speckle tracking in evaluating left ventricular systolic dysfunction in patients with cardiac hypertrophy and remodeling.Methods Eightysix patients with cardiac hypertrophy ( left ventricular wall thickness ≥ 12 mm) and normal left ventricular ejection fraction (LVEF) ( > 50% ) were selected.Philips Sonos iE33 ultrasound device was used for examinations.Relative wall thickness (IRWT) was calculated by M mode ultrasound, and two

  19. Restenosis and remodeling

    International Nuclear Information System (INIS)

    Percutaneous Transluminal Coronary Angioplasty (PTCA) remains limited by restenosis that occurs in 30 to 50% of patients with coronary artery disease. During the last decade, numerous agents have been used to prevent restenosis. Despite positive results in animal models, no pharmacological therapy has been found to significantly decrease the risk of restenosis in humans. These discrepancies between animal models and clinical situation were probably related to an incomplete understanding of the mechanism of restenosis. Neointimal thickening occurs in response to experimental arterial injury with a balloon catheter. Neointimal formation involves different steps: smooth muscle cell activation, proliferation and migration, and the production of extracellular matrix. The factors that control neointimal hyperplasia include growth factors humoral factors and mechanical factors. Arterial remodeling also plays a major role in the restenosis process. Studies performed in animal and human subjects have established the potentials for 'constrictive remodeling' to reduce the post-angioplasty vessel area, thereby indirectly narrowing the vessel lumen and thus contributing to restenosis. The reduction of restenosis rate in patients with intracoronary stent implantation has been attributed to the preventive effect of stent itself for this negative remodeling. In addition to these mechanism for restenosis, intraluminal or intra-plaque thrombus formation, reendothelialization and apoptosis theories have been introduced and confirmed at least in part

  20. Atrial Electrical Remodeling and Sleep Disordered Breathing

    Directory of Open Access Journals (Sweden)

    Adrian Baranchuk; Diego Conde

    2013-08-01

    . The results of this study have shown that patients with severe SDB have a longer SAPW duration than controls (131.9 ± 10.4 vs 122.8 ± 10.5 ms; p = 0.04 and that a significant reduction of the SAPW duration occurs after treatment with C-PAP (131.9 ± 10.4 to 126.2 ± 8.8 ms; p < 0.001 (Figure 1 (4. The shortening of SAPW duration and surface P-wave duration represents more rapid inter-atrial conduction and provides evidence for reverse atrial electrical remodeling. This may indicate an additional benefit of treating patients with C-PAP, as this evidence suggests that C-PAP may improve the anatomical and electrical substrate for AFib. Reverse atrial electrical remodeling is a concept in evolution, and several cardiovascular treatments may improve atrial dynamics (5. It is of utmost importance, in the times of considering AFib ablation as first line therapy for recurrent AFib; to be familiarized with the impact of non-recognized/non-treated SDBs over the cardiac electrical system. Conventional treatment for SDB as C-PAP may also represent a benefit in terms of facilitating normal atrial conduction and reducing the risks associated with AFib.

  1. Proteome Sci.

    OpenAIRE

    Mann Matthias; Poustka Albert J; Mann Karlheinz

    2010-01-01

    Abstract Background Sea urchin is a major model organism for developmental biology and biomineralization research. However, identification of proteins involved in larval skeleton formation and mineralization processes in the embryo and adult, and the molecular characterization of such proteins, has just gained momentum with the sequencing of the Strongylocentrotus purpuratus genome and the introduction of high-throughput proteomics into the field. Results The present report contains the deter...

  2. Intra-coronary administration of soluble receptor for advanced glycation end-products attenuates cardiac remodeling with decreased myocardial transforming growth factor-β1 expression and fibrosis in minipigs with ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    LU Lin; SHEN Wei-feng; ZHANG Qi; XU Yan; ZHU Zheng-bin; GENG Liang; WANG Ling-jie; JIN Cao; CHEN Qiu-jing; Ann Marie Schmidt

    2010-01-01

    Background The cardioprotective effects of soluble receptor for advanced glycation end-products (sRAGE) have not been evaluated in large animals and the underlying mechanisms are not fully understood. This study aimed to evaluate the effects of intra-coronary administration of sRAGE on left ventricular function and myocardial remodeling in a porcine model of ischemia-reperfusion (I/R) injury. Methods Ten male minipigs with I/R injury were randomly allocated to receive intra-coronary administration of sRAGE (sRAGE group, n=5) or saline (control group, n=5). Echocardiography was performed before and 2 months after infarction. Myocardial expression of transforming growth factor (TGF)-β1was determined by immunohistochemistry and fibrosis was evaluated by Sirius red staining. Results As compared with the baseline values in the control animals, left ventricular end-diastolic volume (from (19.5 5.1) to (32.3 5.6) ml, P <0.05) and end-systolic volume (from (8.3 3.2) to (15.2 4.1) ml, P <0.05) were significantly increased, whereas ejection fraction was decreased (from (61.6 13.3)% to (50.2 11.9)%, P<0.05). No obvious change in these parameters was observed in the sRAGE group. Myocardial expression of TGF-β1 was significantly elevated in the infarct and non-infarct regions in the control group, as compared with sRAGE group (both P<0.01). Fibrotic lesions were consistently more prominent in the infarct region of the myocardium in the control animals (P<0.05). Conclusion Intra-coronary sRAGE administration attenuates RAGE-mediated myocardial fibrosis and I/R injury through a TGF-β1-dependent mechanism, suggesting a clinical potential in treating RAGE/ligand-associated cardiovascular diseases.

  3. Myocardial reverse remodeling: how far can we rewind?

    Science.gov (United States)

    Rodrigues, Patrícia G; Leite-Moreira, Adelino F; Falcão-Pires, Inês

    2016-06-01

    Heart failure (HF) is a systemic disease that can be divided into HF with reduced ejection fraction (HFrEF) and with preserved ejection fraction (HFpEF). HFpEF accounts for over 50% of all HF patients and is typically associated with high prevalence of several comorbidities, including hypertension, diabetes mellitus, pulmonary hypertension, obesity, and atrial fibrillation. Myocardial remodeling occurs both in HFrEF and HFpEF and it involves changes in cardiac structure, myocardial composition, and myocyte deformation and multiple biochemical and molecular alterations that impact heart function and its reserve capacity. Understanding the features of myocardial remodeling has become a major objective for limiting or reversing its progression, the latter known as reverse remodeling (RR). Research on HFrEF RR process is broader and has delivered effective therapeutic strategies, which have been employed for some decades. However, the RR process in HFpEF is less clear partly due to the lack of information on HFpEF pathophysiology and to the long list of failed standard HF therapeutics strategies in these patient's outcomes. Nevertheless, new proteins, protein-protein interactions, and signaling pathways are being explored as potential new targets for HFpEF remodeling and RR. Here, we review recent translational and clinical research in HFpEF myocardial remodeling to provide an overview on the most important features of RR, comparing HFpEF with HFrEF conditions. PMID:26993225

  4. Longstanding hyperthyroidism is associated with normal or enhanced intrinsic cardiomyocyte function despite decline in global cardiac function.

    Directory of Open Access Journals (Sweden)

    Nathan Y Weltman

    Full Text Available Thyroid hormones (THs play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH. LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function.

  5. A exposição crônica à fumaça do cigarro resulta em remodelação cardíaca e prejuízo da função ventricular em ratos Chronic cigarette smoke exposure results in cardiac remodeling and impaired ventricular function in rats

    Directory of Open Access Journals (Sweden)

    Édson Castardeli

    2005-04-01

    Full Text Available OBJETIVO: Determinar as alterações cardíacas estruturais e funcionais causadas pela exposição à fumaça do cigarro em ratos. MÉTODOS: Os animais foram aleatoriamente distribuídos em dois grupos: fumante (F, composto por 10 animais, expostos à fumaça do cigarro, na taxa de 40 cigarros/dia e controle (C, constituído por 10 animais não submetidos à exposição. Após 4 meses, os animais foram submetidos a estudo morfológico e funcional por meio do ecocardiograma. As variáveis estudadas foram analisadas pelo teste t ou pelo teste de Mann-Whitney. RESULTADOS: Os ratos fumantes apresentaram maior átrio esquerdo (F=4,2± 0,7mm; C=3,5±0,6mm; pOBJECTIVE: To determine the cardiac structural and functional alterations caused by cigarette smoke exposure in rats. METHODS: The animals were randomly distributed into the following 2 groups: 1 smokers (S, comprising 10 animals exposed to cigarette smoke at a rate of 40 cigarettes/day; and 2 control (C, comprising 10 animals not exposed to cigarette smoke. After 4 months, the animals underwent morphological and functional study with echocardiography. The variables studied were analyzed by use of the t test or the Mann-Whitney test. RESULTS: The smoking rats had a greater left atrium (S=4.2±0.7mm; C=3.5±0.6mm; P<0.05, and greater left ventricular diastolic (S=7.9±0.7mm; C=7.2±0.5mm; P<0.05 and systolic (S=4.1±0.5; C=3.4±0.5; P<0.05 diameters. The left ventricular mass index was greater in the smoking animals (S=1.5mg/kg±0.2; C=1.3mg/kg±0.2; P<0.05, and the ejection fraction (S=0.85±0.03; C=0.89±0.03; P<0.05 and the shortening fraction (S=47.8%±3.7; C=52.7%±4.6; P<0.05 were greater in the control group. No differences were observed in the diastolic transmitral flow variables (E wave, A wave, and E/A ratio. CONCLUSION: Chronic cigarette smoke exposure results in cardiac remodeling with a decrease in ventricular functional capacity.

  6. Cardiac metabolic pathways affected in the mouse model of barth syndrome.

    Science.gov (United States)

    Huang, Yan; Powers, Corey; Madala, Satish K; Greis, Kenneth D; Haffey, Wendy D; Towbin, Jeffrey A; Purevjav, Enkhsaikhan; Javadov, Sabzali; Strauss, Arnold W; Khuchua, Zaza

    2015-01-01

    Cardiolipin (CL) is a mitochondrial phospholipid essential for electron transport chain (ETC) integrity. CL-deficiency in humans is caused by mutations in the tafazzin (Taz) gene and results in a multisystem pediatric disorder, Barth syndrome (BTHS). It has been reported that tafazzin deficiency destabilizes mitochondrial respiratory chain complexes and affects supercomplex assembly. The aim of this study was to investigate the impact of Taz-knockdown on the mitochondrial proteomic landscape and metabolic processes, such as stability of respiratory chain supercomplexes and their interactions with fatty acid oxidation enzymes in cardiac muscle. Proteomic analysis demonstrated reduction of several polypeptides of the mitochondrial respiratory chain, including Rieske and cytochrome c1 subunits of complex III, NADH dehydrogenase alpha subunit 5 of complex I and the catalytic core-forming subunit of F0F1-ATP synthase. Taz gene knockdown resulted in upregulation of enzymes of folate and amino acid metabolic pathways in heart mitochondria, demonstrating that Taz-deficiency causes substantive metabolic remodeling in cardiac muscle. Mitochondrial respiratory chain supercomplexes are destabilized in CL-depleted mitochondria from Taz knockdown hearts resulting in disruption of the interactions between ETC and the fatty acid oxidation enzymes, very long-chain acyl-CoA dehydrogenase and long-chain 3-hydroxyacyl-CoA dehydrogenase, potentially affecting the metabolic channeling of reducing equivalents between these two metabolic pathways. Mitochondria-bound myoglobin was significantly reduced in Taz-knockdown hearts, potentially disrupting intracellular oxygen delivery to the oxidative phosphorylation system. Our results identify the critical pathways affected by the Taz-deficiency in mitochondria and establish a future framework for development of therapeutic options for BTHS. PMID:26030409

  7. No-Regrets Remodeling, 2nd Edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-12-01

    No-Regrets Remodeling, sponsored by Oak Ridge National Laboratory, is an informative publication that walks homeowners and/or remodelers through various home remodeling projects. In addition to remodeling information, the publication provides instruction on how to incorporate energy efficiency into the remodeling process. The goal of the publication is to improve homeowner satisfaction after completing a remodeling project and to provide the homeowner with a home that saves energy and is comfortable and healthy.

  8. Proteomics study revealed altered proteome of Dichogaster curgensis upon exposure to fly ash.

    Science.gov (United States)

    Markad, Vijaykumar L; Adav, Sunil S; Ghole, Vikram S; Sze, Siu Kwan; Kodam, Kisan M

    2016-10-01

    Fly ash is toxic and its escalating use as a soil amendment and disposal by dumping into environment is receiving alarming attention due to its impact on environment. Proteomics technology is being used for environmental studies since proteins respond rapidly when an organism is exposed to a toxicant, and hence soil engineers such as earthworms are used as model organisms to assess the toxic effects of soil toxicants. This study adopted proteomics technology and profiled proteome of earthworm Dichogaster curgensis that was exposed to fly ash, with main aim to elucidate fly ash effects on cellular and metabolic pathways. The functional classification of identified proteins revealed carbohydrate metabolism (14.36%), genetic information processing (15.02%), folding, sorting and degradation (10.83%), replication and repair (3.95%); environmental information processing (2.19%), signal transduction (9.61%), transport and catabolism (17.27%), energy metabolism (6.69%), etc. in the proteome. Proteomics data and functional assays revealed that the exposure of earthworm to fly ash induced protein synthesis, up-regulation of gluconeogenesis, disturbed energy metabolism, oxidative and cellular stress, and mis-folding of proteins. The regulation of ubiquitination, proteasome and modified alkaline comet assay in earthworm coelomocytes suggested DNA-protein cross link affecting chromatin remodeling and protein folding. PMID:27371791

  9. Physiological and pathological cardiac hypertrophy.

    Science.gov (United States)

    Shimizu, Ippei; Minamino, Tohru

    2016-08-01

    The heart must continuously pump blood to supply the body with oxygen and nutrients. To maintain the high energy consumption required by this role, the heart is equipped with multiple complex biological systems that allow adaptation to changes of systemic demand. The processes of growth (hypertrophy), angiogenesis, and metabolic plasticity are critically involved in maintenance of cardiac homeostasis. Cardiac hypertrophy is classified as physiological when it is associated with normal cardiac function or as pathological when associated with cardiac dysfunction. Physiological hypertrophy of the heart occurs in response to normal growth of children or during pregnancy, as well as in athletes. In contrast, pathological hypertrophy is induced by factors such as prolonged and abnormal hemodynamic stress, due to hypertension, myocardial infarction etc. Pathological hypertrophy is associated with fibrosis, capillary rarefaction, increased production of pro-inflammatory cytokines, and cellular dysfunction (impairment of signaling, suppression of autophagy, and abnormal cardiomyocyte/non-cardiomyocyte interactions), as well as undesirable epigenetic changes, with these complex responses leading to maladaptive cardiac remodeling and heart failure. This review describes the key molecules and cellular responses involved in physiological/pathological cardiac hypertrophy. PMID:27262674

  10. Implantable Defibrillators Improve Survival in Patients With Mildly Symptomatic Heart Failure Receiving Cardiac Resynchronization Therapy

    DEFF Research Database (Denmark)

    Gold, Michael R; Daubert, Jean-Claude; Abraham, William T;

    2013-01-01

    Cardiac resynchronization therapy (CRT) decreases mortality, improves functional status, and induces reverse left ventricular remodeling in selected populations with heart failure. These benefits have been noted with both CRT-pacemakers as well as those devices with defibrillator backup (CRT...

  11. Urine in clinical proteomics.

    OpenAIRE

    Decramer, Stéphane; Gonzalez de Peredo, Anne; Breuil, Benjamin; Mischak, Harald; Monsarrat, Bernard; Bascands, Jean-Loup; Schanstra, Joost P

    2008-01-01

    Urine has become one of the most attractive biofluids in clinical proteomics as it can be obtained non-invasively in large quantities and is stable compared with other biofluids. The urinary proteome has been studied by almost any proteomics technology, but mass spectrometry-based urinary protein and peptide profiling has emerged as most suitable for clinical application. After a period of descriptive urinary proteomics the field is moving out of the discovery phase into an era of validation ...

  12. Mining the granule proteome

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Goetze, Jens P; Johnsen, Anders H

    2015-01-01

    Proteomics of secretory granules is an emerging strategy for identifying secreted proteins, including potentially novel candidate biomarkers and peptide hormones. In addition, proteomics can provide information about the abundance, localization and structure (post-translational modification) of...... granule proteins and peptides. Analytical strategies within this research line include so-called 'subtractive proteomics', 'peptidomics' and granule purification by the use of multiple gradient centrifugations. Here we review the literature, and describe the challenges and opportunities in proteomics of...

  13. The effects of cytoskeletal disruption and mechanical load on cardiac conduction

    OpenAIRE

    Wright, Adam Thomas

    2010-01-01

    Myocardial disease is often associated with altered cardiac conduction and increased incidence of arrhythmia. Underlying mechanisms responsible for changes in conduction include altered calcium handling, myocardial remodeling, and mechanically induced changes in electrophysiology. The goal of this work was to utilize optical mapping experimental techniques and genetically modified mouse models to investigate two of these mechanisms: myocardial remodeling associated with disruption of the cyto...

  14. Vitamin D and Cardiac Differentiation.

    Science.gov (United States)

    Kim, Irene M; Norris, Keith C; Artaza, Jorge N

    2016-01-01

    Calcitriol (1,25-dihydroxycholecalciferol or 1,25-D3) is the hormonally active metabolite of vitamin D. Experimental studies of vitamin D receptors and 1,25-D3 establish calcitriol to be a critical regulator of the structure and function of the heart. Clinical studies link vitamin D deficiency with cardiovascular disease (CVD). Emerging evidence demonstrates that calcitriol is highly involved in CVD-related signaling pathways, particularly the Wnt signaling pathway. Addition of 1,25-D3 to cardiomyocyte cells and examination of its effects on cardiomyocytes and mainly Wnt11 signaling allowed the specific characterization of the role of calcitriol in cardiac differentiation. 1,25-D3 is demonstrated to: (i) inhibit cell proliferation without promoting apoptosis; (ii) decrease expression of genes related to the regulation of the cell cycle; (iii) promote formation of cardiomyotubes; (iv) induce expression of casein kinase-1-α1, a negative regulator of the canonical Wnt signaling pathway; and (v) increase expression of noncanonical Wnt11, which has been recognized to induce cardiac differentiation during embryonic development and in adult cells. Thus, it appears that vitamin D promotes cardiac differentiation through negative modulation of the canonical Wnt signaling pathway and upregulation of noncanonical Wnt11 expression. Future work to elucidate the role(s) of vitamin D in cardiovascular disorders will hopefully lead to improvement and potentially prevention of CVD, including abnormal cardiac differentiation in settings such as postinfarction cardiac remodeling. PMID:26827957

  15. Induced Sputum Proteome in Health and Asthma

    Science.gov (United States)

    Gharib, Sina A.; Nguyen, Elizabeth V.; Lai, Ying; Plampin, Jessica D.; Goodlett, David R.; Hallstrand, Teal S.

    2014-01-01

    Background Asthma is a heterogeneous disease characterized by abnormal airway pathophysiology and susceptibility to different stimuli, as exemplified by a subset of individuals with exercise-induced bronchoconstriction (EIB). Induced sputum provides a noninvasive method to sample airway biofluids that are enriched in proteins. Objective We hypothesized that novel mechanisms in the pathogenesis of asthma may be revealed by studying the patterns of protein expression in induced sputum. Methods We used shotgun proteomics to analyze induced sputum from 5 normal individuals and 10 asthmatics, including 5 with EIB. Differential protein expression between asthmatics, asthma subphenotypes and control subjects was determined using spectral counting and computational methods. Results Using Gene Ontology analysis, we defined the functional landscape of induced sputum proteome and applied network analysis to construct a protein interaction map for this airway compartment. Shotgun proteomics analysis identified a number of proteins whose differential enrichment or depletion robustly distinguishedasthmatics from normal controls, and captured the effects of exercise on induced sputum proteome. Functional and network analysis identified key processes, including proteolytic activity that are known contributors to airway remodeling. Importantly, this approach highlighted previously unrecognized roles for differentially expressed proteins in pathways implicated in asthma, such as modulation of phospholipase A2 by secretoglobin, a putative role for S100A8/9 in human asthma, and selective upregulation of complement 3a in response to exercise in asthmatics. Conclusion Computationally-intensive analysis of induced sputum proteome is a powerful approach to understand the pathophysiology of asthma and a promising methodology to investigate other diseases of the airways. PMID:21906793

  16. High Methionine Diet Poses Cardiac Threat: A Molecular Insight.

    Science.gov (United States)

    Chaturvedi, Pankaj; Kamat, Pradip K; Kalani, Anuradha; Familtseva, Anastasia; Tyagi, Suresh C

    2016-07-01

    High methionine diet (HMD) for example red meat which includes lamb, beef, pork can pose cardiac threat and vascular dysfunction but the mechanisms are unclear. We hypothesize that a diet rich in methionine can malfunction the cardiovascular system in three ways: (1) by augmenting oxidative stress; (2) by inflammatory manifestations; and (3) by matrix/vascular remodeling. To test this hypothesis we used four groups of mice: (1) WT; (2) WT + methionine; (3) CBS(+/-) ; (4) CBS(+/-) +methionine. We observed high oxidative stress in mice fed with methionine which was even higher in CBS(+/-) and CBS(+/-) +methionine. Higher oxidative stress was indicated by high levels of SOD-1 in methionine fed mouse hearts whereas IL-1β, IL-6, TNFα, and TLR4 showed high inflammatory manifestations. The upregulated levels of eNOS/iNOS and upregulated levels of MMP2/MMP9 along with high collagen deposition indicated vascular and matrix remodeling in methionine fed mouse. We evaluated the cardiac function which was dysregulated in the mice fed with HMD. These mice had decreased ejection fraction and left ventricular dysfunction which subsequently leads to adverse cardiac remodeling. In conclusion, our study clearly shows that HMD poses a cardiac threat by increasing oxidative stress, inflammatory manifestations, matrix/vascular remodeling, and decreased cardiac function. J. Cell. Physiol. 231: 1554-1561, 2016. © 2015 Wiley Periodicals, Inc. PMID:26565991

  17. PROTEOMICS in aquaculture

    DEFF Research Database (Denmark)

    Rodrigues, Pedro M.; Silva, Tomé S.; Dias, Jorge;

    2012-01-01

    proteomics in seafood biology research. Proteomics, as a powerful comparative tool, has therefore been increasingly used over the last decade to address different questions in aquaculture, regarding welfare, nutrition, health, quality, and safety. In this paper we will give an overview of these biological...... questions and the role of proteomics in their investigation, outlining the advantages, disadvantages and future challenges. A brief description of the proteomics technical approaches will be presented. Special focus will be on the latest trends related to the aquaculture production of fish with defined...... nutritional, health or quality properties for functional foods and the integration of proteomics techniques in addressing this challenging issue. This article is part of a Special Issue entitled: Farm animal proteomics....

  18. STEM CELLS AND PROTEOMICS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yong-ming; GUO Tian-nan; HUANG Shi-ang

    2006-01-01

    The distinctive features of proteomics are large-scale and high throughput. The key techniques of proteomics are two-dimensional gel electrophoresis, mass spectrometry and bioinformatics. Stem cell can differentiate into all kinds of cells, tissues and organs. There are many proteins and cytokines involved in the process of differentiation. Applying proteomics techniques to the research of the complex process of stem cell differentiation is of great importance to study the mechanism and applications of stem cell differentiation.

  19. Simulated Microgravity and Recovery-Induced Remodeling of the Left and Right Ventricle

    Science.gov (United States)

    Zhong, Guohui; Li, Yuheng; Li, Hongxing; Sun, Weijia; Cao, Dengchao; Li, Jianwei; Zhao, Dingsheng; Song, Jinping; Jin, Xiaoyan; Song, Hailin; Yuan, Xinxin; Wu, Xiaorui; Li, Qi; Xu, Qing; Kan, Guanghan; Cao, Hongqing; Ling, Shukuan; Li, Yingxian

    2016-01-01

    Physiological adaptations to microgravity involve alterations in cardiovascular systems. These adaptations result in cardiac remodeling and orthostatic hypotension. However, the response of the left ventricle (LV) and right ventricle (RV) following hindlimb unloading (HU) and hindlimb reloading (HR) is not clear and the underlying mechanism remains to be understood. In this study, three groups of mice were subjected to HU by tail suspension for 28 days. Following this, two groups were allowed to recover for 7 or 14 days. The control group was treated equally, with the exception of tail suspension. Echocardiography was performed to detect the structure and function changes of heart. Compared with the control, the HU group of mice showed reduced LV-EF (ejection fraction), and LV-FS (fractional shortening). However, mice that were allowed to recover for 7 days after HU (HR-7d) showed increased LVIDs (systolic LV internal diameter) and LV Vols (systolic LV volume). Mice that recovered for 14 days (HR-14d) returned to the normal state. In comparison, RV-EF and RV-FS didn't recover to the normal conditions till being reloaded for 14 days. Compared with the control, RVIDd (diastolic RV internal diameter), and RV Vold (diastolic RV volume) were reduced in HU group and recovered to the normal conditions in HR-7d and HR-14d groups, in which groups RVIDs (systolic RV internal diameter) and RV Vols (systolic RV volume) were increased. Histological analysis and cardiac remodeling gene expression results indicated that HU induces left and right ventricular remodeling. Western blot demonstrated that the phosphorylation of HDAC4 and ERK1/2 and the ratio of LC3-II / LC3-I, were increased following HU and recovered following HR in both LV and RV, and the phosphorylation of AMPK was inhibited in both LV and RV following HU, but only restored in LV following HR for 14 days. These results indicate that simulated microgravity leads to cardiac remodeling, and the remodeling changes can

  20. Remodeling of alveolar septa after murine pneumonectomy.

    Science.gov (United States)

    Ysasi, Alexandra B; Wagner, Willi L; Bennett, Robert D; Ackermann, Maximilian; Valenzuela, Cristian D; Belle, Janeil; Tsuda, Akira; Konerding, Moritz A; Mentzer, Steven J

    2015-06-15

    In most mammals, removing one lung (pneumonectomy) results in the compensatory growth of the remaining lung. In mice, stereological observations have demonstrated an increase in the number of mature alveoli; however, anatomic evidence of the early phases of alveolar growth has remained elusive. To identify changes in the lung microstructure associated with neoalveolarization, we used tissue histology, electron microscopy, and synchrotron imaging to examine the configuration of the alveolar duct after murine pneumonectomy. Systematic histological examination of the cardiac lobe demonstrated no change in the relative frequency of dihedral angle components (Ends, Bends, and Junctions) (P > 0.05), but a significant decrease in the length of a subset of septal ends ("E"). Septal retraction, observed in 20-30% of the alveolar ducts, was maximal on day 3 after pneumonectomy (P alveolar duct diameter ratio (Dout:Din) was significantly lower 3 days after pneumonectomy compared to all controls except for the detergent-treated lung (P surface tension within the alveolar duct, resulting in a new equilibrium at a higher total energy and lower surface area. The spatial and temporal association of these microstructural changes with postpneumonectomy lung growth suggests that these changes represent an early phase of alveolar duct remodeling. PMID:26078396

  1. Proteomics Technologies and Challenges

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Proteomics is the study of proteins and their interactions in a cell. With the completion of the Human Genome Project, the emphasis is shifting to the protein compliment of the human organism. Because proteome reflects more accurately on the dynamic state of a cell, tissue, or organism, much is expected from proteomics to yield better disease markers for diagnosis and therapy monitoring. The advent of proteomics technologies for global detection and quantitation of proteins creates new opportunities and challenges for those seeking to gain greater understanding of diseases. High-throughput proteomics technologies combining with advanced bioinformatics are extensively used to identify molecular signatures of diseases based on protein pathways and signaling cascades. Mass spectrometry plays a vital role in proteomics and has become an indispensable tool for molecular and cellular biology. While the potential is great, many challenges and issues remain to be solved, such as mining low abundant proteins and integration of proteomics with genomics and metabolomics data. Nevertheless, proteomics is the foundation for constructing and extracting useful knowledge to biomedical research. In this review, a snapshot of contemporary issues in proteomics technologies is discussed.

  2. Cardiac rehabilitation

    Science.gov (United States)

    ... attack or other heart problem. You might consider cardiac rehab if you have had: Heart attack Coronary heart disease (CHD) Heart failure Angina (chest pain) Heart or heart valve surgery Heart transplant Procedures such as angioplasty and stenting In some ...

  3. Cardiac Rehabilitation

    Science.gov (United States)

    Cardiac rehabilitation (rehab) is a medically supervised program to help people who have A heart attack Angioplasty or coronary artery bypass grafting for coronary heart disease A heart valve repair or replacement A ...

  4. Cardiac sarcoidosis

    OpenAIRE

    Costello BT; Nadel J.; Taylor AJ

    2016-01-01

    Benedict T Costello,1,2 James Nadel,3 Andrew J Taylor,1,21Department of Cardiovascular Medicine, The Alfred Hospital, 2Baker IDI Heart and Diabetes Research Institute, Melbourne, VIC, 3School of Medicine, University of Notre Dame, Sydney, NSW, Australia Abstract: Cardiac sarcoidosis is a rare but life-threatening condition, requiring a high degree of clinical suspicion and low threshold for investigation to make the diagnosis. The cardiac manifestations include heart failure, conducting syst...

  5. Remodeling in the ischemic heart: the stepwise progression for heart

    Directory of Open Access Journals (Sweden)

    J.G. Mill

    2011-09-01

    Full Text Available Abstract Coronary artery disease is the leading cause of death in the developed world and in developing countries. Acute mortality from acute myocardial infarction (MI has decreased in the last decades. However, the incidence of heart failure (HF in patients with healed infarcted areas is increasing. Therefore, HF prevention is a major challenge to the health system in order to reduce healthcare costs and to provide a better quality of life. Animal models of ischemia and infarction have been essential in providing precise information regarding cardiac remodeling. Several of these changes are maladaptive, and they progressively lead to ventricular dilatation and predispose to the development of arrhythmias, HF and death. These events depend on cell death due to necrosis and apoptosis and on activation of the inflammatory response soon after MI. Systemic and local neurohumoral activation has also been associated with maladaptive cardiac remodeling, predisposing to HF. In this review, we provide a timely description of the cardiovascular alterations that occur after MI at the cellular, neurohumoral and electrical level and discuss the repercussions of these alterations on electrical, mechanical and structural dysfunction of the heart. We also identify several areas where insufficient knowledge limits the adoption of better strategies to prevent HF development in chronically infarcted individuals.

  6. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.

    Directory of Open Access Journals (Sweden)

    Chunxiang Yao

    Full Text Available Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2, react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat, an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a 'Tandem Mass Tag' (TMT labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation.

  7. Chronic hypoxia inhibits MMP-2 activation and cellular invasion in human cardiac myofibroblasts

    OpenAIRE

    Riches, Kirsten; Morley, Michael E.; Turner, Neil A; O'Regan, David J; Ball, Stephen G; Peers, Chris; Porter, Karen E

    2009-01-01

    Cardiac myofibroblasts are pivotal to adaptive remodelling after myocardial infarction (MI). These normally quiescent cells invade and proliferate as a wound healing response, facilitated by activation of matrix metalloproteinases, particularly MMP-2. Following MI these reparative events occur under chronically hypoxic conditions yet the mechanisms by which hypoxia might modulate MMP-2 activation and cardiac myofibroblast invasion have not been investigated. Human cardiac myofibroblasts cultu...

  8. Maternal cardiac adaptations to a physical exercise program during pregnancy

    OpenAIRE

    Perales, María; Santos-Lozano, Alejandro; Sanchís-Gomar, Fabián; Luaces, María; Pareja Galeano, Helios; Garatachea, Nuria; Barakat, Rubén; Lucía Mulas, Alejandro

    2016-01-01

    INTRODUCTION: Scarce evidence exists regarding the effects of regular pregnancy exercise on maternal cardiovascular health. We aimed to study, using a randomized controlled trial design, the effects of pregnancy exercise on: echocardiographic indicators of hemodynamics, cardiac remodeling and left ventricular function, and cardiovascular disease (CVD) risk factors. METHODS: 241 healthy pregnant women were assigned to a control (standard care) or intervention (exercise) group (initi...

  9. 胰岛素对大鼠心肌梗死后心室重构和心脏功能的影响及其机制%Effects of insulin on ventricular remodeling and cardiac functions after myocardial infarction and its underlying mechanism

    Institute of Scientific and Technical Information of China (English)

    韦广洪; 付锋; 马斌; 薛洋; 李嘉; 张利华

    2013-01-01

    目的:探讨胰岛素对大鼠心肌梗死(MI)后心室重构和心脏功能的影响及其机制.方法:80只成年雄性Sprague-Dawley大鼠行冠状动脉左前降支(LAD)结扎制备MI模型,随机分为5组:即假手术(Sham)组(n=20)、生理盐水对照(MI+ NS)组(n=20)、胰岛素治疗(MI+ Ins)组(n=20)、肿瘤坏死因子α(TNF-α)拮抗剂益赛普治疗(MI+ En)组(n=10)及Ins+ En治疗(MI+ Ins+ En)组(n=10).用ELISA法检测各组大鼠在MI后1周和4周时,心肌及血清TNF-α的水平.超声心动图测定各组大鼠左室射血分数(EF)、缩短分数(FS)和左心室舒张末内径(LVEDD)、左心室收缩末内径(LVESD)、经右颈总动脉插管测定血压(BP)、左室舒张压(LVDP)和最大左室舒张压/收缩压变化速率(±LVdp/dtmax).结果:大鼠MI后心肌中TNF-α增加,Ins治疗可明显降低大鼠心肌中TNF-α的含量(P<0.05,n=6).Ins治疗组大鼠EF、FS、LVDP和±LVdp/dtmax均明显高于对照组(P <0.05,n=10),LVESD明显低于对照组(P<0.05,n=10).与单独En治疗组相比,Ins+ En治疗组大鼠EF、FS、LVDP和±LVdp/dtmax明显升高、LVESD明显降低(P <0.05,n=10).结论:Ins可抑制MI后心室的扩张,改善心脏功能,但其机制不依赖于抑制心肌TNF-α的产生.%AIM: To investigate the effect of insulin treatment on ventricular remodeling and cardiac functions after myocardial infarction (MI) and the underlying mechanism. METHODS: MI models were established by ligation of the left anterior descending coronary artery (LAD). Eighty male adult Sprague Dawley rats were randomly divided into five groups: sham (n = 20) , MI + saline ( n = 20) , MI + insulin (n = 20) , MI + etanercept ( n = 10) , and MI + etanercept + insulin ( n = 10 ) . Serum and myocardial tumor necrosis factor-α (TNF-α) were measured at 1 week and 4 weeks after MI. Left ventricular (LV) fractional shortening ( FS) , ejection fraction ( EF) , LV end-diastolic diameter ( LVEDD) and end-systolic diameter (LVESD) were measured

  10. Effect of melatonin, captopril, spironolactone and simvastatin on blood pressure and left ventricular remodelling in spontaneously hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Šimko, F.; Pecháňová, Olga; Pelouch, Václav; Krajčírovičová, K.; Müllerová, M.; Bednárová, K.; Adamcová, M.; Paulis, L.

    2009-01-01

    Roč. 27, Suppl.6 (2009), S5-S10. ISSN 0263-6352 R&D Projects: GA ČR GA305/09/0336 Institutional research plan: CEZ:AV0Z50110509 Keywords : cardiac hypertrophy * fibrosis * ventricular remodeling Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 4.988, year: 2009

  11. SPS’ Digest: the Swiss Proteomics Society selection of proteomics articles

    OpenAIRE

    Hoogland, C.; Lion, N.; Palagi, P.M.; Sanchez, J. C.; Tissot, J. D.

    2005-01-01

    Despite the consolidation of the specialized proteomics literature around a few established journals, such as Proteomics, Molecular and Cellular Proteomics, and the Journal of Proteome Research, a lot of information is still spread in many different publications from different fields, such as analytical sciences, MS, bioinformatics, etc. The purpose of SPS’ Digest is to gather a selection of proteomics articles, to categorize them, and to make the list available on a periodic basis through a ...

  12. Left ventricular structure and remodeling in patients with COPD

    Science.gov (United States)

    Pelà, Giovanna; Li Calzi, Mauro; Pinelli, Silvana; Andreoli, Roberta; Sverzellati, Nicola; Bertorelli, Giuseppina; Goldoni, Matteo; Chetta, Alfredo

    2016-01-01

    Background Data on cardiac alterations such as left ventricular (LV) hypertrophy, diastolic dysfunction, and lower stroke volume in patients with COPD are discordant. In this study, we investigated whether early structural and functional cardiac changes occur in patients with COPD devoid of manifest cardiovascular disease, and we assessed their associations with clinical and functional features. Methods Forty-nine patients with COPD belonging to all Global Initiative for Chronic Obstructive Lung Disease (GOLD) classes were enrolled and compared with 36 controls. All subjects underwent clinical history assessment, lung function testing, blood pressure measurement, electrocardiography, and conventional and Doppler tissue echocardiography. Patients were also subjected to computed tomography to quantify emphysema score. Results Patients with COPD had lower LV cavity associated with a marked increase in relative wall thickness (RWT), suggesting concentric remodeling without significant changes in LV mass. RWT was significantly associated with ratio of the forced expiratory volume in 1 second to the forced vital capacity and emphysema score and was the only cardiac parameter that – after multivariate analysis – significantly correlated with COPD conditions in all individuals. Receiver operating characteristic curve analysis showed that RWT (with a cutoff point of 0.42) predicted the severity of COPD with 83% specificity and 56% sensitivity (area under the curve =0.69, 95% confidence interval =0.59–0.81). Patients with COPD showed right ventricular to be functional but no structural changes. Conclusion Patients with COPD without evident cardiovascular disease exhibit significant changes in LV geometry, resulting in concentric remodeling. In all individuals, RWT was significantly and independently related to COPD. However, its prognostic role should be determined in future studies. PMID:27257378

  13. Neural remodeling in retinal degeneration.

    Science.gov (United States)

    Marc, Robert E; Jones, Bryan W; Watt, Carl B; Strettoi, Enrica

    2003-09-01

    Mammalian retinal degenerations initiated by gene defects in rods, cones or the retinal pigmented epithelium (RPE) often trigger loss of the sensory retina, effectively leaving the neural retina deafferented. The neural retina responds to this challenge by remodeling, first by subtle changes in neuronal structure and later by large-scale reorganization. Retinal degenerations in the mammalian retina generally progress through three phases. Phase 1 initiates with expression of a primary insult, followed by phase 2 photoreceptor death that ablates the sensory retina via initial photoreceptor stress, phenotype deconstruction, irreversible stress and cell death, including bystander effects or loss of trophic support. The loss of cones heralds phase 3: a protracted period of global remodeling of the remnant neural retina. Remodeling resembles the responses of many CNS assemblies to deafferentation or trauma, and includes neuronal cell death, neuronal and glial migration, elaboration of new neurites and synapses, rewiring of retinal circuits, glial hypertrophy and the evolution of a fibrotic glial seal that isolates the remnant neural retina from the surviving RPE and choroid. In early phase 2, stressed photoreceptors sprout anomalous neurites that often reach the inner plexiform and ganglion cell layers. As death of rods and cones progresses, bipolar and horizontal cells are deafferented and retract most of their dendrites. Horizontal cells develop anomalous axonal processes and dendritic stalks that enter the inner plexiform layer. Dendrite truncation in rod bipolar cells is accompanied by revision of their macromolecular phenotype, including the loss of functioning mGluR6 transduction. After ablation of the sensory retina, Müller cells increase intermediate filament synthesis, forming a dense fibrotic layer in the remnant subretinal space. This layer invests the remnant retina and seals it from access via the choroidal route. Evidence of bipolar cell death begins in

  14. Cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie

    2011-07-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  15. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.

    2002-01-01

    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  16. Chromatin remodeling, development and disease

    International Nuclear Information System (INIS)

    Development is a stepwise process in which multi-potent progenitor cells undergo lineage commitment, differentiation, proliferation and maturation to produce mature cells with restricted developmental potentials. This process is directed by spatiotemporally distinct gene expression programs that allow cells to stringently orchestrate intricate transcriptional activation or silencing events. In eukaryotes, chromatin structure contributes to developmental progression as a blueprint for coordinated gene expression by actively participating in the regulation of gene expression. Changes in higher order chromatin structure or covalent modification of its components are considered to be critical events in dictating lineage-specific gene expression during development. Mammalian cells utilize multi-subunit nuclear complexes to alter chromatin structure. Histone-modifying complex catalyzes covalent modifications of histone tails including acetylation, methylation, phosphorylation and ubiquitination. ATP-dependent chromatin remodeling complex, which disrupts histone-DNA contacts and induces nucleosome mobilization, requires energy from ATP hydrolysis for its catalytic activity. Here, we discuss the diverse functions of ATP-dependent chromatin remodeling complexes during mammalian development. In particular, the roles of these complexes during embryonic and hematopoietic development are reviewed in depth. In addition, pathological conditions such as tumor development that are induced by mutation of several key subunits of the chromatin remodeling complex are discussed, together with possible mechanisms that underlie tumor suppression by the complex

  17. Vascular Remodeling in Experimental Hypertension

    Directory of Open Access Journals (Sweden)

    Norma R. Risler

    2005-01-01

    Full Text Available The basic hemodynamic abnormality in hypertension is an increased peripheral resistance that is due mainly to a decreased vascular lumen derived from structural changes in the small arteries wall, named (as a whole vascular remodeling. The vascular wall is an active, flexible, and integrated organ made up of cellular (endothelial cells, smooth muscle cells, adventitia cells, and fibroblasts and noncellular (extracellular matrix components, which in a dynamic way change shape or number, or reorganize in response to physiological and pathological stimuli, maintaining the integrity of the vessel wall in physiological conditions or participating in the vascular changes in cardiovascular diseases such as hypertension. Research focused on new signaling pathways and molecules that can participate in the mechanisms of vascular remodeling has provided evidence showing that vascular structure is not only affected by blood pressure, but also by mechanisms that are independent of the increased pressure. This review will provide an overview of the evidence, explaining some of the pathophysiologic mechanisms participating in the development of the vascular remodeling, in experimental models of hypertension, with special reference to the findings in spontaneously hypertensive rats as a model of essential hypertension, and in fructose-fed rats as a model of secondary hypertension, in the context of the metabolic syndrome. The understanding of the mechanisms producing the vascular alterations will allow the development of novel pharmacological tools for vascular protection in hypertensive disease.

  18. Cardiac sarcoidosis

    Science.gov (United States)

    Smedema, J.P.; Zondervan, P.E.; van Hagen, P.; ten Cate, F.J.; Bresser, P.; Doubell, A.F.; Pattynama, P.; Hoogsteden, H.C.; Balk, A.H.M.M.

    2002-01-01

    Sarcoidosis is a multi-system granulomatous disorder of unknown aetiology. Symptomatic cardiac involvement occurs in approximately 5% of patients. The prevalence of sarcoidosis in the Netherlands is unknown, but estimated to be approximately 20 per 100,000 population (3200 patients). We report on five patients who presented with different manifestations of cardiac sarcoidosis, and give a brief review on the current management of this condition. Magnetic Resonance Imaging (MRI) can be of great help in diagnosing this condition as well as in the follow-up of the response to therapy. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:25696121

  19. Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 2D Simulation Study

    OpenAIRE

    Gomez, Juan F.; Cardona, Karen; Martinez, Laura; Saiz, Javier; Trenor, Beatriz

    2014-01-01

    Background Heart failure is operationally defined as the inability of the heart to maintain blood flow to meet the needs of the body and it is the final common pathway of various cardiac pathologies. Electrophysiological remodeling, intercellular uncoupling and a pro-fibrotic response have been identified as major arrhythmogenic factors in heart failure. Objective In this study we investigate vulnerability to reentry under heart failure conditions by incorporating established electrophysiolog...

  20. Arrhythmogenic remodelling of activation and repolarization in the failing human heart

    OpenAIRE

    Holzem, Katherine M.; Efimov, Igor R.

