WorldWideScience

Sample records for carboxyl terminal hydrolase

  1. Affinity chromatography using protein immobilized via arginine residues: purification of ubiquitin carboxyl-terminal hydrolases.

    Science.gov (United States)

    Duerksen-Hughes, P J; Williamson, M M; Wilkinson, K D

    1989-10-17

    4-(Oxoacetyl)phenoxyacetic acid (OAPA) forms a stable, covalent bond between its glyoxal group and the guanidino group of arginine and arginine derivatives [Duerksen, P. J., & Wilkinson, K. D. (1987) Anal. Biochem. 160, 444-454]. Studies were carried out to determine the chemical nature of this linkage, and the structure of the stable adduct between OAPA and methylguanidine was elucidated. The stable product results from an internal oxidation-reduction of the Schiff base adduct to form a cyclic alpha-aminoamide, 4-[4-(carboxymethoxy)phenyl]-2-(methylimino)-5-oxoimidazolidine. OAPA coupled to polyacrylamide beads was used to immobilize ubiquitin via its arginine residues, and the resulting affinity support was shown to specifically and reversibly bind a previously described enzyme, ubiquitin carboxyl-terminal hydrolase [Pickart, C. M., & Rose, I. A. (1985) J. Biol. Chem. 260, 7903-7910]. The resin was then used to isolate three newly identified ubiquitin carboxyl-terminal hydrolytic activities, which did not bind to ubiquitin immobilized via lysine residues. Significant purification was achieved in each case, and one isozyme was further purified to homogeneity.

  2. A novel ubiquitin carboxyl terminal hydrolase is involved in toad oocyte maturation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    p28, a 28kD protein from toad (Bufo bufo gargarizans) oocytes, was identified by using p13suc1-agaroseaffinity chromatography. Sequence homology analysis of the full-length cDNA of p28 (Gene Bank accessionnumber: AF 314091) indicated that it encodes a protein containing 224 amino-acids with about 55% iden-tities and more than 70% positives to human, rat or mouse UCH-L1, and contains homological functionaldomains of UCH family. Anti-p28 monoclonal antibody, on injecting into the oocytes, could inhibit theprogesterone-induced resumption of meiotic division in a dose-dependent manner. The recombinant proteinp28 showed similar SDS/PAGE behaviors to the native one, and promoted ubiquitin ethyl ester hydrolysis,a classical catalytic reaction for ubiquitin carboxyl terminai hydrolases (UCHs). The results in this paperreveal that a novel protein, p28, exists in the toad oocytes, is a UCH L1 homolog, was engaged in theprocess of progesterone-induced oocyte maturation possibly through an involvement in protein turnover anddegradation.

  3. Ubiquitin carboxyl terminal hydrolase L1 negatively regulates TNF{alpha}-mediated vascular smooth muscle cell proliferation via suppressing ERK activation

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Tomonaga; Li, Jinqing; Dong, Xiaoyu; Potts, Jay D. [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Tang, Dong-Qi [Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610-0275 (United States); Li, Dong-Sheng, E-mail: dsli@yymc.edu.cn [Hubei Key Laboratory of Embryonic Stem Cell Research, Tai He Hospital, Yunyang Medical College, 32 S. Renmin Rd., Shiyan, Hubei 442000 (China); Cui, Taixing, E-mail: taixing.cui@uscmed.sc.edu [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States)

    2010-01-01

    Deubiquitinating enzymes (DUBs) appear to be critical regulators of a multitude of processes such as proliferation, apoptosis, differentiation, and inflammation. We have recently demonstrated that a DUB of ubiquitin carboxyl terminal hydrolase L1 (UCH-L1) inhibits vascular lesion formation via suppressing inflammatory responses in vasculature. However, the precise underlying mechanism remains to be defined. Herein, we report that a posttranscriptional up-regulation of UCH-L1 provides a negative feedback to tumor necrosis factor alpha (TNF{alpha})-mediated activation of extracellular signal-regulated kinases (ERK) and proliferation in vascular smooth muscle cells (VSMCs). In rat adult VSMCs, adenoviral over-expression of UCH-L1 inhibited TNF{alpha}-induced activation of ERK and DNA synthesis. In contrast, over-expression of UCH-L1 did not affect platelet derived growth factor (PDGF)-induced VSMC proliferation and activation of growth stimulating cascades including ERK. TNF{alpha} hardly altered UCH-L1 mRNA expression and stability; however, up-regulated UCH-L1 protein expression via increasing UCH-L1 translation. These results uncover a novel mechanism by which UCH-L1 suppresses vascular inflammation.

  4. Carboxylic ester hydrolases in mitochondria from rat skeletal muscle

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Zelander, T

    1990-01-01

    A mitochondrial pellet, prepared from rat skeletal muscle, contained a number of carboxylic ester hydrolase isoenzymes. The esterases which split alpha-naphthyl acetate were organophosphate sensitive, whereas two out of three indoxyl acetate hydrolysing enzymes were resistant to both organophosph......A mitochondrial pellet, prepared from rat skeletal muscle, contained a number of carboxylic ester hydrolase isoenzymes. The esterases which split alpha-naphthyl acetate were organophosphate sensitive, whereas two out of three indoxyl acetate hydrolysing enzymes were resistant to both...

  5. Downregulation of miR-181b in mouse brain following ischemic stroke induces neuroprotection against ischemic injury through targeting heat shock protein A5 and ubiquitin carboxyl-terminal hydrolase isozyme L1.

    Science.gov (United States)

    Peng, Zhifeng; Li, Jiefei; Li, Yun; Yang, Xuan; Feng, Sujuan; Han, Song; Li, Junfa

    2013-10-01

    Understanding the molecular mechanism of cerebral hypoxic preconditioning (HPC)-induced endogenous neuroprotection may provide potential therapeutic targets for ischemic stroke. By using bioinformatics analysis, we found that miR-181b, one of 19 differentially expressed miRNAs, may target aconitate hydratase (ACO2), heat shock protein A5 (HSPA5), and ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1) among 26 changed protein kinase C isoform-specific interacting proteins in HPC mouse brain. In this study, the role of miR-181b in oxygen-glucose deprivation (OGD)-induced N2A cell ischemic injury in vitro and mouse middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury in vivo, and its regulation of ACO2, HSPA5, and UCHL1 were further determined. We found that miR-181b expression levels significantly decreased in mouse brain following MCAO and in OGD-treated N2A cells. Up- and downregulation of miR-181b by transfection of pre- or anti-miR-181b could negatively regulate HSPA5 and UCHL1 (but not ACO2) protein levels as well as N2A cell death and programmed cell death in OGD-treated N2A cells. By using a T7 promoter-driven control dual luciferase assay, we confirmed that miR-181b could bind to the 3'-untranslated rergions of HSPA5 and UCHL1 mRNAs and repress their translations. miR-181b antagomir reduced caspase-3 cleavage and neural cell loss in cerebral ischemic cortex and improved neurological deficit of mice after MCAO. In addition, HSPA5 and UCHL1 short interfering RNAs (siRNAs) blocked anti-miR-181b-mediated neuroprotection against OGD-induced N2A cell injury in vitro. These results suggest that the downregulated miR-181b induces neuroprotection against ischemic injury through negatively regulating HSPA5 and UCHL1 protein levels, providing a potential therapeutic target for ischemic stroke.

  6. EPOXY RESINS TOUGHENED WITH CARBOXYL TERMINATED POLYETHERS

    Institute of Scientific and Technical Information of China (English)

    YU Yunchao; LI Yiming

    1983-01-01

    Carboxyl terminated polyethers, the adducts of hydroxyl terminated polytetrahydrofuran and maleic anhydride, were used as toughener for epoxy resins. The morphology of the toughened resins was investigated by means of turbidity measurement, dynamic mechanical testing and scanning electron microscope observation. It turned out that the molecular weight and the carboxyl content of the polyether and the cure conditions are important factors, which affect the particle size of the polyether-rich domains and, in turn, the mechanical properties of the cured resin. Carboxyl terminated polytetrahydrofurans have a low glass transition temperature, and in appropriate amount they do not affect the thermal resistance of the resin. These advantages make them preferable as toughener for epoxy resins.

  7. Ubiquitin C-Terminal Hydrolase L1 in Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jennifer Hurst-Kennedy

    2012-01-01

    Full Text Available Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1, aka PGP9.5 is an abundant, neuronal deubiquitinating enzyme that has also been suggested to possess E3 ubiquitin-protein ligase activity and/or stabilize ubiquitin monomers in vivo. Recent evidence implicates dysregulation of UCH-L1 in the pathogenesis and progression of human cancers. Although typically only expressed in neurons, high levels of UCH-L1 have been found in many nonneuronal tumors, including breast, colorectal, and pancreatic carcinomas. UCH-L1 has also been implicated in the regulation of metastasis and cell growth during the progression of nonsmall cell lung carcinoma, colorectal cancer, and lymphoma. Together these studies suggest UCH-L1 has a potent oncogenic role and drives tumor development. Conversely, others have observed promoter methylation-mediated silencing of UCH-L1 in certain tumor subtypes, suggesting a potential tumor suppressor role for UCH-L1. In this paper, we provide an overview of the evidence supporting the involvement of UCH-L1 in tumor development and discuss the potential mechanisms of action of UCH-L1 in oncogenesis.

  8. Revised molecular basis of the promiscuous carboxylic acid perhydrolase activity in serine hydrolases.

    Science.gov (United States)

    Yin, DeLu Tyler; Kazlauskas, Romas J

    2012-06-25

    Several serine hydrolases catalyze a promiscuous reaction: perhydrolysis of carboxylic acids to form peroxycarboxylic acids. The working hypothesis is that perhydrolases are more selective than esterases for hydrogen peroxide over water. In this study, we tested this hypothesis, and focused on L29P-PFE (Pseudomonas fluorescens esterase), which catalyzes perhydrolysis of acetic acid 43-fold faster than wild-type PFE. This hypothesis predicts that L29P-PFE should be approximately 43-fold more selective for hydrogen peroxide than wild-type PFE, but experiments show that L29P-PFE is less selective. The ratio of hydrolysis to perhydrolysis of methyl acetate at different concentrations of hydrogen peroxide fit a kinetic model for nucleophile selectivity. L29P-PFE (β(0)=170  M(-1)) is approximately half as selective for hydrogen peroxide over water than wild-type PFE (β(0)=330  M(-1)), which contradicts the working hypothesis. An alternative hypothesis is that carboxylic acid perhydrolases increase perhydrolysis by forming the acyl-enzyme intermediate faster. Consistent with this hypothesis, the rate of acetyl-enzyme formation, measured by (18)O-water exchange into acetic acid, was 25-fold faster with L29P-PFE than with wild-type PFE, which is similar to the 43-fold faster perhydrolysis with L29P-PFE. Molecular modeling of the first tetrahedral intermediate (T(d)1) suggests that a closer carbonyl group found in perhydrolases accepts a hydrogen bond from the leaving group water. This revised understanding can help design more efficient enzymes for perhydrolysis and shows how subtle changes can create new, unnatural functions in enzymes.

  9. Carboxylic ester hydrolase and amylase in ischemic pancreatitis in the guinea pig.

    Science.gov (United States)

    Blind, P J; Bläckberg, L; Lundström, E B; Emdin, S O; Hernell, O

    1996-05-01

    The observation that an elevated level of pancreatic carboxylic ester hydrolase (CEH) in serum is a more sensitive and specific marker of acute pancreatitis than is elevated serum amylase activity prompted us to explore whether these findings could be confirmed in an experimental model and, if so, to find the explanation behind this difference. We therefore developed a model for ischemic pancreatitis in the guinea pig and a sandwich enzyme-linked immunosorbent assay for determination of CEH in this species. There was a strong correlation between duration of ischemia and severity of pancreatic inflammation and between severity of inflammation and serum CEH level. In contrast, serum amylase was elevated only in animals with the most severe grade of inflammation. Amylase was, however, increased in urine in animals with mild inflammation, but the level did not increase with severity of inflammation. Only one of 31 animals had detectable CEH in urine. In animals with intermediate serum CEH levels the serum and biliary concentrations correlated, indicating that CEH may be cleared by the liver. Amylase was detectable in bile only in animals with high serum levels. The results confirm our observations made in previous clinical studies. A likely explanation for differences in serum levels of CEH and amylase is clearance from the circulation at different rates and, at least partly, via different routes, e.g., the liver and kidney, respectively.

  10. Preparation and reactivity of carboxylic acid-terminated boron-doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Niedziolka-Joensson, Joanna [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d' Ascq (France); Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, UMR 8520), Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France); Boland, Susan; Leech, Donal [School of Chemistry, National University of Irland, Galway (Ireland); Boukherroub, Rabah [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d' Ascq (France); Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, UMR 8520), Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France); Szunerits, Sabine, E-mail: sabine.szunerits@iri.univ-lille1.f [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d' Ascq (France); Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, UMR 8520), Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France)

    2010-01-01

    The paper reports on the formation of carboxy-terminated boron-doped diamond (BDD) electrodes. The carboxylic acid termination was prepared in a controlled way by reacting photochemically oxidized BDD with succinic anhydride. The resulting interface was readily employed for the linking of an amine-terminated ligand such as an osmium complex bearing an amine terminal group. The interfaces were characterized using X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). Contact angle measurements were used to follow the changes in surface wetting properties due to surface functionalization. The chemical reactivity of the carboxyl-terminated BDD was investigated by covalent coupling of the acid groups to an amine-terminated osmium complex.

  11. Leishmania donovani Nucleoside Hydrolase Terminal Domains in Cross-Protective Immunotherapy Against Leishmania amazonensis Murine Infection

    Science.gov (United States)

    Nico, Dirlei; Gomes, Daniele Crespo; Palatnik-de-Sousa, Iam; Morrot, Alexandre; Palatnik, Marcos; Palatnik-de-Sousa, Clarisa Beatriz

    2014-01-01

    Nucleoside hydrolases of the Leishmania genus are vital enzymes for the replication of the DNA and conserved phylogenetic markers of the parasites. Leishmania donovani nucleoside hydrolase (NH36) induced a main CD4+ T cell driven protective response against L. chagasi infection in mice which is directed against its C-terminal domain. In this study, we used the three recombinant domains of NH36: N-terminal domain (F1, amino acids 1–103), central domain (F2 aminoacids 104–198), and C-terminal domain (F3 amino acids 199–314) in combination with saponin and assayed their immunotherapeutic effect on Balb/c mice previously infected with L. amazonensis. We identified that the F1 and F3 peptides determined strong cross-immunotherapeutic effects, reducing the size of footpad lesions to 48 and 64%, and the parasite load in footpads to 82.6 and 81%, respectively. The F3 peptide induced the strongest anti-NH36 antibody response and intradermal response (IDR) against L. amazonenis and a high secretion of IFN-γ and TNF-α with reduced levels of IL-10. The F1 vaccine, induced similar increases of IgG2b antibodies and IFN-γ and TNF-α levels, but no IDR and no reduction of IL-10. The multiparameter flow cytometry analysis was used to assess the immune response after immunotherapy and disclosed that the degree of the immunotherapeutic effect is predicted by the frequencies of the CD4+ and CD8+ T cells producing IL-2 or TNF-α or both. Total frequencies and frequencies of double-cytokine CD4 T cell producers were enhanced by F1 and F3 vaccines. Collectively, our multifunctional analysis disclosed that immunotherapeutic protection improved as the CD4 responses progressed from 1+ to 2+, in the case of the F1 and F3 vaccines, and as the CD8 responses changed qualitatively from 1+ to 3+, mainly in the case of the F1 vaccine, providing new correlates of immunotherapeutic protection against cutaneous leishmaniasis in mice based on T-helper TH1 and CD8+ mediated immune responses

  12. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: Thermal and mechanical properties

    Directory of Open Access Journals (Sweden)

    H. F. Xie

    2012-09-01

    Full Text Available Carboxyl-modified multi-walled carbon nanotubes (MWCNT–COOHs as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA toughened with carboxyl-terminated butadiene-acrylonitrile (CTBN. The carboxyl functional carbon nanotubes were characterized by Fourier-transform infrared spectroscopy and thermogravimetric analysis. Furthermore, cure kinetics, glass transition temperature (Tg, mechanical properties, thermal stability and morphology of DGEBA/CTBN/MWCNT–COOHs nanocomposites were investigated by differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, universal test machine, thermogravimetric analysis and scanning electron microscopy (SEM. DSC kinetic studies showed that the addition of MWCNT–COOHs accelerated the curing reaction of the rubber-toughened epoxy resin. DMA results revealed that Tg of rubber-toughened epoxy nanocomposites lowered with MWCNT–COOH contents. The tensile strength, elongation at break, flexural strength and flexural modulus of DGEBA/CTBN/MWCNT-COOHs nanocomposites were increased at lower MWCNT-COOH concentration. A homogenous dispersion of nanocomposites at lower MWCNT–COOH concentration was observed by SEM.

  13. Ubiquitin Carboxy-Terminal HydrolaseL3 Correlates with Human Sperm Count, Motility and Fertilization

    Science.gov (United States)

    Wang, Meijiao; Yu, Tinghe; Hu, Lina; Cheng, Zhi; Li, Min

    2016-01-01

    Ubiquitin C-terminal hydrolase L3 (UCHL3) belongs to the group of deubiquitinating enzymes and plays a part in apoptosis of germ cells and the differentiation of spermatocytes into spermatids. However, the exact role of UCHL3 in human spermatogenesis and sperm function remains unknown. Here we examined the level and activity of UCHL3 in spermatozoa from men with asthenozoospermia (A), oligoasthenozoospermia (OA) or normozoospermia (N). Immunofluorescence indicated that UCHL3 was mainly localized in the acrosome and throughout the flagella, and western blotting revealed a lower level in A or OA compared with N (p < 0.05). The catalytic activity of UCHL3 was decreased in spermatozoa from A or OA (p < 0.05, p < 0.001, respectively). The level and activity of UCHL3 were positively correlated with sperm count, concentration and motility. The UCHL3 level was positively correlated with the normal fertilization rate (FR) and percentage of embryos suitable for transfer/cryopreservation of in vitro fertilization (IVF). The UCHL3 activity was also positively correlated with FR, the percentage of embryos suitable for transfer/cryopreservation and high-quality embryos rate of IVF. Aforementioned correlations were not manifested in intra-cytoplasmic sperm injection (ICSI). These findings suggest that UCHL3 may play a role in male infertility. PMID:27780264

  14. Role of ubiquitin C-terminal hydrolase-L1 in antipolyspermy defense of mammalian oocytes.

    Science.gov (United States)

    Susor, Andrej; Liskova, Lucie; Toralova, Tereza; Pavlok, Antonin; Pivonkova, Katerina; Karabinova, Pavla; Lopatarova, Miloslava; Sutovsky, Peter; Kubelka, Michal

    2010-06-01

    The ubiquitin-proteasome system regulates many cellular processes through rapid proteasomal degradation of ubiquitin-tagged proteins. Ubiquitin C-terminal hydrolase-L1 (UCHL1) is one of the most abundant proteins in mammalian oocytes. It has weak hydrolytic activity as a monomer and acts as a ubiquitin ligase in its dimeric or oligomeric form. Recently published data show that insufficiency in UCHL1 activity coincides with polyspermic fertilization; however, the mechanism by which UCHL1 contributes to this process remains unclear. Using UCHL1-specific inhibitors, we induced a high rate of polyspermy in bovine zygotes after in vitro fertilization. We also detected decreased levels in the monomeric ubiquitin and polyubiquitin pool. The presence of UCHL1 inhibitors in maturation medium enhanced formation of presumptive UCHL1 oligomers and subsequently increased abundance of K63-linked polyubiquitin chains in oocytes. We analyzed the dynamics of cortical granules (CGs) in UCHL1-inhibited oocytes; both migration of CGs toward the cortex during oocyte maturation and fertilization-induced extrusion of CGs were impaired. These alterations in CG dynamics coincided with high polyspermy incidence in in vitro-produced UCHL1-inhibited zygotes. These data indicate that antipolyspermy defense in bovine oocytes may rely on UCHL1-controlled functioning of CGs.

  15. Precursors of novel Gla-containing conotoxins contain a carboxy-terminal recognition site that directs gamma-carboxylation

    DEFF Research Database (Denmark)

    Brown, Mark A; Begley, Gail S; Czerwiec, Eva

    2005-01-01

    , and amino acid substitutions of these residues perturbed gamma-carboxylation of the Gla-TxXI peptide. The demonstration of a functional and transferable C-terminal postpeptide in these conotoxins indicates the presence of the gamma-carboxylation recognition site within the postpeptide and defines a novel...... precursor structure for vitamin K-dependent polypeptides. It also provides the first formal evidence to prove that gamma-carboxylation occurs as a post-translational rather than a cotranslational process....

  16. Temperature dependence of C-terminal carboxylic group IR absorptions in the amide I' region.

    Science.gov (United States)

    Anderson, Benjamin A; Literati, Alex; Ball, Borden; Kubelka, Jan

    2015-01-01

    Studies of structural changes in peptides and proteins using IR spectroscopy often rely on subtle changes in the amide I' band as a function of temperature. However, these changes can be obscured by the overlap with other absorptions, namely the side-chain and terminal carboxylic groups. The former were the subject of our previous report (Anderson et al., 2014). In this paper we investigate the IR spectra of the asymmetric stretch of α-carboxylic groups for amino acids representing all major types (Gly, Ala, Val, Leu, Ser, Thr, Asp, Glu, Lys, Asn, His, Trp, Pro) as well as the C-terminal groups of three dipeptides (Gly-Gly, Gly-Ala, Ala-Gly) in D₂O at neutral pH. Experimental temperature dependent IR spectra were analyzed by fitting of both symmetric and asymmetric pseudo-Voigt functions. Qualitatively the spectra exhibit shifts to higher frequency, loss in intensity and narrowing with increased temperature, similar to that observed previously for the side-chain carboxylic groups of Asp. The observed dependence of the band parameters (frequency, intensity, width and shape) on temperature is in all cases linear: simple linear regression is therefore used to describe the spectral changes. The spectral parameters vary between individual amino acids and show systematic differences between the free amino acids and dipeptides, particularly in the absolute peak frequencies, but the temperature variations are comparable. The relative variations between the dipeptide spectral parameters are most sensitive to the C-terminal amino acid, and follow the trends observed in the free amino acid spectra. General rules for modeling the α-carboxylic IR absorption bands in peptides and proteins as the function of temperature are proposed.

