WorldWideScience

Sample records for cardiac imaging techniques

  1. MR-Based Cardiac and Respiratory Motion-Compensation Techniques for PET-MR Imaging.

    Science.gov (United States)

    Munoz, Camila; Kolbitsch, Christoph; Reader, Andrew J; Marsden, Paul; Schaeffter, Tobias; Prieto, Claudia

    2016-04-01

    Cardiac and respiratory motion cause image quality degradation in PET imaging, affecting diagnostic accuracy of the images. Whole-body simultaneous PET-MR scanners allow for using motion information estimated from MR images to correct PET data and produce motion-compensated PET images. This article reviews methods that have been proposed to estimate motion from MR images and different techniques to include this information in PET reconstruction, in order to overcome the problem of cardiac and respiratory motion in PET-MR imaging. MR-based motion correction techniques significantly increase lesion detectability and contrast, and also improve accuracy of uptake values in PET images.

  2. Update: Cardiac Imaging (II). Transcatheter Aortic Valve Replacement: Advantages and Limitations of Different Cardiac Imaging Techniques.

    Science.gov (United States)

    Podlesnikar, Tomaz; Delgado, Victoria

    2016-03-01

    Transcatheter aortic valve replacement is an established therapy for patients with symptomatic severe aortic stenosis and contraindications or high risk for surgery. Advances in prostheses and delivery system designs and continuous advances in multimodality imaging, particularly the 3-dimensional techniques, have led to improved outcomes with significant reductions in the incidence of frequent complications such as paravalvular aortic regurgitation. In addition, data on prosthesis durability are accumulating. Multimodality imaging plays a central role in the selection of patients who are candidates for transcatheter aortic valve replacement, procedure planning and guidance, and follow-up of prosthesis function. The strengths and limitations of each imaging technique for transcatheter aortic valve replacement will be discussed in this update article. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  3. Improved detection of cardiac fibrosis : Biomarkers and novel imaging techniques

    NARCIS (Netherlands)

    Jong, S. de

    2015-01-01

    Cardiac cells are embedded in a collagen network that provides strength in the heart against tension that occurs during contraction and relaxation. In almost every cardiac disease increased collagen (fibrosis) is observed. Fibrosis has adverse effects on cardiac pump function and increases the risk

  4. Current cardiac imaging techniques for detection of left ventricular mass

    Directory of Open Access Journals (Sweden)

    Celebi Aksuyek S

    2010-06-01

    Full Text Available Abstract Estimation of left ventricular (LV mass has both prognostic and therapeutic value independent of traditional risk factors. Unfortunately, LV mass evaluation has been underestimated in clinical practice. Assessment of LV mass can be performed by a number of imaging modalities. Despite inherent limitations, conventional echocardiography has fundamentally been established as most widely used diagnostic tool. 3-dimensional echocardiography (3DE is now feasible, fast and accurate for LV mass evaluation. 3DE is also superior to conventional echocardiography in terms of LV mass assessment, especially in patients with abnormal LV geometry. Cardiovascular magnetic resonance (CMR and cardiovascular computed tomography (CCT are currently performed for LV mass assessment and also do not depend on cardiac geometry and display 3-dimensional data, as well. Therefore, CMR is being increasingly employed and is at the present standard of reference in the clinical setting. Although each method demonstrates advantages over another, there are also disadvantages to receive attention. Diagnostic accuracy of methods will also be increased with the introduction of more advanced systems. It is also likely that in the coming years new and more accurate diagnostic tests will become available. In particular, CMR and CCT have been intersecting hot topic between cardiology and radiology clinics. Thus, good communication and collaboration between two specialties is required for selection of an appropriate test.

  5. Kalman filter techniques for accelerated Cartesian dynamic cardiac imaging.

    Science.gov (United States)

    Feng, Xue; Salerno, Michael; Kramer, Christopher M; Meyer, Craig H

    2013-05-01

    In dynamic MRI, spatial and temporal parallel imaging can be exploited to reduce scan time. Real-time reconstruction enables immediate visualization during the scan. Commonly used view-sharing techniques suffer from limited temporal resolution, and many of the more advanced reconstruction methods are either retrospective, time-consuming, or both. A Kalman filter model capable of real-time reconstruction can be used to increase the spatial and temporal resolution in dynamic MRI reconstruction. The original study describing the use of the Kalman filter in dynamic MRI was limited to non-Cartesian trajectories because of a limitation intrinsic to the dynamic model used in that study. Here the limitation is overcome, and the model is applied to the more commonly used Cartesian trajectory with fast reconstruction. Furthermore, a combination of the Kalman filter model with Cartesian parallel imaging is presented to further increase the spatial and temporal resolution and signal-to-noise ratio. Simulations and experiments were conducted to demonstrate that the Kalman filter model can increase the temporal resolution of the image series compared with view-sharing techniques and decrease the spatial aliasing compared with TGRAPPA. The method requires relatively little computation, and thus is suitable for real-time reconstruction.

  6. Cardiac imaging in adults

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, C.C.

    1987-01-01

    This book approaches adult cardiac disease from the correlative imaging perspective. It includes chest X-rays and angiographs, 2-dimensional echocardiograms with explanatory diagrams for clarity, plus details on digital radiology, nuclear medicine techniques, CT and MRI. It also covers the normal heart, valvular heart disease, myocardial disease, pericardial disease, bacterial endocarditis, aortic aneurysm, cardiac tumors, and congenital heart disease of the adult. It points out those aspects where one imaging technique has significant superiority.

  7. Paediatric cardiac computed tomography: a review of imaging techniques and radiation dose consideration

    Energy Technology Data Exchange (ETDEWEB)

    Young, Carolyn; Taylor, Andrew M. [UCL, Institute of Child Health, Cardiorespiratory Unit, London (United Kingdom); Great Ormond Street Hospital for Children, Cardiorespiratory Unit, London (United Kingdom); Owens, Catherine M. [UCL, Institute of Child Health, Cardiorespiratory Unit, London (United Kingdom)

    2011-03-15

    The significant challenges involved in imaging the heart in small children (<15 kg) have been addressed by, and partially resolved with improvement in temporal and spatial resolution secondary to the advent of new multi-detector CT technology. This has enabled both retrospective and prospective ECG-gated imaging in children even at high heart rates (over 100 bpm) without the need for beta blockers. Recent studies have highlighted that the radiation burden associated with cardiac CT can be reduced using prospective ECG-gating. Our experience shows that the resultant dose reduction can be optimised to a level equivalent to that of a non-gated study. This article reviews the different aspects of ECG-gating and the preferred technique for cardiac imaging in the young child (<15 kg). We summarize our evidenced based recommendations for readers, referencing recent articles and using our in house data, protocols and dose measurements discussing the various methods available for dose calculations and their inherent bias. (orig.)

  8. Cardiac CT for the assessment of chest pain: Imaging techniques and clinical results

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Hans-Christoph, E-mail: christoph.becker@med.uni-muenchen.de [Ludwig-Maximilians-University, Grosshadern Clinic, Department of Clinical Radiology, Marchioninistr. 15, 81377 Munich (Germany); Johnson, Thorsten [Ludwig-Maximilians-University, Grosshadern Clinic, Department of Clinical Radiology, Marchioninistr. 15, 81377 Munich (Germany)

    2012-12-15

    Immediate and efficient risk stratification and management of patients with acute chest pain in the emergency department is challenging. Traditional management of these patients includes serial ECG, laboratory tests and further on radionuclide perfusion imaging or ECG treadmill testing. Due to the advances of multi-detector CT technology, dedicated coronary CT angiography provides the potential to rapidly and reliably diagnose or exclude acute coronary artery disease. Life-threatening causes of chest pain, such as aortic dissection and pulmonary embolism can simultaneously be assessed with a single scan, sometimes referred to as “triple rule out” scan. With appropriate patient selection, cardiac CT can accurately diagnose heart disease or other sources of chest pain, markedly decrease health care costs, and reliably predict clinical outcomes. This article reviews imaging techniques and clinical results for CT been used to evaluate patients with chest pain entering the emergency department.

  9. Cardiac hybrid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gaemperli, Oliver [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University Hospital Zurich, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2014-05-15

    Hybrid cardiac single photon emission computed tomography (SPECT)/CT imaging allows combined assessment of anatomical and functional aspects of cardiac disease. In coronary artery disease (CAD), hybrid SPECT/CT imaging allows detection of coronary artery stenosis and myocardial perfusion abnormalities. The clinical value of hybrid imaging has been documented in several subsets of patients. In selected groups of patients, hybrid imaging improves the diagnostic accuracy to detect CAD compared to the single imaging techniques. Additionally, this approach facilitates functional interrogation of coronary stenoses and guidance with regard to revascularization procedures. Moreover, the anatomical information obtained from CT coronary angiography or coronary artery calcium scores (CACS) adds prognostic information over perfusion data from SPECT. The use of cardiac hybrid imaging has been favoured by the dissemination of dedicated hybrid systems and the release of dedicated image fusion software, which allow simple patient throughput for hybrid SPECT/CT studies. Further technological improvements such as more efficient detector technology to allow for low-radiation protocols, ultra-fast image acquisition and improved low-noise image reconstruction algorithms will be instrumental to further promote hybrid SPECT/CT in research and clinical practice. (orig.)

  10. Assessment of cardiac function using myocardial perfusion imaging technique on SPECT with 99mTc sestamibi

    Science.gov (United States)

    Gani, M. R. A.; Nazir, F.; Pawiro, S. A.; Soejoko, D. S.

    2016-03-01

    Suspicion on coronary heart disease can be confirmed by observing the function of left ventricle cardiac muscle with Myocardial Perfusion Imaging techniques. The function perfusion itself is indicated by the uptake of radiopharmaceutical tracer. The 31 patients were studied undergoing the MPI examination on Gatot Soebroto Hospital using 99mTc-sestamibi radiopharmaceutical with stress and rest conditions. Stress was stimulated by physical exercise or pharmacological agent. After two hours, the patient did rest condition on the same day. The difference of uptake percentage between stress and rest conditions will be used to determine the malfunction of perfusion due to ischemic or infarct. Degradation of cardiac function was determined based on the image-based assessment of five segments of left ventricle cardiac. As a result, 8 (25.8%) patients had normal myocardial perfusion and 11 (35.5%) patients suspected for having partial ischemia. Total ischemia occurred to 8 (25.8%) patients with reversible and irreversible ischemia and the remaining 4 (12.9%) patients for partial infarct with characteristic the percentage of perfusion ≤50%. It is concluded that MPI technique of image-based assessment on uptake percentage difference between stress and rest conditions can be employed to predict abnormal perfusion as complementary information to diagnose the cardiac function.

  11. Cardiac imaging. A multimodality approach

    Energy Technology Data Exchange (ETDEWEB)

    Thelen, Manfred [Johannes Gutenberg University Hospital, Mainz (Germany); Erbel, Raimund [University Hospital Essen (Germany). Dept. of Cardiology; Kreitner, Karl-Friedrich [Johannes Gutenberg University Hospital, Mainz (Germany). Clinic and Polyclinic for Diagnostic and Interventional Radiology; Barkhausen, Joerg (eds.) [University Hospital Schleswig-Holstein, Luebeck (Germany). Dept. of Radiology and Nuclear Medicine

    2009-07-01

    An excellent atlas on modern diagnostic imaging of the heart Written by an interdisciplinary team of experts, Cardiac Imaging: A Multimodality Approach features an in-depth introduction to all current imaging modalities for the diagnostic assessment of the heart as well as a clinical overview of cardiac diseases and main indications for cardiac imaging. With a particular emphasis on CT and MRI, the first part of the atlas also covers conventional radiography, echocardiography, angiography and nuclear medicine imaging. Leading specialists demonstrate the latest advances in the field, and compare the strengths and weaknesses of each modality. The book's second part features clinical chapters on heart defects, endocarditis, coronary heart disease, cardiomyopathies, myocarditis, cardiac tumors, pericardial diseases, pulmonary vascular diseases, and diseases of the thoracic aorta. The authors address anatomy, pathophysiology, and clinical features, and evaluate the various diagnostic options. Key features: - Highly regarded experts in cardiology and radiology off er image-based teaching of the latest techniques - Readers learn how to decide which modality to use for which indication - Visually highlighted tables and essential points allow for easy navigation through the text - More than 600 outstanding images show up-to-date technology and current imaging protocols Cardiac Imaging: A Multimodality Approach is a must-have desk reference for cardiologists and radiologists in practice, as well as a study guide for residents in both fields. It will also appeal to cardiac surgeons, general practitioners, and medical physicists with a special interest in imaging of the heart. (orig.)

  12. Dual-Energy Computed Tomography Gemstone Spectral Imaging: A Novel Technique to Determine Human Cardiac Calculus Composition.

    Science.gov (United States)

    Cheng, Ching-Li; Chang, Hsiao-Huang; Ko, Shih-Chi; Huang, Pei-Jung; Lin, Shan-Yang

    2016-01-01

    Understanding the chemical composition of any calculus in different human organs is essential for choosing the best treatment strategy for patients. The purpose of this study was to assess the capability of determining the chemical composition of a human cardiac calculus using gemstone spectral imaging (GSI) mode on a single-source dual-energy computed tomography (DECT) in vitro. The cardiac calculus was directly scanned on the Discovery CT750 HD FREEdom Edition using GSI mode, in vitro. A portable fiber-optic Raman spectroscopy was also applied to verify the quantitative accuracy of the DECT measurements. The results of spectral DECT measurements indicate that effective Z values in 3 designated positions located in this calculus were 15.02 to 15.47, which are close to values of 15.74 to 15.86, corresponding to the effective Z values of calcium apatite and hydroxyapatite. The Raman spectral data were also reflected by the predominant Raman peak at 960 cm for hydroxyapatite and the minor peak at 875 cm for calcium apatite. A potential single-source DECT with GSI mode was first used to examine the morphological characteristics and chemical compositions of a giant human cardiac calculus, in vitro. The CT results were consistent with the Raman spectral data, suggesting that spectral CT imaging techniques could be accurately used to diagnose and characterize the compositional materials in the cardiac calculus.

  13. Cardiac Imaging System

    Science.gov (United States)

    1990-01-01

    Although not available to all patients with narrowed arteries, balloon angioplasty has expanded dramatically since its introduction with an estimated further growth to 562,000 procedures in the U.S. alone by 1992. Growth has fueled demand for higher quality imaging systems that allow the cardiologist to be more accurate and increase the chances of a successful procedure. A major advance is the Digital Cardiac Imaging (DCI) System designed by Philips Medical Systems International, Best, The Netherlands and marketed in the U.S. by Philips Medical Systems North America Company. The key benefit is significantly improved real-time imaging and the ability to employ image enhancement techniques to bring out added details. Using a cordless control unit, the cardiologist can manipulate images to make immediate assessment, compare live x-ray and roadmap images by placing them side-by-side on monitor screens, or compare pre-procedure and post procedure conditions. The Philips DCI improves the cardiologist's precision by expanding the information available to him.

  14. Non-invasive cardiac imaging techniques and vascular tools for the assessment of cardiovascular disease in type 2 diabetes mellitus.

    Science.gov (United States)

    Djaberi, R; Beishuizen, E D; Pereira, A M; Rabelink, T J; Smit, J W; Tamsma, J T; Huisman, M V; Jukema, J W

    2008-09-01

    Cardiovascular disease is the major cause of mortality in type 2 diabetes mellitus. The criteria for the selection of those asymptomatic patients with type 2 diabetes who should undergo cardiac screening and the therapeutic consequences of screening remain controversial. Non-invasive techniques as markers of atherosclerosis and myocardial ischaemia may aid risk stratification and the implementation of tailored therapy for the patient with type 2 diabetes. In the present article we review the literature on the implementation of non-invasive vascular tools and cardiac imaging techniques in this patient group. The value of these techniques as endpoints in clinical trials and as risk estimators in asymptomatic diabetic patients is discussed. Carotid intima-media thickness, arterial stiffness and flow-mediated dilation are abnormal long before the onset of type 2 diabetes. These vascular tools are therefore most likely to be useful for the identification of 'at risk' patients during the early stages of atherosclerotic disease. The additional value of these tools in risk stratification and tailored therapy in type 2 diabetes remains to be proven. Cardiac imaging techniques are more justified in individuals with a strong clinical suspicion of advanced coronary heart disease (CHD). Asymptomatic myocardial ischaemia can be detected by stress echocardiography and myocardial perfusion imaging. The more recently developed non-invasive multi-slice computed tomography angiography is recommended for exclusion of CHD, and can therefore be used to screen asymptomatic patients with type 2 diabetes, but has the associated disadvantages of high radiation exposure and costs. Therefore, we propose an algorithm for the screening of asymptomatic diabetic patients, the first step of which consists of coronary artery calcium score assessment and exercise ECG.

  15. Identification of cardiac malformations in mice lacking Ptdsr using a novel high-throughput magnetic resonance imaging technique

    Directory of Open Access Journals (Sweden)

    Clarke Kieran

    2004-12-01

    Full Text Available Abstract Background Congenital heart defects are the leading non-infectious cause of death in children. Genetic studies in the mouse have been crucial to uncover new genes and signaling pathways associated with heart development and congenital heart disease. The identification of murine models of congenital cardiac malformations in high-throughput mutagenesis screens and in gene-targeted models is hindered by the opacity of the mouse embryo. Results We developed and optimized a novel method for high-throughput multi-embryo magnetic resonance imaging (MRI. Using this approach we identified cardiac malformations in phosphatidylserine receptor (Ptdsr deficient embryos. These included ventricular septal defects, double-outlet right ventricle, and hypoplasia of the pulmonary artery and thymus. These results indicate that Ptdsr plays a key role in cardiac development. Conclusions Our novel multi-embryo MRI technique enables high-throughput identification of murine models for human congenital cardiopulmonary malformations at high spatial resolution. The technique can be easily adapted for mouse mutagenesis screens and, thus provides an important new tool for identifying new mouse models for human congenital heart diseases.

  16. A Voluntary Breath-Hold Treatment Technique for the Left Breast With Unfavorable Cardiac Anatomy Using Surface Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gierga, David P., E-mail: dgierga@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States); Turcotte, Julie C. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Sharp, Gregory C. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States); Sedlacek, Daniel E.; Cotter, Christopher R. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Taghian, Alphonse G. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States)

    2012-12-01

    Purpose: Breath-hold (BH) treatments can be used to reduce cardiac dose for patients with left-sided breast cancer and unfavorable cardiac anatomy. A surface imaging technique was developed for accurate patient setup and reproducible real-time BH positioning. Methods and Materials: Three-dimensional surface images were obtained for 20 patients. Surface imaging was used to correct the daily setup for each patient. Initial setup data were recorded for 443 fractions and were analyzed to assess random and systematic errors. Real time monitoring was used to verify surface placement during BH. The radiation beam was not turned on if the BH position difference was greater than 5 mm. Real-time surface data were analyzed for 2398 BHs and 363 treatment fractions. The mean and maximum differences were calculated. The percentage of BHs greater than tolerance was calculated. Results: The mean shifts for initial patient setup were 2.0 mm, 1.2 mm, and 0.3 mm in the vertical, longitudinal, and lateral directions, respectively. The mean 3-dimensional vector shift was 7.8 mm. Random and systematic errors were less than 4 mm. Real-time surface monitoring data indicated that 22% of the BHs were outside the 5-mm tolerance (range, 7%-41%), and there was a correlation with breast volume. The mean difference between the treated and reference BH positions was 2 mm in each direction. For out-of-tolerance BHs, the average difference in the BH position was 6.3 mm, and the average maximum difference was 8.8 mm. Conclusions: Daily real-time surface imaging ensures accurate and reproducible positioning for BH treatment of left-sided breast cancer patients with unfavorable cardiac anatomy.

  17. Automated Segmentation of Cardiac Magnetic Resonance Images

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Nilsson, Jens Chr.; Grønning, Bjørn A.

    2001-01-01

    Magnetic resonance imaging (MRI) has been shown to be an accurate and precise technique to assess cardiac volumes and function in a non-invasive manner and is generally considered to be the current gold-standard for cardiac imaging [1]. Measurement of ventricular volumes, muscle mass and function...

  18. Multimodality imaging for resuscitated sudden cardiac death.

    Science.gov (United States)

    Chen, Yingming Amy; Deva, Djeven; Kirpalani, Anish; Prabhudesai, Vikram; Marcuzzi, Danny W; Graham, John J; Verma, Subodh; Jimenez-Juan, Laura; Yan, Andrew T

    2015-01-01

    We present a case that elegantly illustrates the utility of two novel noninvasive imaging techniques, computed tomography (CT) coronary angiography and cardiac MRI, in the diagnosis and management of a 27-year-old man with exertion-induced cardiac arrest caused by an anomalous right coronary artery. CT coronary angiography with 3D reformatting delineated the interarterial course of an anomalous right coronary artery compressed between the aorta and pulmonary artery, whereas cardiac MRI showed a small myocardial infarction in the right coronary artery territory not detected on echocardiography. This case highlights the value of novel multimodality imaging techniques in the risk stratification and management of patients with resuscitated cardiac arrest.

  19. Molecular nuclear cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Soo; Paeng, Jin Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2004-04-01

    Molecular nuclear cardiac imaging has included Tc-99m Annexin imaging to visualize myocardial apoptosis, but is now usually associated with gene therapy and cell-based therapy. Cardiac gene therapy was not successful so far but cardiac reporter gene imaging was made possible using HSV-TK (herpes simplex virus thymidine kinase) and F-18 FHBG (fluoro-hydroxymethylbutyl guanine) or I-124 FIAU (fluoro-deoxyiodo-arabino-furanosyluracil). Gene delivery was performed by needle injection with or without catheter guidance. TK expression did not last longer than 2 weeks in myocardium. Cell-based therapy of ischemic heart or failing heart looks promising, but biodistribution and differentiation of transplanted cells are not known. Reporter genes can be transfected to the stem/progenitor cells and cells containing these genes can be transplanted to the recipients using catheter-based purging or injection. Repeated imaging should be available and if promoter are varied to let express reporter transgenes, cellular (trans)differentiation can be studied. NIS (sodium iodide symporter) or D2R receptor genes are promising in this aspect.

  20. GAUSSIAN MIXTURE MODEL BASED LEVEL SET TECHNIQUE FOR AUTOMATED SEGMENTATION OF CARDIAC MR IMAGES

    Directory of Open Access Journals (Sweden)

    G. Dharanibai,

    2011-04-01

    Full Text Available In this paper we propose a Gaussian Mixture Model (GMM integrated level set method for automated segmentation of left ventricle (LV, right ventricle (RV and myocardium from short axis views of cardiacmagnetic resonance image. By fitting GMM to the image histogram, global pixel intensity characteristics of the blood pool, myocardium and background are estimated. GMM provides initial segmentation andthe segmentation solution is regularized using level set. Parameters for controlling the level set evolution are automatically estimated from the Bayesian inference classification of pixels. We propose a new speed function that combines edge and region information that stops the evolving level set at the myocardial boundary. Segmentation efficacy is analyzed qualitatively via visual inspection. Results show the improved performance of our of proposed speed function over the conventional Bayesian driven adaptive speed function in automatic segmentation of myocardium

  1. Cardiac Imaging in Heart Failure with Comorbidities.

    Science.gov (United States)

    Wong, Chiew; Chen, Sylvia; Iyngkaran, Pupalan

    2017-01-01

    Imaging modalities stand at the frontiers for progress in congestive heart failure (CHF) screening, risk stratification and monitoring. Advancements in echocardiography (ECHO) and Magnetic Resonance Imaging (MRI) have allowed for improved tissue characterizations, cardiac motion analysis, and cardiac performance analysis under stress. Common cardiac comorbidities such as hypertension, metabolic syndromes and chronic renal failure contribute to cardiac remodeling, sharing similar pathophysiological mechanisms starting with interstitial changes, structural changes and finally clinical CHF. These imaging techniques can potentially detect changes earlier. Such information could have clinical benefits for screening, planning preventive therapies and risk stratifying patients. Imaging reports have often focused on traditional measures without factoring these novel parameters. This review is aimed at providing a synopsis on how we can use this information to assess and monitor improvements for CHF with comorbidities.

  2. Cardiac tamponade (image)

    Science.gov (United States)

    Cardiac tamponade is a condition involving compression of the heart caused by blood or fluid accumulation in the space ... they cannot adequately fill or pump blood. Cardiac tamponade is an emergency condition that requires hospitalization.

  3. Evaluation of blood signal in cardiac MR imaging using ''black-blood'' technique

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Tadashi; Yamada, Takayuki; Tamura, Akihisa; Miyasaka, Kenji; Kohata, Minako; Ono, Chiaki; Kajima, Toshio; Ito, Katsuhide [Hiroshima Univ. (Japan). School of Medicine

    1999-10-01

    Degradation of image quality encountered in cardiac imaging has been attributed to flowing blood signal in the ventricular cavity. To solve this problem, a sequence in which a pair of selective and non-selective inversion pulse in used for a preparation pulse, has been proposed. However, even with this sequence we frequently observed the signal in the blood pool caused by blood itself rather than blood flow. In this article, we investigated the characteristics of those signals. Five healthy normal volunteers and 13 patients with ischemic heart disease were scanned with a 1.5-tesla MR imager. Breath-hold ECG gated fast spin echo with the pair of inversion pulses was performed to obtain cardiac images with T{sub 2} contrast. Typical blood signal appeared as inhomogeneous high intense band adjacent to inner surface of left ventricular apex. At ventricular base, no such signal was encountered even at akinetic myocardium in patients with old myocardial infarction. This signal was observed in all volunteers and 39% of patients. Decrease of TR resulting from tachycardia tended to reduce the blood signal in the left ventricular cavity. Thicker slice section and selective inversion pulse tended to increase the blood signal. Recognition of the signal is essential to differentiate true myocardial infarcts from blood signal, although bright blood imaging like gradient echo or thinner section can partly be helpful. (author)

  4. Optimal Technique in Cardiac Anesthesia Recovery

    NARCIS (Netherlands)

    Svircevic, V.

    2014-01-01

    The aim of this thesis is to evaluate fast-track cardiac anesthesia techniques and investigate their impact on postoperative mortality, morbidity and quality of life. The following topics will be discussed in the thesis. (1.) Is fast track cardiac anesthesia a safe technique for cardiac surgery?

  5. New concepts in cardiac imaging 1985

    Energy Technology Data Exchange (ETDEWEB)

    Pohost, G.M.; Higgins, C.B.; Morganroth, J.; Ritchie, J.L.; Schelbert, H.R.

    1985-01-01

    This book presents 5 specialists work on reviewing and editing the area of applications for cardiac imaging: Contents: Ultrasound Methods; 1. Echocardiography in Valvular Heart Disease, 2. Echocardiography in Ischemic Heart Disease, 3. Current Status of Doppler Ultrasound for Assessing Regurgitant Valvular Lesions, Radionuclide Methods; 4. Cardiovascular Nuclear Medicine, 5. Single Photon Emission Computed Tomography (SPECT): Validation and Application for Myocardial Perfusion Imaging, 6. Assessment of Regional Myocardial Perfusion with Positron Emission Tomography, 7. Assessment of Regional Myocardial Substrate Metabolism with Positron Emission Tomography, X-Ray Imaging Techniques; 8. The Evaluation of Left Ventricular Function in Ischemic Heart Disease by Digital Subtraction Angigraphy, 9. Digital Angiography in the Assessment of Coronary Artery Disease, 10. Cardiac Computed Tomography: Its Potential Use in Evaluation of Ischemic Heart Disease, Magnetic Methods; 11. NMR Evaluation of the Cardiovascular System, 12. Magnetic Resonance Imaging of the Heart.

  6. Nuclear imaging in cardiac amyloidosis

    Energy Technology Data Exchange (ETDEWEB)

    Glaudemans, A.W.J.M.; Slart, R.H.J.A.; Veltman, N.C.; Dierckx, R.A.J.O. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, P.O. Box 30001, Groningen (Netherlands); Zeebregts, C.J. [University Medical Center Groningen, Department of Surgery (Division of Vascular Surgery), Groningen (Netherlands); Tio, R.A. [University Medical Center Groningen, Department of Cardiology, Groningen (Netherlands); Hazenberg, B.P.C. [University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, Groningen (Netherlands)

    2009-04-15

    Amyloidosis is a disease characterized by depositions of amyloid in organs and tissues. It can be localized (in just one organ) or systemic. Cardiac amyloidosis is a debilitating disease and can lead to arrhythmias, deterioration of heart function and even sudden death. We reviewed PubMed/Medline, without time constraints, on the different nuclear imaging modalities that are used to visualize myocardial amyloid involvement. Several SPECT tracers have been used for this purpose. The results with these tracers in the evaluation of myocardial amyloidosis and their mechanisms of action are described. Most clinical evidence was found for the use of {sup 123}I-MIBG. Myocardial defects in MIBG activity seem to correlate well with impaired cardiac sympathetic nerve endings due to amyloid deposits. {sup 123}I-MIBG is an attractive option for objective evaluation of cardiac sympathetic level and may play an important role in the indirect measurement of the effect of amyloid myocardial infiltration. Other, less sensitive, options are {sup 99m}Tc-aprotinin for imaging amyloid deposits and perhaps {sup 99m}Tc-labelled phosphate derivatives, especially in the differential diagnosis of the aetiology of cardiac amyloidosis. PET tracers, despite the advantage of absolute quantification and higher resolution, are not yet well evaluated for the study of cardiac amyloidosis. Because of these advantages, there is still the need for further research in this field. (orig.)

  7. Is it time for cardiac innervation imaging?

    Energy Technology Data Exchange (ETDEWEB)

    Knuuti, J. [Turku Univ., Turku (Finland) Turku PET Center; Sipola, P. [Kuopio Univ., Kuopio (Finland)

    2005-03-01

    The autonomic nervous system plays an important role in the regulation of cardiac function and the regional distribution of cardiac nerve terminals can be visualized using scintigraphic techniques. The most commonly used tracer is iodine-123-metaiodobenzylguanidine (MIBG) but C-11-hydroxyephedrine has also been used with PET. When imaging with MIBG, the ratio of heart-to-mediastinal counts is used as an index of tracer uptake, and regional distribution is also assessed from tomographic images. The rate of clearance of the tracer can also be measured and indicates the function of the adrenergic system. Innervation imaging has been applied in patients with susceptibility to arrythmias, coronary artery disease, hypertrophic and dilated cardiomyopathy and anthracycline induced cardiotoxicity. Abnormal adrenergic innervation or function appear to exist in many pathophysiological conditions indicating that sympathetic neurons are very susceptible to damage. Abnormal findings in innervation imaging also appear to have significant prognostic value especially in patients with cardiomyopathy. Recently, it has also been shown that innervation imaging can monitor drug-induced changes in cardiac adrenergic activity. Although innervation imaging holds great promise for clinical use, the method has not received wider clinical acceptance. Larger randomized studies are required to confirm the value of innervation imaging in various specific indications.

  8. Nuclear cardiac imaging: Principles and applications

    Energy Technology Data Exchange (ETDEWEB)

    Iskandrian, A.S.

    1987-01-01

    This book is divided into 11 chapters. The first three provide a short description of the instrumentation, radiopharmaceuticals, and imaging techniques used in nuclear cardiology. Chapter 4 discusses exercise testing. Chapter 5 gives the theory, technical aspects, and interpretations of thallium-201 myocardial imaging and radionuclide ventriculography. The remaining chapters discuss the use of these techniques in patients with coronary artery disease, acute myocardial infarction, valvular heart disease, and other forms of cardiac disease. The author intended to emphasize the implications of nuclear cardiology procedures on patient care management and to provide a comprehensive bibliography.

  9. An integrated bioimpedance—ECG gating technique for respiratory and cardiac motion compensation in cardiac PET

    Science.gov (United States)

    Koivumäki, Tuomas; Nekolla, Stephan G.; Fürst, Sebastian; Loher, Simone; Vauhkonen, Marko; Schwaiger, Markus; Hakulinen, Mikko A.

    2014-10-01

    Respiratory motion may degrade image quality in cardiac PET imaging. Since cardiac PET studies often involve cardiac gating by ECG, a separate respiratory monitoring system is required increasing the logistic complexity of the examination, in case respiratory gating is also needed. Thus, we investigated the simultaneous acquisition of both respiratory and cardiac gating signals using II limb lead mimicking electrode configuration during cardiac PET scans of 11 patients. In addition to conventional static and ECG-gated images, bioimpedance technique was utilized to generate respiratory- and dual-gated images. The ability of the bioimpedance technique to monitor intrathoracic respiratory motion was assessed estimating cardiac displacement between end-inspiration and -expiration. The relevance of dual gating was evaluated in left ventricular volume and myocardial wall thickness measurements. An average 7.6  ±  3.3 mm respiratory motion was observed in the study population. Dual gating showed a small but significant increase (4 ml, p = 0.042) in left ventricular myocardial volume compared to plain cardiac gating. In addition, a thinner myocardial wall was observed in dual-gated images (9.3  ±  1.3 mm) compared to cardiac-gated images (11.3  ±  1.3 mm, p = 0.003). This study shows the feasibility of bioimpedance measurements for dual gating in a clinical setting. The method enables simultaneous acquisition of respiratory and cardiac gating signals using a single device with standard ECG electrodes.

  10. Cardiac imaging in valvular heart disease.

    Science.gov (United States)

    Choo, W S; Steeds, R P

    2011-12-01

    The aim of this article is to provide a perspective on the relative importance and contribution of different imaging modalities in patients with valvular heart disease. Valvular heart disease is increasing in prevalence across Europe, at a time when the clinical ability of physicians to diagnose and assess severity is declining. Increasing reliance is placed on echocardiography, which is the mainstay of cardiac imaging in valvular heart disease. This article outlines the techniques used in this context and their limitations, identifying areas in which dynamic imaging with cardiovascular magnetic resonance and multislice CT are expanding.

  11. Cardiac imaging: does radiation matter?

    Science.gov (United States)

    Einstein, Andrew J.; Knuuti, Juhani

    2012-01-01

    The use of ionizing radiation in cardiovascular imaging has generated considerable discussion. Radiation should not be considered in isolation, but rather in the context of a careful examination of the benefits, risks, and costs of cardiovascular imaging. Such consideration requires an understanding of some fundamental aspects of the biology, physics, epidemiology, and terminology germane to radiation, as well as principles of radiological protection. This paper offers a concise, contemporary perspective on these areas by addressing pertinent questions relating to radiation and its application to cardiac imaging. PMID:21828062

  12. Integrated imaging of cardiac anatomy, physiology, and viability.

    Science.gov (United States)

    Arrighi, James A

    2009-03-01

    Technologic developments in imaging will have a significant impact on cardiac imaging over the next decade. These advances will permit more detailed assessment of cardiac anatomy, complex assessment of cardiac physiology, and integration of anatomic and physiologic data. The distinction between anatomic and physiologic imaging is important. For assessing patients with known or suspected coronary artery disease, physiologic and anatomic imaging data are complementary. The strength of anatomic imaging rests in its ability to detect the presence of disease, whereas physiologic imaging techniques assess the impact of disease, such as whether a coronary atherosclerotic lesion limits myocardial blood flow. Research indicates that physiologic data are more prognostically important than anatomic data, but both may be important in patient management decisions. Integrated cardiac imaging is an evolving field, with many potential indications. These include assessment of coronary stenosis, myocardial viability, anatomic and physiologic characterization of atherosclerotic plaque, and advanced molecular imaging.

  13. Evaluation of Cardiac Mitochondrial Function by a Nuclear Imaging Technique using Technetium-99m-MIBI Uptake Kinetics

    Directory of Open Access Journals (Sweden)

    Shinro Matsuo

    2013-04-01

    Full Text Available Mitochondria play an important role in energy production for the cell. The proper function of a myocardial cell largely depends on the functional capacity of the mitochondria. Therefore it is necessary to establish a novel and reliable method for a non-invasive assessment of mitochondrial function and metabolism in humans. Although originally designed for evaluating myocardial perfusion, 99mTc-MIBI can be also used to evaluate cardiac mitochondrial function. In a clinical study on ischemic heart disease, reverse redistribution of 99mTc-MIBI was evident after direct percutaneous transluminal coronary angioplasty. The presence of increased washout of 99mTc-MIBI was associated with the infarct-related artery and preserved left ventricular function. In non-ischemic cardiomyopathy, an increased washout rate of 99mTc-MIBI, which correlated inversely with left ventricular ejection fraction, was observed in patients with congestive heart failure. Increased 99mTc-MIBI washout was also observed in mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS and in doxorubicin-induced cardiomyopathy. Noninvasive assessment of cardiac mitochondrial function could be greatly beneficial in monitoring possible cardiotoxic drug use and in the evaluation of cardiac damage in clinical medicine.

  14. Antimyosin imaging in cardiac transplant rejection

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.L.; Cannon, P.J. (Department of Medicine, College of Physicians and Surgeons, Columbia University, New York (United States))

    1991-09-01

    Fab fragments of antibodies specific for cardiac myosin have been labeled with indium-111 and injected intravenously into animals and into patients with heart transplants. The antibodies, developed by Khaw, Haber, and co-workers, localize in cardiac myocytes that have been damaged irreversibly by ischemia, myocarditis, or the rejection process. After clearance of the labeled antibody from the cardiac blood pool, planar imaging or single photon emission computed tomography is performed. Scintigrams reveal the uptake of the labeled antimyosin in areas of myocardium undergoing transplant rejection. In animal studies, the degree of antimyosin uptake appears to correlate significantly with the degree of rejection assessed at necropsy. In patients, the correlation between scans and pathologic findings from endomyocardial biopsy is not as good, possibly because of sampling error in the endomyocardial biopsy technique. The scan results at 1 year correlate with either late complications (positive) or benign course (negative). Current limitations of the method include slow blood clearance, long half-life of indium-111, and hepatic uptake. Overcoming these limitations represents a direction for current research. It is possible that from these efforts a noninvasive approach to the diagnosis and evaluation of cardiac transplantation may evolve that will decrease the number of endomyocardial biopsies required to evaluate rejection. This would be particularly useful in infants and children. 31 references.

  15. Automated detection of cardiac phase from intracoronary ultrasound image sequences.

    Science.gov (United States)

    Sun, Zheng; Dong, Yi; Li, Mengchan

    2015-01-01

    Intracoronary ultrasound (ICUS) is a widely used interventional imaging modality in clinical diagnosis and treatment of cardiac vessel diseases. Due to cyclic cardiac motion and pulsatile blood flow within the lumen, there exist changes of coronary arterial dimensions and relative motion between the imaging catheter and the lumen during continuous pullback of the catheter. The action subsequently causes cyclic changes to the image intensity of the acquired image sequence. Information on cardiac phases is implied in a non-gated ICUS image sequence. A 1-D phase signal reflecting cardiac cycles was extracted according to cyclical changes in local gray-levels in ICUS images. The local extrema of the signal were then detected to retrieve cardiac phases and to retrospectively gate the image sequence. Results of clinically acquired in vivo image data showed that the average inter-frame dissimilarity of lower than 0.1 was achievable with our technique. In terms of computational efficiency and complexity, the proposed method was shown to be competitive when compared with the current methods. The average frame processing time was lower than 30 ms. We effectively reduced the effect of image noises, useless textures, and non-vessel region on the phase signal detection by discarding signal components caused by non-cardiac factors.

  16. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between v...

  17. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...

  18. Comparison of cardiac output measurement techniques

    DEFF Research Database (Denmark)

    Espersen, K; Jensen, E W; Rosenborg, D;

    1995-01-01

    Simultaneously measured cardiac output obtained by thermodilution (TD), transcutaneous suprasternal ultrasonic Doppler (DOP), CO2-rebreathing (CR) and the direct Fick method (FI) were compared in eleven healthy subjects in a supine position (SU), a sitting position (SI), and during sitting exercise...... at a workload of 50 W (EX). The agreements between the techniques, two by two, were expressed as the bias calculated as the averaged differences between the techniques. Precision was expressed as the standard deviation of the bias. The overall agreement (bias +/- precision) between TD, DOP and CR respectively...... and CR, respectively, and TD were 2.5 +/- 2.2 and 2.6 +/- 1.6 l/min. The overall agreement between DOP and CR was 0.1 +/- 1.6 l/min. In conclusion, TD overestimated cardiac output compared to the other techniques and the poor agreement has to be taken into consideration especially in measures of low...

  19. Imaging techniques in microbiology.

    Science.gov (United States)

    Fung, D C; Theriot, J A

    1998-06-01

    Recent advances in optical imaging have dramatically expanded the capabilities of the light microscope and its usefulness in microbiology research. Some of these advances include improved fluorescent probes, better cameras, new techniques such as confocal and deconvolution microscopy, and the use of computers in imaging and image analysis. These new technologies have now been applied to microbiological problems with resounding success.

  20. Ultrasound Imaging in Teaching Cardiac Physiology

    Science.gov (United States)

    Johnson, Christopher D.; Montgomery, Laura E. A.; Quinn, Joe G.; Roe, Sean M.; Stewart, Michael T.; Tansey, Etain A.

    2016-01-01

    This laboratory session provides hands-on experience for students to visualize the beating human heart with ultrasound imaging. Simple views are obtained from which students can directly measure important cardiac dimensions in systole and diastole. This allows students to derive, from first principles, important measures of cardiac function, such…

  1. Advances in cardiac magnetic resonance imaging of congenital heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Driessen, Mieke M.P. [University of Utrecht, University Medical Center Utrecht, Department of Radiology, PO Box 85500, Utrecht (Netherlands); University of Utrecht, University Medical Center Utrecht, Department of Cardiology, PO Box 85500, Utrecht (Netherlands); The Interuniversity Cardiology Institute of the Netherlands (ICIN) - Netherlands Heart Institute, PO Box 19258, Utrecht (Netherlands); Breur, Johannes M.P.J. [Wilhelmina Children' s Hospital, University Medical Center Utrecht, Department of Pediatric Cardiology, PO Box 85500, Utrecht (Netherlands); Budde, Ricardo P.J.; Oorschot, Joep W.M. van; Leiner, Tim [University of Utrecht, University Medical Center Utrecht, Department of Radiology, PO Box 85500, Utrecht (Netherlands); Kimmenade, Roland R.J. van; Sieswerda, Gertjan Tj [University of Utrecht, University Medical Center Utrecht, Department of Cardiology, PO Box 85500, Utrecht (Netherlands); Meijboom, Folkert J. [University of Utrecht, University Medical Center Utrecht, Department of Cardiology, PO Box 85500, Utrecht (Netherlands); Wilhelmina Children' s Hospital, University Medical Center Utrecht, Department of Pediatric Cardiology, PO Box 85500, Utrecht (Netherlands)

    2015-01-01

    Due to advances in cardiac surgery, survival of patients with congenital heart disease has increased considerably during the past decades. Many of these patients require repeated cardiovascular magnetic resonance imaging to assess cardiac anatomy and function. In the past decade, technological advances have enabled faster and more robust cardiovascular magnetic resonance with improved image quality and spatial as well as temporal resolution. This review aims to provide an overview of advances in cardiovascular magnetic resonance hardware and acquisition techniques relevant to both pediatric and adult patients with congenital heart disease and discusses the techniques used to assess function, anatomy, flow and tissue characterization. (orig.)

  2. Nuclear Imaging of a Cardiac Paraganglioma.

    Science.gov (United States)

    Almenieir, Nada; Karls, Shawn; Derbekyan, Vilma; Lisbona, Robert

    2017-09-01

    We report a case of a cardiac paraganglioma in the right atrioventricular groove in which the use of different nuclear medicine studies aided in the diagnosis. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  3. Cardiac magnetic resonance imaging: patient safety considerations.

    Science.gov (United States)

    Giroletti, Elio; Corbucci, Giorgio

    Magnetic Resonance Imaging (MRI) is widely used in medicine. In cardiology, it is used to assess congenital or acquired diseases of the heat: and large vessels. Unless proper precautions are taken, it is generally advisable to avoid using this technique in patients with implanted electronic stimulators, such as pacemakers and defibrillators, on account of the potential risk of inducing electrical currents on the endocardial catheters, since these currents might stimulate the heart at a high frequency, thereby triggering dangerous arrhythmias. In addition to providing some basic information on pacemakers, defibrillators and MRI, and on the possible physical phenomena that may produce harmful effects, the present review examines the indications given in the literature, with particular reference to coronary stents, artificial heart valves and implantable cardiac stimulators.

  4. Cardiac stress MR imaging with dobutamine

    Energy Technology Data Exchange (ETDEWEB)

    Strach, K.; Meyer, C.; Schild, H.; Sommer, T. [University of Bonn, Department of Radiology, Bonn (Germany)

    2006-12-15

    Stress testing for detection of ischemia-induced wall-motion abnormalities has become a mainstay for noninvasive diagnosis and risk stratification of patients with suspected coronary artery disease (CAD). Recent technical developments in magnetic resonance imaging (MRI), including the adoption of balanced steady-state free precession (b-SSFP) sequences - preferentially in combination with parallel imaging techniques - have led to a significant reduction of imaging time and improved patient safety. The stress protocol includes application of high-dose dobutamine (up to 40 {mu}g/kg/min) combined with fractionated atropine (up to a maximal dose of 1.0 mg). High-dose dobutamine stress MRI revealed good sensitivity (83-96%) and specificity (80-100%) for detection of significant CAD. Myocardial tagging methods have been shown to further increase sensitivity for CAD detection. Severe complications (sustained tachycardia, ventricular fibrillation, myocardial infarction, cardiogenic shock) are rare but may be expected in 0.1-0.3% of patients. Dobutamine stress MRI has emerged as a reliable and safe clinical alternative for noninvasive assessment of CAD. New pulse sequences, such as real-time imaging, might obviate the need for breath holding and electrocardiogram (ECG) triggering in patients with severe dyspnoea and cardiac arrhythmias, which may further improve the clinical impact and acceptance of stress MRI in the future. (orig.)

  5. Functional cardiac imaging by random access microscopy

    Directory of Open Access Journals (Sweden)

    Claudia eCrocini

    2014-10-01

    Full Text Available Advances in the development of voltage sensitive dyes and Ca2+ sensors in combination with innovative microscopy techniques allowed researchers to perform functional measurements with an unprecedented spatial and temporal resolution. At the moment, one of the shortcomings of available technologies is their incapability of imaging multiple fast phenomena while controlling the biological determinants involved. In the near future, ultrafast deflectors can be used to rapidly scan laser beams across the sample, performing optical measurements of action potential and Ca2+ release from multiple sites within cardiac cells and tissues. The same scanning modality could also be used to control local Ca2+ release and membrane electrical activity by activation of caged compounds and light-gated ion channels. With this approach, local Ca2+ or voltage perturbations could be induced, simulating arrhythmogenic events, and their impact on physiological cell activity could be explored. The development of this optical methodology will provide fundamental insights in cardiac disease, boosting new therapeutic strategies, and, more generally, it will represent a new approach for the investigation of the physiology of excitable cells.

  6. Dynamic NMR cardiac imaging in a piglet

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, M.; Rzedzian, R.; Mansfield, P. (Nottingham Univ. (UK). Dept. of Physics); Coupland, R.E. (Nottingham Univ. (UK). Queen' s Medical Centre)

    1983-12-01

    NMR echo-planar imaging (EPI) has been used in a real-time mode to visualise the thorax of a live piglet. Moving pictures are available on an immediate image display system which demonstrates dynamic cardiac function. Frame rates vary from one per cardiac cycle in a prospective stroboscopic mode with immediate visual output to a maximum of 10 frames per second yielding up to six looks in one piglet heart cycle, but using a visual playback mode. A completely new system has been used to obtain these images, features of which include a probe assembly with 22 cm access and an AP400 array processor for real-time data processing.

  7. Cardiac imaging in infectious endocarditis

    DEFF Research Database (Denmark)

    Bruun, Niels Eske; Habib, Gilbert; Thuny, Franck;

    2014-01-01

    Infectious endocarditis remains both a diagnostic and a treatment challenge. A positive outcome depends on a rapid diagnosis, accurate risk stratification, and a thorough follow-up. Imaging plays a key role in each of these steps and echocardiography remains the cornerstone of the methods in use....... The technique of both transthoracic echocardiography and transoesophageal echocardiography has been markedly improved across the last decades and most recently three-dimensional real-time echocardiography has been introduced in the management of endocarditis patients. Echocardiography depicts structural changes...... with conventional CT (SPECT/CT). Of these methods, (18)F-FDG PET-CT carries the best promise for a future role in endocarditis. But there are distinct limitations with both SPECT/CT and (18)F-FDG PET-CT which should not be neglected. MRI and spiral CT are methods primarily used in the search for extra cardial...

  8. Imaging technique and current status of valvular heart disease using cardiac MRI; Untersuchungstechniken und Stellenwert der MRT bei der Diagnostik von Herzklappenerkrankungen

    Energy Technology Data Exchange (ETDEWEB)

    Lotz, J.; Sohns, J.M. [Universitaetsmedizin Goettingen, Georg-August-Universitaet, Institut fuer Diagnostische und Interventionelle Radiologie, Goettingen (Germany)

    2013-10-15

    The main indications for cardiac magnetic resonance imaging (MRI) in the evaluation of valvular heart disease are pathologies of the aortic and pulmonary valve. For mitral and tricuspid valve pathologies MRI is not the first line modality as these are usually well visualized by echocardiography. The advantages of MRI in valvular heart disease are a high reliability in the evaluation of ventricular volumes and function as well as the assessment of the perivalvular arterial or atrial structures. This reliability and the limitless access to any imaging plane partially compensates for the lower temporal and spatial resolution in comparison to echocardiography. In patients with congenital heart disease, cardiac MRI is established as a valuable diagnostic tool in daily clinical management, especially for the evaluation of pulmonary valve defects. Nevertheless, echocardiography remains the first-line diagnostic imaging tool for the foreseeable future. (orig.) [German] Die Untersuchung der Herzklappen in der MRT umfasst derzeit v. a. die Aorten- und Pulmonalisklappe. Pathologien der atrioventrikulaeren Klappen bilden demgegenueber nur selten die zentrale Fragestellung einer kardialen MRT-Untersuchung, da diese normalerweise einer echokardiographischen Untersuchung gut zugaenglich sind. Die Staerke der MRT ist die hohe Zuverlaessigkeit, mit der neben der Klappenmorphologie und -funktion die Funktionsparameter des jeweiligen Ventrikels und die Morphologie der nachgeschalteten Arterien bestimmt werden koennen. Dadurch kann die MRT die prinzipielle Schwaeche in der Orts- und Zeitaufloesung gegenueber der Echokardiographie teilweise kompensieren. Bei Patienten mit kongenitalen Herzvitien ist die MRT-basierte Klappendiagnostik fester Bestandteil des klinischen Managements. Das gilt besonders fuer die Evaluation der Pulmonalisklappe. Die Echokardiographie bleibt absehbar die Modalitaet der ersten Wahl fuer die Klappendiagnostik am Herzen. (orig.)

  9. Scalp imaging techniques

    Science.gov (United States)

    Otberg, Nina; Shapiro, Jerry; Lui, Harvey; Wu, Wen-Yu; Alzolibani, Abdullateef; Kang, Hoon; Richter, Heike; Lademann, Jürgen

    2017-05-01

    Scalp imaging techniques are necessary tools for the trichological practice and for visualization of permeation, penetration and absorption processes into and through the scalp and for the research on drug delivery and toxicology. The present letter reviews different scalp imaging techniques and discusses their utility. Moreover, two different studies on scalp imaging techniques are presented in this letter: (1) scalp imaging with phototrichograms in combination with laser scanning microscopy, and (2) follicular measurements with cyanoacrylate surface replicas and light microscopy in combination with laser scanning microscopy. The experiments compare different methods for the determination of hair density on the scalp and different follicular measures. An average terminal hair density of 132 hairs cm-2 was found in 6 Caucasian volunteers and 135 hairs cm-2 in 6 Asian volunteers. The area of the follicular orifices accounts to 16.3% of the skin surface on average measured with laser scanning microscopy images. The potential volume of the follicular infundibulum was calculated based on the laser scanning measurements and is found to be 4.63 mm3 per cm2 skin on average. The experiments show that hair follicles are quantitatively relevant pathways and potential reservoirs for topically applied drugs and cosmetics.

  10. Cardiac imaging in patients with chronic liver disease.

    Science.gov (United States)

    Wiese, Signe; Hove, Jens D; Møller, Søren

    2017-07-01

    Cirrhotic cardiomyopathy (CCM) is characterized by an impaired contractile response to stress, diastolic dysfunction and the presence of electrophysiological abnormalities, and it may be diagnosed at rest in some patients or demasked by physiological or pharmacological stress. CCM seems to be involved in the development of hepatic nephropathy and is associated with an impaired survival. In the field of cardiac imaging, CCM is not yet a well-characterized entity, hence various modalities of cardiac imaging have been applied. Stress testing with either physiologically or pharmacologically induced circulatory stress has been used to assess systolic dysfunction. Whereas echocardiography with tissue Doppler is by far the most preferred method to detect diastolic dysfunction with measurement of E/A- and E/E'-ratio. In addition, echocardiography may also possess the potential to evaluate systolic dysfunction at rest by application of new myocardial strain techniques. Experience with other modalities such as cardiac magnetic resonance imaging and cardiac computed tomography is limited. Future studies exploring these imaging modalities are necessary to characterize and monitor the cardiac changes in cirrhotic patients. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  11. Late gadolinium enhancement cardiac imaging on a 3T scanner with parallel RF transmission technique: prospective comparison of 3D-PSIR and 3D-IR

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Anthony [Nouvel Hopital Civil, Strasbourg University Hospital, Radiology Department, Strasbourg Cedex (France); Nouvel Hopital Civil, Service de Radiologie, Strasbourg Cedex (France); Caspar, Thibault [Nouvel Hopital Civil, Strasbourg University Hospital, Cardiology Department, Strasbourg Cedex (France); Schaeffer, Mickael [Nouvel Hopital Civil, Strasbourg University Hospital, Public Health and Biostatistics Department, Strasbourg Cedex (France); Labani, Aissam; Jeung, Mi-Young; El Ghannudi, Soraya; Roy, Catherine [Nouvel Hopital Civil, Strasbourg University Hospital, Radiology Department, Strasbourg Cedex (France); Ohana, Mickael [Nouvel Hopital Civil, Strasbourg University Hospital, Radiology Department, Strasbourg Cedex (France); Universite de Strasbourg / CNRS, UMR 7357, iCube Laboratory, Illkirch (France)

    2016-06-15

    To qualitatively and quantitatively compare different late gadolinium enhancement (LGE) sequences acquired at 3T with a parallel RF transmission technique. One hundred and sixty participants prospectively enrolled underwent a 3T cardiac MRI with 3 different LGE sequences: 3D Phase-Sensitive Inversion-Recovery (3D-PSIR) acquired 5 minutes after injection, 3D Inversion-Recovery (3D-IR) at 9 minutes and 3D-PSIR at 13 minutes. All LGE-positive patients were qualitatively evaluated both independently and blindly by two radiologists using a 4-level scale, and quantitatively assessed with measurement of contrast-to-noise ratio and LGE maximal surface. Statistical analyses were calculated under a Bayesian paradigm using MCMC methods. Fifty patients (70 % men, 56yo ± 19) exhibited LGE (62 % were post-ischemic, 30 % related to cardiomyopathy and 8 % post-myocarditis). Early and late 3D-PSIR were superior to 3D-IR sequences (global quality, estimated coefficient IR > early-PSIR: -2.37 CI = [-3.46; -1.38], prob(coef > 0) = 0 % and late-PSIR > IR: 3.12 CI = [0.62; 4.41], prob(coef > 0) = 100 %), LGE surface estimated coefficient IR > early-PSIR: -0.09 CI = [-1.11; -0.74], prob(coef > 0) = 0 % and late-PSIR > IR: 0.96 CI = [0.77; 1.15], prob(coef > 0) = 100 %. Probabilities for late PSIR being superior to early PSIR concerning global quality and CNR were over 90 %, regardless of the aetiological subgroup. In 3T cardiac MRI acquired with parallel RF transmission technique, 3D-PSIR is qualitatively and quantitatively superior to 3D-IR. (orig.)

  12. ECG门控自动毫安技术在MSCT冠状动脉成像中的应用价值%The Application of ECG-gated Automatic mA Modulation Technique in the MSCT Cardiac Imaging

    Institute of Scientific and Technical Information of China (English)

    徐同江; 刘建新; 李坚

    2011-01-01

    目的:研究总结ECG门控自动毫安调制技术在MSCT冠状动脉成像中的应用价值,探讨心脏CT低剂量技术的初步经验和方法.方法:患者60例,其中30例随机使用固定毫安扫描,另30例使用ECG门控自动毫安调制技术扫描.以64排螺旋CT行冠状动脉成像,扫描前进行心率控制措施,使用后门控数据采集、容积再现(VR)、最大密度投影(MIP)、曲面重建(CPR);以MIP图像评价冠状动脉管腔;以VR图像5级记分法评价图像质量.结果:60例患者均成功获得冠状动脉影像.自动毫安组较固定毫安组平均剂量降低10.46%,而图像质量两组一致,无统计学差异.ECG门控自动毫安技术在保证图像质量的前提下能有效降低患者平均辐射剂量.结论:ECG门控自动毫安技术能有效降低患者射线剂量,只要准备措施有效及方法得当,就能够用低剂量完成64排MSCT冠状动脉检查,并可获得较满意的效果.%Objective: To research and summarize the application value of the ECG-gated automatic mA modulation technique in the cardiac visualization, and to investigate the initial experience and methods of the low dose using the process of 64-MSCT cardiac imaging. Methods: Sixty patients devided into two groups randomly,thirty patients who underwent the examination of MSCT cardiac imaging with fixed-ma, the other patients with ECG-gated automatic-ma technique. To control heart rate (HR) before examination, and underwent the post-processing with volume rendering (VR), maximum intensity projection (MIP), multiplanar reconstruction (MPR). Evaluated the cardiac vessel with the MIP imaging, and recorded the quality of imaging using the 5 grades.Results: Acquired cardiac imaging of all patients successfiully. Compared to the group of the using fixed-ma, the group of using ECG automatic-ma reduced average dosage 10.46%, and two groups had identical imaging quality.There was not significant difference between them. Conclusion: With the

  13. Cardiac nonrigid motion analysis from image sequences

    Institute of Scientific and Technical Information of China (English)

    LIU Huafeng

    2006-01-01

    Noninvasive estimation of the soft tissue kinematics properties from medical image sequences has many important clinical and physiological implications, such as the diagnosis of heart diseases and the understanding of cardiac mechanics. In this paper, we present a biomechanics based strategy, framed as a priori constraints for the ill-posed motion recovery problema, to realize estimation of the cardiac motion and deformation parameters. By constructing the heart dynamics system equations from biomechanics principles, we use the finite element method to generate smooth estimates.of heart kinematics throughout the cardiac cycle. We present the application of the strategy to the estimation of displacements and strains from in vivo left ventricular magnetic resonance image sequence.

  14. Cardiac tumors: optimal cardiac MR sequences and spectrum of imaging appearances.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2012-02-01

    OBJECTIVE: This article reviews the optimal cardiac MRI sequences for and the spectrum of imaging appearances of cardiac tumors. CONCLUSION: Recent technologic advances in cardiac MRI have resulted in the rapid acquisition of images of the heart with high spatial and temporal resolution and excellent myocardial tissue characterization. Cardiac MRI provides optimal assessment of the location, functional characteristics, and soft-tissue features of cardiac tumors, allowing accurate differentiation of benign and malignant lesions.

  15. Postmortem cardiac imaging in fetuses and children

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Andrew M. [Great Ormond Street Hospital for Children NHS Foundation Trust, Cardiorespiratory Division, Level 7, Old Nurses Home, London (United Kingdom); UCL Institute of Cardiovascular Science, London (United Kingdom); Arthurs, Owen J. [Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Radiology, London (United Kingdom); UCL Institute of Cardiovascular Science, London (United Kingdom); Sebire, Neil J. [UCL Institute of Cardiovascular Science, London (United Kingdom); Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Histopathology, London (United Kingdom)

    2015-04-01

    Fetal and pediatric cardiac autopsies have a crucial role in the counseling of parents with regard to both the cause of death of their child and the implications of such findings for future pregnancies, as well as for quality assurance of antenatal screening programs and antemortem diagnostic procedures. Postmortem imaging allows an opportunity to investigate the heart in situ prior to dissection, and both postmortem CT and postmortem MRI have shown excellent accuracy in detecting the majority of clinically significant cardiac lesions in the perinatal and pediatric population. As less-invasive autopsy becomes increasingly popular, clinical guidelines for maximal diagnostic yield in specific circumstances can be developed. (orig.)

  16. EANM/ESC guidelines for radionuclide imaging of cardiac function

    DEFF Research Database (Denmark)

    Hesse, B.; Lindhardt, T.B.; Acampa, W.;

    2008-01-01

    radionuclide ventriculography, gated myocardial perfusion scintigraphy, gated PET, and studies with non-imaging devices for the evaluation of cardiac function. The items covered are presented in 11 sections: clinical indications, radiopharmaceuticals and dosimetry, study acquisition, RV EF, LV EF, LV volumes......Radionuclide imaging of cardiac function represents a number of well-validated techniques for accurate determination of right (RV) and left ventricular (LV) ejection fraction (EF) and LV volumes. These first European guidelines give recommendations for how and when to use first-pass and equilibrium......, LV regional function, LV diastolic function, reports and image display and reference values from the literature of RVEF, LVEF and LV volumes. If specific recommendations given cannot be based on evidence from original, scientific studies, referral is given to "prevailing or general consensus...

  17. Clinical application of l-123 MlBG cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young [College of Medicine, Donga Univ., Busan (Korea, Republic of)

    2004-10-01

    Cardiac neurotransmission imaging allows in vivo assessment of presynaptic reuptake, neurotransmitter storage and postsynaptic receptors. Among the various neurotransmitter, I-123 MlBG is most available and relatively well-established. Metaiodobenzylguanidine (MIBG) is an analogue of the false neurotransmitter guanethidine. It is taken up to adrenergic neurons by uptake-1 mechanism as same as norepinephrine. As tagged with I-123, it can be used to image sympathetic function in various organs including heart with planar or SPECT techniques. I-123 MIBG imaging has a unique advantage to evaluate myocardial neuronal activity in which the heart has no significant structural abnormality or even no functional derangement measured with other conventional examination. In patients with cardiomyopathy and heart failure, this imaging has most sensitive technique to predict prognosis and treatment response of betablocker or ACE inhibitor. In diabetic patients, it allow very early detection of autonomic neuropathy. In patients with dangerous arrhythmia such as ventricular tachycardia or fibrillation, MIBG imaging may be only an abnormal result among various exams. In patients with ischemic heart disease, sympathetic derangement may be used as the method of risk stratification. In heart transplanted patients, sympathetic reinnervation is well evaluated. Adriamycin-induced cardiotoxicity is detected earlier than ventricular dysfunction with sympathetic dysfunction. Neurodegenerative disorder such as Parkinson's disease or dementia with Lewy bodies has also cardiac sympathetic dysfunction. Noninvasive assessment of cardiac sympathetic nerve activity with l-123 MlBG imaging may be improve understanding of the pathophysiology of cardiac disease and make a contribution to predict survival and therapy efficacy.

  18. Psoriatic arthritis: imaging techniques

    Directory of Open Access Journals (Sweden)

    E. Lubrano

    2012-06-01

    Full Text Available Imaging techniques to assess psoriatic arthritis (PsA include radiography, ultrasonography (US, magnetic resonance imaging (MRI, computed tomography (CT and bone scintigraphy. The radiographic hallmark of PsA is the combination of destructive changes (joint erosions, tuft resorption, osteolysis with bone proliferation (including periarticular and shaft periostitis, ankylosis, spur formation and non-marginal syndesmophytes. US has an increasing important role in the evaluation of PsA. In fact, power Doppler US is useful mainly for its ability to assess musculoskeletal (joints, tendons, entheses and cutaneous (skin and nails involvement, to monitor efficacy of therapy and to guide steroid injections at the level of inflamed joints, tendon sheaths and entheses. MRI allows direct visualization of inflammation in peripheral and axial joints, and peripheral and axial entheses, and has dramatically improved the possibilities for early diagnosis and objective monitoring of the disease process in PsA. MRI has allowed explaining the relationships among enthesitis, synovitis and osteitis in PsA, supporting a SpA pattern of inflammation where enthesitis is the primary target of inflammation. CT has little role in assessment of peripheral joints, but it may be useful in assessing elements of spine disease. CT accuracy is similar to MRI in assessment of erosions in sacroiliac joint involvement, but CT is not as effective in detecting synovial inflammation. Bone scintigraphy lacks specificity and is now supplanted with US and MRI techniques.

  19. Imaging of Cardiac Valves by Computed Tomography

    Directory of Open Access Journals (Sweden)

    Gudrun Feuchtner

    2013-01-01

    Full Text Available This paper describes “how to” examine cardiac valves with computed tomography, the normal, diseased valves, and prosthetic valves. A review of current scientific literature is provided. Firstly, technical basics, “how to” perform and optimize a multislice CT scan and “how to” interpret valves on CT images are outlined. Then, diagnostic imaging of the entire spectrum of specific valvular disease by CT, including prosthetic heart valves, is highlighted. The last part gives a guide “how to” use CT for planning of transcatheter aortic valve implantation (TAVI, an emerging effective treatment option for patients with severe aortic stenosis. A special focus is placed on clinical applications of cardiac CT in the context of valvular disease.

  20. Preservation techniques for donors after cardiac death kidneys

    NARCIS (Netherlands)

    Wind, J.; Hoogland, E.R.; Heurn, L.W. van

    2011-01-01

    PURPOSE OF REVIEW: The purpose of the present review is to describe the techniques currently used to preserve kidneys from donors after cardiac death. RECENT FINDINGS: Automated chest compression devices may be used to improve organ perfusion between cardiac death and preservation measures. Normothe

  1. Image processing techniques for acoustic images

    Science.gov (United States)

    Murphy, Brian P.

    1991-06-01

    The primary goal of this research is to test the effectiveness of various image processing techniques applied to acoustic images generated in MATLAB. The simulated acoustic images have the same characteristics as those generated by a computer model of a high resolution imaging sonar. Edge detection and segmentation are the two image processing techniques discussed in this study. The two methods tested are a modified version of the Kalman filtering and median filtering.

  2. Magnetic Resonance Imaging Evaluation of Cardiac Masses

    Energy Technology Data Exchange (ETDEWEB)

    Braggion-Santos, Maria Fernanda, E-mail: ferbraggion@yahoo.com.br [Divisão de Cardiologia do Departamento de Clínica Médica - Hospital das Clínicas - Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Hospital Universitário - Universidade de Heidelberg, Heidelberg (Germany); Koenigkam-Santos, Marcel [Centro de Ciências das Imagens e Física Médica - Hospital das Clínicas - Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Hospital Universitário - Universidade de Heidelberg, Heidelberg (Germany); Teixeira, Sara Reis [Centro de Ciências das Imagens e Física Médica - Hospital das Clínicas - Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Volpe, Gustavo Jardim [Divisão de Cardiologia do Departamento de Clínica Médica - Hospital das Clínicas - Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Divisão de Cardiologia - Universidade Johns Hopkins, Baltimore (United States); Trad, Henrique Simão [Centro de Ciências das Imagens e Física Médica - Hospital das Clínicas - Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Schmidt, André [Divisão de Cardiologia do Departamento de Clínica Médica - Hospital das Clínicas - Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2013-09-15

    Cardiac tumors are extremely rare; however, when there is clinical suspicion, proper diagnostic evaluation is necessary to plan the most appropriate treatment. In this context, cardiovascular magnetic resonance imaging (CMRI) plays an important role, allowing a comprehensive characterization of such lesions. To review cases referred to a CMRI Department for investigation of cardiac and paracardiac masses. To describe the positive case series with a brief review of the literature for each type of lesion and the role of cardiovascular magnetic resonance imaging in evaluation. Between August 2008 and December 2011, all cases referred for CMRI with suspicion of tumor involving the heart were reviewed. Cases with positive histopathological diagnosis, clinical evolution or therapeutic response compatible with the clinical suspicion and imaging findings were selected. Among the 13 cases included in our study, eight (62%) had histopathological confirmation. We describe five benign tumors (myxomas, rhabdomyoma and fibromas), five malignancies (sarcoma, lymphoma, Richter syndrome involving the heart and metastatic disease) and three non-neoplastic lesions (pericardial cyst, intracardiac thrombus and infectious vegetation). CMRI plays an important role in the evaluation of cardiac masses of non-neoplastic and neoplastic origin, contributing to a more accurate diagnosis in a noninvasive manner and assisting in treatment planning, allowing safe clinical follow-up with good reproducibility.