    2012-01-01

    Heart failure is a major cause of disability and death worldwide, and approximately half of heart failure-related deaths are sudden and presumably due to ventricular arrhythmias. Patients with heart failure have been shown to be at 6- to 9-fold increased risk of sudden cardiac death compared to the general population. (AHA. Heart Disease and Stroke Statistics—2003 Update. Heart and Stroke Facts. Dallas, TX: American Heart Association; 2002) Thus, electrophysiological remodelling associated wi...

  1. Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 2D Simulation Study

    OpenAIRE

    Gómez García, Juan Francisco; Saiz Rodríguez, Francisco Javier; Trenor Gomis, Beatriz Ana

    2014-01-01

    Background: Heart failure is operationally defined as the inability of the heart to maintain blood flow to meet the needs of the body and it is the final common pathway of various cardiac pathologies. Electrophysiological remodeling, intercellular uncoupling and a pro-fibrotic response have been identified as major arrhythmogenic factors in heart failure. Objective: In this study we investigate vulnerability to reentry under heart failure conditions by incorporating established ...

  2. Molecular pathogenesis of myocardial remodeling and new potential therapeutic targets in chronic heart failure

    OpenAIRE

    Distefano Giuseppe; Sciacca Pietro

    2012-01-01

    Abstract It is well known that the natural history of chronic heart failure (CHF),regardless of age and aetiology,is characterized by progressive cardiac dysfunction refractory to conventional cardiokinetic, diuretic and peripheral vasodilator therapy. Several previous studies, both in animals and humans, showed that the key pathogenetic element of CHF negative clinical evolution is constituted by myocardial remodeling. This is a complex pathologic process of ultrastructural rearrangement of ...

  3. Cardiac Pacemakers

    International Nuclear Information System (INIS)

    A complete survey of physiological biophysical,clinical and engineering aspects of cardiac facing,including the history and an assessment of possible future developments.Among the topics studied are: pacemakers, energy search, heart stimulating with pacemakers ,mathematical aspects of the electric cardio stimulation chronic, pacemaker implants,proceeding,treatment and control

  4. Molecular pathogenesis of myocardial remodeling and new potential therapeutic targets in chronic heart failure

    Directory of Open Access Journals (Sweden)

    Distefano Giuseppe

    2012-09-01

    Full Text Available Abstract It is well known that the natural history of chronic heart failure (CHF,regardless of age and aetiology,is characterized by progressive cardiac dysfunction refractory to conventional cardiokinetic, diuretic and peripheral vasodilator therapy. Several previous studies, both in animals and humans, showed that the key pathogenetic element of CHF negative clinical evolution is constituted by myocardial remodeling. This is a complex pathologic process of ultrastructural rearrangement of the heart induced by various neuro-humoral factors released by cardiac fibrocells in response to biomechanical stress connected to chronic haemodynamic overload. Typical features of myocardial remodeling are represented by cardiomyocytes hypertrophy and apoptosis, extracellular matrix alterations, mesenchymal fibrotic and phlogistic processes and by cardiac gene expression modifications with fetal genetic program reactivation. In the last years, increasing knowledge of subtle molecular and cellular mechanisms involved in myocardial remodeling has led to the discovery of some new potential therapeutic targets capable of inducing its regression. In this paper our attention is focused on the possible use of antiapoptotic and antifibrotic agents, and on the fascinating perspectives offered by the development of myocardial gene therapy and, in particular, by myocardial regenerative therapy.

  5. Left ventricular structure and remodeling in patients with COPD

    Directory of Open Access Journals (Sweden)

    Pelà G

    2016-05-01

    Full Text Available Giovanna Pelà,1 Mauro Li Calzi,1 Silvana Pinelli,1 Roberta Andreoli,1 Nicola Sverzellati,2 Giuseppina Bertorelli,1 Matteo Goldoni,1 Alfredo Chetta11Department of Clinical and Experimental Medicine, 2Department of Surgery, University Medical School, University Hospital Parma, Parma, ItalyBackground: Data on cardiac alterations such as left ventricular (LV hypertrophy, diastolic dysfunction, and lower stroke volume in patients with COPD are discordant. In this study, we investigated whether early structural and functional cardiac changes occur in patients with COPD devoid of manifest cardiovascular disease, and we assessed their associations with clinical and functional features.Methods: Forty-nine patients with COPD belonging to all Global Initiative for Chronic Obstructive Lung Disease (GOLD classes were enrolled and compared with 36 controls. All subjects underwent clinical history assessment, lung function testing, blood pressure measurement, electrocardiography, and conventional and Doppler tissue echocardiography. Patients were also subjected to computed tomography to quantify emphysema score.Results: Patients with COPD had lower LV cavity associated with a marked increase in relative wall thickness (RWT, suggesting concentric remodeling without significant changes in LV mass. RWT was significantly associated with ratio of the forced expiratory volume in 1 second to the forced vital capacity and emphysema score and was the only cardiac parameter that – after multivariate analysis – significantly correlated with COPD conditions in all individuals. Receiver operating characteristic curve analysis showed that RWT (with a cutoff point of 0.42 predicted the severity of COPD with 83% specificity and 56% sensitivity (area under the curve =0.69, 95% confidence interval =0.59–0.81. Patients with COPD showed right ventricular to be functional but no structural changes.Conclusion: Patients with COPD without evident cardiovascular disease

  6. Cellular and Molecular Mechanisms of Bone Remodeling*

    OpenAIRE

    Raggatt, Liza J; Partridge, Nicola C

    2010-01-01

    Physiological bone remodeling is a highly coordinated process responsible for bone resorption and formation and is necessary to repair damaged bone and to maintain mineral homeostasis. In addition to the traditional bone cells (osteoclasts, osteoblasts, and osteocytes) that are necessary for bone remodeling, several immune cells have also been implicated in bone disease. This minireview discusses physiological bone remodeling, outlining the traditional bone biology dogma in light of emerging ...

  7. [Proteomics in infectious diseases].

    Science.gov (United States)

    Quero, Sara; Párraga-Niño, Noemí; García-Núñez, Marian; Sabrià, Miquel

    2016-04-01

    Infectious diseases have a high incidence in the population, causing a major impact on global health. In vitro culture of microorganisms is the first technique applied for infection diagnosis which is laborious and time consuming. In recent decades, efforts have been focused on the applicability of «Omics» sciences, highlighting the progress provided by proteomic techniques in the field of infectious diseases. This review describes the management, processing and analysis of biological samples for proteomic research. PMID:25583331

  8. The Redox Proteome*

    OpenAIRE

    Go, Young-Mi; Jones, Dean P.

    2013-01-01

    The redox proteome consists of reversible and irreversible covalent modifications that link redox metabolism to biologic structure and function. These modifications, especially of Cys, function at the molecular level in protein folding and maturation, catalytic activity, signaling, and macromolecular interactions and at the macroscopic level in control of secretion and cell shape. Interaction of the redox proteome with redox-active chemicals is central to macromolecular structure, regulation,...

  9. Recent advances in the diagnosis and management of cardiac amyloidosis.

    Science.gov (United States)

    Sher, Taimur; Gertz, Morie A

    2014-01-01

    The heart is commonly involved in various forms of amyloidosis and cardiomyopathy is a major cause of morbidity and mortality in these patients. Diagnosis of cardiac amyloidosis is often delayed due to nonspecific presenting symptoms and failure to recognize early signs of amyloid heart disease on routine cardiac imaging. Treatment of cardiac amyloidosis depends upon the type of amyloid protein. Systemic chemotherapy with or without stem cell transplantation is used to treat immunoglobulin-related amyloidosis and liver transplantation is used for familial transthyretin amyloidosis in select patients. Clinical trials with siRNA for the treatment of transthyretin amyloid cardiomyopathies and amyloid protein stabilizers are ongoing. Prognosis depends on the type of amyloid protein with poorer outcomes noted in immunoglobulin light-chain amyloidosis. Supportive care forms the cornerstone of management and advancements in cardiac imaging and proteomics are expected to positively impact our ability to diagnose, prognosticate and treat cardiac amyloidosis. PMID:24344669

  10. Valsartan Reduced Atrial Fibrillation Susceptibility by Inhibiting Atrial Parasympathetic Remodeling through MAPKs/Neurturin Pathway

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2015-07-01

    Full Text Available Background/Aims: Angiotensin II receptor blockers (ARBs have been proved to be effective in preventing atrial structural and electrical remodelinq in atrial fibrillation (AF. Previous studies have shown that parasympathetic remodeling plays an important role in AF. However, the effects of ARBs on atrial parasympathetic remodeling in AF and the underlying mechanisms are still unknown. Methods: Canines were divided into sham-operated, pacing and valsartan + pacing groups. Rats and HL-1 cardiomyocytes were divided into control, angiotensin II (Ang II and Ang II + valsartan groups, respectively. Atrial parasympathetic remodeling was quantified by immunocytochemical staining with anti-choline acetyltransferase (ChAT antibody. Western blot was used to analysis the protein expression of neurturin. Results: Both inducibility and duration were increased in chronic atrial rapid-pacing canine model, which was significantly inhibited by the treatment with valsartan. The density of ChAT-positive nerves and the protein level of neurturin in the atria of pacing canines were both increased than those in sham-operated canines. Ang II treatment not only induced atrial parasympathetic remodeling in rats, but also up-regulated the protein expression of neurturin. Valsartan significantly prevented atrial parasympathetic remodeling, and suppressed the protein expression of neurturin. Meanwhile, valsartan inhibited Ang II -induced up-regulation of neurturin and MAPKs in cultured cardiac myocytes. Inhibition of MAPKs dramatically attenuated neurturin up-regulation induced by Ang II. Conclusion: Parasympathetic remodeling was present in animals subjected to rapid pacing or Ang II infusion, which was mediated by MAPKs/neurturin pathway. Valsartan is able to prevent atrial parasympathetic remodeling and the occurrence of AF via inhibiting MAPKs/neurturin pathway.

  11. Inhibition of miR-15 Protects Against Cardiac Ischemic Injury

    Science.gov (United States)

    Hullinger, Thomas G.; Montgomery, Rusty L.; Seto, Anita G.; Dickinson, Brent A.; Semus, Hillary M.; Lynch, Joshua M.; Dalby, Christina M.; Robinson, Kathryn; Stack, Christianna; Latimer, Paul A.; Hare, Joshua M.; Olson, Eric N.; van Rooij, Eva

    2012-01-01

    Rationale Myocardial infarction (MI) is a leading cause of death worldwide. Because endogenous cardiac repair mechanisms are not sufficient for meaningful tissue regeneration, MI results in loss of cardiac tissue and detrimental remodeling events. MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression in a sequence dependent manner. Our previous data indicate that miRNAs are dysregulated in response to ischemic injury of the heart and actively contribute to cardiac remodeling after MI. Objective This study was designed to determine whether miRNAs are dysregulated on ischemic damage in porcine cardiac tissues and whether locked nucleic acid (LNA)-modified anti-miR chemistries can target cardiac expressed miRNAs to therapeutically inhibit miR-15 on ischemic injury. Methods and Results Our data indicate that the miR-15 family, which includes 6 closely related miRNAs, is regulated in the infarcted region of the heart in response to ischemia-reperfusion injury in mice and pigs. LNA-modified chemistries can effectively silence miR-15 family members in vitro and render cardiomyocytes resistant to hypoxia-induced cardiomyocyte cell death. Correspondingly, systemic delivery of miR-15 anti-miRs dose-dependently represses miR-15 in cardiac tissue of both mice and pigs, whereas therapeutic targeting of miR-15 in mice reduces infarct size and cardiac remodeling and enhances cardiac function in response to MI. Conclusions Oligonucleotide-based therapies using LNA-modified chemistries for modulating cardiac miRNAs in the setting of heart disease are efficacious and validate miR-15 as a potential therapeutic target for the manipulation of cardiac remodeling and function in the setting of ischemic injury. PMID:22052914

  12. Cardiac rhabdomyosarcoma

    OpenAIRE

    Chlumský, Jaromír; Holá, Dana; Hlaváček, Karel; Michal, Michal; Švec, Alexander; Špatenka, Jaroslav; Dušek, Jan

    2001-01-01

    Cardiac sarcoma is a very rare neoplasm and is difficult to diagnose. The case of a 51-year-old man with a left atrial tumour, locally recurrent three months after its surgical removal, is presented. Computed tomography showed metastatic spread to the lung parenchyma. On revised histology, the mass extirpated was a sarcoma. Because of the metastatic spread, further therapy was symptomatic only; the patient died 15 months after the first manifestation of his problems. Immunohistochemical stain...

  13. Cardiac Calcification

    Directory of Open Access Journals (Sweden)

    Morteza Joorabian

    2011-05-01

    Full Text Available There is a spectrum of different types of cardiac"ncalcifications with the importance and significance"nof each type of cardiac calcification, especially"ncoronary artery calcification. Radiologic detection of"ncalcifications within the heart is quite common. The"namount of coronary artery calcification correlates"nwith the severity of coronary artery disease (CAD."nCalcification of the aortic or mitral valve may indicate"nhemodynamically significant valvular stenosis."nMyocardial calcification is a sign of prior infarction,"nwhile pericardial calcification is strongly associated"nwith constrictive pericarditis. A spectrum of different"ntypes of cardiac calcifications (linear, annular,"ncurvilinear,... could be seen in chest radiography and"nother imaging modalities. So a carful inspection for"ndetection and reorganization of these calcifications"nshould be necessary. Numerous modalities exist for"nidentifying coronary calcification, including plain"nradiography, fluoroscopy, intravascular ultrasound,"nMRI, echocardiography, and conventional, helical and"nelectron-beam CT (EBCT. Coronary calcifications"ndetected on EBCT or helical CT can be quantifie,"nand a total calcification score (Cardiac Calcification"nScoring may be calculated. In an asymptomatic"npopulation and/or patients with concomitant risk"nfactors like diabetes mellitus, determination of the"npresence of coronary calcifications identifies the"npatients at risk for future myocardial infarction and"ncoronary artery disease. In patients without coronary"ncalcifications, future cardiovascular events could"nbe excluded. Therefore, detecting and recognizing"ncalcification related to the heart on chest radiography"nand other imaging modalities such as fluoroscopy, CT"nand echocardiography may have important clinical"nimplications.

  14. Chronic vagal stimulation for the treatment of low ejection fraction heart failure : results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial

    NARCIS (Netherlands)

    Zannad, Faiez; De Ferrari, Gaetano M; Tuinenburg, Anton E; Wright, David; Brugada, Josep; Butter, Christian; Klein, Helmut; Stolen, Craig; Meyer, Scott; Stein, Kenneth M; Ramuzat, Agnes; Schubert, Bernd; Daum, Doug; Neuzil, Petr; Botman, Cornelis; Castel, Maria Angeles; D'Onofrio, Antonio; Solomon, Scott D; Wold, Nicholas; Ruble, Stephen B

    2015-01-01

    AIM: The neural cardiac therapy for heart failure (NECTAR-HF) was a randomized sham-controlled trial designed to evaluate whether a single dose of vagal nerve stimulation (VNS) would attenuate cardiac remodelling, improve cardiac function and increase exercise capacity in symptomatic heart failure p

  15. Collaborations in Proteomics Research - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The National Cancer Institute (NCI), through the Office of Cancer Clinical Proteomics Research (OCCPR), has signed two Memorandums of Understanding (MOUs) in the sharing of proteomics reagents and protocols

  16. The proteome landscape of Giardia lamblia encystation.

    Directory of Open Access Journals (Sweden)

    Carmen Faso

    Full Text Available Giardia lamblia is an intestinal protozoan parasite required to survive in the environment in order to be transmitted to a new host. To ensure parasite survival, flagellated trophozoites colonizing the small intestine differentiate into non-motile environmentally-resistant cysts which are then shed in the environment. This cell differentiation process called encystation is characterized by significant morphological remodeling which includes secretion of large amounts of cyst wall material. Although much is known about the transcriptional regulation of encystation and the synthesis and trafficking of cyst wall material, the investigation of global changes in protein content and abundance during G. lamblia encystation is still unaddressed. In this study, we report on the quantitative analysis of the G. lamblia proteome during encystation using tandem mass spectrometry. Quantification of more than 1000 proteins revealed major changes in protein abundance in early, mid and late encystation, notably in constitutive secretory protein trafficking. Early stages of encystation were marked by a striking decrease of endoplasmic reticulum-targeted variant-specific surface proteins and significant increases in cytoskeleton regulatory components, NEK protein kinases and proteins involved in protein folding and glycolysis. This was in stark contrast to cells in the later stages of encystation which presented a surprisingly similar proteome composition to non-encysting trophozoites. Altogether these data constitute the first quantitative atlas of the Giardia proteome covering the whole process of encystation and point towards an important role for post-transcriptional control of gene expression in Giardia differentiation. Furthermore, our data provide a valuable resource for the community-based annotation effort of the G. lamblia genome, where almost 70% of all predicted gene models remains "hypothetical".

  17. The proteome landscape of Giardia lamblia encystation.

    Science.gov (United States)

    Faso, Carmen; Bischof, Sylvain; Hehl, Adrian B

    2013-01-01

    Giardia lamblia is an intestinal protozoan parasite required to survive in the environment in order to be transmitted to a new host. To ensure parasite survival, flagellated trophozoites colonizing the small intestine differentiate into non-motile environmentally-resistant cysts which are then shed in the environment. This cell differentiation process called encystation is characterized by significant morphological remodeling which includes secretion of large amounts of cyst wall material. Although much is known about the transcriptional regulation of encystation and the synthesis and trafficking of cyst wall material, the investigation of global changes in protein content and abundance during G. lamblia encystation is still unaddressed. In this study, we report on the quantitative analysis of the G. lamblia proteome during encystation using tandem mass spectrometry. Quantification of more than 1000 proteins revealed major changes in protein abundance in early, mid and late encystation, notably in constitutive secretory protein trafficking. Early stages of encystation were marked by a striking decrease of endoplasmic reticulum-targeted variant-specific surface proteins and significant increases in cytoskeleton regulatory components, NEK protein kinases and proteins involved in protein folding and glycolysis. This was in stark contrast to cells in the later stages of encystation which presented a surprisingly similar proteome composition to non-encysting trophozoites. Altogether these data constitute the first quantitative atlas of the Giardia proteome covering the whole process of encystation and point towards an important role for post-transcriptional control of gene expression in Giardia differentiation. Furthermore, our data provide a valuable resource for the community-based annotation effort of the G. lamblia genome, where almost 70% of all predicted gene models remains "hypothetical". PMID:24391747

  18. The relationship between gap junctional remodeling and human atrial fibrillation

    Institute of Scientific and Technical Information of China (English)

    李大强; 冯义柏; 张会琴

    2004-01-01

    @@ Atrial fibrillation (AF) is currently the most common cardiac tachyarrhythmia in clinical practice. AF has a tendency to become more persistent over time. Progression of an underlying disease is one explanation. Another possible explanation is electrical, structural, and gap junctional remodeling of the atrium by repetitive induction of AF.1 The expression level and distribution of it have close relation with the conduction velocity of electrical activation in the atrium. The aim of the present study was to investigate the alternations of the expression and distribution of (connexin 40, Cx 40) and (connexin 43, Cx 43) in the right atrial appendages of the patients with AF by laser confocal scanning microscopy and Western blot technique.

  19. Tricuspid annular plane systolic excursion and response to cardiac resynchronization therapy

    DEFF Research Database (Denmark)

    Kjaergaard, Jesper; Ghio, Stefano; St John Sutton, Martin;

    2011-01-01

    The aims of this study were to evaluate tricuspid annular plane systolic excursion (TAPSE) as a predictor of left ventricular (LV) reverse remodeling and clinical benefit of cardiac synchronization therapy (CRT) and to evaluate the effect of CRT on TAPSE in patients with mildly symptomatic systolic...... heart failure as a substudy of the REsyncronization reVErses Remodeling in Systolic left vEntricular dysfunction (REVERSE) trial....

  20. Vascular Remodelling and Mesenchymal Transition in Systemic Sclerosis

    Directory of Open Access Journals (Sweden)

    Pier Andrea Nicolosi

    2016-01-01

    Full Text Available Fibrosis of the skin and of internal organs, autoimmunity, and vascular inflammation are hallmarks of Systemic Sclerosis (SSc. The injury and activation of endothelial cells, with hyperplasia of the intima and eventual obliteration of the vascular lumen, are early features of SSc. Reduced capillary blood flow coupled with deficient angiogenesis leads to chronic hypoxia and tissue ischemia, enforcing a positive feed-forward loop sustaining vascular remodelling, further exacerbated by extracellular matrix accumulation due to fibrosis. Despite numerous developments and a growing number of controlled clinical trials no treatment has been shown so far to alter SSc natural history, outlining the need of further investigation in the molecular pathways involved in the pathogenesis of the disease. We review some processes potentially involved in SSc vasculopathy, with attention to the possible effect of sustained vascular inflammation on the plasticity of vascular cells. Specifically we focus on mesenchymal transition, a key phenomenon in the cardiac and vascular development as well as in the remodelling of injured vessels. Recent work supports the role of transforming growth factor-beta, Wnt, and Notch signaling in these processes. Importantly, endothelial-mesenchymal transition may be reversible, possibly offering novel cues for treatment.

  1. Proteomics analysis of human oligodendroglioma proteome.

    Science.gov (United States)

    Khaghani-Razi-Abad, Solmaz; Hashemi, Mehrdad; Pooladi, Mehdi; Entezari, Maliheh; Kazemi, Elham

    2015-09-10

    Proteomics analyses enable the identification and quantitation of proteins. From a purely clinical perspective, the application of proteomics based on innovations, may greatly affect the future management of malignant brain tumors. This optimism is based on four main reasons: diagnosis, prognosis, selection of targeted therapy based on molecular profile of the brain tumor and monitoring therapeutic response, or resistance. We extracted the proteins of tumor and normal brain tissues, and then evaluated the protein purity by Bradford test. In this study, we separated the proteins by two-dimensional (2DG) gel electrophoresis methods. Then spots were analyzed, compared using statistical data and specific software and were identified by pH isoelectric, molecular weights and data banks. The protein profiles were determined using 2D gel electrophoresis and MALDI TOF/TOF mass spectrometry approaches. Simple statistical tests were used to establish a putative hierarchy in which the change in protein level was ranked according to a cut-off point with pProteomics is a powerful way to identifying multiple proteins which are altered following a neuropharmacological intervention in a CNS disease. PMID:26002447

  2. Proteomics approaches to fibrotic disorders

    OpenAIRE

    Gucek Marjan

    2012-01-01

    Abstract This review provides an introduction to mass spectrometry based proteomics and discusses several proteomics approaches that are relevant in understanding the pathophysiology of fibrotic disorders and the approaches that are frequently used in biomarker discovery.

  3. Remodeling dan Repairing Vaskular pada Nefropati Hipertensif

    OpenAIRE

    Rasyid, Haerani; Wijaya, Johnson; Bakri, Syakib

    2011-01-01

    Latar Belakang: Ketidakseimbangan proses remodeling dan repairing vaskular diduga berperan penting pada kekakuan dan ketebalan vaskular yang akhirnya menyebabkan komplikasi hipertensi. Petanda dini komplikasi hipertensi pada ginjal adalah adanya mikroalbuminuria (MA). Tujuan Penelitian: Untuk mengetahui perbedaan konsentrasi TGF-??1 (sebagai petanda remodeling) dan VEGFR-2 (sebagai petanda repairing) pada subyek normotensi, hipertensi normoalbuminuria (NA) dan hipertensi MA. Metode: P...

  4. Multiscale Simulation of Protein Mediated Membrane Remodeling

    OpenAIRE

    Ayton, Gary S.; Voth, Gregory A.

    2009-01-01

    Proteins interacting with membranes can result in substantial membrane deformations and curvatures. This effect is known in its broadest terms as membrane remodeling. This review article will survey current multiscale simulation methodologies that have been employed to examine protein-mediated membrane remodeling.

  5. Dietary ω-3 Fatty Acids Alter Cardiac Mitochondrial Phospholipid Composition and Delay Ca2+-Induced Permeability Transition

    OpenAIRE

    O’Shea, Karen M.; Khairallah, Ramzi J.; Sparagna, Genevieve C.; Xu, Wenhong; Hecker, Peter A; Robillard-Frayne, Isabelle; Des Rosiers, Christine; Kristian, Tibor; Robert C. Murphy; Fiskum, Gary; Stanley, William C.

    2009-01-01

    Consumption of ω-3 fatty acids from fish oil, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), decreases risk for heart failure and attenuates pathologic cardiac remodeling in response to pressure overload. Dietary supplementation with EPA+DHA may also impact cardiac mitochondrial function and energetics through alteration of membrane phospholipids. We assessed the role of EPA+DHA supplementation on left ventricular (LV) function, cardiac mitochondrial membrane phospho...

  6. C-Reactive Protein Inhibits Survivin Expression via Akt/mTOR Pathway Downregulation by PTEN Expression in Cardiac Myocytes

    OpenAIRE

    Beom Seob Lee; Soo Hyuk Kim; Jaewon Oh; Taewon Jin; Eun Young Choi; Sungha Park; Sang-Hak Lee; Ji Hyung Chung; Seok-Min Kang

    2014-01-01

    C-reactive protein (CRP) is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis. Reduction of survivin expression is associated with less favorable cardiac remodeling in animal models. However, the effect of CRP on survivin expression and its cellular mechanism has not yet been studied. We ...

  7. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction).

    Science.gov (United States)

    Chistiakov, Dimitry A; Orekhov, Alexander N; Bobryshev, Yuri V

    2016-05-01

    Cardiac miRNAs (miR-1, miR133a, miR-208a/b, and miR-499) are abundantly expressed in the myocardium. They play a central role in cardiogenesis, heart function and pathology. While miR-1 and miR-133a predominantly control early stages of cardiogenesis supporting commitment of cardiac-specific muscle lineage from embryonic stem cells and mesodermal precursors, miR-208 and miR-499 are involved in the late cardiogenic stages mediating differentiation of cardioblasts to cardiomyocytes and fast/slow muscle fiber specification. In the heart, miR-1/133a control cardiac conductance and automaticity by regulating all phases of the cardiac action potential. miR-208/499 located in introns of the heavy chain myosin genes regulate expression of sarcomeric contractile proteins. In cardiac pathology including myocardial infarction (MI), expression of cardiac miRNAs is markedly altered that leads to deleterious effects associated with heart wounding, arrhythmia, increased apoptosis, fibrosis, hypertrophy, and tissue remodeling. In acute MI, circulating levels of cardiac miRNAs are significantly elevated making them to be a promising diagnostic marker for early diagnosis of acute MI. Great cardiospecific capacity of these miRNAs is very helpful for enhancing regenerative properties and survival of stem cell and cardiac progenitor transplants and for reprogramming of mature non-cardiac cells to cardiomyocytes. PMID:27056419

  8. Nucleosome dynamics during chromatin remodeling in vivo.

    Science.gov (United States)

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation. PMID:26933790

  9. Evaluation of left ventricular remodelling in patients with chronic ischemic heart disease using multislice computer tomography and magnetic resonance tomography

    International Nuclear Information System (INIS)

    The article presents the results of MSCT and MRI of the heart in 57 patients with chronic coronary heart disease. It determined the relationship between structural and functional changes in the left ventricle and the degree of left coronary artery stenosis. Also determined were the link between the ischemic left ventricular remodeling and depth of myocardial damage in patients with coronary heart disease and postinfarction cardiosclerosis. MSCT and MRI are highly reliable imaging technique used to evaluate the infarcted and viable myocardium and post infarct cardiac remodeling process

  10. Proteomics - new analytical approaches

    International Nuclear Information System (INIS)

    Full text: Recent developments in the sequencing of the human genome have indicated that the number of coding gene sequences may be as few as 30,000. It is clear, however, that the complexity of the human species is dependent on the much greater diversity of the corresponding protein complement. Estimates of the diversity (discrete protein species) of the human proteome range from 200,000 to 300,000 at the lower end to 2,000,000 to 3,000,000 at the high end. In addition, proteomics (the study of the protein complement to the genome) has been subdivided into two main approaches. Global proteomics refers to a high throughput examination of the full protein set present in a cell under a given environmental condition. Focused proteomics refers to a more detailed study of a restricted set of proteins that are related to a specified biochemical pathway or subcellular structure. While many of the advances in proteomics will be based on the sequencing of the human genome, de novo characterization of protein microheterogeneity (glycosylation, phosphorylation and sulfation as well as the incorporation of lipid components) will be required in disease studies. To characterize these modifications it is necessary to digest the protein mixture with an enzyme to produce the corresponding mixture of peptides. In a process analogous to sequencing of the genome, shot-gun sequencing of the proteome is based on the characterization of the key fragments produced by such a digest. Thus, a glycopeptide and hence a specific glycosylation motif will be identified by a unique mass and then a diagnostic MS/MS spectrum. Mass spectrometry will be the preferred detector in these applications because of the unparalleled information content provided by one or more dimensions of mass measurement. In addition, highly efficient separation processes are an absolute requirement for advanced proteomic studies. For example, a combination of the orthogonal approaches, HPLC and HPCE, can be very powerful

  11. Cardiac conduction system

    Science.gov (United States)

    The cardiac conduction system is a group of specialized cardiac muscle cells in the walls of the heart that send signals ... to contract. The main components of the cardiac conduction system are the SA node, AV node, bundle ...

  12. Translational plant proteomics: A perspective

    NARCIS (Netherlands)

    Agrawal, G.K.; Pedreschi, R.; Barkla, B.J.; Bindschedler, L.V.; Cramer, R.; Sarkar, A.; Renaut, J.; Job, D.; Rakwal, R.

    2012-01-01

    Translational proteomics is an emerging sub-discipline of the proteomics field in the biological sciences. Translational plant proteomics aims to integrate knowledge from basic sciences to translate it into field applications to solve issues related but not limited to the recreational and economic v

  13. Thyroid Hormone and Vascular Remodeling.

    Science.gov (United States)

    Ichiki, Toshihiro

    2016-03-01

    Both hyperthyroidism and hypothyroidism affect the cardiovascular system. Hypothyroidism is known to be associated with enhanced atherosclerosis and ischemic heart diseases. The accelerated atherosclerosis in the hypothyroid state has been traditionally ascribed to atherogenic lipid profile, diastolic hypertension, and impaired endothelial function. However, recent studies indicate that thyroid hormone has direct anti-atherosclerotic effects, such as production of nitric oxide and suppression of smooth muscle cell proliferation. These data suggest that thyroid hormone inhibits atherogenesis through direct effects on the vasculature as well as modification of risk factors for atherosclerosis. This review summarizes the basic and clinical studies on the role of thyroid hormone in vascular remodeling. The possible application of thyroid hormone mimetics to the therapy of hypercholesterolemia and atherosclerosis is also discussed. PMID:26558400

  14. Obesity and carotid artery remodeling

    DEFF Research Database (Denmark)

    Kozakova, M; Palombo, C; Morizzo, C;

    2015-01-01

    BACKGROUND/OBJECTIVE: The present study tested the hypothesis that obesity-related changes in carotid intima-media thickness (IMT) might represent not only preclinical atherosclerosis but an adaptive remodeling meant to preserve circumferential wall stress (CWS) in altered hemodynamic conditions...... and CCA LD (266 healthy subjects with wide range of body weight (24-159 kg)); (B) longitudinal associations between CCA LD and 3-year IMT progression rate (ΔIMT; 571 healthy non-obese subjects without increased cardiovascular (CV) risk); (C) the impact of obesity on CCA geometry and CWS (88 obese...... subjects without CV complications and 88 non-obese subjects matched for gender and age). RESULTS: CCA LD was independently associated with SV that was determined by body size. In the longitudinal study, baseline LD was an independent determinant of ΔIMT, and ΔIMT of subjects in the highest LD quartile was...

  15. Therapeutic Inhibition of miR-208a Improves Cardiac Function and Survival During Heart Failure

    Science.gov (United States)

    Montgomery, Rusty L.; Hullinger, Thomas G.; Semus, Hillary M.; Dickinson, Brent A.; Seto, Anita G.; Lynch, Joshua M.; Stack, Christianna; Latimer, Paul A.; Olson, Eric N.; van Rooij, Eva

    2012-01-01

    Background Diastolic dysfunction in response to hypertrophy is a major clinical syndrome with few therapeutic options. MicroRNAs act as negative regulators of gene expression by inhibiting translation or promoting degradation of target mRNAs. Previously, we reported that genetic deletion of the cardiac-specific miR-208a prevents pathological cardiac remodeling and upregulation of Myh7 in response to pressure overload. Whether this miRNA might contribute to diastolic dysfunction or other forms of heart disease is currently unknown. Methods and Results Here, we show that systemic delivery of an antisense oligonucleotide induces potent and sustained silencing of miR-208a in the heart. Therapeutic inhibition of miR-208a by subcutaneous delivery of antimiR-208a during hypertension-induced heart failure in Dahl hypertensive rats dose-dependently prevents pathological myosin switching and cardiac remodeling while improving cardiac function, overall health, and survival. Transcriptional profiling indicates that antimiR-208a evokes prominent effects on cardiac gene expression; plasma analysis indicates significant changes in circulating levels of miRNAs on antimiR-208a treatment. Conclusions These studies indicate the potential of oligonucleotide-based therapies for modulating cardiac miRNAs and validate miR-208 as a potent therapeutic target for the modulation of cardiac function and remodeling during heart disease progression. PMID:21900086

  16. Cardiovascular function, compliance, and connective tissue remodeling in the turtle, Trachemys scripta, following thermal acclimation.

    Science.gov (United States)

    Keen, Adam N; Shiels, Holly A; Crossley, Dane A

    2016-07-01

    Low temperature directly alters cardiovascular physiology in freshwater turtles, causing bradycardia, arterial hypotension, and a reduction in systemic blood pressure. At the same time, blood viscosity and systemic resistance increase, as does sensitivity to cardiac preload (e.g., via the Frank-Starling response). However, the long-term effects of these seasonal responses on the cardiovascular system are unclear. We acclimated red-eared slider turtles to a control temperature (25°C) or to chronic cold (5°C). To differentiate the direct effects of temperature from a cold-induced remodeling response, all measurements were conducted at the control temperature (25°C). In anesthetized turtles, cold acclimation reduced systemic resistance by 1.8-fold and increased systemic blood flow by 1.4-fold, resulting in a 2.3-fold higher right to left (R-L; net systemic) cardiac shunt flow and a 1.8-fold greater shunt fraction. Following a volume load by bolus injection of saline (calculated to increase stroke volume by 5-fold, ∼2.2% of total blood volume), systemic resistance was reduced while pulmonary blood flow and systemic pressure increased. An increased systemic blood flow meant the R-L cardiac shunt was further pronounced. In the isolated ventricle, passive stiffness was increased following cold acclimation with 4.2-fold greater collagen deposition in the myocardium. Histological sections of the major outflow arteries revealed a 1.4-fold higher elastin content in cold-acclimated animals. These results suggest that cold acclimation alters cardiac shunting patterns with an increased R-L shunt flow, achieved through reducing systemic resistance and increasing systemic blood flow. Furthermore, our data suggests that cold-induced cardiac remodeling may reduce the stress of high cardiac preload by increasing compliance of the vasculature and decreasing compliance of the ventricle. Together, these responses could compensate for reduced systolic function at low temperatures in

  17. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Quan He

    2014-01-01

    Full Text Available Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.

  18. Mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes.

    Science.gov (United States)

    He, Quan; Harris, Nicole; Ren, Jun; Han, Xianlin

    2014-01-01

    Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS) have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress. PMID:25247053

  19. High-Throughput Proteomics

    Science.gov (United States)

    Zhang, Zhaorui; Wu, Si; Stenoien, David L.; Paša-Tolić, Ljiljana

    2014-06-01

    Mass spectrometry (MS)-based high-throughput proteomics is the core technique for large-scale protein characterization. Due to the extreme complexity of proteomes, sophisticated separation techniques and advanced MS instrumentation have been developed to extend coverage and enhance dynamic range and sensitivity. In this review, we discuss the separation and prefractionation techniques applied for large-scale analysis in both bottom-up (i.e., peptide-level) and top-down (i.e., protein-level) proteomics. Different approaches for quantifying peptides or intact proteins, including label-free and stable-isotope-labeling strategies, are also discussed. In addition, we present a brief overview of different types of mass analyzers and fragmentation techniques as well as selected emerging techniques.

  20. Proteomics in uveal melanoma.

    LENUS (Irish Health Repository)

    Ramasamy, Pathma

    2014-01-01

    Uveal melanoma is the most common primary intraocular malignancy in adults, with an incidence of 5-7 per million per year. It is associated with the development of metastasis in about 50% of cases, and 40% of patients with uveal melanoma die of metastatic disease despite successful treatment of the primary tumour. The survival rates at 5, 10 and 15 years are 65%, 50% and 45% respectively. Unlike progress made in many other areas of cancer, uveal melanoma is still poorly understood and survival rates have remained similar over the past 25 years. Recently, advances made in molecular genetics have improved our understanding of this disease and stratification of patients into low risk and high risk for developing metastasis. However, only a limited number of studies have been performed using proteomic methods. This review will give an overview of various proteomic technologies currently employed in life sciences research, and discuss proteomic studies of uveal melanoma.

  1. Establishing Substantial Equivalence: Proteomics

    Science.gov (United States)

    Lovegrove, Alison; Salt, Louise; Shewry, Peter R.

    Wheat is a major crop in world agriculture and is consumed after processing into a range of food products. It is therefore of great importance to determine the consequences (intended and unintended) of transgenesis in wheat and whether genetically modified lines are substantially equivalent to those produced by conventional plant breeding. Proteomic analysis is one of several approaches which can be used to address these questions. Two-dimensional PAGE (2D PAGE) remains the most widely available method for proteomic analysis, but is notoriously difficult to reproduce between laboratories. We therefore describe methods which have been developed as standard operating procedures in our laboratory to ensure the reproducibility of proteomic analyses of wheat using 2D PAGE analysis of grain proteins.

  2. Proteomics and insect immunity

    Directory of Open Access Journals (Sweden)

    L Shi

    2006-01-01

    Full Text Available Insect innate immunity is both a model for vertebrate immunity as well as a key system that impactsmedically important pathogens that are transmitted by insects. Recent developments in proteomics andprotein identification techniques combined with the completion of genome sequences for Anophelesgambiae and Drosophila melanogaster provided the tools for examining insect immunity at a new level ofmolecular detail. Application of proteomics to insect immunity resulted in predictions of new roles inimmunity for proteins already known in other contexts (e.g. ferritin, transferrin, Chi-lectins and helped totarget specific members of multi-gene families that respond to different pathogens (e.g. serine proteases,thioester proteins. In addition, proteomics studies verify that post-translational modifications play a keyrole in insect immunity since many of the identified proteins are modified in some way. These studiescomplement recent work on insect transcriptomes and provide new directions for further investigation ofinnate immunity.

  3. Computing the functional proteome

    DEFF Research Database (Denmark)

    O'Brien, Edward J.; Palsson, Bernhard

    2015-01-01

    -Models). Recent expansions in network content to encompass proteome synthesis have resulted in models of metabolism and protein expression (ME-Models). ME-Models advance the predictions possible with constraint-based models from network flux states to the spatially resolved molecular composition of a cell....... Specifically, ME-Models enable the prediction of transcriptome and proteome allocation and limitations, and basal expression states and regulatory needs. Continued expansion in reconstruction content and constraints will result in an increasingly refined representation of cellular composition and behavior....

  4. Biomimetic material strategies for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  5. Role of atrial tissue remodeling on rotor dynamics: an in vitro study.

    Science.gov (United States)

    Climent, Andreu M; Guillem, María S; Fuentes, Lucia; Lee, Peter; Bollensdorff, Christian; Fernández-Santos, María Eugenia; Suárez-Sancho, Susana; Sanz-Ruiz, Ricardo; Sánchez, Pedro Luis; Atienza, Felipe; Fernández-Avilés, Francisco

    2015-12-01

    The objective of this article is to present an in vitro model of atrial cardiac tissue that could serve to study the mechanisms of remodeling related to atrial fibrillation (AF). We analyze the modification on gene expression and modifications on rotor dynamics following tissue remodeling. Atrial murine cells (HL-1 myocytes) were maintained in culture after the spontaneous initiation of AF and analyzed at two time points: 3.1 ± 1.3 and 9.7 ± 0.5 days after AF initiation. The degree of electrophysiological remodeling (i.e., relative gene expression of key ion channels) and structural inhomogeneity was compared between early and late cell culture times both in nonfibrillating and fibrillating cell cultures. In addition, the electrophysiological characteristics of in vitro fibrillation [e.g., density of phase singularities (PS/cm(2)), dominant frequency, and rotor meandering] analyzed by means of optical mapping were compared with the degree of electrophysiological remodeling. Fibrillating cell cultures showed a differential ion channel gene expression associated with atrial tissue remodeling (i.e., decreased SCN5A, CACN1C, KCND3, and GJA1 and increased KCNJ2) not present in nonfibrillating cell cultures. Also, fibrillatory complexity was increased in late- vs. early stage cultures (1.12 ± 0.14 vs. 0.43 ± 0.19 PS/cm(2), P rotor tip meandering and increase in wavefront curvature). HL-1 cells can reproduce AF features such as electrophysiological remodeling and an increased complexity of the electrophysiological behavior associated with the fibrillation time that resembles those occurring in patients with chronic AF. PMID:26408535

  6. Inhibition of the Unfolded Protein Response Mechanism Prevents Cardiac Fibrosis

    Science.gov (United States)

    Jung, Joanna; Dyck, Jason R. B.; Lopaschuk, Gary D.; Agellon, Luis B.; Michalak, Marek

    2016-01-01

    Background Cardiac fibrosis attributed to excessive deposition of extracellular matrix proteins is a major cause of heart failure and death. Cardiac fibrosis is extremely difficult and challenging to treat in a clinical setting due to lack of understanding of molecular mechanisms leading to cardiac fibrosis and effective anti-fibrotic therapies. The objective in this study was to examine whether unfolded protein response (UPR) pathway mediates cardiac fibrosis and whether a pharmacological intervention to modulate UPR can prevent cardiac fibrosis and preserve heart function. Methodology/Principal Findings We demonstrate here that the mechanism leading to development of fibrosis in a mouse with increased expression of calreticulin, a model of heart failure, stems from impairment of endoplasmic reticulum (ER) homeostasis, transient activation of the unfolded protein response (UPR) pathway and stimulation of the TGFβ1/Smad2/3 signaling pathway. Remarkably, sustained pharmacologic inhibition of the UPR pathway by tauroursodeoxycholic acid (TUDCA) is sufficient to prevent cardiac fibrosis, and improved exercise tolerance. Conclusions We show that the mechanism leading to development of fibrosis in a mouse model of heart failure stems from transient activation of UPR pathway leading to persistent remodelling of cardiac tissue. Blocking the activation of the transiently activated UPR pathway by TUDCA prevented cardiac fibrosis, and improved prognosis. These findings offer a window for additional interventions that can preserve heart function. PMID:27441395

  7. Cholinergic Regulation of Airway Inflammation and Remodelling

    Directory of Open Access Journals (Sweden)

    Saeed Kolahian

    2012-01-01

    Full Text Available Acetylcholine is the predominant parasympathetic neurotransmitter in the airways that regulates bronchoconstriction and mucus secretion. Recent findings suggest that acetylcholine regulates additional functions in the airways, including inflammation and remodelling during inflammatory airway diseases. Moreover, it has become apparent that acetylcholine is synthesized by nonneuronal cells and tissues, including inflammatory cells and structural cells. In this paper, we will discuss the regulatory role of acetylcholine in inflammation and remodelling in which we will focus on the role of the airway smooth muscle cell as a target cell for acetylcholine that modulates inflammation and remodelling during respiratory diseases such as asthma and COPD.