  17. Temperature dependence of C-terminal carboxylic group IR absorptions in the amide I‧ region

    Science.gov (United States)

    Anderson, Benjamin A.; Literati, Alex; Ball, Borden; Kubelka, Jan

    2015-01-01

    Studies of structural changes in peptides and proteins using IR spectroscopy often rely on subtle changes in the amide I‧ band as a function of temperature. However, these changes can be obscured by the overlap with other absorptions, namely the side-chain and terminal carboxylic groups. The former were the subject of our previous report (Anderson et al., 2014). In this paper we investigate the IR spectra of the asymmetric stretch of α-carboxylic groups for amino acids representing all major types (Gly, Ala, Val, Leu, Ser, Thr, Asp, Glu, Lys, Asn, His, Trp, Pro) as well as the C-terminal groups of three dipeptides (Gly-Gly, Gly-Ala, Ala-Gly) in D2O at neutral pH. Experimental temperature dependent IR spectra were analyzed by fitting of both symmetric and asymmetric pseudo-Voigt functions. Qualitatively the spectra exhibit shifts to higher frequency, loss in intensity and narrowing with increased temperature, similar to that observed previously for the side-chain carboxylic groups of Asp. The observed dependence of the band parameters (frequency, intensity, width and shape) on temperature is in all cases linear: simple linear regression is therefore used to describe the spectral changes. The spectral parameters vary between individual amino acids and show systematic differences between the free amino acids and dipeptides, particularly in the absolute peak frequencies, but the temperature variations are comparable. The relative variations between the dipeptide spectral parameters are most sensitive to the C-terminal amino acid, and follow the trends observed in the free amino acid spectra. General rules for modeling the α-carboxylic IR absorption bands in peptides and proteins as the function of temperature are proposed.

  18. Carboxylic acid terminated, solution exfoliated graphite by organic acylation and its application in drug delivery

    Indian Academy of Sciences (India)

    KOUSHIK BHOWMIK; AMRITA CHAKRAVARTY; U MANJU; GOUTAM DE; ARNAB MUKHERJEE

    2016-09-01

    Graphite nanosheets are considered as a promising material for a range of applications from flexible electronics to functional nanodevices such as biosensors, intelligent coatings and drug delivery. Chemical functionalizationof graphite nanosheets with organic/inorganic materials offers an alternative approach to control the electronic properties of graphene, which is a zero band gap semiconductor in pristine form. In this paper, we report the aromatic electrophilic substitution of solution exfoliated graphite nanosheets (SEGn). The highly conjugated π-electronic system of graphite nanosheets enable it to have an amphiphilic characteristic in aromatic substitution reactions. The substitution was achieved through Friedel–Crafts (FC) acylation reaction under mild conditions using succinic anhydride as acylating agent and anhydrous aluminum chloride as Lewisacid. Such reaction renders towards the carboxylic acid terminated graphite nanosheets (SEGn–FC) that usually requires harsh reaction conditions. The product thus obtained was characterized using various spectroscopicand microscopic techniques. Highly stable water-dispersed sodium salt of carboxylic acid terminated graphite nanosheets (SEGn–FC-Na) was also prepared. A comparative sheet-resistance measurements of SEGn, SEGn–FC and SEGn–FC-Na were also done. Finally, the anticancer drug doxorubicin (DOX) was loaded on water dispersible SEGn–FC-Na with a loading capacity of 0.266 mg mg−1 of SEGn–FC-Na and the release of DOX from this water-soluble DOX-loaded SEGn–FC-Na at two different temperatures was found to be strongly pHdependent.

  19. The ubiquitin C-terminal hydrolase UCH-L1 promotes bacterial invasion by altering the dynamics of the actin cytoskeleton

    DEFF Research Database (Denmark)

    Basseres, Eugene; Coppotelli, Giuseppe; Pfirrmann, Thorsten;

    2010-01-01

    Invasion of eukaryotic target cells by pathogenic bacteria requires extensive remodelling of the membrane and actin cytoskeleton. Here we show that the remodelling process is regulated by the ubiquitin C-terminal hydrolase UCH-L1 that promotes the invasion of epithelial cells by Listeria monocyto...

  20. Selective preparation of terminal alkenes from aliphatic carboxylic acids by a palladium-catalysed decarbonylation-eliminiation reaction

    NARCIS (Netherlands)

    Notre, le J.E.L.; Scott, E.L.; Franssen, M.C.R.; Sanders, J.P.M.

    2010-01-01

    Trialkylamines were used as additives in the decarbonylation–elimination reaction catalysed by the combination of palladium(II) chloride and DPE-Phos. Aliphatic carboxylic acids were transformed at relatively low temperature into terminal alkenes in high yield and high selectivity, without the need

  1. From Alkanes to Carboxylic Acids: Terminal Oxygenation by a Fungal Peroxygenase.

    Science.gov (United States)

    Olmedo, Andrés; Aranda, Carmen; Del Río, José C; Kiebist, Jan; Scheibner, Katrin; Martínez, Angel T; Gutiérrez, Ana

    2016-09-26

    A new heme-thiolate peroxidase catalyzes the hydroxylation of n-alkanes at the terminal position-a challenging reaction in organic chemistry-with H2 O2 as the only cosubstrate. Besides the primary product, 1-dodecanol, the conversion of dodecane yielded dodecanoic, 12-hydroxydodecanoic, and 1,12-dodecanedioic acids, as identified by GC-MS. Dodecanal could be detected only in trace amounts, and 1,12-dodecanediol was not observed, thus suggesting that dodecanoic acid is the branch point between mono- and diterminal hydroxylation. Simultaneously, oxygenation was observed at other hydrocarbon chain positions (preferentially C2 and C11). Similar results were observed in reactions of tetradecane. The pattern of products formed, together with data on the incorporation of (18) O from the cosubstrate H2 (18) O2 , demonstrate that the enzyme acts as a peroxygenase that is able to catalyze a cascade of mono- and diterminal oxidation reactions of long-chain n-alkanes to give carboxylic acids.

  2. Conserved expression of ubiquitin carboxyl-terminal esterase L1 (UCHL1) in mammalian testes.

    Science.gov (United States)

    Devi, Lalitha; Pawar, Rahul Mohanchandra; Makala, Himesh; Goel, Sandeep

    2015-05-01

    Spermatogonia, the adult germ cells that initiate spermatogenesis in mammalian testis, are capable of dividing both mitotically and meiotically. Isolation and preservation of spermatogonia helps in preserving genetic pool of endangered animals. In this context, identification of marker(s) that can distinguish spermatogonia from other cells in testis gains significance. Here, we examined the expression of ubiquitin carboxyl-terminal esterase L1 (UCHL1) gene and protein in the testes of several mammals, including highly endangered species. Semi-quantitative-reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed presence of UCHL1 amplicon of 442 bp in all the 18 mammals studied. Nucleotide sequence analysis of these amplicons and their predicted protein sequences revealed 88-99% and 95-100% homology with available human UCHL1 and UCHL1 sequences of other available species in the GenBank, respectively. Western blot analysis showed that UCHL1 protein size was unique in all wild mammals. Immunohistology results confirmed UCHL1 expression in the spermatogonia/gonocytes in testes of several mammals belonging to eight distinct families including highly endangered Felidae, Canidae and Cercopithecoidae. These findings suggest that UCHL1 expression is conserved in the mammalian testis, and could be used as a specific marker for gonocytes/spermatogonia for developing male germ-cell based conservation techniques.

  3. Carboxyl-terminal multi-site phosphorylation regulates internalization and desensitization of the human sst2 somatostatin receptor.

    Science.gov (United States)

    Lehmann, Andreas; Kliewer, Andrea; Schütz, Dagmar; Nagel, Falko; Stumm, Ralf; Schulz, Stefan

    2014-04-25

    The somatostatin receptor 2 (sst2) is the pharmacological target of somatostatin analogs that are widely used in the diagnosis and treatment of human neuroendocrine tumors. We have recently shown that the stable somatostatin analogs octreotide and pasireotide (SOM230) stimulate distinct patterns of sst2 receptor phosphorylation and internalization. Like somatostatin, octreotide promotes the phosphorylation of at least six carboxyl-terminal serine and threonine residues namely S341, S343, T353, T354, T356 and T359, which in turn leads to a robust receptor endocytosis. Unlike somatostatin, pasireotide stimulates a selective phosphorylation of S341 and S343 of the human sst2 receptor followed by a partial receptor internalization. Here, we show that exchange of S341 and S343 by alanine is sufficient to block pasireotide-driven internalization, whereas mutation of T353, T354, T356 and T359 to alanine is required to strongly inhibited both octreotide- and somatostatin-induced internalization. Yet, combined mutation of T353, T354, T356 and T359 is not sufficient to prevent somatostatin-driven β-arrestin mobilization and receptor desensitization. Replacement of all fourteen carboxyl-terminal serine and threonine residues by alanine completely abrogates sst2 receptor internalization and β-arrestin mobilization in HEK293 cells. Together, our findings demonstrate for the first time that agonist-selective sst2 receptor internalization is regulated by multi-site phosphorylation of its carboxyl-terminal tail.

  4. Synthesis of 1,3-Amino Alcohols, 1,3-Diols, Amines, and Carboxylic Acids from Terminal Alkynes.

    Science.gov (United States)

    Zeng, Mingshuo; Herzon, Seth B

    2015-09-04

    The half-sandwich ruthenium complexes 1-3 activate terminal alkynes toward anti-Markovnikov hydration and reductive hydration under mild conditions. These reactions are believed to proceed via addition of water to metal vinylidene intermediates (4). The functionalization of propargylic alcohols by metal vinylidene pathways is challenging owing to decomposition of the starting material and catalytic intermediates. Here we show that catalyst 2 can be employed to convert propargylic alcohols to 1,3-diols in high yield and with retention of stereochemistry at the propargylic position. The method is also amenable to propargylic amine derivatives, thereby establishing a route to enantioenriched 1,3-amino alcohol products. We also report the development of formal anti-Markovnikov reductive amination and oxidative hydration reactions to access linear amines and carboxylic acids, respectively, from terminal alkynes. This chemistry expands the scope of products that can be prepared from terminal alkynes by practical and high-yielding metal-catalyzed methods.

  5. Carboxyl terminal of rhodopsin kinase is required for the phosphorylation of photo—activated rhodopsin

    Institute of Scientific and Technical Information of China (English)

    YUQINGMING; LANMA; 等

    1998-01-01

    Human rhodopsin kinase (RK) and a carboxyl terminus-truncated mutant RK lacking the last 59 amino acids (RKC) were expressed in human embryonic kidney 293 cells to investigate the role of the carboxyl terminus of RK in recognition and phosphorylation of rhodopsin.RKC,like the wild-type RK,was detected in both plasma membranes and cytosolic fractions.The Cterminal truncated rhodopsin kinase was unable to phosphorylate photo-activated rhodopsin,but possesses kinase activity similar to the wild-type RK in phosphorylation of small peptide substrate.It suggests that the truncation did not disturb the gross structures of RK catalytic domain.Our results also show that RKC failed to translocate to photo-activated rod out segments.Taken together,our study demonstrate the carboxyl terminus of RK is required for phosphorylation of photo-activated rhodopsin and strongly indicate that carboxyl-terminus of RK may be involved in interaction with photo-activated rhodopsin.

  6. Characterization of two novel bacterial type A exo-chitobiose hydrolases having C-terminal 5/12-type carbohydrate-binding modules

    DEFF Research Database (Denmark)

    Binti Jamek, Shariza; Nyffenegger, Christian; Muschiol, Jan

    2017-01-01

    /α barrel domain of each of the new enzymes showed individual differences, but ~69% identity of each to that of SmaChiA and highly conserved active site residues. Superposition of a model substrate on 3D structural models of the catalytic domain of the enzymes corroborated exo-chitobiose hydrolase type...... A activity for FbalChi18A and MvarChi18A, i.e., substrate attack from the reducing end. A main feature of both of the new enzymes was the presence of C-terminal 5/12 type carbohydrate-binding modules (SmaChiA has no C-terminal carbohydrate binding module). These new enzymes may be useful tools...

  7. A sensitive chemiluminescent enzyme immunoassay for the bioanalysis of carboxyl-terminal B-chain analogues of human insulin.

    Science.gov (United States)

    Cao, Y; Smith, W C; Bowsher, R R

    2001-08-01

    Quantification of analogues of human insulin in biological matrices is complicated by differences in their immunoreactivity and the presence of both the analogue and endogenous concentrations of insulin in test samples. To facilitate pharmacokinetic comparisons of carboxyl-terminal B-chain analogues of human insulin, we undertook development of a sensitive ELISA. The ELISA detection method was optimized systematically to permit routine analysis of 10-microl serum samples. Accordingly, a noncompetitive 'sandwich' chemiluminescent ELISA was validated for the quantification of carboxyl-terminal B-chain insulin analogues in human serum over a concentration range from 5 to 3125 pM. The mean bias (RE%) within the validated range varied from -10.3 to 4.3%, with an intermediate precision (inter-assay CV%) from 4.2 to 11.5%. The two-sided 90% expectation tolerance interval for total measurement error was within +/-25% of the nominal concentration for all levels of validation samples. Insulin lispro, human insulin, proinsulin, despentapeptide insulin (DPI) and porcine insulin displayed comparable crossreactivity in the ELISA. Potential utility of the new assay for insulin bioanalysis in nonhuman species was investigated by assessing the pharmacokinetic profile of DPI in rats following administration of a single subcutaneous dose. The sensitive chemiluminescent detection method is simple to perform and should be readily adaptable for ELISAs of other therapeutic proteins.

  8. 1-(3-biaryloxy-2-oxopropyl)indole-5-carboxylic acids and related compounds as dual inhibitors of human cytosolic phospholipase A2α and fatty acid amide hydrolase.

    Science.gov (United States)

    Zahov, Stefan; Drews, Andreas; Hess, Mark; Schulze Elfringhoff, Alwine; Lehr, Matthias

    2011-03-07

    Cytosolic phospholipase A2α (cPLA2α) and fatty acid amide hydrolase (FAAH) are enzymes that have emerged as attractive targets for the development of analgesic and anti-inflammatory drugs. We recently reported that 1-[3-(4-octylphenoxy)-2-oxopropyl]indole-5-carboxylic acid (5) is a dual inhibitor of cPLA2α and FAAH. Structure-activity relationship studies revealed that substituents at the indole 3- and 5-positions and replacement of the indole scaffold of this compound by other heterocycles strongly influences the inhibitory potency against cPLA2α and FAAH, respectively. Herein we report the effect of variation of the 4-octyl residue of 5 and an exchange of its carboxylic acid moiety by some bioisosteric functional groups. Several of the compounds assayed were favorably active against both enzymes, and could therefore represent agents with improved analgesic and anti-inflammatory qualities in comparison with selective cPLA2 α and FAAH inhibitors.

  9. A novel carboxyl-terminal protease derived from Paenibacillus lautus CHN26 exhibiting high activities at multiple sites of substrates

    DEFF Research Database (Denmark)

    Li, Yunxia; Pan, Yingjie; She, Qunxin;

    2013-01-01

    Carboxyl-terminal protease (CtpA) plays essential functions in posttranslational protein processing in prokaryotic and eukaryotic cells. To date, only a few bacterial ctpA genes have been characterized. Here we cloned and characterized a novel CtpA. The encoding gene, ctpAp (ctpA of Paenibacillus...

  10. The carboxyl-terminal tail of Noxa protein regulates the stability of Noxa and Mcl-1.

    Science.gov (United States)

    Pang, Xiaming; Zhang, Jingjing; Lopez, Hernando; Wang, Yushu; Li, Wenyang; O'Neill, Katelyn L; Evans, Jacquelynn J D; George, Nicholas M; Long, Jianhong; Chen, Yi; Luo, Xu

    2014-06-20

    The BH3-only protein Noxa is a critical mediator of apoptosis and functions primarily by sequestering/inactivating the antiapoptotic Bcl-2 family protein Mcl-1. Although Noxa is a highly labile protein, recent studies suggested that it is degraded by the proteasome in a ubiquitylation-independent manner. In the present study, we investigated the mechanism of Noxa degradation and its ability to regulate the stability of Mcl-1. We found that the ubiquitylation-independent degradation of Noxa does not require a physical association with Mcl-1. A short stretch of amino acid residues in the C-terminal tail was found to mediate the proteasome-dependent degradation of Noxa. Ectopic placement of this degron was able to render other proteins unstable. Surprisingly, mutation of this sequence not only attenuated the rapid degradation of Noxa, but also stabilized endogenous Mcl-1 through the BH3-mediated direct interaction. Together, these results suggest that the C-terminal tail of Noxa regulates the stability of both Noxa and Mcl-1.

  11. Two separate functions are encoded by the carboxyl-terminal domains of the yeast cyclase-associated protein and its mammalian homologs. Dimerization and actin binding.

    Science.gov (United States)

    Zelicof, A; Protopopov, V; David, D; Lin, X Y; Lustgarten, V; Gerst, J E

    1996-07-26

    The yeast adenylyl cyclase-associated protein, CAP, was identified as a component of the RAS-activated cyclase complex. CAP consists of two functional domains separated by a proline-rich region. One domain, which localizes to the amino terminus, mediates RAS signaling through adenylyl cyclase, while a domain at the carboxyl terminus is involved in the regulation of cell growth and morphogenesis. Recently, the carboxyl terminus of yeast CAP was shown to sequester actin, but whether this function has been conserved, and is the sole function of this domain, is unclear. Here, we demonstrate that the carboxyl-terminal domains of CAP and CAP homologs have two separate functions. We show that carboxyl-terminals of both yeast CAP and a mammalian CAP homolog, MCH1, bind to actin. We also show that this domain contains a signal for dimerization, allowing both CAP and MCH1 to form homodimers and heterodimers. The properties of actin binding and dimerization are mediated by separate regions on the carboxyl terminus; the last 27 amino acids of CAP being critical for actin binding. Finally, we present evidence that links a segment of the proline-rich region of CAP to its localization in yeast. Together, these results suggest that all three domains of CAP proteins are functional.

  12. An actin monomer binding activity localizes to the carboxyl-terminal half of the Saccharomyces cerevisiae cyclase-associated protein.

    Science.gov (United States)

    Freeman, N L; Chen, Z; Horenstein, J; Weber, A; Field, J

    1995-03-10

    The Saccharomyces cerevisiae adenylyl cyclase complex contains at least two subunits, a 200-kDa catalytic subunit and a 70-kDa cyclase-associated protein, CAP (also called Srv2p). Genetic studies suggested two roles for CAP, one as a positive regulator of cAMP levels in yeast and a second role as a cytoskeletal regulator. We present evidence showing that CAP sequesters monomeric actin (Kd in the range of 0.5-5 microM), decreasing actin incorporation into actin filaments. Anti-CAP monoclonal antibodies co-immunoprecipitate a protein with a molecular size of about 46 kDa. When CAP was purified from yeast using an anti-CAP monoclonal antibody column, the 46-kDa protein co-purified with a stoichiometry of about 1:1 with CAP. Western blots identified the 46-kDa protein as yeast actin. CAP also bound to muscle actin in vitro in immunoprecipitation assays and falling ball viscometry assays. Experiments with pyrene-labeled actin demonstrated that CAP sequesters actin monomers. The actin monomer binding activity is localized to the carboxyl-terminal half of CAP. Together, these data suggest that yeast CAP regulates the yeast cytoskeleton by sequestering actin monomers.

  13. Characterization of five new mutants in the carboxyl-terminal domain of human apolipoprotein E: No cosegregation with severe hyperlipidemia

    Energy Technology Data Exchange (ETDEWEB)

    Maagdenberg, A.M.J.M. van den; Bruijn, I.H. de; Hofker, M.H.; Frants, R.R. (Leiden Univ. (Netherlands)); Knijff, P. de; Smelt, A.H.M.; Leuven, J.A.G.; van' t Hooft, F.; Assmann, G.; Havekes, L.M. (Univ. Hospital, Leiden (Netherlands)); Weng, Wei; Funke, H. (Westfalische Wilhelms-Universitaet, Muester (Germany))

    1993-05-01

    Assessment of the apolipoprotein E (apoE) phenotype by isoelectric focusing of both hyperlipidemic and normolipidemic individuals identified five new variants. All mutations were confined to the downstream part of the APOE gene by using denaturing gradient gel electrophoresis (DGGE). Sequence analysis revealed five new mutations causing unique amino acid substitutions in the carboxyl-terminal part of the protein containing the putative lipid-binding domain. Three hyperlipoproteinemic probands were carriers of the APOE*2(Va1236[r arrow]Glu) allele, the APOE*3(Cys112-Arg; Arg251[r arrow]Gly) allele, or the APOE*1(Arg158[r arrow]Cys; Leu252[r arrow]Glu) allele. DGGE of the region encoding the receptor-binding domain was useful for haplotyping the mutations at codons 112 and 158. Family studies failed to demonstrate cosegregation between the new mutations and severe hyperlipoproteinemia, although a number of carriers for the APOE*3(Cys112[r arrow]Arg; Arg251[r arrow]Gly) allele and the APOE*1(Arg158-Cys; Leu252[r arrow]Glu) allele expressed hypertriglyceridemia and/ or hypercholesterolemia. Two other mutant alleles, APOE*4[sup [minus

  14. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid.