  3. Cardiac imaging by means of four-detector row computed tomography and cardiac gating; Imagerie cardiaque en tomodensitometrie a quatre canaux d'acquisition et synchronisation cardiaque

    Energy Technology Data Exchange (ETDEWEB)

    Ketelslegers, E.; Coche, E.; Goffette, P.; Maldague, B.; Be, Van Beers [Clinique Universitaires UCL Saint-Luc, Bruxelles (Belgium); Gerber, B. [Clinique Universitaires UCL Saint-Luc, Dept. d' Imagerie Medicale, Bruxelles (Belgium)

    2003-09-01

    Electrocardiographically-assisted imaging is a recent development in multislice spiral computed tomography, In this article, we summarize the principles of four-detector row CT for cardiac applications. Following is an overview of the potential of this technique to evaluate the heart, the thoracic aorta, and the para-cardiac pulmonary parenchyma. Technical considerations for optimal imaging are highlighted. (authors)

  4. Other imaging techniques.

    Science.gov (United States)

    Isard, H J

    1984-02-01

    Images of the breast can now be produced by five modalities: x-ray, heat, sound, light, and magnetism. X-ray mammography is generally accepted as the most accurate of these in the detection of breast cancer, and the standard by which the others are judged. Despite the obvious attraction of nonionizing techniques, the economic factor attendant on multiple studies requires consideration. Nuclear magnetic resonance (NMR) is currently being investigated in several clinics, but as yet there is no large series of documented cases. This report addresses itself to thermography, ultrasonography and diaphanography (transillumination). The unique characteristics of each and their respective roles in evaluation of the breast, particularly in the detection of breast cancer, will be discussed. When used in conjunction with mammography, potential advantages include: enhanced diagnostic accuracy, reduction of unnecessary surgery, and, in proven cases of breast cancer, prognostic capability. Thus far it has not been demonstrated that any of the nonionizing techniques can serve as a sole screening modality for breast cancer detection in asymptomatic women.

  5. Image quality and radiation dose in cardiac imaging

    NARCIS (Netherlands)

    Dijk, van Joris David

    2016-01-01

    Coronary artery disease is a major cause of death accounting for 8% of all deaths in the Netherlands. This disease can be detected in an early stage by cardiac imaging. However, this detection comes at the price of a relatively high radiation dose which is potentially harmful for the patient. Despit

  6. Image quality and radiation dose in cardiac imaging

    NARCIS (Netherlands)

    van Dijk, Joris David

    2016-01-01

    Coronary artery disease is a major cause of death accounting for 8% of all deaths in the Netherlands. This disease can be detected in an early stage by cardiac imaging. However, this detection comes at the price of a relatively high radiation dose which is potentially harmful for the patient.

  7. IMAGE ENHANCEMENT USING IMAGE FUSION AND IMAGE PROCESSING TECHNIQUES

    OpenAIRE

    Arjun Nelikanti

    2015-01-01

    Principle objective of Image enhancement is to process an image so that result is more suitable than original image for specific application. Digital image enhancement techniques provide a multitude of choices for improving the visual quality of images. Appropriate choice of such techniques is greatly influenced by the imaging modality, task at hand and viewing conditions. This paper will provide a combination of two concepts, image fusion by DWT and digital image processing techniques. The e...

  8. Radiologic imaging technique

    Energy Technology Data Exchange (ETDEWEB)

    Bushong, S.C. (Dept. of Radiology, Baylor College of Medicine, Houston, TX (US)); Eastman, T.R. (Agfagavert Inc., Irving, TX (US))

    1990-01-01

    The authors focus on the subject of clinical radiographic technique. Emphasizing correct radiographic technique, it's heavily illustrated with radiographs that demonstrate proper exposure and show what happens when exposure variables are changed. A key feature is a discussion and evaluation of radiographic technique charts. Basic technique charts are provided for every body part examined.

  9. Simultaneous multislice (SMS) imaging techniques

    NARCIS (Netherlands)

    Barth, M.; Breuer, F.; Koopmans, P.J.; Norris, David Gordon; Poser, B.A.

    2016-01-01

    Simultaneous multislice imaging (SMS) using parallel image reconstruction has rapidly advanced to become a major imaging technique. The primary benefit is an acceleration in data acquisition that is equal to the number of simultaneously excited slices. Unlike in-plane parallel imaging this can have

  10. Hybrid ultrasound imaging techniques (fusion imaging).

    Science.gov (United States)

    Sandulescu, Daniela Larisa; Dumitrescu, Daniela; Rogoveanu, Ion; Saftoiu, Adrian

    2011-01-07

    Visualization of tumor angiogenesis can facilitate non-invasive evaluation of tumor vascular characteristics to supplement the conventional diagnostic imaging goals of depicting tumor location, size, and morphology. Hybrid imaging techniques combine anatomic [ultrasound, computed tomography (CT), and/or magnetic resonance imaging (MRI)] and molecular (single photon emission CT and positron emission tomography) imaging modalities. One example is real-time virtual sonography, which combines ultrasound (grayscale, colour Doppler, or dynamic contrast harmonic imaging) with contrast-enhanced CT/MRI. The benefits of fusion imaging include an increased diagnostic confidence, direct comparison of the lesions using different imaging modalities, more precise monitoring of interventional procedures, and reduced radiation exposure.

  11. Transthoracic Cardiac Acoustic Radiation Force Impulse Imaging

    Science.gov (United States)

    Bradway, David Pierson

    This dissertation investigates the feasibility of a real-time transthoracic Acoustic Radiation Force Impulse (ARFI) imaging system to measure myocardial function non-invasively in clinical setting. Heart failure is an important cardiovascular disease and contributes to the leading cause of death for developed countries. Patients exhibiting heart failure with a low left ventricular ejection fraction (LVEF) can often be identified by clinicians, but patients with preserved LVEF might be undetected if they do not exhibit other signs and symptoms of heart failure. These cases motivate development of transthoracic ARFI imaging to aid the early diagnosis of the structural and functional heart abnormalities leading to heart failure. M-Mode ARFI imaging utilizes ultrasonic radiation force to displace tissue several micrometers in the direction of wave propagation. Conventional ultrasound tracks the response of the tissue to the force. This measurement is repeated rapidly at a location through the cardiac cycle, measuring timing and relative changes in myocardial stiffness. ARFI imaging was previously shown capable of measuring myocardial properties and function via invasive open-chest and intracardiac approaches. The prototype imaging system described in this dissertation is capable of rapid acquisition, processing, and display of ARFI images and shear wave elasticity imaging (SWEI) movies. Also presented is a rigorous safety analysis, including finite element method (FEM) simulations of tissue heating, hydrophone intensity and mechanical index (MI) measurements, and thermocouple transducer face heating measurements. For the pulse sequences used in later animal and clinical studies, results from the safety analysis indicates that transthoracic ARFI imaging can be safely applied at rates and levels realizable on the prototype ARFI imaging system. Preliminary data are presented from in vivo trials studying changes in myocardial stiffness occurring under normal and abnormal

  12. Continuous measurement of cardiac output using stochastic system identification techniques.

    Science.gov (United States)

    Yelderman, Mark

    2004-01-01

    Indicator dilutions techniques offer the most reliable methods of determining clinical cardiac output because of the elastic nature of the cardiac vessels. A catheter-mounted beating filament affords a simple means of supplying "heat" indicator, but is power and temperature limited because of possible patient injury. A stochastic signal processing method using pseudorandom binary infusion of heat offers a process of enhancing the signal to noise sufficiently to facilitate a computation of cardiac output over a reasonable time period (5 min) with a clinically acceptable error.

  13. An integrated platform for image-guided cardiac resynchronization therapy

    Science.gov (United States)

    Ma, Ying Liang; Shetty, Anoop K.; Duckett, Simon; Etyngier, Patrick; Gijsbers, Geert; Bullens, Roland; Schaeffter, Tobias; Razavi, Reza; Rinaldi, Christopher A.; Rhode, Kawal S.

    2012-05-01

    Cardiac resynchronization therapy (CRT) is an effective procedure for patients with heart failure but 30% of patients do not respond. This may be due to sub-optimal placement of the left ventricular (LV) lead. It is hypothesized that the use of cardiac anatomy, myocardial scar distribution and dyssynchrony information, derived from cardiac magnetic resonance imaging (MRI), may improve outcome by guiding the physician for optimal LV lead positioning. Whole heart MR data can be processed to yield detailed anatomical models including the coronary veins. Cine MR data can be used to measure the motion of the LV to determine which regions are late-activating. Finally, delayed Gadolinium enhancement imaging can be used to detect regions of scarring. This paper presents a complete platform for the guidance of CRT using pre-procedural MR data combined with live x-ray fluoroscopy. The platform was used for 21 patients undergoing CRT in a standard catheterization laboratory. The patients underwent cardiac MRI prior to their procedure. For each patient, a MRI-derived cardiac model, showing the LV lead targets, was registered to x-ray fluoroscopy using multiple views of a catheter looped in the right atrium. Registration was maintained throughout the procedure by a combination of C-arm/x-ray table tracking and respiratory motion compensation. Validation of the registration between the three-dimensional (3D) roadmap and the 2D x-ray images was performed using balloon occlusion coronary venograms. A 2D registration error of 1.2 ± 0.7 mm was achieved. In addition, a novel navigation technique was developed, called Cardiac Unfold, where an entire cardiac chamber is unfolded from 3D to 2D along with all relevant anatomical and functional information and coupled to real-time device detection. This allowed more intuitive navigation as the entire 3D scene was displayed simultaneously on a 2D plot. The accuracy of the unfold navigation was assessed off-line using 13 patient data sets

  14. Imaging spectrum of sudden athlete cardiac death.

    LENUS (Irish Health Repository)

    Arrigan, M T

    2012-02-01

    Sudden athlete death (SAD) is a widely publicized and increasingly reported phenomenon. For many, the athlete population epitomize human physical endeavour and achievement and their unexpected death comes with a significant emotional impact on the public. Sudden deaths within this group are often without prior warning. Preceding symptoms of exertional syncope and chest pain do, however, occur and warrant investigation. Similarly, a positive family history of sudden death in a young person or a known family history of a condition associated with SAD necessitates further tests. Screening programmes aimed at detecting those at risk individuals also exist with the aim of reducing fatalities. In this paper we review the topic of SAD and discuss the epidemiology, aetiology, and clinical presentations. We then proceed to discuss each underlying cause, in turn discussing the pathophysiology of each condition. This is followed by a discussion of useful imaging methods with an emphasis on cardiac magnetic resonance and cardiac computed tomography and how these address the various issues raised by the pathophysiology of each entity. We conclude by proposing imaging algorithms for the investigation of patients considered at risk for these conditions and discuss the various issues raised in screening.

  15. Imaging system for cardiac planar imaging using a dedicated dual-head gamma camera

    Science.gov (United States)

    Majewski, Stanislaw; Umeno, Marc M.

    2011-09-13

    A cardiac imaging system employing dual gamma imaging heads co-registered with one another to provide two dynamic simultaneous views of the heart sector of a patient torso. A first gamma imaging head is positioned in a first orientation with respect to the heart sector and a second gamma imaging head is positioned in a second orientation with respect to the heart sector. An adjustment arrangement is capable of adjusting the distance between the separate imaging heads and the angle between the heads. With the angle between the imaging heads set to 180 degrees and operating in a range of 140-159 keV and at a rate of up to 500kHz, the imaging heads are co-registered to produce simultaneous dynamic recording of two stereotactic views of the heart. The use of co-registered imaging heads maximizes the uniformity of detection sensitivity of blood flow in and around the heart over the whole heart volume and minimizes radiation absorption effects. A normalization/image fusion technique is implemented pixel-by-corresponding pixel to increase signal for any cardiac region viewed in two images obtained from the two opposed detector heads for the same time bin. The imaging system is capable of producing enhanced first pass studies, bloodpool studies including planar, gated and non-gated EKG studies, planar EKG perfusion studies, and planar hot spot imaging.

  16. Denoising human cardiac diffusion tensor magnetic resonance images using sparse representation combined with segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Bao, L J; Zhu, Y M; Liu, W Y; Pu, Z B; Magnin, I E [HIT-INSA Sino French Research Centre for Biomedical Imaging, Harbin Institute of Technology, Harbin (China); Croisille, P; Robini, M [CREATIS-LRMN, CNRS UMR 5220, Inserm U630, INSA of Lyon, University of Lyon 1, Villeurbanne (France)], E-mail: baolij@gmail.com

    2009-03-21

    Cardiac diffusion tensor magnetic resonance imaging (DT-MRI) is noise sensitive, and the noise can induce numerous systematic errors in subsequent parameter calculations. This paper proposes a sparse representation-based method for denoising cardiac DT-MRI images. The method first generates a dictionary of multiple bases according to the features of the observed image. A segmentation algorithm based on nonstationary degree detector is then introduced to make the selection of atoms in the dictionary adapted to the image's features. The denoising is achieved by gradually approximating the underlying image using the atoms selected from the generated dictionary. The results on both simulated image and real cardiac DT-MRI images from ex vivo human hearts show that the proposed denoising method performs better than conventional denoising techniques by preserving image contrast and fine structures.

  17. Robust segmentation of 4D cardiac MRI-tagged images via spatio-temporal propagation

    Science.gov (United States)

    Qian, Zhen; Huang, Xiaolei; Metaxas, Dimitris N.; Axel, Leon

    2005-04-01

    In this paper we present a robust method for segmenting and tracking cardiac contours and tags in 4D cardiac MRI tagged images via spatio-temporal propagation. Our method is based on two main techniques: the Metamorphs Segmentation for robust boundary estimation, and the tunable Gabor filter bank for tagging lines enhancement, removal and myocardium tracking. We have developed a prototype system based on the integration of these two techniques, and achieved efficient, robust segmentation and tracking with minimal human interaction.

  18. Reduction of blooming artifacts in cardiac CT images by blind deconvolution and anisotropic diffusion filtering

    Science.gov (United States)

    Castillo-Amor, Angélica M.; Navarro-Navia, Cristian A.; Cadena-Bonfanti, Alberto J.; Contreras-Ortiz, Sonia H.

    2015-12-01

    Even though CT is an imaging technique that offers high quality images, limitations on its spatial resolution cause blurring in small objects with high contrast. This phenomenon is known as blooming artifact and affects cardiac images with small calcifications and stents. This paper describes an approach to reduce the blooming artifact and improve resolution in cardiac images using blind deconvolution and anisotropic diffusion filtering. Deconvolution increases resolution but reduces signal-to-noise ratio, and the anisotropic diffusion filter counteracts this effect without affecting the edges in the image.

  19. Imaging Techniques in Acute Heart Failure.

    Science.gov (United States)

    Pérez del Villar, Candelas; Yotti, Raquel; Bermejo, Javier

    2015-07-01

    In recent years, imaging techniques have revolutionized the diagnosis of heart failure. In patients with a clinical picture of acute decompensation, prognosis is largely determined by early implementation of general measures and treatment of the underlying cause. Given its diagnostic yield and portability, ultrasound has become an essential tool in the setting of acute heart failure, and is currently found in all medical departments involved in the care of the critically ill patient. Cardiac magnetic resonance and computed tomography allow detailed characterization of multiple aspects of cardiac structure and function that were previously unavailable. This helps guide and monitor many of the treatment decisions in the acute heart failure population in an entirely noninvasive way. This article aims to review the usefulness of the imaging techniques that are clinically relevant in the context of an episode of acute heart failure. We discuss the indications and limitations of these techniques in detail and describe the general principles for the appropriate interpretation of results. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  20. Review of advanced imaging techniques

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2012-01-01

    Full Text Available Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images ("optical biopsies" at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy. This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques.

  1. Eye Redness Image Processing Techniques

    Science.gov (United States)

    Adnan, M. R. H. Mohd; Zain, Azlan Mohd; Haron, Habibollah; Alwee, Razana; Zulfaezal Che Azemin, Mohd; Osman Ibrahim, Ashraf

    2017-09-01

    The use of photographs for the assessment of ocular conditions has been suggested to further standardize clinical procedures. The selection of the photographs to be used as scale reference images was subjective. Numerous methods have been proposed to assign eye redness scores by computational methods. Image analysis techniques have been investigated over the last 20 years in an attempt to forgo subjective grading scales. Image segmentation is one of the most important and challenging problems in image processing. This paper briefly outlines the comprehensive of image processing and the implementation of image segmentation in eye redness.

  2. Automated cardiac sarcomere analysis from second harmonic generation images

    Science.gov (United States)

    Garcia-Canadilla, Patricia; Gonzalez-Tendero, Anna; Iruretagoyena, Igor; Crispi, Fatima; Torre, Iratxe; Amat-Roldan, Ivan; Bijnens, Bart H.; Gratacos, Eduard

    2014-05-01

    Automatic quantification of cardiac muscle properties in tissue sections might provide important information related to different types of diseases. Second harmonic generation (SHG) imaging provides a stain-free microscopy approach to image cardiac fibers that, combined with our methodology of the automated measurement of the ultrastructure of muscle fibers, computes a reliable set of quantitative image features (sarcomere length, A-band length, thick-thin interaction length, and fiber orientation). We evaluated the performance of our methodology in computer-generated muscle fibers modeling some artifacts that are present during the image acquisition. Then, we also evaluated it by comparing it to manual measurements in SHG images from cardiac tissue of fetal and adult rabbits. The results showed a good performance of our methodology at high signal-to-noise ratio of 20 dB. We conclude that our automated measurements enable reliable characterization of cardiac fiber tissues to systematically study cardiac tissue in a wide range of conditions.

  3. Cardiac imaging for the assessment of patients being evaluated for kidney or liver transplantation.

    Science.gov (United States)

    Parikh, Kalindi; Appis, Andrew; Doukky, Rami

    2015-04-01

    Cardiac risk assessment prior to kidney and liver transplantation is controversial. Given the paucity of available organs, selecting appropriate recipients with favorable short- and long-term cardiovascular risk profile is crucial. Using noninvasive cardiac imaging tools to guide cardiovascular risk assessment and management can also be challenging and controversial. In this article, we address the burden of coronary artery disease among kidney and liver transplant candidates and review the literature pertaining to the diagnostic accuracy and the prognostic value of noninvasive cardiac imaging techniques in this population.

  4. Fusion of structural and functional cardiac magnetic resonance imaging data for studying ventricular fibrillation.

    Science.gov (United States)

    Magtibay, K; Beheshti, M; Foomany, F H; Balasundaram, K; Masse, S; Lai, P; Asta, J; Zamiri, N; Jaffray, D A; Nanthakumar, K; Krishnan, S; Umapathy, K

    2014-01-01

    Magnetic Resonance Imaging (MRI) techniques such as Current Density Imaging (CDI) and Diffusion Tensor Imaging (DTI) provide a complementing set of imaging data that can describe both the functional and structural states of biological tissues. This paper presents a Joint Independent Component Analysis (jICA) based fusion approach which can be utilized to fuse CDI and DTI data to quantify the differences between two cardiac states: Ventricular Fibrillation (VF) and Asystolic/Normal (AS/NM). Such an approach could lead to a better insight on the mechanism of VF. Fusing CDI and DTI data from 8 data sets from 6 beating porcine hearts, in effect, detects the differences between two cardiac states, qualitatively and quantitatively. This initial study demonstrates the applicability of MRI-based imaging techniques and jICA-based fusion approach in studying cardiac arrhythmias.

  5. Filters in 2D and 3D Cardiac SPECT Image Processing

    Directory of Open Access Journals (Sweden)

    Maria Lyra

    2014-01-01

    Full Text Available Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the degradation of the image. SPECT images are then reconstructed, either by filter back projection (FBP analytical technique or iteratively, by algebraic methods. The aim of this study is to review filters in cardiac 2D, 3D, and 4D SPECT applications and how these affect the image quality mirroring the diagnostic accuracy of SPECT images. Several filters, including the Hanning, Butterworth, and Parzen filters, were evaluated in combination with the two reconstruction methods as well as with a specified MatLab program. Results showed that for both 3D and 4D cardiac SPECT the Butterworth filter, for different critical frequencies and orders, produced the best results. Between the two reconstruction methods, the iterative one might be more appropriate for cardiac SPECT, since it improves lesion detectability due to the significant improvement of image contrast.

  6. Filters in 2D and 3D Cardiac SPECT Image Processing.

    Science.gov (United States)

    Lyra, Maria; Ploussi, Agapi; Rouchota, Maritina; Synefia, Stella

    2014-01-01

    Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT) evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the degradation of the image. SPECT images are then reconstructed, either by filter back projection (FBP) analytical technique or iteratively, by algebraic methods. The aim of this study is to review filters in cardiac 2D, 3D, and 4D SPECT applications and how these affect the image quality mirroring the diagnostic accuracy of SPECT images. Several filters, including the Hanning, Butterworth, and Parzen filters, were evaluated in combination with the two reconstruction methods as well as with a specified MatLab program. Results showed that for both 3D and 4D cardiac SPECT the Butterworth filter, for different critical frequencies and orders, produced the best results. Between the two reconstruction methods, the iterative one might be more appropriate for cardiac SPECT, since it improves lesion detectability due to the significant improvement of image contrast.

  7. EDITORIAL: Imaging Systems and Techniques Imaging Systems and Techniques

    Science.gov (United States)

    Giakos, George; Yang, Wuqiang; Petrou, M.; Nikita, K. S.; Pastorino, M.; Amanatiadis, A.; Zentai, G.

    2011-10-01

    This special feature on Imaging Systems and Techniques comprises 27 technical papers, covering essential facets in imaging systems and techniques both in theory and applications, from research groups spanning three different continents. It mainly contains peer-reviewed articles from the IEEE International Conference on Imaging Systems and Techniques (IST 2011), held in Thessaloniki, Greece, as well a number of articles relevant to the scope of this issue. The multifaceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment, and the technological revolution; there is an urgent need to address and propose dynamic and innovative solutions to problems that tend to be either complex and static or rapidly evolving with a lot of unknowns. For instance, exploration of the engineering and physical principles of new imaging systems and techniques for medical applications, remote sensing, monitoring of space resources and enhanced awareness, exploration and management of natural resources, and environmental monitoring, are some of the areas that need to be addressed with urgency. Similarly, the development of efficient medical imaging techniques capable of providing physiological information at the molecular level is another important area of research. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, using high resolution and high selectivity nanoimaging techniques, can play an important role in the diagnosis and treatment of cancer, as well as provide efficient drug-delivery imaging solutions for disease treatment with increased sensitivity and specificity. On the other hand, technical advances in the development of efficient digital imaging systems and techniques and tomographic devices operating on electric impedance tomography, computed tomography, single-photon emission and positron emission tomography detection principles are anticipated to have a significant impact on a

  8. Cardiac carcinoid: tricuspid delayed hyperenhancement on cardiac 64-slice multidetector CT and magnetic resonance imaging.

    LENUS (Irish Health Repository)

    Martos, R

    2012-02-01

    INTRODUCTION: Carcinoid heart disease is a rare condition in adults. Its diagnosis can be easily missed in a patient presenting to a primary care setting. We revised the advantages of using coronary multidetector computed tomography (MDCT) and cardiac magnetic resonance imaging (MRI) in diagnosing this condition. MATERIALS AND METHODS: We studied a 65-year-old patient with carcinoid heart disease and right heart failure using transthoracic Doppler-echocardiogram, cardiac MDCT and MRI. Cardiac echocardiogram revealed marked thickening and retraction of the tricuspid leaflets with dilated right atrium and ventricle. Cardiac MDCT and MRI demonstrated fixation and retraction of the tricuspid leaflets with delayed contrast hyperenhancement of the tricuspid annulus. CONCLUSION: This case demonstrates fascinating imaging findings of cardiac carcinoid disease and highlights the increasing utility of contrast-enhanced MRI and cardiac MDCT in the diagnosis of this interesting condition.

  9. Hybrid ultrasound imaging techniques(fusion imaging)

    Institute of Scientific and Technical Information of China (English)

    Daniela Larisa Sandulescu; Daniela Dumitrescu; Ion Rogoveanu; Adrian Saftoiu

    2011-01-01

    Visualization of tumor angiogenesis can facilitate noninvasive evaluation of tumor vascular characteristics to supplement the conventional diagnostic imaging goals of depicting tumor location,size,and morphology.Hybrid imaging techniques combine anatomic [ultrasound,computed tomography(CT),and/or magnetic resonance imaging(MRI)] and molecular(single photon emission CT and positron emission tomography)imaging modalities.One example is real-time virtual sonography,which combines ultrasound(grayscale,colour Doppler,or dynamic contrast harmonic imaging)with contrast-enhanced CT/MRI.The benefits of fusion imaging include an increased diagnostic confidence,direct comparison of the lesions using different imaging modalities,more precise monitoring of interventional procedures,and reduced radiation exposure.

  10. Multimodality imaging to guide cardiac interventional procedures

    NARCIS (Netherlands)

    Tops, Laurens Franciscus

    2010-01-01

    In recent years, a number of new cardiac interventional procedures have been introduced. Catheter ablation procedures for atrial fibrillation (AF) have been refined and are now considered a good treatment option in patients with drug-refractory AF. In cardiac pacing, cardiac resynchronization therap

  11. Multimodality imaging to guide cardiac interventional procedures

    NARCIS (Netherlands)

    Tops, Laurens Franciscus

    2010-01-01

    In recent years, a number of new cardiac interventional procedures have been introduced. Catheter ablation procedures for atrial fibrillation (AF) have been refined and are now considered a good treatment option in patients with drug-refractory AF. In cardiac pacing, cardiac resynchronization

  12. Automated medical image segmentation techniques

    Directory of Open Access Journals (Sweden)

    Sharma Neeraj

    2010-01-01

    Full Text Available Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT and Magnetic resonance (MR imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images.

  13. Towards robust specularity detection and inpainting in cardiac images

    Science.gov (United States)

    Alsaleh, Samar M.; Aviles, Angelica I.; Sobrevilla, Pilar; Casals, Alicia; Hahn, James

    2016-03-01

    Computer-assisted cardiac surgeries had major advances throughout the years and are gaining more popularity over conventional cardiac procedures as they offer many benefits to both patients and surgeons. One obvious advantage is that they enable surgeons to perform delicate tasks on the heart while it is still beating, avoiding the risks associated with cardiac arrest. Consequently, the surgical system needs to accurately compensate the physiological motion of the heart which is a very challenging task in medical robotics since there exist different sources of disturbances. One of which is the bright light reflections, known as specular highlights, that appear on the glossy surface of the heart and partially occlude the field of view. This work is focused on developing a robust approach that accurately detects and removes those highlights to reduce their disturbance to the surgeon and the motion compensation algorithm. As a first step, we exploit both color attributes and Fuzzy edge detector to identify specular regions in each acquired image frame. These two techniques together work as restricted thresholding and are able to accurately identify specular regions. Then, in order to eliminate the specularity artifact and give the surgeon a better perception of the heart, the second part of our solution is dedicated to correct the detected regions using inpainting to propagate and smooth the results. Our experimental results, which we carry out in realistic datasets, reveal how efficient and precise the proposed solution is, as well as demonstrate its robustness and real-time performance.

  14. Impact of pre-excitation syndrome on left ventricular systolic function and cardiac synchronization assessed by tissue Doppler imaging and speckle tracking techniques

    Directory of Open Access Journals (Sweden)

    Salah Atta

    2014-12-01

    Conclusion: Patients with pre-excitation syndrome may have depressed LV function unrelated to tachyarrhythmia, especially if the AP has a septal location. This dysfunction may be associated with the LV dyssynchronus contraction caused by pre-excitation. The use of TDI and speckle tracking echocardiographic techniques may be associated with an increase in the identification of manifest pre-excitation patients with significant LV dyssynchrony.

  15. Dual-phase cardiac diffusion tensor imaging with strain correction.

    Directory of Open Access Journals (Sweden)

    Christian T Stoeck

    Full Text Available In this work we present a dual-phase diffusion tensor imaging (DTI technique that incorporates a correction scheme for the cardiac material strain, based on 3D myocardial tagging.In vivo dual-phase cardiac DTI with a stimulated echo approach and 3D tagging was performed in 10 healthy volunteers. The time course of material strain was estimated from the tagging data and used to correct for strain effects in the diffusion weighted acquisition. Mean diffusivity, fractional anisotropy, helix, transverse and sheet angles were calculated and compared between systole and diastole, with and without strain correction. Data acquired at the systolic sweet spot, where the effects of strain are eliminated, served as a reference.The impact of strain correction on helix angle was small. However, large differences were observed in the transverse and sheet angle values, with and without strain correction. The standard deviation of systolic transverse angles was significantly reduced from 35.9±3.9° to 27.8°±3.5° (p<0.001 upon strain-correction indicating more coherent fiber tracks after correction. Myocyte aggregate structure was aligned more longitudinally in systole compared to diastole as reflected by an increased transmural range of helix angles (71.8°±3.9° systole vs. 55.6°±5.6°, p<0.001 diastole. While diastolic sheet angle histograms had dominant counts at high sheet angle values, systolic histograms showed lower sheet angle values indicating a reorientation of myocyte sheets during contraction.An approach for dual-phase cardiac DTI with correction for material strain has been successfully implemented. This technique allows assessing dynamic changes in myofiber architecture between systole and diastole, and emphasizes the need for strain correction when sheet architecture in the heart is imaged with a stimulated echo approach.

  16. Computational Chemical Imaging for Cardiovascular Pathology: Chemical Microscopic Imaging Accurately Determines Cardiac Transplant Rejection

    Science.gov (United States)

    Tiwari, Saumya; Reddy, Vijaya B.; Bhargava, Rohit; Raman, Jaishankar

    2015-01-01

    Rejection is a common problem after cardiac transplants leading to significant number of adverse events and deaths, particularly in the first year of transplantation. The gold standard to identify rejection is endomyocardial biopsy. This technique is complex, cumbersome and requires a lot of expertise in the correct interpretation of stained biopsy sections. Traditional histopathology cannot be used actively or quickly during cardiac interventions or surgery. Our objective was to develop a stain-less approach using an emerging technology, Fourier transform infrared (FT-IR) spectroscopic imaging to identify different components of cardiac tissue by their chemical and molecular basis aided by computer recognition, rather than by visual examination using optical microscopy. We studied this technique in assessment of cardiac transplant rejection to evaluate efficacy in an example of complex cardiovascular pathology. We recorded data from human cardiac transplant patients’ biopsies, used a Bayesian classification protocol and developed a visualization scheme to observe chemical differences without the need of stains or human supervision. Using receiver operating characteristic curves, we observed probabilities of detection greater than 95% for four out of five histological classes at 10% probability of false alarm at the cellular level while correctly identifying samples with the hallmarks of the immune response in all cases. The efficacy of manual examination can be significantly increased by observing the inherent biochemical changes in tissues, which enables us to achieve greater diagnostic confidence in an automated, label-free manner. We developed a computational pathology system that gives high contrast images and seems superior to traditional staining procedures. This study is a prelude to the development of real time in situ imaging systems, which can assist interventionists and surgeons actively during procedures. PMID:25932912

  17. Computational chemical imaging for cardiovascular pathology: chemical microscopic imaging accurately determines cardiac transplant rejection.

    Directory of Open Access Journals (Sweden)

    Saumya Tiwari

    Full Text Available Rejection is a common problem after cardiac transplants leading to significant number of adverse events and deaths, particularly in the first year of transplantation. The gold standard to identify rejection is endomyocardial biopsy. This technique is complex, cumbersome and requires a lot of expertise in the correct interpretation of stained biopsy sections. Traditional histopathology cannot be used actively or quickly during cardiac interventions or surgery. Our objective was to develop a stain-less approach using an emerging technology, Fourier transform infrared (FT-IR spectroscopic imaging to identify different components of cardiac tissue by their chemical and molecular basis aided by computer recognition, rather than by visual examination using optical microscopy. We studied this technique in assessment of cardiac transplant rejection to evaluate efficacy in an example of complex cardiovascular pathology. We recorded data from human cardiac transplant patients' biopsies, used a Bayesian classification protocol and developed a visualization scheme to observe chemical differences without the need of stains or human supervision. Using receiver operating characteristic curves, we observed probabilities of detection greater than 95% for four out of five histological classes at 10% probability of false alarm at the cellular level while correctly identifying samples with the hallmarks of the immune response in all cases. The efficacy of manual examination can be significantly increased by observing the inherent biochemical changes in tissues, which enables us to achieve greater diagnostic confidence in an automated, label-free manner. We developed a computational pathology system that gives high contrast images and seems superior to traditional staining procedures. This study is a prelude to the development of real time in situ imaging systems, which can assist interventionists and surgeons actively during procedures.

  18. Self-gated cardiac cine imaging using phase information.

    Science.gov (United States)

    Seo, Hyunseok; Kim, Dongchan; Oh, Changheun; Park, HyunWook

    2017-03-01

    To obtain multiphase cardiac cine images with high resolution, a novel self-gating method for both cardiac and respiratory motions is proposed. The proposed method uses the phase of projection data obtained from a separate axial slice to measure cardiac and respiratory motion, after the acquisition of every k-space line in the image plane. Cardiac motion is estimated from the phase of the projection data passing through the aorta, which is amplified by superior-inferior directional bipolar gradients, whereas respiratory motion is estimated from the phase of the left-right directional projection data of the abdomen. To verify the proposed self-gating method, a simulation and in vivo steady state free precession cardiac imaging were performed. The proposed method provides high resolution multiphase cardiac cine images. Using the proposed self-gating method, the phase variation of the projection data offers information about cardiac and respiratory motions that is equivalent to external gating devices. The proposed method can capture time-resolved cardiac and respiratory motion from the phase information of the projection data. Because the projection data is obtained from a separate gating slice, the self-gating signals are not affected by imaging planes. Magn Reson Med 77:1216-1222, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  19. FEASIBILITY OF IMAGE-GUIDED RADIOTHERAPY FOR CARDIAC SPARING IN PATIENTS WITH LEFT-SIDED BREAST CANCER

    Directory of Open Access Journals (Sweden)

    Claire eLEMANSKI

    2014-09-01

    Full Text Available Patients with left-sided breast cancer are at risk of cardiac toxicity because of cardiac irradiation during radiotherapy with the conventional 3-dimensional conformal technique (3D-CRT. In addition, many patients may receive chemotherapy prior to radiation which may damage the myocardium and may increase the potential for late cardiac complications. New radiotherapy techniques such as intensity-modulated radiotherapy (IMRT may decrease the risk of cardiac toxicity because of the steep dose gradient limiting the volume of the heart irradiated to a high dose. Image-guided radiotherapy (IGRT is a new technique of IMRT delivery with daily imaging which may further reduce excessive cardiac irradiation. Preliminary results of IGRT for cardiac sparing in patients with left-sided breast cancer are promising and need to be investigated in future prospective clinical studies.

  20. Advances in cardiac magnetic resonance imaging of congenital heart disease

    NARCIS (Netherlands)

    Driessen, Mieke M P; Breur, Johannes M. P. J.; Budde, Ricardo P J; van Oorschot, Joep W M; van Kimmenade, Roland R J; Sieswerda, Gertjan Tj.; Meijboom, Folkert J; Leiner, Tim

    2015-01-01

    Due to advances in cardiac surgery, survival of patients with congenital heart disease has increased considerably during the past decades. Many of these patients require repeated cardiovascular magnetic resonance imaging to assess cardiac anatomy and function. In the past decade, technological advan

  1. Segmentation of left atrial intracardiac ultrasound images for image guided cardiac ablation therapy

    Science.gov (United States)

    Rettmann, M. E.; Stephens, T.; Holmes, D. R.; Linte, C.; Packer, D. L.; Robb, R. A.

    2013-03-01

    Intracardiac echocardiography (ICE), a technique in which structures of the heart are imaged using a catheter navigated inside the cardiac chambers, is an important imaging technique for guidance in cardiac ablation therapy. Automatic segmentation of these images is valuable for guidance and targeting of treatment sites. In this paper, we describe an approach to segment ICE images by generating an empirical model of blood pool and tissue intensities. Normal, Weibull, Gamma, and Generalized Extreme Value (GEV) distributions are fit to histograms of tissue and blood pool pixels from a series of ICE scans. A total of 40 images from 4 separate studies were evaluated. The model was trained and tested using two approaches. In the first approach, the model was trained on all images from 3 studies and subsequently tested on the 40 images from the 4th study. This procedure was repeated 4 times using a leave-one-out strategy. This is termed the between-subjects approach. In the second approach, the model was trained on 10 randomly selected images from a single study and tested on the remaining 30 images in that study. This is termed the within-subjects approach. For both approaches, the model was used to automatically segment ICE images into blood and tissue regions. Each pixel is classified using the Generalized Liklihood Ratio Test across neighborhood sizes ranging from 1 to 49. Automatic segmentation results were compared against manual segmentations for all images. In the between-subjects approach, the GEV distribution using a neighborhood size of 17 was found to be the most accurate with a misclassification rate of approximately 17%. In the within-subjects approach, the GEV distribution using a neighborhood size of 19 was found to be the most accurate with a misclassification rate of approximately 15%. As expected, the majority of misclassified pixels were located near the boundaries between tissue and blood pool regions for both methods.

  2. Nuclear cardiac imaging for the diagnosis and management of heart failure: what can be learned from recent guidelines?

    Science.gov (United States)

    Vervloet, Delphine M; DE Sutter, Johan

    2016-01-20

    The aim of this review is to provide the clinical cardiologist and nuclear medicine specialist a brief overview of the currently accepted clinical use of cardiac nuclear imaging for the diagnosis and management of patients with heart failure based on recent (2012-2015) European Society of Cardiology (ESC) guidelines. We used the most recent ESC guidelines on heart failure, management of stable coronary artery disease, cardiac pacing, myocardial revascularisation, non-cardiac surgery and ventricular arrhythmias and sudden death. Nowadays cardiac nuclear imaging is useful in almost every step in heart failure from diagnostics to treatment. In first diagnosis of heart failure radionuclide imaging can provide information on ventricular function and volumes and nuclear imaging techniques provide accurate and reproducible left ventricular function assessment. In work out of the aetiology of the heart failure CMR, SPECT and PET imaging can demonstrate presence of inducible ischemia and myocardial viability. For prognostic information MIBG might be promising in the future. In treatment planning cardiac nuclear imaging is important to evaluate new angina and to assess accurate left ventricular ejection fraction before cardiac resynchronization therapy. Imaging stress testing is useful in the preoperative evaluation for non-cardiac surgery of heart failure patients. There is until now no recommended place for cardiac nuclear imaging in the follow-up of heart failure patients or prior to the initiation of cardiac rehabilitation.

  3. Cardiac magnetic resonance imaging in children

    Energy Technology Data Exchange (ETDEWEB)

    Helbing, Willem A. [Erasmus Medical Centre - Sophia Children' s Hospital, Department of Radiology, Rotterdam (Netherlands); Department of Paediatrics (Division of Cardiology), Sp-2.429, P.O. Box 2060, CB, Rotterdam (Netherlands); Ouhlous, Mohamed [Erasmus Medical Centre - Sophia Children' s Hospital, Department of Radiology, Rotterdam (Netherlands)

    2015-01-01

    MRI is an important additional tool in the diagnostic work-up of children with congenital heart disease. This review aims to summarise the role MRI has in this patient population. Echocardiography remains the main diagnostic tool in congenital heart disease. In specific situations, MRI is used for anatomical imaging of congenital heart disease. This includes detailed assessment of intracardiac anatomy with 2-D and 3-D sequences. MRI is particularly useful for assessment of retrosternal structures in the heart and for imaging large vessel anatomy. Functional assessment includes assessment of ventricular function using 2-D cine techniques. Of particular interest in congenital heart disease is assessment of right and single ventricular function. Two-dimensional and newer 3-D techniques to quantify flow in these patients are or will soon become an integral part of quantification of shunt size, valve function and complex flow patterns in large vessels. More advanced uses of MRI include imaging of cardiovascular function during stress and tissue characterisation of the myocardium. Techniques used for this purpose need further validation before they can become part of the daily routine of MRI assessment of congenital heart disease. (orig.)

  4. Quantitative image quality evaluation for cardiac CT reconstructions

    Science.gov (United States)

    Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.; Balhorn, William; Okerlund, Darin R.

    2016-03-01

    Maintaining image quality in the presence of motion is always desirable and challenging in clinical Cardiac CT imaging. Different image-reconstruction algorithms are available on current commercial CT systems that attempt to achieve this goal. It is widely accepted that image-quality assessment should be task-based and involve specific tasks, observers, and associated figures of merits. In this work, we developed an observer model that performed the task of estimating the percentage of plaque in a vessel from CT images. We compared task performance of Cardiac CT image data reconstructed using a conventional FBP reconstruction algorithm and the SnapShot Freeze (SSF) algorithm, each at default and optimal reconstruction cardiac phases. The purpose of this work is to design an approach for quantitative image-quality evaluation of temporal resolution for Cardiac CT systems. To simulate heart motion, a moving coronary type phantom synchronized with an ECG signal was used. Three different percentage plaques embedded in a 3 mm vessel phantom were imaged multiple times under motion free, 60 bpm, and 80 bpm heart rates. Static (motion free) images of this phantom were taken as reference images for image template generation. Independent ROIs from the 60 bpm and 80 bpm images were generated by vessel tracking. The observer performed estimation tasks using these ROIs. Ensemble mean square error (EMSE) was used as the figure of merit. Results suggest that the quality of SSF images is superior to the quality of FBP images in higher heart-rate scans.

  5. EDITORIAL: Imaging systems and techniques Imaging systems and techniques

    Science.gov (United States)

    Yang, Wuqiang; Giakos, George; Nikita, Konstantina; Pastorino, Matteo; Karras, Dimitrios

    2009-10-01

    The papers in this special issue focus on providing the state-of-the-art approaches and solutions to some of the most challenging imaging areas, such as the design, development, evaluation and applications of imaging systems, measuring techniques, image processing algorithms and instrumentation, with an ultimate aim of enhancing the measurement accuracy and image quality. This special issue explores the principles, engineering developments and applications of new imaging systems and techniques, and encourages broad discussion of imaging methodologies, shaping the future and identifying emerging trends. The multi-faceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment and technological evolution. There is an urgent need to address new problems, which tend to be either static but complex, or dynamic, e.g. rapidly evolving with time, with many unknowns, and to propose innovative solutions. For instance, the battles against cancer and terror, monitoring of space resources and enhanced awareness, management of natural resources and environmental monitoring are some of the areas that need to be addressed. The complexity of the involved imaging scenarios and demanding design parameters, e.g. speed, signal-to-noise ratio (SNR), specificity, contrast, spatial resolution, scatter rejection, complex background and harsh environments, necessitate the development of a multi-functional, scalable and efficient imaging suite of sensors, solutions driven by innovation, and operation on diverse detection and imaging principles. Efficient medical imaging techniques capable of providing physiological information at the molecular level present another important research area. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, and using high-resolution, high-selectivity nano-imaging methods, quantum dots, nanoparticles, biomarkers, nanostructures, nanosensors, micro-array imaging chips

  6. PET imaging of human cardiac opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Villemagne, Patricia S.R.; Dannals, Robert F. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Department of Environmental Health Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Ravert, Hayden T. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Frost, James J. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Department of Environmental Health Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)

    2002-10-01

    The presence of opioid peptides and receptors and their role in the regulation of cardiovascular function has been previously demonstrated in the mammalian heart. The aim of this study was to image {mu} and {delta} opioid receptors in the human heart using positron emission tomography (PET). Five subjects (three females, two males, 65{+-}8 years old) underwent PET scanning of the chest with [{sup 11}C]carfentanil ([{sup 11}C]CFN) and [{sup 11}C]-N-methyl-naltrindole ([{sup 11}C]MeNTI) and the images were analyzed for evidence of opioid receptor binding in the heart. Either [{sup 11}C]CFN or [{sup 11}C]MeNTI (20 mCi) was injected i.v. with subsequent dynamic acquisitions over 90 min. For the blocking studies, either 0.2 mg/kg or 1 mg/kg of naloxone was injected i.v. 5 min prior to the injection of [{sup 11}C]CFN and [{sup 11}C]MeNTI, respectively. Regions of interest were placed over the left ventricle, left ventricular chamber, lung and skeletal muscle. Graphical analysis demonstrated average baseline myocardial binding potentials (BP) of 4.37{+-}0.91 with [{sup 11}C]CFN and 3.86{+-}0.60 with [{sup 11}C]MeNTI. Administration of 0.2 mg/kg naloxone prior to [{sup 11}C]CFN produced a 25% reduction in BP in one subject in comparison with baseline values, and a 19% decrease in myocardial distribution volume (DV). Administration of 1 mg/kg of naloxone before [{sup 11}C]MeNTI in another subject produced a 14% decrease in BP and a 21% decrease in the myocardial DV. These results demonstrate the ability to image these receptors in vivo by PET. PET imaging of cardiac opioid receptors may help to better understand their role in cardiovascular pathophysiology and the effect of abuse of opioids and drugs on heart function. (orig.)

  7. Zebrafish cardiac muscle thick filaments: isolation technique and three-dimensional structure.

    Science.gov (United States)

    González-Solá, Maryví; Al-Khayat, Hind A; Behra, Martine; Kensler, Robert W

    2014-04-15

    To understand how mutations in thick filament proteins such as cardiac myosin binding protein-C or titin, cause familial hypertrophic cardiomyopathies, it is important to determine the structure of the cardiac thick filament. Techniques for the genetic manipulation of the zebrafish are well established and it has become a major model for the study of the cardiovascular system. Our goal is to develop zebrafish as an alternative system to the mammalian heart model for the study of the structure of the cardiac thick filaments and the proteins that form it. We have successfully isolated thick filaments from zebrafish cardiac muscle, using a procedure similar to those for mammalian heart, and analyzed their structure by negative-staining and electron microscopy. The isolated filaments appear well ordered with the characteristic 42.9 nm quasi-helical repeat of the myosin heads expected from x-ray diffraction. We have performed single particle image analysis on the collected electron microscopy images for the C-zone region of these filaments and obtained a three-dimensional reconstruction at 3.5 nm resolution. This reconstruction reveals structure similar to the mammalian thick filament, and demonstrates that zebrafish may provide a useful model for the study of the changes in the cardiac thick filament associated with disease processes.

  8. Cardiac amyloidosis imaged by dual-source computed tomography.

    Science.gov (United States)

    Marwan, Mohamed; Pflederer, Tobias; Ropers, Dieter; Schmid, Michael; Wasmeier, Gerald; Söder, Stephan; Daniel, Werner G; Achenbach, Stephan

    2008-11-01

    The ability of contrast-enhanced CT to detect "late enhancement" in a fashion similar to magnetic resonance imaging has been reported previously. Typical myocardial distribution patterns of "late enhancement" have been described for MRI. The same patterns can be observed in CT imaging, albeit at a lower signal to noise ratio. We report a case of cardiac amyloidosis with a typical pattern of subendocardial, circumferential late enhancement in all four cardiac chambers.

  9. Accelerating Dynamic Cardiac MR Imaging Using Structured Sparse Representation

    Directory of Open Access Journals (Sweden)

    Nian Cai

    2013-01-01

    Full Text Available Compressed sensing (CS has produced promising results on dynamic cardiac MR imaging by exploiting the sparsity in image series. In this paper, we propose a new method to improve the CS reconstruction for dynamic cardiac MRI based on the theory of structured sparse representation. The proposed method user the PCA subdictionaries for adaptive sparse representation and suppresses the sparse coding noise to obtain good reconstructions. An accelerated iterative shrinkage algorithm is used to solve the optimization problem and achieve a fast convergence rate. Experimental results demonstrate that the proposed method improves the reconstruction quality of dynamic cardiac cine MRI over the state-of-the-art CS method.

  10. Point-of-care cardiac ultrasound techniques in the physical examination: better at the bedside.

    Science.gov (United States)

    Kimura, Bruce J

    2017-03-04

    The development of hand-carried, battery-powered ultrasound devices has created a new practice in ultrasound diagnostic imaging, called 'point-of-care' ultrasound (POCUS). Capitalising on device portability, POCUS is marked by brief and limited ultrasound imaging performed by the physician at the bedside to increase diagnostic accuracy and expediency. The natural evolution of POCUS techniques in general medicine, particularly with pocket-sized devices, may be in the development of a basic ultrasound examination similar to the use of the binaural stethoscope. This paper will specifically review how POCUS improves the limited sensitivity of the current practice of traditional cardiac physical examination by both cardiologists and non-cardiologists. Signs of left ventricular systolic dysfunction, left atrial enlargement, lung congestion and elevated central venous pressures are often missed by physical techniques but can be easily detected by POCUS and have prognostic and treatment implications. Creating a general set of repetitive imaging skills for these entities for application on all patients during routine examination will standardise and reduce heterogeneity in cardiac bedside ultrasound applications, simplify teaching curricula, enhance learning and recollection, and unify competency thresholds and practice. The addition of POCUS to standard physical examination techniques in cardiovascular medicine will result in an ultrasound-augmented cardiac physical examination that reaffirms the value of bedside diagnosis.

  11. Incidental Cardiac Findings on Thoracic Imaging.

    LENUS (Irish Health Repository)

    Kok, Hong Kuan

    2013-02-07

    The cardiac structures are well seen on nongated thoracic computed tomography studies in the investigation and follow-up of cardiopulmonary disease. A wide variety of findings can be incidentally picked up on careful evaluation of the pericardium, cardiac chambers, valves, and great vessels. Some of these findings may represent benign variants, whereas others may have more profound clinical importance. Furthermore, the expansion of interventional and surgical practice has led to the development and placement of new cardiac stents, implantable pacemaker devices, and prosthetic valves with which the practicing radiologist should be familiar. We present a collection of common incidental cardiac findings that can be readily identified on thoracic computed tomography studies and briefly discuss their clinical relevance.

  12. Images as drivers of progress in cardiac computational modelling.

    Science.gov (United States)

    Lamata, Pablo; Casero, Ramón; Carapella, Valentina; Niederer, Steve A; Bishop, Martin J; Schneider, Jürgen E; Kohl, Peter; Grau, Vicente

    2014-08-01

    Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are underpinned to a large extent by advances in imaging technologies. This article reviews how novel imaging technologies, or the innovative use and extension of established ones, integrate with computational models and drive novel insights into cardiac biophysics. In terms of structural characterization, we discuss how imaging is allowing a wide range of scales to be considered, from cellular levels to whole organs. We analyse how the evolution from structural to functional imaging is opening new avenues for computational models, and in this respect we review methods for measurement of electrical activity, mechanics and flow. Finally, we consider ways in which combined imaging and modelling research is likely to continue advancing cardiac research, and identify some of the main challenges that remain to be solved.

  13. Image Segmentation by Using Threshold Techniques

    CERN Document Server

    Al-amri, Salem Saleh; D., Khamitkar S

    2010-01-01

    This paper attempts to undertake the study of segmentation image techniques by using five threshold methods as Mean method, P-tile method, Histogram Dependent Technique (HDT), Edge Maximization Technique (EMT) and visual Technique and they are compared with one another so as to choose the best technique for threshold segmentation techniques image. These techniques applied on three satellite images to choose base guesses for threshold segmentation image.

  14. Optimal technique for deep breathing exercises after cardiac surgery.

    Science.gov (United States)

    Westerdahl, E

    2015-06-01

    Cardiac surgery patients often develop a restrictive pulmonary impairment and gas exchange abnormalities in the early postoperative period. Chest physiotherapy is routinely prescribed in order to reduce or prevent these complications. Besides early mobilization, positioning and shoulder girdle exercises, various breathing exercises have been implemented as a major component of postoperative care. A variety of deep breathing maneuvres are recommended to the spontaneously breathing patient to reduce atelectasis and to improve lung function in the early postoperative period. Different breathing exercises are recommended in different parts of the world, and there is no consensus about the most effective breathing technique after cardiac surgery. Arbitrary instructions are given, and recommendations on performance and duration vary between hospitals. Deep breathing exercises are a major part of this therapy, but scientific evidence for the efficacy has been lacking until recently, and there is a lack of trials describing how postoperative breathing exercises actually should be performed. The purpose of this review is to provide a brief overview of postoperative breathing exercises for patients undergoing cardiac surgery via sternotomy, and to discuss and suggest an optimal technique for the performance of deep breathing exercises.

  15. Cardiac biplane strain imaging: initial in vivo experience

    Energy Technology Data Exchange (ETDEWEB)

    Lopata, R G P; Nillesen, M M; Thijssen, J M; De Korte, C L [Clinical Physics Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Verrijp, C N; Lammens, M M Y; Van der Laak, J A W M [Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Singh, S K; Van Wetten, H B [Department of Cardiothoracic Surgery, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Kapusta, L [Pediatric Cardiology, Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)], E-mail: R.Lopata@cukz.umcn.nl

    2010-02-21

    In this study, first we propose a biplane strain imaging method using a commercial ultrasound system, yielding estimation of the strain in three orthogonal directions. Secondly, an animal model of a child's heart was introduced that is suitable to simulate congenital heart disease and was used to test the method in vivo. The proposed approach can serve as a framework to monitor the development of cardiac hypertrophy and fibrosis. A 2D strain estimation technique using radio frequency (RF) ultrasound data was applied. Biplane image acquisition was performed at a relatively low frame rate (<100 Hz) using a commercial platform with an RF interface. For testing the method in vivo, biplane image sequences of the heart were recorded during the cardiac cycle in four dogs with an aortic stenosis. Initial results reveal the feasibility of measuring large radial, circumferential and longitudinal cumulative strain (up to 70%) at a frame rate of 100 Hz. Mean radial strain curves of a manually segmented region-of-interest in the infero-lateral wall show excellent correlation between the measured strain curves acquired in two perpendicular planes. Furthermore, the results show the feasibility and reproducibility of assessing radial, circumferential and longitudinal strains simultaneously. In this preliminary study, three beagles developed an elevated pressure gradient over the aortic valve ({delta}p: 100-200 mmHg) and myocardial hypertrophy. One dog did not develop any sign of hypertrophy ({delta}p = 20 mmHg). Initial strain (rate) results showed that the maximum strain (rate) decreased with increasing valvular stenosis (-50%), which is in accordance with previous studies. Histological findings corroborated these results and showed an increase in fibrotic tissue for the hearts with larger pressure gradients (100, 200 mmHg), as well as lower strain and strain rate values.

  16. Comparison of magnetic resonance imaging and echocardiography in determination of cardiac dimensions in normal subjects.

    Science.gov (United States)

    Friedman, B J; Waters, J; Kwan, O L; DeMaria, A N

    1985-06-01

    No data exist regarding the ability of magnetic resonance imaging to assess cardiac size and performance in human beings. Therefore, measurements of cardiac dimensions by magnetic resonance imaging were compared with those obtained by two-dimensional echocardiography in 21 normal subjects. Magnetic resonance transverse cardiac sections were obtained during electrocardiographic gating using a spin echo pulse sequence. In normal subjects, magnetic resonance imaging yielded a range of values for cardiac dimensions having a similar standard deviation as that of two-dimensional echocardiography. Diastolic measurements of the aorta, left atrium, left ventricle and septum obtained by magnetic resonance imaging correlated well with those obtained by two-dimensional echocardiography (r = 0.82, 0.78, 0.81 and 0.75, respectively). The correlation coefficient of r = 0.35 observed for the posterior wall thickness was not surprising in view of the narrow range of normal values. Only a general correlation (r = 0.53) existed for the right ventricular diastolic dimension; this was probably related to the difficulty in obtaining representative measurements due to the complex geometry of this chamber. Failure of systolic dimension measurements by magnetic resonance imaging to correlate with those obtained by echocardiography is probably related to limitations of electrocardiographic gating, especially of determining the exact end-systolic frame. Although technically complex at present, magnetic resonance imaging does provide an additional noninvasive technique for measurement of cardiac size.

  17. Raman Imaging Techniques and Applications

    CERN Document Server

    2012-01-01

    Raman imaging has long been used to probe the chemical nature of a sample, providing information on molecular orientation, symmetry and structure with sub-micron spatial resolution. Recent technical developments have pushed the limits of micro-Raman microscopy, enabling the acquisition of Raman spectra with unprecedented speed, and opening a pathway to fast chemical imaging for many applications from material science and semiconductors to pharmaceutical drug development and cell biology, and even art and forensic science. The promise of tip-enhanced raman spectroscopy (TERS) and near-field techniques is pushing the envelope even further by breaking the limit of diffraction and enabling nano-Raman microscopy.

  18. Multimodality 3-Dimensional Image Integration for Congenital Cardiac Catheterization

    Science.gov (United States)

    2014-01-01

    Cardiac catheterization procedures for patients with congenital and structural heart disease are becoming more complex. New imaging strategies involving integration of 3-dimensional images from rotational angiography, magnetic resonance imaging (MRI), computerized tomography (CT), and transesophageal echocardiography (TEE) are employed to facilitate these procedures. We discuss the current use of these new 3D imaging technologies and their advantages and challenges when used to guide complex diagnostic and interventional catheterization procedures in patients with congenital heart disease. PMID:25114757

  19. Evaluation of respiratory and cardiac motion correction schemes in dual gated PET/CT cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lamare, F., E-mail: frederic.lamare@chu-bordeaux.fr; Fernandez, P. [Univ. Bordeaux, INCIA, UMR 5287, F-33400 Talence (France); CNRS, INCIA, UMR 5287, F-33400 Talence (France); Service de Médecine Nucléaire, Hôpital Pellegrin, CHU de Bordeaux, 33076 Bordeaux (France); Le Maitre, A.; Visvikis, D. [INSERM, UMR1101, LaTIM, Université de Bretagne Occidentale, 29609 Brest (France); Dawood, M.; Schäfers, K. P. [European Institute for Molecular Imaging, University of Münster, Mendelstr. 11, 48149 Münster (Germany); Rimoldi, O. E. [Vita-Salute University and Scientific Institute San Raffaele, Milan, Italy and CNR Istituto di Bioimmagini e Fisiologia Molecolare, Milan (Italy)

    2014-07-15

    Purpose: Cardiac imaging suffers from both respiratory and cardiac motion. One of the proposed solutions involves double gated acquisitions. Although such an approach may lead to both respiratory and cardiac motion compensation there are issues associated with (a) the combination of data from cardiac and respiratory motion bins, and (b) poor statistical quality images as a result of using only part of the acquired data. The main objective of this work was to evaluate different schemes of combining binned data in order to identify the best strategy to reconstruct motion free cardiac images from dual gated positron emission tomography (PET) acquisitions. Methods: A digital phantom study as well as seven human studies were used in this evaluation. PET data were acquired in list mode (LM). A real-time position management system and an electrocardiogram device were used to provide the respiratory and cardiac motion triggers registered within the LM file. Acquired data were subsequently binned considering four and six cardiac gates, or the diastole only in combination with eight respiratory amplitude gates. PET images were corrected for attenuation, but no randoms nor scatter corrections were included. Reconstructed images from each of the bins considered above were subsequently used in combination with an affine or an elastic registration algorithm to derive transformation parameters allowing the combination of all acquired data in a particular position in the cardiac and respiratory cycles. Images were assessed in terms of signal-to-noise ratio (SNR), contrast, image profile, coefficient-of-variation (COV), and relative difference of the recovered activity concentration. Results: Regardless of the considered motion compensation strategy, the nonrigid motion model performed better than the affine model, leading to higher SNR and contrast combined with a lower COV. Nevertheless, when compensating for respiration only, no statistically significant differences were

  20. Novel cardiac imaging technologies : implications in clinical decision making

    NARCIS (Netherlands)

    Delgado, Victoria

    2010-01-01

    The objectives of this thesis were to investigate the role of novel cardiac imaging technologies in the current clinical daily practice with the advent of novel therapies. In Part I, the role of novel imaging modalities to assess left ventricular mechanics will be discussed, focusing on 1) the

  1. Wavelet Based Image Denoising Technique

    Directory of Open Access Journals (Sweden)

    Sachin D Ruikar

    2011-03-01

    Full Text Available This paper proposes different approaches of wavelet based image denoising methods. The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. Wavelet algorithms are useful tool for signal processing such as image compression and denoising. Multi wavelets can be considered as an extension of scalar wavelets. The main aim is to modify the wavelet coefficients in the new basis, the noise can be removed from the data. In this paper, we extend the existing technique and providing a comprehensive evaluation of the proposed method. Results based on different noise, such as Gaussian, Poisson’s, Salt and Pepper, and Speckle performed in this paper. A signal to noise ratio as a measure of the quality of denoising was preferred.

  2. Imaging Techniques for Microwave Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Donne, T. [FOM-Institute for Plasma Physics Rijnhuizen, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Luhmann Jr, N.C. [University of California, Davis, CA 95616 (United States); Park, H.K. [POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Tobias, B.

    2011-07-01

    Advances in microwave technology have made it possible to develop a new generation of microwave imaging diagnostics for measuring the parameters of magnetic fusion devices. The most prominent of these diagnostics is electron cyclotron emission imaging (ECE-I). After the first generation of ECE-I diagnostics utilized at the TEXT-U, RTP and TEXTOR tokamaks and the LHD stellarator, new systems have recently come into operation on ASDEX-UG and DIII-D, soon to be followed by a system on KSTAR. The DIII-D and KSTAR systems feature dual imaging arrays that observe different parts of the plasma. The ECE-I diagnostic yields two-dimensional movies of the electron temperature in the plasma and has given already new insights into the physics of sawtooth oscillations, tearing modes and edge localized modes. Microwave Imaging Reflectometry (MIR) is used on LHD to measure electron density fluctuations. A pilot MIR system has been tested at TEXTOR and, based on the promising results, a new system is now under design for KSTAR. The system at TEXTOR was used to measure the plasma rotation velocity. The system at KSTAR and also the one on LHD will be/are used for measuring the profile of the electron density fluctuations in the plasma. Other microwave imaging diagnostics are phase imaging interferometry, and imaging microwave scattering. The emphasis in this paper will be largely focused on ECE-I. First an overview of the advances in microwave technology are discussed, followed by a description of a typical ECE-I system along with some typical experimental results. Also the utilization of imaging techniques in other types of microwave diagnostics will be briefly reviewed. This document is composed of the slides of the presentation. (authors)

  3. Different Image Segmentation Techniques for Dental Image Extraction

    Directory of Open Access Journals (Sweden)

    R. Bala Subramanyam

    2014-07-01

    Full Text Available Image segmentation is the process of partitioning a digital image into multiple segments and often used to locate objects and boundaries (lines, curves etc.. In this paper, we have proposed image segmentation techniques: Region based, Texture based, Edge based. These techniques have been implemented on dental radiographs and gained good results compare to conventional technique known as Thresholding based technique. The quantitative results show the superiority of the image segmentation technique over three proposed techniques and conventional technique.

  4. Cardiac biplane strain imaging: initial in vivo experience

    Science.gov (United States)

    Lopata, R. G. P.; Nillesen, M. M.; Verrijp, C. N.; Singh, S. K.; Lammens, M. M. Y.; van der Laak, J. A. W. M.; van Wetten, H. B.; Thijssen, J. M.; Kapusta, L.; de Korte, C. L.

    2010-02-01

    In this study, first we propose a biplane strain imaging method using a commercial ultrasound system, yielding estimation of the strain in three orthogonal directions. Secondly, an animal model of a child's heart was introduced that is suitable to simulate congenital heart disease and was used to test the method in vivo. The proposed approach can serve as a framework to monitor the development of cardiac hypertrophy and fibrosis. A 2D strain estimation technique using radio frequency (RF) ultrasound data was applied. Biplane image acquisition was performed at a relatively low frame rate (cardiac cycle in four dogs with an aortic stenosis. Initial results reveal the feasibility of measuring large radial, circumferential and longitudinal cumulative strain (up to 70%) at a frame rate of 100 Hz. Mean radial strain curves of a manually segmented region-of-interest in the infero-lateral wall show excellent correlation between the measured strain curves acquired in two perpendicular planes. Furthermore, the results show the feasibility and reproducibility of assessing radial, circumferential and longitudinal strains simultaneously. In this preliminary study, three beagles developed an elevated pressure gradient over the aortic valve (Δp: 100-200 mmHg) and myocardial hypertrophy. One dog did not develop any sign of hypertrophy (Δp = 20 mmHg). Initial strain (rate) results showed that the maximum strain (rate) decreased with increasing valvular stenosis (-50%), which is in accordance with previous studies. Histological findings corroborated these results and showed an increase in fibrotic tissue for the hearts with larger pressure gradients (100, 200 mmHg), as well as lower strain and strain rate values.

  5. Assessment of Cardiac Sarcoidosis with Advanced Imaging Modalities

    Science.gov (United States)

    Akasaka, Takashi

    2014-01-01

    Sarcoidosis is a chronic systemic disease of unknown etiology that is characterized by the presence of noncaseating epithelioid granulomas, usually in multiple organs. Several studies have shown that sarcoidosis might be the result of an exaggerated granulomatous reaction after exposure to unidentified antigens in genetically susceptible individuals. Cardiac involvement may occur and lead to an adverse outcome: the heart mechanics will be affected and that causes ventricular failure, and the cardiac electrical system will be disrupted and lead to third degree atrioventricular block, malignant ventricular tachycardia, and sudden cardiac death. Thus, early diagnosis and treatment of this potentially devastating disease is critically important. However, sensitive and accurate imaging modalities have not been established. Recent studies have demonstrated the promising potential of cardiac magnetic resonance imaging (MRI) and 18F-fluoro-2-deoxyglucose positron emission tomography (18F-FDG PET) in the diagnosis and assessment of cardiac sarcoidosis (CS). In this review, we discuss the epidemiology, etiology, histological findings, and clinical features of sarcoidosis. We also introduce advanced imaging including 18F-FDG PET and cardiac MRI as more reliable diagnostic modalities for CS. PMID:25250336

  6. Characterisation of peripartum cardiomyopathy by cardiac magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mouquet, Frederic; Groote, Pascal de; Bouabdallaoui, Nadia; Dagorn, Joel; Lamblin, Nicolas; Bauters, Christophe [Pole de Cardiologie et Maladies Vasculaires, CHRU Lille et Universite Lille 2, Lille Cedex (France); Lions, Christophe; Willoteaux, Serge; Beregi, Jean Paul [Radiologie et Imagerie Cardiovasculaire, CHRU Lille et Universite Lille 2, Lille Cedex (France); Deruelle, Philippe [Gynecologie-Maternite, CHRU Lille et Universite Lille 2, Lille Cedex (France)

    2008-12-15

    Peripartum cardiomyopathy (PPCM) is a rare cause of heart failure. Only half of the patients recover normal cardiac function. We assessed the usefulness of magnetic resonance imaging (MRI) and late enhancement imaging to detect myocardial fibrosis in order to predict cardiac function recovery in patients with peripartum cardiomyopathy. Among a consecutive series of 1,037 patients referred for heart failure treatment or prognostic evaluation between 1999 and 2006, eight women had confirmed PPCM. They all underwent echocardiography and cardiac MRI for assessment of left ventricular anatomy, systolic function and detection of myocardial fibrosis through late enhancement imaging. Mean ({+-} SD) baseline left ventricular ejection fraction (LVEF) was 28 {+-} 4%. After a follow-up of 50 {+-} 9 months, half the patients recovered normal cardiac function (LVEF = 58 {+-} 4%) and four did not (LVEF = 35 {+-} 6%). None of the eight patients exhibited abnormal myocardial late enhancement. No difference in MRI characteristics was observed between the two groups. Patients with PPCM do not exhibit a specific cardiac MRI pattern and particularly no myocardial late enhancement. It suggests that myocardial fibrosis does not play a major role in the limitation of cardiac function recovery after PPCM. (orig.)