  8. Proteome mapping of Plasmodium: identification of the P. yoelii remodellome.

    Science.gov (United States)

    Siau, Anthony; Huang, Ximei; Weng, Mei; Sze, Siu Kwan; Preiser, Peter R

    2016-01-01

    Plasmodium associated virulence in the host is linked to extensive remodelling of the host erythrocyte by parasite proteins that form the "remodellome". However, without a common motif or structure available to identify these proteins, little is known about the proteins that are destined to reside in the parasite periphery, the host-cell cytoplasm and/or the erythrocyte membrane. Here, the subcellular fractionation of erythrocytic P. yoelii at trophozoite and schizont stage along with label-free quantitative LC-MS/MS analysis of the whole proteome, revealed a proteome of 1335 proteins. Differential analysis of the relative abundance of these proteins across the subcellular compartments allowed us to map their locations, independently of their predicted features. These results, along with literature data and in vivo validation of 61 proteins enabled the identification of a remodellome of 184 proteins. This approach identified a significant number of conserved remodelling proteins across plasmodium that likely represent key conserved functions in the parasite and provides new insights into parasite evolution and biology. PMID:27503796

  9. Temporal patterns of electrical remodeling in canine ventricular hypertrophy: Focus on I-Ks downregulation and blunted beta-adrenergic activation

    NARCIS (Netherlands)

    M. Stengl; C. Ramakers; D.W. Donker; A. Nabar; A.V. Rybin; R.L.H.M.G. Spatjens; T. van der Nagel; W.K.W.H. Wodzig; K.R. Sipido; G. Antoons; A.F.M. Moorman; M.A. Vos; P.G.A. Volders

    2006-01-01

    Objectives: Electrical remodeling in cardiac hypertrophy often involves the downregulation of K+ currents, including beta-adrenergic (beta-A)-sensitive I-Ks. Temporal patterns of ion-channel downregulation are poorly resolved. In dogs with complete atrioventricular block (AVB), we examined (1) the t

  10. Cutting edge proteomics

    DEFF Research Database (Denmark)

    Bunkenborg, Jakob; Espadas, Guadalupe; Molina, Henrik

    2013-01-01

    Tryptic digestion is an important component of most proteomics experiments, and trypsin is available from many sources with a cost that varies by more than 1000-fold. This high-mass-accuracy LC-MS study benchmarks six commercially available trypsins with respect to autolytic species and sequence...

  11. Assessment of Left Ventricular Structural Remodelling in Patients with Diabetic Cardiomyopathy by Cardiovascular Magnetic Resonance

    Science.gov (United States)

    Zhang, Xiaochun; Leng, Weiling

    2016-01-01

    Background. Diabetic cardiomyopathy (DCM) is always accompanied with alteration of left ventricular structure and function. The aims of this study were to assess the structural remodelling in patients with DCM by cardiovascular magnetic resonance (CMR) and correlation of structural remodelling with severity of DCM. Methods. Twenty-five patients (53.8 ± 8.8 years, 52.0% males) with DCM and thirty-one normal healthy controls (51.9 ± 13.6 years, 45.2% males) were scanned by CMR cine to assess function and structure of left ventricular. Length of diabetic history and results of cardiac echocardiography (E′, A′, and E′/A′) were also measured. Results. Compared with normal controls group, DCM group was associated with significantly increased ratio of left ventricular mass at end diastole to end-diastolic volume (MVR) (P 0.05). The ratio correlated with both length of diabetic history and echocardiographic Doppler tissue imaging E′ (all P < 0.05). Conclusions. CMR can be a powerful technique to assess LV remodelling, and MVR may be considered as an imaging marker to evaluate the severity of LV remodelling in patients with DCM.

  12. Cardiac MRI in Athletes

    NARCIS (Netherlands)

    Luijkx, T.

    2012-01-01

    Cardiac magnetic resonance imaging (CMR) is often used in athletes to image cardiac anatomy and function and is increasingly requested in the context of screening for pathology that can cause sudden cardiac death (SCD). In this thesis, patterns of cardiac adaptation to sports are investigated with C

  13. Genomes to Proteomes

    Energy Technology Data Exchange (ETDEWEB)

    Panisko, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Grigoriev, Igor [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Daly, Don S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webb-Robertson, Bobbie-Jo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baker, Scott E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  14. Maxillary Mucocele with Orbital Floor Remodelling

    OpenAIRE

    Tahrina Salam; Maryam Zamani; Jane Olver

    2012-01-01

    A 79-year-old man presents with signs of an orbital mass. A CT scan revealed a large maxillary mucocele eroding through the orbital floor. Surgical drainage of the mucocele and conservative postoperative care, returned all ophthalmic signs to normal and bony remodelling of the orbital floor was demonstrated. Maxillary mucoceles should be assessed by both ENT and Ophthalmic surgeons. Postoperative remodelling of the orbital floor can be illustrated with serial CT Scans.

  15. Ventricular structure, function, and mechanics at high altitude: chronic remodeling in Sherpa vs. short-term lowlander adaptation

    OpenAIRE

    Stembridge, Mike; Ainslie, Philip N; Hughes, Michael G.; Stöhr, Eric J.; Cotter, James D.; Nio, Amanda Q. X.; Shave, Rob

    2014-01-01

    Short-term, high-altitude (HA) exposure raises pulmonary artery systolic pressure (PASP) and decreases left-ventricular (LV) volumes. However, relatively little is known of the long-term cardiac consequences of prolonged exposure in Sherpa, a highly adapted HA population. To investigate short-term adaptation and potential long-term cardiac remodeling, we studied ventricular structure and function in Sherpa at 5,050 m (n = 11; 31 ± 13 yr; mass 68 ± 10 kg; height 169 ± 6 cm) and lowlanders at s...

  16. Dynamics of the ethanolamine glycerophospholipid remodeling network.

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    Full Text Available Acyl chain remodeling in lipids is a critical biochemical process that plays a central role in disease. However, remodeling remains poorly understood, despite massive increases in lipidomic data. In this work, we determine the dynamic network of ethanolamine glycerophospholipid (PE remodeling, using data from pulse-chase experiments and a novel bioinformatic network inference approach. The model uses a set of ordinary differential equations based on the assumptions that (1 sn1 and sn2 acyl positions are independently remodeled; (2 remodeling reaction rates are constant over time; and (3 acyl donor concentrations are constant. We use a novel fast and accurate two-step algorithm to automatically infer model parameters and their values. This is the first such method applicable to dynamic phospholipid lipidomic data. Our inference procedure closely fits experimental measurements and shows strong cross-validation across six independent experiments with distinct deuterium-labeled PE precursors, demonstrating the validity of our assumptions. In contrast, fits of randomized data or fits using random model parameters are worse. A key outcome is that we are able to robustly distinguish deacylation and reacylation kinetics of individual acyl chain types at the sn1 and sn2 positions, explaining the established prevalence of saturated and unsaturated chains in the respective positions. The present study thus demonstrates that dynamic acyl chain remodeling processes can be reliably determined from dynamic lipidomic data.

  17. Diagnostic tools assessing airway remodelling in asthma.

    Science.gov (United States)

    Manso, L; Reche, M; Padial, M A; Valbuena, T; Pascual, C

    2012-01-01

    Asthma is an inflammatory disease of the lower airways characterised by the presence of airway inflammation, reversible airflow obstruction and airway hyperresponsiveness and alterations on the normal structure of the airways, known as remodelling. Remodelling is characterised by the presence of metaplasia of mucous glands, thickening of the lamina reticularis, increased angiogenesis, subepithelial fibrosis and smooth muscle hypertrophy/hyperplasia. Several techniques are being optimised at present to achieve a suitable diagnosis for remodelling. Diagnostic tools could be divided into two groups, namely invasive and non-invasive methods. Invasive techniques bring us information about bronchial structural alterations, obtaining this information directly from pathological tissue, and permit measure histological modification placed in bronchi layers as well as inflammatory and fibrotic cell infiltration. Non-invasive techniques were developed to reduce invasive methods disadvantages and measure airway remodelling-related markers such as cytokines, inflammatory mediators and others. An exhaustive review of diagnostic tools used to analyse airway remodelling in asthma, including the most useful and usually employed methods, as well as the principal advantages and disadvantages of each of them, bring us concrete and summarised information about all techniques used to evaluate alterations on the structure of the airways. A deep knowledge of these diagnostic tools will make an early diagnosis of airway remodelling possible and, probably, early diagnosis will play an important role in the near future of asthma. PMID:22236733

  18. Echocardiographic abnormalities in the assessment of cardiac organ damage in never-treated hypertensive patients.

    Science.gov (United States)

    Milan, Alberto; Avenatti, Eleonora; Puglisi, Elisabetta; Abram, Sara; Magnino, Corrado; Naso, Diego; Tosello, Francesco; Fabbri, Ambra; Vairo, Alessandro; Mulatero, Paolo; Rabbia, Franco; Veglio, Franco

    2012-01-01

    Hypertension-related cardiac organ damage, other than left ventricular (LV) hypertrophy (LVH), has been described: in particular, concentric remodeling, LV diastolic dysfunction (DD), and left atrial (LA) enlargement are significantly associated with cardiovascular morbility and mortality in different populations. This study evaluated the prevalence of these latter morphofunctional abnormalities, in never-treated essential hypertensive patients and the role of such a serial assessment of hypertensive cardiac damage in improving cardiovascular risk stratification in these patients. A total of 100 never-treated essential hypertensive subjects underwent a complete clinical and echocardiographic evaluation. Left ventricular morphology, systolic and diastolic function, and LA dimension (linear and volume) were evaluated by echocardiography. Left ventricular hypertrophy was present in 14% of the patients, whereas concentric remodeling was present in 25% of the subjects. Among patients free from LV morphology abnormalities, the most frequent abnormality was LA enlargement (global prevalence 57%); the percentage of patients with at least one parameter consistent with DD was 22% in the entire population, but DD was present as the only cardiac abnormality in 1% of our patient. Left atrial volume indexed for body surface area was the most sensitive parameter in identifying hypertension-related cardiac modification. The global prevalence of cardiac alteration reached 73% in never-treated hypertensive patients. Left ventricular remodeling and LA enlargement evaluation may grant a better assessment of cardiac organ damage and cardiovascular risk stratification of hypertensive patients without evidence of LVH after routine examination. PMID:22738434

  19. Doxorubicin-induced carbonylation and degradation of cardiac myosin binding protein C promote cardiotoxicity

    OpenAIRE

    Aryal, Baikuntha; Jeong, Jinsook; Rao, V. Ashutosh

    2014-01-01

    Doxorubicin is one of the most successful anticancer agents. However, 10–30% of all treated patients experience a dose-limiting cardiac adverse event. Oxidative stress is partly responsible for the cardiotoxicity because the heart does not possess required antioxidant mechanisms. Protein oxidation by carbonylation is irreversible and marks proteins for loss of function and degradation. Using proteomics and MS, we identified and investigated cardiac myosin binding protein (MyBPC) as being sele...

  20. Immunologic and inflammatory mechanisms that drive asthma progression to remodeling

    OpenAIRE

    Broide, David H.

    2008-01-01

    Although histologic features of airway remodeling have been well characterized in asthma, the immunologic and inflammatory mechanisms that drive progression of asthma to remodeling are still incompletely understood. Conceptually, airway remodeling may be due to persistent inflammation and/or aberrant tissue repair mechanisms. It is likely that several immune and inflammatory cell types and mediators are involved in mediating airway remodeling. In addition, different features of airway remodel...

  1. Effects of candesartan on electrical remodeling in the hearts of inherited dilated cardiomyopathy model mice.

    Directory of Open Access Journals (Sweden)

    Fuminori Odagiri

    Full Text Available Inherited dilated cardiomyopathy (DCM is characterized by dilatation and dysfunction of the ventricles, and often results in sudden death or heart failure (HF. Although angiotensin receptor blockers (ARBs have been used for the treatment of HF, little is known about the effects on postulated electrical remodeling that occurs in inherited DCM. The aim of this study was to examine the effects of candesartan, one of the ARBs, on cardiac function and electrical remodeling in the hearts of inherited DCM model mice (TNNT2 ΔK210. DCM mice were treated with candesartan in drinking water for 2 months from 1 month of age. Control, non-treated DCM mice showed an enlargement of the heart with prolongation of QRS and QT intervals, and died at t1/2 of 70 days. Candesartan dramatically extended the lifespan of DCM mice, suppressed cardiac dilatation, and improved the functional parameters of the myocardium. It also greatly suppressed prolongation of QRS and QT intervals and action potential duration (APD in the left ventricular myocardium and occurrence of ventricular arrhythmia. Expression analysis revealed that down-regulation of Kv4.2 (Ito channel protein, KChIP2 (auxiliary subunit of Kv4.2, and Kv1.5 (IKur channel protein in DCM was partially reversed by candesartan administration. Interestingly, non-treated DCM heart had both normal-sized myocytes with moderately decreased Ito and IKur and enlarged cells with greatly reduced K+ currents (Ito, IKur IK1 and Iss. Treatment with candesartan completely abrogated the emergence of the enlarged cells but did not reverse the Ito, and IKur in normal-sized cells in DCM hearts. Our results indicate that candesartan treatment suppresses structural remodeling to prevent severe electrical remodeling in inherited DCM.

  2. Effect of Shenxinning decoction on ventricular remodeling in AT1 receptor-knockout mice with chronic renal insufficiency

    Directory of Open Access Journals (Sweden)

    Xuejun Yang

    2014-01-01

    Full Text Available Objective: To observe the efficacy of Shenxinning Decoction (SXND in ventricular remodeling in AT1 receptor-knockout (AT1-KO mice with chronic renal insufficiency (CRI. Materials and Methods: AT1-KO mice modeled with subtotal (5/6 nephrectomy were intervened with SXND for 12 weeks. Subsequently, blood urea nitrogen (BUN, serum creatinine (SCr, brain natriuretic peptide (BNP, echocardiography (left ventricular end-diastolic diameter, LVDD; left ventricular end-systolic diameter, LVDS; fractional shortening, FS; and ejection fraction, EF, collagen types I and III in the heart and kidney, myocardial mitochondria, and cardiac transforming growth factor-β1 (TGF-β1 of the AT1-KO mice were compared with the same model with nephrectomy only and untreated with SXND. Results: AT1-KO mice did not affect the process of CRI but it could significantly affect cardiac remodeling process. SXND decreased to some extent the AT1-KO mice′s BUN, SCr, BNP, and cardiac LVDD, LVDS, and BNP, improved FS and EF, lowered the expression of collagen type I and III in heart and kidney, increased the quantity of mitochondria and ameliorated their structure, and down-regulated the expression of TGF-β1. Conclusion: SXND may antagonize the renin-angiotensin system (RAS and decrease uremia toxins, thereby ameliorating ventricular remodeling in CRI. Furthermore, SXND has a mechanism correlated with the improvement of myocardial energy metabolism and the down-regulation of TGF-β1.

  3. Proteomics Discovery of Disease Biomarkers

    OpenAIRE

    Mamoun Ahram; Petricoin, Emanuel F.

    2008-01-01

    Recent technological developments in proteomics have shown promising initiatives in identifying novel biomarkers of various diseases. Such technologies are capable of investigating multiple samples and generating large amount of data end-points. Examples of two promising proteomics technologies are mass spectrometry, including an instrument based on surface enhanced laser desorption/ionization, and protein microarrays. Proteomics data must, however, undergo analytical processing using bioinfo...

  4. Leptin as a mediator between obesity and cardiac dysfunction

    Directory of Open Access Journals (Sweden)

    Joanna Karbowska

    2012-05-01

    Full Text Available  Obesity is now recognised as one of the most important risk factors for heart disease. Obese individuals have high circulating levels of leptin, a hormone secreted by adipose tissue and in­volved in energy homeostasis. Growing evidence suggests that leptin may contribute to the development of cardiac dysfunction. In a large prospective study leptin has been shown to be an independent risk factor for coronary heart disease. An independent positive association has also been found between plasma leptin levels and heart rate in hypertensive patients and heart transplant recipients. In animal studies chronic leptin infusion increased heart rate and blood pressure. It has also been demonstrated that circulating leptin levels are elevated in patients with heart failure. The level of plasma leptin was associated with increased myocardial wall thickness and correlated with left ventricular mass, suggesting a role for this hormone in mediating left ventricular hypertrophy in humans. Moreover, leptin directly induced hypertrophy and hyperplasia in human and rodent cardiomyocytes, accompanied by cardiac extracellular matrix remodelling. Leptin may also influence energy substrate utilisation in cardiac tissue.These findings suggest that leptin acting directly or through the sympathetic nervous system may have adverse effects on cardiac structure and function, and that chronic hyperleptinaemia may greatly increase the risk of cardiac disorders. Additional studies are needed to define the role of leptin in cardiac physiology and pathophysiology, nevertheless the reduction in plasma leptin levels with caloric restriction and weight loss may prevent cardiac dysfunction in obese patients.

  5. Cardiac perception and cardiac control. A review.

    Science.gov (United States)

    Carroll, D

    1977-12-01

    The evidence regarding specific cardiac perception and discrimination, and its relationship to voluntary cardiac control, is critically reviewed. Studies are considered in three sections, depending on the method used to assess cardiac perception: questionnaire assessment, discrimination procedures, and heartbeat tracking. The heartbeat tracking procedure would appear to suffer least from interpretative difficulties. Recommendations are made regarding the style of analysis used to assess heartbeat perception in such tracking tasks. PMID:348240

  6. Preservation of cardiac function by prolonged action potentials in mice deficient of KChIP2

    DEFF Research Database (Denmark)

    Grubb, Søren Jahn; Aistrup, Gary L; Koivumäki, Jussi T;

    2015-01-01

    Inherited ion channelopathies and electrical remodeling in heart disease alter the cardiac action potential with important consequences for excitation-contraction coupling. Potassium channel-interacting protein 2 (KChIP2) is reduced in heart failure and interacts under physiological conditions with...

  7. The plant mitochondrial proteome

    DEFF Research Database (Denmark)

    Millar, A.H.; Heazlewood, J.L.; Kristensen, B.K.;

    2005-01-01

    The plant mitochondrial proteome might contain as many as 2000-3000 different gene products, each of which might undergo post-translational modification. Recent studies using analytical methods, such as one-, two- and three-dimensional gel electrophoresis and one- and two-dimensional liquid...... context to be defined for them. There are indications that some of these proteins add novel activities to mitochondrial protein complexes in plants....

  8. Proteomics of the Lysosome

    OpenAIRE

    Lübke, Torben; Lobel, Peter; Sleat, David

    2008-01-01

    Defects in lysosomal function have been associated with numerous monogenic human diseases typically classified as lysosomal storage diseases. However, there is increasing evidence that lysosomal proteins are also involved in more widespread human diseases including cancer and Alzheimer disease. Thus, there is a continuing interest in understanding the cellular functions of the lysosome and an emerging approach to this is the identification of its constituent proteins by proteomic analyses. To...

  9. SERCA2a superinhibition by human phospholamban triggers electrical and structural remodeling in mouse hearts

    OpenAIRE

    Arvanitis, D. A.; Dong, M; E.G. Kranias; Lam, C. K.; Niklewski, P. J.; Sanoudou, D; Wang, H. -S.; Zhao, W

    2011-01-01

    Phospholamban (PLN), the reversible inhibitor of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a), is a key regulator of myocyte Ca2+ cycling with a significant role in heart failure. We previously showed that the single amino acid difference between human and mouse PLN results in increased inhibition of Ca2+ cycling and cardiac remodeling and attenuated stress responses in transgenic mice expressing the human PLN (hPLN) in the null background. Here we dissect the molecular and electrop...

  10. Electrophysiological and structural remodeling in heart failure modulate arrhythmogenesis. 2D simulation study.

    Directory of Open Access Journals (Sweden)

    Juan F Gomez

    Full Text Available Heart failure is operationally defined as the inability of the heart to maintain blood flow to meet the needs of the body and it is the final common pathway of various cardiac pathologies. Electrophysiological remodeling, intercellular uncoupling and a pro-fibrotic response have been identified as major arrhythmogenic factors in heart failure.In this study we investigate vulnerability to reentry under heart failure conditions by incorporating established electrophysiological and anatomical remodeling using computer simulations.The electrical activity of human transmural ventricular tissue (5 cm × 5 cm was simulated using the human ventricular action potential model Grandi et al. under control and heart failure conditions. The MacCannell et al. model was used to model fibroblast electrical activity, and their electrotonic interactions with myocytes. Selected degrees of diffuse fibrosis and variations in intercellular coupling were considered and the vulnerable window (VW for reentry was evaluated following cross-field stimulation.No reentry was observed in normal conditions or in the presence of HF ionic remodeling. However, defined amount of fibrosis and/or cellular uncoupling were sufficient to elicit reentrant activity. Under conditions where reentry was generated, HF electrophysiological remodeling did not alter the width of the VW. However, intermediate fibrosis and cellular uncoupling significantly widened the VW. In addition, biphasic behavior was observed, as very high fibrotic content or very low tissue conductivity hampered the development of reentry. Detailed phase analysis of reentry dynamics revealed an increase of phase singularities with progressive fibrotic components.Structural remodeling is a key factor in the genesis of vulnerability to reentry. A range of intermediate levels of fibrosis and intercellular uncoupling can combine to favor reentrant activity.

  11. A fly's view of neuronal remodeling.

    Science.gov (United States)

    Yaniv, Shiri P; Schuldiner, Oren

    2016-09-01

    Developmental neuronal remodeling is a crucial step in sculpting the final and mature brain connectivity in both vertebrates and invertebrates. Remodeling includes degenerative events, such as neurite pruning, that may be followed by regeneration to form novel connections during normal development. Drosophila provides an excellent model to study both steps of remodeling since its nervous system undergoes massive and stereotypic remodeling during metamorphosis. Although pruning has been widely studied, our knowledge of the molecular and cellular mechanisms is far from complete. Our understanding of the processes underlying regrowth is even more fragmentary. In this review, we discuss recent progress by focusing on three groups of neurons that undergo stereotypic pruning and regrowth during metamorphosis, the mushroom body γ neurons, the dendritic arborization neurons and the crustacean cardioactive peptide peptidergic neurons. By comparing and contrasting the mechanisms involved in remodeling of these three neuronal types, we highlight the common themes and differences as well as raise key questions for future investigation in the field. WIREs Dev Biol 2016, 5:618-635. doi: 10.1002/wdev.241 For further resources related to this article, please visit the WIREs website. PMID:27351747

  12. Multi-omic data integration links Deleted in Breast Cancer 1 (DBC1) Degradation to Chromatin Remodeling in Inflammatory Response

    Energy Technology Data Exchange (ETDEWEB)

    Nakayasu, Ernesto S.; Brown, Roslyn N.; Ansong, Charles; Sydor, Michael A.; Imtiaz, Sayed; Mihai, Cosmin; Sontag, Ryan L.; Hixson, Kim K.; Monroe, Matthew E.; Sobreira, Tiago; Orr, Galya; Petyuk, Vladislav A.; Yang, Feng; Smith, Richard D.; Adkins, Joshua N.

    2013-08-12

    Ubiquitination is a common protein post-translational modification that regulates many key cellular functions. Here we investigated the dynamics of ubiquitinated proteins after an inflammatory stimulation of RAW264.7 macrophage-like cells with bacterial lipopolysaccharide. We demonstrate that levels of global ubiquitination, and K48 and K63 polyubiquitination change after lipopolysaccharide stimulation. A quantitative proteomic analysis identified 1199 ubiquitinated proteins, 78 of which had significantly changed ubiquitination levels after lipopolysaccharide stimulation. We next identified a subset of proteins that were targeted for degradation after lipopolysaccharide stimulation, by integrating the ubiquitinome data with global proteomics and transcriptomics results. Using cellular assays and western blot analyses we biochemically validated DBC1, a histone deacetylase inhibitor not previously linked to inflammation, as a degradation substrate, which is targeted via an orchestrated mechanism utilizing caspases and the proteasome. The degradation of DBC1 releases histone deacetylase activity, linking lipopolysaccharide activation to chromatin remodeling in caspase- and proteasome-mediated signaling.

  13. Cardiovascular Proteomics: Assessment of Protein Post-translational Modifications

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Zhang, P.; Murphy, A.; Van Eyk, J.E.

    First edition. London : Academic Press, 2012 - (Hill, J.; Olson, E.), s. 261-271 ISBN 978-0-12-415890-0. - (Volume 1) Institutional research plan: CEZ:AV0Z40310501 Keywords : cardiac cell subproteomes * post-translational modifications * cardiovascular proteomics * protein separation * mass spectrometry Subject RIV: CB - Analytical Chemistry, Separation http://aleph.nkp.cz/F/XBEQK7PM32M6AY2U7E1H3G67CQLULGBBAPPVB7XTIE3CDJ73HI-74473?func=full-set-set&set_number=019920&set_entry=000002&format=999

  14. Electrical stunning and hibernation: suggestion of new terms for short- and long-term cardiac memory.

    Science.gov (United States)

    Zoghi, Mehdi; Nalbantgil, Sanem

    2004-09-01

    Persistent T wave changes following resumption of sinus rhythm induced by pacing or arrhythmias that cause altering of ventricular activation sequence are named "cardiac memory". After this initial definition there has been a discussion whether such T wave changes are primary, secondary or pseudoprimary. In addition according to the results of pathophysiological studies investigating the mechanism and nature of this repolarization abnormality some authors have preferred to use the term "electrical remodelling" instead of cardiac memory. But these two terms are still not well defined. In this article, the previous terms are discussed and a new term instead of cardiac memory is introduced. PMID:15294266

  15. Cardiac troponins-Translational biomarkers in cardiology: Theory and practice of cardiac troponin high-sensitivity assays.

    Science.gov (United States)

    Adamcova, Michaela; Popelova-Lencova, Olga; Jirkovsky, Eduard; Simko, Fedor; Gersl, Vladimir; Sterba, Martin

    2016-01-01

    Tn is a unique translational biomarker in cardiology whose potential has not been diminished in the new era of high sensitive assays. cTns can be valuable markers in cardiac diseases as well as in infectious diseases and respiratory diseases. Furthermore, the role of cTns is growing in the routine evaluation of cardioxicity and in determining the efficacy/safety ratio of novel cardioprotective strategies in clinical settings. cTns can detect myocardial injury not only in a wide spectrum of laboratory animals in experimental studies in vivo, but also in isolated heart models or cardiomyocytes in vitro. The crucial issue regarding the cross-species usage of cardiac troponin investigation remains the choice of cardiac troponin testing. This review summarizes the recent proteomic data on aminoacid sequences of cTnT and cTnI in various species, as well as selected analytical characteristics of human cardiac troponin high-sensitivity assays. Due to the highly phylogenetically conserved structure of troponins, the same bioindicator can be investigated using the same method in both clinical and experimental cardiology, thus contributing to a better understanding of the pathogenesis of cardiac diseases as well as to increased effectiveness of troponin use in clinical practice. Measuring cardiac troponins using commercially available human high-sensitivity cardiac troponin tests with convenient antibodies selected on the basis of adequate proteomic knowledge can solve many issues which would otherwise be difficult to address in clinical settings for various ethical and practical reasons. Our survey could help elaborate the practical guidelines for optimizing the choice of cTns assay in cardiology. © 2016 BioFactors, 42(2):133-148, 2016. PMID:26876101

  16. Proteomic analysis during larval development and metamorphosis of the spionid polychaete Pseudopolydora vexillosa

    Directory of Open Access Journals (Sweden)

    Qian Pei-Yuan

    2009-12-01

    Full Text Available Abstract Background While the larval-juvenile transition (metamorphosis in the spionid polychaete Pseudopolydora vexillosa involves gradual morphological changes and does not require substantial development of juvenile organs, the opposite occurs in the barnacle Balanus amphitrite. We hypothesized that the proteome changes during metamorphosis in the spionids are less drastic than that in the barnacles. To test this, proteomes of pre-competent larvae, competent larvae (ready to metamorphose, and juveniles of P. vexillosa were compared using 2-dimensional gel electrophoresis (2-DE, and they were then compared to those of the barnacle. Results Unlike the significant changes found during barnacle metamorphosis, proteomes of competent P. vexillosa larvae were more similar to those of their juveniles. Pre-competent larvae had significantly fewer protein spots (384 spots, while both competent larvae and juveniles expressed about 660 protein spots each. Proteins up-regulated during competence identified by MALDI-TOF/TOF analysis included a molecular chaperon (calreticulin, a signal transduction regulator (tyrosin activation protein, and a tissue-remodeling enzyme (metallopeptidase. Conclusions This was the first time to study the protein expression patterns during the metamorphosis of a marine polychaete and to compare the proteomes of marine invertebrates that have different levels of morphological changes during metamorphosis. The findings provide promising initial steps towards the development of a proteome database for marine invertebrate metamorphosis, thus deciphering the possible mechanisms underlying larval metamorphosis in non-model marine organisms.

  17. Proteomic analysis during larval development and metamorphosis of the spionid polychaete Pseudopolydora vexillosa

    KAUST Repository

    Mok, Flora SY

    2009-12-14

    Background: While the larval-juvenile transition (metamorphosis) in the spionid polychaete Pseudopolydora vexillosa involves gradual morphological changes and does not require substantial development of juvenile organs, the opposite occurs in the barnacle Balanus amphitrite. We hypothesized that the proteome changes during metamorphosis in the spionids are less drastic than that in the barnacles. To test this, proteomes of pre-competent larvae, competent larvae (ready to metamorphose), and juveniles of P. vexillosa were compared using 2-dimensional gel electrophoresis (2-DE), and they were then compared to those of the barnacle.Results: Unlike the significant changes found during barnacle metamorphosis, proteomes of competent P. vexillosa larvae were more similar to those of their juveniles. Pre-competent larvae had significantly fewer protein spots (384 spots), while both competent larvae and juveniles expressed about 660 protein spots each. Proteins up-regulated during competence identified by MALDI-TOF/TOF analysis included a molecular chaperon (calreticulin), a signal transduction regulator (tyrosin activation protein), and a tissue-remodeling enzyme (metallopeptidase).Conclusions: This was the first time to study the protein expression patterns during the metamorphosis of a marine polychaete and to compare the proteomes of marine invertebrates that have different levels of morphological changes during metamorphosis. The findings provide promising initial steps towards the development of a proteome database for marine invertebrate metamorphosis, thus deciphering the possible mechanisms underlying larval metamorphosis in non-model marine organisms. © 2009 Mok et al; licensee BioMed Central Ltd.

  18. What Is Cardiac Rehabilitation?

    Science.gov (United States)

    ANSWERS by heart Treatments + Tests What Is Cardiac Rehabilitation? A cardiac rehabilitation (rehab) program takes place in a hospital or ... special help in making lifestyle changes. During your rehabilitation program you’ll… • Have a medical evaluation to ...

  19. Ataxia telangiectasia-mutated kinase deficiency exacerbates left ventricular dysfunction and remodeling late after myocardial infarction.

    Science.gov (United States)

    Daniel, Laura L; Scofield, Stephanie L C; Thrasher, Patsy; Dalal, Suman; Daniels, Christopher R; Foster, Cerrone R; Singh, Mahipal; Singh, Krishna

    2016-08-01

    Ataxia telangiectasia-mutated kinase (ATM), a cell cycle checkpoint protein, is activated in response to DNA damage and oxidative stress. We have previously shown that ATM deficiency is associated with increased apoptosis and fibrosis and attenuation of cardiac dysfunction early (1-7 days) following myocardial infarction (MI). Here, we tested the hypothesis that enhanced fibrosis and apoptosis, as observed early post-MI during ATM deficiency, exacerbate cardiac dysfunction and remodeling in ATM-deficient mice late post-MI. MIs were induced in wild-type (WT) and ATM heterozygous knockout (hKO) mice by ligation of the left anterior descending artery. Left ventricular (LV) structural and functional parameters were assessed by echocardiography 14 and 28 days post-MI, whereas biochemical parameters were measured 28 days post-MI. hKO-MI mice exhibited exacerbated LV dysfunction as observed by increased LV end-systolic volume and decreased percent fractional shortening and ejection fraction. Infarct size and thickness were not different between the two genotypes. Myocyte cross-sectional area was greater in hKO-MI group. The hKO-MI group exhibited increased fibrosis in the noninfarct and higher expression of α-smooth muscle actin (myofibroblast marker) in the infarct region. Apoptosis and activation of GSK-3β (proapoptotic kinase) were significantly lower in the infarct region of hKO-MI group. Matrix metalloproteinase 2 (MMP-2) expression was not different between the two genotypes. However, MMP-9 expression was significantly lower in the noninfarct region of hKO-MI group. Thus ATM deficiency exacerbates cardiac remodeling late post-MI with effects on cardiac function, fibrosis, apoptosis, and myocyte hypertrophy. PMID:27288435

  20. Present Researching Approaches and Future Prospects for Treatment of Cardiac Diseases-Integrative Medicine

    Institute of Scientific and Technical Information of China (English)

    Yan Feng; Hao Xu; Yi-Xin Wang; Li-Ping Ma; Da-Zhuo Shi

    2015-01-01

    The pathogenesis of cardiac diseases is very complex and involved in many gene transcription and protein expression. How to effectively treat the diseases has become the hotspot of modern medicine. Accumulating evidences over the past decades on integrative medicine have shown us hopeful future prospects. With the development of modern biomedicine, such as sketch mapping genomic sequence, functional genomics, proteomics and pharmacogenetics, more advanced techniques could be applied in elucidating the possibly complicated biological networks, or complex pathological and physiological mechanisms underlying cardiac diseases, by which integrative medicine will also bring out some new and more effective strategies in the treatment of cardiac diseases.

  1. Biomechanical Remodeling of the Diabetic Gastrointestinal Tract

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Liao, Donghua; Yang, Jian;

    2010-01-01

    several years, several studies demonstrated that experimental diabetes induces GI morphological and biomechanical remodeling. Following the development of diabetes, the GI wall becomes thicker and the stiffness of the GI wall increases in a time-dependent manner. It is well known that mechanosensitive...... the biomechanical environment of the mechanosensitive nerve endings, therefore, the structure as well as the tension, stress and strain distribution in the GI wall is important for the sensory and motor function. Biomechanical remodeling of diabetic GI tract including alterations of residual strain and increase...

  2. Diffuse infiltrative cardiac tuberculosis

    International Nuclear Information System (INIS)

    We present the cardiac magnetic resonance images of an unusual form of cardiac tuberculosis. Nodular masses in a sheet-like distribution were seen to infiltrate the outer myocardium and pericardium along most of the cardiac chambers. The lesions showed significant resolution on antitubercular therapy

  3. Cardiac Abnormalities in Youth with Obesity and Type 2 Diabetes.

    Science.gov (United States)

    Bacha, Fida; Gidding, Samuel S

    2016-07-01

    Childhood obesity has been linked to cardiovascular disease (CVD) risk in adulthood. Of great concern is the expected increase in the population's CVD burden in relation to childhood obesity. This is compounded by the risk related to chronic hyperglycemia exposure in youth with type 2 diabetes. We herein provide an overview of the spectrum of early cardiovascular disease manifestation in youth with obesity and type 2 diabetes, in particular abnormalities in cardiac structure and function. Cardiac remodeling and adverse target organ damage is already evident in the pediatric age group in children with obesity and type 2 diabetes. This supports the importance of intensifying obesity prevention efforts and early intervention to treat comorbidities of obesity in the pediatric age group to prevent cardiac events in early adulthood. PMID:27168062

  4. Proteomics research in India: an update.

    Science.gov (United States)

    Reddy, Panga Jaipal; Atak, Apurva; Ghantasala, Saicharan; Kumar, Saurabh; Gupta, Shabarni; Prasad, T S Keshava; Zingde, Surekha M; Srivastava, Sanjeeva

    2015-09-01

    After a successful completion of the Human Genome Project, deciphering the mystery surrounding the human proteome posed a major challenge. Despite not being largely involved in the Human Genome Project, the Indian scientific community contributed towards proteomic research along with the global community. Currently, more than 76 research/academic institutes and nearly 145 research labs are involved in core proteomic research across India. The Indian researchers have been major contributors in drafting the "human proteome map" along with international efforts. In addition to this, virtual proteomics labs, proteomics courses and remote triggered proteomics labs have helped to overcome the limitations of proteomics education posed due to expensive lab infrastructure. The establishment of Proteomics Society, India (PSI) has created a platform for the Indian proteomic researchers to share ideas, research collaborations and conduct annual conferences and workshops. Indian proteomic research is really moving forward with the global proteomics community in a quest to solve the mysteries of proteomics. A draft map of the human proteome enhances the enthusiasm among intellectuals to promote proteomic research in India to the world.This article is part of a Special Issue entitled: Proteomics in India. PMID:25868663

  5. Observations of super early left ventricular remodeling experimental myocardial infarction

    International Nuclear Information System (INIS)

    Purpose: Ventricular remodeling is defined as the changes in the shape and size of the entire left ventricle after acute myocardial infarction (AMI). Many investigators have shown that left ventricular remodeling is related to clinical outcomes, including mortality, that represent the natural history, of the heart failure syndrome. The aim of this study was to demonstrate that it is possible to observe super early left ventricular remodeling by 99mTc-MIBI myocardial imaging in the dog model of acute experimental myocardial infarction. Methods: Experimental subjects: Twenty-three healthy mongrel dogs (14-25 kg) of either sex were studied under general anesthesia (sodium pentobarbital, 30 mg/kg). The left anterior descending (LAD) coronary artery was dissected and ligated between the first and second diagonal branches. Seven dogs died of ventricular fibrillation after the LAD coronary artery ligation. The 16 remaining dogs were divided into two groups: Group A (GA) received 99mTc-MIBI myocardial imaging (n=8): Group B (GB) received 99mTc-MIBI myocardial imaging combined with echocardiography (n=8). 99mTc-MIBI myocardial perfusion imaging :Static 99mTc-MIBI myocardial imaging was taken with ADAC Vertex Dual-head SPECT. 99mTc-MIBI kit was manufactured in Syncor, China. Each dog served as its own control, and was scanned by 99mTc-MIBI myocardial imaging and chocardiography at 48-72 hours before ligation. The mean time of the first acquisition was 21.87 ± 11.03 (14-48) minutes post-operatively in GA, 57.63±22.83 (30-99) minutes for 99mTc-MIBI imaging in GB, 26.00±15.07 (12-50) minutes for echocardiography in GB. Acquisition techniques for Gated SPECT: ECG synchronized data collection: R wave trigger, 8 Frames/Cardiac cycle. Images were gathered by rotating the detectors 180 degrees at 6 degrees per frame. Each frame took 40 seconds. The dog position was supine. The images were acquired and recorded for 6 hours following the LAD coronary artery ligation. After 6 hours

  6. Cardiac biomarkers in children with congenital heart disease

    Institute of Scientific and Technical Information of China (English)

    Masaya Sugimoto; Seiko Kuwata; Clara Kurishima; Jeong Hye Kim; Yoich Iwamoto; Hideaki Senzaki

    2015-01-01

    Background: Most congenital heart diseases (CHDs) have specific hemodynamics, including volume and pressure overload, as well as cyanosis and pulmonary hypertension, associated with anatomical abnormalities. Such hemodynamic abnormalities can cause activation of neurohormones, inflammatory cytokines, fibroblasts, and vascular endothelial cells, which in turn contribute to the development of pathologic conditions such as cardiac hypertrophy,fi brosis, and cardiac cell damages and death. Measuring biomarker levels facilitates the prediction of these pathological changes, and provides information about the stress placed on the myocardial cells, the severity of the damage, the responses of neurohumoral factors, and the remodeling of the ventricle. Compared to the ample information on cardiac biomarkers in adult heart diseases, data from children with CHD are still limited. Data sources: We reviewed cardiac biomarkers-specifi cally focusing on troponin as a biomarker of myocardial damage, amino-terminal procollagen type III peptide (PIIIP) as a biomarker of myocardialfi brosis and stromal remodeling, and B-type natriuretic peptide (BNP)/N-terminal proBNP as biomarkers of cardiac load and heart failure, by introducing relevant publications, including our own, on pediatric CHD patients as well as adults. Results: Levels of highly sensitive troponin I are elevated in patients with atrial septal defects (ASDs) and ventricular septal defects (VSDs). PIIIP levels are also elevated in patients with ASD, VSD, pulmonary stenosis, and Tetralogy of Fallot. Measurement of BNP and N-terminal proBNP levels shows good correlation with heart failure score in children. Conclusions: In the treatment of children with CHD requiring delicate care, it is vital to know the specifi c degree of myocardial damage and severity of heart failure. Cardiac biomarkers are useful tools for ascertaining the condition of CHDs with ease and are likely to be useful in determining the appropriate care of

  7. Recipient-derived EDA fibronectin promotes cardiac allograft fibrosis.

    Science.gov (United States)

    Booth, Adam J; Wood, Sherri C; Cornett, Ashley M; Dreffs, Alyssa A; Lu, Guanyi; Muro, Andrés F; White, Eric S; Bishop, D Keith

    2012-03-01

    Advances in donor matching and immunosuppressive therapies have decreased the prevalence of acute rejection of cardiac grafts; however, chronic rejection remains a significant obstacle for long-term allograft survival. While initiating elements of anti-allograft immune responses have been identified, the linkage between these factors and the ultimate development of cardiac fibrosis is not well understood. Tissue fibrosis resembles an exaggerated wound healing response, in which extracellular matrix (ECM) molecules are central. One such ECM molecule is an alternatively spliced isoform of the ubiquitous glycoprotein fibronectin (FN), termed extra domain A-containing cellular fibronectin (EDA cFN). EDA cFN is instrumental in fibrogenesis; thus, we hypothesized that it might also regulate fibrotic remodelling associated with chronic rejection. We compared the development of acute and chronic cardiac allograft rejection in EDA cFN-deficient (EDA(-/-)) and wild-type (WT) mice. While EDA(-/-) mice developed acute cardiac rejection in a manner indistinguishable from WT controls, cardiac allografts in EDA(-/-) mice were protected from fibrosis associated with chronic rejection. Decreased fibrosis was not associated with differences in cardiomyocyte hypertrophy or intra-graft expression of pro-fibrotic mediators. Further, we examined expression of EDA cFN and total FN by whole splenocytes under conditions promoting various T-helper lineages. Conditions supporting regulatory T-cell (Treg) development were characterized by greatest production of total FN and EDA cFN, though EDA cFN to total FN ratios were highest in Th1 cultures. These findings indicate that recipient-derived EDA cFN is dispensable for acute allograft rejection responses but that it promotes the development of fibrosis associated with chronic rejection. Further, conditions favouring the development of regulatory T cells, widely considered graft-protective, may drive production of ECM molecules which enhance

  8. The minotaur proteome

    DEFF Research Database (Denmark)

    Bunkenborg, Jakob; García, Guadalupe Espadas; Paz, Marcia Ivonne Peña;

    2010-01-01

    Cell culture is a fundamental tool in proteomics where mammalian cells are cultured in vitro using a growth medium often supplemented with 5-15% FBS. Contamination by bovine proteins is difficult to avoid because of adherence to the plastic vessel and the cultured cells. We have generated peptides...... from bovine serum using four sample preparation methods and analyzed the peptides by high mass accuracy LC-MS/MS. Distinguishing between bovine and human peptides is difficult because of a considerable overlap of identical tryptic peptide sequences. Pitfalls in interpretation, different database search...

