WorldWideScience

Sample records for carboxylic ester hydrolases

  1. Carboxylic ester hydrolases in mitochondria from rat skeletal muscle

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Zelander, T

    1990-01-01

    A mitochondrial pellet, prepared from rat skeletal muscle, contained a number of carboxylic ester hydrolase isoenzymes. The esterases which split alpha-naphthyl acetate were organophosphate sensitive, whereas two out of three indoxyl acetate hydrolysing enzymes were resistant to both organophosph...

  2. Carboxylic ester hydrolase and amylase in ischemic pancreatitis in the guinea pig.

    Science.gov (United States)

    Blind, P J; Bläckberg, L; Lundström, E B; Emdin, S O; Hernell, O

    1996-05-01

    The observation that an elevated level of pancreatic carboxylic ester hydrolase (CEH) in serum is a more sensitive and specific marker of acute pancreatitis than is elevated serum amylase activity prompted us to explore whether these findings could be confirmed in an experimental model and, if so, to find the explanation behind this difference. We therefore developed a model for ischemic pancreatitis in the guinea pig and a sandwich enzyme-linked immunosorbent assay for determination of CEH in this species. There was a strong correlation between duration of ischemia and severity of pancreatic inflammation and between severity of inflammation and serum CEH level. In contrast, serum amylase was elevated only in animals with the most severe grade of inflammation. Amylase was, however, increased in urine in animals with mild inflammation, but the level did not increase with severity of inflammation. Only one of 31 animals had detectable CEH in urine. In animals with intermediate serum CEH levels the serum and biliary concentrations correlated, indicating that CEH may be cleared by the liver. Amylase was detectable in bile only in animals with high serum levels. The results confirm our observations made in previous clinical studies. A likely explanation for differences in serum levels of CEH and amylase is clearance from the circulation at different rates and, at least partly, via different routes, e.g., the liver and kidney, respectively.

  3. Characterization of three new carboxylic ester hydrolases isolated by functional screening of a forest soil metagenomic library.

    Science.gov (United States)

    Biver, Sophie; Vandenbol, Micheline

    2013-02-01

    Three new lipolytic genes were isolated from a forest soil metagenomic library by functional screening on tributyrin agar plates. The genes SBLip1, SBLip2 and SBLip5.1 respectively encode polypeptides of 445, 346 and 316 amino acids. Phylogenetic analyses revealed that SBLip2 and SBLip5.1 belong to bacterial esterase/lipase family IV, whereas SBLip1 shows similarity to class C β-lactamases and is thus related to esterase family VIII. The corresponding genes were overexpressed and their products purified by affinity chromatography for characterization. Analyses of substrate specificity with different p-nitrophenyl esters showed that all three enzymes have a preference for short-acyl-chain p-nitrophenyl esters, a feature of carboxylesterases as opposed to lipases. The β-lactamase activity of SBLip1, measured with the chromogenic substrate nitrocefin, was very low. The three esterases have the same optimal pH (pH 10) and remain active across a relatively broad pH range, displaying more than 60 % activity between pH 6 and 10. The temperature optima determined were 35 °C for SBLip1, 45 °C for SBLip2 and 50 °C for SBLip5.1. The three esterases displayed different levels of tolerance to salts, solvents and detergents, SBLip2 being overall more tolerant to high concentrations of solvent and SBLip5.1 less affected by detergents. PMID:23160923

  4. X-ray analysis of two antibiotic-synthesizing bacterial ester hydrolases : Preliminary results

    NARCIS (Netherlands)

    Barends, Thomas; Hensgens, Charles M.H.; Polderman-Tijmes, Jolanda J.; Jekel, P; de Vries, Erik; Janssen, Dick B.; Dijkstra, Bauke W.

    2003-01-01

    alpha-Amino-acid ester hydrolases are multimeric enzymes of potential use in antibiotic production. Knowledge of their structure could help to engineer these enzymes into economically viable biocatalysts. The alpha-amino-acid ester hydrolases from Xanthomonas citri and Acetobacter turbidans have bee

  5. A novel ubiquitin carboxyl terminal hydrolase is involved in toad oocyte maturation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    p28, a 28kD protein from toad (Bufo bufo gargarizans) oocytes, was identified by using p13suc1-agaroseaffinity chromatography. Sequence homology analysis of the full-length cDNA of p28 (Gene Bank accessionnumber: AF 314091) indicated that it encodes a protein containing 224 amino-acids with about 55% iden-tities and more than 70% positives to human, rat or mouse UCH-L1, and contains homological functionaldomains of UCH family. Anti-p28 monoclonal antibody, on injecting into the oocytes, could inhibit theprogesterone-induced resumption of meiotic division in a dose-dependent manner. The recombinant proteinp28 showed similar SDS/PAGE behaviors to the native one, and promoted ubiquitin ethyl ester hydrolysis,a classical catalytic reaction for ubiquitin carboxyl terminai hydrolases (UCHs). The results in this paperreveal that a novel protein, p28, exists in the toad oocytes, is a UCH L1 homolog, was engaged in theprocess of progesterone-induced oocyte maturation possibly through an involvement in protein turnover anddegradation.

  6. Sodium borohydride reduction of aromatic carboxylic acids via methyl esters

    Indian Academy of Sciences (India)

    Aamer Saeed; Zaman Ashraf

    2006-09-01

    A number of important aromatic carboxylic acids precursors, or intermediates in the syntheses of natural products, are converted into methyl esters and reduced to the corresponding primary alcohols using a sodium borohydride-THF-methanol system. The alcohols are obtained in 70-92% yields in 2-5 hours, in a pure state. This two-step procedure not only provides a better alternative to aluminum hydride reduction of acids but also allows the selective reduction of esters in presence of acids, amides, nitriles or nitro functions which are not affected under these conditions.

  7. Cholesteryl ester hydrolase activity is abolished in HSL-/- macrophages but unchanged in macrophages lacking KIAA1363.

    Science.gov (United States)

    Buchebner, Marlene; Pfeifer, Thomas; Rathke, Nora; Chandak, Prakash G; Lass, Achim; Schreiber, Renate; Kratzer, Adelheid; Zimmermann, Robert; Sattler, Wolfgang; Koefeler, Harald; Fröhlich, Eleonore; Kostner, Gerhard M; Birner-Gruenberger, Ruth; Chiang, Kyle P; Haemmerle, Guenter; Zechner, Rudolf; Levak-Frank, Sanja; Cravatt, Benjamin; Kratky, Dagmar

    2010-10-01

    Cholesteryl ester (CE) accumulation in macrophages represents a crucial event during foam cell formation, a hallmark of atherogenesis. Here we investigated the role of two previously described CE hydrolases, hormone-sensitive lipase (HSL) and KIAA1363, in macrophage CE hydrolysis. HSL and KIAA1363 exhibited marked differences in their abilities to hydrolyze CE, triacylglycerol (TG), diacylglycerol (DG), and 2-acetyl monoalkylglycerol ether (AcMAGE), a precursor for biosynthesis of platelet-activating factor (PAF). HSL efficiently cleaved all four substrates, whereas KIAA1363 hydrolyzed only AcMAGE. This contradicts previous studies suggesting that KIAA1363 is a neutral CE hydrolase. Macrophages of KIAA1363(-/-) and wild-type mice exhibited identical neutral CE hydrolase activity, which was almost abolished in tissues and macrophages of HSL(-/-) mice. Conversely, AcMAGE hydrolase activity was diminished in macrophages and some tissues of KIAA1363(-/-) but unchanged in HSL(-/-) mice. CE turnover was unaffected in macrophages lacking KIAA1363 and HSL, whereas cAMP-dependent cholesterol efflux was influenced by HSL but not by KIAA1363. Despite decreased CE hydrolase activities, HSL(-/-) macrophages exhibited CE accumulation similar to wild-type (WT) macrophages. We conclude that additional enzymes must exist that cooperate with HSL to regulate CE levels in macrophages. KIAA1363 affects AcMAGE hydrolase activity but is of minor importance as a direct CE hydrolase in macrophages.

  8. 40 CFR 721.10142 - Oxabicycloalkane carboxylic acid alkanediyl ester (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Oxabicycloalkane carboxylic acid alkanediyl ester (generic). 721.10142 Section 721.10142 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10142 Oxabicycloalkane carboxylic acid...

  9. A Convenient, General Synthesis of 1,1-Dimethylallyl Esters as Protecting Groups for Carboxylic Acids

    Science.gov (United States)

    Sedighi, Minoo; Lipton, Mark A.

    2006-01-01

    Carboxylic acids were converted in high yield to their 1,1-dimethylallyl (DMA) esters in two steps. Palladium-catalyzed deprotection of DMA esters was shown to be compatible with tert-butyl, benzyl and Fmoc protecting groups, and Fmoc deprotection could be carried out selectively in the presence of DMA esters. DMA esters were also shown to be resistant to nucleophilic attack, suggesting that they will serve as alternatives to tert-butyl esters when acidic deprotection conditions need to be avoided. PMID:15816730

  10. A convenient, general synthesis of 1,1-dimethylallyl esters as protecting groups for carboxylic acids.

    Science.gov (United States)

    Sedighi, Minoo; Lipton, Mark A

    2005-04-14

    [reaction: see text] Carboxylic acids were converted in high yield to their 1,1-dimethylallyl (DMA) esters in two steps. Palladium-catalyzed deprotection of DMA esters was shown to be compatible with tert-butyl, benzyl, and Fmoc protecting groups, and Fmoc deprotection could be carried out selectively in the presence of DMA esters. DMA esters were also shown to be resistant to nucleophilic attack, suggesting that they will serve as alternatives to tert-butyl esters when acidic deprotection conditions need to be avoided.

  11. Development and properties of a wax ester hydrolase in the cotyledons of jojoba seedlings.

    Science.gov (United States)

    Huang, A H; Moreau, R A; Liu, K D

    1978-03-01

    The activity of a wax ester hydrolase in the cotyledons of jojoba (Simmondsia chinensis) seedlings increased drastically during germination, parallel to the development of the gluconeogenic process. The enzyme at its peak of development was obtained in association with the wax body membrane, and its properties were studied. It had an optimal activity at alkaline pH (8.5-9). The apparent K(m) value for N-methylindoxylmyristate was 93 muM. It was stable at 40 C for 30 min but was inactivated at higher temperature. Various divalent cations and ethylenediaminetetraacetate had little effect on the activity. p-Chloromercuribenzoate was a strong inhibitor of the enzyme activity, and its effect was reversed by subsequent addition of dithiothreitol. It had a broad substrate specificity with highest activities on monoglycerides, wax esters, and the native substrate (jojoba wax).

  12. Cloning, Sequence Analysis, and Expression in Escherichia coli of the Gene Encoding an α-Amino Acid Ester Hydrolase from Acetobacter turbidans

    NARCIS (Netherlands)

    Polderman-Tijmes, Jolanda J.; Jekel, P; de Vries, Erik; van Merode, Annet; Floris, René; Laan, Jan-Metske van der; Sonke, Theo; Janssen, Dick B.

    2002-01-01

    The α-amino acid ester hydrolase from Acetobacter turbidans ATCC 9325 is capable of hydrolyzing and synthesizing β-lactam antibiotics, such as cephalexin and ampicillin. N-terminal amino acid sequencing of the purified α-amino acid ester hydrolase allowed cloning and genetic characterization of the

  13. Cloning, sequence analysis, and expression in Escherichia coli of the gene encoding an alpha-amino acid ester hydrolase from Acetobacter turbidans

    NARCIS (Netherlands)

    Polderman-Tijmes, JJ; Jekel, PA; de Vries, EJ; van Merode, Annet; Floris, R; van der Laan, JM; Sonke, T; Janssen, DB

    2002-01-01

    The alpha-amino acid ester hydrolase from Acetobacter turbidans ATCC 9325 is capable of hydrolyzing and synthesizing beta-lactam antibiotics, such as cephalexin and ampicillin. N-terminal amino acid sequencing of the purified alpha-amino acid ester hydrolase allowed cloning and genetic characterizat

  14. Carboxyl ester lipase overexpression in rat hepatoma cells and CEL deficiency in mice have no impact on hepatic uptake or metabolism of chylomicron-retinyl ester.

    Science.gov (United States)

    van Bennekum, A M; Li, L; Piantedosi, R; Shamir, R; Vogel, S; Fisher, E A; Blaner, W S; Harrison, E H

    1999-03-30

    To study the role of carboxyl ester lipase (CEL) in hepatic retinoid (vitamin A) metabolism, we investigated uptake and hydrolysis of chylomicron (CM)-retinyl esters (RE) by rat hepatoma (McArdle-RH7777) cells stably transfected with a rat CEL cDNA. We also studied tissue uptake of CM-RE in CEL-deficient mice generated by targeted disruption of the CEL gene. CEL-transfected cells secreted active enzyme into the medium. However, both control and CEL-transfected cells accumulated exogenously added CM-RE or CM remnant (CMR)-derived RE in equal amounts. Serum clearance of intravenously injected CM-RE and cholesteryl ester were not different between wild-type and CEL-deficient mice. Also, the uptake of the two compounds by the liver and other tissues did not differ. These data indicate that the lack of CEL expression does not affect the uptake of dietary CM-RE by the liver or other tissues. Moreover, the percentage of retinol formed in the liver after CM-RE uptake, the levels of retinol and retinol-binding protein in serum, and retinoid levels in various tissues did not differ, indicating that CEL deficiency does not affect hepatic retinoid metabolism and retinoid distribution throughout the body. Surprisingly, in both pancreas and liver of wild-type, heterozygous, and homozygous CEL-deficient mice, the levels of bile salt-dependent retinyl ester hydrolase (REH) activity were similar. This indicates that in the mouse pancreas and liver an REH enzyme activity, active in the presence of bile salt and distinct from CEL, is present, compatible with the results from our accompanying paper that the intestinal processing and absorption of RE were unimpaired in CEL-deficient mice.

  15. Pancreatic carboxyl ester lipase: a circulating enzyme that modifies normal and oxidized lipoproteins in vitro.

    OpenAIRE

    Shamir, R; Johnson, W. J.; Morlock-Fitzpatrick, K; Zolfaghari, R; Li, L; mas, e; Lombardo, D.; Morel, D W; Fisher, E A

    1996-01-01

    Pancreatic carboxyl ester lipase (CEL) hydrolyzes cholesteryl esters (CE), triglycerides (TG), and lysophospholipids, with CE and TG hydrolysis stimulated by cholate. Originally thought to be confined to the gastrointestinal system, CEL has been reported in the plasma of humans and other mammals, implying its potential in vivo to modify lipids associated with LDL, HDL (CE, TG), and oxidized LDL (lysophosphatidylcholine, lysoPC). We measured the concentration of CEL in human plasma as 1.2+/-0....

  16. Crystallization and preliminary X-ray analysis of l-azetidine-2-carboxylate hydrolase from Pseudomonas sp. strain A2C

    International Nuclear Information System (INIS)

    l-Azetidine-2-carboxylate hydrolase from Pseudomonas sp. strain A2C was crystallized and diffraction data were collected to a resolution of 1.38 Å. l-Azetidine-2-carboxylate hydrolase from Pseudomonas sp. strain A2C catalyzes a ring-opening reaction that detoxifies l-azetidine-2-carboxylate, an analogue of l-proline. Recombinant l-azetidine-2-carboxylate hydrolase was overexpressed, purified and crystallized using polyethylene glycol and magnesium acetate as precipitants. The needle-shaped crystal belonged to space group P21, with unit-cell parameters a = 35.6, b = 63.6, c = 54.7 Å, β = 105.5°. The crystal diffracted to a resolution of 1.38 Å. The calculated VM value was 2.2 Å3 Da−1, suggesting that the crystal contains one enzyme subunit in the asymmetric unit

  17. Synthesis and Structural Characterization of 1- and 2-Substituted Indazoles: Ester and Carboxylic Acid Derivatives

    OpenAIRE

    Isabel Bento; Teresa Duarte, M.; M. João M. Curto; Inês F. Antunes; Hélène Ramos; Fátima C. Teixeira

    2006-01-01

    A series of indazoles substituted at the N-1 and N-2 positions with ester-containing side chains -(CH2)nCO2R of different lengths (n = 0-6, 9, 10) are described.Nucleophilic substitution reactions on halo esters (X(CH2)nCO2R) by 1H-indazole inalkaline solution lead to mixtures of N-1 and N-2 isomers, in which the N-1 isomerpredominates. Basic hydrolysis of the ester derivatives allowed the synthesis of thecorresponding indazole carboxylic acids. All compounds were fully characterised bymultin...

  18. Hormone-sensitive lipase (HSL) is also a retinyl ester hydrolase: evidence from mice lacking HSL.

    Science.gov (United States)

    Ström, Kristoffer; Gundersen, Thomas E; Hansson, Ola; Lucas, Stéphanie; Fernandez, Céline; Blomhoff, Rune; Holm, Cecilia

    2009-07-01

    Here, we investigated the importance of hormone-sensitive lipase (HSL) as a retinyl ester hydrolase (REH). REH activity was measured in vitro using recombinant HSL and retinyl palmitate. The expression of retinoic acid (RA)-regulated genes and retinoid metabolites were measured in high-fat diet fed HSL-null mice using real-time quantitative PCR and triple-stage liquid chromatography/tandem mass spectrometry, respectively. Age- and gender-matched wild-type littermates were used as controls. The REH activity of rat HSL was found to be higher than that against the hitherto best known HSL substrate, i.e., diacylglycerols. REH activity in white adipose tissue (WAT) of HSL-null mice was completely blunted and accompanied by increased levels of retinyl esters and decreased levels of retinol, retinaldehyde and all-trans RA. Accordingly, genes known to be positively regulated by RA were down-regulated in HSL-null mice, including pRb and RIP140, key factors promoting differentiation into the white over the brown adipocyte lineage. Dietary RA supplementation partly restored WAT mass and the expression of RA-regulated genes in WAT of HSL-null mice. These findings demonstrate the importance of HSL as an REH of adipose tissue and suggest that HSL via this action provides RA and other retinoids for signaling events that are crucial for adipocyte differentiation and lineage commitment.

  19. Highly Efficient Diastereoselective Synthesis of Tetrahydro-isoquinoline-3- carboxylate Ester Analogs from L-DOPA

    Institute of Scientific and Technical Information of China (English)

    WANG Ye; LIU Zhan-Zhu; CHEN Shi-Zhi; LIANG Xiao-Tian

    2003-01-01

    @@ Tetrahydroisoquinoline-3-carboxylate esters are an important motif of naturally occurring bioactive alkaloids and pharmacophores. They are generally regarded as neurotoxic compounds and are putatively involved in a variety of pathologic conditions of central nervous system, including alcoholism, phenylketonuria, and neurodegenerative disorders such as Parkinson's disease.

  20. Hydrolytic activity of -alkoxide/acetato-bridged binuclear Cu(II) complexes towards carboxylic acid ester

    Indian Academy of Sciences (India)

    Weidong Jiang; Bin Xu; Zhen Xiang; Shengtian Huang; Fuan Liu; Ying Wang

    2013-09-01

    Two -alkoxide/acetate-bridged small molecule binuclear copper(II) complexes were synthesized, and used to promote the hydrolysis of a classic carboxylic acid ester, -nitrophenyl picolinate (PNPP). Both binuclear complexes exhibited good hydrolytic reactivity, giving rise to . 15547- and 17462-fold acceleration over background value for PNPP hydrolysis at neutral conditions, respectively. For comparing, activities of the other two mononuclear analogues were evaluated, revealing that binuclear complexes show approximately 150- and 171-fold kinetic advantage over their mononuclear analogues.

  1. Lewis acid promoted ruthenium(II)-catalyzed etherifications by selective hydrogenation of carboxylic acids/esters.

    Science.gov (United States)

    Li, Yuehui; Topf, Christoph; Cui, Xinjiang; Junge, Kathrin; Beller, Matthias

    2015-04-20

    Ethers are of fundamental importance in organic chemistry and they are an integral part of valuable flavors, fragrances, and numerous bioactive compounds. In general, the reduction of esters constitutes the most straightforward preparation of ethers. Unfortunately, this transformation requires large amounts of metal hydrides. Presented herein is a bifunctional catalyst system, consisting of Ru/phosphine complex and aluminum triflate, which allows selective synthesis of ethers by hydrogenation of esters or carboxylic acids. Different lactones were reduced in good yields to the desired products. Even challenging aromatic and aliphatic esters were reduced to the desired products. Notably, the in situ formed catalyst can be reused several times without any significant loss of activity. PMID:25728921

  2. Synthesis and Structural Characterization of 1- and 2-Substituted Indazoles: Ester and Carboxylic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Isabel Bento

    2006-11-01

    Full Text Available A series of indazoles substituted at the N-1 and N-2 positions with ester-containing side chains -(CH2nCO2R of different lengths (n = 0-6, 9, 10 are described.Nucleophilic substitution reactions on halo esters (X(CH2nCO2R by 1H-indazole inalkaline solution lead to mixtures of N-1 and N-2 isomers, in which the N-1 isomerpredominates. Basic hydrolysis of the ester derivatives allowed the synthesis of thecorresponding indazole carboxylic acids. All compounds were fully characterised bymultinuclear NMR and IR spectroscopies, MS spectrometry and elemental analysis; theNMR spectroscopic data were used for structural assignment of the N-1 and N-2 isomers.The molecular structure of indazol-2-yl-acetic acid (5b was determined by X-raydiffraction, which shows a supramolecular architecture involving O2-H...N1intermolecular hydrogen bonds.

  3. Purification and characterization of an arginine ester hydrolase from the venom of Trimeresurus mucrosqumatus in Hunan province of China

    Institute of Scientific and Technical Information of China (English)

    YU Xiao-dong; LI Bo; YU Zheng-ping

    2005-01-01

    Objective: To study the physical and chemical properties of an arginine ester hydrolase from the venom of Trimeresurus mucrosqumatus in Hunan province of China. Methods :The arginine ester hydrolase (AEH) was isolated from the venom of Chinese Trimeresurus mucrosqumatus by a combination of ionexchange chromatography on DEAE-Sephadex A-50, CM-Sepharose Cl-6B and gel filtration on Sephadex G-100. Results: The purified protein named TM-AEH,a glycoprotein with carbohydrate content of 0.5 % neutral hexose and 0. 75 % sialic acid,a relative molecular mass of 29.0 kDa,and an isoelectric point (pI) of 5. 2. It shares with an extinction coefficient (E0.1%/cm) of 1.332 at 280 nm,consisted of 225 amino acid residues ,and migrated as a band under reduced or non-reduced condition in basic PAGE. TM-AEH was a highly thermostable protein and was stable to pH changes between 5 and 9. The optimum temperature and optimum pH were 55℃ and 8. 4 for its catalytic activity respectively,which was inhibited by Fe3+ and Cu2+. Conclusion:This protein can exhibit higher BAEE-hydrolysing activity and fibrinogenolytic activity as compared to that of whole venom.

  4. Carboxylic ester hydrolases in the thyroid gland of the guinea-pig. A light microscopic study

    DEFF Research Database (Denmark)

    Kirkeby, S

    1976-01-01

    The location of cholinesterase and non-specific esterase in the thyroid gland of the guniea-pig was studied with the light microscope. It was found that the idoxyl method for non-specific esterase activity under special conditions is superior to the cholinesterase method in a number of respects...

  5. Characterization of multimetric variants of ubiquitin carboxyl-terminal hydrolase L1 in water by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Here, we illustrated that the morphological structures of ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) variants and Parkinson's disease (PD) exhibit good pathological correlation by a small-angle neutron scattering (SANS). UCH-L1 is a neuro-specific multiple functional enzyme, deubiquitinating, ubiquityl ligase, and also involved in stabilization of mono-ubiquitin. To examine the relationship between multiple functions of UCH-L1 and the configuration of its variants [wild-type, I93M (linked to familial Parkinson's disease), and S18Y (linked to reduced risk of Parkinson's disease)], in this report, we proposed that these were all self-assembled dimers by an application of a rotating ellipsoidal model; the configurations of these dimers were quite different. The wild-type was a rotating ellipsoidal. The globular form of the monomeric component deformed by the I93M mutation. Conversely, the S18Y polymorphism promoted the globularity. Thus, the multiple functional balance is closely linked to the intermolecular interactions between the UCH-L1 monomer and the final dimeric configuration

  6. Development of surface plasmon resonance imaging biosensors for detection of ubiquitin carboxyl-terminal hydrolase L1.

    Science.gov (United States)

    Sankiewicz, Anna; Laudanski, Piotr; Romanowicz, Lech; Hermanowicz, Adam; Roszkowska-Jakimiec, Wiesława; Debek, Wojciech; Gorodkiewicz, Ewa

    2015-01-15

    We have developed a new method for highly selective determination of the ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) concentration using a surface plasmon resonance imaging (SPRI) technique and two different biosensors. UCH-L1 was captured from a solution by immobilized specific rabbit monoclonal antibody or specific LDN-57444 inhibitor due to formation of receptor-UCH-L1 complex on the biosensor surface. The analytically useful dynamic response range of both biosensors is between 0.1 and 2.5ng/ml. The detection limit is 0.06ng/ml for the biosensor with antibody and 0.08ng/ml for the biosensor with inhibitor. Biosensors based on both antibody and inhibitor were found to be suitable for quantitative determination of the UCH-L1 and exhibit good tolerance to the potential interferents. Both biosensors gave comparable results in the range of 0 to 0.20ng/ml for plasma samples and 0.30 to 0.49ng/ml for cerebrospinal fluid samples. To validate the new methods, comparative determination of UCH-L1 by the commercial enzyme-linked immunosorbent assay (ELISA) kit was performed. In general, in terms of UCH-L1 concentration, a good correlation between SPRI and ELISA was found. The developed biosensors can be used successfully for the determination of UCH-L1 in body fluids. PMID:25312468

  7. Acetobacter turbidans alpha-amino acid ester hydrolase : merohedral twinning in P2(1) obscured by pseudo-translational NCS

    NARCIS (Netherlands)

    Barends, TRM; Dijkstra, BW; Barends, Thomas R.M.; Dijkstra, Bauke W.

    2003-01-01

    The structure elucidation of the alpha-amino acid ester hydrolase from Acetobacter turbidans by molecular replacement is described. In the monoclinic crystal, the molecules are related by both rotational and pseudo-crystallographic translational NCS (non-crystallographic symmetry). Refinement of the

  8. QSTR studies regarding the ECOSAR toxicity of benzene-carboxylic acid' esters to fathead minnow fish (Pimephales promelas).

    Science.gov (United States)

    Tarko, Laszlo; Putz, Mihai V; Ionascu, Cosmin; Putz, Ana-Maria

    2014-01-01

    The present work employs 152 benzene-carboxylic acid' esters having computed the toxicity within the range [2.251, 10.222] for fathead minnow fish (Pimephales promelas). Calibration set includes many pairs having very similar chemical structure, size, shape and hydrophilicity, but very different value of ECOSAR toxicity or vice versa. The QSTR study, which uses all esters as calibration set, emphasized a large percent (16.2%) of outliers. In this QSTR study most of the estimated values of toxicity for outliers are much lower than ECOSAR toxicity. The LogP and some aromaticity descriptors are predictors. The best QSTR for esters having low value (toxicity and the best QSTR for esters having high value (> 5.5) of ECOSAR toxicity are obtained when the number of outliers is very small. These QSTRs are different enough and highlight opposite influences of certain descriptors on toxicity. The results emphasize two possibilities: (a) the esters having low value of ECOSAR toxicity and the esters having high value of ECOSAR toxicity are included in two different classes from the point of view of structure-toxicity relationship and/or (b) many high values of ECOSAR toxicity are wrong. By comparison, a QSTR using experimental values of toxicity against rats for 37 benzene-carboxylic esters included in the same database gives good correlation experimental/computed values of toxicity, the number of outliers is null and the result of validation test is good. PMID:24724900

  9. Chemo-enzymatic epoxidation of olefins by carboxylic acid esters and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ruesch gen. Klaas, M.; Warwel, S. [Inst. for Biochemistry and Technology of Lipids, H.P. Kaufmanm-Inst., Federal Centre for Cereal, Potato and Lipid Research, Muenster (Germany)

    1998-12-31

    Ethylen and, recently, butadiene can be epoxidized directly with oxygen and for the epoxidation of propylene, the use of heterogeneous transition metals and organic peroxides (Halcon-Process) is the major player. But, beside from those notable exceptions, all other epoxidations, including large ones like the epoxidation of plant oils as PVC-stabilizers (about 200.000 t/year), are carried out with peroxy acids. Because mcpba is far to expensive for most applications, short chain peracids like peracetic acid are used. Being much less stable than mcpba and thus risky handled in large amounts and high concentrations, these peroxy acids were preferably prepared in-situ. However, conventional in-situ formation of peracids has the serious drawback, that a strong acid is necessary to catalyze peroxy acid formation from the carboxylic acid and hydrogen peroxide. The presence of a strong acid in the reaction mixture often results in decreased selectivity because of the formation of undesired by-products by opening of the oxirane ring. Therefore, we propose a new method for epoxidation based on the in-situ preparation of percarboxylic acids from carboxylic acid esters and hydrogen peroxide catalyzed by a commercial, immobilized lipase. (orig.)

  10. Radioimmunoassay for anileridine, meperidine, and other N-substituted phenylpiperidine carboxylic acid esters

    Energy Technology Data Exchange (ETDEWEB)

    Van Vunakis, H.; Freeman, D.S.; Gjika, H.B.

    1975-10-01

    Antibodies that bind an /sup 125/I-tyramyl derivative of N-succinylanileridine have been produced in animals immunized with N-succinylanileridine-hemocyanin conjugate. Several congeners and metabolites have been tested as competitors of this antigen-antibody reaction. The concentrations (in picomoles) required for 50 percent inhibition have been found to be: anileridine (0.2), meperidine (3.5), piminodine (3.8), diphenoxylate (20.5), normeperidine (20.0), meperidine acid (45,000) and anileridine acid (3,400). Although ester hydrolysis results in changes in inhibiting capacities on the order of 10/sup 4/, major structural changes in the substituent on the nitrogen of the piperidine ring are not readily recognized by the antibody. This radioimmunoassay can be used to study a variety of N-substituted phenylpiperidine carboxylic acid esters by relating the results to the standard curve obtained for the drug under investigation. For all practical purposes, alphaprodine, morphine and methadone do not interfere with the assay.

  11. Radioimmunoassay for anileridine, meperidine, and other N-substituted phenylpiperidine carboxylic acid esters

    International Nuclear Information System (INIS)

    Antibodies that bind an 125I-tyramyl derivative of N-succinylanileridine have been produced in animals immunized with N-succinylanileridine-hemocyanin conjugate. Several congeners and metabolites have been tested as competitors of this antigen-antibody reaction. The concentrations (in picomoles) required for 50 percent inhibition have been found to be: anileridine (0.2), meperidine (3.5), piminodine (3.8), diphenoxylate (20.5), normeperidine (20.0), meperidine acid (45,000) and anileridine acid (3,400). Although ester hydrolysis results in changes in inhibiting capacities on the order of 104, major structural changes in the substituent on the nitrogen of the piperidine ring are not readily recognized by the antibody. This radioimmunoassay can be used to study a variety of N-substituted phenylpiperidine carboxylic acid esters by relating the results to the standard curve obtained for the drug under investigation. For all practical purposes, alphaprodine, morphine and methadone do not interfere with the assay

  12. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    Energy Technology Data Exchange (ETDEWEB)

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.; Das, Chittaranjan (Purdue)

    2010-07-06

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarily at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.

  13. Esters of o- and m-carborane-C-carboxylic acids with o- and m-C-carborane alcohols

    International Nuclear Information System (INIS)

    Acid chlorides of o- and m-carborane-C-carboxylic acids reacted with primary o- and m-C-carborane alcohols in anhydrous benzene to form in a high yield (81-86%) previously unknown corresponding o- and m-carborane-containing two- and three-nuclear esters. The composition and structure of the compounds prepared have been characterized by elementary analysis, 1H and 11B NMR, IR and UV spectroscopy, by measuring their molecular weights and melting points

  14. Simultaneous determination of C2-C22 non-esterified fatty acids and other metabolically relevant carboxylic acids in biological material by gas chromatography of their benzyl esters.

    Science.gov (United States)

    Schatowitz, B; Gercken, G

    1988-03-18

    A method for the simultaneous determination of non-esterified short-, medium- and long-chain fatty acids and other types of metabolically relevant carboxylic acids such as hydroxy, keto, aromatic and dicarboxylic acids in biological material by capillary gas chromatography of benzyl ester derivatives is described. Sample preparation avoiding incomplete isolation of carboxylic acids consisted of deproteinization and extraction with ethanol, fixation of carboxylic acids as carboxylates, removal of interfering compounds such as neutral lipids by hexane extraction and amino acids, acyl carnitines and other cations by cation-exchange chromatography, derivatization of keto groups of ketocarboxylic acids into O-methyl oximes and benzyl ester formation by reaction of the potassium carboxylates with benzyl bromide via crown ether catalysis. The sample preparation conditions were investigated, showing the usefulness of this method for quantitative determinations. Chromatograms obtained from human serum, human urine and rat heart ventricle and concentrations of carboxylic acids in these specimens are presented. PMID:3372640

  15. Meso-ester and carboxylic acid substituted BODIPYs with far-red and near-infrared emission for bioimaging applications

    KAUST Repository

    Ni, Yong

    2014-01-21

    A series of meso-ester-substituted BODIPY derivatives 1-6 are synthesized and characterized. In particular, dyes functionalized with oligo(ethylene glycol) ether styryl or naphthalene vinylene groups at the α positions of the BODIPY core (3-6) become partially soluble in water, and their absorptions and emissions are located in the far-red or near-infrared region. Three synthetic approaches are attempted to access the meso-carboxylic acid (COOH)-substituted BODIPYs 7 and 8 from the meso-ester-substituted BODIPYs. Two feasible synthetic routes are developed successfully, including one short route with only three steps. The meso-COOH-substituted BODIPY 7 is completely soluble in pure water, and its fluorescence maximum reaches around 650 nm with a fluorescence quantum yield of up to 15 %. Time-dependent density functional theory calculations are conducted to understand the structure-optical properties relationship, and it is revealed that the Stokes shift is dependent mainly on the geometric change from the ground state to the first excited singlet state. Furthermore, cell staining tests demonstrate that the meso-ester-substituted BODIPYs (1 and 3-6) and one of the meso-COOH-substituted BODIPYs (8) are very membrane-permeable. These features make these meso-ester- and meso-COOH-substituted BODIPY dyes attractive for bioimaging and biolabeling applications in living cells. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis and Crystal Structure of 4-(4,6-Dimethoxylpyrimidin-2-yl)-3-thiourea Carboxylic Acid Ethyl Ester

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yang; HUANG Jie; SONG Ji-Rong; REN Ying-Hui; XU Kang-Zhen

    2008-01-01

    4-(4,6-Dimethoxyl-pyrimidin-2-yl)-3-thiourea carboxylic acid ethyl ester was synthesized by the reaction of 2-amino-4,6-dimethoxyl pyrimidine,potassium thiocyanate and methyl chloroformate in ethyl acetate.Single crystals suitable for X-ray measurement were obtained by recrystallization with the solvent of dimethyl formamidc at room temperature.The crystal structure was determined by X-ray diffraction analysis.Crystallographic data:C10H14N4O4S,Mr=286.31,monoclinic,space group C2/c with a=2.5309(3),b=0.67682(6),c=1.74237(19)nm,β=114.744(3)°,V=2.7106(5)nm3,Dc=1.403 g/cm3,μ=0.225mm-1,F(000)=1200,Z=8,R=0.0514 and wR=0.1529.

  17. Synthesis and Crystal Structure of 4-(4,6-dimethoxyl -pyrimidin-2-yl)-3-thiourea Carboxylic Acid Methyl Ester

    Institute of Scientific and Technical Information of China (English)

    HUANG Jie; SONG Ji-Rong; REN Ying-Hui; XU Kang-Zhen; MA Hai-Xia

    2006-01-01

    The title compound 4-(4,6-dimethoxylpyrimidin-2-yl)-3-thiourea carboxylic acid methyl ester was synthesized by the reaction of 2-amino-4,6-dimethoxyl pyrimidine, potassium thiocyanate and methyl chloroformate in ethyl acetate. Single crystals suitable for X-ray measurement were obtained by recrystallization with the solvent of dimethyl formamide at the room temperature. The structure was characterized by elemental analysis and IR and determined by X-ray diffraction analysis. Crystallographic data: C9H12N4O4S, Mr = 272.29, monoclinic, space group C2/m with a = 1.6672(3), b = 0.66383(12), c = 1.1617(2) nm, β = 109.275(2)°, V = 1.2136(4) nm3, Dc = 1.490 g/cm3, μ = 0.281 mm-1, F(000) = 568, Z = 4, R1 = 0.0341and wR2 = 0.1042.

  18. Esterification and Chemoselective Synthesis of R-Tetrahydrothiazo-2- thione-4-carboxylic Esters Catalyzed by TiCl4

    Institute of Scientific and Technical Information of China (English)

    SHANG Yan-mei; LI Jing; SONG Zhi-guang; LI Ye-zhi; HUANG Hua-min

    2007-01-01

    A series of esters of R-tetrahydrothiazo-2-thione-4-carboxylic acid[ R-TTCA] was synthesized by direct esterification of R-TTCA with alcohols(CH3OH, C2H5OH, n-C3H7OH, i-C3H7OH, n-C4H9OH, sec-C4H9OH) in the presence of TiCl4 as the catalyst at room temperature without using any other solvent or dehydrant in high yields,91.6%-99.1% for primary alcohols and 55%- 80% for secondary alcohols. The catalyst has a strong chemoselecfive activity for the esterification of primary alcohols with R-TTCA in the presence of secondary alcohols. Owing to high yield, high chemoselectivity, and mild conditions used, this is an efficient method for the esterification of primary alcohols with R-TTCA.

  19. Ubiquitin carboxyl terminal hydrolase L1 negatively regulates TNF{alpha}-mediated vascular smooth muscle cell proliferation via suppressing ERK activation

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Tomonaga; Li, Jinqing; Dong, Xiaoyu; Potts, Jay D. [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Tang, Dong-Qi [Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610-0275 (United States); Li, Dong-Sheng, E-mail: dsli@yymc.edu.cn [Hubei Key Laboratory of Embryonic Stem Cell Research, Tai He Hospital, Yunyang Medical College, 32 S. Renmin Rd., Shiyan, Hubei 442000 (China); Cui, Taixing, E-mail: taixing.cui@uscmed.sc.edu [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States)

    2010-01-01

    Deubiquitinating enzymes (DUBs) appear to be critical regulators of a multitude of processes such as proliferation, apoptosis, differentiation, and inflammation. We have recently demonstrated that a DUB of ubiquitin carboxyl terminal hydrolase L1 (UCH-L1) inhibits vascular lesion formation via suppressing inflammatory responses in vasculature. However, the precise underlying mechanism remains to be defined. Herein, we report that a posttranscriptional up-regulation of UCH-L1 provides a negative feedback to tumor necrosis factor alpha (TNF{alpha})-mediated activation of extracellular signal-regulated kinases (ERK) and proliferation in vascular smooth muscle cells (VSMCs). In rat adult VSMCs, adenoviral over-expression of UCH-L1 inhibited TNF{alpha}-induced activation of ERK and DNA synthesis. In contrast, over-expression of UCH-L1 did not affect platelet derived growth factor (PDGF)-induced VSMC proliferation and activation of growth stimulating cascades including ERK. TNF{alpha} hardly altered UCH-L1 mRNA expression and stability; however, up-regulated UCH-L1 protein expression via increasing UCH-L1 translation. These results uncover a novel mechanism by which UCH-L1 suppresses vascular inflammation.

  20. Benzyl esters of C2-C20 fatty acids and metabolically relevant carboxylic acids. Preparation and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Schatowitz, B; Gercken, G

    1987-11-13

    Short-, medium- and long-chain fatty acids, and other types of metabolically relevant carboxylic acids like hydroxy-, keto-, aromatic and dicarboxylic acids, were analyzed by capillary gas chromatography. For separation, benzyl ester derivatives were used, prepared by reaction of the potassium carboxylates with benzyl bromide in acetonitrile catalyzed by a crown ether. The reaction conditions for quantitative benzylation were studied. Keto groups of ketocarboxylic acids were stabilized prior to benzylation by formation of O-methyl oximes using methoxyamine hydrochloride in aqueous-ethanolic solution. The separation of more than 45 carboxylic acids was achieved on a CP-Sil 5 CB fused-silica capillary column in less than 70 min. The electron impact mass spectra of ketocarboxylic acid O-methyl oxime benzyl esters PMID:3693495

  1. Microbubble ultrasound contrast agent with three esters and carboxylic methyl cellulose as main shell materials: Its preparation and imaging evaluation

    Institute of Scientific and Technical Information of China (English)

    杜永峰; 万明习; 周晓东

    2003-01-01

    Objective: To study on the preparation process of a new surfactant-based microbubble ultrasound contrast agent and to evaluate its contrast effects in vivo. Methods: Microbubble ultrasound contrast agent with three ester surfactants and other additives as its shell materials was prepared by sonication. Sulfur hexafluoride was adopted as the inner gas of the microbubbles. New methods through the combination of optical microscope and some softwares were used to measure the size distribution and the concentration of the microbubbles. Some parameters such as the pH value of the phosphate buffer, quantity of the carboxylic methyl cellulose in the shell materials, selection of the ultrasound power and process time, were studied. Six hybirded dogs were used to verify the in vivo contrast imaging of the contrast agent using second harmonic power Doppler modality. Safety and persistent time of the agent inner animal body were also investigated. Results: Ultrasound contrast agent prepared in the experiment had an average microbubble diameter of 3.95 microns with concentration of 3.6×109 microbubbles per millilitre. Carboxylic methyl cellulose was found as an important shell material which had obviously effect on the microbubble stability and production even with a little quantity. The buffer pH value also had a key role on the microbubble formation and the final production. When the buffer pH value reached 7.4, there was no microbubble produced. Under the approximate microbubble production, process time could be shorten with the increasing ultrasound power. The obvious ultrasound contrast imaging effects were detected in the dog's heart chamber and liver as well as kidney using only one millilitre agent when diluted. The agent was found safe to the dogs. At the same time, persistent time of the agent was found over 20 min in the dog's body. Conclusion: The new ultrasound contrast agent prepared in the experiment has high microbubble production and concentration, narrow

  2. Hydrolysis of carboxylate ester catalyzed by a new artificial abzyme based on molecularly imprinted polymer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new kind of artificial abzyme MIP-3, which contains N-phenyl benzonic amide group and “nanochannel” formed by embedded ZnO nano materials, and is imprinted by a transition-state analogue of p-nitrophenyl methyphosphonate in the hydrolysis of p-nitrophenyl acetate, was prepared by radical co-polymerization. Hydrolytic kinetics of p-nitrophenyl carboxylate catalyzed by MIP-3 was investigated. The results showed that the artificial abzyme exhibited notable substructure selectivity and strong catalytic ability in hydrolysis of p-nitrophenyl acetate

  3. [11C]Carbon Monoxide in Palladium- / Selenium-Promoted Carbonylation Reactions : Synthesis of 11C-Imides, Hydrazides, Amides, Carboxylic Acids, Carboxylic Esters, Carbothioates, Ketones and Carbamoyl Compounds

    OpenAIRE

    Karimi, Farhad

    2002-01-01

    [11C]Carbon monoxide in low concentrations has been used in palladium- or seleniummediated carbonylation reactions such as the synthesis of 11C-imides, hydrazides, amides, carboxylic acids, esters, carbothioates, ketones and carbamoyl compounds. In these reactions aryl iodides have been used in most cases. However, less reactive aryl triflate, chloride and bromides were activated using tetrabutylammonium iodide. The reactivities of nucleophiles may have influence on the radiochemical yield of...

  4. Pancreatic lipase-related protein 2 digests fats in human milk and formula in concert with gastric lipase and carboxyl ester lipase

    OpenAIRE

    Johnson, Karin; Ross, Leah; Miller, Rita; Xiao, Xunjun; Lowe, Mark E.

    2013-01-01

    INTRODUCTION Dietary fats must be digested into fatty acids and monoacylglycerols prior to absorption. In adults, colipase-dependent pancreatic triglyceride lipase (PTL) contributes significantly to fat digestion. In newborn rodents and humans, the pancreas expresses low levels of PTL. In rodents, a homologue of PTL, pancreatic lipase related protein 2 (PLRP2) and carboxyl ester lipase (CEL) compensate for the lack of PTL. In human newborns, the role for PLRP2 in dietary fat digestion is uncl...

  5. Re-characterization of mono-2-ethylhexyl phthalate hydrolase belonging to the serine hydrolase family.

    Science.gov (United States)

    Iwata, Makoto; Imaoka, Takuya; Nishiyama, Takashi; Fujii, Takao

    2016-08-01

    A novel bacterium assimilating di-2-ethylhexyl phthalate as a sole carbon source was isolated, and identified as a Rhodococcus species and the strain was named EG-5. The strain has a mono-2-ethylhexyl phthalate (MEHP) hydrolase (EG-5 MehpH), which exhibits some different enzymatic features when compared with the previously reported MEHP hydrolase (P8219 MehpH) from Gordonia sp. These differences include different pH optimum activity, maximal reaction temperature and heat stability. The Km and Vmax values of EG-5 MehpH were significantly higher than those of P8219 MehpH. The primary structure of EG-5 MehpH showed the highest sequence identity to that of P8219 MehpH (39%) among hydrolases. The phylogenetic tree suggested that EG-5 MehpH and P8219 MehpH were categorized in different groups of the novel MEHP hydrolase family. Mutation of a conserved R(109) residue of EG-5 MehpH to a hydrophobic residue resulted in a dramatic reduction in the Vmax value towards MEHP without affecting the Km value. These results indicate that this residue may neutralize the negative charge of a carboxylate anion of MEHP, and thus inhibit the catalytic nucleophile from attacking the ester bond. In other words, the R residue blocks inhibition from the carboxylate anion of MEHP. Recently, registered hypothetical proteins exhibiting 98% or 99% identities for EG-5 MehpH or for P8219 MehpH were found from some pathogens belonging to Actinomycetes. The protein may have other activities besides MEHP hydrolysis and function in other physiological reactions in some Actinomycetes. PMID:26868518

  6. Spectrophotometric tool for the determination of the total carboxylate content in proteins; molar extinction coefficient of the enol ester from Woodward's reagent K reacted with protein carboxylates

    NARCIS (Netherlands)

    Kosters, H.A.; Jongh, H.H.J.de

    2003-01-01

    A number of relevant properties of Woodward's reagent K have been determined, such as the stability of the reactant and the optimal reaction conditions of the reactant with protein carboxylates. A Woodward's reagent K stock solution was stable at 4°C for prolonged time, whereas upon storage at 22°C,

  7. Study of Lewis Acid Promoting KBH_4 Reduce Carboxylic Acid Ester%Lewis酸促进KBH_4还原某些羧酸酯的研究

    Institute of Scientific and Technical Information of China (English)

    汪一波; 金召磊; 唐守万; 孙佰申; 潘富友; 高建荣

    2011-01-01

    Potassium borohydride reduction of some carboxylic esters into the corresponding alcohols by the Lewis acid was introduced.The structures were confirmed by 1HNMR,MS and IR,consistent with its structure and the target,and the yield of 37.5~68.5.%在Lewis酸的作用下,研究硼氢化钾将某些羧酸酯还原成相应的醇。其产物经1HNMR、MS和IR表征,其结构与目标物一致,收率在37.5~68.5之间。

  8. Catalytic Kinetics of the Schiff Base Metal Complexes Bearing Side Chain of Cyclic morpholine in Carboxylic Ester Hydrolysis

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Shu-Lin; LI,Min-Jiao; OU,Zhong-Wen; CHEN,Guo-Xu; LIU,Fu-An; XIE,Jia-Qing

    2007-01-01

    It has been reported that two Schiff base transition metal complexes bearing the side chain of the morpholine ring were synthesized and characterized, and two complexes with the same base agent but different metal ions were used as a simulant hydrolase in the catalytic hydrolysis of p-nitrophenyl picolinate in this paper. The mechanism of PNPP catalytic hydrolysis is proposed and supported by the results of the spectral analysis and the kinetic calculation. A kinetic mathematical model, applied to the calculation of the kinetic and thermodynamics parameters of PNPP catalytic hydrolysis, has been established on the foundation of the mechanism proposed. The result of the study shows that the two complexes have a good catalytic activity in PNPP catalytic hydrolysis, and the rate of the PNPP catalytic hydrolysis was increased with the increase of the pH values in the buffer solution and affected by the polarization effect of metal ion of the complexes.

  9. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid.

    Directory of Open Access Journals (Sweden)

    Pradeep Mishra

    Full Text Available Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S-amide to (S-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH. IaaH is known to catalyse conversion of indole-3-acetamide (IAM to indole-3-acetic acid (IAA, which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To

  10. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid.

    Science.gov (United States)

    Mishra, Pradeep; Kaur, Suneet; Sharma, Amar Nath; Jolly, Ravinder S

    2016-01-01

    Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S)-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R)-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S)-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline)-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S)-amide to (S)-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH). IaaH is known to catalyse conversion of indole-3-acetamide (IAM) to indole-3-acetic acid (IAA), which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To the best of

  11. Pancreatic lipase-related protein 2 digests fats in human milk and formula in concert with gastric lipase and carboxyl ester lipase

    Science.gov (United States)

    Johnson, Karin; Ross, Leah; Miller, Rita; Xiao, Xunjun; Lowe, Mark E.

    2013-01-01

    INTRODUCTION Dietary fats must be digested into fatty acids and monoacylglycerols prior to absorption. In adults, colipase-dependent pancreatic triglyceride lipase (PTL) contributes significantly to fat digestion. In newborn rodents and humans, the pancreas expresses low levels of PTL. In rodents, a homologue of PTL, pancreatic lipase related protein 2 (PLRP2) and carboxyl ester lipase (CEL) compensate for the lack of PTL. In human newborns, the role for PLRP2 in dietary fat digestion is unclear. To clarify the potential of human PLRP2 to influence dietary fat digestion in newborns, we determined PLRP2 activity against human milk and infant formula. METHODS The activity of purified recombinant PLRP2, gastric lipase and CEL against fats in human milk and formula was measured with each lipase alone and in combination with a standard pH-stat assay. RESULTS Colipase added to human milk stimulated fat digestion. PLRP2 and CEL had activity against human milk and formula. Pre-digestion with gastric lipase increased PLRP2 activity against both substrates. Together, CEL and PLRP2 activity was additive with formula and synergistic with human milk. CONCLUSIONS PLRP2 can digest fats in human milk and formula. PLRP2 acts in concert with CEL and gastric lipase to digest fats in human milk in vitro. PMID:23732775

  12. Synthesis and Antibacterial Activities of Carboxylic Myrtanyl Esters%羧酸桃金娘烷醇酯的合成及抑菌活性研究

    Institute of Scientific and Technical Information of China (English)

    廖圣良; 商士斌; 司红燕; 沈明贵; 饶小平; 宋湛谦

    2015-01-01

    Myrtanol was prepared via hydroboration-oxidation reaction from β-pinene, then eight novel carboxylic myrtanyl esters (myrtanyl acetate (4a), myrtanyl propionate (4b), myrtanyl butyrate (4c), myrtanyl valerate (4d), myrtanyl cyclohexanecarboxylate(4e),myrtanyl benzoate(4f),myrtanyl p-methylbenzoate(4g) and myrtanyl p-methoxybenzoate(4h) were obtained through the reaction of myrtanol and carboxylic acids using N, N′-dicyclohexylcarbodiimide/dimethylaminopyridine ( DCC/DMAP) as catalyst. Structure characterizations were achieved by FT-IR,1 H NMR and ESI-MS. Antibacterial activity assays were carried out by agar dilution method. The results showed that compounds 4b,4c,4f,4g and 4h exhibited inhibitory activities (MIC was 256 mg/L) against the Gram positive bacterial Staphylococcus aureus,and compounds 4a,4b,4c and 4e exhibited inhibitory activities ( MICs were ranged from 128 to 256 mg/L) against the Gram negative bacterial Escherichia coli. more importantly. Compound 4a showed comparable activity ( MIC was 128 mg/L) to that of bromogeramine against E. coli. Comparing with the starting compound β-pinene and the intermediate myrtanol, this series of esters showed better antibacterial activities.%以β-蒎烯为原料,经硼氢化氧化反应合成了桃金娘烷醇,桃金娘烷醇与羧酸在N,N′-二环己基碳酰亚胺/4-二甲氨基吡啶( DCC/DMAP)的催化作用下反应,生成了8个羧酸桃金娘烷醇酯新化合物:乙酸桃金娘烷醇酯(4a)、丙酸桃金娘烷醇酯(4b)、正丁酸桃金娘烷醇酯(4c)、正戊酸桃金娘烷醇酯(4d)、环己烷羧酸桃金娘烷醇酯(4e)、苯甲酸桃金娘烷醇酯(4f)、对甲苯甲酸桃金娘烷醇酯(4g)、对甲氧基苯甲酸桃金娘烷醇酯(4h). 借助FT-IR、1 H NMR和ESI-MS对产物进行了结构表征,通过琼脂稀释法对所合成的化合物进行了抑菌活性测试. 结果表明,在该系列羧酸桃金娘烷醇酯中,化合物4b、4c、4f、4g和4h对革兰氏阳

  13. Antiproliferative, DNA cleavage, and ADMET study of substituted 2-(1-benzofuran-2-yl quinoline-4-carboxylic acid and its esters

    Directory of Open Access Journals (Sweden)

    R. Anantacharya

    2016-12-01

    Full Text Available Synthesis, anti-proliferative, DNA cleavage, and in silico ADMET studies of 2-(1-benzofuran-2-yl quinoline-4-carboxylic acids and their resultant esters in acid catalyzed medium have been investigated. The synthesized compounds are characterized by UV, IR, 1H NMR, 13C NMR, and mass spectral analysis. The electrophoretic DNA cleavage studies on λ-DNA (Eco-RI/Hinda-III double digest using agarose gel method and the antiproliferative activity was carried out by MTT assay on five different human cancer cell lines (Chronic Myelogenous Leukemia (K562, Breast Cancer (MCF-7, Cervical Cancer (HeLa, Colorectal Adino carcinoma (Colo 205, and Hepato cellular carcinoma (HepG2. Doxorubicin is taken as standard for comparison. The cleavage study indicated that molecules (3b–6a and 7b–8c did cleave the DNA completely with no trace of fragments. The molecules (6b, 6c and 7a have appeared to cleave DNA partially and assessed by comparing the bands appeared in control and test compounds at 100 μg concentration. The MTT antiproliferative activity of the synthesized derivatives at a concentration of 10 mM screened that out of the five cancer cell lines tested, the compounds 8b (25.97%, MCF-7, 7a (25.36%, Colo 205, and 7b (24.22%, HePG showed considerable degree of activity at a very low concentration. The molecules were active against MCF-7, Colo 205, and HepG. The molecules exhibited acceptable range in in silico ADMET prediction, significant DNA cleavage, and antiproliferative properties. The study further provides identification of possible lead moiety as an antiproliferative agent.

  14. A High-efficiency Preparation, Properties and Structure of (R, S )- and (S, S )-Pyrrolidine-2-carboxylic Acid 3,5-Dioxa-4-boracyclohepta [ 2, 1-a; 3,4-a′] dinaphthalen-4-yl Esters

    Institute of Scientific and Technical Information of China (English)

    SHAN Zi-Xing; LIU, Si-Min; LIU, De-Jun

    2003-01-01

    A highly-efficient preparative procedure for ( R, S )- and ( S,S ) -pyrrolidine-2-carboxylic acid 3,5-dioxa-4-boracyclohepta [2,1-a; 3,4-a′ ] dinaphthalen-4-yl esters [ namely ( R, S )-BNBAP and (S, S )-BNBAP] is described and the crystal structure of (R, S ) -BNBAP was obtained. The data indicate that ( R, S )-BNBAP is a spirocyclic inner borate salt with almost normal tetrahedral configuration. This structural form may be the basic reason for their high chemical, optical and thermodynamic stability.

  15. 一锅法合成4-甲基-5-咪唑甲酸乙酯工艺%The Preparation of 4-Methyl-5-imidazole-carboxylic Acid Ethyl Ester by One-pot Reaction

    Institute of Scientific and Technical Information of China (English)

    朱驯; 魏运洋

    2012-01-01

    [Aims] The aim is to look for a new preparation method of 4-methyl-5-imidazole-carboxylic acid ethyl ester. [Methods] 4-Methyl-5-imidazole-carboxylic acid ethyl ester with versatility was prepared from 3-oxo-butyric acid ethyl ester, sulfuryl chloride and formamide by one-pot reaction. [Results] The effect on yield of the mole ratio of materials, reaction temperature, different solvent were discussed by experiments. We could receive the optimal reaction condition, the mole ratio of 3-oxo-butyric acid ethyl ester, sulfuryl chloride and formamide is 1:1:2 (in mol), the reaction temperature is 120 ℃, the solvent is dioxane. And the syntheses yield of 4-methyl-5-imidazole-carboxylic acid ethyl ester is 70% under this condition. [Conclusions] The new route is simple and the raw materials are easily obtained, which is suitable for industrial production.%[目的]寻找一条合成4-甲基-5-咪唑甲酸乙酯的新工艺路线。[方法]以乙酰乙酸乙酯、磺酰氯与甲酰胺为原料,采用一锅法合成一种用途广泛的多功能单体4-甲基-5-咪唑甲酸乙酯。[结果]通过实验,确定了一条合成4-甲基-5-咪唑甲酸乙酯的新工艺:以二氧六环为溶剂,环化时反应温度为120℃,反应时间为4 h,n(乙酰乙酸乙酯)∶n(磺酰氯)∶n(甲酰胺)为1∶1∶2,在该条件下,4-甲基-5-眯唑甲酸乙酯的产率为70%。[结论]该方法路线简单,原料易得,适合工业化生产。

  16. 响应面法优化Aspergillus oryzae Cs007产酯水解酶发酵条件%Optimization of Ester Hydrolase-Production Conditions of Aspergillus Oryzae Cs007 by Response Surface Methodology

    Institute of Scientific and Technical Information of China (English)

    刘虹才; 鄢洪德; 徐玮; 汪钊

    2012-01-01

    对米曲霉菌株Aspergillus oryzae Cs007产酯水解酶发酵条件进行了研究.首先通过单因子实验确定最佳碳源为橄榄0油、最佳氮源为蛋白胨、最佳表面活性剂为阿拉伯胶;再利用Plackett-Burman设计筛选出具有显著效应的3个因素:蛋白胨、KH2PO4、阿拉伯胶;然后通过最陡爬坡实验和响应面法(RSM)分析确定了显著因素的最优水平;最后通过单因子实验确定最佳摇床转速和培养时间.优化后的产酶条件为:橄榄油1%(体积分数),蛋白胨1.76%(质量浓度),KH2 PO4 0.11%(质量浓度),MgSO40.05%(质量浓度),NaCl 0.05%(质量浓度),阿拉伯胶0.37%(质量浓度),起始pH值5,培养温度30℃,摇床转速200 r·min-1,培养时间48 h.优化条件下所产酯水解酶酶活达6.49 U· mL-1,比初始酶活2.8 U· mL-1提高了1.32倍.%The fermentation conditions of ester hydrolase-production by Aspergillus oryzae Cs007 were optimized. Initially,the most suitable carbon source olive oil, nitrogen source peptone and surfactant arabic gum were selected according to single factor experiment respectively. Then , three statistically significant factors pep-tone , KH2PO4 and arabic gum were picked out by Plackett-Burman design. And the optimal combined concentra-tions for significant factors were further optimized by the steepest ascent and response surface methodology (RSM). Finally,the optimum rotational speed of rotary shaker and culture time were determined by single fac-tor experiment. Consequently,the optimum culture medium were composed of olive oil 1%(volume ratio) ,pep-tone 1. 76% (mass concentration) ,KH2PO4 0. 11% (mass concentration) , MgSO4 0. 05% (mass concentration), NaCl 0. 05%(mass concentration) and arabic gum 0. 37%(mass concentration). After 48 h incubation with the medium (initial pH value of 5) under the conditions of 200 r·min-1 and 30℃ ,the maximum ester hydrolase ac-tivity achieved 6. 49 U·mL-1, which increased 2. 32-fold as

  17. Remarkable effect of bimetallic nanocluster catalysts for aerobic oxidation of alcohols: combining metals changes the activities and the reaction pathways to aldehydes/carboxylic acids or esters.

    Science.gov (United States)

    Kaizuka, Kosuke; Miyamura, Hiroyuki; Kobayashi, Shū

    2010-11-01

    Selective oxidation of alcohols catalyzed by novel carbon-stabilized polymer-incarcerated bimetallic nanocluster catalysts using molecular oxygen has been developed. The reactivity and the selectivity were strongly dependent on the combination of metals and solvent systems; aldehydes and ketones were obtained by the gold/platinum catalyst in benzotrifluoride, and esters were formed by the gold/palladium catalyst in methanol. To the best of our knowledge, this is the first example that the reaction pathway has been changed dramatically in gold catalysis by combining with a second metal. The differences in the activity and the selectivity are considered to be derived from the difference in the structure of the bimetallic clusters.

  18. Synthesis and in vivo studies of a selective ligand for the dopamine transporter: 3{beta}-(4-[{sup 125}I]iodophenyl) tropan-2{beta}-carboxylic acid isopropyl ester ([{sup 125}I]RTI-121)

    Energy Technology Data Exchange (ETDEWEB)

    Lever, John R.; Scheffel, Ursula; Stathis, Marigo; Seltzman, Herbert H.; Wyrick, Christopher D.; Abraham, Philip; Parham, Karol; Thomas, Brian F.; Boja, John W.; Kuhar, Michael J.; Carroll, F. Ivy

    1996-04-01

    A selective ligand for the dopamine transporter 3{beta}-(4-iodophenyl)tropan-2{beta}-carboxylic acid isopropyl ester (RTI-121) has been labeled with iodine-125 by electrophilic radioiododestannylation. The [{sup 125}I]RTI-121 was obtained in good yield (86 {+-} 7%, n = 3) with high radiochemical purity (>99%) and specific radioactivity (1210-1950 mCi/{mu}mol). After i.v. administration of [{sup 125}I]RTI-121 to mice, the rank order of regional brain tissue radioactivity (striatum > olfactory tubercles >> cortex, hippocampus, thalamus, hypothalamus, cerebellum) was consistent with dopamine transporter labeling. Specific in vivo binding in striatum and olfactory tubercles was saturable, and was blocked by the dopamine transporter ligands GBR 12,909 and ({+-})-nomifensine. By contrast, binding was not reduced by paroxetine, a serotonin transporter inhibitor, or desipramine, a norepinephrine transporter inhibitor. A variety of additional drugs having high affinities for recognition sites other than the neuronal dopamine transporter also had no effect. The [{sup 125}I]RTI-121 binding in striatum and olfactory tubercles was inhibited by d-amphetamine in dose-dependent fashion. Nonmetabolized radioligand represents 85% of the signal observed in extracts of whole mouse brain. Thus, [{sup 125}I]RTI-121 is readily prepared, and is a useful tracer for dopamine transporter studies in vivo.