    Directory of Open Access Journals (Sweden)

    Pradeep Mishra

    Full Text Available Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S-amide to (S-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH. IaaH is known to catalyse conversion of indole-3-acetamide (IAM to indole-3-acetic acid (IAA, which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To

  15. Study on surface acid-base property of carboxylic acid-terminated self-assembled monolayers by cyclic voltammetry and electro-chemical impedance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    罗立强; 程志亮; 杨秀荣; 汪尔康

    2000-01-01

    Cyclic voltammetry and electrochemical impedance spectroscopy were used to study the surface acid-base property of carboxylic acid-terminated self-assembled monolayers (SAMs). A carboxylic acid-terminated thiol, such as thioctic acid (1,2-dithiolane-3-pentanoic acid), was self-assembled on gold electrodes. Electron transfer between the bulk solution and the SAM modified electrode was studied at different pH using Fe(CN)63 as a probe. The surface pK. of thioctic acid was determined by cyclic voltammetry and electrochemical impedance spectroscopy to be 5.6±0.1 and 5.8±0.1, respectively. The method is compared with other methods of monolayer pK.measurement.

  16. Isolation and characterization of Exodus-2, a novel C-C chemokine with a unique 37-amino acid carboxyl-terminal extension.

    Science.gov (United States)

    Hromas, R; Kim, C H; Klemsz, M; Krathwohl, M; Fife, K; Cooper, S; Schnizlein-Bick, C; Broxmeyer, H E

    1997-09-15

    Chemokines are a group of small, homologous proteins that regulate leukocyte migration, hemopoiesis, and HIV-1 absorption. We report here the cloning and characterization of a novel murine and human C-C chemokine termed Exodus-2 for its similarity to Exodus-1/MIP-3alpha/LARC, and its chemotactic ability. This novel chemokine has a unique 36 or 37 (murine and human, respectively) amino acid carboxyl-terminal extension not seen in any other chemokine family member. Purified recombinant Exodus-2 was found to have two activities classically associated with chemokines: inhibiting hemopoiesis and stimulating chemotaxis. However, Exodus-2 also had unusual characteristics for C-C chemokines. It selectively stimulated the chemotaxis of T-lymphocytes and was preferentially expressed in lymph node tissue. The combination of these characteristics may be a functional correlate for the unique carboxyl-terminal structure of Exodus-2.

  17. Studies on the physico-mechanical and thermal characteristics of blends of DGEBA epoxy, 3,4 epoxy cyclohexylmethyl, 3',4'-epoxycylohexane carboxylate and carboxyl terminated butadiene co-acrylonitrile (CTBN)

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Garima [Department of Plastic Technology, H. B. Technological Institute, Kanpur 208002 (India); Srivastava, Deepak [Department of Plastic Technology, H. B. Technological Institute, Kanpur 208002 (India)], E-mail: deepak_sri92@rediffmail.com

    2008-11-25

    Toughening of blend of diglycidyl ether of bisphenol-A (DGEBA) and 3,4 epoxy cyclohexylmethyl, 3',4'-epoxycylohexane carboxylate, i.e. cycloaliphatic epoxy resin (CAE) with varying weight ratios (0-25 wt%) of carboxyl terminated butadiene acrylonitrile (CTBN) copolymer have been investigated. Fourier transform infrared (FTIR) spectroscopic analysis established that the interaction between oxirane groups of DGEBA, CAE and CTBN were responsible for characteristics peak shifts in the blends compared to their counterparts. Physico-mechanical properties of the prepared samples, e.g. tensile, flexural and impact strengths showed an optimum concentration of CTBN (15 wt%) into epoxy matrix, which offered maximum toughening. Thermal stability of the prepared samples was analyzed by dynamic thermogravimetric runs. Cross-sections of the cured samples which failed during impact testing have been critically studied through scanning electron microscopic (SEM) analysis to gain insight into the phase morphology.

  18. Structures and bonding on a colloidal silver surface of the various length carboxyl terminal fragments of bombesin.

    Science.gov (United States)

    Podstawka, Edyta; Ozaki, Yukihiro; Proniewicz, Leonard M

    2008-10-07

    Raman (RS) and surface-enhanced Raman scattering spectra (SERS) were measured for various length carboxyl terminal fragments (X-14 of amino acid sequence) of bombesin ( BN): BN13-14, BN12-14, BN11-14, BN10-14, BN9-14, and BN8-14 in silver colloidal solutions. Density functional theory (DFT) calculations of Raman wavenumbers and intensities with extended basis sets (B3LYP/6-31++G**) were performed with the aim of providing the definitive band allocations to the normal coordinates. The proposed band assignment is consistent with the assignment for similar compounds reported in the literature. The nonadsorbed and adsorbed molecular structures were deducted by detailed spectral analysis of the RS and SERS spectra, respectively. This analysis also allowed us to propose the particular surface geometry and orientation of these peptides on silver surface, and their specific interaction with the surface. For example, a SERS spectrum of BN8-14 indicates that the interaction of a thioether atom and Trp8 with the silver surface is favorable and may dictate the orientation and conformation of adsorbed peptide. One of the most prominent and common features in all of the fragments' SERS spectra is a approximately 692 cm (-1) band due to nu(C-S) accompanied by two or three bands of different C-S conformers for all, except BN8-14, which suggests that all of the above-mentioned compounds adsorb on the silver surface through the thioether atom and that the attachment of Trp8 produces limitation in a number of possible C-S conformers adopted on this surface. Our results also show clearly that His12 and CO do not interact with the colloid surface, which supports our earlier results.

  19. Proteomic analysis of porcine oocytes during in vitro maturation reveals essential role for the ubiquitin C-terminal hydrolase-L1.

    Science.gov (United States)

    Susor, Andrej; Ellederova, Zdenka; Jelinkova, Lucie; Halada, Petr; Kavan, Daniel; Kubelka, Michal; Kovarova, Hana

    2007-10-01

    In this study, we performed proteomic analysis of porcine oocytes during in vitro maturation. Comparison of oocytes at the initial and final stages of meiotic division characterized candidate proteins that were differentially synthesized during in vitro maturation. While the biosynthesis of many of these proteins was significantly decreased, we found four proteins with increased biosynthetic rate, which are supposed to play an essential role in meiosis. Among them, the ubiquitin C-terminal hydrolase-L1 (UCH-L1) was identified by mass spectrometry. To study the regulatory role of UCH-L1 in the process of meiosis in pig model, we used a specific inhibitor of this enzyme, marked C30, belonging to the class of isatin O-acyl oximes. When germinal vesicle (GV) stage cumulus-enclosed oocytes were treated with C30, GV breakdown was inhibited after 28 h of culture, and most of the oocytes were arrested at the first meiosis after 44 h. The block of metaphase I-anaphase transition was not completely reversible. In addition, the inhibition of UCH-L1 resulted in elevated histone H1 kinase activity, corresponding to cyclin-dependent kinase(CDK1)-cyclin B1 complex, and a low level of monoubiquitin. These results supported the hypothesis that UCH-L1 might play a role in metaphase I-anaphase transition by regulating ubiquitin-dependent proteasome mechanisms. In summary, a proteomic approach coupled with protein verification study revealed an essential role of UCH-L1 in the completion of the first meiosis and its transition to anaphase.

  20. Structure and carboxyl-terminal domain (CTD) binding of the Set2 SRI domain that couples histone H3 Lys36 methylation to transcription.

    Science.gov (United States)

    Vojnic, Erika; Simon, Bernd; Strahl, Brian D; Sattler, Michael; Cramer, Patrick

    2006-01-06

    During mRNA elongation, the SRI domain of the histone H3 methyltransferase Set2 binds to the phosphorylated carboxyl-terminal domain (CTD) of RNA polymerase II. The solution structure of the yeast Set2 SRI domain reveals a novel CTD-binding fold consisting of a left-handed three-helix bundle. NMR titration shows that the SRI domain binds an Ser2/Ser5-phosphorylated CTD peptide comprising two heptapeptide repeats and three flanking NH2-terminal residues, whereas a single CTD repeat is insufficient for binding. Residues that show strong chemical shift perturbations upon CTD binding cluster in two regions. Both CTD tyrosine side chains contact the SRI domain. One of the tyrosines binds in the region with the strongest chemical shift perturbations, formed by the two NH2-terminal helices. Unexpectedly, the SRI domain fold resembles the structure of an RNA polymerase-interacting domain in bacterial sigma factors (domain sigma2 in sigma70).

  1. Deletion of the carboxyl-terminal region of 1-aminocyclopropane-1-carboxylic acid synthase, a key protein in the biosynthesis of ethylene, results in catalytically hyperactive, monomeric enzyme.

    Science.gov (United States)

    Li, N; Mattoo, A K

    1994-03-04

    1-Aminocyclopropane-1-carboxylic acid (ACC) synthase is a key enzyme regulating biosynthesis of the plant hormone ethylene. The expression of an enzymatically active, wound-inducible tomato (Lycopersicon esculentum L. cv Pik-Red) ACC synthase (485 amino acids long) in a heterologous Escherichia coli system allowed us to study the importance of hypervariable COOH terminus in enzymatic activity and protein conformation. We constructed several deletion mutants of the gene, expressed these in E. coli, purified the protein products to apparent homogeneity, and analyzed both conformation and enzyme kinetic parameters of the wild-type and truncated ACC syntheses. Deletion of the COOH terminus through Arg429 results in complete inactivation of the enzyme. Deletion of 46-52 amino acids from the COOH terminus results in an enzyme that has nine times higher affinity for the substrate S-adenosylmethionine than the wild-type enzyme. The highly efficient, truncated ACC synthase was found to be a monomer of 52 +/- 1.8 kDa as determined by gel filtration, whereas the wild-type ACC synthase, analyzed under similar conditions, is a dimer. These results demonstrate that the non-conserved COOH terminus of ACC synthase affects its enzymatic function as well as dimerization.

  2. Adaptive immunity against Leishmania nucleoside hydrolase maps its c-terminal domain as the target of the CD4+ T cell-driven protective response.

    Directory of Open Access Journals (Sweden)

    Dirlei Nico

    Full Text Available Nucleoside hydrolases (NHs show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36 responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL. Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199-314 and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73±12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-γ secretion, ratios of IFN-γ/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNFα/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5-88.23%; p = 0.011 that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-γ/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and

  3. Identification of a nonsense mutation in the carboxyl-terminal region of DNA-dependent protein kinase catalytic subunit in the scid mouse.

    Science.gov (United States)

    Blunt, T; Gell, D; Fox, M; Taccioli, G E; Lehmann, A R; Jackson, S P; Jeggo, P A

    1996-01-01

    DNA-dependent protein kinase (DNA-PK) consists of a heterodimeric protein (Ku) and a large catalytic subunit (DNA-PKcs). The Ku protein has double-stranded DNA end-binding activity that serves to recruit the complex to DNA ends. Despite having serine/threonine protein kinase activity, DNA-PKcs falls into the phosphatidylinositol 3-kinase superfamily. DNA-PK functions in DNA double-strand break repair and V(D)J recombination, and recent evidence has shown that mouse scid cells are defective in DNA-PKcs. In this study we have cloned the cDNA for the carboxyl-terminal region of DNA-PKcs in rodent cells and identified the existence of two differently spliced products in human cells. We show that DNA-PKcs maps to the same chromosomal region as the mouse scid gene. scid cells contain approximately wild-type levels of DNA-PKcs transcripts, whereas the V-3 cell line, which is also defective in DNA-PKcs, contains very reduced transcript levels. Sequence comparison of the carboxyl-terminal region of scid and wild-type mouse cells enabled us to identify a nonsense mutation within a highly conserved region of the gene in mouse scid cells. This represents a strong candidate for the inactivating mutation in DNA-PKcs in the scid mouse. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8816792

  4. Mass spectrometry-based sequencing of protein C-terminal peptide using α-carboxyl group-specific derivatization and COOH capturing.

    Science.gov (United States)

    Nakajima, Chihiro; Kuyama, Hiroki; Tanaka, Koichi

    2012-09-15

    An approach to mass spectrometry (MS)-based sequence analysis of selectively enriched C-terminal peptide from protein is described. This approach employs a combination of the specific derivatization of α-carboxyl group (α-COOH), enzymatic proteolysis using endoproteinase GluC, and enrichment of C-terminal peptide through the use of COOH-capturing material. Highly selective derivatization of α-COOH was achieved by a combination of specific activation of α-COOH through oxazolone chemistry and amidation using 3-aminopropyltris-(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP-propylamine). This amine component was used to simplify fragmentation in tandem mass spectrometry (MS/MS) measurement, which facilitated manual sequence interpretation. The peptides produced after GluC digestion were then treated with a COOH scavenger to enrich the C-terminal peptide that is only devoid of COOH groups, and the obtained C-terminal peptide was readily sequenced by matrix-assisted laser desorption/ionization (MALDI)-MS/MS due to the TMPP mass tag.

  5. Involvement of the carboxyl-terminal region of the yeast peroxisomal half ABC transporter Pxa2p in its interaction with Pxa1p and in transporter function.

    Directory of Open Access Journals (Sweden)

    Cheng-Yi Chuang

    Full Text Available BACKGROUND: The peroxisome is a single membrane-bound organelle in eukaryotic cells involved in lipid metabolism, including β-oxidation of fatty acids. The human genetic disorder X-linked adrenoleukodystrophy (X-ALD is caused by mutations in the ABCD1 gene (encoding ALDP, a peroxisomal half ATP-binding cassette [ABC] transporter. This disease is characterized by defective peroxisomal β-oxidation and a large accumulation of very long-chain fatty acids in brain white matter, adrenal cortex, and testis. ALDP forms a homodimer proposed to be the functional transporter, whereas the peroxisomal transporter in yeast is a heterodimer comprising two half ABC transporters, Pxa1p and Pxa2p, both orthologs of human ALDP. While the carboxyl-terminal domain of ALDP is engaged in dimerization, it remains unknown whether the same region is involved in the interaction between Pxa1p and Pxa2p. METHODS/PRINCIPAL FINDINGS: Using a yeast two-hybrid assay, we found that the carboxyl-terminal region (CT of Pxa2p, but not of Pxa1p, is required for their interaction. Further analysis indicated that the central part of the CT (designated CT2 of Pxa2p was indispensable for its interaction with the carboxyl terminally truncated Pxa1_NBD. An interaction between the CT of Pxa2p and Pxa1_NBD was not detected, but could be identified in the presence of Pxa2_NBD-CT1. A single mutation of two conserved residues (aligned with X-ALD-associated mutations at the same positions in ALDP in the CT2 of the Pxa2_NBD-CT protein impaired its interaction with Pxa1_NBD or Pxa1_NBD-CT, resulting in a mutant protein that exhibited a proteinase K digestion profile different from that of the wild-type protein. Functional analysis of these mutant proteins on oleate plates indicated that they were defective in transporter function. CONCLUSIONS/SIGNIFICANCE: The CT of Pxa2p is involved in its interaction with Pxa1p and in transporter function. This concept may be applied to human ALDP studies

  6. Synthetic Tuning of Redox, Spectroscopic, and Photophysical Properties of {Mo6I8}(4+) Core Cluster Complexes by Terminal Carboxylate Ligands.

    Science.gov (United States)

    Mikhailov, Maxim A; Brylev, Konstantin A; Abramov, Pavel A; Sakuda, Eri; Akagi, Soichiro; Ito, Akitaka; Kitamura, Noboru; Sokolov, Maxim N

    2016-09-06

    The reactions between the tetra-n-butylammonium salt of [{Mo6I8}I6](2-) and silver carboxylates RCOOAg (R = CH3 (1), C(CH3)3 (2), α-C4H3O (3), C6H5 (4), α-C10H7 (5), or C2F5 (6)) in CH2Cl2 afforded new carboxylate complexes [{Mo6I8}(RCOO)6](2-). The complexes were characterized by X-ray single-crystal diffraction and elemental analysis, cyclic/differential pulse voltammetry, and IR, NMR, and UV-visible spectroscopies. The emission properties of the complexes 1-6, and those of the earlier reported complexes with R = CF3 (7) and n-C3F7 (8), were studied both in acetonitrile solution and in the solid state. In deaerated CH3CN at 298 K, all of the complexes 1-8 exhibit intense and long-lived emission with the quantum yield and lifetime being 0.48-0.73 and 283-359 μs, respectively. The oxidation (Eox)/reduction (Ered) potentials of the complexes correlate linearly with the pKa value of the terminal carboxylate ligands L = RCOO (pKa(L)). Reflecting the pKa(L) dependences of Eox/Ered, the emission energy (νem) of the complexes was also shown to correlate with pKa(L). The present study successfully demonstrates synthetic tuning of the redox, spectroscopic, and photophysical characteristics of a {Mo6I8}(4+)-based cluster complex with pKa(L).

  7. Structure and homogeneity of pseudo-physiological phospholipid bilayers and their deposition characteristics on carboxylic acid terminated self-assembled monolayers.

    Science.gov (United States)

    Mechler, Adam; Praporski, Slavica; Piantavigna, Stefania; Heaton, Steven M; Hall, Kristopher N; Aguilar, Marie-Isabel; Martin, Lisandra L

    2009-02-01

    Supported phospholipid bilayers are frequently used to establish a pseudo-physiological environment required for the study of protein function or the design of enzyme-based biosensors and biocatalytic reactors. These membranes are deposited from bilayer vesicles (liposomes) that rupture and fuse into a planar membrane upon adhesion to a surface. However, the morphology and homogeneity of the resulting layer is affected by the characteristics of the precursor liposome suspension and the substrate. Here we show that two distinct liposome populations contribute to membrane formation--equilibrium liposomes and small unilamellar vesicles. Liposome deposition onto carboxylic acid terminated self-assembled monolayers resulted in planar mono- and multilayer, vesicular and composite membranes, as a function of liposome size and composition. Quartz crystal microbalance data provided estimates for layer thicknesses and sheer moduli and were used for classification of the final structure. Finally, atomic force microscopy data illustrated the inherently inhomogeneous and dynamic nature of these membranes.

  8. Molecular cloning and recombinant expression of the VP28 carboxyl-terminal hydrophilic region from a brazilian white spot syndrome virus isolate

    Directory of Open Access Journals (Sweden)

    Patricia Braunig

    2011-04-01

    Full Text Available In the present study, a fragment of the VP28 coding sequence from a Brazilian WSSV isolate (BrVP28 was cloned, sequenced and expressed in E. coli BL21(DE3 pLysS strain in order to produce the VP28 carboxyl-terminal hydrophilic region. The expression resulted in a protein of about 21 kDa, which was purified under denaturing conditions, resulting in a final highly purified BrVP28 preparation. The recombinant protein obtained can be used in several biotechnology applications, such as the production of monoclonal antibodies which could be used in the development of diagnostic tools as well as in the studies on the characterization of white spot syndrome virus (WSSV isolated in Brazil.

  9. Water-COOH Composite Structure with Enhanced Hydrophobicity Formed by Water Molecules Embedded into Carboxyl-Terminated Self-Assembled Monolayers.

    Science.gov (United States)

    Guo, Pan; Tu, Yusong; Yang, Jinrong; Wang, Chunlei; Sheng, Nan; Fang, Haiping

    2015-10-30

    By combining molecular dynamics simulations and quantum mechanics calculations, we show the formation of a composite structure composed of embedded water molecules and the COOH matrix on carboxyl-terminated self-assembled monolayers (COOH SAMs) with appropriate packing densities. This composite structure with an integrated hydrogen bond network inside reduces the hydrogen bonds with the water above. This explains the seeming contradiction on the stability of the surface water on COOH SAMs observed in experiments. The existence of the composite structure at appropriate packing densities results in the two-step distribution of contact angles of water droplets on COOH SAMs, around 0° and 35°, which compares favorably to the experimental measurements of contact angles collected from forty research articles over the past 25 years. These findings provide a molecular-level understanding of water on surfaces (including surfaces on biomolecules) with hydrophilic functional groups.

  10. Studies on blends of cycloaliphatic epoxy resin with varying concentrations of carboxyl terminated butadiene acrylonitrile copolymer I: Thermal and morphological properties

    Indian Academy of Sciences (India)

    Garima Tripathi; Deepak Srivastava

    2009-04-01

    Differential scanning calorimetric (DSC), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA) of the blends of cycloaliphatic epoxy (CAE) resin toughened with liquid elastomer such as carboxyl terminated butadiene acrylonitrile copolymer (CTBN) have been carried out. Exothermal heat of reaction due to cross linking of the resin in the presence of diamino diphenyl sulphone (DDS, an amine hardener) showed a decreasing trend with increasing rubber concentration. Enhancement of thermal stability as well as lower mass loss of the epoxy–rubber blends with increasing rubber concentration have been observed in thermogravimetric analysis (TGA). Dynamic mechanical properties reflected a monotonic decrease in the storage modulus (′) with increasing rubber concentration. The loss modulus (″) and the loss tangent (tan ) values, however, showed an increasing trend with rise of temperature up to a maximum (peak) followed by a gradual fall in both cases.

  11. The phenotypic features of osteogenesis imperfecta resulting from a mutation of the carboxyl-terminal pro alpha 1(I) propeptide that impairs the assembly of type I procollagen and formation of the extracellular matrix

    NARCIS (Netherlands)

    Cole, WG; Chow, CW; Bateman, JF; Sillence, DO

    1996-01-01

    The features of a baby with lethal perinatal osteogenesis imperfecta (OI-II), resulting from the substitution of tryptophan 94 by cysteine in the carboxyl-terminal propeptide of pro alpha 1(I) chains of type I procollagen, were studied. The limbs and torso were of normal length, shape, and proportio

  12. Influence of Isoforms and Carboxyl-Terminal Truncations on the Capacity of Apolipoprotein E To Associate with and Activate Phospholipid Transfer Protein.