  9. The pathogenesis and treatment of cardiac atrophy in cancer cachexia.

    Science.gov (United States)

    Murphy, Kate T

    2016-02-15

    Cancer cachexia is a multifactorial syndrome characterized by a progressive loss of skeletal muscle mass associated with significant functional impairment. In addition to a loss of skeletal muscle mass and function, many patients with cancer cachexia also experience cardiac atrophy, remodeling, and dysfunction, which in the field of cancer cachexia is described as cardiac cachexia. The cardiac alterations may be due to underlying heart disease, the cancer itself, or problems initiated by the cancer treatment and, unfortunately, remains largely underappreciated by clinicians and basic scientists. Despite recent major advances in the treatment of cancer, little progress has been made in the treatment of cardiac cachexia in cancer, and much of this is due to lack of information regarding the mechanisms. This review focuses on the cardiac atrophy associated with cancer cachexia, describing some of the known mechanisms and discussing the current and future therapeutic strategies to treat this condition. Above all else, improved awareness of the condition and an increased focus on identification of mechanisms and therapeutic targets will facilitate the eventual development of an effective treatment for cardiac atrophy in cancer cachexia. PMID:26718971

  10. Exercise, Nrf2 and Antioxidant Signaling in Cardiac Aging.

    Science.gov (United States)

    Narasimhan, Madhusudhanan; Rajasekaran, Namakkal S

    2016-01-01

    Aging is represented by a progressive decline in cellular functions. The age-related deformities in cardiac behaviors are the loss of cardiac myocytes through apoptosis or programmed cell death. Oxidative stress (OS) and its deleterious consequence contribute to age-related mechanical remodeling, reduced regenerative capacity, and apoptosis in cardiac tissue. The pathogenesis of OS in the elderly can predispose the heart to other cardiac complications such as atherosclerosis, hypertension, ischemic heart disease, cardiac myopathy, and so on. At the molecular level, oxidant-induced activation of Nrf2 (Nuclear erythroid-2-p45-related factor-2), a transcription factor, regulates several genes containing AREs (Antioxidant Response Element) and bring the respective translates to counteract the reactive radicals and establish homeostasis. Myriad of Nrf2 gene knockout studies in various organs such as lung, liver, kidney, brain, etc. have shown that dysregulation of Nrf2 severely affects the oxidant/ROS sensitivity and predispose the system to several pathological changes with aberrant cellular lesions. On the other hand, its gain of function chemical interventions exhibited oxidant stress resistance and cytoprotection. However, thus far, only a few investigations have shown the potential role of Nrf2 and its non-pharmacological induction in cardiac aging. Therefore, here we review the involvement of Nrf2 signaling along with its responses and ramifications on the cascade of OS under acute exercise stress (AES), moderate exercise training (MET), and endurance exercise stress (EES) conditions in the aging heart. PMID:27378947

  11. Proteomics in biomarker discovery and drug development

    OpenAIRE

    He, Q.; Chiu, J

    2003-01-01

    Proteomics is a research field aiming to characterize molecular and cellular dynamics in protein expression and function on a global level. The introduction of proteomics has been greatly broadening our view and accelerating our path in various medical researches. The most significant advantage of proteomics is its ability to examine a whole proteome or sub-proteome in a single experiment so that the protein alterations corresponding to a pathological or biochemical condition at a given time ...

  12. Performance Requirements on Remodeling Apartment Housing and TOPSIS Evaluation

    OpenAIRE

    Jaeho Cho; Jaeyoul Chun

    2015-01-01

    Functional improvement needed in remodeling projects is determined by users in a complex manner since remodeling projects require performance improvement against deterioration. This study defines fundamental Remodeling Performance Criteria (RPC) for apartment housing by referring to performance criteria of both domestic and international performance-related systems. In this case study, performance evaluation of Construction Element Method (CEM) for remodeling projects was conducted based on R...

  13. New predictive model for monitoring bone remodeling

    Czech Academy of Sciences Publication Activity Database

    Bougherara, H.; Klika, Václav; Maršík, František; Mařík, I.; Yahia, L.H.

    95A, č. 1 (2010), s. 9-24. ISSN 1549-3296 R&D Projects: GA ČR GA106/03/1073; GA ČR(CZ) GA106/03/0958 Institutional research plan: CEZ:AV0Z20760514 Keywords : bone remodeling * open system thermodynamics * bone biochemistry Subject RIV: BJ - Thermodynamics Impact factor: 3.044, year: 2010

  14. Link between vitamin D and airway remodeling

    Directory of Open Access Journals (Sweden)

    Berraies A

    2014-04-01

    Full Text Available Anissa Berraies, Kamel Hamzaoui, Agnes HamzaouiPediatric Respiratory Diseases Department, Abderrahmen Mami Hospital, Ariana, and Research Unit 12SP15 Tunis El Manar University, Tunis, TunisiaAbstract: In the last decade, many epidemiologic studies have investigated the link between vitamin D deficiency and asthma. Most studies have shown that vitamin D deficiency increases the risk of asthma and allergies. Low levels of vitamin D have been associated with asthma severity and loss of control, together with recurrent exacerbations. Remodeling is an early event in asthma described as a consequence of production of mediators and growth factors by inflammatory and resident bronchial cells. Consequently, lung function is altered, with a decrease in forced expiratory volume in one second and exacerbated airway hyperresponsiveness. Subepithelial fibrosis and airway smooth muscle cell hypertrophy are typical features of structural changes in the airways. In animal models, vitamin D deficiency enhances inflammation and bronchial anomalies. In severe asthma of childhood, major remodeling is observed in patients with low vitamin D levels. Conversely, the antifibrotic and antiproliferative effects of vitamin D in smooth muscle cells have been described in several experiments. In this review, we briefly summarize the current knowledge regarding the relationship between vitamin D and asthma, and focus on its effect on airway remodeling and its potential therapeutic impact for asthma.Keywords: vitamin D, asthma, airway remodeling, airway smooth muscle, supplementation

  15. Interleukin-20 promotes airway remodeling in asthma.

    Science.gov (United States)

    Gong, Wenbin; Wang, Xin; Zhang, Yuguo; Hao, Junqing; Xing, Chunyan; Chu, Qi; Wang, Guicheng; Zhao, Jiping; Wang, Junfei; Dong, Qian; Liu, Tian; Zhang, Yuanyuan; Dong, Liang

    2014-12-01

    Previous studies have demonstrated that interleukin-20 (IL-20) is a pro-inflammatory cytokine, and it has been implicated in psoriasis, lupus nephritis, rheumatoid arthritis, atherosclerosis, and ulcerative colitis. Little is known about the effects of IL-20 in airway remodeling in asthma. The aim of our study was to demonstrate the function of IL-20 in airway remodeling in asthma. To identify the expression of IL-20 and its receptor, IL-20R1/IL-20R2, in the airway epithelium in bronchial tissues, bronchial biopsy specimens were collected from patients and mice with asthma and healthy subjects and stained with specific antibodies. To characterize the effects of IL-20 in asthmatic airway remodeling, we silenced and stimulated IL-20 in cell lines isolated from mice by shRNA and recombinant protein approaches, respectively, and detected the expression of α-SMA and FN-1 by Western blot analysis. First, overexpression of IL-20 and its receptor, IL-20R1/IL-20R2, was detected in the airway epithelium collected from patients and mice with asthma. Second, IL-20 increased the expression of fibronectin-1 and α-SMA, and silencing of IL-20 in mouse lung epithelial (MLE)-12 cells decreased the expression of fibronectin-1 and α-SMA. IL-20 may be a critical cytokine in airway remodeling in asthma. This study indicates that targeting IL-20 and/or its receptors may be a new therapeutic strategy for asthma. PMID:25028099

  16. Connexin Remodeling Contributes to Atrial Fibrillation

    OpenAIRE

    Michelle M Jennings; J Kevin Donahue

    2013-01-01

    Atrial fibrillation significantly contributes to mortality and morbidity through increased risk of stroke, heart failure and myocardial infarcts. Investigations of mechanisms responsible for the development and maintenance of atrial fibrillation have highlighted the importance of gap junctional remodeling. Connexins 40 and 43, the major atrial gap junctional proteins, undergo considerable alterations in expression and localization in atrial fibrillation, creating an environment conducive to s...

  17. Remodelling of flash furnace for coal firing

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Z.

    1982-05-01

    The Chichiku Cement Co. has succeeded in re-converting all its cement plants from oil to coal firing system with no impairment at all to production rate or to unit energy consumption. The reconversion wea achieved by remodelling four of its five principal kilns from a system of suspension preheater with calciner to the C-SF kiln system.

  18. MYOCARDIAL REMODELING IN ISCHEMIC HEART DISEASE

    Directory of Open Access Journals (Sweden)

    A. N. Zakirova

    2016-01-01

    Full Text Available Aim. To study the myocardial remodeling features in patients with stable angina depending on disease severity and experienced myocardial infarction (MI.Material and methods. 148 male patients with stable angina were examined and randomized into 3 groups (G1-G3. 52 patients of G1 had angina of I-II functional class (FC. 49 patients of G2 had angina of III FC, and 47 patients of G3 had angina of IV FC. History of MI had 79,5, 87.2 and 92.6% of patients in G1, G2 and G3 respectively. 35 healthy men were included into control group. Coronarography, bicycle ergometry and 24-hour ECG monitoring was performed. Left ventricular (LV function and remodeling was assessed with echocardiography.Results. G3 patients had LV eccentric hypertrophy as a result of postinfarction cardiosclerosis which accompanied with LV systolic dysfunction, a myocardial stress increasing and LV spherification. G1 patients had no any significant disorders of LV systolic function.Conclusion. Severe ischemic heart disease is associated with a dysadaptive remodeling unlike mild ischemic heart disease, which is associated with an adaptive myocardial remodeling.

  19. Re-Modelling as De-Professionalisation

    Science.gov (United States)

    Thompson, Meryl

    2006-01-01

    The article sets out the consequences of the British Government's remodelling agenda and its emphasis on less demarcation, for the professional status of teachers in England. It describes how the National Agreement on Raising Standards and Tackling Workload, reached between five of the six trade unions for teachers and headteachers paves the way…

  20. Stem cell factor receptor induces progenitor and natural killer cell-mediated cardiac survival and repair after myocardial infarction

    OpenAIRE

    Ayach, Bilal B.; Yoshimitsu, Makoto; Dawood, Fayez; Sun, Mei; Arab, Sara; Chen, Manyin; HIGUCHI, KOJI; Siatskas, Christopher; Lee, Paul; Lim, Hilda; Zhang, Jane; Cukerman, Eva; Stanford, William L.; Medin, Jeffrey A; Liu, Peter P.

    2006-01-01

    Inappropriate cardiac remodeling and repair after myocardial infarction (MI) predisposes to heart failure. Studies have reported on the potential for lineage negative, steel factor positive (c-kit+) bone marrow-derived hematopoetic stem∕progenitor cells (HSPCs) to repair damaged myocardium through neovascularization and myogenesis. However, the precise contribution of the c-kit signaling pathway to the cardiac repair process has yet to be determined. In this study, we sought to directly eluci...

  1. Plasma tissue inhibitor of matrix metalloproteinase-1 (TIMP-1): an independent predictor of poor response to cardiac resynchronization therapy

    OpenAIRE

    Tolosana, Jose María; Mont, Lluís; Sitges, Marta; Berruezo, Antonio; Delgado, Victoria; Vidal, Bàrbara; Tamborero, David; Morales, Manel; Batlle, Montserrat; Roig, Eulalia; Castel, M. Angeles; Pérez-Villa, Félix; Godoy, Miguel; Brugada, Josep

    2010-01-01

    Aims Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) play a role in left ventricular structural remodelling. The aim of our study was to analyse MMP-2 and TIMP-1 levels as predictors of poor response to cardiac resynchronization therapy (CRT). Methods and results A cohort of 42 CRT patients from our centre was prospectively evaluated at baseline and after 12-month follow-up. MMP-2 and TIMP-1 assays were performed prior to CRT implant. Cardiac resynchronization therapy res...

  2. Cardiac tumours in children

    Directory of Open Access Journals (Sweden)

    Parsons Jonathan M

    2007-03-01

    Full Text Available Abstract Cardiac tumours are benign or malignant neoplasms arising primarily in the inner lining, muscle layer, or the surrounding pericardium of the heart. They can be primary or metastatic. Primary cardiac tumours are rare in paediatric practice with a prevalence of 0.0017 to 0.28 in autopsy series. In contrast, the incidence of cardiac tumours during foetal life has been reported to be approximately 0.14%. The vast majority of primary cardiac tumours in children are benign, whilst approximately 10% are malignant. Secondary malignant tumours are 10–20 times more prevalent than primary malignant tumours. Rhabdomyoma is the most common cardiac tumour during foetal life and childhood. It accounts for more than 60% of all primary cardiac tumours. The frequency and type of cardiac tumours in adults differ from those in children with 75% being benign and 25% being malignant. Myxomas are the most common primary tumours in adults constituting 40% of benign tumours. Sarcomas make up 75% of malignant cardiac masses. Echocardiography, Computing Tomography (CT and Magnetic Resonance Imaging (MRI of the heart are the main non-invasive diagnostic tools. Cardiac catheterisation is seldom necessary. Tumour biopsy with histological assessment remains the gold standard for confirmation of the diagnosis. Surgical resection of primary cardiac tumours should be considered to relieve symptoms and mechanical obstruction to blood flow. The outcome of surgical resection in symptomatic, non-myxomatous benign cardiac tumours is favourable. Patients with primary cardiac malignancies may benefit from palliative surgery but this approach should not be recommended for patients with metastatic cardiac tumours. Surgery, chemotherapy and radiotherapy may prolong survival. The prognosis for malignant primary cardiac tumours is generally extremely poor.

  3. IL-17A mediates inflammatory and tissue remodelling events in early human tendinopathy.

    Science.gov (United States)

    Millar, Neal L; Akbar, Moeed; Campbell, Abigail L; Reilly, James H; Kerr, Shauna C; McLean, Michael; Frleta-Gilchrist, Marina; Fazzi, Umberto G; Leach, William J; Rooney, Brian P; Crowe, Lindsay A N; Murrell, George A C; McInnes, Iain B

    2016-01-01

    Increasingly, inflammatory mediators are considered crucial to the onset and perpetuation of tendinopathy. We sought evidence of interleukin 17A (IL-17A) expression in early human tendinopathy and thereafter, explored mechanisms whereby IL-17A mediated inflammation and tissue remodeling in human tenocytes. Torn supraspinatus tendon (established pathology) and matched intact subscapularis tendon (representing 'early pathology') along with control biopsies were collected from patients undergoing shoulder surgery. Markers of inflammation and IL-17A were quantified by RT-PCR and immunohistochemistry. Human tendon cells were derived from hamstring tendon obtained during ACL reconstruction. In vitro effects of IL-17A upon tenocytes were measured using RT-PCR, multiplex cytokine assays, apoptotic proteomic profiling, immunohistochemistry and annexin V FACS staining. Increased expression of IL-17A was detected in 'early tendinopathy' compared to both matched samples and non-matched control samples (p tendinopathy processes thus providing novel therapeutic approaches in the management of tendon disorders. PMID:27263531

  4. Time course of infarct healing and left ventricular remodelling in patients with reperfused ST segment elevation myocardial infarction using comprehensive magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ganame, Javier [University Hospitals Leuven, Cardiology Department, Leuven (Belgium); University Hospitals Leuven, Radiology Department, Leuven (Belgium); Messalli, Giancarlo; Dymarkowski, Steven; Abbasi, Kayvan; Bogaert, Jan [University Hospitals Leuven, Radiology Department, Leuven (Belgium); Masci, Pier Giorgio [University Hospitals Leuven, Radiology Department, Leuven (Belgium); MRI Unit, Monasterio Foundation, CNR, Pisa (Italy); Werf, Frans van de; Janssens, Stefan [University Hospitals Leuven, Cardiology Department, Leuven (Belgium)

    2011-04-15

    To describe the time course of myocardial infarct (MI) healing and left ventricular (LV) remodelling and to assess factors predicting LV remodelling using cardiac MRI. In 58 successfully reperfused MI patients, MRI was performed at baseline, 4 months (4M), and 1 year (1Y) post MI Infarct size decreased between baseline and 4M (p < 0.001), but not at 1Y; i.e. 18 {+-} 11%, 12 {+-} 8%, 11 {+-} 6% of LV mass respectively; this was associated with LV mass reduction. Infarct and adjacent wall thinning was found at 4M, whereas significant remote wall thinning was measured at 1Y. LV end-diastolic and end-systolic volumes significantly increased at 1Y, p < 0.05 at 1Y vs. baseline and vs. 4M; this was associated with increased LV sphericity index. No regional or global LV functional improvement was found at follow-up. Baseline infarct size was the strongest predictor of adverse LV remodelling. Infarct healing, with shrinkage of infarcted myocardium and wall thinning, occurs early post-MI as reflected by loss in LV mass and adjacent myocardial remodelling. Longer follow-up demonstrates ongoing remote myocardial and ventricular remodelling. Infarct size at baseline predicts long-term LV remodelling and represents an important parameter for tailoring future post-MI pharmacological therapies designed to prevent heart failure. (orig.)

  5. Characterization of the porcine synovial fluid proteome and a comparison to the plasma proteome

    Directory of Open Access Journals (Sweden)

    Tue Bjerg Bennike

    2015-12-01

    In addition, we analyzed the proteome of human plasma, and compared the proteomes to the obtained porcine synovial fluid proteome. The proteome of the two body fluids were found highly similar, underlining the detected plasma derived nature of many synovial fluid components. The healthy porcine synovial fluid proteomics data, human rheumatoid arthritis synovial fluid proteomics data used in the method optimization, human plasma proteomics data, and search results, have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD000935.

  6. Ovarian Cancer Proteomic, Phosphoproteomic, and Glycoproteomic Data Released - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have just released a comprehensive dataset of the proteomic analysis of high grade serous ovarian tumor samples,

  7. Analysis of Peanut Leaf Proteome

    DEFF Research Database (Denmark)

    Ramesh, R.; Suravajhala, Prashanth; Pechan, T.

    2010-01-01

    approach to define function of their associated genes. Proteome analysis linked to genome sequence information is critical for functional genomics. However, the available protein expression data is extremely inadequate. Proteome analysis of peanut leaf was conducted using two-dimensional gel....... Furthermore, the leaf proteome map will lead to development of protein markers for cultivar identification at seedling stage of the plant. Overall, this study will contribute to improve our understanding of plant genetics and metabolism, and overall assist in the selection and breeding programs geared toward...

  8. Proteomics in Pancreatic Cancer Research

    Science.gov (United States)

    Geng, Ruihui; Li, Zhaoshen; Li, Shude; Gao, Jun

    2011-01-01

    Pancreatic cancer is a highly aggressive malignancy with a poor prognosis and deeply affects the life of people. Therefore, the earlier diagnosis and better treatments are urgently needed. In recent years, the proteomic technologies are well established and growing rapidly and have been widely applied in clinical applications, especially in pancreatic cancer research. In this paper, we attempt to discuss the development of current proteomic technologies and the application of proteomics to the field of pancreatic cancer research. This will explore the potential perspective in revealing pathogenesis, making the diagnosis earlier and treatment. PMID:22084685

  9. Elasticity of developing cardiac tissue

    Science.gov (United States)

    Majkut, Stephanie; Swift, Joe; Krieger, Christine; Discher, Dennis

    2011-03-01

    Proper development and function of the heart from the tissue to cellular scale depends on a compliant ECM. Here we study the maturation of embryonic cardiac tissue mechanics in parallel with the effects of extracellular mechanics on individual cardiomyocyte function throughout early development. We used micropipette aspiration to measure local and bulk elastic moduli (E) of embryonic avian heart tissue from days 2-12. We observe stiffening of the early heart tube from E = 1 kPa at day 1 to E = 2 kPa at day 4, reaching neonatal values by day 12. Treating heart tubes with blebbistatin led to 30% decrease in E, indicating a significant but partial actomyosin contribution to mechanics at these stages. We performed a proteomic analysis of intact and decellularized 2-4 day heart tubes by mass spectrometry to quantify the ECM present at these stages. Isolated cardiomyocytes from 2-4 day chick embryos were cultured on collagen-coated PA gels of various stiffnesses. Beating magnitude was modulated by substrates with E = 1-2 kPa, similar to physiological E at those stages.

  10. Analyzing shotgun proteomic data with PatternLab for proteomics

    OpenAIRE

    Carvalho, Paulo C; Yates, John R.; Barbosa, Valmir C

    2010-01-01

    PatternLab for proteomics is a one-stop-shop computational environment for analyzing shotgun proteomic data. Its modules provide means to pinpoint proteins / peptides that are differentially expressed, those that are unique to a state, and can also cluster the ones that share similar expression profiles in time-course experiments as well as help in interpreting results according to Gene Ontology. PatternLab is user-friendly, simple, and provides a graphical user interface.

  11. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  12. Endogenous resident c-Kit cardiac stem cells increase in mice with an exercise-induced, physiologically hypertrophied heart

    Directory of Open Access Journals (Sweden)

    Camila Ferreira Leite

    2015-07-01

    Full Text Available Physical activity evokes well-known adaptations in the cardiovascular system. Although exercise training induces cardiac remodeling, whether multipotent stem cells play a functional role in the hypertrophic process remains unknown. To evaluate this possibility, C57BL/6 mice were subjected to swimming training aimed at achieving cardiac hypertrophy, which was morphologically and electrocardiographically characterized. Subsequently, c-Kit+Lin− and Sca-1+Lin− cardiac stem cells (CSCs were quantified using flow cytometry while cardiac muscle-derived stromal cells (CMSCs, also known as cardiac-derived mesenchymal stem cells were assessed using in vitro colony-forming unit fibroblast assay (CFU-F. Only the number of c-Kit+Lin− cells increased in the hypertrophied heart. To investigate a possible extracardiac origin of these cells, a parabiotic eGFP transgenic/wild-type mouse model was used. The parabiotic pairs were subjected to swimming, and the wild-type heart in particular was tested for eGFP+ stem cells. The results revealed a negligible number of extracardiac stem cells in the heart, allowing us to infer a cardiac origin for the increased amount of detected c-Kit+ cells. In conclusion, the number of resident Sca-1+Lin− cells and CMSCs was not changed, whereas the number of c-Kit+Lin− cells was increased during physiological cardiac hypertrophy. These c-Kit+Lin− CSCs may contribute to the physiological cardiac remodeling that result from exercise training.

  13. The human proteomics initiative (HPI).

    Science.gov (United States)

    O'Donovan, C; Apweiler, R; Bairoch, A

    2001-05-01

    The availability of the human genome sequence has enabled the exploration and exploitation of the human genome and proteome to begin. Research has now focussed on the annotation of the genome and in particular of the proteome. With expert annotation extracted from the literature by biologists as the foundation, it has been possible to expand into the areas of data mining and automatic annotation. With further development and integration of pattern recognition methods and the application of alignments clustering, proteome analysis can now be provided in a meaningful way. These various approaches have been integrated to attach, extract and combine as much relevant information as possible to the proteome. This resource should be valuable to users from both research and industry. PMID:11301130

  14. Spectral library searching in proteomics.

    Science.gov (United States)

    Griss, Johannes

    2016-03-01

    Spectral library searching has become a mature method to identify tandem mass spectra in proteomics data analysis. This review provides a comprehensive overview of available spectral library search engines and highlights their distinct features. Additionally, resources providing spectral libraries are summarized and tools presented that extend experimental spectral libraries by simulating spectra. Finally, spectrum clustering algorithms are discussed that utilize the same spectrum-to-spectrum matching algorithms as spectral library search engines and allow novel methods to analyse proteomics data. PMID:26616598

  15. Perfluorooctanoic Acid for Shotgun Proteomics

    OpenAIRE

    Kadiyala, Chandra Sekhar Rao; Tomechko, Sara E.; Miyagi, Masaru

    2010-01-01

    Here, we describe the novel use of a volatile surfactant, perfluorooctanoic acid (PFOA), for shotgun proteomics. PFOA was found to solubilize membrane proteins as effectively as sodium dodecyl sulfate (SDS). PFOA concentrations up to 0.5% (w/v) did not significantly inhibit trypsin activity. The unique features of PFOA allowed us to develop a single-tube shotgun proteomics method that used all volatile chemicals that could easily be removed by evaporation prior to mass spectrometry analysis. ...

  16. The Chordate Proteome History Database

    OpenAIRE

    Anthony Levasseur; Julien Paganini; Jacques Dainat; Thompson, Julie D; Olivier Poch; Pierre Pontarotti; Philippe Gouret

    2012-01-01

    The chordate proteome history database (http://ioda.univ-provence.fr) comprises some 20,000 evolutionary analyses of proteins from chordate species. Our main objective was to characterize and study the evolutionary histories of the chordate proteome, and in particular to detect genomic events and automatic functional searches. Firstly, phylogenetic analyses based on high quality multiple sequence alignments and a robust phylogenetic pipeline were performed for the whole protein and for each i...

  17. Quality Assessment for Clinical Proteomics

    OpenAIRE

    Tabb, David L.

    2012-01-01

    Proteomics has emerged from the labs of technologists to enter widespread application in clinical contexts. This transition, however, has been hindered by overstated early claims of accuracy, concerns about reproducibility, and the challenges of handling batch effects properly. New efforts have produced sets of performance metrics and measurements of variability that establish sound expectations for experiments in clinical proteomics. As researchers begin incorporating these metrics in a qual...

  18. Plant biology through quantitative proteomics

    OpenAIRE

    Bygdell, Joakim

    2013-01-01

    Over the last decade the field of mass spectrometry based proteomics has advanced from qualitative, analyses leading to publications revolving around lists of identified proteins and peptides, to addressing more biologically relevant issues requiring measurement of the abundance of identified proteins and hence quantitive mass spectrometry. The work described in this thesis addresses problems with quantitive proteomics in plant sciences, particularly complications caused by the complexity...

  19. Suppressor of IKKɛ is an essential negative regulator of pathological cardiac hypertrophy

    Science.gov (United States)

    Deng, Ke-Qiong; Wang, Aibing; Ji, Yan-Xiao; Zhang, Xiao-Jing; Fang, Jing; Zhang, Yan; Zhang, Peng; Jiang, Xi; Gao, Lu; Zhu, Xue-Yong; Zhao, Yichao; Gao, Lingchen; Yang, Qinglin; Zhu, Xue-Hai; Wei, Xiang; Pu, Jun; Li, Hongliang

    2016-01-01

    Although pathological cardiac hypertrophy represents a leading cause of morbidity and mortality worldwide, our understanding of the molecular mechanisms underlying this disease is still poor. Here, we demonstrate that suppressor of IKKɛ (SIKE), a negative regulator of the interferon pathway, attenuates pathological cardiac hypertrophy in rodents and non-human primates in a TANK-binding kinase 1 (TBK1)/AKT-dependent manner. Sike-deficient mice develop cardiac hypertrophy and heart failure, whereas Sike-overexpressing transgenic (Sike-TG) mice are protected from hypertrophic stimuli. Mechanistically, SIKE directly interacts with TBK1 to inhibit the TBK1-AKT signalling pathway, thereby achieving its anti-hypertrophic action. The suppression of cardiac remodelling by SIKE is further validated in rats and monkeys. Collectively, these findings identify SIKE as a negative regulator of cardiac remodelling in multiple animal species due to its inhibitory regulation of the TBK1/AKT axis, suggesting that SIKE may represent a therapeutic target for the treatment of cardiac hypertrophy and heart failure. PMID:27249321

  20. Hypoxia preconditioned mesenchymal stem cells prevent cardiac fibroblast activation and collagen production via leptin.

    Directory of Open Access Journals (Sweden)

    Panpan Chen

    Full Text Available Activation of cardiac fibroblasts into myofibroblasts constitutes a key step in cardiac remodeling after myocardial infarction (MI, due to interstitial fibrosis. Mesenchymal stem cells (MSCs have been shown to improve post-MI remodeling an effect that is enhanced by hypoxia preconditioning (HPC. Leptin has been shown to promote cardiac fibrosis. The expression of leptin is significantly increased in MSCs after HPC but it is unknown whether leptin contributes to MSC therapy or the fibrosis process. The objective of this study was to determine whether leptin secreted from MSCs modulates cardiac fibrosis.Cardiac fibroblast (CF activation was induced by hypoxia (0.5% O2. The effects of MSCs on fibroblast activation were analyzed by co-culturing MSCs with CFs, and detecting the expression of α-SMA, SM22α, and collagen IαI in CFs by western blot, immunofluorescence and Sirius red staining. In vivo MSCs antifibrotic effects on left ventricular remodeling were investigated using an acute MI model involving permanent ligation of the left anterior descending coronary artery.Co-cultured MSCs decreased fibroblast activation and HPC enhanced the effects. Leptin deficit MSCs from Ob/Ob mice did not decrease fibroblast activation. Consistent with this, H-MSCs significantly inhibited cardiac fibrosis after MI and mediated decreased expression of TGF-β/Smad2 and MRTF-A in CFs. These effects were again absent in leptin-deficient MSCs.Our data demonstrate that activation of cardiac fibroblast was inhibited by MSCs in a manner that was leptin-dependent. The mechanism may involve blocking TGF-β/Smad2 and MRTF-A signal pathways.

  1. Proteomics of human mitochondria

    DEFF Research Database (Denmark)

    Palmfeldt, Johan; Bross, Peter

    2016-01-01

    Proteomics have passed through a tremendous development in the recent years by the development of ever more sensitive, fast and precise mass spectrometry methods. The dramatically increased research in the biology of mitochondria and their prominent involvement in all kinds of diseases and ageing...... sensitivity of mass spectrometry technology aids in lowering this hurdle and new approaches like generation of induced pluripotent cells from somatic cells allow to produce patient-specific cellular disease models with great potential. We describe which human sample types are accessible, review the status of...... the catalog of human mitochondrial proteins and discuss proteins with dual localization in mitochondria and other cellular compartments. We describe the status and developments of pertinent mass spectrometric strategies, and the use of databases and bioinformatics. Using selected illustrative examples...

  2. Tomoregulin-1 prevents cardiac hypertrophy after pressure overload in mice by inhibiting TAK1-JNK pathways

    Directory of Open Access Journals (Sweden)

    Dan Bao

    2015-08-01

    Full Text Available Cardiac hypertrophy is associated with many forms of heart disease, and identifying important modifier genes involved in the pathogenesis of cardiac hypertrophy could lead to the development of new therapeutic strategies. Tomoregulin-1 is a growth factor that is primarily involved in embryonic development and adult central nervous system (CNS function, and it is expressed abnormally in a variety of CNS pathologies. Tomoregulin-1 is also expressed in the myocardium. However, the effects of tomoregulin-1 on the heart, particularly on cardiac hypertrophy, remains unknown. The aim of the study is to examine whether and by what mechanism tomoregulin-1 regulates the development of cardiac hypertrophy induced by pressure overload. In this study, we found that tomoregulin-1 was significantly upregulated in two cardiac hypertrophy models: cTnTR92Q transgenic mice and thoracic aorta constriction (TAC-induced cardiac hypertrophy mice. The transgenic overexpression of tomoregulin-1 increased the survival rate, improved the cardiac geometry and functional parameters of echocardiography, and decreased the degree of cardiac hypertrophy of the TAC mice, whereas knockdown of tomoregulin-1 expression resulted in an opposite phenotype and exacerbated phenotypes of cardiac hypertrophy induced by TAC. A possible mechanism by which tomoregulin-1 regulates the development of cardiac hypertrophy in TAC-induced cardiac hypertrophy is through inhibiting TGFβ non-canonical (TAK1-JNK pathways in the myocardium. Tomoregulin-1 plays a protective role in the modulation of adverse cardiac remodeling from pressure overload in mice. Tomoregulin-1 could be a therapeutic target to control the development of cardiac hypertrophy.

  3. Preoperative cardiac risk management

    OpenAIRE

    Vidaković Radosav; Poldermans Don; Nešković Aleksandar N.

    2011-01-01

    Approximately 100 million people undergo noncardiac surgery annually worldwide. It is estimated that around 3% of patients undergoing noncardiac surgery experience a major adverse cardiac event. Although cardiac events, like myocardial infarction, are major cause of perioperative morbidity or mortality, its true incidence is difficult to assess. The risk of perioperative cardiac complications depends mainly on two conditions: 1) identified risk factors, and 2) the type of the surgical p...

  4. The Succinated Proteome

    Energy Technology Data Exchange (ETDEWEB)

    Merkley, Eric D.; Metz, Thomas O.; Smith, Richard D.; Baynes, John; Frizell, Norma

    2014-03-30

    Succination is a chemical modification of cysteine in protein by the Krebs cycle intermediate, fumarate, yielding S-(2-succino)cysteine (2SC). Intracellular fumarate concentration and succination of proteins are increased by hyperpolarization of the inner mitochondrial membrane, in concert with mitochondrial, endoplasmic reticulum (ER) and oxidative stress in adipocytes grown in high glucose medium and in adipose tissue in obesity and diabetes. Increased succination of proteins is also detected in the kidney of a fumarase conditional knock-out mouse which develops renal tumors. Keap1, the gatekeeper of the antioxidant response, was identified as a major succinated protein in renal cancer cells, suggesting that succination may play a role in activation of the antioxidant response. A wide range of proteins is subject to succination, including enzymes, adipokines, cytoskeletal proteins and ER chaperones with functional cysteine residues. There is also significant overlap between succinated and glutathionylated proteins, and with proteins containing cysteine residues that are readily oxidized to the sulfenic (cysteic) acid. Succination of adipocyte proteins is inhibited by uncouplers, which discharge the mitochondrial membrane potential (Δψm) and by ER stress inhibitors. 2SC serves as a biomarker of mitochondrial stress or dysfunction in chronic diseases, such as obesity, diabetes and cancer, and recent studies suggest that succination is a mechanistic link between mitochondrial dysfunction, oxidative and ER stress, and cellular progression toward apoptosis. In this article, we review the history of the succinated proteome and the challenges associated with measuring this non-enzymatic post-translational modification of proteins by proteomics approaches.

  5. Structural proteomics by NMR spectroscopy.

    Science.gov (United States)

    Shin, Joon; Lee, Woonghee; Lee, Weontae

    2008-08-01

    Structural proteomics is one of the powerful research areas in the postgenomic era, elucidating structure-function relationships of uncharacterized gene products based on the 3D protein structure. It proposes biochemical and cellular functions of unannotated proteins and thereby identifies potential drug design and protein engineering targets. Recently, a number of pioneering groups in structural proteomics research have achieved proof of structural proteomic theory by predicting the 3D structures of hypothetical proteins that successfully identified the biological functions of those proteins. The pioneering groups made use of a number of techniques, including NMR spectroscopy, which has been applied successfully to structural proteomics studies over the past 10 years. In addition, advances in hardware design, data acquisition methods, sample preparation and automation of data analysis have been developed and successfully applied to high-throughput structure determination techniques. These efforts ensure that NMR spectroscopy will become an important methodology for performing structural proteomics research on a genomic scale. NMR-based structural proteomics together with x-ray crystallography will provide a comprehensive structural database to predict the basic biological functions of hypothetical proteins identified by the genome projects. PMID:18761469

  6. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial

    OpenAIRE

    Zannad, Faiez; De Ferrari, Gaetano M.; Tuinenburg, Anton E.; Wright, David; Brugada, Josep; Butter, Christian; Klein, Helmut; Stolen, Craig; Meyer, Scott; Stein, Kenneth M.; Ramuzat, Agnes; Schubert, Bernd; Daum, Doug; Neuzil, Petr; Botman, Cornelis

    2014-01-01

    Aim The neural cardiac therapy for heart failure (NECTAR-HF) was a randomized sham-controlled trial designed to evaluate whether a single dose of vagal nerve stimulation (VNS) would attenuate cardiac remodelling, improve cardiac function and increase exercise capacity in symptomatic heart failure patients with severe left ventricular (LV) systolic dysfunction despite guideline recommended medical therapy. Methods: Patients were randomized in a 2 : 1 ratio to receive therapy (VNS ON) or contro...

  7. Adult cardiac fibroblast proliferation is modulated by calcium/calmodulin-dependent protein kinase II in normal and hypertrophied hearts.

    Science.gov (United States)

    Martin, Tamara P; Lawan, Ahmed; Robinson, Emma; Grieve, David J; Plevin, Robin; Paul, Andrew; Currie, Susan

    2014-02-01

    Increased adult cardiac fibroblast proliferation results in an increased collagen deposition responsible for the fibrosis accompanying pathological remodelling of the heart. The mechanisms regulating cardiac fibroblast proliferation remain poorly understood. Using a minimally invasive transverse aortic banding (MTAB) mouse model of cardiac hypertrophy, we have assessed fibrosis and cardiac fibroblast proliferation. We have investigated whether calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) regulates proliferation in fibroblasts isolated from normal and hypertrophied hearts. It is known that CaMKIIδ plays a central role in cardiac myocyte contractility, but nothing is known of its role in adult cardiac fibroblast function. The MTAB model used here produces extensive hypertrophy and fibrosis. CaMKIIδ protein expression and activity is upregulated in MTAB hearts and, specifically, in cardiac fibroblasts isolated from hypertrophied hearts. In response to angiotensin II, cardiac fibroblasts isolated from MTAB hearts show increased proliferation rates. Inhibition of CaMKII with autocamtide inhibitory peptide inhibits proliferation in cells isolated from both sham and MTAB hearts, with a significantly greater effect evident in MTAB cells. These results are the first to show selective upregulation of CaMKIIδ in adult cardiac fibroblasts following cardiac hypertrophy and to assign a previously unrecognised role to CaMKII in regulating adult cardiac fibroblast function in normal and diseased hearts. PMID:23881186

  8. Metabolic remodeling associated with subchronic doxorubicin cardiomyopathy

    International Nuclear Information System (INIS)

    Doxorubicin (Adriamycin®) is a potent and broad-spectrum antineoplastic agent, the clinical utility of which is restricted by a cumulative and progressive cardiomyopathy that develops with repeated dosing. Fundamental to the cardiac failure is an interference with mitochondrial respiration and inhibition of oxidative phosphorylation. Global gene expression arrays in cardiac tissue indicate that inhibition of mitochondrial oxidative phosphorylation by doxorubicin (DOX) is accompanied by a decreased expression of genes related to aerobic fatty acid oxidation and a corresponding increase in expression of genes involved in anaerobic glycolysis, possibly as an alternate source for ATP production. The aim of this investigation was to determine whether this is also manifest at the metabonomic level as a switch in metabolic flux in cardiac tissue, and whether this can be averted by co-administering the cardioprotective drug, dexrazoxane (DZR). 13C-isotopomer analysis of isolated perfused hearts from male Sprague-Dawley rats receiving 6 weekly s.c. injections of 2 mg/kg DOX demonstrated a shift from the preferential oxidation of fatty acids to enhanced oxidation of glucose and lactate plus pyruvate, indicative of a compensatory shift towards increased pyruvate dehydrogenase activity. Substrate-selective isotopomer analysis combined with western blots indicate an inhibition of long-chain fatty acid oxidation and not MCAD activity or fatty acyl-carnitine transport. Co-administering DZR averted many treatment-related changes in cardiac substrate metabolism, consistent with DZR being an effective cardioprotective agent against DOX-induced cardiomyopathy. This switch in substrate metabolism resembles that described for other models of cardiac failure; accordingly, this change in metabolic flux may represent a general compensatory response of cardiac tissue to imbalances in bioenergetic demand and supply, and not a characteristic unique to DOX-induced cardiac failure itself.

  9. Eosinophil-Mediated Cholinergic Nerve Remodeling

    OpenAIRE

    Durcan, Niamh; Costello, Richard W; McLean, W. Graham; Blusztajn, Jan; Madziar, Beata; Fenech, Anthony G; Hall, Ian P; Gleich, Gerard J.; McGarvey, Lorcan; Walsh, Marie-Therese

    2006-01-01

    Eosinophils are observed to localize to cholinergic nerves in a variety of inflammatory conditions such as asthma, rhinitis, eosinophilic gastroenteritis, and inflammatory bowel disease, where they are also responsible for the induction of cell signaling.Wehypothesized that a consequence of eosinophil localization to cholinergic nerves would involve a neural remodeling process. Eosinophil co-culture with cholinergic IMR32 cells led to increased expression of the M2 muscar...

  10. PHAGOCYTOSIS AND REMODELING OF COLLAGEN MATRICES

    OpenAIRE

    Abraham, Leah C.; Dice, J. Fred; Lee, Kyongbum; Kaplan, David L.

    2007-01-01

    The biodegradation of collagen and the deposition of new collagen-based extracellular matrices are of central importance in tissue remodeling and function. Similarly, for collagen-based biomaterials used in tissue engineering, the degradation of collagen scaffolds with accompanying cellular infiltration and generation of new extracellular matrix is critical for integration of in vitro grown tissues in vivo. In earlier studies we observed significant impact of collagen structure on primary lun...

  11. Cell wall remodeling under abiotic stress

    OpenAIRE

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted a...

  12. Application of Petri Nets in Bone Remodeling

    Directory of Open Access Journals (Sweden)

    Lingxi Li

    2009-07-01

    Full Text Available Understanding a mechanism of bone remodeling is a challenging task for both life scientists and model builders, since this highly interactive and nonlinear process can seldom be grasped by simple intuition. A set of ordinary differential equations (ODEs have been built for simulating bone formation as well as bone resorption. Although solving ODEs numerically can provide useful predictions for dynamical behaviors in a continuous time frame, an actual bone remodeling process in living tissues is driven by discrete events of molecular and cellular interactions. Thus, an event-driven tool such as Petri nets (PNs, which may dynamically and graphically mimic individual molecular collisions or cellular interactions, seems to augment the existing ODE-based systems analysis. Here, we applied PNs to expand the ODE-based approach and examined discrete, dynamical behaviors of key regulatory molecules and bone cells. PNs have been used in many engineering areas, but their application to biological systems needs to be explored. Our PN model was based on 8 ODEs that described an osteoprotegerin linked molecular pathway consisting of 4 types of bone cells. The models allowed us to conduct both qualitative and quantitative evaluations and evaluate homeostatic equilibrium states. The results support that application of PN models assists understanding of an event-driven bone remodeling mechanism using PN-specific procedures such as places, transitions, and firings.

  13. Adverse Remodeling of the Electrophysiological Response to Ischemia-Reperfusion in Human Heart Failure Is Associated with Remodeling of Metabolic Gene Expression

    Science.gov (United States)

    Ng, Fu Siong; Holzem, Katherine M.; Koppel, Aaron C.; Janks, Deborah; Gordon, Fabiana; Wit, Andrew L.; Peters, Nicholas S.; Efimov, Igor R.