  19. Synthesis and characterization of functional elastomeric poly(ester amide) co-polymers.

    Science.gov (United States)

    Jokhadze, G; Machaidze, M; Panosyan, H; Chu, C C; Katsarava, R

    2007-01-01

    A new family of random co-poly(ester amides)s (co-PEAs) having reactive pendant functional carboxylic acid groups were synthesized by co-polycondensation of di-p-toluenesulfonic acid salts of bis-(L-alpha-amino acid (L-leucine and/or L-phenylalanine)) alpha,omega-alkylene diesters with active diesters of dicarboxylic acids using di-p-toluenesulfonic acid salt of L-lysine benzyl ester as a co-monomer. The lateral benzyl ester groups in the L-lysine segment of co-PEAs were subsequently transformed into free COOH groups by catalytic hydrogenolysis using Pd black as a catalyst. The co-PEA-based polyacids obtained, as well as the original co-PEA having lateral benzyl ester groups were characterized by standard methods. In vitro biodegradation studies in the presence of hydrolases like alpha-chymotrypsin and lipase showed significant enzymatic-catalyzed biodegradation of these co-PEAs. These co-PEA-based polyacids were used for covalent attachment of iminoxyl radicals (4-amino-TEMPO) and in vitro biodegradation of 4-aminoTEMPO attached polymer was studied along with releasing kinetic of iminoxyl radical. PMID:17540117

  20. Density functional study of electronic, charge density, and chemical bonding properties of 9-methyl-3-Thiophen-2-YI-Thieno [3,2-e] [1, 2, 4] Thriazolo [4,3-c] pyrimidine-8-Carboxylic acid ethyl ester crystals

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H., E-mail: maalidph@yahoo.co.uk [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Kamarudin, H. [Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Alahmed, Z.A. [Department of Physics and Astronomy, King Saud University, Riyadh 11451 (Saudi Arabia); Auluck, S. [CSIR-National Physical Laboratory, Dr. K S Krishnan Marg, New Delhi 110012 (India); Chyský, Jan [Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, CTU in Prague, Technicka 4, 166 07 Prague 6 (Czech Republic)

    2014-06-01

    A comprehensive theoretical density functional investigation of the electronic crystal structure, chemical bonding, and the electron charge densities of 9-Methyl-3-Thiophen-2-YI-Thieno [3, 2-e] [1, 2, 4] Thriazolo [4,3-c] Pyrimidine-8-Carboxylic Acid Ethyl Ester (C{sub 15}H{sub 12}N{sub 4}O{sub 2}S{sub 2}) is performed. The density of states at Fermi level equal to 5.50 (3.45) states/Ry cell, and the calculated bare electronic specific heat coefficient is found to be 0.95 (0.59) mJ/mole-K{sup 2} for the local density approximation (Engel–Vosko generalized gradient approximation). The electronic charge density space distribution contours in (1 0 0) and (1 1 0) planes were calculated. We find that there are two independent molecules (A and B) in the asymmetric unit exhibit intramolecular C–H…O, C–H…N interactions. This intramolecular interaction is different in molecules A and B, where A molecule show C–H…O interaction while B molecule exhibit C–H…N interaction. We should emphasis that there is π–π interaction between the pyrimidine rings of the two neighbors B molecules gives extra strengths and stabilizations to the superamolecular structure. The calculated distance between the two neighbors pyrimidine rings found to be 3.345 Å, in good agreement with the measured one (3.424(1) Å). - Highlights: • Electronic structure, chemical bonding, and electron charge density were studied. • Density of states at Fermi level is 5.50 (3.45) states/Ry cell, for LDA (EVGGA). • Bare electronic specific heat coefficient is 0.95 (0.59) mJ/mole-K{sup 2} for LDA(EVGGA). • There are two independent molecules (A and B) in the asymmetric unit.

  1. New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups

    Directory of Open Access Journals (Sweden)

    A. Zuend

    2011-05-01

    Full Text Available We present a new and considerably extended parameterization of the thermodynamic activity coefficient model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients at room temperature. AIOMFAC combines a Pitzer-like electrolyte solution model with a UNIFAC-based group-contribution approach and explicitly accounts for interactions between organic functional groups and inorganic ions. Such interactions constitute the salt-effect, may cause liquid-liquid phase separation, and affect the gas-particle partitioning of aerosols. The previous AIOMFAC version was parameterized for alkyl and hydroxyl functional groups of alcohols and polyols. With the goal to describe a wide variety of organic compounds found in atmospheric aerosols, we extend here the parameterization of AIOMFAC to include the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon. Thermodynamic equilibrium data of organic-inorganic systems from the literature are critically assessed and complemented with new measurements to establish a comprehensive database. The database is used to determine simultaneously the AIOMFAC parameters describing interactions of organic functional groups with the ions H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl, Br, NO3, HSO4, and SO42−. Detailed descriptions of different types of thermodynamic data, such as vapor-liquid, solid-liquid, and liquid-liquid equilibria, and their use for the model parameterization are provided. Issues regarding deficiencies of the database, types and uncertainties of experimental data, and limitations of the model, are discussed. The challenging parameter optimization problem is solved with a novel combination of powerful global minimization

  2. New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups

    Directory of Open Access Journals (Sweden)

    A. Zuend

    2011-09-01

    Full Text Available We present a new and considerably extended parameterization of the thermodynamic activity coefficient model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients at room temperature. AIOMFAC combines a Pitzer-like electrolyte solution model with a UNIFAC-based group-contribution approach and explicitly accounts for interactions between organic functional groups and inorganic ions. Such interactions constitute the salt-effect, may cause liquid-liquid phase separation, and affect the gas-particle partitioning of aerosols. The previous AIOMFAC version was parameterized for alkyl and hydroxyl functional groups of alcohols and polyols. With the goal to describe a wide variety of organic compounds found in atmospheric aerosols, we extend here the parameterization of AIOMFAC to include the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon. Thermodynamic equilibrium data of organic-inorganic systems from the literature are critically assessed and complemented with new measurements to establish a comprehensive database. The database is used to determine simultaneously the AIOMFAC parameters describing interactions of organic functional groups with the ions H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl, Br, NO3, HSO4, and SO42−. Detailed descriptions of different types of thermodynamic data, such as vapor-liquid, solid-liquid, and liquid-liquid equilibria, and their use for the model parameterization are provided. Issues regarding deficiencies of the database, types and uncertainties of experimental data, and limitations of the model, are discussed. The challenging parameter optimization problem is solved with a novel combination of powerful global minimization

  3. Carboxyl group reactivity in actin

    International Nuclear Information System (INIS)

    While earlier work showed that the carboxyl groups of proteins could be quantitatively coupled to amino groups at pH 4.75 in the presence of EDC and a denaturing agent, the work presented here indicates that under milder conditions the modification of sidechain carboxyls is limited and somewhat specific. Most of the incorporated glycine ethyl ester (GEE) is apparently bound to five carboxyls. The total GEE incorporated was 3 to 4 moles/mole of protein as measured by an increase in Gly upon acid hydrolysis and amino acid analysis, as well as total radioactivity. 3.55 residues were found in peptides, 2.75 bound to residues 1 to 4, and 0.8 bound to Gly-100. 9 refs., 2 figs., 2 tabs

  4. Synthesis of (2R,3aR,8aR)-6-Chloro-3a-hydroxy-1,2,3,3a,8,8a- hexahydropyrrolo[2,3-b]indole-2-carboxylic Acid Methyl Ester by Reductive Cyclization

    Institute of Scientific and Technical Information of China (English)

    HONG,Wen-Xu(洪文旭); YAO,Zhu-Jun(姚祝军)

    2004-01-01

    A synthesis of(2R,3aR,8aR)-6-chloro-3a-hydroxy-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid methyl ester(1)was achieved.An aldol reaction with Garner aldehyde,a hydroxyl introduction by Davis reagent,and a reductive intramolecular ring-closure reaction were served as the key steps.This piece of work provides a new way to synthesize the analogues of hexahydropyrrolo[2,3-b]indole,starting from readily available chemical substrates and inexpensive reagents.

  5. Crystal Structure of Homo Sapiens PTD012 Reveals a Zinc-Containing Hydrolase Fold

    Energy Technology Data Exchange (ETDEWEB)

    Manjasetty,B.; Bussow, K.; Fieber-ErdMan, M.; Roske, Y.; Gobam, J.; Scheich, C.; Gotz, F.; Niesen, F.; Heinemann, U.

    2006-01-01

    The human protein PTD012 is the longer product of an alternatively spliced gene and was described to be localized in the nucleus. The X-ray structure analysis at 1.7 Angstroms resolution of PTD012 through SAD phasing reveals a monomeric protein and a novel fold. The shorter splice form was also studied and appears to be unfolded and non-functional. The structure of PTD012 displays an {alpha}{beta}{beta}{alpha} four-layer topology. A metal ion residing between the central {beta}-sheets is partially coordinated by three histidine residues. X-ray absorption near-edge structure (XANES) analysis identifies the PTD012-bound ion as Zn{sup 2+}. Tetrahedral coordination of the ion is completed by the carboxylate oxygen atom of an acetate molecule taken up from the crystallization buffer. The binding of Zn{sup 2+} to PTD012 is reminiscent of zinc-containing enzymes such as carboxypeptidase, carbonic anhydrase, and {beta}-lactamase. Biochemical assays failed to demonstrate any of these enzyme activities in PTD012. However, PTD012 exhibits ester hydrolase activity on the substrate p-nitrophenyl acetate.

  6. Enzymatic synthesis oF L-tryptophan from D,L-2-amino-delta2-thiazoline-4-carboxylic acid and indole by Pseudomonas sp. TS1138 L-2-amino-delta2-thiazoline-4-carboxylic acid hydrolase, S-carbamyl-L-cysteine amidohydrolase, and Escherichia coli L-tryptophanase.

    Science.gov (United States)

    Du, J; Duan, J J; Zhang, Q; Hou, J; Bai, F; Chen, N; Bai, G

    2012-01-01

    L-Tryptophan (L-Trp) is an essential amino acid. It is widely used in medical, health and food products, so a low-cost supply is needed. There are 4 methods for L-Trp production: chemical synthesis, extraction, enzymatic synthesis, and fermentation. In this study, we produced a recombinant bacterial strain pET-tnaA of Escherichia coli which has the L-tryptophanase gene. Using the pET-tnaA E. coli and the strain TS1138 of Pseudomonas sp., a one-pot enzymatic synthesis of L-Trp was developed. Pseudomonas sp. TS1138 was added to a solution of D,L-2-amino-delta2-thiazoline-4-carboxylic acid (DL-ATC) to convert it to L-cysteine (L-Cys). After concentration, E. coli BL21 (DE 3) cells including plasmid pET-tnaA, indole, and pyridoxal 5'-phosphate were added. At the optimum conditions, the conversion rates of DL-ATC and L-Cys were 95.4% and 92.1%, respectively. After purifying using macroporous resin S8 and NKA-II, 10.32 g of L-Trp of 98.3% purity was obtained. This study established methods for one-pot enzymatic synthesis and separation of L-Trp. This method of producing L-Trp is more environmentally sound than methods using chemical synthesis, and it lays the foundations for industrial production of L-Trp from DL-ATC and indole.

  7. Diversity of hydrolases from hydrothermal vent sediments of the Levante Bay, Vulcano Island (Aeolian archipelago) identified by activity-based metagenomics and biochemical characterization of new esterases and an arabinopyranosidase.

    Science.gov (United States)

    Placido, Antonio; Hai, Tran; Ferrer, Manuel; Chernikova, Tatyana N; Distaso, Marco; Armstrong, Dale; Yakunin, Alexander F; Toshchakov, Stepan V; Yakimov, Michail M; Kublanov, Ilya V; Golyshina, Olga V; Pesole, Graziano; Ceci, Luigi R; Golyshin, Peter N

    2015-12-01

    A metagenomic fosmid expression library established from environmental DNA (eDNA) from the shallow hot vent sediment sample collected from the Levante Bay, Vulcano Island (Aeolian archipelago) was established in Escherichia coli. Using activity-based screening assays, we have assessed 9600 fosmid clones corresponding to approximately 350 Mbp of the cloned eDNA, for the lipases/esterases/lactamases, haloalkane and haloacid dehalogenases, and glycoside hydrolases. Thirty-four positive fosmid clones were selected from the total of 120 positive hits and sequenced to yield ca. 1360 kbp of high-quality assemblies. Fosmid inserts were attributed to the members of ten bacterial phyla, including Proteobacteria, Bacteroidetes, Acidobateria, Firmicutes, Verrucomicrobia, Chloroflexi, Spirochaetes, Thermotogae, Armatimonadetes, and Planctomycetes. Of ca. 200 proteins with high biotechnological potential identified therein, we have characterized in detail three distinct α/β-hydrolases (LIPESV12_9, LIPESV12_24, LIPESV12_26) and one new α-arabinopyranosidase (GLV12_5). All LIPESV12 enzymes revealed distinct substrate specificities tested against 43 structurally diverse esters and 4 p-nitrophenol carboxyl esters. Of 16 different glycosides tested, the GLV12_5 hydrolysed only p-nitrophenol-α-(L)-arabinopyranose with a high specific activity of about 2.7 kU/mg protein. Most of the α/β-hydrolases were thermophilic and revealed a high tolerance to, and high activities in the presence of, numerous heavy metal ions. Among them, the LIPESV12_24 was the best temperature-adapted, retaining its activity after 40 min of incubation at 90 °C. Furthermore, enzymes were active in organic solvents (e.g., >30% methanol). Both LIPESV12_24 and LIPESV12_26 had the GXSXG pentapeptides and the catalytic triads Ser-Asp-His typical to the representatives of carboxylesterases of EC 3.1.1.1. PMID:26266751

  8. Synthesis of 11C labelled methyl esters: transesterification of enol esters versus BF3 catalysed esterification-a comparative study

    International Nuclear Information System (INIS)

    C-11 labelled methyl esters have been synthesized via the transesterification of enol esters in the presence of C-11 methanol and 1,3 dichlorodibutylstannoxane as catalyst. This method leaves functional groups intact and allows access to a wider variety of C-11 labelled methyl esters compared to the BF3 catalysed ester formation, which uses carboxylic acids and C-11 methanol as starting materials

  9. Les lipases sont des hydrolases atypiques : principales caractéristiques et applications

    Directory of Open Access Journals (Sweden)

    Fickers P.

    2008-01-01

    Full Text Available ipases are atypical hydrolases: principal characteristics and applications. Due to their kinetic and substrate specificities, triacylglycerol acyl-hydrolases or lipases are atypical enzymes. In function of their microenvironment, lipases are able to act as hydrolases in aqueous solution or as biocatalysts in organic synthesis. As hydrolases, they are responsible of the triglycerids catabolism into fatty acids and glycerol. In many organisms, this reaction plays a major role in the fat and lipid metabolism. In addition, lipases are also able to hydrolyse phospholipids and cholesterol esters. In organic solvent, lipases could catalyse reactions such as esterifications, acidolysis or alcoolysis with enantio-, regio- and chimioselectivity. Lipases form a mixed class of enzyme due to their animal, vegetal or microbial origins. All those properties led to the development of many applications in the food and chemical industries but also in the medical and therapeutic field.

  10. Ethyl coumarin-3-carboxylate: synthesis and chemical properties

    Directory of Open Access Journals (Sweden)

    Bakr F. Abdel-Wahab

    2014-03-01

    Full Text Available Ethyl coumarin-3-carboxylate occupies an important position in the organic synthesis and is used in production of biologically active compounds. Thus, the data published over the last few years on the methods of synthesis and chemical properties of ethyl coumarin-3-carboxylate are reviewed here for the first time. The reactions were classified as coumarin ring reactions and ester group reactions, and some of these reactions have been applied successfully to the synthesis of biologically and industrially important compounds.

  11. 4-((R)-2-{[6-((S)-3-Methoxypyrrolidin-1-yl)-2-phenylpyrimidine-4-carbonyl]amino}-3-phosphonopropionyl)piperazine-1-carboxylic Acid Butyl Ester (ACT-246475) and Its Prodrug (ACT-281959), a Novel P2Y12 Receptor Antagonist with a Wider Therapeutic Window in the Rat Than Clopidogrel.

    Science.gov (United States)

    Caroff, Eva; Hubler, Francis; Meyer, Emmanuel; Renneberg, Dorte; Gnerre, Carmela; Treiber, Alexander; Rey, Markus; Hess, Patrick; Steiner, Beat; Hilpert, Kurt; Riederer, Markus A

    2015-12-10

    Recent post hoc analyses of several clinical trials with P2Y12 antagonists showed the need for new molecules being fully efficacious as antiplatelet agents and having a reduced propensity to cause major bleeding. We have previously reported the discovery of the 2-phenylpyrimidine-4-carboxamide analogs as P2Y12 antagonists with nanomolar potency in the disease-relevant platelet aggregation assay in human plasma. Herein we present the optimization steps that led to the discovery of clinical candidate ACT-246475 (30d). The key step was the replacement of the carboxylic acid functionality by a phosphonic acid group which delivered the most potent molecules of the program. In addition, low in vivo clearance in rat and dog was achieved for the first time. Since the bioavailability of 30d was low in rat and dog, we developed the bis((isopropoxycarbonyl)oxy)methyl ester prodrug (ACT-281959, 45). Compound 30d showed efficacy in the rat ferric chloride thrombosis model when administered intravenously as parent or orally as its prodrug 45. Moreover, 30d displays a wider therapeutic window as compared to clopidogrel in the rat surgical blood loss model.

  12. Discovery of triterpenoids as reversible inhibitors of α/β-hydrolase domain containing 12 (ABHD12.

    Directory of Open Access Journals (Sweden)

    Teija Parkkari

    Full Text Available BACKGROUND: α/β-Hydrolase domain containing (ABHD12 is a recently discovered serine hydrolase that acts in vivo as a lysophospholipase for lysophosphatidylserine. Dysfunctional ABHD12 has been linked to the rare neurodegenerative disorder called PHARC (polyneuropathy, hearing loss, ataxia, retinosis pigmentosa, cataract. In vitro, ABHD12 has been implicated in the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG. Further studies on ABHD12 function are hampered as no selective inhibitor have been identified to date. In contrast to the situation with the other endocannabinoid hydrolases, ABHD12 has remained a challenging target for inhibitor development as no crystal structures are available to facilitate drug design. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the unexpected discovery that certain triterpene-based structures inhibit human ABHD12 hydrolase activity in a reversible manner, the best compounds showing submicromolar potency. Based on structure activity relationship (SAR data collected for 68 natural and synthetic triterpenoid structures, a pharmacophore model has been constructed. A pentacyclic triterpene backbone with carboxyl group at position 17, small hydrophobic substituent at the position 4, hydrogen bond donor or acceptor at position 3 accompanied with four axial methyl substituents was found crucial for ABHD12 inhibitor activity. Although the triterpenoids typically may have multiple protein targets, we witnessed unprecedented selectivity for ABHD12 among the metabolic serine hydrolases, as activity-based protein profiling of mouse brain membrane proteome indicated that the representative ABHD12 inhibitors did not inhibit other serine hydrolases, nor did they target cannabinoid receptors. CONCLUSIONS/SIGNIFICANCE: We have identified reversibly-acting triterpene-based inhibitors that show remarkable selectivity for ABHD12 over other metabolic serine hydrolases. Based on SAR data, we have constructed the first

  13. Discovery of Triterpenoids as Reversible Inhibitors of α/β-hydrolase Domain Containing 12 (ABHD12)

    Science.gov (United States)

    Parkkari, Teija; Haavikko, Raisa; Laitinen, Tuomo; Navia-Paldanius, Dina; Rytilahti, Roosa; Vaara, Miia; Lehtonen, Marko; Alakurtti, Sami; Yli-Kauhaluoma, Jari; Nevalainen, Tapio; Savinainen, Juha R.; Laitinen, Jarmo T.

    2014-01-01

    Background α/β-hydrolase domain containing (ABHD)12 is a recently discovered serine hydrolase that acts in vivo as a lysophospholipase for lysophosphatidylserine. Dysfunctional ABHD12 has been linked to the rare neurodegenerative disorder called PHARC (polyneuropathy, hearing loss, ataxia, retinosis pigmentosa, cataract). In vitro, ABHD12 has been implicated in the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG). Further studies on ABHD12 function are hampered as no selective inhibitor have been identified to date. In contrast to the situation with the other endocannabinoid hydrolases, ABHD12 has remained a challenging target for inhibitor development as no crystal structures are available to facilitate drug design. Methodology/Principal Findings Here we report the unexpected discovery that certain triterpene-based structures inhibit human ABHD12 hydrolase activity in a reversible manner, the best compounds showing submicromolar potency. Based on structure activity relationship (SAR) data collected for 68 natural and synthetic triterpenoid structures, a pharmacophore model has been constructed. A pentacyclic triterpene backbone with carboxyl group at position 17, small hydrophobic substituent at the position 4, hydrogen bond donor or acceptor at position 3 accompanied with four axial methyl substituents was found crucial for ABHD12 inhibitor activity. Although the triterpenoids typically may have multiple protein targets, we witnessed unprecedented selectivity for ABHD12 among the metabolic serine hydrolases, as activity-based protein profiling of mouse brain membrane proteome indicated that the representative ABHD12 inhibitors did not inhibit other serine hydrolases, nor did they target cannabinoid receptors. Conclusions/Significance We have identified reversibly-acting triterpene-based inhibitors that show remarkable selectivity for ABHD12 over other metabolic serine hydrolases. Based on SAR data, we have constructed the first pharmacophore

  14. Detoxification Strategy of Epoxide Hydrolase

    OpenAIRE

    Arand, Michael; Cronin, Annette; Hengstler, Jan G.; Herrero Plana, Maria Elena; Lohmann, Matthias; Oesch, Franz

    2003-01-01

    The human microsomal epoxide hydrolase, a single enzyme, has to detoxify a broad range of structurally diverse, potentially genotoxic epoxides that are formed in the course of xenobiotic metabolism. The enzyme has developed a unique strategy to combine a broad substrate specificity with a high detoxification efficacy, by immediately trapping the reactive compounds as covalent intermediates and by being expressed at high levels for high trapping capacity. Computer simulation and experimental d...

  15. Synthesis and evaluation of thalidomide and phthalimide esters as antitumor agents

    DEFF Research Database (Denmark)

    Zahran, Magdy A H; Abdin, Yasmin G.; Osman, Amany M A;

    2014-01-01

    A series of thalidomide and phthalimide ester analogs were efficiently synthesized from N-chloromethylthalidomide, N-chloromethylphthalimide, and N-(2-bromoethyl)phthalimide derivatives with various biologically important carboxylic acids. The synthesized compounds were purified and characterized...

  16. Selective synthesis of thiodiglycol dicarboxylic acid esters via -TsOH/C-catalysed direct esterification

    Indian Academy of Sciences (India)

    Dahong Jiang; Min Huang

    2012-09-01

    The esterification of thiodiglycol and long alkyl-chain carboxylic acids is reported. Reaction of thiodiglycol with carboxylic acid via -TsOH/C-catalysed direct esterification afforded thiodiglycol dicarboxylic acid esters in good yields and chemoselectivity. The use of immobilized -TsOH on activated carbon as catalyst is crucial for the transformation.

  17. Synthesis and physical properties of new coco-oleic dimer and trimer plus estolide branched esters

    Science.gov (United States)

    Estolides are a class of esters based on vegetable oils that are formed when the carboxylic acid functionality of one fatty acid reacts at the site of unsaturation of another fatty acid to form an ester linkage. The objective of this preliminary study was to separate coco-oleic estolide into two com...

  18. Kinetic and Thermodynamic Parameters for Uncatalyzed Esterification of Carboxylic Acid

    Directory of Open Access Journals (Sweden)

    Kehinde S. Bankole

    2014-06-01

    Full Text Available A fundamental study on uncatalyzed esterification of various biomass-derived aliphatic carboxylic acids with stoichiometric amount of ethanol has been investigated in an isothermal batch reactor, with the objective to convert carboxylic acids to corresponding ethyl esters and to determine both the kinetic and thermodynamic parameters. The effects of temperature on the conversion of carboxylic acid, kinetic and thermodynamic parameters have been investigated. Temperature was found to have significant effect on the rate of reaction and conversion of carboxylic acid. A simple second order reversible kinetic model was developed to determine the kinetic and thermodynamic parameters. The thermodynamic and kinetic parameters varied for uncatalyzed esterification reaction of both short-chain and long-chain carboxylic acids considered. The predicted data from the kinetic model were correlated with experimental data and the two sets of data agreed reasonably well for the uncatalyzed esterification systems. It was observed that the Van’t Hoff plot for uncatalyzed esterification of linoleic acid was non-linear curve, whereas for the Arrhenius and Eyring plots, they were linear. Additional experiments to assess the catalytic and corrosion effects of several metallic substances revealed Inconel 625 alloy, nickel wire and stainless steel materials were susceptible to corrosion problem with uncatalyzed esterification reaction at elevated reaction temperatures. However, tantalum and grade-5 titanium materials were corrosion resistance metals, suitable for similar reaction conditions and this can encourage the design of a flow reactor system. Although, uncatalyzed esterification of carboxylic acids at elevated reaction temperature is still at laboratory scale. It is our hope that the estimated kinetic and thermodynamic parameters would be the guiding tools for reactor scale-up, thus providing a new perspective into the conversion of biomass-derived carboxylic

  19. The essential activated carboxyl group of inorganic pyrophosphatase.

    Science.gov (United States)

    Avaeva, S M; Bakuleva, N P; Baratova, L A; Nazarova, T I; Fink, N Y

    1977-05-12

    1. A carboxyl group of high reactivity has been found in inorganic pyrophosphatase (pyrophosphate phosphohydrolase, EC 3.6.1.1) from yeast. This group interacts with agents which react neither with carboxyl groups of low molecular weight compounds nor with other carboxyl groups of the protein. 2. The reaction of this activated carboxyl group with inorganic phosphate, hydroxylamine, N-methyl- and O-methylhydroxylamines, and glycine methyl ester has been studied. 3. Homoserine and homoserine lactone were found in the hydrolyzate of phosphorylated and NaBH4-reduced pyrophosphatase, indicating that an aspartyl residue is phosphorylated. 4. Hydroxylamine and other nucleophilic agents cause inactivation of pyrophosphatase as a result of interaction with a carboxyl group. Both diaminobutyric and diaminopropionic acids were seen in the acid hydrolyzate of the protein treated with hydroxylamine and subjected to rearrangement in the presence of carbodiimide. 5. The ways in which the activation of a carboxyl group in the enzyme is achieved and the presumed mechanism of action of inorganic pyrophosphatase are discussed. PMID:16652

  20. Free carboxylate stretching modes

    NARCIS (Netherlands)

    Oomens, J.; Steill, J. D.

    2008-01-01

    We report the first IR spectroscopic observation of carboxylate stretching modes in free space, i.e., in the complete absence of solvent or counterions. Gas-phase spectra of a series of benzoate anions have been recorded and compared to condensed-phase spectra, revealing the profound influence of th

  1. Statistical Evaluation of HTS Assays for Enzymatic Hydrolysis of β-Keto Esters

    OpenAIRE

    Buß, O.; Jager, S.; S-M Dold; S. Zimmermann; Hamacher, K.; Schmitz, K.; J Rudat

    2016-01-01

    β-keto esters are used as precursors for the synthesis of β-amino acids, which are building blocks for some classes of pharmaceuticals. Here we describe the comparison of screening procedures for hydrolases to be used for the hydrolysis of β-keto esters, the first step in the preparation of β-amino acids. Two of the tested high throughput screening (HTS) assays depend on coupled enzymatic reactions which detect the alcohol released during ester hydrolysis by luminescence or absorption. The th...

  2. A new and efficient method for the synthesis of isoquinoline-3-carboxylate

    Institute of Scientific and Technical Information of China (English)

    Xiang Wei Liao; Bao He Guan; Zhan Zhu Liu

    2008-01-01

    An isoquinoline-3-carboxylate compound 3 was obtained with a moderate yield of 40% when N-acetyl-(3'-hydroxy-4'-methoxy-5'-methyl)phenylalanine methyl ester 1 was refluxed in HMTA/TFA. However, the anticipated product N-acetyl-(3'-hydroxy-4'-rnethoxy-5'-methyl-6'-formyl)phenylalanine methyl ester 2 could not be found. The possible mechanism was discussed in this article.

  3. The investigation of the reactions of some pyrazole-3-carboxylic acids with various diamines and diols

    OpenAIRE

    Rahmi Kasımoğulları; Makbule Maden; Samet Mert

    2012-01-01

    In this study, some new derivatives were synthesized of 4-benzoyl-1-(3-nitrophenyl)-5-phenyl-1H-pyrazole-3-carboxylic acid (1) and 4-(ethoxycarbonyl)-1-(3-nitrophenyl)-5-phenyl-1H-pyrazole-3-carboxylic acid (2) that they were pyrazole carboxylic acid derivatives. Firstly, 1 and 2 reacted with SOCl2 to transform them into acyl chlorides (3, 4). Then various bis-carboxamide derivatives (58) were obtained from the reaction of 3 and 4 with various diamines and also a ;#946;-hydroxy ester (9) deri...

  4. The investigation of the reactions of some pyrazole-3-carboxylic acids with various diamines and diols

    OpenAIRE

    Kasımoğulları, Rahmi; Maden, Makbule; Mert, Samet

    2012-01-01

    In this study, some new derivatives were synthesized of 4-benzoyl-1-(3-nitrophenyl)-5-phenyl-1H-pyrazole-3-carboxylic acid (1) and 4-(ethoxycarbonyl)-1-(3-nitrophenyl)-5-phenyl-1H-pyrazole-3-carboxylic acid (2) that they were pyrazole carboxylic acid derivatives. Firstly, 1 and 2 reacted with SOCl2 to transform them into acyl chlorides (3, 4). Then various bis-carboxamide derivatives (5–8) were obtained from the reaction of 3 and 4 with various diamines and also a β-hydroxy ester (9)...

  5. Decarbonylative organoboron cross-coupling of esters by nickel catalysis.

    Science.gov (United States)

    Muto, Kei; Yamaguchi, Junichiro; Musaev, Djamaladdin G; Itami, Kenichiro

    2015-01-01

    The Suzuki-Miyaura cross-coupling is a metal-catalysed reaction in which boron-based nucleophiles and halide-based electrophiles are reacted to form a single molecule. This is one of the most reliable tools in synthetic chemistry, and is extensively used in the synthesis of pharmaceuticals, agrochemicals and organic materials. Herein, we report a significant advance in the choice of electrophilic coupling partner in this reaction. With a user-friendly and inexpensive nickel catalyst, a range of phenyl esters of aromatic, heteroaromatic and aliphatic carboxylic acids react with boronic acids in a decarbonylative manner. Overall, phenyl ester moieties function as leaving groups. Theoretical calculations uncovered key mechanistic features of this unusual decarbonylative coupling. Since extraordinary numbers of ester-containing molecules are available both commercially and synthetically, this new 'ester' cross-coupling should find significant use in synthetic chemistry as an alternative to the standard halide-based Suzuki-Miyaura coupling. PMID:26118733

  6. Ubiquitin C-Terminal Hydrolase L1 in Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jennifer Hurst-Kennedy

    2012-01-01

    Full Text Available Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1, aka PGP9.5 is an abundant, neuronal deubiquitinating enzyme that has also been suggested to possess E3 ubiquitin-protein ligase activity and/or stabilize ubiquitin monomers in vivo. Recent evidence implicates dysregulation of UCH-L1 in the pathogenesis and progression of human cancers. Although typically only expressed in neurons, high levels of UCH-L1 have been found in many nonneuronal tumors, including breast, colorectal, and pancreatic carcinomas. UCH-L1 has also been implicated in the regulation of metastasis and cell growth during the progression of nonsmall cell lung carcinoma, colorectal cancer, and lymphoma. Together these studies suggest UCH-L1 has a potent oncogenic role and drives tumor development. Conversely, others have observed promoter methylation-mediated silencing of UCH-L1 in certain tumor subtypes, suggesting a potential tumor suppressor role for UCH-L1. In this paper, we provide an overview of the evidence supporting the involvement of UCH-L1 in tumor development and discuss the potential mechanisms of action of UCH-L1 in oncogenesis.

  7. A Novel Metal-free Reductive Esterification of N-Tosylhydrazones with Carboxylic Acids

    Institute of Scientific and Technical Information of China (English)

    周安坤; 吴磊; 李大志; 陈庆庆; 张晓; 夏吾炯

    2012-01-01

    A novel method for the synthesis of esters via reductive coupling of N-tosylhydrazones with carboxylic acids under metal-free conditions has been developed. Various functional groups were found to be tolerable under the re- action conditions to afford low to good yields.

  8. Purification and characterization of a chlorogenic acid hydrolase from Aspergillus niger catalysing the hydrolysis of chlorogenic acid.

    Science.gov (United States)

    Asther, Michèle; Estrada Alvarado, Maria Isabel; Haon, Mireille; Navarro, David; Asther, Marcel; Lesage-Meessen, Laurence; Record, Eric

    2005-01-12

    Among 15 Aspergillus strains, Aspergillus niger BRFM 131 was selected for its high chlorogenic acid hydrolase activity. The enzyme was purified and characterized with respect to its physico-chemical and kinetic properties. Four chromatographic steps were necessary to purify the protein to homogeneity with a recovery of 2%. Km of the chlorogenic acid hydrolase was estimated to be 10 microM against chlorogenic acid as substrate. Under native conditions, the protein presented a molecular mass of 170 kDa, and SDS-PAGE analysis suggested the presence of two identical 80 kDa subunits. Isoelectric point was 6.0; pH optimum for activity was determined to be 6.0 and temperature optima to be 55 degrees C. The N-terminal sequence did not present any homology with other cinnamoyl ester hydrolases previously described suggesting the purification of a new protein. The chlorogenic acid hydrolase was used successfully for the production of caffeic acid, which possesses strong antioxidant properties, from natural substrates specially rich in chlorogenic acid like apple marc and coffee pulp.

  9. Regulatory link between steryl ester formation and hydrolysis in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Ploier, Birgit; Korber, Martina; Schmidt, Claudia; Koch, Barbara; Leitner, Erich; Daum, Günther

    2015-07-01

    Steryl esters and triacylglycerols are the major storage lipids of the yeast Saccharomyces cerevisiae. Steryl esters are formed in the endoplasmic reticulum by the two acyl-CoA:sterol acyltransferases Are1p and Are2p, whereas steryl ester hydrolysis is catalyzed by the three steryl ester hydrolases Yeh1p, Yeh2p and Tgl1p. To shed light on the regulatory link between steryl ester formation and hydrolysis in the maintenance of cellular sterol and free fatty acid levels we employed yeast mutants which lacked the enzymes catalyzing the degradation of steryl esters. These studies revealed feedback regulation of steryl ester formation by steryl ester hydrolysis although in a Δtgl1Δyeh1Δyeh2 triple mutant the gene expression levels of ARE1 and ARE2 as well as protein levels and stability of Are1p and Are2p were not altered. Nevertheless, the capacity of the triple mutant to synthesize steryl esters was significantly reduced as shown by in vitro and in vivo labeling of lipids with [(14)C]oleic acid and [(14)C]acetate. Enzymatic analysis revealed that inhibition of steryl ester formation occurred at the enzyme level. As the amounts and the formation of sterols and fatty acids were also decreased in the triple mutant we concluded that defects in steryl ester hydrolysis also caused feedback inhibition on the formation of sterols and fatty acids which serve as precursors for steryl ester formation. In summary, this study demonstrates a regulatory link within the steryl ester metabolic network which contributes to non-polar lipid homeostasis in yeast cells.

  10. How many carboxyl groups does an average molecule of humic-like substances contain?

    Directory of Open Access Journals (Sweden)

    I. Salma

    2008-10-01

    Full Text Available The carboxyl groups of atmospheric humic-like substances (HULIS are of special interest because they influence the solubility in water, affect the water activity and surface tension of droplets in the air, and allow formation of chelates with biologically active elements. Experimentally determined abundances of the carboxyl group within HULIS by functional group analysis are consistent with our knowledge on the average molecular mass of HULIS if the number of dissociable carboxyl groups is assumed to be rather small. The best agreement between the average molecular mass derived from the existing abundance data and the average molecular mass published earlier occurs for assuming approximately one dissociable carboxyl group only. This implies that HULIS can not be regarded as polycarboxilic acid in diluted solutions. The average molecular mass of HULIS derived from our electrochemical measurements with the assumption of one dissociable carboxyl group or equivalently, one dissociable sulphate ester per molecule ranges from 250 to 310 Da. It was concluded that HULIS are a moderately strong/weak acid with a dissociation constant of about pK=3.4, which fits well into the interval represented by fulvic and humic acids. The mean number of dissociable hydrogen (i.e. of carboxyl groups and sulphate esters jointly in HULIS molecules was refined to be between 1.1 and 1.4 in acidic solutions.

  11. The electrochemical reduction of biotin (vitamin B7) and conversion into its ester

    International Nuclear Information System (INIS)

    Highlights: •Biotin can be reduced electrochemically, by one-electron, at a platinum electrode. •The reduction likely follows a direct discharge mechanism of the carboxyl group. •Electrochemically generated biotin carboxylate was reacted with iodomethane (91%). •ATR–FTIR characterization of biotin, its carboxylate anion, and its methyl ester. -- Abstract: An electrochemical study on biotin (vitamin B7), performed in aprotic solvents and at a platinum electrode, revealed that at approximately Ef0=−1.6to−1.8 vs. (Fc/Fc+)/V (Ef0=formal reduction potential and Fc=ferrocene), biotin is reduced by one-electron to form its carboxylate anion and dihydrogen via a direct discharge of the carboxylic acid at the platinum surface. The electrochemical reduction process appeared to be chemically reversible on the time-frame of cyclic voltammetry (CV) (t ≤ s), but not over the extended period of controlled potential electrolysis (CPE) (t ≥ min) where the conversion of biotin into its carboxylate anion was found to be chemically irreversible. A strategy to functionalize biotin's carboxyl group was established by performing a bulk reductive electrolysis, and then reacting the electrochemically generated carboxylate anion with iodomethane to afford biotin methyl ester in excellent yield (91%). Attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy was successful in identifying several distinct and characteristic carbonyl absorbance peaks associated with the analogous forms of biotin available before electrolysis, after electrolysis, and after methylation

  12. A simple synthesis of kaurenoic esters and other derivatives and evaluation of their antifungal activity

    International Nuclear Information System (INIS)

    Representative esters derived from kaurenoic acid were prepared in order to evaluate their antifungal properties. Alkyl and substituted benzyl esters were obtained in good yield under mild conditions by esterification of kaurenoic acid with the corresponding alkyl halide in KOH-acetone. All synthesized compounds were tested for antifungal properties against pathogenic yeasts, hialohyphomycetes and dermatophytes. Kaurenoic acid and derivatives containing a free carboxyl group were moderately active against dermatophytes. (author)

  13. Bacterial Cyanuric Acid Hydrolase for Water Treatment.

    Science.gov (United States)

    Yeom, Sujin; Mutlu, Baris R; Aksan, Alptekin; Wackett, Lawrence P

    2015-10-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation.

  14. 1-Azaniumylcyclobutane-1-carboxylate monohydrate

    Directory of Open Access Journals (Sweden)

    Ray J. Butcher

    2014-02-01

    Full Text Available In the title compound, C5H9NO2·H2O, the amino acid is in the usual zwitterionic form involving the α-carboxylate group. The cyclobutane backbone of the amino acid is disordered over two conformations, with occupancies of 0.882 (7 and 0.118 (7. In the crystal, N—H...O and O—H...O hydrogen bonds link the zwitterions [with the water molecule involved as both acceptor (with the NH3+ and donor (through a single carboxylate O from two different aminocyclobutane carboxylate moities], resulting in a two-dimensional layered structure lying parallel to (100.

  15. Beyond growth: novel functions for bacterial cell wall hydrolases.

    Science.gov (United States)

    Wyckoff, Timna J; Taylor, Jennifer A; Salama, Nina R

    2012-11-01

    The peptidoglycan cell wall maintains turgor pressure and cell shape of most bacteria. Cell wall hydrolases are essential, together with synthases, for growth and daughter cell separation. Recent work in diverse organisms has uncovered new cell wall hydrolases that act autonomously or on neighboring cells to modulate invasion of prey cells, cell shape, innate immune detection, intercellular communication, and competitor lysis. The hydrolases involved in these processes catalyze the cleavage of bonds throughout the sugar and peptide moities of peptidoglycan. Phenotypes associated with these diverse hydrolases reveal new functions of the bacterial cell wall beyond growth and division.

  16. Endolysosomes Are the Principal Intracellular Sites of Acid Hydrolase Activity.

    Science.gov (United States)

    Bright, Nicholas A; Davis, Luther J; Luzio, J Paul

    2016-09-12

    The endocytic delivery of macromolecules from the mammalian cell surface for degradation by lysosomal acid hydrolases requires traffic through early endosomes to late endosomes followed by transient (kissing) or complete fusions between late endosomes and lysosomes. Transient or complete fusion results in the formation of endolysosomes, which are hybrid organelles from which lysosomes are re-formed. We have used synthetic membrane-permeable cathepsin substrates, which liberate fluorescent reporters upon proteolytic cleavage, as well as acid phosphatase cytochemistry to identify which endocytic compartments are acid hydrolase active. We found that endolysosomes are the principal organelles in which acid hydrolase substrates are cleaved. Endolysosomes also accumulated acidotropic probes and could be distinguished from terminal storage lysosomes, which were acid hydrolase inactive and did not accumulate acidotropic probes. Using live-cell microscopy, we have demonstrated that fusion events, which form endolysosomes, precede the onset of acid hydrolase activity. By means of sucrose and invertase uptake experiments, we have also shown that acid-hydrolase-active endolysosomes and acid-hydrolase-inactive, terminal storage lysosomes exist in dynamic equilibrium. We conclude that the terminal endocytic compartment is composed of acid-hydrolase-active, acidic endolysosomes and acid hydrolase-inactive, non-acidic, terminal storage lysosomes, which are linked and function in a lysosome regeneration cycle. PMID:27498570

  17. Aspergillus niger DLFCC-90 Rhamnoside Hydrolase, a New Type of Flavonoid Glycoside Hydrolase

    OpenAIRE

    Liu, Tingqiang; Yu, Hongshan; Zhang, Chunzhi; Lu, Mingchun; Piao, Yongzhe; Ohba, Masashi; Tang, Minqian; Yuan, Xiaodong; Wei, Shenghua; Wang, Kan; Ma, Anzhou; Feng, Xue; Qin, Siqing; Mukai, Chisato; Tsuji, Akira

    2012-01-01

    A novel rutin-α-l-rhamnosidase hydrolyzing α-l-rhamnoside of rutin, naringin, and hesperidin was purified and characterized from Aspergillus niger DLFCC-90, and the gene encoding this enzyme, which is highly homologous to the α-amylase gene, was cloned and expressed in Pichia pastoris GS115. The novel enzyme was classified in glycoside-hydrolase (GH) family 13.

  18. Facile synthesis of α-hydroxy carboxylic acids from the corresponding α-amino acids

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Padrah, Shahrokh; Strømgaard, Kristian

    2014-01-01

    An effective and improved procedure is developed for the synthesis of α-hydroxy carboxylic acids by treatment of the corresponding protonated α-amino acid with tert-butyl nitrite in 1,4-dioxane-water. The amino moiety must be protonated and located α to a carboxylic acid function in order...... to undergo initial diazotization and successive hydroxylation, since neither β-amino acids nor acid derivatives such as esters and amides undergo hydroxylations. The method is successfully applied for the synthesis of 18 proteinogenic amino acids. © 2014 Elsevier Ltd. All rights reserved....

  19. Hydrolase activity in Jerusalem artichoke and chicory

    Energy Technology Data Exchange (ETDEWEB)

    Klaushofer, H.; Abraham, B.; Leichtfried, G.

    1988-03-01

    Post-harvest storage of chicory and Jerusalem artichoke and overwintering of Jerusalem artichoke in the soil cause a more or less pronounced shortening of the fructan chain, depending on the variety. The proportion of fructose in the total fructan thus shifts towards glucose. This reduction on the fructose/glucose ratio is undesirable if the intention is to obtain a sweetener of high fructose content. In this work an attempt was made, via the quantity of fructose formed after a 4(3)-hour reaction of a tuber (root) extract with inulin, to assign a characteristic value to the depolymerization tendency of the material in question. However, since the plant extract not only contains enzymes (hydrolase A and B) that shorten the fructan chains but the activity of fructosyltransferase (SST, FFT) and enzymes of microbial origin (inulinase II, invertase) must also be considered, the concept of 'hydrolase activity' used by the authors is essentially an expression of 'total activity'. The activity unit (EU) is defined as the ability to split of 1 ..mu..mol of fructose from (chicory) inulin per minute under experimental conditions. Values of 0.25 to 0.77 EU/g dry solids were found in Jerusalem artichoke. Considerable differences may occur between varieties from the same cultivated area and the same harvest period. With one and the same variety, the activity appears to be subject to marked yearly fluctuations, so that at present, because of hydrolase activity, nothing certain can be said about the depolymerization tendency of a variety.

  20. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    Science.gov (United States)

    Legler, Patricia; Boisvert, Susanne; Compton, Jaimee; Millard, Charles

    2014-07-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine O?. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its kcat/Km for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. pNBE was tested as a surrogate scaffold for mammalian esterases. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1. We discuss the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases.

  1. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    Directory of Open Access Journals (Sweden)

    Patricia Marie Legler

    2014-07-01

    Full Text Available We applied a combination of rational design and directed evolution (DE to Bacillus subtilis p-nitrobenzyl esterase (pNBE with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400 within a 6.7 Å radius of the nucleophilic serine O. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its kcat/Km for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. pNBE was tested as a surrogate scaffold for mammalian esterases. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H did not confer detectable OP hydrolase activity on human carboxylesterase 1. We discuss the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases.

  2. A remarkable activity of human leukotriene A4 hydrolase (LTA4H) toward unnatural amino acids.

    Science.gov (United States)

    Byzia, Anna; Haeggström, Jesper Z; Salvesen, Guy S; Drag, Marcin

    2014-05-01

    Leukotriene A4 hydrolase (LTA4H--EC 3.3.2.6) is a bifunctional zinc metalloenzyme, which processes LTA4 through an epoxide hydrolase activity and is also able to trim one amino acid at a time from N-terminal peptidic substrates via its aminopeptidase activity. In this report, we have utilized a library of 130 individual proteinogenic and unnatural amino acid fluorogenic substrates to determine the aminopeptidase specificity of this enzyme. We have found that the best proteinogenic amino acid recognized by LTA4H is arginine. However, we have also observed several unnatural amino acids, which were significantly better in terms of cleavage rate (k cat/K m values). Among them, the benzyl ester of aspartic acid exhibited a k cat/K m value that was more than two orders of magnitude higher (1.75 × 10(5) M(-1) s(-1)) as compared to L-Arg (1.5 × 10(3) M(-1) s(-1)). This information can be used for design of potent inhibitors of this enzyme, but may also suggest yet undiscovered functions or specificities of LTA4H.

  3. Actinic-radiation curable polymers prepared from a reactive polymer, halogenated cyclic anhydride and glycidyl ester

    International Nuclear Information System (INIS)

    A novel class of photosensitive polymers are disclosed which are prepared by the reaction, preferably in the presence of a catalyst, of a reactive polymer, a halogenated cyclic anhydride and glycidyl ester of an alpha, beta-unsaturated carboxylic acid. These polymers are capable of undergoing vinyl-type polymerization when exposed to actinic radiation

  4. Synthesis and evaluation of atorvastatin esters as prodrugs metabolically activated by human carboxylesterases.

    Science.gov (United States)

    Mizoi, Kenta; Takahashi, Masato; Haba, Masami; Hosokawa, Masakiyo

    2016-02-01

    We synthesized 11 kinds of prodrug with an esterified carboxylic acid moiety of atorvastatin in moderate to high yields. We discovered that they underwent metabolic activation specifically by the human carboxylesterase 1 (CES1) isozyme. The results suggested that these ester compounds of atorvastatin have the potential to act as prodrugs in vivo. PMID:26750256

  5. Fungal epoxide hydrolases: new landmarks in sequence-activity space.

    Science.gov (United States)

    Smit, Martha S

    2004-03-01

    Epoxide hydrolases are useful catalysts for the hydrolytic kinetic resolution of epoxides, which are sought after intermediates for the synthesis of enantiopure fine chemicals. The epoxide hydrolases from Aspergillus niger and from the basidiomycetous yeasts Rhodotorula glutinis and Rhodosporidium toruloides have demonstrated potential as versatile, user friendly biocatalysts for organic synthesis. A recombinant A. niger epoxide hydrolase, produced by an overproducing A. niger strain, is already commercially available and recombinant yeast epoxide hydrolases expressed in Escherichia coli have shown excellent results. Within the vast body of activity information on the one hand and gene sequence information on the other hand, the epoxide hydrolases from the Rhodotorula spp. and A. niger stand out because we have sequence information as well as activity information for both the wild-type and recombinant forms of these enzymes.

  6. Scientific Opinion on Flavouring Group Evaluation 63, Revision 1 (FGE.63Rev1: Consideration of aliphatic secondary alcohols, ketones and related esters evaluated by JECFA (59th and 69th meetings structurally related to saturated and unsaturated aliphatic secondary alcohols, ketones and esters of secondary alcohols and saturated linear or branched-chain carboxylic acids evaluated by EFSA in FGE.07Rev4 (2012

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2012-10-01

    Full Text Available

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA, and to decide whether further evaluation is necessary, as laid down in Commission Regulation (EC No 1565/2000. The present consideration concerns a group of 19 aliphatic secondary alcohols, ketones and related esters evaluated by the JECFA at the 59th and 69th meetings in 2002 and 2008. This revision is made due to inclusion of six additional substances, 4,8-dimethyl-3,7-nonadien-2-ol, 6-methylhepta-3,5-dien-2-one, octa-1,5-dien-3-one, (E,E-3,5-octadien-2-one, (3Z-4,8-dimethyl-3,7-nonadiene-2-one and 4,8-dimethyl-3,7-nonadien-2-yl acetate [FL-no: 02.252, 07.099, 07.190, 07.247, 07.256 and 09.936] cleared for genotoxicity concern. The substances were evaluated through a stepwise approach that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The Panel agrees with the application of the Procedure as performed by the JECFA for all 19 substances considered in this FGE and agrees with the JECFA conclusion, “No safety concern at estimated levels of intake as flavouring substances” based on the MSDI approach.

  7. Bacterial CS2 hydrolases from Acidithiobacillus thiooxidans strains are homologous to the archaeal catenane CS2 hydrolase.

    Science.gov (United States)

    Smeulders, Marjan J; Pol, Arjan; Venselaar, Hanka; Barends, Thomas R M; Hermans, John; Jetten, Mike S M; Op den Camp, Huub J M

    2013-09-01

    Carbon disulfide (CS(2)) and carbonyl sulfide (COS) are important in the global sulfur cycle, and CS(2) is used as a solvent in the viscose industry. These compounds can be converted by sulfur-oxidizing bacteria, such as Acidithiobacillus thiooxidans species, to carbon dioxide (CO(2)) and hydrogen sulfide (H2S), a property used in industrial biofiltration of CS(2)-polluted airstreams. We report on the mechanism of bacterial CS(2) conversion in the extremely acidophilic A. thiooxidans strains S1p and G8. The bacterial CS(2) hydrolases were highly abundant. They were purified and found to be homologous to the only other described (archaeal) CS(2) hydrolase from Acidianus strain A1-3, which forms a catenane of two interlocked rings. The enzymes cluster in a group of β-carbonic anhydrase (β-CA) homologues that may comprise a subclass of CS(2) hydrolases within the β-CA family. Unlike CAs, the CS(2) hydrolases did not hydrate CO(2) but converted CS(2) and COS with H(2)O to H(2)S and CO(2). The CS(2) hydrolases of A. thiooxidans strains G8, 2Bp, Sts 4-3, and BBW1, like the CS(2) hydrolase of Acidianus strain A1-3, exist as both octamers and hexadecamers in solution. The CS(2) hydrolase of A. thiooxidans strain S1p forms only octamers. Structure models of the A. thiooxidans CS(2) hydrolases based on the structure of Acidianus strain A1-3 CS(2) hydrolase suggest that the A. thiooxidans strain G8 CS(2) hydrolase may also form a catenane. In the A. thiooxidans strain S1p enzyme, two insertions (positions 26 and 27 [PD] and positions 56 to 61 [TPAGGG]) and a nine-amino-acid-longer C-terminal tail may prevent catenane formation.

  8. Transition-Metal-Free Decarboxylative Photoredox Coupling of Carboxylic Acids and Alcohols with Aromatic Nitriles.

    Science.gov (United States)

    Lipp, Benjamin; Nauth, Alexander M; Opatz, Till

    2016-08-01

    A transition-metal-free protocol for the redox-neutral light-induced decarboxylative coupling of carboxylic acids with (hetero)aromatic nitriles at ambient temperature is presented. A broad scope of acids and nitriles is accepted, and alcohols can be coupled in a similar fashion through their oxalate half esters. Various inexpensive sources of UV light and even sunlight can be used to achieve this C-C bond formation proceeding through a free radical mechanism. PMID:27399619

  9. Pyrazole carboxamides and carboxylic acids as protein kinase inhibitors in aberrant eukaryotic signal transduction

    DEFF Research Database (Denmark)

    Persson, Tobias; Yde, Christina W.; Rasmussen, Jakob Ewald;

    2007-01-01

    Densely functionalised pyrazole carboxamides and carboxylic acids were synthesised in an expedient manner through saponification and transamidation, respectively, of ester-functionalised pyrazoles. This synthetic protocol allowed for three diversifying steps in which appendages on the pyrazole...... potential biological activity, MCF-7 human breast cancer cells were incubated with the most promising derivatives. Two analogues caused changes in MCF-7 cell growth, one of them through cell cycle arrest demonstrated by cell cycle analysis....

  10. Saponification of esters of chiral alpha-amino acids anchored through their amine function on solid support.

    Science.gov (United States)

    Cantel, Sonia; Desgranges, Stéphane; Martinez, Jean; Fehrentz, Jean-Alain

    2004-06-01

    Anchoring an alpha-amino acid residue by its amine function onto a solid support is an alternative to develop chemistry on its carboxylic function. This strategy can involve the use of amino-acid esters as precursors of the carboxylic function. A complete study on the Wang-resin was performed to determine the non racemizing saponification conditions of anchored alpha-amino esters. The use of LiOH, NaOH, NaOSi(Me)3, various solvents and temperatures were tested for this reaction. After saponification and cleavage from the support, samples were examined through their Marfey's derivatives by reversed phase HPLC to evaluate the percentage of racemization.

  11. The investigation of the reactions of some pyrazole-3-carboxylic acids with various diamines and diols

    Directory of Open Access Journals (Sweden)

    Rahmi Kasımoğulları

    2012-06-01

    Full Text Available In this study, some new derivatives were synthesized of 4-benzoyl-1-(3-nitrophenyl-5-phenyl-1H-pyrazole-3-carboxylic acid (1 and 4-(ethoxycarbonyl-1-(3-nitrophenyl-5-phenyl-1H-pyrazole-3-carboxylic acid (2 that they were pyrazole carboxylic acid derivatives. Firstly, 1 and 2 reacted with SOCl2 to transform them into acyl chlorides (3, 4. Then various bis-carboxamide derivatives (5–8 were obtained from the reaction of 3 and 4 with various diamines and also a ;#946;-hydroxy ester (9 derivative was obtained from the reaction of 3 with ethylene glycol. The structures of synthesized compounds were elucidated with using FT-IR, 1H NMR, 13C NMR and elemental analysis methods.

  12. Carboxylated dithiafulvenes and tetrathiafulvalene vinylogues: synthesis, electronic properties, and complexation with zinc ions

    Directory of Open Access Journals (Sweden)

    Yunfei Wang

    2015-06-01

    Full Text Available A class of carboxyl and carboxylate ester-substituted dithiafulvene (DTF derivatives and tetrathiafulvalene vinylogues (TTFVs has been synthesized and their electronic and electrochemical redox properties were characterized by UV–vis spectroscopic and cyclic voltammetric analyses. The carboxyl-TTFV was applied as a redox-active ligand to complex with Zn(II ions, forming a stable Zn-TTFV coordination polymer. The structural, electrochemical, and thermal properties of the coordination polymer were investigated by infrared spectroscopy, cyclic voltammetry, powder X-ray diffraction, and differential scanning calorimetric analyses. Furthermore, the microscopic porosity and surface area of the Zn-TTFV coordination polymer were measured by nitrogen gas adsorption analysis, showing a BET surface of 148.2 m2 g−1 and an average pore diameter of 10.2 nm.

  13. Apomorphine and its esters

    DEFF Research Database (Denmark)

    Borkar, Nrupa; Chen, Zhizhong; Saaby, Lasse;

    2016-01-01

    Oral delivery of apomorphine via prodrug principle may be a potential treatment for Parkinson's disease. The purpose of this study was to investigate the transport and stability of apomorphine and its esters across Caco-2 cell monolayer and their affinity towards chylomicrons. Apomorphine...

  14. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dron, Julien [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)], E-mail: julien.dron@up.univ-mrs.fr; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)

    2007-12-12

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF{sub 3}/methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L{sup -1}. Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices.

  15. Lubricants based on synthetic esters; Schmierstoffe auf Basis synthetischer Ester

    Energy Technology Data Exchange (ETDEWEB)

    Fahl, J. [Forschung und Entwicklung Kaeltemaschinenoele, Fuchs DEA Schmierstoffe GmbH, Hamburg (Germany)

    2000-07-01

    This article describes the synthetic esters that are being used in refrigeration applications that use chlorine-free working fluids. The chemical basics involved in these high-performance lubricants, their manufacture and their lubricating properties are looked at in detail. The history of their development from their use as machining oils, lubricants for weapons and two-stroke engines through to turbine lubricants and as hydraulic oil in aeronautics is reviewed. Modern neopentyl-polyol esters used in refrigeration applications are described. Further, the chemical structures and applications of complex esters, carbonate esters, aromatic and silicate esters are looked at.

  16. Phosphate Esters, Thiophosphate Esters and Metal Thiophosphates as Lubricant Additives

    Directory of Open Access Journals (Sweden)

    David W. Johnson

    2013-12-01

    Full Text Available Phosphate esters, thiophosphate esters and metal thiophosphates have been used as lubricant additives for over 50 years. While their use has been extensive, a detailed knowledge of how they work has been a much more recent development. In this paper, the use of phosphate esters and thiophosphate esters as anti-wear or extreme pressure additives is reviewed with an emphasis on their mechanism of action. The review includes the use of alkyl phosphates, triaryl phosphates and metal containing thiophosphate esters. The mechanisms of these materials interacting with a range of iron and steel based bearing material are examined.

  17. Peptidoglycan hydrolase fusions maintain their parental specificities.

    Science.gov (United States)

    Donovan, David M; Dong, Shengli; Garrett, Wes; Rousseau, Geneviève M; Moineau, Sylvain; Pritchard, David G

    2006-04-01

    The increased incidence of bacterial antibiotic resistance has led to a renewed search for novel antimicrobials. Avoiding the use of broad-range antimicrobials through the use of specific peptidoglycan hydrolases (endolysins) might reduce the incidence of antibiotic-resistant pathogens worldwide. Staphylococcus aureus and Streptococcus agalactiae are human pathogens and also cause mastitis in dairy cattle. The ultimate goal of this work is to create transgenic cattle that are resistant to mastitis through the expression of an antimicrobial protein(s) in their milk. Toward this end, two novel antimicrobials were produced. The (i) full-length and (ii) 182-amino-acid, C-terminally truncated S. agalactiae bacteriophage B30 endolysins were fused to the mature lysostaphin protein of Staphylococcus simulans. Both fusions display lytic specificity for streptococcal pathogens and S. aureus. The full lytic ability of the truncated B30 protein also suggests that the SH3b domain at the C terminus is dispensable. The fusions are active in a milk-like environment. They are also active against some lactic acid bacteria used to make cheese and yogurt, but their lytic activity is destroyed by pasteurization (63 degrees C for 30 min). Immunohistochemical studies indicated that the fusion proteins can be expressed in cultured mammalian cells with no obvious deleterious effects on the cells, making it a strong candidate for use in future transgenic mice and cattle. Since the fusion peptidoglycan hydrolase also kills multiple human pathogens, it also may prove useful as a highly selective, multipathogen-targeting antimicrobial agent that could potentially reduce the use of broad-range antibiotics in fighting clinical infections.

  18. A proton wire and water channel revealed in the crystal structure of isatin hydrolase

    DEFF Research Database (Denmark)

    Bjerregaard-Andersen, Kaare; Sommer, Theis; Jensen, Jan Kristian;

    2014-01-01

    The high resolution crystal structures of isatin hydrolase from Labrenzia aggregata in the apo and the product state, are described. These are the first structures of a functionally characterized metal-dependent hydrolase of this fold. Isatin hydrolase converts isatin to isatinate and belongs to ...... of orthologous genes encoding isatin hydrolases within the prokaryotic kingdom. The isatin hydrolase orthologues found in human gut bacteria raise the question as to whether the indole-3-acetic acid degradation pathway is present in human gut flora....

  19. Two Dimensional Polyamides Prepared From Unsaturated Carboxylic Acids And Amines.

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, William F. (Utica, OH); Huang, Zhi Heng (East Lansing, MI); Wright, Stacy C. (Lansing, MI); Danzig, Morris (Northbrook, IL); Taylor, Andrew C. (Ann Arbor, MI)

    2002-07-17

    A polyamide and a process for preparing the polyamide are disclosed. The process comprises reacting in a reaction mixture a monomer selected from unsaturated carboxylic acids, esters of unsaturated carboxylic acids, anhydrides of unsaturated carboxylic acids, and mixtures thereof, and a first amine to form an intermediate reaction product in the reaction mixture, wherein the first amine is selected from RR.sub.1 NH, RNH.sub.2, RR.sub.1 NH.sub.2.sup.+, RNH.sub.3.sup.+ and mixtures thereof, wherein R and R.sub.1 can be the same or different and each contain between about 1 and 50 carbon atoms and are optionally substituted with heteroatoms oxygen, nitrogen, sulfur, and phosphorus and combinations thereof, and reacting the intermediate reaction product and a second amine to form a polyamide, wherein the second amine is selected from R.sub.2 R.sub.3 NH, R.sub.2 NH.sub.2, R.sub.2 R.sub.3 NH.sub.2.sup.+, R.sub.2 NH.sub.3.sup.+ and mixtures thereof wherein R.sub.2 and R.sub.3 can be the same or different and each contain between about 1 and 50 carbon atoms and are optionally substituted with heteroatoms oxygen, nitrogen, sulfur, and phosphorus and combinations thereof, wherein multiple of the R, R.sub.1, R.sub.2, and R.sub.3 are in vertically aligned spaced relationship along a backbone formed by the polyamide. In one version of the invention, the monomer is selected from maleic anhydride, maleic acid esters, and mixtures thereof. In another version of the invention, the first amine is an alkylamine, such as tetradecylamine, and the second amine is a polyalkylene polyamine, such as pentaethylenehexamine. In yet another version of the invention, the first amine and the second amine are olefinic or acetylenic amines, such as the reaction products of an alkyldiamine and an acetylenic carboxylic acid. The first amine and the second amine may be the same or different depending on the desired polyamide polymer structure.