  7. Self-gating MR imaging of the fetal heart: comparison with real cardiac triggering

    Energy Technology Data Exchange (ETDEWEB)

    Yamamura, Jin; Frisch, Michael; Ecker, Hannes; Adam, Gerhard; Wedegaertner, Ulrike [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Graessner, Joachim [Siemens AG, Healthcare, Hamburg (Germany); Hecher, Kurt [University Medical Center Hamburg-Eppendorf, Department of Obstetrics and Fetal Medicine, Hamburg (Germany)

    2011-01-15

    To investigate the self-gating technique for MR imaging of the fetal heart in a sheep model. MR images of 6 fetal sheep heart were obtained at 1.5T. For self-gating MRI of the fetal heart a cine SSFP in short axis, two and four chamber view was used. Self-gated images were compared with real cardiac triggered MR images (pulse-wave triggering). MRI of the fetal heart was performed using both techniques simultaneously. Image quality was assessed and the left ventricular volume and function were measured and compared. Compared with pulse-wave triggering, the self-gating technique produced slightly inferior images with artifacts. Especially the atrial septum could not be so clearly depicted. The contraction of the fetal heart was shown in cine sequences in both techniques. The average blood volumes could be measured with both techniques with no significant difference: at end-systole 3.1 ml (SD{+-} 0.2), at end-diastole 4.9 ml ({+-}0.2), with ejection fractions at 38.6%, respectively 39%. Both self-gating and pulse-wave triggered cardiac MRI of the fetal heart allowed the evaluation of anatomical structures and functional information. Images obtained by self-gating technique were slightly inferior than the pulse-wave triggered MRI. (orig.)

  8. Matching the Clinical Question to the Appropriate Imaging Procedure: What a Cardiologist Wants from Cardiac Imaging

    Directory of Open Access Journals (Sweden)

    S. Wann

    2007-05-01

    Full Text Available In modern medicine, we too often become enamored with technology and lose focus on the reason for per-forming a diagnostic study. Cardiac imaging may have advanced to point of replacing the physical ex-amination, but there is still no substitute for thought-ful planning of a diagnostic approach based on a hier-archy of clinical data, an appreciation of the pre-test likelihood of disease, realistic expectation from vari-ous imaging procedures, and a rational plan for utiliz-ing the information gained. Team work is required to effectively utilize all the capabilities of the modern medical environment. Communication is essential if patients are to receive the best care. As the power and complexity of imag-ing has increase, so has its over-utilization. This lec-ture will focus on maximizing useful diagnostic yield, while minimizing redundancy and excessive costs. While evidence based medical practice is ideally based on controlled randomized trials to show im-proved patient outcomes. Medical imaging has his-torically developed by improving the quality of im-ages, comparing new to existing technologist. Exam-ples will be given of applications of various imaging techniques to common clinical problems, pointing out areas where true evidence is lacking. Appropriate imaging in these situations must be defined by con-sensus of expert opinion. A variety of clinical vi-gnettes will be presented.

  9. Cardiac MR image segmentation using CHNN and level set method

    Institute of Scientific and Technical Information of China (English)

    王洪元; 周则明; 王平安; 夏德深

    2004-01-01

    Although cardiac magnetic resonance imaging (MRI) can provide high spatial resolution image, the area gray level inhomogenization, weak boundary and artifact often can be found in MR images. So, the MR images segmentation using the gradient-based methods is poor in quality and efficiency. An algorithm, based on the competitive hopfield neural network (CHNN) and the curve propagation, is proposed for cardiac MR images segmentation in this paper. The algorithm is composed of two phases. In first phase, a CHNN is used to classify the image objects, and to make gray level homogenization and to recognize weak boundaries in objects. In second phase, based on the classified results, the level set velocity function is created and the object boundaries are extracted with the curve propagation algorithm of the narrow band-based level set. The test results are promising and encouraging.

  10. Mapping cardiac surface mechanics with structured light imaging.

    Science.gov (United States)

    Laughner, Jacob I; Zhang, Song; Li, Hao; Shao, Connie C; Efimov, Igor R

    2012-09-15

    Cardiovascular disease often manifests as a combination of pathological electrical and structural heart remodeling. The relationship between mechanics and electrophysiology is crucial to our understanding of mechanisms of cardiac arrhythmias and the treatment of cardiac disease. While several technologies exist for describing whole heart electrophysiology, studies of cardiac mechanics are often limited to rhythmic patterns or small sections of tissue. Here, we present a comprehensive system based on ultrafast three-dimensional (3-D) structured light imaging to map surface dynamics of whole heart cardiac motion. Additionally, we introduce a novel nonrigid motion-tracking algorithm based on an isometry-maximizing optimization framework that forms correspondences between consecutive 3-D frames without the use of any fiducial markers. By combining our 3-D imaging system with nonrigid surface registration, we are able to measure cardiac surface mechanics at unprecedented spatial and temporal resolution. In conclusion, we demonstrate accurate cardiac deformation at over 200,000 surface points of a rabbit heart recorded at 200 frames/s and validate our results on highly contrasting heart motions during normal sinus rhythm, ventricular pacing, and ventricular fibrillation.

  11. A statistical method for retrospective cardiac and respiratory motion gating of interventional cardiac x-ray images

    Energy Technology Data Exchange (ETDEWEB)

    Panayiotou, Maria, E-mail: maria.panayiotou@kcl.ac.uk; King, Andrew P.; Housden, R. James; Ma, YingLiang; Rhode, Kawal S. [Division of Imaging Sciences and Biomedical Engineering, King' s College London, London SE1 7EH (United Kingdom); Cooklin, Michael; O' Neill, Mark; Gill, Jaswinder; Rinaldi, C. Aldo [Department of Cardiology, Guy' s and St. Thomas' Hospitals NHS Foundation Trust, London SE1 7EH (United Kingdom)

    2014-07-15

    Purpose: Image-guided cardiac interventions involve the use of fluoroscopic images to guide the insertion and movement of interventional devices. Cardiorespiratory gating can be useful for 3D reconstruction from multiple x-ray views and for reducing misalignments between 3D anatomical models overlaid onto fluoroscopy. Methods: The authors propose a novel and potentially clinically useful retrospective cardiorespiratory gating technique. The principal component analysis (PCA) statistical method is used in combination with other image processing operations to make our proposed masked-PCA technique suitable for cardiorespiratory gating. Unlike many previously proposed techniques, our technique is robust to varying image-content, thus it does not require specific catheters or any other optically opaque structures to be visible. Therefore, it works without any knowledge of catheter geometry. The authors demonstrate the application of our technique for the purposes of retrospective cardiorespiratory gating of normal and very low dose x-ray fluoroscopy images. Results: For normal dose x-ray images, the algorithm was validated using 28 clinical electrophysiology x-ray fluoroscopy sequences (2168 frames), from patients who underwent radiofrequency ablation (RFA) procedures for the treatment of atrial fibrillation and cardiac resynchronization therapy procedures for heart failure. The authors established end-systole, end-expiration, and end-inspiration success rates of 97.0%, 97.9%, and 97.0%, respectively. For very low dose applications, the technique was tested on ten x-ray sequences from the RFA procedures with added noise at signal to noise ratio (SNR) values of√(5)0, √(1)0, √(8), √(6), √(5), √(2), and √(1) to simulate the image quality of increasingly lower dose x-ray images. Even at the low SNR value of √(2), representing a dose reduction of more than 25 times, gating success rates of 89.1%, 88.8%, and 86.8% were established. Conclusions: The proposed

  12. Cardiac conductive system excitation maps using intracardiac tissue Doppler imaging

    Institute of Scientific and Technical Information of China (English)

    尹立雪; 郑昌琼; 蔡力; 郑翊; 李春梅; 邓燕; 罗芸; 李德玉; 赵树魁

    2003-01-01

    Objective To precisely visualize cardiac anatomic structures and simultaneously depict ele ctro-mechanical events for the purpose of precise underblood intervention. Methods Intracardiac high-resolution tissue Doppler imaging was used to map realt imemyocardial contractions in response to electrical activation within the anat omic structure of the cardiac conductive system using a canine open-chest model . Results The detailed inner anatomic structure of the cardiac conductive system at differ entsites (i.e., sino-atrial, atrial wall, atrial-ventricular node and ventr icular wall) with the inside onset and propagation of myocardial velocity and ac celeration induced by electrical activation was clearly visualized and quan titatively evaluated.Conclusion The simultaneous single modality visualization of the anatomy, function and electrical events of the cardiac conductive system will foster target pacing and pre cision ablation.

  13. Neurophysiological imaging techniques in dementia.

    Science.gov (United States)

    Comi, G; Leocani, L

    1999-01-01

    Neurophysiological methods, such as electroencephalography (EEG) and event-related potentials, are useful tools in the investigation of brain cognitive function in normal and pathological conditions, with an excellent time resolution when compared to that of other functional imaging techniques. Advanced techniques using a high number of EEG channels also enable a good spatial resolution to be achieved. This, together with the possibility of integration with other anatomical and functional images, may increase the ability to localize brain functions. Spectral analysis of the resting EEG, which gives information on the integrity of the cortical and subcortical networks involved in the generation of cortical rhythms, has the limitation of low sensitivity and specificity for the type of cognitive impairment. In almost all types of dementia, decreased power of the high frequencies is indeed observed in mild stages, accompanied by increased power of the slow rhythms in the more advanced phases. The sensitivity for the detection of spectral abnormalities is improved by studying centroid modifications. More specific information on the type of dementia can be provided by coherence analysis of the resting EEG, a measure of functional cortico-cortical connections, which has different abnormal patterns in Alzheimer's disease, cerebrovascular dementia and dementia associated with multiple sclerosis. Another tool for improving the assessment of demented patients is the study of EEG activity related to particular tasks, such as event-related potentials and event-related desynchronization/synchronization of the EEG, which allow the study of brain activation during cognitive and motor tasks.

  14. An Overview of Techniques for Cardiac Left Ventricle Segmentation on Short-Axis MRI

    Directory of Open Access Journals (Sweden)

    Krasnobaev Arseny

    2016-01-01

    Full Text Available Nowadays, heart diseases are the leading cause of death. Left ventricle segmentation of a human heart in magnetic resonance images (MRI is a crucial step in both cardiac diseases diagnostics and heart internal structure reconstruction. It allows estimating such important parameters as ejection faction, left ventricle myocardium mass, stroke volume, etc. In addition, left ventricle segmentation helps to construct the personalized heart computational models in order to conduct the numerical simulations. At present, the fully automated cardiac segmentation methods still do not meet the accuracy requirements. We present an overview of left ventricle segmentation algorithms on short-axis MRI. A wide variety of completely different approaches are used for cardiac segmentation, including machine learning, graph-based methods, deformable models, and low-level heuristics. The current state-of-the-art technique is a combination of deformable models with advanced machine learning methods, such as deep learning or Markov random fields. We expect that approaches based on deep belief networks are the most promising ones because the main training process of networks with this architecture can be performed on the unlabelled data. In order to improve the quality of left ventricle segmentation algorithms, we need more datasets with labelled cardiac MRI data in open access.

  15. Image fusion theories, techniques and applications

    CERN Document Server

    Mitchell, HB

    2010-01-01

    This text provides a comprehensive introduction to the theories, techniques and applications of image fusion. It examines in detail many real-life examples of image fusion, including panchromatic sharpening and ensemble color image segmentation.

  16. Noncardiac findings on cardiac CT. Part II: spectrum of imaging findings.

    LENUS (Irish Health Repository)

    Killeen, Ronan P

    2012-02-01

    Cardiac computed tomography (CT) has evolved into an effective imaging technique for the evaluation of coronary artery disease in selected patients. Two distinct advantages over other noninvasive cardiac imaging methods include its ability to directly evaluate the coronary arteries and to provide a unique opportunity to evaluate for alternative diagnoses by assessing the extracardiac structures, such as the lungs and mediastinum, particularly in patients presenting with the chief symptom of acute chest pain. Some centers reconstruct a small field of view (FOV) cropped around the heart but a full FOV (from skin to skin in the area irradiated) is obtainable in the raw data of every scan so that clinically relevant noncardiac findings are identifiable. Debate in the scientific community has centered on the necessity for this large FOV. A review of noncardiac structures provides the opportunity to make alternative diagnoses that may account for the patient\\'s presentation or to detect important but clinically silent problems such as lung cancer. Critics argue that the yield of biopsy-proven cancers is low and that the follow-up of incidental noncardiac findings is expensive, resulting in increased radiation exposure and possibly unnecessary further testing. In this 2-part review we outline the issues surrounding the concept of the noncardiac read, looking for noncardiac findings on cardiac CT. Part I focused on the pros and cons for and against the practice of identifying noncardiac findings on cardiac CT. Part II illustrates the imaging spectrum of cardiac CT appearances of benign and malignant noncardiac pathology.

  17. A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging.

    Science.gov (United States)

    Peng, Peng; Lekadir, Karim; Gooya, Ali; Shao, Ling; Petersen, Steffen E; Frangi, Alejandro F

    2016-04-01

    Cardiovascular magnetic resonance (CMR) has become a key imaging modality in clinical cardiology practice due to its unique capabilities for non-invasive imaging of the cardiac chambers and great vessels. A wide range of CMR sequences have been developed to assess various aspects of cardiac structure and function, and significant advances have also been made in terms of imaging quality and acquisition times. A lot of research has been dedicated to the development of global and regional quantitative CMR indices that help the distinction between health and pathology. The goal of this review paper is to discuss the structural and functional CMR indices that have been proposed thus far for clinical assessment of the cardiac chambers. We include indices definitions, the requirements for the calculations, exemplar applications in cardiovascular diseases, and the corresponding normal ranges. Furthermore, we review the most recent state-of-the art techniques for the automatic segmentation of the cardiac boundaries, which are necessary for the calculation of the CMR indices. Finally, we provide a detailed discussion of the existing literature and of the future challenges that need to be addressed to enable a more robust and comprehensive assessment of the cardiac chambers in clinical practice.

  18. Radionuclide imaging of cardiac sympathetic innervation in heart failure: unlocking untapped potential.

    Science.gov (United States)

    Gupta, Shuchita; Amanullah, Aman

    2015-03-01

    Heart failure (HF) is associated with sympathetic overactivity, which contributes to disease progression and arrhythmia development. Cardiac sympathetic innervation imaging can be performed using radiotracers that are taken up in the presynaptic nerve terminal of sympathetic nerves. The commonly used radiotracers are (123)I-metaiodobenzylguanidine ((123)I-mIBG) for planar and single-photon emission computed tomography imaging, and (11)C-hydroxyephedrine for positron emission tomography imaging. Sympathetic innervation imaging has been used in assessing prognosis, response to treatment, risk of ventricular arrhythmias and sudden death and prediction of response to cardiac resynchronization therapy in patients with HF. Other potential applications of these techniques are in patients with chemotherapy-induced cardiomyopathy, predicting myocardial recovery in patients with left ventricular assist devices, and assessing reinnervation following cardiac transplantation. There is a lack of standardization with respect to technique of (123)I-mIBG imaging that needs to be overcome for the imaging modality to gain popularity in clinical practice.

  19. Detection of Trabeculae and Papillary Muscles in Cardiac MR Images

    NARCIS (Netherlands)

    Spreeuwers, Lieuwe Jan; Bangma, S.J.; Meerwaldt, R.J.H.W.; Vonken, E.J.; Breeuwer, M.

    2005-01-01

    With the improvement of the quality of MR imagery, more and more details become visible. Only 5-10 years ago cardiac images of the heart were still so unsharp that finer details of the heart like the papillary muscles and the trabeculae were hardly visible and it was simply impossible to determine

  20. Detection of Trabeculae and Papillary Muscles in Cardiac MR Images

    NARCIS (Netherlands)

    Spreeuwers, L.J.; Bangma, S.J.; Meerwaldt, R.J.H.W.; Vonken, E.J.; Breeuwer, M.

    2005-01-01

    With the improvement of the quality of MR imagery, more and more details become visible. Only 5-10 years ago cardiac images of the heart were still so unsharp that finer details of the heart like the papillary muscles and the trabeculae were hardly visible and it was simply impossible to determine t

  1. An efficient method for accurate segmentation of LV in contrast-enhanced cardiac MR images

    Science.gov (United States)

    Suryanarayana K., Venkata; Mitra, Abhishek; Srikrishnan, V.; Jo, Hyun Hee; Bidesi, Anup

    2016-03-01

    Segmentation of left ventricle (LV) in contrast-enhanced cardiac MR images is a challenging task because of high variability in the image intensity. This is due to a) wash-in and wash-out of the contrast agent over time and b) poor contrast around the epicardium (outer wall) region. Current approaches for segmentation of the endocardium (inner wall) usually involve application of a threshold within the region of interest, followed by refinement techniques like active contours. A limitation of this method is under-segmentation of the inner wall because of gradual loss of contrast at the wall boundary. On the other hand, the challenge in outer wall segmentation is the lack of reliable boundaries because of poor contrast. There are four main contributions in this paper to address the aforementioned issues. First, a seed image is selected using variance based approach on 4D time-frame images over which initial endocardium and epicardium is segmented. Secondly, we propose a patch based feature which overcomes the problem of gradual contrast loss for LV endocardium segmentation. Third, we propose a novel Iterative-Edge-Refinement (IER) technique for epicardium segmentation. Fourth, we propose a greedy search algorithm for propagating the initial contour segmented on seed-image across other time frame images. We have experimented our technique on five contrast-enhanced cardiac MR Datasets (4D) having a total of 1097 images. The segmentation results for all 1097 images have been visually inspected by a clinical expert and have shown good accuracy.

  2. Systematic traction techniques in minimal-access pediatric cardiac surgery.

    Science.gov (United States)

    Oiwa, Hiroshi; Ishida, Ryoichi; Sudo, Kenichi

    2004-11-01

    Minimal-access pediatric cardiac surgery is now common in the treatment of simple congenital heart defects. However, methods of securing a good, unobstructed view for surgery and the difficulties of working in a deep, narrow field jeopardize safety in surgical procedures, especially for less experienced surgeons have been described. Our systematic, step-by-step traction techniques on the skin, the pericardium, the right atrial appendage, the aortic root, both venae cavae, and the free wall of the right ventricular outflow, using a mechanical retractor and traction sutures, facilitate surgical field exposure and the achievement of safety. As described below, our procedures are simple, allow direct inspection, and assist those working toward technical mastery.

  3. Detection of Trabeculae and Papillary Muscles in Cardiac MR Images

    OpenAIRE

    Spreeuwers, Lieuwe Jan; Bangma, S.J.; Meerwaldt, R.J.H.W.; Vonken, E.J.; Breeuwer, M.

    2005-01-01

    With the improvement of the quality of MR imagery, more and more details become visible. Only 5-10 years ago cardiac images of the heart were still so unsharp that finer details of the heart like the papillary muscles and the trabeculae were hardly visible and it was simply impossible to determine their outlines with any measure of accuracy. With the improved image quality it becomes feasible to extract information about these small structures. Studying the operation of these tiny muscles can...

  4. Tooling Techniques Enhance Medical Imaging

    Science.gov (United States)

    2012-01-01

    mission. The manufacturing techniques developed to create the components have yielded innovations advancing medical imaging, transportation security, and even energy efficiency.

  5. Heartfelt images: learning cardiac science artistically.

    Science.gov (United States)

    Courneya, Carol Ann

    2017-07-29

    There are limited curricular options for medical students to engage in art-making during their training. Yet, it is known that art-making confers a variety of benefits related to learning. This qualitative study utilises a visual methodology to explore students' art-making in the context of the cardiovascular sciences. The existence of a multiyear repository of medical/dental student generated, cardiac-inspired art, collected over 6 years, provided the opportunity to explore the nature of the art made. The aim was to categorise the art produced, as well as the depth and breadth of understanding required to produce the art. The data set included a wide variety of titled art (paintings, photographs, sketches, sculptures, collages, poetry and music/dance). Systematic curation of the collection, across all media, yielded three main categories: anatomical renderings, physiology/pathophysiology renderings and kinesthetic creations (music/dance/tactile). Overall (medical and dental) student-generated art suggested a high level of content/process understanding, as illustrated by attention to scientific detail, integration of form and function as well as the sophisticated use of visual metaphor and word play. Dental students preferentially expressed their understanding of anatomy and physiology kinesthetically, creating art that required manual dexterity as well as through choreography and dance. Combining art-making with basic science curricular learning invited the medical and dentistry students to link their understanding to different modes of expression and a non-biomedical way of knowing. Subsequent incorporation of the student-generated cardiac art into lectures exposed the entire class to creative pictorial expressions of anatomy, physiology and pathophysiology. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Cardiac CT for planning redo cardiac surgery: effect of knowledge-based iterative model reconstruction on image quality

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Seitaro [MedStar Washington Hospital Center, Department of Cardiology, Washington, DC (United States); Kumamoto University, Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto (Japan); Weissman, Gaby; Weigold, W. Guy [MedStar Washington Hospital Center, Department of Cardiology, Washington, DC (United States); Vembar, Mani [Philips Healthcare, CT Clinical Science, Cleveland, OH (United States)

    2015-01-15

    The purpose of this study was to investigate the effects of knowledge-based iterative model reconstruction (IMR) on image quality in cardiac CT performed for the planning of redo cardiac surgery by comparing IMR images with images reconstructed with filtered back-projection (FBP) and hybrid iterative reconstruction (HIR). We studied 31 patients (23 men, 8 women; mean age 65.1 ± 16.5 years) referred for redo cardiac surgery who underwent cardiac CT. Paired image sets were created using three types of reconstruction: FBP, HIR, and IMR. Quantitative parameters including CT attenuation, image noise, and contrast-to-noise ratio (CNR) of each cardiovascular structure were calculated. The visual image quality - graininess, streak artefact, margin sharpness of each cardiovascular structure, and overall image quality - was scored on a five-point scale. The mean image noise of FBP, HIR, and IMR images was 58.3 ± 26.7, 36.0 ± 12.5, and 14.2 ± 5.5 HU, respectively; there were significant differences in all comparison combinations among the three methods. The CNR of IMR images was better than that of FBP and HIR images in all evaluated structures. The visual scores were significantly higher for IMR than for the other images in all evaluated parameters. IMR can provide significantly improved qualitative and quantitative image quality at in cardiac CT for planning of reoperative cardiac surgery. (orig.)

  7. A Survey on Various Image Inpainting Techniques to Restore Image

    Directory of Open Access Journals (Sweden)

    Rajul Suthar,

    2014-02-01

    Full Text Available Image Inpainting or Image Restore is technique which is used to recover the damaged image and to fill the regions which are missing in original image in visually plausible way. Inpainting, the technique of modifying an image in an invisible form, it is art which is used from the early year. Applications of this technique include rebuilding of damaged photographs& films, removal of superimposed text, removal/replacement of unwanted objects, red eye correction, image coding. The main goal of the Inpainting is to change the damaged region in an image. In this paper we provide a review of different techniques used for image Inpainting. We discuss different inpainting techniques like Exemplar based image inpainting, PDE based image inpainting, texture synthesis based image inpainting, structural inpainting and textural inpainting.

  8. Cardiac Time Intervals by Tissue Doppler Imaging M-Mode

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Mogelvang, Rasmus; de Knegt, Martina Chantal;

    2016-01-01

    PURPOSE: To define normal values of the cardiac time intervals obtained by tissue Doppler imaging (TDI) M-mode through the mitral valve (MV). Furthermore, to evaluate the association of the myocardial performance index (MPI) obtained by TDI M-mode (MPITDI) and the conventional method of obtaining...... MPI (MPIConv), with established echocardiographic and invasive measures of systolic and diastolic function. METHODS: In a large community based population study (n = 974), where all are free of any cardiovascular disease and cardiovascular risk factors, cardiac time intervals, including isovolumic...... the MPITDI and MPIConv measured. RESULTS: IVRT, IVRT/ET and MPI all increased significantly with increasing age in both genders (pcardiac function. MPITDI...

  9. Monitoring radiation use in cardiac fluoroscopy imaging procedures

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Nathaniel T.; Steiner, Stefan H.; Smith, Ian R.; MacKay, R. Jock [Department of Statistics and Actuarial Sciences, Business and Industrial Statistics Research Group, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); St. Andrew' s Medical Institute, St. Andrew' s War Memorial Hospital, Brisbane, Queensland 4000 (Australia); Department of Statistics and Actuarial Sciences, Business and Industrial Statistics Research Group, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2011-01-15

    Purpose: Timely identification of systematic changes in radiation delivery of an imaging system can lead to a reduction in risk for the patients involved. However, existing quality assurance programs involving the routine testing of equipment performance using phantoms are limited in their ability to effectively carry out this task. To address this issue, the authors propose the implementation of an ongoing monitoring process that utilizes procedural data to identify unexpected large or small radiation exposures for individual patients, as well as to detect persistent changes in the radiation output of imaging platforms. Methods: Data used in this study were obtained from records routinely collected during procedures performed in the cardiac catheterization imaging facility at St. Andrew's War Memorial Hospital, Brisbane, Australia, over the period January 2008-March 2010. A two stage monitoring process employing individual and exponentially weighted moving average (EWMA) control charts was developed and used to identify unexpectedly high or low radiation exposure levels for individual patients, as well as detect persistent changes in the radiation output delivered by the imaging systems. To increase sensitivity of the charts, we account for variation in dose area product (DAP) values due to other measured factors (patient weight, fluoroscopy time, and digital acquisition frame count) using multiple linear regression. Control charts are then constructed using the residual values from this linear regression. The proposed monitoring process was evaluated using simulation to model the performance of the process under known conditions. Results: Retrospective application of this technique to actual clinical data identified a number of cases in which the DAP result could be considered unexpected. Most of these, upon review, were attributed to data entry errors. The charts monitoring the overall system radiation output trends demonstrated changes in equipment

  10. Cardiac activation mapping using ultrasound current source density imaging (UCSDI).

    Science.gov (United States)

    Olafsson, Ragnar; Witte, Russell S; Jia, Congxian; Huang, Sheng-Wen; Kim, Kang; O'Donnell, Matthew

    2009-03-01

    We describe the first mapping of biological current in a live heart using ultrasound current source density imaging (UCSDI). Ablation procedures that treat severe heart arrhythmias require detailed maps of the cardiac activation wave. The conventional procedure is time-consuming and limited by its poor spatial resolution (5-10 mm). UCSDI can potentially improve on existing mapping procedures. It is based on a pressure-induced change in resistivity known as the acousto-electric (AE) effect, which is spatially confined to the ultrasound focus. Data from 2 experiments are presented. A 540 kHz ultrasonic transducer (f/# = 1, focal length = 90 mm, pulse repetition frequency = 1600 Hz) was scanned over an isolated rabbit heart perfused with an excitation-contraction decoupler to reduce motion significantly while retaining electric function. Tungsten electrodes inserted in the left ventricle recorded simultaneously the AE signal and the low-frequency electrocardiogram (ECG). UCSDI displayed spatial and temporal patterns consistent with the spreading activation wave. The propagation velocity estimated from UCSDI was 0.25 +/- 0.05 mm/ms, comparable to the values obtained with the ECG signals. The maximum AE signal-to-noise ratio after filtering was 18 dB, with an equivalent detection threshold of 0.1 mA/ cm(2). This study demonstrates that UCSDI is a potentially powerful technique for mapping current flow and biopotentials in the heart.

  11. A robust automated left ventricle region of interest localization technique using a cardiac cine MRI atlas

    Science.gov (United States)

    Ben-Zikri, Yehuda Kfir; Linte, Cristian A.

    2016-03-01

    Region of interest detection is a precursor to many medical image processing and analysis applications, including segmentation, registration and other image manipulation techniques. The optimal region of interest is often selected manually, based on empirical knowledge and features of the image dataset. However, if inconsistently identified, the selected region of interest may greatly affect the subsequent image analysis or interpretation steps, in turn leading to incomplete assessment during computer-aided diagnosis or incomplete visualization or identification of the surgical targets, if employed in the context of pre-procedural planning or image-guided interventions. Therefore, the need for robust, accurate and computationally efficient region of interest localization techniques is prevalent in many modern computer-assisted diagnosis and therapy applications. Here we propose a fully automated, robust, a priori learning-based approach that provides reliable estimates of the left and right ventricle features from cine cardiac MR images. The proposed approach leverages the temporal frame-to-frame motion extracted across a range of short axis left ventricle slice images with small training set generated from les than 10% of the population. This approach is based on histogram of oriented gradients features weighted by local intensities to first identify an initial region of interest depicting the left and right ventricles that exhibits the greatest extent of cardiac motion. This region is correlated with the homologous region that belongs to the training dataset that best matches the test image using feature vector correlation techniques. Lastly, the optimal left ventricle region of interest of the test image is identified based on the correlation of known ground truth segmentations associated with the training dataset deemed closest to the test image. The proposed approach was tested on a population of 100 patient datasets and was validated against the ground truth

  12. Role of multimodality cardiac imaging in preoperative cardiovascular evaluation before noncardiac surgery

    Directory of Open Access Journals (Sweden)

    Fathala Ahmed

    2011-01-01

    Full Text Available The preoperative cardiac assessment of patients undergoing noncardiac surgery is common in the daily practice of medical consultants, anesthesiologists, and surgeons. The number of patients undergoing noncardiac surgery worldwide is increasing. Currently, there are several noninvasive diagnostic tests available for preoperative evaluation. Both nuclear cardiology with myocardial perfusion single photon emission computed tomography (SPECT and stress echocardiography are well-established techniques for preoperative cardiac evaluation. Recently, some studies demonstrated that both coronary angiography by gated multidetector computed tomography and stress cardiac magnetic resonance might potentially play a role in preoperative evaluation as well, but more studies are needed to assess the role of these new modalities in preoperative risk stratification. A common question that arises in preoperative evaluation is if further preoperative testing is needed, which preoperative test should be used. The preferred stress test is the exercise electrocardiogram (ECG. Stress imaging with exercise or pharmacologic stress agents is to be considered in patients with abnormal rest ECG or patients who are unable to exercise. After reviewing this article, the reader should develop an understanding of the following: (1 the magnitude of the cardiac preoperative morbidity and mortality, (2 how to select a patient for further preoperative testing, (3 currently available noninvasive cardiac testing for the detection of coronary artery disease and assessment of left ventricular function, and (4 an approach to select the most appropriate noninvasive cardiac test, if needed.

  13. Multimodality cardiac imaging in Turner syndrome.

    Science.gov (United States)

    Mortensen, Kristian H; Gopalan, Deepa; Nørgaard, Bjarne L; Andersen, Niels H; Gravholt, Claus H

    2016-06-01

    Congenital and acquired cardiovascular diseases contribute significantly to the threefold elevated risk of premature death in Turner syndrome. A multitude of cardiovascular anomalies and disorders, many of which deleteriously impact morbidity and mortality, is frequently left undetected and untreated because of poor adherence to screening programmes and complex clinical presentations. Imaging is essential for timely and effective primary and secondary disease prophylaxis that may alleviate the severe impact of cardiovascular disease in Turner syndrome. This review illustrates how cardiovascular disease in Turner syndrome manifests in a complex manner that ranges in severity from incidental findings to potentially fatal anomalies. Recommendations regarding the use of imaging for screening and surveillance of cardiovascular disease in Turner syndrome are made, emphasising the key role of non-invasive and invasive cardiovascular imaging to the management of all patients with Turner syndrome.

  14. Bayesian learning for cardiac SPECT image interpretation.

    Science.gov (United States)

    Sacha, Jarosław P; Goodenday, Lucy S; Cios, Krzysztof J

    2002-01-01

    In this paper, we describe a system for automating the diagnosis of myocardial perfusion from single-photon emission computerized tomography (SPECT) images of male and female hearts. Initially we had several thousand of SPECT images, other clinical data and physician-interpreter's descriptions of the images. The images were divided into segments based on the Yale system. Each segment was described by the physician as showing one of the following conditions: normal perfusion, reversible perfusion defect, partially reversible perfusion defect, fixed perfusion defect, defect showing reverse redistribution, equivocal defect or artifact. The physician's diagnosis of overall left ventricular (LV) perfusion, based on the above descriptions, categorizes a study as showing one or more of eight possible conditions: normal, ischemia, infarct and ischemia, infarct, reverse redistribution, equivocal, artifact or LV dysfunction. Because of the complexity of the task, we decided to use the knowledge discovery approach, consisting of these steps: problem understanding, data understanding, data preparation, data mining, evaluating the discovered knowledge and its implementation. After going through the data preparation step, in which we constructed normal gender-specific models of the LV and image registration, we ended up with 728 patients for whom we had both SPECT images and corresponding diagnoses. Another major contribution of the paper is the data mining step, in which we used several new Bayesian learning classification methods. The approach we have taken, namely the six-step knowledge discovery process has proven to be very successful in this complex data mining task and as such the process can be extended to other medical data mining projects.

  15. Constrained segmentation of cardiac MR image sequences

    NARCIS (Netherlands)

    Üzümcü, Mehmet

    2007-01-01

    Cardiovascular diseases are highly prevalent in the western world. With the aging of the population, the number of people suffering from CVD is still increasing. Therefore, the amount of diagnostic assessments and thus, the number of image acquisitions will increase accordingly. Considering the high

  16. Automated Pointing of Cardiac Imaging Catheters.

    Science.gov (United States)

    Loschak, Paul M; Brattain, Laura J; Howe, Robert D

    2013-12-31

    Intracardiac echocardiography (ICE) catheters enable high-quality ultrasound imaging within the heart, but their use in guiding procedures is limited due to the difficulty of manually pointing them at structures of interest. This paper presents the design and testing of a catheter steering model for robotic control of commercial ICE catheters. The four actuated degrees of freedom (4-DOF) are two catheter handle knobs to produce bi-directional bending in combination with rotation and translation of the handle. An extra degree of freedom in the system allows the imaging plane (dependent on orientation) to be directed at an object of interest. A closed form solution for forward and inverse kinematics enables control of the catheter tip position and the imaging plane orientation. The proposed algorithms were validated with a robotic test bed using electromagnetic sensor tracking of the catheter tip. The ability to automatically acquire imaging targets in the heart may improve the efficiency and effectiveness of intracardiac catheter interventions by allowing visualization of soft tissue structures that are not visible using standard fluoroscopic guidance. Although the system has been developed and tested for manipulating ICE catheters, the methods described here are applicable to any long thin tendon-driven tool (with single or bi-directional bending) requiring accurate tip position and orientation control.

  17. Imaging Techniques in Endodontics: An Overview

    Science.gov (United States)

    Deepak, B. S.; Subash, T. S.; Narmatha, V. J.; Anamika, T.; Snehil, T. K.; Nandini, D. B.

    2012-01-01

    This review provides an overview of the relevance of imaging techniques such as, computed tomography, cone beam computed tomography, and ultrasound, to endodontic practice. Many limitations of the conventional radiographic techniques have been overcome by the newer methods. Advantages and disadvantages of various imaging techniques in endodontic practice are also discussed. PMID:22530184

  18. Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution

    Science.gov (United States)

    Ding, Yichen; Lee, Juhyun; Ma, Jianguo; Sung, Kevin; Yokota, Tomohiro; Singh, Neha; Dooraghi, Mojdeh; Abiri, Parinaz; Wang, Yibin; Kulkarni, Rajan P.; Nakano, Atsushi; Nguyen, Thao P.; Fei, Peng; Hsiai, Tzung K.

    2017-02-01

    Light-sheet fluorescence microscopy (LSFM) serves to advance developmental research and regenerative medicine. Coupled with the paralleled advances in fluorescence-friendly tissue clearing technique, our cardiac LSFM enables dual-sided illumination to rapidly uncover the architecture of murine hearts over 10 by 10 by 10 mm3 in volume; thereby allowing for localizing progenitor differentiation to the cardiomyocyte lineage and AAV9-mediated expression of exogenous transmembrane potassium channels with high contrast and resolution. Without the steps of stitching image columns, pivoting the light-sheet and sectioning the heart mechanically, we establish a holistic strategy for 3-dimentional reconstruction of the “digital murine heart” to assess aberrant cardiac structures as well as the spatial distribution of the cardiac lineages in neonates and ion-channels in adults.

  19. Cardiac magnetic resonance imaging in Alström syndrome

    Directory of Open Access Journals (Sweden)

    Carey Catherine M

    2009-06-01

    Full Text Available Abstract Background A case series of the cardiac magnetic resonance imaging findings in seven adult Alström patients. Methods Seven patients from the National Specialist Commissioning Group Centre for Alström Disease, Torbay, England, UK, completed the cardiac magnetic resonance imaging protocol to assess cardiac structure and function in Alström cardiomyopathy. Results All patients had some degree of left and right ventricular dysfunction. Patchy mid wall gadolinium delayed enhancement was demonstrated, suggesting an underlying fibrotic process. Some degree of cardiomyopathy was universal. No evidence of myocardial infarction or fatty infiltration was demonstrated, but coronary artery disease cannot be completely excluded. Repeat scanning after 18 months in one subject showed progression of fibrosis and decreased left ventricular function. Conclusion Adult Alström cardiomyopathy appears to be a fibrotic process causing impairment of both ventricles. Serial cardiac magnetic resonance scanning has helped clarify the underlying disease progression and responses to treatment. Confirmation of significant mutations in the ALMS1 gene should lead to advice to screen the subject for cardiomyopathy, and metabolic disorders.

  20. Fully automated segmentation of left ventricle using dual dynamic programming in cardiac cine MR images

    Science.gov (United States)

    Jiang, Luan; Ling, Shan; Li, Qiang

    2016-03-01

    Cardiovascular diseases are becoming a leading cause of death all over the world. The cardiac function could be evaluated by global and regional parameters of left ventricle (LV) of the heart. The purpose of this study is to develop and evaluate a fully automated scheme for segmentation of LV in short axis cardiac cine MR images. Our fully automated method consists of three major steps, i.e., LV localization, LV segmentation at end-diastolic phase, and LV segmentation propagation to the other phases. First, the maximum intensity projection image along the time phases of the midventricular slice, located at the center of the image, was calculated to locate the region of interest of LV. Based on the mean intensity of the roughly segmented blood pool in the midventricular slice at each phase, end-diastolic (ED) and end-systolic (ES) phases were determined. Second, the endocardial and epicardial boundaries of LV of each slice at ED phase were synchronously delineated by use of a dual dynamic programming technique. The external costs of the endocardial and epicardial boundaries were defined with the gradient values obtained from the original and enhanced images, respectively. Finally, with the advantages of the continuity of the boundaries of LV across adjacent phases, we propagated the LV segmentation from the ED phase to the other phases by use of dual dynamic programming technique. The preliminary results on 9 clinical cardiac cine MR cases show that the proposed method can obtain accurate segmentation of LV based on subjective evaluation.

  1. Myocardial Motion Estimation: An Evaluation of Optical Flow Computation Techniques on Echocardiographic Images

    Directory of Open Access Journals (Sweden)

    Slamet Riyadi

    2011-01-01

    Full Text Available The use of image processing technique for cardiac motion analysis has been an active research in the past decade. The estimation of myocardial motion eases the cardiologist in diagnosing cardiac abnormalities. In term of movement analysis, optical flow is the most popular technique that has been used by researchers. This paper describes the implementation and evaluation of three optical flow computation techniques to estimate the myocardial motion using echocardiographic images. The three techniquesare the global smoothness method (GSM, the local smoothness method (LSM and warping technique (WT. Optical flow field is computed based on healthy cardiac video on parasternal short axes view. These techniques look promising since the optical flow fields can be utilized to estimate the myocardial movement and comply with its true movement. The performances of each technique in terms of the direction, homogeneity and computing time, are also discussed.

  2. Acupuncture Effects on Cardiac Functions Measured by Cardiac Magnetic Resonance Imaging in a Feline Model

    Directory of Open Access Journals (Sweden)

    Jen-Hsou Lin

    2010-01-01

    Full Text Available The usefulness of acupuncture (AP as a complementary and/or alternative therapy in animals is well established but more research is needed on its clinical efficacy relative to conventional therapy, and on the underlying mechanisms of the effects of AP. Cardiac magnetic resonance imaging (CMRI, an important tool in monitoring cardiovascular diseases, provides a reliable method to monitor the effects of AP on the cardiovascular system. This controlled experiment monitored the effect electro-acupuncture (EA at bilateral acupoint Neiguan (PC6 on recovery time after ketamine/xylazine cocktail anesthesia in healthy cats. The CMRI data established the basic feline cardiac function index (CFI, including cardiac output and major vessel velocity. To evaluate the effect of EA on the functions of the autonomic nervous and cardiovascular systems, heart rate, respiration rate, electrocardiogram and pulse rate were also measured. Ketamine/xylazine cocktail anesthesia caused a transient hypertension in the cats; EA inhibited this anesthetic-induced hypertension and shortened the post-anesthesia recovery time. Our data support existing knowledge on the cardiovascular benefits of EA at PC6, and also provide strong evidence for the combination of anesthesia and EA to shorten post-anesthesia recovery time and counter the negative effects of anesthetics on cardiac physiology.

  3. Cardiac magnetic resonance imaging using an open 0.35 T system.

    Science.gov (United States)

    Klein, Hans-Martin; Meyners, Werner; Neeb, Benjamin; Labenz, Joachim; Truümmler, Karl-Heinz

    2007-01-01

    To evaluate cardiac magnetic resonance imaging (MRI) using a 0.35 T magnetic resonance system with open design. Eleven patients were examined in an open MRI system with a field strength of 0.35 T. Myocardial function was assessed with cine true fast imaging with steady-state precession sequences in 2 planes. Perfusion images were acquired with a T1-weighted gradient echo sequence. Late enhancement was performed using an inversion recovery-prepared fast gradient echo technique. Image quality was assessed using a 4-point score in consensus. Signal-noise ratio was measured. For functional imaging, average score was 1.65 (SD, 0.6). For perfusion imaging, the value was 2.25 (SD, 0.68). For late enhancement, quality score was 2.6 (SD, 0.82). Average value of signal-noise ratio for functional, perfusion, and late enhancement imaging was 50.6 (SD, 16.4), 91.8 (SD, 52.8), and 33.2 (SD, 20.4), respectively. Open MRI with lower field strength can be used for functional imaging of the heart. For perfusion and viability imaging (late enhancement), higher field strength is needed. Open low-field cardiac MRI may provide a helpful alternative for obese or claustrophobic patients or patients who are difficult to move.

  4. The clinical value of cardiac sympathetic imaging in heart failure

    DEFF Research Database (Denmark)

    Christensen, Thomas Emil; Kjaer, Andreas; Hasbak, Philip

    2014-01-01

    The autonomic nervous system plays an important role in the pathology of heart failure. The single-photon emission computed tomography tracer iodine-123-metaiodobenzylguanidine ((123) I-MIBG) can be used to investigate the activity of the predominant neurotransmitter of the sympathetic nervous...... system, norepinephrine. Also, positron emission tomography tracers are being developed for the same purpose. With (123) I-MIBG as a starting point, this brief review introduces the modalities used for cardiac sympathetic imaging....

  5. Giant right atrial myxoma: characterization with cardiac magnetic resonance imaging.

    LENUS (Irish Health Repository)

    Ridge, Carole A

    2012-02-01

    A 53-year-old woman presented to the emergency department with a 2-week history of dyspnoea and chest pain. Computed tomography pulmonary angiography was performed to exclude acute pulmonary embolism (PE). This demonstrated a large right atrial mass and no evidence of PE. Transthoracic echocardiography followed by cardiac magnetic resonance imaging confirmed a mobile right atrial mass. Surgical resection was then performed confirming a giant right atrial myxoma. We describe the typical clinical, radiologic, and pathologic features of right atrial myxoma.

  6. The Risks of Inappropriateness in Cardiac Imaging

    Directory of Open Access Journals (Sweden)

    Eugenio Picano

    2009-05-01

    Full Text Available The immense clinical and scientific benefits of cardiovascular imaging are well-established, but are also true that 30 to 50% of all examinations are partially or totally inappropriate. Marketing messages, high patient demand and defensive medicine, lead to the vicious circle of the so-called Ulysses syndrome. Mr. Ulysses, a typical middle-aged “worried-well” asymptomatic subject with an A-type coronary personality, a heavy (opium smoker, leading a stressful life, would be advised to have a cardiological check-up after 10 years of war. After a long journey across imaging laboratories, he will have stress echo, myocardial perfusion scintigraphy, PET-CT, 64-slice CT, and adenosine-MRI performed, with a cumulative cost of >100 times a simple exercise-electrocardiography test and a cumulative radiation dose of >4,000 chest x-rays, with a cancer risk of 1 in 100. Ulysses is tired of useless examinations, exorbitant costs. unaffordable even by the richest society, and unacceptable risks.

  7. Subject-specific models for image-guided cardiac surgery

    Science.gov (United States)

    Wierzbicki, Marcin; Moore, John; Drangova, Maria; Peters, Terry

    2008-10-01

    Three-dimensional visualization for planning and guidance is still not routinely available for minimally invasive cardiac surgery (MICS). This can be addressed by providing the surgeon with subject-specific geometric models derived from 3D preoperative images for planning of port locations or to rehearse the procedure. For guidance purposes, these models can also be registered to the subject using intraoperative images. In this paper, we present a method for extracting subject-specific heart geometry from preoperative MR images. The main obstacle we face is the low quality of clinical data in terms of resolution, signal-to-noise ratio, and presence of artefacts. Instead of using these images directly, we approach the problem in three steps: (1) generate a high quality template model, (2) register the template with the preoperative data, and (3) animate the result over the cardiac cycle. Validation of this approach showed that dynamic subject-specific models can be generated with a mean error of 3.6 ± 1.1 mm from low resolution target images (6 mm slices). Thus, the models are sufficiently accurate for MICS training and procedure planning. In terms of guidance, we also demonstrate how the resulting models may be adapted to the operating room using intraoperative ultrasound imaging.

  8. Enhancing ejection fraction measurement through 4D respiratory motion compensation in cardiac PET imaging

    Science.gov (United States)

    Tang, Jing; Wang, Xinhui; Gao, Xiangzhen; Segars, W. Paul; Lodge, Martin A.; Rahmim, Arman

    2017-06-01

    ECG gated cardiac PET imaging measures functional parameters such as left ventricle (LV) ejection fraction (EF), providing diagnostic and prognostic information for management of patients with coronary artery disease (CAD). Respiratory motion degrades spatial resolution and affects the accuracy in measuring the LV volumes for EF calculation. The goal of this study is to systematically investigate the effect of respiratory motion correction on the estimation of end-diastolic volume (EDV), end-systolic volume (ESV), and EF, especially on the separation of normal and abnormal EFs. We developed a respiratory motion incorporated 4D PET image reconstruction technique which uses all gated-frame data to acquire a motion-suppressed image. Using the standard XCAT phantom and two individual-specific volunteer XCAT phantoms, we simulated dual-gated myocardial perfusion imaging data for normally and abnormally beating hearts. With and without respiratory motion correction, we measured the EDV, ESV, and EF from the cardiac-gated reconstructed images. For all the phantoms, the estimated volumes increased and the biases significantly reduced with motion correction compared with those without. Furthermore, the improvement of ESV measurement in the abnormally beating heart led to better separation of normal and abnormal EFs. The simulation study demonstrated the significant effect of respiratory motion correction on cardiac imaging data with motion amplitude as small as 0.7 cm. The larger the motion amplitude the more improvement respiratory motion correction brought about on the EF measurement. Using data-driven respiratory gating, we also demonstrated the effect of respiratory motion correction on estimating the above functional parameters from list mode patient data. Respiratory motion correction has been shown to improve the accuracy of EF measurement in clinical cardiac PET imaging.

  9. Cardiac magnetic source imaging based on current multipole model

    Institute of Scientific and Technical Information of China (English)

    Tang Fa-Kuan; Wang Qian; Hua Ning; Lu Hong; Tang Xue-Zheng; Ma Ping

    2011-01-01

    It is widely accepted that the heart current source can be reduced into a current multipole. By adopting three linear inverse methods, the cardiac magnetic imaging is achieved in this article based on the current multipole model expanded to the first order terms. This magnetic imaging is realized in a reconstruction plane in the centre of human heart, where the current dipole array is employed to represent realistic cardiac current distribution. The current multipole as testing source generates magnetic fields in the measuring plane, serving as inputs of cardiac magnetic inverse problem. In the heart-torso model constructed by boundary element method, the current multipole magnetic field distribution is compared with that in the homogeneous infinite space, and also with the single current dipole magnetic field distribution.Then the minimum-norm least-squares (MNLS) method, the optimal weighted pseuDOInverse method (OWPIM), and the optimal constrained linear inverse method (OCLIM) are selected as the algorithms for inverse computation based on current multipole model innovatively, and the imaging effects of these three inverse methods are compared. Besides,two reconstructing parameters, residual and mean residual, are also discussed, and their trends under MNLS, OWPIM and OCLIM each as a function of SNR are obtained and compared.

  10. Image-based motion estimation for cardiac CT via image registration

    Science.gov (United States)

    Cammin, J.; Taguchi, K.

    2010-03-01

    Images reconstructed from tomographic projection data are subject to motion artifacts from organs that move during the duration of the scan. The effect can be reduced by taking the motion into account in the reconstruction algorithm if an estimate of the deformation exists. This paper presents the estimation of the three-dimensional cardiac motion by registering reconstructed images from cardiac quiet phases as a first step towards motion-compensated cardiac image reconstruction. The non-rigid deformations of the heart are parametrized on a coarse grid on the image volume and are interpolated with cubic b-splines. The optimization problem of finding b-spline coefficients that best describe the observed deformations is ill-posed due to the large number of parameters and the resulting motion vector field is sensitive to the choice of initial parameters. Particularly challenging is the task to capture the twisting motion of the heart. The motion vector field from a dynamic computer phantom of the human heart is used to initialize the transformation parameters for the optimization process with realistic starting values. The results are evaluated by comparing the registered images and the obtained motion vector field to the case when the registration is performed without using prior knowledge about the expected cardiac motion. We find that the registered images are similar for both approaches, but the motion vector field obtained from motion estimation initialized with the phantom describes the cardiac contraction and twisting motion more accurately.

  11. Autopsy imaging for cardiac tamponade in a Thoroughbred foal

    Science.gov (United States)

    YAMADA, Kazutaka; SATO, Fumio; HORIUCHI, Noriyuki; HIGUCHI, Tohru; KOBAYASHI, Yoshiyasu; SASAKI, Naoki; NAMBO, Yasuo

    2016-01-01

    ABSTRACT Autopsy imaging (Ai), postmortem imaging before necropsy, is used in human forensic medicine. Ai was performed using computed tomography (CT) for a 1-month-old Thoroughbred foal cadaver found in a pasture. CT revealed pericardial effusion, collapse of the aorta, bleeding in the lung lobe, gas in the ventricles and liver parenchyma, and distension of the digestive tract. Rupture in the left auricle was confirmed by necropsy; however, it was not depicted on CT. Therefore, Ai and conventional necropsy are considered to complement each other. The cause of death was determined to be traumatic cardiac tamponade. In conclusion, Ai is an additional option for determining cause of death. PMID:27703406

  12. Autopsy imaging for cardiac tamponade in a Thoroughbred foal.

    Science.gov (United States)

    Yamada, Kazutaka; Sato, Fumio; Horiuchi, Noriyuki; Higuchi, Tohru; Kobayashi, Yoshiyasu; Sasaki, Naoki; Nambo, Yasuo

    2016-01-01

    Autopsy imaging (Ai), postmortem imaging before necropsy, is used in human forensic medicine. Ai was performed using computed tomography (CT) for a 1-month-old Thoroughbred foal cadaver found in a pasture. CT revealed pericardial effusion, collapse of the aorta, bleeding in the lung lobe, gas in the ventricles and liver parenchyma, and distension of the digestive tract. Rupture in the left auricle was confirmed by necropsy; however, it was not depicted on CT. Therefore, Ai and conventional necropsy are considered to complement each other. The cause of death was determined to be traumatic cardiac tamponade. In conclusion, Ai is an additional option for determining cause of death.

  13. Human torso phantom for imaging of heart with realistic modes of cardiac and respiratory motion

    Science.gov (United States)

    Boutchko, Rostyslav; Balakrishnan, Karthikayan; Gullberg, Grant T; O& #x27; Neil, James P

    2013-09-17

    A human torso phantom and its construction, wherein the phantom mimics respiratory and cardiac cycles in a human allowing acquisition of medical imaging data under conditions simulating patient cardiac and respiratory motion.

  14. MR image analysis: Longitudinal cardiac motion influences left ventricular measurements

    Energy Technology Data Exchange (ETDEWEB)

    Berkovic, Patrick [University Hospital Antwerp, Department of Cardiology (Belgium)], E-mail: pberko17@hotmail.com; Hemmink, Maarten [University Hospital Antwerp, Department of Cardiology (Belgium)], E-mail: maartenhemmink@gmail.com; Parizel, Paul M. [University Hospital Antwerp, Department of Radiology (Belgium)], E-mail: paul.parizel@uza.be; Vrints, Christiaan J. [University Hospital Antwerp, Department of Cardiology (Belgium)], E-mail: chris.vrints@uza.be; Paelinck, Bernard P. [University Hospital Antwerp, Department of Cardiology (Belgium)], E-mail: Bernard.paelinck@uza.be

    2010-02-15

    Background: Software for the analysis of left ventricular (LV) volumes and mass using border detection in short-axis images only, is hampered by through-plane cardiac motion. Therefore we aimed to evaluate software that involves longitudinal cardiac motion. Methods: Twenty-three consecutive patients underwent 1.5-Tesla cine magnetic resonance (MR) imaging of the entire heart in the long-axis and short-axis orientation with breath-hold steady-state free precession imaging. Offline analysis was performed using software that uses short-axis images (Medis MASS) and software that includes two-chamber and four-chamber images to involve longitudinal LV expansion and shortening (CAAS-MRV). Intraobserver and interobserver reproducibility was assessed by using Bland-Altman analysis. Results: Compared with MASS software, CAAS-MRV resulted in significantly smaller end-diastolic (156 {+-} 48 ml versus 167 {+-} 52 ml, p = 0.001) and end-systolic LV volumes (79 {+-} 48 ml versus 94 {+-} 52 ml, p < 0.001). In addition, CAAS-MRV resulted in higher LV ejection fraction (52 {+-} 14% versus 46 {+-} 13%, p < 0.001) and calculated LV mass (154 {+-} 52 g versus 142 {+-} 52 g, p = 0.004). Intraobserver and interobserver limits of agreement were similar for both methods. Conclusion: MR analysis of LV volumes and mass involving long-axis LV motion is a highly reproducible method, resulting in smaller LV volumes, higher ejection fraction and calculated LV mass.

  15. Accelerometer-Based Method for Extracting Respiratory and Cardiac Gating Information for Dual Gating during Nuclear Medicine Imaging

    Directory of Open Access Journals (Sweden)

    Mojtaba Jafari Tadi

    2014-01-01

    Full Text Available Both respiratory and cardiac motions reduce the quality and consistency of medical imaging specifically in nuclear medicine imaging. Motion artifacts can be eliminated by gating the image acquisition based on the respiratory phase and cardiac contractions throughout the medical imaging procedure. Electrocardiography (ECG, 3-axis accelerometer, and respiration belt data were processed and analyzed from ten healthy volunteers. Seismocardiography (SCG is a noninvasive accelerometer-based method that measures accelerations caused by respiration and myocardial movements. This study was conducted to investigate the feasibility of the accelerometer-based method in dual gating technique. The SCG provides accelerometer-derived respiratory (ADR data and accurate information about quiescent phases within the cardiac cycle. The correct information about the status of ventricles and atria helps us to create an improved estimate for quiescent phases within a cardiac cycle. The correlation of ADR signals with the reference respiration belt was investigated using Pearson correlation. High linear correlation was observed between accelerometer-based measurement and reference measurement methods (ECG and Respiration belt. Above all, due to the simplicity of the proposed method, the technique has high potential to be applied in dual gating in clinical cardiac positron emission tomography (PET to obtain motion-free images in the future.

  16. Review on Lossless Image Compression Techniques for Welding Radiographic Images

    Directory of Open Access Journals (Sweden)

    B. Karthikeyan

    2013-01-01

    Full Text Available Recent development in image processing allows us to apply it in different domains. Radiography image of weld joint is one area where image processing techniques can be applied. It can be used to identify the quality of the weld joint. For this the image has to be stored and processed later in the labs. In order to optimize the use of disk space compression is required. The aim of this study is to find a suitable and efficient lossless compression technique for radiographic weld images. Image compression is a technique by which the amount of data required to represent information is reduced. Hence image compression is effectively carried out by removing the redundant data. This study compares different ways of compressing the radiography images using combinations of different lossless compression techniques like RLE, Huffman.

  17. Findings of cardiac radionuclide images in myotonic dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Norinari; Machida, Kikuo; Hosono, Makoto [Saitama Medical School., Kawagoe (Japan). Saitama Medical Center] [and others

    2002-09-01

    Purpose of this study was to report our experiences of cardiac radionuclide imaging in patients with myotonic dystrophy to assess its clinical implications. Consecutive 18 patients (6 men and 12 women with age range of 34-66 years) entered the study. Thallium-201, I-123 beta-methyliodophenylpentadecanoic acid (BMIPP), and I-123 m-iodobenzylguanidine (MIBG) myocardial SPECT were performed 15 minutes and 195 minutes after the injection of the radiotracers (111 MBq). SPECT images were interpreted by consensus of 3 nuclear medicine physicians blinded to clinical information. Bull's eye washout rates of SPECT of the three rediopharmaceuticals, H/M ratios of I-123 MIBG planar images were calculated. Reduced uptake was found in 93 and 103 out of 234 segments on early and delayed Tl-201 SPECT, 110 and 104 out of 234 on I-123 BMIPP, and 71 and 81 out of 221 on I-123 MIBG, respectively. The photopenia was mild in majority. Frequency of photopenic areas was greater in I-123 BMIPP than in Tl-201 (p=0.001) followed by I-123 MIBG (p<0.0001). Photopenia was most often found in infero-posterior wall (p<0.0001). The washout rates and H/M ratios between mild and severe disease were not statistically different after excluding the patients complicated with diabetes mellitus. In conclusion, radionuclide myocardial imaging is frequently abnormal in the patients with myotonic dystrophy. Early detection of the cardiac involvement may be possible in some patients by cardiac radionuclide imaging. (author)

  18. Automatic quantitative analysis of cardiac MR perfusion images

    NARCIS (Netherlands)

    Breeuwer, Marcel; Spreeuwers, Luuk; Quist, Marcel

    2001-01-01

    Magnetic Resonance Imaging (MRI) is a powerful technique for imaging cardiovascular diseases. The introduction of cardiovascular MRI into clinical practice is however hampered by the lack of efficient and accurate image analysis methods. This paper focuses on the evaluation of blood perfusion in the

  19. A Shape Based Image Search Technique

    Directory of Open Access Journals (Sweden)

    Aratrika Sarkar

    2014-08-01

    Full Text Available This paper describes an interactive application we have developed based on shaped-based image retrieval technique. The key concepts described in the project are, imatching of images based on contour matching; iimatching of images based on edge matching; iiimatching of images based on pixel matching of colours. Further, the application facilitates the matching of images invariant of transformations like i translation ; ii rotation; iii scaling. The key factor of the system is, the system shows the percentage unmatched of the image uploaded with respect to the images already existing in the database graphically, whereas, the integrity of the system lies on the unique matching techniques used for optimum result. This increases the accuracy of the system. For example, when a user uploads an image say, an image of a mango leaf, then the application shows all mango leaves present in the database as well other leaves matching the colour and shape of the mango leaf uploaded.

  20. Dual-source cardiac computed tomography angiography (CCTA) in the follow-up of cardiac transplant: comparison of image quality and radiation dose using three different imaging protocols

    Energy Technology Data Exchange (ETDEWEB)

    Beitzke, D.; Berger-Kulemann, V.; Unterhumer, S.; Loewe, C.; Wolf, F. [Medical University Vienna, Department of Biomedical Imaging and Image Guided Therapy, Division of Cardiovascular and Interventional Radiology, Vienna (Austria); Schoepf, V. [Medical University Vienna, Department of Biomedical Imaging and Image Guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Vienna (Austria); Spitzer, E. [Bern University Hospital, Department of Cardiology, Bern (Switzerland); Feuchtner, G.M. [Innsbruck Medical University, Department of Radiology II, Innsbruck (Austria); Gyoengyoesi, M. [Medical University Vienna, Department of Cardiology, Vienna (Austria); Uyanik-Uenal, K.; Zuckermann, A. [Medical University Vienna, Department of Cardiac Surgery, Vienna (Austria)

    2015-08-15

    To prospectively evaluate image quality (IQ) and radiation dose of dual-source cardiac computed tomography (CCTA) using different imaging protocols. CCTA was performed in 150 patients using the retrospective ECG-gated spiral technique (rECG) the prospective ECG-gated technique (pECG), or the prospective ECG-gated technique with systolic imaging and automated tube voltage selection (pECGsys). IQ was rated using a 16-segment coronary artery model. Techniques were compared for overall IQ, IQ of the large and the small coronary artery segments. Effective dose was used for comparison of radiation dose. Overall IQ and IQ of the large segments showed no differences between the groups. IQ analysis of the small segments showed lowered IQ in pECGsys compared to rECG (p = 0.02), but not to pECG (p = 0.6). Effective dose did not differ significantly between rECG and pECG (p = 0.13), but was significantly lower for pECGsys (p < 0.001 vs. rECG and pECG). Radiation dose of dual-source CCTA in heart transplant recipients is significantly reduced by using prospective systolic scanning and automated tube voltage selection, while overall IQ and IQ of the large coronary segments are maintained. IQ appears to be lower compared to retrospective techniques with regard to small coronary segments. (orig.)

  1. Cardiac abnormalities assessed by non-invasive techniques in patients with newly diagnosed idiopathic inflammatory myopathies

    DEFF Research Database (Denmark)

    Diederichsen, Louise Pyndt; Simonsen, Jane Angel; Diederichsen, Axel Cosmus Pyndt;

    2015-01-01

    , cardiac troponin-I (TnI), electrocardiogram (standard 12-lead and 48-h Holter monitoring), echocardiography with tissue Doppler measures, cardiac magnetic resonance (CMR) imaging with T2 mapping and semi-quantitative (99m)technetium pyrophosphate ((99m)Tc-PYP) scintigraphy. RESULTS: Dyspnoea was present....... The myocardial (99m)Tc-PYP uptake and CMR results differed between patients and controls, albeit not with statistical significance. Overall, cardiac abnormalities were demonstrated in 9 (64%) of the patients versus 2 (14%) of the controls (p=0.02). CONCLUSIONS: Cardiac abnormalities assessed by TnI, ECG...

  2. Improved cardiac motion detection from ultrasound images using TDIOF: a combined B-mode/ tissue Doppler approach

    Science.gov (United States)

    Tavakoli, Vahid; Stoddard, Marcus F.; Amini, Amir A.

    2013-03-01

    Quantitative motion analysis of echocardiographic images helps clinicians with the diagnosis and therapy of patients suffering from cardiac disease. Quantitative analysis is usually based on TDI (Tissue Doppler Imaging) or speckle tracking. These methods are based on two independent techniques - the Doppler Effect and image registration, respectively. In order to increase the accuracy of the speckle tracking technique and cope with the angle dependency of TDI, herein, a combined approach dubbed TDIOF (Tissue Doppler Imaging Optical Flow) is proposed. TDIOF is formulated based on the combination of B-mode and Doppler energy terms in an optical flow framework and minimized using algebraic equations. In this paper, we report on validations with simulated, physical cardiac phantom, and in-vivo patient data. It is shown that the additional Doppler term is able to increase the accuracy of speckle tracking, the basis for several commercially available echocardiography analysis techniques.

  3. Imaging techniques: Nanoparticle atoms pinpointed

    Science.gov (United States)

    Farle, Michael

    2017-02-01

    The locations of atoms in a metallic alloy nanoparticle have been determined using a combination of electron microscopy and image simulation, revealing links between the particle's structure and magnetic properties. See Letter p.75

  4. Image processing techniques for remote sensing data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    interpretation and for processing of scene data for autonomous machine perception. The technique of digital image processing are used for' automatic character/pattern recognition, industrial robots for product assembly and inspection, military recognizance... number of techniques have been suggested for restoration 37 of degraded images like inverse filter, wiener filter and constrained least square filter etc. The primary objective of scene analysis is to deduce from a single two dimensional image...

  5. Fourier transform infrared spectroscopic imaging of cardiac tissue to detect collagen deposition after myocardial infarction

    Science.gov (United States)

    Cheheltani, Rabee; Rosano, Jenna M.; Wang, Bin; Sabri, Abdel Karim; Pleshko, Nancy; Kiani, Mohammad F.

    2012-05-01

    Myocardial infarction often leads to an increase in deposition of fibrillar collagen. Detection and characterization of this cardiac fibrosis is of great interest to investigators and clinicians. Motivated by the significant limitations of conventional staining techniques to visualize collagen deposition in cardiac tissue sections, we have developed a Fourier transform infrared imaging spectroscopy (FT-IRIS) methodology for collagen assessment. The infrared absorbance band centered at 1338 cm-1, which arises from collagen amino acid side chain vibrations, was used to map collagen deposition across heart tissue sections of a rat model of myocardial infarction, and was compared to conventional staining techniques. Comparison of the size of the collagen scar in heart tissue sections as measured with this methodology and that of trichrome staining showed a strong correlation (R=0.93). A Pearson correlation model between local intensity values in FT-IRIS and immuno-histochemical staining of collagen type I also showed a strong correlation (R=0.86). We demonstrate that FT-IRIS methodology can be utilized to visualize cardiac collagen deposition. In addition, given that vibrational spectroscopic data on proteins reflect molecular features, it also has the potential to provide additional information about the molecular structure of cardiac extracellular matrix proteins and their alterations.