    2014-01-01

    Background Ventricular arrhythmias occur more frequently in heart failure during episodes of ischemia-reperfusion (I-R), although the mechanisms underlying this in humans are unclear. We assessed, in explanted human hearts, the remodeled electrophysiological response to acute I-R in heart failure, and its potential causes, including the remodeling of metabolic gene expression. Methods and Results We optically mapped coronary-perfused left ventricular wedge preparations from 6 human end-stage failing hearts (F) and 6 donor hearts rejected for transplantation (D). Preparations were subjected to 30 minutes of global ischemia, followed by 30 minutes of reperfusion. Failing hearts had exaggerated electrophysiological responses to I-R, with greater action potential duration (APD) shortening (p<0.001 at 8 minutes ischemia; p=0.001 at 12 minutes ischemia) and greater conduction slowing during ischemia, delayed recovery of electrical excitability following reperfusion (F 4.8±1.8 vs. D 1.0±0 mins, p<0.05), and incomplete restoration of APD and conduction velocity early after reperfusion. Expression of 46 metabolic genes were probed using custom-designed TaqMan arrays, using extracted RNA from 15 failing and 9 donor hearts. Ten genes important in cardiac metabolism were downregulated in heart failure, with SLC27A4 and KCNJ11 significantly downregulated at a false discovery rate of 0%. Conclusions We demonstrate, for the first time in human hearts, that the electrophysiological response to I-R in heart failure is accelerated during ischemia with slower recovery following reperfusion. This can enhance spatial conduction and repolarization gradients across the ischemic border and increase arrhythmia susceptibility. This adverse response was associated with downregulation of expression of cardiac metabolic genes. PMID:25114062

  14. Cardiovascular-related proteins identified in human plasma by the HUPO Plasma Proteome Project pilot phase.

    Science.gov (United States)

    Berhane, Beniam T; Zong, Chenggong; Liem, David A; Huang, Aaron; Le, Steven; Edmondson, Ricky D; Jones, Richard C; Qiao, Xin; Whitelegge, Julian P; Ping, Peipei; Vondriska, Thomas M

    2005-08-01

    Proteomic profiling of accessible bodily fluids, such as plasma, has the potential to accelerate biomarker/biosignature development for human diseases. The HUPO Plasma Proteome Project pilot phase examined human plasma with distinct proteomic approaches across multiple laboratories worldwide. Through this effort, we confidently identified 3020 proteins, each requiring a minimum of two high-scoring MS/MS spectra. A critical step subsequent to protein identification is functional annotation, in particular with regard to organ systems and disease. Performing exhaustive literature searches, we have manually annotated a subset of these 3020 proteins that have cardiovascular-related functions on the basis of an existing body of published information. These cardiovascular-related proteins can be organized into eight groups: markers of inflammation and/or cardiovascular disease, vascular and coagulation, signaling, growth and differentiation, cytoskeletal, transcription factors, channels/receptors and heart failure and remodeling. In addition, analysis of the peptide per protein ratio for MS/MS identification reveals group-specific trends. These findings serve as a resource to interrogate the functions of plasma proteins, and moreover, the list of cardiovascular-related proteins in plasma constitutes a baseline proteomic blueprint for the future development of biosignatures for diseases such as myocardial ischemia and atherosclerosis. PMID:16052623

  15. The cell-surface proteome of cultured adipose stromal cells.

    Science.gov (United States)

    Donnenberg, Albert D; Meyer, E Michael; Rubin, J Peter; Donnenberg, Vera S

    2015-07-01

    In this technical note we describe a method to evaluate the cell surface proteome of human primary cell cultures and cell lines. The method utilizes the BD Biosciences lyoplate, a system covering 242 surface proteins, glycoproteins, and glycosphingolipids plus relevant isotype controls, automated plate-based flow cytometry, conventional file-level analysis and unsupervised K-means clustering of markers on the basis of percent of positive events and mean fluorescence intensity of positive and total clean events. As an example, we determined the cell surface proteome of cultured adipose stromal cells (ASC) derived from 5 independent clinical isolates. Between-sample agreement of very strongly expressed (n = 32) and strongly expressed (n =16) markers was excellent, constituting a reliable profile for ASC identification and determination of functional properties. Known mesenchymal markers (CD29, CD44, CD73, CD90, CD105) were among the identified strongly expressed determinants. Among other strongly expressed markers are several that are potentially immunomodulatory including three proteins that protect from complement mediated effects (CD46, CD55, and CD59), two that regulate apoptosis (CD77 and CD95) and several with ectoenzymatic (CD10, CD26, CD13, CD73, and CD143) or receptor tyrosine kinase (CD140b (PDGFR), CD340 (Her-2), EGFR) activity, suggesting mechanisms for the anti-inflammatory and tissue remodeling properties of ASC. Because variables are standardized for K-means clustering, results generated using this methodology should be comparable between instrumentation platforms. It is widely generalizable to human primary explant cultures and cells lines and will prove useful to determine how cell passage, culture interventions, and gene expression and silencing affect the cell-surface proteome. PMID:25929697

  16. Azelnidipine protects myocardium in hyperglycemia-induced cardiac damage

    Directory of Open Access Journals (Sweden)

    Puranik Amrutesh S

    2010-12-01

    Full Text Available Abstract Background Azelnidipine (AZL, a long-acting dihydropyridine-based calcium antagonist, has been recently approved and used for treating ischemic heart disease and cardiac remodeling after myocardial infarction, however, its effect on hyperglycemia-induced cardiac damage has not been studied. Methods This study examined the effect of AZL on circulating markers of cardiac damage, altered lipid and cytokines profile and markers of oxidative stress including homocysteine in diabetic rats. Results STZ induced diabetes caused a significant increase in blood glucose levels. It also resulted in an increase in the levels of homocysteine and cardiac damage markers, like Troponin-1, CK-MB, CK-NAC, uric acid, LDH and alkaline phosphatase. Moreover, there was an increase in the levels of proinflammatory cytokines like TNF-α, IFN-γ, and TGF-β and decrease in the levels of IL-4 and IL-10. Additionally, there was increase in the levels of cholesterol, triglycerides, LDL, VLDL and a decrease in HDL in these animals. There was an altered antioxidant enzyme profile which resulted in a notable increase in the levels of oxidative stress markers like lipid peroxides, nitric oxide and carbonylated proteins. Compared with the untreated diabetic rats, AZL treatment significantly reduced the levels of troponin-1 (P Conclusion Our results indicate that AZL treatment can reduce the risk of hyperglycemia induced metabolic disorders and its role can be further extended to explore its therapeutic potential in diabetic patients with cardiac complications.

  17. [THE RELATIONSHIP BETWEEN DISORDERS-OF EXTERNAL RESPIRATION AND RIGHT HEART REMODELING IN PATIENTS WITH ATOPIC BRONCHIAL ASTHMA].

    Science.gov (United States)

    Solov'eva, I A; Sobko, E A; Ryazanova, N G; Krapohsina, A Yu; Gorgeeva, N V; Demko, I V

    2015-01-01

    This study aimed at the evaluation of the state of the respiratory system and its possible influence on the structural and functional characteristics of the right heart in patients with atopic bronchial asthma (BA) with a view to optimizing diagnostics and prevention of cardiovascular complications. The study included 189 subjects of whom 148 with BA were divided into 3 groups depending on the severity of the disease. Forty practically healthy volunteers comprised the control group. The external respiration function and right ventricle functional parameters were the main variables measured in all the participants of the study. It was shown that disorders of external respiration and pulmonary hyperinflation progressed with severity of BA and thereby promoted right ventricular myocardium remodeling and dysfunction that in turn led to chronic cardiac insufficiency. It is concluded that functional changes in the right heart in of patients with BA of different severity are associated with remodeling of the respiratory tract. PMID:26964462

  18. Central airways remodeling in COPD patients

    Directory of Open Access Journals (Sweden)

    Pini L

    2014-09-01

    Full Text Available Laura Pini,1 Valentina Pinelli,2 Denise Modina,1 Michela Bezzi,3 Laura Tiberio,4 Claudio Tantucci1 1Unit of Respiratory Medicine, Department of Clinical and Experimental Sciences, University of Brescia, 2Department of Respiratory Medicine, Spedali Civili di Brescia, 3Department Bronchoscopy, Spedali Civili di Brescia, 4Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy Background: The contribution to airflow obstruction by the remodeling of the peripheral airways in chronic obstructive pulmonary disease (COPD patients has been well documented, but less is known about the role played by the large airways. Few studies have investigated the presence of histopathological changes due to remodeling in the large airways of COPD patients. Objectives: The aim of this study was to verify the presence of airway remodeling in the central airways of COPD patients, quantifying the airway smooth muscle (ASM area and the extracellular matrix (ECM protein deposition, both in the subepithelial region and in the ASM, and to verify the possible contribution to airflow obstruction by the above mentioned histopathological changes. Methods: Biopsies of segmental bronchi spurs were performed in COPD patients and control smoker subjects and immunostained for collagen type I, versican, decorin, biglycan, and alpha-smooth muscle actin. ECM protein deposition was measured at both subepithelial, and ASM layers. Results: The staining for collagen I and versican was greater in the subepithelial layer of COPD patients than in control subjects. An inverse correlation was found between collagen I in the subepithelial layer and both forced expiratory volume in 1 second and ratio between forced expiratory volume in 1 second and forced vital capacity. A statistically significant increase of the ASM area was observed in the central airways of COPD patients versus controls. Conclusion: These findings indicate that airway remodeling also affects

  19. Challenges in analysis of cardiac cell secretomes by using pre-separation by RPLC and tandem mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Goodliffe, L.; Simpson, J.; Van Eyk, J.E.

    Anaheim, 2012. P-425-Tue. [HPLC 2012: International Symposium on High Performance Liquid Phase Separations and Related Techniques /38./. 16.06.2012-21.06.2012, Anaheim] Institutional support: RVO:68081715 Keywords : secreted proteins * cardiac cells * proteomics * mass spectrometry Subject RIV: CB - Analytical Chemistry, Separation

  20. Increased infarct wall thickness by a bio-inert material is insufficient to prevent negative left ventricular remodeling after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Aboli A Rane

    Full Text Available BACKGROUND: Several injectable materials have been shown to preserve or improve cardiac function as well as prevent or slow left ventricular (LV remodeling post-myocardial infarction (MI. However, it is unclear as to whether it is the structural support or the bioactivity of these polymers that lead to beneficial effects. Herein, we examine how passive structural enhancement of the LV wall by an increase in wall thickness affects cardiac function post-MI using a bio-inert, non-degradable synthetic polymer in an effort to better understand the mechanisms by which injectable materials affect LV remodeling. METHODS AND RESULTS: Poly(ethylene glycol (PEG gels of storage modulus G' = 0.5±0.1 kPa were injected and polymerized in situ one week after total occlusion of the left coronary artery in female Sprague Dawley rats. The animals were imaged using magnetic resonance imaging (MRI at 7±1 day(s post-MI as a baseline and again post-injection 49±4 days after MI. Infarct wall thickness was statistically increased in PEG gel injected vs. control animals (p<0.01. However, animals in the polymer and control groups showed decreases in cardiac function in terms of end diastolic volume, end systolic volume and ejection fraction compared to baseline (p<0.01. The cellular response to injection was also similar in both groups. CONCLUSION: The results of this study demonstrate that passive structural reinforcement alone was insufficient to prevent post-MI remodeling, suggesting that bioactivity and/or cell infiltration due to degradation of injectable materials are likely playing a key role in the preservation of cardiac function, thus providing a deeper understanding of the influencing properties of biomaterials necessary to prevent post-MI negative remodeling.

  1. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure.

    Science.gov (United States)

    Nagai-Okatani, Chiaki; Minamino, Naoto

    2016-01-01

    Targeted proteomics focusing on post-translational modifications, including glycosylation, is a useful strategy for discovering novel biomarkers. To apply this strategy effectively to cardiac hypertrophy and resultant heart failure, we aimed to characterize glycosylation profiles in the left ventricle and plasma of rats with cardiac hypertrophy. Dahl salt-sensitive hypertensive rats, a model of hypertension-induced cardiac hypertrophy, were fed a high-salt (8% NaCl) diet starting at 6 weeks. As a result, they exhibited cardiac hypertrophy at 12 weeks and partially impaired cardiac function at 16 weeks compared with control rats fed a low-salt (0.3% NaCl) diet. Gene expression analysis revealed significant changes in the expression of genes encoding glycosyltransferases and glycosidases. Glycoproteome profiling using lectin microarrays indicated upregulation of mucin-type O-glycosylation, especially disialyl-T, and downregulation of core fucosylation on N-glycans, detected by specific interactions with Amaranthus caudatus and Aspergillus oryzae lectins, respectively. Upregulation of plasma α-l-fucosidase activity was identified as a biomarker candidate for cardiac hypertrophy, which is expected to support the existing marker, atrial natriuretic peptide and its related peptides. Proteomic analysis identified cysteine and glycine-rich protein 3, a master regulator of cardiac muscle function, as an O-glycosylated protein with altered glycosylation in the rats with cardiac hypertrophy, suggesting that alternations in O-glycosylation affect its oligomerization and function. In conclusion, our data provide evidence of significant changes in glycosylation pattern, specifically mucin-type O-glycosylation and core defucosylation, in the pathogenesis of cardiac hypertrophy and heart failure, suggesting that they are potential biomarkers for these diseases. PMID:27281159

  2. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure

    Science.gov (United States)

    Nagai-Okatani, Chiaki; Minamino, Naoto

    2016-01-01

    Targeted proteomics focusing on post-translational modifications, including glycosylation, is a useful strategy for discovering novel biomarkers. To apply this strategy effectively to cardiac hypertrophy and resultant heart failure, we aimed to characterize glycosylation profiles in the left ventricle and plasma of rats with cardiac hypertrophy. Dahl salt-sensitive hypertensive rats, a model of hypertension-induced cardiac hypertrophy, were fed a high-salt (8% NaCl) diet starting at 6 weeks. As a result, they exhibited cardiac hypertrophy at 12 weeks and partially impaired cardiac function at 16 weeks compared with control rats fed a low-salt (0.3% NaCl) diet. Gene expression analysis revealed significant changes in the expression of genes encoding glycosyltransferases and glycosidases. Glycoproteome profiling using lectin microarrays indicated upregulation of mucin-type O-glycosylation, especially disialyl-T, and downregulation of core fucosylation on N-glycans, detected by specific interactions with Amaranthus caudatus and Aspergillus oryzae lectins, respectively. Upregulation of plasma α-l-fucosidase activity was identified as a biomarker candidate for cardiac hypertrophy, which is expected to support the existing marker, atrial natriuretic peptide and its related peptides. Proteomic analysis identified cysteine and glycine-rich protein 3, a master regulator of cardiac muscle function, as an O-glycosylated protein with altered glycosylation in the rats with cardiac hypertrophy, suggesting that alternations in O-glycosylation affect its oligomerization and function. In conclusion, our data provide evidence of significant changes in glycosylation pattern, specifically mucin-type O-glycosylation and core defucosylation, in the pathogenesis of cardiac hypertrophy and heart failure, suggesting that they are potential biomarkers for these diseases. PMID:27281159

  3. Cell death proteomics database: consolidating proteomics data on cell death.

    Science.gov (United States)

    Arntzen, Magnus Ø; Bull, Vibeke H; Thiede, Bernd

    2013-05-01

    Programmed cell death is a ubiquitous process of utmost importance for the development and maintenance of multicellular organisms. More than 10 different types of programmed cell death forms have been discovered. Several proteomics analyses have been performed to gain insight in proteins involved in the different forms of programmed cell death. To consolidate these studies, we have developed the cell death proteomics (CDP) database, which comprehends data from apoptosis, autophagy, cytotoxic granule-mediated cell death, excitotoxicity, mitotic catastrophe, paraptosis, pyroptosis, and Wallerian degeneration. The CDP database is available as a web-based database to compare protein identifications and quantitative information across different experimental setups. The proteomics data of 73 publications were integrated and unified with protein annotations from UniProt-KB and gene ontology (GO). Currently, more than 6,500 records of more than 3,700 proteins are included in the CDP. Comparing apoptosis and autophagy using overrepresentation analysis of GO terms, the majority of enriched processes were found in both, but also some clear differences were perceived. Furthermore, the analysis revealed differences and similarities of the proteome between autophagosomal and overall autophagy. The CDP database represents a useful tool to consolidate data from proteome analyses of programmed cell death and is available at http://celldeathproteomics.uio.no. PMID:23537399

  4. Blunt cardiac rupture.

    Science.gov (United States)

    Martin, T D; Flynn, T C; Rowlands, B J; Ward, R E; Fischer, R P

    1984-04-01

    Blunt injury to the heart ranges from contusion to disruption. This report comprises 14 patients seen during a 6-year period with cardiac rupture secondary to blunt trauma. Eight patients were injured in automobile accidents, two patients were injured in auto-pedestrian accidents, two were kicked in the chest by ungulates, and two sustained falls. Cardiac tamponade was suspected in ten patients. Five patients presented with prehospital cardiac arrest or arrested shortly after arrival. All underwent emergency department thoracotomy without survival. Two patients expired in the operating room during attempted cardiac repair; both had significant extracardiac injury. Seven patients survived, three had right atrial injuries, three had right ventricular injuries, and one had a left atrial injury. Cardiopulmonary bypass was not required for repair of the surviving patients. There were no significant complications from the cardiac repair. The history of significant force dispersed over a relatively small area of the precordium as in a kicking injury from an animal or steering wheel impact should alert the physician to possible cardiac rupture. Cardiac rupture should be considered in patients who present with signs of cardiac tamponade or persistent thoracic bleeding after blunt trauma. PMID:6708151

  5. Proteomics in evolutionary ecology.

    Science.gov (United States)

    Baer, B; Millar, A H

    2016-03-01

    Evolutionary ecologists are traditionally gene-focused, as genes propagate phenotypic traits across generations and mutations and recombination in the DNA generate genetic diversity required for evolutionary processes. As a consequence, the inheritance of changed DNA provides a molecular explanation for the functional changes associated with natural selection. A direct focus on proteins on the other hand, the actual molecular agents responsible for the expression of a phenotypic trait, receives far less interest from ecologists and evolutionary biologists. This is partially due to the central dogma of molecular biology that appears to define proteins as the 'dead-end of molecular information flow' as well as technical limitations in identifying and studying proteins and their diversity in the field and in many of the more exotic genera often favored in ecological studies. Here we provide an overview of a newly forming field of research that we refer to as 'Evolutionary Proteomics'. We point out that the origins of cellular function are related to the properties of polypeptide and RNA and their interactions with the environment, rather than DNA descent, and that the critical role of horizontal gene transfer in evolution is more about coopting new proteins to impact cellular processes than it is about modifying gene function. Furthermore, post-transcriptional and post-translational processes generate a remarkable diversity of mature proteins from a single gene, and the properties of these mature proteins can also influence inheritance through genetic and perhaps epigenetic mechanisms. The influence of post-transcriptional diversification on evolutionary processes could provide a novel mechanistic underpinning for elements of rapid, directed evolutionary changes and adaptations as observed for a variety of evolutionary processes. Modern state-of the art technologies based on mass spectrometry are now available to identify and quantify peptides, proteins, protein

  6. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  7. Mathematical cardiac electrophysiology

    CERN Document Server

    Colli Franzone, Piero; Scacchi, Simone

    2014-01-01

    This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. These techniques are employed in 3D cardiac simulations illustrating the excitation mechanisms, the anisotropic effects on excitation and repolarization wavefronts, the morphology of electrograms in normal and pathological tissue and some reentry phenomena. The overall aim of the book is to present rigorously the mathematica...

  8. Post-translational modifications of plant cell wall proteins and peptides: A survey from a proteomics point of view.

    Science.gov (United States)

    Canut, Hervé; Albenne, Cécile; Jamet, Elisabeth

    2016-08-01

    Plant cell wall proteins (CWPs) and peptides are important players in cell walls contributing to their assembly and their remodeling during development and in response to environmental constraints. Since the rise of proteomics technologies at the beginning of the 2000's, the knowledge of CWPs has greatly increased leading to the discovery of new CWP families and to the description of the cell wall proteomes of different organs of many plants. Conversely, cell wall peptidomics data are still lacking. In addition to the identification of CWPs and peptides by mass spectrometry (MS) and bioinformatics, proteomics has allowed to describe their post-translational modifications (PTMs). At present, the best known PTMs consist in proteolytic cleavage, N-glycosylation, hydroxylation of P residues into hydroxyproline residues (O), O-glycosylation and glypiation. In this review, the methods allowing the capture of the modified proteins based on the specific properties of their PTMs as well as the MS technologies used for their characterization are briefly described. A focus is done on proteolytic cleavage leading to protein maturation or release of signaling peptides and on O-glycosylation. Some new technologies, like top-down proteomics and terminomics, are described. They aim at a finer description of proteoforms resulting from PTMs or degradation mechanisms. This article is part of a Special Issue entitled: Plant Proteomics- a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. PMID:26945515

  9. Proteomics Study of Cotton Fiber Cells

    Institute of Scientific and Technical Information of China (English)

    LIU Jin-yuan

    2008-01-01

    @@ A comparative proteomic analysis was applied to explore the mechanism of fiber cell development in cotton.Initially,an efficient protein preparation method was established for proteomic analysis of developing cotton fibers by two-dimensional gel electrophoresis,and a microwave enhanced ink staining technique also was created for fast and sensitive protein quantification in proteomic studies.

  10. Proteomic Biomarkers for Spontaneous Preterm Birth

    DEFF Research Database (Denmark)

    Kacerovsky, Marian; Lenco, Juraj; Musilova, Ivana;

    2014-01-01

    This review aimed to identify, synthesize, and analyze the findings of studies on proteomic biomarkers for spontaneous preterm birth (PTB). Three electronic databases (Medline, Embase, and Scopus) were searched for studies in any language reporting the use of proteomic biomarkers for PTB published...... literature, there are no specific proteomic biomarkers capable of accurately predicting PTB....

  11. Proteomic insights into floral biology.

    Science.gov (United States)

    Li, Xiaobai; Jackson, Aaron; Xie, Ming; Wu, Dianxing; Tsai, Wen-Chieh; Zhang, Sheng

    2016-08-01

    The flower is the most important biological structure for ensuring angiosperms reproductive success. Not only does the flower contain critical reproductive organs, but the wide variation in morphology, color, and scent has evolved to entice specialized pollinators, and arguably mankind in many cases, to ensure the successful propagation of its species. Recent proteomic approaches have identified protein candidates related to these flower traits, which has shed light on a number of previously unknown mechanisms underlying these traits. This review article provides a comprehensive overview of the latest advances in proteomic research in floral biology according to the order of flower structure, from corolla to male and female reproductive organs. It summarizes mainstream proteomic methods for plant research and recent improvements on two dimensional gel electrophoresis and gel-free workflows for both peptide level and protein level analysis. The recent advances in sequencing technologies provide a new paradigm for the ever-increasing genome and transcriptome information on many organisms. It is now possible to integrate genomic and transcriptomic data with proteomic results for large-scale protein characterization, so that a global understanding of the complex molecular networks in flower biology can be readily achieved. This article is part of a Special Issue entitled: Plant Proteomics - a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. PMID:26945514

  12. Platelet proteomics in cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Paula Vélez

    2015-06-01

    Full Text Available In recent years, platelet proteomics has been applied successfully to the study of cardiovascular diseases (CVDs. It is very well known that platelets play a pivotal role in the pathophysiological mechanisms underlying many CVDs, especially acute coronary syndromes (ACSs, since they are implied in thrombus formation after atheroma plaque rupture. This is the reason why molecules involved in platelet activation and aggregation are primary targets for treatment of ACSs. Many efforts are aimed at finding drugs that inhibit platelet activation; however it is difficult to separate the therapeutic benefits from harmful effects because pathological and physiological functions of platelets are due to the same mechanisms. Given that platelets lack a nucleus, proteomics is regarded as an ideal method to approach their biochemistry. Current platelet proteomic studies are focusing on the identification of platelet molecular and functional changes in normal and pathological states, enriching the comprehension of platelet biological function, and screening for new biomarkers and antiplatelet agents. In the present article, we introduce the reader to platelet biology and function, and revise recent advances in platelet proteomics applied to the study of CVDs, including a special emphasis on sample preparation requirements for proteome analysis of platelet clinical samples.

  13. Proteomic approaches to bacterial differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Norbeck, Angela D.; Callister, Stephen J.; Monroe, Matthew E.; Jaitly, Navdeep; Elias, Dwayne A.; Lipton, Mary S.; Smith, Richard D.

    2006-12-01

    While genomic approaches have been applied for the detection and identification of individual bacteria within microbial communities, analogous proteomics approaches have been effectively precluded due to their inherent complexity. An in silico assessment of peptides that could potentially be present in the proteomes of artificial simple and complex communities was performed to evaluate the effect of proteome complexity on species detection. A mass spectrometry-based proteomics approach was employed to experimentally detect and validate the predicted tryptic peptides initially identified as distinctive within the simple community. An assessment of peptide distinctiveness and the potential for mapping to a particular bacterium within a community was made throughout each step of the study. A second in silico assessment of peptide distinctiveness for a complex community of 25 microorganisms was conducted to investigate the levels of instrumental performance that would be required to experimentally detect these peptides, as well as how performance varied with complexity (e.g., the number of different microorganisms). The experimental data for a simple community showed that it is feasible to predict, observe, and to quantify distinctive peptides from one organism in the presence of at least a 100-fold greater abundance of another, thus yielding putative markers for identifying a bacterium of interest. This work represents a first step towards quantitative proteomic characterization of complex microbial communities and the possible development of community wide markers of perturbations to such communities.

  14. Proteome of Hydra Nematocyst*

    Science.gov (United States)

    Balasubramanian, Prakash G.; Beckmann, Anna; Warnken, Uwe; Schnölzer, Martina; Schüler, Andreas; Bornberg-Bauer, Erich; Holstein, Thomas W.; Özbek, Suat

    2012-01-01

    Stinging cells or nematocytes of jellyfish and other cnidarians represent one of the most poisonous and sophisticated cellular inventions in animal evolution. This ancient cell type is unique in containing a giant secretory vesicle derived from the Golgi apparatus. The organelle structure within the vesicle comprises an elastically stretched capsule (nematocyst) to which a long tubule is attached. During exocytosis, the barbed part of the tubule is accelerated with >5 million g in <700 ns, enabling a harpoon-like discharge (Nüchter, T., Benoit, M., Engel, U., Ozbek, S., and Holstein, T. W. (2006) Curr. Biol. 16, R316–R318). Hitherto, the molecular components responsible for the organelle's biomechanical properties were largely unknown. Here, we describe the proteome of nematocysts from the freshwater polyp Hydra magnipapillata. Our analysis revealed an unexpectedly complex secretome of 410 proteins with venomous and lytic but also adhesive or fibrous properties. In particular, the insoluble fraction of the nematocyst represents a functional extracellular matrix structure of collagenous and elastic nature. This finding suggests an evolutionary scenario in which exocytic vesicles harboring a venomous secretome assembled a sophisticated predatory structure from extracellular matrix motif proteins. PMID:22291027

  15. Structural Proteomics of Herpesviruses.

    Science.gov (United States)

    Leroy, Baptiste; Gillet, Laurent; Vanderplasschen, Alain; Wattiez, Ruddy

    2016-01-01

    Herpesviruses are highly prevalent viruses associated with numerous pathologies both in animal and human populations. Until now, most of the strategies used to prevent or to cure these infections have been unsuccessful because these viruses have developed numerous immune evasion mechanisms. Therefore, a better understanding of their complex lifecycle is needed. In particular, while the genome of numerous herpesviruses has been sequenced, the exact composition of virions remains unknown for most of them. Mass spectrometry has recently emerged as a central method and has permitted fundamental discoveries in virology. Here, we review mass spectrometry-based approaches that have recently allowed a better understanding of the composition of the herpesvirus virion. In particular, we describe strategies commonly used for proper sample preparation and fractionation to allow protein localization inside the particle but also to avoid contamination by nonstructural proteins. A collection of other important data regarding post-translational modifications or the relative abundance of structural proteins is also described. This review also discusses the poorly studied importance of host proteins in herpesvirus structural proteins and the necessity to develop a quantitative workflow to better understand the dynamics of the structural proteome. In the future, we hope that this collaborative effort will assist in the development of new strategies to fight these infections. PMID:26907323

  16. [Cardiac evaluation before non-cardiac surgery].

    Science.gov (United States)

    Menzenbach, Jan; Boehm, Olaf

    2016-07-01

    Before non-cardiac surgery, evaluation of cardiac function is no frequent part of surgical treatment. European societies of anesthesiology and cardiology published consensus-guidelines in 2014 to present a reasonable approach for preoperative evaluation. This paper intends to differentiate the composite of perioperative risk and to display the guidelines methodical approach to handle it. Features to identify patients at risk from an ageing population with comorbidities, are the classification of surgical risk, functional capacity and risk indices. Application of diagnostic means, should be used adjusted to this risk estimation. Cardiac biomarkers are useful to discover risk of complications or mortality, that cannot be assessed by clinical signs. After preoperative optimization and perioperative cardiac protection, the observation of the postoperative period remains, to prohibit complications or even death. In consideration of limited resources of intensive care department, postoperative ward rounds beyond intensive care units are considered to be an appropriate instrument to avoid or recognize complications early to reduce postoperative mortality. PMID:27479258

  17. Role of arginase in vessel wall remodeling

    Directory of Open Access Journals (Sweden)

    William eDurante

    2013-05-01

    Full Text Available Arginase metabolizes the semi-essential amino acid L-arginine to L-ornithine and urea. There are two distinct isoforms of arginase, arginase I and II, which are encoded by separate genes and display differences in tissue distribution, subcellular localization, and molecular regulation. Blood vessels express both arginase I and II but their distribution appears to be cell-, vessel-, and species-specific. Both isoforms of arginase are induced by numerous pathologic stimuli and contribute to vascular cell dysfunction and vessel wall remodeling in several diseases. Clinical and experimental studies have documented increases in the expression and/or activity of arginase I or II in blood vessels following arterial injury and in pulmonary and arterial hypertension, aging, and atherosclerosis. Significantly, pharmacological inhibition or genetic ablation of arginase in animals ameliorates abnormalities in vascular cells and normalizes blood vessel architecture and function in all of these pathological states. The detrimental effect of arginase in vascular remodeling is attributable to its ability to stimulate vascular smooth muscle cell and endothelial cell proliferation, and collagen deposition by promoting the synthesis of polyamines and L-proline, respectively. In addition, arginase adversely impacts arterial remodeling by directing macrophages towards an inflammatory phenotype. Moreover, the proliferative, fibrotic, and inflammatory actions of arginase in the vasculature are further amplified by its capacity to inhibit nitric oxide synthesis by competing with nitric oxide synthase for substrate, L-arginine. Pharmacologic or molecular approaches targeting specific isoforms of arginase represent a promising strategy in treating obstructive fibroproliferative vascular disease.

  18. Anti‐Remodeling and Anti‐Fibrotic Effects of the Neuregulin‐1β Glial Growth Factor 2 in a Large Animal Model of Heart Failure

    Science.gov (United States)

    Galindo, Cristi L.; Kasasbeh, Ehab; Murphy, Abigail; Ryzhov, Sergey; Lenihan, Sean; Ahmad, Farhaan A.; Williams, Philip; Nunnally, Amy; Adcock, Jamie; Song, Yanna; Harrell, Frank E.; Tran, Truc‐Linh; Parry, Tom J.; Iaci, Jen; Ganguly, Anindita; Feoktistov, Igor; Stephenson, Matthew K.; Caggiano, Anthony O.; Sawyer, Douglas B.; Cleator, John H.

    2014-01-01

    Background Neuregulin‐1β (NRG‐1β) is a growth factor critical for cardiac development and repair with therapeutic potential for heart failure. We previously showed that the glial growth factor 2 (GGF2) isoform of NRG‐1β improves cardiac function in rodents after myocardial infarction (MI), but its efficacy in a large animal model of cardiac injury has not been examined. We therefore sought to examine the effects of GGF2 on ventricular remodeling, cardiac function, and global transcription in post‐MI swine, as well as potential mechanisms for anti‐remodeling effects. Methods and Results MI was induced in anesthetized swine (n=23) by intracoronary balloon occlusion. At 1 week post‐MI, survivors (n=13) received GGF2 treatment (intravenous, biweekly for 4 weeks; n=8) or were untreated (n=5). At 5 weeks post‐MI, fractional shortening was higher (32.8% versus 25.3%, P=0.019), and left ventricular (LV) end‐diastolic dimension lower (4.5 versus 5.3 cm, P=0.003) in GGF2‐treated animals. Treatment altered expression of 528 genes, as measured by microarrays, including collagens, basal lamina components, and matricellular proteins. GGF2‐treated pigs exhibited improvements in LV cardiomyocyte mitochondria and intercalated disk structures and showed less fibrosis, altered matrix structure, and fewer myofibroblasts (myoFbs), based on trichrome staining, electron microscopy, and immunostaining. In vitro experiments with isolated murine and rat cardiac fibroblasts demonstrate that NRG‐1β reduces myoFbs, and suppresses TGFβ‐induced phospho‐SMAD3 as well as αSMA expression. Conclusions These results suggest that GGF2/NRG‐1β prevents adverse remodeling after injury in part via anti‐fibrotic effects in the heart. PMID:25341890

  19. MYOCARDIAL REMODELING IN ISCHEMIC HEART DISEASE

    OpenAIRE

    A.N. Zakirova; R.G. Oganov; N.E. Zakirova; G. R. Klochkova; F.S. Musina

    2016-01-01

    Aim. To study the myocardial remodeling features in patients with stable angina depending on disease severity and experienced myocardial infarction (MI).Material and methods. 148 male patients with stable angina were examined and randomized into 3 groups (G1-G3). 52 patients of G1 had angina of I-II functional class (FC). 49 patients of G2 had angina of III FC, and 47 patients of G3 had angina of IV FC. History of MI had 79,5, 87.2 and 92.6% of patients in G1, G2 and G3 respectively. 35 healt...

  20. AT2 Receptors Targeting Cardiac Protection Post-Myocardial Infarction

    DEFF Research Database (Denmark)

    Kaschina, Elena; Lauer, Dilyara; Schmerler, Patrick; Unger, Thomas; Steckelings, Ulrike Muscha

    2014-01-01

    The angiotensin AT2-receptor mediates tissue protective actions. Its regenerative potential has been tested in multiple disease models including models of myocardial infarction. These studies used different experimental approaches in order to detect AT2-receptor-related effects such as AT2-receptor...... deficiency or overexpression, treatment with an AT1-receptor blocker leading to indirect stimulation of the unopposed AT2-receptor, or studies using AT2-receptor agonists. It is a common finding in these studies that the AT2-receptor improves cardiac function in the early phase post-MI, and that this effect...... is preserved over periods of up to four months. Depending on the experimental protocol, the AT2R also attenuates post-MI left ventricular remodeling or protects the heart from early left ventricular thinning and rupture. In combination with AT1-receptor blockade or deficiency, post-MI cardiac...

  1. Advances of Proteomic Sciences in Dentistry

    Science.gov (United States)

    Khurshid, Zohaib; Zohaib, Sana; Najeeb, Shariq; Zafar, Muhammad Sohail; Rehman, Rabia; Rehman, Ihtesham Ur

    2016-01-01

    Applications of proteomics tools revolutionized various biomedical disciplines such as genetics, molecular biology, medicine, and dentistry. The aim of this review is to highlight the major milestones in proteomics in dentistry during the last fifteen years. Human oral cavity contains hard and soft tissues and various biofluids including saliva and crevicular fluid. Proteomics has brought revolution in dentistry by helping in the early diagnosis of various diseases identified by the detection of numerous biomarkers present in the oral fluids. This paper covers the role of proteomics tools for the analysis of oral tissues. In addition, dental materials proteomics and their future directions are discussed. PMID:27187379

  2. Cardiac metabolism and arrhythmias

    OpenAIRE

    Barth, Andreas S.; Tomaselli, Gordon F.

    2009-01-01

    Sudden cardiac death remains a leading cause of mortality in the Western world, accounting for up to 20% of all deaths in the U.S.1, 2 The major causes of sudden cardiac death in adults age 35 and older are coronary artery disease (70–80%) and dilated cardiomyopathy (10–15%).3 At the molecular level, a wide variety of mechanisms contribute to arrhythmias that cause sudden cardiac death, ranging from genetic predisposition (rare mutations and common polymorphisms in ion channels and structural...

  3. [Cardiac Rehabilitation 2015].

    Science.gov (United States)

    Hoffmann, Andreas

    2015-11-25

    The goals of cardiac rehabilitation are (re-)conditioning and secondary prevention in patients with heart disease or an elevated cardiovascular risk profile. Rehabilitation is based on motivation through education, on adapted physical activity, instruction of relaxation techniques, psychological support and optimized medication. It is performed preferably in groups either in outpatient or inpatient settings. The Swiss working group on cardiac rehabilitation provides a network of institutions with regular quality auditing. Positive effects of rehabilitation programs on mortality and morbidity have been established by numerous studies. Although a majority of patients after cardiac surgery are being referred to rehabilitation, these services are notoriously underused after catheter procedures. PMID:26602848

  4. Comprehensive cardiac rehabilitation

    DEFF Research Database (Denmark)

    Kruse, Marie; Hochstrasser, Stefan; Zwisler, Ann-Dorthe O;

    2006-01-01

    OBJECTIVES: The costs of comprehensive cardiac rehabilitation are established and compared to the corresponding costs of usual care. The effect on health-related quality of life is analyzed. METHODS: An unprecedented and very detailed cost assessment was carried out, as no guidelines existed for...... uncertain and may be as high as euro 1.877. CONCLUSIONS: Comprehensive cardiac rehabilitation is more costly than usual care, and the higher costs are not outweighed by a quality of life gain. Comprehensive cardiac rehabilitation is, therefore, not cost-effective....

  5. Proteomic classification of breast cancer.

    LENUS (Irish Health Repository)

    Kamel, Dalia

    2012-11-01

    Being a significant health problem that affects patients in various age groups, breast cancer has been extensively studied to date. Recently, molecular breast cancer classification has advanced significantly with the availability of genomic profiling technologies. Proteomic technologies have also advanced from traditional protein assays including enzyme-linked immunosorbent assay, immunoblotting and immunohistochemistry to more comprehensive approaches including mass spectrometry and reverse phase protein lysate arrays (RPPA). The purpose of this manuscript is to review the current protein markers that influence breast cancer prediction and prognosis and to focus on novel advances in proteomic classification of breast cancer.

  6. Molecular Basis of Cardiac Myxomas

    Directory of Open Access Journals (Sweden)

    Pooja Singhal

    2014-01-01

    Full Text Available Cardiac tumors are rare, and of these, primary cardiac tumors are even rarer. Metastatic cardiac tumors are about 100 times more common than the primary tumors. About 90% of primary cardiac tumors are benign, and of these the most common are cardiac myxomas. Approximately 12% of primary cardiac tumors are completely asymptomatic while others present with one or more signs and symptoms of the classical triad of hemodynamic changes due to intracardiac obstruction, embolism and nonspecific constitutional symptoms. Echocardiography is highly sensitive and specific in detecting cardiac tumors. Other helpful investigations are chest X-rays, magnetic resonance imaging and computerized tomography scan. Surgical excision is the treatment of choice for primary cardiac tumors and is usually associated with a good prognosis. This review article will focus on the general features of benign cardiac tumors with an emphasis on cardiac myxomas and their molecular basis.

  7. Proteomics Funding Opportunity - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    To expand the understanding of how cells sense and respond to changes in their physical environment, the NCI is seeking to perform proteomic assays on the panel of cell lines grown on a variety of substrates. These assays will provide insight into changes in protein levels or phosphorylation changes that could reflect the activity of mechano-transduction pathways.

  8. Database independent proteomics analysis of the ostrich and human proteome.

    NARCIS (Netherlands)

    Altelaar, A.F.; Navarro, D.; Boekhorst, J.; Breukelen, B. van; Snel, B.; Mohammed, S.; Heck, A.J.R. van

    2012-01-01

    Mass spectrometry (MS)-based proteome analysis relies heavily on the presence of complete protein databases. Such a strategy is extremely powerful, albeit not adequate in the analysis of unpredicted postgenome events, such as posttranslational modifications, which exponentially increase the search s

  9. PARP inhibition and postinfarction myocardial remodeling.

    Science.gov (United States)

    Halmosi, Robert; Deres, Laszlo; Gal, Roland; Eros, Krisztian; Sumegi, Balazs; Toth, Kalman

    2016-08-01

    Coronary artery disease accounts for the greatest proportion of cardiovascular diseases therefore it is the major cause of death worldwide. Its therapeutic importance is indicated by still high mortality of myocardial infarction, which is one of the most severe forms of CVDs. Moreover, the risk of developing heart failure is very high among survivors. Heart failure is accompanied by high morbidity and mortality rate, therefore this topic is in the focus of researchers' interest. After a myocardial infarct, at first ventricular hypertrophy develops as a compensatory mechanism to decrease wall stress but finally leads to left ventricular dilation. This phenomenon is termed as myocardial remodeling. The main characteristics of underlying mechanisms involve cardiomyocyte growth, vessel changes and increased collagen production, in all of which several mechanical stress induced neurohumoral agents, oxidative stress and signal transduction pathways are involved. The long term activation of these processes ultimately leads to left ventricular dilation and heart failure with decreased systolic function. Oxidative stress causes DNA breaks producing the activation of nuclear poly(ADP-ribose) polymerase-1 (PARP-1) enzyme that leads to energy depletion and unfavorable modulation of different kinase cascades (Akt-1/GSK-3β, MAPKs, various PKC isoforms) and thus it promotes the development of heart failure. Therefore inhibition of PARP enzyme could offer a promising new therapeutical approach to prevent the onset of heart failure among postinfarction patients. The purpose of this review is to give a comprehensive summary about the most significant experimental results and mechanisms in postinfarction remodeling. PMID:27392900

  10. Abnormal bone remodelling in inflammatory arthritis

    Science.gov (United States)

    Bogoch, Earl R.; Moran, Erica

    1998-01-01

    Osteopenia is responsible for substantial comorbidity in patients suffering from rheumatoid arthritis and is an important factor in the surgical management of joint disease. In animal models of bone loss stimulated by inflammatory arthritis, increased bone remodelling and altered microstructure of bone have been documented. The subchondral bone plate near the joint surface is narrow and perforated by vascular inflammatory invasion, and in the shaft the thin cortices are weakened by giant resorption defects. Biomechanical tests and a mathematical model of bone strength suggest that cortical defects, much larger than those found in normal osteonal remodelling, are principally responsible for the experimentally observed loss of strength. Similarly, these defects may explain the increased femoral fracture risk in rheumatoid arthritis. The osteoclast, the cell resorbing bone, is demonstrated in increased number and activity in rheumatoid arthritis and in animal models. Bisphosphonates, drugs that inhibit osteoclast function, have been shown experimentally to reduce both focal and generalized osteopenia and to prevent loss of bone strength. Bisphosphonates also protect articular cartilage from damage characteristic of inflammatory arthritis. The mechanism of chondroprotection may be prevention of subchondral bone resorption by the osteoclast and also an altered distribution of bone marrow cells. Thus, bisphosphonates, currently in clinical use for other bone metabolic diseases, appear to have potential as prophylaxis and treatment for osteopenia and joint damage in inflammatory arthritis. PMID:9711159

  11. Histamine in regulation of bone remodeling processes

    Directory of Open Access Journals (Sweden)

    Marek Wiercigroch

    2013-08-01

    Full Text Available Bone remodeling is under autocrine, paracrine, endocrine and central nervous system control. One of the potential endogenous factors affecting bone remodeling is histamine, an endogenous amine which acts as a mediator of allergic reactions and neuromediator, and induces production of gastric acid. Histamine H1 receptor antagonists are widely used in the treatment of allergic conditions, H2 receptor antagonists in peptic ulcer disease, and betahistine (an H3 receptor antagonist and H1 receptor agonist is used in the treatment of Ménière’s disease.Excess histamine release in mastocytosis and allergic diseases may lead to development of osteoporosis. Clinical and population-based studies on the effects of histamine receptor antagonists on the skeletal system have not delivered unequivocal results.Expression of mRNA of histamine receptors has been discovered in bone cells (osteoblasts and osteoclasts. Histamine synthesis has been demonstrated in osteoclast precursors. Histamine increases bone resorption both by direct effects on osteoclast precursors and osteoclasts, and indirectly, by increasing the expression of RANKL in osteoblasts. In in vivo studies, H1 and H2 receptor antagonists exerted protective effects on the bone tissue, although not in all experimental models. In the present article, in vitro and in vivo studies conducted so far, concerning the effects of histamine and drugs modifying its activity on the skeletal system, have been reviewed.

  12. [Histamine in regulation of bone remodeling processes].

    Science.gov (United States)

    Wiercigroch, Marek; Folwarczna, Joanna

    2013-01-01

    Bone remodeling is under autocrine, paracrine, endocrine and central nervous system control. One of the potential endogenous factors affecting bone remodeling is histamine, an endogenous amine which acts as a mediator of allergic reactions and neuromediator, and induces production of gastric acid. Histamine H₁ receptor antagonists are widely used in the treatment of allergic conditions, H₂ receptor antagonists in peptic ulcer disease, and betahistine (an H₃ receptor antagonist and H₁ receptor agonist) is used in the treatment of Ménière's disease. Excess histamine release in mastocytosis and allergic diseases may lead to development of osteoporosis. Clinical and population-based studies on the effects of histamine receptor antagonists on the skeletal system have not delivered unequivocal results. Expression of mRNA of histamine receptors has been discovered in bone cells (osteoblasts and osteoclasts). Histamine synthesis has been demonstrated in osteoclast precursors. Histamine increases bone resorption both by direct effects on osteoclast precursors and osteoclasts, and indirectly, by increasing the expression of RANKL in osteoblasts. In in vivo studies, H₁ and H₂ receptor antagonists exerted protective effects on the bone tissue, although not in all experimental models. In the present article, in vitro and in vivo studies conducted so far, concerning the effects of histamine and drugs modifying its activity on the skeletal system, have been reviewed. PMID:24018454

  13. Epithelial Cell Apoptosis and Lung Remodeling

    Institute of Scientific and Technical Information of China (English)

    Kazuyoshi Kuwano

    2007-01-01

    Lung epithelium is the primary site of lung damage in various lung diseases. Epithelial cell apoptosis has been considered to be initial event in various lung diseases. Apoptosis signaling is classically composed of two principle pathways. One is a direct pathway from death receptor ligation to caspase cascade activation and cell death. The other pathway triggered by stresses such as drugs, radiation, infectious agents and reactive oxygen species is mediated by mitochondria. Endoplasmic reticulum has also been shown to be the organelle to mediate apoptosis.Epithelial cell death is followed by remodeling processes, which consist of epithelial and fibroblast activation,cytokine production, activation of coagulation pathway, neoangiogenesis, re-epithelialization and fibrosis.Epithelial and mesenchymal interaction plays important roles in these processes. Further understanding of apoptosis signaling and its regulation by novel strategies may lead to effective treatments against various lung diseases. We review the recent advances in the understanding of apoptosis signaling and discuss the involvement of apoptosis in lung remodeling.