    Science.gov (United States)

    Dafnis, Ioannis; Metso, Jari; Zannis, Vassilis I; Jauhiainen, Matti; Chroni, Angeliki

    2015-09-29

    Phospholipid transfer protein (PLTP), a main protein in lipid and lipoprotein metabolism, exists in high-activity (HA-PLTP) and low-activity (LA-PLTP) forms in human plasma. Proper phospholipid transfer activity of PLTP is modulated by interactions with various apolipoproteins (apo) including apoE. The domains of apoE involved in interactions with PLTP are not known. Here we analyzed the capacity of recombinant apoE isoforms and apoE4 mutants with progressive carboxyl-terminal deletions to bind to and activate HA-PLTP and LA-PLTP. Our analyses demonstrated that lipid-free apoE isoforms bind to both HA-PLTP and LA-PLTP, resulting in phospholipid transfer activation, with apoE3 inducing the highest PLTP activation. The isoform-specific differences in apoE/PLTP binding and PLTP activation were abolished following apoE lipidation. Lipid-free apoE4[Δ(260-299)], apoE4[Δ(230-299)], apoE4[Δ(203-299)], and apoE4[Δ(186-299)] activated HA-PLTP by 120-160% compared to full-length apoE4. Lipid-free apoE4[Δ(186-299)] also activated LA-PLTP by 85% compared to full-length apoE4. All lipidated truncated apoE4 forms displayed a similar effect on HA-PLTP and LA-PLTP activity as full-length apoE4. Strikingly, lipid-free or lipidated full-length apoE4 and apoE4[Δ(186-299)] demonstrated similar binding capacity to LA-PLTP and HA-PLTP. Biophysical studies showed that the carboxyl-terminal truncations of apoE4 resulted in small changes of the structural or thermodynamic properties of lipidated apoE4, that were much less pronounced compared to changes observed previously for lipid-free apoE4. Overall, our findings show an isoform-dependent binding to and activation of PLTP by lipid-free apoE. Furthermore, the domain of apoE4 required for PLTP activation resides within its amino-terminal 1-185 region. The apoE/PLTP interactions can be modulated by the conformation and lipidation state of apoE.

  13. Fluorescence studies of the carboxyl-terminal domain of smooth muscle calponin effects of F-actin and salts.

    Science.gov (United States)

    Bartegi, A; Roustan, C; Kassab, R; Fattoum, A

    1999-06-01

    The fluorescence parameters of the environment-sensitive acrylodan, selectively attached to Cys273 in the C-terminal domain of smooth muscle calponin, were studied in the presence of F-actin and using varying salt concentrations. The formation of the F-actin acrylodan labeled calponin complex at 75 mm NaCl resulted in a 21-nm blue shift of the maximum emission wavelength from 496 nm to 474 nm and a twofold increase of the fluorescent quantum yield at 460 nm. These spectral changes were observed at the low ionic strengths ( 110 mm) where the binding stoichiometry is a 1 : 2 ratio of calponin : actin monomers. On the basis of previous three-dimensional reconstruction and chemical crosslinking of the F-actin-calponin complex, the actin effect is shown to derive from the low ionic strength interaction of calponin with the bottom of subdomain-1 of an upper actin monomer in F-actin and not from its further association with the subdomain-1 of the adjacent lower monomer which occurs at the high ionic strength. Remarkably, the F-actin-dependent fluorescence change of acrylodan is qualitatively but not quantitatively similar to that earlier reported for the complexes of calponin and Ca2+-calmodulin or Ca2+-caltropin. As the three calponin ligands bind to the same segment of the protein, encompassing residues 145-182, the acrylodan can be considered as a sensitive probe of the functioning of this critical region. A distance of 29 A was measured by fluorescence resonance energy transfer between Cys273 of calponin and Cys374 of actin in the 1 : 1 F-actin-calponin complex suggesting that the F-actin effect was allosteric reflecting a global conformational change in the C-terminal domain of calponin.

  14. Activity of a Carboxyl-Terminal Truncated Form of Catechol 2,3-Dioxygenase from Planococcus sp. S5

    Directory of Open Access Journals (Sweden)

    Katarzyna Hupert-Kocurek

    2014-01-01

    Full Text Available Catechol 2,3-dioxygenases (C23Os, E.C.1.13.12.2 are two domain enzymes that catalyze degradation of monoaromatic hydrocarbons. The catalytically active C-domain of all known C23Os comprises ferrous ion ligands as well as residues forming active site pocket. The aim of this work was to examine and discuss the effect of nonsense mutation at position 289 on the activity of catechol 2,3-dioxygenase from Planococcus strain. Although the mutant C23O showed the same optimal temperature for activity as the wild-type protein (35°C, it exhibited activity slightly more tolerant to alkaline pH. Mutant enzyme exhibited also higher affinity to catechol as a substrate. Its Km (66.17 µM was approximately 30% lower than that of wild-type enzyme. Interestingly, removal of the C-terminal residues resulted in 1.5- to 1.8-fold (P<0.05 increase in the activity of C23OB61 against 4-methylcatechol and 4-chlorocatechol, respectively, while towards catechol the activity of the protein dropped to about 80% of that of the wild-type enzyme. The results obtained may facilitate the engineering of the C23O for application in the bioremediation of polluted areas.

  15. Improvement of in vitro stability and pharmacokinetics of hIFN-α by fusing the carboxyl-terminal peptide of hCG β-subunit.

    Science.gov (United States)

    Ceaglio, Natalia; Gugliotta, Agustina; Tardivo, María Belén; Cravero, Dianela; Etcheverrigaray, Marina; Kratje, Ricardo; Oggero, Marcos

    2016-03-10

    Improving in vivo half-life and in vitro stability of protein-based therapeutics is a current challenge for the biopharmaceutical industry. In particular, recombinant human interferon alpha-2b (rhIFN-α2b), which belongs to a group of cytokines extensively used for the treatment of viral diseases and cancers, shows a poor stability in solution and an extremely short plasma half-life which determines a strict therapeutic regimen comprising high and repeated doses. In this work, we have used a strategy based on the fusion of the carboxyl-terminal peptide (CTP) of human chorionic gonadotropin (hCG) β-subunit, bearing four O-linked oligosaccharide recognition sites, to each or both N- and C-terminal ends of rhIFN-α2b. Molecules containing from 5 (CTP-IFN and IFN-CTP) to 9 (CTP-IFN-CTP) O-glycosylation sites were efficiently expressed and secreted to CHO cells supernatants, and exhibited antiviral and antiproliferative bioactivities in vitro. Significant improvements in pharmacokinetics in rats were achieved through this approach, since the doubly CTP-modified IFN variant showed a 10-fold longer elimination half-life and a 19-fold decreased plasma apparent clearance compared to the wild-type cytokine. Moreover, CTP-IFN-CTP demonstrated a significant increase in in vitro thermal resistance and a higher stability against plasma protease inactivation, both features attributed to the stabilizing effects of the O-glycans provided by the CTP moiety. These results constitute the first report that postulates CTP as a tag for improving both the in vitro and in vivo stability of rhIFN-α2b which, in turn, would positively influence its in vivo bioactivity.

  16. Molecular mechanism of the intramembrane cleavage of the β-carboxyl terminal fragment of amyloid precursor protein by γ-secretase

    Directory of Open Access Journals (Sweden)

    Maho eMorishima-Kawashima

    2014-11-01

    Full Text Available Amyloid β-protein (Aβ plays a central role in the pathogenesis of Alzheimer’s disease, the most common age-associated neurodegenerative disorder. Aβ is generated through intramembrane proteolysis of the β-carboxyl terminal fragment (βCTF of β-amyloid precursor protein (APP by γ-secretase. The initial cleavage by γ-secretase occurs in the membrane/cytoplasm boundary of the βCTF, liberating the APP intracellular domain (AICD. The remaining βCTFs, which are truncated at the C-terminus (longer Aβs, are then cropped sequentially in a stepwise manner, predominantly at three residue intervals, to generate Aβ. There are two major Aβ product lines which generate Aβ40 and Aβ42 with concomitant release of three and two tripeptides, respectively. Additionally, many alternative cleavages occur, releasing peptides with three to six residues. These modulate the Aβ product lines and define the species and quantity of Aβ generated. Here, we review our current understanding of the intramembrane cleavage of the βCTF by γ-secretase, which may contribute to the future goal of developing an efficient therapeutic strategy for Alzheimer’s disease.

  17. Preparation and Characterization of Carboxyl-terminated Poly (butadiene-co-acrylonitrile)-epoxy Resin Prepolymers for Fusion-bonded-epoxy Powder Coating

    Institute of Scientific and Technical Information of China (English)

    LIU Jingcheng; JIA Xiuli; ZHANG Shengwen; LIU Ren; LIU Xiaoya

    2012-01-01

    Liquid carboxyl-terminated poly(butadiene-co-acrylonitrile)(CTBN)-epoxy resin(EP)prepolymers were prepared with different contents of CTBN.The chemical reactions between EP and CTBN were characterized by Fourier ransform infrared (FTIR) spectroscopy and gel permeation chromatography (GPC).The scanning electron micrograph (SEM) and dynamic mechanical analysis (DMA) of curing films showed phase separation,and the rubber particles were finely dispersed in the epoxy matrix.Mechanical properties analysis of curing films showed that impact strength and elongation at break increased significantly upon the addition of CTBN,indicating good toughness of the modified epoxy resins.Thermogravimetric analysis (TGA) showed that the incorporation of CTBN had little effect on the thermal stability of EP.Fusion-bondedepoxy (FBE) powder coatings modified with CTBN-EP prepolymers were prepared.The experimental results demonstrate the ability of CTBN-EP prepolymers,toughening technology to dramatically enhance the flexibility and impact resistance of FBE coatings without compromising other key properties such as corrosion protection.

  18. Expression of the Gene Encoding the Tetraploid of Carboxyl-terminal Peptide of β-hCG Containing Thirty-seven Amino Acid Residues in E. coli

    Institute of Scientific and Technical Information of China (English)

    王健; 沈卫英; 周清平; 申庆祥

    2000-01-01

    Objective This study was carried out to investigate the possible enhancement of immunogenicity of the carboxyl-terminal peptide of β-hCG which is made up of 37 amino acid residues (109~145) and contains the specific epitope (antigenic determinant) of hCG.Materials & Methods hCGβ-CTP37 tetraploid cDNA was constructed by linking four hCGβ-CTP37 cDNAs together. The product was then subcloned into the E. coli expression vector pQE60 to construct the expression vector pQE60/ (hCGβ-CTP37)4. Recombinant (hCGβ-CTP37 ) 4 was expressed in E. coil-X-blue.Results Western blot analysis showed that the tetraploid of hCGβ-CTP37 had an apparent molecular weight of 20 kD and had relatively stronger anti-hCG antibody-binding activity compared with the diploid from.Conclusion The tetraploid of hCGβ-CTP37 may be a more potent immunogen for raising anti-hCG vaccines for fertility regulation or suppression of tumor.

  19. New structural motif for carboxylic acid perhydrolases

    OpenAIRE

    Yin, Delu; Purpero, Vince M.; Fujii, Ryota; Jing, Qing; Kazlauskas, Romas J.

    2013-01-01

    Some serine hydrolases also catalyze a promiscuous reaction – reversible perhydrolysis of carboxylic acids to make peroxycarboxylic acids. Five x-ray crystal structures of these carboxylic acid perhydrolases show a proline in the oxyanion loop. Here, we test whether this proline is essential for high perhydrolysis activity using Pseudomonas fluorescens esterase (PFE). The L29P variant of this esterase catalyzes perhydrolysis 43-fold faster (kcat comparison) than wild type. Surprisingly, satur...

  20. Epoxy Resin Modified Carboxyl-terminated Nitrile Rubber%端羧基丁腈橡胶改性环氧树脂的研究

    Institute of Scientific and Technical Information of China (English)

    陈青; 宫大军; 魏伯荣; 柳丛辉

    2011-01-01

    Using 2-ethyl-4-methyl imidazole as curing agent, pre-polymerization and curing reaction of epoxy resin modified by carboxyl-terminated nitrile rubber(CTBN) were analyzed by infrared spectroscopy.By testing the impact strength, flexural strength, tensile shear strength of modified cured epoxy resin, the toughening effects were evaluated and the toughening mechanism was investigated.The thermal stability of the cured resin was studied by thermogravimetric analysis(TG).The results show that the impact strength of CTBN modified EP increases greatly, the tensile shear strength increases and the thermal stability improves, but the bending strength and bending modulus decrease.%以2-乙基-4-甲基咪唑作为固化剂,运用红外光谱对端羧基丁腈橡胶(CTBN)增韧改性环氧树脂(EP)的预聚反应和固化反应进行分析.通过测试改性环氧树脂固化物的冲击强度、弯曲强度和拉伸剪切强度评价其增韧效果,探讨其增韧机理,并通过热失重(TG)分析固化物的热稳定性能.结果表明:CTBN改性EP后,树脂的冲击强度明显提高,拉伸剪切强度有所提高,热稳定性能提高,但弯曲强度和弯曲模量有所降低.

  1. The co-crystal structure of ubiquitin carboxy-terminal hydrolase L1 (UCHL1) with a tripeptide fluoromethyl ketone (Z-VAE(OMe)-FMK)

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Christopher W.; Chaney, Joseph; Korbel, Gregory; Ringe, Dagmar; Petsko, Gregory A.; Ploegh, Hidde; Das, Chittaranjan (Whitehead); (Purdue); (Rosenstiel)

    2012-07-25

    UCHL1 is a 223 amino acid member of the UCH family of deubiquitinating enzymes (DUBs), found abundantly and exclusively expressed in neurons and the testis in normal tissues. Two naturally occurring variants of UCHL1 are directly involved in Parkinson's disease (PD). Not only has UCHL1 been linked to PD, but it has oncogenic properties, having been found abnormally expressed in lung, pancreatic, and colorectal cancers. Although inhibitors of UCHL1 have been described previously the co-crystal structure of the enzyme bound to any inhibitor has not been reported. Herein, we report the X-ray structure of UCHL1 co-crystallized with a peptide-based fluoromethylketone inhibitor, Z-VAE(OMe)-FMK (VAEFMK) at 2.35 {angstrom} resolution. The co-crystal structure reveals that the inhibitor binds in the active-site cleft, irreversibly modifying the active-site cysteine; however, the catalytic histidine is still misaligned as seen in the native structure, suggesting that the inhibitor binds to an inactive form of the enzyme. Our structure also reveals that the inhibitor approaches the active-site cleft from the opposite side of the crossover loop as compared to the direction of approach of ubiquitin's C-terminal tail, thereby occupying the P1{prime} (leaving group) site, a binding site perhaps used by the unknown C-terminal extension of ubiquitin in the actual in vivo substrate(s) of UCHL1. This structure provides a view of molecular contacts at the active-site cleft between the inhibitor and the enzyme as well as furnishing structural information needed to facilitate further design of inhibitors targeted to UCHL1 with high selectivity and potency.

  2. Association of the beta-1 adrenergic receptor carboxyl terminal variants with left ventricular hypertrophy among diabetic and non-diabetic survivors of acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Hakalahti Anna E

    2010-08-01

    Full Text Available Abstract Background The beta-1 adrenergic receptor (β1AR plays a fundamental role in the regulation of cardiovascular functions. It carries a nonsynonymous single nucleotide polymorphism in its carboxyl terminal tail (Arg389Gly, which has been shown to associate with various echocardiographic parameters linked to left ventricular hypertrophy (LVH. Diabetes mellitus (DM, on the other hand, represents a risk factor for LVH. We investigated the possible association between the Arg389Gly polymorphism and LVH among non-diabetic and diabetic acute myocardial infarction (AMI survivors. Methods The study population consisted of 452 AMI survivors, 20.6% of whom had diagnosed DM. Left ventricular parameters were measured with two-dimensional guided M-mode echocardiography 2-7 days after AMI, and the Arg389Gly polymorphism was determined using a polymerase chain reaction-restriction fragment length polymorphism assay. Results The Arg389 homozygotes in the whole study population had a significantly increased left ventricular mass index (LVMI when compared to the Gly389 carriers (either Gly389 homozygotes or Arg389/Gly389 heterozygotes [62.7 vs. 58.4, respectively (p = 0.023]. In particular, the Arg389 homozygotes displayed thicker diastolic interventricular septal (IVSd measures when compared to the Gly389 carriers [13.2 vs. 12.3 mm, respectively (p = 0.004]. When the euglycemic and diabetic patients were analyzed separately, the latter had significantly increased LVMI and diastolic left ventricular posterior wall (LVPWd values compared to the euglycemic patients [LVMI = 69.1 vs. 58.8 (p = 0.001 and LVPWd = 14.2 vs. 12.3 mm (p Conclusions The data suggest an association between the β1AR Arg389Gly polymorphism and LVH, particularly the septal hypertrophy. The Arg389 variant appears to confer a higher risk of developing LVH than the corresponding Gly389 variant among patients who have suffered AMI. This association cannot be considered to be universal

  3. Designing a Long Acting Erythropoietin by Fusing Three Carboxyl-Terminal Peptides of Human Chorionic Gonadotropin β Subunit to the N-Terminal and C-Terminal Coding Sequence

    Directory of Open Access Journals (Sweden)

    Fuad Fares

    2011-01-01

    Full Text Available A new analog of EPO was designed by fusing one and two CTPs to the N-terminal and C-terminal ends of EPO (EPO-(CTP3, respectively. This analog was expressed and secreted efficiently in CHO cells. The in vitro test shows that the activity of EPO-(CTP3 in TFI-1 cell proliferation assay is similar to that of EPO-WT and commercial rHEPO. However, in vivo studies indicated that treatment once a week with EPO-(CTP3 (15 μg/kg dramatically increased (~8 folds haematocrit as it was compared to rHuEPO. Moreover, it was found that EPO-(CTP3 is more effective than rHuEPO and Aranesp in increasing reticulocyte number in mice blood. The detected circulatory half-lives of rHuEPO, Aranesp, and EPO-(CTP3 following IV injection of 20 IU were 4.4, 10.8, and 13.1 h, respectively. These data established the rational for using this chimera as a long-acting EPO analog in clinics. The therapeutic efficacy of EPO-CTP analog needs to be established in higher animals and in human clinical trials.

  4. Involvement of functional groups on the surface of carboxyl group-terminated polyamidoamine dendrimers bearing arbutin in inhibition of Na⁺/glucose cotransporter 1 (SGLT1)-mediated D-glucose uptake.

    Science.gov (United States)

    Sakuma, Shinji; Kanamitsu, Shun; Teraoka, Yumi; Masaoka, Yoshie; Kataoka, Makoto; Yamashita, Shinji; Shirasaka, Yoshiyuki; Tamai, Ikumi; Muraoka, Masahiro; Nakatsuji, Yohji; Kida, Toshiyuki; Akashi, Mitsuru

    2012-04-01

    A carboxyl group-terminated polyamidoamine dendrimer (generation: 3.0) bearing arbutin, which is a substrate of Na⁺/glucose cotransporter 1 (SGLT1), via a nonbiodegradable ω-amino triethylene glycol linker (PAMAM-ARB), inhibits SGLT1-mediated D-glucose uptake, as does phloridzin, which is a typical SGLT1 inhibitor. Here, since our previous research revealed that the activity of arbutin was dramatically improved through conjugation with the dendrimer, we examined the involvement of functional groups on the dendrimer surface in inhibition of SGLT1-mediated D-glucose uptake. PAMAM-ARB, with a 6.25% arbutin content, inhibited in vitro D-glucose uptake most strongly; the inhibitory effect decreased as the arbutin content increased. In vitro experiments using arbutin-free original dendrimers indicated that dendrimer-derived carboxyl groups actively participated in SGLT1 inhibition. However, the inhibitory effect was much less than that of PAMAM-ARB and was equal to that of glucose moiety-free PAMAM-ARB. Data supported that the glucose moiety of arbutin was essential for the high activity of PAMAM-ARB in SGLT1 inhibition. Analysis of the balance of each domain further suggested that carboxyl groups anchored PAMAM-ARB to SGLT1, and the subsequent binding of arbutin-derived glucose moieties to the target sites on SGLT1 resulted in strong inhibition of SGLT1-mediated D-glucose uptake.

  5. Bacterial CS2 hydrolases from Acidithiobacillus thiooxidans strains are homologous to the archaeal catenane CS2 hydrolase.

    Science.gov (United States)

    Smeulders, Marjan J; Pol, Arjan; Venselaar, Hanka; Barends, Thomas R M; Hermans, John; Jetten, Mike S M; Op den Camp, Huub J M

    2013-09-01

    Carbon disulfide (CS(2)) and carbonyl sulfide (COS) are important in the global sulfur cycle, and CS(2) is used as a solvent in the viscose industry. These compounds can be converted by sulfur-oxidizing bacteria, such as Acidithiobacillus thiooxidans species, to carbon dioxide (CO(2)) and hydrogen sulfide (H2S), a property used in industrial biofiltration of CS(2)-polluted airstreams. We report on the mechanism of bacterial CS(2) conversion in the extremely acidophilic A. thiooxidans strains S1p and G8. The bacterial CS(2) hydrolases were highly abundant. They were purified and found to be homologous to the only other described (archaeal) CS(2) hydrolase from Acidianus strain A1-3, which forms a catenane of two interlocked rings. The enzymes cluster in a group of β-carbonic anhydrase (β-CA) homologues that may comprise a subclass of CS(2) hydrolases within the β-CA family. Unlike CAs, the CS(2) hydrolases did not hydrate CO(2) but converted CS(2) and COS with H(2)O to H(2)S and CO(2). The CS(2) hydrolases of A. thiooxidans strains G8, 2Bp, Sts 4-3, and BBW1, like the CS(2) hydrolase of Acidianus strain A1-3, exist as both octamers and hexadecamers in solution. The CS(2) hydrolase of A. thiooxidans strain S1p forms only octamers. Structure models of the A. thiooxidans CS(2) hydrolases based on the structure of Acidianus strain A1-3 CS(2) hydrolase suggest that the A. thiooxidans strain G8 CS(2) hydrolase may also form a catenane. In the A. thiooxidans strain S1p enzyme, two insertions (positions 26 and 27 [PD] and positions 56 to 61 [TPAGGG]) and a nine-amino-acid-longer C-terminal tail may prevent catenane formation.