  6. Cardiac diagnostic imaging; Bildgebende Verfahren in der Diagnostik des Herzens

    Energy Technology Data Exchange (ETDEWEB)

    Knez, A.; Becker, A.; Leber, A.; Haberl, R.; Steinbeck, G. [Klinikum Grosshadern, Muenchen (Germany). Medizinische Klinik 1; Becker, C.; Reiser, M. [Klinikum Grosshadern, Muenchen (Germany). Inst. fuer Klinische Radiologie

    2000-02-01

    Purpose: Cardiac imaging includes determination of the size and structure of the cardiac chambers, valves, great vessels and the coronary arteries, chamber and valvular function, myocardial perfusion, viability and metabolism. Material and methods: Chest roentgenography, angiography, echocardiography and nuclear imaging are commonly used but computed tomography and magnetic resonance imaging also offer a promising potential. Results: Coronary angiography is the gold standard in assessing coronary anatomy. Fast CT technologies such as electron-beam and multi-row-CT are promising non-invasive imaging modalities in the assessment of coronary artery disease. With intravascular ultrasound early stages of coronary atherosclerosis can be detected. For the assessment of myocardial perfusion and viability as well as cardiac function, scintigraphic methods are widely accepted. However, MRI methods have also reached a high degree of accuracy. Evaluation of chamber and valvular function is, due to its wide availability, the field of echocardiography. (orig.) [German] Zielsetzung: Anforderungen an die kardiale Bildgebung sind die Darstellung der Anatomie der Herzhoehlen, Herzklappen, Koronararterien und der grossen Gefaesse, Parameter der Ventrikel- und Klappenfunktion, der Myokardperfusion, Myokardvitalitaet und des myokardialen Stoffwechsels. Material und Methode: In der Bildgebung kommen neben den etablierten Standardverfahren wie Roentgen, Angiographie, Echokardiographie und nuklearmedizinischen Methoden auch neuere Verfahren der Computer- und Magnetresonanztomographie zum Einsatz. Ergebnisse: Die Koronarangiographie ist der Goldstandard in der Darstellung des gesamten Koronarsystems. In der Diagnostik der koronaren Herzerkrankung zeigen schnelle CT-Verfahren wie die Elektronenstrahltomographie (EBT) und die Mehrzeilendetektor-CT (MDCT) Vorteile gegenueber der Kernspintomographie. Fruehstadien der koronaren Arteriosklerose koennen nur mit dem intravaskulaeren Ultraschall

  7. Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU

    Science.gov (United States)

    Zhang, Q.; Huang, X.; Eagleson, R.; Guiraudon, G.; Peters, T. M.

    2007-03-01

    In minimally invasive image-guided surgical interventions, different imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and real-time three-dimensional (3D) ultrasound (US), can provide complementary, multi-spectral image information. Multimodality dynamic image registration is a well-established approach that permits real-time diagnostic information to be enhanced by placing lower-quality real-time images within a high quality anatomical context. For the guidance of cardiac procedures, it would be valuable to register dynamic MRI or CT with intraoperative US. However, in practice, either the high computational cost prohibits such real-time visualization of volumetric multimodal images in a real-world medical environment, or else the resulting image quality is not satisfactory for accurate guidance during the intervention. Modern graphics processing units (GPUs) provide the programmability, parallelism and increased computational precision to begin to address this problem. In this work, we first outline our research on dynamic 3D cardiac MR and US image acquisition, real-time dual-modality registration and US tracking. Then we describe image processing and optimization techniques for 4D (3D + time) cardiac image real-time rendering. We also present our multimodality 4D medical image visualization engine, which directly runs on a GPU in real-time by exploiting the advantages of the graphics hardware. In addition, techniques such as multiple transfer functions for different imaging modalities, dynamic texture binding, advanced texture sampling and multimodality image compositing are employed to facilitate the real-time display and manipulation of the registered dual-modality dynamic 3D MR and US cardiac datasets.

  8. SPECT imaging of cardiac reporter gene expression in living rabbits

    Institute of Scientific and Technical Information of China (English)

    LIU Ying; LAN Xiaoli; ZHANG Liang; WU Tao; JIANG Rifeng; ZHANG Yongxue

    2009-01-01

    This work is to demonstrate feasibility of imaging the expression of herpes simplex virus 1-thymidine ki-nase (HSV1-tk) reporter gene in rabbits myocardium by using the reporter probe 131I-2'-fluoro-2'-deoxy-1-β-D- arabi-nofuranosyl-5-iodouracil (131I-FIAU) and SPECT. Rabbits of the study group received intramyocardial injection of Ad5-tk and control group received aseptic saline injection. Two sets of experiments were performed on the study group. Rabbits of the 1st set were injected with 131I-FIAU 600 μCi at Day 2 after intramyocardial transfection of Ad5-tk in 1×109, 5×108, 1×108, 5×107 and 1×107 pfu, and heart SPECT imaging was done at different hours. Rabbits of the 2nd were transferred various titers of Ad5-tk (1×109, 5×108, 1×108, 5×107, 1×107 pfu) to determine the threshold and optimal viral titer needed for detection of gene expression. Two days later, 131I-FIAU was injected and heart SPECT imaging was performed at 6, 24 and 48 h, before killing them for gamma counting of the hearts. Reverse tran-scription-polymerase chain reaction (RT-PCR) was used to verify the transferred HSV1-tk gene expression. Semi-quantitative analysis derived of region of interest (ROI) of SPECT images and RT-PCR images was performed and the relationship of SPECT images with ex vivo gamma counting and mRNA level were evaluated. SPECT images conformed 131I-FIAU accumulation in rabbits injected with Ad5-tk in the anterolateral wall. The optimal images qual-ity was obtained at 24~48 h for different viral titers. The highest radioactivity in the focal myocardium was seen at 6 h, and then declined with time. The threshold was 5×107 pfu of virus titer. The result could be set better in 1~5×108 pfu by SPECT analysis and gamma counting. ROI-derived semi-quantitative study on SPECT images correlated well with ex vivo gamma counting and mRNA levels from RT-PCR analysis. The HSV1-tk/131I-FIAU reporter gene/reporter probe system is feasible for cardiac SPECT reporter gene imaging

  9. Rapid Circular Tomography System Suitable For Cardiac Imaging

    Science.gov (United States)

    Kruger, R. A.; Sorensor, J. A.; Boye, J. R.; Conrad, J.; Ric, S. P. D.; Yih, B. C.; Liu, P.

    1985-06-01

    Tomographic DSA (digital subtraction angiography) can be used to improve the image quality that results from intravenous angiographic studies of relatively stationary arterial anatomy. While DSA removes much of the non-opacified anatomy, tomographic blurring reduces both the severity of patient motion artefacts and the confusion introduced by overlapping vascular anatomy. For this purpose a conventional longitudinal tomography device to which an image intensifier and television has been added can be used. However, such an apparatus is inadequate for cardiac imaging due to the slow speed of the tomographic motion. A tomographic system consisting of a rotating focal spot x-ray tube and an image intensifier, modified to allow electronic image scanning, is proposed. After this device is constructed it will be possible to acquire tomographic images of the beating heart in as little as .005-.010 seconds. When combined with image subtraction it is anticipated that the quality of intravenous coronary angiograms will be improved in much the same way that tomographic DSA improves image quality in many of the other arteries of the body.

  10. Morphological Techniques for Medical Images: A Review

    Directory of Open Access Journals (Sweden)

    Isma Irum

    2012-08-01

    Full Text Available Image processing is playing a very important role in medical imaging with its versatile applications and features towards the development of computer aided diagnostic systems, automatic detections of abnormalities and enhancement in ultrasonic, computed tomography, magnetic resonance images and lots more applications. Medical images morphology is a field of study where the medical images are observed and processed on basis of geometrical and changing structures. Medical images morphological techniques has been reviewed in this study underlying the some human organ images, the associated diseases and processing techniques to address some anatomical problem detection. Images of Human brain, bone, heart, carotid, iris, lesion, liver and lung have been discussed in this study.

  11. Stenosis of the branches of the neopulmonary artery after the arterial switch operation: A cardiac magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Boban Thomas

    2013-01-01

    Conclusions: Cardiac MR can be used as a comprehensive non-invasive imaging technique to diagnose stenosis of the branches of the neopulmonary after the ASO, allowing evaluation of anatomy and function of the neoPA, its branches, and the differential perfusion to each lung, thus facilitating clinical decision making.

  12. Filters in 2D and 3D Cardiac SPECT Image Processing

    OpenAIRE

    Maria Lyra; Agapi Ploussi; Maritina Rouchota; Stella Synefia

    2014-01-01

    Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT) evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the de...

  13. Color Image Classification and Retrieval using Image mining Techniques

    Directory of Open Access Journals (Sweden)

    Dr.V.Mohan,

    2010-05-01

    Full Text Available Mining Image data is one of the essential features in the present scenario. Image data is the major one which plays vital role in every aspect of the systems like business for marketing, hospital for surgery, engineering for construction, Web for publication and so on. The other area in the Image mining system is the Content-BasedImage Retrieval (CBIR. CBIR systems perform retrieval based on the similarity defined in terms of extracted features with more objectiveness. But, the features of the query image alone will not be sufficient constraint for retrieving images. Hence, a new technique Color Image Classification and Retrieval using a Image Technique isproposed for improving user interaction with image retrieval systems by fully exploiting the similarity information.

  14. Imaging the pericardium: appearances on ECG-gated 64-detector row cardiac computed tomography

    Science.gov (United States)

    O'Leary, S M; Williams, P L; Williams, M P; Edwards, A J; Roobottom, C A; Morgan-Hughes, G J; Manghat, N E

    2010-01-01

    Multidetector row computed tomography (MDCT) with its high spatial and temporal resolution has now become an established and complementary method for cardiac imaging. It can now be used reliably to exclude significant coronary artery disease and delineate complex coronary artery anomalies, and has become a valuable problem-solving tool. Our experience with MDCT imaging suggests that it is clinically useful for imaging the pericardium. It is important to be aware of the normal anatomy of the pericardium and not mistake normal variations for pathology. The pericardial recesses are visible in up to 44% of non-electrocardiogram (ECG)-gated MDCT images. Abnormalities of the pericardium can now be identified with increasing certainty on 64-detector row CT; they may be the key to diagnosis and therefore must not be overlooked. This educational review of the pericardium will cover different imaging techniques, with a significant emphasis on MDCT. We have a large research and clinical experience of ECG-gated cardiac CT and will demonstrate examples of pericardial recesses, their variations and a wide variety of pericardial abnormalities and systemic conditions affecting the pericardium. We give a brief relevant background of the conditions and reinforce the key imaging features. We aim to provide a pictorial demonstration of the wide variety of abnormalities of the pericardium and the pitfalls in the diagnosis of pericardial disease. PMID:20197434

  15. A New Technique for Digital Image Watermarking

    Institute of Scientific and Technical Information of China (English)

    Xiang-Sheng Wu

    2005-01-01

    In this paper, a new technique is proposed for rotation, scaling and translation (RST) invariant image watermarking based on log-polar mappings (LPM) and phase-only filtering (POF). The watermark is embedded in the LPM of Fourier magnitude spectrum of the original image, and a small portion of resulting LPM spectrum is used to calculate the watermark positions. This technique avoids computing inverse log-polar mapping (ILPM) to preserve the quality of the watermarked image, and avoids exhaustive search to save computation time and reduce false detection. Experimental results demonstrate that the digital watermarking technique is invariant and robust to rotation, scaling, and translation transformation.

  16. Gastrointestinal tract imaging in children: current techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hiorns, Melanie P. [Great Ormond Street Hospital for Children, Radiology Department, London (United Kingdom)

    2011-01-15

    Imaging of the gastrointestinal (GI) tract in children continues to evolve, with new techniques, both radiological and non-radiological, being added to the repertoire. This article provides a summary of current imaging techniques of the GI tract (primarily the upper GI tract) and the relationship between those techniques. It covers the upper GI series and other contrast studies, US, CT and MRI. Note is also made of the contribution now made by capsule endoscopy (CE). Abdominal emergency imaging is not covered in this article. (orig.)

  17. Wide coverage by volume CT: benefits for cardiac imaging

    Science.gov (United States)

    Sablayrolles, Jean-Louis; Cesmeli, Erdogan; Mintandjian, Laura; Adda, Olivier; Dessalles-Martin, Diane

    2005-04-01

    With the development of new technologies, computed tomography (CT) is becoming a strong candidate for non-invasive imaging based tool for cardiac disease assessment. One of the challenges of cardiac CT is that a typical scan involves a breath hold period consisting of several heartbeats, about 20 sec with scanners having a longitudinal coverage of 2 cm, and causing the image quality (IQ) to be negatively impacted since beat to beat variation is high likely to occur without any medication, e.g. beta blockers. Because of this and the preference for shorter breath hold durations, a CT scanner with a wide coverage without the compromise in the spatial and temporal resolution of great clinical value. In this study, we aimed at determining the optimum scan duration and the delay relative to beginning of breath hold, to achieve high IQ. We acquired EKG data from 91 consecutive patients (77 M, 14 F; Age: 57 +/- 14) undergoing cardiac CT exams with contrast, performed on LightSpeed 16 and LightSpeed Pro16. As an IQ metric, we adopted the standard deviation of "beat-to-beat variation" (stdBBV) within a virtual scan period. Two radiologists evaluated images by assigning a score of 1 (worst) to 4 best). We validated stdBBV with the radiologist scores, which resulted in a population distribution of 9.5, 9.5, 31, and 50% for the score groups 1, 2, 3, and 4, respectively. Based on the scores, we defined a threshold for stdBBV and identified an optimum combination of virtual scan period and a delay. With the assumption that the relationship between the stdBBV and diagnosable scan IQ holds, our analysis suggested that the success rate can be improved to 100% with scan durations equal or less than 5 sec with a delay of 1 - 2 sec. We confirmed the suggested conclusion with LightSpeed VCT (GE Healthcare Technologies, Waukesha, WI), which has a wide longitudinal coverage, fine isotropic spatial resolution, and high temporal resolution, e.g. 40 mm coverage per rotation of 0.35 sec

  18. Image watermark detection techniques using quadtrees

    Directory of Open Access Journals (Sweden)

    Nidaa A. Abbas

    2015-07-01

    Full Text Available The quadtree, a hierarchical data structure for the representation of spatial information based on the principle of recursive decomposition, is widely used in digital image processing and computer graphics. This paper demonstrates the detection of invisible watermarked images generated by popular watermarking techniques, including CDMA, DCT, DWT, and Least Significant Bit (LSB using quadtree. Results corresponding to typical (512 × 512 pixel images show differences among these methods when they are used. Each time we use the same image, the original images and invisible watermarked image to test the four methods in conjunction with quadtree decomposition. In addition to the subjective method represented by quadtree, many objective evaluations such as Pearson correlation, mean square error (MSE, Structural SIMilarity Index (SSIM and false positive and false negative were used to give the comparison criteria between original and watermarked images. In results, the quadtree decomposition considered a promise subjective method to recognize among these watermark techniques.

  19. Terahertz Imaging Systems With Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Krozer, Viktor; Löffler, Torsten; Dall, Jørgen

    2010-01-01

    imaging systems are reviewed in terms of the employed architecture and data processing strategies. Active multichannel measurement method is found to be promising for real-time applications among the various terahertz imaging techniques and is chosen as a basis for the imaging instruments presented......This paper presents the research and development of two terahertz imaging systems based on photonic and electronic principles, respectively. As part of this study, a survey of ongoing research in the field of terahertz imaging is provided focusing on security applications. Existing terahertz...... in this paper. An active system operation allows for a wide dynamic range, which is important for image quality. The described instruments employ a multichannel high-sensitivity heterodyne architecture and aperture filling techniques, with close to real-time image acquisition time. In the case of the photonic...

  20. Improvement of ultrasound speckle image velocimetry using image enhancement techniques.

    Science.gov (United States)

    Yeom, Eunseop; Nam, Kweon-Ho; Paeng, Dong-Guk; Lee, Sang Joon

    2014-01-01

    Ultrasound-based techniques have been developed and widely used in noninvasive measurement of blood velocity. Speckle image velocimetry (SIV), which applies a cross-correlation algorithm to consecutive B-mode images of blood flow has often been employed owing to its better spatial resolution compared with conventional Doppler-based measurement techniques. The SIV technique utilizes speckles backscattered from red blood cell (RBC) aggregates as flow tracers. Hence, the intensity and size of such speckles are highly dependent on hemodynamic conditions. The grayscale intensity of speckle images varies along the radial direction of blood vessels because of the shear rate dependence of RBC aggregation. This inhomogeneous distribution of echo speckles decreases the signal-to-noise ratio (SNR) of a cross-correlation analysis and produces spurious results. In the present study, image-enhancement techniques such as contrast-limited adaptive histogram equalization (CLAHE), min/max technique, and subtraction of background image (SB) method were applied to speckle images to achieve a more accurate SIV measurement. A mechanical sector ultrasound scanner was used to obtain ultrasound speckle images from rat blood under steady and pulsatile flows. The effects of the image-enhancement techniques on SIV analysis were evaluated by comparing image intensities, velocities, and cross-correlation maps. The velocity profiles and wall shear rate (WSR) obtained from RBC suspension images were compared with the analytical solution for validation. In addition, the image-enhancement techniques were applied to in vivo measurement of blood flow in human vein. The experimental results of both in vitro and in vivo SIV measurements show that the intensity gradient in heterogeneous speckles has substantial influence on the cross-correlation analysis. The image-enhancement techniques used in this study can minimize errors encountered in ultrasound SIV measurement in which RBCs are used as flow

  1. Pediatric imaging: Current and emerging techniques

    Directory of Open Access Journals (Sweden)

    Shenoy-Bhangle A

    2010-01-01

    Full Text Available Imaging has always been an important component of the clinical evaluation of pediatric patients. Rapid technological advances in imaging are making noninvasive evaluation of a wide range of pediatric diseases possible. Ultrasound and magnetic resonance imaging (MRI are two imaging modalities that do not involve ionizing radiation and are preferred imaging modalities in the pediatric population. Computed tomography (CT remains the imaging modality with the highest increase in utilization in children due to its widespread availability and rapid image acquisition. Emerging imaging applications to be discussed include MR urography, voiding urosonography with use of ultrasound contrast agents, CT dose reduction techniques, MR enterography for inflammatory bowel disease, and MR cine airway imaging.

  2. TU-G-BRA-08: BEST IN PHYSICS (JOINT IMAGING-THERAPY): Hybrid PET-MRI Imaging of Acute Radiation Induced Cardiac Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    El-Sherif, O; Xhaferllari, I; Gaede, S [Western Univeristy, London, ON (United Kingdom); London Regional Cancer Program, London, ON (United Kingdom); Sykes, J; Butler, J [Lawson Health Research Institute, London, ON (United Kingdom); Wisenberg, G; Prato, F [Western Univeristy, London, ON (United Kingdom); Lawson Health Research Institute, London, ON (United Kingdom)

    2015-06-15

    Purpose: To identify the presence of low-dose radiation induced cardiac toxicity in a canine model using hybrid positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: Research ethics board approval was obtained for a longitudinal imaging study of 5 canines after cardiac irradiation. Animals were imaged at baseline, 1 week post cardiac irradiation, and 1 month post cardiac irradiation using a hybrid PET- MRI system (Biograph mMR, Siemens Healthcare). The imaging protocol was designed to assess acute changes in myocardial perfusion and inflammation. Myocardial perfusion imaging was performed using N13-ammonia tracer followed by a dynamic PET acquisition scan. A compartmental tracer kinetic model was used for absolute perfusion quantification. Myocardial inflammation imaging was performed using F18-fluorodeoxyglucose (FDG) tracer. The standard uptake value (SUV) over a region encompassing the whole heart was used to compare FDG scans. All animals received a simulation CT scan (GE Medical Systems) for radiation treatment planning. Radiation treatment plans were created using the Pinncale3 treatment planning system (Philips Radiation Oncology Systems) and designed to resemble the typical cardiac exposure during left-sided breast cancer radiotherapy. Cardiac irradiations were performed in a single fraction using a TrueBeam linear accelerator (Varian Medical Systems). Results: The delivered dose (mean ± standard deviation) to heart was 1.8±0.2 Gy. Reductions in myocardial stress perfusion relative to baseline were observed in 2 of the 5 animals 1 month post radiation. A global inflammatory response 1 month post radiation was observed in 4 of the 5 animals. The calculated SUV at 1 month post radiation was significantly higher (p=0.05) than the baseline SUV. Conclusion: Low doses of cardiac irradiation (< 2 Gy) may lead to myocardial perfusion defects and a global inflammatory response that can be detectable as early as 1 month post irradiation

  3. Cardiac computed tomography core syllabus of the European Association of Cardiovascular Imaging (EACVI).

    Science.gov (United States)

    Nieman, Koen; Achenbach, Stephan; Pugliese, Francesca; Cosyns, Bernard; Lancellotti, Patrizio; Kitsiou, Anastasia

    2015-04-01

    The European Association of Cardiovascular Imaging (EACVI) Core Syllabus for Cardiac Computed Tomography (CT) is now available online. The syllabus lists key elements of knowledge in Cardiac CT. It represents a framework for the development of training curricula and provides expected knowledge-based learning outcomes to the Cardiac CT trainees.

  4. Constrain static target kinetic iterative image reconstruction for 4D cardiac CT imaging

    Science.gov (United States)

    Alessio, Adam M.; La Riviere, Patrick J.

    2011-03-01

    Iterative image reconstruction offers improved signal to noise properties for CT imaging. A primary challenge with iterative methods is the substantial computation time. This computation time is even more prohibitive in 4D imaging applications, such as cardiac gated or dynamic acquisition sequences. In this work, we propose only updating the time-varying elements of a 4D image sequence while constraining the static elements to be fixed or slowly varying in time. We test the method with simulations of 4D acquisitions based on measured cardiac patient data from a) a retrospective cardiac-gated CT acquisition and b) a dynamic perfusion CT acquisition. We target the kinetic elements with one of two methods: 1) position a circular ROI on the heart, assuming area outside ROI is essentially static throughout imaging time; and 2) select varying elements from the coefficient of variation image formed from fast analytic reconstruction of all time frames. Targeted kinetic elements are updated with each iteration, while static elements remain fixed at initial image values formed from the reconstruction of data from all time frames. Results confirm that the computation time is proportional to the number of targeted elements; our simulations suggest that 3 times reductions in reconstruction time. The images reconstructed with the proposed method have matched mean square error with full 4D reconstruction. The proposed method is amenable to most optimization algorithms and offers the potential for significant computation improvements, which could be traded off for more sophisticated system models or penalty terms.

  5. FPGA implementation of image enhancement techniques

    Science.gov (United States)

    Kumar, Karan; Jain, Aditya; Srivastava, Atul Kumar

    2009-06-01

    The objective of this paper is designing, modeling, simulation and synthesis of four Image Enhancement techniques on FPGA. Image Enhancement Algorithms can be classified as point processing Techniques, in which operation is done on pixel level and Spatial Filtering Technique, in which operation is performed within neighborhood of a pixel. Algorithms of all the techniques are studied and hardware circuits are realized for them. Then hardware logic is modeled in Matlab Simulink using Xilinx System Generator Block set and synthesized onto Virtex4 xc4vsx35-10ff668 FPGA chip. Using hardware co-simulation feature of FPGA kit, the algorithms developed are validated.

  6. Flexible reduced field of view magnetic resonance imaging based on single-shot spatiotemporally encoded technique

    Institute of Scientific and Technical Information of China (English)

    李敬; 蔡聪波; 陈林; 陈颖; 屈小波; 蔡淑惠

    2015-01-01

    In many ultrafast imaging applications, the reduced field-of-view (rFOV) technique is often used to enhance the spatial resolution and field inhomogeneity immunity of the images. The stationary-phase characteristic of the spatiotemporally-encoded (SPEN) method offers an inherent applicability to rFOV imaging. In this study, a flexible rFOV imaging method is presented and the superiority of the SPEN approach in rFOV imaging is demonstrated. The proposed method is validated with phantom and in vivo rat experiments, including cardiac imaging and contrast-enhanced perfusion imaging. For com-parison, the echo planar imaging (EPI) experiments with orthogonal RF excitation are also performed. The results show that the signal-to-noise ratios of the images acquired by the proposed method can be higher than those obtained with the rFOV EPI. Moreover, the proposed method shows better performance in the cardiac imaging and perfusion imaging of rat kidney, and it can scan one or more regions of interest (ROIs) with high spatial resolution in a single shot. It might be a favorable solution to ultrafast imaging applications in cases with severe susceptibility heterogeneities, such as cardiac imaging and perfusion imaging. Furthermore, it might be promising in applications with separate ROIs, such as mammary and limb imaging.

  7. Current and emerging techniques in gastrointestinal imaging

    Directory of Open Access Journals (Sweden)

    McSweeney S

    2010-01-01

    Full Text Available This review is devoted to current and emerging techniques in gastrointestinal (GI imaging. It is divided into three sections focusing on areas that are both interesting and challenging: imaging of the small bowel and appendix, imaging of the colon and rectum and finally liver and pancreas in the upper abdomen. The first section covers cross-sectional imaging of the small bowel using the techniques of multidetector computed tomography (MDCT (including CT enterography and magnetic resonance imaging (MRI. The evaluation of mesenteric ischemia and GI tract bleeding using MDCT angiography is also reviewed. Current imaging practice in the evaluation of appendix is also reviewed and illustrated. The second section reviews CT and MR colonography and imaging of the rectum. It describes CT virtual colonoscopy (CTVC with emphasis on the advantages and disadvantages of the technique with discussion of the role of CTVC in screening. The intriguing topic of MR colonography (MRC is also reviewed. Imaging of the rectum with emphasis on imaging of rectal cancer is described with the roles of CT, MR, endoluminal ultrasound and positron emission tomography scanning discussed. The final section reviews current and emerging techniques in liver imaging with the role of ultrasound including contrast ultrasound, MDCT and MR (including contrast agents discussed. The new developments and applications of imaging of pancreatic disease are discussed with emphasis on the role of MDCT and MRI with gadolinium. This review highlights the current role and advancement of imaging techniques with new diagnostic and prognostic information pertinent to gastrointestinal disease continuing to emerge.

  8. A Proposed Multi Images Visible Watermarking Technique

    Directory of Open Access Journals (Sweden)

    Ruba G. Al-Zamil

    2016-04-01

    Full Text Available Visible watermarking techniques are proposed to secure digital data against unauthorized attacks. These techniques protect data from illegal access and use. In this work, a multi visible watermarking technique that allows embedding different types of markers into different types of background images has been proposed It also allows adding multiple markers on the same background image with different sizes, positions and opacity levels without any interference. The proposed technique improves the flexibility issues of visible watermarking and helps in increasing the security levels. A visible watermarking system is designed to implement the proposed technique. The system facilitates single and multiple watermarking as illustrated in the proposed technique. Experimental results indicate that the proposed technique applies visible watermarking successfully.

  9. SAR Image Segmentation using Vector Quantization Technique on Entropy Images

    CERN Document Server

    Kekre, H B; Sarode, Tanuja K

    2010-01-01

    The development and application of various remote sensing platforms result in the production of huge amounts of satellite image data. Therefore, there is an increasing need for effective querying and browsing in these image databases. In order to take advantage and make good use of satellite images data, we must be able to extract meaningful information from the imagery. Hence we proposed a new algorithm for SAR image segmentation. In this paper we propose segmentation using vector quantization technique on entropy image. Initially, we obtain entropy image and in second step we use Kekre's Fast Codebook Generation (KFCG) algorithm for segmentation of the entropy image. Thereafter, a codebook of size 128 was generated for the Entropy image. These code vectors were further clustered in 8 clusters using same KFCG algorithm and converted into 8 images. These 8 images were displayed as a result. This approach does not lead to over segmentation or under segmentation. We compared these results with well known Gray L...

  10. Survey regarding the clinical practice of cardiac CT in Germany. Indications, scanning technique and reporting

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Marc H.; Hamm, B.; Dewey, M. [Inst. fuer Radiologie, Charite - Universitaetsmedizin Berlin (Germany)

    2009-12-15

    Purpose: to obtain an overview of the current clinical practice of cardiac computed tomography (CT) in Germany. Materials and methods: a 30-item question-naire was mailed to 149 providers of cardiac CT in Germany. The items asked about indications, scanning technique and reporting, data storage, and cost of the examination. Results: overall 45 questionnaires could be analyzed (30%). The majority of centers (76%, 34 of 45 centers) used CT scanners of the latest generation (at least 64 rows). The most common appropriate indications were exclusion of coronary artery disease (91%, 41/45), coronary anomalies (80%, 36/45), and follow-up after coronary artery bypass grafting (53%, 24/45). Each center examined on average 243 {+-} 310 patients in 2007 and the number of centers performing cardiac CT increased significantly in 2007 (p = 0.035) compared with the preceding year. Most used sublingual nitroglycerin (84%, 38/45; median of 2 sprays = 0.8 mg) and/or a beta blocker (86%, 39/44; median of 5 mg IV, median heart rate threshold: 70 beats/min). Many providers used ECG-triggered tube current modulation (65%, 29/44) and/or adjusted the tube current to the body mass index or body weight (63%, 28/44). A median slice thickness of 0.75 mm with a 0.5 mm increment and a 20 cm field-of-view was most commonly used. Source images in orthogonal planes (96%, 43/45), curved MPRs (93%, 42/45), and thin-slice MIPs (69%, 31/45) were used most frequently for interpretation. Extracardiac structures were also evaluated by 84% of the centers (38/45). The mean examination time was 16.2 min and reporting took an average of 28.8 min. (orig.)

  11. Compression Techniques for Image Processing Tasks

    OpenAIRE

    2013-01-01

    International audience; This article aims to present an overview of the different applications of data compression techniques in the image processing filed. Since some time ago, several research groups in the world have been developing various methods based on different data compression techniques to classify, segment, filter and detect digital images fakery. In this sense, it is necessary to analyze and clarify the relationship between different methods and put them into a framework to bette...

  12. MR Imaging Findings of a Primary Cardiac Osteosarcoma and Its Bone Metastasis with Histopathologic Correlation

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Se Jin; Choi, Jung Ah; Kang, Heung Sik [Seoul National University College of Medicine, Seoul (Korea, Republic of); Chun, Eun Ju; Choi, Sang Il; Chung, Jin Haeng [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Choi, Ho Cheol [Gyeongsang National University Hospital, Jinju (Korea, Republic of)

    2011-02-15

    An osteosarcoma of cardiac origin is extremely rare, and a comprehensive description of MR imaging (MRI) findings of cardiac osteosarcoma and its metastasis in the femur have not been reported in the literature. We present a case of cardiac osteosarcoma in a 47-year-old woman and its metastasis to the femur, focusing on the description of MRI findings of the cardiac and metastatic bony osteosarcoma with a histopathologic correlation

  13. Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography.

    Science.gov (United States)

    Wang, Shang; Lopez, Andrew L; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V; Martin, James F; Larin, Kirill V

    2014-07-01

    We report on a quantitative optical elastographic method based on shear wave imaging optical coherence tomography (SWI-OCT) for biomechanical characterization of cardiac muscle through noncontact elasticity measurement. The SWI-OCT system employs a focused air-puff device for localized loading of the cardiac muscle and utilizes phase-sensitive OCT to monitor the induced tissue deformation. Phase information from the optical interferometry is used to reconstruct 2-D depth-resolved shear wave propagation inside the muscle tissue. Cross-correlation of the displacement profiles at various spatial locations in the propagation direction is applied to measure the group velocity of the shear waves, based on which the Young's modulus of tissue is quantified. The quantitative feature and measurement accuracy of this method is demonstrated from the experiments on tissue-mimicking phantoms with the verification using uniaxial compression test. The experiments are performed on ex vivo cardiac muscle tissue from mice with normal and genetically altered myocardium. Our results indicate this optical elastographic technique is useful as a noncontact tool to assist the cardiac muscle studies.

  14. Evolution of cardiac imaging according to the number of scientific articles in medical journals: a long and fruitful journey.

    Science.gov (United States)

    Garcia-Fernandez, Miguel Angel

    2014-11-01

    The use of cardiac imaging techniques as a diagnostic method in the understanding of physiopathology, as well as in cardiology research has been one of the most important revolutions in the management of cardiac patients, our understanding of physiopathology, and basic research in almost all heart diseases. This article analyzes the literature on echocardiography, cardiovascular magnetic resonance imaging, computed tomography, and nuclear medicine during the last 60 years and provides an overview of how these techniques have developed and how their introduction into daily practice has changed attitudes among cardiologists. The literature not only shows that the implementation of these techniques in daily practice requires an immense amount of research and effort by many working groups throughout the scientific world, but also that techniques that once seemed promising may finally be discarded.

  15. IMAGE ANALYSIS BASED ON EDGE DETECTION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K-means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model,gray level l, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.

  16. Lung Cancer Detection Using Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Mokhled S. AL-TARAWNEH

    2012-08-01

    Full Text Available Recently, image processing techniques are widely used in several medical areas for image improvement in earlier detection and treatment stages, where the time factor is very important to discover the abnormality issues in target images, especially in various cancer tumours such as lung cancer, breast cancer, etc. Image quality and accuracy is the core factors of this research, image quality assessment as well as improvement are depending on the enhancement stage where low pre-processing techniques is used based on Gabor filter within Gaussian rules. Following the segmentation principles, an enhanced region of the object of interest that is used as a basic foundation of feature extraction is obtained. Relying on general features, a normality comparison is made. In this research, the main detected features for accurate images comparison are pixels percentage and mask-labelling.

  17. Development of Wavelet Image Compression Technique to Particle Image Velocimetry

    Institute of Scientific and Technical Information of China (English)

    HuiLi

    2000-01-01

    In order to reduce the noise in the images and the physical storage,the wavelet-based image compression technique was applied to PIV processing in this paper,To study the effect of the wavelet bases,the standard PIV images were compressed by some known wavelet families,Daubechies,Coifman and Baylkin families with various compression ratios.It was found that a higher order wavelet base provided good compression performance for compressing PIV images,The error analysis of velocity field obtained indicated that the high compression ratio even up to 64:1,can be realized without losing significant flow information in PIV processing.The wavelet compression technique of PIV was applied to the experimental images of jet flow and showed excellent performance,A reduced number of erroneous vectors can be realized by varying compression ratio.It can say that the wavelet image compression technique is very effective in PIV system.

  18. Korean Society of Cardiovascular Imaging Guidelines for Cardiac Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin [Korean Society of Cariovascular Imaging Guidelines Committee, Seoul (Korea, Republic of); Choi, Byoung Wook; Choe, Kyu Ok [Dept. of Radiology, Yensei University Heath System, Seoul (Korea, Republic of); Yong, Hwan Seok [Dept. of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of); Kim, Yang Min [Dept. of Radiology, Sejong Hospital and Sejong Heart Institute, Bucheon (Korea, Republic of); Choe, Yeon Hyeon [Dept. of Radiology, Samsug Medical Center, Seoul (Korea, Republic of); Lim, Tae Hwan [Dept. of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Park, Jae Hyung [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2011-09-15

    The Korean Society of Cardiovascular Imaging (KOCSI) has issued a guideline for the use of cardiac CT imaging in order to assist clinicians and patients in providing adequate level of medical service. In order to establish a guideline founded on evidence based medicine, it was designed based on comprehensive data such as questionnaires conducted in international and domestic hospitals, intensive journal reviews, and with experts in cardiac radiology. The recommendations of this guideline should not be used as an absolute standard and medical professionals can always refer to methods non-adherent to this guideline when it is considered more reasonable and beneficial to an individual patient's medical situation. The guideline has its limitation and should be revised appropriately with the advancement medical equipment technology and public health care system. The guideline should not be served as a measure for standard of care. KOCSI strongly disapproves the use of the guideline to be used as the standard of expected practice in medical litigation processes.

  19. Molecular cardiac PET besides FDG viability imaging; Molekulare Kardiale PET jenseits der FDG-Vitalitaetsdiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, O.; Burchert, W. [Universitaetsklinik der Ruhr-Univ. Bochum (Germany). Inst. fuer Radiologie, Nuklearmedizin und Molekulare Bildgebung, Herz- und Diabetszentrum NRW

    2009-06-15

    Molecular cardiac non F-18-FDG PET is currently based on perfusion imaging. It is of excellent diagnostic accuracy to detect coronary artery disease (CAD) and superior to perfusion SPECT. There is also evidence for its incremental prognostic value. The unique feature of PET to measure myocardial perfusion in absolute terms and in short time periods define its impact on cardiac imaging enabling both the evaluation of early changes in CAD and the accurate characterization of multivessel disease. Currently, all available PET perfusion tracers in Europe are cyclotron products. Rb-82, a generator product, is the most frequently employed perfusion tracer in the United States and cyclotron independent. This tracer has the potential to become an alternative in Europe soon. Nowadays, PET systems are manufactured as hybrid PET-CT scanners. In oncology, hybrid imaging revealed, that the combination of functional and morphological imaging is superior to the single components. In cardiology, the integration of perfusion PET imaging with CT calcium scoring and CT anatomy of the coronary arteries represents a similar constellation. Atherosclerotic plaque evaluation by combined PET-CT technique will be one of the most promising future applications with a potential immense impact on prophylaxis, diagnosis and therapy of CAD in the future. (orig.)

  20. Introduction to Magnetic Resonance Imaging Techniques

    OpenAIRE

    2009-01-01

    It is quite possible to acquire images with an MR scanner without understanding the principles behind it, but choosing the best parameters and methods, and interpreting images and artifacts, requires understanding. This text serves as an introduction to magnetic resonance imaging techniques. It is aimed at beginners in possession of only a minimal level of technical expertise, yet it introduces aspects of MR that are typically considered technically challenging. The notes were written in conn...

  1. Statistical normalization techniques for magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Russell T. Shinohara

    2014-01-01

    Full Text Available While computed tomography and other imaging techniques are measured in absolute units with physical meaning, magnetic resonance images are expressed in arbitrary units that are difficult to interpret and differ between study visits and subjects. Much work in the image processing literature on intensity normalization has focused on histogram matching and other histogram mapping techniques, with little emphasis on normalizing images to have biologically interpretable units. Furthermore, there are no formalized principles or goals for the crucial comparability of image intensities within and across subjects. To address this, we propose a set of criteria necessary for the normalization of images. We further propose simple and robust biologically motivated normalization techniques for multisequence brain imaging that have the same interpretation across acquisitions and satisfy the proposed criteria. We compare the performance of different normalization methods in thousands of images of patients with Alzheimer's disease, hundreds of patients with multiple sclerosis, and hundreds of healthy subjects obtained in several different studies at dozens of imaging centers.

  2. Superresolution imaging: a survey of current techniques

    Science.gov (United States)

    Cristóbal, G.; Gil, E.; Šroubek, F.; Flusser, J.; Miravet, C.; Rodríguez, F. B.

    2008-08-01

    Imaging plays a key role in many diverse areas of application, such as astronomy, remote sensing, microscopy, and tomography. Owing to imperfections of measuring devices (e.g., optical degradations, limited size of sensors) and instability of the observed scene (e.g., object motion, media turbulence), acquired images can be indistinct, noisy, and may exhibit insuffcient spatial and temporal resolution. In particular, several external effects blur images. Techniques for recovering the original image include blind deconvolution (to remove blur) and superresolution (SR). The stability of these methods depends on having more than one image of the same frame. Differences between images are necessary to provide new information, but they can be almost unperceivable. State-of-the-art SR techniques achieve remarkable results in resolution enhancement by estimating the subpixel shifts between images, but they lack any apparatus for calculating the blurs. In this paper, after introducing a review of current SR techniques we describe two recently developed SR methods by the authors. First, we introduce a variational method that minimizes a regularized energy function with respect to the high resolution image and blurs. In this way we establish a unifying way to simultaneously estimate the blurs and the high resolution image. By estimating blurs we automatically estimate shifts with subpixel accuracy, which is inherent for good SR performance. Second, an innovative learning-based algorithm using a neural architecture for SR is described. Comparative experiments on real data illustrate the robustness and utilization of both methods.

  3. 3D multi-object segmentation of cardiac MSCT imaging by using a multi-agent approach.

    Science.gov (United States)

    Fleureau, Julien; Garreau, Mireille; Boulmier, Dominique; Hernández, Alfredo

    2007-01-01

    We propose a new technique for general purpose, semi-interactive and multi-object segmentation in N-dimensional images, applied to the extraction of cardiac structures in MultiSlice Computed Tomography (MSCT) imaging. The proposed approach makes use of a multi-agent scheme combined with a supervised classification methodology allowing the introduction of a priori information and presenting fast computing times. The multi-agent system is organised around a communicating agent which manages a population of situated agents which segment the image through cooperative and competitive interactions. The proposed technique has been tested on several patient data sets. Some typical results are finally presented and discussed.

  4. The peripheral cannulation technique in minimally invasive congenital cardiac surgery.

    Science.gov (United States)

    Vida, Vladimiro L; Tessari, Chiara; Putzu, Alessandro; Tiberio, Ivo; Guariento, Alvise; Gallo, Michele; Stellin, Giovanni

    2016-08-19

    Congenital minimally invasive cardiac surgery has gained wide acceptance thanks to its favorable outcomes. The introduction of peripheral cannulation for cardiopulmonary bypass further reduces surgical trauma by decreasing surgical access and allowing the spectrum of surgical access for the correction of simple congenital heart defects to be widened. Right internal jugular vein percutaneous cannulation, together with the direct surgical cannulation of femoral vessels, proves to be a safe and effective tool in patients with body weight above 15 kg.

  5. Multisensor image fusion techniques in remote sensing

    Science.gov (United States)

    Ehlers, Manfred

    Current and future remote sensing programs such as Landsat, SPOT, MOS, ERS, JERS, and the space platform's Earth Observing System (Eos) are based on a variety of imaging sensors that will provide timely and repetitive multisensor earth observation data on a global scale. Visible, infrared and microwave images of high spatial and spectral resolution will eventually be available for all parts of the earth. It is essential that efficient processing techniques be developed to cope with the large multisensor data volumes. This paper discusses data fusion techniques that have proved successful for synergistic merging of SPOT HRV, Landsat TM and SIR-B images. It is demonstrated that these techniques can be used to improve rectification accuracies, to depicit greater cartographic detail, and to enhance spatial resolution in multisensor image data sets.

  6. Progress in Circular SAR Imaging Technique

    Directory of Open Access Journals (Sweden)

    Hong Wen

    2012-06-01

    Full Text Available Circular SAR (CSAR is a newly developed all-directional high resolution 3D imaging mode in recent years, to satisfy the demand of finer observation. The National Key Laboratory of Science and Technology on Microwave Imaging, Institute of Electronics, Chinese Academy of Sciences (MITL, IECAS, had the first test flight experiment in Aug. 2011 with a P-band full polarization SAR system, and successfully obtained the all-directional high resolution circular SAR image. The initial results show that CSAR technique has the encouraging potential capability in the fields of high precision mapping, disaster evaluation, resource management and the other related applications. This paper firstly makes a detailed discussion on the progress of circular SAR imaging technique, which emphases on the several airborne experiments performed these years to show CSAR’s attractive features, then studies and illustrates the key techniques, and finally discusses the development trends.

  7. Automatic Image Registration Technique of Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    M. Wahed

    2013-03-01

    Full Text Available Image registration is a crucial step in most image processing tasks for which the final result is achieved from a combination of various resources. Automatic registration of remote-sensing images is a difficult task as it must deal with the intensity changes and variation of scale, rotation and illumination of the images. This paper proposes image registration technique of multi-view, multi- temporal and multi-spectral remote sensing images. Firstly, a preprocessing step is performed by applying median filtering to enhance the images. Secondly, the Steerable Pyramid Transform is adopted to produce multi-resolution levels of reference and sensed images; then, the Scale Invariant Feature Transform (SIFT is utilized for extracting feature points that can deal with the large variations of scale, rotation and illumination between images .Thirdly, matching the features points by using the Euclidian distance ratio; then removing the false matching pairs using the RANdom SAmple Consensus (RANSAC algorithm. Finally, the mapping function is obtained by the affine transformation. Quantitative comparisons of our technique with the related techniques show a significant improvement in the presence of large scale, rotation changes, and the intensity changes. The effectiveness of the proposed technique is demonstrated by the experimental results.

  8. ENCRYPTION TECHNIQUES FOR SECURITY OF IMAGES

    Directory of Open Access Journals (Sweden)

    DR. DHIRENDRA MISHRA

    2014-01-01

    Full Text Available With the proliferation in technology and advent of internet the data has been digitized, so more emphasis is required for security while transmission and storage to save from unauthorized users. Protecting data in a safe and secure way which does not hamper the access of an authorized authority is difficult and interesting research problem. Many attempts have been made to solve this problem within the cryptographic community. Visual cryptography provides a very powerful technique by which one secret can be distributed into two or more images known as shares. When the shares on transparencies are superimposed exactly together, original secret can be discovered without computer involvement. Image cryptography disrupts the image so that no useful information is seen. The keys used for disruption is used in reverse manner to decrypt the image. This paper discusses the various encryption techniques for better image security and to protect them from unintentional user.

  9. A unique pattern of delayed enhancement of a large cardiac fibroma on magnetic resonance imaging.

    Science.gov (United States)

    El Yaman, Malek M; Vos, Jeffrey A; Gustafson, Robert A

    2015-06-01

    MRI is a valuable noninvasive tool that helps in predicting the type of cardiac tumors and guiding management decisions. Several reports have described the appearance of cardiac fibromas on MRI, which typically show hyperenhancement on myocardial delayed enhancement (MDE) imaging, with or without a dark core. This report demonstrates the unique appearance of a large solitary ventricular septal cardiac fibroma in a 5-month-old patient on MDE imaging, with two discrete dark cores, each surrounded by a hyperenhancing pseudocapsule.

  10. Comparison of echocardiographic (US volumetry with cardiac magnetic resonance (CMR imaging in transfusion dependent thalassemia major (TM

    Directory of Open Access Journals (Sweden)

    Gotsis Efstathios

    2007-07-01

    Full Text Available Abstract Background Despite advances in survival in patients with thalassemia major (TM the most common cause of death is cardiac disease. Regular cardiac follow-up is imperative in order to identify and reverse pathology. Cardiac Magnetic Resonance (CMR and Echocardiography (US are applied in parallel to TM patients for cardiac evaluation and ongoing monitoring. A comparison between mutual features would be useful in order to assess the accuracy and reliability of the two methods, with a particular focus on routine US application. TM's special attributes offer an excellent opportunity for cardiac imaging research that has universal general purpose applications. Methods 135 TM patients underwent US (Teichholz's M-mode formula – rapidly accessible means of measuring volumes and ejection fraction and CMR volumetry. Paired-samples t-test, Passing & Badlock regression and Bland & Altman plot were used while comparing the common parameters between the CMR and the US. Results We found that the US volumes were underestimated, especially the end-diastolic volume (p Conclusion In cases where cardiac wall movement abnormalities are absent, the US Teichholz's M-mode formula for volume measurements, though less sophisticated in comparison to the high resolution CMR technique, offers an adequate ejection fraction estimation for routine use, especially when monitoring gross alterations in cardiac function over time, and is easy to perform.

  11. Watermarked cardiac CT image segmentation using deformable models and the Hermite transform

    Science.gov (United States)

    Gomez-Coronel, Sandra L.; Moya-Albor, Ernesto; Escalante-Ramírez, Boris; Brieva, Jorge

    2015-01-01

    Medical image watermarking is an open area for research and is a solution for the protection of copyright and intellectual property. One of the main challenges of this problem is that the marked images should not differ perceptually from the original images allowing a correct diagnosis and authentication. Furthermore, we also aim at obtaining watermarked images with very little numerical distortion so that computer vision tasks such as segmentation of important anatomical structures do not be impaired or affected. We propose a preliminary watermarking application in cardiac CT images based on a perceptive approach that includes a brightness model to generate a perceptive mask and identify the image regions where the watermark detection becomes a difficult task for the human eye. We propose a normalization scheme of the image in order to improve robustness against geometric attacks. We follow a spread spectrum technique to insert an alphanumeric code, such as patient's information, within the watermark. The watermark scheme is based on the Hermite transform as a bio-inspired image representation model. In order to evaluate the numerical integrity of the image data after watermarking, we perform a segmentation task based on deformable models. The segmentation technique is based on a vector-value level sets method such that, given a curve in a specific image, and subject to some constraints, the curve can evolve in order to detect objects. In order to stimulate the curve evolution we introduce simultaneously some image features like the gray level and the steered Hermite coefficients as texture descriptors. Segmentation performance was assessed by means of the Dice index and the Hausdorff distance. We tested different mark sizes and different insertion schemes on images that were later segmented either automatic or manual by physicians.

  12. Prognostic Value of Brain Diffusion Weighted Imaging After Cardiac Arrest

    Science.gov (United States)

    Wijman, Christine A.C.; Mlynash, Michael; Caulfield, Anna Finley; Hsia, Amie W.; Eyngorn, Irina; Bammer, Roland; Fischbein, Nancy; Albers, Gregory W.; Moseley, Michael

    2009-01-01

    Objective Outcome prediction is challenging in comatose post-cardiac arrest survivors. We assessed the feasibility and prognostic utility of brain diffusion-weighted MRI (DWI) during the first week. Methods Consecutive comatose post-cardiac arrest patients were prospectively enrolled. MRI data of patients who met predefined specific prognostic criteria were used to determine distinguishing ADC thresholds. Group 1: death at 6 months and absent motor response or absent pupillary reflexes or bilateral absent cortical responses at 72 hours, or vegetative at 1 month. Group 2A: Glasgow outcome scale (GOS) score of 4 or 5 at 6 months. Group 2B: GOS of 3 at 6 months. The percentage of voxels below different apparent diffusion coefficient (ADC) thresholds was calculated at 50 × 10−6 mm2/sec intervals. Results Overall, 86% of patients underwent MR imaging. Fifty-one patients with 62 brain MRIs were included in the analyses. Forty patients met the specific prognostic criteria. The percentage of brain volume with an ADC value below 650–700 × 10−6 mm2/sec best differentiated between group 1 and groups 2A and 2B combined (p<0.001), while the 400–450 × 10−6 mm2/sec threshold best differentiated between groups 2A and 2B (p=0.003). The ideal time window for prognostication using DWI was between 49 to 108 hours after the arrest. When comparing MRI in this time window with the 72 hour neurological examination MRI improved the sensitivity for predicting poor outcome by 38% while maintaining 100% specificity (p=0.021). Interpretation Quantitative DWI in comatose post-cardiac arrest survivors holds great promise as a prognostic adjunct. PMID:19399889

  13. An Effective Method of Image Retrieval using Image Mining Techniques

    CERN Document Server

    Kannan, A; Anbazhagan, N; 10.5121/ijma.2010.2402

    2010-01-01

    The present research scholars are having keen interest in doing their research activities in the area of Data mining all over the world. Especially, [13]Mining Image data is the one of the essential features in this present scenario since image data plays vital role in every aspect of the system such as business for marketing, hospital for surgery, engineering for construction, Web for publication and so on. The other area in the Image mining system is the Content-Based Image Retrieval (CBIR) which performs retrieval based on the similarity defined in terms of extracted features with more objectiveness. The drawback in CBIR is the features of the query image alone are considered. Hence, a new technique called Image retrieval based on optimum clusters is proposed for improving user interaction with image retrieval systems by fully exploiting the similarity information. The index is created by describing the images according to their color characteristics, with compact feature vectors, that represent typical co...

  14. Image fusion techniques in permanent seed implantation

    Directory of Open Access Journals (Sweden)

    Alfredo Polo

    2010-10-01

    Full Text Available Over the last twenty years major software and hardware developments in brachytherapy treatment planning, intraoperative navigation and dose delivery have been made. Image-guided brachytherapy has emerged as the ultimate conformal radiation therapy, allowing precise dose deposition on small volumes under direct image visualization. In thisprocess imaging plays a central role and novel imaging techniques are being developed (PET, MRI-MRS and power Doppler US imaging are among them, creating a new paradigm (dose-guided brachytherapy, where imaging is used to map the exact coordinates of the tumour cells, and to guide applicator insertion to the correct position. Each of these modalities has limitations providing all of the physical and geometric information required for the brachytherapy workflow.Therefore, image fusion can be used as a solution in order to take full advantage of the information from each modality in treatment planning, intraoperative navigation, dose delivery, verification and follow-up of interstitial irradiation.Image fusion, understood as the visualization of any morphological volume (i.e. US, CT, MRI together with an additional second morpholo gical volume (i.e. CT, MRI or functional dataset (functional MRI, SPECT, PET, is a well known method for treatment planning, verification and follow-up of interstitial irradiation. The term image fusion is used when multiple patient image datasets are registered and overlaid or merged to provide additional information. Fused images may be created from multiple images from the same imaging modality taken at different moments (multi-temporalapproach, or by combining information from multiple modalities. Quality means that the fused images should provide additional information to the brachythe rapy process (diagnosis and staging, treatment planning, intraoperative imaging, treatment delivery and follow-up that cannot be obtained in other ways. In this review I will focus on the role of

  15. Prognostic value of coronary anatomy and myocardial innervation imaging in cardiac disease

    NARCIS (Netherlands)

    Veltman, Caroline Emma

    2016-01-01

    Over the last decade, there has been an exponential development in cardiac imaging technology. Currently, cardiac imaging plays a central role in clinical management and decision making in the diverse and growing population of patients encountered in daily cardiology practice. Important outcome-rela

  16. Lossless image compression technique for infrared thermal images

    Science.gov (United States)

    Allred, Lloyd G.; Kelly, Gary E.

    1992-07-01

    The authors have achieved a 6.5-to-one image compression technique for thermal images (640 X 480, 1024 colors deep). Using a combination of new and more traditional techniques, the combined algorithm is computationally simple, enabling `on-the-fly' compression and storage of an image in less time than it takes to transcribe the original image to or from a magnetic medium. Similar compression has been achieved on visual images by virtue of the feature that all optical devices possess a modulation transfer function. As a consequence of this property, the difference in color between adjacent pixels is a usually small number, often between -1 and +1 graduations for a meaningful color scheme. By differentiating adjacent rows and columns, the original image can be expressed in terms of these small numbers. A simple compression algorithm for these small numbers achieves a four to one image compression. By piggy-backing this technique with a LZW compression or a fixed Huffman coding, an additional 35% image compression is obtained, resulting in a 6.5-to-one lossless image compression. Because traditional noise-removal operators tend to minimize the color graduations between adjacent pixels, an additional 20% reduction can be obtained by preprocessing the image with a noise-removal operator. Although noise removal operators are not lossless, their application may prove crucial in applications requiring high compression, such as the storage or transmission of a large number or images. The authors are working with the Air Force Photonics Technology Application Program Management office to apply this technique to transmission of optical images from satellites.

  17. Segmentation of the thoracic aorta in noncontrast cardiac CT images.

    Science.gov (United States)

    Avila-Montes, Olga C; Kurkure, Uday; Nakazato, Ryo; Berman, Daniel S; Dey, Damini; Kakadiaris, Ioannis A

    2013-09-01

    Studies have shown that aortic calcification is associated with cardiovascular disease. In this study, a method for localization, centerline extraction, and segmentation of the thoracic aorta in noncontrast cardiac-computed tomography (CT) images, toward the detection of aortic calcification, is presented. The localization of the right coronary artery ostium slice is formulated as a regression problem whose input variables are obtained from simple intensity features computed from a pyramid representation of the slice. The localization, centerline extraction, and segmentation of the aorta are formulated as optimal path detection problems. Dynamic programming is applied in the Hough space for localizing key center points in the aorta which guide the centerline tracing using a fast marching-based minimal path extraction framework. The input volume is then resampled into a stack of 2-D cross-sectional planes orthogonal to the obtained centerline. Dynamic programming is again applied for the segmentation of the aorta in each slice of the resampled volume. The obtained segmentation is finally mapped back to its original volume space. The performance of the proposed method was assessed on cardiac noncontrast CT scans and promising results were obtained.

  18. IMAGE AUTHENTICATION TECHNIQUES AND ADVANCES SURVEY

    Directory of Open Access Journals (Sweden)

    Derroll David

    2015-10-01

    Full Text Available With the advanced technologies in the area of Engineering the World has become a smaller place and communication is in our finger tips. The multimedia sharing traffic through electronic media has increased tremendously in the recent years with the higher use of social networking sites. The statistics of amount of images uploaded in the internet per day is very huge. Digital Image security has become vulnerable due to increase transmission over non-secure channel and needs protection. Digital Images play a crucial role in medical and military images etc. and any tampering of them is a serious issue. Several approaches are introduced to authenticate multimedia images. These approaches can be categorized into fragile and semi-fragile watermarking, conventional cryptography and digital signatures based on the image content. The aim of this paper is to provide a comparative study and also a survey of emerging techniques for image authentication. The important requirements for an efficient image authentication system design are discussed along with the classification of image authentication into tamper detection, localization and reconstruction and robustness against image processing operation. Furthermore, the concept of image content based authentication is enlightened.

  19. Cardiac time intervals by tissue Doppler imaging M-mode echocardiography

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor

    2016-01-01

    BACKGROUND: The preservation of normal cardiac time intervals is intimately related to normal cardiac physiology and function. In the ailing myocardium, the cardiac time intervals will change during disease progression. As left ventricular (LV) systolic function deteriorates, the time it takes...... of whether the LV is suffering from impaired systolic or diastolic function. A novel method of evaluating the cardiac time intervals has recently evolved. Using tissue Doppler imaging (TDI) M-mode through the mitral valve (MV) to estimate the cardiac time intervals may be an improved method reflecting global...

  20. Measurements of pericardial adipose tissue using contrast enhanced cardiac multidetector computed tomography—comparison with cardiac magnetic resonance imaging

    DEFF Research Database (Denmark)

    Elming, Marie Bayer; Lønborg, Jacob; Rasmussen, Thomas

    2013-01-01

    Recent studies have suggested that pericardial adipose tissue (PAT) located in close vicinity to the epicardial coronary arteries may play a role in the development of coronary artery disease. PAT has primarily been measured with cardiac magnetic resonance imaging (CMRI) or with non......-contrast cardiac multidetector computered tomography (MDCT) images. The aim of this study was to validate contrast MDCT derived measures of total PAT volume by a comparison to CMRI. In 52 patients, aged 60 years (34-81 years), Body Mass Index 28 kg/m(2) (18-39), and with stable ischemic heart disease, paired MDCT...

  1. New insights into peripartum cardiomyopathy using cardiac magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Renz, D.M.; Roettgen, R.; Wagner, M.; Elgeti, T. [Charite Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie; Habedank, D.; Dietz, R. [Charite Universitaetsmedizin Berlin (Germany). Medizinische Klinik mit Schwerpunkt Kardiologie; Boettcher, J. [SRH Wald-Klinikum Gera (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie; Pfeil, A. [Jena Univ. (Germany). Klinik fuer Innere Medizin III; Kivelitz, D. [Asklepios Klinik St. Georg, Hamburg (Germany). Albers-Schoenberg-Institut fuer Strahlendiagnostik

    2011-09-15

    Purpose: The aim of this study was to evaluate a comprehensive cardiac magnetic resonance (MR) imaging approach in patients with peripartum cardiomyopathy (PPCM). The focus was on inflammatory myocardial changes. Materials and Methods: Retrospective analysis of 12 cardiac MR examinations was performed in 6 patients with PPCM. The protocol comprised cine sequences for the determination of chamber sizes and function. T2-weighted sequences for determination of edema (T2 ratio), T1-weighted images for measurement of early gadolinium enhancement ratio (EGER), and late gadolinium enhancement (LGE) sequences were used for tissue characterization. 5 examinations were performed during the acute stage, and 7 examinations were performed during the course of the disease. Results: Initially, 3 of 5 patients presented with an elevated left ventricular end-diastolic volume (LVEDV); in one patient, the LVEDV was in the upper range. In 4 of 5 subjects, the left ventricular ejection fraction (LVEF) was decreased. The T2 ratio and EGER values were initially elevated in all women. No LGE was detected in initial scans. In follow-up examinations, the LVEDV decreased and the LVEF increased in all patients. Tissue-characterizing parameters decreased to normal in all but 1 patient. 2 patients showing LGE did not present a favorable clinical course. Conclusion: Myocardial inflammation was detected in the acute stage of PPCM, which was mostly transient. In our small group, patients showing LGE had a non-favorable clinical course. Future studies should include tissue-characterizing parameters, such as T2 ratio and EGER. Thus, further insights into pathophysiology can be gained and therapeutic effects can be measured in a more extensive manner. (orig.)

  2. Iterative reconstruction in image space (IRIS) in cardiac computed tomography: initial experience.

    Science.gov (United States)

    Bittencourt, Márcio Sommer; Schmidt, Bernhard; Seltmann, Martin; Muschiol, Gerd; Ropers, Dieter; Daniel, Werner Günther; Achenbach, Stephan

    2011-10-01

    Improvements in image quality in cardiac computed tomography may be achieved through iterative image reconstruction techniques. We evaluated the ability of "Iterative Reconstruction in Image Space" (IRIS) reconstruction to reduce image noise and improve subjective image quality. 55 consecutive patients undergoing coronary CT angiography to rule out coronary artery stenosis were included. A dual source CT system and standard protocols were used. Images were reconstructed using standard filtered back projection and IRIS. Image noise, attenuation within the coronary arteries, contrast, signal to noise and contrast to noise parameters as well as subjective classification of image quality (using a scale with four categories) were evaluated and compared between the two image reconstruction protocols. Subjective image quality (2.8 ± 0.4 in filtered back projection and 2.8 ± 0.4 in iterative reconstruction) and the number of "evaluable" segments per patient 14.0 ± 1.2 in filtered back projection and 14.1 ± 1.1 in iterative reconstruction) were not significant different between the two methods. However iterative reconstruction had a lower image noise (22.6 ± 4.5 HU vs. 28.6 ± 5.1 HU) and higher signal to noise and image to noise ratios in the proximal coronary arteries. IRIS reduces image noise and contrast-to-noise ratio in coronary CT angiography, thus providing potential for reducing radiation exposure.

  3. Locally homogenized and de-noised vector fields for cardiac fiber tracking in DT-MRI images

    Science.gov (United States)

    Akhbardeh, Alireza; Vadakkumpadan, Fijoy; Bayer, Jason; Trayanova, Natalia A.

    2009-02-01

    In this study we develop a methodology to accurately extract and visualize cardiac microstructure from experimental Diffusion Tensor (DT) data. First, a test model was constructed using an image-based model generation technique on Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) data. These images were derived from a dataset having 122x122x500 um3 voxel resolution. De-noising and image enhancement was applied to this high-resolution dataset to clearly define anatomical boundaries within the images. The myocardial tissue was segmented from structural images using edge detection, region growing, and level set thresholding. The primary eigenvector of the diffusion tensor for each voxel, which represents the longitudinal direction of the fiber, was calculated to generate a vector field. Then an advanced locally regularizing nonlinear anisotropic filter, termed Perona-Malik (PEM), was used to regularize this vector field to eliminate imaging artifacts inherent to DT-MRI from volume averaging of the tissue with the surrounding medium. Finally, the vector field was streamlined to visualize fibers within the segmented myocardial tissue to compare the results with unfiltered data. With this technique, we were able to recover locally regularized (homogenized) fibers with a high accuracy by applying the PEM regularization technique, particularly on anatomical surfaces where imaging artifacts were most apparent. This approach not only aides in the visualization of noisy complex 3D vector fields obtained from DT-MRI, but also eliminates volume averaging artifacts to provide a realistic cardiac microstructure for use in electrophysiological modeling studies.

  4. Accessory cardiac bronchus: Proposed imaging classification on multidetector CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Min; Kim, Young Tong; Han, Jong Kyu; Jou, Sung Shick [Dept. of Radiology, Soonchunhyang University College of Medicine, Cheonan Hospital, Cheonan (Korea, Republic of)

    2016-02-15

    To propose the classification of accessory cardiac bronchus (ACB) based on imaging using multidetector computed tomography (MDCT), and evaluate follow-up changes of ACB. This study included 58 patients diagnosed as ACB since 9 years, using MDCT. We analyzed the types, division locations and division directions of ACB, and also evaluated changes on follow-up. We identified two main types of ACB: blind-end (51.7%) and lobule (48.3%). The blind-end ACB was further classified into three subtypes: blunt (70%), pointy (23.3%) and saccular (6.7%). The lobule ACB was also further classified into three subtypes: complete (46.4%), incomplete (28.6%) and rudimentary (25%). Division location to the upper half bronchus intermedius (79.3%) and medial direction (60.3%) were the most common in all patients. The difference in division direction was statistically significant between the blind-end and lobule types (p = 0.019). Peribronchial soft tissue was found in five cases. One calcification case was identified in the lobule type. During follow-up, ACB had disappeared in two cases of the blind-end type and in one case of the rudimentary subtype. The proposed classification of ACB based on imaging, and the follow-up CT, helped us to understand the various imaging features of ACB.

  5. Tablet surface characterisation by various imaging techniques

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Rantanen, Jukka; Yliruusi, Jouko

    2003-01-01

    The aim of this study was to characterise tablet surfaces using different imaging and roughness analytical techniques including optical microscopy, scanning electron microscopy (SEM), laser profilometry and atomic force microscopy (AFM). The test materials compressed were potassium chloride (KCl......, but they do not provide quantitative information about surface roughness. Laser profilometry and AFM on the other hand provide quantitative roughness data from two different scales, laser profilometer from 1 mm and atomic force microscope from 90 microm scale. AFM is a powerful technique but other imaging...

  6. Retinal Image Simulation of Subjective Refraction Techniques.

    Science.gov (United States)

    Perches, Sara; Collados, M Victoria; Ares, Jorge

    2016-01-01

    Refraction techniques make it possible to determine the most appropriate sphero-cylindrical lens prescription to achieve the best possible visual quality. Among these techniques, subjective refraction (i.e., patient's response-guided refraction) is the most commonly used approach. In this context, this paper's main goal is to present a simulation software that implements in a virtual manner various subjective-refraction techniques--including Jackson's Cross-Cylinder test (JCC)--relying all on the observation of computer-generated retinal images. This software has also been used to evaluate visual quality when the JCC test is performed in multifocal-contact-lens wearers. The results reveal this software's usefulness to simulate the retinal image quality that a particular visual compensation provides. Moreover, it can help to gain a deeper insight and to improve existing refraction techniques and it can be used for simulated training.

  7. Red flag imaging techniques in Barrett's esophagus.

    Science.gov (United States)

    Saxena, Payal; Canto, Marcia Irene

    2013-07-01

    The key to detection and treatment of early neoplasia in Barrett's esophagus (BE) is thorough and careful inspection of the Barrett's segment. The greatest role for red flag techniques is to help identify neoplastic lesions for targeted biopsy and therapy. High-definition white light endoscopy (HD-WLE) can potentially improve endoscopic imaging of BE compared with standard endoscopy, but little scientific evidence supports this. The addition of autofluorescence imaging to HD-WLE and narrow band imaging increases sensitivity and the false-positive rate without significantly improving overall detection of BE-related neoplasia.

  8. Quantification in non-invasive cardiac imaging: CT and MR

    NARCIS (Netherlands)

    A. Rossi (Alexia)

    2013-01-01

    markdownabstract__Abstract__ The diagnosis and management of cardiac disease require a precise assessment of morphological and functional cardiac parameters. This thesis is divided in three parts. Part I emphasizes the role of cardiac computed tomography (CT) in the diagnosis of patients with

  9. Advanced cardiac imaging in heart failure : from subclinical myocardial dysfunction to therapy optimization

    NARCIS (Netherlands)

    Auger, Dominique

    2014-01-01

    Advanced echocardiographic techniques permit assessment of left ventricular dyssynchrony in overt heart failure patients and provide important prognostic data. These techniques may guide patients’ selection for cardiac resynchronization therapy and device optimization. Global left ventricular longit

  10. Angular Differential Imaging: a Powerful High-Contrast Imaging Technique

    Energy Technology Data Exchange (ETDEWEB)

    Marois, C; Lafreniere, D; Doyon, R; Macintosh, B; Nadeau, D

    2005-11-07

    Angular differential imaging is a high-contrast imaging technique that reduces speckle noise from quasi-static optical aberrations and facilitates the detection of faint nearby companions. A sequence of images is acquired with an altitude/azimuth telescope, the instrument rotator being turned off. This keeps the instrument and telescope optics aligned, stabilizes the instrumental PSF and allows the field of view to rotate with respect to the instrument. For each image, a reference PSF obtained from other images of the sequence is subtracted. All residual images are then rotated to align the field and are median combined. Observed performances are reported for Gemini Altair/NIRI data. Inside the speckle dominated region of the PSF, it is shown that quasi-static PSF noise can be reduced by a factor {approx}5 for each image subtraction. The combination of all residuals then provides an additional gain of the order of the square root of the total number of images acquired. To our knowledge, this is the first time an acquisition strategy and reduction pipeline designed for speckle attenuation and high contrast imaging is demonstrated to significantly get better detection limits with longer integration times at all angular separations. A PSF noise attenuation of 100 was achieved from 2-hour long sequences of images of Vega, reaching a 5-sigma contrast of 20 magnitudes for separations greater than 7''. This technique can be used with currently available instruments to search for {approx} 1 M{sub Jup} exoplanets with orbits of radii between 50 and 300 AU around nearby young stars. The possibility of combining the technique with other high-contrast imaging methods is briefly discussed.