  14. Atrial remodeling, fibrosis, and atrial fibrillation.

    Science.gov (United States)

    Jalife, José; Kaur, Kuljeet

    2015-08-01

    The fundamental mechanisms governing the perpetuation of atrial fibrillation (AF), the most common arrhythmia seen in clinical practice, are poorly understood, which explains in part why AF prevention and treatment remain suboptimal. Although some clinical parameters have been identified as predicting a transition from paroxysmal to persistent AF in some patients, the molecular, electrophysiological, and inflammation changes leading to such a progression have not been described in detail. Oxidative stress, atrial dilatation, calcium overload, inflammation, microRNAs, and myofibroblast activation are all thought to be involved in AF-induced atrial remodeling. However, it is unknown to what extent and at which time points such alterations influence the remodeling process that perpetuates AF. Here we postulate a working model that might open new pathways for future investigation into mechanisms of AF perpetuation. We start from the premise that the progression to AF perpetuation is the result of interplay among manifold signaling pathways with differing kinetics. Some such pathways have relatively fast kinetics (e.g., oxidative stress-mediated shortening of refractory period); others likely depend on molecular processes with slower kinetics (e.g., transcriptional changes in myocyte ion channel protein expression mediated through inflammation and fibroblast activation). We stress the need to fully understand the relationships among such pathways should one hope to identify novel, truly effective targets for AF therapy and prevention. PMID:25661032

  15. Impact of Ejection Fraction on the Clinical Response to Cardiac Resynchronization Therapy in Mild Heart Failure

    DEFF Research Database (Denmark)

    Linde, Cecilia; Daubert, Claude; Abraham, William T;

    2013-01-01

    Current guidelines recommend cardiac resynchronization therapy (CRT) in mild heart failure (HF) patients with QRS prolongation and ejection fraction (EF) ≤30%. To assess the effect of CRT in less severe systolic dysfunction, outcomes in the REsynchronization reVErses Remodeling in Systolic left v......Entricular dysfunction (REVERSE) study were evaluated in which patients with left ventricular (LV) ejection fraction (LVEF) >30% were included....

  16. Dilation and Hypertrophy: A Cell-Based Continuum Mechanics Approach Towards Ventricular Growth and Remodeling

    Science.gov (United States)

    Ulerich, J.; Göktepe, S.; Kuhl, E.

    This manuscript presents a continuum approach towards cardiac growth and remodeling that is capable to predict chronic maladaptation of the heart in response to changes in mechanical loading. It is based on the multiplicative decomposition of the deformation gradient into and elastic and a growth part. Motivated by morphological changes in cardiomyocyte geometry, we introduce an anisotropic growth tensor that can capture both hypertrophic wall thickening and ventricular dilation within one generic concept. In agreement with clinical observations, we propose wall thickening to be a stress-driven phenomenon whereas dilation is introduced as a strain-driven process. The features of the proposed approach are illustrated in terms of the adaptation of thin heart slices and in terms overload-induced dilation in a generic bi-ventricular heart model.

  17. Quantitative proteomics study of larval settlement in the barnacle Balanus amphitrite

    KAUST Repository

    Chen, Zhang-Fan

    2014-02-13

    Barnacles are major sessile components of the intertidal areas worldwide, and also one of the most dominant fouling organisms in fouling communities. Larval settlement has a crucial ecological effect not only on the distribution of the barnacle population but also intertidal community structures. However, the molecular mechanisms involved in the transition process from the larval to the juvenile stage remain largely unclear. In this study, we carried out comparative proteomic profiles of stage II nauplii, stage VI nauplii, cyprids, and juveniles of the barnacle Balanus amphitrite using label-free quantitative proteomics, followed by the measurement of the gene expression levels of candidate proteins. More than 700 proteins were identified at each stage; 80 were significantly up-regulated in cyprids and 95 in juveniles vs other stages. Specifically, proteins involved in energy and metabolism, the nervous system and signal transduction were significantly up-regulated in cyprids, whereas proteins involved in cytoskeletal remodeling, transcription and translation, cell proliferation and differentiation, and biomineralization were up-regulated in juveniles, consistent with changes associated with larval metamorphosis and tissue remodeling in juveniles. These findings provided molecular evidence for the morphological, physiological and biological changes that occur during the transition process from the larval to the juvenile stages in B. amphitrite. © 2014 Chen et al.

  18. Automatic Implantable Cardiac Defibrillator

    Medline Plus

    Full Text Available Automatic Implantable Cardiac Defibrillator February 19, 2009 Halifax Health Medical Center, Daytona Beach, FL Welcome to Halifax Health Daytona Beach, Florida. Over the next hour you' ...

  19. Sudden Cardiac Arrest

    Science.gov (United States)

    ... scan, or MUGA, which shows how well your heart is pumping blood. Magnetic resonance imaging (MRI) which gives doctors detailed pictures of your heart. How is SCA treated? Sudden cardiac arrest should ...

  20. Sudden Cardiac Arrest

    Science.gov (United States)

    ... Heart Risk Factors & Prevention Heart Diseases & Disorders Atrial Fibrillation (AFib) Sudden Cardiac Arrest (SCA) SCA: Who's At Risk? Prevention of SCA What Causes SCA? SCA Awareness Atrial Flutter Heart Block Heart Failure Sick Sinus Syndrome Substances & Heart Rhythm Disorders Symptoms & ...

  1. Sudden cardiac death

    Directory of Open Access Journals (Sweden)

    Aranđelović Aleksandra Č.

    2004-01-01

    Full Text Available Sudden cardiac death in an athlete is rare and tragic event. An athlete's death draws high public attention given that athletes are considered the healthiest category of society. The vast majority of sudden cardiac death in young athletes is due to congenital cardiac malformations such as hypertrophie cardiomyopathy and various coronary artery anomalies. In athletes over age 35, the usual cause of sudden cardiac death is coronary artery disease. With each tragic death of a young athlete, there is a question why this tragedy has not been prevented. The American College of Sports Medicine and the American Heart Association recommend that a pre-participation exam should include a complete cardiovascular history and physical examination.

  2. Cardiac Risk Assessment

    Science.gov (United States)

    ... to assess cardiac risk include: High-sensitivity C-reactive protein (hs-CRP) : Studies have shown that measuring ... LDL-C but does not respond to typical strategies to lower LDL-C such as diet, exercise, ...

  3. Cardiac arrest - cardiopulmonary resuscitation

    Institute of Scientific and Technical Information of China (English)

    Basri Lenjani; Besnik Elshani; Nehat Baftiu; Kelmend Pallaska; Kadir Hyseni; Njazi Gashi; Nexhbedin Karemani; Ilaz Bunjaku; Taxhidin Zaimi; Arianit Jakupi

    2014-01-01

    Objective:To investigate application of cardiopulmonary resuscitation(CPR) measures within the golden minutes inEurope.Methods:The material was taken from theUniversityClinical Center ofKosovo -EmergencyCentre inPristina, during the two(2) year period(2010-2011).The collected date belong to the patients with cardiac arrest have been recorded in the patients' log book protocol at the emergency clinic.Results:During the2010 to2011 in the emergency center of theCUCK inPristina have been treated a total of269 patients with cardiac arrest, of whom159 or59.1% have been treated in2010, and110 patients or40.9% in2011.Of the269 patients treated in the emergency centre,93 or34.6% have exited lethally in the emergency centre, and176 or 65.4% have been transferred to other clinics.In the total number of patients with cardiac arrest, males have dominated with186 cases, or69.1%.The average age of patients included in the survey was56.7 year oldSD±16.0 years.Of the269 patients with cardiac arrest, defibrillation has been applied for93 or34.6% of patients.In the outpatient settings defibrillation has been applied for3 or3.2% of patients.Patients were defibrillated with application of one to four shocks. Of27 cases with who have survived cardiac arrest, none of them have suffered cardiac arrest at home,3 or11.1% of them have suffered cardiac arrest on the street, and24 or88.9% of them have suffered cardiac arrest in the hospital.5 out of27 patients survived have ended with neurological impairment.Cardiac arrest cases were present during all days of the week, but frequently most reported cases have been onMonday with32.0% of cases, and onFriday with24.5% of cases. Conclusions:All survivors from cardiac arrest have received appropriate medical assistance within10 min from attack, which implies that if cardiac arrest occurs near an institution health care(with an opportunity to provide the emergent health care) the rate of survival is higher.

  4. Effects of Perindopril on Left Ventricular Remodeling and Osteopontin Expression in Rats With Myocardial Infarction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To observe the effects of perindopril on left ventricular remodeling and myocardial osteopontin expression in rats with myocardial infarction. Methods In this study male adult SD rats were randomly divided into 3groups: sham-operation group, MI-saline group and MI-perindopril group. Left anterior descending artery was ligated to generate myocardial infarction. Perindopril (2 mg/kg body weight/day) was administered from the next day of MI.Four weeks later, left ventricular diameter (LVEDD and LVESD) and left ventricular ejection fraction was estimated with echocardiography, LVSP, LVEDP and ± dp/dtmax was detected with hemodynamic measurement, cardiomyocyte diameter and interstitial fibrosis infiltration were evaluated with histological methods, and myocardium osteopontin protein expression level was detected with western blot. Results ①Compared with the sham-operation group, all rats with MI developed significant systolic and diastolic dysfunction, as was indicated by decreased LVEF, LVSP and ± dp/dtmax, as well as increased LVEDP. ②Rats with MI showed significantly dilated left ventricles and higher ventricular weight / body weight ratio, significantly increased cardiomyocyte diameter and marked interstitial fibrosis in the non-infarction area. ③Perindopril treatment partly prevented cardiac dysfunction and left ventricular remodeling as indicated by the parameters mentioned above. ④No osteopontin protein was detected in myocardium of sham-operation rats. In rats with MI, high level osteopontin protein expression was significantly inhibited by perindopril treatment. Conclusions In rats with MI, perindopril treatment significantly prevented left ventricular remodeling and myocardium osteopontin protein expression.

  5. Awareness in cardiac anesthesia.

    LENUS (Irish Health Repository)

    Serfontein, Leon

    2010-02-01

    Cardiac surgery represents a sub-group of patients at significantly increased risk of intraoperative awareness. Relatively few recent publications have targeted the topic of awareness in this group. The aim of this review is to identify areas of awareness research that may equally be extrapolated to cardiac anesthesia in the attempt to increase understanding of the nature and significance of this scenario and how to reduce it.

  6. Safety in cardiac surgery

    OpenAIRE

    Siregar, S.

    2013-01-01

    The monitoring of safety in cardiac surgery is a complex process, which involves many clinical, practical, methodological and statistical issues. The objective of this thesis was to measure and to compare safety in cardiac surgery in The Netherlands using the Netherlands Association for Cardio-Thoracic Surgery (NVT) database. The safety of care is usually measured using patient outcomes. If outcomes are not available, the process and structure of care may be used. Outcomes should be adjusted ...

  7. Cardiac rehabilitation in Germany.

    Science.gov (United States)

    Karoff, Marthin; Held, Klaus; Bjarnason-Wehrens, Birna

    2007-02-01

    The purpose of this review is to give an overview of the rehabilitation measures provided for cardiac patients in Germany and to outline its legal basis and outcomes. In Germany the cardiac rehabilitation system is different from rehabilitation measures in other European countries. Cardiac rehabilitation in Germany since 1885 is based on specific laws and the regulations of insurance providers. Cardiac rehabilitation has predominantly been offered as an inpatient service, but has recently been complemented by outpatient services. A general agreement on the different indications for offering these two services has yet to be reached. Cardiac rehabilitation is mainly offered after an acute cardiac event and bypass surgery. It is also indicated in severe heart failure and special cases of percutaneous coronary intervention. Most patients are men (>65%) and the age at which events occur is increasing. The benefits obtained during the 3-4 weeks after an acute event, and confirmed in numerous studies, are often later lost under 'usual care' conditions. Many attempts have been made by rehabilitation institutions to improve this deficit by providing intensive aftercare. One instrument set up to achieve this is the nationwide institution currently comprising more than 6000 heart groups with approximately 120000 outpatients. After coronary artery bypass grafting or acute coronary syndrome cardiac rehabilitation can usually be started within 10 days. The multidisciplinary rehabilitation team consists of cardiologists, psychologists, exercise therapists, social workers, nutritionists and nurses. The positive effects of cardiac rehabilitation are also important economically, for example, for the improvement of secondary prevention and vocational integration. PMID:17301623

  8. Ranolazine in Cardiac Arrhythmia.

    Science.gov (United States)

    Saad, Marwan; Mahmoud, Ahmed; Elgendy, Islam Y; Richard Conti, C

    2016-03-01

    Ranolazine utilization in the management of refractory angina has been established by multiple randomized clinical studies. However, there is growing evidence showing an evolving role in the field of cardiac arrhythmias. Multiple experimental and clinical studies have evaluated the role of ranolazine in prevention and management of atrial fibrillation, with ongoing studies on its role in ventricular arrhythmias. In this review, we will discuss the pharmacological, experimental, and clinical evidence behind ranolazine use in the management of various cardiac arrhythmias. PMID:26459200

  9. Cardiac tumours in infancy

    OpenAIRE

    Yadava, O.P.

    2012-01-01

    Cardiac tumours in infancy are rare and are mostly benign with rhabdomyomas, fibromas and teratomas accounting for the majority. The presentation depends on size and location of the mass as they tend to cause cavity obstruction or arrhythmias. Most rhabdomyomas tend to regress spontaneously but fibromas and teratomas generally require surgical intervention for severe haemodynamic or arrhythmic complications. Other relatively rare cardiac tumours too are discussed along with an Indian perspect...

  10. Myocardial remodeling and bioelectric changes in tachycardia-induced heart failure in dogs

    International Nuclear Information System (INIS)

    In this study, electrical and structural remodeling of ventricles was examined in tachycardia-induced heart failure (HF). We studied two groups of weight-matched adult male mongrel dogs: a sham-operated control group (n=5) and a pacing group (n=5) that underwent ventricular pacing at 230 bpm for 3 weeks. Clinical symptoms of congestive HF were observed in both groups. Their hemodynamic parameters were determined and the severity of the HF was evaluated by M-mode echocardiography. Changes in heart morphology were observed by scanning electron and light microscopy. Ventricular action potential duration (APD), as well as the 50 and 90% APD were measured in both groups. All dogs exhibited clinical symptoms of congestive HF after rapid right ventricular pacing for 3 weeks. These data indicate that rapid, right ventricular pacing produces a useful experimental model of low-output HF in dogs, characterized by biventricular pump dysfunction, biventricular cardiac dilation, and non-ischemic impairment of left ventricular contractility. Electrical and structural myocardial remodeling play an essential role in congestive HF progression, and should thus be prevented

  11. Myocardial remodeling and bioelectric changes in tachycardia-induced heart failure in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Song, B.; Wang, B.N.; Chen, D.N.; Luo, Z.G. [Department of Cardiovascular Medicine, The First Affiliated Hospital, Anhui Medical University, HeFei, Anhui Province (China)

    2013-09-06

    In this study, electrical and structural remodeling of ventricles was examined in tachycardia-induced heart failure (HF). We studied two groups of weight-matched adult male mongrel dogs: a sham-operated control group (n=5) and a pacing group (n=5) that underwent ventricular pacing at 230 bpm for 3 weeks. Clinical symptoms of congestive HF were observed in both groups. Their hemodynamic parameters were determined and the severity of the HF was evaluated by M-mode echocardiography. Changes in heart morphology were observed by scanning electron and light microscopy. Ventricular action potential duration (APD), as well as the 50 and 90% APD were measured in both groups. All dogs exhibited clinical symptoms of congestive HF after rapid right ventricular pacing for 3 weeks. These data indicate that rapid, right ventricular pacing produces a useful experimental model of low-output HF in dogs, characterized by biventricular pump dysfunction, biventricular cardiac dilation, and non-ischemic impairment of left ventricular contractility. Electrical and structural myocardial remodeling play an essential role in congestive HF progression, and should thus be prevented.

  12. ALK7 Gene Polymorphism is Associated with Metabolic Syndrome Risk and Cardiovascular Remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenchao; Wang, Hui; Zhang, Wei [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan (China); Lv, Ruijuan [Department of Emergency, Qilu Hospital of Shandong University, Jinan (China); Wang, Zhihao [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan (China); Department of Geriatrics, Qilu Hospital of Shandong University, Jinan (China); Shang, Yuanyuan; Zhang, Yun; Zhong, Ming [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan (China); Chen, Yuguo; Tang, Mengxiong, E-mail: tangmengxiongsdu8@163.com [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan (China); Department of Emergency, Qilu Hospital of Shandong University, Jinan (China)

    2013-08-15

    Activin receptor-like kinase 7 (ALK7) is a type I receptor for the TGF-β superfamily and has recently been demonstrated to play an important role in the maintenance of metabolic homeostasis. To investigate the association of the ALK7 gene polymorphism with metabolic syndrome (MetS) and cardiovascular remodeling in MetS patients. The single nucleotide polymorphism rs13010956 in the ALK7 gene was genotyped in 351 Chinese subjects undergoing carotid and cardiac ultrasonography. The associations of the ALK7 gene polymorphism with the MetS phenotype, MetS parameters, and cardiovascular ultrasonic features were analyzed. The rs13010956 polymorphism in the ALK7 gene was found to be significantly associated with the MetS phenotype in females (p < 0.05) and was also significantly associated with blood pressure in the total (p < 0.05) and female populations (p < 0.01). Further analysis revealed that rs13010956 was associated with mean intima-media thickness of the carotid arteries in females (p < 0.05). After control for body mass index, blood pressure, fasting blood glucose, and triglycerides, rs13010956 was also found to be significantly associated with left ventricular mass index in the total (p < 0.05) and female populations (p < 0.05). Our findings suggested that the ALK7 gene polymorphism rs13010956 was significantly associated with MetS risk in females and may be involved in cardiovascular remodeling in MetS patients.

  13. EFFECTIVE INVERSION OF LEFT HEART REMODELING BY PHENYLALANINE IN ESSENTIAL HYPERTENSION

    Institute of Scientific and Technical Information of China (English)

    赵光胜; 邱慧丽; 范明昌; 张伟忠

    2000-01-01

    Objective The aim is to ascertain whether phenylalanine (Phe) can inverse the left heart "remodeling" in patients with essential hypertension. Methods The changes of echocardiographic variables were compared after 3,6 and 9 months of observation between the Phe intervention group (Phe lg/d + amiloride complex 1 tablet/d, 20 cases) and control group (placebo lg/d+amiloride complex 1 tablet/d, 20 cases) with either interventricular septum and (or) post-wall thickness≥12mm, and were carried on further to compare in cross-over trial. Results (1) Phe improved effectively the left heart and systolic dysfunction; while the improvement, also shown in control group due to the concurrent use of diuretic antihypertensive drug-amiloride complex, was much less evident than that in Phe group. (2) The disturbed left heart structure and systolic function were improved prominently while placebo was crossed over to Phe, and the improvement decreased after Phe was crrossed over to placebo. (3) The changes almost attained to its peak level after 6 months and not improved further at 9 months. (4) The differences seen between above 2 groups could not be explained by their diverse drops of blood pressure. Conclusion Phe does exert an independent inverse effect on cardiac "remodeling", which might implicate an important clinical application upon the prevention and control of essential hypertension and its complications.

  14. Effect of Wenxin Granule on Ventricular Remodeling and Myocardial Apoptosis in Rats with Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Aiming Wu

    2013-01-01

    Full Text Available Aim. To determine the effect of a Chinese herbal compound named Wenxin Granule on ventricular remodeling and myocardial apoptosis in rats with myocardial infarction (MI. Methods. Male Sprague-Dawley (SD rats were randomly divided into four groups: the control group, the model group, the metoprolol group, and the Wenxin Granule group (WXKL group with sample size (n of 7 rats in each group. An MI model was established in all rats by occlusion of the left anterior descending coronary artery (the control group was without occlusion. Wenxin Granule (1.35 g/kg/day, metoprolol (12 mg/kg/day, and distilled water (5 mL/kg/day for the control and model groups were administered orally for 4 weeks. Ultrasonic echocardiography was used to examine cardiac structural and functional parameters. Myocardial histopathological changes were observed using haematoxylin and eosin (H&E dyeing. Myocardial apoptosis was detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL staining. Serum angiotensin II (Ang II concentration was measured using the enzyme-linked immunosorbent assay (ELISA. Results. It was found that Wenxin Granule could partially reverse ventricular remodeling, improve heart function, alleviate the histopathological damage, inhibit myocardial apoptosis, and reduce Ang II concentration in rats with MI. Conclusions. The results of the current study suggest that Wenxin Granule may be a potential alternative and complementary medicine for the treatment of MI.

  15. MicroRNA与心血管重构%MicroRNA and cardiovascular remodeling

    Institute of Scientific and Technical Information of China (English)

    邓璧

    2013-01-01

    MicroRNA is a short (18-25 nuucleotides) and single-stranded non-coding RNA which is involved in almost all pathological and physiological process of diseases.Cardiovascular remodeling is the pathological basis of development of multiple cardiovascular diseases,in which microRNA plays an important role.In cardiac diseases,microRNAs affect myocardial cell hypertrophy,apoptosis,and interstitial fibrosis through a variety of mechanisms.In vascular remodeling diseases,microRNAs regulate proliferation and secretion of vascular smooth muscle cells through multiple signaling pathways.%MicroRNA为短小(18~25个核苷酸组成)单链非编码RNAs,几乎参与所有疾病的病理生理过程.心血管重构是多种心血管疾病发生与发展的病理基础,而microRNA在心血管重构中起重要调控作用.在心肌性疾病中,microRNA通过多种机制影响心肌细胞肥大、凋亡和间质纤维化;在血管重构性疾病中,不同microRNA通过多条信号通路调节血管平滑肌细胞增殖和分泌.

  16. Ranolazine reduces remodeling of the right ventricle and provoked arrhythmias in rats with pulmonary hypertension.

    Science.gov (United States)

    Liles, John T; Hoyer, Kirsten; Oliver, Jason; Chi, Liguo; Dhalla, Arvinder K; Belardinelli, Luiz

    2015-06-01

    Pulmonary arterial hypertension (PAH) is a progressive disease that often results in right ventricular (RV) failure and death. During disease progression, structural and electrical remodeling of the right ventricle impairs pump function, creates proarrhythmic substrates, and triggers for arrhythmias. Notably, RV failure and lethal arrhythmias are major contributors to cardiac death in patients with PAH that are not directly addressed by currently available therapies. Ranolazine (RAN) is an antianginal, anti-ischemic drug that has cardioprotective effects in experimental and clinical settings of left-sided heart dysfunction. RAN also has antiarrhythmic effects due to inhibition of the late sodium current in cardiomyocytes. We therefore hypothesized that RAN could reduce the maladaptive structural and electrical remodeling of the right ventricle and could prevent triggered ventricular arrhythmias in the monocrotaline rat model of PAH. Indeed, in both in vivo and ex vivo experimental settings, chronic RAN treatment reduced electrical heterogeneity (right ventricular-left ventricular action potential duration dispersion), shortened heart-rate corrected QT intervals in the right ventricle, and normalized RV dysfunction. Chronic RAN treatment also dose-dependently reduced ventricular hypertrophy, reduced circulating levels of B-type natriuretic peptide, and decreased the expression of fibrotic markers. In addition, the acute administration of RAN prevented isoproterenol-induced ventricular tachycardia/ventricular fibrillation and subsequent cardiovascular death in rats with established PAH. These results support the notion that RAN can improve the electrical and functional properties of the right ventricle, highlighting its potential benefits in the setting of RV impairment. PMID:25770134

  17. ALK7 Gene Polymorphism is Associated with Metabolic Syndrome Risk and Cardiovascular Remodeling

    International Nuclear Information System (INIS)

    Activin receptor-like kinase 7 (ALK7) is a type I receptor for the TGF-β superfamily and has recently been demonstrated to play an important role in the maintenance of metabolic homeostasis. To investigate the association of the ALK7 gene polymorphism with metabolic syndrome (MetS) and cardiovascular remodeling in MetS patients. The single nucleotide polymorphism rs13010956 in the ALK7 gene was genotyped in 351 Chinese subjects undergoing carotid and cardiac ultrasonography. The associations of the ALK7 gene polymorphism with the MetS phenotype, MetS parameters, and cardiovascular ultrasonic features were analyzed. The rs13010956 polymorphism in the ALK7 gene was found to be significantly associated with the MetS phenotype in females (p < 0.05) and was also significantly associated with blood pressure in the total (p < 0.05) and female populations (p < 0.01). Further analysis revealed that rs13010956 was associated with mean intima-media thickness of the carotid arteries in females (p < 0.05). After control for body mass index, blood pressure, fasting blood glucose, and triglycerides, rs13010956 was also found to be significantly associated with left ventricular mass index in the total (p < 0.05) and female populations (p < 0.05). Our findings suggested that the ALK7 gene polymorphism rs13010956 was significantly associated with MetS risk in females and may be involved in cardiovascular remodeling in MetS patients

  18. A novel approach for assessing cardiac fibrosis using label-free second harmonic generation.

    Science.gov (United States)

    Martin, Tamara P; Norris, Greg; McConnell, Gail; Currie, Susan

    2013-12-01

    To determine whether second harmonic generation (SHG) can be used as a novel and improved label-free technique for detection of collagen deposition in the heart. To verify whether SHG will allow accurate quantification of altered collagen deposition in diseased hearts following hypertrophic remodelling. Minimally invasive transverse aortic banding (MTAB) of mouse hearts was used to generate a reproducible model of cardiac hypertrophy. Physiological and functional assessment of hypertrophic development was performed using echocardiography and post-mortem analysis of remodelled hearts. Cardiac fibroblasts were isolated from sham-operated and hypertrophied hearts and proliferation rates compared. Multi-photon laser scanning microscopy was used to capture both two-photon excited autofluorescence (TPEF) and SHG images simultaneously in two channels. TPEF images were subtracted from SHG images and the resulting signal intensities from ventricular tissue sections were calculated. Traditional picrosirius red staining was used to verify the suitability of the SHG application. MTAB surgery induced significant hypertrophic remodelling and increased cardiac fibroblast proliferation. A significant increase in the density of collagen fibres between hypertrophic and control tissues (p < 0.05) was evident using SHG. Similar increases and patterns of staining were observed using parallel traditional picrosirius red staining of collagen. Label-free SHG microscopy provides a new alternative method for quantifying collagen deposition in fibrotic hearts. PMID:23921804

  19. Epigenetic and lncRNA regulation of cardiac pathophysiology.

    Science.gov (United States)

    Chang, Ching-Pin; Han, Pei

    2016-07-01

    Our developmental studies provide an insight into the pathogenesis of heart failure in adults. These studies reveal a mechanistic link between fetal cardiomyocytes and pathologically stressed adult cardiomyocytes at the level of chromatin regulation. In embryos, chromatin-regulating factors within the cardiomyocytes respond to developmental signals to program cardiac gene expression to promote cell proliferation and inhibit premature cell differentiation. In the neonatal period, the activity of these developmental chromatin regulators is quickly turned off in cardiomyocytes, coinciding with the cessation of cell proliferation and advance in cell differentiation toward adult maturity. When the mature hearts are pathologically stressed, those chromatin regulators essential for cardiomyocyte development in embryos are reactivated, triggering gene reprogramming to a fetal-like state and pathological cardiac hypertrophy. Furthermore, in the study of chromatin regulation and cardiac gene expression, we identified a long noncoding RNA that interacts with chromatin remodeling factor to regulate the cardiac response to environmental changes. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26969820

  20. Mouse models of SCN5A-related cardiac arrhythmias

    Directory of Open Access Journals (Sweden)

    Flavien eCharpentier

    2012-06-01

    Full Text Available Mutations of SCN5A gene, which encodes the α-subunit of the voltage-gated Na+ channel NaV1.5, underlie hereditary cardiac arrhythmic syndromes such as the type 3 long QT syndrome, cardiac conduction diseases, the Brugada syndrome, the sick sinus syndrome, atrial standstill and numerous overlap syndromes. Patch-clamp studies in heterologous expression systems have provided important information to understand the genotype-phenotype relationships of these diseases. However, they could not clarify how SCN5A mutations can be responsible for such a large spectrum of diseases, for the late age of onset or the progressiveness of some of these diseases and for the overlapping syndromes. Genetically modified mice rapidly appeared as promising tools for understanding the pathophysiological mechanisms of cardiac SCN5A-related arrhythmic syndromes and several mouse models have been established. This paper reviews some of the results obtained on these models that, for most of them, recapitulate the clinical phenotypes of the patients. It also points out that these models also have their own limitations. Overall, mouse models appear as powerful tools to elucidate the pathophysiological mechanisms of SCN5A-related diseases and offer the opportunity to investigate the secondary cellular consequences of SCN5A mutations such as the expression remodelling of other genes that might participate to the overall phenotype. Finally, they constitute useful tools for addressing the role of genetic and environmental modifiers on cardiac electrical activity.

  1. Prenatal programming: adverse cardiac programming by gestational testosterone excess.

    Science.gov (United States)

    Vyas, Arpita K; Hoang, Vanessa; Padmanabhan, Vasantha; Gilbreath, Ebony; Mietelka, Kristy A

    2016-01-01

    Adverse events during the prenatal and early postnatal period of life are associated with development of cardiovascular disease in adulthood. Prenatal exposure to excess testosterone (T) in sheep induces adverse reproductive and metabolic programming leading to polycystic ovarian syndrome, insulin resistance and hypertension in the female offspring. We hypothesized that prenatal T excess disrupts insulin signaling in the cardiac left ventricle leading to adverse cardiac programming. Left ventricular tissues were obtained from 2-year-old female sheep treated prenatally with T or oil (control) from days 30-90 of gestation. Molecular markers of insulin signaling and cardiac hypertrophy were analyzed. Prenatal T excess increased the gene expression of molecular markers involved in insulin signaling and those associated with cardiac hypertrophy and stress including insulin receptor substrate-1 (IRS-1), phosphatidyl inositol-3 kinase (PI3K), Mammalian target of rapamycin complex 1 (mTORC1), nuclear factor of activated T cells -c3 (NFATc3), and brain natriuretic peptide (BNP) compared to controls. Furthermore, prenatal T excess increased the phosphorylation of PI3K, AKT and mTOR. Myocardial disarray (multifocal) and increase in cardiomyocyte diameter was evident on histological investigation in T-treated females. These findings support adverse left ventricular remodeling by prenatal T excess. PMID:27328820

  2. Cardiac Image Registration

    Directory of Open Access Journals (Sweden)

    2008-09-01

    Full Text Available Long procedure time and somewhat suboptimal results hinder the widespread use of catheter ablation of complex arrhythmias such as atrial fibrillation (AF. Due to lack of contrast differentiation between the area of interest and surrounding structures in a moving organ like heart, there is a lack of proper intraprocedural guidance using current imaging techniques for ablation. Cardiac image registration is currently under investigation and is in clinical use for AF ablation. Cardiac image registration, which involves integration of two images in the context of left atrium (LA, is intermodal, with the acquired image and the real-time reference image residing in different image spaces, and involves optimization, where one image space is transformed into the other. Unlike rigid body registration, cardiac image registration is unique and challenging due to cardiac motion during the cardiac cycle and due to respiration. This review addresses the basic principles of the emerging technique of registration and the inherent limitations as they relate to cardiac imaging and registration.

  3. Cardiac Image Registration

    Directory of Open Access Journals (Sweden)

    Jasbir Sra

    2008-09-01

    Full Text Available Long procedure time and somewhat suboptimal results hinder the widespread use of catheter ablation of complex arrhythmias such as atrial fibrillation (AF. Due to lack of contrast differentiation between the area of interest and surrounding structures in a moving organ like heart, there is a lack of proper intraprocedural guidance using current imaging techniques for ablation. Cardiac image registration is currently under investigation and is in clinical use for AF ablation. Cardiac image registration, which involves integration of two images in the context of the left atrium (LA, is intermodal, with the acquired image and the real-time reference image residing in different image spaces, and involves optimization, where one image space is transformed into the other. Unlike rigid body registration, cardiac image registration is unique and challenging due to cardiac motion during the cardiac cycle and due to respiration. This review addresses the basic principles of the emerging technique of registration and the inherent limitations as they relate to cardiac imaging and registration.

  4. Straining mode-dependent collagen remodeling in engineered cardiovascular tissue

    NARCIS (Netherlands)

    Rubbens, M.P.; Mol, A.; Marion, M.H. van; Hanemaaijer, R.; Bank, R.A.; Baaijens, F.P.T.; Bouten, C.V.C.

    2009-01-01

    Similar to native cardiovascular tissues, the mechanical properties of engineered cardiovascular constructs depend on the composition and quality of the extracellular matrix, which is a net result of matrix remodeling processes within the tissue. To improve tissue remodeling, and hence tissue mechan

  5. Proteomics of foodborne bacterial pathogens

    Science.gov (United States)

    This chapter focuses on recent research on foodborne bacterial pathogens that use mass spectrometry-based proteomic techniques as well as protein microarrays. Mass spectrometry ionization techniques (e.g. electrospray ionization and matrix-assisted laser desorption/ionization), analyzers (e.g. ion ...

  6. The potato tuber mitochondrial proteome

    DEFF Research Database (Denmark)

    Møller, Ian Max; Salvato, Fernanda; Havelund, Jesper;

    ) and in silico-predicted mitochondrial proteins (2000-3000). Thus, before starting to look for oxidized peptides, we wanted to expand the current compendium of plant mitochondrial proteins while obtaining what could be termed the "baseline proteome" from our model organelle, the potato tuber...

  7. Quantitative proteomics of Chlorobaculum tepidum

    DEFF Research Database (Denmark)

    Falkenby, Lasse Gaarde; Szymanska, Monika; Holkenbrink, Carina;

    2011-01-01

    Chlorobaculum (Cba.) tepidum is a green sulfur bacterium that oxidizes sulfide, elemental sulfur, and thiosulfate for photosynthetic growth. To gain insight into the sulfur metabolism, the proteome of Cba. tepidum cells sampled under different growth conditions has been quantified using a rapid gel...

  8. Proteomic interrogation of human chromatin.

    Directory of Open Access Journals (Sweden)

    Mariana P Torrente

    Full Text Available Chromatin proteins provide a scaffold for DNA packaging and a basis for epigenetic regulation and genomic maintenance. Despite understanding its functional roles, mapping the chromatin proteome (i.e. the "Chromatome" is still a continuing process. Here, we assess the biological specificity and proteomic extent of three distinct chromatin preparations by identifying proteins in selected chromatin-enriched fractions using mass spectrometry-based proteomics. These experiments allowed us to produce a chromatin catalog, including several proteins ranging from highly abundant histone proteins to less abundant members of different chromatin machinery complexes. Using a Normalized Spectral Abundance Factor approach, we quantified relative abundances of the proteins across the chromatin enriched fractions giving a glimpse into their chromosomal abundance. The large-scale data sets also allowed for the discovery of a variety of novel post-translational modifications on the identified chromatin proteins. With these comparisons, we find one of the probed methods to be qualitatively superior in specificity for chromatin proteins, but inferior in proteomic extent, evidencing a compromise that must be made between biological specificity and broadness of characterization. Additionally, we attempt to identify proteins in eu- and heterochromatin, verifying the enrichments by characterizing the post-translational modifications detected on histone proteins from these chromatin regions. In summary, our results provide insights into the value of different methods to extract chromatin-associated proteins and provide starting points to study the factors that may be involved in directing gene expression and other chromatin-related processes.

  9. In-Utero Low-Dose Irradiation Leads to Persistent Alterations in the Mouse Heart Proteome

    Science.gov (United States)

    Bakshi, Mayur V.; Azimzadeh, Omid; Merl-Pham, Juliane; Verreet, Tine; Hauck, Stefanie M.; Benotmane, Mohammed A.; Atkinson, Michael J.; Tapio, Soile

    2016-01-01

    Prenatal exposure to stress such as increased level of reactive oxygen species or antiviral therapy are known factors leading to adult heart defects. The risks following a radiation exposure during fetal period are unknown, as are the mechanisms of any potential cardiac damage. The aim of this study was to gather evidence for possible damage by investigating long-term changes in the mouse heart proteome after prenatal exposure to low and moderate radiation doses. Pregnant C57Bl/6J mice received on embryonic day 11 (E11) a single total body dose of ionizing radiation that ranged from 0.02 Gy to 1.0 Gy. The offspring were sacrificed at the age of 6 months or 2 years. Quantitative proteomic analysis of heart tissue was performed using Isotope Coded Protein Label technology and tandem mass spectrometry. The proteomics data were analyzed by bioinformatics and key changes were validated by immunoblotting. Persistent changes were observed in the expression of proteins representing mitochondrial respiratory complexes, redox and heat shock response, and the cytoskeleton, even at the low dose of 0.1 Gy. The level of total and active form of the kinase MAP4K4 that is essential for the embryonic development of mouse heart was persistently decreased at the radiation dose of 1.0 Gy. This study provides the first insight into the molecular mechanisms of cardiac impairment induced by ionizing radiation exposure during the prenatal period. PMID:27276052

  10. Postoperative cardiac arrest due to cardiac surgery complications

    International Nuclear Information System (INIS)

    To examine the role of anesthetists in the management of cardiac arrest occurring in association with cardiac anesthesia. In this retrospective study we studied the potential performances for each of the relevant incidents among 712 patients undergoing cardiac operations at Golestan and Naft Hospitals Ahwaz between November 2006 and July 2008. Out of total 712 patients undergoing cardiac surgery, cardiac arrest occurred in 28 cases (3.9%) due to different postoperative complications. This included massive bleeding (50% of cardiac arrest cases, 1.9% of patients); pulseless supra ventricular tachycardia (28.5% of cardiac arrest cases, 1.1% of patients); Heart Failure (7% of cardiac arrest cases, 0.2% of patients); Aorta Arc Rapture (3.5% of cardiac arrest cases, 0.1% of patients); Tamponade due to pericardial effusion (3.5% of cardiac arrest cases, 0.1% of total patients); Right Atrium Rupture (3.5% of cardiac arrest cases, 0.1% of patients) were detected after cardiac surgery. Out of 28 cases 7 deaths occurred (25% of cardiac arrest cases, 0.1% of patients). The most prevalent reason for cardiac arrest during post operative phase was massive bleeding (50%) followed by pulseless supra ventricular tachycardia (28.5%). Six patients had some morbidity and the remaining 15 patients recovered. There are often multiple contributing factors to a cardiac arrest under cardiac anesthesia, as much a complete systematic assessment of the patient, equipment, and drugs should be completed. We also found that the diagnosis and management of cardiac arrest in association with cardiac anesthesia differs considerably from that encountered elsewhere. (author)

  11. At a glance: Proteomics in China

    Institute of Scientific and Technical Information of China (English)

    HE FuChu

    2011-01-01

    Proteomics is a new science that focuses on the comprehensive analysis of proteins in intact organisms or in molecule machineries,organelles,cells,tissues,or organs.It has become an important area of interests in life sciences and has propelled the rapid development of cutting-edge biotechnology in the 21st century.In response to this,the Human Proteome Organization (HUPO) was launched in 2001.The mission of HUPO is to advocate and promote proteomics worldwide and to initiate the Human Proteome Project (HPP) to decode the human genome and to establish the proteomic basis of human physiology and pathology.Eleven projects including the Human Liver Proteome Project (HLPP) led by China are under way.Governments,multinational companies,particularly pharmaceutical and analytical instrument companies,as well as the genomic company Celera Genomics,have invested heavily,hoping to seize the huge potential of proteomics.=He Fuchu,PhD,is a Member of the Chinese Academy of Sciences,a Member of the Academy of Sciences for the Developing World,and is currently the Director of the State Key Laboratory of Proteomics.He is the President of the Beijing Proteome Research Center and a Professor at the Beijing Institute of Radiation Medicine.He Fuchu is a council member of the Human Proteome Organization (HUPO),co-chair (inaugural chair) of the HUPO Human Liver Proteome Project (HLPP),the vice-president of AOHUPO,and the president of CNHUPO.He received his B.S.degree in genetics from Fudan University,Shanghai,in 1982 and earned his M.S.degree in biochemistry and his PhD in cell biology from the Beijing Institute of Radiation Medicine.His major fields of research are proteomics,genomics,bioinformatics and systems biology,with a special interest in liver physiology and pathology.He is a senior editor of Proteomics and Proteomics-Clinical Application and is an editorial board member of Molecular & Cellular Proteomics and the Journal of Proteome Research and an executive editor of the

  12. Cardiac size of high-volume resistance trained female athletes: shaping the body but not the heart.

    Science.gov (United States)

    Venckunas, T; Simonavicius, J; Marcinkeviciene, J E

    2016-03-01

    Introduction Exercise training, besides many health benefits, may result in cardiac remodelling which is dependent on the type and amount of exercise performed. It is not clear, however, whether significant adaptation in cardiac structure is possible in females undergoing resistance type of exercise training. Rigorous high volume training of most muscle groups emphasising resistance exercises are being undertaken by athletes of some aesthetic sports such as female fitness (light bodybuilding). The impact of this type of training on cardiac adaptation has not been investigated until now. The aim of the current study was to disclose the effect of high volume resistance training on cardiac structure and function. Methods 11 top-level female fitness athletes and 20 sedentary age-matched controls were recruited to undergo two-dimensional echocardiography. Results Cardiac structure did not differ between elite female fitness athletes and controls (p > 0.05), and fitness athletes had a tendency for a smaller (p = 0.07) left ventricular (LV) mass indexed to lean body mass. Doppler diastolic function index (E/A ratio) and LV ejection fraction were similar between the groups (p > 0.05). Conclusions Elite female fitness athletes have normal cardiac size and function that do not differ from matched sedentary controls. Consequently, as high volume resistance training has no easily observable effect on adaptation of cardiac structure, when cardiac hypertrophy is present in young resistance-trained lean female, other reasons such as inherited cardiac disease are to be considered carefully. PMID:27030632

  13. Cardiomyopathy induced by artificial cardiac pacing: myth or reality sustained by evidence?

    Directory of Open Access Journals (Sweden)

    Andrés Di Leoni Ferrari

    2014-09-01

    Full Text Available Implantable cardiac pacing systems are a safe and effective treatment for symptomatic irreversible bradycardia. Under the proper indications, cardiac pacing might bring significant clinical benefit. Evidences from literature state that the action of the artificial pacing system, mainly when the ventricular lead is located at the apex of the right ventricle, produces negative effects to cardiac structure (remodeling, dilatation and function (dissinchrony. Patients with previously compromised left ventricular function would benefit the least with conventional right ventricle apical pacing, and are exposed to the risk of developing higher incidence of morbidity and mortality for heart failure. However, after almost 6 decades of cardiac pacing, just a reduced portion of patients in general would develop these alterations. In this context, there are not completely clear some issues related to cardiac pacing and the development of this cardiomyopathy. Causality relationships among QRS widening with a left bundle branch block morphology, contractility alterations within the left ventricle, and certain substrates or clinical (previous systolic dysfunction, structural heart disease, time from implant or electrical conditions (QRS duration, percentage of ventricular stimulation are still subjecte of debate. This review analyses contemporary data regarding this new entity, and discusses alternatives of how to use cardiac pacing in this context, emphasizing cardiac resynchronization therapy.

  14. Multiscale Bone Remodelling with Spatial P Systems

    CERN Document Server

    Cacciagrano, Diletta; Merelli, Emanuela; Tesei, Luca; 10.4204/EPTCS.40.6

    2010-01-01

    Many biological phenomena are inherently multiscale, i.e. they are characterized by interactions involving different spatial and temporal scales simultaneously. Though several approaches have been proposed to provide "multilayer" models, only Complex Automata, derived from Cellular Automata, naturally embed spatial information and realize multiscaling with well-established inter-scale integration schemas. Spatial P systems, a variant of P systems in which a more geometric concept of space has been added, have several characteristics in common with Cellular Automata. We propose such a formalism as a basis to rephrase the Complex Automata multiscaling approach and, in this perspective, provide a 2-scale Spatial P system describing bone remodelling. The proposed model not only results to be highly faithful and expressive in a multiscale scenario, but also highlights the need of a deep and formal expressiveness study involving Complex Automata, Spatial P systems and other promising multiscale approaches, such as ...