  6. Enzymatic synthesis oF L-tryptophan from D,L-2-amino-delta2-thiazoline-4-carboxylic acid and indole by Pseudomonas sp. TS1138 L-2-amino-delta2-thiazoline-4-carboxylic acid hydrolase, S-carbamyl-L-cysteine amidohydrolase, and Escherichia coli L-tryptophanase.

    Science.gov (United States)

    Du, J; Duan, J J; Zhang, Q; Hou, J; Bai, F; Chen, N; Bai, G

    2012-01-01

    L-Tryptophan (L-Trp) is an essential amino acid. It is widely used in medical, health and food products, so a low-cost supply is needed. There are 4 methods for L-Trp production: chemical synthesis, extraction, enzymatic synthesis, and fermentation. In this study, we produced a recombinant bacterial strain pET-tnaA of Escherichia coli which has the L-tryptophanase gene. Using the pET-tnaA E. coli and the strain TS1138 of Pseudomonas sp., a one-pot enzymatic synthesis of L-Trp was developed. Pseudomonas sp. TS1138 was added to a solution of D,L-2-amino-delta2-thiazoline-4-carboxylic acid (DL-ATC) to convert it to L-cysteine (L-Cys). After concentration, E. coli BL21 (DE 3) cells including plasmid pET-tnaA, indole, and pyridoxal 5'-phosphate were added. At the optimum conditions, the conversion rates of DL-ATC and L-Cys were 95.4% and 92.1%, respectively. After purifying using macroporous resin S8 and NKA-II, 10.32 g of L-Trp of 98.3% purity was obtained. This study established methods for one-pot enzymatic synthesis and separation of L-Trp. This method of producing L-Trp is more environmentally sound than methods using chemical synthesis, and it lays the foundations for industrial production of L-Trp from DL-ATC and indole.

  7. Amino acid substitutions of conserved residues in the carboxyl-terminal domain of the [alpha]I(X) chain of type X collagen occur in two unrelated families with metaphyseal chondrodysplasia type Schmid

    Energy Technology Data Exchange (ETDEWEB)

    Wallis, G.A.; Rash, B.; Sweetman, W.A.; Thomas, J.T.; Grant, M.E.; Boot-Handford, R.P. (Univ. of Manchester (United Kingdom)); Super, M. (Royal Manchester Children' s Hospital, Manchester (United Kingdom)); Evans, G. (Robert Jones Orthopaedic Hospital, Oswestry (United Kingdom))

    1994-02-01

    Type X collagen is a homotrimeric, short-chain, nonfibrillar extracellular-matrix component that is specifically and transiently synthesized by hypertrophic chondrocytes at the site of endochondral ossification. The precise function of type X collagen is not known, but its specific pattern of expression suggests that mutations within the encoding gene (COL10A1) that alter the structure or synthesis of the protein may cause heritable forms of chondrodysplasia. The authors used the PCR and the SSCP techniques to analyze the coding and upstream promoter regions of the COL10A1 gene in a number of individuals with forms of chondrodysplasia. Using this approach, they identified two individuals with metaphyseal chondrodysplasia type Schmid (MCDS) with SSCP changes in the region of the gene encoding the carboxyl-terminal domain. Sequence analysis demonstrated that the individuals were heterozygous for two unique single-base-pair transitions that led to the substitution of the highly conserved amino acid residue tyrosine at position 598 by aspartic acid in one person and of leucine at position 614 by proline in the other. The substitution at residue 598 segregated with the phenotype in a family of eight (five affected and three unaffected) related persons. The substitutions at residue 614 occurred in a sporadically affected individual but not in her unaffected mother and brother. Additional members of this family were not available for further study. These results suggest that certain amino acid substitutions within the carboxyl-terminal domain of the chains of the type X collagen molecule cause MCDS. These amino acid substitutions are likely to alter either chain recognition or assembly of the type X collagen molecule, thereby depleting the amount of normal type X collagen deposited in the extracellular matrix, with consequent aberrations in bone growth and development. 36 refs., 5 figs.

  8. Variants of glycoside hydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Teter, Sarah (Davis, CA); Ward, Connie (Hamilton, MT); Cherry, Joel (Davis, CA); Jones, Aubrey (Davis, CA); Harris, Paul (Carnation, WA); Yi, Jung (Sacramento, CA)

    2011-04-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  9. Amino- and Carboxyl-Terminal CCR5 Mutations in Brazilian HIV-1-Infected Women and Homology Model of p.L55Q CCR5 Mutant.

    Science.gov (United States)

    Costa, Giselle Calasans de Souza; Nunes, Marcio Roberto T; Jesus, Jaqueline Goes; Novaes, Thiago; Cardoso, Jedson Ferreira; Sousa Júnior, Edivaldo Costa; Santos, Edson de Souza; Galvão-Castro, Bernardo; Zanette, Dalila Luciola; Gonçalves, Marilda de Souza; Alcantara, Luiz Carlos Junior

    2015-07-01

    Genetic factors from an HIV-1 host can affect the rate of progression to AIDS and HIV infection. To investigate the frequency of mutations in the CCR5 gene, HIV-1 samples from infected women and uninfected individuals were selected for sequencing of the CCR5 gene regions encoding the N- and C-terminal protein domains. Physicochemical CCR5 modeling and potential protein domain analysis were performed in order to evaluate the impact of the mutations found in the properties and structure of CCR5. The p.L55Q mutation in the N-terminal protein domain was observed only in uninfected individuals, with an allelic frequency of 1.8%. Physicochemical analysis revealed that the p.L55Q mutation magnified the flexibility and accessibility profiles and the modeling of CCR5 structures showed resulting in a small deviation to the right, as well as a hydrophobic to hydrophilic property alteration. The p.L55Q mutation also resulted in a slight modification of the electrostatic load of this region. Additionally, three novel silent mutations were found at the C-terminal coding region among HIV-1-infected women. The results suggest that the p.L55Q mutation might alter CCR5 conformation. Further studies should be conducted to verify the role of this mutation in HIV-1 susceptibility.

  10. Performance of CTBN(carboxyl-terminated poly (butadiene-co-acrylonitrile))-EP(diglycidyl ether of bisphenol-A(DGEBA)) Prepolymers and CTBN-EP/polyetheramine (PEA) System

    Institute of Scientific and Technical Information of China (English)

    SHI Minxian; HUANG Zhixiong; LI Yaming; YANG Guorui

    2009-01-01

    CTBN-EP prepolymers were synthesized from CTBN and epoxy resin under the catalysis of HTMAB.FTIR analyses indicate the formation of ester group between the carboxyl group of CTBN and the oxirane group of epoxy resin.The viscosity of modified prepolymer increases with CTBN content increasing,but the epoxy value of the prepolymer decreases greatly.DSC analyses verify that CTBN affects the curing process of CTBN-EP/PEA system.Mechanical testing presents the improved toughness of CTBN-EP/PEA curings for the decrease of tensile strength,flexural strength and compressive strength,and increase of impact strength and elongation-at-break with the CTBN content increasing.SEM micrographs show the rubber phase with many holes in diameter about 0.5-1.5μm is formed when CTBN content is lower than 10 phr.However,the pattern of SEM graph shows some stalactite-like strips when CTBN content is higher than 15 phr.Furthermore,the SEM image of 25 phr CTBN sample forms a kind of co-continuous structure.

  11. The second intracellular loop of the human cannabinoid CB2 receptor governs G protein coupling in coordination with the carboxyl terminal domain.

    Directory of Open Access Journals (Sweden)

    Congxia Zheng

    Full Text Available The major effects of cannabinoids and endocannabinoids are mediated via two G protein-coupled receptors, CB1 and CB2, elucidation of the mechanism and structural determinants of the CB2 receptor coupling with G proteins will have a significant impact on drug discovery. In the present study, we systematically investigated the role of the intracellular loops in the interaction of the CB2 receptor with G proteins using chimeric receptors alongside the characterization of cAMP accumulation and ERK1/2 phosphorylation. We provided evidence that ICL2 was significantly involved in G protein coupling in coordination with the C-terminal end. Moreover, a single alanine substitution of the Pro-139 in the CB2 receptor that corresponds to Leu-222 in the CB1 receptor resulted in a moderate impairment in the inhibition of cAMP accumulation, whereas mutants P139F, P139M and P139L were able to couple to the Gs protein in a CRE-driven luciferase assay. With the ERK activation experiments, we further found that P139L has the ability to activate ERK through both Gi- and Gs-mediated pathways. Our findings defined an essential role of the second intracellular loop of the CB2 receptor in coordination with the C-terminal tail in G protein coupling and receptor activation.

  12. 多臂端羧基聚硅氧烷的可控合成及表征%Controlled Synthesis and Characteristics of Multi-branched Carboxyl Terminated Polydimethylsiloxane

    Institute of Scientific and Technical Information of China (English)

    程柳军; 刘琼琼; 杨林; 张安强; 林雅铃

    2014-01-01

    以八甲基环四硅氧烷(D4)、苯基三(二甲基硅氧烷基)硅烷(PTDMS,俗称三氢封头剂)或四(二甲基硅氧基)硅烷(TDMS,俗称四氢封头剂)为原料,通过开环聚合法合成了三端氢基聚硅氧烷(PDMS-H3)和四端氢基聚硅氧烷(PDMS-H4);再将其与甲基丙烯酸叔丁酯(t-BMA)在氯铂酸-四氢呋喃(THF)溶液催化下通过硅氢加成反应得到三端酯基聚硅氧烷(PDMS-t-BMA3)和四端酯基聚硅氧烷(PDMS-t-BMA4);最后在浓硫酸催化下水解制得三端羧基聚硅氧烷(PDMS-COOH3)和四端羧基聚硅氧烷(PDMS-COOH4)。采用FT-IR、1 H NMR和GPC对各阶段产物的结构和摩尔质量及其分布进行表征。结果表明,通过开环聚合、硅氢加成、酸性水解三步反应能够获得结构清晰、摩尔质量可控的多臂端羧基聚硅氧烷,且叔丁酯基聚硅氧烷酸性水解反应效率高,后处理简单,对硅氧烷主链的影响较小。%With octamethylcyclotetrasiloxane (D4 ),tris (dimethylsiloxy) phenylsilane (PTDMS ) or tetrakis (dimethylsiloxy)-silane (TDMS )as raw materials,hydrogen terminated polydimethylsilox-anes (PDMS-Hx,x=3,4)were synthesized via ring-opening polymerization.Then tert-butyl methacry-late (t-BMA)was grafted to PDMS-Hx via hydrosilylation to prepare ester terminated polydimethylsilox-anes (PDMS-t-BMAx,x=3,4)with H2PtCl6 as catalyst,and the multi-branched carboxyl terminated polydimethylsiloxanes (PDMS-COOHx,x=3,4)were prepared by subsequent hydrolysis reaction under acid.The structures and molecular weights of the products were characterized by FT-IR,1 H NMR and GPC.Results show that multi-branched carboxyl terminated polydimethylsiloxanes with certain structures and molecular weights can be synthesized under control via a three-step procedure:ring-opening polymeri-zation,hydrosilylation reaction and acid hydrolysis reaction.The acid hydrolysis of polydimethylsiloxanes with a tertiary

  13. Connexins in the early development of the African clawed frog Xenopus laevis (Amphibia: The role of the connexin43 carboxyl terminal tail in the establishment of the dorso-ventral axis

    Directory of Open Access Journals (Sweden)

    Jaime Cofre

    2007-03-01

    Full Text Available Connexins are a family of related proteins identified in vertebrate forming gap junctions, which mediate cell-to-cell communication in early embryos, with an important role in establishing embryonic asymmetry and ‘communication compartments’. By in situ hybridization, immunocytochemistry, reverse transcriptase PCR (RT-PCR and western blotting we show that a Cx43-like molecule is present in oocytes and embryos of the African clawed frog Xenopus laevis, with specific localization in the animal-vegetal axis. This specific distribution is suggestive for an important role for this protein in the establishment of the dorso-ventral axis. Antisense RNA and antibodies directed against rat carboxyl terminal tail of the Cx43 (CT-Cx43 and injected in 1-cell stage Xenopus embryos, induced pronounced alterations in nervous system development, with a severe ventralization phenotype. Coherently, the overexpression of CT-Cx43 produced a dorsalization of the embryos. In antisense treated embryos, the expression of the beta-catenin gene is eliminated from the Nieuwkoop center, the pattern expression of the Chordin, Xnot and Xbra is modified, with no effect in expression of the Goosecoid gene. In CT-Cx43 mRNA treated embryos the pattern of expression of the beta-catenin, Chordin, Goosecoid, Xnot and engrailed-2 genes is modified. The expression of beta-catenin is increased in the Nieuwkoop center, the expression pattern of Chordin and Goosecoid is expanded to the posterior neural plate and engrailed-2 presents ectopic expression in the ventral region. Taken together our data suggest a role for CT-Cx43 as a maternal determinant with a critical function in the formation of the dorso-ventral axis in Xenopus laevis. The Cx43 may be one of the earliest markers of the dorso-ventral axis in these embryos and could possibly be acting through regionalization of factors responsible for the establishment of this axis.

  14. Triphenylphosphine Stabilized Silver Carboxylates

    Institute of Scientific and Technical Information of China (English)

    Jian Lin HAN; Ying Zhong SHEN; Yi PAN

    2005-01-01

    A series of novel triphenylphosphine stabilized silver carboxylates, potential precursors for CVD growth of ultrafast interconnection link in microelectronic devices, have been prepared and characterized.

  15. Peptidoglycan hydrolase fusions maintain their parental specificities.

    Science.gov (United States)

    Donovan, David M; Dong, Shengli; Garrett, Wes; Rousseau, Geneviève M; Moineau, Sylvain; Pritchard, David G

    2006-04-01

    The increased incidence of bacterial antibiotic resistance has led to a renewed search for novel antimicrobials. Avoiding the use of broad-range antimicrobials through the use of specific peptidoglycan hydrolases (endolysins) might reduce the incidence of antibiotic-resistant pathogens worldwide. Staphylococcus aureus and Streptococcus agalactiae are human pathogens and also cause mastitis in dairy cattle. The ultimate goal of this work is to create transgenic cattle that are resistant to mastitis through the expression of an antimicrobial protein(s) in their milk. Toward this end, two novel antimicrobials were produced. The (i) full-length and (ii) 182-amino-acid, C-terminally truncated S. agalactiae bacteriophage B30 endolysins were fused to the mature lysostaphin protein of Staphylococcus simulans. Both fusions display lytic specificity for streptococcal pathogens and S. aureus. The full lytic ability of the truncated B30 protein also suggests that the SH3b domain at the C terminus is dispensable. The fusions are active in a milk-like environment. They are also active against some lactic acid bacteria used to make cheese and yogurt, but their lytic activity is destroyed by pasteurization (63 degrees C for 30 min). Immunohistochemical studies indicated that the fusion proteins can be expressed in cultured mammalian cells with no obvious deleterious effects on the cells, making it a strong candidate for use in future transgenic mice and cattle. Since the fusion peptidoglycan hydrolase also kills multiple human pathogens, it also may prove useful as a highly selective, multipathogen-targeting antimicrobial agent that could potentially reduce the use of broad-range antibiotics in fighting clinical infections.

  16. Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Richard L. [Colorado School of Mines, Golden, CO (United States)

    2004-09-01

    Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate

  17. Free carboxylate stretching modes

    NARCIS (Netherlands)

    Oomens, J.; Steill, J. D.

    2008-01-01

    We report the first IR spectroscopic observation of carboxylate stretching modes in free space, i.e., in the complete absence of solvent or counterions. Gas-phase spectra of a series of benzoate anions have been recorded and compared to condensed-phase spectra, revealing the profound influence of th

  18. Purification and characterization of a glycoside hydrolase family 43 Beta-xylosidase from Geobacillus thermoleovorans IT-08

    Science.gov (United States)

    The gene encoding a glycoside hydrolase family 43 enzyme termed deAX was isolated and subcloned from a culture seeded with a compost starter mixed bacterium population, expressed with a C-terminal His6-tag, and purified to apparent homogeneity. deAX was monomeric in solution, and had a broad pH maxi...

  19. New structural motif for carboxylic acid perhydrolases.

    Science.gov (United States)

    Yin, DeLu Tyler; Purpero, Vince M; Fujii, Ryota; Jing, Qing; Kazlauskas, Romas J

    2013-02-25

    Some serine hydrolases also catalyze a promiscuous reaction--reversible perhydrolysis of carboxylic acids to make peroxycarboxylic acids. Five X-ray crystal structures of these carboxylic acid perhydrolases show a proline in the oxyanion loop. Here, we test whether this proline is essential for high perhydrolysis activity using Pseudomonas fluorescens esterase (PFE). The L29P variant of this esterase catalyzes perhydrolysis 43-fold faster (k(cat) comparison) than the wild type. Surprisingly, saturation mutagenesis at the 29 position of PFE identified six other amino acid substitutions that increase perhydrolysis of acetic acid at least fourfold over the wild type. The best variant, L29I PFE, catalyzed perhydrolysis 83-times faster (k(cat) comparison) than wild-type PFE and twice as fast as L29P PFE. Despite the different amino acid in the oxyanion loop, L29I PFE shows a similar selectivity for hydrogen peroxide over water as L29P PFE (β(0)=170 vs. 160 M(-1)), and a similar fast formation of acetyl-enzyme (140 vs. 62 U mg(-1)). X-ray crystal structures of L29I PFE with and without bound acetate show an unusual mixture of two different oxyanion loop conformations. The type II β-turn conformation resembles the wild-type structure and is unlikely to increase perhydrolysis, but the type I β-turn conformation creates a binding site for a second acetate. Modeling suggests that a previously proposed mechanism for L29P PFE can be extended to include L29I PFE, so that an acetate accepts a hydrogen bond to promote faster formation of the acetyl-enzyme.

  20. Tertiary Structure and Characterization of a Glycoside Hydrolase Family 44 Endoglucanase from Clostridium acetobutylicum▿ †

    OpenAIRE

    2009-01-01

    A gene encoding a glycoside hydrolase family 44 (GH44) protein from Clostridium acetobutylicum ATCC 824 was synthesized and transformed into Escherichia coli. The previously uncharacterized protein was expressed with a C-terminal His tag and purified by nickel-nitrilotriacetic acid affinity chromatography. Crystallization and X-ray diffraction to a 2.2-Å resolution revealed a triose phosphate isomerase (TIM) barrel-like structure with additional Greek key and β-sandwich folds, similar to othe...

  1. The Structure of Allophanate Hydrolase from Granulibacter bethesdensis Provides Insights into Substrate Specificity in the Amidase Signature Family

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi [Marquette Univ., Milwaukee, WI (United States); Maurice, Martin [Marquette Univ., Milwaukee, WI (United States)

    2013-01-02

    Allophanate hydrolase (AH) catalyzes the hydrolysis of allophanate, an intermediate in atrazine degradation and urea catabolism pathways, to NH3 and CO2. AH belongs to the amidase signature family, which is characterized by a conserved block of 130 amino acids rich in Gly and Ser and a Ser-cis-Ser-Lys catalytic triad. In this study, the first structures of AH fromGranulibacter bethesdensis were determined, with and without the substrate analogue malonate, to 2.2 and 2.8 Å, respectively. The structures confirm the identity of the catalytic triad residues and reveal an altered dimerization interface that is not conserved in the amidase signature family. The structures also provide insights into previously unrecognized substrate specificity determinants in AH. Two residues, Tyr299 and Arg307, are within hydrogen bonding distance of a carboxylate moiety of malonate. Both Tyr299 and Arg307 were mutated, and the resulting modified enzymes revealed >3 order of magnitude reductions in both catalytic efficiency and substrate stringency. It is proposed that Tyr299 and Arg307 serve to anchor and orient the substrate for attack by the catalytic nucleophile, Ser172. The structure further suggests the presence of a unique C-terminal domain in AH. While this domain is conserved, it does not contribute to catalysis or to the structural integrity of the core domain, suggesting that it may play a role in mediating transient and specific interactions with the urea carboxylase component of urea amidolyase. Analysis of the AH active site architecture offers new insights into common determinants of catalysis and specificity among divergent members of the amidase signature family.