  11. Cine magnetic resonance imaging for evaluation of cardiac structure and flow dynamics in congenital heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Akagi, Teiji; Kiyomatsu, Yumi; Ohara, Nobutoshi; Takagi, Junichi; Sato, Noboru; Kato, Hirohisa (Kurume Univ., Fukuoka (Japan). School of Medicine); Eto, Takaharu

    1989-10-01

    Cine magnetic resonance imaging (Cine MRI) was performed in 20 patients aged 19 days to 13 years (mean 4.0 years), who had congenital heart disease confirmed at echocardiography or angiography. Prior to cine MRI, gated MRI was performed to evaluate for cardiac structure. Cine MRI was demonstrated by fast low fip angle shot imaging technique with a 30deg flip angle, 15 msec echo time, 30-40 msec pulse repetition time, and 128 x 128 acquisition matrix. Abnormalities of cardiac structure were extremely well defined in all patients by gated MRI. Intracardiac or intravascular blood flow were visualized in 17 (85%) of 20 patients by cine MRI. Left to right shunt flow through ventricular septal defect, atrial septal defect, and endocardial cushion defect were visualized with low signal intensity area. Low intensity jets flow through the site of re-coarctation of the aorta were also visualized. However, the good recording of cine MRI was not obtained because of artifacts in 3 of 20 patients (15%) who had severe congestive heart failure or respiratory arrhythmia. Gated MRI provides excellent visualization of fine structure, and cine MRI can provide high spatial resolution imaging of flow dynamic in a variety of congenital heart disease, noninvasively. (author).

  12. Clinical utility and cost effectiveness of a personal ultrasound imager for cardiac evaluation during consultation rounds in patients with suspected cardiac disease

    NARCIS (Netherlands)

    E.C. Vourvouri (Eleni); L.Y. Koroleva; F.J. ten Cate (Folkert); D. Poldermans (Don); A.F.L. Schinkel (Arend); W.B. Vletter (Wim); J.R.T.C. Roelandt (Jos); R.T. van Domburg (Ron)

    2003-01-01

    textabstractOBJECTIVE: To assess the clinical utility and cost effectiveness of a personal ultrasound imager (PUI) during consultation rounds for cardiac evaluation of patients with suspected cardiac disease. METHODS: 107 unselected patients from non-cardiac departments (55% men) w

  13. False dyssynchrony: problem with image-based cardiac functional analysis using x-ray computed tomography

    Science.gov (United States)

    Kidoh, Masafumi; Shen, Zeyang; Suzuki, Yuki; Ciuffo, Luisa; Ashikaga, Hiroshi; Fung, George S. K.; Otake, Yoshito; Zimmerman, Stefan L.; Lima, Joao A. C.; Higuchi, Takahiro; Lee, Okkyun; Sato, Yoshinobu; Becker, Lewis C.; Fishman, Elliot K.; Taguchi, Katsuyuki

    2017-03-01

    We have developed a digitally synthesized patient which we call "Zach" (Zero millisecond Adjustable Clinical Heart) phantom, which allows for an access to the ground truth and assessment of image-based cardiac functional analysis (CFA) using CT images with clinically realistic settings. The study using Zach phantom revealed a major problem with image-based CFA: "False dyssynchrony." Even though the true motion of wall segments is in synchrony, it may appear to be dyssynchrony with the reconstructed cardiac CT images. It is attributed to how cardiac images are reconstructed and how wall locations are updated over cardiac phases. The presence and the degree of false dyssynchrony may vary from scan-to-scan, which could degrade the accuracy and the repeatability (or precision) of image-based CT-CFA exams.

  14. Respiratory and cardiac motion correction in dual gated PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fayad, Hadi; Monnier, Florian [LaTIM, INSERM, UMR 1101, Brest (France); Odille, Freedy; Felblinger, Jacques [INSERM U947, University of Nancy, Nancy (France); Lamare, Frederic [INCIA, UMR5287, CNRS, CHU Bordeaux, Bordeaux (France); Visvikis, Dimitris [LaTIM, INSERM, UMR 1101, Brest (France)

    2015-05-18

    Respiratory and cardiac motion in PET/MR imaging leads to reduced quantitative and qualitative image accuracy. Correction methodologies involve the use of double gated acquisitions which lead to low signal-to-noise ratio (SNR) and to issues concerning the combination of cardiac and respiratory frames. The objective of this work is to use a generalized reconstruction by inversion of coupled systems (GRICS) approach, previously used for PET/MR respiratory motion correction, combined with a cardiac phase signal and a reconstruction incorporated PET motion correction approach in order to reconstruct motion free images from dual gated PET acquisitions. The GRICS method consists of formulating parallel MRI in the presence of patient motion as a coupled inverse problem. Its resolution, using a fixed-point method, allows the reconstructed image to be improved using a motion model constructed from the raw MR data and two respiratory belts. GRICS obtained respiratory displacements are interpolated using the cardiac phase derived from an ECG to model simultaneous cardiac and respiratory motion. Three different volunteer datasets (4DMR acquisitions) were used for evaluation. GATE was used to simulate 4DPET datasets corresponding to the acquired 4DMR images. Simulated data were subsequently binned using 16 cardiac phases (M1) vs diastole only (M2), in combination with 8 respiratory amplitude gates. Respiratory and cardiac motion corrected PET images using either M1 or M2 were compared to respiratory only corrected images and evaluated in terms of SNR and contrast improvement. Significant visual improvements were obtained when correcting simultaneously for respiratory and cardiac motion (using 16 cardiac phase or diastole only) compared to respiratory motion only compensation. Results were confirmed by an associated increased SNR and contrast. Results indicate that using GRICS is an efficient tool for respiratory and cardiac motion correction in dual gated PET/MR imaging.

  15. Quantitative Techniques in PET-CT Imaging

    NARCIS (Netherlands)

    Basu, Sandip; Zaidi, Habib; Holm, Soren; Alavi, Abass

    2011-01-01

    The appearance of hybrid PET/CT scanners has made quantitative whole body scanning of radioactive tracers feasible. This paper deals with the novel concepts for assessing global organ function and disease activity based on combined functional (PET) and structural (CT or MR) imaging techniques, their

  16. Imaging cardiac amyloidosis: a pilot study using {sup 18}F-florbetapir positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Dorbala, Sharmila [Brigham and Women' s Hospital, Harvard Medical School, Noninvasive Cardiovascular Imaging Program, Heart and Vascular Center, Departments of Radiology and Medicine (Cardiology), Boston, MA (United States); Brigham and Women' s Hospital, Harvard Medical School, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston, MA (United States); Brigham and Women' s Hospital, Harvard Medical School, Cardiovascular Division and the Cardiac Amyloidosis Program, Department of Medicine, Boston, MA (United States); Brigham and Women' s Hospital, Boston, MA (United States); Vangala, Divya; Semer, James; Strader, Christopher; Bruyere, John R.; Moore, Stephen C. [Brigham and Women' s Hospital, Harvard Medical School, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston, MA (United States); Brigham and Women' s Hospital, Boston, MA (United States); Di Carli, Marcelo F. [Brigham and Women' s Hospital, Harvard Medical School, Noninvasive Cardiovascular Imaging Program, Heart and Vascular Center, Departments of Radiology and Medicine (Cardiology), Boston, MA (United States); Brigham and Women' s Hospital, Harvard Medical School, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston, MA (United States); Brigham and Women' s Hospital, Boston, MA (United States); Falk, Rodney H. [Brigham and Women' s Hospital, Harvard Medical School, Cardiovascular Division and the Cardiac Amyloidosis Program, Department of Medicine, Boston, MA (United States); Brigham and Women' s Hospital, Boston, MA (United States)

    2014-09-15

    Cardiac amyloidosis, a restrictive heart disease with high mortality and morbidity, is underdiagnosed due to limited targeted diagnostic imaging. The primary aim of this study was to evaluate the utility of {sup 18}F-florbetapir for imaging cardiac amyloidosis. We performed a pilot study of cardiac {sup 18}F-florbetapir PET in 14 subjects: 5 control subjects without amyloidosis and 9 subjects with documented cardiac amyloidosis. Standardized uptake values (SUV) of {sup 18}F-florbetapir in the left ventricular (LV) myocardium, blood pool, liver, and vertebral bone were determined. A {sup 18}F-florbetapir retention index (RI) was computed. Mean LV myocardial SUVs, target-to-background ratio (TBR, myocardial/blood pool SUV ratio) and myocardial-to-liver SUV ratio between 0 and 30 min were calculated. Left and right ventricular myocardial uptake of {sup 18}F-florbetapir were noted in all the amyloid subjects and in none of the control subjects. The RI, TBR, LV myocardial SUV and LV myocardial to liver SUV ratio were all significantly higher in the amyloidosis subjects than in the control subjects (RI median 0.043 min{sup -1}, IQR 0.034 - 0.051 min{sup -1}, vs. 0.023 min{sup -1}, IQR 0.015 - 0.025 min{sup -1}, P = 0.002; TBR 1.84, 1.64 - 2.50, vs. 1.26, IQR 0.91 - 1.36, P = 0.001; LV myocardial SUV 3.84, IQR 1.87 - 5.65, vs. 1.35, IQR 1.17 - 2.28, P = 0.029; ratio of LV myocardial to liver SUV 0.67, IQR 0.44 - 1.64, vs. 0.18, IQR 0.15 - 0.35, P = 0.004). The myocardial RI, TBR and myocardial to liver SUV ratio also distinguished the control subjects from subjects with transthyretin and those with light chain amyloid. {sup 18}F-Florbetapir PET may be a promising technique to image light chain and transthyretin cardiac amyloidosis. Its role in diagnosing amyloid in other organ systems and in assessing response to therapy needs to be further studied. (orig.)

  17. Quantification of cardiac blood flow by Doppler technique

    OpenAIRE

    Meijboom, Erik Jan

    1985-01-01

    textabstractThe investigations described in this thesis started as part of the research program of the divisions of pediatric cardiology of the Universities of Arizona and California (San Diego). The investigations were part of an ongoing project designed by D.J. Sahn and L.M. Valdes-Cruz. This project was initiated to implement Doppler techniques in the daily practice of pediatric cardiology. New developments in medical technology made the Doppler techniques integrated into sophisticated two...

  18. Assessment of inpatient multimodal cardiac imaging appropriateness at large academic medical centers.

    Science.gov (United States)

    Remfry, Andrew; Abrams, Howard; Dudzinski, David M; Weiner, Rory B; Bhatia, R Sacha

    2015-11-14

    Responding to concerns regarding the growth of cardiac testing, the American College of Cardiology Foundation (ACCF) published Appropriate Use Criteria (AUC) for various cardiac imaging modalities. Single modality cardiac imaging appropriateness has been reported but there have been no studies assessing the appropriateness of multiple imaging modalities in an inpatient environment. A retrospective study of the appropriateness of cardiac tests ordered by the inpatient General Internal Medicine (GIM) and Cardiology services at three Canadian academic hospitals was conducted over two one-month periods. Cardiac tests characterized were transthoracic echocardiography (TTE), transesophageal echocardiography (TEE), single-photon emission tomography myocardial perfusion imaging (SPECT), and diagnostic cardiac catheterization. Overall, 553 tests were assessed, of which 99.8% were classifiable by AUC. 91% of all studies were categorized as appropriate, 4% may be appropriate and 5% were rarely appropriate. There were high rates of appropriate use of all modalities by GIM and Cardiology throughout. Significantly more appropriate diagnostic catheterizations were ordered by Cardiology than GIM (93% vs. 82%, p = imaging modalities in this multi-centered study on Cardiology and GIM inpatients in the acute care setting. The rate of appropriate ordering was high across all imaging modalities. We recommend further work towards improving appropriate utilization of cardiac imaging resources focus on the out-patient setting.

  19. Multimodal Imaging after Sudden Cardiac Arrest in an 18-Year-Old Athlete

    Science.gov (United States)

    Rehman, Mobeen Ur; Atalay, Michael K.; Broderick, Ryan J.

    2015-01-01

    We report the case of a previously healthy 18-year-old male athlete who twice presented with sudden cardiac arrest. Our use of electrocardiography, echocardiography, cardiac magnetic resonance, coronary angiography, coronary computed tomographic angiography, and nuclear stress testing enabled the diagnoses of apical hypertrophic cardiomyopathy and anomalous origin of the right coronary artery. We discuss the patient's treatment and note the useful role of multiple cardiovascular imaging methods in cases of sudden cardiac arrest. PMID:26664308

  20. Image processing techniques for passive millimeter-wave imaging

    Science.gov (United States)

    Lettington, Alan H.; Gleed, David G.

    1998-08-01

    We present our results on the application of image processing techniques for passive millimeter-wave imaging and discuss possible future trends. Passive millimeter-wave imaging is useful in poor weather such as in fog and cloud. Its spatial resolution, however, can be restricted due to the diffraction limit of the front aperture. Its resolution may be increased using super-resolution techniques but often at the expense of processing time. Linear methods may be implemented in real time but non-linear methods which are required to restore missing spatial frequencies are usually more time consuming. In the present paper we describe fast super-resolution techniques which are potentially capable of being applied in real time. Associated issues such as reducing the influence of noise and improving recognition capability will be discussed. Various techniques have been used to enhance passive millimeter wave images giving excellent results and providing a significant quantifiable increase in spatial resolution. Examples of applying these techniques to imagery will be given.

  1. Conditioning techniques and ischemic reperfusion injury in relation to on-pump cardiac surgery

    DEFF Research Database (Denmark)

    Holmberg, Fredrik Eric Olof; Ottas, Konstantin Alex; Andreasen, Charlotte

    2014-01-01

    OBJECTIVES: The objective was to investigate the potential protective effects of two conditioning methods, on myocardial ischemic and reperfusion injury in relation to cardiac surgery. DESIGN: Totally 68 patients were randomly assigned to either a control group (n = 23), a remote ischemic....... The other secondary endpoints were metabolic parameters related to myocardial ischemia, measured using microdialysis technique, as well as other operative- and postoperative data. RESULTS: Postoperative cardiac enzyme release indicated a possible beneficial effect of the interventions, but the difference......, unable to show distinct protective effects of the studied conditioning methods. However, this trial can hopefully contribute to generate a productive discussion concerning limitations and future use of cardiac conditioning as well as microdialysis technique....

  2. In vitro imaging techniques in neurodegenerative diseases.

    Science.gov (United States)

    Långström, Bengt; Andrén, Per E; Lindhe, Orjan; Svedberg, Marie; Hall, Håkan

    2007-01-01

    Neurodegeneration induces various changes in the brain, changes that may be investigated using neuroimaging techniques. The in vivo techniques are useful for the visualization of major changes, and the progressing abnormalities may also be followed longitudinally. However, to study and quantify minor abnormalities, neuroimaging of postmortem brain tissue is used. These in vitro methods are complementary to the in vivo techniques and contribute to the knowledge of pathophysiology and etiology of the neurodegenerative diseases. In vitro radioligand autoradiography has given great insight in the involvement of different neuronal receptor systems in these diseases. Data on the dopamine and cholinergic systems in neurodegeneration are discussed in this review. Also, the amyloid plaques are studied using in vitro radioligand autoradiography. Using one of the newer methods, imaging matrix-assisted laser desorption ionization mass spectrometry, the distribution of a large number of peptides and proteins may be detected in vitro on brain cryosections. In this overview, we describe in vitro imaging techniques in the neurodegenerative diseases as a complement to in vivo positron emission tomography and single photon emission computed tomography imaging.

  3. Combining calcium imaging with other optical techniques.

    Science.gov (United States)

    Canepari, Marco; Zecevic, Dejan; Vogt, Kaspar E; Ogden, David; De Waard, Michel

    2013-12-01

    Ca(2+) imaging is a commonly used approach for measuring Ca(2+) signals at high spatial resolution. The method is often combined with electrode recordings to correlate electrical and chemical signals or to investigate Ca(2+) signals following an electrical stimulation. To obtain information on electrical activity at the same spatial resolution, Ca(2+) imaging must be combined with membrane potential imaging. Similarly, stimulation of subcellular compartments requires photostimulation. Thus, combining Ca(2+) imaging with an additional optical technique facilitates the study of a number of physiological questions. The aim of this article is to introduce some basic principles regarding the combination of Ca(2+) imaging with other optical techniques. We discuss the design of the optics, the design of experimental protocols, the optical characteristics of Ca(2+) indicators used in combination with an optical probe, and the affinity of the Ca(2+) indicator in relation to the type of measurement. This information will enable the reader to devise an optimal strategy for combined optical experiments.

  4. Automatic quantitative analysis of cardiac MR perfusion images

    Science.gov (United States)

    Breeuwer, Marcel M.; Spreeuwers, Luuk J.; Quist, Marcel J.

    2001-07-01

    Magnetic Resonance Imaging (MRI) is a powerful technique for imaging cardiovascular diseases. The introduction of cardiovascular MRI into clinical practice is however hampered by the lack of efficient and accurate image analysis methods. This paper focuses on the evaluation of blood perfusion in the myocardium (the heart muscle) from MR images, using contrast-enhanced ECG-triggered MRI. We have developed an automatic quantitative analysis method, which works as follows. First, image registration is used to compensate for translation and rotation of the myocardium over time. Next, the boundaries of the myocardium are detected and for each position within the myocardium a time-intensity profile is constructed. The time interval during which the contrast agent passes for the first time through the left ventricle and the myocardium is detected and various parameters are measured from the time-intensity profiles in this interval. The measured parameters are visualized as color overlays on the original images. Analysis results are stored, so that they can later on be compared for different stress levels of the heart. The method is described in detail in this paper and preliminary validation results are presented.

  5. Image reconstruction techniques for high resolution human brain PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Comtat, C.; Bataille, F.; Sureau, F. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), 91 - Orsay (France)

    2006-07-01

    High resolution PET imaging is now a well established technique not only for small animal, but also for human brain studies. The ECAT HRRT brain PET scanner(Siemens Molecular Imaging) is characterized by an effective isotropic spatial resolution of 2.5 mm, about a factor of 2 better than for state-of-the-art whole-body clinical PET scanners. Although the absolute sensitivity of the HRRT (6.5 %) for point source in the center of the field-of-view is increased relative to whole-body scanner (typically 4.5 %) thanks to a larger co-polar aperture, the sensitivity in terms of volumetric resolution (75 (m{sup 3} at best for whole-body scanners and 16 (m{sup 3} for t he HRRT) is much lower. This constraint has an impact on the performance of image reconstruction techniques, in particular for dynamic studies. Standard reconstruction methods used with clinical whole-body PET scanners are not optimal for this application. Specific methods had to be developed, based on fully 3D iterative techniques. Different refinements can be added in the reconstruction process to improve image quality: more accurate modeling of the acquisition system, more accurate modeling of the statistical properties of the acquired data, anatomical side information to guide the reconstruction . We will present the performances these added developments for neuronal imaging in humans. (author)

  6. Cardiac abnormalities assessed by non-invasive techniques in patients with newly diagnosed idiopathic inflammatory myopathies

    DEFF Research Database (Denmark)

    Diederichsen, Louise Pyndt; Simonsen, Jane Angel; Diederichsen, Axel Cosmus Pyndt

    2015-01-01

    inflammatory myopathies (IIM) by means of non-invasive techniques. METHODS: Fourteen patients with IIM (8 polymyositis, 4 dermatomyositis, 2 cancer-associated dermatomyositis) and 14 gender- and age- matched healthy control subjects were investigated. Participant assessments included a cardiac questionnaire...

  7. An LSB Method Of Image Steganographic Techniques

    Directory of Open Access Journals (Sweden)

    Lalit Kumar Jain

    2015-04-01

    Full Text Available The art of information hiding has received much attention in the recent years as security of information has become a big concern in this internet era. As sharing of sensitive information via a common communication channel has become inevitable. Steganography means hiding a secret message (the embedded message within a larger one (source cover in such a way that an observer cannot detect the presence of contents of the hidden message [1]. Many different carrier file formats can be used, but digital images are the most popular because of their frequency on the Internet [2]. This paper intends to give an overview of image Steganography, its uses and techniques. It also attempts to identify the requirements of a good Steganography algorithm and briefly reflects on which Steganography techniques are more suitable for which applications.

  8. Echocardiography to magnetic resonance image registration for use in image-guided cardiac catheterization procedures

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yingliang; Penney, Graeme P; Razavi, Reza; Rhode, Kawal S [Division of Imaging Sciences, King' s College, London SE1 7EH (United Kingdom); Rinaldi, C Aldo; Cooklin, Mike [Department of Cardiology, Guy' s and St Thomas' NHS Foundation Trust, London, SE1 7EH (United Kingdom)], E-mail: y.ma@kcl.ac.uk

    2009-08-21

    We present a robust method to register three-dimensional echocardiography (echo) images to magnetic resonance images (MRI) based on anatomical features, which is designed to be used in the registration pipeline for overlaying MRI-derived roadmaps onto two-dimensional live x-ray images during cardiac catheterization procedures. The features used in image registration are the endocardial surface of the left ventricle and the centre line of the descending aorta. The MR-derived left ventricle surface is generated using a fully automated algorithm, and the echo-derived left ventricle surface is produced using a semi-automatic segmentation method provided by the QLab software (Philips Healthcare) that it is routinely used in clinical practice. We test our method on data from six volunteers and four patients. We validated registration accuracy using two methods: the first calculated a root mean square distance error using expert identified anatomical landmarks, and the second method used catheters as landmarks in two clinical electrophysiology procedures. Results show a mean error of 4.1 mm, which is acceptable for our clinical application, and no failed registrations were observed. In addition, our algorithm works on clinical data, is fast and only requires a small amount of manual input, and so it is applicable for use during cardiac catheterization procedures.

  9. Biometric identification using holographic radar imaging techniques

    Science.gov (United States)

    McMakin, Douglas L.; Sheen, David M.; Hall, Thomas E.; Kennedy, Mike O.; Foote, Harlen P.

    2007-04-01

    Pacific Northwest National Laboratory researchers have been at the forefront of developing innovative screening systems to enhance security and a novel imaging system to provide custom-fit clothing using holographic radar imaging techniques. First-of-a-kind cylindrical holographic imaging systems have been developed to screen people at security checkpoints for the detection of concealed, body worn, non-metallic threats such as plastic and liquid explosives, knifes and contraband. Another embodiment of this technology is capable of obtaining full sized body measurements in near real time without the person under surveillance removing their outer garments. Radar signals readily penetrate clothing and reflect off the water in skin. This full body measurement system is commercially available for best fitting ready to wear clothing, which was the first "biometric" application for this technology. One compelling feature of this technology for security biometric applications is that it can see effectively through disguises, appliances and body hair.

  10. Advanced imaging techniques in pediatric body MRI

    Energy Technology Data Exchange (ETDEWEB)

    Courtier, Jesse [UCSF Benioff Children' s Hospital, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Rao, Anil G. [Medical University of South Carolina, Department of Radiology, Charleston, SC (United States); Anupindi, Sudha A. [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2017-05-15

    While there are many challenges specific to pediatric abdomino-pelvic MRI, many recent advances are addressing these challenges. It is therefore essential for radiologists to be familiar with the latest advances in MR imaging. Laudable efforts have also recently been implemented in many centers to improve the overall experience of pediatric patients, including the use of dedicated radiology child life specialists, MRI video goggles, and improved MR suite environments. These efforts have allowed a larger number of children to be scanned while awake, with fewer studies being done under sedation or anesthesia; this has resulted in additional challenges from patient motion and difficulties with breath-holding and tolerating longer scan times. In this review, we highlight common challenges faced in imaging the pediatric abdomen and pelvis and discuss the application of the newest techniques to address these challenges. Additionally, we highlight the newest advances in quantified imaging techniques, specifically in MR liver iron quantification. The techniques described in this review are all commercially available and can be readily implemented. (orig.)

  11. New techniques for motion-artifact-free in vivo cardiac microscopy.

    Directory of Open Access Journals (Sweden)

    Claudio eVinegoni

    2015-05-01

    Full Text Available Intravital imaging microscopy (i.e. imaging in live animals at microscopic resolution has become an indispensable tool for studying the cellular micro-dynamics in cancer, immunology and neurobiology. High spatial and temporal resolution, combined with large penetration depth and multi-reporter visualization capability make fluorescence intravital microscopy compelling for heart imaging. However, tissue motion caused by cardiac contraction and respiration critically limits its use. As a result, in vitro cell preparations or non-contracting explanted heart models are more commonly employed. Unfortunately, these approaches fall short of understanding the more complex host physiology that may be dynamic and occur over longer periods of time.In this review, we report on novel technologies, which have been recently developed by our group and others, aimed at overcoming motion-induced artifacts and capable of providing in vivo subcellular resolution imaging in the beating mouse heart. The methods are based on mechanical stabilization, image processing algorithms, gated/triggered acquisition schemes or a combination of both. We expect that in the immediate future all these methodologies will have considerable applications in expanding our understanding of the cardiac biology, elucidating cardiomyocyte function and interactions within the organism in vivo, and ultimately improving the treatment of cardiac diseases.

  12. Imaging findings of multiple infantile hepatic hemangioma associated with cardiac insufficiency

    Institute of Scientific and Technical Information of China (English)

    Jing-Jing Ye; Yin-Can Shao; Qiang Shu

    2014-01-01

    Background: Infantile hepatic hemangioma (IHH) as a benign liver tumor in infancy and childhood is commonly associated with high output cardiac failure. The present study aims to describe the imaging findings in a patient who was diagnosed as having multiple IHH with congestive cardiac insuffi ciency. Methods: The imaging findings and clinical manifestations of the patient with multiple IHH associated with cardiac insuffi ciency were retrospectively reviewed. Results: Ultrasonography showed multiple intrahepatic lesions with mixed echoes and markedly expanded hepatic veins and the inferior vena cava of the patient. Echocardiography revealed right heart insufficiency and pulmonary hypertension. Contrast-enhanced MRI showed early mild enhancement of lesions and more obvious delayed enhancement. The patient died after combined therapy of surgery and hormone. Conclusions: The imaging findings of multiple IHH associated with cardiac insufficiency are typical and diagnostic. Early imaging assessment may facilitate the diagnosis and treatment of the disease.

  13. Free-breathing variable flip angle balanced SSFP cardiac cine imaging with reduced SAR at 3T.

    Science.gov (United States)

    Srinivasan, Subashini; Kroeker, Randall M; Gabriel, Simon; Plotnik, Adam; Godinez, Sergio R; Hu, Peng; Halnon, Nancy; Finn, J Paul; Ennis, Daniel B

    2016-10-01

    To develop a free-breathing variable flip angle (VFA) balanced steady-state free precession (bSSFP) cardiac cine imaging technique with reduced specific absorption rate (SAR) at 3 Tesla. Free-breathing VFA (FB-VFA) images in the short-axis and four-chamber views were acquired using an optimal VFA scheme, then compared with conventional breath-hold constant flip angle (BH-CFA) acquisitions. Two cardiac MRI experts used a 5-point scale to score images from healthy subjects (N = 10). The left ventricular ejection fraction, end diastolic volume (LVEDV), end systolic volume, stroke volume (LVSV), and end diastolic myocardial mass (LVEDM) were determined by manual contour analysis for BH-CFA and FB-VFA. A pilot evaluation of FB-VFA was performed in one patient with Duchenne muscular dystrophy. FB-VFA SAR was 25% lower than BH-CFA with similar blood-myocardium contrast. The qualitative FB-VFA score was lower than the BH-CFA for the short-axis (3.1 ± 0.5 versus 4.3 ± 0.8; P cine imaging decreased the SAR at 3T with image quality sufficient to perform cardiac functional analysis. Magn Reson Med 76:1210-1216, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  14. Upright CBCT: A novel imaging technique

    Directory of Open Access Journals (Sweden)

    Xenia J Fave

    2014-03-01

    Full Text Available Purpose: We present a method for acquiring and correcting upright images using the on board CBCT imager. An upright imaging technique would allow for the introduction of upright radiation therapy treatments, which would benefit a variety of patients including those with thoracic cancers whose lung volumes are increased in an upright position and those who experience substantial discomfort during supine treatment positions.Methods: To acquire upright CBCT images, the linac head was positioned at 0 degrees, the KV imager and detector arms extended to their lateral positions, and the couch placed at 270 degrees. The KV imager was programmed to begin taking continuous fluoroscopic projections as the couch rotated from 270 to 90 degrees. The FOV was extended by performing this procedure twice, once with the detector shifted 14.5 cm towards the gantry and once with it shifted 14.5 cm away from the gantry. The two resulting sets of images were stitched together prior to reconstruction. The imaging parameters were chosen to deliver the some dose as that delivered during a simulation CT. A simulation CT was deformably registered to an upright CBCT reconstruction in order to evaluate the possibility of correcting the HU values via mapping.Results: Both spatial linearity and high contrast resolution were maintained in upright CBCT when compared to a simulation CT. Low contrast resolution and HU linearity decreased. Streaking artifacts were caused by the limited 180 degree arc angle and a sharp point artifact in the center of the axial slices resulted at the site of the stitching. A method for correcting the HUs was shown to be robust against these artifacts.Conclusion: Upright CBCT could be of great benefit to many patients. This study demonstrates its feasibility and presents solutions to some of its first hurdles before clinical implementation.--------------------------Cite this article as:Fave X, Yang J, Balter P, Court L. Upright CBCT: A novel imaging

  15. Non-cardiac findings on coronary computed tomography and magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc; Schnapauff, Dirk; Teige, Florian; Hamm, Bernd [Charite-Universitaetsmedizin Berlin, Humboldt-Universitaet zu Berlin, Department of Radiology, Chariteplatz 1, P.O. Box 10098, Berlin (Germany)

    2007-08-15

    Both multislice computed tomography (CT) and magnetic resonance imaging (MRI) are emerging as methods to detect coronary artery stenoses and assess cardiac function and morphology. Non-cardiac structures are also amenable to assessment by these non-invasive tests. We investigated the rate of significant and insignificant non-cardiac findings using CT and MRI. A total of 108 consecutive patients suspected of having coronary artery disease and without contraindications to CT and MRI were included in this study. Significant non-cardiac findings were defined as findings that required additional clinical or radiological follow-up. CT and MR images were read independently in a blinded fashion. CT yielded five significant non-cardiac findings in five patients (5%). These included a pulmonary embolism, large pleural effusions, sarcoid, a large hiatal hernia, and a pulmonary nodule (>1.0 cm). Two of these significant non-cardiac findings were also seen on MRI (pleural effusions and sarcoid, 2%). Insignificant non-cardiac findings were more frequent than significant findings on both CT (n = 11, 10%) and MRI (n = 7, 6%). Incidental non-cardiac findings on CT and MRI of the coronary arteries are common, which is why images should be analyzed by radiologists to ensure that important findings are not missed and unnecessary follow-up examinations are avoided. (orig.)

  16. Accuracy Considerations in Image-guided Cardiac Interventions: Experience and Lessons Learned

    Science.gov (United States)

    Linte, Cristian A.; Lang, Pencilla; Rettmann, Maryam E.; Cho, Daniel S.; Holmes, David R.; Robb, Richard A.; Peters, Terry M.

    2014-01-01

    Motivation Medical imaging and its application in interventional guidance has revolutionized the development of minimally invasive surgical procedures leading to reduced patient trauma, fewer risks, and shorter recovery times. However, a frequently posed question with regards to an image guidance system is “how accurate is it?” On one hand, the accuracy challenge can be posed in terms of the tolerable clinical error associated with the procedure; on the other hand, accuracy is bound by the limitations of the system’s components, including modeling, patient registration, and surgical instrument tracking, all of which ultimately impact the overall targeting capabilities of the system. Methods While these processes are not unique to any interventional specialty, this paper discusses them in the context of two different cardiac image-guidance platforms: a model-enhanced ultrasound platform for intracardiac interventions and a prototype system for advanced visualization in image-guided cardiac ablation therapy. Results Pre-operative modeling techniques involving manual, semi-automatic and registration-based segmentation are discussed. The performance and limitations of clinically feasible approaches for patient registration evaluated both in the laboratory and operating room are presented. Our experience with two different magnetic tracking systems for instrument and ultrasound transducer localization is reported. Ultimately, the overall accuracy of the systems is discussed based on both in vitro and preliminary in vivo experience. Conclusion While clinical accuracy is specific to a particular patient and procedure and vastly dependent on the surgeon’s experience, the system’s engineering limitations are critical to determine whether the clinical requirements can be met. PMID:21671097

  17. An active contour framework based on the Hermite transform for shape segmentation of cardiac MR images

    Science.gov (United States)

    Barba-J, Leiner; Escalante-Ramírez, Boris

    2016-04-01

    Early detection of cardiac affections is fundamental to address a correct treatment that allows preserving the patient's life. Since heart disease is one of the main causes of death in most countries, analysis of cardiac images is of great value for cardiac assessment. Cardiac MR has become essential for heart evaluation. In this work we present a segmentation framework for shape analysis in cardiac magnetic resonance (MR) images. The method consists of an active contour model which is guided by the spectral coefficients obtained from the Hermite transform (HT) of the data. The HT is used as model to code image features of the analyzed images. Region and boundary based energies are coded using the zero and first order coefficients. An additional shape constraint based on an elliptical function is used for controlling the active contour deformations. The proposed framework is applied to the segmentation of the endocardial and epicardial boundaries of the left ventricle using MR images with short axis view. The segmentation is sequential for both regions: the endocardium is segmented followed by the epicardium. The algorithm is evaluated with several MR images at different phases of the cardiac cycle demonstrating the effectiveness of the proposed method. Several metrics are used for performance evaluation.

  18. Prenatal diagnosis of thoracic ectopia cordis by real-time fetal cardiac magnetic resonance imaging and by echocardiography.

    Science.gov (United States)

    Moniotte, Stéphane; Powell, Andrew J; Barnewolt, Carol E; Annese, David; Geva, Tal

    2008-01-01

    Ectopia cordis is a rare congenital defect commonly associated with intra- and extra-cardiac anomalies. This report highlights the complimentary use of echocardiography and cardiac magnetic resonance imaging for detailed prenatal characterization of the anomaly at 23-week gestation.

  19. Coronary artery stent mimicking intracardiac thrombus on cardiac magnetic resonance imaging due to signal loss

    DEFF Research Database (Denmark)

    Qayyum, Abbas Ali; Vejlstrup, Niels Grove; Ahtarovski, Kiril Aleksov;

    2012-01-01

    Since the introduction of percutaneous coronary intervention for coronary artery disease, thousands of patients have been treated with the implantation of coronary stents. Moreover, several of the patients with coronary stent undergo cardiac magnetic resonance (CMR) imaging every year. This case...... report is of a 77-year-old man who was previously treated with the implantation of a coronary stent in the left circumflex artery. He underwent CMR imaging, which revealed a process 14×21 mm in the left atrium. Cardiac contrast computed tomography did not demonstrate any cardiac pathology. While...

  20. Gene therapy during cardiac surgery: role of surgical technique to minimize collateral organ gene expression.

    Science.gov (United States)

    Katz, Michael G; Swain, JaBaris D; Fargnoli, Anthony S; Bridges, Charles R

    2010-12-01

    Effective gene therapy for heart failure has not yet been achieved clinically. The aim of this study is to quantitatively assess the cardiac isolation efficiency of the molecular cardiac surgery with recirculating delivery (MCARD™) and to evaluate its efficacy as a means to limit collateral organ gene expression. 10(14) genome copies (GC) of recombinant adeno-associated viral vector 6 encoding green fluorescent protein under control of the cytomegalovirus promoter was delivered to the nine arrested sheep hearts. Blood samples were assessed using real-time quantitative polymerase chain reaction (RT QPCR). Collateral organ gene expression was assessed at four-weeks using immunohistochemical staining. The blood vector GC concentration in the cardiac circuit during complete isolation trended from 9.59±0.73 to 9.05±0.65 (log GC/cm(3)), and no GC were detectable in the systemic circuit (P800-fold (P99% isolation efficiency. Conversely, incomplete isolation resulted in equalization of vector GC concentration in the circuits, leading to robust collateral organ gene expression. MCARD™ is an efficient, clinically translatable myocardial delivery platform for cardiac specific gene therapy. The cardiac surgical techniques utilized are critically important to limit collateral organ gene expression.

  1. Special feature on imaging systems and techniques

    Science.gov (United States)

    Yang, Wuqiang; Giakos, George

    2013-07-01

    The IEEE International Conference on Imaging Systems and Techniques (IST'2012) was held in Manchester, UK, on 16-17 July 2012. The participants came from 26 countries or regions: Austria, Brazil, Canada, China, Denmark, France, Germany, Greece, India, Iran, Iraq, Italy, Japan, Korea, Latvia, Malaysia, Norway, Poland, Portugal, Sweden, Switzerland, Taiwan, Tunisia, UAE, UK and USA. The technical program of the conference consisted of a series of scientific and technical sessions, exploring physical principles, engineering and applications of new imaging systems and techniques, as reflected by the diversity of the submitted papers. Following a rigorous review process, a total of 123 papers were accepted, and they were organized into 30 oral presentation sessions and a poster session. In addition, six invited keynotes were arranged. The conference not only provided the participants with a unique opportunity to exchange ideas and disseminate research outcomes but also paved a way to establish global collaboration. Following the IST'2012, a total of 55 papers, which were technically extended substantially from their versions in the conference proceeding, were submitted as regular papers to this special feature of Measurement Science and Technology . Following a rigorous reviewing process, 25 papers have been finally accepted for publication in this special feature and they are organized into three categories: (1) industrial tomography, (2) imaging systems and techniques and (3) image processing. These papers not only present the latest developments in the field of imaging systems and techniques but also offer potential solutions to existing problems. We hope that this special feature provides a good reference for researchers who are active in the field and will serve as a catalyst to trigger further research. It has been our great pleasure to be the guest editors of this special feature. We would like to thank the authors for their contributions, without which it would

  2. Patient management after noninvasive cardiac imaging results from SPARC (Study of myocardial perfusion and coronary anatomy imaging roles in coronary artery disease).

    NARCIS (Netherlands)

    Hachamovitch, R.; Nutter, B.; Hlatky, M.A.; Shaw, L.J.; Ridner, M.L.; Dorbala, S.; Beanlands, R.S.; Chow, B.J.; Branscomb, E.; Chareonthaitawee, P.; Weigold, W.G.; Voros, S.; Abbara, S.; Yasuda, T.; Jacobs, J.E.; Lesser, J.; Berman, D.S.; Thomson, L.E.; Raman, S.; Heller, G.V.; Schussheim, A.; Brunken, R.; Williams, K.A.; Farkas, S.; Delbeke, D.; Schoepf, U.J.; Reichek, N.; Rabinowitz, S.; Sigman, S.R.; Patterson, R.; Corn, C.R.; White, R.; Kazerooni, E.; Corbett, J.; Bokhari, S.; Machac, J.; Guarneri, E.; Borges-Neto, S.; Millstine, J.W.; Caldwell, J.; Arrighi, J.; Hoffmann, U.; Budoff, M.; Lima, J.; Johnson, J.R.; Johnson, B.; Gaber, M.; Williams, J.A.; Foster, C.; Hainer, J.; Carli, M.F. Di

    2012-01-01

    OBJECTIVES: This study examined short-term cardiac catheterization rates and medication changes after cardiac imaging. BACKGROUND: Noninvasive cardiac imaging is widely used in coronary artery disease, but its effects on subsequent patient management are unclear. METHODS: We assessed the 90-day post

  3. Three-dimensional cardiac cine imaging using the kat ARC acceleration: Initial experience in clinical adult patients at 3T.

    Science.gov (United States)

    Okuda, Shigeo; Yamada, Yoshitake; Tanimoto, Akihiro; Fujita, Jun; Sano, Motoaki; Fukuda, Keiichi; Kuribayashi, Sachio; Jinzaki, Masahiro; Nozaki, Atsushi; Lai, Peng

    2015-09-01

    Three-dimensional cardiac cine imaging has demonstrated promising clinical 1.5-Tesla results; however, its application to 3T scanners has been limited because of the higher sensitivity to off-resonance artifacts. The aim of this study was to apply 3D cardiac cine imaging during a single breath hold in clinical patients on a 3T scanner using the kat ARC (k- and adaptive-t auto-calibrating reconstruction for Cartesian sampling) technique and to evaluate the interchangeability between 2D and 3D cine imaging for cardiac functional analysis and detection of abnormalities in regional wall motion. Following institutional review board approval, we obtained 2D cine images with an acceleration factor of two during multiple breath holds and 3D cine images with a net scan acceleration factor of 7.7 during a single breath hold in 20 patients using a 3T unit. Two readers independently evaluated the wall motion of the left ventricle (LV) using a 5-point scale, and the consistency in the detection of regional wall motion abnormality between 2D and 3D cine was analyzed by Cohen's kappa test. The LV volume was calculated at end-diastole and end-systole (LVEDV, LVESV); the ejection fraction (LVEF) and myocardial weight (LVmass) were also calculated. The relationship between functional parameters calculated for 2D and 3D cine images was analyzed using Pearson's correlation analysis. The bias and 95% limit of agreement (LA) were calculated using Bland-Altman plots. In addition, a qualitative evaluation of image quality was performed with regard to the myocardium-blood contrast, noise level and boundary definition. Despite slight degradation in image quality for 3D cine, excellent agreement was obtained for the detection of wall motion abnormalities between 2D and 3D cine images (κ=0.84 and 0.94 for each reader). Excellent correlations between the two imaging methods were shown for the evaluation of functional parameters (r>0.97). Slight differences in LVEDV, LVESV, LVEF and LVmass

  4. Extracardiac findings detected by cardiac magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wyttenbach, Rolf; Medioni, Nathalie; Santini, Paolo [Ospedale San Giovanni Bellinzona (EOC), Department of Radiology, Bellinzona (Switzerland); Vock, Peter [University Hospital Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Bern (Switzerland); Szucs-Farkas, Zsolt [University Hospital Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Bern (Switzerland); Spitalzentrum Biel AG, Department of Radiology, Biel (Switzerland)

    2012-06-15

    To determine the prevalence and importance of extracardiac findings (ECF) in patients undergoing clinical CMR and to test the hypothesis that the original CMR reading focusing on the heart may underestimate extracardiac abnormalities. 401 consecutive patients (mean age 53 years) underwent CMR at 1.5 T. Main indications were ischaemic heart disease (n = 183) and cardiomyopathy (n = 164). All CMR sequences, including scout images, were reviewed with specific attention to ECF in a second reading by the same radiologist who performed the first clinical reading. Potentially significant findings were defined as abnormalities requiring additional clinical or radiological follow-up. 250 incidental ECF were detected, of which 84 (34%) had potentially significant ECF including bronchial carcinoma (n = 1), lung consolidation (n = 7) and abdominal abnormalities. In 166 CMR studies (41%) non-significant ECF were detected. The number of ECF identified at second versus first reading was higher for significant (84 vs. 47) and non-significant (166 vs. 36) findings (P < 0.00001). About one fifth of patients undergoing CMR were found to have potentially significant ECF requiring additional work-up. The second dedicated reading detected significantly more ECF compared with the first clinical reading emphasising the importance of active search for extracardiac abnormalities when evaluating CMR studies. circle Many patients undergoing cardiac MR have significant extracardiac findings (ECF) circle These impact on management and require additional work-up. circle Wide review of scout and cine sequences will detect most ECFs. circle Education of radiologists is important to identify ECFs on CMR studies. (orig.)

  5. Cardiac tumors: CT and MR imaging features; Tumeurs cardiaques: aspects en scanner et en IRM

    Energy Technology Data Exchange (ETDEWEB)

    Moskovitch, G.; Chabbert, V.; Escourrou, G.; Desloques, L.; Otal, P.; Glock, Y.; Rousseau, H. [Centre Hospitalier Universitaire de Rangueil, Service de Radiologie Generale, 31 - Toulouse (France)

    2010-09-15

    The CT and MR imaging features of the main cardiac tumors will be reviewed. Cross-sectional imaging features may help differentiate between cardiac tumors and pseudo-tumoral lesions and identify malignant features. Based on clinical features, imaging findings are helpful to further characterize the nature of the lesion. CT and MR imaging can demonstrate the relationship of the tumor with adjacent anatomical structures and are invaluable in the pre-surgical work-up and post-surgical follow-up. (authors)

  6. A framework of whole heart extracellular volume fraction estimation for low-dose cardiac CT images.

    Science.gov (United States)

    Chen, Xinjian; Nacif, Marcelo S; Liu, Songtao; Sibley, Christopher; Summers, Ronald M; Bluemke, David A; Yao, Jianhua

    2012-09-01

    Cardiac CT (CCT) is widely available and has been validated for the detection of focal myocardial scar using a delayed enhancement technique in this paper. CCT, however, has not been previously evaluated for quantification of diffuse myocardial fibrosis. In our investigation, we sought to evaluate the potential of low-dose CCT for the measurement of myocardial whole heart extracellular volume (ECV) fraction. ECV is altered under conditions of increased myocardial fibrosis. A framework consisting of three main steps was proposed for CCT whole heart ECV estimation. First, a shape-constrained graph cut (GC) method was proposed for myocardium and blood pool segmentation on postcontrast image. Second, the symmetric demons deformable registration method was applied to register precontrast to postcontrast images. So the correspondences between the voxels from precontrast to postcontrast images were established. Finally, the whole heart ECV value was computed. The proposed method was tested on 20 clinical low-dose CCT datasets with precontrast and postcontrast images. The preliminary results demonstrated the feasibility and efficiency of the proposed method.

  7. Multi-technique imaging of sarcoidosis

    Energy Technology Data Exchange (ETDEWEB)

    Balan, A. [Department of Clinical Radiology, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Hoey, E.T.D. [Department of Clinical Radiology, Heartlands Hospital, Bordesley Green, Birmingham (United Kingdom); Sheerin, F. [Department of Neuroradiology, The John Radcliffe, Headington, Oxford (United Kingdom); Lakkaraju, A. [Department of Clinical Radiology, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Chowdhury, F.U., E-mail: fahmid.chowdhury@leedsth.nhs.u [Department of Clinical Radiology, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom)

    2010-09-15

    Sarcoidosis is a multisystem granulomatous disorder of unknown aetiology. The diagnosis is suggested on the basis of wide ranging clinical and radiological manifestations, and is supported by the histological demonstration of non-caseating granulomas in affected tissues. This review highlights the multisystem radiological features of the disease across a variety of imaging methods including multidetector computed tomography (CT), magnetic resonance imaging (MRI) as well as functional radionuclide techniques, particularly 2-[{sup 18}F]-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT). It is important for the radiologist to be aware of the varied radiological manifestations of sarcoidosis in order to recognize and suggest the diagnosis in the appropriate clinical setting.

  8. Subcutaneous Tissue Thickness is an Independent Predictor of Image Noise in Cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Staniak, Henrique Lane; Sharovsky, Rodolfo [Hospital Universitário - Universidade de São Paulo, São Paulo, SP (Brazil); Pereira, Alexandre Costa [Hospital das Clínicas - Universidade de São Paulo, São Paulo, SP (Brazil); Castro, Cláudio Campi de; Benseñor, Isabela M.; Lotufo, Paulo A. [Hospital Universitário - Universidade de São Paulo, São Paulo, SP (Brazil); Faculdade de Medicina - Universidade de São Paulo, São Paulo, SP (Brazil); Bittencourt, Márcio Sommer, E-mail: msbittencourt@mail.harvard.edu [Hospital Universitário - Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-01-15

    Few data on the definition of simple robust parameters to predict image noise in cardiac computed tomography (CT) exist. To evaluate the value of a simple measure of subcutaneous tissue as a predictor of image noise in cardiac CT. 86 patients underwent prospective ECG-gated coronary computed tomographic angiography (CTA) and coronary calcium scoring (CAC) with 120 kV and 150 mA. The image quality was objectively measured by the image noise in the aorta in the cardiac CTA, and low noise was defined as noise < 30HU. The chest anteroposterior diameter and lateral width, the image noise in the aorta and the skin-sternum (SS) thickness were measured as predictors of cardiac CTA noise. The association of the predictors and image noise was performed by using Pearson correlation. The mean radiation dose was 3.5 ± 1.5 mSv. The mean image noise in CT was 36.3 ± 8.5 HU, and the mean image noise in non-contrast scan was 17.7 ± 4.4 HU. All predictors were independently associated with cardiac CTA noise. The best predictors were SS thickness, with a correlation of 0.70 (p < 0.001), and noise in the non-contrast images, with a correlation of 0.73 (p < 0.001). When evaluating the ability to predict low image noise, the areas under the ROC curve for the non-contrast noise and for the SS thickness were 0.837 and 0.864, respectively. Both SS thickness and CAC noise are simple accurate predictors of cardiac CTA image noise. Those parameters can be incorporated in standard CT protocols to adequately adjust radiation exposure.

  9. Novel imaging technique for birefringent materials

    CERN Document Server

    Lewis, J G

    1998-01-01

    less than 40 seconds. Retardation and orientation changes of less than 1nm and 1 deg, respectively, can be resolved with a spatial resolution close to that of a conventional polarizing microscope image. A wide variety of optically anisotropic materials have been examined to demonstrate both the quantitative and qualitative nature of this new sensitive polarization microscopy technique. Preliminary measurements have shown that when the system is extended to use two or more wavelengths it is also capable of directly extracting information about the order of the phase difference. Many transparent materials including crystals, polymers, biological tissues and textile fibres are birefringent or optically anisotropic, i.e. the refractive index varies with the direction of vibration of light. Birefringent measurements are important as they provide information about the underlying structure of a material. In general, the most sensitive techniques for measuring birefringence are those that modulate the polarization st...

  10. A Review of Image Mosaicing Techniques

    OpenAIRE

    Vaghela, Dushyant; Naina, Prof. Kapildev

    2014-01-01

    Image Mosaicing is a method of constructing multiple images of the same scene into a larger image. The output of the image mosaic will be the union of two input images. Image-mosaicing algorithms are used to get mosaiced image. Image Mosaicing processed is basically divided in to 5 phases. Which includes; Feature point extraction, Image registration, Homography computation, Warping and Blending if Image. Various corner detection algorithm is being used for Feature extraction. This corner prod...

  11. Feasibility study to demonstrate cardiac imaging using fast kVp switching dual-energy computed tomography: phantom study

    Science.gov (United States)

    Madhav, Priti; Imai, Yasuhiro; Narayanan, Suresh; Dutta, Sandeep; Chandra, Naveen; Hsieh, Jiang

    2012-03-01

    Dual-energy computed tomography is a novel imaging tool that has the potential to reduce beam hardening artifacts and enhance material separation over conventional imaging techniques. Dual-energy acquisitions can be performed by using a fast kVp technology to switch between acquiring adjacent projections at two distinct x-ray spectra (80 and 140 kVp). These datasets can be used to further compute material density and monochromatic images for better material separation and beam hardening reduction by virtue of the projection domain process. The purpose of this study was to evaluate the feasibility of using dual-energy in cardiac imaging for myocardial perfusion detection and coronary artery lumen visualization. Data was acquired on a heart phantom, which consisted of the chambers and aorta filled with Iodine density solution (500 HU @ 120 kVp), a defect region between the aorta and chamber (40 HU @ 120 kVp), two Iodinefilled vessels (400 HU @ 120 kVp) of different diameters with high attenuation (hydroxyapatite) plaques (HAP), and with a 30-cm water equivalent body ring around the phantom. Prospective ECG-gated single-energy and prospective ECG-gated dual-energy imaging was performed. Results showed that the generated monochromatic images had minimal beam hardening artifacts which improved the accuracy and detection of the myocardial defect region. Material density images were useful in differentiating and quantifying the actual size of the plaque and coronary artery lumen. Overall, this study shows that dual-energy cardiac imaging will be a valuable tool for cardiac applications.

  12. Continuous measurement of cardiac output with the use of stochastic system identification techniques.

    Science.gov (United States)

    Yelderman, M

    1990-10-01

    The limitations of developing a technique to measure cardiac output continuously are given. Logical explanations are provided for the economic, technical, and physiologic benefits of a stochastic system identification technique for measuring cardiac output. Heat is supplied by a catheter-mounted filament driven according to a pseudorandom binary sequence. Volumetric fluid flow is derived by a cross-correlation algorithm written in the C language. In vitro validation is performed with water in a flow bench. The computed flow (y) compared with the in-line-measured flow (x) yields the linear regression y = 1.024x - 0.157 (r = 0.99). The average coefficient of variation is less than 2% over a volumetric fluid flow range of 2 to 10 L/min.

  13. Challenges of cardiac image analysis in large-scale population-based studies.

    Science.gov (United States)

    Medrano-Gracia, Pau; Cowan, Brett R; Suinesiaputra, Avan; Young, Alistair A

    2015-03-01

    Large-scale population-based imaging studies of preclinical and clinical heart disease are becoming possible due to the advent of standardized robust non-invasive imaging methods and infrastructure for big data analysis. This gives an exciting opportunity to gain new information about the development and progression of heart disease across population groups. However, the large amount of image data and prohibitive time required for image analysis present challenges for obtaining useful derived data from the images. Automated analysis tools for cardiac image analysis are only now becoming available. This paper reviews the challenges and possible solutions to the analysis of big imaging data in population studies. We also highlight the potential of recent large epidemiological studies using cardiac imaging to discover new knowledge on heart health and well-being.

  14. Clinical study on the adriamycin induced cardiomyopathy using the cardiac magnetic resonance imaging. Total dose and cardiac dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Kyoko; Teraoka, Kunihiko; Hirano, Masaharu [Tokyo Medical Coll. (Japan)

    2001-05-01

    We studied cardiac functional disorders caused by Adoriamycin using gadolinium (Gd) contrast cine MRI. Forty-eight patients were given ACT (31 men and 17 women; mean age, 52{+-}15 years). First, the relationship between dose and the left ventricular volume, cardiac function, left ventricular cardiac mass and localized wall motion were examined in all patients. Patients given a total dose of 300 mg/m{sup 2} or higher were assigned to the high dose group and those given doses under 300 mg/m{sup 2} to the low dose group. The same parameters were studied in both groups and compared. A 1.5-Tesla superconductive MRI was used for all studies. Cine images of the long and short axes at the papillary muscle level were obtained by ECG R-wave synchronized Gd contrast cine MRI. Left ventricular volume and cardiac function were analyzed using the long-axis cine images and the wall thickness in diastole and systole was measured at each site using the short-axis cine images. The percentage of wall thickness was calculated at each site. The mean ACT dose was 273.3{+-}218.2 mg/m{sup 2}. In all patients the total dose directly correlated with ESVI and inversely correlated with the ejection fraction (EF). In the high dose group, the total dose and EF were inversely correlated, but no significant differences were observed in the low dose group. In the high dose group, the ESVI was significantly greater and the SVI and EF were more significantly reduced than in the low dose group. In the high dose group, the thickness of the anterior, lateral and posterior walls, excluding the septum, was significantly lower than in the low dose group. However, changes in wall thickness were not significantly different between the groups. Gd contrast cine MRI was useful in examining cardiac functional disorders caused by anthracyclines. The total dose of anthracycline correlated directly with the ESVI, and inversely with the EF. A total dose of 300 mg/m{sup 2} appeared to be the borderline dose beyond

  15. Nuclear magnetic resonance imaging with cardiac synchronization in chronic thrombosis of main pulmonary arteries. A case review with CT scan imaging correlation

    Energy Technology Data Exchange (ETDEWEB)

    Coulomb, M.; Wolf, J.E.; Rose-Pittet, L.; Le Bas, J.F.; Dalsoglio, S.; Paramelle, B.

    Results of nuclear magnetic resonance exploration in a patient with chronic thrombosis of main pulmonary arteries are used to outline an elementary semiology in agreement with current documented data. Signs observed relate to the thrombosis and showing of flow due to associated pulmonary artery hypertension. Cardiac synchronization is essential: obtaining 2 echos by the spin-echo technique allows differentiation of circulatory slowing phenomena, which provoke increased strength of 2nd echo, from the thrombus itself. Correlations established with V/Q scintigraphy, angiography and CT scan findings in this case provided preliminary evaluation of use of this imaging technique in this affection.

  16. SU-E-P-10: Imaging in the Cardiac Catheterization Lab - Technologies and Clinical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Fetterly, K [Mayo Clinic, Rochester, MN (United States)

    2014-06-01

    Purpose: Diagnosis and treatment of cardiovascular disease in the cardiac catheterization laboratory is often aided by a multitude of imaging technologies. The purpose of this work is to highlight the contributions to patient care offered by the various imaging systems used during cardiovascular interventional procedures. Methods: Imaging technologies used in the cardiac catheterization lab were characterized by their fundamental technology and by the clinical applications for which they are used. Whether the modality is external to the patient, intravascular, or intracavity was specified. Specific clinical procedures for which multiple modalities are routinely used will be highlighted. Results: X-ray imaging modalities include fluoroscopy/angiography and angiography CT. Ultrasound imaging is performed with external, trans-esophageal echocardiography (TEE), and intravascular (IVUS) transducers. Intravascular infrared optical coherence tomography (IVOCT) is used to assess vessel endothelium. Relatively large (>0.5 mm) anatomical structures are imaged with x-ray and ultrasound. IVUS and IVOCT provide high resolution images of vessel walls. Cardiac CT and MRI images are used to plan complex cardiovascular interventions. Advanced applications are used to spatially and temporally merge images from different technologies. Diagnosis and treatment of coronary artery disease frequently utilizes angiography and intra-vascular imaging, and treatment of complex structural heart conditions routinely includes use of multiple imaging modalities. Conclusion: There are several imaging modalities which are routinely used in the cardiac catheterization laboratory to diagnose and treat both coronary artery and structural heart disease. Multiple modalities are frequently used to enhance the quality and safety of procedures. The cardiac catheterization laboratory includes many opportunities for medical physicists to contribute substantially toward advancing patient care.

  17. Heart and Lungs Protection Technique for Cardiac Surgery with Cardiopulmonary Bypass

    Directory of Open Access Journals (Sweden)

    Vladimir Pichugin

    2014-12-01

    Full Text Available Introduction: Cardioplegic cardiac arrest with subsequent ischemic-reperfusion injuries can lead to the development of inflammation of the myocardium, leucocyte activation, and release of cardiac enzymes. Flow reduction to the bronchial arteries, causing low-flow lung ischemia, leads to the development of a pulmonary regional inflammatory response. Hypoventilation during cardiopulmonary bypass (CPB is responsible for development of microatelectasis, hydrostatic pulmonary edema, poor compliance, and a higher incidence of infection. Based on these facts, prevention methods of these complications were developed. The aim of this study was to evaluate constant coronary perfusion (CCP and the “beating heart” in combination with pulmonary artery perfusion (PAP and “ventilated lungs” technique for heart and lung protection in cardiac surgery with CPB.Methods. After ethical approval and written informed consent, 80 patients undergoing cardiac surgery with normothermic CPB were randomized in three groups. In the first group (22 patients, the crystalloid cardioplegia without lung ventilation/perfusion techniques were used. In the second group (30 patients, the CCP and “beating heart” without lung ventilation/perfusion techniques were used. In the third group (28 patients, the CCP with PAP and lung ventilation techniques were used. Clinical, functional parameters, myocardial damage markers (CK MB level, oxygenation index, and lung compliance were investigated.Results. There were higher rates of spontaneous cardiac recovery and lower doses of inotrops in the second and third groups. Myocardial contractility function was better preserved in the second and third groups. The post-operative levels of CK-MB were lower than in control group.  Three hours after surgery CK-MB levels in the second and third  groups were lower by 38.1% and 33.3%, respectively. Eight hours after surgery, CK-MB levels were lower in the second and third groups by 45.9% and

  18. Emerging Cardiac Imaging Modalities for the Early Detection of Cardiotoxicity Due to Anticancer Therapies.

    Science.gov (United States)

    López-Fernández, Teresa; Thavendiranathan, Paaladinesh

    2017-06-01

    The undeniable advances in the field of oncology have finally led to a decrease in overall cancer-related mortality. However, this population of long-term cancer survivors is now facing a shift toward a substantial increase in cardiovascular morbidity and mortality. Because the development of overt cardiotoxicity can be associated with poor outcomes, preclinical identification of cardiac toxicity is important. This will promote early instauration of treatments to prevent overt heart dysfunction and allow oncologists to continue cancer therapy in an uninterrupted manner. Surveillance strategies for the early detection of cardiac injury include cardiac imaging and biomarkers during treatment. In this review, we outline existing cardiac imaging modalities to detect myocardial changes in patients undergoing cancer treatment and in survivors, and their strengths and limitations. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  19. Evaluation of cardiac tumors with magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Antonio [Clinica Las Nieves, MR Unit, Jaen (Spain); Ribes, Ramon [Reina Sofia Hospital, MR Unit, Radiology Department, Cordoba (Spain); Caro, Pilar [MR Unit, Dadisa, Cadiz (Spain); Vida, Jose [San Juan De Dios Hospital, MR Unit, Resalta, Cordoba (Spain); Erasmus, Jeremy J. [University of Texas, Department of Radiology, Houston, TX (United States)

    2005-07-01

    Primary cardiac neoplasms are rare, and are more commonly benign than malignant. However, metastases are by far the most common cardiac neoplasms. MRI allows evaluation of myocardial infiltration, pericardial involvement and/or extracardiac extension. MRI overcomes the usual limitations of echocardiography and assesses more accurately changes in cardiac function. Specific tumoral characterization is only possible in cases of myxoma, lipoma, fibroma and hemangioma. Suggestive features of malignancy are right side location, extracardiac extension, inhomogeneity in signal intensity of the tumor and pericardial effusion. The use of intravenous contrast material improves tumor characterization and depiction of tumor borders. MRI also allows differentiation of tumor from other nontumoral masses such as intracavitary tumors or fibromuscular elements of the posterior wall of the right atrium. (orig.)

  20. Recent Advances and Clinical Applications of PET Cardiac Autonomic Nervous System Imaging.

    Science.gov (United States)

    Boutagy, Nabil E; Sinusas, Albert J

    2017-04-01

    The purpose of this review was to summarize current advances in positron emission tomography (PET) cardiac autonomic nervous system (ANS) imaging, with a specific focus on clinical applications of novel and established tracers. [(11)C]-Meta-hydroxyephedrine (HED) has provided useful information in evaluation of normal and pathological cardiovascular function. Recently, [(11)C]-HED PET imaging was able to predict lethal arrhythmias, sudden cardiac death (SCD), and all-cause mortality in heart failure patients with reduced ejection fraction (HFrEF). In addition, initial [(11)C]-HED PET imaging studies have shown the potential of this agent in elucidating the relationship between impaired cardiac sympathetic nervous system (SNS) innervation and the severity of diastolic dysfunction in HF patients with preserved ejection fraction (HFpEF) and in predicting the response to cardiac resynchronization therapy (CRT) in HFrEF patients. Longer half-life (18)F-labeled presynaptic SNS tracers (e.g., [(18)F]-LMI1195) have been developed to facilitate clinical imaging, although no PET radiotracers that target the ANS have gained wide clinical use in the cardiovascular system. Although the use of parasympathetic nervous system radiotracers in cardiac imaging is limited, the novel tracer, [(11)C]-donepezil, has shown potential utility in initial studies. Many ANS radioligands have been synthesized for PET cardiac imaging, but to date, the most clinically relevant PET tracer has been [(11)C]-HED. Recent studies have shown the utility of [(11)C]-HED in relevant clinical issues, such as in the elusive clinical syndrome of HFpEF. Conversely, tracers that target cardiac PNS innervation have been used less clinically, but novel tracers show potential utility for future work. The future application of [(11)C]-HED and newly designed (18)F-labeled tracers for targeting the ANS hold promise for the evaluation and management of a wide range of cardiovascular diseases, including the

  1. Multimodality Cardiac Imaging for the Assessment of Left Atrial Function and the Association With Atrial Arrhythmias

    DEFF Research Database (Denmark)

    Olsen, Flemming Javier; Bertelsen, Litten; de Knegt, Martina Chantal

    2016-01-01

    an inverse relationship between LA reservoir function and degree of LA fibrosis. This has sparked an increased interest into the application of advanced imaging modalities, including both speckle tracking echocardiography and tissue tracking by cardiac magnetic resonance imaging. Even though increasing...

  2. Region-Based 4D Tomographic Image Reconstruction: Application to Cardiac X-ray CT

    NARCIS (Netherlands)

    Eyndhoven, G. Van; Batenburg, K.J.; Sijbers, J.

    2015-01-01

    X-ray computed tomography (CT) is a powerful tool for noninvasive cardiac imaging. However, radiation dose is a major issue. In this paper, we propose an iterative reconstruction method that reduces the radiation dose without compromising image quality. This is achieved by exploiting prior knowledge

  3. Automated segmentation of cardiac visceral fat in low-dose non-contrast chest CT images

    Science.gov (United States)

    Xie, Yiting; Liang, Mingzhu; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.

    2015-03-01

    Cardiac visceral fat was segmented from low-dose non-contrast chest CT images using a fully automated method. Cardiac visceral fat is defined as the fatty tissues surrounding the heart region, enclosed by the lungs and posterior to the sternum. It is measured by constraining the heart region with an Anatomy Label Map that contains robust segmentations of the lungs and other major organs and estimating the fatty tissue within this region. The algorithm was evaluated on 124 low-dose and 223 standard-dose non-contrast chest CT scans from two public datasets. Based on visual inspection, 343 cases had good cardiac visceral fat segmentation. For quantitative evaluation, manual markings of cardiac visceral fat regions were made in 3 image slices for 45 low-dose scans and the Dice similarity coefficient (DSC) was computed. The automated algorithm achieved an average DSC of 0.93. Cardiac visceral fat volume (CVFV), heart region volume (HRV) and their ratio were computed for each case. The correlation between cardiac visceral fat measurement and coronary artery and aortic calcification was also evaluated. Results indicated the automated algorithm for measuring cardiac visceral fat volume may be an alternative method to the traditional manual assessment of thoracic region fat content in the assessment of cardiovascular disease risk.

  4. MELAS Syndrome with Cardiac Involvement: A Multimodality Imaging Approach

    Directory of Open Access Journals (Sweden)

    Sara Seitun

    2016-01-01

    Full Text Available A 49-year-old man presented with chest pain, dyspnea, and lactic acidosis. Left ventricular hypertrophy and myocardial fibrosis were detected. The sequencing of mitochondrial genome (mtDNA revealed the presence of A to G mtDNA point mutation at position 3243 (m.3243A>G in tRNALeu(UUR gene. Diagnosis of cardiac involvement in a patient with Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like episodes syndrome (MELAS was made. Due to increased risk of sudden cardiac death, cardioverter defibrillator was implanted.