  15. Matrix Remodeling in Pulmonary Fibrosis and Emphysema.

    Science.gov (United States)

    Kulkarni, Tejaswini; O'Reilly, Philip; Antony, Veena B; Gaggar, Amit; Thannickal, Victor J

    2016-06-01

    Pulmonary fibrosis and emphysema are chronic lung diseases characterized by a progressive decline in lung function, resulting in significant morbidity and mortality. A hallmark of these diseases is recurrent or persistent alveolar epithelial injury, typically caused by common environmental exposures such as cigarette smoke. We propose that critical determinants of the outcome of the injury-repair processes that result in fibrosis versus emphysema are mesenchymal cell fate and associated extracellular matrix dynamics. In this review, we explore the concept that regulation of mesenchymal cells under the influence of soluble factors, in particular transforming growth factor-β1, and the extracellular matrix determine the divergent tissue remodeling responses seen in pulmonary fibrosis and emphysema. PMID:26741177

  16. Renovascular hypertension causes cerebral vascular remodeling

    Institute of Scientific and Technical Information of China (English)

    Yamei Tang; Xiangpen Li; Yi Li; Qingyu Shen; Xiaoming Rong; Ruxun Huang; Ying Peng

    2011-01-01

    Renovascular hypertensive rats (RHRs) were developed using the 2-kidney, 2-clip method. All RHRs at 10 weeks displayed high permeability of the cerebral surface blood vessels. Vascular casts of the RHRs showed that the vascular network was sparse. The arterioles of the RHRs at 10 weeks had smaller lumen diameters, but thicker vessel walls with hyalinosis formation compared with control animals. The endothelial cell membrane appeared damaged, and microthrombus formed. After ischemia, the infarction size was larger in RHRs than in control animals. These results suggest that cerebral arterioles in RHRs underwent structural remodeling. High blood pressure may aggravate the severity of brain injury in cerebral ischemia and affect the recovery of ischemia.

  17. Paroxetine-mediated GRK2 inhibition reverses cardiac dysfunction and remodeling after myocardial infarction

    OpenAIRE

    Schumacher, Sarah M.; Gao, Erhe; Zhu, Weizhong; Chen, Xiongwen; Chuprun, J. Kurt; Feldman, Arthur M.; Tesmer, John J.G.; Koch, Walter J.

    2015-01-01

    Heart failure (HF) is a disease of epidemic proportion and is associated with exceedingly high health care costs. G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptor (GPCR) kinase 2 (GRK2), which is up-regulated in the failing human heart, appears to play a critical role in HF progression in part because enhanced GRK2 activity promotes dysfunctional adrenergic signaling and myocyte death. Recently, we found that the selective serotonin reuptake inhibitor (SSRI) paro...

  18. PNPLA3 mediates hepatocyte triacylglycerol remodeling.

    Science.gov (United States)

    Ruhanen, Hanna; Perttilä, Julia; Hölttä-Vuori, Maarit; Zhou, You; Yki-Järvinen, Hannele; Ikonen, Elina; Käkelä, Reijo; Olkkonen, Vesa M

    2014-04-01

    The I148M substitution in patatin-like phospholipase domain containing 3 (PNPLA3(I148M)) determines a genetic form of nonalcoholic fatty liver disease. To elucidate the mode of PNPLA3 action in human hepatocytes, we studied effects of WT PNPLA3 (PNPLA3(WT)) and PNPLA3(I148M) on HuH7 cell lipidome after [(13)C]glycerol labeling, cellular turnover of oleic acid labeled with 17 deuterium atoms ([D17]oleic acid) in triacylglycerols (TAGs), and subcellular distribution of the protein variants. PNPLA3(I148M) induced a net accumulation of unlabeled TAGs, but not newly synthesized total [(13)C]TAGs. Principal component analysis (PCA) revealed that both PNPLA3(WT) and PNPLA3(I148M) induced a relative enrichment of TAGs with saturated FAs or MUFAs, with concurrent enrichment of polyunsaturated phosphatidylcholines. PNPLA3(WT) associated in PCA with newly synthesized [(13)C]TAGs, particularly 52:1 and 50:1, while PNPLA3(I148M) associated with similar preexisting TAGs. PNPLA3(WT) overexpression resulted in increased [D17]oleic acid labeling of TAGs during 24 h, and after longer incubations their turnover was accelerated, effects not detected with PNPLA3(I148M). PNPLA3(I148M) localized more extensively to lipid droplets (LDs) than PNPLA3(WT), suggesting that the substitution alters distribution of PNPLA3 between LDs and endoplasmic reticulum/cytosol. This study reveals a function of PNPLA3 in FA-selective TAG remodeling, resulting in increased TAG saturation. A defect in TAG remodeling activity likely contributes to the TAG accumulation observed in cells expressing PNPLA3(I148M). PMID:24511104

  19. Effect of Astragalus Injection on Left Ventricular Remodeling in Aged Patients with Acute Early-stage Myocardial Infarction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-guo (张金国); LIU Ya-jie(刘雅洁); GAO Dong-sheng (高东升); YANG Na (杨娜); LIU Li-xin (刘立新); HE Hua (何华); DONG Hai-xin (董海新); LIU Xue-ling (刘雪玲); CHEN Ting (陈廷); WANG Xue-zhong (王学忠)

    2003-01-01

    Objective: To observe the effect of Astragalus Injection (AI) on left ventricular remodeling in aged patients with acute myocardial infarction (AMI).Methods: Patients with AMI were randomly divided into the AI group (46 cases) treated with AI and the control group (46 cases) treated conventionally. Left ventricular end-diastolic volume index (LVEDVI), left ventricular end-systolic volume index (LVESVI), anterior endocardial segmental length (ASL) and posterior endocardial segmental length (PSL) were all assessed by echocardiogram after 1 week and 4 weeks treatment. The cardiac systolic and diastolic functions were detected by nuclide gating cardiac blood pool imaging at the 4th week. Results: After four weeks' treatment, no obvious change of LVEDVI, LVESVI and ASL in the AI group was found, but these indexes increased significantly in the control group, with significant difference shown between the two groups (P<0.05). As compared with the control group, the left ventricular ejection fraction (LVEF), left ventricular peak ejecting rate (LVPER) and left ventricular peak filling rate (LVPFR) were heightened, the time for peak filling rate (LVTPFR) in the left ventricle was shortened in the AI group.Conclusion: AI is one of the effective drugs in reversing left ventricular remodeling in aged patients with AMI.

  20. NCI Launches Proteomics Assay Portal - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    In a paper recently published by the journal Nature Methods, Investigators from the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (NCI-CPTAC) announced the launch of a proteomics Assay Portal for multiple reaction monitoring-mass

  1. CPTAC Releases Largest-Ever Breast Cancer Proteome Dataset - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have released a dataset of proteins and phophorylated phosphopeptides identified through deep proteomic and phosphoproteomic analysis of breast tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA).

  2. Breast Cancer Proteomic and Phosphoproteomic Data Released - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have released a dataset of proteins and phophorylated phosphopeptides identified through deep proteomic and phosphoproteomic analysis of breast tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA).

  3. Proteomics Data on UCSC Genome Browser - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium scientists are working together with the University of California, Santa Cruz (UCSC) Genomics Institute to provide public access to cancer proteomics data.

  4. EPAC expression and function in cardiac fibroblasts and myofibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Olmedo, Ivonne; Muñoz, Claudia; Guzmán, Nancy; Catalán, Mabel; Vivar, Raúl; Ayala, Pedro; Humeres, Claudio; Aránguiz, Pablo [Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); García, Lorena [Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); Velarde, Victoria [Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (Chile); Díaz-Araya, Guillermo, E-mail: gadiaz@ciq.uchile.cl [Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile)

    2013-10-15

    In the heart, cardiac fibroblasts (CF) and cardiac myofibroblasts (CMF) are the main cells responsible for wound healing after cardiac insult. Exchange protein activated by cAMP (EPAC) is a downstream effector of cAMP, and it has been not completely studied on CF. Moreover, in CMF, which are the main cells responsible for cardiac healing, EPAC expression and function are unknown. We evaluated in both CF and CMF the effect of transforming growth factor β1 (TGF-β1) on EPAC-1 expression. We also studied the EPAC involvement on collagen synthesis, adhesion, migration and collagen gel contraction. Method: Rat neonatal CF and CMF were treated with TGF-β1 at different times and concentrations. EPAC-1 protein levels and Rap1 activation were measured by western blot and pull down assay respectively. EPAC cellular functions were determined by adhesion, migration and collagen gel contraction assay; and collagen expression was determined by western blot. Results: TGF-β1 through Smad and JNK significantly reduced EPAC-1 expression in CF, while in CMF this cytokine increased EPAC-1 expression through ERK1/2, JNK, p38, AKT and Smad3. EPAC activation was able to induce higher Rap1-GTP levels in CMF than in CF. EPAC and PKA, both cAMP effectors, promoted CF and CMF adhesion on fibronectin, as well as CF migration; however, this effect was not observed in CMF. EPAC but not PKA activation mediated collagen gel contraction in CF, while in CMF both PKA and EPAC mediated collagen gel contraction. Finally, the EPAC and PKA activation reduced collagen synthesis in CF and CMF. Conclusion: TGF-β1 differentially regulates the expression of EPAC in CF and CMF; and EPAC regulates differentially CF and CMF functions associated with cardiac remodeling. - Highlights: • TGF-β1 regulates EPAC-1 expression in cardiac fibroblast and myofibroblast. • Rap-1GTP levels are higher in cardiac myofibroblast than fibroblast. • EPAC-1 controls adhesion, migration and collagen synthesis in cardiac

  5. EPAC expression and function in cardiac fibroblasts and myofibroblasts

    International Nuclear Information System (INIS)

    In the heart, cardiac fibroblasts (CF) and cardiac myofibroblasts (CMF) are the main cells responsible for wound healing after cardiac insult. Exchange protein activated by cAMP (EPAC) is a downstream effector of cAMP, and it has been not completely studied on CF. Moreover, in CMF, which are the main cells responsible for cardiac healing, EPAC expression and function are unknown. We evaluated in both CF and CMF the effect of transforming growth factor β1 (TGF-β1) on EPAC-1 expression. We also studied the EPAC involvement on collagen synthesis, adhesion, migration and collagen gel contraction. Method: Rat neonatal CF and CMF were treated with TGF-β1 at different times and concentrations. EPAC-1 protein levels and Rap1 activation were measured by western blot and pull down assay respectively. EPAC cellular functions were determined by adhesion, migration and collagen gel contraction assay; and collagen expression was determined by western blot. Results: TGF-β1 through Smad and JNK significantly reduced EPAC-1 expression in CF, while in CMF this cytokine increased EPAC-1 expression through ERK1/2, JNK, p38, AKT and Smad3. EPAC activation was able to induce higher Rap1-GTP levels in CMF than in CF. EPAC and PKA, both cAMP effectors, promoted CF and CMF adhesion on fibronectin, as well as CF migration; however, this effect was not observed in CMF. EPAC but not PKA activation mediated collagen gel contraction in CF, while in CMF both PKA and EPAC mediated collagen gel contraction. Finally, the EPAC and PKA activation reduced collagen synthesis in CF and CMF. Conclusion: TGF-β1 differentially regulates the expression of EPAC in CF and CMF; and EPAC regulates differentially CF and CMF functions associated with cardiac remodeling. - Highlights: • TGF-β1 regulates EPAC-1 expression in cardiac fibroblast and myofibroblast. • Rap-1GTP levels are higher in cardiac myofibroblast than fibroblast. • EPAC-1 controls adhesion, migration and collagen synthesis in cardiac

  6. The murine cardiac 26S proteasome: an organelle awaiting exploration.

    Science.gov (United States)

    Gomes, Aldrin V; Zong, Chenggong; Edmondson, Ricky D; Berhane, Beniam T; Wang, Guang-Wu; Le, Steven; Young, Glen; Zhang, Jun; Vondriska, Thomas M; Whitelegge, Julian P; Jones, Richard C; Joshua, Irving G; Thyparambil, Sheeno; Pantaleon, Dawn; Qiao, Joe; Loo, Joseph; Ping, Peipei

    2005-06-01

    Multiprotein complexes have been increasingly recognized as essential functional units for a variety of cellular processes, including the protein degradation system. Selective degradation of proteins in eukaryotes is primarily conducted by the ubiquitin proteasome system. The current knowledge base, pertaining to the proteasome complexes in mammalian cells, relies largely upon information gained in the yeast system, where the 26S proteasome is hypothesized to contain a 20S multiprotein core complex and one or two 19S regulatory complexes. To date, the molecular structure of the proteasome system, the proteomic composition of the entire 26S multiprotein complexes, and the specific designated function of individual components within this essential protein degradation system in the heart remain virtually unknown. A functional proteomic approach, employing multidimensional chromatography purification combined with liquid chromatography tandem mass spectrometry and protein chemistry, was utilized to explore the murine cardiac 26S proteasome system. This article presents an overview on the subject of protein degradation in mammalian cells. In addition, this review shares the limited information that has been garnered thus far pertaining to the molecular composition, function, and regulation of this important organelle in the cardiac cells. PMID:16093497

  7. Recipient–derived EDA fibronectin promotes cardiac allograft fibrosis

    Science.gov (United States)

    Booth, Adam J; Wood, Sherri C; Cornett, Ashley M; Dreffs, Alyssa A; Lu, Guanyi; Muro, Andrés F; White, Eric S; Bishop, D Keith

    2014-01-01

    Advances in donor matching and immunosuppressive therapies have decreased the prevalence of acute rejection of cardiac grafts; however, chronic rejection remains a significant obstacle for long-term allograft survival. While initiating elements of anti-allograft immune responses have been identified, the linkage between these factors and the ultimate development of cardiac fibrosis is not well understood. Tissue fibrosis resembles an exaggerated wound healing response, in which extracellular matrix (ECM) molecules are central. One such ECM molecule is an alternatively spliced isoform of the ubiquitous glycoprotein fibronectin (FN), termed extra domain A-containing cellular fibronectin (EDA cFN). EDA cFN is instrumental in fibrogenesis; thus, we hypothesized that it might also regulate fibrotic remodelling associated with chronic rejection. We compared the development of acute and chronic cardiac allograft rejection in EDA cFN-deficient (EDA−/−) and wild-type (WT) mice. While EDA−/− mice developed acute cardiac rejection in a manner indistinguishable from WT controls, cardiac allografts in EDA−/− mice were protected from fibrosis associated with chronic rejection. Decreased fibrosis was not associated with differences in cardiomyocyte hypertrophy or intra-graft expression of pro-fibrotic mediators. Further, we examined expression of EDA cFN and total FN by whole splenocytes under conditions promoting various T-helper lineages. Conditions supporting regulatory T-cell (Treg) development were characterized by greatest production of total FN and EDA cFN, though EDA cFN to total FN ratios were highest in Th1 cultures. These findings indicate that recipient-derived EDA cFN is dispensable for acute allograft rejection responses but that it promotes the development of fibrosis associated with chronic rejection. Further, conditions favouring the development of regulatory T cells, widely considered graft-protective, may drive production of ECM molecules which

  8. Electrospun nanofibrous sheets of collagen/elastin/polycaprolactone improve cardiac repair after myocardial infarction.

    Science.gov (United States)

    Liu, Yang; Xu, Yachen; Wang, Zhenhua; Wen, Dezhong; Zhang, Wentian; Schmull, Sebastian; Li, Haiyan; Chen, Yao; Xue, Song

    2016-01-01

    Electrospun nanofibrous sheets get increasing attention in myocardial infarction (MI) treatment due to their good cytocompatibility to deliver transplanted stem cells to infarcted areas and due to mechanical characteristics to support damaged tissue. Cardiac extracellular matrix is essential for implanted cells since it provides the cardiac microenvironment. In this study, we hypothesized high concentrations of cardiac nature protein (NP), namely elastin and collagen, in hybrid polycaprolactone (PCL) electrospun nanofibrous sheets could be effective as cardiac-mimicking patch. Optimal ratio of elastin and collagen with PCL in electrospun sheets (80% NP/PCL) was selected based on cytocompatibility and mechanical characteristics. Bone-marrow (BM) c-kit(+) cells anchoring onto NP/PCL sheets exhibited increased proliferative capacity compared with those seeded on PCL in vitro. Moreover, we examined the improvement of cardiac function in MI mice by cell-seeded cardiac patch. Green Fluorescent Protein (GFP)-labeled BM c-kit(+) cells were loaded on 80% NP/PCL sheets which was transplanted into MI mice. Both 80% NP/PCL and c-kit(+)-seeded 80% NP/PCL effectively improved cardiac function after 4 weeks of transplantation, with reduced infarction area and restricted LV remodeling. C-kit(+)-seeded 80% NP/PCL was even superior to the 80% NP/PCL alone and both superior to PCL. GFP(+) cells were identified both in the sheets and local infarcted area where transplanted cells underwent cardiac differentiation after 4 weeks. To the best of our knowledge, this is the first report that sheets with high concentrations of nature proteins loaded with BM c-kit(+) cells might be a novel promising candidate for tissue-engineered cardiac patch to improve cardiac repair after MI. PMID:27186292

  9. Proteomic Analysis of Chinese Hamster Ovary Cells

    DEFF Research Database (Denmark)

    Baycin-Hizal, Deniz; Tabb, David L.; Chaerkady, Raghothama; Chen, Lily; Lewis, Nathan; Nagarajan, Harish; Sarkaria, Vishaldeep; Kumar, Amit; Wolozny, Daniel; Colao, Joe; Jacobson, Elena; Tian, Yuan; O’Meally, Robert N.; Krag, Sharon S.; Cole, Robert N.; Palsson, Bernhard; Zhang, Hui; Betenbaugh, Michael

    2012-01-01

    this analysis, the CHO codon frequency was determined and found to be distinct from humans, which will facilitate expression of human proteins in CHO cells. Analysis of the combined proteomic and mRNA data sets indicated the enrichment of a number of pathways including protein processing and apoptosis......To complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO cells including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis...... identified from both glycoproteome and proteome analysis, representing an 8-fold increase in the number of proteins currently identified in the CHO proteome. Furthermore, this is the first proteomic study done using the CHO genome exclusively, which provides for more accurate identification of proteins. From...

  10. Proteome-Wide Quantitation by SILAC

    DEFF Research Database (Denmark)

    Rigbolt, Kristoffer T G; Blagoev, Blagoy

    2010-01-01

    Ongoing improvements in instrumentation, fractionation techniques, and enrichment procedures have dramatically increased the coverage of the proteome achievable via LC-MS/MS-based methodologies, opening the call for approaches to quantitatively assess differences at a proteome-wide scale. Stable...... isotope labeling by amino acids in cell culture (SILAC) has emerged as a powerful and versatile approach for proteome-wide quantitation by mass spectrometry. SILAC utilizes the cells' own metabolism to incorporate isotopically labeled amino acids into its proteome which can be mixed with the proteome of...... detailed procedure for performing SILAC-based experiment for proteome-wide quantitation, including a protocol for optimizing SILAC labeling. We also provide an update on the most recent developments of this technique....

  11. Proteomics in Discovery of Hepatocellular Carcinoma Biomarkers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To discover new proteomic biomarkers of hepatocellular carcinoma. Methods: Surface enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry was used to discover biomarkers for differentiating hepatocellular carcinoma and chronic liver disease. A population of 50 patients with hepatocellular carcinoma and 33 patients with chronic liver disease was studied. Results: Twelve proteomic biomarkers of hepatocellular carcinoma were detected in this study. Three proteomic biomarkers were highly expressed in hepatocellular carcinoma and nine proteomic biomarkers were highly expressed in chronic liver disease. The most valuable proteomic biomarker with m/z=11498 had no similar diagnostic value as α-fetoprotein. Conclusion:Some of the twelve proteomic biomarkers may become new biomarkers of hepatocellular carcinoma.

  12. Proteomic Analysis of Human Tooth Pulp: Proteomics of Human Tooth

    Czech Academy of Sciences Publication Activity Database

    Eckhardt, Adam; Jágr, Michal; Pataridis, Statis; Mikšík, Ivan

    2014-01-01

    Roč. 40, č. 12 (2014), s. 1961-1966. ISSN 0099-2399 R&D Projects: GA ČR(CZ) GA13-17224S; GA ČR(CZ) GAP206/12/0453; GA MZd(CZ) NT14324 Institutional support: RVO:67985823 Keywords : dentin * human pulp * tandem mass spectrometry * tooth proteome * 2-dimensional gel electrophoresis Subject RIV: FF - HEENT, Dentistry Impact factor: 3.375, year: 2014

  13. Changes in microRNAs expression are involved in age-related atrial structural remodeling and atrial fibrillation

    Institute of Scientific and Technical Information of China (English)

    XU Guo-jun; GAN Tian-yi; TANG Bao-peng; CHEN Zu-heng; Mahemuti Ailiman; ZHOU Xian-hui; JIANG Tao

    2013-01-01

    Background Small noncoding microRNAs regulate gene expression in cardiac development and disease and have been implicated in the aging process and in the regulation of extracellular matrix proteins.However,their role in age-related cardiac remodeling and atrial fibrillation (AF) was not well understood.The present study was designed to decipher molecular mechanisms underlying age-related atrial structural remodeling and AF.Methods Three groups of dogs were studied:adult and aged dogs in sinus rhythm and with persistent AF induced by rapid atrial pacing.The expressions of microRNAs were measured by quantitative real-time polymerase chain reaction.Pathohistological and ultrastructural changes were tested by light and electron microscopy.Apoptosis index of myocytes was detected by TUNEL.Results Samples of atrial tissue showed the abnormal pathohistological and ultrastructural changes,the accelerated fibrosis,and apoptosis with aging and/or in AF dogs.Compared to the adult group,the expressions of microRNAs-21 and -29 were significantly increased,whereas the expressions of microRNAs-1 and-133 showed obvious downregulation tendency in the aged group.Compared to the aged group,the expressions of microRNAs-1,-21,and-29 was significantly increased in the old group in AF; contrastingly,the expressions of microRNA-133 showed obvious downregulation tendency.Conclusion These multiple aberrantly expressed microRNAs may be responsible for modulating the transition from adaptation to pathological atrial remodeling with aging and/or in AF.

  14. Ventricular structure, function, and mechanics at high altitude: chronic remodeling in Sherpa vs. short-term lowlander adaptation.

    Science.gov (United States)

    Stembridge, Mike; Ainslie, Philip N; Hughes, Michael G; Stöhr, Eric J; Cotter, James D; Nio, Amanda Q X; Shave, Rob

    2014-08-01

    Short-term, high-altitude (HA) exposure raises pulmonary artery systolic pressure (PASP) and decreases left-ventricular (LV) volumes. However, relatively little is known of the long-term cardiac consequences of prolonged exposure in Sherpa, a highly adapted HA population. To investigate short-term adaptation and potential long-term cardiac remodeling, we studied ventricular structure and function in Sherpa at 5,050 m (n = 11; 31 ± 13 yr; mass 68 ± 10 kg; height 169 ± 6 cm) and lowlanders at sea level (SL) and following 10 ± 3 days at 5,050 m (n = 9; 34 ± 7 yr; mass 82 ± 10 kg; height 177 ± 6 cm) using conventional and speckle-tracking echocardiography. At HA, PASP was higher in Sherpa and lowlanders compared with lowlanders at SL (both P stroke volumes than lowlanders at SL with lower RV systolic strain (P < 0.05) but similar LV systolic mechanics. In contrast to LV systolic mechanics, LV diastolic, untwisting velocity was significantly lower in Sherpa compared with lowlanders at both SL and HA. After partial acclimatization, lowlanders demonstrated no change in the RV end-diastolic area; however, both RV strain and LV end-diastolic volume were reduced. In conclusion, short-term hypoxia induced a reduction in RV systolic function that was also evident in Sherpa following chronic exposure. We propose that this was consequent to a persistently higher PASP. In contrast to the RV, remodeling of LV volumes and normalization of systolic mechanics indicate structural and functional adaptation to HA. However, altered LV diastolic relaxation after chronic hypoxic exposure may reflect differential remodeling of systolic and diastolic LV function. PMID:24876358

  15. Proteomic analysis of blastema formation in regenerating axolotl limbs

    Directory of Open Access Journals (Sweden)

    Nye Holly LD

    2009-11-01

    Full Text Available Abstract Background Following amputation, urodele salamander limbs reprogram somatic cells to form a blastema that self-organizes into the missing limb parts to restore the structure and function of the limb. To help understand the molecular basis of blastema formation, we used quantitative label-free liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS-based methods to analyze changes in the proteome that occurred 1, 4 and 7 days post amputation (dpa through the mid-tibia/fibula of axolotl hind limbs. Results We identified 309 unique proteins with significant fold change relative to controls (0 dpa, representing 10 biological process categories: (1 signaling, (2 Ca2+ binding and translocation, (3 transcription, (4 translation, (5 cytoskeleton, (6 extracellular matrix (ECM, (7 metabolism, (8 cell protection, (9 degradation, and (10 cell cycle. In all, 43 proteins exhibited exceptionally high fold changes. Of these, the ecotropic viral integrative factor 5 (EVI5, a cell cycle-related oncoprotein that prevents cells from entering the mitotic phase of the cell cycle prematurely, was of special interest because its fold change was exceptionally high throughout blastema formation. Conclusion Our data were consistent with previous studies indicating the importance of inositol triphosphate and Ca2+ signaling in initiating the ECM and cytoskeletal remodeling characteristic of histolysis and cell dedifferentiation. In addition, the data suggested that blastema formation requires several mechanisms to avoid apoptosis, including reduced metabolism, differential regulation of proapoptotic and antiapoptotic proteins, and initiation of an unfolded protein response (UPR. Since there is virtually no mitosis during blastema formation, we propose that high levels of EVI5 function to arrest dedifferentiated cells somewhere in the G1/S/G2 phases of the cell cycle until they have accumulated under the wound epidermis and enter mitosis in response to

  16. Characterization of the porcine synovial fluid proteome and a comparison to the plasma proteome.

    Science.gov (United States)

    Bennike, Tue Bjerg; Barnaby, Omar; Steen, Hanno; Stensballe, Allan

    2015-12-01

    Synovial fluid is present in all joint cavities, and protects the articular cartilage surfaces in large by lubricating the joint, thus reducing friction. Several studies have described changes in the protein composition of synovial fluid in patients with joint disease. However, the protein concentration, content, and synovial fluid volume change dramatically during active joint diseases and inflammation, and the proteome composition of healthy synovial fluid is incompletely characterized. We performed a normative proteomics analysis of porcine synovial fluid, and report data from optimizing proteomic methods to investigate the proteome of healthy porcine synovial fluid (Bennike et al., 2014 [1]). We included an evaluation of different proteolytic sample preparation techniques, and an analysis of posttranslational modifications with a focus on glycosylation. We used pig (Sus Scrofa) as a model organism, as the porcine immune system is highly similar to human and the pig genome is sequenced. Furthermore, porcine model systems are commonly used large animal models to study several human diseases. In addition, we analyzed the proteome of human plasma, and compared the proteomes to the obtained porcine synovial fluid proteome. The proteome of the two body fluids were found highly similar, underlining the detected plasma derived nature of many synovial fluid components. The healthy porcine synovial fluid proteomics data, human rheumatoid arthritis synovial fluid proteomics data used in the method optimization, human plasma proteomics data, and search results, have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD000935. PMID:26543887

  17. Database independent proteomics analysis of the ostrich and human proteome.

    Science.gov (United States)

    Altelaar, A F Maarten; Navarro, Danny; Boekhorst, Jos; van Breukelen, Bas; Snel, Berend; Mohammed, Shabaz; Heck, Albert J R

    2012-01-10

    Mass spectrometry (MS)-based proteome analysis relies heavily on the presence of complete protein databases. Such a strategy is extremely powerful, albeit not adequate in the analysis of unpredicted postgenome events, such as posttranslational modifications, which exponentially increase the search space. Therefore, it is of interest to explore "database-free" approaches. Here, we sampled the ostrich and human proteomes with a method facilitating de novo sequencing, utilizing the protease Lys-N in combination with electron transfer dissociation. By implementing several validation steps, including the combined use of collision-induced dissociation/electron transfer dissociation data and a cross-validation with conventional database search strategies, we identified approximately 2,500 unique de novo peptide sequences from the ostrich sample with over 900 peptides generating full backbone sequence coverage. This dataset allowed the appropriate positioning of ostrich in the evolutionary tree. The described database-free sequencing approach is generically applicable and has great potential in important proteomics applications such as in the analysis of variable parts of endogenous antibodies or proteins modified by a plethora of complex posttranslational modifications. PMID:22198768

  18. The chromatin remodeler SPLAYED regulates specific stress signaling pathways.

    Directory of Open Access Journals (Sweden)

    Justin W Walley

    2008-12-01

    Full Text Available Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD is required for the expression of selected genes downstream of the jasmonate (JA and ethylene (ET signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks.

  19. Evolutionary conservation of the mature oocyte proteome

    Directory of Open Access Journals (Sweden)

    Tamar Lotan

    2014-06-01

    Significance: The current study provides the first proteomic profile of an oocyte of a cnidarian organism the starlet sea anemone N. vectensis and gives new insights on the ancient origin of an oocyte proteome template. The comparative analysis with a chordate oocyte suggests that the oocyte proteome predates the divergence of the cnidarian and bilaterian lineages. In addition, the data generated in the study will serve as a valuable resource for further developmental and evolutional studies.

  20. Proteomics Unveils Fibroblast-Cardiomyocyte Lactate Shuttle and Hexokinase Paradox in Mouse Muscles.

    Science.gov (United States)

    Rakus, Dariusz; Gizak, Agnieszka; Wiśniewski, Jacek R

    2016-08-01

    Quantitative mapping, given in biochemically interpretable units such as mol per mg of total protein, of tissue-specific proteomes is prerequisite for the analysis of any process in cells. We applied label- and standard-free proteomics to characterize three types of striated muscles: white, red, and cardiac muscle. The analysis presented here uncovers several unexpected and novel features of striated muscles. In addition to differences in protein expression levels, the three muscle types substantially differ in their patterns of basic metabolic pathways and isoforms of regulatory proteins. Importantly, some of the conclusions drawn on the basis of our results, such as the potential existence of a "fibroblast-cardiomyocyte lactate shuttle" and the "hexokinase paradox" point to the necessity of reinterpretation of some basic aspects of striated muscle metabolism. The data presented here constitute a powerful database and a resource for future studies of muscle physiology and for the design of pharmaceutics for the treatment of muscular disorders. PMID:27302655

  1. Impaired glutathione redox system paradoxically suppresses angiotensin II-induced vascular remodeling.

    Directory of Open Access Journals (Sweden)

    Kazuma Izawa

    Full Text Available BACKGROUND: Angiotensin II (AII plays a central role in vascular remodeling via oxidative stress. However, the interaction between AII and reduced glutathione (GSH redox status in cardiovascular remodeling remains unknown. METHODS: In vivo: The cuff-induced vascular injury model was applied to Sprague Dawley rats. Then we administered saline or a GSH inhibitor, buthionine sulfoximine (BSO, 30 mmol/L in drinking water for a week, subsequently administered 4 more weeks by osmotic pump with saline or AII (200 ng/kg/minute to the rats. In vitro: Incorporation of bromodeoxyuridine (BrdU was measured to determine DNA synthesis in cultured rat vascular smooth muscle cells (VSMCs. RESULTS: BSO reduced whole blood GSH levels. Systolic blood pressure was increased up to 215 ± 4 mmHg by AII at 4 weeks (p<0.01, which was not affected by BSO. Superoxide production in vascular wall was increased by AII and BSO alone, and was markedly enhanced by AII+BSO. The left ventricular weight to body weight ratio was significantly increased in AII and AII+BSO as compared to controls (2.52 ± 0.08, 2.50 ± 0.09 and 2.10 ± 0.07 mg/g respectively, p<0.05. Surprisingly, the co-treatment of BSO totally abolished these morphological changes. Although the vascular circumferential wall stress was well compensated in AII, significantly increased in AII+BSO. The anti-single-stranded DNA staining revealed increasing apoptotic cells in the neointima of injured arteries in BSO groups. BrdU incorporation in cultured VSMCs with AII was increased dose-dependently. Furthermore it was totally abolished by BSO and was reversed by GSH monoethyl ester. CONCLUSIONS: We demonstrated that a vast oxidative stress in impaired GSH redox system totally abolished AII-induced vascular, not cardiac remodeling via enhancement of apoptosis in the neointima and suppression of cell growth in the media. The drastic suppression of remodeling may result in fragile vasculature intolerable to mechanical

  2. Biospecimen Solicitation - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    A funding opportunity in support of the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) seeks to prospectively procure tumor samples, collected for proteomics investigation.

  3. Remodeling of endogenous mammary epithelium by breast cancer stem cells.

    Science.gov (United States)

    Parashurama, Natesh; Lobo, Neethan A; Ito, Ken; Mosley, Adriane R; Habte, Frezghi G; Zabala, Maider; Smith, Bryan R; Lam, Jessica; Weissman, Irving L; Clarke, Michael F; Gambhir, Sanjiv S

    2012-10-01

    Poorly regulated tissue remodeling results in increased breast cancer risk, yet how breast cancer stem cells (CSC) participate in remodeling is unknown. We performed in vivo imaging of changes in fluorescent, endogenous duct architecture as a metric for remodeling. First, we quantitatively imaged physiologic remodeling of primary branches of the developing and regenerating mammary tree. To assess CSC-specific remodeling events, we isolated CSC from MMTV-Wnt1 (mouse mammary tumor virus long-term repeat enhancer driving Wnt1 oncogene) breast tumors, a well studied model in which tissue remodeling affects tumorigenesis. We confirm that CSC drive tumorigenesis, suggesting a link between CSC and remodeling. We find that normal, regenerating, and developing gland maintain a specific branching pattern. In contrast, transplantation of CSC results in changes in the branching patterns of endogenous ducts while non-CSC do not. Specifically, in the presence of CSC, we identified an increased number of branches, branch points, ducts which have greater than 40 branches (5/33 for CSC and 0/39 for non-CSC), and histological evidence of increased branching. Moreover, we demonstrate that only CSC implants invade into surrounding stroma with structures similar to developing mammary ducts (nine for CSC and one for non-CSC). Overall, we demonstrate a novel approach for imaging physiologic and pathological remodeling. Furthermore, we identify unique, CSC-specific, remodeling events. Our data suggest that CSC interact with the microenvironment differently than non-CSC, and that this could eventually be a therapeutic approach for targeting CSC. PMID:22899386

  4. Pediatric cardiac postoperative care

    Directory of Open Access Journals (Sweden)

    Auler Jr. José Otávio Costa

    2002-01-01

    Full Text Available The Heart Institute of the University of São Paulo, Medical School is a referral center for the treatment of congenital heart diseases of neonates and infants. In the recent years, the excellent surgical results obtained in our institution may be in part due to modern anesthetic care and to postoperative care based on well-structured protocols. The purpose of this article is to review unique aspects of neonate cardiovascular physiology, the impact of extracorporeal circulation on postoperative evolution, and the prescription for pharmacological support of acute cardiac dysfunction based on our cardiac unit protocols. The main causes of low cardiac output after surgical correction of heart congenital disease are reviewed, and methods of treatment and support are proposed as derived from the relevant literature and our protocols.

  5. Quantitative Proteomic Analysis of the Human Nucleolus.

    Science.gov (United States)

    Bensaddek, Dalila; Nicolas, Armel; Lamond, Angus I

    2016-01-01

    Recent years have witnessed spectacular progress in the field of mass spectrometry (MS)-based quantitative proteomics, including advances in instrumentation, chromatography, sample preparation methods, and experimental design for multidimensional analyses. It is now possible not only to identify most of the protein components of a cell proteome in a single experiment, but also to describe additional proteome dimensions, such as protein turnover rates, posttranslational modifications, and subcellular localization. Furthermore, by comparing the proteome at different time points, it is possible to create a "time-lapse" view of proteome dynamics. By combining high-throughput quantitative proteomics with detailed subcellular fractionation protocols and data analysis techniques it is also now possible to characterize in detail the proteomes of specific subcellular organelles, providing important insights into cell regulatory mechanisms and physiological responses. In this chapter we present a reliable workflow and protocol for MS-based analysis and quantitation of the proteome of nucleoli isolated from human cells. The protocol presented is based on a SILAC analysis of human MCF10A-Src-ER cells with analysis performed on a Q-Exactive Plus Orbitrap MS instrument (Thermo Fisher Scientific). The subsequent chapter describes how to process the resulting raw MS files from this experiment using MaxQuant software and data analysis procedures to evaluate the nucleolar proteome using customized R scripts. PMID:27576725

  6. Update on the Pathogenic Implications and Clinical Potential of microRNAs in Cardiac Disease

    Directory of Open Access Journals (Sweden)

    Mario Notari

    2015-01-01

    Full Text Available miRNAs, a unique class of endogenous noncoding RNAs, are highly conserved across species, repress gene translation upon binding to mRNA, and thereby influence many biological processes. As such, they have been recently recognized as regulators of virtually all aspects of cardiac biology, from the development and cell lineage specification of different cell populations within the heart to the survival of cardiomyocytes under stress conditions. Various miRNAs have been recently established as powerful mediators of distinctive aspects in many cardiac disorders. For instance, acute myocardial infarction induces cardiac tissue necrosis and apoptosis but also initiates a pathological remodelling response of the left ventricle that includes hypertrophic growth of cardiomyocytes and fibrotic deposition of extracellular matrix components. In this regard, recent findings place various miRNAs as unquestionable contributing factors in the pathogenesis of cardiac disorders, thus begging the question of whether miRNA modulation could become a novel strategy for clinical intervention. In the present review, we aim to expose the latest mechanistic concepts regarding miRNA function within the context of CVD and analyse the reported roles of specific miRNAs in the different stages of left ventricular remodelling as well as their potential use as a new class of disease-modifying clinical options.

  7. Update on the Pathogenic Implications and Clinical Potential of microRNAs in Cardiac Disease.

    Science.gov (United States)

    Notari, Mario; Pulecio, Julián; Raya, Ángel

    2015-01-01

    miRNAs, a unique class of endogenous noncoding RNAs, are highly conserved across species, repress gene translation upon binding to mRNA, and thereby influence many biological processes. As such, they have been recently recognized as regulators of virtually all aspects of cardiac biology, from the development and cell lineage specification of different cell populations within the heart to the survival of cardiomyocytes under stress conditions. Various miRNAs have been recently established as powerful mediators of distinctive aspects in many cardiac disorders. For instance, acute myocardial infarction induces cardiac tissue necrosis and apoptosis but also initiates a pathological remodelling response of the left ventricle that includes hypertrophic growth of cardiomyocytes and fibrotic deposition of extracellular matrix components. In this regard, recent findings place various miRNAs as unquestionable contributing factors in the pathogenesis of cardiac disorders, thus begging the question of whether miRNA modulation could become a novel strategy for clinical intervention. In the present review, we aim to expose the latest mechanistic concepts regarding miRNA function within the context of CVD and analyse the reported roles of specific miRNAs in the different stages of left ventricular remodelling as well as their potential use as a new class of disease-modifying clinical options. PMID:26221581

  8. Farm animal proteomics - A review

    DEFF Research Database (Denmark)

    Bendixen, Emøke; Danielsen, Marianne; Hollung, Kristin;

    2011-01-01

    In agricultural sciences as in all other areas of life science, the implementation of proteomics and other post-genomic tools is an important step towards more detailed understanding of the complex biological systems that control physiology and pathology of living beings. Farm animals are raised...... in large-scale operations, with the aim to obtain animal products for human consumption. Hence, understanding the biological traits that impact yield and quality of these products is the specific aim of much biological experimentation. However, most of the data gathered from experiments on e.g. swine...... and cattle are relevant not only for farm animal sciences, but also for adding to our understanding of complex biological mechanisms of health and disease in humans. The aim of this review is to present an overview of the specific topics of interest within farm animal proteomics, and to highlight some...

  9. Osteoblast recruitment routes in human cancellous bone remodeling

    DEFF Research Database (Denmark)

    Kristensen, Helene B; Levin Andersen, Thomas; Marcussen, Niels;

    2014-01-01

    It is commonly proposed that bone forming osteoblasts recruited during bone remodeling originate from bone marrow perivascular cells, bone remodeling compartment canopy cells, or bone lining cells. However, an assessment of osteoblast recruitment during adult human cancellous bone remodeling is...... lacking. We addressed this question by quantifying cell densities, cell proliferation, osteoblast differentiation markers, and capillaries in human iliac crest biopsy specimens. We found that recruitment occurs on both reversal and bone-forming surfaces, as shown by the cell density and osterix levels on...

  10. Estrogen modulates the influence of cardiac inflammatory cells on function of cardiac fibroblasts

    Directory of Open Access Journals (Sweden)

    McLarty JL

    2013-08-01

    untreated group resulted in: 1 an increased fibroblast proliferation, collagen production and matrix metalloproteinase activity; and 2 a loss of ß1 integrin protein and a reduced ability to contract collagen gels. In contrast, inflammatory cells from the treated group resulted in: 1 an attenuated fibroblast proliferation; 2 a nonsignificant reduction in collagen production; 3 the prevention of matrix metalloproteinase activation and the loss of β1 integrin by fibroblasts and 4 a preservation of the fibroblasts’ ability to contract collagen gels. The TNF-α neutralizing antibody attenuated or prevented the untreated inflammatory cell-induced fibroblast proliferation, collagen production, matrix metalloproteinase activation and loss of β1 integrin protein as well as preserved fibroblast contractile ability. Incubation with TNF-α yielded changes in the cardiac fibroblast parameters that were directionally similar to the results obtained with untreated inflammatory cells. Conclusion: These results and those of our previous in vivo studies suggest that a major mechanism by which estrogen provides cardioprotection is its ability to modulate synthesis of TNF-α by inflammatory cells, thereby preventing inflammatory cell induction of cardiac fibroblast events that contribute to adverse extracellular matrix remodeling. Keywords: tumor necrosis factor-alpha, neutralizing antibody, fibroblast proliferation, matrix metalloproteinase activity, β1 integrin, collagen gel contraction

  11. Retinoic acid signalling is activated in the postischemic heart and may influence remodelling.

    Directory of Open Access Journals (Sweden)

    Dusan Bilbija

    Full Text Available BACKGROUND: All-trans retinoic acid (atRA, an active derivative of vitamin A, regulates cell differentiation, proliferation and cardiac morphogenesis via transcriptional activation of retinoic acid receptors (RARs acting on retinoic acid response elements (RARE. We hypothesized that the retinoic acid (RA signalling pathway is activated in myocardial ischemia and postischemic remodelling. METHODS AND FINDINGS: Myocardial infarction was induced through ligating the left coronary artery in mice. In vivo cardiac activation of the RARs was measured by imaging RARE-luciferase reporter mice, and analysing expression of RAR target genes and proteins by real time RT-PCR and western blot. Endogenous retinoids in postinfarcted hearts were analysed by triple-stage liquid chromatography/tandem mass spectrometry. Cardiomyocytes (CM and cardiofibroblasts (CF were isolated from infarcted and sham operated RARE luciferase reporter hearts and monitored for RAR activity and expression of target genes. The effect of atRA on CF proliferation was evaluated by EdU incorporation. Myocardial infarction increased thoracic RAR activity in vivo (p<0.001, which was ascribed to the heart through ex vivo imaging (p = 0.002 with the largest signal 1 week postinfarct. This was accompanied by increased cardiac gene and protein expression of the RAR target genes retinol binding protein 1 (p = 0.01 for RNA, p = 0,006 for protein and aldehyde dehydrogenase 1A2 (p = 0.04 for RNA, p = 0,014 for protein, while gene expression of cytochrome P450 26B1 was downregulated (p = 0.007. Concomitantly, retinol accumulated in the infarcted zone (p = 0.02. CM and CF isolated from infarcted hearts had higher luminescence than those from sham operated hearts (p = 0.02 and p = 0.008. AtRA inhibited CF proliferation in vitro (p = 0.02. CONCLUSION: The RA signalling pathway is activated in postischemic hearts and may play a role in regulation of damage and

  12. Giant Cardiac Cavernous Hemangioma.

    Science.gov (United States)

    Unger, Eric; Costic, Joseph; Laub, Glenn

    2015-07-01

    We report the case of an asymptomatic giant cardiac cavernous hemangioma in a 71-year-old man. The intracardiac mass was discovered incidentally during surveillance for his prostate cancer; however, the patient initially declined intervention. On presentation to our institution 7 years later, the lesion had enlarged significantly, and the patient consented to excision. At surgery, an 8 × 6.5 × 4.8 cm intracardiac mass located on the inferior heart border was excised with an intact capsule through a median sternotomy approach. The patient had an uneventful postoperative course. We discuss the diagnostic workup, treatment, and characteristics of this rare cardiac tumor. PMID:26140782

  13. The Potato Tuber Mitochondrial Proteome

    DEFF Research Database (Denmark)

    Salvato, Fernanda; Havelund, Jesper F; Chen, Mingjie;

    2014-01-01

    Mitochondria are called the powerhouses of the cell. To better understand the role of mitochondria in maintaining and regulating metabolism in storage tissues, highly purified mitochondria were isolated from dormant potato tubers (Solanum tuberosum ‘Folva’) and their proteome investigated. Proteins...... that more than 50% of the identified proteins harbor at least one modification. The most prominently observed class of posttranslational modifications was oxidative modifications. This study reveals approximately 500 new or previously unconfirmed plant mitochondrial proteins and outlines a facile strategy...