  20. Synthesis of new fatty acids amides from aminolysis of fatty acid methyl esters (FAMEs); Sintese de novas amidas graxas a partir da aminolise de esteres metilicos

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Carolina R.; Montes D' Oca, Caroline da Ros; Duarte, Rodrigo da C.; Kurz, Marcia H.S.; Primel, Ednei G.; Clementin, Rosilene M.; Villarreyes, Joaquin Ariel M.; Montes D' Oca, Marcelo G., E-mail: dqmdoca@furg.b [Universidade Federal do Rio Grande, RS (Brazil). Escola de Quimica e Alimentos

    2010-07-01

    Recent biochemical and pharmacological studies have led to the characterization of different fatty acid amides as a new family of biologically active lipids. Here, we describe the synthesis of new amides from C16:0, 18:0, 18:1 and 18:1, OH fatty acids (FFA) families with cyclic and acyclic amines and demonstrate for the first time that these compounds produce cytotoxic effects. Application of this method to the synthesis of fatty acid amides was performed using the esters aminolysis as a key step and various carboxylic amides were prepared in good yield from fatty acid methyl esters (FAMEs). (author)

  1. Valyl benzyl ester chloride

    Directory of Open Access Journals (Sweden)

    Grzegorz Dutkiewicz

    2010-02-01

    Full Text Available In the title compound (systematic name: 1-benzyloxy-3-methyl-1-oxobutan-2-aminium chloride, C12H18NO2+·Cl−, the ester group is approximately planar, with a maximum deviation of 0.040 (2 Å from the least-squares plane, and makes a dihedral angle of 28.92 (16° with the phenyl ring. The crystal structure is organized by N—H...Cl hydrogen bonds which join the two components into a chain along the b axis. Pairs of chains arranged antiparallel are interconnected by further N—H...Cl hydrogen bonds, forming eight-membered rings. Similar packing modes have been observed in a number of amino acid ester halides with a short unit-cell parameter of ca 5.5 Å along the direction in which the chains run.

  2. A Convenient Route to 4-Carboxy-4-Anilidopiperidine Esters and Acids

    Directory of Open Access Journals (Sweden)

    Gjermund Henriksen

    2012-03-01

    Full Text Available The route selection and development of a convenient synthesis of 4-carboxy-4-anilidopiperidines is described. Previous routes were hampered by the low yield of the target esters as well as the inability to convert the esters to the required free acids. Considerations for large-scale production led to a modified synthesis that utilised a tert-butyl ester of 4-carboxy-4-anilidopiperidines which resulted in a dramatic increase in the overall yield of the target N-propionylated- 4-anilidopiperidine-4-carboxylic acids and their corresponding methyl esters. These compounds are now available for use as precursors and reference standards, of particular value for the production of 11C and 18F-labelled 4-carboxy-4-anilidopiperidine radiotracers.

  3. [A21-Asparaginimide] insulin. Saponification of insulin hexamethyl ester, I.

    Science.gov (United States)

    Gattner, H G; Schmitt, E W

    1977-01-01

    [Asn A21]Insulin is formed as the main product during alkaline saponification of insulin hexamethyl ester. Purification was achieved by gel chromatography followed by ion-exchange chromatography on carboxymethyl cellulose at pH 4 or by preparative isoelectric focusing in a granulated gel over a narrow pH range. Two main products could be isolated. One of them showed the electrophoretic behaviour of insulin (A), whilst the other corresponded to insulin with a blocked carboxyl function (B). Incubation of this product B with carboxypeptidase A liberated only the C-terminal alanine of the B-chain, but not the asparagine of the C-terminus of the A-chain. Chymotryptic digestion of the isolated S-sulfonate A-chain derivative (C) followed by high-voltage electrophoresis confirmed that the carboxyl function of asparagine A21 was blocked. In order to determine the free carboxyl functions of the A-chain derivative C, it was coupled with glycine methyl ester yielding D. Amino acid analysis of the chymotryptic peptides of D showed that the carboxyl functions of glutamic acid A4 and A17 had been free prior to coupling. The amino acid analysis of the enzymatic hydrolysate (subtilisin, aminopeptidase M) of the A-chain derivative C showed an additional peak with an elution position identical to the model compound aminosuccinimide. The biological activity of the [Asm A21[insulin was found to be about 40% in the fat cell test and 13.2 units/mg measured by the mouse convulsion method.

  4. Diastereoselective Ugi reaction for the synthesis of unnatural amino esters

    Directory of Open Access Journals (Sweden)

    Rafael Oliveira Rocha

    2012-06-01

    Full Text Available Multicomponent Reactions (MCR are useful reactions to obtain complex products by the simple mixture of 3 or more reactants. The classic Ugi reaction (4-UCR involves a mixture of an amine, aldehyde, isocyanide and a carboxylic acid, giving peptoides as products. Some modifications of this reaction have been reported, among which the use of amino acids and Lewis acids, such as titanium (IV chloride, to induce stereoselectivity in good ratio. In this work we demonstrate the efficiency of different Lewis acids in the modified Ugi reaction and good levels of diastereoselectivity and yields in the synthesis of unnatural secondary amino esters.

  5. Statistical Evaluation of HTS Assays for Enzymatic Hydrolysis of β-Keto Esters.

    Directory of Open Access Journals (Sweden)

    O Buß

    Full Text Available β-keto esters are used as precursors for the synthesis of β-amino acids, which are building blocks for some classes of pharmaceuticals. Here we describe the comparison of screening procedures for hydrolases to be used for the hydrolysis of β-keto esters, the first step in the preparation of β-amino acids. Two of the tested high throughput screening (HTS assays depend on coupled enzymatic reactions which detect the alcohol released during ester hydrolysis by luminescence or absorption. The third assay detects the pH shift due to acid formation using an indicator dye. To choose the most efficient approach for screening, we assessed these assays with different statistical methods-namely, the classical Z'-factor, standardized mean difference (SSMD, the Kolmogorov-Smirnov-test, and t-statistics. This revealed that all three assays are suitable for HTS, the pH assay performing best. Based on our data we discuss the explanatory power of different statistical measures. Finally, we successfully employed the pH assay to identify a very fast hydrolase in an enzyme-substrate screening.

  6. Method of making alkyl esters

    Science.gov (United States)

    Elliott, Brian

    2010-09-14

    Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

  7. Nickel-Catalyzed Cross-Coupling of Redox-Active Esters with Boronic Acids.

    Science.gov (United States)

    Wang, Jie; Qin, Tian; Chen, Tie-Gen; Wimmer, Laurin; Edwards, Jacob T; Cornella, Josep; Vokits, Benjamin; Shaw, Scott A; Baran, Phil S

    2016-08-01

    A transformation analogous in simplicity and functional group tolerance to the venerable Suzuki cross-coupling between alkyl-carboxylic acids and boronic acids is described. This Ni-catalyzed reaction relies upon the activation of alkyl carboxylic acids as their redox-active ester derivatives, specifically N-hydroxy-tetrachlorophthalimide (TCNHPI), and proceeds in a practical and scalable fashion. The inexpensive nature of the reaction components (NiCl2 ⋅6 H2 O-$9.5 mol(-1) , Et3 N) coupled to the virtually unlimited commercial catalog of available starting materials bodes well for its rapid adoption. PMID:27380912

  8. Anti-cancer evaluation of carboxamides of furano-sesquiterpene carboxylic acids from the soft coral Sinularia kavarattiensis.

    Science.gov (United States)

    Rajaram, Singanaboina; Ramulu, Udugu; Ramesh, Dasari; Srikanth, Dudem; Bhattacharya, Papri; Prabhakar, Peddikotla; Kalivendi, Shasi V; Babu, Katragadda Suresh; Venkateswarlu, Yenamandra; Navath, Suryakiran

    2013-12-01

    The chemical investigation of soft coral Sinularia kavarattiensis is described. It yielded furano-sesquiterpene carboxylic acids 1 and 2 and their methyl esters 3 and 4. Semi-synthesis of furano-sesquiterpene carboxylic acid 1 gave amide derivatives 5-12. Structures of all the compounds were established by IR, NMR and mass spectral analysis. Interestingly all compounds are selectively potent on leukemia cell line. All these compounds were screened for cytotoxic activity against five human cancer cell lines (leukemia, prostate, lung, breast and cervix). Among these compounds 9 and 10 showed promising activity against leukemia and prostate cancer cell lines. PMID:24144848

  9. Synthesis and Transformations of di-endo-3-Aminobicyclo-[2.2.2]oct-5-ene-2-carboxylic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Márta Palkó

    2011-09-01

    Full Text Available all-endo-3-amino-5-hydroxybicyclo[2.2.2]octane-2-carboxylic acid (13 and all-endo-5-amino-6-(hydroxymethylbicyclo[2.2.2]octan-2-ol (10 were prepared via dihydro-1,3-oxazine or g-lactone intermediates by the stereoselective functionalization of an N-protected derivative of endo-3-aminobicyclo[2.2.2]oct-5-ene-2-carboxylic acid (2. Ring closure of b-amino ester 4 resulted in tricyclic pyrimidinones 15 and 16. The structures, stereochemistry and relative configurations of the synthesized compounds were determined by IR and NMR.

  10. Synthesis of new fatty acids amides from aminolysis of fatty acid methyl esters (FAMEs)

    International Nuclear Information System (INIS)

    Recent biochemical and pharmacological studies have led to the characterization of different fatty acid amides as a new family of biologically active lipids. Here, we describe the synthesis of new amides from C16:0, 18:0, 18:1 and 18:1, OH fatty acids (FFA) families with cyclic and acyclic amines and demonstrate for the first time that these compounds produce cytotoxic effects. Application of this method to the synthesis of fatty acid amides was performed using the esters aminolysis as a key step and various carboxylic amides were prepared in good yield from fatty acid methyl esters (FAMEs). (author)

  11. Complicated Composting: Persistent Pyridine Carboxylic Acid Herbicides

    OpenAIRE

    Reimer, Julie

    2013-01-01

    This paper reviews pyridine carboxylic acid herbicide impacts on compost. Pyridine carboxylic acid herbicides are not completely broken down during grass growth, harvest and drying of hay, in the digestive tract of livestock, or during composting. These herbicides are a popular choice for broadleaf weed control because of this persistence: they remain effective for months or years. Pyridine carboxylic acids are also more effective than the common herbicide 2, 4-dichlorophenoxyacetic acid and ...

  12. Alteration of substrate specificities of thermophilic α/β hydrolases through domain swapping and domain interface optimization

    Institute of Scientific and Technical Information of China (English)

    Xiaoli Zhou; Honglei Wang; Yuhang Zhang; Le Gao; Yan Feng

    2012-01-01

    Protein domain swapping is an efficient way in protein functional evolution in vivo and also has been proved to be an effective strategy to modify the function of the multidomain proteins in vitro.To explore the potentials of domain swapping for alteration of the enzyme substrate specificities and the structure-function relationship of the homologous proteins,here we constructed two chimeras from a pair of thermophilic members of the α/β hydrolase superfamily by grafting their functional domains to the conserved α/β hydrolase fold domain:a carboxylesterase from Archaeoglobus fulgidus (AFEST) and an acylpeptide hydrolase from Aeropyrum pernix K1 (apAPH) and explored their activities on hydrolyze p-nitrophenyl esters (pNP) with different acyl chain lengths.We took two approaches to reduce the crossover disruptions when creating the chimeras:chose the residue which involved in the least contacts as the splicing site and optimized the newly formed domain interfaces of the chimeras by sitedirected mutations.Characterizations of AAM7 and PAR showed that these chimeras inherited the thermophilic property of both parents.In the aspect of substrate specificity,AAM7 and PAR showed highest activity towards short chain length substrate pNPC4 and middle chain length substrate pNPC8,similar to parent AFEST and apAPH,respectively.These results suggested that the substrate-binding domain is the dominant factor on enzyme substrate specificity,and the optimization of the newly formed domain interface is an important guarantee for successful domain swapping of proteins with low-sequence homology.

  13. Copper ions inactivate S-ade-nosylhomocysteine hydrolase

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    S-adenosylhomocysteine (AdoHcy) hydrolase isan enzyme that regulates biomethylation and some otherphysiological processes. Recombinant AdoHcy hydrolase wasoverexpressed in E. coli JM109 and purified with ion ex-change and gel filtration chromatographies. The effects ofcopper ions (Cu2+) on the activity of AdoHcy hydrolase wereinvestigated and the results showed that Cu2+ inhibited theenzyme's activity by a concentration and time-dependentprocess. The inhibition constant (Ki) and the apparent rateconstant (kapp) were calculated to be (14 + 4) nmol @ L-1 and(1.08 + 0.15) min-1, respectively. The existence of the naturalsubstrate Ado could to some extent prevent Cu2+ from inac-tivating the enzyme, suggesting that copper ions possiblycould compete with the natural substrate on enzyme's sub-strate binding site. Further studies on the mechanism of in-hibition are being carried out.

  14. Further characterization of intestinal lactase/phlorizin hydrolase

    DEFF Research Database (Denmark)

    Skovbjerg, H; Norén, O; Sjöström, H;

    1982-01-01

    enzyme were shown to have a considerable activity against cellotriose and cellotetraose, and a low but significant activity against cellulose. The lactase/phlorizin hydrolase isolated from pigs in which the pancreatic ducts had been disconnected 3 days before death and from Ca2+-precipitated enterocyte......Pig intestinal lactase/phlorizin hydrolase (EC 3.2.1.23/62) was purified in its amphiphilic form by immunoadsorbent chromatography. The purified enzyme was free of other known brush border enzymes and appeared homogeneous in immunoelectrophoresis and polyacrylamide gel electrophoresis...... in the presence of SDS. Pig lactase/phlorizin hydrolase was shown to have the same quaternary structure as the human enzyme, i.e., built up of two polypeptides of the same molecular weight (160000). In addition to hydrolyzing lactose, phlorizin and a number of synthetic substrates, both the human and the pig...

  15. Maleik Anhidrit Stiren Kopolimerinin Ester ve Karboksilat Tuz Türevlerinin Sentezi ve Karakterizasyonu

    OpenAIRE

    Koçyiğit, Ümit Muhammet; Zengin, Hacı Bayram

    2014-01-01

    In this study, to increase thermal stability of maleic anhydride styrene copolymers; monoesters and carboxylate salt derivatives of maleic anhydride styrene were obtained by reaction of maleic anhydride styrene copolymer with n-propyl alcohol, n-butyl alcohol and ammonia. Fourier transform infrared spectroscopy (FTIR) was used for characterization and Thermogravimetric Analysis (TGA) was used for thermal analysis. As an result of this study, when TGA curves were analyzed, though ester derivat...

  16. Human Lung Hydrolases Delineate Mycobacterium tuberculosis–Macrophage Interactions and the Capacity To Control Infection

    OpenAIRE

    Arcos, Jesus; Sasindran, Smitha J.; Fujiwara, Nagatoshi; Turner, Joanne; Schlesinger, Larry S; Torrelles, Jordi B.

    2011-01-01

    Pulmonary surfactant contains homeostatic and antimicrobial hydrolases. When Mycobacterium tuberculosis is initially deposited in the terminal bronchioles and alveoli, as well as following release from lysed macrophages, bacilli are in intimate contact with these lung surfactant hydrolases. We identified and measured several hydrolases in human alveolar lining fluid and lung tissue that, at their physiological concentrations, dramatically modified the M. tuberculosis cell envelope. Independen...

  17. Identification of oxidized protein hydrolase as a potential prodrug target in prostate cancer

    International Nuclear Information System (INIS)

    Esterases are often overexpressed in cancer cells and can have chiral specificities different from that of the corresponding normal tissues. For this reason, ester prodrugs could be a promising approach in chemotherapy. In this study, we focused on the identification and characterization of differentially expressed esterases between non-tumorigenic and tumorigenic prostate epithelial cells. Cellular lysates from LNCaP, DU 145, and PC3 prostate cancer cell lines, tumorigenic RWPE-2 prostate epithelial cells, and non-tumorigenic RWPE-1 prostate epithelial cells were separated by native polyacrylamide gel electrophoresis (n-PAGE) and the esterase activity bands visualized using α-naphthyl acetate or α-naphthyl-N-acetylalaninate (ANAA) chiral esters and Fast Blue RR salt. The esterases were identified using nanospray LC/MS-MS tandem mass spectrometry and confirmed by Western blotting, native electroblotting, inhibition assays, and activity towards a known specific substrate. The serine protease/esterase oxidized protein hydrolase (OPH) was overexpressed in COS-7 cells to verify our results. The major esterase observed with the ANAA substrates within the n-PAGE activity bands was identified as OPH. OPH (EC 3.4.19.1) is a serine protease/esterase and a member of the prolyl oligopeptidase family. We found that LNCaP lysates contained approximately 40% more OPH compared to RWPE-1 lysates. RWPE-2, DU145 and PC3 cell lysates had similar levels of OPH activity. OPH within all of the cell lysates tested had a chiral preference for the S-isomer of ANAA. LNCaP cells were stained more intensely with ANAA substrates than RWPE-1 cells and COS-7 cells overexpressing OPH were found to have a higher activity towards the ANAA and AcApNA than parent COS-7 cells. These data suggest that prodrug derivatives of ANAA and AcApNA could have potential as chemotherapeutic agents for the treatment of prostate cancer tumors that overexpress OPH

  18. Sintesis Metil Ester Sulfonat Dari Asam Stearat Dan Metil Ester Sulfonat Dari Asam Oleat

    OpenAIRE

    Samosir, Yustina

    2011-01-01

    The Synthesis of Methyl Ester Sulfonate (MES) from stearic acid and from oleic acid through the stages of esterification reaction, that are esterification from stearic acid and oleic acid that forms methyl ester stearic acid and methyl ester oleic acid next stage was sulfonating the two of methyl esters to form a methyl ester sulfonate stearic acid and methyl ester oleic acid sulfonate. Furthermore, both fatty acid methyl ester sulfonate is neutralized with NaOH to obtain sulfonate salt. ...

  19. Carboxylesterase activities toward pesticide esters in crops and weeds.

    Science.gov (United States)

    Gershater, Markus; Sharples, Kate; Edwards, Robert

    2006-12-01

    Proteins were extracted from maize, rice, sorghum, soybean, flax and lucerne; the weeds Abutilon theophrasti, Echinochloa crus-galli, Phalaris canariensis, Setaria faberii, Setaria viridis, Sorghum halepense and the model plant Arabidopsis thaliana and assayed for carboxylesterase activity toward a range of xenobiotics. These included the pro-herbicidal esters clodinafop-propargyl, fenoxaprop-ethyl, fenthioprop-ethyl, methyl-2,4-dichlorophenoxyacetic acid (2,4-d-methyl), bromoxynil-octanoate, the herbicide-safener cloquintocet-mexyl and the pyrethroid insecticide permethrin. Highest activities were recorded with alpha-naphthyl acetate and methylumbelliferyl acetate. Esters of p-nitrophenol were also readily hydrolysed, with turnover declining as the chain length of the acyl component increased. Activities determined with model substrates were much higher than those observed with pesticide esters and were of limited value in predicting the relative rates of hydrolysis of the crop protection agents. Substrate preferences with the herbicides were typically 2,4-d-methyl>clodinafop-propargyl>fenthioprop-ethyl, fenoxaprop-ethyl and bromoxynil-octanoate. Isoelectric focussing in conjunction with staining for esterase activity using alpha-naphthyl acetate as substrate confirmed the presence of multiple carboxylesterase isoenzymes in each plant, with major qualitative differences observed between species. The presence of serine hydrolases among the resolved isoenzymes was confirmed through their selective inhibition by the organophosphate insecticide paraoxon. Our studies identify potentially exploitable differences between crops and weeds in their ability to bioactivate herbicides by enzymic hydrolysis and also highlight the usefulness of Arabidopsis as a plant model to study xenobiotic biotransformation.

  20. Mapping of Fab-1:VEGF Interface Using Carboxyl Group Footprinting Mass Spectrometry

    Science.gov (United States)

    Wecksler, Aaron T.; Kalo, Matt S.; Deperalta, Galahad

    2015-12-01

    A proof-of-concept study was performed to demonstrate that carboxyl group footprinting, a relatively simple, bench-top method, has utility for first-pass analysis to determine epitope regions of therapeutic mAb:antigen complexes. The binding interface of vascular endothelial growth factor (VEGF) and the Fab portion of a neutralizing antibody (Fab-1) was analyzed using carboxyl group footprinting with glycine ethyl ester (GEE) labeling. Tryptic peptides involved in the binding interface between VEGF and Fab-1 were identified by determining the specific GEE-labeled residues that exhibited a reduction in the rate of labeling after complex formation. A significant reduction in the rate of GEE labeling was observed for E93 in the VEGF tryptic peptide V5, and D28 and E57 in the Fab-1 tryptic peptides HC2 and HC4, respectively. Results from the carboxyl group footprinting were compared with the binding interface identified from a previously characterized crystal structure (PDB: 1BJ1). All of these residues are located at the Fab-1:VEGF interface according to the crystal structure, demonstrating the potential utility of carboxyl group footprinting with GEE labeling for mapping epitopes.

  1. Lipase-catalyzed (trans)esterification of 5-hydroxy- methylfurfural and separation from HMF esters using deep-eutectic solvents.

    Science.gov (United States)

    Krystof, Monika; Pérez-Sánchez, María; Domínguez de María, Pablo

    2013-04-01

    5-Hydroxymethylfurfural (HMF) is a valuable biomass-derived building block. Among possible HMF valorization products, a broad range of HMF esters can be synthesized. These HMF esters have found some promising applications, such as monomers, fuels, additives, surfactants, and fungicides, and thus several catalytic approaches for HMF (trans)esterifications have been reported. The intrinsic reactivity of HMF is challenging, forcing the use of mild reaction conditions to avoid by-product formation. This paper explores the lipase-catalyzed (trans)esterification of HMF with different acyl donors (carboxylic acids and methyl- and ethyl esters) mostly in solvent-free conditions. The results demonstrate that lipases may be promising alternatives for the synthesis of HMF esters-with high productivities and reactions at high substrate loadings-provided that robust systems for lipase immobilization are applied to assure an adequate reusability of the enzymes. Once (trans)esterifications have been conducted, the separation of unreacted HMF and HMF esters is performed by using deep-eutectic solvents (DES) as separation agents. DES are able to dissolve hydrogen-bond donors (e.g., HMF), whereas non-hydrogen-bond donors (in this case HMF esters) form a second phase. By using this approach, high ester purities (>99 %) and efficiencies (up to >90 % HMF ester recovery) in separations were obtained by using choline chloride-based DES. PMID:23456887

  2. Synthesis and Biological Evaluation of Liguzinediol Mono- and Dual Ester Prodrugs as Promising Inotropic Agents

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2014-11-01

    Full Text Available The potent positive inotropic effect, together with the relatively low safety risk of liguzinediol (LZDO, relative to currently available inotropic drugs, has prompted us to intensively research and develop LZDO as a potent positive inotropic agent. In this study, to obtain LZDO alternatives for oral chronic administration, a series of long-chain fatty carboxylic mono- and dual-esters of LZDO were synthesized, and preliminarily evaluated for physicochemical properties and bioconversion. Enhanced lipophilic properties and decreased solubility of the prodrugs were observed as the side chain length increased. All esters showed conspicuous chemical stability in phosphate buffer (pH 7.4. Moreover, the enzymatic hydrolysis of esters in human plasma and human liver microsomes confirmed that the majority of esters were converted to LZDO, with release profiles that varied due to the size and structure of the side chain. In vivo pharmacokinetic studies following oral administration of monopivaloyl (M5, monodecyl (M10 and monododecyl (M12 esters demonstrated the evidently extended half-lives relative to LZDO dosed alone. In particular the monopivaloyl ester M5 exhibited an optimal pharmacokinetic profile with appropriate physiochemical characteristics.

  3. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2016-10-25

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  4. Monoclonal Antibodies Specific for Hippurate Hydrolase of Campylobacter jejuni

    OpenAIRE

    Steele, Marina; Gyles, Carlton; Chan, Voon Loong; Odumeru, Joseph

    2002-01-01

    Eleven monoclonal antibodies raised against recombinant Campylobacter jejuni hippurate hydrolase were tested for binding to lysates from 19 C. jejuni strains, 12 other Campylobacter strains, and 21 non-Campylobacter strains. Several monoclonal antibodies bound to C. jejuni but not to other Campylobacter species and may be useful in a species-specific immunoassay.

  5. Bile salt hydrolase of Bifidobacterium longum - Biochemical and genetic characterization

    NARCIS (Netherlands)

    Tanaka, H; Hashiba, Honoo; Kok, Jan; Mierau, Igor

    2000-01-01

    A bile salt hydrolase (BSH) was isolated from Bifidobacterium longum SBT2928, purified, and characterized, Furthermore, we describe for the first time cloning and analysis of the gene encoding BSII (bsh) in a member of the genus Bifidobacterium. The enzyme has a native molecular weight of 125,000 to

  6. Properties of epoxide hydrolase from the yeast Rhodotorula glutinis

    NARCIS (Netherlands)

    Ariës-Kronenburg, N.A.E.

    2002-01-01

     Epoxide hydrolases are ubiquitous enzymes that can be found in nearly all living organisms. Some of the enzymes play an important role in detoxifying xenobiotic and metabolic compounds. Others are important in the growth of organisms like the juvenile hormone in some insec

  7. alpha/beta hydrolase fold enzymes : the family keeps growing

    NARCIS (Netherlands)

    Nardini, M; Dijkstra, BW

    1999-01-01

    The alpha/beta hydrolase fold is a typical example of a tertiary fold adopted by proteins that have no obvious sequence similarity, but nevertheless, in the course of evolution, diverged from a common ancestor. Recently solved structures demonstrate a considerably increased variability in fold archi

  8. CATALYTIC ESTERIFICATION OF CARBOXYLIC ACIDS WITH ALCOHOLS BY SULFO—POLYVINYL CHLORIDE

    Institute of Scientific and Technical Information of China (English)

    YuShanxin; ZHAOZongbao; 等

    1993-01-01

    Polyvinyl Chloride reacted with chlorosulfonic acid to from a polymer catalyst PVC-SO3H.This polymer catalyst was found to have high activity for resterification reaction between carboxylic acids and alcohols.This paper deals with the conditions in synthesis of n-butlyacetate catalyzed with PVC-SO3H.The PVC-SO3H was used as a catalyst for preparing 11 esters of acetic acid,propionic acid and butyric acid with the yields of 82-92%.

  9. The First General Electron Transfer Reductions of Carboxylic Acid Derivatives Using Samarium Diiodide

    OpenAIRE

    Spain, Malcolm Peter

    2014-01-01

    The development of new methods for the reduction of carboxylic acid derivatives is described. The ability to reduce these carbonyl derivatives through radical intermediates provides an orthogonal approach as compared with hydride based reductions.Initial experiments focused on the development of the SmI2–H2O system, where we have shown that chelation effects can be utilised to facilitate reduction of cyclic esters. Furthermore, a revised mechanism for the SmI2–H2O mediated reduction of lacton...

  10. The Structure-Activity Relationship of an Ozonide Carboxylic Acid (OZ78) Against Fasciola hepatica

    OpenAIRE

    Zhao, Qingjie; Vargas, Mireille; Dong, Yuxiang; ZHOU, Lin; Wang, Xiaofang; Sriraghavan, Kamaraj; Keiser, Jennifer; Vennerstrom, Jonathan L.

    2010-01-01

    In this paper, we describe the SAR of ozonide carboxylic acid OZ78 (1) as the first part of our search for a trematocidal synthetic peroxide drug development candidate. We found that relatively small structural changes to 1 resulted most commonly in loss of activity against Fasciola hepatica in vivo. A spiroadamantane substructure and acidic functional group (or ester prodrug) were required for activity. Of twenty-six new compounds administered at single 100 mg/kg oral doses to F. hepatica-in...

  11. Effect of Bile Salt Hydrolase Inhibitors on a Bile Salt Hydrolase from Lactobacillus acidophilus

    Directory of Open Access Journals (Sweden)

    Jun Lin

    2014-12-01

    Full Text Available Bile salt hydrolase (BSH, a widely distributed function of the gut microbiota, has a profound impact on host lipid metabolism and energy harvest. Recent studies suggest that BSH inhibitors are promising alternatives to antibiotic growth promoters (AGP for enhanced animal growth performance and food safety. Using a high-purity BSH from Lactobacillus salivarius strain, we have identified a panel of BSH inhibitors. However, it is still unknown if these inhibitors also effectively inhibit the function of the BSH enzymes from other bacterial species with different sequence and substrate spectrum. In this study, we performed bioinformatics analysis and determined the inhibitory effect of identified BSH inhibitors on a BSH from L. acidophilus. Although the L. acidophilus BSH is phylogenetically distant from the L. salivarius BSH, sequence analysis and structure modeling indicated the two BSH enzymes contain conserved, catalytically important amino residues and domain. His-tagged recombinant BSH from L. acidophilus was further purified and used to determine inhibitory effect of specific compounds. Previously identified BSH inhibitors also exhibited potent inhibitory effects on the L. acidophilus BSH. In conclusion, this study demonstrated that the BSH from L. salivarius is an ideal candidate for screening BSH inhibitors, the promising alternatives to AGP for enhanced feed efficiency, growth performance and profitability of food animals.

  12. Carboxylic acids as substrates in homogeneous catalysis.

    Science.gov (United States)

    Goossen, Lukas J; Rodríguez, Nuria; Goossen, Käthe

    2008-01-01

    In organic molecules carboxylic acid groups are among the most common functionalities. Activated derivatives of carboxylic acids have long served as versatile connection points in derivatizations and in the construction of carbon frameworks. In more recent years numerous catalytic transformations have been discovered which have made it possible for carboxylic acids to be used as building blocks without the need for additional activation steps. A large number of different product classes have become accessible from this single functionality along multifaceted reaction pathways. The frontispiece illustrates an important reason for this: In the catalytic cycles carbon monoxide gas can be released from acyl metal complexes, and gaseous carbon dioxide from carboxylate complexes, with different organometallic species being formed in each case. Thus, carboxylic acids can be used as synthetic equivalents of acyl, aryl, or alkyl halides, as well as organometallic reagents. This review provides an overview of interesting catalytic transformations of carboxylic acids and a number of derivatives accessible from them in situ. It serves to provide an invitation to complement, refine, and use these new methods in organic synthesis.

  13. Understanding biocatalyst inhibition by carboxylic acids

    Directory of Open Access Journals (Sweden)

    Laura R Jarboe

    2013-09-01

    Full Text Available Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance.

  14. Highly Efficient Esterification of an Equimolar Amount of Carboxylic Acids and Alcohols Catalyzed by ZrOCl2·8H2O

    Institute of Scientific and Technical Information of China (English)

    Sun Hong-Bin; Hua Ruimao; Yin Ying-Wu

    2004-01-01

    Esterification of carboxylic acids with alcohols is one of the most fundamental and useful transformations in organic synthesis. The most common catalysts are H2SO4 and TsOH. However,H2SO4 or TsOH-catalyzed esterification procedure has some problems such as corrosion, side reactions, difficulty in separation. Hence, recently, various solid acid catalysts such as ion-exchanged resins, molecular sieve, and heteropoly acids etc. have been employed for esterification reaction.However, the solid acid catalysts are usually not easily accessible and expensive In addition, for achieving the high yield of esters, it is usually to carry out the esterification reaction by addition of an excess of one of the reactants. Therefore it is still interesting to develop the high activity,cost-effective catalyst system.which is a commercially available and very cheap inorganic salt.The esterification was carried out in the presence of ZrOCl2. 8H2O (0.05 mol %) using equimolar amount of carboxylic acids and alcohols at room temperature or at 50℃. For example, the esterification of propionic acid with methanol at room temperature for 24 h gave methyl propionate in 81% GC yield. A higher yield of esters can be obtained by the removal of water azeotropically.The present esterification procedure has the following advantages:1) Esters can be obtained in high yield with the use of equimolar amount of carboxylic acids and alcohols.2) Esterification proceeds at room temperature, the catalyst system is suitable for the esterification of highly reactive carboxylic acids such as acrylic acid.3) It is easy to isolate and purify the esters, and the catalyst is recyclable. The complete reaction mixture becomes two phases at room temperature, the esters in the organic phase can be separated conveniently by decanting, and the catalyst in the water can be reused without any treatment.

  15. Simulation of slow reaction with quantum character : Neutral hydrolysis of carboxylic ester

    NARCIS (Netherlands)

    Lensink, MF; Mavri, J; Berendsen, HJC

    1999-01-01

    By computer simulation, using both quantum and classical dynamics, we determined the rate constant and the kinetic isotope effect of the rate-determining step in the neutral hydrolysis of p-methoxyphenyl dichloroacetate in aqueous solution. This step involves a proton transfer concerted with the for

  16. Floral Benzenoid Carboxyl Methyltransferases: From in Vitro to in Planta Function

    Energy Technology Data Exchange (ETDEWEB)

    Effmert,U.; Saschenbrecker, S.; Ross, J.; Negre, F.; Fraser, C.; Noel, J.; Dudareva, N.; Piechulla, B.

    2005-01-01

    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT's three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in plants depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses

  17. Potent Urea and Carbamate Inhibitors of Soluble Epoxide Hydrolases

    Science.gov (United States)

    Morisseau, Christophe; Goodrow, Marvin H.; Dowdy, Deanna; Zheng, Jiang; Greene, Jessica F.; Sanborn, James R.; Hammock, Bruce D.

    1999-08-01

    The soluble epoxide hydrolase (sEH) plays a significant role in the biosynthesis of inflammation mediators as well as xenobiotic transformations. Herein, we report the discovery of substituted ureas and carbamates as potent inhibitors of sEH. Some of these selective, competitive tightbinding inhibitors with nanomolar Ki values interacted stoichiometrically with the homogenous recombinant murine and human sEHs. These inhibitors enhance cytotoxicity of trans-stilbene oxide, which is active as the epoxide, but reduce cytotoxicity of leukotoxin, which is activated by epoxide hydrolase to its toxic diol. They also reduce toxicity of leukotoxin in vivo in mice and prevent symptoms suggestive of acute respiratory distress syndrome. These potent inhibitors may be valuable tools for testing hypotheses of involvement of diol and epoxide lipids in chemical mediation in vitro or in vivo systems.

  18. Tropane ethyl esters in illicit cocaine: isolation, detection, and determination of new manufacturing by-products from the clandestine purification of crude cocaine base with ethanol.

    Science.gov (United States)

    Casale, John F; Boudreau, Danielle K; Jones, Laura M

    2008-05-01

    Seven ethyl homologues of known tropane esters have recently been detected as impurities in the gas chromatographic signature profiles of authentic Peruvian illicit cocaine base and hydrochloride exhibits. Peruvian cocaine base processors are now known to use ethanol for the purification of crude cocaine base. This process is referred to as the "base lavada" or "washed base" process and is a recent substitute method for the potassium permanganate oxidation purification methodology. Seven ethyl ester homologues were formed in illicit cocaine from the transesterification of known tropane methyl esters or possibly ethyl esterification of their respective tropane C-2 carboxylic acids in the presence of ethanol. Exhibits containing these compounds were subjected to gas chromatographic-mass spectrometric analyses to determine their identity and were subsequently synthesized to verify their structures. Quantitative determinations were obtained from ion-pair chromatography isolation followed by gas chromatography with flame ionization detection. Specifically, hexanoylecgonine ethyl ester, cocaethylene, cis-cinnamoylecgonine ethyl ester, trans-cinnamoylecgonine ethyl ester, 3',4',5'-trimethoxybenzoylecgonine ethyl ester, cis-3',4',5'-trimethoxycinnamoylecgonine ethyl ester, and trans-3',4',5'-trimethoxycinnamoylecgonine ethyl ester were detected and characterized. When present, these compounds were detected at levels ranging from 8.6 x 10(-4) to 9.3 x 10(-1)% relative to cocaine. PMID:18471211

  19. Conformational Variability of Organophosphorous Hydrolase upon Soman and Paraoxon Binding

    OpenAIRE

    Gomes, Diego E.B.; Lins, Roberto D.; Pascutti, Pedro G.; Lei, Chenghong; Soares, Thereza A.

    2011-01-01

    The bacterial enzyme organophosphorous hydrolase (OPH) exhibits both catalytic and substrate promiscuity. It hydrolyzes bonds in a variety of phosphotriester (P-O), phosphonothioate (P-S), phosphofluoridate (P-F) and phosphonocyanate (F-CN) compounds. However, its catalytic efficiency varies markedly for different substrates, limiting the broad-range application of OPH as catalyst in the bioremediation of pesticides and chemical war agents. In the present study, pKa calculations and multiple ...

  20. Synthesis of methacryloyl-L-alanine derivatives having various carboxyl-protecting groups and thermo-response of its polymer hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Masaru; Tamada, Masaso; Kumakura, Minoru (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment); Katakai, Ryoichi (Gunma Univ. (Japan). Faculty of Engineering)

    1991-01-01

    Methacryloyl-L-alanine derivatives having various carboxyl-protecting groups, for example, hydrogen, methyl, ethyl and benzyl groups, were synthesized by reacting L-alanine ester hydrochlorides with methacrylic acid in the presence of triethylamine, by a so-called dicyclohexylcarbodiimide-mediated condensation method. These polymer hydrogels showed a typical thermo-response such as low-temperature-swelling and high-temperature-deswelling, in water, in the range of 0-40{sup o}C. Such a response was characterized with regard to kind of carboxyl-protecting group in the hydrogel. (author).

  1. Synthesis of methacryloyl-L-alanine derivatives having various carboxyl-protecting groups and thermo-response of its polymer hydrogels

    International Nuclear Information System (INIS)

    Methacryloyl-L-alanine derivatives having various carboxyl-protecting groups, for example, hydrogen, methyl, ethyl and benzyl groups, were synthesized by reacting L-alanine ester hydrochlorides with methacrylic acid in the presence of triethylamine, by a so-called dicyclohexylcarbodiimide-mediated condensation method. These polymer hydrogels showed a typical thermo-response such as low-temperature-swelling and high-temperature-deswelling, in water, in the range of 0-40oC. Such a response was characterized with regard to kind of carboxyl-protecting group in the hydrogel. (author)

  2. Production of a polyester degrading extracellular hydrolase from Thermomonospora fusca.

    Science.gov (United States)

    Gouda, Mona K; Kleeberg, Ilona; van den Heuvel, Joop; Müller, Rolf-Joachim; Deckwer, Wolf-Dieter

    2002-01-01

    The production of a polyester-degrading hydrolase from the thermophilic actinomycete Thermomonospora fusca was investigated with regard to its potential technical application. Only in the presence of a polyester (random aliphatic-aromatic copolyester from 1,4-butanediol, terephthalic acid, and adipic acid with around 40-50 mol % terephthalic acid in the acid component), the excretion of the extracellular enzyme could be achieved with an optimized synthetic medium using pectin and NH(4)Cl as nitrogen source. Compared to complex media, a significantly higher specific activity at comparable volumetric yields could be obtained, thus reducing the expenditure for purification. The activity profile in the medium is controlled by a complex process involving (1) induction of enzyme excretion, (2) enzyme adsorption on the hydrophobic polyester surface, (3) inhibition of enzyme generation by monomers produced by polyester cleavage, and (4) enzyme denaturation. Diafiltration with cellulose acetate membranes as the sole downstream processing step led to a product of high purity and with sufficient yield (60% of total activity). Scaling-up from shaking flasks to a fermentor scale of 100 L revealed no specific problems. However, the excretion of the hydrolase by the actinomycete turned out to be inhibited by the degradation products (monomers) of the aliphatic-aromatic copolyester used as inductor for the enzyme production. The crude enzyme exhibited generally similar properties (temperature and pH optimum) as the highly purified hydrolase described previously; however, the storage capability and thermal stability is improved when the crude enzyme solution is diafiltrated.

  3. Interaction between Lubricants Containing Phosphate Ester Additives and Stainless Steels

    Directory of Open Access Journals (Sweden)

    David W. Johnson

    2013-05-01

    Full Text Available One way to improve fuel efficiency in today’s jet aircraft engines is to create an environment for higher operating temperatures and speeds. New and improved lubricants and bearing materials must be developed to remain stable in these elevated operating temperatures. Three lubricants, with varying amounts of tricresyl phosphate added as an anti-wear/extreme pressure additive were tested on two different stainless steels at varying temperatures ranging from 300 °C to 350 °C in vacuum. Significant decomposition of the lubricant base-stocks and the phosphate ester additive did occur in most of the trials resulting in the formation of carboxylic acids and phenols. In these cases a film containing phosphorus was deposited onto the stainless steel substrate.

  4. L-Lactate-mediated Dynamic Kinetic Resolution of α-Bromo Esters for Asymmetric Syntheses of α-Amino Acid Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yelim; Park, Kon Ji; Choi, Yun Soo; Lee, Myungsu; Park, Yong Sun [Konkuk Univ., Seoul (Korea, Republic of)

    2013-08-15

    We conclude that ethyl L-lactate is an effective and convenient chiral auxiliary for dynamic kinetic resolution of α-bromo esters in nucleophilic substitution with various amine nucleophiles. The methodology can provide a general procedure for asymmetric syntheses of dihydroquinoxalinones, dihydrobenzoxazinones and 1,1'-iminodicarboxylic acid derivatives. Simple and easy procedure in obtaining highly enantioenriched α-amino acid derivatives suggests that the dynamic kinetic resolution approach should be further developed. For asymmetric synthesis of α-substituted carboxylic acid derivatives, a variety of chiral auxiliaries have been used for the dynamic resolution of α-halo esters in nucleophilic substitution.1 For example, L-lactamide-mediated dynamic kinetic resolution of α-bromo esters was successfully used for the asymmetric preparation of α-aryloxy carboxylic acids and oxazin-2-ones.

  5. Synthesis and intrinsic blue fluorescence study of hyperbranched poly(ester-amide-ether)

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of hyperbranched poly(ester-amide-ether)s (H-PEAEs) were synthesized via the A2+CB3 approach by the self-transesterification of ethyl ester-amide-ethers end-capped with three hydroxyl groups and ethyl ester group at two terminals.The molecular structures were characterized with 1H NMR and FT-IR spectroscopy.The number average molecular weights were estimated by GPC analysis to possess bimodal wide distribution from 1.57 to 2.09.The strong inherent blue fluorescence was observed at 330 nm for excitation and 390 nm for emission.Moreover,the emission intensity and fluorescence quantum yield increased along with the incorporated ether chain length,as well as almost linearly with the H-PEAE concentration in an aqueous solution.For comparing the fluorescence performance,the linear poly(ester-amide-ether) (L-PEAE) and hyperbranched poly(ester-amide) (H-PEA) were synthesized.The results showed that the coexistence of ether bond and carboxyl group in the molecular chain was essential for generating the strong fluorescence.However,the compact backbone of H-PEAE would be propitious to the enhancement of fluorescence properties.

  6. Ligand recognition by E- and P-selectin : chemoenzymatic synthesis and inhibitory activity of bivalent sialyl Lewis x derivatives and sialyl Lewis x carboxylic acids

    OpenAIRE

    Wittmann, Valentin; Takayama, Shuichi; Gong, Ke Wei; Weitz-Schmidt, Gabriele; Wong, Chi-Huey

    1998-01-01

    Described is the preparation of five sLex dimers and five sLex carboxylic acids by coupling chemoenzymatically synthesized amino-substituted sialyl Lewis x (sLex) derivative 4 to homobifunctional cross-linkers 20-24 of varying chain length. 20-24 were obtained by alkylating low-molecular-weight oligoethylene glycols with tert-butyl bromoacetate and subsequent transformation of the di-tert-butyl esters into disuccinimide esters. The products were assayed for inhibition against binding of a sLe...

  7. Avocado and olive oil methyl esters

    International Nuclear Information System (INIS)

    Biodiesel, the mono-alkyl esters of vegetable oils, animal fats or other triacylglycerol-containing materials and an alternative to conventional petroleum-based diesel fuel, has been derived from a variety of feedstocks. Numerous feedstocks have been investigated as potential biodiesel sources, including commodity oils, however, the methyl esters of avocado and olive oil would likely be suitable as biodiesel fuel. In order to expand the database and comprehensive evaluation of the properties of vegetable oil esters, in this work the fuel-related properties of avocado and olive oil methyl esters, which exhibit similar fatty acid profiles including high oleic acid content, are determined. The cetane numbers of avocado oil methyl esters and olive oil methyl esters are relatively high, determined as 59.2 and 62.5, respectively, due to their elevated content of methyl oleate. Other properties are well within the ranges specified in biodiesel standards. The cloud points of both esters are slightly above 0 °C due to their content of saturated esters, especially methyl palmitate. Overall, avocado and olive oil yield methyl esters with fuel properties comparable to methyl esters from other commodity vegetable oils. The 1H and 13C NMR spectra of avocado and olive oil methyl esters are reported. -- Highlights: • Methyl esters of avocado and olive oil meet biodiesel fuel standards. • Provides comparison for methyl esters of other vegetable oils with high oleic content. • Discusses and compares present results with prior literature

  8. Environmental effect of rapeseed oil ethyl ester

    International Nuclear Information System (INIS)

    Exhaust emission tests were conducted on rapeseed oil methyl ester (RME), rapeseed oil ethyl ester (REE) and fossil diesel fuel as well as on their mixtures. Results showed that when considering emissions of nitrogen oxides (NOx), carbon monoxide (CO) and smoke density, rapeseed oil ethyl ester had less negative effect on the environment in comparison with that of rapeseed oil methyl ester. When fuelled with rapeseed oil ethyl ester, the emissions of NOx showed an increase of 8.3% over those of fossil diesel fuel. When operated on 25-50% bio-ester mixed with fossil diesel fuel, NOx emissions marginally decreased. When fuelled with pure rapeseed oil ethyl ester, HC emissions decreased by 53%, CO emissions by 7.2% and smoke density 72.6% when compared with emissions when fossil diesel fuel was used. Carbon dioxide (CO2) emissions, which cause greenhouse effect, decreased by 782.87 g/kWh when rapeseed oil ethyl ester was used and by 782.26 g/kWh when rapeseed oil methyl ester was used instead of fossil diesel fuel. Rapeseed oil ethyl ester was more rapidly biodegradable in aqua environment when compared with rapeseed oil methyl ester and especially with fossil diesel fuel. During a standard 21 day period, 97.7% of rapeseed oil methyl ester, 98% of rapeseed oil ethyl ester and only 61.3% of fossil diesel fuel were biologically decomposed. (author)

  9. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, Ludmila [United States Department of Agriculture (USDA), Western Regional Research Center (WRRC), Albany; Bragg, Jennifer [United States Department of Agriculture (USDA), Western Regional Research Center (WRRC), Albany; Wu, Jiajie [United States Department of Agriculture (USDA), Western Regional Research Center (WRRC), Albany; Yang, Xiaohan [ORNL; Tuskan, Gerald A [ORNL; Vogel, John [United States Department of Agriculture (USDA), Western Regional Research Center (WRRC), Albany

    2010-01-01

    Background Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar). To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolase genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model) and Sorghum bicolor (sorghum). We then compared the glycoside hydrolases across species, both at the whole-genome level and at the level of individual glycoside hydrolase families. Results We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. Examination of individual glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51) revealed both similarities and distinctions between monocots and dicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. Conclusions This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets the stage for Brachypodium to be a monocot model for investigations of these enzymes and their diverse roles in planta. Insights

  10. Molecular basis of the general base catalysis of an α/β-hydrolase catalytic triad.

    Science.gov (United States)

    Sun, Yueru; Yin, Shuhui; Feng, Yitao; Li, Jie; Zhou, Jiahai; Liu, Changdong; Zhu, Guang; Guo, Zhihong

    2014-05-30

    The serine-histidine-aspartate triad is well known for its covalent, nucleophilic catalysis in a diverse array of enzymatic transformations. Here we show that its nucleophilicity is shielded and its catalytic role is limited to being a specific general base by an open-closed conformational change in the catalysis of (1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase (or MenH), a typical α/β-hydrolase fold enzyme in the vitamin K biosynthetic pathway. This enzyme is found to adopt an open conformation without a functional triad in its ligand-free form and a closed conformation with a fully functional catalytic triad in the presence of its reaction product. The open-to-closed conformational transition involves movement of half of the α-helical cap domain, which causes extensive structural changes in the α/β-domain and forces the side chain of the triad histidine to adopt an energetically disfavored gauche conformation to form the functional triad. NMR analysis shows that the inactive open conformation without a triad prevails in ligand-free solution and is converted to the closed conformation with a properly formed triad by the reaction product. Mutation of the residues crucial to this open-closed transition either greatly decreases or completely eliminates the enzyme activity, supporting an important catalytic role for the structural change. These findings suggest that the open-closed conformational change tightly couples formation of the catalytic triad to substrate binding to enhance the substrate specificities and simultaneously shield the nucleophilicity of the triad, thus allowing it to expand its catalytic power beyond the nucleophilic catalysis.

  11. Gas-Phase Amidation of Carboxylic Acids with Woodward's Reagent K Ions

    Science.gov (United States)

    Peng, Zhou; Pilo, Alice L.; Luongo, Carl A.; McLuckey, Scott A.

    2015-06-01

    Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward's reagent K (wrk) in both positive and negative mode. Woodward's reagent K, N-ethyl-3-phenylisoxazolium-3'-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide.

  12. Synthesis of substituted 2-cyanoarylboronic esters

    DEFF Research Database (Denmark)

    Lysén, Morten; Hansen, Henriette M; Begtrup, Mikael;

    2006-01-01

    The synthesis of substituted 2-cyanoarylboronic esters is described via lithiation/in situ trapping of the corresponding methoxy-, trifluoromethyl-, fluoro-, chloro-, and bromobenzonitriles. The crude arylboronic esters were obtained in high yields and purities and with good regioselectivities....

  13. EPOXY RESINS TOUGHENED WITH CARBOXYL TERMINATED POLYETHERS

    Institute of Scientific and Technical Information of China (English)

    YU Yunchao; LI Yiming

    1983-01-01

    Carboxyl terminated polyethers, the adducts of hydroxyl terminated polytetrahydrofuran and maleic anhydride, were used as toughener for epoxy resins. The morphology of the toughened resins was investigated by means of turbidity measurement, dynamic mechanical testing and scanning electron microscope observation. It turned out that the molecular weight and the carboxyl content of the polyether and the cure conditions are important factors, which affect the particle size of the polyether-rich domains and, in turn, the mechanical properties of the cured resin. Carboxyl terminated polytetrahydrofurans have a low glass transition temperature, and in appropriate amount they do not affect the thermal resistance of the resin. These advantages make them preferable as toughener for epoxy resins.

  14. Novel Polymers with Carboxylic Acid Loading

    DEFF Research Database (Denmark)

    Thomsen, Anders Daugaard; Malmström, Eva; Hvilsted, Søren

    2006-01-01

    Click chemistry has been used to prepare a range of novel polymers with pendant carboxylic acid side groups. Four azido carboxylic acids, either mono- or difunctional and aliphatic or aromatic, have been prepared and thoroughly characterized. Extensive model reactions with 1-ethyl-4-hydroxybenzene......, the simplest model for poly(4-hydroxystyrene), and the four azido carboxylic acids have been conducted to establish the proper reaction conditions and provide an analytical frame for the corresponding polymers. Poly(4-hydroxystyrene) moieties in three different polymers—poly(4-hydroxystyrene), poly(4...... the polymers in general exhibit [when poly(4-hydroxystyrene) is a substantial part] significant changes in the glass-transition temperature from the polar poly(4-hydroxystyrene) (120–130 °C) to the much less polar alkyne polymers (46–60 °C). A direct correlation between the nature of the pendant groups...

  15. Hygroscopic Characteristics of Alkylaminium Carboxylate Aerosols.

    Science.gov (United States)

    Gomez-Hernandez, Mario; McKeown, Megan; Secrest, Jeremiah; Marrero-Ortiz, Wilmarie; Lavi, Avi; Rudich, Yinon; Collins, Don R; Zhang, Renyi

    2016-03-01

    The hygroscopic growth factor (HGF) and cloud condensation nuclei (CCN) activity for a series of alkylaminium carboxylate aerosols have been measured using a hygroscopicity tandem differential mobility analyzer coupled to a condensation particle counter and a CCN counter. The particles, consisting of the mixtures of mono- (acetic, propanoic, p-toluic, and cis-pinonic acid) and dicarboxylic (oxalic, succinic, malic, adipic, and azelaic acid) acid with alkylamine (mono-, di-, and trimethylamines), represent those commonly found under diverse environmental conditions. The hygroscopicity parameter (κ) of the alkylaminium carboxylate aerosols was derived from the HGF and CCN results and theoretically calculated. The HGF at 90% RH is in the range of 1.3 to 1.8 for alkylaminium monocarboxylates and 1.1 to 2.2 for alkylaminium dicarboxylates, dependent on the molecular functionality (i.e., the carboxylic or OH functional group in organic acids and methyl substitution in alkylamines). The κ value for all alkylaminium carboxylates is in the range of 0.06-1.37 derived from the HGF measurements at 90% RH, 0.05-0.49 derived from the CCN measurements, and 0.22-0.66 theoretically calculated. The measured hygroscopicity of the alkylaminium carboxylates increases with decreasing acid to base ratio. The deliquescence point is apparent for several of the alkylaminium dicarboxylates but not for the alkylaminium monocarboxylates. Our results reveal that alkylaminium carboxylate aerosols exhibit distinct hygroscopic and deliquescent characteristics that are dependent on their molecular functionality, hence regulating their impacts on human health, air quality, and direct and indirect radiative forcing on climate. PMID:26794419

  16. Biodiesel With Optimized Fatty Ester Composition

    Science.gov (United States)

    Biodiesel is largely composed of the mono-alkyl esters, usually methyl esters, of vegetable oils or animal fats with its fatty acid profile corresponding to that of the parent oil or fat. The different fatty esters have varying properties of relevance to biodiesel. The feedstock-dependent variatio...

  17. Mass spectrometric behaviour of carboxylated polyethylene glycols and carboxylated octylphenol ethoxylates.

    Science.gov (United States)

    Frańska, Magdalena; Zgoła, Agnieszka; Rychłowska, Joanna; Szymański, Andrzej; Łukaszewski, Zenon; Frański, Rafał

    2003-01-01

    Mass spectrometric behaviour of mono- and di-carboxylated polyethylene glycols (PEGCs and CPEGCs) and carboxylated octylphenol ethoxylates (OPECs) are discussed. The tendency for ionisation (deprotonation, protonation and cationisation by alkali metal cations) of carboxylated PEGs was compared with that of non-carboxylated correspondents by using both secondary ion mass spectrometry (SIMS) and electrospray ionisation (ESI). The fragmentation of the PEGCs and CPEGCs is discussed and also compared with their neutral correspondents, PEGs. The B/E mass spectra were recorded, using secondary ion mass spectrometry as a method for generation, for deprotonated and protonated molecules and molecules cationised by alkali metal cations. The fragmentation behaviour of PEGs is found to be different from that of CPEGCs, The presence of carboxylic groups may be confirmed not only by the determination of molecular weights of the ethoxylates studied, but also on the basis of the fragment ions formed. The metastable decomposition of the [OPEC-H](-) ions proceed through the cleavage of the bond between the octylphenol moiety and the ethoxylene chain leading to the octylphenoxy anions. It permits determination of the mass of the hydrophobic moiety of the studied carboxylated alkylphenol ethoxylate. ESI mass spectra recorded in the negative ion mode were found to be more suitable for the determination of the average molecular weight of carboxylated ethoxylates than SI mass spectra. PMID:12939494

  18. Analgesic effects of fatty acid amide hydrolase inhibition in a rat model of neuropathic pain.

    Science.gov (United States)

    Jhaveri, Maulik D; Richardson, Denise; Kendall, David A; Barrett, David A; Chapman, Victoria

    2006-12-20

    Cannabinoid-based medicines have therapeutic potential for the treatment of pain. Augmentation of levels of endocannabinoids with inhibitors of fatty acid amide hydrolase (FAAH) is analgesic in models of acute and inflammatory pain states. The aim of this study was to determine whether local inhibition of FAAH alters nociceptive responses of spinal neurons in the spinal nerve ligation model of neuropathic pain. Electrophysiological studies were performed 14-18 d after spinal nerve ligation or sham surgery, and the effects of the FAAH inhibitor cyclohexylcarbamic acid 3-carbamoyl biphenyl-3-yl ester (URB597) on mechanically evoked responses of spinal neurons and levels of endocannabinoids were determined. Intraplantar URB597 (25 microg in 50 microl) significantly (p < 0.01) attenuated mechanically evoked responses of spinal neurons in sham-operated rats. Effects of URB597 were blocked by the cannabinoid 1 receptor (CB1) antagonist AM251 [N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide] (30 microg in 50 microl) and the opioid receptor antagonist naloxone. URB597 treatment increased levels of anandamide, 2-arachidonyl glycerol, and oleoyl ethanolamide in the ipsilateral hindpaw of sham-operated rats. Intraplantar URB597 (25 microg in 50 microl) did not, however, alter mechanically evoked responses of spinal neurons in spinal nerve ligated (SNL) rats or hindpaw levels of endocannabinoids. Intraplantar injection of a higher dose of URB597 (100 microg in 50 microl) significantly (p < 0.05) attenuated evoked responses of spinal neurons in SNL rats but did not alter hindpaw levels of endocannabinoids. Spinal administration of URB597 attenuated evoked responses of spinal neurons and elevated levels of endocannabinoids in sham-operated and SNL rats. These data suggest that peripheral FAAH activity may be altered or that alternative pathways of metabolism have greater importance in SNL rats.

  19. Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Ames

    2004-09-01

    Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate

  20. Methyl 3-(Quinolin-2-ylindolizine-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Roumaissa Belguedj

    2015-12-01

    Full Text Available A novel compound, methyl 3-(quinolin-2-ylindolizine-1-carboxylate (2 has been synthesized by cycloaddition reaction of 1-(quinolin-2-ylmethylpyridinium ylide (1 with methyl propiolate in presence of sodium hydride in THF. The structure of this compound was established by IR, 1H-NMR, 13C-NMR and MS data

  1. Enzymatic Acylation of Anthocyanin Isolated from Black Rice with Methyl Aromatic Acid Ester as Donor: Stability of the Acylated Derivatives.

    Science.gov (United States)

    Yan, Zheng; Li, Chunyang; Zhang, Lixia; Liu, Qin; Ou, Shiyi; Zeng, Xiaoxiong

    2016-02-10

    The enzymatic acylation of anthocyanin from black rice with aromatic acid methyl esters as acyl donors and Candida antarctica lipase B was carried out under reduced pressure. The highest conversion of 91% was obtained with benzoic acid methyl ester as acyl donor; cyanidin 3-(6″-benzoyl)-glucoside, cyanidin 3-(6″-salicyloyl)-glucoside, and cyanidin 3-(6″-cinnamoyl)-glucoside were successfully synthesized. This is the first report on the enzymatic acylation of anthocyanin from black rice with methyl aromatic esters as acyl donors and lipase as biocatalyst. Furthermore, the acylation with aromatic carboxylic acids enhanced both the thermostability and light resistivity of anthocyanin. In particular, cyanidin 3-(6″-cinnamoyl)-glucoside was the most stable among the three acylated anthocyanins synthesized. PMID:26766135

  2. Phosphazene-promoted metal-free ring-opening polymerization of ethylene oxide initiated by carboxylic acid

    KAUST Repository

    Zhao, Junpeng

    2014-03-11

    The effectiveness of carboxylic acid as initiator for the anionic ring-opening polymerization of ethylene oxide was investigated with a strong phosphazene base (t-BuP4) used as promoter. Kinetic study showed an induction period, i.e., transformation of carboxylic acid to hydroxyl ester, followed by slow chain growth together with simultaneous and fast end-group transesterification, which led to poly(ethylene oxide) (PEO) consisting of monoester (monohydroxyl), diester, and dihydroxyl species. An appropriate t-BuP4/acid ratio was proven to be essential to achieve better control over the polymerization and low dispersity of PEO. This work provides important information and enriches the toolbox for macromolecular and biomolecular engineering with protic initiating sites. © 2014 American Chemical Society.

  3. Additional Nucleophile-Free FeCl3-Catalyzed Green Deprotection of 2,4-Dimethoxyphenylmethyl-Protected Alcohols and Carboxylic Acids.

    Science.gov (United States)

    Sawama, Yoshinari; Masuda, Masahiro; Honda, Akie; Yokoyama, Hiroki; Park, Kwihwan; Yasukawa, Naoki; Monguchi, Yasunari; Sajiki, Hironao

    2016-01-01

    The deprotection of the methoxyphenylmethyl (MPM) ether and ester derivatives can be generally achieved by the combinatorial use of a catalytic Lewis acid and stoichiometric nucleophile. The deprotections of 2,4-dimethoxyphenylmethyl (DMPM)-protected alcohols and carboxylic acids were found to be effectively catalyzed by iron(III) chloride without any additional nucleophile to form the deprotected mother alcohols and carboxylic acids in excellent yields. Since the present deprotection proceeds via the self-assembling mechanism of the 2,4-DMPM protective group itself to give the hardly-soluble resorcinarene derivative as a precipitate, the rigorous purification process by silica-gel column chromatography was unnecessary and the sufficiently-pure alcohols and carboxylic acids were easily obtained in satisfactory yields after simple filtration. PMID:27373632

  4. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids

    Science.gov (United States)

    Naruto, Masayuki; Saito, Susumu

    2015-01-01

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)]+) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru–H]+, which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources. PMID:26314266

  5. Probing backbone hydrogen bonding in PDZ/ligand interactions by protein amide-to-ester mutations

    DEFF Research Database (Denmark)

    Pedersen, Søren W; Pedersen, Stine B; Anker, Louise;

    2014-01-01

    via backbone hydrogen bonds; however, little is known about the role of these hydrogen bonds due to experimental challenges with backbone mutations. Here we address this interaction by generating semisynthetic PDZ domains containing backbone amide-to-ester mutations and evaluating the importance...... of individual hydrogen bonds for ligand binding. We observe substantial and differential effects upon amide-to-ester mutation in PDZ2 of postsynaptic density protein 95 and other PDZ domains, suggesting that hydrogen bonding at the carboxylate-binding site contributes to both affinity and selectivity....... In particular, the hydrogen-bonding pattern is surprisingly different between the non-canonical and canonical interaction. Our data provide a detailed understanding of the role of hydrogen bonds in protein-protein interactions....

  6. Synthesis and evaluation of thalidomide and phthalimide esters as antitumor agents.

    Science.gov (United States)

    Zahran, Magdy A H; Abdin, Yasmin G; Osman, Amany M A; Gamal-Eldeen, Amira M; Talaat, Roba M; Pedersen, Erik B

    2014-09-01

    A series of thalidomide and phthalimide ester analogs were efficiently synthesized from N-chloromethylthalidomide, N-chloromethylphthalimide, and N-(2-bromoethyl)phthalimide derivatives with various biologically important carboxylic acids. The synthesized compounds were purified and characterized by various chromatographic and spectroscopic techniques. The antitumor activity of all the synthesized compounds was screened against human liver and breast cancer cells, which showed that phthalimide ester 6a was the best cytotoxic compound against MCF7 cells, while all of the tested compounds showed a non-cytotoxic effect against HepG2 cells. Compounds 5a, 6a, and 7a possess immunosuppressant effect, while compounds 5c, 5d, 6c, 6d, 7c, and 7d showed an immunostimmulatory effect. Meanwhile, estimation of the binding affinity for all the synthesized compounds toward the vascular endothelial growth factor receptor (VEGFR) showed that compounds 5a, 5b, and 7d were the most potent inhibitors.