  5. A Technique for Generating Volumetric Cine-Magnetic Resonance Imaging.

    Science.gov (United States)

    Harris, Wendy; Ren, Lei; Cai, Jing; Zhang, You; Chang, Zheng; Yin, Fang-Fang

    2016-06-01

    The purpose of this study was to develop a techique to generate on-board volumetric cine-magnetic resonance imaging (VC-MRI) using patient prior images, motion modeling, and on-board 2-dimensional cine MRI. One phase of a 4-dimensional MRI acquired during patient simulation is used as patient prior images. Three major respiratory deformation patterns of the patient are extracted from 4-dimensional MRI based on principal-component analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2-dimensional cine MRI. The method was evaluated using both digital extended-cardiac torso (XCAT) simulation of lung cancer patients and MRI data from 4 real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using volume-percent-difference (VPD), center-of-mass-shift (COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest (ROI) selection, patient breathing pattern change, and noise on the estimation accuracy were also evaluated. Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between normalized profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was, on average, 8.43 ± 1.52% and the COMS was, on average, 0.93 ± 0.58 mm across all time steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against noise levels up to SNR = 20. For

  6. Effects of Radiation Exposure From Cardiac Imaging: How Good Are the Data?

    Science.gov (United States)

    Einstein, Andrew J.

    2012-01-01

    Concerns about medical exposure to ionizing radiation have become heightened in recent years due to rapid growth in procedure volumes and the high radiation doses incurred from some procedures. This article summarizes the evidence base undergirding concerns about radiation exposure in cardiac imaging. After classifying radiation effects, explaining terminology used to quantify the radiation received by patients, and describing typical doses from cardiac imaging procedures, I address the major epidemiological studies having bearing on radiation effects at doses comparable to those received by patients undergoing cardiac imaging. These include studies of atomic bomb survivors, nuclear industry workers, and children exposed in utero to x-rays, all of which have evidenced increased cancer risks at low doses. Additional higher dose epidemiological studies of cohorts exposed to radiation in the context of medical treatment are described and found to be generally compatible with these cardiac-dose-level studies, albeit with exceptions. Using risk projection models developed by the US National Academies that incorporate these data and reflect several evidence-based assumptions, cancer risk from cardiac imaging can be estimated and compared to benefits from imaging. Several ongoing epidemiological studies will provide better understanding of radiation-associated cancer risks. PMID:22300689

  7. Compressed sensing imaging techniques for radio interferometry

    CERN Document Server

    Wiaux, Y; Puy, G; Scaife, A M M; Vandergheynst, P

    2009-01-01

    Radio interferometry probes astrophysical signals through incomplete and noisy Fourier measurements. The theory of compressed sensing demonstrates that such measurements may actually suffice for accurate reconstruction of sparse or compressible signals. We propose new generic imaging techniques based on convex optimization for global minimization problems defined in this context. The versatility of the framework notably allows introduction of specific prior information on the signals, which offers the possibility of significant improvements of reconstruction relative to the standard local matching pursuit algorithm CLEAN used in radio astronomy. We illustrate the potential of the approach by studying reconstruction performances on simulations of two different kinds of signals observed with very generic interferometric configurations. The first kind is an intensity field of compact astrophysical objects. The second kind is the imprint of cosmic strings in the temperature field of the cosmic microwave backgroun...

  8. Intraoperative Cardiac Ultrasound Examination Using Vector Flow Imaging

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Pedersen, Mads Møller; Møller-Sørensen, Hasse

    2013-01-01

    Conventional ultrasound (US) methods for blood velocity estimation only provide onedimensional and angle-dependent velocity estimates; thus, the complexity of cardiac flow has been difficult to measure. To circumvent these limitations, the Transverse Oscillation (TO) vector flow method has been...

  9. Incidental cardiac findings on computed tomography imaging of the thorax

    Directory of Open Access Journals (Sweden)

    El-Gendi Hossam

    2010-12-01

    Full Text Available Abstract Background Investigation of pulmonary pathology with computed tomography also allows visualisation of the heart and major vessels. We sought to explore whether clinically relevant cardiac pathology could be identified on computed tomography pulmonary angiograms (CTPA requested for the exclusion of pulmonary embolism (PE. 100 consecutive CT contrast-enhanced pulmonary angiograms carried out for exclusion of PE at a single centre were assessed retrospectively by two cardiologists. Findings Evidence of PE was reported in 5% of scans. Incidental cardiac findings included: aortic wall calcification (54%, coronary calcification (46%, cardiomegaly (41%, atrial dilatation (18%, mitral annulus calcification (15%, right ventricular dilatation (11%, aortic dilatation (8% and right ventricular thrombus (1%. Apart from 3 (3% reports describing cardiomegaly, no other cardiac findings were described in radiologists' reports. Other reported pulmonary abnormalities included: lung nodules (14%, lobar collapse/consolidation (8%, pleural effusion (2%, lobar collapse/consolidation (8%, emphysema (6% and pleural calcification (4%. Conclusions CTPAs requested for the exclusion of PE have a high yield of cardiac abnormalities. Although these abnormalities may not have implications for acute clinical management, they may, nevertheless, be important in long-term care.

  10. Application of Micro-Computed Tomography with Iodine Staining to Cardiac Imaging, Segmentation and Computational Model Development

    Science.gov (United States)

    Aslanidi, OV; Nikolaidou, T; Zhao, J; Smaill, BH; Gilbert, SH; Holden, AV; Lowe, T; Withers, PJ; Jarvis, JC; Stephenson, RS; Hart, G; Hancox, JC; Boyett, MR; Zhang, H

    2012-01-01

    Micro-computed tomography (micro-CT) has been widely used to generate high-resolution 3D tissue images from small animals non-destructively, especially for mineralized skeletal tissues. However, its application to the analysis of soft cardiovascular tissues has been limited by poor inter-tissue contrast. Recent ex vivo studies have shown that contrast between muscular and connective tissue in micro-CT images can be enhanced by staining with iodine. In the present study, we apply this novel technique for imaging of cardiovascular structures in canine hearts. We optimize the method to obtain high resolution X-ray micro-CT images of the canine atria and its distinctive regions - including the Bachmann’s bundle, atrioventricular node, pulmonary arteries and veins - with clear inter-tissue contrast. The imaging results are used to reconstruct and segment the detailed 3D geometry of the atria. Structure tensor analysis shows that the arrangement of atrial fibres can also be characterised using the enhanced micro-CT images, as iodine preferentially accumulates within the muscular fibres rather than in connective tissues. This novel technique can be particularly useful in non-destructive imaging of 3D cardiac architectures from large animals and humans, due to the combination of relatively high speed (~1 hour/scan of a large canine heart) and high voxel resolution (36 μm) provided. In summary, contrast micro-CT facilitates fast and non-destructive imaging and segmenting of detailed 3D cardiovascular geometries, as well as measuring fibre orientation, which are crucial in constructing biophysically detailed computational cardiac models. PMID:22829390

  11. Evaluation of apical subtype of hypertrophic cardiomyopathy using cardiac magnetic resonance imaging with gadolinium enhancement.

    Science.gov (United States)

    Kebed, Kalie Y; Al Adham, Raed I; Bishu, Kalkidan; Askew, J Wells; Klarich, Kyle W; Araoz, Philip A; Foley, Thomas A; Glockner, James F; Nishimura, Rick A; Anavekar, Nandan S

    2014-09-01

    Apical hypertrophic cardiomyopathy (HC) is an uncommon variant of HC. We sought to characterize cardiac magnetic resonance imaging (MRI) findings among apical HC patients. This was a retrospective review of consecutive patients with a diagnosis of apical HC who underwent cardiac MRI examinations at the Mayo Clinic (Rochester, MN) from August 1999 to October 2011. Clinical and demographic data at the time of cardiac MRI study were abstracted. Cardiac MRI study and 2-dimensional echocardiograms performed within 6 months of the cardiac MRI were reviewed; 96 patients with apical HC underwent cardiac MRI examinations. LV end-diastolic and end-systolic volumes were 130.7 ± 39.1 ml and 44.2 ± 20.9 ml, respectively. Maximum LV thickness was 19 ± 5 mm. Hypertrophy extended beyond the apex into other segments in 57 (59.4%) patients. Obstructive physiology was seen in 12 (12.5%) and was more common in the mixed apical phenotype than the pure apical (19.3 vs 2.6%, p = 0.02). Apical pouches were noted in 39 (40.6%) patients. Late gadolinium enhancement (LGE) was present in 70 (74.5%) patients. LGE was associated with severe symptoms and increased maximal LV wall thickness. In conclusion, cardiac MRI is well suited for studying the apical form of HC because of difficulty imaging the cardiac apex with standard echocardiography. Cardiac MRI is uniquely suited to delineate the presence or absence of an apical pouch and abnormal myocardial LGE that may have implications in the natural history of apical HM. In particular, the presence of abnormal LGE is associated with clinical symptoms and increased wall thickness.

  12. Hybrid echo and x-ray image guidance for cardiac catheterization procedures by using a robotic arm: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yingliang; Penney, Graeme P; Razavi, Reza; Rhode, Kawal S [Division of Imaging Sciences, King' s College, London SE1 7EH (United Kingdom); Bos, Dennis; Frissen, Peter [Philips Applied Technologies, High Tech. Campus 7, 5656 AE Eindhoven (Netherlands); Rinaldi, C Aldo, E-mail: y.ma@kcl.ac.u [Department of Cardiology, Guy' s and St Thomas' NHS Foundation Trust, London SE1 7EH (United Kingdom)

    2010-07-07

    We present a feasibility study on hybrid echocardiography (echo) and x-ray image guidance for cardiac catheterization procedures. A self-tracked, remotely operated robotic arm with haptic feedback was developed that attached to a standard x-ray table. This was used to safely manipulate a three-dimensional (3D) trans-thoracic echo probe during simultaneous x-ray fluoroscopy and echo acquisitions. By a combination of calibration and tracking of the echo and x-ray systems, it was possible to register the 3D echo images with the 2D x-ray images. Visualization of the combined data was achieved by either overlaying triangulated surfaces extracted from segmented echo data onto the x-ray images or by overlaying volume rendered 3D echo data. Furthermore, in order to overcome the limited field of view of the echo probe, it was possible to create extended field of view (EFOV) 3D echo images by co-registering multiple tracked echo data to generate larger roadmaps for procedure guidance. The registration method was validated using a cross-wire phantom and showed a 2D target registration error of 3.5 mm. The clinical feasibility of the method was demonstrated during two clinical cases for patients undergoing cardiac pacing studies. The EFOV technique was demonstrated using two healthy volunteers. (note)

  13. A Survey on Image Segmentation Techniques Used In Leukemia Detection

    Directory of Open Access Journals (Sweden)

    Mashiat Fatma

    2014-04-01

    Full Text Available Image segmentation commonly known as partitioning of an image is one of the intrinsic parts of any image processing technique. In this image processing step, the digital image of choice is segregated into sets of pixels on the basis of some predefined and preselected measures or standards. There have been presented many algorithms for segmenting a digital image. This paper presents a general review of algorithms that have been presented for the purpose of image segmentation.

  14. Usefulness of Cardiac Sympathetic Nerve Imaging Using (123)Iodine-Metaiodobenzylguanidine Scintigraphy for Predicting Sudden Cardiac Death in Patients With Heart Failure.

    Science.gov (United States)

    Kasama, Shu; Toyama, Takuji; Kurabayashi, Masahiko

    2016-01-01

    The autonomic nervous system plays an important role in the human heart. Activation of the cardiac sympathetic nervous system is a cardinal pathophysiological abnormality associated with the failing human heart. Myocardial imaging using (123)I-metaiodobenzylguanidine (MIBG), an analog of norepinephrine, can be used to investigate the activity of norepinephrine, the predominant neurotransmitter of the sympathetic nervous system. Many clinical trials have demonstrated that (123)I-MIBG scintigraphic parameters predict cardiac adverse events, especially sudden cardiac death, in patients with heart failure. In this review, we summarize results from published studies that have focused on the use of cardiac sympathetic nerve imaging using (123)I-MIBG scintigraphy for risk stratification of sudden cardiac death in patients with heart failure.

  15. Development of imaging techniques for fast neutron radiography in Japan

    CERN Document Server

    Fujine, S; Yoshii, K; Kamata, M; Tamaki, M; Ohkubo, K; Ikeda, Y; Kobayashi, H

    1999-01-01

    Neutron radiography with fast neutron beams (FNR) has been studied at the fast neutron source reactor 'YAYOI' of the University of Tokyo since 1986. Imaging techniques for FNR have been developed for CR-39 track-etch detector, electronic imaging system (television method), direct film method, imaging plate and also fast and thermal neutron concurrent imaging method. The review of FNR imaging techniques and some applications are reported in this paper.

  16. Role of Imaging Techniques in Percutaneous Treatment of Mitral Regurgitation.

    Science.gov (United States)

    Li, Chi-Hion; Arzamendi, Dabit; Carreras, Francesc

    2016-04-01

    Mitral regurgitation is the most prevalent valvular heart disease in the United States and the second most prevalent in Europe. Patients with severe mitral regurgitation have a poor prognosis with medical therapy once they become symptomatic or develop signs of significant cardiac dysfunction. However, as many as half of these patients are inoperable because of advanced age, ventricular dysfunction, or other comorbidities. Studies have shown that surgery increases survival in patients with organic mitral regurgitation due to valve prolapse but has no clinical benefit in those with functional mitral regurgitation. In this scenario, percutaneous repair for mitral regurgitation in native valves provides alternative management of valvular heart disease in patients at high surgical risk. Percutaneous repair for mitral regurgitation is a growing field that relies heavily on imaging techniques to diagnose functional anatomy and guide repair procedures. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  17. Review Article: An Overview of Image Compression Techniques

    Directory of Open Access Journals (Sweden)

    M. Marimuthu

    2012-12-01

    Full Text Available To store an image, large quantities of digital data are required. Due to limited bandwidth, image must be compressed before transmission. However, image compression reduces the image fidelity, when an image is compressed at low bitrates. Hence, the compressed images suffer from block artifacts. To meet this, several compression schemes have been developed in image processing. This study presents an overview of compression techniques for image applications. It covers the lossy and lossless compression algorithm used for still image and other applications. The focus of this article is based on the overview of VLSI DCT architecture for image compression. Further, this new approach may provide better results.

  18. Calcium Imaging in Pluripotent Stem Cell-Derived Cardiac Myocytes.

    Science.gov (United States)

    Walter, Anna; Šarić, Tomo; Hescheler, Jürgen; Papadopoulos, Symeon

    2016-01-01

    The possibility to generate cardiomyocytes (CMs) from disease-specific induced pluripotent stem cells (iPSCs) is a powerful tool for the investigation of various cardiac diseases in vitro. The pathological course of various cardiac conditions, causatively heterogeneous, often converges into disturbed cellular Ca(2+) cycling. The gigantic Ca(2+) channel of the intracellular Ca(2+) store of CMs, the ryanodine receptor type 2 (RyR2), controls Ca(2+) release and therefore plays a crucial role in Ca(2+) cycling of CMs. In the present protocol we describe ways to measure and analyze global as well as local cellular Ca(2+) release events in CMs derived from a patient carrying a CPVT-causing RyR2 mutation.

  19. Optimized protocols for cardiac magnetic resonance imaging in patients with thoracic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, Laura J.; Ratnayaka, Kanishka [Children' s National Health System, Division of Cardiology, Washington, DC (United States); National Institutes of Health, National Heart, Lung and Blood Institute, Bethesda, MD (United States); Cross, Russell R.; O' Brien, Kendall E. [Children' s National Health System, Division of Cardiology, Washington, DC (United States); Hansen, Michael S. [National Institutes of Health, National Heart, Lung and Blood Institute, Bethesda, MD (United States)

    2015-09-15

    Cardiac magnetic resonance (MR) imaging is a valuable tool in congenital heart disease; however patients frequently have metal devices in the chest from the treatment of their disease that complicate imaging. Methods are needed to improve imaging around metal implants near the heart. Basic sequence parameter manipulations have the potential to minimize artifact while limiting effects on image resolution and quality. Our objective was to design cine and static cardiac imaging sequences to minimize metal artifact while maintaining image quality. Using systematic variation of standard imaging parameters on a fluid-filled phantom containing commonly used metal cardiac devices, we developed optimized sequences for steady-state free precession (SSFP), gradient recalled echo (GRE) cine imaging, and turbo spin-echo (TSE) black-blood imaging. We imaged 17 consecutive patients undergoing routine cardiac MR with 25 metal implants of various origins using both standard and optimized imaging protocols for a given slice position. We rated images for quality and metal artifact size by measuring metal artifact in two orthogonal planes within the image. All metal artifacts were reduced with optimized imaging. The average metal artifact reduction for the optimized SSFP cine was 1.5+/-1.8 mm, and for the optimized GRE cine the reduction was 4.6+/-4.5 mm (P < 0.05). Quality ratings favored the optimized GRE cine. Similarly, the average metal artifact reduction for the optimized TSE images was 1.6+/-1.7 mm (P < 0.05), and quality ratings favored the optimized TSE imaging. Imaging sequences tailored to minimize metal artifact are easily created by modifying basic sequence parameters, and images are superior to standard imaging sequences in both quality and artifact size. Specifically, for optimized cine imaging a GRE sequence should be used with settings that favor short echo time, i.e. flow compensation off, weak asymmetrical echo and a relatively high receiver bandwidth. For static

  20. Image Mosaic Techniques OptimizationUsing Wavelet

    Institute of Scientific and Technical Information of China (English)

    ZHOUAn-qi; CUILi

    2014-01-01

    This essay concentrates on two key procedures of image mosaic——image registration and imagefusion.Becauseof the character of geometric transformation invariance of edge points, wecalculate the angle difference of the direction vector ofedge points in different images anddraw an angle difference histogramto adjust the rotationproblem. Through this way, algorithm based on gray information is expandedandcan be used in images withdisplacementand rotation. Inthe term of image fusion, wavelet multi-scale analysis is used to fuse spliced images. In order to choose the best method of imagefusion,weevaluate the results of different methods of image fusion by cross entropy.

  1. Image Interpolation Using Kriging Technique for Spatial Data

    OpenAIRE

    Jassim, Firas Ajil; Altaany, Fawzi Hasan

    2013-01-01

    Image interpolation has been used spaciously by customary interpolation techniques. Recently, Kriging technique has been widely implemented in simulation area and geostatistics for prediction. In this article, Kriging technique was used instead of the classical interpolation methods to predict the unknown points in the digital image array. The efficiency of the proposed technique was proven using the PSNR and compared with the traditional interpolation techniques. The results showed that Krig...

  2. Multimodality Imaging of Cardiac Transthyretin Amyloidosis 16 Years After a Domino Liver Transplantation.

    Science.gov (United States)

    Bechiri, M Y; Eliahou, L; Rouzet, F; Fouret, P-J; Antonini, T; Samuel, D; Adam, R; Adams, D; Slama, M S; Algalarrondo, V

    2016-07-01

    We report the case of a 62-year-old man hospitalized in May 2015 for symptomatic heart failure. His medical history included two liver transplantations. The first liver transplantation was performed in 1999 for a mixed alcoholic and hepatitis C-related cirrhosis and the patient received the liver of another patient with Val30Met transthyretin amyloidosis using the domino technique. In 2008, he complained of neuropathic pains and an iatrogenic-acquired transthyretin amyloidosis was diagnosed. On cardiac evaluation, amyloidosis was suspected. In March 2010, a second liver transplantation was performed with a deceased donor without complication. In May 2015, a first episode of symptomatic heart failure occurred and cardiac amyloidosis was investigated by a multimodality evaluation. Electrocardiogram, cardiac biomarkers, echocardiography, and cardiac MRI were in favor of the diagnosis of amyloidosis, whereas (99m) Tc-dicarboxypropane diphosphonate scintigraphy was not. Endomyocardial biopsy finally confirmed the positive diagnosis of iatrogenic-acquired cardiac amyloidosis. This case is, to the best of our knowledge, the first to report biopsy-proven cardiac amyloidosis induced by domino liver transplantation and progressing heart failure in spite of retransplantation. The diagnostic modalities are discussed. This case should alert physicians to the cardiac risk in domino liver transplanted patients. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  3. Image Resolution Enhancement using DWT and Spatial Domain Interpolation Technique

    Directory of Open Access Journals (Sweden)

    Mrs. G. Padma Priya

    2016-02-01

    Full Text Available Image Resolution is one of the important quality metrics of images. Images with high resolution are required in many fields. In this paper, a new resolution enhancement technique is proposed based on the interpolation of four sub band images generated by Discrete Wavelet Transform (DWT and the original Low Resolution (LR input image. In this technique, the four sub band images generated by DWT and the input LR image are interpolated with scaling factor, α and then performed inverse DWT to obtain the intermediate High Resolution (HR Image. The difference between the intermediate HR image and the interpolated LR input image is added to the intermediate HR image to obtain final output HR Image. Lanczos interpolation is used in this technique. The proposed technique is tested on well known bench mark images. The quantitative and visual results shows the superiority of the proposed technique over the conventional and state of art image resolution enhancement techniques in wavelet domain using haar wavelet filter.

  4. Dynamic real-time 4D cardiac MDCT image display using GPU-accelerated volume rendering.

    Science.gov (United States)

    Zhang, Qi; Eagleson, Roy; Peters, Terry M

    2009-09-01

    Intraoperative cardiac monitoring, accurate preoperative diagnosis, and surgical planning are important components of minimally-invasive cardiac therapy. Retrospective, electrocardiographically (ECG) gated, multidetector computed tomographical (MDCT), four-dimensional (3D + time), real-time, cardiac image visualization is an important tool for the surgeon in such procedure, particularly if the dynamic volumetric image can be registered to, and fused with the actual patient anatomy. The addition of stereoscopic imaging provides a more intuitive environment by adding binocular vision and depth cues to structures within the beating heart. In this paper, we describe the design and implementation of a comprehensive stereoscopic 4D cardiac image visualization and manipulation platform, based on the opacity density radiation model, which exploits the power of modern graphics processing units (GPUs) in the rendering pipeline. In addition, we present a new algorithm to synchronize the phases of the dynamic heart to clinical ECG signals, and to calculate and compensate for latencies in the visualization pipeline. A dynamic multiresolution display is implemented to enable the interactive selection and emphasis of volume of interest (VOI) within the entire contextual cardiac volume and to enhance performance, and a novel color and opacity adjustment algorithm is designed to increase the uniformity of the rendered multiresolution image of heart. Our system provides a visualization environment superior to noninteractive software-based implementations, but with a rendering speed that is comparable to traditional, but inferior quality, volume rendering approaches based on texture mapping. This retrospective ECG-gated dynamic cardiac display system can provide real-time feedback regarding the suspected pathology, function, and structural defects, as well as anatomical information such as chamber volume and morphology.

  5. Iodine-123 metaiodobenzylguanidine imaging of the heart in idiopathic congestive cardiomyopathy and cardiac transplants

    Energy Technology Data Exchange (ETDEWEB)

    Glowniak, J.V.; Turner, F.E.; Gray, L.L.; Palac, R.T.; Lagunas-Solar, M.C.; Woodward, W.R.

    1989-07-01

    Iodine-123 metaiodobenzylguanidine ((/sup 123/I)MIBG) is a norepinephrine analog which can be used to image the sympathetic innervation of the heart. In this study, cardiac imaging with (/sup 123/I)MIBG was performed in patients with idiopathic congestive cardiomyopathy and compared to normal controls. Initial uptake, half-time of tracer within the heart, and heart to lung ratios were all significantly reduced in patients compared to normals. Uptake in lungs, liver, salivary glands, and spleen was similar in controls and patients with cardiomyopathy indicating that decreased MIBG uptake was not a generalized abnormality in these patients. Iodine-123 MIBG imaging was also performed in cardiac transplant patients to determine cardiac nonneuronal uptake. Uptake in transplants was less than 10% of normals in the first 2 hr and nearly undetectable after 16 hr. The decreased uptake of MIBG suggests cardiac sympathetic nerve dysfunction while the rapid washout of MIBG from the heart suggests increased cardiac sympathetic nerve activity in idiopathic congestive cardiomyopathy.

  6. Does posterior pericardial window technique prevent pericardial tamponade after cardiac surgery?

    Science.gov (United States)

    Zhao, Jian; Cheng, Zhaoyun; Quan, Xiaoqiang; Zhao, Ziniu

    2014-04-01

    To investigate the efficacy of the intraoperative posterior pericardial window technique in preventing pericardial tamponade following open heart surgery. Adult patients undergoing coronary and/or valve surgery were randomly divided into a control (traditional) or a pericardial window (PW) technique group. Pre-, intra-, peri- and postoperative clinical data were collected prospectively, including incidence of pericardial tamponade, cardiac arrest, drainage volume, ventilation assistance time and moderate-to-large pericardial effusion. In total, 458 patients were included: 230 controls and 228 in the PW group. The incidence of pericardial tamponade in the PW group was significantly lower than in controls. Cardiac arrest occurred in one patient (0.4%) in the PW group and five (2.2%) controls; this difference was not statistically significant. Moderate-to-large pericardial effusion after drainage extubation and new-onset atrial fibrillation were significantly more common in controls than in the PW group. After stratification by age (≤ 70 versus > 70 years), there was no between-group difference in duration of endotracheal intubation, although in the PW group, after removal of the tracheal cannula, duration of noninvasive positive pressure ventilation was significantly longer in older patients. The pericardial window procedure did not increase the rate or severity of procedure-related complications. This simple technique significantly decreased the incidence of postoperative pericardial tamponade and new-onset atrial fibrillation.

  7. Imaging of cardiac allograft rejection in dogs using indium-111 monoclonal antimyosin Fab

    Energy Technology Data Exchange (ETDEWEB)

    Addonizio, L.J.; Michler, R.E.; Marboe, C.; Esser, P.E.; Johnson, L.L.; Seldin, D.W.; Gersony, W.M.; Alderson, P.O.; Rose, E.A.; Cannon, P.J.

    1987-03-01

    The acute rejection of cardiac allografts is currently diagnosed by the presence of myocyte necrosis on endomyocardial biopsy. We evaluated the efficacy of noninvasive scintigraphic imaging with indium-111-labeled anticardiac myosin Fab fragments (indium-111 antimyosin) to detect and quantify cardiac allograft rejection. Six dogs that had intrathoracic heterotopic cardiac allograft transplantation were injected with indium-111 antimyosin and planar and single photon emission computed tomographic (SPECT) images were obtained in various stages of acute and subacute rejection. Four dogs had an allograft older than 8 months and had been on long-term immunosuppressive therapy; two dogs had an allograft less than 2 weeks old and were not on immunosuppressive therapy. Count ratios comparing heterotopic with native hearts were calculated from both SPECT images and in vitro scans of excised and sectioned hearts and were compared with the degree of rejection scored by an independent histopathologic review. Indium-111 antimyosin uptake was not visible in planar or SPECT images of native hearts. Faint diffuse uptake was apparent in cardiac allografts during long-term immunosuppression and intense radioactivity was present in hearts with electrocardiographic evidence of rejection. The heterotopic to native heart count ratios in SPECT images correlated significantly with the count ratios in the excised hearts (r = 0.93) and with the histopathologic rejection score (r = 0.97). The distribution of indium-111 antimyosin activity in right and left ventricles corresponded to areas of histopathologic abnormalities.

  8. Delayed cardiac tamponade after open heart surgery - is supplemental CT imaging reasonable?

    Science.gov (United States)

    Floerchinger, Bernhard; Camboni, Daniele; Schopka, Simon; Kolat, Philipp; Hilker, Michael; Schmid, Christof

    2013-06-24

    Cardiac tamponade is a severe complication after open heart surgery. Diagnostic imaging is challenging in postoperative patients, especially if tamponade develops with subacute symptoms. Hypothesizing that delayed tamponade after open heart surgery is not sufficiently detected by transthoracic echocardiography, in this study CT scans were used as standard reference and were compared with transthoracic echocardiography imaging in patients with suspected cardiac tamponade. Twenty-five patients after open heart surgery were enrolled in this analysis. In case of suspected cardiac tamponade patients underwent both echocardiography and CT imaging. Using CT as standard of reference sensitivity, specificity, positive and negative predictive values of ultrasound imaging in detecting pericardial effusion/hematoma were analyzed. Clinical appearance of tamponade, need for re-intervention as well as patient outcome were monitored. In 12 cases (44%) tamponade necessitated surgical re-intervention. Most common symptoms were deterioration of hemodynamic status and dyspnea. Sensitivity, specificity, positive and negative predictive values of echocardiography were 75%, 64%, 75%, and 64% for detecting pericardial effusion, and 33%, 83%, 50, and 71% for pericardial hematoma, respectively. In-hospital mortality of the re-intervention group was 50%. Diagnostic accuracy of transthoracic echocardiography is limited in patients after open heart surgery. Suplemental CT imaging provides rapid diagnostic reliability in patients with delayed cardiac tamponade.

  9. Application of image fusion techniques in DSA

    Science.gov (United States)

    Ye, Feng; Wu, Jian; Cui, Zhiming; Xu, Jing

    2007-12-01

    Digital subtraction angiography (DSA) is an important technology in both medical diagnoses and interposal therapy, which can eliminate the interferential background and give prominence to blood vessels by computer processing. After contrast material is injected into an artery or vein, a physician produces fluoroscopic images. Using these digitized images, a computer subtracts the image made with contrast material from a series of post injection images made without background information. By analyzing the characteristics of DSA medical images, this paper provides a solution of image fusion which is in allusion to the application of DSA subtraction. We fuse the images of angiogram and subtraction, in order to obtain the new image which has more data information. The image that fused by wavelet transform can display the blood vessels and background information clearly, and medical experts gave high score on the effect of it.

  10. A review of imaging techniques for plant phenotyping.

    Science.gov (United States)

    Li, Lei; Zhang, Qin; Huang, Danfeng

    2014-10-24

    Given the rapid development of plant genomic technologies, a lack of access to plant phenotyping capabilities limits our ability to dissect the genetics of quantitative traits. Effective, high-throughput phenotyping platforms have recently been developed to solve this problem. In high-throughput phenotyping platforms, a variety of imaging methodologies are being used to collect data for quantitative studies of complex traits related to the growth, yield and adaptation to biotic or abiotic stress (disease, insects, drought and salinity). These imaging techniques include visible imaging (machine vision), imaging spectroscopy (multispectral and hyperspectral remote sensing), thermal infrared imaging, fluorescence imaging, 3D imaging and tomographic imaging (MRT, PET and CT). This paper presents a brief review on these imaging techniques and their applications in plant phenotyping. The features used to apply these imaging techniques to plant phenotyping are described and discussed in this review.

  11. Induced apnea enhances image quality and visualization of cardiopulmonary anatomic during contrastenhanced cardiac computerized tomographic angiography in children

    Directory of Open Access Journals (Sweden)

    Murali Chakravarthy

    2015-01-01

    contrast to nonapnea group (P < 0.000. Conclusion: The image quality of cardiac CT angiography greatly improves, and motion artifact significantly decreases with the use of induced apnea in pediatrics patients being evaluated for congenital heart disease. This technique poses no additional morbidity of significance.

  12. Pathophysiology and Imaging Techniques of Diabetic Heart Disease

    Directory of Open Access Journals (Sweden)

    Danielle L. Harrop

    2014-10-01

    Full Text Available Diabetic patients are at an increased risk of developing heart failure. The aetiology of diabetic heart disease is likely to be multifactorial, ranging from altered myocardial metabolism, increased interstitial fibrosis, endothelial dysfunction, microvascular disease, and coronary atherosclerosis. These factors act synergistically with resultant myocardial systolic and diastolic dysfunction. The aim of the present review is to illustrate the role of multimodality cardiac imaging such as echocardiography, nuclear imaging, computed tomography, and magnetic resonance imaging in providing insights into these pathological processes, and to quantify the extent of myocardial diastolic and systolic dysfunction.

  13. 3-D reconstruction of anterior mantle-field techniques in Hodgkin's disease survivors: doses to cardiac structures

    Directory of Open Access Journals (Sweden)

    Kölbl Oliver

    2006-04-01

    Full Text Available Abstract Background The long-term dose-effect relationship for specific cardiac structures in mediastinal radiotherapy has rarely been investigated. As part of an interdisciplinary project, the 3-D dose distribution within the heart was reconstructed in all long-term Hodgkin's disease survivors (n = 55 treated with mediastinal radiotherapy between 1978 and 1985. For dose reconstruction, original techniques were transferred to the CT data sets of appropriate test patients, in whom left (LV and right ventricle (RV, left (LA and right atrium (RA as well as right (RCA, left anterior descending (LAD and left circumflex (LCX coronary arteries were contoured. Dose-volume histograms (DVHs were generated for these heart structures and results compared between techniques. Results Predominant technique was an anterior mantle field (cobalt-60. 26 patients (47% were treated with anterior mantle field alone (MF, 18 (33% with anterior mantle field and monoaxial, bisegmental rotation boost (MF+ROT, 7 (13% with anterior mantle field and dorsal boost (MF+DORS and 4 (7% with other techniques. Mean ± SD total mediastinal doses for MF+ROT (41.7 ± 3.5 Gy and for MF+DORS (42.7 ± 7.4 were significantly higher than for MF (36.7 ± 5.2 Gy. DVH analysis documented relative overdosage to right heart structures with MF (median maximal dose to RV 129%, to RCA 127% which was siginificantly reduced to 117% and 112%, respectively, in MF+ROT. Absolute doses in right heart structures, however, did not differ between techniques. Absolute LA doses were significantly higher in MF+ROT patients than in MF patients where large parts of LA were blocked. Median maximal doses for all techniques ranged between 48 and 52 Gy (RV, 44 and 46 Gy (LV, 47 and 49 Gy (RA, 38 and 45 Gy (LA, 46 and 50 Gy (RCA, 39 and 44 Gy (LAD and 34 and 42 Gy (LCX. Conclusion In patients irradiated with anterior mantle-field techniques, high doses to anterior heart portions were partly compensated by boost

  14. Current challenges and future directions in cardiac imaging.

    Science.gov (United States)

    Wann, Samuel; Tunio, Javed

    2010-07-01

    Imaging is one of the most important accomplishments of medicine during the last 1000 years. The contribution of modern imaging to progress in the delivery of health care is unquestioned. However, we need to refine our use of imaging, limiting its use to those occasions when it can contribute directly or indirectly to improving and lengthening the lives of patients. Technology prowess in imaging alone is not sufficient to deliver value to individuals or to society. Continued investment in imaging technology requires critical appraisal of its use in clinical decision making and patient outcomes.

  15. The role of cardiac magnetic resonance imaging following acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Dennis T.L.; Richardson, James D.; Puri, Rishi; Nelson, Adam J.; Teo, Karen S.L.; Worthley, Matthew I. [Royal Adelaide Hospital, Cardiovascular Research Centre, Adelaide (Australia); University of Adelaide, Department of Medicine, Adelaide (Australia); Bertaso, Angela G. [Royal Adelaide Hospital, Cardiovascular Research Centre, Adelaide (Australia); Worthley, Stephen G. [Royal Adelaide Hospital, Cardiovascular Research Centre, Adelaide (Australia); University of Adelaide, Department of Medicine, Adelaide (Australia); Cardiovascular Investigational Unit, Adelaide, SA (Australia)

    2012-08-15

    Advances in the management of myocardial infarction have resulted in substantial reductions in morbidity and mortality. However, after acute treatment a number of diagnostic and prognostic questions often remain to be answered, whereby cardiac imaging plays an essential role. For example, some patients will sustain early mechanical complications after infarction, while others may develop significant ventricular dysfunction. Furthermore, many individuals harbour a significant burden of residual coronary disease for which clarification of functional ischaemic status and/or viability of the suspected myocardial territory is required. Cardiac magnetic resonance (CMR) imaging is well positioned to fulfil these requirements given its unparalleled capability in evaluating cardiac function, stress ischaemia testing and myocardial tissue characterisation. This review will focus on the utility of CMR in resolving diagnostic uncertainty, evaluating early complications following myocardial infarction, assessing inducible ischaemia, myocardial viability, ventricular remodelling and the emerging role of CMR-derived measures as endpoints in clinical trials. (orig.)

  16. Radiographic changes in cardiac contours following heart transplantation; Clarification by MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, S.; Ikezoe, J.; Godwin, J.D.; Allen, M.D. (Washington Univ. Medical Center, Seattle, WA (USA). Dept. of Radiology Washington Univ. Medical Center, Seattle, WA (USA). Dept. of Surgery)

    1991-03-01

    Chest radiographs of 46 patients who had undergone heart transplantation were reviewed with special attention to abnormalities of the cardiac contours. MR imaging in 3 such patients revealed 3 types of double right cardiac contours: the recipient right atrium combined with the donor right atrium; the donor right atrium combined with the recipient left atrium; and a cardiac fat pad combined with the right atrium. A prominent main pulmonary artery was shown by MR imaging to result from leftward displacement of the main pulmonary artery caused by clockwise rotation and transverse position of the transplanted heart. Recognition of these unique radiographic appearances is of value in assessing transplanted hearts and in avoiding misdiagnosis. (orig.).

  17. Quantification of myocardial iron deficiency in nonischemic heart failure by cardiac T2* magnetic resonance imaging.

    Science.gov (United States)

    Nagao, Michinobu; Matsuo, Yoshio; Kamitani, Takeshi; Yonezawa, Masato; Yamasaki, Yuzo; Kawanami, Satoshi; Abe, Kohtaro; Mukai, Yasushi; Higo, Taiki; Yabuuchi, Hidetake; Takemura, Atsushi; Yoshiura, Takashi; Sunagawa, Kenji; Honda, Hiroshi

    2014-03-15

    The aim of this study was to use T2* cardiac magnetic resonance (CMR) imaging to quantify myocardial iron content in patients with heart failure (HF) and to investigate the relation between iron content, cardiac function, and the cause of HF. CMR data were analyzed from 167 patients with nonischemic and 31 with ischemic HF and 50 patients with normal ventricular function. Short-axis T2* imaging was accomplished using 3-T scanner and multiecho gradient-echo sequence. Myocardial T2* value (M-T2*) was calculated by fitting the signal intensity data for the mid-left ventricular (LV) septum to a decay curve. Patients with nonischemic HF were categorized into patients with LV ejection fraction (LVEF) iron deficiency and nonischemic HF. M-T2* is a biomarker that can predict adverse cardiac function in patients with nonischemic HF.

  18. Whole-heart cine MRI in a single breath-hold. A compressed sensing accelerated 3D acquisition technique for assessment of cardiac function

    Energy Technology Data Exchange (ETDEWEB)

    Wech, T.; Koestler, H. [Wuerzburg Univ. (Germany). Inst. of Radiology; Wuerzburg Univ. (Germany). Comprehensive Heart Failure Center; Pickl, W.; Tran-Gia, J.; Ritter, C.; Hahn, D. [Wuerzburg Univ. (Germany). Inst. of Radiology; Beer, M. [Wuerzburg Univ. (Germany). Inst. of Radiology; Graz Univ. (Austria). University Hospital Radiology

    2014-01-15

    Purpose: The aim of this study was to perform functional MR imaging of the whole heart in a single breath-hold using an undersampled 3 D trajectory for data acquisition in combination with compressed sensing for image reconstruction. Materials and Methods: Measurements were performed using an SSFP sequence on a 3 T whole-body system equipped with a 32-channel body array coil. A 3 D radial stack-of-stars sampling scheme was utilized enabling efficient undersampling of the k-space and thereby accelerating data acquisition. Compressed sensing was applied for the reconstruction of the missing data. A validation study was performed based on a fully sampled dataset acquired by standard Cartesian cine imaging of 2 D slices on a healthy volunteer. The results were investigated with regard to systematic errors and resolution losses possibly introduced by the developed reconstruction. Subsequently, the proposed technique was applied for in-vivo functional cardiac imaging of the whole heart in a single breath-hold of 27 s. The developed technique was tested on three healthy volunteers to examine its reproducibility. Results: By means of the results of the simulation (temporal resolution: 47 ms, spatial resolution: 1.4 x 1.4 x 8 mm, 3 D image matrix: 208 x 208 x 10), an overall acceleration factor of 10 has been found where the compressed sensing reconstructed image series shows only very low systematic errors and a slight in-plane resolution loss of 15 %. The results of the in-vivo study (temporal resolution: 40.5 ms, spatial resolution: 2.1 x 2.1 x 8 mm, 3 D image matrix: 224 x 224 x 12) performed with an acceleration factor of 10.7 confirm the overall good image quality of the presented technique for undersampled acquisitions. Conclusion: The combination of 3 D radial data acquisition and model-based compressed sensing reconstruction allows high acceleration factors enabling cardiac functional imaging of the whole heart within only one breath-hold. The image quality in the

  19. 3D X-ray imaging methods in support catheter ablations of cardiac arrhythmias.

    Science.gov (United States)

    Stárek, Zdeněk; Lehar, František; Jež, Jiří; Wolf, Jiří; Novák, Miroslav

    2014-10-01

    Cardiac arrhythmias are a very frequent illness. Pharmacotherapy is not very effective in persistent arrhythmias and brings along a number of risks. Catheter ablation has became an effective and curative treatment method over the past 20 years. To support complex arrhythmia ablations, the 3D X-ray cardiac cavities imaging is used, most frequently the 3D reconstruction of CT images. The 3D cardiac rotational angiography (3DRA) represents a modern method enabling to create CT like 3D images on a standard X-ray machine equipped with special software. Its advantage lies in the possibility to obtain images during the procedure, decreased radiation dose and reduction of amount of the contrast agent. The left atrium model is the one most frequently used for complex atrial arrhythmia ablations, particularly for atrial fibrillation. CT data allow for creation and segmentation of 3D models of all cardiac cavities. Recently, a research has been made proving the use of 3DRA to create 3D models of other cardiac (right ventricle, left ventricle, aorta) and non-cardiac structures (oesophagus). They can be used during catheter ablation of complex arrhythmias to improve orientation during the construction of 3D electroanatomic maps, directly fused with 3D electroanatomic systems and/or fused with fluoroscopy. An intensive development in the 3D model creation and use has taken place over the past years and they became routinely used during catheter ablations of arrhythmias, mainly atrial fibrillation ablation procedures. Further development may be anticipated in the future in both the creation and use of these models.

  20. Cardiac Sarcoidosis or Giant Cell Myocarditis? On Treatment Improvement of Fulminant Myocarditis as Demonstrated by Cardiovascular Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Hari Bogabathina

    2012-01-01

    Full Text Available Giant cell myocarditis, but not cardiac sarcoidosis, is known to cause fulminant myocarditis resulting in severe heart failure. However, giant cell myocarditis and cardiac sarcoidosis are pathologically similar, and attempts at pathological differentiation between the two remain difficult. We are presenting a case of fulminant myocarditis that has pathological features suggestive of cardiac sarcoidosis, but clinically mimicking giant cell myocarditis. This patient was treated with cyclosporine and prednisone and recovered well. This case we believe challenges our current understanding of these intertwined conditions. By obtaining a sense of severity of cardiac involvement via delayed hyperenhancement of cardiac magnetic resonance imaging, we were more inclined to treat this patient as giant cell myocarditis with cyclosporine. This resulted in excellent improvement of patient’s cardiac function as shown by delayed hyperenhancement images, early perfusion images, and SSFP videos.

  1. Fingerprint Image Enhancement By Develop Mehtre Technique

    Directory of Open Access Journals (Sweden)

    Mustafa Salah Khalefa

    2011-12-01

    Full Text Available Fingerprint identification is one of the most reliable biometrics technologies. There are manyapplications of fingerprint recognition such as voting, ecommerce, bank, virtual banks and military.Fingerprint image enhancement is an essential preprocessing step in extract minutiae from the inputfingerprint images. In this paper, we propose an image enhancement method by developing Mehtermethod for directional image. The enhancement is done by added the Block Filtering, HistogramEqualization and High-Pass Filtering. We have evaluated the performance of the enhancement imagemethod by tested it with 100 fingerprint images. Experimental results show the enhancement methodimproves the recognition more accuracy.

  2. Imaging fault zones using 3D seismic image processing techniques

    Science.gov (United States)

    Iacopini, David; Butler, Rob; Purves, Steve

    2013-04-01

    Significant advances in structural analysis of deep water structure, salt tectonic and extensional rift basin come from the descriptions of fault system geometries imaged in 3D seismic data. However, even where seismic data are excellent, in most cases the trajectory of thrust faults is highly conjectural and still significant uncertainty exists as to the patterns of deformation that develop between the main faults segments, and even of the fault architectures themselves. Moreover structural interpretations that conventionally define faults by breaks and apparent offsets of seismic reflectors are commonly conditioned by a narrow range of theoretical models of fault behavior. For example, almost all interpretations of thrust geometries on seismic data rely on theoretical "end-member" behaviors where concepts as strain localization or multilayer mechanics are simply avoided. Yet analogue outcrop studies confirm that such descriptions are commonly unsatisfactory and incomplete. In order to fill these gaps and improve the 3D visualization of deformation in the subsurface, seismic attribute methods are developed here in conjunction with conventional mapping of reflector amplitudes (Marfurt & Chopra, 2007)). These signal processing techniques recently developed and applied especially by the oil industry use variations in the amplitude and phase of the seismic wavelet. These seismic attributes improve the signal interpretation and are calculated and applied to the entire 3D seismic dataset. In this contribution we will show 3D seismic examples of fault structures from gravity-driven deep-water thrust structures and extensional basin systems to indicate how 3D seismic image processing methods can not only build better the geometrical interpretations of the faults but also begin to map both strain and damage through amplitude/phase properties of the seismic signal. This is done by quantifying and delineating the short-range anomalies on the intensity of reflector amplitudes

  3. Optimal Magnetic Sensor Vests for Cardiac Source Imaging

    Directory of Open Access Journals (Sweden)

    Stephan Lau

    2016-05-01

    Full Text Available Magnetocardiography (MCG non-invasively provides functional information about the heart. New room-temperature magnetic field sensors, specifically magnetoresistive and optically pumped magnetometers, have reached sensitivities in the ultra-low range of cardiac fields while allowing for free placement around the human torso. Our aim is to optimize positions and orientations of such magnetic sensors in a vest-like arrangement for robust reconstruction of the electric current distributions in the heart. We optimized a set of 32 sensors on the surface of a torso model with respect to a 13-dipole cardiac source model under noise-free conditions. The reconstruction robustness was estimated by the condition of the lead field matrix. Optimization improved the condition of the lead field matrix by approximately two orders of magnitude compared to a regular array at the front of the torso. Optimized setups exhibited distributions of sensors over the whole torso with denser sampling above the heart at the front and back of the torso. Sensors close to the heart were arranged predominantly tangential to the body surface. The optimized sensor setup could facilitate the definition of a standard for sensor placement in MCG and the development of a wearable MCG vest for clinical diagnostics.

  4. Interpolation Technique in Computed Tomography Image Visualisation(Short Communication

    Directory of Open Access Journals (Sweden)

    Asha Tripathi

    2002-07-01

    Full Text Available An interpolation technique has been developed for generation of enlarged dataset from a limited one-dimesional acquired dataset for improving the image quality in quick-scan tomography. The effectiveness of the technique has been tested using data acquired from the first-generation. The CT images generated using this technique have been compared with the CT images generated from the acquired dataset for the same number of projections. The image quality has been improved on account of (i enhancement of features, (ii reduction in reconstruction artifacts, and (iii magnification of the image without pixelisation.

  5. In Vivo Imaging Techniques: A New Era for Histochemical Analysis

    Science.gov (United States)

    Busato, A.; Feruglio, P. Fumene; Parnigotto, P.P.; Marzola, P.; Sbarbati, A.

    2016-01-01

    In vivo imaging techniques can be integrated with classical histochemistry to create an actual histochemistry of water. In particular, Magnetic Resonance Imaging (MRI), an imaging technique primarily used as diagnostic tool in clinical/preclinical research, has excellent anatomical resolution, unlimited penetration depth and intrinsic soft tissue contrast. Thanks to the technological development, MRI is not only capable to provide morphological information but also and more interestingly functional, biophysical and molecular. In this paper we describe the main features of several advanced imaging techniques, such as MRI microscopy, Magnetic Resonance Spectroscopy, functional MRI, Diffusion Tensor Imaging and MRI with contrast agent as a useful support to classical histochemistry. PMID:28076937

  6. Study of Associated α Particle Imaging Technique for Explosives Detection

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The explosive detecting technique about neutron mainly include the thermal neutron analysis (TNA), the fast neutron analysis (FNA), the pulse fast and thermal neutron analysis (PFTNA) and the associated α particle imaging technique about fast neutron (API).

  7. Application of digital image processing techniques to astronomical imagery 1977

    Science.gov (United States)

    Lorre, J. J.; Lynn, D. J.

    1978-01-01

    Nine specific techniques of combination of techniques developed for applying digital image processing technology to existing astronomical imagery are described. Photoproducts are included to illustrate the results of each of these investigations.

  8. Cardiac magnetic resonance imaging and computed tomography in ischemic cardiomyopathy: an update

    Directory of Open Access Journals (Sweden)

    Fernanda Boldrini Assunção

    2016-02-01

    Full Text Available Abstract Ischemic cardiomyopathy is one of the major health problems worldwide, representing a significant part of mortality in the general population nowadays. Cardiac magnetic resonance imaging (CMRI and cardiac computed tomography (CCT are noninvasive imaging methods that serve as useful tools in the diagnosis of coronary artery disease and may also help in screening individuals with risk factors for developing this illness. Technological developments of CMRI and CCT have contributed to the rise of several clinical indications of these imaging methods complementarily to other investigation methods, particularly in cases where they are inconclusive. In terms of accuracy, CMRI and CCT are similar to the other imaging methods, with few absolute contraindications and minimal risks of adverse side-effects. This fact strengthens these methods as powerful and safe tools in the management of patients. The present study is aimed at describing the role played by CMRI and CCT in the diagnosis of ischemic cardiomyopathies.

  9. Cardiac magnetic resonance imaging and computed tomography in ischemic cardiomyopathy: an update

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Fernanda Boldrini; Oliveira, Diogo Costa Leandro de; Nacif, Marcelo Souto, E-mail: msnacif@gmail.com [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Escola de Medicina; Souza, Vitor Frauches [Complexo Hospitalar de Niteroi (CHN), Niteroi, RJ (Brazil)

    2016-01-15

    Ischemic cardiomyopathy is one of the major health problems worldwide, representing a significant part of mortality in the general population nowadays. Cardiac magnetic resonance imaging (CMRI) and cardiac computed tomography (CCT) are noninvasive imaging methods that serve as useful tools in the diagnosis of coronary artery disease and may also help in screening individuals with risk factors for developing this illness. Technological developments of CMRI and CCT have contributed to the rise of several clinical indications of these imaging methods complimentarily to other investigation methods, particularly in cases where they are inconclusive. In terms of accuracy, CMRI and CCT are similar to the other imaging methods, with few absolute contraindications and minimal risks of adverse side-effects. This fact strengthens these methods as powerful and safe tools in the management of patients. The present study is aimed at describing the role played by CMRI and CCT in the diagnosis of ischemic cardiomyopathies. (author)

  10. Cardiac magnetic resonance imaging: a new tool to identify cardioaortic sources in ischaemic stroke.

    Science.gov (United States)

    Yaghi, Shadi; Liberman, Ava L; Atalay, Michael; Song, Christopher; Furie, Karen L; Kamel, Hooman; Bernstein, Richard A

    2017-01-01

    Stroke of undetermined aetiology or 'cryptogenic' stroke accounts for 30-40% of ischaemic strokes despite extensive diagnostic evaluation. The role and yield of cardiac imaging is controversial. Cardiac MRI (CMR) has been used for cardiac disorders, but its use in cryptogenic stroke is not well established. We reviewed the literature (randomised trials, exploratory comparative studies and case series) on the use of CMR in the diagnostic evaluation of patients with ischaemic stroke. The literature on the use of CMR in the diagnostic evaluation of ischaemic stroke is sparse. However, studies have demonstrated a potential role for CMR in the diagnostic evaluation of patients with cryptogenic stroke to identify potential aetiologies such as cardiac thrombi, cardiac tumours, aortic arch disease and other rare cardiac anomalies. CMR can also provide data on certain functional and structural parameters of the left atrium and the left atrial appendage which have been shown to be associated with ischaemic stroke risk. CMR is a non-invasive modality that can help identify potential mechanisms in cryptogenic stroke and patients who may be targeted for enrolment into clinical trials comparing anticoagulation to antiplatelet therapy in secondary stroke prevention. Prospective studies are needed to compare the value of CMR as compared to transthoracic and transesophageal echocardiography in the diagnostic evaluation of cryptogenic stroke. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. High resolution 3-Dimensional imaging of the human cardiac conduction system from microanatomy to mathematical modeling.

    Science.gov (United States)

    Stephenson, Robert S; Atkinson, Andrew; Kottas, Petros; Perde, Filip; Jafarzadeh, Fatemeh; Bateman, Mike; Iaizzo, Paul A; Zhao, Jichao; Zhang, Henggui; Anderson, Robert H; Jarvis, Jonathan C; Dobrzynski, Halina

    2017-08-03

    Cardiac arrhythmias and conduction disturbances are accompanied by structural remodelling of the specialised cardiomyocytes known collectively as the cardiac conduction system. Here, using contrast enhanced micro-computed tomography, we present, in attitudinally appropriate fashion, the first 3-dimensional representations of the cardiac conduction system within the intact human heart. We show that cardiomyocyte orientation can be extracted from these datasets at spatial resolutions approaching the single cell. These data show that commonly accepted anatomical representations are oversimplified. We have incorporated the high-resolution anatomical data into mathematical simulations of cardiac electrical depolarisation. The data presented should have multidisciplinary impact. Since the rate of depolarisation is dictated by cardiac microstructure, and the precise orientation of the cardiomyocytes, our data should improve the fidelity of mathematical models. By showing the precise 3-dimensional relationships between the cardiac conduction system and surrounding structures, we provide new insights relevant to valvar replacement surgery and ablation therapies. We also offer a practical method for investigation of remodelling in disease, and thus, virtual pathology and archiving. Such data presented as 3D images or 3D printed models, will inform discussions between medical teams and their patients, and aid the education of medical and surgical trainees.

  12. The Techniques for Overcoming Depression Questionnaire: Mokken Scale Analysis, Reliability, and Concurrent Validity in Depressed Cardiac Patients.

    Science.gov (United States)

    Freedland, Kenneth E; Lemos, Mariantonia; Doyle, Frank; Steinmeyer, Brian C; Csik, Iris; Carney, Robert M

    2017-02-01

    The Techniques for Overcoming Depression (TOD) questionnaire assesses the frequency with which patients being treated for depression use cognitive-behavioral techniques in daily life. This study examined its latent structure, reliability and concurrent validity in depressed cardiac patients. The TOD was administered at the initial and final treatment sessions in three trials of cognitive behavior therapy (CBT) (n = 260) for depression in cardiac patients. Mokken scaling was used to determine its dimensionality. The TOD is unidimensional in depressed cardiac patients, both at the initial evaluation (H = .46) and the end of treatment (H = .47). It is sensitive to change and the total score correlates with therapist ratings of the patient's socialization to CBT (r=.40, povercoming depression in cardiac patients. Studies of the TOD in other depressed patient populations are needed.

  13. Cardiovascular dysfunction in obesity and new diagnostic imaging techniques: the role of noninvasive image methods

    Directory of Open Access Journals (Sweden)

    Barbosa JA

    2011-05-01

    Full Text Available José Augusto A Barbosa¹, Alexandre B Rodrigues¹, Cleonice Carvalho C Mota¹, Márcia M Barbosa², Ana C Simões e Silva¹¹Department of Pediatrics, Faculty of Medicine, Federal University of Minas Gerais (UFMG, Belo Horizonte, Minas Gerais, Brazil; ²Ecocenter, Socor Hospital, Belo Horizonte, Minas Gerais, BrazilAbstract: Obesity is a major public health problem affecting adults and children in both developed and developing countries. This condition often leads to metabolic syndrome, which increases the risk of cardiovascular disease. A large number of studies have been carried out to understand the pathogenesis of cardiovascular dysfunction in obese patients. Endothelial dysfunction plays a key role in the progression of atherosclerosis and the development of coronary artery disease, hypertension and congestive heart failure. Noninvasive methods in the field of cardiovascular imaging, such as measuring intima-media thickness, flow-mediated dilatation, tissue Doppler, and strain, and strain rate, constitute new tools for the early detection of cardiac and vascular dysfunction. These techniques will certainly enable a better evaluation of initial cardiovascular injury and allow the correct, timely management of obese patients. The present review summarizes the main aspects of cardiovascular dysfunction in obesity and discusses the application of recent noninvasive imaging methods for the early detection of cardiovascular alterations.Keywords: cardiovascular risk, endothelium dysfunction, obesity, strain and strain rate, tissue Doppler

  14. Preprocessing Techniques for Image Mining on Biopsy Images

    Directory of Open Access Journals (Sweden)

    Ms. Nikita Ramrakhiani

    2015-08-01

    Full Text Available Biomedical imaging has been undergoing rapid technological advancements over the last several decades and has seen the development of many new applications. A single Image can give all the details about an organ from the cellular level to the whole-organ level. Biomedical imaging is becoming increasingly important as an approach to synthesize, extract and translate useful information from large multidimensional databases accumulated in research frontiers such as functional genomics, proteomics, and functional imaging. To fulfill this approach Image Mining can be used. Image Mining will bridge this gap to extract and translate semantically meaningful information from biomedical images and apply it for testing and detecting any anomaly in the target organ. The essential component in image mining is identifying similar objects in different images and finding correlations in them. Integration of Image Mining and Biomedical field can result in many real world applications

  15. Deformation analysis of 3D tagged cardiac images using an optical flow method

    Directory of Open Access Journals (Sweden)

    Gorman Robert C

    2010-03-01

    Full Text Available Abstract Background This study proposes and validates a method of measuring 3D strain in myocardium using a 3D Cardiovascular Magnetic Resonance (CMR tissue-tagging sequence and a 3D optical flow method (OFM. Methods Initially, a 3D tag MR sequence was developed and the parameters of the sequence and 3D OFM were optimized using phantom images with simulated deformation. This method then was validated in-vivo and utilized to quantify normal sheep left ventricular functions. Results Optimizing imaging and OFM parameters in the phantom study produced sub-pixel root-mean square error (RMS between the estimated and known displacements in the x (RMSx = 0.62 pixels (0.43 mm, y (RMSy = 0.64 pixels (0.45 mm and z (RMSz = 0.68 pixels (1 mm direction, respectively. In-vivo validation demonstrated excellent correlation between the displacement measured by manually tracking tag intersections and that generated by 3D OFM (R ≥ 0.98. Technique performance was maintained even with 20% Gaussian noise added to the phantom images. Furthermore, 3D tracking of 3D cardiac motions resulted in a 51% decrease in in-plane tracking error as compared to 2D tracking. The in-vivo function studies showed that maximum wall thickening was greatest in the lateral wall, and increased from both apex and base towards the mid-ventricular region. Regional deformation patterns are in agreement with previous studies on LV function. Conclusion A novel method was developed to measure 3D LV wall deformation rapidly with high in-plane and through-plane resolution from one 3D cine acquisition.

  16. Bayesian technique for image classifying registration.

    Science.gov (United States)

    Hachama, Mohamed; Desolneux, Agnès; Richard, Frédéric J P

    2012-09-01

    In this paper, we address a complex image registration issue arising while the dependencies between intensities of images to be registered are not spatially homogeneous. Such a situation is frequently encountered in medical imaging when a pathology present in one of the images modifies locally intensity dependencies observed on normal tissues. Usual image registration models, which are based on a single global intensity similarity criterion, fail to register such images, as they are blind to local deviations of intensity dependencies. Such a limitation is also encountered in contrast-enhanced images where there exist multiple pixel classes having different properties of contrast agent absorption. In this paper, we propose a new model in which the similarity criterion is adapted locally to images by classification of image intensity dependencies. Defined in a Bayesian framework, the similarity criterion is a mixture of probability distributions describing dependencies on two classes. The model also includes a class map which locates pixels of the two classes and weighs the two mixture components. The registration problem is formulated both as an energy minimization problem and as a maximum a posteriori estimation problem. It is solved using a gradient descent algorithm. In the problem formulation and resolution, the image deformation and the class map are estimated simultaneously, leading to an original combination of registration and classification that we call image classifying registration. Whenever sufficient information about class location is available in applications, the registration can also be performed on its own by fixing a given class map. Finally, we illustrate the interest of our model on two real applications from medical imaging: template-based segmentation of contrast-enhanced images and lesion detection in mammograms. We also conduct an evaluation of our model on simulated medical data and show its ability to take into account spatial variations

  17. Evaluation of optical imaging and spectroscopy approaches for cardiac tissue depth assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, B; Matthews, D; Chernomordik, V; Gandjbakhche, A; Lane, S; Demos, S G

    2008-02-13

    NIR light scattering from ex vivo porcine cardiac tissue was investigated to understand how imaging or point measurement approaches may assist development of methods for tissue depth assessment. Our results indicate an increase of average image intensity as thickness increases up to approximately 2 mm. In a dual fiber spectroscopy configuration, sensitivity up to approximately 3 mm with an increase to 6 mm when spectral ratio between selected wavelengths was obtained. Preliminary Monte Carlo results provided reasonable fit to the experimental data.

  18. Image registration and analysis for quantitative myocardial perfusion: application to dynamic circular cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Isola, A A [Philips Research Laboratories, X-ray Imaging Systems Department, Weisshausstrasse 2, D-52066 Aachen (Germany); Schmitt, H; Van Stevendaal, U; Grass, M [Philips Research Laboratories, Sector Digital Imaging, Roentgenstrasse 24-26, D-22335 Hamburg (Germany); Begemann, P G [Department of Radiology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg (Germany); Coulon, P [Philips Healthcare France, 33 rue de Verdun, F-92150 Suresnes Cedex (France); Boussel, L, E-mail: Alfonso.Isola@Philips.com [Department of Radiology, Louis Pradel Hospital, CREATIS, UMR CNRS 5515, INSERM U630, Lyon (France)

    2011-09-21

    Large area detector computed tomography systems with fast rotating gantries enable volumetric dynamic cardiac perfusion studies. Prospectively, ECG-triggered acquisitions limit the data acquisition to a predefined cardiac phase and thereby reduce x-ray dose and limit motion artefacts. Even in the case of highly accurate prospective triggering and stable heart rate, spatial misalignment of the cardiac volumes acquired and reconstructed per cardiac cycle may occur due to small motion pattern variations from cycle to cycle. These misalignments reduce the accuracy of the quantitative analysis of myocardial perfusion parameters on a per voxel basis. An image-based solution to this problem is elastic 3D image registration of dynamic volume sequences with variable contrast, as it is introduced in this contribution. After circular cone-beam CT reconstruction of cardiac volumes covering large areas of the myocardial tissue, the complete series is aligned with respect to a chosen reference volume. The results of the registration process and the perfusion analysis with and without registration are evaluated quantitatively in this paper. The spatial alignment leads to improved quantification of myocardial perfusion for three different pig data sets.

  19. Image registration and analysis for quantitative myocardial perfusion: application to dynamic circular cardiac CT

    Science.gov (United States)

    Isola, A. A.; Schmitt, H.; van Stevendaal, U.; Begemann, P. G.; Coulon, P.; Boussel, L.; Grass, M.

    2011-09-01

    Large area detector computed tomography systems with fast rotating gantries enable volumetric dynamic cardiac perfusion studies. Prospectively, ECG-triggered acquisitions limit the data acquisition to a predefined cardiac phase and thereby reduce x-ray dose and limit motion artefacts. Even in the case of highly accurate prospective triggering and stable heart rate, spatial misalignment of the cardiac volumes acquired and reconstructed per cardiac cycle may occur due to small motion pattern variations from cycle to cycle. These misalignments reduce the accuracy of the quantitative analysis of myocardial perfusion parameters on a per voxel basis. An image-based solution to this problem is elastic 3D image registration of dynamic volume sequences with variable contrast, as it is introduced in this contribution. After circular cone-beam CT reconstruction of cardiac volumes covering large areas of the myocardial tissue, the complete series is aligned with respect to a chosen reference volume. The results of the registration process and the perfusion analysis with and without registration are evaluated quantitatively in this paper. The spatial alignment leads to improved quantification of myocardial perfusion for three different pig data sets.

  20. Usefulness of true FISP cine MR imaging in patients with poor cardiac function

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Toshiharu; Yamada, Naoaki; Motooka, Makoto; Enomoto, Naoyuki; Maeshima, Isamu; Matsuda, Kazuhide; Urayama, Shinichi; Ikeo, Miki [National Cardiovascular Center, Suita, Osaka (Japan)

    2002-01-01

    This study was done to assess the value of True FISP cine in patients with poor cardiac function. True FISP cine and FLASH cine imaging were performed on a 1.5 T machine. Both short axis and horizontal long axis imaging sections were used. The imaging sections used a Matrix (120 x 128), FOV (24 x 32 cm), and had a slice thickness of 8 mm. The imaging time for True FISP cine was 8 heart beats and 17 heart beats for FLASH cine. The contrast-to-noise ratio between the blood and myocardium (CNR) was measured at enddiastole and endsystole. The subjects in the study were 10 healty volunteers (average age 26.5{+-}3.2 years) and 12 patients with hypofunction (average age 53.9{+-}13.2 years). In the volunteers, the CNR of the short axis imaging was similar in both True FISP (24.6{+-}3.7) and FLASH (23.4{+-}5.9). In the patients with poor cardiac function however, the CNR of True FISP was larger than FLASH in both the short and long axis. In the short axis (22.7{+-}6.1 vs. 17.9{+-}5.3, P<0.01) and in the long axis (17.4{+-}4.3 vs. 9.3{+-}4.0, P<0.01). We conclude that True FISP cine has a higher contrast in a shorter imaging time than FLASH cine. True FISP cine is especially useful in patients with poor cardiac function. (author)

  1. Various diffusion magnetic resonance imaging techniques for pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Meng-Yue Tang; Xiao-Ming Zhang; Tian-Wu Chen; Xiao-Hua Huang

    2015-01-01

    Pancreatic cancer is one of the most common malignanttumors and remains a treatment-refractory cancer with a poor prognosis. Currently, the diagnosis of pancreatic neoplasm depends mainly on imaging and which methods are conducive to detecting small lesions. Compared to the other techniques, magnetic resonance imaging(MRI) has irreplaceable advantages and can provide valuable information unattainable with other noninvasive or minimally invasive imaging techniques. Advances in MR hardware and pulse sequence design have particularly improved the quality and robustness of MRI of the pancreas. Diffusion MR imaging serves as one of the common functional MRI techniques and is the only technique that can be used to reflect the diffusion movement of water molecules in vivo. It is generally known that diffusion properties depend on the characterization of intrinsic features of tissue microdynamics and microstructure. With the improvement of the diffusion models, diffusion MR imaging techniques are increasingly varied, from the simplest and most commonly used technique to the more complex. In this review, the various diffusion MRI techniques for pancreatic cancer are discussed, including conventional diffusion weighted imaging(DWI), multi-b DWI based on intra-voxel incoherent motion theory, diffusion tensor imaging and diffusion kurtosis imaging. The principles, main parameters, advantages and limitations of these techniques, as well as future directions for pancreatic diffusion imaging are also discussed.