  14. Mass Spectrometry Instrumentation in Proteomics

    DEFF Research Database (Denmark)

    Sprenger, Richard Remko; Roepstorff, Peter

    2012-01-01

    Mass spectrometry has evolved into a crucial technology for the field of proteomics, enabling the comprehensive study of proteins in biological systems. Innovative developments have yielded flexible and versatile mass spectrometric tools, including quadrupole time-of-flight, linear ion trap......, Orbitrap and ion mobility instruments. Together they offer various and complementary capabilities in terms of ionization, sensitivity, speed, resolution, mass accuracy, dynamic range and methods of fragmentation. Mass spectrometers can acquire qualitative and quantitative information on a large scale...

  15. Platelet proteomics in cardiovascular diseases

    OpenAIRE

    Paula Vélez; Ángel García

    2015-01-01

    In recent years, platelet proteomics has been applied successfully to the study of cardiovascular diseases (CVDs). It is very well known that platelets play a pivotal role in the pathophysiological mechanisms underlying many CVDs, especially acute coronary syndromes (ACSs), since they are implied in thrombus formation after atheroma plaque rupture. This is the reason why molecules involved in platelet activation and aggregation are primary targets for treatment of ACSs. Many efforts are aimed...

  16. Cell wall proteomics of crops

    OpenAIRE

    Komatsu, Setsuko; Yanagawa, Yuki

    2013-01-01

    Cell wall proteins play key roles in cell structure and metabolism, cell enlargement, signal transduction, responses to environmental stress, and many other physiological events. Agricultural crops are often used for investigating stress tolerance because cultivars with differing degrees of tolerance are available. Abiotic and biotic stress factors markedly influence the geographical distribution and yields of many crop species. Crop cell wall proteomics is of particular importance for improv...

  17. Radiography in cardiology [cardiac disorders, cardiac insufficiency

    International Nuclear Information System (INIS)

    The diagnostic procedure in cardiology nearly always requires an X-ray examination of the thorax. This examination is very informative when it is correctly performed and interpreted. The radiographs need to be read precisely and comprehensively: this includes the evaluation of the silhouette of the heart (size, form and position) as well as the examination of extra-cardiac thoracic structures allowing among other things to search for signs of cardiac insufficiency. The conclusion of the X-ray examination can be drawn after having brought together information concerning the case history, the clinical examination and the study of the radiographs. The radiologist finds himself in one of three situations: (1) the information provided by the X-ray pictures is characteristic of a disease and permits a diagnosis, (2) the X-ray pictures indicate a group of hypotheses; further complementary tests could be useful and (3) the X-ray pictures provide ambiguous even contradictory information; it is necessary to complete the radiological examination by other techniques such as an ultrasonographic study of the heart

  18. Proteomics of Rice Seed Germination

    Directory of Open Access Journals (Sweden)

    Dongli eHe

    2013-07-01

    Full Text Available Seed is a condensed form of plant. Under suitable environmental conditions, it can resume the metabolic activity from physiological quiescent status, and mobilize the reserves, biosynthesize new proteins, regenerate organelles and cell membrane, eventually protrude the radicle and enter into seedling establishment. So far, how these activities are regulated in a coordinated and sequential manner is largely unknown. With the availability of more and more genome sequence information and the development of mass spectrometry (MS technology, proteomics has been widely applied in analyzing the mechanisms of different biological processes, and proved to be very powerful. Regulation of rice seed germination is critical for rice cultivation. In recent years, a lot of proteomic studies have been conducted in exploring the gene expression regulation, reserves mobilization and metabolisms reactivation, which brings us new insights on the mechanisms of metabolism regulation during this process. Nevertheless, it also invokes a lot of questions. In this mini-review, we summarized the progress in the proteomic studies of rice seed germination. The current challenges and future perspectives were also discussed, which might be helpful for the following studies.

  19. Proteomic Investigations into Hemodialysis Therapy

    Directory of Open Access Journals (Sweden)

    Mario Bonomini

    2015-12-01

    Full Text Available The retention of a number of solutes that may cause adverse biochemical/biological effects, called uremic toxins, characterizes uremic syndrome. Uremia therapy is based on renal replacement therapy, hemodialysis being the most commonly used modality. The membrane contained in the hemodialyzer represents the ultimate determinant of the success and quality of hemodialysis therapy. Membrane’s performance can be evaluated in terms of removal efficiency for unwanted solutes and excess fluid, and minimization of negative interactions between the membrane material and blood components that define the membrane’s bio(incompatibility. Given the high concentration of plasma proteins and the complexity of structural functional relationships of this class of molecules, the performance of a membrane is highly influenced by its interaction with the plasma protein repertoire. Proteomic investigations have been increasingly applied to describe the protein uremic milieu, to compare the blood purification efficiency of different dialyzer membranes or different extracorporeal techniques, and to evaluate the adsorption of plasma proteins onto hemodialysis membranes. In this article, we aim to highlight investigations in the hemodialysis setting making use of recent developments in proteomic technologies. Examples are presented of why proteomics may be helpful to nephrology and may possibly affect future directions in renal research.

  20. Human saliva proteome: an overview

    Science.gov (United States)

    Griffin, Timothy J.

    2014-06-01

    Human saliva contains a rich mixture of biomolecules. Proteins are a major component of this mixture. Given their role as the molecular effectors within biological systems, ranging from catalysis to transport to structure, proteins have great potential as biomarkers of health and disease. The ability to collect these salivary biomarkers easily using non-invasive means makes saliva proteins even more attractive for diagnostic applications. Thousands of proteins are now to be known to be present in human saliva - discovered using proteomic technologies. Emerging technologies are now making it possible to go beyond large-scale cataloging of salivary proteins. These include approaches to catalog protein contributions from the community of microorganisms residing in the oral cavity (metaproteomics) that may reflect the health state of the human host. New mass spectrometry-based proteomics methods are also emerging, shifting the emphasis from large-scale discovery experiments to hypothesis-driven assays for profiling proteins of interest within saliva, enabling validation of their association with specific health conditions. This paper provides a brief overview of efforts to catalog the proteome of human saliva. Recent developments making possible characterization of the metaproteome of human saliva will be discussed, and technologies driving new mass spectrometry-based assays for targeted analysis of proteins within complex samples, such as saliva.

  1. Serum myoglobin after cardiac catheterisation.

    OpenAIRE

    McComb, J. M.; McMaster, E A

    1982-01-01

    Study of 80 consecutive patients undergoing elective diagnostic cardiac catheterisation showed that after the procedure 25 (31%) developed myoglobinaemia. This was attributed to complications of the catheterisation in two. The remaining 23 had received premedication by intramuscular injection. In patients without intramuscular injections myoglobinaemia did not occur after uncomplicated cardiac catheterisation. The study did not support the proposition that cardiac catheterisation results in m...

  2. SELDI-TOF-MS Serum Profiling Reveals Predictors of Cardiac MRI Changes in Marathon Runners

    Directory of Open Access Journals (Sweden)

    George D. Wilson

    2012-01-01

    Full Text Available Purpose. To utilize proteomics to discover proteins associated with significant cardiac magnetic resonance imaging (MRI changes in marathon runners. Methods. Serum from 25 runners was analyzed by surface enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS. Proteomic profiles were compared in serum samples obtained prior to the race, at the finish line and within 7 hours after race to identify dynamic proteins correlated with cardiac MRI changes. Results. 693 protein/peptide clusters were identified using two ProteinChip surface chemistries and, of these, 116 were significantly different between the three time points. We identified 7 different patterns of protein expression change within the runners and 5 prerace protein peaks, 16 finish-line protein levels, and 15 postrace proteins which were correlated with significant postrace cardiac MRI changes. Conclusions. This study has identified baseline levels of proteins which may be predictive of risk of significant cardiac damage following a marathon race. Preliminary identification of the significant proteins suggested the involvement of cytokines and other proteins involved in stress and inflammatory response.

  3. Effects of Buyang Huanwu Decoction on Ventricular Remodeling and Differential Protein Profile in a Rat Model of Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Ying Chun Zhou

    2012-01-01

    Full Text Available Buyang Huanwu decoction (BYHWD is a well-known and canonical Chinese medicine formula from “Correction on Errors in Medical Classics” in Qing dynasty. Here, we show that BYHWD could alleviate the ventricular remodeling induced by left anterior descending (LAD artery ligation in rats. BYHWD treatment (18 g/kg/day decreased heart weight/body weight (HW/BW, left ventricle (LV dimension at end diastole (LVDd and increased LV ejection fraction (LVEF and LV fractional shortening (LVFS significantly compared to model group at the end of 12 weeks. The collagen volume of BYHWD group was more significantly decreased than that of model group. Proteomic analysis showed that atrial natriuretic factor (ANF was downregulated; heat shock protein beta-6 (HSPB6 and peroxiredoxin-6 (PRDX6 were upregulated in BYHWD-treated group among successfully identified proteins. The apoptotic index (AI was reduced by BYHWD accompanied by decreased expression of Bax and caspase 3 activity, increased Bcl-2/Bax ratio, and phosphorylation of HSPB6 compared to that of model group. Taken together, these results suggest that BYHWD can alleviate ventricular remodeling induced by LAD artery ligation. The antiremodeling effects of BYHWD are conferred by decreasing AI through affecting multiple targets including increased Bcl-2/Bax ratio and decreased caspase 3 activity that might be via upregulated PRDX6, phosphorylation of HSPB6 and subsequently reduction of ANF.

  4. Effects of buyang huanwu decoction on ventricular remodeling and differential protein profile in a rat model of myocardial infarction.

    Science.gov (United States)

    Zhou, Ying Chun; Liu, Bin; Li, Ying Jia; Jing, Lin Lin; Wen, Ge; Tang, Jing; Xu, Xin; Lv, Zhi Ping; Sun, Xue Gang

    2012-01-01

    Buyang Huanwu decoction (BYHWD) is a well-known and canonical Chinese medicine formula from "Correction on Errors in Medical Classics" in Qing dynasty. Here, we show that BYHWD could alleviate the ventricular remodeling induced by left anterior descending (LAD) artery ligation in rats. BYHWD treatment (18 g/kg/day) decreased heart weight/body weight (HW/BW), left ventricle (LV) dimension at end diastole (LVDd) and increased LV ejection fraction (LVEF) and LV fractional shortening (LVFS) significantly compared to model group at the end of 12 weeks. The collagen volume of BYHWD group was more significantly decreased than that of model group. Proteomic analysis showed that atrial natriuretic factor (ANF) was downregulated; heat shock protein beta-6 (HSPB6) and peroxiredoxin-6 (PRDX6) were upregulated in BYHWD-treated group among successfully identified proteins. The apoptotic index (AI) was reduced by BYHWD accompanied by decreased expression of Bax and caspase 3 activity, increased Bcl-2/Bax ratio, and phosphorylation of HSPB6 compared to that of model group. Taken together, these results suggest that BYHWD can alleviate ventricular remodeling induced by LAD artery ligation. The antiremodeling effects of BYHWD are conferred by decreasing AI through affecting multiple targets including increased Bcl-2/Bax ratio and decreased caspase 3 activity that might be via upregulated PRDX6, phosphorylation of HSPB6 and subsequently reduction of ANF. PMID:23049607

  5. The role of cardiac magnetic resonance imaging following acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Dennis T.L.; Richardson, James D.; Puri, Rishi; Nelson, Adam J.; Teo, Karen S.L.; Worthley, Matthew I. [Royal Adelaide Hospital, Cardiovascular Research Centre, Adelaide (Australia); University of Adelaide, Department of Medicine, Adelaide (Australia); Bertaso, Angela G. [Royal Adelaide Hospital, Cardiovascular Research Centre, Adelaide (Australia); Worthley, Stephen G. [Royal Adelaide Hospital, Cardiovascular Research Centre, Adelaide (Australia); University of Adelaide, Department of Medicine, Adelaide (Australia); Cardiovascular Investigational Unit, Adelaide, SA (Australia)

    2012-08-15

    Advances in the management of myocardial infarction have resulted in substantial reductions in morbidity and mortality. However, after acute treatment a number of diagnostic and prognostic questions often remain to be answered, whereby cardiac imaging plays an essential role. For example, some patients will sustain early mechanical complications after infarction, while others may develop significant ventricular dysfunction. Furthermore, many individuals harbour a significant burden of residual coronary disease for which clarification of functional ischaemic status and/or viability of the suspected myocardial territory is required. Cardiac magnetic resonance (CMR) imaging is well positioned to fulfil these requirements given its unparalleled capability in evaluating cardiac function, stress ischaemia testing and myocardial tissue characterisation. This review will focus on the utility of CMR in resolving diagnostic uncertainty, evaluating early complications following myocardial infarction, assessing inducible ischaemia, myocardial viability, ventricular remodelling and the emerging role of CMR-derived measures as endpoints in clinical trials. (orig.)

  6. The Proteome Analysis database: a tool for the in silico analysis of whole proteomes.

    Science.gov (United States)

    Pruess, Manuela; Fleischmann, Wolfgang; Kanapin, Alexander; Karavidopoulou, Youla; Kersey, Paul; Kriventseva, Evgenia; Mittard, Virginie; Mulder, Nicola; Phan, Isabelle; Servant, Florence; Apweiler, Rolf

    2003-01-01

    The Proteome Analysis database (http://www.ebi.ac.uk/proteome/) has been developed by the Sequence Database Group at EBI utilizing existing resources and providing comparative analysis of the predicted protein coding sequences of the complete genomes of bacteria, archeae and eukaryotes. Three main projects are used, InterPro, CluSTr and GO Slim, to give an overview on families, domains, sites, and functions of the proteins from each of the complete genomes. Complete proteome analysis is available for a total of 89 proteome sets. A specifically designed application enables InterPro proteome comparisons for any one proteome against any other one or more of the proteomes in the database. PMID:12520037

  7. Mammary remodelling and metabolic activity in dairy goats

    DEFF Research Database (Denmark)

    Safayi, Sina

    ) differences between PP and MP animals with respect to milk production and lactation persistency may be related to differences in mammary growth and remodelling also during lactation, 2) the factors responsible for interfering with mammary remodelling in continuous lactation throughout the dry period into the...... present thesis aimed to address the hypotheses that 1) differences between PP and MP animals with respect to milk production and lactation persistency may be related to differences in mammary growth and remodelling also during lactation, 2) the factors responsible for interfering with mammary remodelling...... be effectively renewed as one lactation comes to an end and prior to onset of the next lactation. Generally, the level of milk production and the changes in milk yield over the course of lactation depend on three main factors: 1) the number of MEC, which in turn is affected by the balance between the...

  8. A gene-centric study of common carotid artery remodelling

    NARCIS (Netherlands)

    Harrison, Seamus C.; Zabaneh, Delilah; Asselbergs, Folkert W.; Drenos, Fotios; Jones, Gregory T.; Shah, Sonia; Gertow, Karl; Sennblad, Bengt; Strawbridge, Rona J.; Gigante, Bruna; Holewijn, Suzanne; De Graaf, Jacqueline; Vermeulen, Sita; Folkersen, Lasse; van Rij, Andre M.; Baldassarre, Damiano; Veglia, Fabrizio; Talmud, Philippa J.; Deanfield, John E.; Agu, Obi; Kivimaki, Mika; Kumari, Meena; Bown, Matthew J.; Nyyssonen, Kristiina; Rauramaa, Rainer; Smit, Andries J.; Franco-Cereceda, Anders; Giral, Philippe; Mannarino, Elmo; Silveira, Angela; Syvanen, Ann-Christine; de Borst, Gert J.; van der Graaf, Yolanda; de Faire, Ulf; Baas, Annette F.; Blankensteijn, Jan D.; Wareham, Nicholas J.; Fowkes, Gerry; Tzoulaki, Ionna; Price, Jacqueline F.; Tremoli, Elena; Hingorani, Aroon D.; Eriksson, Per; Hamsten, Anders; Humphries, Steve E.

    2013-01-01

    Background: Expansive remodelling is the process of compensatory arterial enlargement in response to atherosclerotic stimuli. The genetic determinants of this process are poorly characterized. Methods: Genetic association analyses of inter-adventitial common carotid artery diameter (ICCAD) in the IM

  9. Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Remodeling.

    Science.gov (United States)

    Yuan, Shuai; Kevil, Christopher G

    2016-02-01

    Blockage or restriction of blood flow through conduit arteries results in tissue ischemia downstream of the disturbed area. Local tissues can adapt to this challenge by stimulating vascular remodeling through angiogenesis and arteriogenesis thereby restoring blood perfusion and removal of wastes. Multiple molecular mechanisms of vascular remodeling during ischemia have been identified and extensively studied. However, therapeutic benefits from these findings and insights are limited due to the complexity of various signaling networks and a lack of understanding central metabolic regulators governing these responses. The gasotransmitters NO and H2 S have emerged as master regulators that influence multiple molecular targets necessary for ischemic vascular remodeling. In this review, we discuss how NO and H2 S are individually regulated under ischemia, what their roles are in angiogenesis and arteriogenesis, and how their interaction controls ischemic vascular remodeling. PMID:26381654

  10. Hepato-cardiac disorders

    Institute of Scientific and Technical Information of China (English)

    Yasser; Mahrous; Fouad; Reem; Yehia

    2014-01-01

    Understanding the mutual relationship between the liver and the heart is important for both hepatologists and cardiologists. Hepato-cardiac diseases can be classified into heart diseases affecting the liver, liver diseases affecting the heart, and conditions affecting the heart and the liver at the same time. Differential diagnoses of liver injury are extremely important in a cardiologist’s clinical practice calling for collaboration between cardiologists and hepatologists due to the many other diseases that can affect the liver and mimic haemodynamic injury. Acute and chronic heart failure may lead to acute ischemic hepatitis or chronic congestive hepatopathy. Treatment in these cases should be directed to the primary heart disease. In patients with advanced liver disease, cirrhotic cardiomyopathy may develop including hemodynamic changes, diastolic and systolic dysfunctions, reduced cardiac performance and electrophysiological abnormalities. Cardiac evaluation is important for patients with liver diseases especially before and after liver transplantation. Liver transplantation may lead to the improvement of all cardiac changes and the reversal of cirrhotic cardiomyopathy. There are systemic diseases that may affect both the liver and the heart concomitantly including congenital, metabolic and inflammatory diseases as well as alcoholism. This review highlights these hepatocardiac diseases

  11. Primary cardiac tumors

    International Nuclear Information System (INIS)

    Cardiac tumors happen to be among the less known pathologies without clear treatment standards. Even one decade ago most of the cardiac tumor diagnosis were made post mortem, and only reports of isolated cases could be found in the literature, showing the lack of interest in the investigation of these pathologies by cardiology and cardiovascular surgery specialists. With the development of echocardiography and of cardiovascular surgery, more cases of primary and metastatic cardiac tumors have been diagnosed. Many cases have been treated by palliative or curative surgical interventions, thus increasing the reports in the world literature and the experience in this field, and pointing out the real incidence of these pathologies, not being as bizarre as it had been considered. a revision of the literature will be made, in which the frequency and the suggested interventions will be reported, as well as the cases of cardiac pathology in two cardiovascular centers of the country known by the author. The echocardiographic, pathologic and histological characteristics of the representative cases will be presented, without a greater evidence level, due to the problem's incidence and the few cases reported by these centers

  12. Cardiac MRI tagging

    International Nuclear Information System (INIS)

    Cardiac MRI tagging is an original technique based upon the perturbation of the magnetization of determined regions of the myocardium (tags). The motion of the tags accurately reflects the deformation of the underlying tissue. Data analysis requires special techniques to reconstruct the 3D motion of the heart, and to evaluate the myocardial strain, locally and throughout the whole heart. (authors)

  13. Automatic Implantable Cardiac Defibrillator

    Medline Plus

    Full Text Available ... Over the next hour you'll see the implantation of an automated implantable cardiac defibrillator. The surgery ... evening we're going to be discussing the implantation of a defibrillator. It’s a battery-powered implantable ...

  14. Cardiac effects of vasopressin.

    Science.gov (United States)

    Pelletier, Jean-Sébastien; Dicken, Bryan; Bigam, David; Cheung, Po-Yin

    2014-07-01

    Vasopressin is an essential hormone involved in the maintenance of cardiovascular homeostasis. It has been in use therapeutically for many decades, with an emphasis on its vasoconstrictive and antidiuretic properties. However, this hormone has a ubiquitous influence and has specific effects on the heart. Although difficult to separate from its powerful vascular effects in the clinical setting, a better understanding of vasopressin's direct cardiac effects could lead to its more effective clinical use for a variety of shock states by maximizing its therapeutic benefit. The cardiac-specific effects of vasopressin are complex and require further elucidation. Complicating our understanding include the various receptors and secondary messengers involved in vasopressin's effects, which may lead to various results based on differing doses and varying environmental conditions. Thus, there have been contradictory reports on vasopressin's action on the coronary vasculature and on its effect on inotropy. However, beneficial results have been found and warrant further study to expand the potential therapeutic role of vasopressin. This review outlines the effect of vasopressin on the coronary vasculature, cardiac contractility, and on hypertrophy and cardioprotection. These cardiac-specific effects of vasopressin represent an interesting area for further study for potentially important therapeutic benefits. PMID:24621650

  15. Cardiac pacemaker power sources

    International Nuclear Information System (INIS)

    A review of chemical and radioisotope batteries used in cardiac pacemakers is presented. The battery systems are examined in terms of longevity, reliability, cost, size and shape, energy density, weight, internal resistance versus time, end-of-life voltage, chemical compatibility, and potential failure mechanisms

  16. Nemopilema nomurai Jellyfish venom treatment leads to alterations in rat cardiomyocytes proteome

    Directory of Open Access Journals (Sweden)

    Indu Choudhary

    2015-12-01

    Full Text Available This data article restrains data associated to the Choudhary et al. [1]. Nemopilema nomurai Jellyfish venom (NnV can lead to cardiac toxicity. Here we analyzed the effect of NnV on rat cardiomyocytes cell line H9c2 at the proteome level using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS. This analysis resulted in 34 proteins with differential expression. Here we provide the dataset for the proteins with amplified or reduced level as compare to control.

  17. Cutaneous remodeling and photorejuvenation using radiofrequency devices

    Directory of Open Access Journals (Sweden)

    Elsaie Mohamed

    2009-01-01

    Full Text Available Radio frequency (RF is electromagnetic radiation in the frequency range of 3-300GHz. The primary effects of RF energy on living tissue are considered to be thermal. The goal of the new devices based on these frequency ranges is to heat specific layers of the skin. The directed use of RF can induce dermal heating and cause collagen degeneration. Wound healing mechanisms promote the remodeling of collagen and wound contraction, which ultimately clinically enhances the appearance of mild to moderate skin laxity. Preliminary studies have reported efficacy in the treatment of laxity that involves the periorbital area and jowls. Because RF energy is not dependent on specific chromophore interaction, epidermal melanin is not at risk of destruction and treatment of all skin types is possible. As such, radiofrequency-based systems have been used successfully for nonablative skin rejuvenation, atrophic scar revision and treatment of unwanted hair, vascular lesions and inflammatory acne. The use of RF is becoming more popular, although a misunderstanding exists regarding the mechanisms and limitations of its actions. This concise review serves as an introduction and guide to many aspects of RF in the non ablative rejuvenation of skin.

  18. Simvastatin induces apoptosis by a Rho-dependent mechanism in cultured cardiac fibroblasts and myofibroblasts

    International Nuclear Information System (INIS)

    Several clinical trials have shown the beneficial effects of statins in the prevention of coronary heart disease. Additionally, statins promote apoptosis in vascular smooth muscle cells, in renal tubular epithelial cells and also in a variety of cell lines; yet, the effects of statins on cardiac fibroblast and myofibroblast, primarily responsible for cardiac tissue healing are almost unknown. Here, we investigated the effects of simvastatin on cardiac fibroblast and myofibroblast viability and studied the molecular cell death mechanism triggered by simvastatin in both cell types. Methods: Rat neonatal cardiac fibroblasts and myofibroblasts were treated with simvastatin (0.1-10 μM) up to 72 h. Cell viability and apoptosis were evaluated by trypan blue exclusion method and by flow cytometry, respectively. Caspase-3 activation and Rho protein levels and activity were also determined by Western blot and pull-down assay, respectively. Results: Simvastatin induces caspase-dependent apoptosis of cardiac fibroblasts and myofibroblasts in a concentration- and time-dependent manner, with greater effects on fibroblasts than myofibroblasts. These effects were prevented by mevalonate, farnesylpyrophosphate and geranylgeranylpyrophosphate, but not squalene. These last results suggest that apoptosis was dependent on small GTPases of the Rho family rather than Ras. Conclusion: Simvastatin triggered apoptosis of cardiac fibroblasts and myofibroblasts by a mechanism independent of cholesterol synthesis, but dependent of isoprenilation of Rho protein. Additionally, cardiac fibroblasts were more susceptible to simvastatin-induced apoptosis than cardiac myofibroblasts. Thus simvastatin could avoid adverse cardiac remodeling leading to a less fibrotic repair of the damaged tissues. - Research Highlights: → Simvastatin decreases CF and CMF viability independent of cholesterol synthesis. → Simvastatin induces CF and CMF apoptosis in a caspase-dependent manner being CMF more resistant

  19. Remodeling of the bone material containing microcracks: A theoretical analysis

    Science.gov (United States)

    Ramtani, S.; Zidi, M.

    1999-12-01

    The question is, what happens when the bone loses its ability for load-driven adaptation, when damage is no longer repaired as it seems to be the case for bone loss associated with age, medication or disease? In this study, we tempt to show how damage can influence the remodeling process. A thermodynamic theoretical framework is therefore provided as a basis for a consistent formulation of bone remodeling involving a chemical reaction and mass transfer between two constituents in presence of microcracks.

  20. Collagen scaffold remodeling by human mesenchymal stem cells

    OpenAIRE

    Han, SJ; Chan, BP

    2011-01-01

    Type I collagen has been widely used as scaffold for tissue engineering because of its excellent biocompatibility and negligible immunogenicity. We previously have developed a collagen microencapsulation technology entrapping many cells including human mesenchymal stem cells (hMSCs) in microspheres made of nanofibrous collagen meshwork. Nevertheless, little is understood about how stem cells interact with and remodel the collagen meshwork. This study aims to investigate collagen remodeling by...

  1. The relationship between eosinophilia and airway remodelling in mild asthma

    OpenAIRE

    Wilson, S J; Rigden, H.M.; Ward, J. A.; Laviolette, M.; Jarjour, N N; Djukanović, R.

    2013-01-01

    Background Eosinophilia is a marker of corticosteroid responsiveness and risk of exacerbation in asthma; although it has been linked to submucosal matrix deposition, its relationship with other features of airway remodelling is less clear. Objective The aim of this study was to investigate the relationship between airway eosinophilia and airway remodelling. Methods Bronchial biopsies from subjects (n = 20 in each group) with mild steroid-naïve asthma, with either low (0–0....

  2. Apocynin attenuates oxidative stress and cardiac fibrosis in angiotensin Ⅱ-induced cardiac diastolic dysfunction in mice

    Institute of Scientific and Technical Information of China (English)

    Yu-qiong LI; Xiao-bo LI; Shu-jie GUO; Shao-li CHU; Ping-jin GAO; Ding-liang ZHU; Wen-quan NIU

    2013-01-01

    Aim:To investigate whether apocynin,a NADPH oxidase inhibitor,produced cardioproteictive effects in Ang Ⅱ-induced hypertensive mice,and to elucidate the underlying mechanisms.Methods:C57BL/6 mice were subcutaneously infused Ang Ⅱ for 4 weeks to mimic cardiac remodeling and fibrosis.Concomitantly the mice were administered apocynin (100 mg· kg-1·d-1) or/and the aldosterone receptor blocker eplerenone (200 mg·kg-1d-1) via gavage for 4 weeks.Systolic blood pressure (SBP) and heart rate were measured,and transthoracic echocardiography was performed.For in vitro study,cardiac fibroblasts were treated with Ang Ⅱ (10 7 mol/L) in the presence of apocynin (105 mol/L) or/and eplerenone (105 mol/L).Immunohistochemistry and Western blotting were used to quantify the expression levels of NADPH oxidase and osteopontin (OPN) proteins in the cells.Results:Both apocynin and eplerenone significantly decreased SBP,and markedly improved diastolic dysfunction in Ang Ⅱ-induced hypertensive mice,accompanied with ameliorated oxidative stress and cardiac fibrosis.In the Ang Ⅱ-treated cardiac fibroblasts,the expression levels of NOX4 and OPN proteins were markedly upregulated.Both Apocynin and eplerenone significantly suppressed the increased expression levels of NOX4 and OPN proteins in the Ang Ⅱ-treated cells.In all the experiments,apocynin and eplerenone produced comparable effects.Co-administration of the two agents did not produce synergic effects.Conclusion:Apocynin produces cardioproteictive effects comparable to those of eplerenone.The beneficial effects of apocynin on myocardial oxidative stress and cardiac fibrosis might be mediated partly through a pathway involving NADPH oxidase and OPN.

  3. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.; Ari, Krakowski; Luo, Kunxin; Chen, David J.; Li, Song

    2004-08-08

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference map of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.

  4. [Cardiac amyloidosis. General review].

    Science.gov (United States)

    Laraki, R

    1994-04-01

    Cardiac amyloidosis, most often of AL type, is a non-exceptional disease as it represents 5 to 10% of non-ischemic cardiomyopathies. It realizes typically a restrictive cardiomyopathy. Nevertheless the wide diversity of possible presentation makes it a "big shammer" which must be evoked in front of every unexplained cardiopathy after the age of forty. If some associated manifestations can rapidly suggest the diagnosis, as a peripheric neuropathy especially a carpal tunnel syndrome or palpebral ecchymosis, cardiac involvement can also evolve in an apparently isolated way. The most suggestive paraclinic elements for the diagnosis are, in one hand, the increased myocardial echogenicity with a "granular sparkling" appearance seen throughout all walls of the left ventricle and, in the other hand, the association of a thickened left ventricle and a low voltage (electrocardiogram could also show pseudo-infarct Q waves). In front of such aspects, the proof of amyloidosis is brought by an extra-cardiac biopsy or by scintigraphy with labelled serum amyloid P component, so that the indications of endomyocardial biopsy are very limited today. The identification of the amyloid nature of a cardiopathy has an direct therapeutic implication: it contra-indicates the use of digitalis, calcium channel blockers and beta-blockers. The treatment of AL amyloidosis (chemotherapy with alkylant agents) remains very unsatisfactory especially in the cardiac involvement which is the most frequent cause of death (in AL amyloidosis). Last, cardiac amyloidosis is a bad indication for transplantation which results are burden by rapid progression of deposits especially in the gastro-intestinal tract and the nervous system. PMID:8059146

  5. Cardiac surgery outcomes.

    Science.gov (United States)

    Halpin, Linda S; Barnett, Scott D; Beachy, Jim

    2003-01-01

    Accrediting organizations and payers are demanding valid and reliable data that demonstrate the value of services. Federal agencies, healthcare industry groups, and healthcare watchdog groups are increasing the demand for public access to outcomes data. A new and growing outcomes dynamic is the information requested by prospective patients in an increasingly consumer-oriented business. Patients demand outcomes, and resources are developing to meet these demands. Physicians are increasingly confronted with requests for information about their mortality and morbidity rates, malpractice suits, and disciplinary actions received. For example, in Virginia, prospective patients have access to data provided by the nonprofit group Virginia Health Information. After numerous resolutions by the Virginia Senate since 1999, the prospective Virginia medical consumer now has access to several annual publications: Virginia Hospitals: A Consumer's Guide, 1999 Annual Report and Strategic Plan Update, and the 1999 Industry Report: Virginia Hospitals and Nursing Facilities. Consumers have access to cardiac outcomes data stratified by hospital, gender, and cardiac service line (cardiac surgery, noninvasive cardiology, and invasive cardiology). This is particularly relevant to IHI because Virginia Health Information specifically targets cardiac care. IHI has a sizable investment in cardiovascular outcomes and has found outcomes measurement and research are key to providing quality care. IHI's goal is to move from an outcomes management model to a disease management model. The hope is to incorporate all aspects of the patient's continuum of care, from preoperative and diagnostic services through cardiac interventions to postoperative rehabilitation. Furthermore, every step along the way will be supported with functional status and quality of life assessments. Although these goals are ambitious and expensive, the return on investment is high. PMID:14618772

  6. Epac contributes to cardiac hypertrophy and amyloidosis induced by radiotherapy but not fibrosis

    International Nuclear Information System (INIS)

    Background: Cardiac toxicity is a side-effect of anti-cancer treatment including radiotherapy and this translational study was initiated to characterize radiation-induced cardiac side effects in a population of breast cancer patients and in experimental models in order to identify novel therapeutic target. Methods: The size of the heart was evaluated in CO-HO-RT patients by measuring the Cardiac-Contact-Distance before and after radiotherapy (48 months of follow-up). In parallel, fibrogenic signals were studied in a severe case of human radiation-induced pericarditis. Lastly, radiation-induced cardiac damage was studied in mice and in rat neonatal cardiac cardiomyocytes. Results: In patients, time dependent enhancement of the CCD was measured suggesting occurrence of cardiac hypertrophy. In the case of human radiation-induced pericarditis, we measured the activation of fibrogenic (CTGF, RhoA) and remodeling (MMP2) signals. In irradiated mice, we documented decreased contractile function, enlargement of the ventricular cavity and long-term modification of the time constant of decay of Ca2+ transients. Both hypertrophy and amyloid deposition were correlated with the induction of Epac-1; whereas radiation-induced fibrosis correlated with Rho/CTGF activation. Transactivation studies support Epac contribution in hypertrophy stimulation and showed that radiotherapy and Epac displayed specific and synergistic signals. Conclusion: Epac-1 has been identified as a novel regulator of radiation-induced hypertrophy and amyloidosis but not fibrosis in the heart

  7. Reactive Oxygen Species, Endoplasmic Reticulum Stress and Mitochondrial Dysfunction: The Link with Cardiac Arrhythmogenesis

    Science.gov (United States)

    Tse, Gary; Yan, Bryan P.; Chan, Yin W. F.; Tian, Xiao Yu; Huang, Yu

    2016-01-01

    Background: Cardiac arrhythmias represent a significant problem globally, leading to cerebrovascular accidents, myocardial infarction, and sudden cardiac death. There is increasing evidence to suggest that increased oxidative stress from reactive oxygen species (ROS), which is elevated in conditions such as diabetes and hypertension, can lead to arrhythmogenesis. Method: A literature review was undertaken to screen for articles that investigated the effects of ROS on cardiac ion channel function, remodeling and arrhythmogenesis. Results: Prolonged endoplasmic reticulum stress is observed in heart failure, leading to increased production of ROS. Mitochondrial ROS, which is elevated in diabetes and hypertension, can stimulate its own production in a positive feedback loop, termed ROS-induced ROS release. Together with activation of mitochondrial inner membrane anion channels, it leads to mitochondrial depolarization. Abnormal function of these organelles can then activate downstream signaling pathways, ultimately culminating in altered function or expression of cardiac ion channels responsible for generating the cardiac action potential (AP). Vascular and cardiac endothelial cells become dysfunctional, leading to altered paracrine signaling to influence the electrophysiology of adjacent cardiomyocytes. All of these changes can in turn produce abnormalities in AP repolarization or conduction, thereby increasing likelihood of triggered activity and reentry. Conclusion: ROS plays a significant role in producing arrhythmic substrate. Therapeutic strategies targeting upstream events include production of a strong reducing environment or the use of pharmacological agents that target organelle-specific proteins and ion channels. These may relieve oxidative stress and in turn prevent arrhythmic complications in patients with diabetes, hypertension, and heart failure. PMID:27536244

  8. Cell Matrix Remodeling Ability Shown by Image Spatial Correlation

    Directory of Open Access Journals (Sweden)

    Chi-Li Chiu

    2013-01-01

    Full Text Available Extracellular matrix (ECM remodeling is a critical step of many biological and pathological processes. However, most of the studies to date lack a quantitative method to measure ECM remodeling at a scale comparable to cell size. Here, we applied image spatial correlation to collagen second harmonic generation (SHG images to quantitatively evaluate the degree of collagen remodeling by cells. We propose a simple statistical method based on spatial correlation functions to determine the size of high collagen density area around cells. We applied our method to measure collagen remodeling by two breast cancer cell lines (MDA-MB-231 and MCF-7, which display different degrees of invasiveness, and a fibroblast cell line (NIH/3T3. We found distinct collagen compaction levels of these three cell lines by applying the spatial correlation method, indicating different collagen remodeling ability. Furthermore, we quantitatively measured the effect of Latrunculin B and Marimastat on MDA-MB-231 cell line collagen remodeling ability and showed that significant collagen compaction level decreases with these treatments.

  9. Global Proteome Analysis of Leptospira interrogans

    Science.gov (United States)

    Comparative global proteome analyses were performed on Leptospira interrogans serovar Copenhageni grown under conventional in vitro conditions and those mimicking in vivo conditions (iron limitation and serum presence). Proteomic analyses were conducted using iTRAQ and LC-ESI-tandem mass spectrometr...

  10. Modification-specific proteomics in plant biology

    DEFF Research Database (Denmark)

    Ytterberg, A Jimmy; Jensen, Ole N

    2010-01-01

    and proteomics. In general, methods for PTM characterization are developed to study yeast and mammalian biology and later adopted to investigate plants. Our point of view is that it is advantageous to enrich for PTMs on the peptide level as part of a quantitative proteomics strategy to not only identify the PTM...

  11. Statistical data processing in clinical proteomics

    NARCIS (Netherlands)

    S. Smit

    2009-01-01

    The subject of this thesis is the analysis of data in clinical proteomics studies aimed at the discovery of biomarkers. The data sets produced in proteomics studies are huge, characterized by a small number of samples in which many proteins and peptides are measured. The studies described in this th

  12. Centennial Paper: Proteomics in animal science

    Science.gov (United States)

    Proteomics holds significant promise as a method for advancing animal science research. The use of this technology in animal science is still in its infancy. The ability of proteomics to simultaneously identify and quantify potentially thousands of proteins is unparalleled. In this review, we wil...

  13. The promise of proteomics in animal science

    Science.gov (United States)

    Proteomics hold significant promise as a method for advancing animal science research. The use of this technology in animal science is still in its infancy. The ability of proteomics to simultaneously identify and quantify potentially thousands of proteins is unparalleled. In this review, we will...

  14. Intestinal proteome changes during infant necrotizing enterocolitis

    DEFF Research Database (Denmark)

    Jiang, Pingping; Smith, Birgitte; Qvist, Niels;

    2013-01-01

    Background: Changes in the intestinal and colonic proteome in patients with necrotizing enterocolitis (NEC) may help to characterize the disease pathology and identify new biomarkers and treatment targets for NEC. Methods: Using gel-based proteomics, proteins in NEC-affected intestinal and coloni...

  15. Applications of proteomics in hepatic diseases research

    Institute of Scientific and Technical Information of China (English)

    SUN; Wei; HE; Fuchu

    2004-01-01

    Proteomics has become an important part in the leading research area and been widely used in the disease-associated study. In hepatic research field, proteomics could be applied in study of hepatic diseases including liver cancer, cirrhosis and hepatotoxicities, etc. Significant proteins could be identified as biomarkers, drug targets and clues for pathogenesis illumination.

  16. Proteomics: Protein Identification Using Online Databases

    Science.gov (United States)

    Eurich, Chris; Fields, Peter A.; Rice, Elizabeth

    2012-01-01

    Proteomics is an emerging area of systems biology that allows simultaneous study of thousands of proteins expressed in cells, tissues, or whole organisms. We have developed this activity to enable high school or college students to explore proteomic databases using mass spectrometry data files generated from yeast proteins in a college laboratory…

  17. Functional complexity of the axonal growth cone: a proteomic analysis.

    Directory of Open Access Journals (Sweden)

    Adriana Estrada-Bernal

    Full Text Available The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥ 99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions.

  18. Risk factors and the effect of cardiac resynchronization therapy on cardiac and non-cardiac mortality in MADIT-CRT

    DEFF Research Database (Denmark)

    Perkiomaki, Juha S; Ruwald, Anne-Christine; Kutyifa, Valentina;

    2015-01-01

    causes, 108 (63.9%) deemed cardiac, and 61 (36.1%) non-cardiac. In multivariate analysis, increased baseline creatinine was significantly associated with both cardiac and non-cardiac deaths [hazard ratio (HR) 2.97, P ...AIMS: To understand modes of death and factors associated with the risk for cardiac and non-cardiac deaths in patients with cardiac resynchronization therapy with implantable cardioverter-defibrillator (CRT-D) vs. implantable cardioverter-defibrillator (ICD) therapy, which may help clarify...

  19. Proinflammatory Protein CARD9 Is Essential for Infiltration of Monocytic Fibroblast Precursors and Cardiac Fibrosis Caused by Angiotensin II Infusion

    OpenAIRE

    Ren, Jingyuan; YANG, MIN; Qi, Guanming; Zheng, Jiao; Jia, LiXin; Cheng, Jizhong; Tian, Cui; Li, Huihua; Lin, Xin; Du, Jie

    2011-01-01

    Background Angiotensin II (Ang II)–induced cardiac remodeling with the underlying mechanisms involving inflammation and fibrosis has been well documented. Cytosolic adaptor caspase recruitment domain 9 (CARD9) has been implicated in the innate immune response. We aimed to examine the role of CARD9 in inflammation and cardiac fibrosis induced by Ang II. Methods Two-month-old CARD9-deficient (CARD9−/−) and wild-type (WT) male mice were infused with Ang II (1,500 ng/kg/min) or saline for 7 days....

  20. Cardiac fusion and complex congenital cardiac defects in thoracopagus twins: diagnostic value of cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Park, Jeong-Jun [University of Ulsan College of Medicine, Asan Medical Center, Department of Pediatric Cardiac Surgery, Seoul (Korea, Republic of); Kim, Ellen Ai-Rhan [University of Ulsan College of Medicine, Asan Medical Center, Division of Neonatology, Department of Pediatrics, Seoul (Korea, Republic of); Won, Hye-Sung [University of Ulsan College of Medicine, Asan Medical Center, Department of Obstetrics and Gynecology, Seoul (Korea, Republic of)

    2014-09-15

    Most thoracopagus twins present with cardiac fusion and associated congenital cardiac defects, and assessment of this anatomy is of critical importance in determining patient care and outcome. Cardiac CT with electrocardiographic triggering provides an accurate and quick morphological assessment of both intracardiac and extracardiac structures in newborns, making it the best imaging modality to assess thoracopagus twins during the neonatal period. In this case report, we highlight the diagnostic value of cardiac CT in thoracopagus twins with an interatrial channel and complex congenital cardiac defects. (orig.)