  7. An ester derivative of the drug gabapentin: pH dependent crystal stability

    Science.gov (United States)

    André, Vânia; Marques, M. Matilde; da Piedade, M. F. Minas; Duarte, M. Teresa

    2010-06-01

    Gabapentin solutions with different pHs were prepared and slow crystallization was allowed to occur. Different crystalline forms were obtained at pHs up to 7, whereas alkaline media (pH 9) gave rise to an amorphous product. A new crystal structure of an ethyl ester derivative, obtained at pH 2 under Fischer esterification conditions, is described herein. Esterification blocked the supramolecular interactions typically observed through the carboxyl group of gabapentin, which resulted in a dramatic change in the solid-state structure. As it is known, this change could have a marked influence on the physiological absorption characteristics of the drug, which supports the search for ester-based gabapentin prodrugs as a means of improving the limited bioavailability of the drug.

  8. Sesquiterpene Esters from Salvia roborowskii

    Institute of Scientific and Technical Information of China (English)

    Ya LI; Ning LOU; Yan Qi WU; Xian Feng LIN; Yu LI

    2003-01-01

    Two new sesquiterpene esters, 3β, 6β, 8α-triacetyl-4β, 5α-epoxy -1- oxogermacr-10(14)-ene (1) and 3β, 6β, 8α-triacetyl-4β, 5α-epoxygermacr-1(10)-ene (2) were isolated from the whole plant of Salvia roborowskii Maxim. Their structures were elucidated by means of spectral data (2DNMR and HRMS).

  9. NMR Studies of a New Binding Mode of the Amino Acid Esters by Porphyrinatozinc(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The binding mode of the amino acid ethyl esters(guest) by 5-(2-carboxylphenyl)-10,15,20-triphenylporphyrinatozinc(Ⅱ)(host 1) was studied by means of 1H NMR spectra. The binding mode is the hydrogen-bonding between the amino group of the guest and the carboxyl group of host 1 plus the coordination between the zinc atom of porphyrinatozinc(Ⅱ) and the carbonyl group of the guest. This is a novel binding mode of the metalloporphyrin to amino acid derivatives.

  10. Practical Ni-Catalyzed Aryl-Alkyl Cross-Coupling of Secondary Redox-Active Esters.

    Science.gov (United States)

    Cornella, Josep; Edwards, Jacob T; Qin, Tian; Kawamura, Shuhei; Wang, Jie; Pan, Chung-Mao; Gianatassio, Ryan; Schmidt, Michael; Eastgate, Martin D; Baran, Phil S

    2016-02-24

    A new transformation is presented that enables chemists to couple simple alkyl carboxylic acids with aryl zinc reagents under Ni-catalysis. The success of this reaction hinges on the unique use of redox-active esters that allow one to employ such derivatives as alkyl halides surrogates. The chemistry exhibits broad substrate scope and features a high degree of practicality. The simple procedure and extremely inexpensive nature of both the substrates and pre-catalyst (NiCl2·6H2O, ca. $9.5/mol) bode well for the immediate widespread adoption of this method. PMID:26835704

  11. Synthesis and Biological Evaluation of a Valinomycin Analog Bearing a Pentafluorophenyl Active Ester Moiety.

    Science.gov (United States)

    D'Accolti, Lucia; Denora, Nunzio; La Piana, Gianluigi; Marzulli, Domenico; Siwy, Zuzanna S; Fusco, Caterina; Annese, Cosimo

    2015-12-18

    A valuable analog of the K(+)-ionophore valinomycin (1), bearing a pentafluorophenyl ester moiety, has been obtained by selective reaction between the tertiary hydroxyl moiety of analog 2 (available from valinomycin hydroxylation) and the isocyanate group of pentafluorophenyl N-carbonyl glycinate (3) catalyzed by bis(N,N-dimethylformamide)dichlorodioxomolybdenum(VI). LC-HRMS studies show that analog 4 undergoes easy derivatization under mild conditions by reaction with OH- and NH2-containing compounds. Mitochondrial depolarization assays suggest that 4 acts as a K(+)-ionophore, provided that the glycine carboxyl group is appropriately masked. PMID:26566090

  12. Mechanistic investigations of unsaturated glucuronyl hydrolase from Clostridium perfringens.

    Science.gov (United States)

    Jongkees, Seino A K; Yoo, Hayoung; Withers, Stephen G

    2014-04-18

    Experiments were carried out to probe the details of the hydration-initiated hydrolysis catalyzed by the Clostridium perfringens unsaturated glucuronyl hydrolase of glycoside hydrolase family 88 in the CAZy classification system. Direct (1)H NMR monitoring of the enzymatic reaction detected no accumulated reaction intermediates in solution, suggesting that rearrangement of the initial hydration product occurs on-enzyme. An attempt at mechanism-based trapping of on-enzyme intermediates using a 1,1-difluoro-substrate was unsuccessful because the probe was too deactivated to be turned over by the enzyme. Kinetic isotope effects arising from deuterium-for-hydrogen substitution at carbons 1 and 4 provide evidence for separate first-irreversible and overall rate-determining steps in the hydration reaction, with two potential mechanisms proposed to explain these results. Based on the positioning of catalytic residues in the enzyme active site, the lack of efficient turnover of a 2-deoxy-2-fluoro-substrate, and several unsuccessful attempts at confirmation of a simpler mechanism involving a covalent glycosyl-enzyme intermediate, the most plausible mechanism is one involving an intermediate bearing an epoxide on carbons 1 and 2. PMID:24573682

  13. Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Gabriel Zamith Leal Dalmaso

    2015-04-01

    Full Text Available The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications.

  14. Protective mechanisms against homocysteine toxicity: the role of bleomycin hydrolase.

    Science.gov (United States)

    Zimny, Jaroslaw; Sikora, Marta; Guranowski, Andrzej; Jakubowski, Hieronim

    2006-08-11

    Homocysteine (Hcy) editing by methionyl-tRNA synthetase results in the formation of Hcy-thiolactone and initiates a pathway that has been implicated in human disease. In addition to being cleared from the circulation by urinary excretion, Hcy-thiolactone is detoxified by the serum Hcy-thiolactonase/paraoxonase carried on high density lipoprotein. Whether Hcy-thiolactone is detoxified inside cells was unknown. Here we show that Hcy-thiolactone is hydrolyzed by an intracellular enzyme, which we have purified to homogeneity from human placenta and identified by proteomic analyses as human bleomycin hydrolase (hBLH). We have also purified an Hcy-thiolactonase from the yeast Saccharomyces cerevisiae and identified it as yeast bleomycin hydrolase (yBLH). BLH belongs to a family of evolutionarily conserved cysteine aminopeptidases, and its only known biologically relevant function was deamidation of the anticancer drug bleomycin. Recombinant hBLH or yBLH, expressed in Escherichia coli, exhibits Hcy-thiolactonase activity similar to that of the native enzymes. Active site mutations, C73A for hBLH and H369A for yBLH, inactivate Hcy-thiolactonase activities. Yeast blh1 mutants are deficient in Hcy-thiolactonase activity in vitro and in vivo, produce more Hcy-thiolactone, and exhibit greater sensitivity to Hcy toxicity than wild type yeast cells. Our data suggest that BLH protects cells against Hcy toxicity by hydrolyzing intracellular Hcy-thiolactone. PMID:16769724

  15. Strain Rate Dependent Ductile-to-Brittle Transition of Graphite Platelet Reinforced Vinyl Ester Nanocomposites

    Directory of Open Access Journals (Sweden)

    Brahmananda Pramanik

    2014-01-01

    Full Text Available In previous research, the fractal dimensions of fractured surfaces of vinyl ester based nanocomposites were estimated applying classical method on 3D digital microscopic images. The fracture energy and fracture toughness were obtained from fractal dimensions. A noteworthy observation, the strain rate dependent ductile-to-brittle transition of vinyl ester based nanocomposites, is reinvestigated in the current study. The candidate materials of xGnP (exfoliated graphite nanoplatelets reinforced and with additional CTBN (Carboxyl Terminated Butadiene Nitrile toughened vinyl ester based nanocomposites that are subjected to both quasi-static and high strain rate indirect tensile load using the traditional Brazilian test method. High-strain rate indirect tensile testing is performed with a modified Split-Hopkinson Pressure Bar (SHPB. Pristine vinyl ester shows ductile deformation under quasi-static loading and brittle failure when subjected to high-strain rate loading. This observation reconfirms the previous research findings on strain rate dependent ductile-to-brittle transition of this material system. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Contribution of nanoreinforcement to the tensile properties is reported in this paper.

  16. Mono- and tri-ester hydrogenolysis using tandem catalysis. Scope and mechanism.

    Energy Technology Data Exchange (ETDEWEB)

    Lohr, Tracy L.; Li, Zhi; Assary, Rajeev S.; Curtiss, Larry A.; Marks, Tobin J.

    2016-01-01

    The scope and mechanism of thermodynamically leveraged ester RC(O)O-R' bond hydrogenolysis by tandem metal triflate + supported Pd catalysts are investigated both experimentally and theoretically by DFT and energy span analysis. This catalytic system has a broad scope, with relative cleavage rates scaling as, tertiary 4 secondary 4 primary ester at 1 bar H-2, yielding alkanes and carboxylic acids with high conversion and selectivity. Benzylic and allylic esters display the highest activity. The rate law is nu = k[M(OTf )(n)](1)[ester](0)[H-2](0) with an H/D kinetic isotope effect = 6.5 +/- 0.5, implying turnover-limiting C-H scission following C-O cleavage, in agreement with theory. Intermediate alkene products are then rapidly hydrogenated. Applying this approach with the very active Hf(OTf)(4) catalyst to bio-derived triglycerides affords near-quantitative yields of C-3 hydrocarbons rather than glycerol. From model substrates, it is found that RC(O)O-R' cleavage rates are very sensitive to steric congestion and metal triflate identity. For triglycerides, primary/external glyceryl CH2-O cleavage predominates over secondary/internal CH-O cleavage, with the latter favored by less acidic or smaller ionic radius metal triflates, raising the diester selectivity to as high as 48% with Ce(OTf)(3).

  17. Syntheses of Four Enantiomers of 2,3-Diendo- and 3-Endo-aminobicyclo[2.2.2]oct-5-ene-2-exo-carboxylic Acid and Their Saturated Analogues

    Directory of Open Access Journals (Sweden)

    Márta Palkó

    2013-12-01

    Full Text Available Ethyl 2,3-diendo-3-aminobicyclo[2.2.2]oct-5-ene-2-carboxylate ((±-1 was resolved with O,O'-dibenzoyltartaric acid via diastereomeric salt formation. The efficient synthesis of the enantiomers of 2,3-diendo-3-aminobicyclo[2.2.2]oct-5-ene-2-carboxylic acid ((+-7 and (–-7, 3-endo-aminobicyclo[2.2.2]oct-5-ene-2-exo-carboxylic acid ((+-5 and (–-5, cis- and trans-3-aminobicyclo[2.2.2]octane-2-carboxylic acid ((+-6, (–-6, (+-8 and (–-8 was achieved via isomerization, hydrogenation and hydrolysis of the corresponding esters (–-1 and (+-1. The stereochemistry and relative configurations of the synthesized compounds were determined by NMR spectroscopy (based on the 3J(H,H coupling constants and X-ray crystallography.

  18. The CGC enantiomer separation of 2-arylcarboxylic acid esters by using β-cyclodextrin derivatives as chiral stationary phases.

    Science.gov (United States)

    Shi, Xueyan; Liu, Feipeng; Mao, Jianyou

    2016-03-17

    Chiral 2-arylcarboxylic acid esters are important intermediates in preparation of enantioenriched 2-arylpropionic acids type Non-steroidal anti-inflammatory drugs (NSAIDs). Enantiomer separation of 2-arylcarboxylic acid esters is crucial for evaluation of the asymmetric synthesis efficiency and the enantiomer excess of chiral 2-arylcarboxylic acid derivatives. The capillary gas chromatography (CGC) enantiomer separation of 17 pairs of 2-arylcarboxylic acid esters enantiomers was conducted by using seven different β-cyclodextrin derivatives (CDs) as chiral stationary phases. It was found that for the 7 pairs of 2-phenylpropionates enantiomers, CDs with both alkyl and acyl substituents especially 2,6-di-O-pentyl-3-O-butyryl-β-cyclodextrin exhibited better enantiomer separation abilities than the other CDs examined. For the 7 pairs of 2-(4-substituted phenyl)propionates enantiomers, 2,3,6-tri-O-methyl-β-cyclodextrin possessed better enantiomer separation abilities than the other CDs. Among the 3 pairs of 2-phenylbutyrates enantiomers examined, only methyl 2-phenylbutyrate enantiomers could be separated by three CDs among the 7 CDs tested, while enantiomers of ethyl 2-phenylbutyrate and isopropyl 2-phenylbutyrate couldn't be separated by any of the 7 CDs tested. Besides the structures of CDs, the structures of 2-arylcarboxylic acid esters including different ester moieties, substituents of phenyl, and different carboxylic acids moieties in 2-arylcarboxylic acid esters also affected the enantiomer separation results greatly. The CGC enantiomer separation results of 2-arylcarboxylic acid esters on different CDs are useful for solving the enantiomer separation problem of 2-arylcarboxylic acid esters. PMID:26920785

  19. Carboxylated Polyurethanes Containing Hyperbranched Polyester Soft Segments

    Directory of Open Access Journals (Sweden)

    Žigon, M.

    2006-09-01

    Full Text Available hyperbranched polyester soft segments (HB PU with functional carboxylic groups in order to enable the preparation of stable HB PU dispersions. Carboxylated hyperbranched polyurethanes were synthesized using a hyperbranched polyester based on 2,2-bis(methylolpropionic acid of the fourth pseudo-generation (Boltorn H40 and hexamethylene (HDI or isophorone diisocyanate (IPDI. The reactivity of hyperbranched polyester with HDI was lower than expected, possibly due to the presence of less reactive hydroxyl groups in the linear repeat units. A gel was formed at mole ratios rNCO/OH = 1:2 or 1:4. The synthesis of HB PU was performed with partly esterified hyperbranched polyester with lowered hydroxyl functionality. The carboxyl groups were incorporated in the HB PU backbone by reaction of residual hydroxyl groups with cis-1,2-cyclohexanedicarboxylic anhydride. HB PU aqueous dispersions were stable at least for two months, although their films were brittle. The tensile strength and Young's modulus of blends of linear and HB PU decreased with increasing content of HB PU whereas elongation at break remained nearly constant, which was explained in terms of looser chain packing due to more open tree-like hyperbranched structures.

  20. Synthesis, cytotoxicity and structure-activity relationships between ester and amide functionalities in novel acridine-based platinum(II) complexes.

    Science.gov (United States)

    Bouyer, Florence; Moretto, Johnny; Pertuit, David; Szollosi, Anna; Lacaille-Dubois, Marie-Aleth; Blache, Yves; Chauffert, Bruno; Desbois, Nicolas

    2012-05-01

    In order to improve the pharmacological profile of the anticancer drug cisplatin, several new acridine-based tethered (ethane-1,2-diamine)platinum(II) complexes connected by a polymethylene chain were synthetized. Activity-structure relationship between amide or ester functionalities was explored by changing acridine-9-carboxamide into acridine-9-carboxylate chromophore. The in vitro cytotoxicity of these new complexes was assessed in human colic HCT 116, SW480 and HT-29 cancer cell lines. Series of complexes bearing the acridine-9-carboxylate chromophore displayed higher cytotoxic effect than acridine-9-carboxamide complexes, with gradual effect according to the size of the polymethylene linker. PMID:22459174

  1. Marinamide, a novel alkaloid and its methyl ester produced by the application of mixed fermentation technique to two mangrove endophytic fungi from the South China Sea

    Institute of Scientific and Technical Information of China (English)

    ZHU Feng; LIN Yongcheng

    2006-01-01

    A novel 1-isoquinolone analog designated as marinamide (A) and its methyl ester (B), were produced by the application of mixed fermentation technique to two mangrove endophytic fungi (strains Nos. 1924 and 3893) from the South China Sea. Their structures were elucidated by comprehensive spectra methods (mainly by 2D NMR) as 4- (2-pyrrolyl)-1-isoquinolone-3-carboxylic acid (A) and methyl 4-(2-pyrrolyl)-1-isoquinolone-3-carboxylate (B), respectively. Compounds A and B were not obtained when either strain was cultured individually under the same conditions. The results showed that the application of mixed fermentation technique maybe rep- resents a potentially important approach to discover novel metabolites.

  2. Ester Tuiksoo. Proua Suhkru kibedad päevad / Ester Tuiksoo ; interv. Piret Tali

    Index Scriptorium Estoniae

    Tuiksoo, Ester, 1965-

    2005-01-01

    Põllumajandusminister Ester Tuiksoo, kellel peagi täitub ministri ametis aasta Euroopa Liidu suhkrutrahvist, maaettevõtlusest, põllumajandusest, Euroopa Liidu toetustest, ministri elu- ja teenistuskäigust. Lisa: Ester Tuiksoo

  3. Structure-activity relationship of an ozonide carboxylic acid (OZ78) against Fasciola hepatica.

    Science.gov (United States)

    Zhao, Qingjie; Vargas, Mireille; Dong, Yuxiang; Zhou, Lin; Wang, Xiaofang; Sriraghavan, Kamaraj; Keiser, Jennifer; Vennerstrom, Jonathan L

    2010-05-27

    In this paper, we describe the SAR of ozonide carboxylic acid OZ78 (1) as the first part of our search for a trematocidal synthetic peroxide drug development candidate. We found that relatively small structural changes to 1 resulted most commonly in loss of activity against Fasciola hepatica in vivo. A spiroadamantane substructure and acidic functional group (or ester prodrug) were required for activity. Of 26 new compounds administered at single 100 mg/kg oral doses to F. hepatica infected rats, 8 had statistically significant worm burden reductions, 7 were partially curative, and 1 (acylsulfonamide 6) was completely curative and comparable to 1 in flukicidal efficacy. This study also showed that the activity of 1 is peroxide-bond-dependent, suggesting that its flukicidal efficacy depends upon hemoglobin digestion in F. hepatica. PMID:20423101

  4. Electrochemical Reduction and Carboxylation of Ethyl Cinnamate in MeCN

    Institute of Scientific and Technical Information of China (English)

    WANG Huan; DU Yan-Fang; LIN Mei-Yu; ZHANG Kai; LU Jia-Xing

    2008-01-01

    The electrochemical reduction and carboxylation of ethyl cinnamate have been carded out in an undivided cell equipped with a Mg sacrificial anode using MeCN as solvent.Direct electroreduction led to the formation of the hydrodimers and saturated ester.And electrocarboxylation was carried out in the presence of CO2.The global yield and the ratio of mono- to dicarboxylic acids were strongly affected by various factors:electrode material,electrolysis potential,the substrate concentration and temperature.The high yield (78%) was obtained under an optimized reaction condition (cathode:Ni;electrolysis potential:-1.7V;substrate concentration:0.1 mol·L-1;and temperature:-10℃).

  5. 21 CFR 172.859 - Sucrose fatty acid esters.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sucrose fatty acid esters. 172.859 Section 172.859... CONSUMPTION Multipurpose Additives § 172.859 Sucrose fatty acid esters. Sucrose fatty acid esters identified...) Sucrose fatty acid esters are the mono-, di-, and tri-esters of sucrose with fatty acids and are...

  6. Epoxides and soluble epoxide hydrolase in cardiovascular physiology.

    Science.gov (United States)

    Imig, John D

    2012-01-01

    Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites that importantly contribute to vascular and cardiac physiology. The contribution of EETs to vascular and cardiac function is further influenced by soluble epoxide hydrolase (sEH) that degrades EETs to diols. Vascular actions of EETs include dilation and angiogenesis. EETs also decrease inflammation and platelet aggregation and in general act to maintain vascular homeostasis. Myocyte contraction and increased coronary blood flow are the two primary EET actions in the heart. EET cell signaling mechanisms are tissue and organ specific and provide significant evidence for the existence of EET receptors. Additionally, pharmacological and genetic manipulations of EETs and sEH have demonstrated a contribution for this metabolic pathway to cardiovascular diseases. Given the impact of EETs to cardiovascular physiology, there is emerging evidence that development of EET-based therapeutics will be beneficial for cardiovascular diseases.

  7. Role of soluble epoxide hydrolase in the sex-specific vascular response to cerebral ischemia

    OpenAIRE

    Zhang, Wenri; Iliff, Jeffrey J.; Campbell, Caitlyn J; Wang, Ruikang K.; Hurn, Patricia D.; Alkayed, Nabil J.

    2009-01-01

    Soluble epoxide hydrolase (sEH), a key enzyme in the metabolism of vasodilator eicosanoids called epoxyeicosatrienoic acids (EETs), is sexually dimorphic and suppressed by estrogen. We determined if the sex difference in blood flow during focal cerebral ischemia is linked to sEH. Soluble epoxide hydrolase expression in brain, hydrolase activity in cerebral vessels, and plasma 14,15-dihydroxyeicosatrienoic acid (14,15-DHET) were determined in male and female wild-type (WT) and sEH knockout (sE...

  8. Contribution of the gamma-carboxyl group of Glu-43(beta) to the alkaline Bohr effect of hemoglobin A.

    Science.gov (United States)

    Rao, M J; Acharya, A S

    1992-08-18

    Glu-43(beta) of hemoglobin A exhibits a high degree of chemical reactivity around neutral pH for amidation with nucleophiles in the presence of carbodiimide. Such a reactivity is unusual for the side-chain carboxyl groups of proteins. In addition, the reactivity of Glu-43(beta) is also sensitive to the ligation state of the protein [Rao, M. J., & Acharya, A. S. (1991) J. Protein Chem. 10, 129-138]. The influence of deoxygenation of hemoglobin A on the chemical reactivity of the gamma-carboxyl group of Glu-43(beta) has now been investigated as a function of pH (from 5.5 to 7.5). The chemical reactivity of Glu-43(beta) for amidation increases upon deoxygenation only when the modification reaction is carried out above pH 6.0. The pH-chemical reactivity profile of the amidation of hemoglobin A in the deoxy conformation reflects an apparent pKa of 7.0 for the gamma-carboxyl group of Glu-43(beta). This pKa is considerably higher than the pKa of 6.35 for the oxy conformation. The deoxy conformational transition mediated increase in the pKa of the gamma-carboxyl group of Glu-43(beta) implicates this carboxyl group as an alkaline Bohr group. The amidated derivative of hemoglobin A with 2 mol of glycine ethyl ester covalently bound to the protein was isolated by CM-cellulose chromatography.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1354984

  9. Self-assembly of amphiphilic homopolymers bearing ferrocene and carboxyl functionalities: effect of polymer concentration, β-cyclodextrin, and length of alkyl linker.

    Science.gov (United States)

    Feng, Chun; Lu, Guolin; Li, Yongjun; Huang, Xiaoyu

    2013-08-27

    Three new acrylamide monomers containing ferrocene and tert-butyl ester groups were first synthesized via multistep nucleophilic substitution reaction under mild conditions followed by reversible addition-fragmentation chain transfer (RAFT) homopolymerization to give well-defined homopolymers with narrow molecular weight distributions (M(w)/M(n) ≤ 1.36). The target amphiphilic homopolymers were obtained by the acidic hydrolysis of tert-butyoxycarbonyls to carboxyls in every repeating unit using CF3COOH. The self-assembly behaviors of these amphiphilic homopolymers bearing both ferrocene and carboxyl moieties in each repeating unit in aqueous media were investigated by transmission emission microscopy (TEM), dynamic light scattering (DLS), and atomic force microscopy (AFM). Large compound micelles with different morphologies were formed by these amphiphilic homopolymers, which consist of the corona formed by hydrophilic carboxyls and the core containing numerous reverse micelles with hydrophilic islands of carboxyls in continuous hydrophobic phase of ferrocene-based segments. The morphologies of the formed micelles could be tuned by the concentration of amphiphilic homopolymers, pH value of the solution, the length of -CH2 linker between ferrocene group and carboxyl, and the amount of β-cyclodextrin (β-CD). PMID:23977901

  10. Yarrowia lipolytica lipase Lip2: an efficient enzyme for the production of concentrates of docosahexaenoic acid ethyl ester.

    Science.gov (United States)

    Casas-Godoy, Leticia; Meunchan, Muchalin; Cot, Marlène; Duquesne, Sophie; Bordes, Florence; Marty, Alain

    2014-06-20

    The production of Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) rich in cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) was studied using lipase-catalysed hydrolysis of a mixture of ethyl esters from tuna oil. Lipases from Yarrowia lipolytica (YLL2), Thermomyces lanuginosus (TLL) and Candida rugosa (CRL1, CRL3 and CRL4) were tested. C. rugosa lipases discriminated esters on the basis of their chain length, with less affinity for γ-linolenate, 11-eicosenoate, arachidonate, EPA, DPA and DHA ethyl esters. However, YLL2 and TLL improved discrimination towards DHA, as enzyme selectivity was shown to be mainly based on the position of the double bond closest to the carboxylic group. From the point of view of kinetics, purity and yield, YLL2 was the most effective lipase for DHA purification. Using this enzyme in an open reactor process resulted in the highest concentrations of DHA ethyl ester (77%) and ω-3 esters (81%) with a recovery of 94% and 77% respectively. PMID:24657346

  11. Bioreversible Derivatives of Phenol. 2. Reactivity of Carbonate Esters with Fatty Acid-like Structures Towards Hydrolysis in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Claus Larsen

    2007-10-01

    Full Text Available A series of model phenol carbonate ester prodrugs encompassing derivatives with fatty acid-like structures were synthesized and their stability as a function of pH (range 0.4 – 12.5 at 37°C in aqueous buffer solutions investigated. The hydrolysis rates in aqueous solutions differed widely, depending on the selected pro-moieties (alkyl and aryl substituents. The observed reactivity differences could be rationalized by the inductive and steric properties of the substituent groups when taking into account that the mechanism of hydrolysis may change when the type of pro-moiety is altered, e.g. n-alkyl vs. t-butyl. Hydrolysis of the phenolic carbonate ester 2-(phenoxycarbonyloxy-acetic acid was increased due to intramolecular catalysis, as compared to the derivatives synthesized from ω-hydroxy carboxylic acids with longer alkyl chains. The carbonate esters appear to be less reactive towards specific acid and base catalyzed hydrolysis than phenyl acetate. The results underline that it is unrealistic to expect that phenolic carbonate ester prodrugs can be utilized in ready to use aqueous formulations. The stability of the carbonate ester derivatives with fatty acid-like structures, expected to interact with the plasma protein human serum albumin, proved sufficient for further in vitro and in vivo evaluation of the potential of utilizing HSA binding in combination with the prodrug approach for optimization of drug pharmacokinetics.

  12. Synthesis of insecticidal sucrose esters

    Institute of Scientific and Technical Information of China (English)

    Song Zi-juan; Li Shu-jun; Chen Xi; Liu Li-mei; Song Zhan-qian

    2006-01-01

    Some synthetic sucrose esters (SE) are a relatively new class of insecticidal compounds produced by reacting sugars with fatty acids, which are safe for the environment. Especially, sucrose esters composed of C6-C12 fatty acids have desirable insecticidal properties against many soft-bodied arthropod pests. In our study, sucrose octanoate which has the highest activity against a range of arthropod species was synthesized by a trans-esterification method and proved its insecticidal property. Under the condition of a homogeneous liquid, sucrose octanoate was prepared by reacting ethyl octanoate with sucrose at reduced pressure; the yield was 79.11%. Sucrose octanoate synthesized was identified and its property analyzed by IR, TLC and spectrophotometric analysis. It was shown that the ratio of monoester to polyester in sucrose octanoate was 1.48:1. The insecticidal activity of the synthetic sucrose octanoate was evaluated at a concentration of 4 and 8 mg·mL-1. The mortality of first-instar larvae ofLymantria dispar from its contact toxicity was 72.5% after 36 hours, the revision insect reduced rate of Aphis glycines reached above 80% at 4 and 8 mg·mL-1 after being treated for 5 days. Since the SE products are nontoxic to humans and higher animals, fully biodegradable and hydrolyzed to readily metabolizable sucrose and fatty acid, they are not harmful to crops and appear to be good insecticide candidates.

  13. Methyl (Sp-2-(diphenylphosphinoferrocene-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Petr Štěpnička

    2009-10-01

    Full Text Available The title compound, [Fe(C5H5(C19H16O2P], obtained serendipitously during recrystallization of 1-hydroxybenzotriazolyl (Sp-2-(diphenylphosphinoferrocene-1-carboxylate from methanol, crystallizes in the chiral space group P212121. Its crystal structure not only confirms the anticipated absolute configuration but also establishes a rather regular geometry for the ferrocene unit, devoid of any significant deformation due to the attached substituents. In the crystal, symmetry-related molecules are linked via weak C—H...O interactions.

  14. Metal extraction by amides of carboxylic acids

    International Nuclear Information System (INIS)

    Extraction ability of various amides was studied. Data on extraction of rare earths, vanadium, molybdenum, rhenium, uranium, niobium, tantalum by N,N-dibutyl-amides of acetic, nonanic acids and fatly synthetic acids of C7-C9 fractions are presented. Effect of salting-out agents, inorganic acid concentrations on extraction process was studied. Potential ability of using amides of carboxylic acids for extractional concentration of rare earths as well as for recovery and separation of iron, rhenium, vanadium, molybdenum, uranium, niobium, and tantalum was shown

  15. Esteróles en esponjas marinas

    Directory of Open Access Journals (Sweden)

    Carmenza Duque

    2009-07-01

    Full Text Available Esta revisión bibliográfica comprende la mayona del trabajo publicado hasta el momento sobre esteróles aislados de esponjas marinas. Estos esteróles comprenden compuestos desde Cig hasta C31 con estructuras convencionales y con estructuras novedosas (núcleo y/o cadena lateral no convencional.

  16. Determination of Odor Release in Hydrocolloid Model Systems Containing Original or Carboxylated Cellulose at Different pH Values Using Static Headspace Gas Chromatographic (SHS-GC Analysis

    Directory of Open Access Journals (Sweden)

    Pahn-Shick Chang

    2013-02-01

    Full Text Available Static headspace gas chromatographic (SHS-GC analysis was performed to determine the release of 13 odorants in hydrocolloid model systems containing original or regio-selectively carboxylated cellulose at different pH values. The release of most odor compounds was decreased in the hydrocolloid solutions compared to control, with the amounts of 2-propanol, 3-methyl-1-butanol, and 2,3-butanedione released into the headspace being less than those of any other odor compound in the hydrocolloid model systems. However, there was no considerable difference between original cellulose-containing and carboxylated-cellulose containing systems in the release of most compounds, except for relatively long-chain esters such as ethyl caprylate and ethyl nonanoate. The release from the original and carboxylated cellulose solutions controlled to pH 10 was significantly higher than that from solutions adjusted to pH 4 and 7 in the case of some esters (ethyl acetate, methyl propionate, ethyl propionate, ethyl butyrate, butyl propionate, ethyl caproate and alcohols (2-propanol, 3-methyl-1-butanol, in particular, ethyl butyrate and 3-methyl-1-butanol. In contrast, the release of 2,3-butanedione from both the original and carboxylated cellulose solutions was increased at pH 4 and 7 compared to that at pH 10 by about 70% and 130%, respectively. Our study demonstrated that the release of some odorants could be changed significantly by addition of both original and carboxylated cellulose in hydrocolloid model systems, but only minor effect was observed in pH of the solution.

  17. Carboxylation and Decarboxylation of Aluminum Oxide Nanoparticles Using Bifunctional Carboxylic Acids and Octylamine

    Directory of Open Access Journals (Sweden)

    Shirin Alexander

    2016-01-01

    Full Text Available The carboxylation of alumina nanoparticles (NPs, with bifunctional carboxylic acids, provides molecular anchors that are used for building more complexed structures via either physisorption or chemisorption. Colloidal suspensions of the NPs may be prepared by covalently bonding a series of carboxylic acids with secondary functional groups (HO2C-R-X to the surface of the NPs: lysine (X = NH2, p-hydroxybenzoic acid (X = OH, fumaric acid (X = CO2H, and 4-formylbenzoic acid (X = C(OH. Subsequent reaction with octylamine at either 25°C or 70°C was investigated. Fourier transform IR-attenuated reflectance spectroscopy (FTIR-ATR, thermogravimetric analysis (TGA, and scanning electron microscopy (SEM along with energy dispersive X-ray (EDX analysis were used to characterize the bifunctionalized monolayers and/or multilayer corona surrounding the alumina NPs and investigate the reaction mechanism of octylamine with the functional groups (X of the NPs. Except for the fumaric functionalized NPs, addition of octylamine to the functionalized NPs leads to removal of excess carboxylic acid corona from the surface via an amide formation. The extent of the multilayer is dependent on the strength of the acid⋯acid interaction.

  18. Structure-Guided Engineering of Molinate Hydrolase for the Degradation of Thiocarbamate Pesticides

    OpenAIRE

    Leite, José P.; Duarte, Márcia; Paiva, Ana M.; Ferreira-da-Silva, Frederico; Matias, Pedro M.; Nunes, Olga C.; Gales, Luís

    2015-01-01

    Molinate is a recalcitrant thiocarbamate used to control grass weeds in rice fields. The recently described molinate hydrolase, from Gulosibacter molinativorax ON4T, plays a key role in the only known molinate degradation pathway ending in the formation of innocuous compounds. Here we report the crystal structure of recombinant molinate hydrolase at 2.27 Å. The structure reveals a homotetramer with a single mononuclear metal-dependent active site per monomer. The active site architecture show...

  19. HYDROLASING OF CONTAMINATED UNDERWATER BASIN SURFACES AT THE HANFORD K AREA

    International Nuclear Information System (INIS)

    This paper discusses selecting and implementing hydrolasing technology to reduce radioactive contamination in preparing to dispose of the K Basins; two highly contaminated concrete basins at the Hanford Site. A large collection of spent nuclear fuel stored for many years underwater at the K Basins has been removed to stable, dry, safe storage. Remediation activities have begun for the remaining highly contaminated water. sludge, and concrete basin structures. Hydrolasing will be used to decontaminate and prepare the basin structures for disposal

  20. IN VITRO SOLUBLE EPOXIDE HYDROLASE ENZYME INHIBITORY ACTIVITY OF SOME NOVEL CHALCONE DERIVATIVES

    OpenAIRE

    Kuppusamy Asokkumar; Lokeswari Prathyusha Tangella; Muthusamy Umamaheshwari; Thirumalaisamy Shivashanmugam; Varadharajan Subhadradevi; Puliyath Jagannath; Arumugam Madeswaran

    2012-01-01

    Objective Soluble epoxide hydrolase (sEH) belongs to the α/β -hydrolase superfamily, a subclass of α/β proteins. Chalcones are chemical compounds that show hopeful obliging efficacy in controlling numerous diseases. The main objective of the study is to evaluate the sEH inhibitory activity of some synthesized chalcone derivatives and identification of its mode of inhibition. Methods Four different chalcone derivatives (PC-1 to PC-4) were selected for synthesis by Claisen-Schmidt method. The i...

  1. Antifungal properties of halofumarate esters.

    Science.gov (United States)

    Gershon, H; Shanks, L

    1978-04-01

    Alkyl esters (C1--C4) of the four halofumaric acids were tested for antifungal activity against Candida albicans, Aspergillus niger, Mucor mucedo, and Trichophyton mentagrophytes at pH 5.6 and 7.0 in the absence and presence of 10% beef serum in Sabouraud dextrose agar. The most toxic compound to each organism was: C. albicans, ethyl iodofumarate (0.054 mmole/liter); A. niger, methyl bromofumarate (0.090 mmole/liter); M. mucedo, methyl fluorofumarate (0.037 mmole/liter); and T. mentagrophytes, ethyl iodofumarate (0.020 mmole/liter). The order of overall activity of the six most toxic compounds was: ethyl iodofumarate greater than ethyl chlorofumarate greater than methyl iodofumarate = methyl bromofumarate greater than methyl chlorofumarate greater than bromofumarate.

  2. Characterization and functional analysis of Trichinella spiralis Nudix hydrolase.

    Science.gov (United States)

    Long, Shao Rong; Wang, Zhong Quan; Jiang, Peng; Liu, Ruo Dan; Qi, Xin; Liu, Pei; Ren, Hui Jun; Shi, Hai Ning; Cui, Jing

    2015-12-01

    Trichinella spiralis Nudix hydrolase (TsNd) was identified by screening a T7 phage display cDNA library from T. spiralis intestinal infective larvae (IIL), and vaccination of mice with recombinant TsNd protein (rTsNd) or TsNd DNA vaccine produced a partial protective immunity. The aim of this study was to identify the characteristics and biological functions of TsNd in the process of invasion and development of T. spiralis larvae. Transcription and expression of TsNd gene at all developmental stages of T. spiralis were observed by qPCR and immunofluorescent test (IFT). The rTsNd had the Nd enzymatic activity to dGTP, NAD, NADP and CoA. Its kinetic properties on the preferred substrate dGTP were calculated, and the Vmax, Km, and kcat/Km values at pH 8.0 were 3.19 μM min(-1) μg(-1), 370 μM, and 144 s(-1) M(-1), respectively, in reaction matrix containing 5 mM Zn(2+) and 2 mM DTT. The rTsNd was active from 25 °C to 50 °C, with optimal activity at 37 °C. rTsNd was able to bind specifically to mouse intestinal epithelial cells (IECs) and promoted the larval invasion of IECs, whereas anti-rTsNd antibodies inhibited the larval invasion of IECs in a dose-dependent manner. Anti-rTsNd antibodies could kill T. spiralis infective larvae by an ADCC-mediated mechanism. Our results showed that the rTsNd protein was able to interact with host IECs, had the Nudix hydrolasing activity and the enzymatic activity appeared to be essential indispensable for the T. spiralis larval invasion, development and survival in host. PMID:26545353

  3. Expression of Nudix hydrolase genes in barley under UV irradiation

    Science.gov (United States)

    Tanaka, Sayuri; Sugimoto, Manabu; Kihara, Makoto

    Seed storage and cultivation should be necessary to self-supply foods when astronauts would stay and investigate during long-term space travel and habitation in the bases on the Moon and Mars. Thought the sunlight is the most importance to plants, both as the ultimate energy source and as an environmental signal regulating growth and development, UV presenting the sunlight can damage many aspects of plant processes at the physiological and DNA level. Especially UV-C, which is eliminated by the stratospheric ozone layer, is suspected to be extremely harmful and give a deadly injury to plants in space. However, the defense mechanism against UV-C irradiation damage in plant cells has not been clear. In this study, we investigated the expression of Nudix hydrolases, which defense plants from biotic / abiotic stress, in barley under UV irradiation. The genes encoding the amino acid sequences, which show homology to those of 28 kinds of Nudix hydrolases in Arabidopsis thaliana, were identified in the barley full-length cDNA library. BLAST analysis showed 14 kinds of barley genes (HvNUDX1-14), which encode the Nudix motif sequence. A phylogenetic tree showed that HvNUDX1, HvNUDX7, HvNUDX9 and HvNUDX11 belonged to the ADP-ribose pyrophosphohydrolase, ADP-sugar pyrophosphohydrolase, NAD(P)H pyrophosphohydrolase and FAD pyrophosphohydrolase subfamilies, respectively, HvNUDX3, HvNUDX6, and HvNUDX8 belonged to the Ap _{n}A pyrophosphohydrolase subfamilies, HvNUDX5 and HvNUDX14 belonged to the coenzyme A pyrophosphohydrolase subfamilies, HvNUDX12 and HvNUDX13 belonged to the Ap _{4}A pyrophosphohydrolase subfamilies. Induction of HvNUDX genes by UV-A (340nm), UV-B (312nm), and UV-C (260nm) were analyzed by quantitative RT-PCR. The results showed that HvNUDX4 was induced by UV-A and UV-B, HvNUDX6 was induced by UV-B and UV-C, and HvNUDX7 and HvNUDX14 were induced by UV-C, significantly. Our results suggest that the response of HvNUDXs to UV irradiation is different by UV

  4. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: Thermal and mechanical properties

    OpenAIRE

    H. F. Xie; Wang, Y. T.; Wang, C. S.; H. Y. Yin; Wang, L.L.; R. S. Cheng

    2012-01-01

    Carboxyl-modified multi-walled carbon nanotubes (MWCNT–COOHs) as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA) toughened with carboxyl-terminated butadiene-acrylonitrile (CTBN). The carboxyl functional carbon nanotubes were characterized by Fourier-transform infrared spectroscopy and thermogravimetric analysis. Furthermore, cure kinetics, glass transition temperature (Tg), mechanical properties, thermal stability and morphology of DGEBA/CTBN/MWCNT–COOH...

  5. Synthesis of alkyl esters by cutinase in miniemulsion and organic solvent media.

    Science.gov (United States)

    de Barros, Dragana P C; Fonseca, Luís P; Cabral, Joaquim M S; Weiss, Clemens K; Landfester, Katharina

    2009-05-01

    The main objective of this work was studying and testing the nature and influence of reaction media (organic solvent vs. miniemulsion system) on the synthesis of alkyl esters catalyzed by Fusarium solani pisi cutinase. Ester synthesis and cutinase selectivity for different chain length of acids and alcohols (ethyl and hexyl) were evaluated. In iso-octane, after 1 h of reaction, cutinase exhibits rates of esterification between 0.24 micromol x mg(-)1 x min(-1) for ethyl oleate and 1.15 micromol x mg(-)1 x min(-1) for ethyl butyrate, while in a miniemulsion system the rates were from 0.05 for ethyl heptanoate to 0.76 micromol x mg(-1) x min(-1) for ethyl decanoate. The reaction rate for the synthesis of hexyl esters in a miniemulsion system was from 0.19 for hexyl heptanoate to 1.07 micromol x mg(-)1 x min(-1) for hexyl decanoate. High conversion yields of 95% at equilibrium after 8 h of reaction in iso-octane for pentanoic acid (C(5)) with ethanol at equimolar concentration (0.1 M) was achieved. Additionally, this work showed that a significant and unexpected shift in cutinase selectivity occurred towards longer chain length carboxylic acids (C(8)-C(10)) in miniemulsion system as compared to organic solvent (iso-octane) and previous studies in reverse micellar systems. The possibility of working with higher concentration of substrates, without inhibitory effect on the enzyme, was another advantage of the miniemulsion system.

  6. Cold Flow Properties of Fatty Esters

    Directory of Open Access Journals (Sweden)

    Andrea Kleinová

    2007-09-01

    Full Text Available The article is devoted to the study of cold fl ow properties of neat esters of branched chain alcohols with fatty acids and blends of these esters with fossil diesel fuel. According to the determined CFPP values, the influence of alcohol branching on the fuel filterability is negligible and was detected only in the case of 2-ethyl hexanol. Fossil fuel blending with fatty esters up to 10 % vol. does not substantially change the cold flow properties of fossil fuel. DSC cooling scan parameters should be employed to predict CFPP of blended diesel fuel.

  7. Epoxide hydrolase of Trichoderma reesei: Biochemical properties and conformational characterization.

    Science.gov (United States)

    de Oliveira, Gabriel Stephani; Adriani, Patricia Pereira; Borges, Flavia Garcia; Lopes, Adriana Rios; Campana, Patricia T; Chambergo, Felipe S

    2016-08-01

    Epoxide hydrolases (EHs) are enzymes that are present in all living organisms and catalyze the hydrolysis of epoxides to the corresponding vicinal diols. EHs have biotechnological potential in chiral chemistry. We report the cloning, purification, enzymatic activity, and conformational analysis of the TrEH gene from Trichoderma reesei strain QM9414 using circular dichroism spectroscopy. The EH gene has an open reading frame encoding a protein of 343 amino acid residues, resulting in a molecular mass of 38.2kDa. The enzyme presents an optimum pH of 7.2, and it is highly active at temperatures ranging from 23 to 50°C and thermally inactivated at 70°C (t1/2=7.4min). The Michaelis constants (Km) were 4.6mM for racemic substrate, 21.7mM for (R)-(+)-styrene oxide and 3.0mM for (S)-(-)-styrene oxide. The kcat/Km analysis indicated that TrEH is enantioselective and preferentially hydrolyzes (S)-(-)-styrene oxide. The conformational stability studies suggested that, despite the extreme conditions (high temperatures and extremely acid and basic pHs), TrEH is able to maintain a considerable part of its regular structures, including the preservation of the native cores in some cases. The recombinant protein showed enantioselectivity that was distinct from other fungus EHs, making this protein a potential biotechnological tool. PMID:27177457

  8. Soluble epoxide hydrolase deficiency ameliorates acute pancreatitis in mice.

    Science.gov (United States)

    Bettaieb, Ahmed; Morisseau, Christophe; Hammock, Bruce; Haj, Fawaz

    2014-10-01

    Acute pancreatitis (AP) is a frequent gastrointestinal disorder that causes significant morbidity and its incidence has been progressively increasing. AP starts as a local inflammation in the pancreas that often leads to systemic inflammatory response and complications. Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition in murine models has beneficial effects in inflammatory diseases, but its significance in AP remains unexplored. To investigate whether sEH may have a causal role in AP we utilized sEH knockout (KO) mice to determine the effects of sEH deficiency on ceruelin- and arginine-induced AP. sEH expression increased at the protein and messenger RNA levels, as well as sEH activity in the early phase of cerulein- and arginine-induced AP in mice. In addition, amylase and lipase levels were lower in cerulein-treated sEH KO mice compared with non-treated controls. Moreover, pancreatic mRNA and serum concentrations of the inflammatory cytokines IL-1ß and IL-6 were lower in sEH KO mice compared with controls. Further, sEH KO mice exhibited decreased cerulein- and arginine-induced NF-?B inflammatory response, MAPKs activation and decreased cell death. These findings demonstrate a novel role for sEH in the progression of cerulein- and arginine-induced AP. PMID:26461340

  9. Carboxylates and the uptake of ammonium by excised maize roots

    NARCIS (Netherlands)

    Breteler, H.

    1975-01-01

    The effect of carboxylates (organic acid anions) on NH 4 uptake was studied by changing the carboxylate level of roots prior to uptake experi ments. Succinate was the most effective stimulator of ammonium uptake. The oxocarboxylates (α-oxoglutarate, oxaloacetate and

  10. The Structure of Allophanate Hydrolase from Granulibacter bethesdensis Provides Insights into Substrate Specificity in the Amidase Signature Family

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi [Marquette Univ., Milwaukee, WI (United States); Maurice, Martin [Marquette Univ., Milwaukee, WI (United States)

    2013-01-02

    Allophanate hydrolase (AH) catalyzes the hydrolysis of allophanate, an intermediate in atrazine degradation and urea catabolism pathways, to NH3 and CO2. AH belongs to the amidase signature family, which is characterized by a conserved block of 130 amino acids rich in Gly and Ser and a Ser-cis-Ser-Lys catalytic triad. In this study, the first structures of AH fromGranulibacter bethesdensis were determined, with and without the substrate analogue malonate, to 2.2 and 2.8 Å, respectively. The structures confirm the identity of the catalytic triad residues and reveal an altered dimerization interface that is not conserved in the amidase signature family. The structures also provide insights into previously unrecognized substrate specificity determinants in AH. Two residues, Tyr299 and Arg307, are within hydrogen bonding distance of a carboxylate moiety of malonate. Both Tyr299 and Arg307 were mutated, and the resulting modified enzymes revealed >3 order of magnitude reductions in both catalytic efficiency and substrate stringency. It is proposed that Tyr299 and Arg307 serve to anchor and orient the substrate for attack by the catalytic nucleophile, Ser172. The structure further suggests the presence of a unique C-terminal domain in AH. While this domain is conserved, it does not contribute to catalysis or to the structural integrity of the core domain, suggesting that it may play a role in mediating transient and specific interactions with the urea carboxylase component of urea amidolyase. Analysis of the AH active site architecture offers new insights into common determinants of catalysis and specificity among divergent members of the amidase signature family.

  11. Noncovalent catch and release of carboxylates in water.

    Science.gov (United States)

    Beck, Christie L; Winter, Arthur H

    2014-04-01

    Association constants of a bis-(acetylguanidinium)ferrocene dication to various (di)carboxylates were determined through UV-vis titrations. Association constant values greater than 10(4) M(-1) were determined for both phthalate and maleate carboxylates to the bis-(acetylguanidinium)ferrocene salt in pure water. Density functional theory computations of the binding enthalpy of the rigid carboxylates for these complexes agree well with the experimentally determined association constants. Catch and release competitive binding experiments were done by NMR for the cation-carboxylate ion-pair complexes with cucurbit[7]uril, and they show dissociation of the ion-pair complex upon addition of cucurbit[7]uril and release of the free (di)carboxylate.

  12. Space-Qualifiable Cyanate Ester Elastomer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cornerstone Research Group, Inc. (CRG) proposes to design and develop a space-qualifiable cyanate ester elastomer for application in self-deployable space...

  13. Space-Qualifiable Cyanate Ester Elastomer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase 1, CRG demonstrated the feasibility of a novel approach to prepare cyanate ester based elastomers. This approach polymerizes in-situ siloxane within a...

  14. Synthesis of a new energetic nitrate ester

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, David E [Los Alamos National Laboratory

    2008-01-01

    Nitrate esters have been known as useful energetic materials since the discovery of nitroglycerin by Ascanio Sobrero in 1846. The development of methods to increase the safety and utility of nitroglycerin by Alfred Nobel led to the revolutionary improvement in the utility of nitroglycerin in explosive applications in the form of dynamite. Since then, many nitrate esters have been prepared and incorporated into military applications such as double-based propellants, detonators and as energetic plasticizers. Nitrate esters have also been shown to have vasodilatory effects in humans and thus have been studied and used for treatments of ailments such as angina. The mechanism of the biological response towards nitrate esters has been elucidated recently. Interestingly, many of the nitrate esters used for military purposes are liquids (ethylene glycol dinitrate, propylene glycol dinitrate, etc). Pentaerythritol tetranitrate (PETN) is one of the only solid nitrate esters, besides nitrocellulose, that is used in any application. Unfortunately, PETN melting point is above 100 {sup o}C, and thus must be pressed as a solid for detonator applications. A more practical material would be a melt-castable explosive, for potential simplification of manufacturing processes. Herein we describe the synthesis of a new energetic nitrate ester (1) that is a solid at ambient temperatures, has a melting point of 85-86 {sup o}C and has the highest density of any known nitrate ester composed only of carbon, hydrogen, nitrogen and oxygen. We also describe the chemical, thermal and sensitivity properties of 1 as well as some preliminary explosive performance data.

  15. Rapid Output Growth of Special Acrylic Esters

    Institute of Scientific and Technical Information of China (English)

    Wang Lianzhi

    2007-01-01

    @@ Acrylic esters are usually classified into general-purpose varieties and special varieties. The production and application of general-purpose varieties is already quite matured in the world and their output growth tends to be flat. Owing to the development of coatings, electronics, automobiles,textiles, printing and construction sectors, especially the application of radiation curing technology in various sectors, special acrylic esters have developed rapidly.

  16. Soluble epoxide hydrolase inhibition and gene deletion are protective against myocardial ischemia-reperfusion injury in vivo.

    Science.gov (United States)

    Motoki, Atsuko; Merkel, Matthias J; Packwood, William H; Cao, Zhiping; Liu, Lijuan; Iliff, Jeffrey; Alkayed, Nabil J; Van Winkle, Donna M

    2008-11-01

    Soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids. EETs are formed from arachidonic acid during myocardial ischemia and play a protective role against ischemic cell death. Deletion of sEH has been shown to be protective against myocardial ischemia in the isolated heart preparation. We tested the hypothesis that sEH inactivation by targeted gene deletion or pharmacological inhibition reduces infarct size (I) after regional myocardial ischemia-reperfusion injury in vivo. Male C57BL\\6J wild-type or sEH knockout mice were subjected to 40 min of left coronary artery (LCA) occlusion and 2 h of reperfusion. Wild-type mice were injected intraperitoneally with 12-(3-adamantan-1-yl-ureido)-dodecanoic acid butyl ester (AUDA-BE), a sEH inhibitor, 30 min before LCA occlusion or during ischemia 10 min before reperfusion. 14,15-EET, the main substrate for sEH, was administered intravenously 15 min before LCA occlusion or during ischemia 5 min before reperfusion. The EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (EEZE) was given intravenously 15 min before reperfusion. Area at risk (AAR) and I were assessed using fluorescent microspheres and triphenyltetrazolium chloride, and I was expressed as I/AAR. I was significantly reduced in animals treated with AUDA-BE or 14,15-EET, independent of the time of administration. The cardioprotective effect of AUDA-BE was abolished by the EET antagonist 14,15-EEZE. Immunohistochemistry revealed abundant sEH protein expression in left ventricular tissue. Strategies to increase 14,15-EET, including sEH inactivation, may represent a novel therapeutic approach for cardioprotection against myocardial ischemia-reperfusion injury. PMID:18835921

  17. Effects of hypo- and hyperthyroidism on rat liver microsomal long-chain fatty acyl-CoA synthetase and hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Dang, A.Q.; Faas, F.H.; Carter, W.J.

    1986-05-01

    The effects of hyperthyroidism (hyperT/sub 3/), (tri-iodothryonine (T/sub 3/) injected rats), and hypothyroidism (hypoT/sub 3/) (thyroidectomized rats) on the activation of fatty acids by a microsomal long-chain fatty acyl-CoA (LCA-CoA) synthetase and the degradation of LCA-CoA by a microsomal LCA-CoA hydrolase was determined. MAS was assayed by measuring the (1-/sup 14/C)-palmitate or -1-/sup 14/C) oleate incorporated into its water soluble CoA ester. MAH was assayed spectrophotomerically by following the reduction of 5',5'-dithiobis-(2-nitrobenzoic acid) by the CoA released from palmitoyl-CoA or oleoyl-CoA. Enzyme activities are given as mean (nmoles/mg/min) +/- SEM. MAS activities were decreased 36-44% (p < 0.01) in both hypoT/sub 3/ and hyperT/sub 3/ (controls = 101 +/- 4 (n = 11, (1-/sup 14/C)-palmitate) of 72 +/- 2 (n = 5,(1-/sup 14/C)oleate)). These decreases may contribute to the decreased triacelyglycerol (TG) and phospholipid contents in the hyperT/sub 3/ liver and the decreased clearance rate of plasma TG in the hypoT/sub 3/. MAH was decreased 27-42% (p<0.01) only in hypoT/sub 3/ (controls = 77 +/- 3 (n = 11, palmitoyl-CoA) or 45 +/- 1 (n = 5, oleoyl-CoA)). This decrease was corrected by T/sub 3/ treatment. Since the decreased MAH would increase the availability of LCA-CoA, it may contribute to the increased TG synthesis in hypoT/sub 3/.

  18. Chlamydia trachomatis CT771 (nudH) is an asymmetric Ap4A hydrolase

    Science.gov (United States)

    Barta, Michael L.; Lovell, Scott; Sinclair, Amy N.; Battaile, Kevin P.; Hefty, P. Scott

    2014-01-01

    Asymmetric diadenosine 5′,5′″-P1,P4-tetraphosphate (Ap4A) hydrolases are members of the Nudix superfamily that asymmetrically cleave the metabolite Ap4A into ATP and AMP while facilitating homeostasis. The obligate intracellular mammalian pathogen Chlamydia trachomatis possesses a single Nudix family protein, CT771. As pathogens that rely on a host for replication and dissemination typically have one or zero Nudix family proteins, this suggests that CT771 could be critical for chlamydial biology and pathogenesis. We identified orthologs to CT771 within environmental Chlamydiales that share active site residues suggesting a common function. Crystal structures of both apo- and ligand-bound CT771 were determined to 2.6 Å and 1.9 Å resolution, respectively. The structure of CT771 shows a αβα-sandwich motif with many conserved elements lining the putative Nudix active site. Numerous aspects of the ligand-bound CT771 structure mirror those observed in the ligand-bound structure of the Ap4A hydrolase from Caenorhabditis elegans. These structures represent only the second Ap4A hydrolase enzyme member determined from eubacteria and suggest that mammalian and bacterial Ap4A hydrolases might be more similar than previously thought. The aforementioned structural similarities, in tandem with molecular docking, guided the enzymatic characterization of CT771. Together, these studies provide the molecular details for substrate binding and specificity, supporting the analysis that CT771 is an Ap4A hydrolase (nudH). PMID:24354275

  19. Conformational diversity and enantioconvergence in potato epoxide hydrolase 1.

    Science.gov (United States)

    Bauer, P; Carlsson, Å Janfalk; Amrein, B A; Dobritzsch, D; Widersten, M; Kamerlin, S C L

    2016-06-28

    Potato epoxide hydrolase 1 (StEH1) is a biocatalytically important enzyme that exhibits rich enantio- and regioselectivity in the hydrolysis of chiral epoxide substrates. In particular, StEH1 has been demonstrated to enantioconvergently hydrolyze racemic mixes of styrene oxide (SO) to yield (R)-1-phenylethanediol. This work combines computational, crystallographic and biochemical analyses to understand both the origins of the enantioconvergent behavior of the wild-type enzyme, as well as shifts in activities and substrate binding preferences in an engineered StEH1 variant, R-C1B1, which contains four active site substitutions (W106L, L109Y, V141K and I155V). Our calculations are able to reproduce both the enantio- and regioselectivities of StEH1, and demonstrate a clear link between different substrate binding modes and the corresponding selectivity, with the preferred binding modes being shifted between the wild-type enzyme and the R-C1B1 variant. Additionally, we demonstrate that the observed changes in selectivity and the corresponding enantioconvergent behavior are due to a combination of steric and electrostatic effects that modulate both the accessibility of the different carbon atoms to the nucleophilic side chain of D105, as well as the interactions between the substrate and protein amino acid side chains and active site water molecules. Being able to computationally predict such subtle effects for different substrate enantiomers, as well as to understand their origin and how they are affected by mutations, is an important advance towards the computational design of improved biocatalysts for enantioselective synthesis. PMID:27049844

  20. Asymmetric Ring-Opening of Cyclopropyl Ketones with Thiol, Alcohol, and Carboxylic Acid Nucleophiles Catalyzed by a Chiral N,N'-Dioxide-Scandium(III) Complex.

    Science.gov (United States)

    Xia, Yong; Lin, Lili; Chang, Fenzhen; Fu, Xuan; Liu, Xiaohua; Feng, Xiaoming

    2015-11-01

    A highly efficient asymmetric ring-opening reaction of cyclopropyl ketones with a broad range of thiols, alcohols and carboxylic acids has been first realized by using a chiral N,N'-dioxide-scandium(III) complex as catalyst. The corresponding sulfides, ethers, and esters were obtained in up to 99% yield and 95% ee. This is also the first example of one catalytic system working for the ring-opening reaction of donor-acceptor cyclopropanes with three different nucleophiles, let alone in an asymmetric version. PMID:26398505

  1. Efficient production of the Nylon 12 monomer ω-aminododecanoic acid methyl ester from renewable dodecanoic acid methyl ester with engineered Escherichia coli.

    Science.gov (United States)

    Ladkau, Nadine; Assmann, Miriam; Schrewe, Manfred; Julsing, Mattijs K; Schmid, Andreas; Bühler, Bruno

    2016-07-01

    The expansion of microbial substrate and product scopes will be an important brick promoting future bioeconomy. In this study, an orthogonal pathway running in parallel to native metabolism and converting renewable dodecanoic acid methyl ester (DAME) via terminal alcohol and aldehyde to 12-aminododecanoic acid methyl ester (ADAME), a building block for the high-performance polymer Nylon 12, was engineered in Escherichia coli and optimized regarding substrate uptake, substrate requirements, host strain choice, flux, and product yield. Efficient DAME uptake was achieved by means of the hydrophobic outer membrane porin AlkL increasing maximum oxygenation and transamination activities 8.3 and 7.6-fold, respectively. An optimized coupling to the pyruvate node via a heterologous alanine dehydrogenase enabled efficient intracellular L-alanine supply, a prerequisite for self-sufficient whole-cell transaminase catalysis. Finally, the introduction of a respiratory chain-linked alcohol dehydrogenase enabled an increase in pathway flux, the minimization of undesired overoxidation to the respective carboxylic acid, and thus the efficient formation of ADAME as main product. The completely synthetic orthogonal pathway presented in this study sets the stage for Nylon 12 production from renewables. Its effective operation achieved via fine tuning the connectivity to native cell functionalities emphasizes the potential of this concept to expand microbial substrate and product scopes. PMID:26969251

  2. Detection of testosterone esters in blood.

    Science.gov (United States)

    Forsdahl, Guro; Erceg, Damir; Geisendorfer, Thomas; Turkalj, Mirjana; Plavec, Davor; Thevis, Mario; Tretzel, Laura; Gmeiner, Günter

    2015-01-01

    Injections of synthetic esters of testosterone are among the most common forms of testosterone application. In doping control, the detection of an intact ester of testosterone in blood gives unequivocal proof of the administration of exogenous testosterone. The aim of the current project was to investigate the detection window for injected testosterone esters as a mixed substance preparation and as a single substance preparation in serum and plasma. Furthermore, the suitability of different types of blood collection devices was evaluated. Collection tubes with stabilizing additives, as well as non-stabilized serum separation tubes, were tested. A clinical study with six participants was carried out, comprising a single intramuscular injection of either 1000 mg testosterone undecanoate (Nebido(®)) or a mixture of 30 mg testosterone propionate, 60 mg testosterone phenylpropionate, 60 mg testosterone isocaproate, and 100 mg testosterone decanoate (Sustanon(®)). Blood was collected throughout a testing period of 60 days. The applied analytical method for blood analysis included liquid-liquid extraction and preparation of oxime derivatives, prior to TLX-sample clean-up and liquid chromatography-tandem mass spectrometry (LC-MS/MS) detection. All investigated testosterone esters could be detected in post-administration blood samples. The detection time depended on the type of ester administered. Furthermore, results from the study show that measured blood concentrations of especially short-chained testosterone esters are influenced by the type of blood collection device applied. The testosterone ester detection window, however, was comparable. PMID:26695486

  3. Structure-guided engineering of molinate hydrolase for the degradation of thiocarbamate pesticides.

    Directory of Open Access Journals (Sweden)

    José P Leite

    Full Text Available Molinate is a recalcitrant thiocarbamate used to control grass weeds in rice fields. The recently described molinate hydrolase, from Gulosibacter molinativorax ON4T, plays a key role in the only known molinate degradation pathway ending in the formation of innocuous compounds. Here we report the crystal structure of recombinant molinate hydrolase at 2.27 Å. The structure reveals a homotetramer with a single mononuclear metal-dependent active site per monomer. The active site architecture shows similarities with other amidohydrolases and enables us to propose a general acid-base catalysis mechanism for molinate hydrolysis. Molinate hydrolase is unable to degrade bulkier thiocarbamate pesticides such as thiobencarb which is used mostly in rice crops. Using a structural-based approach, we were able to generate a mutant (Arg187Ala that efficiently degrades thiobencarb. The engineered enzyme is suitable for the development of a broader thiocarbamate bioremediation system.

  4. Critical Design Features of Phenyl Carboxylate-Containing Polymer Microbicides

    OpenAIRE

    Rando, Robert F.; Obara, Sakae; Osterling, Mark C.; Mankowski, Marie; Miller, Shendra R.; Ferguson, Mary L.; Krebs, Fred C.; Wigdahl, Brian; Labib, Mohamed; Kokubo, Hiroyasu

    2006-01-01

    Recent studies of cellulose-based polymers substituted with carboxylic acids like cellulose acetate phthalate (CAP) have demonstrated the utility of using carboxylic acid groups instead of the more common sulfate or sulfonate moieties. However, the pKa of the free carboxylic acid group is very important and needs careful selection. In a polymer like CAP the pKa is approximately 5.28. This means that under the low pH conditions found in the vaginal lumen, CAP would be only minimally soluble an...