  2. Assessment of Myocardial Infarction by Cardiac Magnetic Resonance Imaging and Long-Term Mortality

    Directory of Open Access Journals (Sweden)

    João Luiz Fernandes Petriz

    2015-02-01

    Full Text Available Background: Cardiac magnetic resonance imaging provides detailed anatomical information on infarction. However, few studies have investigated the association of these data with mortality after acute myocardial infarction. Objective: To study the association between data regarding infarct size and anatomy, as obtained from cardiac magnetic resonance imaging after acute myocardial infarction, and long-term mortality. Methods: A total of 1959 reports of “infarct size” were identified in 7119 cardiac magnetic resonance imaging studies, of which 420 had clinical and laboratory confirmation of previous myocardial infarction. The variables studied were the classic risk factors – left ventricular ejection fraction, categorized ventricular function, and location of acute myocardial infarction. Infarct size and acute myocardial infarction extent and transmurality were analyzed alone and together, using the variable named “MET-AMI”. The statistical analysis was carried out using the elastic net regularization, with the Cox model and survival trees. Results: The mean age was 62.3 ± 12 years, and 77.3% were males. During the mean follow-up of 6.4 ± 2.9 years, there were 76 deaths (18.1%. Serum creatinine, diabetes mellitus and previous myocardial infarction were independently associated with mortality. Age was the main explanatory factor. The cardiac magnetic resonance imaging variables independently associated with mortality were transmurality of acute myocardial infarction (p = 0.047, ventricular dysfunction (p = 0.0005 and infarcted size (p = 0.0005; the latter was the main explanatory variable for ischemic heart disease death. The MET-AMI variable was the most strongly associated with risk of ischemic heart disease death (HR: 16.04; 95%CI: 2.64-97.5; p = 0.003. Conclusion: The anatomical data of infarction, obtained from cardiac magnetic resonance imaging after acute myocardial infarction, were independently associated with long

  3. Assessment of Myocardial Infarction by Cardiac Magnetic Resonance Imaging and Long-Term Mortality

    Energy Technology Data Exchange (ETDEWEB)

    Petriz, João Luiz Fernandes, E-mail: jlpetriz@cardiol.br [Universidade Federal do Rio de Janeiro (UFRJ) / Instituto do Coração Edson Saad - Programa de Pós Graduação em Medicina (Cardiologia), Rio de Janeiro, RJ (Brazil); Hospital Barra D’Or, Rio de Janeiro, RJ (Brazil); Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro, RJ (Brazil); Gomes, Bruno Ferraz de Oliveira; Rua, Braulio Santos [Hospital Barra D’Or, Rio de Janeiro, RJ (Brazil); Azevedo, Clério Francisco [Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro, RJ (Brazil); Hadlich, Marcelo Souza [Universidade Federal do Rio de Janeiro (UFRJ) / Instituto do Coração Edson Saad - Programa de Pós Graduação em Medicina (Cardiologia), Rio de Janeiro, RJ (Brazil); Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro, RJ (Brazil); Mussi, Henrique Thadeu Periard [Universidade Federal do Rio de Janeiro (UFRJ) / Instituto do Coração Edson Saad - Programa de Pós Graduação em Medicina (Cardiologia), Rio de Janeiro, RJ (Brazil); Hospital Barra D’Or, Rio de Janeiro, RJ (Brazil); Taets, Gunnar de Cunto [Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro, RJ (Brazil); Nascimento, Emília Matos do; Pereira, Basílio de Bragança; Silva, Nelson Albuquerque de Souza e [Universidade Federal do Rio de Janeiro (UFRJ) / Instituto do Coração Edson Saad - Programa de Pós Graduação em Medicina (Cardiologia), Rio de Janeiro, RJ (Brazil)

    2015-02-15

    Cardiac magnetic resonance imaging provides detailed anatomical information on infarction. However, few studies have investigated the association of these data with mortality after acute myocardial infarction. To study the association between data regarding infarct size and anatomy, as obtained from cardiac magnetic resonance imaging after acute myocardial infarction, and long-term mortality. A total of 1959 reports of “infarct size” were identified in 7119 cardiac magnetic resonance imaging studies, of which 420 had clinical and laboratory confirmation of previous myocardial infarction. The variables studied were the classic risk factors – left ventricular ejection fraction, categorized ventricular function, and location of acute myocardial infarction. Infarct size and acute myocardial infarction extent and transmurality were analyzed alone and together, using the variable named “MET-AMI”. The statistical analysis was carried out using the elastic net regularization, with the Cox model and survival trees. The mean age was 62.3 ± 12 years, and 77.3% were males. During the mean follow-up of 6.4 ± 2.9 years, there were 76 deaths (18.1%). Serum creatinine, diabetes mellitus and previous myocardial infarction were independently associated with mortality. Age was the main explanatory factor. The cardiac magnetic resonance imaging variables independently associated with mortality were transmurality of acute myocardial infarction (p = 0.047), ventricular dysfunction (p = 0.0005) and infarcted size (p = 0.0005); the latter was the main explanatory variable for ischemic heart disease death. The MET-AMI variable was the most strongly associated with risk of ischemic heart disease death (HR: 16.04; 95%CI: 2.64-97.5; p = 0.003). The anatomical data of infarction, obtained from cardiac magnetic resonance imaging after acute myocardial infarction, were independently associated with long-term mortality, especially for ischemic heart disease death.

  4. COMPARATIVE ANALYSIS OF SATELLITE IMAGE PRE-PROCESSING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    T. Sree Sharmila

    2013-01-01

    Full Text Available Satellite images are corrupted by noise in its acquisition and transmission. The removal of noise from the image by attenuating the high frequency image components, removes some important details as well. In order to retain the useful information and improve the visual appearance, an effective denoising and resolution enhancement techniques are required. In this research, Hybrid Directional Lifting (HDL technique is proposed to retain the important details of the image and improve the visual appearance. The Discrete Wavelet Transform (DWT based interpolation technique is developed for enhancing the resolution of the denoised image. The performance of the proposed techniques are tested by Land Remote-Sensing Satellite (LANDSAT images, using the quantitative performance measure, Peak Signal to Noise Ratio (PSNR and computation time to show the significance of the proposed techniques. The PSNR of the HDL technique increases 1.02 dB compared to the standard denoising technique and the DWT based interpolation technique increases 3.94 dB. From the experimental results it reveals that newly developed image denoising and resolution enhancement techniques improve the image visual quality with rich textures.

  5. A Survey Paper on Fuzzy Image Segmentation Techniques

    Directory of Open Access Journals (Sweden)

    Ms. R. Saranya Pon Selvi

    2014-03-01

    Full Text Available The image segmentation plays an important role in the day-to-day life. The new technologies are emerging in the field of Image processing, especially in the domain of segmentation.Segmentation is considered as one of the main steps in image processing. It divides a digital image into multiple regions in order to analyze them. It is also used to distinguish different objects in the image. Several image segmentation techniques have been developed by the researchers in order to make images smooth and easy to evaluate. This paper presents a brief outline on some of the most commonly used segmentation techniques like thresholding, Region based, Model based, Edge detection..etc. mentioning its advantages as well as the drawbacks. Some of the techniques are suitable for noisy images.

  6. Comparative Analysis of Various Image Fusion Techniques For Biomedical Images: A Review

    Directory of Open Access Journals (Sweden)

    Nayera Nahvi,

    2014-05-01

    Full Text Available Image Fusion is a process of combining the relevant information from a set of images, into a single image, wherein the resultant fused image will be more informative and complete than any of the input images. This paper discusses implementation of DWT technique on different images to make a fused image having more information content. As DWT is the latest technique for image fusion as compared to simple image fusion and pyramid based image fusion, so we are going to implement DWT as the image fusion technique in our paper. Other methods such as Principal Component Analysis (PCA based fusion, Intensity hue Saturation (IHS Transform based fusion and high pass filtering methods are also discussed. A new algorithm is proposed using Discrete Wavelet transform and different fusion techniques including pixel averaging, min-max and max-min methods for medical image fusion. KEYWORDS:

  7. Imaging of the distal ascending aorta using modified transesophageal echocardiography in cardiac surgery

    NARCIS (Netherlands)

    van Zaane, B.

    2009-01-01

    Epiaortic ultrasound scanning of the ascending aorta is a safe and useful method to detect atherosclerosis in patients undergoing cardiac surgery. The use of epiaortic ultrasound can lead to modifications of the surgical technique, which effectively reduces the post-operative incidence of stroke in

  8. Determinants of Left Ventricular Mass and Hypertrophy in Hemodialysis Patients Assessed by Cardiac Magnetic Resonance Imaging

    OpenAIRE

    Patel, Rajan K.; Oliver, Scott; Mark, Patrick B.; Powell, Joanna R.; Emily P. McQuarrie; Traynor, James P.; Dargie, Henry J.; Jardine, Alan G.

    2009-01-01

    Background and objectives: Left ventricular hypertrophy (LVH) is an independent risk factor for premature cardiovascular death in hemodialysis (HD) patients and one of the three forms of uremic cardiomyopathy. Cardiovascular magnetic resonance (CMR) is a volume-independent technique to assess cardiac structure. We used CMR to assess the determinants of left ventricular mass (LVM) and LVH in HD patients.

  9. Improving full-cardiac cycle strain estimation from tagged CMR by accurate modeling of 3D image appearance characteristics

    Directory of Open Access Journals (Sweden)

    Matt Nitzken

    2016-03-01

    Full Text Available To improve the tagged cardiac magnetic resonance (CMR image analysis, we propose a 3D (2D space + 1D time energy minimization framework, based on learning first- and second-order visual appearance models from voxel intensities. The former model approximates the marginal empirical distribution of intensities with two linear combinations of discrete Gaussians (LCDG. The second-order model considers an image of a sample from a translation–rotation invariant 3D Markov–Gibbs random field (MGRF with multiple pairwise spatiotemporal interactions within and between adjacent temporal frames. Abilities of the framework to accurately recover noise-corrupted strain slopes were experimentally evaluated and validated on 3D geometric phantoms and independently on in vivo data. In multiple noise and motion conditions, the proposed method outperformed comparative image filtering in restoring strain curves and reliably improved HARP strain tracking during the entirety of the cardiac cycle. According to these results, our framework can augment popular spectral domain techniques, such as HARP, by optimizing the spectral domain characteristics and thereby providing more reliable estimates of strain parameters.

  10. Terahertz Imaging Systems With Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Krozer, Viktor; Löffler, Torsten; Dall, Jørgen

    2010-01-01

    This paper presents the research and development of two terahertz imaging systems based on photonic and electronic principles, respectively. As part of this study, a survey of ongoing research in the field of terahertz imaging is provided focusing on security applications. Existing terahertz...

  11. 18F-NaF PET/CT Images of Cardiac Metastasis From Osteosarcoma.

    Science.gov (United States)

    Chou, Yi-Hsien; Ko, Kuan-Yin; Cheng, Mei-Fang; Chen, Wei-Wu; Yen, Ruoh-Fang

    2016-09-01

    Osteosarcomas are aggressive with a high incidence of recurrence and metastasis. Cardiac osteosarcoma metastasis is rare. We described a 17-year-old boy who had right distal femoral osteosarcoma with lung metastases. During follow-up, right ventricular (RV) metastasis was noted and confirmed by histopathological examination of the surgical specimen. F-NaF PET/CT was then arranged 1 month after debulking surgery for residual tumor survey. The images showed intense F-NaF uptake at RV region, suggestive of residual cardiac metastases.

  12. A Novel Technique to Image Annotation using Neural Network

    Directory of Open Access Journals (Sweden)

    Pankaj Savita

    2013-03-01

    Full Text Available : Automatic annotation of digital pictures is a key technology for managing and retrieving images from large image collection. Traditional image semantics extraction and representation schemes were commonly divided into two categories, namely visual features and text annotations. However, visual feature scheme are difficult to extract and are often semantically inconsistent. On the other hand, the image semantics can be well represented by text annotations. It is also easier to retrieve images according to their annotations. Traditional image annotation techniques are time-consuming and requiring lots of human effort. In this paper we propose Neural Network based a novel approach to the problem of image annotation. These approaches are applied to the Image data set. Our main work is focused on the image annotation by using multilayer perceptron, which exhibits a clear-cut idea on application of multilayer perceptron with special features. MLP Algorithm helps us to discover the concealed relations between image data and annotation data, and annotate image according to such relations. By using this algorithm we can save more memory space, and in case of web applications, transferring of images and download should be fast. This paper reviews 50 image annotation systems using supervised machine learning Techniques to annotate images for image retrieval. Results obtained show that the multi layer perceptron Neural Network classifier outperforms conventional DST Technique.

  13. Automated image analysis techniques for cardiovascular magnetic resonance imaging

    NARCIS (Netherlands)

    Geest, Robertus Jacobus van der

    2011-01-01

    The introductory chapter provides an overview of various aspects related to quantitative analysis of cardiovascular MR (CMR) imaging studies. Subsequently, the thesis describes several automated methods for quantitative assessment of left ventricular function from CMR imaging studies. Several novel

  14. The Use of Cardiac Magnetic Resonance Imaging in the Diagnostic Workup and Treatment of Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Peter Haemers

    2012-01-01

    Full Text Available Atrial fibrillation (AF is the most common cardiac arrhythmia and imposes a huge clinical and economic burden. AF is correlated with an increased morbidity and mortality, mainly due to stroke and heart failure. Cardiovascular imaging modalities, including echocardiography, computed tomography (CT, and cardiovascular magnetic resonance (CMR, play a central role in the workup and treatment of AF. One of the major advantages of CMR is the high contrast to noise ratio combined with good spatial and temporal resolution, without any radiation burden. This allows a detailed assessment of the structure and function of the left atrium (LA. Of particular interest is the ability to visualize the extent of LA wall injury. We provide a focused review of the value of CMR in identifying the underlying pathophysiological mechanisms of AF, its role in stroke prevention and in the guidance of radiofrequency catheter ablation. CMR is a promising technique that could add valuable information for therapeutic decision making in specific subpopulations with AF.

  15. Color Image Classification and Retrieval using Image mining Techniques

    OpenAIRE

    Dr.V.Mohan,; Kannan, A.

    2010-01-01

    Mining Image data is one of the essential features in the present scenario. Image data is the major one which plays vital role in every aspect of the systems like business for marketing, hospital for surgery, engineering for construction, Web for publication and so on. The other area in the Image mining system is the Content-BasedImage Retrieval (CBIR). CBIR systems perform retrieval based on the similarity defined in terms of extracted features with more objectiveness. But, the features of t...

  16. Image Fusion Techniques for Multispectral Palm Image Enhancement

    OpenAIRE

    Rajashree Bhokare; Deepali Sale; Dr. (Mrs. ) M. A. Joshi; Dr. M. S. Gaikwad

    2013-01-01

    We proposed the multispectral image enhancement through image fusion by combining the data from the multiple spectrum to address the problem of accuracy and make the system robust against spoofing and to improve the accuracy of recognition, using more discriminating of palm images. Palm line features are clearer in the blue and green bands while red band can reveal some palm vein structure. The NIR band can show the palm vein structure as well as partial line information. Image fusion improve...

  17. Effect of cardiac drugs on imaging studies with thallous chloride Tl 201

    Energy Technology Data Exchange (ETDEWEB)

    Waschek, J.; Hinkle, G.; Basmadjian, G.; Allen, E.W.; Ice, R.

    1981-11-01

    The effects of commonly used cardiac drugs on cardiac imaging with thallium-201-labeled thallous chloride were studied. This retrospective study included 62 men ranging in age from 37 to 70 years who had cardiac imaging attempted with thallium during an eight-month period. Seven drugs were being used by at least eight patients each--propranolol, nitroglycerin ointment, isosorbide dinitrate, digoxin, hydrochlorothiazide, potassium chloride, and quinidine. Myocardial-to-background (M/Bk) ratios were calculated for each patient. No drug consistently affected the M/Bk ratios. The lowest M/Bk ratio was found in patients receiving digoxin, but there was no significant difference between the M/Bk ratios for patients taking digoxin (1.38 +/- 0.16) and those not taking digoxin (1.45 +/- 0.10) (0.05 less than p less than 0.10, Student's t test). It is concluded that the drugs studied do not affect cardiac imaging with thallous chloride Tl 201.

  18. Functional and morphological cardiac magnetic resonance imaging of mice using a cryogenic quadrature radiofrequency coil.

    Directory of Open Access Journals (Sweden)

    Babette Wagenhaus

    Full Text Available Cardiac morphology and function assessment by magnetic resonance imaging is of increasing interest for a variety of mouse models in pre-clinical cardiac research, such as myocardial infarction models or myocardial injury/remodeling in genetically or pharmacologically induced hypertension. Signal-to-noise ratio (SNR constraints, however, limit image quality and blood myocardium delineation, which crucially depend on high spatial resolution. Significant gains in SNR with a cryogenically cooled RF probe have been shown for mouse brain MRI, yet the potential of applying cryogenic RF coils for cardiac MR (CMR in mice is, as of yet, untapped. This study examines the feasibility and potential benefits of CMR in mice employing a 400 MHz cryogenic RF surface coil, compared with a conventional mouse heart coil array operating at room temperature. The cryogenic RF coil affords SNR gains of 3.0 to 5.0 versus the conventional approach and hence enables an enhanced spatial resolution. This markedly improved image quality--by better deliniation of myocardial borders and enhanced depiction of papillary muscles and trabeculae--and facilitated a more accurate cardiac chamber quantification, due to reduced intraobserver variability. In summary the use of a cryogenically cooled RF probe represents a valuable means of enhancing the capabilities of CMR of mice.

  19. Autopsy imaging for cardiac tamponade in a Thoroughbred foal

    OpenAIRE

    YAMADA, Kazutaka; Sato, Fumio; HORIUCHI, Noriyuki; HIGUCHI, Tohru; KOBAYASHI, Yoshiyasu; SASAKI, Naoki; NAMBO, Yasuo

    2016-01-01

    ABSTRACT Autopsy imaging (Ai), postmortem imaging before necropsy, is used in human forensic medicine. Ai was performed using computed tomography (CT) for a 1-month-old Thoroughbred foal cadaver found in a pasture. CT revealed pericardial effusion, collapse of the aorta, bleeding in the lung lobe, gas in the ventricles and liver parenchyma, and distension of the digestive tract. Rupture in the left auricle was confirmed by necropsy; however, it was not depicted on CT. Therefore, Ai and conven...

  20. Calibration free beam hardening correction for cardiac CT perfusion imaging

    Science.gov (United States)

    Levi, Jacob; Fahmi, Rachid; Eck, Brendan L.; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    Myocardial perfusion imaging using CT (MPI-CT) and coronary CTA have the potential to make CT an ideal noninvasive gate-keeper for invasive coronary angiography. However, beam hardening artifacts (BHA) prevent accurate blood flow calculation in MPI-CT. BH Correction (BHC) methods require either energy-sensitive CT, not widely available, or typically a calibration-based method. We developed a calibration-free, automatic BHC (ABHC) method suitable for MPI-CT. The algorithm works with any BHC method and iteratively determines model parameters using proposed BHA-specific cost function. In this work, we use the polynomial BHC extended to three materials. The image is segmented into soft tissue, bone, and iodine images, based on mean HU and temporal enhancement. Forward projections of bone and iodine images are obtained, and in each iteration polynomial correction is applied. Corrections are then back projected and combined to obtain the current iteration's BHC image. This process is iterated until cost is minimized. We evaluate the algorithm on simulated and physical phantom images and on preclinical MPI-CT data. The scans were obtained on a prototype spectral detector CT (SDCT) scanner (Philips Healthcare). Mono-energetic reconstructed images were used as the reference. In the simulated phantom, BH streak artifacts were reduced from 12+/-2HU to 1+/-1HU and cupping was reduced by 81%. Similarly, in physical phantom, BH streak artifacts were reduced from 48+/-6HU to 1+/-5HU and cupping was reduced by 86%. In preclinical MPI-CT images, BHA was reduced from 28+/-6 HU to less than 4+/-4HU at peak enhancement. Results suggest that the algorithm can be used to reduce BHA in conventional CT and improve MPI-CT accuracy.

  1. Novel SPECT Technologies and Approaches in Cardiac Imaging

    Directory of Open Access Journals (Sweden)

    Piotr Slomka

    2016-12-01

    Full Text Available Recent novel approaches in myocardial perfusion single photon emission CT (SPECT have been facilitated by new dedicated high-efficiency hardware with solid-state detectors and optimized collimators. New protocols include very low-dose (1 mSv stress-only, two-position imaging to mitigate attenuation artifacts, and simultaneous dual-isotope imaging. Attenuation correction can be performed by specialized low-dose systems or by previously obtained CT coronary calcium scans. Hybrid protocols using CT angiography have been proposed. Image quality improvements have been demonstrated by novel reconstructions and motion correction. Fast SPECT acquisition facilitates dynamic flow and early function measurements. Image processing algorithms have become automated with virtually unsupervised extraction of quantitative imaging variables. This automation facilitates integration with clinical variables derived by machine learning to predict patient outcome or diagnosis. In this review, we describe new imaging protocols made possible by the new hardware developments. We also discuss several novel software approaches for the quantification and interpretation of myocardial perfusion SPECT scans.

  2. Cardiac Tumors; Tumeurs cardiaques

    Energy Technology Data Exchange (ETDEWEB)

    Laissy, J.P.; Fernandez, P. [Centre Hospitalier Universitaire Bichat Claude Bernard, Service d' Imagerie, 76 - Rouen (France); Mousseaux, E. [Hopital Europeen Georges Pompidou (HEGP), Service de Radiologie Cardio Vasculaire et Interventionnelle, 75 - Paris (France); Dacher, J.N. [Centre Hospitalier Universitaire Charles Nicolle, 75 - Rouen (France); Crochet, D. [Centre Hospitalier Universitaire, Hopital Laennec, Centre Hemodynamique, Radiologie Thoracique et Vasculaire, 44 - Nantes (France)

    2004-04-01

    Metastases are the most frequent tumors of the heart even though they seldom are recognized. Most primary cardiac tumors are benign. The main role of imaging is to differentiate a cardiac tumor from thrombus and rare pseudo-tumors: tuberculoma, hydatid cyst. Echocardiography is the fist line imaging technique to detect cardiac tumors, but CT and MRl arc useful for further characterization and differential diagnosis. Myxoma of the left atrium is the most frequent benign cardiac tumor. It usually is pedunculated and sometimes calcified. Sarcoma is the most frequent primary malignant tumor and usually presents as a sessile infiltrative tumor. Lymphoma and metastases are usually recognized by the presence of known tumor elsewhere of by characteristic direct contiguous involvement. Diagnosing primary and secondary pericardial tumors often is difficult. Imaging is valuable for diagnosis, characterization, pre-surgical evaluation and follow-up. (author)

  3. A Fast Edge Preserving Bayesian Reconstruction Method for Parallel Imaging Applications in Cardiac MRI

    Science.gov (United States)

    Singh, Gurmeet; Raj, Ashish; Kressler, Bryan; Nguyen, Thanh D.; Spincemaille, Pascal; Zabih, Ramin; Wang, Yi

    2010-01-01

    Among recent parallel MR imaging reconstruction advances, a Bayesian method called Edge-preserving Parallel Imaging with GRAph cut Minimization (EPIGRAM) has been demonstrated to significantly improve signal to noise ratio (SNR) compared to conventional regularized sensitivity encoding (SENSE) method. However, EPIGRAM requires a large number of iterations in proportion to the number of intensity labels in the image, making it computationally expensive for high dynamic range images. The objective of this study is to develop a Fast EPIGRAM reconstruction based on the efficient binary jump move algorithm that provides a logarithmic reduction in reconstruction time while maintaining image quality. Preliminary in vivo validation of the proposed algorithm is presented for 2D cardiac cine MR imaging and 3D coronary MR angiography at acceleration factors of 2-4. Fast EPIGRAM was found to provide similar image quality to EPIGRAM and maintain the previously reported SNR improvement over regularized SENSE, while reducing EPIGRAM reconstruction time by 25-50 times. PMID:20939095

  4. Image-based reconstruction of three-dimensional myocardial infarct geometry for patient-specific modeling of cardiac electrophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Ukwatta, Eranga, E-mail: eukwatt1@jhu.edu; Arevalo, Hermenegild; Pashakhanloo, Farhad; Prakosa, Adityo; Vadakkumpadan, Fijoy [Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Rajchl, Martin [Department of Computing, Imperial College London, London SW7 2AZ (United Kingdom); White, James [Stephenson Cardiovascular MR Centre, University of Calgary, Calgary, Alberta T2N 2T9 (Canada); Herzka, Daniel A.; McVeigh, Elliot [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Lardo, Albert C. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Division of Cardiology, Johns Hopkins Institute of Medicine, Baltimore, Maryland 21224 (United States); Trayanova, Natalia A. [Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins Institute of Medicine, Baltimore, Maryland 21205 (United States)

    2015-08-15

    Purpose: Accurate three-dimensional (3D) reconstruction of myocardial infarct geometry is crucial to patient-specific modeling of the heart aimed at providing therapeutic guidance in ischemic cardiomyopathy. However, myocardial infarct imaging is clinically performed using two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) techniques, and a method to build accurate 3D infarct reconstructions from the 2D LGE-CMR images has been lacking. The purpose of this study was to address this need. Methods: The authors developed a novel methodology to reconstruct 3D infarct geometry from segmented low-resolution (Lo-res) clinical LGE-CMR images. Their methodology employed the so-called logarithm of odds (LogOdds) function to implicitly represent the shape of the infarct in segmented image slices as LogOdds maps. These 2D maps were then interpolated into a 3D image, and the result transformed via the inverse of LogOdds to a binary image representing the 3D infarct geometry. To assess the efficacy of this method, the authors utilized 39 high-resolution (Hi-res) LGE-CMR images, including 36 in vivo acquisitions of human subjects with prior myocardial infarction and 3 ex vivo scans of canine hearts following coronary ligation to induce infarction. The infarct was manually segmented by trained experts in each slice of the Hi-res images, and the segmented data were downsampled to typical clinical resolution. The proposed method was then used to reconstruct 3D infarct geometry from the downsampled images, and the resulting reconstructions were compared with the manually segmented data. The method was extensively evaluated using metrics based on geometry as well as results of electrophysiological simulations of cardiac sinus rhythm and ventricular tachycardia in individual hearts. Several alternative reconstruction techniques were also implemented and compared with the proposed method. Results: The accuracy of the LogOdds method in reconstructing 3D

  5. Myocardial strain assessment by cine cardiac magnetic resonance imaging using non-rigid registration.

    Science.gov (United States)

    Tsadok, Yossi; Friedman, Zvi; Haluska, Brian A; Hoffmann, Rainer; Adam, Dan

    2016-05-01

    To evaluate a novel post-processing method for assessment of longitudinal mid-myocardial strain in standard cine cardiac magnetic resonance (CMR) imaging sequences. Cine CMR imaging and tagged cardiac magnetic resonance imaging (TMRI) were performed in 15 patients with acute myocardial infarction (AMI) and 15 healthy volunteers served as control group. A second group of 37 post-AMI patients underwent both cine CMR and late gadolinium enhancement (LGE) CMR exams. Speckle tracking echocardiography (STE) was performed in 36 of these patients. Cine CMR, TMRI and STE were analyzed to obtain longitudinal strain. LGE-CMR datasets were analyzed to evaluate scar extent. Comparison of peak systolic strain (PSS) measured from CMR and TMRI yielded a strong correlation (r=0.86, pcine CMR data. The method was found to be highly correlated with strain measurements obtained by TMRI and STE. This tool allows accurate discrimination between different transmurality states of myocardial infarction. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Fingerprint image enhancement using CNN filtering techniques.

    Science.gov (United States)

    Saatci, Ertugrul; Tavsanoglu, Vedat

    2003-12-01

    Due to noisy acquisition devices and variation in impression conditions, the ridgelines of fingerprint images are mostly corrupted by various kinds of noise causing cracks, scratches and bridges in the ridges as well as blurs. These cause matching errors in fingerprint recognition. For an effective recognition the correct ridge pattern is essential which requires the enhancement of fingerprint images. Segment by segment analysis of the fingerprint pattern yields various ridge direction and frequencies. By selecting a directional filter with correct filter parameters to match ridge features at each point, we can effectively enhance fingerprint ridges. This paper proposes a fingerprint image enhancement based on CNN Gabor-Type filters.

  7. A New Image Steganography Based On First Component Alteration Technique

    Directory of Open Access Journals (Sweden)

    Amanpreet Kaur

    2009-12-01

    Full Text Available In this paper, A new image steganography scheme is proposed which is a kind of spatial domain technique. In order to hide secret data in cover-image, the first component alteration technique is used. Techniques used so far focuses only on the two or four bits of a pixel in a image (at the most five bits at the edge of an image which results in less peak to signal noise ratio and high root mean square error. In this technique, 8 bits of blue components of pixels are replaced with secret data bits. Proposed scheme can embed more data than previous schemes and shows better image quality. To prove this scheme, several experiments are performed, and are compared the experimental results with the related previous works.Keywords—image; mean square error; Peak signal to noise ratio; steganography;

  8. Evaluation of the clinical efficacy of the PeTrack motion tracking system for respiratory gating in cardiac PET imaging

    Science.gov (United States)

    Manwell, Spencer; Chamberland, Marc J. P.; Klein, Ran; Xu, Tong; deKemp, Robert

    2017-03-01

    Respiratory gating is a common technique used to compensate for patient breathing motion and decrease the prevalence of image artifacts that can impact diagnoses. In this study a new data-driven respiratory gating method (PeTrack) was compared with a conventional optical tracking system. The performance of respiratory gating of the two systems was evaluated by comparing the number of respiratory triggers, patient breathing intervals and gross heart motion as measured in the respiratory-gated image reconstructions of rubidium-82 cardiac PET scans in test and control groups consisting of 15 and 8 scans, respectively. We found evidence suggesting that PeTrack is a robust patient motion tracking system that can be used to retrospectively assess patient motion in the event of failure of the conventional optical tracking system.

  9. Evaluation of cardiac structures and function in hypertrophic cardiomyopathy with magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:To assess the capability of magnetic resonance imaging(MRI)in evaluating the cardiac structures and function in the hypertrophic cardiomyopathy(HCM).Methods:Fourteen healthy volunteers and eighteen cases with HCM verified by history,clinical presentation,electrocardiogram and echocardiography(ECG)were performed with MRI.The myocardial thickness of interventricular septum at the basal segment and that of posterolateral free wall of the left ventricle(LV)were measured.Some indexes for evaluating cardiac function were measured using ARGUS auto-quantitative program.Resuits:The myocardial thickness of septum at the basal segment had significant difference between the HCM patients and the healthy volunteers.There was no significant difference between MRI and ECG in examining end-diastolic volume,ejection fraction of the LV.Conclusion:MRI can fully provide more information on the abnormalities of cardiac anatomy and function;thus,it is of great value in clinical application.

  10. Digital image processing techniques in archaeology

    Digital Repository Service at National Institute of Oceanography (India)

    Santanam, K.; Vaithiyanathan, R.; Tripati, S.

    and digitized aerial photographs. However, it was not until the launch of Landsat - 1 in 1972 that digital image data became widely available for land remote sensing applications. Today with the availability of efficient computer hardware and software...

  11. Techniques in Iterative Proton CT Image Reconstruction

    CERN Document Server

    Penfold, Scott

    2015-01-01

    This is a review paper on some of the physics, modeling, and iterative algorithms in proton computed tomography (pCT) image reconstruction. The primary challenge in pCT image reconstruction lies in the degraded spatial resolution resulting from multiple Coulomb scattering within the imaged object. Analytical models such as the most likely path (MLP) have been proposed to predict the scattered trajectory from measurements of individual proton location and direction before and after the object. Iterative algorithms provide a flexible tool with which to incorporate these models into image reconstruction. The modeling leads to a large and sparse linear system of equations that can efficiently be solved by projection methods-based iterative algorithms. Such algorithms perform projections of the iterates onto the hyperlanes that are represented by the linear equations of the system. They perform these projections in possibly various algorithmic structures, such as block-iterative projections (BIP), string-averaging...

  12. Partial-Transfer Absorption Imaging: A versatile technique for optimal imaging of ultracold gases

    CERN Document Server

    Ramanathan, Anand; Wright, Kevin C; Anderson, Russell P; Phillips, William D; Helmerson, Kristian; Campbell, Gretchen K

    2012-01-01

    Partial-transfer absorption imaging is a tool that enables optimal imaging of atomic clouds for a wide range of optical depths. In contrast to standard absorption imaging, the technique can be minimally-destructive and can be used to obtain multiple successive images of the same sample. The technique involves transferring a small fraction of the sample from an initial internal atomic state to an auxiliary state and subsequently imaging that fraction absorptively on a cycling transition. The atoms remaining in the initial state are essentially unaffected. We demonstrate the technique, discuss its applicability, and compare its performance as a minimally-destructive technique to that of phase-contrast imaging.

  13. Laser image denoising technique based on multi-fractal theory

    Science.gov (United States)

    Du, Lin; Sun, Huayan; Tian, Weiqing; Wang, Shuai

    2014-02-01

    The noise of laser images is complex, which includes additive noise and multiplicative noise. Considering the features of laser images, the basic processing capacity and defects of the common algorithm, this paper introduces the fractal theory into the research of laser image denoising. The research of laser image denoising is implemented mainly through the analysis of the singularity exponent of each pixel in fractal space and the feature of multi-fractal spectrum. According to the quantitative and qualitative evaluation of the processed image, the laser image processing technique based on fractal theory not only effectively removes the complicated noise of the laser images obtained by range-gated laser active imaging system, but can also maintains the detail information when implementing the image denoising processing. For different laser images, multi-fractal denoising technique can increase SNR of the laser image at least 1~2dB compared with other denoising techniques, which basically meet the needs of the laser image denoising technique.

  14. Millimeter-wave Imaging Systems with Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Löffler, Torsten; Krozer, Viktor; Zhurbenko, Vitaliy;

    2010-01-01

    The paper describes development of a millimetre-wave imaging system using multi-element aperture filling techniques [1]. Such imaging systems are increasingly demonstrated for security applications and in particular standoff imaging of persons and bonding flaw and defect detection [2]. The major...

  15. Technique for identifying, tracing, or tracking objects in image data

    Science.gov (United States)

    Anderson, Robert J.; Rothganger, Fredrick

    2012-08-28

    A technique for computer vision uses a polygon contour to trace an object. The technique includes rendering a polygon contour superimposed over a first frame of image data. The polygon contour is iteratively refined to more accurately trace the object within the first frame after each iteration. The refinement includes computing image energies along lengths of contour lines of the polygon contour and adjusting positions of the contour lines based at least in part on the image energies.

  16. An event-driven distributed processing architecture for image-guided cardiac ablation therapy.

    Science.gov (United States)

    Rettmann, M E; Holmes, D R; Cameron, B M; Robb, R A

    2009-08-01

    Medical imaging data is becoming increasing valuable in interventional medicine, not only for preoperative planning, but also for real-time guidance during clinical procedures. Three key components necessary for image-guided intervention are real-time tracking of the surgical instrument, aligning the real-world patient space with image-space, and creating a meaningful display that integrates the tracked instrument and patient data. Issues to consider when developing image-guided intervention systems include the communication scheme, the ability to distribute CPU intensive tasks, and flexibility to allow for new technologies. In this work, we have designed a communication architecture for use in image-guided catheter ablation therapy. Communication between the system components is through a database which contains an event queue and auxiliary data tables. The communication scheme is unique in that each system component is responsible for querying and responding to relevant events from the centralized database queue. An advantage of the architecture is the flexibility to add new system components without affecting existing software code. In addition, the architecture is intrinsically distributed, in that components can run on different CPU boxes, and even different operating systems. We refer to this Framework for Image-Guided Navigation using a Distributed Event-Driven Database in Real-Time as the FINDER architecture. This architecture has been implemented for the specific application of image-guided cardiac ablation therapy. We describe our prototype image-guidance system and demonstrate its functionality by emulating a cardiac ablation procedure with a patient-specific phantom. The proposed architecture, designed to be modular, flexible, and intuitive, is a key step towards our goal of developing a complete system for visualization and targeting in image-guided cardiac ablation procedures.

  17. Noninvasive imaging modalities and sudden cardiac arrest in the young: can they help distinguish subjects with a potentially life-threatening abnormality from normals?

    Science.gov (United States)

    Printz, Beth Feller

    2012-03-01

    Sudden cardiac arrest (SCA) in the young is always tragic, but fortunately it is an unusual event. When it does occur, it usually happens in active individuals, often while they are participating in physical activity. Depending on the population's characteristics, the most common causes of sudden cardiac arrest in these subjects are hypertrophic cardiomyopathy, congenital coronary abnormalities, arrhythmia in the presence of a structurally normal heart (ion channelopathies or abnormal conduction pathways), aortic rupture, and arrhythmogenic right-ventricular cardiomyopathy. Two-dimensional echocardiography (2-DE) has been proposed as a screening tool that can potentially detect four of these five causes of SCA, and many groups now sponsor community-based 2-DE SCA-screening programs. "Basic" 2-DE screening may include assessment of ventricular volumes, mass, and function; left atrial size; and cardiac and thoracic vascular (including coronary) anatomy. "Advanced" echocardiographic techniques, such as tissue Doppler and strain imaging, can help in diagnosis when the history, electrocardiogram (ECG), and/or standard 2-DE screening suggest there may be an abnormality, e.g., to help differentiate those with "athlete's heart" from hypertrophic or dilated cardiomyopathy. Cardiac magnetic resonance imaging or cardiac computed tomography can be added to increase diagnostic sensitivity and specificity in select cases when an abnormality is suggested during SCA screening. Test availability, cost, and ethical issues related to who to screen, as well as the detection of those with potential disease but low risk, must be balanced when deciding what tests to perform to assess for increased SCA risk.

  18. Cardiac magnetic resonance and computed tomography angiography for clinical imaging of stable coronary artery disease. Diagnostic classification and risk stratification

    Science.gov (United States)

    Korosoglou, Grigorios; Giusca, Sorin; Gitsioudis, Gitsios; Erbel, Christian; Katus, Hugo A.

    2014-01-01

    Despite advances in the pharmacologic and interventional treatment of coronary artery disease (CAD), atherosclerosis remains the leading cause of death in Western societies. X-ray coronary angiography has been the modality of choice for diagnosing the presence and extent of CAD. However, this technique is invasive and provides limited information on the composition of atherosclerotic plaque. Coronary computed tomography angiography (CCTA) and cardiac magnetic resonance (CMR) have emerged as promising non-invasive techniques for the clinical imaging of CAD. Hereby, CCTA allows for visualization of coronary calcification, lumen narrowing and atherosclerotic plaque composition. In this regard, data from the CONFIRM Registry recently demonstrated that both atherosclerotic plaque burden and lumen narrowing exhibit incremental value for the prediction of future cardiac events. However, due to technical limitations with CCTA, resulting in false positive or negative results in the presence of severe calcification or motion artifacts, this technique cannot entirely replace invasive angiography at the present time. CMR on the other hand, provides accurate assessment of the myocardial function due to its high spatial and temporal resolution and intrinsic blood-to-tissue contrast. Hereby, regional wall motion and perfusion abnormalities, during dobutamine or vasodilator stress, precede the development of ST-segment depression and anginal symptoms enabling the detection of functionally significant CAD. While CT generally offers better spatial resolution, the versatility of CMR can provide information on myocardial function, perfusion, and viability, all without ionizing radiation for the patients. Technical developments with these 2 non-invasive imaging tools and their current implementation in the clinical imaging of CAD will be presented and discussed herein. PMID:25147526

  19. Analysis of 2-d ultrasound cardiac strain imaging using joint probability density functions.

    Science.gov (United States)

    Ma, Chi; Varghese, Tomy

    2014-06-01

    Ultrasound frame rates play a key role for accurate cardiac deformation tracking. Insufficient frame rates lead to an increase in signal de-correlation artifacts resulting in erroneous displacement and strain estimation. Joint probability density distributions generated from estimated axial strain and its associated signal-to-noise ratio provide a useful approach to assess the minimum frame rate requirements. Previous reports have demonstrated that bi-modal distributions in the joint probability density indicate inaccurate strain estimation over a cardiac cycle. In this study, we utilize similar analysis to evaluate a 2-D multi-level displacement tracking and strain estimation algorithm for cardiac strain imaging. The effect of different frame rates, final kernel dimensions and a comparison of radio frequency and envelope based processing are evaluated using echo signals derived from a 3-D finite element cardiac model and five healthy volunteers. Cardiac simulation model analysis demonstrates that the minimum frame rates required to obtain accurate joint probability distributions for the signal-to-noise ratio and strain, for a final kernel dimension of 1 λ by 3 A-lines, was around 42 Hz for radio frequency signals. On the other hand, even a frame rate of 250 Hz with envelope signals did not replicate the ideal joint probability distribution. For the volunteer study, clinical data was acquired only at a 34 Hz frame rate, which appears to be sufficient for radio frequency analysis. We also show that an increase in the final kernel dimensions significantly affect the strain probability distribution and joint probability density function generated, with a smaller effect on the variation in the accumulated mean strain estimated over a cardiac cycle. Our results demonstrate that radio frequency frame rates currently achievable on clinical cardiac ultrasound systems are sufficient for accurate analysis of the strain probability distribution, when a multi-level 2-D

  20. Do imaging studies performed in physician offices increase downstream utilization? An empiric analysis of cardiac stress testing with imaging

    Science.gov (United States)

    Chen, Jersey; Fazel, Reza; Ross, Joseph S.; McNamara, Robert L.; Einstein, Andrew J.; Al-Mallah, Mouaz; Krumholz, Harlan M.; Nallamothu, Brahmajee K.

    2012-01-01

    Objective To compare patterns of downstream testing and procedures after stress testing with imaging performed at physician offices versus at hospital-outpatient facilities. Background Stress testing with imaging has grown dramatically in recent years, but whether the location of where the test is performed correlates with different patterns for subsequent cardiac testing and procedures is unknown. Methods We identified 82,178 adults with private health insurance from 2005–2007 who underwent ambulatory myocardial perfusion imaging (MPI) or stress echocardiography (SE). Subsequent MPI, SE, cardiac catheterization or revascularization within 6 months were compared between physician office and hospital-outpatient settings. Results Overall, 84.5% of MPI and 84.9% of SE were performed in physician offices. The proportion of patients who underwent subsequent MPI, SE or cardiac catheterization was not statistically different between physician office and hospital-outpatient settings for MPI (14.2% v 14.1%, p=0.80) or SE (7.9% v 8.6%, p=0.21). However, patients with physician-office imaging had slightly higher rates of repeat MPI within 6 months compared with hospital-outpatient imaging for both index MPI (3.5% v 2.0%, p<0.001) and SE (3.4% v 2.1%, p<0.001), and slightly lower rates of cardiac catheterization after index MPI (11.5% v 12.3, p=0.01) and SE (4.5% v 7.0%, p<0.001). Differences in 6-month utilization were observed across the 5 healthcare markets after index MPI but not after index SE. Conclusions Physician office imaging is associated with slightly higher repeat MPI and fewer cardiac catheterizations than hospital outpatient imaging, but no overall difference in the proportion of patients undergoing additional further testing or procedures. While regional variation exists, especially for MPI, the relationship between physician-office location of stress testing with imaging and greater downstream resource utilization appears modest. PMID:21679898

  1. A visible light imaging device for cardiac rate detection with reduced effect of body movement

    Science.gov (United States)

    Jiang, Xiaotian; Liu, Ming; Zhao, Yuejin

    2014-09-01

    A visible light imaging system to detect human cardiac rate is proposed in this paper. A color camera and several LEDs, acting as lighting source, were used to avoid the interference of ambient light. From people's forehead, the cardiac rate could be acquired based on photoplethysmography (PPG) theory. The template matching method was used after the capture of video. The video signal was discomposed into three signal channels (RGB) and the region of interest was chosen to take the average gray value. The green channel signal could provide an excellent waveform of pulse wave on the account of green lights' absorptive characteristics of blood. Through the fast Fourier transform, the cardiac rate was exactly achieved. But the research goal was not just to achieve the cardiac rate accurately. With the template matching method, the effects of body movement are reduced to a large extent, therefore the pulse wave can be detected even while people are in the moving state and the waveform is largely optimized. Several experiments are conducted on volunteers, and the results are compared with the ones gained by a finger clamped pulse oximeter. The contrast results between these two ways are exactly agreeable. This method to detect the cardiac rate and the pulse wave largely reduces the effects of body movement and can probably be widely used in the future.

  2. Cardiac sarcoidosis mimicking hypertrophic cardiomyopathy: clinical utility of radionuclide imaging for differential diagnosis.

    Science.gov (United States)

    Yazaki, Y; Isobe, M; Hayasaka, M; Tanaka, M; Fujii, T; Sekiguchi, M

    1998-06-01

    A 62-year-old woman with skin sarcoidosis was admitted to our hospital to ascertain whether she had cardiac involvement. Although she displayed no cardiac signs or symptoms, the electrocardiogram showed first-degree atrioventricular block, right bundle branch block with left anterior fascicular block, and giant negative T waves in the V3 lead. Echocardiography revealed marked hypertrophy localized in the basal portion of the interventricular septum (IVS) without systolic dysfunction, mimicking hypertrophic cardiomyopathy (HCM). Exercise thallium-201 myocardial imaging revealed redistribution in the anteroseptal region. Both gallium-67 (67Ga) and technetium-99m pyrophosphate (99mTc-PYP) scintigraphy revealed abnormal uptake in the myocardium. These findings disappeared after 2 months of steroid treatment. Reports of cardiac sarcoidosis mimicking HCM are rare. However, hypertrophy in the basal portion of the IVS is an important sign of early cardiac involvement in sarcoidosis. 67Ga and 99mTc-PYP scintigraphy were useful and necessary to differentiate this type of cardiac sarcoidosis from HCM.

  3. In-Vivo Synthetic Aperture and Plane Wave High Frame Rate Cardiac Imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Jensen, Jonas; Brandt, Andreas Hjelm;

    2014-01-01

    A comparison of synthetic aperture imaging using spherical and plane waves with low number of emission events is presented. For both wave types, a 90 degree sector is insonified using 15 emission events giving a frame rate of 200 frames per second. Field II simulations of point targets show simil.......43 for spherical and 0.70 for plane waves. All measures are well within FDA limits for cardiac imaging. In-vivo images of the heart of a healthy 28-year old volunteer are shown....

  4. Real-time SPARSE-SENSE cardiac cine MR imaging: optimization of image reconstruction and sequence validation.

    Science.gov (United States)

    Goebel, Juliane; Nensa, Felix; Bomas, Bettina; Schemuth, Haemi P; Maderwald, Stefan; Gratz, Marcel; Quick, Harald H; Schlosser, Thomas; Nassenstein, Kai

    2016-12-01

    Improved real-time cardiac magnetic resonance (CMR) sequences have currently been introduced, but so far only limited practical experience exists. This study aimed at image reconstruction optimization and clinical validation of a new highly accelerated real-time cine SPARSE-SENSE sequence. Left ventricular (LV) short-axis stacks of a real-time free-breathing SPARSE-SENSE sequence with high spatiotemporal resolution and of a standard segmented cine SSFP sequence were acquired at 1.5 T in 11 volunteers and 15 patients. To determine the optimal iterations, all volunteers' SPARSE-SENSE images were reconstructed using 10-200 iterations, and contrast ratios, image entropies, and reconstruction times were assessed. Subsequently, the patients' SPARSE-SENSE images were reconstructed with the clinically optimal iterations. LV volumetric values were evaluated and compared between both sequences. Sufficient image quality and acceptable reconstruction times were achieved when using 80 iterations. Bland-Altman plots and Passing-Bablok regression showed good agreement for all volumetric parameters. 80 iterations are recommended for iterative SPARSE-SENSE image reconstruction in clinical routine. Real-time cine SPARSE-SENSE yielded comparable volumetric results as the current standard SSFP sequence. Due to its intrinsic low image acquisition times, real-time cine SPARSE-SENSE imaging with iterative image reconstruction seems to be an attractive alternative for LV function analysis. • A highly accelerated real-time CMR sequence using SPARSE-SENSE was evaluated. • SPARSE-SENSE allows free breathing in real-time cardiac cine imaging. • For clinically optimal SPARSE-SENSE image reconstruction, 80 iterations are recommended. • Real-time SPARSE-SENSE imaging yielded comparable volumetric results as the reference SSFP sequence. • The fast SPARSE-SENSE sequence is an attractive alternative to standard SSFP sequences.

  5. An Efficient Image Compression Technique Based on Arithmetic Coding

    Directory of Open Access Journals (Sweden)

    Prof. Rajendra Kumar Patel

    2012-12-01

    Full Text Available The rapid growth of digital imaging applications, including desktop publishing, multimedia, teleconferencing, and high visual definition has increased the need for effective and standardized image compression techniques. Digital Images play a very important role for describing the detailed information. The key obstacle for many applications is the vast amount of data required to represent a digital image directly. The various processes of digitizing the images to obtain it in the best quality for the more clear and accurate information leads to the requirement of more storage space and better storage and accessing mechanism in the form of hardware or software. In this paper we concentrate mainly on the above flaw so that we reduce the space with best quality image compression. State-ofthe-art techniques can compress typical images from 1/10 to 1/50 their uncompressed size without visibly affecting image quality. From our study I observe that there is a need of good image compression technique which provides better reduction technique in terms of storage and quality. Arithmetic coding is the best way to reducing encoding data. So in this paper we propose arithmetic coding with walsh transformation based image compression technique which is an efficient way of reduction

  6. An Effective Method of Image Retrieval using Image Mining Techniques

    OpenAIRE

    Kannan, A.; Dr.V.Mohan; Dr.N.Anbazhagan

    2010-01-01

    The present research scholars are having keen interest in doing their research activities in the area of Data mining all over the world. Especially, [13]Mining Image data is the one of the essential features in this present scenario since image data plays vital role in every aspect of the system such as business for marketing, hospital for surgery, engineering for construction, Web for publication and so on. The other area in the Image mining system is the Content-Based Image Retrieval (CB...

  7. Cardiac biplane strain imaging: initial in vivo experience.

    NARCIS (Netherlands)

    Lopata, R.G.P.; Nillesen, M.M.; Verrijp, C.N.; Singh, S.K.; Lammens, M.M.Y.; Laak, J.A.W.M. van der; Wetten, H.B. van; Thijssen, J.M.; Kapusta, L.; Korte, C.L. de

    2010-01-01

    In this study, first we propose a biplane strain imaging method using a commercial ultrasound system, yielding estimation of the strain in three orthogonal directions. Secondly, an animal model of a child's heart was introduced that is suitable to simulate congenital heart disease and was used to

  8. The Future of Cardiac Imaging: Report of a Think Tank Convened by the American College of Cardiology.

    Science.gov (United States)

    Douglas, Pamela S; Cerqueira, Manuel D; Berman, Daniel S; Chinnaiyan, Kavitha; Cohen, Meryl S; Lundbye, Justin B; Patel, Rajan A G; Sengupta, Partho P; Soman, Prem; Weissman, Neil J; Wong, Timothy C

    2016-10-01

    The American College of Cardiology's Executive Committee and Cardiovascular Imaging Section Leadership Council convened a discussion regarding the future of cardiac imaging among thought leaders in the field during a 2 day Think Tank. Participants were charged with thinking broadly about the future of imaging and developing a roadmap to address critical challenges. Key areas of discussion included: 1) how can cardiac imaging services thrive in our new world of value-based health care? 2) Who is the cardiac imager of the future and what is the role of the multimodality imager? 3) How can we nurture innovation and research in imaging? And 4) how can we maximize imaging information and optimize outcomes? This document describes the proceedings of this Think Tank.

  9. Minimally invasive cardiac surgery in the adult: surgical instruments, equipment, and techniques.

    Science.gov (United States)

    Kitamura, M; Uwabe, K; Hirota, J; Kawai, A; Endo, M; Koyanagi, H

    1998-09-01

    To clarify the special instruments and equipment used for minimally invasive cardiac surgery (MICS), we examined the initial experiences with MICS operations with ministernotomy or minithoracotomy at our institution. Fifty adult patients with congenital, valvular, and/or ischemic heart diseases underwent MICS operations, and all surgical procedures were completed without conversion to full sternotomy. The length of the skin incision was about 10 cm or less in all patients. Postoperative recovery was favorable, and the majority of the patients were discharged from the hospital around the end of the second postoperative week. In this series of patients, an oscillating bone saw, lifting type retractor, 2 blade spreader, cannula with a balloon, and right-angled aortic clamp among other items, were very useful for successfully performing various operations with MICS approaches and techniques. The associated results suggest that MICS with ministernotomy or minithoracotomy was feasible using special instruments and equipment and could be encouraged for adult patients with various cardiovascular diseases.

  10. Infrared Imaging Data Reduction Software and Techniques

    CERN Document Server

    Sabbey, C N; Lewis, J R; Irwin, M J; Sabbey, Chris N.; Mahon, Richard G. Mc; Lewis, James R.; Irwin, Mike J.

    2001-01-01

    We describe the InfraRed Data Reduction (IRDR) software package, a small ANSI C library of fast image processing routines for automated pipeline reduction of infrared (dithered) observations. We developed the software to satisfy certain design requirements not met in existing packages (e.g., full weight map handling) and to optimize the software for large data sets (non-interactive tasks that are CPU and disk efficient). The software includes stand-alone C programs for tasks such as running sky frame subtraction with object masking, image registration and coaddition with weight maps, dither offset measurement using cross-correlation, and object mask dilation. Although we currently use the software to process data taken with CIRSI (a near-IR mosaic imager), the software is modular and concise and should be easy to adapt/reuse for other work. IRDR is available from anonymous ftp to ftp.ast.cam.ac.uk in pub/sabbey.

  11. Free-Breathing 3D Imaging of Right Ventricular Structure and Function Using Respiratory and Cardiac Self-Gated Cine MRI

    Science.gov (United States)

    Zhu, Yanchun; Liu, Jing; Weinsaft, Jonathan; Spincemaille, Pascal; Nguyen, Thanh D.; Prince, Martin R.; Bao, Shanglian; Xie, Yaoqin; Wang, Yi

    2015-01-01

    Providing a movie of the beating heart in a single prescribed plane, cine MRI has been widely used in clinical cardiac diagnosis, especially in the left ventricle (LV). Right ventricular (RV) morphology and function are also important for the diagnosis of cardiopulmonary diseases and serve as predictors for the long term outcome. The purpose of this study is to develop a self-gated free-breathing 3D imaging method for RV quantification and to evaluate its performance by comparing it with breath-hold 2D cine imaging in 7 healthy volunteers. Compared with 2D, the 3D RV functional measurements show a reduction of RV end-diastole volume (RVEDV) by 10%, increase of RV end-systole volume (RVESV) by 1.8%, reduction of RV systole volume (RVSV) by 21%, and reduction of RV ejection fraction (RVEF) by 12%. High correlations between the two techniques were found (RVEDV: 0.94; RVESV: 0.85; RVSV: 0.95; and RVEF: 0.89). Compared with 2D, the 3D image quality measurements show a small reduction in blood SNR, myocardium-blood CNR, myocardium contrast, and image sharpness. In conclusion, the proposed self-gated free-breathing 3D cardiac cine imaging technique provides comparable image quality and correlated functional measurements to those acquired with the multiple breath-hold 2D technique in RV. PMID:26185764

  12. Subjective and objective image differences in pediatric computed tomography cardiac angiography using lower iodine concentration

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jae-Yeon [Pusan National University Yangsan Hospital, Department of Radiology, Yangsan-si, Gyeongsangnam-do (Korea, Republic of); Pusan National University Yangsan Hospital, Research Institute for Convergence of Biomedical Science and Technology, Yangsan-si, Gyeongsangnam-do (Korea, Republic of); Choo, Ki Seok; Choi, Yoon Young; Kim, Jin Hyeok; Ryu, Hwaseong; Kim, Yong-Woo; Jeon, Ung Bae; Nam, Kyung Jin [Pusan National University Yangsan Hospital, Department of Radiology, Yangsan-si, Gyeongsangnam-do (Korea, Republic of); Han, Junhee [Pusan National University Yangsan Hospital, Division of Biostatistics, Research Institute for Convergence of Biomedical Science and Technology, Yangsan-si, Gyeongsangnam-do (Korea, Republic of)

    2017-05-15

    Several recent studies showed the optimal contrast enhancement with a low-concentration and iso-osmolar contrast media in both adult and pediatric patients. However, low contrast media concentrations are not routinely used due to concerns of suboptimal enhancement of cardiac structures and small vessels. To evaluate the feasibility of using iso-osmolar contrast media containing a low iodine dose for CT cardiac angiography at 80 kilovolts (kVp) in neonates and infants. The iodixanol 270 group consisted of 79 CT scans and the iopromide 370 group of 62 CT scans in patients ≤1 year old. Objective measurement of the contrast enhancement was analyzed and contrast-to-noise ratios of the ascending aorta and left ventricle were calculated. Regarding subjective measurement, a four-point scale system was devised to evaluate degrees of contrast enhancement, image noise, motion artifact and overall image quality of each image set. Reader performance for correctly differentiating iodixanol 270 and iopromide 370 by visual assessment was evaluated. Group objective and subjective measurements were nonsignificantly different. Overall sensitivity, specificity and diagnostic accuracy for correctly differentiating iodixanol 270 and iopromide 370 by visual assessment were 42.8%, 59%, and 50%, respectively. The application of iodixanol 270 achieved optimal enhancement for performing pediatric cardiac CT angiography at 80 kVp in neonates and infants. Objective measurements of contrast enhancement and subjective image quality assessments were not statistically different in the iodixanol 270 and iopromide 370 groups. (orig.)

  13. Four-dimensional modeling of the heart for image guidance of minimally invasive cardiac surgeries

    Science.gov (United States)

    Wierzbicki, Marcin; Drangova, Maria; Guiraudon, Gerard; Peters, Terry

    2004-05-01

    Minimally invasive surgery of the beating heart can be associated with two major limitations: selecting port locations for optimal target coverage from x-rays and angiograms, and navigating instruments in a dynamic and confined 3D environment using only an endoscope. To supplement the current surgery planning and guidance strategies, we continue developing VCSP - a virtual reality, patient-specific, thoracic cavity model derived from 3D pre-procedural images. In this work, we apply elastic image registration to 4D cardiac images to model the dynamic heart. Our method is validated on two image modalities, and for different parts of the cardiac anatomy. In a helical CT dataset of an excised heart phantom, we found that the artificial motion of the epicardial surface can be extracted to within 0.93 +/- 0.33 mm. For an MR dataset of a human volunteer, the error for different heart structures such as the myocardium, right and left atria, right ventricle, aorta, vena cava, and pulmonary artery, ranged from 1.08 +/- 0.18 mm to 1.14 +/- 0.22 mm. These results indicate that our method of modeling the motion of the heart is not only easily adaptable but also sufficiently accurate to meet the requirements for reliable cardiac surgery training, planning, and guidance.

  14. New imaging techniques and opportunities in endoscopy.

    Science.gov (United States)

    Kiesslich, Ralf; Goetz, Martin; Hoffman, Arthur; Galle, Peter Robert

    2011-09-06

    Gastrointestinal endoscopy is undergoing major improvements, which are driven by new available technologies and substantial refinements of optical features. In this Review, we summarize available and evolving imaging technologies that could influence the clinical algorithm of endoscopic diagnosis. Detection, characterization and confirmation are essential steps required for proper endoscopic diagnosis. Optical and nonoptical methods can help to improve each step; these improvements are likely to increase the detection rate of neoplasias and reduce unnecessary endoscopic treatments. Furthermore, functional and molecular imaging are emerging as new diagnostic tools that could provide an opportunity for personalized medicine, in which endoscopy will define disease outcome or predict the response to targeted therapy.

  15. Image Reversal Techniques With Standard Positive Photoresist

    Science.gov (United States)

    Long, Mary L.; Newman, Jeff

    1984-05-01

    The basic reaction of positive photoresist involves the conversion of the dissolution inhibitor (diazoketone) to a dissolution enhancer (carboxylic acid). The novolac-type resin is basically unchanged, but its solubility is controlled by the presence of either the dissolution inhibitor or enhancer. It has been demonstrated that the dissolution enhancer can be thermally degraded, and, under the proper conditions, this degradation can lead to the reversal of the resist image. It is, of course, imperative to optimize the developer selectivity and to capitalize on the specific characteristics of common positive resists to define a production-oriented image reversal process.**

  16. Cardiac sympathetic nervous system imaging with (123)I-meta-iodobenzylguanidine: Perspectives from Japan and Europe.

    Science.gov (United States)

    Nakajima, Kenichi; Scholte, Arthur J H A; Nakata, Tomoaki; Dimitriu-Leen, Aukelien C; Chikamori, Taishiro; Vitola, João V; Yoshinaga, Keiichiro

    2017-03-13

    Cardiac sympathetic nervous system dysfunction is closely associated with risk of serious cardiac events in patients with heart failure (HF), including HF progression, pump-failure death, and sudden cardiac death by lethal ventricular arrhythmia. For cardiac sympathetic nervous system imaging, (123)I-meta-iodobenzylguanidine ((123)I-MIBG) was approved by the Japanese Ministry of Health, Labour and Welfare in 1992 and has therefore been widely used since in clinical settings. (123)I-MIBG was also later approved by the Food and Drug Administration (FDA) in the United States of America (USA) and it was expected to achieve broad acceptance. In Europe, (123)I-MIBG is currently used only for clinical research. This review article is based on a joint symposium of the Japanese Society of Nuclear Cardiology (JSNC) and the American Society of Nuclear Cardiology (ASNC), which was held in the annual meeting of JSNC in July 2016. JSNC members and a member of ASNC discussed the standardization of (123)I-MIBG parameters, and clinical aspects of (123)I-MIBG with a view to further promoting (123)I-MIBG imaging in Asia, the USA, Europe, and the rest of the world.

  17. Technique of Hadamard transform microscope fluorescence image analysis

    Institute of Scientific and Technical Information of China (English)

    梅二文; 顾文芳; 曾晓斌; 陈观铨; 曾云鹗

    1995-01-01

    Hadamard transform spatial multiplexed imaging technique is combined with fluorescence microscope and an instrument of Hadamard transform microscope fluorescence image analysis is developed. Images acquired by this instrument can provide a lot of useful information simultaneously, including three-dimensional Hadamard transform microscope cell fluorescence image, the fluorescence intensity and fluorescence distribution of a cell, the background signal intensity and the signal/noise ratio, etc.

  18. Full Parallax Integral 3D Display and Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Byung-Gook Lee

    2015-02-01

    Full Text Available Purpose – Full parallax integral 3D display is one of the promising future displays that provide different perspectives according to viewing direction. In this paper, the authors review the recent integral 3D display and image processing techniques for improving the performance, such as viewing resolution, viewing angle, etc.Design/methodology/approach – Firstly, to improve the viewing resolution of 3D images in the integral imaging display with lenslet array, the authors present 3D integral imaging display with focused mode using the time-multiplexed display. Compared with the original integral imaging with focused mode, the authors use the electrical masks and the corresponding elemental image set. In this system, the authors can generate the resolution-improved 3D images with the n×n pixels from each lenslet by using n×n time-multiplexed display. Secondly, a new image processing technique related to the elemental image generation for 3D scenes is presented. With the information provided by the Kinect device, the array of elemental images for an integral imaging display is generated.Findings – From their first work, the authors improved the resolution of 3D images by using the time-multiplexing technique through the demonstration of the 24 inch integral imaging system. Authors’ method can be applied to a practical application. Next, the proposed method with the Kinect device can gain a competitive advantage over other methods for the capture of integral images of big 3D scenes. The main advantage of fusing the Kinect and the integral imaging concepts is the acquisition speed, and the small amount of handled data.Originality / Value – In this paper, the authors review their recent methods related to integral 3D display and image processing technique.Research type – general review.

  19. Image artefact propagation in motion estimation and reconstruction in interventional cardiac C-arm CT.

    Science.gov (United States)

    Müller, K; Maier, A K; Schwemmer, C; Lauritsch, G; De Buck, S; Wielandts, J-Y; Hornegger, J; Fahrig, R

    2014-06-21

    The acquisition of data for cardiac imaging using a C-arm computed tomography system requires several seconds and multiple heartbeats. Hence, incorporation of motion correction in the reconstruction step may improve the resulting image quality. Cardiac motion can be estimated by deformable three-dimensional (3D)/3D registration performed on initial 3D images of different heart phases. This motion information can be used for a motion-compensated reconstruction allowing the use of all acquired data for image reconstruction. However, the result of the registration procedure and hence the estimated deformations are influenced by the quality of the initial 3D images. In this paper, the sensitivity of the 3D/3D registration step to the image quality of the initial images is studied. Different reconstruction algorithms are evaluated for a recently proposed cardiac C-arm CT acquisition protocol. The initial 3D images are all based on retrospective electrocardiogram (ECG)-gated data. ECG-gating of data from a single C-arm rotation provides only a few projections per heart phase for image reconstruction. This view sparsity leads to prominent streak artefacts and a poor signal to noise ratio. Five different initial image reconstructions are evaluated: (1) cone beam filtered-backprojection (FDK), (2) cone beam filtered-backprojection and an additional bilateral filter (FFDK), (3) removal of the shadow of dense objects (catheter, pacing electrode, etc) before reconstruction with a cone beam filtered-backprojection (cathFDK), (4) removal of the shadow of dense objects before reconstruction with a cone beam filtered-backprojection and a bilateral filter (cathFFDK). The last method (5) is an iterative few-view reconstruction (FV), the prior image constrained compressed sensing combined with the improved total variation algorithm. All reconstructions are investigated with respect to the final motion-compensated reconstruction quality. The algorithms were tested on a mathematical

  20. Cardiac magnetic resonance imaging after ventricular tachyarrhythmias increases diagnostic precision and reduces the need for family screening for inherited cardiac disease

    DEFF Research Database (Denmark)

    Marstrand, Peter; Axelsson, Anna; Thune, Jens Jakob

    2017-01-01

    -CAG) (81%), exercise stress test (47%), late potentials (54%), electrophysiological study (44%), pharmacological provocation (44%), and/or myocardial biopsy (16%). Family screening was indicated for 53 probands (67%) prior to CMR. After full workup, only 43 cases (54%) warranted evaluation of relatives (19...... magnetic resonance imaging re-defines the cardiac diagnoses in a significant proportion of cases and reduces the number of patients in whom family screening is warranted. Cardiac magnetic resonance imaging is highly relevant for optimal care and resource allocation when an inherited heart disease...

  1. A New Image Steganography Based On First Component Alteration Technique

    CERN Document Server

    Kaur, Amanpreet; Sikka, Geeta

    2010-01-01

    In this paper, A new image steganography scheme is proposed which is a kind of spatial domain technique. In order to hide secret data in cover-image, the first component alteration technique is used. Techniques used so far focuses only on the two or four bits of a pixel in a image (at the most five bits at the edge of an image) which results in less peak to signal noise ratio and high root mean square error. In this technique, 8 bits of blue components of pixels are replaced with secret data bits. Proposed scheme can embed more data than previous schemes and shows better image quality. To prove this scheme, several experiments are performed, and are compared the experimental results with the related previous works.

  2. Effect of Enhancement Technique on Nonuniform and Uniform Ultrasound Images

    Directory of Open Access Journals (Sweden)

    Parveen Lehana

    2015-01-01

    Full Text Available The absence of adequate scientific resources in the area of medical sciences sometimes leads to improper diagnosis of diseases and hence the treatments of such diseases are affected badly. However, with the advancement of technology, the complicacy of various malfunctions inside the human body reduces. Ultrasound imaging is one of the biomedical scanning techniques that let the pathologist make comment reasonably and accurately on the disease or irregularity seen in the scan while low imaging quality lets the diagnosis go wrong. Even a little distortion can route the pathologist away from the main cause of the disease. In this research work, the enhancement of dark ultrasound images has been done. An algorithm is developed using enhancement technique for nonuniform and uniform dark images. Finally, we compared the quality of the processed and unprocessed images. Both ETNUD and mean and median filtering techniques were used for image analysis.