  2. Expression of ubiquitin C-terminal hydrolase-L1 and heatstroke-induced brain injury in mice%泛素羧基末端水解酶-1在重症中暑小鼠脑损伤组织中的表达

    Institute of Scientific and Technical Information of China (English)

    李莉; 古正涛; 刘志锋; 苏磊

    2015-01-01

    Results With the prolonged exposure to heat , the mice exhibited swollen and disorderly arranged neurons , shrunken cells , and contracted and deeply stained nuclei , with significantly higher scores on nerve pathological injury evaluation at 6, 12, and 24 h (2.78 ± 0.71, 3.21 ±0.56, and 3.36 ±0.63) than the control mice (0.43 ±0.10) (P<0.05).ELISA showed remarkably elevated levels of UCH-L1 in the serum (F=147.7, P=0.05) and brain tissue (F=145.7, P=0.05) in the heat stress group as compared with the con-trol, and Western blot also revealed a markedly higher expression of UCH-L1 in the brain tissue in the former group than in the latterObjective The abnormal expression of ubiquitin C-terminal hydrolase-L1 ( UCH-L1 ) has an important role in the diagnosis and prognosis of brain damage .This study was to investigate the changes of UCH-L1 in the serum and brain tissue in the mouse model of heat stress . Methods Twelve BALB/c mice were randomly divided into a control and a heat stress group of equal number, the former placed at a temperature of (25.0 ±0.5)℃and a relative humidity of (35 ±5)%and the latter in a simulated in-cubator at (35.5 ±0.5)℃and a relative humidity of (60 ±5)%.When the rectal temperature reached 42℃, the animals were re-moved from the incubator and cooled at an ambient temperature of (25.0 ±0.5)℃and a humidity of (35 ±5)%for 0, 6, 12, and 24 h.Then the brain tissues of all the animals were harvested for HE staining , evaluation of neuronal injury under the light microscope , measurement of the UCH-L1 levels in the serum and brain tissue by ELISA , Western blot, and immunohistochemistry , respectively. (F=261.2, P=0.01).Immunohistochemistry manifested that , with the prolonged exposure to heat , the UCH-L1 expression in the brain tissue was characterized by gradually increased light brown of the neurons at staining . Conclusion Severe heatstroke causes brain injury in a time-dependent manner , and the abnormally elevated levels

  3. Structural insights into the specific recognition of N-heterocycle biodenitrogenation-derived substrates by microbial amide hydrolases.

    Science.gov (United States)

    Wu, Geng; Chen, Duoduo; Tang, Hongzhi; Ren, Yiling; Chen, Qihua; Lv, Yang; Zhang, Zhenyi; Zhao, Yi-Lei; Yao, Yuxiang; Xu, Ping

    2014-03-01

    N-heterocyclic compounds from industrial wastes, including nicotine, are environmental pollutants or toxicants responsible for a variety of health problems. Microbial biodegradation is an attractive strategy for the removal of N-heterocyclic pollutants, during which carbon-nitrogen bonds in N-heterocycles are converted to amide bonds and subsequently severed by amide hydrolases. Previous studies have failed to clarify the molecular mechanism through which amide hydrolases selectively recognize diverse amide substrates and complete the biodenitrogenation process. In this study, structural, computational and enzymatic analyses showed how the N-formylmaleamate deformylase Nfo and the maleamate amidase Ami, two pivotal amide hydrolases in the nicotine catabolic pathway of Pseudomonas putida S16, specifically recognize their respective substrates. In addition, comparison of the α-β-α groups of amidases, which include Ami, pinpointed several subgroup-characteristic residues differentiating the two classes of amide substrates as containing either carboxylate groups or aromatic rings. Furthermore, this study reveals the molecular mechanism through which the specially tailored active sites of deformylases and amidases selectively recognize their unique substrates. Our work thus provides a thorough elucidation of the molecular mechanism through which amide hydrolases accomplish substrate-specific recognition in the microbial N-heterocycles biodenitrogenation pathway.

  4. THE ALPHA/BETA-HYDROLASE FOLD

    NARCIS (Netherlands)

    OLLIS, DL; CHEAH, E; CYGLER, M; FROLOW, F; FRANKEN, SM; HAREL, M; REMINGTON, SJ; SILMAN, [No Value; SCHRAG, J; SUSSMAN, JL; VERSCHUEREN, KHG; GOLDMAN, A

    1992-01-01

    We have identified a new protein fold-the alpha/beta-hydrolase fold-that is common to several hydrolytic enzymes of widely differing phylogenetic origin and catalytic function. The core of each enzyme is similar: an alpha/beta-sheet, not barrel, of eight beta-sheets connected by alpha-helices. These

  5. The α/β hydrolase fold

    NARCIS (Netherlands)

    Ollis, David L.; Cheah, Eong; Cygler, Miroslaw; Dijkstra, Bauke; Frolow, Felix; Franken, Sybille M.; Harel, Michal; Remington, S. James; Silman, Israel; Schrag, Joseph; Sussman, Joel L.; Verschueren, Koen H.G.; Goldman, Adrian

    1992-01-01

    We have identified a new protein fold-the α/β hydrolase fold-that is common to several hydrolytic enzymes of widely differing phylogenetic origin and catalytic function. The core of each enzyme is similar: an α/β sheet, not barrel, of eight β-sheets connected by α-helices. These enzymes have diverge

  6. Carboxylic ester hydrolases in the thyroid gland of the guinea-pig. A light microscopic study

    DEFF Research Database (Denmark)

    Kirkeby, S

    1976-01-01

    The location of cholinesterase and non-specific esterase in the thyroid gland of the guniea-pig was studied with the light microscope. It was found that the idoxyl method for non-specific esterase activity under special conditions is superior to the cholinesterase method in a number of respects f...

  7. 1-Azaniumylcyclobutane-1-carboxylate monohydrate

    Directory of Open Access Journals (Sweden)

    Ray J. Butcher

    2014-02-01

    Full Text Available In the title compound, C5H9NO2·H2O, the amino acid is in the usual zwitterionic form involving the α-carboxylate group. The cyclobutane backbone of the amino acid is disordered over two conformations, with occupancies of 0.882 (7 and 0.118 (7. In the crystal, N—H...O and O—H...O hydrogen bonds link the zwitterions [with the water molecule involved as both acceptor (with the NH3+ and donor (through a single carboxylate O from two different aminocyclobutane carboxylate moities], resulting in a two-dimensional layered structure lying parallel to (100.

  8. Bacterial Cyanuric Acid Hydrolase for Water Treatment.

    Science.gov (United States)

    Yeom, Sujin; Mutlu, Baris R; Aksan, Alptekin; Wackett, Lawrence P

    2015-10-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation.

  9. Breaking the Carboxyl Rule

    Science.gov (United States)

    Balashov, Sergei P.; Petrovskaya, Lada E.; Imasheva, Eleonora S.; Lukashev, Evgeniy P.; Dioumaev, Andrei K.; Wang, Jennifer M.; Sychev, Sergey V.; Dolgikh, Dmitriy A.; Rubin, Andrei B.; Kirpichnikov, Mikhail P.; Lanyi, Janos K.

    2013-01-01

    A lysine instead of the usual carboxyl group is in place of the internal proton donor to the retinal Schiff base in the light-driven proton pump of Exiguobacterium sibiricum (ESR). The involvement of this lysine in proton transfer is indicated by the finding that its substitution with alanine or other residues slows reprotonation of the Schiff base (decay of the M intermediate) by more than 2 orders of magnitude. In these mutants, the rate constant of the M decay linearly decreases with a decrease in proton concentration, as expected if reprotonation is limited by the uptake of a proton from the bulk. In wild type ESR, M decay is biphasic, and the rate constants are nearly pH-independent between pH 6 and 9. Proton uptake occurs after M formation but before M decay, which is especially evident in D2O and at high pH. Proton uptake is biphasic; the amplitude of the fast phase decreases with a pKa of 8.5 ± 0.3, which reflects the pKa of the donor during proton uptake. Similarly, the fraction of the faster component of M decay decreases and the slower one increases, with a pKa of 8.1 ± 0.2. The data therefore suggest that the reprotonation of the Schiff base in ESR is preceded by transient protonation of an initially unprotonated donor, which is probably the ϵ-amino group of Lys-96 or a water molecule in its vicinity, and it facilitates proton delivery from the bulk to the reaction center of the protein. PMID:23696649

  10. Beyond growth: novel functions for bacterial cell wall hydrolases.

    Science.gov (United States)

    Wyckoff, Timna J; Taylor, Jennifer A; Salama, Nina R

    2012-11-01

    The peptidoglycan cell wall maintains turgor pressure and cell shape of most bacteria. Cell wall hydrolases are essential, together with synthases, for growth and daughter cell separation. Recent work in diverse organisms has uncovered new cell wall hydrolases that act autonomously or on neighboring cells to modulate invasion of prey cells, cell shape, innate immune detection, intercellular communication, and competitor lysis. The hydrolases involved in these processes catalyze the cleavage of bonds throughout the sugar and peptide moities of peptidoglycan. Phenotypes associated with these diverse hydrolases reveal new functions of the bacterial cell wall beyond growth and division.

  11. Biocatalytic reduction of carboxylic acids.

    Science.gov (United States)

    Napora-Wijata, Kamila; Strohmeier, Gernot A; Winkler, Margit

    2014-06-01

    An increasing demand for non-petroleum-based products is envisaged in the near future. Carboxylic acids such as citric acid, succinic acid, fatty acids, and many others are available in abundance from renewable resources and they could serve as economic precursors for bio-based products such as polymers, aldehyde building blocks, and alcohols. However, we are confronted with the problem that carboxylic acid reduction requires a high level of energy for activation due to the carboxylate's thermodynamic stability. Catalytic processes are scarce and often their chemoselectivity is insufficient. This review points at bio-alternatives: currently known enzyme classes and organisms that catalyze the reduction of carboxylic acids are summarized. Two totally distinct biocatalyst lines have evolved to catalyze the same reaction: aldehyde oxidoreductases from anaerobic bacteria and archea, and carboxylate reductases from aerobic sources such as bacteria, fungi, and plants. The majority of these enzymes remain to be identified and isolated from their natural background in order to evaluate their potential as industrial biocatalysts.

  12. Carboxyl group reactivity in actin

    Energy Technology Data Exchange (ETDEWEB)

    Elzinga, M.

    1986-01-01

    While earlier work showed that the carboxyl groups of proteins could be quantitatively coupled to amino groups at pH 4.75 in the presence of EDC and a denaturing agent, the work presented here indicates that under milder conditions the modification of sidechain carboxyls is limited and somewhat specific. Most of the incorporated glycine ethyl ester (GEE) is apparently bound to five carboxyls. The total GEE incorporated was 3 to 4 moles/mole of protein as measured by an increase in Gly upon acid hydrolysis and amino acid analysis, as well as total radioactivity. 3.55 residues were found in peptides, 2.75 bound to residues 1 to 4, and 0.8 bound to Gly-100. 9 refs., 2 figs., 2 tabs.

  13. Purification and characterization of a chlorogenic acid hydrolase from Aspergillus niger catalysing the hydrolysis of chlorogenic acid.

    Science.gov (United States)

    Asther, Michèle; Estrada Alvarado, Maria Isabel; Haon, Mireille; Navarro, David; Asther, Marcel; Lesage-Meessen, Laurence; Record, Eric

    2005-01-12

    Among 15 Aspergillus strains, Aspergillus niger BRFM 131 was selected for its high chlorogenic acid hydrolase activity. The enzyme was purified and characterized with respect to its physico-chemical and kinetic properties. Four chromatographic steps were necessary to purify the protein to homogeneity with a recovery of 2%. Km of the chlorogenic acid hydrolase was estimated to be 10 microM against chlorogenic acid as substrate. Under native conditions, the protein presented a molecular mass of 170 kDa, and SDS-PAGE analysis suggested the presence of two identical 80 kDa subunits. Isoelectric point was 6.0; pH optimum for activity was determined to be 6.0 and temperature optima to be 55 degrees C. The N-terminal sequence did not present any homology with other cinnamoyl ester hydrolases previously described suggesting the purification of a new protein. The chlorogenic acid hydrolase was used successfully for the production of caffeic acid, which possesses strong antioxidant properties, from natural substrates specially rich in chlorogenic acid like apple marc and coffee pulp.

  14. Fungal epoxide hydrolases: new landmarks in sequence-activity space.

    Science.gov (United States)

    Smit, Martha S

    2004-03-01

    Epoxide hydrolases are useful catalysts for the hydrolytic kinetic resolution of epoxides, which are sought after intermediates for the synthesis of enantiopure fine chemicals. The epoxide hydrolases from Aspergillus niger and from the basidiomycetous yeasts Rhodotorula glutinis and Rhodosporidium toruloides have demonstrated potential as versatile, user friendly biocatalysts for organic synthesis. A recombinant A. niger epoxide hydrolase, produced by an overproducing A. niger strain, is already commercially available and recombinant yeast epoxide hydrolases expressed in Escherichia coli have shown excellent results. Within the vast body of activity information on the one hand and gene sequence information on the other hand, the epoxide hydrolases from the Rhodotorula spp. and A. niger stand out because we have sequence information as well as activity information for both the wild-type and recombinant forms of these enzymes.

  15. The Mode of Inhibitor Binding to Peptidyl-tRNA Hydrolase: Binding Studies and Structure Determination of Unbound and Bound Peptidyl-tRNA Hydrolase from Acinetobacter baumannii

    Science.gov (United States)

    Kaushik, Sanket; Singh, Nagendra; Yamini, Shavait; Singh, Avinash; Sinha, Mau; Arora, Ashish; Kaur, Punit; Sharma, Sujata; Singh, Tej P.

    2013-01-01

    The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth) is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design. PMID:23844024

  16. The mode of inhibitor binding to peptidyl-tRNA hydrolase: binding studies and structure determination of unbound and bound peptidyl-tRNA hydrolase from Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Sanket Kaushik

    Full Text Available The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design.

  17. Termination Documentation

    Science.gov (United States)

    Duncan, Mike; Hill, Jillian

    2014-01-01

    In this study, we examined 11 workplaces to determine how they handle termination documentation, an empirically unexplored area in technical communication and rhetoric. We found that the use of termination documentation is context dependent while following a basic pattern of infraction, investigation, intervention, and termination. Furthermore,…

  18. Trametes versicolor carboxylate reductase uncovered

    OpenAIRE

    Winkler, Margit; Winkler, Christoph K.

    2016-01-01

    Abstract The first carboxylate reductase from Trametes versicolor was identified, cloned, and expressed in Escherichia coli. The enzyme reduces aromatic acids such as benzoic acid and derivatives, cinnamic acid, and 3-phenylpropanoic acid, but also aliphatic acids such as octanoic acid are reduced. Graphical abstract

  19. A simplified electrostatic model for hydrolase catalysis.

    Science.gov (United States)

    Pessoa Filho, Pedro de Alcantara; Prausnitz, John M

    2015-07-01

    Toward the development of an electrostatic model for enzyme catalysis, the active site of the enzyme is represented by a cavity whose surface (and beyond) is populated by electric charges as determined by pH and the enzyme's structure. The electric field in the cavity is obtained from electrostatics and a suitable computer program. The key chemical bond in the substrate, at its ends, has partial charges with opposite signs determined from published force-field parameters. The electric field attracts one end of the bond and repels the other, causing bond tension. If that tension exceeds the attractive force between the atoms, the bond breaks; the enzyme is then a successful catalyst. To illustrate this very simple model, based on numerous assumptions, some results are presented for three hydrolases: hen-egg white lysozyme, bovine trypsin and bovine ribonuclease. Attention is given to the effect of pH.

  20. A proton wire and water channel revealed in the crystal structure of isatin hydrolase

    DEFF Research Database (Denmark)

    Bjerregaard-Andersen, Kaare; Sommer, Theis; Jensen, Jan Kristian;

    2014-01-01

    The high resolution crystal structures of isatin hydrolase from Labrenzia aggregata in the apo and the product state, are described. These are the first structures of a functionally characterized metal-dependent hydrolase of this fold. Isatin hydrolase converts isatin to isatinate and belongs to ...... of orthologous genes encoding isatin hydrolases within the prokaryotic kingdom. The isatin hydrolase orthologues found in human gut bacteria raise the question as to whether the indole-3-acetic acid degradation pathway is present in human gut flora....

  1. Enrichment of Nanodiamond Surfaces with Carboxyl Groups for Doxorubicin Loading and Release

    Science.gov (United States)

    Astuti, Y.; Saputra, F. D.; Wuning, S.; Arnelli; Bhaduri, G.

    2017-02-01

    In their pristine state, nanodiamond crystals produced via detonation techniques containing several functional groups present on the surface including amine, amide, alcohol, carbonyl, and carboxyl. These functional groups facilitate nanodiamond to interact drugs so as to nanodiamond is potential for medical application such as drug delivery. Even though research on t he use of nanodiamond for this application has been conducted widely, research on the effect of enrichment of nanodiamond surface with carboxyl functional groups for drug loading and release has not been explored extensively. Therefore, in this paper, the effect of carboxyl-terminated nanodiamond (ND-COOH) on drug loading and release will be presented. The enrichment of nanodiamond with carboxyl groups was undertaken by treating nanodiamond with sulphuric acid and nitric acid. The results show that the doxorubicin (DOX) loading and release efficiencies of ND pristine are higher than that of ND-COOH.

  2. Prunasin hydrolases during fruit development in sweet and bitter almonds.

    Science.gov (United States)

    Sánchez-Pérez, Raquel; Belmonte, Fara Sáez; Borch, Jonas; Dicenta, Federico; Møller, Birger Lindberg; Jørgensen, Kirsten

    2012-04-01

    Amygdalin is a cyanogenic diglucoside and constitutes the bitter component in bitter almond (Prunus dulcis). Amygdalin concentration increases in the course of fruit formation. The monoglucoside prunasin is the precursor of amygdalin. Prunasin may be degraded to hydrogen cyanide, glucose, and benzaldehyde by the action of the β-glucosidase prunasin hydrolase (PH) and mandelonitirile lyase or be glucosylated to form amygdalin. The tissue and cellular localization of PHs was determined during fruit development in two sweet and two bitter almond cultivars using a specific antibody toward PHs. Confocal studies on sections of tegument, nucellus, endosperm, and embryo showed that the localization of the PH proteins is dependent on the stage of fruit development, shifting between apoplast and symplast in opposite patterns in sweet and bitter cultivars. Two different PH genes, Ph691 and Ph692, have been identified in a sweet and a bitter almond cultivar. Both cDNAs are 86% identical on the nucleotide level, and their encoded proteins are 79% identical to each other. In addition, Ph691 and Ph692 display 92% and 86% nucleotide identity to Ph1 from black cherry (Prunus serotina). Both proteins were predicted to contain an amino-terminal signal peptide, with the size of 26 amino acid residues for PH691 and 22 residues for PH692. The PH activity and the localization of the respective proteins in vivo differ between cultivars. This implies that there might be different concentrations of prunasin available in the seed for amygdalin synthesis and that these differences may determine whether the mature almond develops into bitter or sweet.

  3. The influence of ferric (III citrate on ATP-hydrolases of Desulfuromonas acetoxidans ІМV В-7384

    Directory of Open Access Journals (Sweden)

    O. Maslovska

    2013-02-01

    Full Text Available Desulfuromonas acetoxidans obtains energy for growth by the anaerobic oxidation of organic compounds with the carbon dioxide formation. It was found that ferrum and manganese are used as terminal electron acceptors in the processes of anaerobic respiration, such as dissimilative Fe3+- and Mn4+-reduction, carried out by these bacteria (Lovely, 1991. D. acetoxidans ІМV B-7384 can be used as anode biocatalyst in microbial fuel cell with high electron recovery through acetate oxidation to the electric current as a result of electron transfer to the anode or 3d-type transition metals, such as ferrum and manganese, in the process of their reduction. Investigation of biochemical changes of D. acetoxidans ІМV B-7384 under the influence of Fe (III compounds is important for optimization of the process of bacterial electricity generation. ATP-hydrolase is located in cytoplasmic membrane, and its subunits are exposed to both the cytoplasm and the external environment. Therefore, the changes of that enzyme activity can be used as an indicator of various stress exposure. Presence of ferric iron ions in the bacterial growth medium could catalyze generation of organic reactive oxygen species, such as peroxyl (ROO- and alkoxyl (RO- radicals. Lipid peroxidation is one of the main reasons of cell damage and it’s following death under the influence of reactive oxygen metabolites. It is known that lipid peroxidation and membrane transport processes are somehow interrelated, but mechanisms of such interaction are still unidentified. In our previous researche we have shown the influence of ferric (III citrate on the intensity of lipid peroxidation of D. аcetoxidans ІМV В-7384. Significant increase of the content of lipid peroxidation products (lipid hydroperoxides, conjugated dienes and malondialdehyde in bacterial cells has been observed under the addition of ferric (III citrate into the cultural medium. The increase of the concentration of lipid

  4. Expression, Purification and Crystal Structure of a Truncated Acylpeptide Hydrolase from Aeropyrum pernix K1

    Institute of Scientific and Technical Information of China (English)

    Hai-Feng ZHANG; Bai-Song ZHENG; Ying PENG; Zhi-Yong LOU; Yan FENG; Zi-He RAO

    2005-01-01

    Acylpeptide hydrolase (APH) catalyzes the N-terminal hydrolysis of Nα-acylpeptides to release Nα-acylated amino acids. The crystal structure of recombinant APH from the thermophilic archaeon Aeropyrum pernix K1 (apAPH) was reported recently to be at a resolution of 2.1 A using X-ray diffraction. A truncated mutant of apAPH that lacks the first short α-helix at the N-terminal, apAPH-△(1-21), was cloned, expressed,characterized and crystallized. Data from biochemical experiments indicate that the optimum temperature of apAPH is decreased by 15 ℃ with the deletion of the N-terminal α-helix. However, the enzyme activity at the optimal temperature does not change. It suggests that this N-terminal α-helix is essential for thermostability. Here, the crystal structure of apAPH-△(1-21) has been determined by molecular replacement to 2.5A. A comparison between the two structures suggests a difference in thermostability, and it can be concluded that by adding or deleting a linking structure (located over different domains), the stability or even the activity of an enzyme can be modified.