  5. Applications of Carboxylic Acid Reductases in Oleaginous Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Michael G.; Linger, Jeffrey; McGeehan, John; Tyo, Keith; Beckham, Gregg

    2016-04-24

    Carboxylic acid reductases (CARs) are recently emerging reductive enzymes for the direct production of aldehydes from biologically-produced carboxylic acids. Recent work has demonstrated that these powerful enzymes are able to reduce a very broad range of volatile- to long-chain fatty acids as well as aromatic acids. Here, we express four CAR enzymes from different fungal origins to test their activity against fatty acids commonly produced in oleaginous microbes. These in vitro results will inform metabolic engineering strategies to conduct mild biological reduction of carboxylic acids in situ, which is conventionally done via hydrotreating catalysis at high temperatures and hydrogen pressures.

  6. Sequential changes of lamellar body hydrolases during ozone-induced alveolar injury and repair

    Energy Technology Data Exchange (ETDEWEB)

    Glew, R.H.; Basu, A.; Shelley, S.A.; Paterson, J.F.; Diven, W.F.; Montgomery, M.R.; Balis, J.U.

    1989-05-01

    Lamellar body hydrolases in acutely damaged and regenerating type II cells were determined using an established rat model with well-defined stages of bronchiolo-alveolar injury and repair. Lamellar bodies were isolated from control and ozone-exposed (3.0 ppm for 8 hours) adult male rats by sucrose density gradient centrifugation and analyzed for their content of six different lysosomal hydrolases. Immediately after 3 ppm ozone exposure (zero-time) there was a significant decrease in specific enzyme activity (units/mg protein) of five lamellar body hydrolases and these activities remained depressed for at least 24 hours after exposure. In addition, total enzyme activity (units/lung) was reduced at zero-time for beta-hexosaminidase and at 24 hours postexposure for alpha-mannosidase and alpha-L-fucosidase. During the reparative and recovery stages (48 to 96 hours) the hydrolases demonstrated variable elevations in both specific activity and total activity (units/lung). Characteristically, beta-hexosaminidase and beta-galactosidase reached supranormal values at 96 hours, whereas alpha-mannosidase remained below normal levels through the recovery stage. Moreover, at 24 to 48 hours the lamellar body fraction demonstrated prominent enzyme depletion relative to the expanding pool of stored surfactant. It is concluded that acute ozone stress initiates the development of hydrolase deficiency within the lamellar bodies of injured and regenerating type II cells. This deficiency state is followed by asynchronous lamellar body hydrolase elevations that reflect distinct patterns of response rather than uniform return to normal condition. The lysosomal enzyme changes of lamellar bodies may be pathogenetically linked to the development of associated alterations in the storage and secretion of surfactant.

  7. Peptidoglycan Hydrolases of Local Lactic Acid Bacteria from Kazakh Traditional Food

    Directory of Open Access Journals (Sweden)

    Serik Shaikhin

    2014-01-01

    Full Text Available Introduction: Peptidoglycan (PG is a major component of the cell wall of Gram-positive bacteria and is essential for maintaining the integrity of the bacterial cell and its shape. The bacteria synthesize PG hydrolases, which are capable of cleaving the covalent bonds of PG. They also play an important role in modeling PG, which is required for bacterial growth and division. In an era of increasing antibiotic-resistant pathogens, PG hydrolases that destroy these important structures of the cell wall act as a potential source of new antimicrobials. The aim of this study is to identify the main PG hydrolases of local lactic acid bacteria isolated from traditional foods that enhance probiotic activity of a biological preparation. Methods. Lactococcus lactis 17А and Lactococcus garvieae 19А were isolated from the traditional sausage-like meat product called kazy. They were isolated according to standards methods of microbiology. Genetic identification of the isolates were tested by determining the nucleotide sequences of 16S rDNA. The Republican collection of microorganisms took strains of Lactobacillus casei subsp. Rhamnosus 13-P, L. delbrueckii subsp. lactis CG-1 B-RKM 0044 from cheese, Lactobacillus casei subsp. casei B-RKM 0202 from homemade butter. They used the standard technique of renaturating polyacrylamide gel electrophoresis to detect PG hydrolases activity. Results. According to the profiles of PG hydrolase activity on zymograms, the enzymes of Lactococci 17A and 19A in kazy are similar in electrophoretic mobility to major autolysin AcmA, while the lactobacilli of industrial and home-made dairy products have enzymes similar to extracellular proteins p40 and p75, which have probiotic activity. Conclusions. Use of peptidoglycan hydrolases seems to be an interesting approach in the fight against multi-drug resistant strains of bacteria and could be a valuable tool for the treatment of diseases caused by these microorganisms in Kazakhstan.

  8. Diversity of glycosyl hydrolase enzymes from metagenome and their application in food industry.

    Science.gov (United States)

    Sathya, T A; Khan, Mahejibin

    2014-11-01

    Traditional use of enzymes for food processing and production of food ingredients resulted in fast-growing enzyme industries world over. The advances in technologies gave rise to exploring newer enzymes and/or modified enzymes for specific application. Search for novel enzymes that can augment catalytic efficiency and advances in molecular biology techniques including sequencing has targeted microbial diversity through metagenomic approaches for sourcing enzymes from difficult to culture organisms. Such mining studies have received more attention in characterizing hydrolases, their prevalence, broad substrate specificities, stability, and independence of cofactors. The focus on glycosyl hydrolases from metagenome for their application in food sector is reviewed. PMID:25311940

  9. Isolation, purification and characterization of a new organphosphorus hydrolase OPHC2

    Institute of Scientific and Technical Information of China (English)

    WU Ningfeng; DENG Minjie; SHI Xiuyun; LIANG Guoyi; YAO Bin; FAN Yunliu

    2004-01-01

    A bacterium with the capability of degrading organphosphorus, identified as Pseudomonas pseudoalcaligenes, is isolated from OP-treated soil. The organphosphorus hydrolase OPHC2 from this bacterium has been purified and characterized. OPHC2 has optimum activity for the reaction at 65℃ and pH 9.0 with methyl parathion as a substrate, it also shows good thermal and pH stability. Most metal ions and chemicals have no effect on the activity of OPHC2. The analyses of nucleotide sequence encoding OPHC2 and amino acid sequence of OPHC2 show that there are lower homologies with those of organphosphorus hydrolase reported in GenBank.

  10. Data set of optimal parameters for colorimetric red assay of epoxide hydrolase activity.

    Science.gov (United States)

    de Oliveira, Gabriel Stephani; Adriani, Patricia Pereira; Borges, Flavia Garcia; Lopes, Adriana Rios; Campana, Patricia T; Chambergo, Felipe S

    2016-09-01

    The data presented in this article are related to the research article entitled "Epoxide hydrolase of Trichoderma reesei: Biochemical properties and conformational characterization" [1]. Epoxide hydrolases (EHs) are enzymes that catalyze the hydrolysis of epoxides to the corresponding vicinal diols. This article describes the optimal parameters for the colorimetric red assay to determine the enzymatic activity, with an emphasis on the characterization of the kinetic parameters, pH optimum and thermal stability of this enzyme. The effects of reagents that are not resistant to oxidation by sodium periodate on the reactions can generate false positives and interfere with the final results of the red assay. PMID:27366781

  11. Diversity of glycosyl hydrolase enzymes from metagenome and their application in food industry.

    Science.gov (United States)

    Sathya, T A; Khan, Mahejibin

    2014-11-01

    Traditional use of enzymes for food processing and production of food ingredients resulted in fast-growing enzyme industries world over. The advances in technologies gave rise to exploring newer enzymes and/or modified enzymes for specific application. Search for novel enzymes that can augment catalytic efficiency and advances in molecular biology techniques including sequencing has targeted microbial diversity through metagenomic approaches for sourcing enzymes from difficult to culture organisms. Such mining studies have received more attention in characterizing hydrolases, their prevalence, broad substrate specificities, stability, and independence of cofactors. The focus on glycosyl hydrolases from metagenome for their application in food sector is reviewed.

  12. Phenotypic and genotypic characterization of peptidoglycan hydrolases of Lactobacillus sakei

    Directory of Open Access Journals (Sweden)

    Afef Najjari

    2016-01-01

    Full Text Available Lactobacillus sakei, a lactic acid bacterium naturally found in fresh meat and sea products, is considered to be one of the most important bacterial species involved in meat fermentation and bio-preservation. Several enzymes of Lb. sakei species contributing to microbial safeguarding and organoleptic properties of fermented-meat were studied. However, the specific autolytic mechanisms and associated enzymes involved in Lb. sakei are not well understood. The autolytic phenotype of 22 Lb. sakei strains isolated from Tunisian meat and seafood products was evaluated under starvation conditions, at pH 6.5 and 8.5, and in the presence of different carbon sources. A higher autolytic rate was observed when cells were grown in the presence of glucose and incubated at pH 6.5. Almost all strains showed high resistance to mutanolysin, indicating a minor role of muramidases in Lb. sakei cell lysis. Using Micrococcus lysodeikticus cells as a substrate in activity gels zymogram, peptidoglycan hydrolase (PGH patterns for all strains was characterized by two lytic bands of ∼80 (B1 and ∼70 kDa (B2, except for strain BMG.167 which harbored two activity signals at a lower MW. Lytic activity was retained in high salt and in acid/basic conditions and was active toward cells of Lb. sakei, Listeria monocytogenes, Listeria ivanovii and Listeria innocua. Analysis of five putative PGH genes found in the Lb. sakei 23 K model strain genome, indicated that one gene, lsa1437, could encode a PGH (N-acetylmuramoyl-L-alanine amidase containing B1 and B2 as isoforms. According to this hypothesis, strain BMG.167 showed an allelic version of lsa1437 gene deleted of one of the five LysM domains, leading to a reduction in the MW of lytic bands and the high autolytic rate of this strain. Characterization of autolytic phenotype of Lb. sakei should expand the knowledge of their role in fermentation processes where they represent the dominant species.

  13. Phenotypic and genotypic characterization of peptidoglycan hydrolases of Lactobacillus sakei.

    Science.gov (United States)

    Najjari, Afef; Amairi, Houda; Chaillou, Stéphane; Mora, Diego; Boudabous, Abdellatif; Zagorec, Monique; Ouzari, Hadda

    2016-01-01

    Lactobacillus sakei, a lactic acid bacterium naturally found in fresh meat and sea products, is considered to be one of the most important bacterial species involved in meat fermentation and bio-preservation. Several enzymes of Lb. sakei species contributing to microbial safeguarding and organoleptic properties of fermented-meat were studied. However, the specific autolytic mechanisms and associated enzymes involved in Lb. sakei are not well understood. The autolytic phenotype of 22 Lb. sakei strains isolated from Tunisian meat and seafood products was evaluated under starvation conditions, at pH 6.5 and 8.5, and in the presence of different carbon sources. A higher autolytic rate was observed when cells were grown in the presence of glucose and incubated at pH 6.5. Almost all strains showed high resistance to mutanolysin, indicating a minor role of muramidases in Lb. sakei cell lysis. Using Micrococcus lysodeikticus cells as a substrate in activity gels zymogram, peptidoglycan hydrolase (PGH) patterns for all strains was characterized by two lytic bands of ∼80 (B1) and ∼70 kDa (B2), except for strain BMG.167 which harbored two activity signals at a lower MW. Lytic activity was retained in high salt and in acid/basic conditions and was active toward cells of Lb. sakei, Listeria monocytogenes, Listeria ivanovii and Listeria innocua. Analysis of five putative PGH genes found in the Lb. sakei 23 K model strain genome, indicated that one gene, lsa1437, could encode a PGH (N-acetylmuramoyl-L-alanine amidase) containing B1 and B2 as isoforms. According to this hypothesis, strain BMG.167 showed an allelic version of lsa1437 gene deleted of one of the five LysM domains, leading to a reduction in the MW of lytic bands and the high autolytic rate of this strain. Characterization of autolytic phenotype of Lb. sakei should expand the knowledge of their role in fermentation processes where they represent the dominant species. PMID:26843981

  14. Conformational Variability of Organophosphorus Hydrolase upon Soman and Paraoxon Binding

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Diego Eb; Lins, Roberto D.; Pascutti, Pedro G.; Lei, Chenghong; Soares, Thereza A.

    2011-12-31

    The bacterial enzyme organophosphorus hydrolase (OPH) exhibits both catalytic and substrate promiscuity. It hydrolyzes bonds in a variety of phosphotriester (P-O), phosphonothioate (P-S), phosphofluoridate (P-F) and phosphonocyanate (F-CN) compounds. However, its catalytic efficiency varies markedly for different substrates, limiting the broad-range application of OPH as catalyst in the bioremediation of pesticides and chemical war agents. In the present study, pK{sub a} calculations and multiple explicit-solvent molecular dynamics (MD) simulations were performed to characterize and contrast the structural dynamics of OPH bound to two substrates hydrolyzed with very distinct catalytic efficiencies: the nerve agent soman (O-pinacolyl-methyl-phosphonofluoridate) and the pesticide paraoxon (diethyl p-nitrophenyl phosphate). pK{sub a} calculations for the substrate-bound and unbound enzyme showed a significant pK{sub a} shift from standard values ({Delta}pK{sub a} = {+-} 3 units) for residues 254His and 275Arg. MD simulations of the doubly protonated 254His revealed a dynamic hydrogen bond network connecting the catalytic residue 301Asp via 254His to 232Asp, 233Asp, 275Arg and 235Asp, and is consistent with a previously postulated proton relay mechanism to ferry protons away from the active site with substrates that do not require activation of the leaving group. Hydrogen bonds between 301Asp and 254His were persistent in the OPH-paraoxon complex but not in the OPH-soman one, suggesting a potential role for such interaction in the more efficient hydrolysis of paraoxon over soman by OPH. These results are in line with previous mutational studies of residue 254His, which led to an increase of the catalytic efficiency of OPH over soman yet decreased its efficiency for paraoxon. In addition, comparative analysis of the molecular trajectories for OPH bound to soman and paraoxon suggests that binding of the latter facilitates the conformational transition of OPH from the

  15. The apo structure of sucrose hydrolase from Xanthomonas campestris pv. campestris shows an open active-site groove

    DEFF Research Database (Denmark)

    Champion, Elise; Remaud-Simeon, Magali; Skov, Lars Kobberøe;

    2009-01-01

    Glycoside hydrolase family 13 (GH-13) mainly contains starch-degrading or starch-modifying enzymes. Sucrose hydrolases utilize sucrose instead of amylose as the primary glucosyl donor. Here, the catalytic properties and X-ray structure of sucrose hydrolase from Xanthomonas campestris pv. campestr...

  16. Mutations in the VNTR of the carboxyl-ester lipase gene (CEL) are a rare cause of monogenic diabetes

    DEFF Research Database (Denmark)

    Torsvik, Janniche; Johansson, Stefan; Johansen, Anders;

    2009-01-01

    ), which has proven challenging to sequence due to high GC-content and considerable length variation. We have therefore developed a screening method consisting of a multiplex PCR followed by fragment analysis. The method detected putative disease-causing insertions and deletions in the proximal repeats...... to be a rare cause of monogenic diabetes....

  17. A detailed study of the diastereoselective catalytic hydrogenation of 6-hydroxytetrahydroisoquinoline-(3R)-carboxylic ester intermediates

    NARCIS (Netherlands)

    Lefort, Laurent; Sereinig, Natascha; Straatman, Harrie; Ager, David J.; Vries, Johannes G. de; Werner, John A.; Scherer, Roger B.; Maloney, Todd D.; Argentine, Mark D.; Sullivan, Kevin A.; Fennell, Jared W.

    2012-01-01

    A key step towards a highly-selective antagonist of ionotropic glutamate receptors entails the diastereoselective arene hydrogenation of an enantiopure tetrahydroisoquinoline. An extensive screen using parallel reactors was conducted and led to the discovery of several Pd/C catalysts giving high yie

  18. Synthesis, structural characterization and antimicrobial evaluation of some novel piperidin-4-one oxime esters

    Directory of Open Access Journals (Sweden)

    Krishnan Gokula K.

    2015-01-01

    Full Text Available Fifteen novel biologically active piperidin-4-one oxime esters (8-22 have been synthesized with good yields. These compounds were prepared from in-situ activated carboxylic acids using POCl3 and pyridine with piperidin-4- one oximes. The structure of the title compounds were elucidated on the basis of FT-IR, NMR (1D and 2D and mass spectral analyses. The single crystal XRD study of compounds 12 and 20 were the further evidence for the proposed structure unambiguously. All the synthesized compounds were tested for in vitro antibacterial and antifungal activities. Many of these derivatives exhibited good activity against Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Trigoderma veride and Aspergillus flavus.

  19. Overexpression of ubiquitin carboxyl terminal hydrolase-L1 enhances multidrug resistance and invasion/metastasis in breast cancer by activating the MAPK/Erk signaling pathway.

    Science.gov (United States)

    Wang, Wenjuan; Zou, Liping; Zhou, Danmei; Zhou, Zhongwen; Tang, Feng; Xu, Zude; Liu, Xiuping

    2016-09-01

    Multidrug resistant (MDR) cancer cells overexpressing P-glycoprotein (P-gp) exhibit enhanced invasive/metastatic ability as compared with the sensitive cells. We aimed to clarify the mechanism underlying this observation and found that during the development of drug resistance to adriamycin in MCF7 cells, the elevated expression of UCH-L1 coincides with the up-regulation of MDR1, CD147, MMP2, and MMP9 as well as increased cellular migration/invasion. Overexpression of UCH-L1 in MCF7 cells up-regulated MDR1, CD147, MMP2, and MMP9, which conferred MDR and promoted migration/invasion. On the other hand, silencing of UCH-L1 in MCF7/Adr cells led to the opposite effect. Immunohistochemistry in 203 breast cancer samples revealed that UCH-L1 expression is positively correlated with P-gp, CD147, MMP2, and MMP9 expression and standard tumor spread indicators. Kaplan-Meier survival analysis indicated a correlation between UCH-L1 expression and shorter recurrent and survival times. Moreover, UCH-L1-overexpressing clones treated with U0126 (an Erk1/2-specific inhibitor) significantly decreased the expression of MDR1, CD147, MMP2, and MMP9. These data indicate that UCH-L1 may assume a dual role, because it had intrinsic stimulatory effects on tumor migration/invasion and increased MDR. © 2015 Wiley Periodicals, Inc. PMID:26293643

  20. Application conditions for ester cured alkaline phenolic resin sand

    Directory of Open Access Journals (Sweden)

    Ren-he Huang

    2016-07-01

    Full Text Available Five organic esters with different curing speeds: propylene carbonate (i.e. high-speed ester A; 1, 4-butyrolactone; glycerol triacetate (i.e. medium-speed ester B; glycerol diacetate; dibasic ester (DBE (i.e. low-speed ester C, were chosen to react with alkaline phenolic resin to analyze the application conditions of ester cured alkaline phenolic resin. The relationships between the curing performances of the resin (including pH value, gel pH value, gel time of resin solution, heat release rate of the curing reaction and tensile strength of the resin sand and the amount of added organic ester and curing temperature were investigated. The results indicated the following: (1 The optimal added amount of organic ester should be 25wt.%-30wt.% of alkaline phenolic resin and it must be above 20wt.%-50 wt.% of the organic ester hydrolysis amount. (2 High-speed ester A (propylene carbonate has a higher curing speed than 1, 4-butyrolactone, and they were both used as high-speed esters. Glycerol diacetate is not a high-speed ester in alkaline phenolic resin although it was used as a high-speed ester in ester cured sodium silicate sand; glycerol diacetate and glycerol triacetate can be used as medium-speed esters in alkaline phenolic resin. (3 High-speed ester A, medium-speed ester B (glycerol triacetate and low-speed ester C (dibasic ester, i.e., DBE should be used below 15 ìC, 35 ìC and 50 ìC, respectively. High-speed ester A or low-speed ester C should not be used alone but mixed with medium-speed ester B to improve the strength of the resin sand. (4 There should be a suitable solid content (generally 45wt.%-65wt.% of resin, alkali content (generally 10wt.%-15wt.% of resin and viscosity of alkaline phenolic resin (generally 50-300 mPa≤s in the preparation of alkaline phenolic resin. Finally, the technique conditions of alkaline phenolic resin preparation and the application principles of organic ester were discussed.

  1. How to find soluble proteins: a comprehensive analysis of alpha/beta hydrolases for recombinant expression in E. coli

    Directory of Open Access Journals (Sweden)

    Barth Sandra

    2005-04-01

    Full Text Available Abstract Background In screening of libraries derived by expression cloning, expression of active proteins in E. coli can be limited by formation of inclusion bodies. In these cases it would be desirable to enrich gene libraries for coding sequences with soluble gene products in E. coli and thus to improve the efficiency of screening. Previously Wilkinson and Harrison showed that solubility can be predicted from amino acid composition (Biotechnology 1991, 9(5:443–448. We have applied this analysis to members of the alpha/beta hydrolase fold family to predict their solubility in E. coli. alpha/beta hydrolases are a highly diverse family with more than 1800 proteins which have been grouped into homologous families and superfamilies. Results The predicted solubility in E. coli depends on hydrolase size, phylogenetic origin of the host organism, the homologous family and the superfamily, to which the hydrolase belongs. In general small hydrolases are predicted to be more soluble than large hydrolases, and eukaryotic hydrolases are predicted to be less soluble in E. coli than prokaryotic ones. However, combining phylogenetic origin and size leads to more complex conclusions. Hydrolases from prokaryotic, fungal and metazoan origin are predicted to be most soluble if they are of small, medium and large size, respectively. We observed large variations of predicted solubility between hydrolases from different homologous families and from different taxa. Conclusion A comprehensive analysis of all alpha/beta hydrolase sequences allows more efficient screenings for new soluble alpha/beta hydrolases by the use of libraries which contain more soluble gene products. Screening of hydrolases from families whose members are hard to express as soluble proteins in E. coli should first be done in coding sequences of organisms from phylogenetic groups with the highest average of predicted solubility for proteins of this family. The tools developed here can be used

  2. Affinity labelling enzymes with esters of aromatic sulfonic acids

    Science.gov (United States)

    Wong, Show-Chu; Shaw, Elliott

    1977-01-01

    Novel esters of aromatic sulfonic acids are disclosed. The specific esters are nitrophenyl p- and m-amidinophenylmethanesulfonate. Also disclosed is a method for specific inactivation of the enzyme, thrombin, employing nitrophenyl p-amidinophenylmethanesulfonate.

  3. Chiral extraction of ketoprofen enantiomers with chiral selector tartaric esters

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dan; LIU Jia-jia; TANG Ke-wen; HUANG Ke-long

    2007-01-01

    Distribution behavior of ketoprofen enantiomers was examined in methanol aqueous and organic solvent mixture containing tartaric esters. The influence of length of alkyl chain of tartaric esters, concentration of L-tartaric esters and methanol aqueous, kind of organic solvent on partition ratio and separation factors was investigated. The results show that L-tartaric and D-tartaric esters have different chiral recognition abilities. S-ketoprofen is easily extracted by L-tartaric esters, and R-ketoprofen is easily extracted by D-tartaric esters. L-tartaric esters form more stable diastereomeric complexes with S-enantiomer than that with R-enantiomer. This distribution behavior is consistent with chiral recognition mechanism. With the increase of the concentration of tartaric ester from 0 to 0.3 mol/L, partition coefficient K and separation factor α increase. Also, the kind of organic solvent and the concentration of the methanol aqueous have significant influence on K and α.

  4. Structure of the minimized α/β-hydrolase fold protein from Thermus thermophilus HB8

    International Nuclear Information System (INIS)

    The crystal structure of the minimized α/β-hydrolase fold protein encoded by the gene TTHA1544 from T. thermophilus HB8 has been determined at 2.0 Å resolution. The gene encoding TTHA1544 is a singleton found in the Thermus thermophilus HB8 genome and encodes a 131-amino-acid protein. The crystal structure of TTHA1544 has been determined at 2.0 Å resolution by the single-wavelength anomalous dispersion method in order to elucidate its function. There are two molecules in the asymmetric unit. Each molecule consists of four α-helices and six β-strands, with the β-strands composing a central β-sheet. A structural homology search revealed that the overall structure of TTHA1544 resembles the α/β-hydrolase fold, although TTHA1544 lacks the catalytic residues of a hydrolase. These results suggest that TTHA1544 represents the minimized α/β-hydrolase fold and that an additional component would be required for its activity

  5. Improved annotation of conjugated bile acid hydrolase superfamily members in Gram-positive bacteria

    NARCIS (Netherlands)

    Lambert, J.M.; Siezen, R.J.; Vos, de W.M.; Kleerebezem, M.

    2008-01-01

    Most Gram-positive bacteria inhabiting the gastrointestinal tract are capable of hydrolysing bile salts. Bile salt hydrolysis is thought to play an important role in various biological processes in the host. Therefore, correct annotation of bacterial bile salt hydrolases (Bsh) in public databases (E

  6. EXPRESSION AND CHARACTERIZATION OF THE RECOMBINANT JUVENILE HORMONE EPOXIDE HYDROLASE (JHEH) FROM MANDUCA SEXTA. (R825433)

    Science.gov (United States)

    The cDNA of the microsomal Juvenile Hormone Epoxide Hydrolase (JHEH) from Manduca sexta was expressed in vitro in the baculovirus system. In insect cell culture, the recombinant enzyme (Ms-JHEH) was produced at a high level (100 fold over background EH catalytic activit...

  7. The role of epoxide hydrolase Y113H gene variant in pancreatic diseases.

    NARCIS (Netherlands)

    Ockenga, J.; Strunck, S.; Post, C.; Schulz, H.U.; Halangk, J.; Pfutzer, R.H.; Lohr, M.; Oettle, H.; Kage, A.; Rosendahl, J.; Keim, V.; Drenth, J.P.H.; Jansen, J.B.M.J.; Lochs, H.; Witt, H.

    2009-01-01

    OBJECTIVES: Chronic pancreatitis (CP) and pancreatic adenocarcinoma (pCA) are associated with risk factors such as alcohol intake and tobacco smoking. Microsomal epoxide hydrolase (EPHX1) is a phase II detoxifying enzyme capable of tobacco-borne toxicant inactivation. We studied the role of the EPHX

  8. Improvement of enantioselectivity by immobilized imprinting of epoxide hydrolase from Rhodotorula glutinis

    NARCIS (Netherlands)

    Kronenburg, N.A.E.; Bont, de J.A.M.; Fischer, L.

    2001-01-01

    The yeast Rhodotorula glutinis contains an enantioselective, membrane-associated epoxide hydrolase (EH). Partially purified EH was immobilized in a two-step procedure. In the first step, the proteins were derivatized with itaconic anhydride. In the second step, the derivatized proteins were co-polym

  9. Biosynthesis of intestinal microvillar proteins. Intracellular processing of lactase-phlorizin hydrolase

    DEFF Research Database (Denmark)

    Danielsen, E M; Skovbjerg, H; Norén, Ove;

    1984-01-01

    The biosynthesis of pig small intestinal lactase-phlorizin hydrolase (EC 3.2.1.23-62) was studied by labelling of organ cultured mucosal explants with [35S]methionine. The earliest detactable form of the enzyme was an intracellular, membrane-bound polypeptide of Mr 225 000, sensitive to endo H as...

  10. Purification and Characterization of Conjugated Bile Salt Hydrolase from Bifidobacterium longum BB536

    OpenAIRE

    Grill, J; Schneider, F.; Crociani, J.; Ballongue, J.

    1995-01-01

    Bifidobacterium species deconjugate taurocholic, taurodeoxycholic, taurochenodeoxycholic, glycocholic, glycodeoxycholic, and glycochenodeoxycholic acids. The enzyme level increases in the growth phase. No increase in activity is observed for the cytoplasmic enzyme after addition of conjugated bile acids to a stationary-phase culture. Conjugated bile salt hydrolase (BSH) was purified from Bifidobacterium longum BB536. Its apparent molecular mass in denaturing polyacrylamide gel electrophoresis...

  11. Genetically lowered microsomal epoxide hydrolase activity and tobacco-related cancer in 47,000 individuals

    DEFF Research Database (Denmark)

    Lee, Julie; Dahl, Morten; Nordestgaard, Børge G

    2011-01-01

    Two functional polymorphisms of the microsomal epoxide hydrolase (mEH) gene (EPHX1), Tyr113His (rs1051740) and His139Arg (rs2234922), have variably been found to influence susceptibility to various cancer forms. We tested whether genetically lowered mEH activity affects risk of developing cancer...

  12. Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinson's disease.

    Science.gov (United States)

    Celorrio, Marta; Fernández-Suárez, Diana; Rojo-Bustamante, Estefanía; Echeverry-Alzate, Víctor; Ramírez, María J; Hillard, Cecilia J; López-Moreno, José A; Maldonado, Rafael; Oyarzábal, Julen; Franco, Rafael; Aymerich, María S

    2016-10-01

    Elements of the endocannabinoid system are strongly expressed in the basal ganglia where they suffer profound rearrangements after dopamine depletion. Modulation of the levels of the endocannabinoid 2-arachidonoyl-glycerol by inhibiting monoacylglycerol lipase alters glial phenotypes and provides neuroprotection in a mouse model of Parkinson's disease. In this study, we assessed whether inhibiting fatty acid amide hydrolase could also provide beneficial effects on the time course of this disease. The fatty acid amide hydrolase inhibitor, URB597, was administered chronically to mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTPp) over 5weeks. URB597 (1mg/kg) prevented MPTPp induced motor impairment but it did not preserve the dopamine levels in the nigrostriatal pathway or regulate glial cell activation. The symptomatic relief of URB597 was confirmed in haloperidol-induced catalepsy assays, where its anti-cataleptic effects were both blocked by antagonists of the two cannabinoid receptors (CB1 and CB2), and abolished in animals deficient in these receptors. Other fatty acid amide hydrolase inhibitors, JNJ1661010 and TCF2, also had anti-cataleptic properties. Together, these results demonstrate an effect of fatty acid amide hydrolase inhibition on the motor symptoms of Parkinson's disease in two distinct experimental models that is mediated by cannabinoid receptors. PMID:27318096

  13. Discovery and characterization of thermophilic limonene-1,2-epoxide hydrolases from hot spring metagenomic libraries

    DEFF Research Database (Denmark)

    Ferrandi, Erica Elisa; Sayer, Christopher; Isupov, Michail N.;

    2015-01-01

    The epoxide hydrolases (EHs) represent an attractive option for the synthesis of chiral epoxides and 1,2-diols which are valuable building blocks for the synthesis of several pharmaceutical compounds. A metagenomic approach has been used to identify two new members of the atypical EH limonene-1...

  14. Genetically reduced soluble epoxide hydrolase activity and risk of stroke and other cardiovascular disease

    DEFF Research Database (Denmark)

    Lee, Julie; Dahl, Morten; Grande, Peer;

    2010-01-01

    BACKGROUND AND PURPOSE: The development of stroke has been linked to lowered levels of epoxyeicosatrienoic acids in the cerebral microvasculature. These substances are metabolized by the enzyme-soluble epoxide hydrolase encoded by the EPHX2 gene. We tested whether genetically reduced soluble...

  15. BIODEGRADATION OF ORGANOPHOSPHORUS PESTICIDES BY SURFACE-EXPRESSED ORGANOPHOSPHORUS HYDROLASE. (R823663)

    Science.gov (United States)

    Organophosphorus hydrolase (OPH) was displayed and anchored onto the surface ofEscherichia coli using an Lpp-OmpA fusion system. Production of the fusion proteins in membranefractions was verified by immunoblotting with OmpA antisera. inclusion of the organophosphorus...

  16. Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats

    NARCIS (Netherlands)

    Koeners, Maarten P.; Wesseling, Sebastiaan; Ulu, Arzu; Lopez Sepulveda, Rocio; Morisseau, Christophe; Braam, Branko; Hammock, Bruce D.; Joles, Jaap A.

    2011-01-01

    Koeners MP, Wesseling S, Ulu A, Sepulveda RL, Morisseau C, Braam B, Hammock BD, Joles JA. Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats. Am J Physiol Endocrinol Metab 300: E691-E698, 2011. First published January 25, 2011; doi:

  17. Prunasin hydrolases localization during fruit development in sweet and bitter almonds

    DEFF Research Database (Denmark)

    Sánchez Pérez, Raquel; Belmonte, Fara Sáez; Borch-Jensen, Jonas;

    2012-01-01

    , and benzaldehyde by the action of the β-glucosidase prunasin hydrolase (PH) and mandelonitirile lyase or be glucosylated to form amygdalin. The tissue and cellular localization of PHs was determined during fruit development in two sweet and two bitter almond cultivars using a specific antibody toward PHs. Confocal...

  18. NF EN 14103. July 2003. Fatty compounds derived products. Fatty acids methylic esters (FAME). Determination of the ester and methylic ester content of linoleic acid; NF EN 14103. Juillet 2003. Produits derives des corps gras. Esters methyliques d'acides gras (EMAG). Determination de la teneur en ester et en ester methylique de l'acide linolenique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This European standard aims at determining the ester and methylic ester content of fatty acids methylic esters (FAME) used as pure bio-fuels or as constituent of a heating or diesel fuel. This method allows also to determine the methylic ester content of linoleic acid. It allows to verify that the ester content of FAMEs is greater than 90% (m/m) and that the linoleic acid content is comprised between 1% (m/m) and 15% (m/m). The method is applicable to FAMEs with methylic ester contents comprised between C14 and C24. (J.S.)

  19. Long-lived testosterone esters in the rat.

    OpenAIRE

    Borg, W; Shackleton, C. H.; Pahuja, S L; Hochberg, R B

    1995-01-01

    Over the past decade it has become increasingly clear that steroid hormones are enzymatically esterified with fatty acids. These steroidal esters are the natural analogs of synthetic esters that are used therapeutically. One such family of pharmacological steroids is the synthetic alkyl esters of testosterone, androgens with great hormonal potency. We have investigated whether testosterone esters exist naturally by using the rat as a model. Most tissues of male rats, including blood, have ver...

  20. Selective esterification of non-conjugated carboxylic acids in the presence of conjugated or aromatic carboxylic acids over active carbon supported methanesulfonic acid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Non-conjugated carboxylic acids are selectively esterified in good yields in the presence of conjugated or aromatic carboxylic acids by stirring over active carbon supported methanesulfonic acid in di-chloromethane at room temperature.

  1. Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100

    International Nuclear Information System (INIS)

    The authors have characterized and purified the bile salt hydrolase from Lactobacillus sp. strain 100-100. Bile salt hydrolase from cells of the strain was purified with column and high-performance liquid chromatography. The activity was assayed in whole cells and cell-free extracts with either a radiochemical assay involving [14C]taurocholic acid or a nonradioactive assay involving trinitrobenzene sulfonate. The activity was detectable only in stationary-phase cells. Within 20 min after conjugated bile acids were added to stationary-phase cultures of strain 100-100, the activity in whole cells increased to levels three- to fivefold higher than in cells from cultures grown in medium free of bile salts. In cell-free extracts, however, the activity was about equal whether or not the cells have been grown with bile salts present. When supernatant solutions from cultures grown in medium containing taurocholic acid were used to suspend cells grown in medium free of the bile salt, the bile salt hydrolase activity detected in whole cells increased two- to threefold. Two forms of the hydrolase were purified from the cells and designated hydrolases A and B. They eluted from anion-exchange high-performance liquid chromatography in two sets of fractions, A at 0.15 M NaCl and B at 0.18 M NaCl. Their apparent molecular weights in nondenaturing polyacrylamide gel electrophoresis were 115,000 and 105,000, respectively. However, discrepancies existed in the apparent molecular weights and number of peptides detected in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the two forms. Whether the enzyme exists in two forms in the cells remains to be determined

  2. Characteristics, protein engineering and applications of microbial thermostable pullulanases and pullulan hydrolases.

    Science.gov (United States)

    Nisha, M; Satyanarayana, T

    2016-07-01

    Pullulan hydrolyzing enzymes are endoacting, classified based on the substrate specificity and hydrolysis products as pullulanases (type I and II) and pullulan hydrolases (type I, II and III). Pullulanases and pullulan hydrolase type I are produced by bacteria and archaea. Among bacteria, many mesophilic, thermophilic and hyperthermophilic bacteria produce pullulanases and neopullulanases. While pullulan hydrolase type II and type III are produced by fungi and archaea, respectively. These are multi-domain proteins with three conserved catalytic acidic residues of the glycosyl hydrolases. The recent advances in molecular biology and protein engineering via mutagenesis and truncation led to improvement in thermostability, catalytic activity and substrate specificity. Pullulanases are debranching enzymes, which are widely employed in starch saccharification that minimizes the use of glucoamylase (approx. 50 %) and reduces the total reaction time of the industrial starch conversion process. The thermostable amylopullulanases are useful in one-step starch liquefaction and saccharification, which replaces amylolytic enzymes like α-amylase and glucoamylase, thus resulting in the reduction in the cost of sugar production. The enzymes also find application in making resistant starches and as an antistale in bread making. Panose and isopanose containing syrups are useful as prebiotics, while panose has also been reported to display anticarcinogenic activity. This review focuses on the distinguishing features of these enzymes based on the analysis of amino acid sequences and domain structure, besides highlighting recent advances in the molecular biology and protein engineering for enhancing their thermostability, catalytic activity and substrate specificity. This review also briefly summarizes the potential applications of pullulanases and pullulan hydrolases. PMID:27142298

  3. Acrylic Acid and Esters Will Be Oversupply

    Institute of Scientific and Technical Information of China (English)

    Zheng Chengwang

    2007-01-01

    @@ Drastic capacity growth The production capacity of acrylic acid in China has grown drastically in recent years. With the completion of the 80 thousand t/a acrylic acid and 130 thous and t/a acrylic ester project in Shenyang Paraffin Chemical Industrial Co., Ltd., (CCR2006,No. 31) the capacity of acrylic acid in China has reached 882 thousand t/a.

  4. Avocado and olive oil methyl esters

    Science.gov (United States)

    Biodiesel, the mono-alkyl esters of vegetable oils, animal fats or other triacylglycerol-containing materials and an alternative to conventional petroleum-based diesel fuel, has been derived from a variety of feedstocks. Numerous feedstocks have been investigated as potential biodiesel sources, incl...

  5. Determination of Mass Spectrometric Sensitivity of Different Metalloporphyrin Esters Relative to Porphyrin Ester

    DEFF Research Database (Denmark)

    Larsen, Elfinn; Egsgaard, Helge; Møller, J.;

    1977-01-01

    Quantitative determination of metalloporphyrin contamination in preparations of biologically important porphyrins was achieved mass spectrometrically by application of the integrated ion current technique. For this purpose, the relative molecular ion sensitivities of the contaminating metal...... complexes were determined from the ratios of the integrated molecular ion currents of a series of calibration samples containing a porphyrin ester and one of its metal complexes in known molar ratio. Complexes formed with divalent ions of Cu, Zn, Fe, Co and Ni of copro- as well as uro......-prophyrin permethylester were all found to have the same molecular ion sensitivities as their metal-free porphyrin ester. The relative metalloporphyrin ester content in a sample of porphyrin ester was thus obtained directly as the integrated ion current ratios of the normalized molecular ions. The preparation of...

  6. Ester Tuiksoo - Eesti esimene naissoost põllumajandusminister / Ester Tuiksoo ; interv. Toomas Verrev

    Index Scriptorium Estoniae

    Tuiksoo, Ester, 1965-

    2007-01-01

    Ametist lahkuv põllumajandusminister Ester Tuiksoo räägib saadud juhtimiskogemusest, Euroopa Liidu ühise põllumajanduspoliitika juurutamisest, rahvuskala valimisest, Rahvaliidu käekäigust parlamendivalimistel

  7. QSAR for cholinesterase inhibition by organophosphorus esters and CNDO/2 calculations for organophosphorus ester hydrolysis

    Science.gov (United States)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1985-01-01

    Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of catonic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR'P(O)X, where R and R' are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrogen hydrolysis rate constant.

  8. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  9. Peptide coupling between amino acids and the carboxylic acid of a functionalized chlorido-gold(I)-phosphane.

    Science.gov (United States)

    Kriechbaum, Margit; List, Manuela; Himmelsbach, Markus; Redhammer, Günther J; Monkowius, Uwe

    2014-10-01

    We have developed a protocol for the direct coupling between methyl ester protected amino acids and the chlorido-gold(I)-phosphane (p-HOOC(C6H4)PPh2)AuCl. By applying the EDC·HCl/NHS strategy (EDC·HCl = N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide hydrochloride, NHS = N-hydroxysuccinimide), the methyl esters of l-phenylalanine, glycine, l-leucine, l-alanine, and l-methionine are coupled with the carboxylic acid of the gold complex in moderate to good yields (62-88%). All amino acid tagged gold complexes were characterized by (1)H and (13)C NMR spectroscopy and high-resolution mass spectrometry. As corroborated by measurement of the angle of optical rotation, no racemization occurred during the reaction. The molecular structure of the leucine derivative was determined by single-crystal X-ray diffraction. In the course of developing an efficient coupling protocol, the acyl chlorides (p-Cl(O)C(C6H4)PPh2)AuX (X = Cl, Br) were also prepared and characterized. PMID:25203269

  10. Catalysis of aryl ester hydrolysis in the presence of metallomicelles containing a copper(II) diethylenetriamine derivative.

    Science.gov (United States)

    Polyzos, Anastasios; Hughes, Andrew B; Christie, John R

    2007-02-13

    The novel metallosurfactant Cu(II)-1-tetradecyldiethylenetriamine (Cu(II)TDET) was prepared, and the hydrolyses of 2-acetoxy-5-nitrobenzoic acid (1), 4-acetoxy-3-nitrobenzoic acid (2), 4-nitrophenyl acetate (3), and 2-nitrophenyl acetate (4) in the presence of micellar Cu(II)TDET were examined. The rate of ester hydrolysis for the series followed the order 1 approximately 2>3>4. The larger observed rate (kpsi) for 1 and 2 was attributed to (i) electrostatic interaction between the carboxylate anion and the cationic metallomicelle surface and (ii) the formation of a ternary complex metal:surfactant ligand:substrate (MLnS). The position of the carboxylate anion in the substrate did not significantly affect catalysis. Similar rates were observed when the carboxylate anion was ortho to the acyl ester 1 or para to the reaction center 2. The absence of a significant difference may be associated with the ternary complex coordination geometry, which unfavorably aligned the ligated substrate and the metal-bound hydroxyl. Mixed micellar solutions containing Cu(II)TDET and MTAB or Triton X-100 were examined. Added cosurfactants have a pronounced effect on the catalytic activity of Cu(II)TDET. At a low concentration of Cu(II)TDET the addition of MTAB or Triton X-100 increased the pseudo-first-order rate constant (kpsi) for the hydrolysis of 1 and 3 relative to the rate in pure Cu(II)TDET. The addition of a cosurfactant increased the total micellar volume (VM), promoting substrate incorporation within the pseudophase. At higher metallosurfactant concentration, the rate enhancement was smaller due to the dilution of the substrate within the co-micellar pseudophase. PMID:17279669

  11. Half esters and coating compositions comprising reactions products of half esters and polyepoxides

    OpenAIRE

    Blaauw, R; Mulder, W J; Koelewijn, R.; Boswinkel, G.

    2006-01-01

    The present invention relates to half esters based on dicarboxylic acid derivatives and dimer fatty diols, wherein the dimer fatty dio ls are based on dimerised and/or trimerised and/or oligomerised unsaturated fatty acids. The present invention further relates to resin compositions based on the half ester and an polyepoxide. The resin composition can be used in high solids coatings, inks, adhesives, wall covering products, flooring products and plastic products

  12. Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids.

    Science.gov (United States)

    Layton, Donovan S; Trinh, Cong T

    2016-08-01

    Volatile organic acids are byproducts of fermentative metabolism, for example, anaerobic digestion of lignocellulosic biomass or organic wastes, and are often times undesired inhibiting cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic acids to acyl CoAs and alcohols to form a combinatorial library of esters. By assembling these modules with the engineered Escherichia coli modular chassis cell, we developed microbial manufacturing platforms to perform the following functions: (i) rapid in vivo screening of novel AATs for their catalytic activities; (ii) expanding combinatorial biosynthesis of unique fermentative esters; and (iii) upgrading volatile organic acids to esters using single or mixed cell cultures. To demonstrate this framework, we screened for a set of five unique and divergent AATs from multiple species, and were able to determine their novel activities as well as produce a library of 12 out of the 13 expected esters from co-fermentation of sugars and (C2-C6) volatile organic acids. We envision the developed framework to be valuable for in vivo characterization of a repertoire of not-well-characterized natural AATs, expanding the combinatorial biosynthesis of fermentative esters, and upgrading volatile organic acids to high-value esters. Biotechnol. Bioeng. 2016;113: 1764-1776. © 2016 Wiley Periodicals, Inc. PMID:26853081

  13. Pyrazine Carboxylic Acid Derivatives of Dichlorobis(Cyclopentadienyltitanium(IV

    Directory of Open Access Journals (Sweden)

    Satish Chandra Dixit

    2012-07-01

    Full Text Available Reactions of dichlorobis(cyclopentadienyltitanium(IV with pyrazine carboxylic acids viz. 2-pyrazine carboxylic acid (2-PzCH, 5-methyl-2-pyrazine carboxylic acid (MPzCH and 2,3-pyrazine dicarboxylic acid (2,3-PzDCH2 were carried out in different stoichiometric ratios. Complexes of the type Cp2Ti(2-PzCCl , Cp2Ti(2-PzC2 ,Cp2Ti(MPzCCl,Cp2Ti(MPzC2, Cp2Ti(2,3-PzDCHCl and Cp2Ti(2,3-PzDCH2 were obtained. These newly synthesized complexes were characterized on the basis of elemental analyses, electrical conductance, magnetic moment and spectral data.

  14. Pyrazine Carboxylic Acid Derivatives of Dichlorobis(Cyclopentadienyl)titanium(IV)

    OpenAIRE

    Satish Chandra Dixit; Rohit Kumar Singh

    2012-01-01

    Reactions of dichlorobis(cyclopentadienyl)titanium(IV) with pyrazine carboxylic acids viz. 2-pyrazine carboxylic acid (2-PzCH), 5-methyl-2-pyrazine carboxylic acid (MPzCH) and 2,3-pyrazine dicarboxylic acid (2,3-PzDCH2) were carried out in different stoichiometric ratios. Complexes of the type Cp2Ti(2-PzC)Cl , Cp2Ti(2-PzC)2 ,Cp2Ti(MPzC)Cl,Cp2Ti(MPzC)2, Cp2Ti(2,3-PzDCH)Cl and Cp2Ti(2,3-PzDCH)2 were obtained. These newly synthesized complexes were characterized on the basis of elemental analyse...

  15. Palladium-Catalyzed Cross-Coupling Reaction of Organoboron Compounds with Carboxylic Derivatives%钯催化的有机硼化物与羧酸衍生物的交叉偶联反应

    Institute of Scientific and Technical Information of China (English)

    杨军; 邓敏智; 于涛

    2013-01-01

    钯催化的交叉偶联反应是构建C—C键的常用方法,近年来,钯催化的有机硼化物与羧酸衍生物的交叉偶联反应已成为偶联反应研究中的热点.本文综述了最近十几年多种有机硼化物与酰氯、酸酐、羧酸、氯甲酸衍生物、羧酸活性酯、羧酸硫酯的交叉偶联反应研究进展,并对该反应在有机合成中的应用进行了讨论.%Palladium-catalyzed cross-coupling reaction has emerged as an important strategy to the formation of C-C bond. Recently, palladium-catalyzed cross-coupling reaction between organoboron compounds and carboxylic derivatives has become a hotspot of organic chemistry. In this paper, recent researches of organoboron compounds with acyl chlorides, acid anhydrides, carboxylic acids, chloroformic derivatives, carboxylic esters and thiol esters in Suzuki cross-coupling are summarized, and the examples of these reactions in synthesis are also discussed.

  16. Real-Time monitoring of intracellular wax ester metabolism

    Directory of Open Access Journals (Sweden)

    Karp Matti

    2011-09-01

    Full Text Available Abstract Background Wax esters are industrially relevant molecules exploited in several applications of oleochemistry and food industry. At the moment, the production processes mostly rely on chemical synthesis from rather expensive starting materials, and therefore solutions are sought from biotechnology. Bacterial wax esters are attractive alternatives, and especially the wax ester metabolism of Acinetobacter sp. has been extensively studied. However, the lack of suitable tools for rapid and simple monitoring of wax ester metabolism in vivo has partly restricted the screening and analyses of potential hosts and optimal conditions. Results Based on sensitive and specific detection of intracellular long-chain aldehydes, specific intermediates of wax ester synthesis, bacterial luciferase (LuxAB was exploited in studying the wax ester metabolism in Acinetobacter baylyi ADP1. Luminescence was detected in the cultivation of the strain producing wax esters, and the changes in signal levels could be linked to corresponding cell growth and wax ester synthesis phases. Conclusions The monitoring system showed correlation between wax ester synthesis pattern and luminescent signal. The system shows potential for real-time screening purposes and studies on bacterial wax esters, revealing new aspects to dynamics and role of wax ester metabolism in bacteria.

  17. Curing mechanism of alkaline phenolic resin with organic ester

    Institute of Scientific and Technical Information of China (English)

    Huang Renhe; Wang Yanmin; Zhang Baoping

    2014-01-01

    To study the curing mechanism of alkaline phenolic resin with organic ester, three esters were chosen to react with three systems - alkaline phenolic resin, potassium hydroxide aqueous solution containing phenol, and potassium hydroxide aqueous solution. The variations of pH, heat release and gel pH during the reactions were monitored and measured. Infrared spectroscopy (IR) and thermal gravity analysis (TG) techniques were used to characterize the curing reaction. It was found that organic ester is only partial y hydrolyzed and resin can be cured through organic ester hydrolysis process as wel as the reaction with redundant organic ester. The sequential curing mechanism of alkaline phenolic resin cured by organic ester was identified as fol ows: a portion of organic ester is firstly hydrolyzed owing to the effect of the strong alkaline; the gel is then formed after the pH decreases to about 10.8-10.88, meanwhile, the redundant organic ester (i.e. non-hydrolysis ester) starts the curing reaction with the resin. It has also been found that the curing rate depends on the hydrolysis velocity of organic ester. The faster the hydrolysis speed of the ester, the faster the curing rate of the resin.

  18. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    Energy Technology Data Exchange (ETDEWEB)

    Germane, Katherine L., E-mail: katherine.germane.civ@mail.mil [Oak Ridge Associated Universities, 4692 Millennium Drive, Suite 101, Belcamp, MD 21017 (United States); Servinsky, Matthew D. [US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783 (United States); Gerlach, Elliot S. [Federal Staffing Resources, 2200 Somerville Road, Annapolis, MD 21401 (United States); Sund, Christian J. [US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783 (United States); Hurley, Margaret M., E-mail: katherine.germane.civ@mail.mil [US Army Research Laboratory, 4600 Deer Creek Loop, Aberdeen Proving Ground, MD 21005 (United States); Oak Ridge Associated Universities, 4692 Millennium Drive, Suite 101, Belcamp, MD 21017 (United States)

    2015-07-29

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  19. Biocatalytic ammonolysis of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester: preparation of an intermediate to the dipeptidyl peptidase IV inhibitor Saxagliptin.

    Science.gov (United States)

    Gill, Iqbal; Patel, Ramesh

    2006-02-01

    An efficient biocatalytic method has been developed for the conversion of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester (1) into the corresponding amide (5S)-5-aminocarbonyl-4,5-dihydro-1H-pyrrole-1-carboxylic acid, 1-(1,1-dimethylethyl)ester (2), which is a critical intermediate in the synthesis of the dipeptidyl peptidase IV (DPP4) inhibitor Saxagliptin (3). Candida antartica lipase B mediates ammonolysis of the ester with ammonium carbamate as ammonia donor to yield up to 71% of the amide. The inclusion of Ascarite and calcium chloride as adsorbents for carbon dioxide and ethanol byproducts, respectively, increases the yield to 98%, thereby offering an efficient and practical alternative to chemical routes which yield 57-64%.

  20. Biotin Carboxyl Carrier Protein in Barley Chloroplast Membranes

    DEFF Research Database (Denmark)

    Kannangara, C. G.; Jense, C J

    1975-01-01

    Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained by solubil......Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained...

  1. The cytotoxic activity of Bacillus anthracis lethal factor is inhibited by leukotriene A4 hydrolase and metallopeptidase inhibitors.

    Science.gov (United States)

    Menard, A; Papini, E; Mock, M; Montecucco, C

    1996-01-01

    The lethal factor of Bacillus anthracis is central to the pathogenesis of anthrax. Its mechanism of action is still unknown. Recently, on the basis of sequence similarities, we suggested that lethal factor might act similarly to leukotriene A4 hydrolase (LTA4), a bifunctional enzyme also endowed with a metallopeptidase activity. Here we show that some inhibitors of the LTA4 hydrolase and metallopeptidase activities of LTA4 hydrolase also affect the cytotoxicity of the anthrax lethal factor on macrophage cell lines, without interfering with the ability of the lethal factor to enter cells. These results support the proposal that anthrax lethal factor might display in the cytosol of intoxicated cells a peptidase activity similar to that of LTA4 hydrolase. PMID:8973585

  2. Structure Determination and Characterization of the Vitamin B[superscript 6] Degradative Enzyme (E)-2-(Acetamidomethylene)succinate Hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, Kathryn M.; Mukherjee, Tathagata; Begley, Tadhg P.; Ealick, Steven E. (Cornell); (TAM)

    2010-06-22

    The gene identification and kinetic characterization of (E)-2-(acetamidomethylene)succinate (E-2AMS) hydrolase has recently been described. This enzyme catalyzes the final reaction in the degradation of vitamin B{sub 6} and produces succinic semialdehyde, acetate, ammonia, and carbon dioxide from E-2AMS. The structure of E-2AMS hydrolase was determined to 2.3 {angstrom} using SAD phasing. E-2AMS hydrolase is a member of the {alpha}/{beta} hydrolase superfamily and utilizes a serine/histidine/aspartic acid catalytic triad. Mutation of either the nucleophilic serine or the aspartate resulted in inactive enzyme. Mutation of an additional serine residue in the active site causes the enzyme to be unstable and is likely structurally important. The structure also provides insight into the mechanism of hydrolysis of E-2AMS and identifies several potential catalytically important residues.

  3. Atmospheric oxidation of selected alcohols and esters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, K.H.; Cavalli, F.

    2001-03-01

    The decision whether it is appropriate and beneficial for the environment to deploy specific oxygenated organic compounds as replacements for traditional solvent types requires a quantitative assessment of their potential atmospheric impacts including tropospheric ozone and other photooxidant formation. This involves developing chemical mechanisms for the gasphase atmospheric oxidation of the compounds which can be reliably used in models to predict their atmospheric reactivity under a variety of environmental conditions. Until this study, there was very little information available concerning the atmospheric fate of alcohols and esters. The objectives of this study were to measure the atmospheric reaction rates and to define atmospheric reaction mechanisms for the following selected oxygenated volatile organic compounds: the alcohols, 1-butanol and 1-pentanol, and the esters, methyl propionate and dimethyl succinate. The study has successfully addressed these objectives. (orig.)

  4. Naturally occurring antifungal aromatic esters and amides

    International Nuclear Information System (INIS)

    During the search of antifungal natural products from terrestrial plants, a new long chained aromatic ester named grandiflorate along with spatazoate from Portulaca grandiflora and N-[2-methoxy-2-(4-methoxyphenyl) ethyl]-trans-cinnamide and aegeline from Solanum erianthum of Nigeria were isolated and tested against six fungal species. The known constituents have not been reported so far from mentioned investigated plants. Structures of the isolated compounds were elucidated with the aid of spectroscopic techniques including two dimensional NMR experiments. Among the compounds, the esters found more potent than amides against Candida albicans and Aspergillus flavus. The new compound grandiflorate gave response against all tested fungal species while aegeline was found to give lowest inhibition during this study. (author)

  5. Preparation and Characterization of a Novel Benzimidazolium Br(φ)nsted Acid Ionic Liquid and Its Application in the Synthesis of Arylic Esters

    Institute of Scientific and Technical Information of China (English)

    WANG,Yuan-Yuan; LI,Wei; XU,Cheng-Di; DAI,Li-Yi

    2007-01-01

    A novel Brφnsted acid task specific ionic liquid 1-ethylbenzimidazolium tetrafluoroborate ([Hebim]BF4) with functional benzimidazolium cation was synthesized and characterized by 1H NMR, IR, MS spectra and elemental analysis. This novel ionic liquid was successfully used as dual solvent-catalyst for the synthesis of arylic esters.Higher yields were obtained in the presence of [Hebim]BF4 in comparison with other imidazolium ionic liquids because of the good solubility of the aromatic alcohols and aromatic carboxylic acids in [Hebim]BF4. The product could be separated conveniently from the reaction system, and the ionic liquid could be easily reused after removal of water under vacuum. After 10 times reuse, the selectivity of the ester was still 100%.

  6. Withanolides and Sucrose Esters from Physalis neomexicana.

    Science.gov (United States)

    Cao, Cong-Mei; Wu, Xiaoqing; Kindscher, Kelly; Xu, Liang; Timmermann, Barbara N

    2015-10-23

    Four withanolides (1-4) and two sucrose esters (5, 6) were isolated from the aerial parts of Physalis neomexicana. The structures of 1-6 were elucidated through a variety of spectroscopic techniques. Cytotoxicity studies of the isolates revealed that 2 inhibited human breast cancer cell lines (MDA-MB-231 and MCF-7) with IC50 values of 1.7 and 6.3 μM, respectively.

  7. Ethyl ester production from (RBD palm oil

    Directory of Open Access Journals (Sweden)

    Oscar Mauricio Martínez Ávila

    2010-07-01

    Full Text Available This work develops a methodology for obtaining ethyl esters from RBD (refined, bleached and deodorised palm oil by evaluating the oil’s transesterification and separation. Two catalysts were first tested (KOH and NaOH by studying the effect of water presence on the reaction. The separation process was then evaluated by using water and water-salt and water-acid mixtures, establishing the agent offering the best results and carrying out the purification stage. Raw materials and products were characterised for comparing the latter with those obtained by traditional means and verifying the quality of the esters so produced; minimum differences were found bet-ween both. The proposed methodology thus allows esters to be used as raw material in petrochemical industry applications. A more profitable process can be obtained compared to those used today, given the amounts of separation agent so established (1% H3PO4 solution, in water. The overall process achieved 74.4% yield, based on the oil being used.

  8. A new insight into the physiological role of bile salt hydrolase among intestinal bacteria from the genus Bifidobacterium.

    Directory of Open Access Journals (Sweden)

    Piotr Jarocki

    Full Text Available This study analyzes the occurrence of bile salt hydrolase in fourteen strains belonging to the genus Bifidobacterium. Deconjugation activity was detected using a plate test, two-step enzymatic reaction and activity staining on a native polyacrylamide gel. Subsequently, bile salt hydrolases from B. pseudocatenulatum and B. longum subsp. suis were purified using a two-step chromatographic procedure. Biochemical characterization of the bile salt hydrolases showed that the purified enzymes hydrolyzed all of the six major human bile salts under the pH and temperature conditions commonly found in the human gastrointestinal tract. Next, the dynamic rheometry was applied to monitor the gelation process of deoxycholic acid under different conditions. The results showed that bile acids displayed aqueous media gelating properties. Finally, gel-forming abilities of bifidobacteria exhibiting bile salt hydrolase activity were analyzed. Our investigations have demonstrated that the release of deconjugated bile acids led to the gelation phenomenon of the enzymatic reaction solution containing purified BSH. The presented results suggest that bile salt hydrolase activity commonly found among intestinal microbiota increases hydrogel-forming abilities of certain bile salts. To our knowledge, this is the first report showing that bile salt hydrolase activity among Bifidobacterium is directly connected with the gelation process of bile salts. In our opinion, if such a phenomenon occurs in physiological conditions of human gut, it may improve bacterial ability to colonize the gastrointestinal tract and their survival in this specific ecological niche.

  9. Malbranchea cinnamomea: A thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes.

    Science.gov (United States)

    Mahajan, Chhavi; Basotra, Neha; Singh, Surender; Di Falco, Marcos; Tsang, Adrian; Chadha, B S

    2016-01-01

    This study reports thermophilic fungus Malbranchea cinnamomea as an important source of lignocellulolytic enzymes. The secretome analysis using LC-MS/MS orbitrap showed that fungus produced a spectrum of glycosyl hydrolases (cellulase/hemicellulase), polysaccharide lyases (PL) and carbohydrate esterases (CE) in addition to cellobiose dehydrogenase (CDH) indicating the presence of functional classical and oxidative cellulolytic mechanisms. The protein fractions in the secretome resolved by ion exchange chromatography were analyzed for ability to hydrolyze alkali treated carrot grass (ATCG) in the presence of Mn(2+)/Cu(2+). This strategy in tandem with peptide mass fingerprinting led to identification of metal dependent protein hydrolases with no apparent hydrolytic activity, however, showed 5.7 folds higher saccharification in presence of Mn(2+). Furthermore, adding different protein fractions to commercial cellulase (Novozymes: Cellic CTec2) resulted in enhanced hydrolysis of ATCG ranging between 1.57 and 3.43 folds indicating the enzymes from M. cinnamomea as catalytically efficient. PMID:26476165

  10. Organophosphate Hydrolase in Conductometric Biosensor for the Detection of Organophosphate Pesticides

    OpenAIRE

    Ani Mulyasuryani; Sasangka Prasetyawan

    2015-01-01

    The research has developed an enzyme biosensor for the detection organophosphate pesticide residues. The biosensor consists of a pair of screen-printed carbon electrode (SPCEs). One of electrodes contains immobilized organophosphate hydrolase (OPH) on a chitosan membrane by cross-linking it with glutaraldehyde. The area of the electrodes was optimized to 3, 5, and 7 mm2. The OPH was isolated from Pseudomonas putida, and was purified by the ammonium sulfate precipitation method, with 6444 ppm ...

  11. Soluble Epoxide Hydrolase Inhibition: Targeting Multiple Mechanisms of Ischemic Brain Injury with a Single Agent

    OpenAIRE

    Iliff, Jeffrey J.; Alkayed, Nabil J.

    2009-01-01

    Soluble epoxide hydrolase (sEH) is a key enzyme in the metabolic conversion and degradation of P450 eicosanoids called epoxyeicosatrienoic acids (EETs). Genetic variations in the sEH gene, designated EPHX2, are associated with ischemic stroke risk. In experimental studies, sEH inhibition and gene deletion reduce infarct size after focal cerebral ischemia in mice. Although the precise mechanism of protection afforded by sEH inhibition remains under investigation, EETs exhibit a wide array of p...

  12. Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice

    OpenAIRE

    Walentiny, D. Matthew; Vann, Robert E.; Wiley, Jenny L.

    2015-01-01

    A number of studies have examined the ability of the endogenous cannabinoid anandamide to elicit Δ9 -tetrahydrocannabinol (THC)-like subjective effects, as modeled through the THC discrimination paradigm. In the present study, we compared transgenic mice lacking fatty acid amide hydrolase (FAAH), the enzyme primarily responsible for anandamide catabolism, to wildtype counterparts in a THC discrimination procedure. THC (5.6 mg/kg) served as a discriminative stimulus in both genotypes, with sim...