  3. Jet-Images: Computer Vision Inspired Techniques for Jet Tagging

    CERN Document Server

    Cogan, Josh; Strauss, Emanuel; Schwarztman, Ariel

    2014-01-01

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon- initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  4. Optimization of Memory Management in Image Processing using Pipelining Technique

    Directory of Open Access Journals (Sweden)

    P.S. Ramesh

    2015-02-01

    Full Text Available The quality of the image is mainly based on the various phenomena which generally consume lots of memory that needs to be resolved addressed. The handling of the memory is mainly affected due to disorderly arranged pixels in an image. This may lead to salt and pepper noise which will affect the quality of the image. The aim of this study is to remove the salt and pepper noise which is most crucial in image processing fields. In this study, we proposed a technique which combines adaptive mean filtering technique and wavelet transform technique based on pipeline processing to remove intensity spikes from the image and then both Otsu’s and Clahe algorithms are used to enhance the image. The implemented framework produces good results and proves against salt and pepper noise using PSNR algorithm.

  5. Jet-images: computer vision inspired techniques for jet tagging

    Energy Technology Data Exchange (ETDEWEB)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel [SLAC National Accelerator Laboratory,Menlo Park, CA 94028 (United States)

    2015-02-18

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  6. Cardiac gating with a pulse oximeter for dual-energy imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shkumat, N A; Siewerdsen, J H [Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Dhanantwari, A C; Williams, D B [Ontario Cancer Institute, Princess Margaret Hospital, 610 University Ave., Toronto, Ontario, M5G 2M9 (Canada); Paul, N S [Department of Medical Imaging, University Health Network, Toronto, Ontario, M5G 2M9 (Canada); Yorkston, J; Van Metter, R [Carestream Health Inc., Rochester, NY 14650 (United States)], E-mail: jeff.siewerdsen@uhn.on.ca

    2008-11-07

    The development and evaluation of a prototype cardiac gating system for double-shot dual-energy (DE) imaging is described. By acquiring both low- and high-kVp images during the resting phase of the cardiac cycle (diastole), heart misalignment between images can be reduced, thereby decreasing the magnitude of cardiac motion artifacts. For this initial implementation, a fingertip pulse oximeter was employed to measure the peripheral pulse waveform ('plethysmogram'), offering potential logistic, cost and workflow advantages compared to an electrocardiogram. A gating method was developed that accommodates temporal delays due to physiological pulse propagation, oximeter waveform processing and the imaging system (software, filter-wheel, anti-scatter Bucky-grid and flat-panel detector). Modeling the diastolic period allowed the calculation of an implemented delay, t{sub imp}, required to trigger correctly during diastole at any patient heart rate (HR). The model suggests a triggering scheme characterized by two HR regimes, separated by a threshold, HR{sub thresh}. For rates at or below HR{sub thresh}, sufficient time exists to expose on the same heartbeat as the plethysmogram pulse [t{sub imp}(HR) = 0]. Above HR{sub thresh}, a characteristic t{sub imp}(HR) delays exposure to the subsequent heartbeat, accounting for all fixed and variable system delays. Performance was evaluated in terms of accuracy and precision of diastole-trigger coincidence and quantitative evaluation of artifact severity in gated and ungated DE images. Initial implementation indicated 85% accuracy in diastole-trigger coincidence. Through the identification of an improved HR estimation method (modified temporal smoothing of the oximeter waveform), trigger accuracy of 100% could be achieved with improved precision. To quantify the effect of the gating system on DE image quality, human observer tests were conducted to measure the magnitude of cardiac artifact under conditions of successful and

  7. Cardiac gating with a pulse oximeter for dual-energy imaging

    Science.gov (United States)

    Shkumat, N. A.; Siewerdsen, J. H.; Dhanantwari, A. C.; Williams, D. B.; Paul, N. S.; Yorkston, J.; Van Metter, R.

    2008-11-01

    The development and evaluation of a prototype cardiac gating system for double-shot dual-energy (DE) imaging is described. By acquiring both low- and high-kVp images during the resting phase of the cardiac cycle (diastole), heart misalignment between images can be reduced, thereby decreasing the magnitude of cardiac motion artifacts. For this initial implementation, a fingertip pulse oximeter was employed to measure the peripheral pulse waveform ('plethysmogram'), offering potential logistic, cost and workflow advantages compared to an electrocardiogram. A gating method was developed that accommodates temporal delays due to physiological pulse propagation, oximeter waveform processing and the imaging system (software, filter-wheel, anti-scatter Bucky-grid and flat-panel detector). Modeling the diastolic period allowed the calculation of an implemented delay, timp, required to trigger correctly during diastole at any patient heart rate (HR). The model suggests a triggering scheme characterized by two HR regimes, separated by a threshold, HRthresh. For rates at or below HRthresh, sufficient time exists to expose on the same heartbeat as the plethysmogram pulse [timp(HR) = 0]. Above HRthresh, a characteristic timp(HR) delays exposure to the subsequent heartbeat, accounting for all fixed and variable system delays. Performance was evaluated in terms of accuracy and precision of diastole-trigger coincidence and quantitative evaluation of artifact severity in gated and ungated DE images. Initial implementation indicated 85% accuracy in diastole-trigger coincidence. Through the identification of an improved HR estimation method (modified temporal smoothing of the oximeter waveform), trigger accuracy of 100% could be achieved with improved precision. To quantify the effect of the gating system on DE image quality, human observer tests were conducted to measure the magnitude of cardiac artifact under conditions of successful and unsuccessful diastolic gating. Six observers

  8. Murine cardiac images obtained with focusing pinhole SPECT are barely influenced by extra-cardiac activity

    Science.gov (United States)

    Branderhorst, Woutjan; van der Have, Frans; Vastenhouw, Brendan; Viergever, Max A.; Beekman, Freek J.

    2012-02-01

    Ultra-high-resolution SPECT images can be obtained with focused multipinhole collimators. Here we investigate the influence of unwanted high tracer uptake outside the scan volume on reconstructed tracer distributions inside the scan volume, for 99mTc-tetrofosmin myocardial perfusion scanning in mice. Simulated projections of a digital mouse phantom (MOBY) in a focusing multipinhole SPECT system (U-SPECT-II, MILabs, The Netherlands) were generated. With this system differently sized user-defined scan volumes can be selected, by translating the animal in 3D through the focusing collimators. Scan volume selections were set to (i) a minimal volume containing just the heart, acquired without translating the animal during scanning, (ii) a slightly larger scan volume as is typically applied for the heart, requiring only small XYZ translations during scanning, (iii) same as (ii), but extended further transaxially, and (iv) same as (ii), but extended transaxially to cover the full thorax width (gold standard). Despite an overall negative bias that is significant for the minimal scan volume, all selected volumes resulted in visually similar images. Quantitative differences in the reconstructed myocardium between gold standard and the results from the smaller scan volume selections were small; the 17 standardized myocardial segments of a bull's eye plot, normalized to the myocardial mean of the gold standard, deviated on average 6.0%, 2.5% and 1.9% for respectively the minimal, the typical and the extended scan volume, while maximum absolute deviations were respectively 18.6%, 9.0% and 5.2%. Averaged over ten low-count noisy simulations, the mean absolute deviations were respectively 7.9%, 3.2% and 1.9%. In low-count noisy simulations, the mean and maximum absolute deviations for the minimal scan volume could be reduced to respectively 4.2% and 12.5% by performing a short survey scan of the exterior activity and focusing the remaining scan time at the organ of interest. We

  9. Sarcomere Imaging by Quantum Dots for the Study of Cardiac Muscle Physiology

    Directory of Open Access Journals (Sweden)

    Fuyu Kobirumaki-Shimozawa

    2012-01-01

    Full Text Available We here review the use of quantum dots (QDs for the imaging of sarcomeric movements in cardiac muscle. QDs are fluorescence substances (CdSe that absorb photons and reemit photons at a different wavelength (depending on the size of the particle; they are efficient in generating long-lasting, narrow symmetric emission profiles, and hence useful in various types of imaging studies. Recently, we developed a novel system in which the length of a particular, single sarcomere in cardiomyocytes can be measured at ~30 nm precision. Moreover, our system enables accurate measurement of sarcomere length in the isolated heart. We propose that QDs are the ideal tool for the study of sarcomere dynamics during excitation-contraction coupling in healthy and diseased cardiac muscle.

  10. Detection of late radiation damage on left atrial fibrosis using cardiac late gadolinium enhancement magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Y. Jessica Huang, PhD

    2016-04-01

    Conclusions: With LGE-MRI and 3-dimensional dose mapping on the treatment planning system, it is possible to define subclinical cardiac damage and distinguish intrinsic cardiac tissue change from radiation induced cardiac tissue damage. Imaging myocardial injury secondary to EBRT using MRI may be a useful modality to follow cardiac toxicity from EBRT and help identify individuals who are more susceptible to EBRT damage. LGE-MRI may provide essential information to identify early screening strategy for affected cancer survivors after EBRT treatment.

  11. Hierarchical clustering techniques for image database organization and summarization

    Science.gov (United States)

    Vellaikal, Asha; Kuo, C.-C. Jay

    1998-10-01

    This paper investigates clustering techniques as a method of organizing image databases to support popular visual management functions such as searching, browsing and navigation. Different types of hierarchical agglomerative clustering techniques are studied as a method of organizing features space as well as summarizing image groups by the selection of a few appropriate representatives. Retrieval performance using both single and multiple level hierarchies are experimented with and the algorithms show an interesting relationship between the top k correct retrievals and the number of comparisons required. Some arguments are given to support the use of such cluster-based techniques for managing distributed image databases.

  12. Interventional guidance for cardiac resynchronization therapies: merging anatomic X-ray imaging with functional ultrasound imaging based on mutually-shared landmarks

    Energy Technology Data Exchange (ETDEWEB)

    Manzke, R.; Shechter, G.; Gutierrez, L.; Chan, R.C. [Philips Research North America, Briarcliff Manor, NY (United States); Tournoux, F.; Singh, J.; Picard, M. [Dept. of Cardiology, Massachusetts General Hospital, Harvard Medical School (United States); Brink, B. v.d.; Boomen, R. v.d. [Philips Medical System, Best (Netherlands); Gerard, O. [Philips Medical Systems, Paris (France)

    2007-06-15

    Detailed knowledge of cardiac anatomy and function is required for complex cardiac electrophysiology interventions. Cardiac resynchronization therapies (CRT), for example, requires information about coronary venous anatomy for left ventricular lead placement. In CRT, heart failure patients are equipped with dual-chamber pacemakers in order to improve cardiac output and heart failure symptoms. Cardiac function is mainly assessed with Ultrasound imaging. Fusion of complementary information from X-ray and ultrasound is an essential step towards fully utilizing all available information for CRT guidance. We present an approach for fusion of anatomical information (coronary vein structure) from X-ray with functional information (left ventricular deformation and dynamics) from ultrasound. We propose an image-based fusion approach based on mutually-shared landmarks which enable registration of both imaging spaces without the need for external tracking. (orig.)

  13. Optical image segmentation using wavelet filtering techniques

    Science.gov (United States)

    Veronin, Christopher P.

    1990-12-01

    This research effort successfully implemented an automatic, optically based image segmentation scheme for locating potential targets in a cluttered FLIR image. Such a design is critical to achieve real-time segmentation and classification for machine vision applications. The segmentation scheme used in this research was based on texture discrimination and employs orientation specific, bandpass spatial filters as its main component. The orientation specific, bandpass spatial filters designed during this research include symmetrically located circular apertures implemented on heavy, black aluminum foil; cosine and sine Gabor filters implemented with detour-phase computer generated holography photoreduced onto glass slides; and symmetrically located circular apertures implemented on a liquid crystal television (LCTV) for real-time filter selection. The most successful design was the circular aperture pairs implemented on the aluminum foil. Segmentation was illustrated for simple and complex texture slides, glass template slides, and static and real-time FLIR imagery displayed on an LCTV.

  14. Multiple Myeloma: A Review of Imaging Features and Radiological Techniques

    Directory of Open Access Journals (Sweden)

    C. F. Healy

    2011-01-01

    Full Text Available The recently updated Durie/Salmon PLUS staging system published in 2006 highlights the many advances that have been made in the imaging of multiple myeloma, a common malignancy of plasma cells. In this article, we shall focus primarily on the more sensitive and specific whole-body imaging techniques, including whole-body computed tomography, whole-body magnetic resonance imaging, and positron emission computed tomography. We shall also discuss new and emerging imaging techniques and future developments in the radiological assessment of multiple myeloma.

  15. Image and video compression fundamentals, techniques, and applications

    CERN Document Server

    Joshi, Madhuri A; Dandawate, Yogesh H; Joshi, Kalyani R; Metkar, Shilpa P

    2014-01-01

    Image and video signals require large transmission bandwidth and storage, leading to high costs. The data must be compressed without a loss or with a small loss of quality. Thus, efficient image and video compression algorithms play a significant role in the storage and transmission of data.Image and Video Compression: Fundamentals, Techniques, and Applications explains the major techniques for image and video compression and demonstrates their practical implementation using MATLAB® programs. Designed for students, researchers, and practicing engineers, the book presents both basic principles

  16. A review of imaging techniques for systems biology

    Directory of Open Access Journals (Sweden)

    Po Ming J

    2008-08-01

    Full Text Available Abstract This paper presents a review of imaging techniques and of their utility in system biology. During the last decade systems biology has matured into a distinct field and imaging has been increasingly used to enable the interplay of experimental and theoretical biology. In this review, we describe and compare the roles of microscopy, ultrasound, CT (Computed Tomography, MRI (Magnetic Resonance Imaging, PET (Positron Emission Tomography, and molecular probes such as quantum dots and nanoshells in systems biology. As a unified application area among these different imaging techniques, examples in cancer targeting are highlighted.

  17. Multiple myeloma: a review of imaging features and radiological techniques.

    Science.gov (United States)

    Healy, C F; Murray, J G; Eustace, S J; Madewell, J; O'Gorman, P J; O'Sullivan, P

    2011-01-01

    The recently updated Durie/Salmon PLUS staging system published in 2006 highlights the many advances that have been made in the imaging of multiple myeloma, a common malignancy of plasma cells. In this article, we shall focus primarily on the more sensitive and specific whole-body imaging techniques, including whole-body computed tomography, whole-body magnetic resonance imaging, and positron emission computed tomography. We shall also discuss new and emerging imaging techniques and future developments in the radiological assessment of multiple myeloma.

  18. Automated thermal mapping techniques using chromatic image analysis

    Science.gov (United States)

    Buck, Gregory M.

    1989-01-01

    Thermal imaging techniques are introduced using a chromatic image analysis system and temperature sensitive coatings. These techniques are used for thermal mapping and surface heat transfer measurements on aerothermodynamic test models in hypersonic wind tunnels. Measurements are made on complex vehicle configurations in a timely manner and at minimal expense. The image analysis system uses separate wavelength filtered images to analyze surface spectral intensity data. The system was initially developed for quantitative surface temperature mapping using two-color thermographic phosphors but was found useful in interpreting phase change paint and liquid crystal data as well.

  19. Reticle defect sizing of optical proximity correction defects using SEM imaging and image analysis techniques

    Science.gov (United States)

    Zurbrick, Larry S.; Wang, Lantian; Konicek, Paul; Laird, Ellen R.

    2000-07-01

    Sizing of programmed defects on optical proximity correction (OPC) feature sis addressed using high resolution scanning electron microscope (SEM) images and image analysis techniques. A comparison and analysis of different sizing methods is made. This paper addresses the issues of OPC defect definition and discusses the experimental measurement results obtained by SEM in combination with image analysis techniques.

  20. Efficient imaging techniques using an ultrasonic array

    Science.gov (United States)

    Moreau, L.; Hunter, A. J.; Drinkwater, B. W.; Wilcox, P. D.

    2010-03-01

    Over the past few years, ultrasonic phased arrays have shown good potential for non-destructive testing (NDT), thanks to high resolution imaging algorithms that allow the characterization of defects in a structure. Many algorithms are based on the full matrix capture, obtained by firing each element of an ultrasonic array independently, while collecting the data with all elements. Because of the finite sound velocity in the specimen, two consecutive firings must be separated by a minimum time interval. Therefore, more elements in the array require longer data acquisition times. Moreover, if the array has N elements, then the full matrix contains N2 temporal signals to be processed. Because of the limited calculation speed of current computers, a large matrix of data can result in rather long post-processing times. In an industrial context where real-time imaging is desirable, it is crucial to reduce acquisition and/or post-processing times. This paper investigates methods designed to reduce acquisition and post-processing times for the TFM and wavenumber algorithms. To reduce data capture and post-processing, limited transmission cycles are used. Post-processing times is also further reduced by demodulating the data to baseband, which allows reducing the sampling rate of signals. Results are presented so that a compromise can be made between acquisition time, post-processing time and image quality. Possible improvement of images quality, using the effective aperture theory, is discussed. This has been implemented for the TFM but it still has to be developed for the wavenumber algorithm.

  1. Terahertz spectroscopy and imaging – Modern techniques and applications

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Cooke, David; Koch, Martin

    2011-01-01

    Over the past three decades a new spectroscopic technique with unique possibilities has emerged. Based on coherent and time-resolved detection of the electric field of ultrashort radiation bursts in the far-infrared, this technique has become known as terahertz time-domain spectroscopy (THz-TDS)....... of research, where THz spectroscopic techniques have proven to be useful research tools, and the potential for industrial applications of THz spectroscopic and imaging techniques are discussed....

  2. Employing image processing techniques for cancer detection using microarray images.

    Science.gov (United States)

    Dehghan Khalilabad, Nastaran; Hassanpour, Hamid

    2017-02-01

    Microarray technology is a powerful genomic tool for simultaneously studying and analyzing the behavior of thousands of genes. The analysis of images obtained from this technology plays a critical role in the detection and treatment of diseases. The aim of the current study is to develop an automated system for analyzing data from microarray images in order to detect cancerous cases. The proposed system consists of three main phases, namely image processing, data mining, and the detection of the disease. The image processing phase performs operations such as refining image rotation, gridding (locating genes) and extracting raw data from images the data mining includes normalizing the extracted data and selecting the more effective genes. Finally, via the extracted data, cancerous cell is recognized. To evaluate the performance of the proposed system, microarray database is employed which includes Breast cancer, Myeloid Leukemia and Lymphomas from the Stanford Microarray Database. The results indicate that the proposed system is able to identify the type of cancer from the data set with an accuracy of 95.45%, 94.11%, and 100%, respectively.

  3. New approaches in intelligent image analysis techniques, methodologies and applications

    CERN Document Server

    Nakamatsu, Kazumi

    2016-01-01

    This book presents an Introduction and 11 independent chapters, which are devoted to various new approaches of intelligent image processing and analysis. The book also presents new methods, algorithms and applied systems for intelligent image processing, on the following basic topics: Methods for Hierarchical Image Decomposition; Intelligent Digital Signal Processing and Feature Extraction; Data Clustering and Visualization via Echo State Networks; Clustering of Natural Images in Automatic Image Annotation Systems; Control System for Remote Sensing Image Processing; Tissue Segmentation of MR Brain Images Sequence; Kidney Cysts Segmentation in CT Images; Audio Visual Attention Models in Mobile Robots Navigation; Local Adaptive Image Processing; Learning Techniques for Intelligent Access Control; Resolution Improvement in Acoustic Maps. Each chapter is self-contained with its own references. Some of the chapters are devoted to the theoretical aspects while the others are presenting the practical aspects and the...

  4. Comparison of Satellite Image Enhancement Techniques in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    K. Narasimhan

    2012-12-01

    Full Text Available In this study, a comparison of various existing satellite image resolution enhancement techniques in wavelet domain is done. Each method is analysed quantitatively and visually. There are various wavelet domain based methods such as Wavelet Zero Padding, Dual Tree-Complex Wavelet Transform, Discrete Wavelet Transform, Cycle Spinning and Undecimated Wavelet Transform. On the basis of analysis, the most efficient method is proposed. The algorithms take the low resolution image as the input image and then wavelet transformation using daubechies (db3 is used to decompose the input image into different sub band images containing high and low frequency component. Then these subband images along with the input image are interpolated followed by combining all these images to generate a new resolution enhanced image by an inverse process.

  5. A Comparison of X-Ray Image Segmentation Techniques

    Directory of Open Access Journals (Sweden)

    STOLOJESCU-CRISAN, C.

    2013-08-01

    Full Text Available Image segmentation operation has a great importance in most medical imaging applications, by extracting anatomical structures from medical images. There are many image segmentation techniques available in the literature, each of them having advantages and disadvantages. The extraction of bone contours from X-ray images has received a considerable amount of attention in the literature recently, because they represent a vital step in the computer analysis of this kind of images. The aim of X-ray segmentation is to subdivide the image in various portions, so that it can help doctors during the study of the bone structure, for the detection of fractures in bones, or for planning the treatment before surgery. The goal of this paper is to review the most important image segmentation methods starting from a data base composed by real X-ray images. We will discuss the principle and the mathematical model for each method, highlighting the strengths and weaknesses.

  6. /sup 201/Tl myocardial imaging in a cardiac rejection episode. Case report

    Energy Technology Data Exchange (ETDEWEB)

    Richter, J.; Serena, A.; Charvet, M.A.; Honorato, J.; Herreros, J.; Arcas, R.; Pardo, J.; Azanza, J.R.

    1986-01-01

    Serial myocardial imaging using thallium Tl 207 was performed in the early follow-up of two patients with orthotopic cardiac transplantation. In one patient, non-homogeneous uptake, small defects and an irregular myocardial edge were observed during a moderately acute rejection crisis revealed by endomyocardial biopsy. The abnormal gammagraphic findings and histological changes were coincident and exhibited a parallel reversal. We emphasize the connection between these two events. The mechanisms which could explain these phenomena are discussed. (orig.).

  7. Retrospective reconstruction of cardiac cine images from golden-ratio radial MRI using one-dimensional navigators.

    Science.gov (United States)

    Krämer, Martin; Herrmann, Karl-Heinz; Biermann, Judith; Reichenbach, Jurgen R

    2014-08-01

    To demonstrate radial golden-ratio-based cardiac cine imaging by using interspersed one-dimensional (1D) navigators. The 1D navigators were interspersed into the acquisition of radial spokes which were continuously rotated by an angle increment based on the golden-ratio. Performing correlation analysis between the 1D navigator projections, time points corresponding to the same cardiac motion phases were automatically identified and used to combine retrospectively golden-ratio rotated radial spokes from multiple data windows. Data windows were shifted consecutively for dynamic reconstruction of different cardiac motion frames. Experiments were performed during a single breathhold. By artificially reducing the amount of input data, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as well as artifact level was evaluated for different breathhold durations. Analysis of the 1D navigator data provided a detailed correlation function revealing cardiac motion over time. Imaging results were comparable to images reconstructed based on a timely synchronized ECG. Cardiac cine images with a low artifact level and good image quality in terms of SNR and CNR were reconstructed from volunteer data achieving a CNR between the myocardium and the left ventricular cavity of 50 for the longest breathhold duration of 26 s. CNR maintained a value higher than 30 for acquisition times as low as 10 s. Combining radial golden-ratio-based imaging with an intrinsic navigator is a promising and robust method for performing high quality cardiac cine imaging. © 2013 Wiley Periodicals, Inc.

  8. Optical double image encryption employing a pseudo image technique in the Fourier domain

    Science.gov (United States)

    Guo, Changliang; Liu, Shi; Sheridan, John T.

    2014-06-01

    A novel optical encryption method is proposed involving double image encryption in which one image is introduced as the pseudo image while the other is the original object image. The Double Random Phase Encoding technique is used to encrypt both the pseudo and object images into complex images. A unique binary image is then employed to first generate the random phase key for the object image encryption and then to embed the encrypted object image into the encrypted pseudo image, which acts as host image. Both the second random phase mask used for encoding the pseudo image and the binary image act as encryption keys. If an attacker attempts to crack the random phase key and decrypt the original object image, the pseudo image will be obtained instead. Simulation results and robustness tests are performed which demonstrate the feasibility of the algorithm.

  9. Cardiac Imaging for Assessing Low-Gradient Severe Aortic Stenosis.

    Science.gov (United States)

    Clavel, Marie-Annick; Burwash, Ian G; Pibarot, Philippe

    2017-02-01

    Up to 40% of patients with aortic stenosis (AS) harbor discordant Doppler-echocardiographic findings, the most common of which is the presence of a small aortic valve area (≤1.0 cm(2)) suggesting severe AS, but a low gradient (<40 mm Hg) suggesting nonsevere AS. The purpose of this paper is to present the role of multimodality imaging in the diagnostic and therapeutic management of this challenging entity referred to as low-gradient AS. Doppler-echocardiography is critical to determine the subtype of low-gradient AS: that is, classical low-flow, paradoxical low-flow, or normal-flow. Patients with low-flow, low-gradient AS generally have a worse prognosis compared with patients with high-gradient or with normal-flow, low-gradient AS. Patients with low-gradient AS and evidence of severe AS benefit from aortic valve replacement (AVR). However, confirmation of the presence of severe AS is particularly challenging in these patients and requires a multimodality imaging approach including low-dose dobutamine stress echocardiography and aortic valve calcium scoring by multidetector computed tomography. Transcatheter AVR using a transfemoral approach may be superior to surgical AVR in patients with low-flow, low-gradient AS. Further studies are needed to confirm the best valve replacement procedure and prosthetic valve for each category of low-gradient AS and to identify patients with low-gradient AS in whom AVR is likely to be futile.

  10. Interpretation of cardiac wall motion from cine-MRI combined with parametric imaging based on the Hilbert transform.

    Science.gov (United States)

    Benameur, Narjes; Caiani, Enrico Gianluca; Arous, Younes; Abdallah, Nejmeddine Ben; Kraiem, Tarek

    2017-08-01

    The aim of this study was to test and validate the clinical impact of parametric amplitude images obtained using the Hilbert transform on the regional interpretation of cardiac wall motion abnormalities from cine-MR images by non-expert radiologists compared with expert consensus. Cine-MRI short-axis images obtained in 20 patients (10 with myocardial infarction, 5 with myocarditis and 5 with normal function) were processed to compute a parametric amplitude image for each using the Hilbert transform. Two expert radiologists blindly reviewed the cine-MR images to define a gold standard for wall motion interpretation for each left ventricular sector. Two non-expert radiologists reviewed and graded the same images without and in combination with parametric images. Grades assigned to each segment in the two separate sessions were compared with the gold standard. According to expert interpretation, 264/320 (82.5%) segments were classified as normal and 56/320 (17.5%) were considered abnormal. The accuracy of the non-expert radiologists' grades compared to the gold standard was significantly improved by adding parametric images (from 87.2 to 94.6%) together with sensitivity (from 64.29 to 84.4%) and specificity (from 92 to 96.9%), also resulting in reduced interobserver variability (from 12.8 to 5.6%). The use of parametric amplitude images based on the Hilbert transform in conjunction with cine-MRI was shown to be a promising technique for improvement of the detection of left ventricular wall motion abnormalities in less expert radiologists.

  11. Investigation of the relationship between regression of hypertensive cardiac hypertrophy and improvement of cardiac sympathetic nervous dysfunction using iodine-123 metaiodobenzylguanidine myocardial imaging

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Satoshi [Dept. of Internal Medicine, Murakami Memorial Hospital, Asahi Univ., Gifu (Japan); Terada, Koji [Dept. of Internal Medicine, Murakami Memorial Hospital, Asahi Univ., Gifu (Japan); Keira, Natsuya [Dept. of Internal Medicine, Murakami Memorial Hospital, Asahi Univ., Gifu (Japan); Satoda, Masahiko [Dept. of Internal Medicine, Murakami Memorial Hospital, Asahi Univ., Gifu (Japan); Inoue, Keiji [Dept. of Internal Medicine, Murakami Memorial Hospital, Asahi Univ., Gifu (Japan); Tatsukawa, Hirotaka [Dept. of Internal Medicine, Murakami Memorial Hospital, Asahi Univ., Gifu (Japan); Katoh, Shuji [Dept. of Internal Medicine, Murakami Memorial Hospital, Asahi Univ., Gifu (Japan); Ida, Kazunori [Dept. of Internal Medicine, Murakami Memorial Hospital, Asahi Univ., Gifu (Japan); Sugihara, Hiroki [Dept. of Radiology, Kyoto Prefectural Univ. of Medicine (Japan); Takeda, Kazuo [Second Dept. of Medicine, Kyoto Prefectural Univ. of Medicine (Japan); Nakagawa, Masao [Second Dept. of Medicine, Kyoto Prefectural Univ. of Medicine (Japan)

    1996-07-01

    Although many theories exist on the subject, the mechanisms responsible for a reduction of hypertensive cardiac hypertrophy in response to antihypertensive therapy are still unclear. In order to investigate the relationship between regression of hypertensive cardiac hypertrophy and cardiac nervous function, we studied ten patients with untreated essential hypertension (six men and four women, 62{+-}12 years old). Both echocardiography and iodine-123 metaiodobenzylguanidine (MIBG) myocardial imaging were performed before and after antihypertensive therapy. Left ventricular mass (LVM) was significantly reduced in conjunction with the reduction of blood pressure following treatment. MIBG myocardial images showed that the heart-to-mediastinum activity ratio (H/M) was significantly increased while the washout ratio was significantly decreased. Patients were divided into two groups according to the ratio of the LVM values before and after therapy (LVM ratio). Patients with an LVM ratio of less than 0.75 were classified as group A and those with values higher than 0.75 as group B. Neither the change in blood pressure nor the length of treatment was significantly different between these two groups. On the other hand, both the increase in H/M and the decrease in the washout ratio were significantly greater in group A than in group B. These results indicate that an improvement in cardiac sympathetic nervous function may be related to the regression of hypertensive cardiac hypertrophy. Increasing the subject base in these studies and a more precise analysis of the relevance of the data obtained from MIBG myocardial images are recommended to clarify how changes in cardiac sympathetic nervous function relate to the regression of hypertensive cardiac hypertrophy. (orig.)

  12. Cardiac radiology: centenary review.

    Science.gov (United States)

    de Roos, Albert; Higgins, Charles B

    2014-11-01

    During the past century, cardiac imaging technologies have revolutionized the diagnosis and treatment of acquired and congenital heart disease. Many important contributions to the field of cardiac imaging were initially reported in Radiology. The field developed from the early stages of cardiac imaging, including the use of coronary x-ray angiography and roentgen kymography, to nowadays the widely used echocardiographic, nuclear medicine, cardiac computed tomographic (CT), and magnetic resonance (MR) applications. It is surprising how many of these techniques were not recognized for their potential during their early inception. Some techniques were described in the literature but required many years to enter the clinical arena and presently continue to expand in terms of clinical application. The application of various CT and MR contrast agents for the diagnosis of myocardial ischemia is a case in point, as the utility of contrast agents continues to expand the noninvasive characterization of myocardium. The history of cardiac imaging has included a continuous process of advances in our understanding of the anatomy and physiology of the cardiovascular system, along with advances in imaging technology that continue to the present day.

  13. Cardiac pathologies in female carriers of Duchenne muscular dystrophy assessed by cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schelhorn, Juliane; Schemuth, Haemi; Nensa, Felix; Nassenstein, Kai; Forsting, Michael; Schlosser, Thomas [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Schoenecker, Anne; Neudorf, Ulrich [University Hospital Essen, Department of Pediatric Cardiology, Essen (Germany); Schara, Ulrike [University Hospital Essen, Department of Pediatric Neurology, Essen (Germany)

    2015-10-15

    Duchenne muscular dystrophy (DMD) is the most common and severe dystrophinopathy. DMD carriers rarely present with clinical symptoms, but may suffer from cardiac involvement. Because echocardiographic findings are inconsistent and cardiac magnetic resonance imaging (CMRI) data are limited, this study sought to investigate asymptomatic carriers for cardiac abnormalities using CMRI. Fifteen genetically confirmed DMD carriers (age, 32.3 ± 10.2 years) were prospectively examined on a 1.5T MR system. Cine, T2, and late-gadolinium-enhanced (LGE) images were acquired, and were evaluated in consensus by two experienced readers. Left ventricular (LV) parameters were analysed semiautomatically, normalized to BSA. Normalized LV end-diastolic volume was increased in 7 % (73.7 ± 16.8 ml/m{sup 2}; range, 48-116 ml/m{sup 2}) and normalized LV end-systolic volume in 20 % (31.5 ± 13.3 ml/m{sup 2}; range, 15-74 ml/m{sup 2}). EF was reduced in 33 % (58.4 ± 7.6 %; range, 37-69 %) and normalized LV myocardial mass in 80 % (40.5 ± 6.8 g/m{sup 2}; range, 31-55 g/m{sup 2}). In 80 %, regional myocardial thinning was detected in more than one segment. In 13 % and 40 %, apical-lateral accentuation of LV non-compaction was present. LGE was found in 60 % (midmyocardial inferolateral accentuation). Given the high frequency of cardiac pathologies detected by CMRI, regular cardiac risk assessment is advisable for DMD carriers. Besides clinical examination, CMRI is an excellent tool for this purpose. (orig.)

  14. Radiation exposure of cardiac sonographers working in an academic noninvasive cardiovascular imaging laboratory.

    Science.gov (United States)

    Velez, Michael R; Orsinelli, Maryellen H; Orsinelli, David A

    2017-09-24

    Exposure to workplace radiation among cardiac sonographers has been felt to be low, and patient-related sources have been considered negligible. Sonographers may be exposed to radiation from patient emitted sources as well as external sources in interventional laboratories. This study quantified radiation exposure to cardiac sonographers. Cardiac sonographers, vascular imaging technologists, exercise physiologists, noninvasive nursing staff, and CT/MRI technologists were provided body dosimeter badges. Sonographers were provided dosimeter rings for their scanning hands. Radiation exposure was quantified from the dosimeter data, reported in millirems (mrem) for deep, eye, and shallow exposure, as well as shallow exposure data from the rings. Data were prospectively collected for 63 employees over a 12-month period and retrospectively analyzed. The mean annual deep body exposure in sonographers was 8.2 mrem/year, shallow exposure 9.8 mrem/year, eye exposure 8.5 mrem/year, and ring exposure 207 mrem/year. There was a significant difference between body and ring exposure (P = .0002). When comparing exposure data between the vascular imaging technologists, CT/MRI technologists, noninvasive nursing staff, and the cardiac sonographers, there were no statistical differences (P > .23). Exercise physiologists had significantly higher exposure compared to sonographers (P exposure is low, cardiac sonographers are exposed to workplace radiation, most likely from patient emitted radiation. The finding that radiation exposure from rings exceeded body exposure supports this conclusion. Continued education and assessment of work flow practices should be employed to minimize staff radiation exposure. © 2017, Wiley Periodicals, Inc.

  15. Visualization of sound generation: special imaging techniques

    Science.gov (United States)

    Hahlweg, Cornelius F.; Skaloud, Daniel C.; Gutzmann, Holger L.; Kutz, Sascha; Rothe, Hendrik

    2013-09-01

    The present paper is dedicated to the Optics and Music session of the Novel Systems Design and Optimization XVI Conference. It is intended as an informative paper for the music enthusiasts. Included are some examples of visualization of sound generation and vibration modes of musically relevant objects and processes - record playback, an electric guitar and a wine glass - using high speed video, borescopic view and cross polarization techniques.

  16. First pass cable artefact correction for cardiac C-arm CT imaging.

    Science.gov (United States)

    Haase, C; Schäfer, D; Kim, M; Chen, S J; Carroll, J D; Eshuis, P; Dössel, O; Grass, M

    2014-07-21

    Cardiac C-arm CT imaging delivers a tomographic region-of-interest reconstruction of the patient's heart during image guided catheter interventions. Due to the limited size of the flat detector a volume image is reconstructed, which is truncated in the cone-beam (along the patient axis) and the fan-beam (in the transaxial plane) direction. To practically address this local tomography problem correction methods, like projection extension, are available for first pass image reconstruction. For second pass correction methods, like metal artefact reduction, alternative correction schemes are required when the field of view is limited to a region-of-interest of the patient. In classical CT imaging metal artefacts are corrected by metal identification in a first volume reconstruction and generation of a corrected projection data set followed by a second reconstruction. This approach fails when the metal structures are located outside the reconstruction field of view. When a C-arm CT is performed during a cardiac intervention pacing leads and other cables are frequently positioned on the patients skin, which results in propagating streak artefacts in the reconstruction volume. A first pass approach to reduce this type of artefact is introduced and evaluated here. It makes use of the fact that the projected position of objects outside the reconstruction volume changes with the projection perspective. It is shown that projection based identification, tracking and removal of high contrast structures like cables, only detected in a subset of the projections, delivers a more consistent reconstruction volume with reduced artefact level. The method is quantitatively evaluated based on 50 simulations using cardiac CT data sets with variable cable positioning. These data sets are forward projected using a C-arm CT system geometry and generate artefacts comparable to those observed in clinical cardiac C-arm CT acquisitions. A C-arm CT simulation of every cardiac CT data set without

  17. A New Image Fusion Technique to Improve the Quality of Remote Sensing images

    Directory of Open Access Journals (Sweden)

    Aboubaker Milad Ahmed

    2013-01-01

    Full Text Available Image fusion is a process of producing a single fused image from a set of input images. In this paper a new fusion technique based on the use of independent component analysis (ICA and IHS transformation is proposed. A comparison of this new technique with PCA, IHS, and ICA-based fusion techniques is given. Quick Bird data are used to test these techniques, the output was evaluated using subjective comparison, statistical correlation, information entropy, mean square error, and standard deviation. The results of the proposed technique show higher performance compared to the other techniques.

  18. Technique development for photoacoustic imaging guided interventions

    Science.gov (United States)

    Cheng, Qian; Zhang, Haonan; Yuan, Jie; Feng, Ting; Xu, Guan; Wang, Xueding

    2015-03-01

    Laser-induced thermotherapy (LITT), i.e. tissue destruction induced by a local increase of temperature by means of laser light energy transmission, has been frequently used for minimally invasive treatments of various diseases such as benign thyroid nodules and liver cancer. The emerging photoacoustic (PA) imaging, when integrated with ultrasound (US), could contribute to LITT procedure. PA can enable a good visualization of percutaneous apparatus deep inside tissue and, therefore, can offer accurate guidance of the optical fibers to the target tissue. Our initial experiment demonstrated that, by picking the strong photoacoustic signals generated at the tips of optical fibers as a needle, the trajectory and position of the fibers could be visualized clearly using a commercial available US unit. When working the conventional US Bscan mode, the fibers disappeared when the angle between the fibers and the probe surface was larger than 60 degree; while working on the new PA mode, the fibers could be visualized without any problem even when the angle between the fibers and the probe surface was larger than 75 degree. Moreover, with PA imaging function integrated, the optical fibers positioned into the target tissue, besides delivering optical energy for thermotherapy, can also be used to generate PA signals for on-line evaluation of LITT. Powered by our recently developed PA physio-chemical analysis, PA measurements from the tissue can provide a direct and accurate feedback of the tissue responses to laser ablation, including the changes in not only chemical compositions but also histological microstructures. The initial experiment on the rat liver model has demonstrated the excellent sensitivity of PA imaging to the changes in tissue temperature rise and tissue status (from native to coagulated) when the tissue is treated in vivo with LITT.

  19. An Useful Information Extraction using Image Mining Techniques from Remotely Sensed Image (RSI)

    OpenAIRE

    Dr. C. Jothi Venkateswaran,; Murugan, S.; Dr. N. Radhakrishnan

    2010-01-01

    Information extraction using mining techniques from remote sensing image (RSI) is rapidly gaining attention among researchers and decision makers because of its potential in application oriented studies. Knowledge discovery from image poses many interesting challenges such as preprocessing the image data set, training the data and discovering useful image patterns applicable to many newapplication frontiers. In the image rich domain of RSI, image mining implies the synergy of data mining and ...

  20. CATEGORICAL IMAGE COMPONENTS IN THE FORMING SYSTEM OF A MARKETING TECHNIQUES MANAGER’S IMAGE CULTURE

    OpenAIRE

    Anna Borisovna Cherednyakova

    2015-01-01

    Based on the understanding of the image culture formation of managers of marketing techniques, as a representative of the social and communication interaction of public structures, categorical apparatus of image culture with an emphasis on the etymology of the image, as an integral component of image culture was analyzed. Categorical components of the image are presented from the standpoint of image culture, as personal new formation, an integral part of the professional activity of the marke...

  1. An improved technique for the prediction of optimal image resolution ...

    African Journals Online (AJOL)

    user

    2010-10-04

    Oct 4, 2010 ... Key words: Optimal resolution, savannah ecosystems, image noise index, land cover index, .... Most techniques, including those employed by Mugisha .... Resampling imagery using cubic convolution was used because it.

  2. Segmentation techniques for extracting humans from thermal images

    CSIR Research Space (South Africa)

    Dickens, JS

    2011-11-01

    Full Text Available A pedestrian detection system for underground mine vehicles is being developed that requires the segmentation of people from thermal images in underground mine tunnels. A number of thresholding techniques are outlined and their performance on a...

  3. Colored Digital Image Watermarking using the Wavelet Technique

    Directory of Open Access Journals (Sweden)

    Mohammed F. Al-Hunaity

    2007-01-01

    Full Text Available With the revolution of information technology and Wide Area Networking, data has become less and less private where the access of media as well as the attempts to change and manipulate the contents of media data have become a common case. For that, we need to use a watermarking technique to protect the copyright of the media as well as for digital right management but without leaving a visual effect. We presented a watermarking technique that deals with images where the used technique to embed a wavelet compressed watermark image within the least significant bit (LSB of the cover image pixels in a specific pattern which won't be visible after embedding and will cause the cover image to become copyrighted using the embedded watermark image that can be extracted later.

  4. Extraction of Information from Images using Dewrapping Techniques

    Directory of Open Access Journals (Sweden)

    Khalid Nazim S. A.

    2010-11-01

    Full Text Available An image containing textual information is called a document image. The textual information in document images is useful in areas like vehicle number plate reading, passport reading and cargo container reading and so on. Thus extracting useful textual information in the document image plays an important role in many applications. One of the major challenges in camera document analysis is to deal with the wrap and perspective distortions. In spite of the prevalence of dewrapping techniques, there is no standard efficient algorithm for the performance evaluation that concentrates on visualization. Wrapping is a common appearance document image before recognition. In order to capture the document images a mobile camera of 2megapixel resolution is used. A database is developed with variations in background, size and colour along with wrapped images, blurred and clean images. This database will be explored and text extraction from those document images is performed. In case of wrapped images no efficient dewrapping techniques have been implemented till date. Thus extracting the text from the wrapped images is done by maintaining a suitable template database. Further, the extracted text from the wrapped or other document images will be converted into an editable form such as Notepad or MS word document. The experimental results were corroborated on various objects of database.

  5. Role of speckle tracking imaging in the assessment of myocardial regional ventricular function in experimental blunt cardiac injury

    Institute of Scientific and Technical Information of China (English)

    Wen-Hua Du; Xiang Wang; Xiu-Qin Xiong; Tao Li; Hua-Ping Liang

    2015-01-01

    Purpose:To evaluate the usefulness and information collecting ability of speckle tracking imaging techniques in the assessment of myocardial regional ventricular contractility in a rabbit model with blunt cardiac injury.Methods:Fifteen healthy New Zealand rabbits weighing (2.70 ± 0.28) kg were anesthetized (3% pentobarbital sodium/i.v) and impacted using the BIM-Ⅱ biological impact machine to induce myocardial contusion (MC).Hemodynamic parameters,such as heart rate,systolic pressure,mean arterial pressure,diastolic pressure and central venous pressure,were determined before and after MC.Further,parameters reflecting left ventricular functions,such as left ventricular end systolic pressure,left ventricular end diastolic pressure,isovolumic pressure (IP) and the maximal increasing/decreasing rate of left intraventricular pressure (±dp/dtmax),were also determined before and after MC.Left ventricular functions were determined either by two dimensional transthoracic echocardiography or by speckle tracking imaging for segmental abnormal ventricular wall motions.Results:Heart rate,systolic pressure,diastolic pressure and mean arterial pressure decreased significantly but transiently,while central venous pressure markedly increased after MC.In contrast to significant changes in diastolic functions,there was no significant change in cardiac systolic functions after MC.The speckle tracking imaging demonstrated that strain values of different myocardial segment significantly decreased post impact,and that of the ventricular segment decreased from segment to segment.Conclusion:Speckle tracking imaging is useful and informative to assess myocardial regional dysfunctions post MC.

  6. Bore hole image well logging technique

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Young Kwon; Kim, Geon Young; Bae, Dae Seok; Kim, Kyung Su; Ryu, Ji Hoon; Park, Kyung Woo; Ji, Sung Hoon

    2009-08-15

    As one of the investigation method which the underground geological features is direct drill investigation geological features condition of underground directness it will can confirm visually there is a strong point but the drill nose in compliance with war potential or a shock from the digging through process which it knows the orientation scattering, or, the capital where the destruction action which is mechanical will accompany it will be, also to the case where the ground condition is defective the nose Oh there is a possibility of being difficult also oneself getting to the evaluation which ground is accurate with being difficult, it operated and it was come. As the method which solves like this problem drill worker image photographing which is the possibility of getting the burn was introduced in about the drill worker wall. Drill worker image photographing it will be able to classify with 3 kind of electricity, the sound wave and optical science etc. on a large scale and these people are controlled and respectively amplitude and staring reaction of electric resistivity reaction and the sound wave, in order for the pixel price which digitizes optical science photograph etc. to confront clearly in spatial location it will be able to provide information concretely about rock floor etc., discontinuity surface situation and of the public wall travelling and inclination and the clearance

  7. Coded Aperture Nuclear Scintigraphy: A Novel Small Animal Imaging Technique

    Directory of Open Access Journals (Sweden)

    Dawid Schellingerhout

    2002-10-01

    Full Text Available We introduce and demonstrate the utility of coded aperture (CA nuclear scintigraphy for imaging small animals. CA imaging uses multiple pinholes in a carefully designed mask pattern, mounted on a conventional gamma camera. System performance was assessed using point sources and phantoms, while several animal experiments were performed to test the usefulness of the imaging system in vivo, with commonly used radiopharmaceuticals. The sensitivity of the CA system for 99mTc was 4.2 × 103 cps/Bq (9400 cpm/μCi, compared to 4.4 × 104 cps/Bq (990 cpm/μCi for a conventional collimator system. The system resolution was 1.7 mm, as compared to 4–6 mm for the conventional imaging system (using a high-sensitivity low-energy collimator. Animal imaging demonstrated artifact-free imaging with superior resolution and image quality compared to conventional collimator images in several mouse and rat models. We conclude that: (a CA imaging is a useful nuclear imaging technique for small animal imaging. The advantage in signal-to-noise can be traded to achieve higher resolution, decreased dose or reduced imaging time. (b CA imaging works best for images where activity is concentrated in small volumes; a low count outline may be better demonstrated using conventional collimator imaging. Thus, CA imaging should be viewed as a technique to complement rather than replace traditional nuclear imaging methods. (c CA hardware and software can be readily adapted to existing gamma cameras, making their implementation a relatively inexpensive retrofit to most systems.

  8. Optical and digital microscopic imaging techniques and applications in pathology.

    Science.gov (United States)

    Chen, Xiaodong; Zheng, Bin; Liu, Hong

    2011-01-01

    The conventional optical microscope has been the primary tool in assisting pathological examinations. The modern digital pathology combines the power of microscopy, electronic detection, and computerized analysis. It enables cellular-, molecular-, and genetic-imaging at high efficiency and accuracy to facilitate clinical screening and diagnosis. This paper first reviews the fundamental concepts of microscopic imaging and introduces the technical features and associated clinical applications of optical microscopes, electron microscopes, scanning tunnel microscopes, and fluorescence microscopes. The interface of microscopy with digital image acquisition methods is discussed. The recent developments and future perspectives of contemporary microscopic imaging techniques such as three-dimensional and in vivo imaging are analyzed for their clinical potentials.

  9. Method for Automatic Tube Current Selection for Obtaining a Consistent Image Quality and Dose Optimization in a Cardiac Multidetector CT

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Weiwei; Du, Xiangke [Peking University People' s Hospital, Beijing (China); Li, Jianying [GE Healthcare China, Beijing (China)

    2009-12-15

    To evaluate a quantitative method for individually adjusting the tube current to obtain images with consistent noise in electrocardiogram (ECG)-gated CT cardiac scans. The image noise from timing bolus and cardiac CT scans of 80 patients (Group A) who underwent a 64-row multidetector (MD) CT cardiac examination with patient-independent scan parameters were analyzed. A formula was established using the noise correlation between the timing bolus and cardiac scans. This formula was used to predict the required tube current to obtain the desired cardiac CT image noise based on the timing bolus noise measurement. Subsequently, 80 additional cardiac patients (Group B) were scanned with individually adjusted tube currents using an established formula to evaluate its ability to obtain accurate and consistent image noise across the patient population. Image quality was evaluated using score scale of 1 to 5 with a score of 3 or higher being clinically acceptable. Using the formula, we obtained an average CT image noise of 28.55 Hounsfield unit (HU), with a standard deviation of only 1.7 HU, as opposed to a target value of 28 HU. Image quality scores were 4.03 and 4.27 for images in Groups A and B, respectively, and there was no statistical difference between the image quality scores between the two groups. However, the average CT dose index (CTDIvol) was 30% lower for Group B. Adjusting the tube current based on timing bolus scans may provide a consistent image quality and dose optimization for cardiac patients of various body mass index values.

  10. Cardiac dysfunction in the diabetic rat: quantitative evaluation using high resolution magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Alenezy Mohammed D

    2006-04-01

    Full Text Available Abstract Background Diabetes is a major risk factor for cardiovascular disease. In particular, type 1 diabetes compromises the cardiac function of individuals at a relatively early age due to the protracted course of abnormal glucose homeostasis. The functional abnormalities of diabetic myocardium have been attributed to the pathological changes of diabetic cardiomyopathy. Methods In this study, we used high field magnetic resonance imaging (MRI to evaluate the left ventricular functional characteristics of streptozotocin treated diabetic Sprague-Dawley rats (8 weeks disease duration in comparison with age/sex matched controls. Results Our analyses of EKG gated cardiac MRI scans of the left ventricle showed a 28% decrease in the end-diastolic volume and 10% increase in the end-systolic volume of diabetic hearts compared to controls. Mean stroke volume and ejection fraction in diabetic rats were decreased (48% and 28%, respectively compared to controls. Further, dV/dt changes were suggestive of phase sensitive differences in left ventricular kinetics across the cardiac cycle between diabetic and control rats. Conclusion Thus, the MRI analyses of diabetic left ventricle suggest impairment of diastolic and systolic hemodynamics in this rat model of diabetic cardiomyopathy. Our studies also show that in vivo MRI could be used in the evaluation of cardiac dysfunction in this rat model of type 1 diabetes.

  11. Early Cardiac Dysfunction in the Type 1 Diabetic Heart Using Speckle-Tracking Based Strain Imaging

    Science.gov (United States)

    Shepherd, Danielle L.; Nichols, Cody E.; Croston, Tara L.; McLaughlin, Sarah L.; Petrone, Ashley B.; Lewis, Sara E.; Thapa, Dharendra; Long, Dustin M.; Dick, Gregory M.; Hollander, John M.

    2016-01-01

    Enhanced sensitivity in echocardiographic analyses may allow for early detection of changes in cardiac function beyond the detection limits of conventional echocardiographic analyses, particularly in a small animal model. The goal of this study was to compare conventional echocardiographic measurements and speckle-tracking based strain imaging analyses in a small animal model of type 1 diabetes mellitus. Conventional analyses revealed differences in ejection fraction, fractional shortening, cardiac output, and stroke volume in diabetic animals relative to controls at 6-weeks post-diabetic onset. In contrast, when assessing short- and long-axis speckle-tracking based strain analyses, diabetic mice showed changes in average systolic radial strain, radial strain rate, radial displacement, and radial velocity, as well as decreased circumferential and longitudinal strain rate, as early as 1-week post-diabetic onset and persisting throughout the diabetic study. Further, we performed regional analyses for the LV and found that the free wall region was affected in both the short- and long-axis when assessing radial dimension parameters. These changes began 1-week post-diabetic onset and remained throughout the progression of the disease. These findings demonstrate the use of speckle-tracking based strain as an approach to elucidate cardiac dysfunction from a global perspective, identifying left ventricular cardiac regions affected during the progression of type 1 diabetes mellitus earlier than contractile changes detected by conventional echocardiographic measurements. PMID:26654913

  12. Image-Based Structural Modeling of the Cardiac Purkinje Network

    Directory of Open Access Journals (Sweden)

    Benjamin R. Liu

    2015-01-01

    Full Text Available The Purkinje network is a specialized conduction system within the heart that ensures the proper activation of the ventricles to produce effective contraction. Its role during ventricular arrhythmias is less clear, but some experimental studies have suggested that the Purkinje network may significantly affect the genesis and maintenance of ventricular arrhythmias. Despite its importance, few structural models of the Purkinje network have been developed, primarily because current physical limitations prevent examination of the intact Purkinje network. In previous modeling efforts Purkinje-like structures have been developed through either automated or hand-drawn procedures, but these networks have been created according to general principles rather than based on real networks. To allow for greater realism in Purkinje structural models, we present a method for creating three-dimensional Purkinje networks based directly on imaging data. Our approach uses Purkinje network structures extracted from photographs of dissected ventricles and projects these flat networks onto realistic endocardial surfaces. Using this method, we create models for the combined ventricle-Purkinje system that can fully activate the ventricles through a stimulus delivered to the Purkinje network and can produce simulated activation sequences that match experimental observations. The combined models have the potential to help elucidate Purkinje network contributions during ventricular arrhythmias.

  13. CATEGORICAL IMAGE COMPONENTS IN THE FORMING SYSTEM OF A MARKETING TECHNIQUES MANAGER’S IMAGE CULTURE

    Directory of Open Access Journals (Sweden)

    Anna Borisovna Cherednyakova

    2015-08-01

    Full Text Available Based on the understanding of the image culture formation of managers of marketing techniques, as a representative of the social and communication interaction of public structures, categorical apparatus of image culture with an emphasis on the etymology of the image, as an integral component of image culture was analyzed. Categorical components of the image are presented from the standpoint of image culture, as personal new formation, an integral part of the professional activity of the marketing techniques manager: object-communicative categorical component, subject-activity categorical component of image, personality-oriented categorical component, value-acmeological categorical component of image.The aim is to identify and justify the image categorical components as a component of image culture of the marketing techniques manager.Method and methodology of work – a general scientific research approach reflecting scientific apparatus of research.Results. Categorical components of the image, as an image culture component of manager of marketing techniques were defined.Practical implication of the results. The theoretical part of «Imageology» course, special course «Image culture of manager of marketing techniques», the theoretical and methodological study and the formation of image culture.

  14. Serum lipidomics meets cardiac magnetic resonance imaging: profiling of subjects at risk of dilated cardiomyopathy.

    Science.gov (United States)

    Sysi-Aho, Marko; Koikkalainen, Juha; Seppänen-Laakso, Tuulikki; Kaartinen, Maija; Kuusisto, Johanna; Peuhkurinen, Keijo; Kärkkäinen, Satu; Antila, Margareta; Lauerma, Kirsi; Reissell, Eeva; Jurkko, Raija; Lötjönen, Jyrki; Heliö, Tiina; Orešič, Matej

    2011-01-20

    Dilated cardiomyopathy (DCM), characterized by left ventricular dilatation and systolic dysfunction, constitutes a significant cause for heart failure, sudden cardiac death or need for heart transplantation. Lamin A/C gene (LMNA) on chromosome 1p12 is the most significant disease gene causing DCM and has been reported to cause 7-9% of DCM leading to cardiac transplantation. We have previously performed cardiac magnetic resonance imaging (MRI) to LMNA carriers to describe the early phenotype. Clinically, early recognition of subjects at risk of developing DCM would be important but is often difficult. Thus we have earlier used the MRI findings of these LMNA carriers for creating a model by which LMNA carriers could be identified from the controls at an asymptomatic stage. Some LMNA mutations may cause lipodystrophy. To characterize possible effects of LMNA mutations on lipid profile, we set out to apply global serum lipidomics using Ultra Performance Liquid Chromatography coupled to mass spectrometry in the same LMNA carriers, DCM patients without LMNA mutation and controls. All DCM patients, with or without LMNA mutation, differed from controls in regard to distinct serum lipidomic profile dominated by diminished odd-chain triglycerides and lipid ratios related to desaturation. Furthermore, we introduce a novel approach to identify associations between the molecular lipids from serum and the MR images from the LMNA carriers. The association analysis using dependency network and regression approaches also helped us to obtain novel insights into how the affected lipids might relate to cardiac shape and volume changes. Our study provides a framework for linking serum derived molecular markers not only with clinical endpoints, but also with the more subtle intermediate phenotypes, as derived from medical imaging, of potential pathophysiological relevance.

  15. Serum lipidomics meets cardiac magnetic resonance imaging: profiling of subjects at risk of dilated cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Marko Sysi-Aho

    Full Text Available Dilated cardiomyopathy (DCM, characterized by left ventricular dilatation and systolic dysfunction, constitutes a significant cause for heart failure, sudden cardiac death or need for heart transplantation. Lamin A/C gene (LMNA on chromosome 1p12 is the most significant disease gene causing DCM and has been reported to cause 7-9% of DCM leading to cardiac transplantation. We have previously performed cardiac magnetic resonance imaging (MRI to LMNA carriers to describe the early phenotype. Clinically, early recognition of subjects at risk of developing DCM would be important but is often difficult. Thus we have earlier used the MRI findings of these LMNA carriers for creating a model by which LMNA carriers could be identified from the controls at an asymptomatic stage. Some LMNA mutations may cause lipodystrophy. To characterize possible effects of LMNA mutations on lipid profile, we set out to apply global serum lipidomics using Ultra Performance Liquid Chromatography coupled to mass spectrometry in the same LMNA carriers, DCM patients without LMNA mutation and controls. All DCM patients, with or without LMNA mutation, differed from controls in regard to distinct serum lipidomic profile dominated by diminished odd-chain triglycerides and lipid ratios related to desaturation. Furthermore, we introduce a novel approach to identify associations between the molecular lipids from serum and the MR images from the LMNA carriers. The association analysis using dependency network and regression approaches also helped us to obtain novel insights into how the affected lipids might relate to cardiac shape and volume changes. Our study provides a framework for linking serum derived molecular markers not only with clinical endpoints, but also with the more subtle intermediate phenotypes, as derived from medical imaging, of potential pathophysiological relevance.

  16. A fast convolution-based methodology to simulate 2-D/3-D cardiac ultrasound images.

    Science.gov (United States)

    Gao, Hang; Choi, Hon Fai; Claus, Piet; Boonen, Steven; Jaecques, Siegfried; Van Lenthe, G Harry; Van der Perre, Georges; Lauriks, Walter; D'hooge, Jan

    2009-02-01

    This paper describes a fast convolution-based methodology for simulating ultrasound images in a 2-D/3-D sector format as typically used in cardiac ultrasound. The conventional convolution model is based on the assumption of a space-invariant point spread function (PSF) and typically results in linear images. These characteristics are not representative for cardiac data sets. The spatial impulse response method (IRM) has excellent accuracy in the linear domain; however, calculation time can become an issue when scatterer numbers become significant and when 3-D volumetric data sets need to be computed. As a solution to these problems, the current manuscript proposes a new convolution-based methodology in which the data sets are produced by reducing the conventional 2-D/3-D convolution model to multiple 1-D convolutions (one for each image line). As an example, simulated 2-D/3-D phantom images are presented along with their gray scale histogram statistics. In addition, the computation time is recorded and contrasted to a commonly used implementation of IRM (Field II). It is shown that COLE can produce anatomically plausible images with local Rayleigh statistics but at improved calculation time (1200 times faster than the reference method).

  17. Quantifying the effect of tissue deformation on diffusion-weighted MRI: a mathematical model and an efficient simulation framework applied to cardiac diffusion imaging

    Science.gov (United States)

    Mekkaoui, Imen; Moulin, Kevin; Croisille, Pierre; Pousin, Jerome; Viallon, Magalie

    2016-08-01

    Cardiac motion presents a major challenge in diffusion weighted MRI, often leading to large signal losses that necessitate repeated measurements. The diffusion process in the myocardium is difficult to investigate because of the unqualified sensitivity of diffusion measurements to cardiac motion. A rigorous mathematical formalism is introduced to quantify the effect of tissue motion in diffusion imaging. The presented mathematical model, based on the Bloch-Torrey equations, takes into account deformations according to the laws of continuum mechanics. Approximating this mathematical model by using finite elements method, numerical simulations can predict the sensitivity of the diffusion signal to cardiac motion. Different diffusion encoding schemes are considered and the diffusion weighted MR signals, computed numerically, are compared to available results in literature. Our numerical model can identify the existence of two time points in the cardiac cycle, at which the diffusion is unaffected by myocardial strain and cardiac motion. Of course, these time points depend on the type of diffusion encoding scheme. Our numerical results also show that the motion sensitivity of the diffusion sequence can be reduced by using either spin echo technique with acceleration motion compensation diffusion gradients or stimulated echo acquisition mode with unipolar and bipolar diffusion gradients.

  18. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr [Department of Electrical Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-05-15

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogram with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of

  19. An Useful Information Extraction using Image Mining Techniques from Remotely Sensed Image (RSI

    Directory of Open Access Journals (Sweden)

    Dr. C. Jothi Venkateswaran,

    2010-11-01

    Full Text Available Information extraction using mining techniques from remote sensing image (RSI is rapidly gaining attention among researchers and decision makers because of its potential in application oriented studies. Knowledge discovery from image poses many interesting challenges such as preprocessing the image data set, training the data and discovering useful image patterns applicable to many newapplication frontiers. In the image rich domain of RSI, image mining implies the synergy of data mining and image processing technology. Such culmination of techniques renders a valuable tool in information extraction. Also, this encompasses the problem of handling a larger data base of varied image data formats representing various levels ofinformation such as pixel, local and regional. In the present paper, various preprocessing corrections and techniques of image mining are discussed.

  20. The molecular imaging approach to image infections and inflammation by nuclear medicine techniques

    NARCIS (Netherlands)

    Signore, Alberto; Glaudemans, Andor W. J. M.

    2011-01-01

    Inflammatory and infectious diseases are a heterogeneous class of diseases that may be divided into infections, acute inflammation and chronic inflammation. Radiological imaging techniques have, with the exception of functional MRI, high sensitivity but lack in specificity. Nuclear medicine techniqu

  1. Muscle perfusion and metabolic heterogeneity: insights from noninvasive imaging techniques

    DEFF Research Database (Denmark)

    Kalliokoski, Kari K; Scheede-Bergdahl, Celena; Kjaer, Michael

    2006-01-01

    Recent developments in noninvasive imaging techniques have enabled the study of local changes in perfusion and metabolism in skeletal muscle as well as patterns of heterogeneity in these variables in humans. In this review, the principles of these techniques along with some recent findings on fun...

  2. Techniques and software architectures for medical visualisation and image processing

    NARCIS (Netherlands)

    Botha, C.P.

    2005-01-01

    This thesis presents a flexible software platform for medical visualisation and image processing, a technique for the segmentation of the shoulder skeleton from CT data and three techniques that make contributions to the field of direct volume rendering. Our primary goal was to investigate the use

  3. Imaging Atmospheric Cerenkov Telescopes Techniques and Results

    CERN Document Server

    Bradbury, S M

    2001-01-01

    The hunt for cosmic TeV particle accelerators is prospering through Imaging Atmospheric Cerenkov Telescopes. We face challenges such as low light levels and MHz trigger rates, and the need to distinguish between particle air showers stemming from primary gamma rays and those due to the hadronic cosmic ray background. Our test beam is provided by the Crab Nebula, a steady accelerator of particles to energies beyond 20 TeV. Highly variable gamma-ray emission, coincident with flares at longer wavelengths, is revealing the particle acceleration mechanisms at work in the relativistic jets of Active Galaxies. These 200 GeV to 20 TeV photons propagating over cosmological distances allow us to place a limit on the infra-red background linked to galaxy formation and, some speculate, to the decay of massive relic neutrinos. Gamma rays produced in neutralino annihilation or the evaporation of primordial black holes may also be detectable. These phenomena and a zoo of astrophysical objects will be the targets of the next...

  4. Improving Seismic Image with Advanced Processing Techniques

    Directory of Open Access Journals (Sweden)

    Mericy Lastra Cunill

    2012-07-01

    Full Text Available Taking Taking into account the need to improve the seismic image in the central area of Cuba, specifically in the area of the Venegas sector, located in the Cuban Folded Belt, the seismic data acquired by Cuba Petróleo (CUPET in the year 2007 was reprocessed according to the experience accumulated during the previous processing carried out in the same year, and the new geologic knowledge on the area. This was done with the objective of improving the results. The processing applied previously was analyzed by reprocessing the primary data with new focuses and procedures, among them are the following: the attenuation of the superficial wave with a filter in the Radon domain in its lineal variant, the change of the primary statics corrections of elevation by those of refraction, the study of velocity with the selection automatic biespectral of high density, the study of the anisotropy, the attenuation of the random noise, and the pre stack time and depth migration. As a result of this reprocessing, a structure that was not identified in the seismic sections of the previous processing was located at the top of a Continental Margin sediment located to the north of the sector that increased the potentialities of finding hydrocarbons in quantities of economic importance thus diminishing the risk of drilling in the sector Venegas.

  5. Improved LSB Steganograhy Technique for grayscale and RGB images

    Directory of Open Access Journals (Sweden)

    Raju

    2014-10-01

    Full Text Available A number of techniques are there to converse securely. Encryption and cryptography are enabling us to have a secure conversation. To protect privacy and communicate in an undetectable way it is required to use some steganography technique. This is to hide messages in some other media generally called cover object. In todays digital world where images are a common means of information sharing, most of the steganography techniques use digital images as a carrier for hiding message. In this paper a LSB based technique is proposed for steganograpgy. This technique is different from standard LSB technique that along with message hidden in LSB bits a part of message also resides at other selective bits using a key. The method is developed to increase the payload capacity and make detection impossible.

  6. A Microwave Imaging and Enhancement Technique from Noisy Synthetic Data

    CERN Document Server

    Kundu, Anjan Kumar; Sanyal, Sugata

    2010-01-01

    An inverse iterative algorithm for microwave imaging based on moment method solution is presented here. The iterative scheme has been developed on constrained optimization technique and is certain to converge. Different mesh size for the model has been used here to overcome the Inverse Crime. The synthetic data at the receivers is contaminated with different percentage of noise. The ill-posedness of the problem is solved by Levenberg-Marquardt method. The algorithm is applied to synthetic data and the reconstructed image is then further enhanced through the Image enhancement technique

  7. Using image processing techniques on proximity probe signals in rotordynamics

    Science.gov (United States)

    Diamond, Dawie; Heyns, Stephan; Oberholster, Abrie

    2016-06-01

    This paper proposes a new approach to process proximity probe signals in rotordynamic applications. It is argued that the signal be interpreted as a one dimensional image. Existing image processing techniques can then be used to gain information about the object being measured. Some results from one application is presented. Rotor blade tip deflections can be calculated through localizing phase information in this one dimensional image. It is experimentally shown that the newly proposed method performs more accurately than standard techniques, especially where the sampling rate of the data acquisition system is inadequate by conventional standards.

  8. The Real-Time Image Processing Technique Based on DSP

    Institute of Scientific and Technical Information of China (English)

    QI Chang; CHEN Yue-hua; HUANG Tian-shu

    2005-01-01

    This paper proposes a novel real-time image processing technique based on digital singnal processor (DSP). At the asp