  5. Structure Property Relationships of Carboxylic Acid Isosteres.

    Science.gov (United States)

    Lassalas, Pierrik; Gay, Bryant; Lasfargeas, Caroline; James, Michael J; Tran, Van; Vijayendran, Krishna G; Brunden, Kurt R; Kozlowski, Marisa C; Thomas, Craig J; Smith, Amos B; Huryn, Donna M; Ballatore, Carlo

    2016-04-14

    The replacement of a carboxylic acid with a surrogate structure, or (bio)-isostere, is a classical strategy in medicinal chemistry. The general underlying principle is that by maintaining the features of the carboxylic acid critical for biological activity, but appropriately modifying the physicochemical properties, improved analogs may result. In this context, a systematic assessment of the physicochemical properties of carboxylic acid isosteres would be desirable to enable more informed decisions of potential replacements to be used for analog design. Herein we report the structure-property relationships (SPR) of 35 phenylpropionic acid derivatives, in which the carboxylic acid moiety is replaced with a series of known isosteres. The data set generated provides an assessment of the relative impact on the physicochemical properties that these replacements may have compared to the carboxylic acid analog. As such, this study presents a framework for how to rationally apply isosteric replacements of the carboxylic acid functional group.

  6. Molecular cloning, expression and characterization of acylpeptide hydrolase in the silkworm, Bombyx mori.

    Science.gov (United States)

    Fu, Ping; Sun, Wei; Zhang, Ze

    2016-04-10

    Acylpeptide hydrolase (APH) can catalyze the release of the N-terminal amino acid from acetylated peptides. There were many documented examples of this enzyme in various prokaryotic and eukaryotic organisms. However, knowledge about APH in insects still remains unknown. In this study, we cloned and sequenced a putative silkworm Bombyx mori APH (BmAPH) gene. The BmAPH gene encodes a protein of 710 amino acids with a predicted molecular mass of 78.5kDa. The putative BmAPH and mammal APHs share about 36% amino acid sequence identity, yet key catalytic residues are conserved (Ser566, Asp654, and His686). Expression and purification of the recombinant BmAPH in Escherichia coli showed that it has acylpeptide hydrolase activity toward the traditional substrate, Ac-Ala-pNA. Furthermore, organophosphorus (OP) insecticides, chlorpyrifos, phoxim, and malathion, significantly inhibited the activity of the APH both in vitro and in vivo. In addition, BmAPH was expressed in all tested tissues and developmental stages of the silkworm. Finally, immunohistochemistry analysis showed that BmAPH protein was localized in the basement membranes. These results suggested that BmAPH may be involved in enhancing silkworm tolerance to the OP insecticides. In a word, our results provide evidence for understanding of the biological function of APH in insects.

  7. A remarkable activity of human leukotriene A4 hydrolase (LTA4H) toward unnatural amino acids.

    Science.gov (United States)

    Byzia, Anna; Haeggström, Jesper Z; Salvesen, Guy S; Drag, Marcin

    2014-05-01

    Leukotriene A4 hydrolase (LTA4H--EC 3.3.2.6) is a bifunctional zinc metalloenzyme, which processes LTA4 through an epoxide hydrolase activity and is also able to trim one amino acid at a time from N-terminal peptidic substrates via its aminopeptidase activity. In this report, we have utilized a library of 130 individual proteinogenic and unnatural amino acid fluorogenic substrates to determine the aminopeptidase specificity of this enzyme. We have found that the best proteinogenic amino acid recognized by LTA4H is arginine. However, we have also observed several unnatural amino acids, which were significantly better in terms of cleavage rate (k cat/K m values). Among them, the benzyl ester of aspartic acid exhibited a k cat/K m value that was more than two orders of magnitude higher (1.75 × 10(5) M(-1) s(-1)) as compared to L-Arg (1.5 × 10(3) M(-1) s(-1)). This information can be used for design of potent inhibitors of this enzyme, but may also suggest yet undiscovered functions or specificities of LTA4H.

  8. Signature motifs identify an Acinetobacter Cif virulence factor with epoxide hydrolase activity.

    Science.gov (United States)

    Bahl, Christopher D; Hvorecny, Kelli L; Bridges, Andrew A; Ballok, Alicia E; Bomberger, Jennifer M; Cady, Kyle C; O'Toole, George A; Madden, Dean R

    2014-03-14

    Endocytic recycling of the cystic fibrosis transmembrane conductance regulator (CFTR) is blocked by the CFTR inhibitory factor (Cif). Originally discovered in Pseudomonas aeruginosa, Cif is a secreted epoxide hydrolase that is transcriptionally regulated by CifR, an epoxide-sensitive repressor. In this report, we investigate a homologous protein found in strains of the emerging nosocomial pathogens Acinetobacter nosocomialis and Acinetobacter baumannii ("aCif"). Like Cif, aCif is an epoxide hydrolase that carries an N-terminal secretion signal and can be purified from culture supernatants. When applied directly to polarized airway epithelial cells, mature aCif triggers a reduction in CFTR abundance at the apical membrane. Biochemical and crystallographic studies reveal a dimeric assembly with a stereochemically conserved active site, confirming our motif-based identification of candidate Cif-like pathogenic EH sequences. Furthermore, cif expression is transcriptionally repressed by a CifR homolog ("aCifR") and is induced in the presence of epoxides. Overall, this Acinetobacter protein recapitulates the essential attributes of the Pseudomonas Cif system and thus may facilitate airway colonization in nosocomial lung infections.

  9. Lactase-phlorizin hydrolase and aminopeptidase N are differentially regulated in the small intestine of the pig

    DEFF Research Database (Denmark)

    Torp, Niels; Rossi, M; Troelsen, J T

    1993-01-01

    moderately from the duodenum to the terminal ileum, the amount of lactase-phlorizin hydrolase mRNA exhibited a sharp maximum in the proximal jejunum. For both enzymes, the level of protein synthesis, studied in cultured mucosal explants, correlated well with the level of mRNA, and no major variation in post......The longitudinal expression of two brush-border enzymes, lactase-phlorizin hydrolase (EC 3.2.1.23/62) and aminopeptidase N (EC 3.4.11.2), was studied in the small intestine of the post-weaned pig. Whereas the level of mRNA, encoding aminopeptidase N (relative to that of beta-actin), only varied...... in the gut lumen of pancreatic proteases. In neonatal animals, the level of mRNA for lactase-phlorizin hydrolase in both proximal and distal regions of the intestine was of the same magnitude as in the proximal jejunum of the post-weaned pigs. Our results point to two mechanisms that affect the expression...

  10. Improvement in organophosphorus hydrolase activity of cell surface-engineered yeast strain using Flo1p anchor system

    OpenAIRE

    Fukuda, Takeshi; Tsuchiyama, Kouta; Makishima, Hirokazu; Takayama, Katsumi; Mulchandani, Ashok; Kuroda, Kouichi; Ueda, Mitsuyoshi; Suye, Shin-ichiro

    2010-01-01

    Organophosphorus hydrolase (OPH) hydrolyzes organophosphorus esters. We constructed the yeast-displayed OPH using Flo1p anchor system. In this system, the N-terminal region of the protein was fused to Flo1p and the fusion protein was displayed on the cell surface. Hydrolytic reactions with paraoxon were carried out during 24 h of incubation of OPH-displaying cells at 30°C. p-Nitrophenol produced in the reaction mixture was detected by HPLC. The strain with highest activity showed 8-fold great...

  11. Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc-André; Deacon, Ashley M.; Wilson, Ian A.

    2015-09-15

    ABSTRACT

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.

    IMPORTANCEPeptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural

  12. Guest-host chemistry with dendrimers—binding of carboxylates in aqueous solution

    DEFF Research Database (Denmark)

    Ficker, Mario; Petersen, Johannes Fabritius; Hansen, Jon Stefan;

    2015-01-01

    Recognition and binding of anions in water is difficult due to the ability of water molecules to form strong hydrogen bonds and to solvate the anions. The complexation of two different carboxylates with 1-(4-carbomethoxypyrrolidone)-terminated PAMAM dendrimers was studied in aqueous solution using...... NMR and ITC binding models. Sodium 2-naphthoate and sodium 3-hydroxy-2-naphthoate were chosen as carboxylate model compounds, since they carry structural similarities to many non-steroidal anti-inflammatory drugs and they possess only a limited number of functional groups, making them ideal to study...

  13. Overexpression of fatty acid amide hydrolase induces early flowering in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Neal D. Teaster

    2012-02-01

    Full Text Available N-Acylethanolamines (NAEs are bioactive lipids derived from the hydrolysis of the membrane phospholipid N-acylphosphatidylethanolamine (NAPE. In animal systems this reaction is part of the endocannabinoid signaling pathway, which regulates a variety of physiological processes. The signaling function of NAE is terminated by fatty acid amide hydrolase (FAAH, which hydrolyzes NAE to ethanolamine and free fatty acid. Our previous work in Arabidopsis thaliana showed that overexpression of AtFAAH (At5g64440 lowered endogenous levels of NAEs in seeds, consistent with its role in NAE signal termination. Reduced NAE levels were accompanied by an accelerated growth phenotype, increased sensitivity to abscisic acid (ABA, enhanced susceptibility to bacterial pathogens, and early flowering. Here we investigated the nature of the early flowering phenotype of AtFAAH overexpression. AtFAAH overexpressors flowered several days earlier than wild type and AtFAAH knockouts under both non-inductive short day (SD and inductive long day (LD conditions. Microarray analysis revealed that the FLOWERING LOCUS T (FT gene, which plays a major role in regulating flowering time, and one target MADS box transcription factor, SEPATALLA3 (SEP3, were elevated in AtFAAH overexpressors. Furthermore, AtFAAH overexpressors, with the early flowering phenotype had lower endogenous NAE levels in leaves compared to wild type prior to flowering. Exogenous application of NAE 12:0, which was reduced by up to 30% in AtFAAH overexpressors, delayed the onset of flowering in wild type plants. We conclude that the early flowering phenotype of AtFAAH overexpressors is, in part, explained by elevated FT gene expression resulting from the enhanced NAE hydrolase activity of AtFAAH, suggesting that NAE metabolism may participate in floral signaling pathways.

  14. The effect of surfactants on the aggregation behavior of phthalocyanine zinc (Ⅱ) bearing poly(aryl benzyl ether)dendritic substituents with carboxylic terminal%表面活性剂对以羧基为端基的芳基苄醚树枝配体取代酞菁锌(Ⅱ)配合物聚集行为的影响

    Institute of Scientific and Technical Information of China (English)

    陈婉玲; 彭亦如; 贺丹丹; 马冬冬; 张甜甜; 魏珍珍; 吴雪蓉

    2013-01-01

    通过紫外光谱法和荧光光谱法比较,研究了阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)对0~2代以羧基为端基的芳基苄醚树枝配体取代酞菁锌(Ⅱ)配合物(ZnPc(COOH)4、G1-ZnPc(COOH)8和G2-ZnPc (COOH )16)聚集行为的影响。ZnPc (COOH)4、G1-ZnPc(COOH)8和 G2-ZnPc(COOH)16在水溶液中主要以二聚体形式存在。加入 CTAB 后, ZnPc (COOH )4、G1-ZnPc (COOH )8和 G2-ZnPc (COOH)16的单体吸收峰强度均增强,二聚体吸收峰强度均逐渐减弱;荧光光谱均明显增强,这表明 CTAB对树枝酞菁体系具有明显的解聚作用。这是因为 Zn-Pc (COOH )4、G1-ZnPc (COOH )8和 G2-ZnPc (COOH)16表面带负电荷的羧基与带正电荷的 CTAB通过静电作用形成纳米胶束,破坏了羧基酞菁聚集体之间的氢键。通过Zetasize粒度分析仪研究了不同浓度的CTAB与羧基酞菁形成纳米胶束的粒径分布情况,平均粒径范围约在5~30 nm,并随着 CTAB 浓度的增加,纳米胶束的平均粒径增大;随着树枝代数增加,纳米胶束的平均粒径逐渐减小。因此,阳离子表面活性剂CTAB可以有效抑制酞菁在水溶液中的聚集行为,在开展酞菁的光化学和物理研究方面具有很好的应用前景。%The interaction between the phthalocyanine zinc(Ⅱ)bearing poly(aryl benzyl ether)dendritic substit-uents with carboxylic terminal (ZnPc(COOH)4 ,G1-ZnPc(COOH)8 and G2-ZnPc(COOH)16 )and cationic sur-factants(cetyltrimethyl ammonium bromide(CTAB))were studied by fluorescence and UV-Vis spectroscopic methods.ZnPc(COOH)4 ,G1-ZnPc(COOH)8 and G2-ZnPc(COOH)16 mainly existed as a dimer at 625 nm in aqueous media,but they mainly exhibited as monomers at 685 nm with addition of CTAB.As the concentra-tion of CTAB increased,the intensity of the monomeric absorption peak increased,while that of the dimer peaks decreased gradually.Meanwhile,the fluorescence intensity of ZnPc(COOH)4 ,G1-ZnPc(COOH)8 and G2-ZnPc(COOH)16 also markedly enhanced

  15. Recovery of carboxylic acids produced by fermentation.

    Science.gov (United States)

    López-Garzón, Camilo S; Straathof, Adrie J J

    2014-01-01

    Carboxylic acids such as citric, lactic, succinic and itaconic acids are useful products and are obtained on large scale by fermentation. This review describes the options for recovering these and other fermentative carboxylic acids. After cell removal, often a primary recovery step is performed, using liquid-liquid extraction, adsorption, precipitation or conventional electrodialysis. If the carboxylate is formed rather than the carboxylic acid, the recovery process involves a step for removing the cation of the formed carboxylate. Then, bipolar electrodialysis and thermal methods for salt splitting can prevent that waste inorganic salts are co-produced. Final carboxylic acid purification requires either distillation or crystallization, usually involving evaporation of water. Process steps can often be combined synergistically. In-situ removal of carboxylic acid by extraction during fermentation is the most popular approach. Recovery of the extractant can easily lead to waste inorganic salt formation, which counteracts the advantage of the in-situ removal. For industrial production, various recovery principles and configurations are used, because the fermentation conditions and physical properties of specific carboxylic acids differ.

  16. Copper ions inactivate S-ade-nosylhomocysteine hydrolase

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    S-adenosylhomocysteine (AdoHcy) hydrolase isan enzyme that regulates biomethylation and some otherphysiological processes. Recombinant AdoHcy hydrolase wasoverexpressed in E. coli JM109 and purified with ion ex-change and gel filtration chromatographies. The effects ofcopper ions (Cu2+) on the activity of AdoHcy hydrolase wereinvestigated and the results showed that Cu2+ inhibited theenzyme's activity by a concentration and time-dependentprocess. The inhibition constant (Ki) and the apparent rateconstant (kapp) were calculated to be (14 + 4) nmol @ L-1 and(1.08 + 0.15) min-1, respectively. The existence of the naturalsubstrate Ado could to some extent prevent Cu2+ from inac-tivating the enzyme, suggesting that copper ions possiblycould compete with the natural substrate on enzyme's sub-strate binding site. Further studies on the mechanism of in-hibition are being carried out.

  17. Analysis of Domain Architecture and Phylogenetics of Family 2 Glycoside Hydrolases (GH2).

    Science.gov (United States)

    Talens-Perales, David; Górska, Anna; Huson, Daniel H; Polaina, Julio; Marín-Navarro, Julia

    2016-01-01

    In this work we report a detailed analysis of the topology and phylogenetics of family 2 glycoside hydrolases (GH2). We distinguish five topologies or domain architectures based on the presence and distribution of protein domains defined in Pfam and Interpro databases. All of them share a central TIM barrel (catalytic module) with two β-sandwich domains (non-catalytic) at the N-terminal end, but differ in the occurrence and nature of additional non-catalytic modules at the C-terminal region. Phylogenetic analysis was based on the sequence of the Pfam Glyco_hydro_2_C catalytic module present in most GH2 proteins. Our results led us to propose a model in which evolutionary diversity of GH2 enzymes is driven by the addition of different non-catalytic domains at the C-terminal region. This model accounts for the divergence of β-galactosidases from β-glucuronidases, the diversification of β-galactosidases with different transglycosylation specificities, and the emergence of bicistronic β-galactosidases. This study also allows the identification of groups of functionally uncharacterized protein sequences with potential biotechnological interest.

  18. Terminal Alkene Formation by the Thioesterase of Curacin A Biosynthesis: Structure of a Decarboxylating Thioesterase

    Energy Technology Data Exchange (ETDEWEB)

    Gehret, Jennifer J.; Gu, Liangcai; Gerwick, William H.; Wipf, Peter; Sherman, David H.; Smith, Janet L. (Pitt); (Michigan); (UCSD)

    2011-11-07

    Curacin A is a polyketide synthase (PKS)-non-ribosomal peptide synthetase-derived natural product with potent anticancer properties generated by the marine cyanobacterium Lyngbya majuscula. Type I modular PKS assembly lines typically employ a thioesterase (TE) domain to off-load carboxylic acid or macrolactone products from an adjacent acyl carrier protein (ACP) domain. In a striking departure from this scheme the curacin A PKS employs tandem sulfotransferase and TE domains to form a terminal alkene moiety. Sulfotransferase sulfonation of {beta}-hydroxy-acyl-ACP is followed by TE hydrolysis, decarboxylation, and sulfate elimination (Gu, L., Wang, B., Kulkarni, A., Gehret, J. J., Lloyd, K. R., Gerwick, L., Gerwick, W. H., Wipf, P., Hakansson, K., Smith, J. L., and Sherman, D. H. (2009) J. Am. Chem. Soc. 131, 16033-16035). With low sequence identity to other PKS TEs (<15%), the curacin TE represents a new thioesterase subfamily. The 1.7-{angstrom} curacin TE crystal structure reveals how the familiar {alpha}/{beta}-hydrolase architecture is adapted to specificity for {beta}-sulfated substrates. A Ser-His-Glu catalytic triad is centered in an open active site cleft between the core domain and a lid subdomain. Unlike TEs from other PKSs, the lid is fixed in an open conformation on one side by dimer contacts of a protruding helix and on the other side by an arginine anchor from the lid into the core. Adjacent to the catalytic triad, another arginine residue is positioned to recognize the substrate {beta}-sulfate group. The essential features of the curacin TE are conserved in sequences of five other putative bacterial ACP-ST-TE tridomains. Formation of a sulfate leaving group as a biosynthetic strategy to facilitate acyl chain decarboxylation is of potential value as a route to hydrocarbon biofuels.

  19. Crystal Structure of Homo Sapiens PTD012 Reveals a Zinc-Containing Hydrolase Fold

    Energy Technology Data Exchange (ETDEWEB)

    Manjasetty,B.; Bussow, K.; Fieber-ErdMan, M.; Roske, Y.; Gobam, J.; Scheich, C.; Gotz, F.; Niesen, F.; Heinemann, U.

    2006-01-01

    The human protein PTD012 is the longer product of an alternatively spliced gene and was described to be localized in the nucleus. The X-ray structure analysis at 1.7 Angstroms resolution of PTD012 through SAD phasing reveals a monomeric protein and a novel fold. The shorter splice form was also studied and appears to be unfolded and non-functional. The structure of PTD012 displays an {alpha}{beta}{beta}{alpha} four-layer topology. A metal ion residing between the central {beta}-sheets is partially coordinated by three histidine residues. X-ray absorption near-edge structure (XANES) analysis identifies the PTD012-bound ion as Zn{sup 2+}. Tetrahedral coordination of the ion is completed by the carboxylate oxygen atom of an acetate molecule taken up from the crystallization buffer. The binding of Zn{sup 2+} to PTD012 is reminiscent of zinc-containing enzymes such as carboxypeptidase, carbonic anhydrase, and {beta}-lactamase. Biochemical assays failed to demonstrate any of these enzyme activities in PTD012. However, PTD012 exhibits ester hydrolase activity on the substrate p-nitrophenyl acetate.

  20. Characterization of Aquamicrobium defluvii gen. nov. sp. nov., a thiophene-2-carboxylate-metabolizing bacterium from activated sludge.

    Science.gov (United States)

    Bambauer, A; Rainey, F A; Stackebrandt, E; Winter, J

    1998-04-01

    A gram-negative bacterium was isolated from activated sewage sludge with thiophene-2-carboxylate as the sole source of carbon and with nitrate as an electron acceptor. The isolate, strain NKK, was a motile, oxidase- and catalase-positive, rod-like bacterium with a G+C content of 61.7 mol%. Besides nitrate, oxygen could serve as a terminal electron acceptor. Among many carbon sources tested, only a few sugars, fatty acids, and thiophene-2-carboxylate supported growth. Other heterocyclic compounds were not used. The sulfur atom of thiophene-2-carboxylate was oxidized to thiosulfate when cells were grown aerobically, or to elemental sulfur when cells were grown anaerobically with nitrate. Nitrate was reduced to nitrite. Growth on thiophene-2-carboxylate was dependent on the addition of molybdate to the medium. Tungstate, a specific antagonist of molybdate, inhibited growth on thiophene-2-carboxylate at concentrations > 10(-7) M. Three inducible enzymes involved in the metabolism of thiophene-2-carboxylate were detected: an ATP-, CoA-, thiophene-2-carboxylate- and Mg2+-dependent thiophene-2-carboxyl-CoA ligase (AMP-forming), a molybdenum-containing thiophene-2-carboxyl-CoA dehydrogenase, and a thiophene-2-carboxyl-CoA thioesterase. The sequence of the 16S rRNA gene suggested a classification of strain NKK within the alpha-subgroup of the Proteobacteria as a new genus and species, Aquamicrobium defluvii gen. nov. sp. nov. (DSM 11603), closely related to Mesorhizobium sp. and Phyllobacterium sp., but representing a distinct lineage equal in depth to those of the two mentioned genera. Aquamicrobium defluvii can be distinguished from both genera by a distinct spectrum of substrates, the maximal growth temperature, and a different salt tolerance.