  13. Discovery of a Novel Microsomal Epoxide Hydrolase-Catalyzed Hydration of a Spiro Oxetane.

    Science.gov (United States)

    Li, Xue-Qing; Hayes, Martin A; Grönberg, Gunnar; Berggren, Kristina; Castagnoli, Neal; Weidolf, Lars

    2016-08-01

    Oxetane moieties are increasingly being used by the pharmaceutical industry as building blocks in drug candidates because of their pronounced ability to improve physicochemical parameters and metabolic stability of drug candidates. The enzymes that catalyze the biotransformation of the oxetane moiety are, however, not well studied. The in vitro metabolism of a spiro oxetane-containing compound AZD1979 [(3-(4-(2-oxa-6-azaspiro[3.3]heptan-6-ylmethyl)phenoxy)azetidin-1-yl)(5-(4-ethoxyphenyl)-1,3,4-oxadiazol-2-yl)methanone] was studied and one of its metabolites, M1, attracted our interest because its formation was NAD(P)H independent. The focus of this work was to elucidate the structure of M1 and to understand the mechanism(s) of its formation. We established that M1 was formed via hydration and ring opening of the oxetanyl moiety of AZD1979. Incubations of AZD1979 using various human liver subcellular fractions revealed that the hydration reaction leading to M1 occurred mainly in the microsomal fraction. The underlying mechanism as a hydration, rather than an oxidation reaction, was supported by the incorporation of (18)O from H2 (18)O into M1. Enzyme kinetics were performed probing the formation of M1 in human liver microsomes. The formation of M1 was substantially inhibited by progabide, a microsomal epoxide hydrolase inhibitor, but not by trans-4-[4-(1-adamantylcarbamoylamino)cyclohexyloxy]benzoic acid, a soluble epoxide hydrolase inhibitor. On the basis of these results, we propose that microsomal epoxide hydrolase catalyzes the formation of M1. The substrate specificity of microsomal epoxide hydrolase should therefore be expanded to include not only epoxides but also the oxetanyl ring system present in AZD1979. PMID:27256986

  14. The Crystal Structure of Bacillus subtilis Lipase : A Minimal α/β Hydrolase Fold Enzyme

    NARCIS (Netherlands)

    Pouderoyen, Gertie van; Eggert, Thorsten; Jaeger, Karl-Erich; Dijkstra, Bauke W.

    2001-01-01

    The X-ray structure of the lipase LipA from Bacillus subtilis has been determined at 1.5 Å resolution. It is the first structure of a member of homology family I.4 of bacterial lipases. The lipase shows a compact minimal α/β hydrolase fold with a six-stranded parallel β-sheet flanked by five α-helic

  15. Pengaruh Katalis H2SO4 pada Reaksi Epoksidasi Metil Ester PFAD (Palm Fatty Acid Distillate)

    OpenAIRE

    Sinaga, Mersi Suriani

    2010-01-01

    Ester epoksi selain sebagai pelunak juga dapat memperbaiki ketahanan komponen polivinil klorida (PVC) terhadap panas dan cahaya. Penelitian ini dilakukan untuk merumuskan kondisi katalis yang sesuai bagi pembuatan senyawa epoksi metil ester PFAD dari senyawa metil ester PFAD. Metil ester PFAD terdiri dari ester lemak jenuh dan tidak jenuh., metode pemisahan kristalisasi dengan pelarut metanol untuk memisahkan ester lemak jenuh dari ester lemak tak jenuh, yang bertujuan meningkatkan kemamp...

  16. Molecular Cloning of a Novel cDNA From Mus Muscular BALB/c Mice Encoding Glycosyl Hydrolase Family 1: A Homolog of HumanLactase-Phlorizin Hydrolase

    Institute of Scientific and Technical Information of China (English)

    WEI HE; ZHEN-YU JI; CHENG-YU HUANG

    2006-01-01

    Objective To study the mechanism of lactose intolerance (LI) by cloning the mouse lactase cDNA and recombining a vector. Methods Total murine RNA was isolated from the small intestine of a 4-week-old BALB/c mouse (♂).Gene-specific primers were designed and synthesized according to the cDNA sequences of lactase-phlorizin hydrolase (LPH) in human, rat, and rabbit. A coding sequence (CDS) fragment was obtained using RT-PCR, and inserted into a clone vector pNEB-193, then the cDNA was sequenced and analyzed using bioinformatics. Results The cDNA from the BALB/c mouse with 912 bp encoding 303 amino acid residues. Analysis of the deduced amino acid sequence using bioinformatics revealed that this cDNA shared extensive sequence homology with human LPH containing a conserved glycosy1 hydrolase family 1 motif important for regulating lactase intolerance. Conclusion BALB/c mouse LPH cDNA (GenBank accession No: AY751548) provides a necessary foundation for study of the biological function and regulatory mechanism of the lactose intolerance in mice.

  17. Palladium-Catalyzed Carboxylation of Activated Vinylcyclopropanes with CO2.

    Science.gov (United States)

    Mita, Tsuyoshi; Tanaka, Hiroyuki; Higuchi, Yuki; Sato, Yoshihiro

    2016-06-01

    By using a palladium catalyst with ZnEt2, activated vinylcyclopropanes were successfully converted into the corresponding β,γ-unsaturated carboxylic acids in high yields under a CO2 atmosphere (1 atm). The intermediate in this reaction is thought to be a nucleophilic η(1)-allylethylpalladium species, which would be produced from π-allylpalladium and ZnEt2 (umpolung reactivity).

  18. Cyclodextrin derivatives with cyanohydrin and carboxylate groups as artificial glycosidases

    DEFF Research Database (Denmark)

    Bols, Mikael; Ortega-Caballero, Fernando

    2006-01-01

    Two cyclodextrin derivatives (1 and 2) were prepared in an attempt to create glycosidase mimics with a general acid catalyst and a nucleophilic carboxylate group. The catalysts 1 and 2 were found to catalyse the hydrolysis of 4-nitrophenyl beta-D-glucopyranoside at pH 8.0, but rapidly underwent...

  19. Conformation of some carboxylic acids and their derivatives

    NARCIS (Netherlands)

    Kanters, J.A.; Kroon, Jan; Peerdeman, A.F.; Schoone, J.C.

    1967-01-01

    The conformation in the crystalline state of some aliphatic carboxylic acids and their derivatives has been analysed. This analysis, based upon the results of structure determinations by means of X-ray diffraction, seems to support the concept that the conformation of a molecule is governed chiefly

  20. Synthon preferences in cocrystals of cis-carboxamides:carboxylic acids

    NARCIS (Netherlands)

    A.M. Moragues-Bartolome; W. Jones; A.J. Cruz-Cabeza

    2012-01-01

    We study synthon preferences in cocrystals of cis-carboxamides with carboxylic acids using a combination of database analyses, cocrystallisation experiments and theoretical calculations. We classify the cis-carboxamides into three families: primary amides, cyclic amides (lactams) and cyclic imides.

  1. Light dependence of carboxylation capacity for C3 photosynthesis models

    Science.gov (United States)

    Photosynthesis at high light is often modelled by assuming limitation by the maximum capacity of Rubisco carboxylation at low carbon dioxide concentrations, by electron transport capacity at higher concentrations, and sometimes by triose-phosphate utilization rate at the highest concentrations. Pho...

  2. Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

    Science.gov (United States)

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816

  3. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    Science.gov (United States)

    Vaïtilingom, M.; Charbouillot, T.; Deguillaume, L.; Maisonobe, R.; Parazols, M.; Amato, P.; Sancelme, M.; Delort, A.-M.

    2011-02-01

    Clouds are multiphasic atmospheric systems in which the dissolved organic compounds, dominated by carboxylic acids, are subject to multiple chemical transformations in the aqueous phase. Among them, solar radiation, by generating hydroxyl radicals (•OH), is considered as the main catalyzer of the reactivity of organic species in clouds. We investigated to which extent the active biomass existing in cloud water represents an alternative route to the chemical reactivity of carboxylic acids. Pure cultures of seventeen bacterial strains (Arthrobacter, Bacillus, Clavibacter, Frigoribacterium, Pseudomonas, Sphingomonas and Rhodococcus), previously isolated from cloud water and representative of the viable community of clouds were first individually incubated in two artificial bulk cloud water solutions at 17 °C and 5 °C. These solutions mimicked the chemical composition of cloud water from "marine" and "continental" air masses, and contained the major carboxylic acids existing in the cloud water (i.e. acetate, formate, succinate and oxalate). The concentrations of these carboxylic compounds were monitored over time and biodegradation rates were determined. In average, they ranged from 2 ×10-19 for succinate to 1 × 10-18 mol cell-1 s-1 for formate at 17 °C and from 4 × 10-20 for succinate to 6 × 10-19 mol cell-1 s-1 for formate at 5 °C, with no significant difference between "marine" and "continental" media. In parallel, irradiation experiments were also conducted in these two artificial media to compare biodegradation and photodegradation of carboxylic compounds. To complete this comparison, the photodegradation rates of carboxylic acids by •OH radicals were calculated from literature data. Inferred estimations suggested a significant participation of microbes to the transformation of carboxylic acids in cloud water, particularly for acetate and succinate (up to 90%). Furthermore, a natural cloud water sample was incubated (including its indigenous microflora

  4. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    Directory of Open Access Journals (Sweden)

    M. Vaïtilingom

    2011-02-01

    Full Text Available Clouds are multiphasic atmospheric systems in which the dissolved organic compounds, dominated by carboxylic acids, are subject to multiple chemical transformations in the aqueous phase. Among them, solar radiation, by generating hydroxyl radicals (OH, is considered as the main catalyzer of the reactivity of organic species in clouds. We investigated to which extent the active biomass existing in cloud water represents an alternative route to the chemical reactivity of carboxylic acids. Pure cultures of seventeen bacterial strains (Arthrobacter, Bacillus, Clavibacter, Frigoribacterium, Pseudomonas, Sphingomonas and Rhodococcus, previously isolated from cloud water and representative of the viable community of clouds were first individually incubated in two artificial bulk cloud water solutions at 17 °C and 5 °C. These solutions mimicked the chemical composition of cloud water from "marine" and "continental" air masses, and contained the major carboxylic acids existing in the cloud water (i.e. acetate, formate, succinate and oxalate. The concentrations of these carboxylic compounds were monitored over time and biodegradation rates were determined. In average, they ranged from 2 ×10−19 for succinate to 1 × 10−18 mol cell−1 s−1 for formate at 17 °C and from 4 × 10−20 for succinate to 6 × 10−19 mol cell−1 s−1 for formate at 5 °C, with no significant difference between "marine" and "continental" media. In parallel, irradiation experiments were also conducted in these two artificial media to compare biodegradation and photodegradation of carboxylic compounds. To complete this comparison, the photodegradation rates of carboxylic acids by OH radicals were calculated from literature data. Inferred estimations suggested a significant participation of microbes to the transformation of carboxylic acids in cloud water

  5. Characterization of a Nudix hydrolase from Deinococcus radiodurans with a marked specificity for (deoxyribonucleoside 5'-diphosphates

    Directory of Open Access Journals (Sweden)

    Kamiya Hiroyuki

    2004-05-01

    Full Text Available Abstract Background Nudix hydrolases form a protein family whose function is to hydrolyse intracellular nucleotides and so regulate their levels and eliminate potentially toxic derivatives. The genome of the radioresistant bacterium Deinococcus radiodurans encodes 25 nudix hydrolases, an unexpectedly large number. These may contribute to radioresistance by removing mutagenic oxidised and otherwise damaged nucleotides. Characterisation of these hydrolases is necessary to understand the reason for their presence. Here, we report the cloning and characterisation of the DR0975 gene product, a nudix hydrolase that appears to be unique to this organism. Results The DR0975 gene was cloned and expressed as a 20 kDa histidine-tagged recombinant product in Escherichia coli. Substrate analysis of the purified enzyme showed it to act primarily as a phosphatase with a marked preference for (deoxynucleoside 5'-diphosphates (dGDP > ADP > dADP > GDP > dTDP > UDP > dCDP > CDP. Km for dGDP was 110 μM and kcat was 0.18 s-1 under optimal assay conditions (pH 9.4, 7.5 mM Mg2+. 8-Hydroxy-2'-deoxyguanosine 5'-diphosphate (8-OH-dGDP was also a substrate with a Km of 170 μM and kcat of 0.13 s-1. Thus, DR0975 showed no preference for 8-OH-dGDP over dGDP. Limited pyrophosphatase activity was also observed with NADH and some (diadenosine polyphosphates but no other substrates. Expression of the DR0975 gene was undetectable in logarithmic phase cells but was induced at least 30-fold in stationary phase. Superoxide, but not peroxide, stress and slow, but not rapid, dehydration both caused a slight induction of the DR0975 gene. Conclusion Nucleotide substrates for nudix hydrolases conform to the structure NDP-X, where X can be one of several moieties. Thus, a preference for (dNDPs themselves is most unusual. The lack of preference for 8-OH-dGDP over dGDP as a substrate combined with the induction in stationary phase, but not by peroxide or superoxide, suggests that the

  6. Environmentally friendly properties of vegetable oil methyl esters

    Directory of Open Access Journals (Sweden)

    Gateau Paul

    2005-07-01

    Full Text Available Measurements were carried out on Vegetable Oil Methyl Esters (VOME or FAME answering the most recent specifications. The products tested are RME (Rapeseed oil Methyl Ester, ERME (Erucic Rapeseed oil Methyl Esters, SME (Sunflower oil Methyl Esters, and HOSME (High Oleic Sunflower oil Methyl Esters. They contain more than 99.5% of fatty acid mono esters. The compositions are given. VOME are not volatile and they are not easily flammable. They are not soluble in water and they are biodegradable. According to the methods implemented for the determination of the German classification of substances hazardous to waters WGK, they are not toxic on mammals and unlike diesel fuel they are not toxic on fish, daphnia, algae and bacteria. The RME is not either toxic for shrimps. According to tests on rabbits, RME and SME are not irritating for the skin and the eyes. VOME display particularly attractive environmental properties.

  7. Direct Aminolysis of Ethoxycarbonylmethyl 1,4-Dihydropyridine-3-carboxylates

    Directory of Open Access Journals (Sweden)

    Brigita Vigante

    2015-11-01

    Full Text Available The ethoxycarbonylmethyl esters of 1,4-dihydropyridines were directly converted into carbamoylmethyl esters in the presence of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD in good to excellent yields under mild conditions. The use of TBD is crucial for the successful aminolysis of ethoxycarbonylmethyl ester of 1,4-dihydropyridines with secondary amines as without it the reaction does not proceed at all. The aminolysis reaction proceeded regioselectively, as the alkyl ester conjugated with the 1,4-dihydropyridine cycle was not involved in the reaction. Screening of other N-containing bases, such as triethylamine (TEA, pyridine, 4-(N,N-dimethylaminopyridine (DMAP, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN, imidazole, tetramethyl guanidine (TMG and 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD as catalysts revealed no activity in the studied reaction.

  8. Highly Regioselective Palladium-Catalyzed Carboxylation of Allylic Alcohols with CO2.

    Science.gov (United States)

    Mita, Tsuyoshi; Higuchi, Yuki; Sato, Yoshihiro

    2015-11-01

    Various allylic alcohols were carboxylated in the presence of a catalytic amount of PdCl2 and PPh3 using ZnEt2 as a stoichiometric transmetalation agent under a CO2 atmosphere (1 atm). This carboxylation proceeded in a highly regioselective manner to afford branched carboxylic acids predominantly. The β,γ-unsaturated carboxylic acid thus obtained was successfully converted into an optically active γ-butyrolactone, a known intermediate of (R)-baclofen.

  9. Isolation and identification of an ester from a crude oil

    Science.gov (United States)

    Phillips, H.F.; Breger, I.A.

    1958-01-01

    A dioctylphthalate has been isolated from a crude oil by means of adsorption column chromatography. The ester was identified by means of elemental analysis, refractive index, and its infra-red absorption spectrum. Saponification of the isolate and examination of the resultant alcohol by means of infrared absorption spectra led to the conclusion that the ester is a branched chain dioctylphthalate. This is the first reported occurrence of an ester in crude petroleum. ?? 1958.

  10. A novel thermooxidatively stable poly(ester-imide-benzoxazole)

    Energy Technology Data Exchange (ETDEWEB)

    Sundar, R.A.; Mathias, L.J. [Univ. of Sothern Mississippi, Hattiesburg, MS (United States)

    1993-12-31

    A poly(ester-amide-imide) was synthesized by the low temperature solution polycondensation of 4-amino-5-hydroxy-N,4{prime}-hydroxyphenyl phthalimide with isophthaloyl chloride. Subsequent thermal cyclodehydration of the poly(ester-amide-imide) at 320{degrees}C in vacuum afforded the poly(ester-imide-benzoxazole). This polymer was only soluble in sulfuric acid. FTIR and NMR spectra confirmed structure. The poly(ester-imide-benzoxazole) had no detectable thermal transitions up to 500{degrees}C in nitrogen, and was reasonably stable in air and nitrogen, with weight retentions of 95% at 500{degrees}C.

  11. The Precise Structures and Stereochemistry of Trihydroxy-linoleates Esterified in Human and Porcine Epidermis and Their Significance in Skin Barrier Function: IMPLICATION OF AN EPOXIDE HYDROLASE IN THE TRANSFORMATIONS OF LINOLEATE.

    Science.gov (United States)

    Chiba, Takahito; Thomas, Christopher P; Calcutt, M Wade; Boeglin, William E; O'Donnell, Valerie B; Brash, Alan R

    2016-07-01

    Creation of an intact skin water barrier, a prerequisite for life on dry land, requires the lipoxygenase-catalyzed oxidation of the essential fatty acid linoleate, which is esterified to the ω-hydroxyl of an epidermis-specific ceramide. Oxidation of the linoleate moiety by lipoxygenases is proposed to facilitate enzymatic cleavage of the ester bond, releasing free ω-hydroxyceramide for covalent binding to protein, thus forming the corneocyte lipid envelope, a key component of the epidermal barrier. Herein, we report the transformations of esterified linoleate proceed beyond the initial steps of oxidation and epoxyalcohol synthesis catalyzed by the consecutive actions of 12R-LOX and epidermal LOX3. The major end product in human and porcine epidermis is a trihydroxy derivative, formed with a specificity that implicates participation of an epoxide hydrolase in converting epoxyalcohol to triol. Of the 16 possible triols arising from hydrolysis of 9,10-epoxy-13-hydroxy-octadecenoates, using LC-MS and chiral analyses, we identify and quantify specifically 9R,10S,13R-trihydroxy-11E-octadecenoate as the single major triol esterified in porcine epidermis and the same isomer with lesser amounts of its 10R diastereomer in human epidermis. The 9R,10S,13R-triol is formed by SN2 hydrolysis of the 9R,10R-epoxy-13R-hydroxy-octadecenoate product of the LOX enzymes, a reaction specificity characteristic of epoxide hydrolase. The high polarity of triol over the primary linoleate products enhances the concept that the oxidations disrupt corneocyte membrane lipids, promoting release of free ω-hydroxyceramide for covalent binding to protein and sealing of the waterproof barrier. PMID:27151221

  12. Effects of high-melting methyl esters on crystallization properties of fatty acid methyl ester mixtures

    Science.gov (United States)

    Biodiesel is a renewable alternative diesel fuel made from vegetable oils and animal fats. The most common form of biodiesel in the United States are fatty acid methyl esters (FAME) from soybean, canola, and used cooking oils, waste greases, and tallow. Cold flow properties of biodiesel depend on th...

  13. Cholesteryl ester transfer activity. Localization and role in distribution of cholesteryl ester among lipoproteins in man.

    Science.gov (United States)

    Groener, J E; Van Rozen, A J; Erkelens, D W

    1984-03-01

    The cholesteryl ester exchange/transfer protein is involved in the transport of cholesteryl ester from high density lipoproteins (HDL) to very low density lipoproteins (VLDL) and low density lipoproteins (LDL). Localization of cholesteryl ester transfer activity (CETA) in plasma was studied by measuring CETA in various delipidated fractions from a single step density ultracentrifugation gradient of plasma. CETA was measured in an in vitro system by calculating the exchange of cholesteryl ester in a standard mixture of [3H]CE-HDL and LDL. The method used for the delipidation of plasmas and fractions to be tested was critical. Optimal results were obtained by delipidation with diisopropylether-butanol (60: 40, v/v) at O degrees C. The bulk of CETA was detected in HDL3 (1.125 less than d less than 1.210 g/ml) when the lipoproteins were separated by single-step density gradient ultracentrifugation and in the 'lipoprotein-free' fraction (d greater than 1.250 g/ml) when the lipoproteins were separated by flotation ultracentrifugation including two washes. To determine whether CETA plays a role in the distribution of cholesteryl ester among the various lipoproteins, it was measured in whole plasma from normal and hyperlipidemic subjects. Plasma was delipidated before the assay in order to prevent bias due to variation of cholesterol content. CETA was higher in delipidated plasma of hyperlipidemic subjects (117.3 +/- 36.5 nmol CE/ml/h) than in delipidated plasma of normolipidemic controls (68.7 +/- 17.6 nmol CE/ml/h) (P less than 0.005). A positive correlation (r = 0.80, P less than 0.005) was found between CETA and (VLDL + LDL) cholesterol levels. A negative correlation (r = 0.57, P less than 0.05) existed between CETA and HDL cholesterol. This correlation was found both in the group as a whole and within the normal and the hyperlipidemic groups separately. The activity of the cholesteryl ester transfer appears to be a regulatory factor in the distribution of cholesteryl

  14. Dihydroxyoctadecamonoenoate esters inhibit the neutrophil respiratory burst

    Indian Academy of Sciences (India)

    David Alan Thompson; Bruce D Hammock

    2007-03-01

    The leukotoxins [9(10)- and 12(13)-EpOME] are produced by activated inflammatory leukocytes such as neutrophils. High EpOME levels are observed in disorders such as acute respiratory distress syndrome and in patients with extensive burns. Although the physiological significance of the EpOMEs remains poorly understood, in some systems, the EpOMEs act as a protoxin, with their corresponding epoxide hydrolase metabolites, 9,10- and 12,13-DiHOME, specifically exerting toxicity. Both the EpOMEs and the DiHOMEs were also recently shown to have neutrophil chemotactic activity. We evaluated whether the neutrophil respiratory burst, a surge of oxidant production thought to play an important role in limiting certain bacterial and fungal infections, is modulated by members of the EpOME metabolic pathway. We present evidence that the DiHOMEs suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4, which inhibit multiple aspects of neutrophil activation.

  15. Synthesis, characterization and superoxide dismutase activity of bi-copper(II)-bisacetato-−phthalicacid[bis(benzyloxy)ethyl]ester

    Indian Academy of Sciences (India)

    Babita Sarma; Pradip K Bhattacharyya; Diganta Kumar Das

    2015-03-01

    A new binuclear copper(II) complex, bridged by the ligand phthalicacid[bis(benzyloxy)ethyl]ester, where each copper(II) is coordinated to one carboxylate (from ligand) and one acetate in square planar mode is reported. The ligand synthesized by the reaction of phthalic anhydride and ethylene glycol, has been characterized by FT-IR, 1HNMR and LCMS. The binuclear Copper(II) complex has been characterized by UV/visible spectra, FTIR spectra, EPR spectra, ESI-MS spectra, magnetic moment measurement and thermogravimetric analysis. DFT calculation has shown a Z type structure for the complex. Excellent superoxide dismutase activity with IC50 value 8.6 × 10−6 M for the complex has been observed.

  16. CARBOXYLIC ACIDS OF HERB OF THYMUS CRETACEUS KLOK. ET SCHOST

    Directory of Open Access Journals (Sweden)

    V. N. Bubenchikova

    2014-01-01

    Full Text Available We have studied carboxylic acids of the herb of Thymus cretaceus Klok. et Schost which is widespread on a territory of some regions (Belgorod, Voronezh. The study was carried out using gas-liquid chromatography at Agilent Technologies 6890 chromatographer with massspectrometric detector 5973 N. Acids concentration was calculated by means of inner standard.We have established that carboxylic acids of Thymus cretaceus are represented by 34 compounds. Palmitic (1779.02 mg/kg, behenic (1084.15 mg/kg, levulinic (986.24 mg/kg and linoleic acids (678.82 mg/kg predominate among fatty acids; citric (9835.14 mg/kg, malonic (447.91 mg/kg and oxalic acids (388.32 mg/kg predominate among organic acids; andferulic acid predominate amongphenolcarbonic acids.

  17. Functionalization of carbon nanotube by carboxyl group under radial deformation

    Science.gov (United States)

    Lara, Ivi Valentini; Zanella, Ivana; Fagan, Solange Binotto

    2014-01-01

    The dependence of the structural and the electronic properties of functionalized (5, 5) single-walled carbon nanotubes (SWNT) were investigated through ab initio density functional simulations when the carboxyl group is bonded on the flatter or curved regions. Radial deformations result in diameter decrease of up to 20 per cent of the original size, which was the limit reduction that maintains the SWNT functionalized structure. Changes on the electronic structure were observed due to the symmetry break of the SWNT caused by both the carboxyl group and the C-C bond distortions resulted by the radial deformation. It is observed that the functionalization process is specially favored by the sp3 hybridization induced on the more curved region of the deformed SWNT.

  18. Enhance decarboxylation reaction of carboxylic acids in clay minerals

    International Nuclear Information System (INIS)

    Clay minerals are important constituents of the Earth's crust. These minerals catalyze reactions in several ways: by energy transfer processes, redox reactions, stabilization of intermediates and by Broensted or Lewis acidity behavior. Important set of organic reactions can be improved in the precedence of clay minerals. Besides the properties of clays to catalyze chemical reactions, it is possible to enhance some of its reactions by using ionizing radiation. The phenomenon of radiation-induced catalysis may be connected with ionizing process in the solid and with the trapped non-equilibrium charge carriers. In this paper we are reporting the decarboxylation reaction of carboxylic acids catalyzed by clay and by irradiation of the system acid-clay. We studied the behaviour of several carboxylic acids and analyzed them by gas chromatography, X-ray and infrared spectroscopy. The results showed that decarboxylation of the target compound is the dominating pathway. The reaction is enhanced by gamma radiation in several orders of magnitude. (author)

  19. Influences of Carboxyl Methyl Cellulose on Performances of Mortar

    Institute of Scientific and Technical Information of China (English)

    WANG Yuli; ZHOU Mingkai; SHAN Junhong; XU Fang; YANG Yuhui

    2007-01-01

    Carboxyl methyl cellulose (CMC) was mixed into mortar to improve the waterretention performance of mortar, the quality of floated coat of aerated concrete became better. The consistency and compression strength of mortar with CMC were studied. The water absorption was studied with the method of filter paper. The micro mechanism was researched with X-ray diffraction and scanning electron microscopy(SEM). The experimental results show the water-holding performance of mortar with CMC is largely improved and it is better when the mixed amount is about 1.5%; the compression strength had a descending trend with the increase of CMC; CMC reacted with calcium hydroxide(CH) into the deposition of calcium carboxyl methyl cellulose.

  20. Enhancing magnetoresistance in tetrathiafulvalene carboxylate modified iron oxide nanoparticle assemblies

    Science.gov (United States)

    Lv, Zhong-Peng; Luan, Zhong-Zhi; Cai, Pei-Yu; Wang, Tao; Li, Cheng-Hui; Wu, Di; Zuo, Jing-Lin; Sun, Shouheng

    2016-06-01

    We report a facile approach to stabilize Fe3O4 nanoparticles (NPs) by using tetrathiafulvalene carboxylate (TTF-COO-) and to control electron transport with an enhanced magnetoresistance (MR) effect in TTF-COO-Fe3O4 NP assemblies. This TTF-COO-coating is advantageous over other conventional organic coatings, making it possible to develop stable Fe3O4 NP arrays for sensitive spintronics applications.We report a facile approach to stabilize Fe3O4 nanoparticles (NPs) by using tetrathiafulvalene carboxylate (TTF-COO-) and to control electron transport with an enhanced magnetoresistance (MR) effect in TTF-COO-Fe3O4 NP assemblies. This TTF-COO-coating is advantageous over other conventional organic coatings, making it possible to develop stable Fe3O4 NP arrays for sensitive spintronics applications. Electronic supplementary information (ESI) available: Experimental details; supplementary figures and tables. See DOI: 10.1039/c6nr03311c

  1. Substrate specificity within a family of outer membrane carboxylate channels.

    Directory of Open Access Journals (Sweden)

    Elif Eren

    2012-01-01

    Full Text Available Many Gram-negative bacteria, including human pathogens such as Pseudomonas aeruginosa, do not have large-channel porins. This results in an outer membrane (OM that is highly impermeable to small polar molecules, making the bacteria intrinsically resistant towards many antibiotics. In such microorganisms, the majority of small molecules are taken up by members of the OprD outer membrane protein family. Here we show that OprD channels require a carboxyl group in the substrate for efficient transport, and based on this we have renamed the family Occ, for outer membrane carboxylate channels. We further show that Occ channels can be divided into two subfamilies, based on their very different substrate specificities. Our results rationalize how certain bacteria can efficiently take up a variety of substrates under nutrient-poor conditions without compromising membrane permeability. In addition, they explain how channel inactivation in response to antibiotics can cause resistance but does not lead to decreased fitness.

  2. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    International Nuclear Information System (INIS)

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility

  3. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Wang, Yun; Dai, Xiao; Zou, Guifu, E-mail: kqzhang@suda.edu.cn, E-mail: zouguifu@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Gao, Peng; Zhang, Ke-Qin, E-mail: kqzhang@suda.edu.cn, E-mail: zouguifu@suda.edu.cn; Du, Dezhuang [National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123 (China); Guo, Jun [Testing and Analysis Center, Soochow University, Suzhou 215123 (China)

    2015-08-01

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  4. Improving the ex vivo stability of drug ester compounds in rat and dog serum: inhibition of the specific esterases and implications on their identity.

    Science.gov (United States)

    Koitka, Matthias; Höchel, Joachim; Gieschen, Hille; Borchert, Hans-Hubert

    2010-02-01

    In drug development, it has been noticed that some drug compounds, especially esters, are unstable in serum samples ex vivo. This can lead to a substantial underestimation of the actual drug concentration. The rat and the dog, representing a rodent and non-rodent species, respectively, are widely used in preclinical studies. We studied the degradation of three structurally different drug esters in rat and dog serum. Moreover, the efficiency of selected enzyme inhibitors to prevent these degradations was investigated. Furthermore, we found indications of the identity of the drug-specific esterases by means of their inhibitor sensitivity as well as by protein purification and identification. The studied drugs were sagopilone, drospirenone, and methylprednisolone aceponate (MPA) all of which are used in (pre-)clinical drug development. The sagopilone-cleaving esterases in rat serum were inhibited by serine hydrolase inhibitors. We partly purified these esterases resulting in an activity yield of 5% and a purification factor of 472. Using matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF)-mass spectrometry (MS), the rat carboxylesterase isoenzyme ES-1 was identified in these fractions, thus pointing to its involvement in sagopilone cleavage. Drospirenone cleavage in rat serum was effected by butyrylcholinesterase (BChE) and paraoxonase 1 (PON1) as we deduced from the high efficacy of certain serine hydrolase and metallohydrolase inhibitors, respectively. Likewise, some inhibition characteristics implied that MPA was cleaved in rat serum by BChE and serine proteases. Partial purification of the MPA-specific esterases resulted in activity yields of 1-2%, exhibiting up to 10,000-fold purification. In dog serum, we found that sagopilone was not degraded which was in contrast to MPA and drospirenone. MPA degradation was mainly prevented by serine hydrolase inhibitors. We used a three-step purification to isolate the esterases cleaving MPA. This

  5. Complex formation of Np(V) with various carboxylates

    International Nuclear Information System (INIS)

    The stability constants of Np(V) complexes with a series of aliphatic and aromatic carboxylates, including hydroxycarboxylates, hydroxydicarboxylates, dicarboxylates and pyridinecarboxylates have been obtained in 1.0 M NaClO4 by a solvent extraction method using thenoyltrifluoroacetone and 1,10- phenanthroline in isoamyl alcohol. Stabilities of these complexes are discussed in terms of their structures and ligand basicities. (orig.)

  6. Circulating Nonphosphorylated Carboxylated Matrix Gla Protein Predicts Survival in ESRD

    OpenAIRE

    Schlieper, Georg; Westenfeld, Ralf; Krüger, Thilo; Cranenburg, Ellen C.; Magdeleyns, Elke J.; Brandenburg, Vincent M.; Djuric, Zivka; Damjanovic, Tatjana; Ketteler, Markus; Vermeer, Cees; Dimkovic, Nada; Floege, Jürgen; Schurgers, Leon J.

    2011-01-01

    The mechanisms for vascular calcification and its associated cardiovascular mortality in patients with ESRD are not completely understood. Dialysis patients exhibit profound vitamin K deficiency, which may impair carboxylation of the calcification inhibitor matrix gla protein (MGP). Here, we tested whether distinct circulating inactive vitamin K–dependent proteins associate with all-cause or cardiovascular mortality. We observed higher levels of both desphospho-uncarboxylated MGP (dp-ucMGP) a...

  7. ELECTROANALYTICAL APPLICATIONS OF CARBOXYL-MODIFIED CARBON NANOTUBE FILM ELECTRODES

    Institute of Scientific and Technical Information of China (English)

    C.G. Hu; W.L. Wang; K.J. Liao; W. Zhu

    2003-01-01

    The electrochemical behavior of a carboxyl-modified carbon nanotube films was investigated to explore its possibility in electroanalytical applicaton. Cyclic voltammetry of quinone was conducted in 1mol/L Na2SO4, which showed a stable, quasi-reversible voltammetric response for quinone / hydroquinone, and the anodic and the cathodic peak potentials were 0.657V and -0.029V (vs. SCE) at a scan rate of 0.1V.s-1, respectively. Both anodic and cathodic peak currents depended linearly on the square root of the scan rate over the range of 0.01-0. 5 V.s-1, which suggested that the process of the electrode reactions was diffusion-controlled. Carboxyl-modified carbon nanotube electrodes made it possible to determine low level of dopamine selectively in the presence of a large excess of ascorbic acid in acidic media using derivative voltammetry.The results obtained were discussed in details. This work demonstrates the potential of carboxyl-modified carbon nanotube electrodes for electroanalytical applications.

  8. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery

    International Nuclear Information System (INIS)

    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N2 adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples

  9. Biarylalkyl Carboxylic Acid Derivatives as Novel Antischistosomal Agents.

    Science.gov (United States)

    Mäder, Patrick; Blohm, Ariane S; Quack, Thomas; Lange-Grünweller, Kerstin; Grünweller, Arnold; Hartmann, Roland K; Grevelding, Christoph G; Schlitzer, Martin

    2016-07-01

    Parasitic platyhelminths are responsible for serious infectious diseases, such as schistosomiasis, which affect humans as well as animals across vast regions of the world. The drug arsenal available for the treatment of these diseases is limited; for example, praziquantel is the only drug currently used to treat ≥240 million people each year infected with Schistosoma spp., and there is justified concern about the emergence of drug resistance. In this study, we screened biarylalkyl carboxylic acid derivatives for their antischistosomal activity against S. mansoni. These compounds showed significant influence on egg production, pairing stability, and vitality. Tegumental lesions or gut dilatation was also observed. Substitution of the terminal phenyl residue in the biaryl scaffold with a 3-hydroxy moiety and derivatization of the terminal carboxylic acid scaffold with carboxamides yielded compounds that displayed significant antischistosomal activity at concentrations as low as 10 μm with satisfying cytotoxicity values. The present study provides detailed insight into the structure-activity relationships of biarylalkyl carboxylic acid derivatives and thereby paves the way for a new drug-hit moiety for fighting schistosomiasis. PMID:27159334

  10. Cellular uptake and anticancer activity of carboxylated gallium corroles.

    Science.gov (United States)

    Pribisko, Melanie; Palmer, Joshua; Grubbs, Robert H; Gray, Harry B; Termini, John; Lim, Punnajit

    2016-04-19

    We report derivatives of gallium(III) tris(pentafluorophenyl)corrole, 1 [Ga(tpfc)], with either sulfonic (2) or carboxylic acids (3, 4) as macrocyclic ring substituents: the aminocaproate derivative, 3 [Ga(ACtpfc)], demonstrated high cytotoxic activity against all NCI60 cell lines derived from nine tumor types and confirmed very high toxicity against melanoma cells, specifically the LOX IMVI and SK-MEL-28 cell lines. The toxicities of 1, 2, 3, and 4 [Ga(3-ctpfc)] toward prostate (DU-145), melanoma (SK-MEL-28), breast (MDA-MB-231), and ovarian (OVCAR-3) cancer cells revealed a dependence on the ring substituent: IC50values ranged from 4.8 to >200 µM; and they correlated with the rates of uptake, extent of intracellular accumulation, and lipophilicity. Carboxylated corroles 3 and 4, which exhibited about 10-fold lower IC50values ( 3 > 2 > 1 (intracellular accumulation of gallium corroles was fastest in melanoma cells). We conclude that carboxylated gallium corroles are promising chemotherapeutics with the advantage that they also can be used for tumor imaging. PMID:27044076

  11. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Zohreh; Badiei, Alireza, E-mail: abadiei@khayam.ut.ac.ir [University of Tehran, School of Chemistry, College of Science (Iran, Islamic Republic of); Ziarani, Ghodsi Mohammadi [Alzahra University, Research Laboratory of Pharmaceutical (Iran, Islamic Republic of)

    2015-03-15

    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N{sub 2} adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples.

  12. Microbial biosynthesis of wax esters during desiccation: an adaptation for colonization of the earliest terrestrial environments?

    Science.gov (United States)

    Finkelstein, D. B.; Brassell, S. C.; Pratt, L. M.

    2008-12-01

    Biosynthesis of wax esters (WE) by prokaryotes in natural systems, notably bacteria from hot springs and marine phytoplankton, is poorly documented, primarily because saponification is a routine step in the analysis of microbial mat lipids. Use of this preparative procedure, critical for characterization of the diagnostic distributions of carboxylic acids in phospholipids, precludes recovery of intact WE. Examination of non-saponified lipids in emergent and desiccated mats with comparable microbial communities from the Warner Lake region, Oregon, reveals increases in the relative abundance (18.6 to 59.9μg/g Corg) and average chain length (C38 to C46) of WE in the latter, combined with assimilation of phytol and tocopherol moieties. Prokaryotes can accumulate WE as storage lipids in vitro, notably at elevated temperature or under nitrogen limiting conditions, but we propose that biosynthesis of long-chain WE that have a low solubility and are resistant to degradation/oxidation may represent an evolutionary strategy to survive desiccation in evaporative environments. Moreover, aeolian transport of desiccated mat-rip-ups between lake flats allows for migration of microbial communities within and between lake flats and basins during arid conditions. Subsequent rehydration within an alkaline environment would naturally saponify WE, and thereby regenerate alcohol and acid moieties that could serve as membrane lipids for the next viable microbial generation. The evolutionary cradle of WE was likely abiotic generation under hydrothermal conditions, which is consistent with the antiquity of the ester linkage necessitated by its integral role in the membranes of Eubacteria (though not Archaea) and in bacteriochlorophyll. The subsequent capability of microbes to biosynthesize WE may have facilitated their survival when nutrients were limiting, and production of long-chain WE (>C40) may represent a further critical evolutionary threshold that enabled their persistence through

  13. Biomimetic membranes with aqueous nano channels but without proteins: impedance of impregnated cellulose ester filters.

    Science.gov (United States)

    Kocherginsky, Nikolai M; Lvovich, Vadim F

    2010-12-01

    Earlier we have shown that many important properties of ionic aqueous channels in biological membranes can be imitated using simple biomimetic membranes. These membranes are composed of mixed cellulose ester-based filters, impregnated with isopropyl myristate or other esters of fatty acids, and can be used for high-throughput drug screening. If the membrane separates two aqueous solutions, combination of relatively hydrophilic polymer support with immobilized carboxylic groups results in the formation of thin aqueous layers covering inner surface of the pores, while the pore volume is filled by lipid-like substances. Because of these aqueous layers biomimetic membranes even without proteins have a cation/anion ion selectivity and specific (per unit of thickness) electrical properties, which are similar to typical properties of biological membranes. Here we describe frequency-dependent impedance of the isopropyl myristate-impregnated biomimetic membranes in the 4-electrode arrangement and present the results as Bode and Nyquist diagrams. When the membranes are placed in deionized water, it is possible to observe three different dispersion processes in the frequency range 0.1 Hz to 30 kHz. Only one dispersion is observed in 5 mM KH(2)PO(4) solution. It is suggested that these three dispersion features are determined by (a) conductivity in aqueous structures/channels, formed near the internal walls of the filter pores at high frequencies, (b) dielectric properties of the whole membrane at medium frequencies, determined by polymer support, aqueous layers and impregnating oil, and, finally, (c) by the processes in hydrated liquid crystal structures formed in pores by impregnating oil in contact with water at low frequencies.

  14. Inter-conversion of catalytic abilities in a bifunctional carboxyl/feruloyl-esterase from earthworm gut metagenome.

    Science.gov (United States)

    Vieites, José María; Ghazi, Azam; Beloqui, Ana; Polaina, Julio; Andreu, José M; Golyshina, Olga V; Nechitaylo, Taras Y; Waliczek, Agnes; Yakimov, Michail M; Golyshin, Peter N; Ferrer, Manuel

    2010-01-01

    Carboxyl esterases (CE) exhibit various reaction specificities despite of their overall structural similarity. In present study we have exploited functional metagenomics, saturation mutagenesis and experimental protein evolution to explore residues that have a significant role in substrate discrimination. We used an enzyme, designated 3A6, derived from the earthworm gut metagenome that exhibits CE and feruloyl esterase (FAE) activities with p-nitrophenyl and cinnamate esters, respectively, with a [(k(cat)/K(m))](CE)/[(k(cat)/K(m))](FAE) factor of 17. Modelling-guided saturation mutagenesis at specific hotspots (Lys(281), Asp(282), Asn(316) and Lys(317)) situated close to the catalytic core (Ser(143)/Asp(273)/His(305)) and a deletion of a 34-AA-long peptide fragment yielded mutants with the highest CE activity, while cinnamate ester bond hydrolysis was effectively abolished. Although, single to triple mutants with both improved activities (up to 180-fold in k(cat)/K(m) values) and enzymes with inverted specificity ((k(cat)/K(m))(CE)/(k(cat)/K(m))(FAE) ratio of ∼0.4) were identified, no CE inactive variant was found. Screening of a large error-prone PCR-generated library yielded by far less mutants for substrate discrimination. We also found that no significant changes in CE activation energy occurs after any mutation (7.3 to -5.6 J mol(-1)), whereas a direct correlation between loss/gain of FAE function and activation energies (from 33.05 to -13.7 J mol(-1)) was found. Results suggest that the FAE activity in 3A6 may have evolved via introduction of a limited number of 'hot spot' mutations in a common CE ancestor, which may retain the original hydrolytic activity due to lower restrictive energy barriers but conveys a dynamic energetically favourable switch of a second hydrolytic reaction. PMID:21255305

  15. Oxidation of Alpha-Ketoglutarate Is Required for Reductive Carboxylation in Cancer Cells with Mitochondrial Defects

    Directory of Open Access Journals (Sweden)

    Andrew R. Mullen

    2014-06-01

    Full Text Available Mammalian cells generate citrate by decarboxylating pyruvate in the mitochondria to supply the tricarboxylic acid (TCA cycle. In contrast, hypoxia and other impairments of mitochondrial function induce an alternative pathway that produces citrate by reductively carboxylating α-ketoglutarate (AKG via NADPH-dependent isocitrate dehydrogenase (IDH. It is unknown how cells generate reducing equivalents necessary to supply reductive carboxylation in the setting of mitochondrial impairment. Here, we identified shared metabolic features in cells using reductive carboxylation. Paradoxically, reductive carboxylation was accompanied by concomitant AKG oxidation in the TCA cycle. Inhibiting AKG oxidation decreased reducing equivalent availability and suppressed reductive carboxylation. Interrupting transfer of reducing equivalents from NADH to NADPH by nicotinamide nucleotide transhydrogenase increased NADH abundance and decreased NADPH abundance while suppressing reductive carboxylation. The data demonstrate that reductive carboxylation requires bidirectional AKG metabolism along oxidative and reductive pathways, with the oxidative pathway producing reducing equivalents used to operate IDH in reverse.

  16. The Preparation and Enzymatic Hydrolysis of a Library of Esters

    Science.gov (United States)

    Sanford, Elizabeth M.; Smith, Traci L.

    2008-01-01

    An investigative case study involving the preparation of a library of esters using Fischer esterification and alcoholysis of acid chlorides and their subsequent enzymatic hydrolysis by pig liver esterase and orange peel esterase is described. Students work collaboratively to prepare and characterize the library of esters and complete and evaluate…

  17. Preparation and characterization of aliphatic diphenyl esters intended as precursors for polyesters

    DEFF Research Database (Denmark)

    Hvilsted, S.; Andruzzi, F.; Cerrai, P.;

    1991-01-01

    based on similar data from phenyl esters, interpreted as the results of an apparent macrocyclic conformation of the larger diphenyl esters. High-performance size exclusion chromatography (s.e.c.) of diphenyl esters, phenyl esters, aromatic and linear hydrocarbons in tetrahydrofuran, toluene...... and chloroform points to specific phenyl ester-solvent interactions, which obscure a potential s.e.c. conformational analysis of the diphenyl esters....

  18. Ethylene-enhanced catabolism of ( sup 14 C)indole-3-acetic acid to indole-3-carboxylic acid in citrus leaf tissues. [Citrus sinensis

    Energy Technology Data Exchange (ETDEWEB)

    Sagee, O.; Riov, J.; Goren, J. (Hebrew Univ. of Jerusalem, Rehovot (Israel))

    1990-01-01

    Exogenous ({sup 14}C)indole-3-acetic acid (IAA) is conjugated in citrus (Citrus sinensis) leaf tissues to one major substance which has been identified as indole-3-acetylaspartic acid (IAAsp). Ethylene pretreatment enhanced the catabolism of ({sup 14}C)IAA to indole-3-carboxylic acid (ICA), which accumulated as glucose esters (ICGlu). Increased formation of ICGlu by ethylene was accompanied by a concomitant decrease in IAAsp formation. IAAsp and ICGlu were identified by combined gas chromatography-mass spectrometry. Formation of ICGlu was dependent on the concentration of ethylene and the duration of the ethylene pretreatment. It is suggested that the catabolism of IAA to ICA may be one of the mechanisms by which ethylene endogenous IAA levels.

  19. Some hydrolase activities from the tick Hyalomma lusitanicum Koch, 1844 (Ixodoidea: Ixodida

    Directory of Open Access Journals (Sweden)

    Giménez-Pardo C.

    2008-12-01

    Full Text Available In this work has been made a detection and preliminary characterization of some hydrolases in whole extracts from unfed adult males and females of Hyalomma lusitanicum, one of the vectors for Theileria annulata that causes Mediterranean theileriosis in cattle. We have elected as targets, proteases as enzymes implicated in the nutritional processes of ticks, esterases that are usually implicated in resistance to organophosphates and phosphatises often implicated in protein phosphorilation and control of ticks salivary gland. The biological role and physiological significance are discussed in terms of the possibility of use these enzymes as possible in future anti-tick vaccination or acaricide resistance.

  20. Characterization of Two New Glycosyl Hydrolases from the Lactic Acid Bacterium Carnobacterium piscicola Strain BA

    OpenAIRE

    Coombs, Jonna; Brenchley, Jean E.

    2001-01-01

    Three genes with homology to glycosyl hydrolases were detected on a DNA fragment cloned from a psychrophilic lactic acid bacterium isolate, Carnobacterium piscicola strain BA. A 2.2-kb region corresponding to an α-galactosidase gene, agaA, was followed by two genes in the same orientation, bgaB, encoding a 2-kb β-galactosidase, and bgaC, encoding a structurally distinct 1.76-kb β-galactosidase. This gene arrangement had not been observed in other lactic acid bacteria, including Lactococcus la...

  1. Radiation-induced alterations in the distribution of lysosomal hydrolases in rat spleen homogenates. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, S.L.; Eklund, S.K.

    1978-07-01

    Whole-body exposure of rats to /sup 60/Co-..gamma.. radiation results in increases in the activities of two lysosomal hydrolases, ..beta..-glucuronidase and ..cap alpha..-fucosidase, found in the supernatant fraction of spleen homogenates. The redistribution of these enzymes from the ''particulate-bound'' to the ''free-supernatant'' fraction of spleen homogenates has been studied as a function of radiation dose. The response curves for the ratio of free/bound enzyme versus dose sigmoidal with maximum occurring at 300 to 400 rad.

  2. Discovery of MK-3168: A PET Tracer for Imaging Brain Fatty Acid Amide Hydrolase.

    Science.gov (United States)

    Liu, Ping; Hamill, Terence G; Chioda, Marc; Chobanian, Harry; Fung, Selena; Guo, Yan; Chang, Linda; Bakshi, Raman; Hong, Qingmei; Dellureficio, James; Lin, Linus S; Abbadie, Catherine; Alexander, Jessica; Jin, Hong; Mandala, Suzanne; Shiao, Lin-Lin; Li, Wenping; Sanabria, Sandra; Williams, David; Zeng, Zhizhen; Hajdu, Richard; Jochnowitz, Nina; Rosenbach, Mark; Karanam, Bindhu; Madeira, Maria; Salituro, Gino; Powell, Joyce; Xu, Ling; Terebetski, Jenna L; Leone, Joseph F; Miller, Patricia; Cook, Jacquelynn; Holahan, Marie; Joshi, Aniket; O'Malley, Stacey; Purcell, Mona; Posavec, Diane; Chen, Tsing-Bau; Riffel, Kerry; Williams, Mangay; Hargreaves, Richard; Sullivan, Kathleen A; Nargund, Ravi P; DeVita, Robert J

    2013-06-13

    We report herein the discovery of a fatty acid amide hydrolase (FAAH) positron emission tomography (PET) tracer. Starting from a pyrazole lead, medicinal chemistry efforts directed toward reducing lipophilicity led to the synthesis of a series of imidazole analogues. Compound 6 was chosen for further profiling due to its appropriate physical chemical properties and excellent FAAH inhibition potency across species. [(11)C]-6 (MK-3168) exhibited good brain uptake and FAAH-specific signal in rhesus monkeys and is a suitable PET tracer for imaging FAAH in the brain. PMID:24900701

  3. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    OpenAIRE

    Patricia Marie Legler; Susanne eBoisvert; Compton, Jaimee R.; Millard, Charles B.

    2014-01-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucl...

  4. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    OpenAIRE

    Legler, Patricia M.; Boisvert, Susanne M.; Compton, Jaimee R.; Millard, Charles B.

    2014-01-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleo...

  5. Crystallisation and Melting Behavior of Methyl Esters of Palm Oil

    Directory of Open Access Journals (Sweden)

    Cheng S. Foon

    2006-01-01

    Full Text Available The methyl esters of palm oil, which consists of saturated and unsaturated esters (0.6 to 95.9% unsaturation of the C12 to C18 fatty acids, solidify at the two temperature ranges, -52 to -45°C and -24 to 21°C, when the esters are cooled. When the esters are heated, they melt at two distinct temperatures, -25 and -33°C and a broad peak at -9 to 28°C. The heating thermograms also showed an exothermic crystallisation peak in between two endothermic melting peaks, indicating the occurrence of re-crystallisation of low melting methyl esters into higher melting point crystal and then melt again at higher temperature.

  6. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: Thermal and mechanical properties

    Directory of Open Access Journals (Sweden)

    H. F. Xie

    2012-09-01

    Full Text Available Carboxyl-modified multi-walled carbon nanotubes (MWCNT–COOHs as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA toughened with carboxyl-terminated butadiene-acrylonitrile (CTBN. The carboxyl functional carbon nanotubes were characterized by Fourier-transform infrared spectroscopy and thermogravimetric analysis. Furthermore, cure kinetics, glass transition temperature (Tg, mechanical properties, thermal stability and morphology of DGEBA/CTBN/MWCNT–COOHs nanocomposites were investigated by differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, universal test machine, thermogravimetric analysis and scanning electron microscopy (SEM. DSC kinetic studies showed that the addition of MWCNT–COOHs accelerated the curing reaction of the rubber-toughened epoxy resin. DMA results revealed that Tg of rubber-toughened epoxy nanocomposites lowered with MWCNT–COOH contents. The tensile strength, elongation at break, flexural strength and flexural modulus of DGEBA/CTBN/MWCNT-COOHs nanocomposites were increased at lower MWCNT-COOH concentration. A homogenous dispersion of nanocomposites at lower MWCNT–COOH concentration was observed by SEM.

  7. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-06-14

    Methods and systems for making dibasic esters and/or dibasic acids using metathesis are generally disclosed. In some embodiments, the methods comprise reacting a terminal olefin ester with an internal olefin ester in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In some embodiments, the terminal olefin ester or the internal olefin ester are derived from a renewable feedstock, such as a natural oil feedstock. In some such embodiments, the natural oil feedstock, or a transesterified derivative thereof, is metathesized to make the terminal olefin ester or the internal olefin ester.

  8. Purification and characterization of RihC, a xanthosine-inosine-uridine-adenosine-preferring hydrolase from Salmonella enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Dandanell, Gert

    2005-01-01

    as the sole carbon and energy source. By functional complementation, we have isolated a nucleoside hydrolase (rihC) that can complement a xapA deletion in E. coli and we have overexpressed, purified and characterized this hydrolase. RihC is a heat stable homotetrameric enzyme with a molecular weight of 135 k...

  9. Synthesis, In Vitro and In Vivo Evaluation of the N-ethoxycarbonylmorpholine Ester of Diclofenac as a Prodrug

    Directory of Open Access Journals (Sweden)

    Jamal A. Jilani

    2014-04-01

    Full Text Available The N-ethoxycarbonylmorpholine moiety was evaluated as a novel prodrug moiety for carboxylic acid containing drugs represented by diclofenac (1. Compound 2, the N-ethoxycarbonylmorpholine ester of diclofenac was synthesized and evaluated as a potential prodrug. The stability of the synthesized prodrug was evaluated in solutions of pH 1 and 7.4, and in plasma. The ester’s half lives were found to be 8 h, 47 h and 21 min in pH 1, pH 7.4 and plasma, respectively. Equimolar doses of diclofenac sodium and its synthesized prodrug were administered orally to a group of rabbits in a crossover study to evaluate their pharmacokinetic parameters. The prodrug 2 shows a similar rate and extent of absorption as the parent drug (1. The ulcerogenicity of the prepared prodrug was evaluated and compared with the parent drug. The prodrug showed less ulcerogenicity as detected by fewer number and smaller size of ulcers. In conclusion, the newly synthesized N-ethoxycarbonylmorpholine ester of diclofenac prodrug showed appropriate stability properties at different pHs, similar pharmacokinetic profile, and much less ulcerogenecity at the GIT compared to the parent drug diclofenac.

  10. X-Ray Diffraction Structure of a plant Glycosyl Hydrolase family 32 protein: Fructan 1-Exohydrolase IIa of Cichorium intybus

    OpenAIRE

    Verhaest, Maureen; Van den Ende, Wim; Le Roy, Katrien; De Ranter, Camiel; Van Laere, André; Rabijns, Anja

    2005-01-01

    Fructan 1-exohydrolase, an enzyme involved in fructan degradation, belongs to the glycosyl hydrolase family 32. The structure of isoenzyme 1-FEH IIa from Cichorium intybus is described at a resolution of 2.35 Å. The structure consists of an N-terminal fivefold β-propeller domain connected to two C-terminal β-sheets. The putative active site is located entirely in the β-propeller domain and is formed by amino acids which are highly conserved within glycosyl hydrolase family 32. The fructan-bin...

  11. Crystallization and preliminary X-ray diffraction analysis of the amidase domain of allophanate hydrolase from Pseudomonas sp. strain ADP

    International Nuclear Information System (INIS)

    The amidase domain of the allophanate hydrolase AtzF from Pseudomonas sp. strain ADP has been crystallized and preliminary X-ray diffraction data have been collected. The allophanate hydrolase from Pseudomonas sp. strain ADP was expressed and purified, and a tryptic digest fragment was subsequently identified, expressed and purified. This 50 kDa construct retained amidase activity and was crystallized. The crystals diffracted to 2.5 Å resolution and adopted space group P21, with unit-cell parameters a = 82.4, b = 179.2, c = 112.6 Å, β = 106.6°

  12. Synthesis and structure-activity relationship of piperidine-derived non-urea soluble epoxide hydrolase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Pecic, Stevan; Pakhomova, Svetlana; Newcomer, Marcia E.; Morisseau, Christophe; Hammock, Bruce D.; Zhu, Zhengxiang; Rinderspacher, Alison; Deng, Shi-Xian [UCD; (LSU); (Columbia)

    2013-09-27

    A series of potent amide non-urea inhibitors of soluble epoxide hydrolase (sEH) is disclosed. The inhibition of soluble epoxide hydrolase leads to elevated levels of epoxyeicosatrienoic acids (EETs), and thus inhibitors of sEH represent one of a novel approach to the development of vasodilatory and anti-inflammatory drugs. Structure–activities studies guided optimization of a lead compound, identified through high-throughput screening, gave rise to sub-nanomolar inhibitors of human sEH with stability in human liver microsomal assay suitable for preclinical development.

  13. Electrochemistry of polyamidoamine dendrimers ester gel electrolytes

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong; MO Zunli

    2004-01-01

    This paper described the first example of polyamidoamine dendrimers ester (PAMAM) used as a gel electrolyte with a short-chain polyethylene glycol (MPEG-400) as a plasticizer. The polymer films are solid and sticky. Background cyclic voltammetry (CV) shows a potential window between +0.7 and -0.7 V vs. Ag/AgCl. The voltammetry of ferrocene and 7,7,8,8-tetracyanoquinodimethane (TCNQ) indicates that diffusion coefficients are in the range of 10-a-10-9 cm2/s.Ionic conductivities are approximately 10-6 S/cm. Similar films using dimethyl sulfoxide (DMSO) as a plasticizer instead of MPEG-400 have demonstrated ionic conductivities of 10-4 S/cra and reversible voltammetry. However, UV spectrophotometry shows that 70% of the DMSO is lost under vacuum, indicating the difficulty in quantifying the DMSO content when exposed to vacuum.

  14. Sintesis Surfaktan Metil Ester Sulfonat dari Sulfonasi Metil Ester Asam Lemak Minyak Kastor (Ricinus communis L)

    OpenAIRE

    Aritonang, Rianti E J

    2011-01-01

    Methyl ester sulfonate (MES) surfactant is an anionic surfactant which could be synthesized from oil. Surfactant have a capability to reduce surface tension, interface tension and elevate the stability of emulsion system. The material sources to produce surfactant was derived from petroleum oil, vegetables oil and animals fats. One of vegetables oil is polar castor oil, because it contained of ricinoleic acid as the major compound which has –OH group. Castor oil could be synthesize became ...

  15. The Serine Hydrolase ABHD6 Is a Critical Regulator of the Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Gwynneth Thomas

    2013-10-01

    Full Text Available The serine hydrolase α/β hydrolase domain 6 (ABHD6 has recently been implicated as a key lipase for the endocannabinoid 2-arachidonylglycerol (2-AG in the brain. However, the biochemical and physiological function for ABHD6 outside of the central nervous system has not been established. To address this, we utilized targeted antisense oligonucleotides (ASOs to selectively knock down ABHD6 in peripheral tissues in order to identify in vivo substrates and understand ABHD6’s role in energy metabolism. Here, we show that selective knockdown of ABHD6 in metabolic tissues protects mice from high-fat-diet-induced obesity, hepatic steatosis, and systemic insulin resistance. Using combined in vivo lipidomic identification and in vitro enzymology approaches, we show that ABHD6 can hydrolyze several lipid substrates, positioning ABHD6 at the interface of glycerophospholipid metabolism and lipid signal transduction. Collectively, these data suggest that ABHD6 inhibitors may serve as therapeutics for obesity, nonalcoholic fatty liver disease, and type II diabetes.

  16. Cloning, expression and mutation of a triazophos hydrolase gene from Burkholderia sp. SZL-1.

    Science.gov (United States)

    Zhang, Hao; Li, Qiang; Guo, Su-Hui; Cheng, Ming-Gen; Zhao, Meng-Jun; Hong, Qing; Huang, Xing

    2016-06-01

    Triazophos is a broad-spectrum and highly effective insecticide, and the residues of triazophos have been frequently detected in the environment. A triazophos-degrading bacterium, Burkholderia sp. SZL-1, was isolated from a long-term triazophos-polluted soil. Strain SZL-1 could hydrolyze triazophos to 1-phenyl-3-hydroxy-1,2,4-triazole, which was further utilized as the carbon sources for growth. The triazophos hydrolase gene trhA, cloned from strain SZL-1, was expressed and homogenously purified using Ni-nitrilotriacetic acid affinity chromatography. TrhA is 55 kDa and displays maximum activity at 25°C, pH 8.0. This enzyme still has nearly 60% activity at the range of 15°C-50°C for 30 min. TrhA was mutated by sequential error prone PCR and screened for improved activity for triazophos degradation. One purified variant protein (Val89-Gly89) named TrhA-M1 showed up to 3-fold improvement in specific activity against triazophos, and the specificity constants of Kcat and Kcat/Km for TrhA-M1 were improved up to 2.3- and 8.28-fold, respectively, compared to the wild-type enzyme. The results in this paper provided potential material for the contaminated soil remediation and hydrolase genetic structure research. PMID:27190294

  17. Direct detection, cloning and characterization of a glucoside hydrolase from forest soil.

    Science.gov (United States)

    Hua, Mei; Zhao, Shubo; Zhang, Lili; Liu, Dongbo; Xia, Hongmei; Li, Fan; Chen, Shan

    2015-06-01

    A glucoside hydrolase gene, egl01, was cloned from the soil DNA of Changbai Mountain forest by homologous PCR amplification. The deduced sequence of 517 amino acids included a catalytic domain of glycoside hydrolase family 5 and was homologous to a putative cellulase from Bacillus licheniformis. The recombinant enzyme, Egl01, was maximally active at pH 5 and 50 °C and it was stable at pH 3-9, 4-50 °C, and also stable in the presence of metal ions, organic solvents, surfactants and salt. Its activity was above 120 % in 2-3 M NaCl/KCl and over 70 % was retained in 1-4 M NaCl/KCl for 6d. Egl01 hydrolyzed carboxymethyl cellulose, beechwood xylan, crop stalk, laminarin, filter paper, and avicel but not pNPG, indicating its broad substrate specificity. These properties make this recombinant enzyme a promising candidate for industrial applications. PMID:25700816

  18. Molecular cloning, expression and characterization of acylpeptide hydrolase in the silkworm, Bombyx mori.

    Science.gov (United States)

    Fu, Ping; Sun, Wei; Zhang, Ze

    2016-04-10

    Acylpeptide hydrolase (APH) can catalyze the release of the N-terminal amino acid from acetylated peptides. There were many documented examples of this enzyme in various prokaryotic and eukaryotic organisms. However, knowledge about APH in insects still remains unknown. In this study, we cloned and sequenced a putative silkworm Bombyx mori APH (BmAPH) gene. The BmAPH gene encodes a protein of 710 amino acids with a predicted molecular mass of 78.5kDa. The putative BmAPH and mammal APHs share about 36% amino acid sequence identity, yet key catalytic residues are conserved (Ser566, Asp654, and His686). Expression and purification of the recombinant BmAPH in Escherichia coli showed that it has acylpeptide hydrolase activity toward the traditional substrate, Ac-Ala-pNA. Furthermore, organophosphorus (OP) insecticides, chlorpyrifos, phoxim, and malathion, significantly inhibited the activity of the APH both in vitro and in vivo. In addition, BmAPH was expressed in all tested tissues and developmental stages of the silkworm. Finally, immunohistochemistry analysis showed that BmAPH protein was localized in the basement membranes. These results suggested that BmAPH may be involved in enhancing silkworm tolerance to the OP insecticides. In a word, our results provide evidence for understanding of the biological function of APH in insects. PMID:26778207

  19. Screening Brazilian Macrophomina phaseolina isolates for alkaline lipases and other extracellular hydrolases.

    Science.gov (United States)

    Schinke, Claudia; Germani, José C

    2012-03-01

    Macrophomina phaseolina, phylum Ascomycota, is a phytopathogenic fungus distributed worldwide in hot dry areas. There are few studies on its secreted lipases and none on its colony radial growth rate, an indicator of fungal ability to use nutrients for growth, on media other than potato-dextrose agar. In this study, 13 M. phaseolina isolates collected in different Brazilian regions were screened for fast-growth and the production of hydrolases of industrial interest, especially alkaline lipases. Hydrolase detection and growth rate determination were done on citric pectin, gelatin, casein, soluble starch, and olive oil as substrates. Ten isolates were found to be active on all substrates tested. The most commonly detected enzymes were pectinases, amylases, and lipases. The growth rate on pectin was significantly higher (P olive oil was followed for 4 days by measuring the activity in the cultivation broth. The specific lipolytic activity of isolate PEL was significantly higher at 96 h (130 mU mg protein(-1)). The broth was active at 37 °C, pH 8, indicating the potential utility of the lipases of this isolate in mild alkaline detergents. There was a strong and positive correlation (0.86) between radial growth rate and specific lipolytic activity.

  20. Subcellullar localization, developmental expression and characterization of a liver triacylglycerol hydrolase.

    Science.gov (United States)

    Lehner, R; Cui, Z; Vance, D E

    1999-03-15

    The mechanism and enzymic activities responsible for the lipolysis of stored cytosolic triacylglycerol in liver and its re-esterification remain obscure. A candidate enzyme for lipolysis, a microsomal triacylglycerol hydrolase (TGH), was recently purified to homogeneity from pig liver and its kinetic properties were determined [Lehner and Verger (1997) Biochemistry 36, 1861-1868]. We have characterized the enzyme with regard to its species distribution, subcellular localization, developmental expression and reaction with lipase inhibitors. The hydrolase co-sediments with endoplasmic reticulum elements and is associated with isolated liver fat droplets. Immunocytochemical studies localize TGH exclusively to liver cells surrounding capillaries. Both TGH mRNA and protein are expressed in rats during weaning. The enzyme covalently binds tetrahydrolipstatin, an inhibitor of lipases and of triacylglycerol hydrolysis. The enzyme is absent from liver-derived cell lines (HepG2 and McArdle RH7777) known to be impaired in very-low-density lipoprotein (VLDL) assembly and secretion. The localization and developmental expression of TGH are consistent with a proposed role in triacylglycerol hydrolysis and with the proposal that some of the resynthesized triacylglycerol is utilized for VLDL secretion.

  1. Signature motifs identify an Acinetobacter Cif virulence factor with epoxide hydrolase activity.

    Science.gov (United States)

    Bahl, Christopher D; Hvorecny, Kelli L; Bridges, Andrew A; Ballok, Alicia E; Bomberger, Jennifer M; Cady, Kyle C; O'Toole, George A; Madden, Dean R

    2014-03-14

    Endocytic recycling of the cystic fibrosis transmembrane conductance regulator (CFTR) is blocked by the CFTR inhibitory factor (Cif). Originally discovered in Pseudomonas aeruginosa, Cif is a secreted epoxide hydrolase that is transcriptionally regulated by CifR, an epoxide-sensitive repressor. In this report, we investigate a homologous protein found in strains of the emerging nosocomial pathogens Acinetobacter nosocomialis and Acinetobacter baumannii ("aCif"). Like Cif, aCif is an epoxide hydrolase that carries an N-terminal secretion signal and can be purified from culture supernatants. When applied directly to polarized airway epithelial cells, mature aCif triggers a reduction in CFTR abundance at the apical membrane. Biochemical and crystallographic studies reveal a dimeric assembly with a stereochemically conserved active site, confirming our motif-based identification of candidate Cif-like pathogenic EH sequences. Furthermore, cif expression is transcriptionally repressed by a CifR homolog ("aCifR") and is induced in the presence of epoxides. Overall, this Acinetobacter protein recapitulates the essential attributes of the Pseudomonas Cif system and thus may facilitate airway colonization in nosocomial lung infections. PMID:24474692

  2. Differential Recognition and Hydrolysis of Host Carbohydrate Antigens by Streptococcus pneumoniae Family 98 Glycoside Hydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, M.; Whitworth, G; El Warry, N; Randriantsoa, M; Samain, E; Burke, R; Vocadlo, D; Boraston, A

    2009-01-01

    The presence of a fucose utilization operon in the Streptococcus pneumoniae genome and its established importance in virulence indicates a reliance of this bacterium on the harvesting of host fucose-containing glycans. The identities of these glycans, however, and how they are harvested is presently unknown. The biochemical and high resolution x-ray crystallographic analysis of two family 98 glycoside hydrolases (GH98s) from distinctive forms of the fucose utilization operon that originate from different S. pneumoniae strains reveal that one enzyme, the predominant type among pneumococcal isolates, has a unique endo-{beta}-galactosidase activity on the LewisY antigen. Altered active site topography in the other species of GH98 enzyme tune its endo-{beta}-galactosidase activity to the blood group A and B antigens. Despite their different specificities, these enzymes, and by extension all family 98 glycoside hydrolases, use an inverting catalytic mechanism. Many bacterial and viral pathogens exploit host carbohydrate antigens for adherence as a precursor to colonization or infection. However, this is the first evidence of bacterial endoglycosidase enzymes that are known to play a role in virulence and are specific for distinct host carbohydrate antigens. The strain-specific distribution of two distinct types of GH98 enzymes further suggests that S. pneumoniae strains may specialize to exploit host-specific antigens that vary from host to host, a factor that may feature in whether a strain is capable of colonizing a host or establishing an invasive infection.

  3. Identification of the Gene Encoding Isoprimeverose-producing Oligoxyloglucan Hydrolase in Aspergillus oryzae.

    Science.gov (United States)

    Matsuzawa, Tomohiko; Mitsuishi, Yasushi; Kameyama, Akihiko; Yaoi, Katsuro

    2016-03-01

    Aspergillus oryzae produces a unique β-glucosidase, isoprimeverose-producing oligoxyloglucan hydrolase (IPase), that recognizes and releases isoprimeverose (α-D-xylopyranose-(1 → 6)-D-glucopyranose) units from the non-reducing ends of oligoxyloglucans. A gene encoding A. oryzae IPase, termed ipeA, was identified and expressed in Pichia pastoris. With the exception of cellobiose, IpeA hydrolyzes a variety of oligoxyloglucans and is a member of the glycoside hydrolase family 3. Xylopyranosyl branching at the non-reducing ends was vital for IPase activity, and galactosylation at a α-1,6-linked xylopyranosyl side chain completely abolished IpeA activity. Hepta-oligoxyloglucan saccharide (Xyl3Glc4) substrate was preferred over tri- (Xyl1Glc2) and tetra- (Xyl2Glc2) oligoxyloglucan saccharides substrates. IpeA transferred isoprimeverose units to other saccharides, indicating transglycosylation activity. The ipeA gene was expressed in xylose and xyloglucan media and was strongly induced in the presence of xyloglucan endo-xyloglucanase-hydrolyzed products. This is the first study to report the identification of a gene encoding IPase in eukaryotes. PMID:26755723

  4. Structural and kinetic insights into the mechanism of 5-hydroxyisourate hydrolase from Klebsiella pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    French, Jarrod B.; Ealick, Steven E., E-mail: see3@cornell.edu [Cornell University, Ithaca, NY 14853-1301 (United States)

    2011-08-01

    The crystal structure of 5-hydroxyisourate hydrolase from K. pneumoniae and the steady-state kinetic parameters of the native enzyme as well as several mutants provide insights into the catalytic mechanism of this enzyme and the possible roles of the active-site residues. The stereospecific oxidative degradation of uric acid to (S)-allantoin has recently been demonstrated to proceed via two unstable intermediates and requires three separate enzymatic reactions. The second step of this reaction, the conversion of 5-hydroxyisourate (HIU) to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, is catalyzed by HIU hydrolase (HIUH). The high-resolution crystal structure of HIUH from the opportunistic pathogen Klebsiella pneumoniae (KpHIUH) has been determined. KpHIUH is a homotetrameric protein that, based on sequence and structural similarity, belongs to the transthyretin-related protein family. In addition, the steady-state kinetic parameters for this enzyme and four active-site mutants have been measured. These data provide valuable insight into the functional roles of the active-site residues. Based upon the structural and kinetic data, a mechanism is proposed for the KpHIUH-catalyzed reaction.

  5. Mfge8 regulates enterocyte lipid storage by promoting enterocyte triglyceride hydrolase activity

    Science.gov (United States)

    Khalifeh-Soltani, Amin; Gupta, Deepti; Ha, Arnold; Iqbal, Jahangir; Hussain, Mahmood; Podolsky, Michael J.

    2016-01-01

    The small intestine has an underappreciated role as a lipid storage organ. Under conditions of high dietary fat intake, enterocytes can minimize the extent of postprandial lipemia by storing newly absorbed dietary fat in cytoplasmic lipid droplets. Lipid droplets can be subsequently mobilized for the production of chylomicrons. The mechanisms that regulate this process are poorly understood. We report here that the milk protein Mfge8 regulates hydrolysis of cytoplasmic lipid droplets in enterocytes after interacting with the αvβ3 and αvβ5 integrins. Mice deficient in Mfge8 or the αvβ3 and αvβ5 integrins accumulate excess cytoplasmic lipid droplets after a fat challenge. Mechanistically, interruption of the Mfge8-integrin axis leads to impaired enterocyte intracellular triglyceride hydrolase activity in vitro and in vivo. Furthermore, Mfge8 increases triglyceride hydrolase activity through a PI3 kinase/mTORC2–dependent signaling pathway. These data identify a key role for Mfge8 and the αvβ3 and αvβ5 integrins in regulating enterocyte lipid processing.

  6. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community

    Energy Technology Data Exchange (ETDEWEB)

    Allgaier, M.; Reddy, A.; Park, J. I.; Ivanova, N.; D' haeseleer, P.; Lowry, S.; Sapra, R.; Hazen, T.C.; Simmons, B.A.; VanderGheynst, J. S.; Hugenholtz, P.

    2009-11-15

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Small-subunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, {approx}10% were putative cellulases mostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50 C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.

  7. Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Amitha; Allgaier, Martin; Park, Joshua I.; Ivanoval, Natalia; Dhaeseleer, Patrik; Lowry, Steve; Sapra, Rajat; Hazen, Terry C.; Simmons, Blake A.; VanderGheynst, Jean S.; Hugenholtz, Philip

    2011-05-11

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Smallsubunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, ,10percent were putative cellulasesmostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50uC and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.

  8. Synthesis of syn- and anti-1-amino-3-[18F]fluoromethyl-cyclobutane-1-carboxylic acid (FMACBC), potential PET ligands for tumor detection.

    Science.gov (United States)

    Martarello, Laurent; McConathy, Jonathan; Camp, Vernon M; Malveaux, Eugene J; Simpson, Nicholas E; Simpson, Chiab P; Olson, Jeffrey J; Bowers, Geoffrey D; Goodman, Mark M

    2002-05-23

    syn- and anti-1-amino-3-[18F]fluoromethyl-cyclobutane-1-carboxylic acid (FMACBC, 16 and 17), analogues of anti-1-amino-3-[18F]fluorocyclobutyl-1-carboxylic acid (FACBC), were prepared to evaluate the contributions of C-3 substitution and configuration on the uptake of these radiolabeled amino acids in a rodent model of brain tumors. Radiofluorinated targets [18F]16 and [18F]17 were prepared by no-carrier-added radiofluorination from their corresponding methanesulfonyl esters 12 and 13, respectively, with decay-corrected radiochemical yields of 30% for [18F]16 and 20% for [18F]17. In amino acid transport assays performed in vitro using 9L gliosarcoma cells, both [18F]16 and [18F]17 were substrates for L type amino acid transport, while [18F]17 but not [18F]16 was a substrate for A type transport. Biodistribution studies in normal Fischer rats with [18F]16 and [18F]17 showed high uptake of radioactivity (>2.0% dose/g) in the pancreas while other tissues studied, including liver, heart, lung, kidney, blood, muscle, and testis, showed relatively low uptake of radioactivity (FACBC, [18F]16 and [18F]17 are excellent candidates for imaging brain tumors.

  9. Preparation of polyol esters based on vegetable and animal fats.

    Science.gov (United States)

    Gryglewicz, S; Piechocki, W; Gryglewicz, G

    2003-03-01

    The possibility of using some natural fats: rapeseed oil, olive oil and lard, as starting material for the preparation of neopentyl glycol (NPG) and trimethylol propane (TMP) esters is reported. The syntheses of final products were performed by alcoholysis of fatty acid methyl esters, obtained from natural fats studied, with the appropriate polyhydric alcohol using calcium methoxide as a catalyst. The basic physicochemical properties of the NPG and TMP esters synthesized were the following: viscosity at 40 degrees C in the range of 13.5-37.6 cSt, pour point between -10.5 and -17.5 degrees C and very high viscosity indices, higher than 200. Generally, the esters of neopentyl alcohols were characterized by higher stability in thermo-oxidative conditions in comparison to native triglycerides. Due to the low content of polyunsaturated acids, the olive oil based esters showed the highest thermo-oxidative resistance. Also, methyl esters of fatty acids of lard would constitute a good raw material for the synthesis of lubricating oils, provided that their saturated acids content was lowered. This permits synthesis of NPG and TMP esters with a lower pour point (below -10 degrees C) than natural lard (+33 degrees C). PMID:12733572

  10. Preparation of polyol esters based on vegetable and animal fats.

    Science.gov (United States)

    Gryglewicz, S; Piechocki, W; Gryglewicz, G

    2003-03-01

    The possibility of using some natural fats: rapeseed oil, olive oil and lard, as starting material for the preparation of neopentyl glycol (NPG) and trimethylol propane (TMP) esters is reported. The syntheses of final products were performed by alcoholysis of fatty acid methyl esters, obtained from natural fats studied, with the appropriate polyhydric alcohol using calcium methoxide as a catalyst. The basic physicochemical properties of the NPG and TMP esters synthesized were the following: viscosity at 40 degrees C in the range of 13.5-37.6 cSt, pour point between -10.5 and -17.5 degrees C and very high viscosity indices, higher than 200. Generally, the esters of neopentyl alcohols were characterized by higher stability in thermo-oxidative conditions in comparison to native triglycerides. Due to the low content of polyunsaturated acids, the olive oil based esters showed the highest thermo-oxidative resistance. Also, methyl esters of fatty acids of lard would constitute a good raw material for the synthesis of lubricating oils, provided that their saturated acids content was lowered. This permits synthesis of NPG and TMP esters with a lower pour point (below -10 degrees C) than natural lard (+33 degrees C).

  11. Synthesis and anti-tumor activity of alkenyl camptothecin esters

    Institute of Scientific and Technical Information of China (English)

    Zhi-song CAO; John MENDOZA; Albert DEJESUS; Beppino GIOVANELLA

    2005-01-01

    Aim: To study the degrees of influence of changing side ester chains at position C20 of camptothecin on the anti-tumor activity of the molecules. Methods: The esterification reaction of camptothecin 1 and 9-nitrocamptothecin 2 with crotonic anhydride in pyridine gave the corresponding esters 3 and 4, respectively. The acylation of 1 and 2 with cinnamoyl chloride gave products 7 and 8. Epoxidation reaction of 3 and 4 with m-chloroperoxybenzoic acid in benzene solvent gave the products 5 and 6. Esters 3, 4, and 5 were tested for anti-tumor activity against 14 human cancer cell lines. Results: Both in vitro and in vivo anti-tumor activity studies for these esters were conducted and the data demonstrated positive results, that is, these esters were active against the tested tumor lines. Conclusion: Alkenyl esters 3 and 4 showed strong anti-tumor activity in vitro against 14 different cancer cell lines. Ester 3 was active against human breast carcinoma in mice and the toxicity of the agent was not observed in mice during the treatment, implying that this agent is effective for treatment with low toxicity.

  12. World-Wide Indoor Exposure to Polyfluoroalkyl Phosphate Esters (PAPs) and other PFASs in Household Dust.

    Science.gov (United States)

    Eriksson, Ulrika; Kärrman, Anna

    2015-12-15

    Human exposure to perfluorooctanoic acid (PFOA) and other per- and polyfluoroalkyl substances (PFASs) is ongoing and in some cases increasing, despite efforts made to reduce emissions. The role of precursor compounds such as polyfluorinated phosphate esters (PAPs) has received increasing attention, but there are knowledge gaps regarding their occurrence and impact on human exposure. In this study, mono-, di-, and triPAPs, perfluorinated alkyl acids (PFAAs), saturated, and unsaturated fluorotelomer carboxylic acids (FTCA/FTUCAs), perfluoroalkane sulfonamides, and sulfonamidethanols (FOSA/FOSEs), and one fluorotelomer sulfonic acid (FTSA)) were compared in household dust samples from Canada, the Faroe Islands, Sweden, Greece, Spain, Nepal, Japan, and Australia. Mono-, di-, and triPAPs, including several diPAP homologues, were frequently detected in dust from all countries, revealing an ubiquitous spread in private households from diverse geographic areas, with significant differences between countries. The median levels of monoPAPs and diPAPs ranged from 3.7 ng/g to 1 023 ng/g and 3.6 ng/g to 692 ng/g, respectively, with the lowest levels found in Nepal and the highest in Japan. The levels of PAPs exceeded those of the other PFAS classes. These findings reveal the importance of PAPs as a source of PFAS exposure worldwide.

  13. Carboxylic acid-grafted mesoporous material and its high catalytic activity in one-pot three-component coupling reaction

    Directory of Open Access Journals (Sweden)

    Ruth Gomes

    2014-11-01

    Full Text Available A new carboxylic acid functionalized mesoporous organic polymer has been synthesized via in situ radical polymerization of divinylbenzene and acrylic acid using a mesoporous silica as a seed during the polymerization process under solvothermal conditions. The mesoporous material MPDVAA-1 has been thoroughly characterized employing powder XRD, solid state 13C cross polarization magic angle spinning-nuclear magnetic resonance, FT-IR spectroscopy, N2 sorption, HR-TEM, and NH3 temperature programmed desorption-thermal conductivity detector (TPD-TCD analysis to understand its porosity, chemical environment, bonding, and surface properties. The mesoporous polymer was used as a catalyst for a three comp onent Biginelli condensation between various aldehydes, β-keto esters, and urea/thioureas to give 3,4-dihydropyrimidine-2(1H-ones. The reactions were carried out under conventional heating as well as solvent-free microwave irradiation of solid components, and in both the cases, the mesoporous polymer MPDVAA-1 proved to be a powerful, robust, and reusable catalyst with high catalytic efficiency.

  14. Dimeric supramolecular motifs of two carboxylate-guanidinium compounds.

    Science.gov (United States)

    Ashiq, Muhammad Irfan; Hussain, Ishtiaq; Dixon, Sally; Light, Mark E; Kilburn, Jeremy D

    2010-09-01

    The structures of N-benzyl-N'-{6-[(4-carboxylatobenzyl)aminocarbonyl]-2-pyridylmethyl}guanidinium, C(23)H(23)N(5)O(3), (I), and N-[2-(benzylaminocarbonyl)ethyl]-N'-{6-[(4-carboxylatobenzyl)aminocarbonyl]-2-pyridylmethyl}guanidinium monohydrate, C(26)H(28)N(6)O(4).H(2)O, (II), both form three-dimensional supramolecular hydrogen-bonded networks based on a dimeric primary synthon involving carboxylate-guanidinium linkages. The differences in the geometries and hydrogen-bonding connectivities are driven by the additional methylpropionamide group and water of crystallization of (II). PMID:20814105

  15. (2S,4R-4-Fluoropyrrolidinium-2-carboxylate

    Directory of Open Access Journals (Sweden)

    David B. Hobart Jr

    2012-08-01

    Full Text Available The crystal structure of the title compound, C5H8FNO2, at 100 K, displays intermolecular N—H...O hydrogen bonding between the ammonium and carboxylate groups as a result of its zwitterionic nature in the solid state. The five-membered ring adopts an envelope conformation with the C atom at the 3-position as the flap. The compound is of interest with respect to the synthesis and structural properties of synthetic collagens. The absolute structure was determined by comparison with the commercially available material.

  16. Study on Copolymerization of Rare Earth-Carboxylic Acid Complex

    Institute of Scientific and Technical Information of China (English)

    Qiu Guanmin(邱关明); Zhang Ming(张明); Yan Chang hao(严长浩); Zhou Lanxiang(周兰香); Dai Shaojun(戴少俊); Okamo to Hiroshi

    2003-01-01

    Complex of rare earth with carboxylic acid was prepared by precipita tion and direct method. It was copolymerized with such monomers as acrylic acid and other ones to synthesize ionomer of rare earth and organic polymer with different rare earth contents. Its glass-transition temperature and heat stability were analyzed by TG and DTA. Infra-red detector was used to show its structure. The effect of rare earth complex prepared by different methods on copolymerization and properties of copolymers was also discussed.

  17. Separation and determination of some carboxylic acids by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Sladkov, V.; Fourest, B

    2006-07-01

    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  18. Azetidine-2-carboxylic acid in garden beets (Beta vulgaris).

    Science.gov (United States)

    Rubenstein, Edward; Zhou, Haihong; Krasinska, Karolina M; Chien, Allis; Becker, Christopher H

    2006-05-01

    Azetidine-2-carboxylic acid (L-Aze) is a toxic and teratogenic non-protein amino acid. In many species, including man, L-Aze is misincorporated into protein in place of proline, altering collagen, keratin, hemoglobin, and protein folding. In animal models of teratogenesis, it causes a wide range of malformations. The role of L-Aze in human disease has been unexplored, probably because the compound has not been associated with foods consumed by humans. Herein we report the presence of L-Aze in the garden or table beet (Beta vulgaris).

  19. Modeling Donnan Dialysis Separation for Carboxylic Anion Recovery

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Møllerhøj, Martin; Jørgensen, Sten Bay;

    2010-01-01

    dynamic model for transport of multiple ions through an anion exchange membrane is derived based on an irreversible thermodynamics approach. This model accounts for the convective transport of the dissociated and undissociated species in the channels with diffusion and migration across the boundary...... boundary layers and membranes. The model consists of a system of partial differential equations that are solved numerically. The aim of this paper is to corroborate this general model for several monoprotic carboxylic acids reported in the literature. The model reproduces satisfactorily experimental fluxes...

  20. Separation and determination of some carboxylic acids by capillary electrophoresis

    International Nuclear Information System (INIS)

    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  1. SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF OXIME ESTERS FROM DIHYDROCUMIC ACID

    Directory of Open Access Journals (Sweden)

    Yanqing Gao,

    2012-07-01

    Full Text Available Dihydrocumic acid was prepared from β-pinene through oxidation and dehydration. Then, ten oxime esters from dihydrocumic acid were synthesized. Reaction conditions of the oxime esters were adjusted and their structures were characterized by IR, 1H-NMR, MS, and elemental analysis. The antibacterial activity of these newly synthesized oxime esters against Gram-negative bacteria and Gram-positive bacteria was also investigated using the inhibition zone method. The preliminary results indicated that seven compounds displayed better antibacterial activity against Gram-negative bacteria compared with bromogeramine, a commercially available antibacterial agent.

  2. Sugar ester surfactants: enzymatic synthesis and applications in food industry.

    Science.gov (United States)

    Neta, Nair S; Teixeira, José A; Rodrigues, Lígia R

    2015-01-01

    Sugar esters are non-ionic surfactants that can be synthesized in a single enzymatic reaction step using lipases. The stability and efficiency of lipases under unusual conditions and using non-conventional media can be significantly improved through immobilization and protein engineering. Also, the development of de novo enzymes has seen a significant increase lately under the scope of the new field of synthetic biology. Depending on the esterification degree and the nature of fatty acid and/or sugar, a range of sugar esters can be synthesized. Due to their surface activity and emulsifying capacity, sugar esters are promising for applications in food industry.

  3. A synthetic approach to carbon-14 labeled anti-bacterial naphthyridine and quinolone carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Ekhato, I.V.; Huang, C.C. (Parke, Davis and Co., Ann Arbor, MI (United States))

    1993-09-01

    Labeled versions of (S)-clinafloxacin (1) and two napththyridine carboxylic acid anti-bacterial compounds 2 and 3 which are currently in development were synthesized. Preparations started from hitherto unknown bromo compounds 22 and 10, from which the corresponding [sup 14]C-labeled aromatic carboxylic acids 23 and 12 were generated by metal-halogen exchange followed by carboxylation reaction. Details of these preparations are given. (author).

  4. Exploring the reductive capacity of Pyrococcus furiosus. The reduction of carboxylic acids and pyridine nucleotides

    OpenAIRE

    Ban, van den, A.W.

    2001-01-01

    This Ph.D. project started in 1997 and its main goal was to obtain insight in the reductive capacity of the hyperthermophilic archaeon Pyrococcus furiosus . The research was focused on the biocatalytic reduction of carboxylic acids.Reductions of carboxylic acids are interesting reactions, since the generated products, aldehydes and alcohols, are potentially applicable in the fine-chemical industry. However, the reduction of carboxylic acids to the corresponding aldehydes is a thermodynamicall...

  5. Electrochemical deposition of a copper carboxylate layer on copper as potential corrosion inhibitor

    OpenAIRE

    Elia, Alice; De Wael, Karolien; Dowsett, Mark; Adriaens, Annemie

    2012-01-01

    Carboxylic acids and sodium carboxylates are used to protect metals against aqueous and atmospheric corrosion. In this paper we describe the application of a layer of copper carboxylate on the surface of a copper electrode by means of cyclic voltammetry technique, and tests which measure the corresponding resistance to aqueous corrosion. Unlike the soaking process, which also forms a film on the surface, the use of cyclic voltammetry allows one to follow the deposition process of the copper c...

  6. Purification and characterization of a glycoside hydrolase family 43 Beta-xylosidase from Geobacillus thermoleovorans IT-08

    Science.gov (United States)

    The gene encoding a glycoside hydrolase family 43 enzyme termed deAX was isolated and subcloned from a culture seeded with a compost starter mixed bacterium population, expressed with a C-terminal His6-tag, and purified to apparent homogeneity. deAX was monomeric in solution, and had a broad pH maxi...

  7. Evidence for lysosomal exocytosis and release of aggrecan-degrading hydrolases from hypertrophic chondrocytes, in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Edward R. Bastow

    2012-02-01

    The abundant proteoglycan, aggrecan, is resorbed from growth plate cartilage during endochondral bone ossification, yet mice with genetically-ablated aggrecan-degrading activity have no defects in bone formation. To account for this apparent anomaly, we propose that lysosomal hydrolases degrade extracellular, hyaluronan-bound aggrecan aggregates in growth plate cartilage, and that lysosomal hydrolases are released from hypertrophic chondrocytes into growth plate cartilage via Ca2+-dependent lysosomal exocytosis. In this study we confirm that hypertrophic chondrocytes release hydrolases via lysosomal exocytosis in vitro and we show in vivo evidence for lysosomal exocytosis in hypertrophic chondrocytes during skeletal development. We show that lysosome-associated membrane protein 1 (LAMP1 is detected at the cell surface following in vitro treatment of epiphyseal chondrocytes with the calcium ionophore, ionomycin. Furthermore, we show that in addition to the lysosomal exocytosis markers, cathepsin D and β-hexosaminidase, ionomycin induces release of aggrecan- and hyaluronan-degrading activity from cultured epiphyseal chondrocytes. We identify VAMP-8 and VAMP7 as v-SNARE proteins with potential roles in lysosomal exocytosis in hypertrophic chondrocytes, based on their colocalisation with LAMP1 at the cell surface in secondary ossification centers in mouse tibiae. We propose that resorbing growth plate cartilage involves release of destructive hydrolases from hypertrophic chondrocytes, via lysosomal exocytosis.

  8. Bile salt hydrolase in Lactobacillus plantarum: functional analysis and delivery to the intestinal tract of the host

    NARCIS (Netherlands)

    Lambert, J.M.

    2008-01-01

    In the liver of mammals, bile salts are synthesised from cholesterol and conjugated to either taurine or glycine. Following release into the intestine, conjugated bile salts can be deconjugated by members of the endogenous microbiota that produce an enzyme called bile salt hydrolase (Bsh). Bsh appea

  9. Improved enantioselective conversion of styrene epoxides and meso-epoxides through epoxide hydrolases with a mutated nucleophile-flanking residue

    NARCIS (Netherlands)

    van Loo, Bert; Kingma, Jaap; Heyman, Gertjan; Wittenaar, Alex; Lutje Spelberg, Jeffrey H.; Sonke, Theo; Janssen, Dick B.

    2009-01-01

    In epoxide hydrolase from Agrobacterium radiobacter (EchA), phenylalanine 108 flanks the nucleophilic aspartate and forms part of the substrate-binding pocket. The influence of mutations at this position on the activity and enantioselectivity of the enzyme was investigated. Screening for improved en

  10. Cloning, crystallization and preliminary X-ray study of XC1258, a CN-hydrolase superfamily protein from Xanthomonas campestris

    International Nuclear Information System (INIS)

    A CN-hydrolase superfamily protein from the plant pathogen X. campestris has been overexpressed in E. coli, purified and crystallized. CN-hydrolase superfamily proteins are involved in a wide variety of non-peptide carbon–nitrogen hydrolysis reactions, producing some important natural products such as auxin, biotin, precursors of antibiotics etc. These reactions all involve attack on a cyano or carbonyl carbon by a conserved novel catalytic triad Glu-Lys-Cys through a thiol acylenzyme intermediate. However, classification into the CN-hydrolase superfamily based on sequence similarity alone is not straightforward and further structural data are necessary to improve this categorization. Here, the cloning, expression, crystallization and preliminary X-ray analysis of XC1258, a CN-hydrolase superfamily protein from the plant pathogen Xanthomonas campestris (Xcc), are reported. The SeMet-substituted XC1258 crystals diffracted to a resolution of 1.73 Å. They are orthorhombic and belong to space group P21212, with unit-cell parameters a = 143.8, b = 154.63, c = 51.3 Å, respectively

  11. Variation in bleomycin hydrolase gene is associated with reduced survival after chemotherapy for testicular germ cell cancer

    NARCIS (Netherlands)

    de Haas, Esther C; Zwart, Nynke; Meijer, Coby; Nuver, Janine; Suurmeijer, Albert J H; Hoekstra, Harald J; van der Steege, Gerrit; Sleijfer, Dirk Th; Gietema, Jourik A; Boezen, Hendrika

    2008-01-01

    PURPOSE: Response to chemotherapy may be determined by gene polymorphisms involved in metabolism of cytotoxic drugs. A plausible candidate is the gene for bleomycin hydrolase (BLMH), an enzyme that inactivates bleomycin, an essential component of chemotherapy regimens for disseminated testicular ger

  12. Evidence for biosynthesis of lactase-phlorizin hydrolase as a single-chain high-molecular weight precursor

    DEFF Research Database (Denmark)

    Skovbjerg, H; Danielsen, E M; Noren, Ove;

    1984-01-01

    Precursor forms of lactase-phlorizin hydrolase, sucrase-isomaltase and aminopeptidase N were studied by pulse-labelling of organ-cultured human intestinal biopsies. After labelling the biopsies were fractionated by the Ca2+-precipitation method and the enzymes isolated by immunoprecipitation. The...

  13. Construction and characterisation of a genetically engineered Escherichia coli strain for the epoxide hydrolase-catalysed kinetic resolution of epoxides

    NARCIS (Netherlands)

    Visser, H.; Oliveira Vil Filho, de M.; Liese, A.; Weijers, C.A.G.M.; Verdoes, J.C.

    2003-01-01

    The Rhodotorula glutinis epoxide hydrolase, Eph1, was produced in the heterologous host Escherichia coli BL21(DE3) in order to develop a highly effective epoxide hydrolysis system. A 138-fold increase in Eph1 activity was found in cell extracts of the recombinant E. coli when compared to cell extrac

  14. Biochemical characterization of Aspergillus niger Cfcl, a glycoside hydrolase family 18 chitinase that releases monomers during substrate hydrolysis

    NARCIS (Netherlands)

    van Munster, Jolanda M.; van der Kaaij, Rachel M.; Dijkhuizen, Lubbert; van der Maarel, Marc J. E. C.

    2012-01-01

    The genome of the industrially important fungus Aspergillus niger encodes a large number of glycoside hydrolase family 18 members annotated as chitinases. We identified one of these putative chitinases, Cfcl, as a representative of a distinct phylogenetic clade of homologous enzymes conserved in all

  15. A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films.

    Science.gov (United States)

    Barth, Markus; Honak, Annett; Oeser, Thorsten; Wei, Ren; Belisário-Ferrari, Matheus R; Then, Johannes; Schmidt, Juliane; Zimmermann, Wolfgang

    2016-08-01

    TfCut2 from Thermobifida fusca KW3 and the metagenome-derived LC-cutinase are bacterial polyester hydrolases capable of efficiently degrading polyethylene terephthalate (PET) films. Since the enzymatic PET hydrolysis is inhibited by the degradation intermediate mono-(2-hydroxyethyl) terephthalate (MHET), a dual enzyme system consisting of a polyester hydrolase and the immobilized carboxylesterase TfCa from Thermobifida fusca KW3 was employed for the hydrolysis of PET films at 60°C. HPLC analysis of the reaction products obtained after 24 h of hydrolysis showed an increased amount of soluble products with a lower proportion of MHET in the presence of the immobilized TfCa. The results indicated a continuous hydrolysis of the inhibitory MHET by the immobilized TfCa and demonstrated its advantage as a second biocatalyst in combination with a polyester hydrolase for an efficient degradation oft PET films. The dual enzyme system with LC-cutinase produced a 2.4-fold higher amount of degradation products compared to TfCut2 after a reaction time of 24 h confirming the superior activity of his polyester hydrolase against PET films. PMID:27214855

  16. Comparative expression of the mRNA for three intestinal hydrolases during postnatal development in the rat

    DEFF Research Database (Denmark)

    Freund, J N; Torp, N; Duluc, I;

    1990-01-01

    The distribution of the mRNA for intestinal aminopeptidase-N, lactase-phlorizin hydrolase and sucrase-isomaltase was compared during rat postnatal development as well as along the longitudinal axis of the intestinal tract including small-intestine and colon. We found out that each mRNA exhibited ...

  17. Crystal structure analysis of a glycosides hydrolase family 42 cold-adapted ß-galactosidase from Rahnella sp. R3

    Science.gov (United States)

    The ß-galactosidase isolated from a psychrotrophic bacterium, Rahnella sp. R3 (R-ß-Gal), exhibits high activity at low temperature. R-ß-Gal is a member of the glycoside hydrolases family 42 (GH42), and forms a 225 kDa trimeric structure in solution. The X-ray crystal structure of R-ß-Gal was determi...

  18. Purification and characterization of a cis-epoxysuccinic acid hydrolase from Nocardia tartaricans CAS-52, and expression in Escherichia coli.

    Science.gov (United States)

    Wang, Ziqiang; Wang, Yunshan; Su, Zhiguo

    2013-03-01

    A highly enantioselective cis-epoxysuccinic acid hydrolase from Nocardia tartaricans was purified to electrophoretic homogeneity. The enzyme was purified 184-fold with a yield of 18.8 %. The purified cis-epoxysuccinic acid hydrolase had a monomeric molecular weight of 28 kDa, and its optimum conditions were 37 °C and pH 7-9. With sodium cis-epoxysuccinate as the substrate, Michaelis-Menten enzyme kinetics analysis gave a Km value of 35.71 mM and a Vmax of 2.65 mM min(-1). The enzyme was activated by Ni(2+) and Al(3+), while strongly inhibited by Fe(3+), Fe(2+), Cu(2+), and Ag(+). The cis-epoxysuccinic acid hydrolase gene was cloned, and its open reading frame sequence predicted a protein composed of 253 amino acids. A pET11a expression plasmid carrying the gene under the control of the T7 promoter was introduced into Escherichia coli, and the cis-epoxysuccinic acid hydrolase gene was successfully expressed in the recombinant strains. PMID:22552902

  19. Substituent effects on hydrogen bonding of aromatic amide-carboxylate.

    Science.gov (United States)

    Sen, Ibrahim; Kara, Hulya; Azizoglu, Akın

    2016-10-01

    N-(p-benzoyl)-anthranilic acid (BAA) derivatives have been synthesized with different substituents (X: Br, Cl, OCH3, CH3), and their crystal structures have been analyzed in order to understand the variations in their molecular geometries with respect to the substituents by using (1)H NMR, (13)C NMR, IR and X-ray single-crystal diffraction. The carboxylic acid group forms classic OH⋯O hydrogen bonded dimers in a centrosymmetric R2(2)(8) ring motifs for BAA-Br and BAA-Cl. However, no carboxylic acid group forms classic OH⋯O hydrogen bonded dimers in BAA-OCH3 and BAA-CH3. The asymmetric unit consists of two crystallographically independent molecules in BAA-OCH3. DFT computations show that the interaction energies between monomer and dimer are in the range of 0.5-3.8kcal/mol with the B3LYP/6-31+G*, B3LYP/6-31++G*, B3LYP/6-31++G**, and B3LYP/AUG-cc-pVDZ levels of theory. The presence of different hydrogen bond patterns is also governed by the substrate. For monomeric compounds studied herein, theoretical calculations lead to two low-energy conformers; trans (a) and cis (b). Former one is more stable than latter by about 4kcal/mol. PMID:27239947

  20. Integrated process for preparing a carboxylic acid from an alkane

    Energy Technology Data Exchange (ETDEWEB)

    Benderly, Abraham (Elkins Park, PA); Chadda, Nitin (Radnor, PA); Sevon, Douglass (Fairless Hills, PA)

    2011-12-20

    The present invention relates to an integrated process for producing unsaturated carboxylic acids from the corresponding C.sub.2-C.sub.4 alkane. The process begins with performance of thermally integrated dehydrogenation reactions which convert a C.sub.2-C.sub.4 alkane to its corresponding C.sub.2-C.sub.4 alkene, and which involve exothermically converting a portion of an alkane to its corresponding alkene by oxidative dehydrogenation in an exothermic reaction zone, in the presence of oxygen and a suitable catalyst, and then feeding the products of the exothermic reaction zone to an endothermic reaction zone wherein at least a portion of the remaining unconverted alkane is endothermically dehydrogenated to form an additional quantity of the same corresponding alkene, in the presence of carbon dioxide and an other suitable catalyst. The alkene products of the thermally integrated dehydrogenation reactions are then provided to a catalytic vapor phase partial oxidation process for conversion of the alkene to the corresponding unsaturated carboxylic acid or nitrile. Unreacted alkene and carbon dioxide are recovered from the oxidation product stream and recycled back to the thermally integrated dehydrogenation reactions.

  1. Substituent effects on hydrogen bonding of aromatic amide-carboxylate

    Science.gov (United States)

    Sen, Ibrahim; Kara, Hulya; Azizoglu, Akın

    2016-10-01

    N-(p-benzoyl)-anthranilic acid (BAA) derivatives have been synthesized with different substituents (X: Br, Cl, OCH3, CH3), and their crystal structures have been analyzed in order to understand the variations in their molecular geometries with respect to the substituents by using 1H NMR, 13C NMR, IR and X-ray single-crystal diffraction. The carboxylic acid group forms classic Osbnd H ⋯ O hydrogen bonded dimers in a centrosymmetric R22(8) ring motifs for BAA-Br and BAA-Cl. However, no carboxylic acid group forms classic Osbnd H ⋯ O hydrogen bonded dimers in BAA-OCH3 and BAA-CH3. The asymmetric unit consists of two crystallographically independent molecules in BAA-OCH3. DFT computations show that the interaction energies between monomer and dimer are in the range of 0.5-3.8 kcal/mol with the B3LYP/6-31 + G*, B3LYP/6-31 ++G*, B3LYP/6-31 ++G**, and B3LYP/AUG-cc-pVDZ levels of theory. The presence of different hydrogen bond patterns is also governed by the substrate. For monomeric compounds studied herein, theoretical calculations lead to two low-energy conformers; trans (a) and cis (b). Former one is more stable than latter by about 4 kcal/mol.

  2. Biocompatibility studies of polyacrylonitrile membranes modified with carboxylated polyetherimide

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, S.; Rajesh, S.; Jayalakshmi, A.; Mohan, D., E-mail: mohantarun@gmail.com

    2013-10-15

    Poly (ether-imide) (PEI) was carboxylated and used as the hydrophilic modification agent for the preparation of polyacrylonitrile (PAN) membranes. Membranes were prepared with different blend compositions of PAN and CPEI by diffusion induced precipitation. The modified membranes were characterized by thermo gravimetric analysis (TGA), mechanical analysis, scanning electron microscopy (SEM) and contact angle measurement to understand the influence of CPEI on the properties of the membranes. The biocompatibility studies exhibited reduced plasma protein adsorption, platelet adhesion and thrombus formation on the modified membrane surface. The complete blood count (CBC) results of CPEI incorporated membranes showed stable CBC values and significant decrease in the complement activation were also observed. In addition to good cytocompatibility, monocytes cultured on these modified membranes exhibited improved functional profiles in 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Thus it could be concluded that PAN/CPEI membranes with excellent biocompatibility can be useful for hemodialysis. Highlights: • Carboxylated PEI was prepared and utilized as hydrophilic modification agent. • CPEI incorporated into PAN to improved biocompatibility and cyto compatibility • Biocompatibility of membranes was correlated with morphology and hydrophilicity. • Antifouling studies of the PAN/CPEI membranes was studied by BSA as model foulant.

  3. Dispersion of Co-poly Carboxylate Superplasticizer Containing Polyether Side Chain

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Free radical co-polymerization was employed to synthesize co-poly carboxylate (PC) superplasticizers with different amount of carboxyl and methyl polyethylene glycol (MPEG) side chain.Dispersion ability and retention of PC were compared with one another. The results show that increase of side chain is advantageous to dispersion, but it decreases when amount of MPEG is beyond a certain value which is different with the proportion of carboxyl. If the amount of carboxyl increases, the influence of side chain in copolymer on dispersion diminishes. Polyether side chain is advantageous to retention. And the author explained the mechanism of PC using the theory of steric repulsive force.

  4. Purification and characterization of a novel chlorpyrifos hydrolase from Cladosporium cladosporioides Hu-01.

    Science.gov (United States)

    Gao, Yan; Chen, Shaohua; Hu, Meiying; Hu, Qiongbo; Luo, Jianjun; Li, Yanan

    2012-01-01

    Chlorpyrifos is of great environmental concern due to its widespread use in the past several decades and its potential toxic effects on human health. Thus, the degradation study of chlorpyrifos has become increasing important in recent years. A fungus capable of using chlorpyrifos as the sole carbon source was isolated from organophosphate-contaminated soil and characterized as Cladosporium cladosporioides Hu-01 (collection number: CCTCC M 20711). A novel chlorpyrifos hydrolase from cell extract was purified 35.6-fold to apparent homogeneity with 38.5% overall recovery by ammoniumsulfate precipitation, gel filtration chromatography and anion-exchange chromatography. It is a monomeric structure with a molecular mass of 38.3 kDa. The pI value was estimated to be 5.2. The optimal pH and temperature of the purified enzyme were 6.5 and 40°C, respectively. No cofactors were required for the chlorpyrifos-hydrolysis activity. The enzyme was strongly inhibited by Hg²⁺, Fe³⁺, DTT, β-mercaptoethanol and SDS, whereas slight inhibitory effects (5-10% inhibition) were observed in the presence of Mn²⁺, Zn²⁺, Cu²⁺, Mg²⁺, and EDTA. The purified enzyme hydrolyzed various organophosphorus insecticides with P-O and P-S bond. Chlorpyrifos was the preferred substrate. The Km and Vmax values of the enzyme for chlorpyrifos were 6.7974 μM and 2.6473 μmol·min⁻¹, respectively. Both NH2-terminal sequencing and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometer (MALDI-TOF-MS) identified an amino acid sequence MEPDGELSALTQGANS, which shared no similarity with any reported organophosphate-hydrolyzing enzymes. These results suggested that the purified enzyme was a novel hydrolase and might conceivably be developed to fulfill the practical requirements to enable its use in situ for detoxification of chlorpyrifos. Finally, this is the first described chlorpyrifos hydrolase from fungus.

  5. The influence of ferric (III citrate on ATP-hydrolases of Desulfuromonas acetoxidans ІМV В-7384

    Directory of Open Access Journals (Sweden)

    O. Maslovska

    2013-02-01

    Full Text Available Desulfuromonas acetoxidans obtains energy for growth by the anaerobic oxidation of organic compounds with the carbon dioxide formation. It was found that ferrum and manganese are used as terminal electron acceptors in the processes of anaerobic respiration, such as dissimilative Fe3+- and Mn4+-reduction, carried out by these bacteria (Lovely, 1991. D. acetoxidans ІМV B-7384 can be used as anode biocatalyst in microbial fuel cell with high electron recovery through acetate oxidation to the electric current as a result of electron transfer to the anode or 3d-type transition metals, such as ferrum and manganese, in the process of their reduction. Investigation of biochemical changes of D. acetoxidans ІМV B-7384 under the influence of Fe (III compounds is important for optimization of the process of bacterial electricity generation. ATP-hydrolase is located in cytoplasmic membrane, and its subunits are exposed to both the cytoplasm and the external environment. Therefore, the changes of that enzyme activity can be used as an indicator of various stress exposure. Presence of ferric iron ions in the bacterial growth medium could catalyze generation of organic reactive oxygen species, such as peroxyl (ROO- and alkoxyl (RO- radicals. Lipid peroxidation is one of the main reasons of cell damage and it’s following death under the influence of reactive oxygen metabolites. It is known that lipid peroxidation and membrane transport processes are somehow interrelated, but mechanisms of such interaction are still unidentified. In our previous researche we have shown the influence of ferric (III citrate on the intensity of lipid peroxidation of D. аcetoxidans ІМV В-7384. Significant increase of the content of lipid peroxidation products (lipid hydroperoxides, conjugated dienes and malondialdehyde in bacterial cells has been observed under the addition of ferric (III citrate into the cultural medium. The increase of the concentration of lipid

  6. Baker's yeast: production of D- and L-3-hydroxy esters

    DEFF Research Database (Denmark)

    Dahl, Allan Carsten; Madsen, Jørgen Øgaard

    1998-01-01

    Baker's yeast grown under oxygen limited conditions and used in the reduction of 3-oxo esters results in a shift of the stereoselectivity of the yeast towards D-hydroxy esters as compared with ordinary baker's yeast. The highest degree of stereoselectivity was obtained with growing yeast or yeast...... harvested while growing. In contrast, the stereoselectivity was shifted towards L-hydroxy esters when the oxo esters were added slowly to ordinary baker's yeast supplied with gluconolactone as co-substrate. The reduction rate with gluconolactone was increased by active aeration. Ethyl L-(S)-3......-hydroxybutanoate was afforded in >99% ee. Both enantiomers of ethyl 3-hydroxypentanoate, D-(R) in 96% ee and L-(S) in 93% ee, and of ethyl 4-chloro-3-hydroxybutanoate, D-(S) in 98% ee and L-(R) in 94% ee, were obtained. The results demonstrate that the stereoselectivity of baker's yeast can be controlled...

  7. Rare linking hydrogels based on acrylic acid and carbohydrate esters

    Directory of Open Access Journals (Sweden)

    U. Akhmedov

    2012-09-01

    Full Text Available The process of copolymerization of acrylic acid and esters poliallil sucrose; pentaerythritol and sorbitol, some of its laws are identified. The kinetic regularities of copolymerization and the optimum conditions of synthesis was established.

  8. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-03-15

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  9. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E; Cohen, Steven A; Gildon, Demond L

    2015-04-07

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  10. Radiosynthesis of a novel potential adenosine A{sub 3} receptor ligand, 5-ethyl 2,4-diethyl-3-((2-[{sup 18}F]fluoroethyl)sulfanylcarbonyl)-6-phenylpyridine-5-carboxylate ([{sup 18}F]FE rate at SUPPY:2)

    Energy Technology Data Exchange (ETDEWEB)

    Haeusler, D. [Dept. of Nuclear Medicine, Medical Univ. of Vienna (Austria); Dept. of Pharmaceutical Tech. and Biopharmaceutics, Univ. of Vienna (Austria); Mitterhauser, M. [Dept. of Nuclear Medicine, Medical Univ. of Vienna (Austria); Dept. of Pharmaceutical Tech. and Biopharmaceutics, Univ. of Vienna (Austria); Hospital Pharmacy of the General Hospital of Vienna (Austria); Mien, L.K. [Dept. of Nuclear Medicine, Medical Univ. of Vienna (Austria); Dept. of Pharmaceutical Tech. and Biopharmaceutics, Univ. of Vienna (Austria); Dept. of Psychiatry and Psychotherapy, Medical Univ. of Vienna (Austria); Shanab, K.; Spreitzer, H. [Dept. of Drug and Natural Product Synthesis, Univ. of Vienna (Austria); Lanzenberger, R.R [Dept. of Psychiatry and Psychotherapy, Medical Univ. of Vienna (Austria); Schirmer, E. [Dept. of Nuclear Medicine, Medical Univ. of Vienna (Austria); Dept. of Drug and Natural Product Synthesis, Univ. of Vienna (Austria); Ungersboeck, J.; Wadsak, W. [Dept. of Nuclear Medicine, Medical Univ. of Vienna (Austria); Dept. of Inorganic Chemistry, Univ. of Vienna (Austria); Nics, L. [Dept. of Nuclear Medicine, Medical Univ. of Vienna (Austria); Dept. of Nutritional Sciences, Univ. of Vienna (Austria); Viernstein, H. [Dept. of Pharmaceutical Tech. and Biopharmaceutics, Univ. of Vienna (Austria); Dudezak, R.; Kletter, K. [Dept. of Nuclear Medicine, Medical Univ. of Vienna (Austria)

    2009-07-01

    Since, to date very limited information on the distribution and function of the adenosine A{sub 3} receptor is available, the development of suitable radioligands is needed. Recently, we introduced [{sup 18}F]FE rate at SUPPY (5-(2-[{sup 18}F]fluoroethyl) 2,4-diethyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate) as the first PET-ligand for the A3R. Regarding the metabolic profile - this class of dialkylpyridines comprises two ester functions within one molecule, one carboxylic and one thiocarboxylic - one could expect carboxylesterases significantly contributing to cleavage and degradation. Therefore, our aim was the development of [{sup 18}F]FE rate at SUPPY:2 (5-ethyl 2,4-diethyl-3-((2-[{sup 18}F]fluoroethyl)sulfanylcarbonyl)-6-phenylpyridine-5-carboxylate), the functional isomer containing the label at the thiocarboxylic moiety. For satisfactory yields in high scale radiosyntheses, a reaction temperature of 75 C has to be applied for at least 20 min using 20 mg/mL of precursor. So far, 6 complete high-scale radiosyntheses were performed. Starting from an average of 51.2 {+-} 21.8 GBq (mean{+-}SD) [{sup 18}F]fluoride, 5.8 {+-} 4.1 GBq of formulated [{sup 18}F]FE rate at SUPPY:2 (12.0{+-}5.4%, based on [{sup 18}F]fluoride, not corrected for decay) were prepared in 75 {+-} 8 min. (orig.)

  11. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    Science.gov (United States)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  12. Efficient Calculation of Enzyme Reaction Free Energy Profiles Using a Hybrid Differential Relaxation Algorithm: Application to Mycobacterial Zinc Hydrolases.

    Science.gov (United States)

    Romero, Juan Manuel; Martin, Mariano; Ramirez, Claudia Lilián; Dumas, Victoria Gisel; Marti, Marcelo Adrián

    2015-01-01

    Determination of the free energy profile for an enzyme reaction mechanism is of primordial relevance, paving the way for our understanding of the enzyme's catalytic power at the molecular level. Although hybrid, mostly DFT-based, QM/MM methods have been extensively applied to this type of studies, achieving accurate and statistically converged results at a moderate computational cost is still an open challenge. Recently, we have shown that accurate results can be achieved in less computational time, combining Jarzynski's relationship with a hybrid differential relaxation algorithm (HyDRA), which allows partial relaxation of the solvent during the nonequilibrium steering of the reaction. In this work, we have applied this strategy to study two mycobacterial zinc hydrolases. Mycobacterium tuberculosis infections are still a worldwide problem and thus characterization and validation of new drug targets is an intense field of research. Among possible drug targets, recently two essential zinc hydrolases, MshB (Rv1170) and MA-amidase (Rv3717), have been proposed and structurally characterized. Although possible mechanisms have been proposed by analogy to the widely studied human Zn hydrolases, several key issues, particularly those related to Zn coordination sphere and its role in catalysis, remained unanswered. Our results show that mycobacterial Zn hydrolases share a basic two-step mechanism. First, the attacking water becomes deprotonated by the conserved base and establishes the new C-O bond leading to a tetrahedral intermediate. The intermediate requires moderate reorganization to allow for proton transfer to the amide N and C-N bond breaking to occur in the second step. Zn ion plays a key role in stabilizing the tetrahedral intermediate and balancing the negative charge of the substrate during hydroxide ion attack. Finally, comparative analysis of other Zn hydrolases points to a convergent mechanistic evolution. PMID:26415840

  13. Mechanism of plasma cholesteryl ester transfer in hypertriglyceridemia.

    OpenAIRE

    Mann, C J; Yen, F T; Grant, A M; Bihain, B E

    1991-01-01

    Plasma net cholesteryl ester (CE) transfer and optimum cholesteryl ester transfer protein (CETP) activity were determined in primary hypertriglyceridemic (n = 11) and normolipidemic (n = 15) individuals. The hypertriglyceridemic group demonstrated threefold greater net CE transfer leading to enhanced accumulation of CE in VLDL. This increased net transfer was not accompanied by a change in CETP activity. In normolipidemia, but not in hypertriglyceridemia, net CE transfer correlated with VLDL ...

  14. A newly discovered xenobiotic metabolic pathway: Ethyl ester formation

    Energy Technology Data Exchange (ETDEWEB)

    Chou, R.C.; Wyss, R.; Huselton, C.A.; Wiegand, U.W. (F. Hoffmann-La Roche Ltd., Basel (Switzerland))

    1991-01-01

    Formation of etretinate, ethyl ester of acitretin, can be confirmed in vitro and in vivo using acitretin as the substrate. Etretinate was identified by LC/MS. The in vitro incubation was performed using rat and human liver 12000 g supernatant, and the in vivo experiment was conducted in rats after oral dosing of acitretin. The ethyl ester formation was greatly enhanced by addition of or dosing with ethanol.

  15. Rheology of silicon carbide/vinyl ester nanocomposites

    OpenAIRE

    Yong, Virginia; Hahn, H. Thomas

    2006-01-01

    Silicon carbide (SiC) nanoparticles with no surface treatment raise the viscosity of a vinyl ester resin much more intensely than micrometer-size SiC particles. An effective dispersant generally causes a reduction in the resin viscosity attributed to its surface-active properties and thereby increases the maximum fraction of particles that can be introduced. This article assesses the rheological behavior of SiC-nanoparticle-filled vinyl ester resin systems with the Bingham, power-law, Hersche...

  16. Use of fumaric acid esters in psoriasis

    Directory of Open Access Journals (Sweden)

    Roll Antonie

    2007-01-01

    Full Text Available Fumaric acid esters (FAE are chemical compounds derived from the unsaturated dicarbonic acid fumaric acid. The usage of FAEs in treatment of psoriasis was introduced in the late 1950′s. In the 1980s more standardized oral preparations of FAEs were developed containing dimethylfumarate(DMF and salts of monoethylfumarate(MEF as main compounds. In 1994, Fumaderm ® an enteric-coated tablet containing DMF and calcium, magnesium, and zinc salts of MEF was approved for the treatment of psoriasis in Germany and since then has become the most commonly used systemic therapy in this country. Fumaric acids have been proven to be an effective therapy in patients with psoriasis even though the mechanisms of action are not completely understood. About 50-70% of the patients achieve PASI 75 improvement within four months of treatment and without any long-term toxicity, immunosuppressive effects, or increased risk of infection or malignancy. Tolerance is limited by gastrointestinal side effects and flushing of the skin. This article reviews pharmacokinetics, uses, contraindications, dosages, and side effects of treatment with FAEs.

  17. Solid state crystallisation of oligosaccharide ester derivatives

    CERN Document Server

    Wright, E A

    2002-01-01

    An investigation of the solid state properties of oligosaccharide ester derivatives (OEDs) with potential applications in drug delivery has been carried out. The amorphous form of two OEDs, trehalose octa-acetate (TOAC) and 6:6'-di-(beta-tetraacetyl glucuronyl)-hexaacetyl trehalose (TR153), was investigated as a matrix for the sustained release of active ingredients. The matrices showed a tendency to crystallise and so polymorph screens were performed to provide crystalline samples for structural analysis. The crystal structures of TOAC methanolate and TR153 acetonitrile solvate have been determined by single-crystal laboratory X-ray diffraction. TOAC methanolate crystallises in the orthorhombic space group P2 sub 1 2 sub 1 2 sub 1 with a = 15.429(18) A, b = 17.934(19) A and c = 13.518(4) A at 123 K. The structure is isomorphous with the previously reported structure of TOAC monohydrate form II. TR153 acetonitrile solvate crystallises in the monoclinic spacegroup C2 with a = 30:160(6) A, b = 11.878(3) A, c 20...

  18. Strategies for the analysis of highly reactive pinacolboronate esters.

    Science.gov (United States)

    Zhong, Qiqing; Ngim, Kenley K; Sun, Megan; Li, Jane; Deese, Alan; Chetwyn, Nik P

    2012-03-16

    Pinacolboronate esters (or boronic acid, pinacol esters) are widely used in the Suzuki coupling reaction to connect organic building blocks for the total synthesis of complex molecules. The 2-aminopyrimidine-5-pinacolboronate ester was used as a starting material in the synthesis of a development compound, necessitating a chromatographic purity method to assess its quality. This aryl pinacolboronate ester posed unique analytical challenges due to its facile hydrolysis to the corresponding boronic acid, which is nonvolatile and poorly soluble in organic solvents. This made GC and normal-phase HPLC analysis unsuitable. In reversed-phase mode, typical sample preparation and analysis conditions promoted rapid sample degradation to the boronic acid. To overcome these challenges, unconventional approaches were necessary in order to stabilize 2-aminopyrimidine-5-pinacolboronate ester, adequately solubilize its boronic acid, and produce acceptable separation and retention. The final method employed non-aqueous and aprotic diluent, and a reversed-phase separation using highly basic mobile phases (pH 12.4) with an ion pairing reagent. These strategies were successfully applied to several other reactive pinacolboronate esters for purity analysis, demonstrating broad applicability to this unique class of compounds. PMID:22321949

  19. The micromethod for determination of cholesterol, cholesteryl esters and phospholipids

    Directory of Open Access Journals (Sweden)

    Okabe,Akinobu

    1974-12-01

    Full Text Available We examined the method for determining microquantities of lipids, including cholesterol, cholesteryl esters and phospholipids. A standard colorimetric procedure of cholesteryl esters was modified to accommodate a quantitative thin-layer chromatography. This method involved the following steps. (1 Separation of lipids by a thin-layer chromatography: Lipids were applied to Silica gel G plates. Plates were developed with petroleum ether-diethyl etheracetic acid (82: 18: 2, vIvIv. (2 Elution of cholesterol and its esters from scraped silica gel: After scraping the silica gel with adhered cholesterol and its esters, they were eluted with chloroform-methanol (4: 1, v,tv. In the case of phspholipids, the silica gel was calcified. (3 Colorimetric determination of the lipids: Cholesterol and its esters eluted from the silica gel were determined by the method of ZAK with ROSENTHAL'S color reagent directly and after saponification, respectively. Phospholipids were calculated from the phosphorous content determined by the method of KATES. On the basis of examination of recovery and analyses of lipids extracted from tissue, it was concluded that this method permitted a reliable estimation of microquantities of cholesterol, its esters and phospholipids from small amounts of biological materials.

  20. Synthesis and insecticidal activities of new pyrethroid acid oxime ester derivatives

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A series of compounds containing oxime-ester linkage in place of the ester linkage in pyrethroid ester are designed and prepared. Bioassay data of insecticidal activities of these compounds on Ostrinia nubilalis (H.) and Culex pipines (L.) are presented. Among them 4-dimethyaminobenzaldehyde oxime ester of 2,2,3,3-tetramethylcyclopropanecarboxylic acid and 4-dimethyamino benzaldehyde oxime ester of cyclopropanecarboxylic acid are found to be potent insecticide against Ostrinia nubilalis (H.). Structure-activity relationship of the compounds is discussed.

  1. Transient expression of organophosphorus hydrolase to enhance the degrading activity of tomato fruit on coumaphos

    Institute of Scientific and Technical Information of China (English)

    Jie-hong ZHAO; De-gang ZHAO

    2009-01-01

    We constructed an expression cassette of the organophosphorus pesticide degrading (opd)gene under the control of the E8 promoter.Then opd was transformed into tomato fruit using an agroinfiltration transient expression system.β-Glueuronidase (GUS) staining,reverse transcription-polymerase chain reaction (RT-PCR),wavelength scanning,and fluorescent reaction were performed to examine the expression of the opd gene and the hydrolysis activity on eoumaphos of organophosphorus hydrolase (OPH) in tomato fruit.The results show that the agroinfiltrated tomato fruit-expressed OPH had the maximum hydrolysis activity of about 11.59 U/mg total soluble protein.These results will allow us to focus on breeding transgenie plants that could not only enhance the degrading capability of fruit and but also hold no negative effects on pest control when spraying organophosphorus pesticides onto the seedlings in fields.

  2. Studies on culture condition and extracellular hydrolase of psychrophilic bacteria from Arctic sea ice

    Institute of Scientific and Technical Information of China (English)

    Li Xiaohui; Yu Yong; Li Huirong; Zhang Lin; Jiang Xinyin; Ren Daming

    2008-01-01

    Arctic sea ice in the polar region provides a cold habitat for microbial community.Arctic sea ice microorganisms are revealed to be of considerable importance in basic research and potential in biotechnological application.This paper investigated the culture condition and extracellular hydrolase of 14 strains of different Arctic sea ice bacteria.The results showed that optimal growth temperature of strains is 15 ℃ or 20 ℃.The optimal pH is about 8.0.They hardly grow at acid condition.3% NaCl is necessary for better growth.These strains have different abilities in producing amylase,protease,cellulase and lipase.Pseudoalteronomas sp.Bsi429 and Pseudoalteronomas sp.Bsi539 produced both cellulose,protease and lipase.These results provide a basis for further developing and exploiting the cold adapted marine enzyme resources.

  3. Biosynthesis of intestinal microvillar proteins. Dimerization of aminopeptidase N and lactase-phlorizin hydrolase

    DEFF Research Database (Denmark)

    Danielsen, E M

    1990-01-01

    explants. For aminopeptidase N, dimerization did not begin until 5-10 min after synthesis, and maximal dimerization by cross-linking of the transient form of the enzyme required 1 h, whereas the mature form of aminopeptidase N cross-linked with unchanged efficiency from 45 min to 3 h of labeling. Formation...... of dimers of this enzyme therefore occurs prior to the Golgi-associated processing, and the slow rate of dimerization may be the rate-limiting step in the transport from the endoplasmic reticulum to the Golgi complex. For lactase-phlorizin hydrolase, the posttranslational processing includes a...... proteolytic cleavage of its high molecular weight precursor. Since only the mature form and not the precursor of this enzyme could be cross-linked, formation of tightly associated dimers only takes place after transport out of the endoplasmic reticulum. Dimerization of the two brush border enzymes therefore...

  4. Discovery of Leukotriene A4 Hydrolase Inhibitors Using Metabolomics Biased Fragment Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D.; Mamat, B; Magnusson, O; Christensen, J; Haraldsson, M; Mishra, R; Pease, B; Hansen, E; Singh, J; et. al.

    2009-01-01

    We describe a novel fragment library termed fragments of life (FOL) for structure-based drug discovery. The FOL library includes natural small molecules of life, derivatives thereof, and biaryl protein architecture mimetics. The choice of fragments facilitates the interrogation of protein active sites, allosteric binding sites, and protein-protein interaction surfaces for fragment binding. We screened the FOL library against leukotriene A4 hydrolase (LTA4H) by X-ray crystallography. A diverse set of fragments including derivatives of resveratrol, nicotinamide, and indole were identified as efficient ligands for LTA4H. These fragments were elaborated in a small number of synthetic cycles into potent inhibitors of LTA4H representing multiple novel chemotypes for modulating leukotriene biosynthesis. Analysis of the fragment-bound structures also showed that the fragments comprehensively recapitulated key chemical features and binding modes of several reported LTA4H inhibitors.

  5. ETHANOL PRECIPITATION OF GLYCOSYL HYDROLASES PRODUCED BY Trichoderma harzianum P49P11

    Directory of Open Access Journals (Sweden)

    M. A. Mariño

    2015-06-01

    Full Text Available AbstractThis study aimed to concentrate glycosyl hydrolases produced by Trichoderma harzianum P49P11 by ethanol precipitation. The variables tested besides ethanol concentration were temperature and pH. The precipitation with 90% (v/v ethanol at pH 5.0 recovered more than 98% of the xylanase activity, regard less of the temperature (5.0, 15.0, or 25.0 °C. The maximum recovery of cellulase activity as FPase was 77% by precipitation carried out at this same pH and ethanol concentration but at 5.0 °C. Therefore, ethanol precipitation can be considered to be an efficient technique for xylanase concentration and, to a certain extent, also for the cellulase complex.

  6. Fungal lytic polysaccharide monooxygenases bind starch and β-cyclodextrin similarly to amylolytic hydrolases

    DEFF Research Database (Denmark)

    Nekiunaite, Laura; Isaksen, Trine; Vaaje-Kolstad, Gustav;

    2016-01-01

    Starch-binding modules of family 20 (CBM20) are present in 60% of lytic polysaccharide monooxygenases (LPMOs) catalyzing the oxidative breakdown of starch, which highlights functional importance in LPMO activity. The substrate-binding properties of starch-active LMPOs, however, are currently...... unexplored. Affinities and binding-thermodynamics of two recombinant fungal LPMOs toward starch and β-cyclodextrin were shown to be similar to fungal CBM20s. Amplex Red assays showed ascorbate and Cu-dependent activity, which was inhibited in the presence of β-cylodextrin and amylose. Phylogenetically......, the clustering of CBM20s from starch-targeting LPMOs and hydrolases was in accord with taxonomy and did not correlate to appended catalytic activity. Altogether, these results demonstrate that the CBM20-binding scaffold is retained in the evolution of hydrolytic and oxidative starch-degrading activities....

  7. Structural and kinetic insights into the mechanism of 5-hydroxyisourate hydrolase from Klebsiella pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    French, Jarrod B.; Ealick, Steven E. (Cornell)

    2011-07-19

    The stereospecific oxidative degradation of uric acid to (S)-allantoin has recently been demonstrated to proceed via two unstable intermediates and requires three separate enzymatic reactions. The second step of this reaction, the conversion of 5-hydroxyisourate (HIU) to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, is catalyzed by HIU hydrolase (HIUH). The high-resolution crystal structure of HIUH from the opportunistic pathogen Klebsiella pneumoniae (KpHIUH) has been determined. KpHIUH is a homotetrameric protein that, based on sequence and structural similarity, belongs to the transthyretin-related protein family. In addition, the steady-state kinetic parameters for this enzyme and four active-site mutants have been measured. These data provide valuable insight into the functional roles of the active-site residues. Based upon the structural and kinetic data, a mechanism is proposed for the KpHIUH-catalyzed reaction.

  8. Antibiotic growth promoters enhance animal production by targeting intestinal bile salt hydrolase and its producers

    Directory of Open Access Journals (Sweden)

    Jun eLin

    2014-02-01

    Full Text Available The growth-promoting effect of antibiotic growth promoters (AGPs was correlated with the decreased activity of bile salt hydrolase (BSH, an intestinal bacteria-produced enzyme that exerts negative impact on host fat digestion and utilization. Consistent with this finding, independent chicken studies have demonstrated that AGP usage significantly reduced population of Lactobacillus species, the major BSH-producers in the intestine. Recent finding also demonstrated that some AGPs, such as tetracycline and roxarsone, display direct inhibitory effect on BSH activity. Therefore, BSH is a promising microbiome target for developing novel alternatives to AGPs. Specifically, dietary supplementation of BSH inhibitor may promote host lipid metabolism and energy harvest, consequently enhancing feed efficiency and body weight gain in food animals.

  9. Use of nanostructure initiator mass spectrometry (NIMS to deduce selectivity of reaction in glycoside hydrolases

    Directory of Open Access Journals (Sweden)

    Kai eDeng

    2015-10-01

    Full Text Available Chemically synthesized nanostructure-initiator mass spectrometry (NIMS probes derivatized with tetrasaccharides were used to study the reactivity of representative Clostridium thermocellum β-glucosidase, endoglucanases and cellobiohydrolase. Diagnostic patterns for reactions of these different classes of enzymes were observed. Results show sequential removal of glucose by the β-glucosidase and a progressive increase in specificity of reaction from endoglucanases to cellobiohydrolase. Time-dependent reactions of these polysaccharide-selective enzymes were modeled by numerical integration, which provides a quantitative basis to make functional distinctions among a continuum of naturally evolved catalytic properties. Consequently, our method, which combines automated protein translation with high-sensitivity and time-dependent detection of multiple products, provides a new approach to annotate glycoside hydrolase phylogenetic trees with functional measurements.

  10. Ester Tuiksoo võitleb viina puhtuse eest / Ester Tuiksoo ; interv. Silja Lättemäe

    Index Scriptorium Estoniae

    Tuiksoo, Ester, 1965-

    2006-01-01

    Põllumajandusminister Ester Tuiksoo lubab Euroopa Liidu piiritusjookide määruse eelnõu arutusel kaitsta seisukohta, et viinaks tuleb pidada üksnes teraviljast või kartulist valmistatud piiritusjooki

  11. Overexpression of fatty acid amide hydrolase induces early flowering in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Neal D. Teaster

    2012-02-01

    Full Text Available N-Acylethanolamines (NAEs are bioactive lipids derived from the hydrolysis of the membrane phospholipid N-acylphosphatidylethanolamine (NAPE. In animal systems this reaction is part of the endocannabinoid signaling pathway, which regulates a variety of physiological processes. The signaling function of NAE is terminated by fatty acid amide hydrolase (FAAH, which hydrolyzes NAE to ethanolamine and free fatty acid. Our previous work in Arabidopsis thaliana showed that overexpression of AtFAAH (At5g64440 lowered endogenous levels of NAEs in seeds, consistent with its role in NAE signal termination. Reduced NAE levels were accompanied by an accelerated growth phenotype, increased sensitivity to abscisic acid (ABA, enhanced susceptibility to bacterial pathogens, and early flowering. Here we investigated the nature of the early flowering phenotype of AtFAAH overexpression. AtFAAH overexpressors flowered several days earlier than wild type and AtFAAH knockouts under both non-inductive short day (SD and inductive long day (LD conditions. Microarray analysis revealed that the FLOWERING LOCUS T (FT gene, which plays a major role in regulating flowering time, and one target MADS box transcription factor, SEPATALLA3 (SEP3, were elevated in AtFAAH overexpressors. Furthermore, AtFAAH overexpressors, with the early flowering phenotype had lower endogenous NAE levels in leaves compared to wild type prior to flowering. Exogenous application of NAE 12:0, which was reduced by up to 30% in AtFAAH overexpressors, delayed the onset of flowering in wild type plants. We conclude that the early flowering phenotype of AtFAAH overexpressors is, in part, explained by elevated FT gene expression resulting from the enhanced NAE hydrolase activity of AtFAAH, suggesting that NAE metabolism may participate in floral signaling pathways.

  12. Gene overexpression and biochemical characterization of the biotechnologically relevant chlorogenic acid hydrolase from Aspergillus niger.

    Science.gov (United States)

    Benoit, Isabelle; Asther, Michèle; Bourne, Yves; Navarro, David; Canaan, Stéphane; Lesage-Meessen, Laurence; Herweijer, Marga; Coutinho, Pedro M; Asther, Marcel; Record, Eric

    2007-09-01

    The full-length gene that encodes the chlorogenic acid hydrolase from Aspergillus niger CIRM BRFM 131 was cloned by PCR based on the genome of the strain A. niger CBS 513.88. The complete gene consists of 1,715 bp and codes for a deduced protein of 512 amino acids with a molecular mass of 55,264 Da and an acidic pI of 4.6. The gene was successfully cloned and overexpressed in A. niger to yield 1.25 g liter(-1), i.e., 330-fold higher than the production of wild-type strain A. niger CIRM BRFM131. The histidine-tagged recombinant ChlE protein was purified to homogeneity via a single chromatography step, and its main biochemical properties were characterized. The molecular size of the protein checked by mass spectroscopy was 74,553 Da, suggesting the presence of glycosylation. ChlE is assembled in a tetrameric form with several acidic isoforms with pIs of around 4.55 and 5.2. Other characteristics, such as optimal pH and temperature, were found to be similar to those determined for the previously characterized chlorogenic acid hydrolase of A. niger CIRM BRFM 131. However, there was a significant temperature stability difference in favor of the recombinant protein. ChlE exhibits a catalytic efficiency of 12.5 x 10(6) M(-1) s(-1) toward chlorogenic acid (CGA), and its ability to release caffeic acid from CGA present in agricultural by-products such as apple marc and coffee pulp was clearly demonstrated, confirming the high potential of this enzyme.

  13. Crystal structure of glycoside hydrolase family 127 β-L-arabinofuranosidase from Bifidobacterium longum

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • HypBA1 β-L-arabinofuranosidase belongs to glycoside hydrolase family 127. • Crystal structure of HypBA1 was determined. • HypBA1 consists of a catalytic barrel and two additional β-sandwich domains. • The active site contains a Zn2+ coordinated by glutamate and three cysteines. • A possible reaction mechanism involving cysteine as the nucleophile is proposed. - Abstract: Enzymes acting on β-linked arabinofuranosides have been unknown until recently, in spite of wide distribution of β-L-arabinofuranosyl oligosaccharides in plant cells. Recently, a β-L-arabinofuranosidase from the glycoside hydrolase family 127 (HypBA1) was discovered in the newly characterized degradation system of hydroxyproline-linked β-L-arabinooligosaccharides in the bacterium Bifidobacterium longum. Here, we report the crystal structure of HypBA1 in the ligand-free and β-L-arabinofuranose complex forms. The structure of HypBA1 consists of a catalytic barrel domain and two additional β-sandwich domains, with one β-sandwich domain involved in the formation of a dimer. Interestingly, there is an unprecedented metal-binding motif with Zn2+ coordinated by glutamate and three cysteines in the active site. The glutamate residue is located far from the anomeric carbon of the β-L-arabinofuranose ligand, but one cysteine residue is appropriately located for nucleophilic attack for glycosidic bond cleavage. The residues around the active site are highly conserved among GH127 members. Based on biochemical experiments and quantum mechanical calculations, a possible reaction mechanism involving cysteine as the nucleophile is proposed

  14. IN VITRO SOLUBLE EPOXIDE HYDROLASE ENZYME INHIBITORY ACTIVITY OF SOME NOVEL CHALCONE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Kuppusamy Asokkumar

    2012-09-01

    Full Text Available Objective Soluble epoxide hydrolase (sEH belongs to the α/β -hydrolase superfamily, a subclass of α/β proteins. Chalcones are chemical compounds that show hopeful obliging efficacy in controlling numerous diseases. The main objective of the study is to evaluate the sEH inhibitory activity of some synthesized chalcone derivatives and identification of its mode of inhibition. Methods Four different chalcone derivatives (PC-1 to PC-4 were selected for synthesis by Claisen-Schmidt method. The in vitro sEH inhibitory activity was performed for the synthesized compounds by fluorimetric assay. The percentage of sEH activity and IC50 values were calculated for the synthesized compounds. Dissociation constant were determined by following the method described by Lineweaver-Burks plot.Results and Conclusions The IC50 value obtained for PC-1, PC-2, PC-3, and PC-4 were found to be 0.8213 µg/mL, 2.64 µg/mL, 0.2490 µg/mL and 0.5238 µg/mL respectively. The order of potency (IC50 of the chalcone and chalcone oxide in sEH inhibition assay was PC-3 > PC-4 > PC-1 >PC-2. All the compounds (PC-1, PC-2, PC-3 showed mixed type of inhibition except PC-4 which showed non-competitive type of inhibition. Further in vivo studies are to be carried out for these compounds to confirm their activity and explore the mechanism by which these compounds act and rationalize their use.

  15. Limited enzymic degradation of proteins: a new approach in the industrial application of hydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Adler-Nissen, J.

    1982-01-01

    The industrial importance of hydrolases exceeds that of other classes of enzymes. A major application area for hydrolases is for the dissolution of biopolymers such as starch, pectin, cellulose and protein; in many cases it has been the desire to achieve as complete a solubilization as possible. However, with food proteins, it has been demonstrated that a limited controlled hydrolysis may give rise to particularly interesting functional and organoleptic properties. The degree of hydrolysis (DH) is defined as the percentage of peptide bonds cleaved and is used as the controlling indice for the hydrolysis of food proteins. For a given enzyme-substrate system, at least five independent indices can be defined: S(substrate concentration), E/S (enzyme/substrate ratio), pH, T (temperature) and t (time). The advantage of the DH-concept is that of these five variables, four (S,E/S, T, t) can be replaced by DH, i.e. within certain limits of S, E/S, T and t, the properties of a particular protein-enzyme system are solely dependent on DH and pH of the hydrolysis. Empirically, this is demonstrated for soya-protein isolate hydrolyzed with Alcalase and theoretically the same result can be derived from the fact that there is substrate saturation throughout the reaction. These theoretical calculations are the basis for the so-called theta (h)-method, by which the significance of a particular hydrolysis indice can be studied. For each empirically derived hydrolysis curve, the hydrolysis time corresponding to any DH is found. Over a complete DH interval the proportion between the hydrolysis time for each DH is then calculated. If this term, denoted theta (h), is the same for all DH, the properties of the hydrolysates are independent of variations in the hydrolysis indice under study. A statistical procedure must be used to determine if theta (h) is constant or not. (Refs. 20).

  16. Structural relationships in the lysozyme superfamily: significant evidence for glycoside hydrolase signature motifs.

    Directory of Open Access Journals (Sweden)

    Alexandre Wohlkönig

    Full Text Available BACKGROUND: Chitin is a polysaccharide that forms the hard, outer shell of arthropods and the cell walls of fungi and some algae. Peptidoglycan is a polymer of sugars and amino acids constituting the cell walls of most bacteria. Enzymes that are able to hydrolyze these cell membrane polymers generally play important roles for protecting plants and animals against infection with insects and pathogens. A particular group of such glycoside hydrolase enzymes share some common features in their three-dimensional structure and in their molecular mechanism, forming the lysozyme superfamily. RESULTS: Besides having a similar fold, all known catalytic domains of glycoside hydrolase proteins of lysozyme superfamily (families and subfamilies GH19, GH22, GH23, GH24 and GH46 share in common two structural elements: the central helix of the all-α domain, which invariably contains the catalytic glutamate residue acting as general-acid catalyst, and a β-hairpin pointed towards the substrate binding cleft. The invariant β-hairpin structure is interestingly found to display the highest amino acid conservation in aligned sequences of a given family, thereby allowing to define signature motifs for each GH family. Most of such signature motifs are found to have promising performances for searching sequence databases. Our structural analysis further indicates that the GH motifs participate in enzymatic catalysis essentially by containing the catalytic water positioning residue of inverting mechanism. CONCLUSIONS: The seven families and subfamilies of the lysozyme superfamily all have in common a β-hairpin structure which displays a family-specific sequence motif. These GH β-hairpin motifs contain potentially important residues for the catalytic activity, thereby suggesting the participation of the GH motif to catalysis and also revealing a common catalytic scheme utilized by enzymes of the lysozyme superfamily.

  17. Molecular Dynamics of Organophosphorous Hydrolases Bound to the Nerve Agent Soman

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Thereza A.; Osman, Mohamed A.; Straatsma, TP

    2007-07-01

    The organophosphorous hydrolase (OPH) from Pseudomonas diminuta is capable of degrading extremely toxic organophosphorous compounds with a high catalytic turnover and broad substrate specificity. The potential use of this enzyme for the detection and detoxification of warfare nerve agents has spurred efforts to engineer mutants of enhanced catalytic activity and modified stereospecificity towards the most toxic forms of organophosphate nerve agents. Molecular dynamics simulations of the wild-type OPH and the complexes between the wild-type and the triple-mutant H254G/H257W/L303R forms and the substrate SpSc-soman have been carried out to enhance our molecular level understanding of its reaction mechanism. Comparison of the three simulations indicate that substrate binding induces conformational changes of the loops near the active site, suggesting an induced-fit mechanism. Likewise, the coordination of the zinc cations in the active site of the enzyme differs between the free enzyme and the complexes. In the absence of the substrate, the more exposed b-zinc is hexa-coordinated and the less exposed a-zinc is penta-coordinated. In the presence of the substrate, the b- zinc atom can be both penta- or hexa-coordinated while the a-zinc atom is tetra-coordinated. In addition, binding energies were calculated from electrostatic properties obtained by solution of the Poisson-Boltzmann equation combined with a surface area-dependent apolar contribution. The calculations indicate that the binding of SpSc-soman to OPH is driven by nonpolar interactions while electrostatic interactions determine binding specificity. These results provide a qualitative, molecular-level explanation for 2 the three-fold increase in catalytic efficiency of the triple-mutant towards SpSc-soman. Keywords: organophosphorous hydrolase, phosphotriesterase, nerve agents, soman, molecular dynamics, Poisson-Boltzmann equation, continuum electrostatics, metalloprotein.

  18. Dysregulation of soluble epoxide hydrolase and lipidomic profiles in anorexia nervosa.

    Science.gov (United States)

    Shih, P B; Yang, J; Morisseau, C; German, J B; Zeeland, A A Scott-Van; Armando, A M; Quehenberger, O; Bergen, A W; Magistretti, P; Berrettini, W; Halmi, K A; Schork, N; Hammock, B D; Kaye, W

    2016-04-01

    Individuals with anorexia nervosa (AN) restrict eating and become emaciated. They tend to have an aversion to foods rich in fat. Because epoxide hydrolase 2 (EPHX2) was identified as a novel AN susceptibility gene, and because its protein product, soluble epoxide hydrolase (sEH), converts bioactive epoxides of polyunsaturated fatty acid (PUFA) to the corresponding diols, lipidomic and metabolomic targets of EPHX2 were assessed to evaluate the biological functions of EPHX2 and their role in AN. Epoxide substrates of sEH and associated oxylipins were measured in ill AN, recovered AN and gender- and race-matched controls. PUFA and oxylipin markers were tested as potential biomarkers for AN. Oxylipin ratios were calculated as proxy markers of in vivo sEH activity. Several free- and total PUFAs were associated with AN diagnosis and with AN recovery. AN displayed elevated n-3 PUFAs and may differ from controls in PUFA elongation and desaturation processes. Cytochrome P450 pathway oxylipins from arachidonic acid, linoleic acid, alpha-linolenic acid and docosahexaenoic acid PUFAs are associated with AN diagnosis. The diol:epoxide ratios suggest the sEH activity is higher in AN compared with controls. Multivariate analysis illustrates normalization of lipidomic profiles in recovered ANs. EPHX2 influences AN risk through in vivo interaction with dietary PUFAs. PUFA composition and concentrations as well as sEH activity may contribute to the pathogenesis and prognosis of AN. Our data support the involvement of EPHX2-associated lipidomic and oxylipin dysregulations in AN, and reveal their potential as biomarkers to assess responsiveness to future intervention or treatment. PMID:25824304

  19. Inhibitors of soluble epoxide hydrolase attenuate vascular smooth muscle cell proliferation

    Science.gov (United States)

    Davis, Benjamin B.; Thompson, David A.; Howard, Laura L.; Morisseau, Christophe; Hammock, Bruce D.; Weiss, Robert H.

    2002-02-01

    Atherosclerosis, in its myriad incarnations the foremost killer disease in the industrialized world, is characterized by aberrant proliferation of vascular smooth muscle (VSM) cells in part as a result of the recruitment of inflammatory cells to the blood vessel wall. The epoxyeicosatrienoic acids are synthesized from arachidonic acid in a reaction catalyzed by the cytochrome P450 system and are vasoactive substances. Metabolism of these compounds by epoxide hydrolases results in the formation of compounds that affect the vasculature in a pleiotropic manner. As an outgrowth of our observations that urea inhibitors of the soluble epoxide hydrolase (sEH) reduce blood pressure in spontaneously hypertensive rats as well as the findings of other investigators that these compounds possess antiinflammatory actions, we have examined the effect of sEH inhibitors on VSM cell proliferation. We now show that the sEH inhibitor 1-cyclohexyl-3-dodecyl urea (CDU) inhibits human VSM cell proliferation in a dose-dependent manner and is associated with a decrease in the level of cyclin D1. In addition, cis-epoxyeicosatrienoic acid mimics the growth-suppressive activity of CDU; there is no evidence of cellular toxicity or apoptosis in CDU-treated cells when incubated with 20 μM CDU for up to 48 h. These results, in light of the antiinflammatory and antihypertensive properties of these compounds that have been demonstrated already, suggest that the urea class of sEH inhibitors may be useful for therapy for diseases such as hypertension and atherosclerosis characterized by exuberant VSM cell proliferation and vascular inflammation.

  20. Blood acylpeptide hydrolase activity is a sensitive marker for exposure to some organophosphate toxicants.

    Science.gov (United States)

    Quistad, Gary B; Klintenberg, Rebecka; Casida, John E

    2005-08-01

    Acylpeptide hydrolase (APH) unblocks N-acetyl peptides. It is a major serine hydrolase in rat blood, brain, and liver detected by derivatization with (3)H-diisopropyl fluorophosphate (DFP) or a biotinylated fluorophosphonate. Although APH does not appear to be a primary target of acute poisoning by organophosphorus (OP) compounds, the inhibitor specificity of this secondary target is largely unknown. This study fills the gap and emphasizes blood APH as a potential marker of OP exposure. The most potent in vitro inhibitors for human erythrocyte and mouse brain APH are DFP (IC(50) 11-17 nM), chlorpyrifos oxon (IC(50) 21-71 nM), dichlorvos (IC(50) 230-560 nM), naled (IC(50) 370-870 nM), and their analogs with modified alkyl substituents. (3)H-diisopropyl fluorophosphate is a potent inhibitor of mouse blood and brain APH in vivo (ED(50) 0.09-0.2 mg/kg and 0.02-0.03 mg/l for ip and vapor exposure, respectively). Mouse blood and brain APH and blood butyrylcholinesterase (BChE) are of similar sensitivity to DFP in vitro and in vivo (ip and vapor exposure), but APH inhibition is much more persistent in vivo (still >80% inhibition after 4 days). The inhibitory potency of OP pesticides in vivo in mice varies from APH selective (dichlorvos, naled, and trichlorfon), to APH and BChE selective (profenofos and tribufos), to ChE selective or nonselective (many commercial insecticides). Sarin administered ip at a lethal dose to guinea pigs inhibits blood acetylcholinesterase and BChE completely but erythrocyte APH only partially. Blood APH activity is therefore a sensitive marker for exposure to some but not all OP pesticides and chemical warfare agents. PMID:15888665

  1. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition.

    Science.gov (United States)

    Wei, Ren; Oeser, Thorsten; Schmidt, Juliane; Meier, René; Barth, Markus; Then, Johannes; Zimmermann, Wolfgang

    2016-08-01

    Recent studies on the enzymatic degradation of synthetic polyesters have shown the potential of polyester hydrolases from thermophilic actinomycetes for modifying or degrading polyethylene terephthalate (PET). TfCut2 from Thermobifida fusca KW3 and LC-cutinase (LCC) isolated from a compost metagenome are remarkably active polyester hydrolases with high sequence and structural similarity. Both enzymes exhibit an exposed active site in a substrate binding groove located at the protein surface. By exchanging selected amino acid residues of TfCut2 involved in substrate binding with those present in LCC, enzyme variants with increased PET hydrolytic activity at 65°C were obtained. The highest activity in hydrolyzing PET films and fibers were detected with the single variant G62A and the double variant G62A/I213S. Both variants caused a weight loss of PET films of more than 42% after 50 h of hydrolysis, corresponding to a 2.7-fold increase compared to the wild type enzyme. Kinetic analysis based on the released PET hydrolysis products confirmed the superior hydrolytic activity of G62A with a fourfold higher hydrolysis rate constant and a 1.5-fold lower substrate binding constant than those of the wild type enzyme. Mono-(2-hydroxyethyl) terephthalate is a strong inhibitor of TfCut2. A determination of the Rosetta binding energy suggested a reduced interaction of G62A with 2PET, a dimer of the PET monomer ethylene terephthalate. Indeed, G62A revealed a 5.5-fold lower binding constant to the inhibitor than the wild type enzyme indicating that its increased PET hydrolysis activity is the result of a relieved product inhibition by mono-(2-hydroxyethyl) terephthalate. Biotechnol. Bioeng. 2016;113: 1658-1665. © 2016 Wiley Periodicals, Inc. PMID:26804057

  2. Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters.

    Science.gov (United States)

    Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2006-02-01

    Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms.

  3. Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hohl, G.H. [Military Technology Agency, Vienna (Austria)

    1995-12-31

    The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuel supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.

  4. Lubricating and Waxy Esters. VI. Effect of Symmetry about Ester on Crystallization of Linear Monoester Isomers

    Directory of Open Access Journals (Sweden)

    Laziz Bouzidi

    2014-08-01

    Full Text Available The crystal structure development of jojoba-like esters incorporating either 1-decenoic acid and/or 1-decenol, namely octadec-9-enyl dec-9-enoate (JLE-281, and its isomer dec-9-enyl oleate (JLE-282 was investigated to reveal the effect of symmetry about the ester group on crystallization of aliphatic fatty monoesters. The phase transformation path was investigated with temperature-time resolved X-ray diffraction during stepped isothermal crystallization, and while cooling from the melt at a fixed rate. Startling differences in phase behavior were uncovered between the isomers. When stepped isothermals were used, selective extinctions occurred at a transition temperature for JLE-281 but not for JLE-282. The extinctions, which are due to dramatic changes in the electronic density of certain families of planes, indicate a phase transition attributed to a brusque rearrangement of the oxygen atoms in the crystal subcell. The phase transition did not occur when the JLEs were cooled continuously. The crucial role played by the position of the alkyl chain and its orientation relative to the easy rotation site of the C–O bond in the phase trajectories of the JLEs was particularly highlighted.

  5. Studies on novel interpenetrating networks of urethane modified poly(ester-amide and vinyl ester of bisphenol-C

    Directory of Open Access Journals (Sweden)

    Pragnesh N. Dave

    2016-05-01

    Full Text Available Bisphthalamic acids were prepared by reaction of maleic anhydride and aromatic diamines. Novel poly(ester-amides (PEAs were prepared by reaction of DGEBF with bisphthalamic acids. Acrylation of PEAs was carried out using acryloyl chloride; products are called acrylated poly(ester-amides (APEAs. Epoxy resin based unsaturated poly(ester-amide resins (UPEAs can be prepared by many methods but here these were prepared by reported method. These UPEAs were then treated with acryloyl chloride to afford acrylated UPEAs resin (i.e. AUPEAs. Interpenetrating networks of equal proportional urethane modified poly(ester-amide and acrylated poly(ester-amide and vinyl ester of biaphenol c (VE resin were prepared. Urethane modified APEAs and AUPEAs were characterized by elemental analysis, molecular weight was determined by vapor pressure osmometer and by IR spectral study and by thermogravimetry. Based on DSC data in situ glass reinforced composites of the resultant blends have been prepared and characterized for mechanical, electrical and chemical properties. Unreinforced blends were characterized by thermogravimetry (TGA.

  6. Microarray of DNA probes on carboxylate functional beads surface

    Institute of Scientific and Technical Information of China (English)

    黄承志; 李原芳; 黄新华; 范美坤

    2000-01-01

    The microarray of DNA probes with 5’ -NH2 and 5’ -Tex/3’ -NH2 modified terminus on 10 um carboxylate functional beads surface in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) is characterized in the preseni paper. it was found that the microarray capacity of DNA probes on the beads surface depends on the pH of the aqueous solution, the concentra-tion of DNA probe and the total surface area of the beads. On optimal conditions, the minimum distance of 20 mer single-stranded DNA probe microarrayed on beads surface is about 14 nm, while that of 20 mer double-stranded DNA probes is about 27 nm. If the probe length increases from 20 mer to 35 mer, its microarray density decreases correspondingly. Mechanism study shows that the binding mode of DNA probes on the beads surface is nearly parallel to the beads surface.

  7. Biocompatibility studies of polyacrylonitrile membranes modified with carboxylated polyetherimide.

    Science.gov (United States)

    Senthilkumar, S; Rajesh, S; Jayalakshmi, A; Mohan, D

    2013-10-01

    Poly (ether-imide) (PEI) was carboxylated and used as the hydrophilic modification agent for the preparation of polyacrylonitrile (PAN) membranes. Membranes were prepared with different blend compositions of PAN and CPEI by diffusion induced precipitation. The modified membranes were characterized by thermo gravimetric analysis (TGA), mechanical analysis, scanning electron microscopy (SEM) and contact angle measurement to understand the influence of CPEI on the properties of the membranes. The biocompatibility studies exhibited reduced plasma protein adsorption, platelet adhesion and thrombus formation on the modified membrane surface. The complete blood count (CBC) results of CPEI incorporated membranes showed stable CBC values and significant decrease in the complement activation were also observed. In addition to good cytocompatibility, monocytes cultured on these modified membranes exhibited improved functional profiles in 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Thus it could be concluded that PAN/CPEI membranes with excellent biocompatibility can be useful for hemodialysis. PMID:23910257

  8. Spectrofluorimetric determination of gallium with calon-carboxylic acid

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A simple and sensitive spectrofluorimetric procedure for the analysis of microquantities of gallium in alloy wasdescribed. The method is based on the formation of Ga(Ⅲ)-CCA (calon-carboxylic acid) complex. The emission of thefluorescent complex was measured at λ = 620 nm with excitation at λ = 584 nm. A good linearity was found in the galliumrange of 0.7-280 ng/mL. The precision of the method is good and the relative standard deviation is 1.9% for a gallium stan-dard solution of 70 ng/mL. The procedure was proved to be suitable in terms of accuracy and selectivity for the mi-croamount of gallium in alloy.

  9. Biohydrogen and carboxylic acids production from wheat straw hydrolysate.

    Science.gov (United States)

    Chandolias, Konstantinos; Pardaev, Sindor; Taherzadeh, Mohammad J

    2016-09-01

    Hydrolyzed wheat straw was converted into carboxylic acids and biohydrogen using digesting bacteria. The fermentations were carried out using both free and membrane-encased thermophilic bacteria (55°C) at various OLRs (4.42-17.95g COD/L.d), in semi-continuous conditions using one or two bioreactors in a series. The highest production of biohydrogen and acetic acid was achieved at an OLR of 4.42g COD/L.d, whilst the highest lactic acid production occurred at an OLR of 9.33g COD/L.d. Furthermore, the bioreactor with both free and membrane-encased cells produced 60% more lactic acid compared to the conventional, free-cell bioreactor. In addition, an increase of 121% and 100% in the production of acetic and isobutyric acid, respectively, was achieved in the 2nd-stage bioreactor compared to the 1st-stage bioreactor.

  10. 14CO2 ratios method for detecting pyruvate carboxylation

    International Nuclear Information System (INIS)

    The pattern of oxidative metabolism of pyruvate may be assessed by comparing the steady-state 14CO2 production from four isotopes in identical samples. The assay requires measuring the ratios of steady-state 14CO2 production from two isotope pairs, [2-14C]pyruvate:[3-14C]pyruvate and [1-14C]acetate:[2-14C]acetate. These ratios are defined as the ''pyruvate 14CO2 ratio'' and the ''acetate 14CO2 ratio,'' respectively. If pyruvate is metabolized exclusively via pyruvate dehydrogenase (PDH), the two ratios will be identical. Alternatively, if any pyruvate enters the tricarboxylic acid (TCA) cycle via pyruvate carboxylation (PC), the pyruvate 14CO2 ratio will be less than the acetate 14CO2 ratio. If pyruvate enters the TCA cycle only through PC (with oxaloacetate and fumarate in equilibrium) the pyruvate 14CO2 ratio will approach a value of 1.0. An equation is presented for the quantitative evaluation of pyruvate oxidation by these two pathways. We have used this method to detect relative changes in the pattern of pyruvate metabolism in rat liver mitochondria produced by exposure to 1 mM octanoyl carnitine, a compound known to alter the PC:PDH activity ratio. The major advantages of the method are (i) that it provides a sensitive method for detecting pyruvate carboxylation at physiological pyruvate concentrations and (ii) that it provides a method for distinguishing between effects on pyruvate transport and effects on pyruvate oxidation

  11. Sorption of organophosphate esters by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei; Yan, Li [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Duan, Jinming [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Jing, Chuanyong, E-mail: cyjing@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2014-05-01

    Graphical abstract: The interfacial interactions between the OPE molecules and CNTs. - Highlights: • Oxygen-containing groups on CNTs change the sorption property for OPEs. • Molecular configuration of OPEs has insignificant impact on their sorption. • Hydrophobic, π–π EDA and Brønsted acid–base interaction occurred between the CNTs and OPEs. - Abstract: Insights from the molecular-level mechanism of sorption of organophosphate esters (OPEs) on carbon nanotubes (CNTs) can further our understanding of the fate and transport of OPEs in the environment. The motivation for our study was to explore the sorption process of OPEs on multi-walled CNTs (MWCNTs), single-walled CNTs (SWCNTs) and their oxidized counterparts (O-MWCNTs and O-SWCNTs), and its molecular mechanism over a wide concentration range. The sorption isotherm results revealed that the hydrophobicity of OPEs dominated their affinities on a given CNT and the π–π electron donor–acceptor (EDA) interaction also played an important role in the sorption of aromatic OPEs. This π–π EDA interaction, verified with Raman and FT-IR spectroscopy, could restrict the radial vibration of SWCNTs and affect the deformation vibration γ(CH) bands of OPE molecules. The OPE surface coverage on CNTs, estimated using the nonlinear Dubinin–Ashtakhov model, indicated that the oxygen-containing functional groups on CNTs could interact with water molecules by H-bonding, resulting in a decrease in effective sorption sites. In addition, FTIR analysis also confirmed the occurrence of Brønsted acid–base interactions between OPEs and surface OH groups of SWCNTs. Our results should provide mechanistic insights into the sorption mechanism of OPE contaminants on CNTs.

  12. Exploring the reductive capacity of Pyrococcus furiosus. The reduction of carboxylic acids and pyridine nucleotides

    NARCIS (Netherlands)

    Ban, van den E.C.D.

    2001-01-01

    This Ph.D. project started in 1997 and its main goal was to obtain insight in the reductive capacity of the hyperthermophilic archaeon Pyrococcus furiosus . The research was focused on the biocatalytic reduction of carboxylic acids.Reductions of carboxylic acids are interes

  13. Preparations and applications in UV curing coatings of epoxy acrylates containing carboxyl

    International Nuclear Information System (INIS)

    This paper introduces preparations of epoxy acrylates containing carboxyl through the reactions of epoxy acrylates with butanedioic anhydride, pentanedioic anhydride, cis-butenedioic anhydride, phthalic anhydride, tetrabromophthalic anhydride and -tetrahydrophthalic anhydride. These epoxy acrylates containing carboxyl have been applied to UV-curing coatings and their effects on properties of UV-curing coatings have been studied

  14. Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity

    Science.gov (United States)

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Wei, Yuanyuan; Huang, Haining

    2014-07-01

    Single-walled carbon nanotubes (SWNTs) have been used in a wide range of fields, and the surface modification via carboxyl functionalization can further improve their physicochemical properties. However, whether carboxyl-modified SWNT poses potential risks to microbial denitrification after its release into the environment remains unknown. Here we present the possible effects of carboxyl-modified SWNT on the growth and denitrification activity of Paracoccus denitrificans (a model denitrifying bacterium). It was found that carboxyl-modified SWNT were present both outside and inside the bacteria, and thus induced bacterial growth inhibition at the concentrations of 10 and 50 mg/L. After 24 h of exposure, the final nitrate concentration in the presence of 50 mg/L carboxyl-modified SWNT was 21-fold higher than that in its absence, indicating that nitrate reduction was substantially suppressed by carboxyl-modified SWNT. The transcriptional profiling revealed that carboxyl-modified SWNT led to the transcriptional activation of the genes encoding ribonucleotide reductase in response to DNA damage and also decreased the gene expressions involved in glucose metabolism and energy production, which was an important reason for bacterial growth inhibition. Moreover, carboxyl-modified SWNT caused the significant down-regulation and lower activity of nitrate reductase, which was consistent with the decreased efficiency of nitrate reduction.

  15. 40 CFR 721.2088 - Carboxylic acids, (C6-C9) branched and linear.

    Science.gov (United States)

    2010-07-01

    ... linear. 721.2088 Section 721.2088 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.2088 Carboxylic acids, (C6-C9) branched and linear. (a) Chemical... as carboxylic acids, (C6-C9) branched and linear (PMNs P-93-313, 314, 315, and 316) are subject...

  16. Plastic scintillators with high loading of one or more metal carboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Cherepy, Nerine; Sanner, Robert Dean

    2016-09-20

    According to one embodiment, a method includes incorporating a metal carboxylate complex into a polymeric matrix to form an optically transparent material. According to another embodiment, a material includes at least one metal carboxylate complex incorporated into a polymeric matrix, where the material is optically transparent.

  17. 3-Methyl-4,5,6,7-tetrahydro-1-benzothiophene-2-carboxylic Acid

    Directory of Open Access Journals (Sweden)

    Rajendiran Nagappan

    2010-01-01

    Full Text Available 3-Methyl-4,5,6,7-tetrahydro-1-benzothiophene-2-carboxylic acid was synthesized chemoselectively from 3-formyl-4,5,6,7-tetrahydro-1-benzothiophene-2-carboxylic acid, using Et3SiH/I2 as a reducing agent. The title compound was characterized by IR, 1H NMR, 13C NMR and LCMS.

  18. Efficient Fixation of Carbon Dioxide by Electrolysis - Facile Synthesis of Useful Carboxylic Acids -

    Institute of Scientific and Technical Information of China (English)

    Masao Tokuda

    2006-01-01

    Electrochemical fixation of atmospheric pressure of carbon dioxide to organic compounds is a useful and attractive method for synthesizing of various carboxylic acids. Electrochemical fixation of carbon dioxide, electrochemical carboxylation, organic halides, organic triflates, alkenes, aromatic compounds, and carbonyl compounds can readily occur in the presence of an atmospheric pressure of carbon dioxide to form the corresponding carboxylic acids with high yields, when a sacrificial anode such as magnesium or aluminum is used in the electrolysis. The electrochemical carboxylation of vinyl bromides was successfully applied for the synthesis of the precursor of nonsteroidal anti-inflammatory agents such as ibuprofen and naproxen. On the other hand, supercritical carbon dioxide (scCO2) has significant potential as an environmentally benign solvent in organic synthesis and it could be used both as a solvent and as a reagent in these electrochemical carboxylations by using a small amount of cosolvent.

  19. 2-Propyl 3,3-dibromo-2-hydroxypyrrolidine-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Christopher Hulme

    2010-03-01

    Full Text Available The title compound, C8H13Br2NO3, crystallizes as a non-merohedral twin with twin law −0.6 0 0.4/0 − 1 0 /1.6 0 0.6, and the structure has a refined twin domain ratio of 0.546 (5. The structure shows a compact conformation, with the ester unit roughly coplanar with a mean plane fitted through the non-H atoms of the pyrrolidine ring [dihedral angle = 8.23 (9°]. In the crystal, inversion dimers linked by pairs of O—H...O hydrogen bonds generate an R22(12 motif.

  20. Synthesis and properties of differently charged chemiluminescent acridinium ester labels.

    Science.gov (United States)

    Natrajan, Anand; Sharpe, David

    2013-02-14

    Chemiluminescent acridinium dimethylphenyl esters containing N-sulfopropyl groups in the acridinium ring are highly sensitive, hydrophilic labels that are used in automated immunoassays for clinical diagnostics. Light emission from these labels is triggered with alkaline peroxide in the presence of a cationic surfactant. At physiological pH, N-sulfopropyl acridinium esters exist as water adducts that are commonly referred to as pseudobases. Pseudobase formation, which results from addition of water to the zwitterionic N-sulfopropyl acridinium ring, neutralizes the positive charge on the acridinium nitrogen and imparts a net negative charge to the label due to the sulfonate moiety. As a consequence, N-sulfopropyl acridinium ester conjugates of small molecule haptens as well as large molecules such as proteins gain negative charges at neutral pH. In the current study, we describe the synthesis and properties of two new hydrophilic acridinium dimethylphenyl ester labels where the net charge in the labels was altered. In one label, the structure of the hydrophilic N-alkyl group attached to the acridinium ring was changed so that the pseudobase of the label contains no net charge. In the second acridinium ester, two additional negative charges in the form of sulfopropyl groups were added to the acridinium ring to make this label's pseudobase strongly anionic. Chemiluminescence measurements of these labels, as well as their conjugates of an antibody with a neutral pI, indicate that acridinium ester charge while having a modest effect on emission kinetics has little influence on light output. However, our results demonstrate that acridinium ester charge can affect protein pI, apparent chemiluminescence stability and non-specific binding of protein conjugates to microparticles. These results emphasize the need for careful consideration of acridinium ester charge in order to optimize reagent stability and performance in immunoassays. In the current study, we observed that

  1. Chemiluminescence from alkoxy-substituted acridinium dimethylphenyl ester labels.

    Science.gov (United States)

    Natrajan, Anand; Sharpe, David; Wen, David

    2012-05-01

    Chemiluminescent acridinium dimethylphenyl ester labels are used in automated immunoassays for clinical diagnostics. Light emission from these labels is triggered by alkaline peroxide in the presence of the cationic surfactant cetyltrimethylammonium chloride (CTAC). The surfactant plays a critical role in the chemiluminescence process of these labels by both accelerating their emission kinetics and increasing total light output enabling high throughout and improved assay sensitivity in automated immunoassays. Despite the surfactant's crucial role in the chemiluminescent reaction, no study has investigated how structural perturbations in the acridinium ring could impact the influence of the surfactant. We describe herein the synthesis and properties of three new alkoxy-substituted, acridinium dimethylphenyl esters where the nature of the alkoxy group in the acridinium ring was varied (hydrophobic or hydrophilic). Chemiluminescence measurements of these alkoxy-substituted labels indicate that hydrophilic functional groups in the acridinium ring, in particular sulfobetaine zwitterions, disrupt surfactant-mediated compression of emission times but not enhancement of light yield. These results support the hypothesis that surfactant-mediated effects require the binding of two different reaction intermediates to surfactant aggregates and, that surfactants influence light emission from acridinium esters by two separate mechanisms. Our studies also indicate that preservation of both surfactant effects on acridinium ester chemiluminescence and low non-specific binding of the label can be achieved with a relatively hydrophobic acridinium ring coupled to a hydrophilic phenolic ester leaving group. PMID:22441905

  2. Mechanism of Imidazole-Promoted Ligation of Peptide Phenyl Esters

    Institute of Scientific and Technical Information of China (English)

    王晨; 刘磊

    2012-01-01

    Imidazole-promoted ligation of peptide phenyl esters was recently found to be a complementary method for protein chemical synthesis. Theoretical calculations have been carried out to understand the detailed mechanism of this particular ligation process. It is found that both the reaction of the phenyl ester with imidazole and the reaction of the acyl imidazole intermediate with cysteine proceed through an addition-elimination mechanism. The cleavage of the C--O bond in the reaction between the phenyl ester and imidazole is the rate-limiting step of the overall liga- tion process. Interestingly, although the imidazole-promoted phenyl ester ligation has a higher free energy barrier than the conventional thiophenol-promoted native chemical ligation for a sterically less hindered C-terminal amino acid (e.g. gylcine), for a sterically hindered C-terminal amino acid (e.g. proline) the imidazole-promoted phenyl ester ligation is calculated to be more favorable than the conventional thiophenol-promoted native chemical ligation.

  3. Phytosterol ester constituents affect micellar cholesterol solubility in model bile.

    Science.gov (United States)

    Brown, Andrew W; Hang, Jiliang; Dussault, Patrick H; Carr, Timothy P

    2010-09-01

    Plant sterols and stanols (phytosterols) and their esters are nutraceuticals that lower LDL cholesterol, but the mechanisms of action are not fully understood. We hypothesized that intact esters and simulated hydrolysis products of esters (phytosterols and fatty acids in equal ratios) would differentially affect the solubility of cholesterol in model bile mixed micelles in vitro. Sodium salts of glycine- and taurine-conjugated bile acids were sonicated with phosphatidylcholine and either sterol esters or combinations of sterols and fatty acids to determine the amount of cholesterol solubilized into micelles. Intact sterol esters did not solubilize into micelles, nor did they alter cholesterol solubility. However, free sterols and fatty acids altered cholesterol solubility independently (no interaction effect). Equal contents of cholesterol and either campesterol, stigmasterol, sitosterol, or stigmastanol (sitostanol) decreased cholesterol solubility in micelles by approximately 50% compared to no phytosterol present, with stigmasterol performing slightly better than sitosterol. Phytosterols competed with cholesterol in a dose-dependent manner, demonstrating a 1:1 M substitution of phytosterol for cholesterol in micelle preparations. Unsaturated fatty acids increased the micelle solubility of sterols as compared with saturated or no fatty acids. No differences were detected in the size of the model micelles. Together, these data indicate that stigmasterol combined with saturated fatty acids may be more effective at lowering cholesterol micelle solubility in vivo.

  4. Preparation and characterization of chitosan-grafted-poly(2-amino-4,5-pentamethylene-thiophene-3-carboxylic acid N'-acryloyl-hydrazide) chelating resin for removal of Cu(II), Co(II) and Ni(II) metal ions from aqueous solutions.

    Science.gov (United States)

    Bekheit, M M; Nawar, N; Addison, A W; Abdel-Latif, D A; Monier, M

    2011-05-01

    The graft copolymerization of ethylacrylate (EA) onto chitosan initiated by potassium persulphate and Mohr's salt combined redox initiator system in limited aqueous medium was carried out in heterogeneous media. Moreover, modification of the grafted chitosan was carried out by reaction of the ester group (-COOEt) with 2-amino-4,5-pentamethylene-thiophene-3-carboxylic acid hydrazide which eventually produce chitosan-grafted-poly(2-amino-4,5-pentamethylene-thiophene-3-carboxylic acid N'-acryloyl-hydrazide) (chitosan-g-ATAH) chelating resin. The application of the modified resin for metal ion uptake was studied using Cu(2+), Co(2+) and Ni(2+) ions. The modified chelating resins were characterized using FTIR spectroscopy, SEM and X-ray diffraction. PMID:21277322

  5. Expression, purification, and buffer solubility optimization of the putative human peptidyl-tRNA hydrolase PTRHD1.

    Science.gov (United States)

    Burks, Geordan L; McFeeters, Hana; McFeeters, Robert L

    2016-10-01

    Performing the essential function of recycling peptidyl-tRNAs, peptidyl-tRNA hydrolases are ubiquitous in all domains of life. The multicomponent eukaryotic Pth system differs greatly from the bacterial system composed predominantly of a single Pth1 enzyme. While bacterial Pth1s are structurally well characterized and promising new targets for antibiotic development, eukaryotic Pths are largely understudied. From amino acid sequence alignment and secondary structure predictions, the human gene product PTRHD1 was classified as a eukaryotic Pth. Herein, we report cloning, recombinant bacterial expression, and weak binding to peptidyl-tRNA for PTRHD1. Additionally, we report binding to tRNA but absence of peptidyl-tRNA hydrolase activity. Thus, PTRHD1 is not a Pth and the functional consequence of nucleotide binding remains undefined. PMID:27235175

  6. Colloid-based multiplexed method for screening plant biomass-degrading glycoside hydrolase activities in microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Reindl, W.; Deng, K.; Gladden, J.M.; Cheng, G.; Wong, A.; Singer, S.W.; Singh, S.; Lee, J.-C.; Yao, J.-S.; Hazen, T.C.; Singh, A.K; Simmons, B.A.; Adams, P.D.; Northen, T.R.

    2011-05-01

    The enzymatic hydrolysis of long-chain polysaccharides is a crucial step in the conversion of biomass to lignocellulosic biofuels. The identification and characterization of optimal glycoside hydrolases is dependent on enzyme activity assays, however existing methods are limited in terms of compatibility with a broad range of reaction conditions, sample complexity, and especially multiplexity. The method we present is a multiplexed approach based on Nanostructure-Initiator Mass Spectrometry (NIMS) that allowed studying several glycolytic activities in parallel under diverse assay conditions. Although the substrate analogs carried a highly hydrophobic perfluorinated tag, assays could be performed in aqueous solutions due colloid formation of the substrate molecules. We first validated our method by analyzing known {beta}-glucosidase and {beta}-xylosidase activities in single and parallel assay setups, followed by the identification and characterization of yet unknown glycoside hydrolase activities in microbial communities.

  7. Soluble epoxide hydrolase inhibition and gene deletion are protective against myocardial ischemia-reperfusion injury in vivo

    OpenAIRE

    Motoki, Atsuko; Merkel, Matthias J.; Packwood, William H.; Cao, Zhiping; Liu, Lijuan; Iliff, Jeffrey; Alkayed, Nabil J.; Van Winkle, Donna M.

    2008-01-01

    Soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids. EETs are formed from arachidonic acid during myocardial ischemia and play a protective role against ischemic cell death. Deletion of sEH has been shown to be protective against myocardial ischemia in the isolated heart preparation. We tested the hypothesis that sEH inactivation by targeted gene deletion or pharmacological inhibition reduces infarct size (I) after regional myocardial ...

  8. A predictive model for epoxide hydrolase-generated stereochemistry in the biosynthesis of 9-membered enediyne antitumor antibiotics

    OpenAIRE

    Horsman, Geoffrey P.; Lechner, Anna; Ohnishi, Yasuo; Moore, Bradley S.; Shen, Ben

    2013-01-01

    Nine-membered enediyne antitumor antibiotics C-1027, neocarzinostatin (NCS), and kedarcidin (KED) possess enediyne cores to which activity-modulating peripheral moieties are attached via (R)- or (S)-vicinal diols. We have previously shown that this stereochemical difference arises from hydrolysis of epoxide precursors by epoxide hydrolases (EHs) with different regioselectivities – the “inverting” EH, such as SgcF, hydrolyzes an (S)-epoxide substrate to yield an (R)-diol in C-1027 biosynthesis...

  9. Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1

    OpenAIRE

    Lambert, J. M.; Bongers, R.S.; Vos; Kleerebezem, M.

    2008-01-01

    Bile salts play an important role in the digestion of lipids in vertebrates and are synthesized and conjugated to either glycine or taurine in the liver. Following secretion of bile salts into the small intestine, intestinal microbes are capable of deconjugating the glycine or taurine from the bile salts, using an enzyme called bile salt hydrolase (Bsh). Intestinal lactobacilli are regarded as major contributors to bile salt hydrolysis in vivo. Since the bile salt-hydrolyzing strain Lactobaci...

  10. A Cocaine Hydrolase Engineered from Human Butyrylcholinesterase Selectively Blocks Cocaine Toxicity and Reinstatement of Drug Seeking in Rats

    OpenAIRE

    Brimijoin, Stephen; Gao, Yang; Anker, Justin J.; Gliddon, Luke A.; LaFleur, David; Shah, R.; Zhao, Qinghai; Singh, M; Carroll, Marilyn E.

    2008-01-01

    Successive rational mutations of human butyrylcholinesterase (BChE) followed by fusion to human serum albumin have yielded an efficient hydrolase that offers realistic options for therapy of cocaine overdose and abuse. This albumin-BChE prevented seizures in rats given a normally lethal cocaine injection (100 mg/kg, i.p.), lowered brain cocaine levels even when administered after the drug, and provided rescue after convulsions commenced. Moreover, it selectively blocked cocaine-induced reinst...

  11. Synergistic function of four novel thermostable glycoside hydrolases from a long-term enriched thermophilic methanogenic digester

    OpenAIRE

    Wang, Meng; Lai, Guo-Li; Nie, Yong; Geng, Shuang; Liu, Liming; Zhu, Baoli; Shi, Zhongping; Wu, Xiao-Lei

    2015-01-01

    In biofuel production from lignocellulose, low thermostability and product inhibition strongly restrict the enzyme activities and production process. Application of multiple thermostable glycoside hydrolases, forming an enzyme “cocktail”, can result in a synergistic action and therefore improve production efficiency and reduce operational costs. Therefore, increasing enzyme thermostabilities and compatibility are important for the biofuel industry. In this study, we reported the screening, cl...

  12. Structural Insights into an Oxalate-producing Serine Hydrolase with an Unusual Oxyanion Hole and Additional Lyase Activity.

    Science.gov (United States)

    Oh, Juntaek; Hwang, Ingyu; Rhee, Sangkee

    2016-07-15

    In Burkholderia species, the production of oxalate, an acidic molecule, is a key event for bacterial growth in the stationary phase. Oxalate plays a central role in maintaining environmental pH, which counteracts inevitable population-collapsing alkaline toxicity in amino acid-based culture medium. In the phytopathogen Burkholderia glumae, two enzymes are responsible for oxalate production. First, the enzyme oxalate biosynthetic component A (ObcA) catalyzes the formation of a tetrahedral C6-CoA adduct from the substrates acetyl-CoA and oxaloacetate. Then the ObcB enzyme liberates three products from the C6-CoA adduct: oxalate, acetoacetate, and CoA. Interestingly, these two stepwise reactions are catalyzed by a single bifunctional enzyme, Obc1, from Burkholderia thailandensis and Burkholderia pseudomallei Obc1 has an ObcA-like N-terminal domain and shows ObcB activity in its C-terminal domain despite no sequence homology with ObcB. We report the crystal structure of Obc1 in its apo and glycerol-bound form at 2.5 Å and 2.8 Å resolution, respectively. The Obc1 N-terminal domain is essentially identical both in structure and function to that of ObcA. Its C-terminal domain has an α/β hydrolase fold that has a catalytic triad for oxalate production and a novel oxyanion hole distinct from the canonical HGGG motif in other α/β hydrolases. Functional analyses through mutagenesis studies suggested that His-934 is an additional catalytic acid/base for its lyase activity and liberates two additional products, acetoacetate and CoA. These results provide structural and functional insights into bacterial oxalogenesis and an example of divergent evolution of the α/β hydrolase fold, which has both hydrolase and lyase activity. PMID:27226606

  13. Functional Analysis of Four Bile Salt Hydrolase and Penicillin Acylase Family Members in Lactobacillus plantarum WCFS1▿ †

    OpenAIRE

    Lambert, J M; Bongers, R.S.; Vos, de, R.; Kleerebezem, M.

    2008-01-01

    Bile salts play an important role in the digestion of lipids in vertebrates and are synthesized and conjugated to either glycine or taurine in the liver. Following secretion of bile salts into the small intestine, intestinal microbes are capable of deconjugating the glycine or taurine from the bile salts, using an enzyme called bile salt hydrolase (Bsh). Intestinal lactobacilli are regarded as major contributors to bile salt hydrolysis in vivo. Since the bile salt-hydrolyzing strain Lactobaci...

  14. Purification and Characterization of an Inducible s-Triazine Hydrolase from Rhodococcus corallinus NRRL B-15444R

    OpenAIRE

    Mulbry, Walter W.

    1994-01-01

    The widespread use and relative persistence of s-triazine compounds such as atrazine and simazine have led to increasing concern about environmental contamination by these compounds. Few microbial isolates capable of transforming substituted s-triazines have been identified. Rhodococcus corallinus NRRL B-15444 has previously been shown to possess a hydrolase activity that is responsible for the dechlorination of the triazine compounds deethylsimazine (6-chloro-N-ethyl-1,3,5-triazine-2,4-diami...

  15. Beneficial Effect of Sugar Osmolytes on the Refolding of Guanidine Hydrochloride-Denatured Trehalose-6-phosphate Hydrolase from Bacillus licheniformis

    OpenAIRE

    Jiau-Hua Chen; Meng-Chun Chi; Min-Guan Lin; Long-Liu Lin; Tzu-Fan Wang

    2015-01-01

    The influence of three sugar osmolytes on the refolding of guanidine hydrochloride- (GdnHCl-) denatured trehalose-6-phosphate hydrolase of Bacillus licheniformis (BlTreA) was studied by circular dichroism (CD) spectra, fluorescence emission spectra, and the recovery of enzymatic activity. These experimental results clearly indicated that sorbitol, sucrose, and trehalose at a concentration of 0.75 M improved the refolding yields of GdnHCl-denatured  BlTreA, probably due to the fact that these ...

  16. A Substrate-Assisted Mechanism of Nucleophile Activation in a Ser-His-Asp Containing C-C Bond Hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Ruzzini, Antonio C.; Bhowmik, Shiva; Ghosh, Subhangi; Yam, Katherine C.; Bolin, Jeffrey T.; Eltis, Lindsay D. [Purdue; (UBC)

    2013-11-12

    The meta-cleavage product (MCP) hydrolases utilize a Ser–His–Asp triad to hydrolyze a carbon–carbon bond. Hydrolysis of the MCP substrate has been proposed to proceed via an enol-to-keto tautomerization followed by a nucleophilic mechanism of catalysis. Ketonization involves an intermediate, ESred, which possesses a remarkable bathochromically shifted absorption spectrum. We investigated the catalytic mechanism of the MCP hydrolases using DxnB2 from Sphingomonas wittichii RW1. Pre-steady-state kinetic and LC ESI/MS evaluation of the DxnB2-mediated hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid to 2-hydroxy-2,4-pentadienoic acid and benzoate support a nucleophilic mechanism catalysis. In DxnB2, the rate of ESred decay and product formation showed a solvent kinetic isotope effect of 2.5, indicating that a proton transfer reaction, assigned here to substrate ketonization, limits the rate of acylation. For a series of substituted MCPs, this rate was linearly dependent on MCP pKa2nuc ~ 1). Structural characterization of DxnB2 S105A:MCP complexes revealed that the catalytic histidine is displaced upon substrate-binding. The results provide evidence for enzyme-catalyzed ketonization in which the catalytic His–Asp pair does not play an essential role. The data further suggest that ESred represents a dianionic intermediate that acts as a general base to activate the serine nucleophile. This substrate-assisted mechanism of nucleophilic catalysis distinguishes MCP hydrolases from other serine hydrolases.

  17. Recruitment of Glycosyl Hydrolase Proteins in a Cone Snail Venomous Arsenal: Further Insights into Biomolecular Features of Conus Venoms

    OpenAIRE

    Philippe Favreau; Igor Križaj; Frédéric Ducancel; Reto Stöcklin; Florian Noguier; Sébastien Dutertre; Daniel Biass; David Piquemal; Yves Terrat; Adrijana Leonardi; Aude Violette

    2012-01-01

    Cone snail venoms are considered an untapped reservoir of extremely diverse peptides, named conopeptides, displaying a wide array of pharmacological activities. We report here for the first time, the presence of high molecular weight compounds that participate in the envenomation cocktail used by these marine snails. Using a combination of proteomic and transcriptomic approaches, we identified glycosyl hydrolase proteins, of the hyaluronidase type (Hyal), from the dissected and injectable ven...

  18. Profile of Secreted Hydrolases, Associated Proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the Degradation of Hemicellulose

    OpenAIRE

    Currie, D. H.; Guss, A. M.; Herring, C. D.; Giannone, R. J.; Johnson, C. M.; Lankford, P. K.; Brown, S. D.; Hettich, R.L.; Lynd, L. R.

    2014-01-01

    Thermoanaerobacterium saccharolyticum, a Gram-positive thermophilic anaerobic bacterium, grows robustly on insoluble hemicellulose, which requires a specialized suite of secreted and transmembrane proteins. We report here the characterization of proteins secreted by this organism. Cultures were grown on hemicellulose, glucose, xylose, starch, and xylan in pH-controlled bioreactors, and samples were analyzed via spotted microarrays and liquid chromatography-mass spectrometry. Key hydrolases an...

  19. 40 CFR 721.984 - Amino-hydroxy sulfonaphthylazo-disubstituted phenyl azo benzene carboxylate salt (generic).

    Science.gov (United States)

    2010-07-01

    ...-disubstituted phenyl azo benzene carboxylate salt (generic). 721.984 Section 721.984 Protection of Environment...-disubstituted phenyl azo benzene carboxylate salt (generic). (a) Chemical substance and significant new uses...-disubstituted phenyl azo benzene carboxylate salt (PMN P-00-0351) is subject to reporting under this section...

  20. Boric Ester-Type Molten Salt via Dehydrocoupling Reaction

    Directory of Open Access Journals (Sweden)

    Noriyoshi Matsumi

    2014-11-01

    Full Text Available Novel boric ester-type molten salt was prepared using 1-(2-hydroxyethyl-3-methylimidazolium chloride as a key starting material. After an ion exchange reaction of 1-(2-hydroxyethyl-3-methylimidazolium chloride with lithium (bis-(trifluoromethanesulfonyl imide (LiNTf2, the resulting 1-(2-hydroxyethyl-3-methylimidazolium NTf2 was reacted with 9-borabicyclo[3.3.1]nonane (9-BBN to give the desired boric ester-type molten salt in a moderate yield. The structure of the boric ester-type molten salt was supported by 1H-, 13C-, 11B- and 19F-NMR spectra. In the presence of two different kinds of lithium salts, the matrices showed an ionic conductivity in the range of 1.1 × 10−4–1.6 × 10−5 S cm−1 at 51 °C. This was higher than other organoboron molten salts ever reported.