  1. Terminal structure

    Science.gov (United States)

    Schmidt, Frank; Allais, Arnaud; Mirebeau, Pierre; Ganhungu, Francois; Lallouet, Nicolas

    2009-10-20

    A terminal structure (2) for a superconducting cable (1) is described. It consists of a conductor (2a) and an insulator (2b) that surrounds the conductor (2a), wherein the superconducting cable (1) has a core with a superconducting conductor (5) and a layer of insulation that surrounds the conductor (5), and wherein the core is arranged in such a way that it can move longitudinally in a cryostat. The conductor (2a) of the terminal structure (2) is electrically connected with the superconducting conductor (5) or with a normal conductor (6) that is connected with the superconducting conductor (5) by means of a tubular part (7) made of an electrically conductive material, wherein the superconducting conductor (5) or the normal conductor (6) can slide in the part (7) in the direction of the superconductor.

  2. Further characterization of intestinal lactase/phlorizin hydrolase

    DEFF Research Database (Denmark)

    Skovbjerg, H; Norén, O; Sjöström, H

    1982-01-01

    Pig intestinal lactase/phlorizin hydrolase (EC 3.2.1.23/62) was purified in its amphiphilic form by immunoadsorbent chromatography. The purified enzyme was free of other known brush border enzymes and appeared homogeneous in immunoelectrophoresis and polyacrylamide gel electrophoresis in the pres......Pig intestinal lactase/phlorizin hydrolase (EC 3.2.1.23/62) was purified in its amphiphilic form by immunoadsorbent chromatography. The purified enzyme was free of other known brush border enzymes and appeared homogeneous in immunoelectrophoresis and polyacrylamide gel electrophoresis...... in the presence of SDS. Pig lactase/phlorizin hydrolase was shown to have the same quaternary structure as the human enzyme, i.e., built up of two polypeptides of the same molecular weight (160000). In addition to hydrolyzing lactose, phlorizin and a number of synthetic substrates, both the human and the pig...... enzyme were shown to have a considerable activity against cellotriose and cellotetraose, and a low but significant activity against cellulose. The lactase/phlorizin hydrolase isolated from pigs in which the pancreatic ducts had been disconnected 3 days before death and from Ca2+-precipitated enterocyte...

  3. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2016-10-25

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  4. Properties of epoxide hydrolase from the yeast Rhodotorula glutinis

    NARCIS (Netherlands)

    Ariës-Kronenburg, N.A.E.

    2002-01-01

     Epoxide hydrolases are ubiquitous enzymes that can be found in nearly all living organisms. Some of the enzymes play an important role in detoxifying xenobiotic and metabolic compounds. Others are important in the growth of organisms like the juvenile hormone in some insec

  5. Bile salt hydrolase of Bifidobacterium longum - Biochemical and genetic characterization

    NARCIS (Netherlands)

    Tanaka, H; Hashiba, Honoo; Kok, Jan; Mierau, Igor

    2000-01-01

    A bile salt hydrolase (BSH) was isolated from Bifidobacterium longum SBT2928, purified, and characterized, Furthermore, we describe for the first time cloning and analysis of the gene encoding BSII (bsh) in a member of the genus Bifidobacterium. The enzyme has a native molecular weight of 125,000 to

  6. Termination unit

    Energy Technology Data Exchange (ETDEWEB)

    Traeholt, Chresten; Willen, Dag; Roden, Mark; Tolbert, Jerry C.; Lindsay, David; Fisher, Paul W.; Nielsen, Carsten Thidemann

    2016-05-03

    Cable end section comprises end-parts of N electrical phases/neutral, and a thermally-insulation envelope comprising cooling fluid. The end-parts each comprises a conductor and are arranged with phase 1 innermost, N outermost surrounded by the neutral, electrical insulation being between phases and N and neutral. The end-parts comprise contacting surfaces located sequentially along the longitudinal extension of the end-section. A termination unit has an insulating envelope connected to a cryostat, special parts at both ends comprising an adapter piece at the cable interface and a closing end-piece terminating the envelope in the end-section. The special parts houses an inlet and/or outlet for cooling fluid. The space between an inner wall of the envelope and a central opening of the cable is filled with cooling fluid. The special part at the end connecting to the cryostat houses an inlet or outlet, splitting cooling flow into cable annular flow and termination annular flow.

  7. Activation of carboxylic acids in asymmetric organocatalysis.

    Science.gov (United States)

    Monaco, Mattia Riccardo; Poladura, Belén; Diaz de Los Bernardos, Miriam; Leutzsch, Markus; Goddard, Richard; List, Benjamin

    2014-07-01

    Organocatalysis, catalysis using small organic molecules, has recently evolved into a general approach for asymmetric synthesis, complementing both metal catalysis and biocatalysis. Its success relies to a large extent upon the introduction of novel and generic activation modes. Remarkably though, while carboxylic acids have been used as catalyst directing groups in supramolecular transition-metal catalysis, a general and well-defined activation mode for this useful and abundant substance class is still lacking. Herein we propose the heterodimeric association of carboxylic acids with chiral phosphoric acid catalysts as a new activation principle for organocatalysis. This self-assembly increases both the acidity of the phosphoric acid catalyst and the reactivity of the carboxylic acid. To illustrate this principle, we apply our concept in a general and highly enantioselective catalytic aziridine-opening reaction with carboxylic acids as nucleophiles.

  8. Understanding biocatalyst inhibition by carboxylic acids.

    Science.gov (United States)

    Jarboe, Laura R; Royce, Liam A; Liu, Ping

    2013-09-03

    Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic, and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity, and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance.

  9. Understanding biocatalyst inhibition by carboxylic acids

    Directory of Open Access Journals (Sweden)

    Laura R Jarboe

    2013-09-01

    Full Text Available Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance.

  10. Carboxylic acids as substrates in homogeneous catalysis.

    Science.gov (United States)

    Goossen, Lukas J; Rodríguez, Nuria; Goossen, Käthe

    2008-01-01

    In organic molecules carboxylic acid groups are among the most common functionalities. Activated derivatives of carboxylic acids have long served as versatile connection points in derivatizations and in the construction of carbon frameworks. In more recent years numerous catalytic transformations have been discovered which have made it possible for carboxylic acids to be used as building blocks without the need for additional activation steps. A large number of different product classes have become accessible from this single functionality along multifaceted reaction pathways. The frontispiece illustrates an important reason for this: In the catalytic cycles carbon monoxide gas can be released from acyl metal complexes, and gaseous carbon dioxide from carboxylate complexes, with different organometallic species being formed in each case. Thus, carboxylic acids can be used as synthetic equivalents of acyl, aryl, or alkyl halides, as well as organometallic reagents. This review provides an overview of interesting catalytic transformations of carboxylic acids and a number of derivatives accessible from them in situ. It serves to provide an invitation to complement, refine, and use these new methods in organic synthesis.

  11. Purification and characterization of a novel chlorpyrifos hydrolase from Cladosporium cladosporioides Hu-01.

    Science.gov (United States)

    Gao, Yan; Chen, Shaohua; Hu, Meiying; Hu, Qiongbo; Luo, Jianjun; Li, Yanan

    2012-01-01

    Chlorpyrifos is of great environmental concern due to its widespread use in the past several decades and its potential toxic effects on human health. Thus, the degradation study of chlorpyrifos has become increasing important in recent years. A fungus capable of using chlorpyrifos as the sole carbon source was isolated from organophosphate-contaminated soil and characterized as Cladosporium cladosporioides Hu-01 (collection number: CCTCC M 20711). A novel chlorpyrifos hydrolase from cell extract was purified 35.6-fold to apparent homogeneity with 38.5% overall recovery by ammoniumsulfate precipitation, gel filtration chromatography and anion-exchange chromatography. It is a monomeric structure with a molecular mass of 38.3 kDa. The pI value was estimated to be 5.2. The optimal pH and temperature of the purified enzyme were 6.5 and 40°C, respectively. No cofactors were required for the chlorpyrifos-hydrolysis activity. The enzyme was strongly inhibited by Hg²⁺, Fe³⁺, DTT, β-mercaptoethanol and SDS, whereas slight inhibitory effects (5-10% inhibition) were observed in the presence of Mn²⁺, Zn²⁺, Cu²⁺, Mg²⁺, and EDTA. The purified enzyme hydrolyzed various organophosphorus insecticides with P-O and P-S bond. Chlorpyrifos was the preferred substrate. The Km and Vmax values of the enzyme for chlorpyrifos were 6.7974 μM and 2.6473 μmol·min⁻¹, respectively. Both NH2-terminal sequencing and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometer (MALDI-TOF-MS) identified an amino acid sequence MEPDGELSALTQGANS, which shared no similarity with any reported organophosphate-hydrolyzing enzymes. These results suggested that the purified enzyme was a novel hydrolase and might conceivably be developed to fulfill the practical requirements to enable its use in situ for detoxification of chlorpyrifos. Finally, this is the first described chlorpyrifos hydrolase from fungus.

  12. Effect of Bile Salt Hydrolase Inhibitors on a Bile Salt Hydrolase from Lactobacillus acidophilus

    Directory of Open Access Journals (Sweden)

    Jun Lin

    2014-12-01

    Full Text Available Bile salt hydrolase (BSH, a widely distributed function of the gut microbiota, has a profound impact on host lipid metabolism and energy harvest. Recent studies suggest that BSH inhibitors are promising alternatives to antibiotic growth promoters (AGP for enhanced animal growth performance and food safety. Using a high-purity BSH from Lactobacillus salivarius strain, we have identified a panel of BSH inhibitors. However, it is still unknown if these inhibitors also effectively inhibit the function of the BSH enzymes from other bacterial species with different sequence and substrate spectrum. In this study, we performed bioinformatics analysis and determined the inhibitory effect of identified BSH inhibitors on a BSH from L. acidophilus. Although the L. acidophilus BSH is phylogenetically distant from the L. salivarius BSH, sequence analysis and structure modeling indicated the two BSH enzymes contain conserved, catalytically important amino residues and domain. His-tagged recombinant BSH from L. acidophilus was further purified and used to determine inhibitory effect of specific compounds. Previously identified BSH inhibitors also exhibited potent inhibitory effects on the L. acidophilus BSH. In conclusion, this study demonstrated that the BSH from L. salivarius is an ideal candidate for screening BSH inhibitors, the promising alternatives to AGP for enhanced feed efficiency, growth performance and profitability of food animals.

  13. Molecular characterization of a family 5 glycoside hydrolase suggests an induced-fit enzymatic mechanism.

    Science.gov (United States)

    Liberato, Marcelo V; Silveira, Rodrigo L; Prates, Érica T; de Araujo, Evandro A; Pellegrini, Vanessa O A; Camilo, Cesar M; Kadowaki, Marco A; Neto, Mario de O; Popov, Alexander; Skaf, Munir S; Polikarpov, Igor

    2016-04-01

    Glycoside hydrolases (GHs) play fundamental roles in the decomposition of lignocellulosic biomaterials. Here, we report the full-length structure of a cellulase from Bacillus licheniformis (BlCel5B), a member of the GH5 subfamily 4 that is entirely dependent on its two ancillary modules (Ig-like module and CBM46) for catalytic activity. Using X-ray crystallography, small-angle X-ray scattering and molecular dynamics simulations, we propose that the C-terminal CBM46 caps the distal N-terminal catalytic domain (CD) to establish a fully functional active site via a combination of large-scale multidomain conformational selection and induced-fit mechanisms. The Ig-like module is pivoting the packing and unpacking motions of CBM46 relative to CD in the assembly of the binding subsite. This is the first example of a multidomain GH relying on large amplitude motions of the CBM46 for assembly of the catalytically competent form of the enzyme.

  14. Ubiquitin C-terminal hydrolase-L1 potentiates cancer chemosensitivity by stabilizing NOXA.

    Science.gov (United States)

    Brinkmann, Kerstin; Zigrino, Paola; Witt, Axel; Schell, Michael; Ackermann, Leena; Broxtermann, Pia; Schüll, Stephan; Andree, Maria; Coutelle, Oliver; Yazdanpanah, Benjamin; Seeger, Jens Michael; Klubertz, Daniela; Drebber, Uta; Hacker, Ulrich T; Krönke, Martin; Mauch, Cornelia; Hoppe, Thorsten; Kashkar, Hamid

    2013-03-28

    The BH3-only protein NOXA represents one of the critical mediators of DNA-damage-induced cell death. In particular, its involvement in cellular responses to cancer chemotherapy is increasingly evident. Here, we identify a strategy of cancer cells to escape genotoxic chemotherapy by increasing proteasomal degradation of NOXA. We show that the deubiquitylating enzyme UCH-L1 is a key regulator of NOXA turnover, which protects NOXA from proteasomal degradation by removing Lys(48)-linked polyubiquitin chains. In the majority of tumors from patients with melanoma or colorectal cancer suffering from high rates of chemoresistance, NOXA fails to accumulate because UCH-L1 expression is epigenetically silenced. Whereas UCH-L1/NOXA-positive tumor samples exhibit increased sensitivity to genotoxic chemotherapy, downregulation of UCH-L1 or inhibition of its deubiquitylase activity resulted in reduced NOXA stability and resistance to genotoxic chemotherapy in both human and C. elegans cells. Our data identify the UCH-L1/NOXA interaction as a therapeutic target for overcoming cancer chemoresistance.

  15. Dielectric properties of supramolecular ionic structures obtained from multifunctional carboxylic acids and amines

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Yu, Liyun; Hvilsted, Søren;

    2014-01-01

    The dielectric properties of several supramolecular ionic polymers and networks, linked by the ammonium salts of hexamethylene diamine (HMDA), tris(2-aminoethyl)amine (TAEA), poly(propylene imine) (PPI) dendrimers and two short bis carboxymethyl ether-terminated poly(ethylene glycol)s (Di......), are investigated. Here the relative dielectric permittivities of the supramolecular ionic structures formed with the multifunctional carboxylic acids were lower than those from the supramolecular ionic structures formed with the two carboxymethyl ether-terminated poly(ethylene glycol)s....

  16. Poly(aspartic acid) (PAA) hydrolases and PAA biodegradation: current knowledge and impact on applications.

    Science.gov (United States)

    Hiraishi, Tomohiro

    2016-02-01

    Thermally synthesized poly(aspartic acid) (tPAA) is a bio-based, biocompatible, biodegradable, and water-soluble polymer that has a high proportion of β-Asp units and equivalent moles of D- and L-Asp units. Poly(aspartic acid) (PAA) hydrolase-1 and hydrolase-2 are tPAA biodegradation enzymes purified from Gram-negative bacteria. PAA hydrolase-1 selectively cleaves amide bonds between β-Asp units via an endo-type process, whereas PAA hydrolase-2 catalyzes the exo-type hydrolysis of the products of tPAA hydrolysis by PAA hydrolase-1. The novel reactivity of PAA hydrolase-1 makes it a good candidate for a biocatalyst in β-peptide synthesis. This mini-review gives an overview of PAA hydrolases with emphasis on their biochemical and functional properties, in particular, PAA hydrolase-1. Functionally related enzymes, such as poly(R-3-hydroxybutyrate) depolymerases and β-aminopeptidases, are compared to PAA hydrolases. This mini-review also provides findings that offer an insight into the catalytic mechanisms of PAA hydrolase-1 from Pedobacter sp. KP-2.

  17. Terminal ballistics

    CERN Document Server

    Rosenberg, Zvi

    2016-01-01

    This book comprehensively discusses essential aspects of terminal ballistics, combining experimental data, numerical simulations and analytical modeling. Employing a unique approach to numerical simulations as a measure of sensitivity for the major physical parameters, the new edition also includes the following features: new figures to better illustrate the problems discussed; improved explanations for the equation of state of a solid and for the cavity expansion process; new data concerning the Kolsky bar test; and a discussion of analytical modeling for the hole diameter in a thin metallic plate impacted by a shaped charge jet. The section on thick concrete targets penetrated by rigid projectiles has now been expanded to include the latest findings, and two new sections have been added: one on a novel approach to the perforation of thin concrete slabs, and one on testing the failure of thin metallic plates using a hydrodynamic ram.

  18. Pectate hydrolases of parsley (Petroselinum crispum) roots.

    Science.gov (United States)

    Flodrová, Dana; Dzúrovä, Mária; Lisková, Desana; Mohand, Fairouz Ait; Mislovicová, Danica; Malovícová, Anna; Voburka, Zdenek; Omelková, Jirina; Stratilová, Eva

    2007-01-01

    The presence of various enzyme forms with terminal action pattern on pectate was evaluated in a protein mixture obtained from parsley roots. Enzymes found in the soluble fraction of roots (juice) were purified to homogeneity according to SDS-PAGE, partially separated by preparative isoelectric focusing and characterized. Three forms with pH optima 3.6, 4.2 and 4.6 clearly preferred substrates with a lower degree of polymerization (oligogalacturonates) while the form with pH optimum 5.2 was a typical exopolygalacturonase [EC 3. 2.1.67] with relatively fast cleavage of polymeric substrate. The forms with pH optima 3.6, 4.2 and 5.2 were released from the pulp, too. The form from the pulp with pH optimum 4.6 preferred higher oligogalacturonates and was not described in plants previously. The production of individual forms in roots was compared with that produced by root cells cultivated on solid medium and in liquid one.

  19. A novel glycosylphosphatidylinositol-anchored glycoside hydrolase from Ustilago esculenta functions in β-1,3-glucan degradation.

    Science.gov (United States)

    Nakajima, Masahiro; Yamashita, Tetsuro; Takahashi, Machiko; Nakano, Yuki; Takeda, Takumi

    2012-08-01

    A glycoside hydrolase responsible for laminarin degradation was partially purified to homogeneity from a Ustilago esculenta culture filtrate by weak-cation-exchange, strong-cation-exchange, and size-exclusion chromatography. Three proteins in enzymatically active fractions were digested with chymotrypsin followed by liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis, resulting in the identification of three peptide sequences that shared significant similarity to a putative β-1,3-glucanase, a member of glucoside hydrolase family 16 (GH16) from Sporisorium reilianum SRZ2. A gene encoding a laminarin-degrading enzyme from U. esculenta, lam16A, was isolated by PCR using degenerate primers designed based on the S. reilianum SRZ2 β-1,3-glucanase gene. Lam16A possesses a GH16 catalytic domain with an N-terminal signal peptide and a C-terminal glycosylphosphatidylinositol (GPI) anchor peptide. Recombinant Lam16A fused to an N-terminal FLAG peptide (Lam16A-FLAG) overexpressed in Aspergillus oryzae exhibited hydrolytic activity toward β-1,3-glucan specifically and was localized both in the extracellular and in the membrane fractions but not in the cell wall fraction. Lam16A without a GPI anchor signal peptide was secreted extracellularly and was not detected in the membrane fraction. Membrane-anchored Lam16A-FLAG was released completely by treatment with phosphatidylinositol-specific phospholipase C. These results suggest that Lam16A is anchored in the plasma membrane in order to modify β-1,3-glucan associated with the inner cell wall and that Lam16A is also used for the catabolism of β-1,3-glucan after its release in the extracellular medium.

  20. Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications

    OpenAIRE

    Gabriel Zamith Leal Dalmaso; Davis Ferreira; Alane Beatriz Vermelho

    2015-01-01

    The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hy...

  1. The PE16 (Rv1430 of Mycobacterium tuberculosis is an esterase belonging to serine hydrolase superfamily of proteins.

    Directory of Open Access Journals (Sweden)

    Rafiya Sultana

    Full Text Available The PE and PPE multigene families, first discovered during the sequencing of M. tuberculosis H37Rv genome are responsible for antigenic variation and have been shown to induce increased humoral and cell mediated immune response in the host. Using the bioinformatics tools, we had earlier reported that the 225 amino acid residue PE-PPE domain (Pfam: PF08237 common to some PE and PPE proteins has a "serine α/β hydrolase" fold and conserved Ser, Asp and His catalytic triad characteristic of lipase, esterase and cutinase activities. In order to prove experimentally that PE-PPE domain is indeed a serine hydrolase, we have cloned the full-length Rv1430 and its PE-PPE domain into pET-28a vector, expressed the proteins in E. coli and purified to homogeneity. The activity assays of both purified proteins were carried out using p-nitrophenyl esters of aliphatic carboxylic acids with varying chain length (C2-C16 to study the substrate specificity. To characterize the active site of the PE-PPE domain, we mutated the Ser199 to Ala. The activity of the protein in the presence of serine protease inhibitor- PMSF and the mutant protein were measured. Our results reveal that Rv1430 and its PE-PPE domain possess esterase activity and hydrolyse short to medium chain fatty acid esters with the highest specific activity for pNPC6 at 37°C, 38°C and pH 7.0, 8.0. The details of this work and the observed results are reported in this manuscript.

  2. A compact viral processing proteinase/ubiquitin hydrolase from the OTU family.

    Directory of Open Access Journals (Sweden)

    Charlotte Lombardi

    2013-08-01

    Full Text Available Turnip yellow mosaic virus (TYMV--a member of the alphavirus-like supergroup of viruses--serves as a model system for positive-stranded RNA virus membrane-bound replication. TYMV encodes a precursor replication polyprotein that is processed by the endoproteolytic activity of its internal cysteine proteinase domain (PRO. We recently reported that PRO is actually a multifunctional enzyme with a specific ubiquitin hydrolase (DUB activity that contributes to viral infectivity. Here, we report the crystal structure of the 150-residue PRO. Strikingly, PRO displays no homology to other processing proteinases from positive-stranded RNA viruses, including that of alphaviruses. Instead, the closest structural homologs of PRO are DUBs from the Ovarian tumor (OTU family. In the crystal, one molecule's C-terminus inserts into the catalytic cleft of the next, providing a view of the N-terminal product complex in replication polyprotein processing. This allows us to locate the specificity determinants of PRO for its proteinase substrates. In addition to the catalytic cleft, at the exit of which the active site is unusually pared down and solvent-exposed, a key element in molecular recognition by PRO is a lobe N-terminal to the catalytic domain. Docking models and the activities of PRO and PRO mutants in a deubiquitylating assay suggest that this N-terminal lobe is also likely involved in PRO's DUB function. Our data thus establish that DUBs can evolve to specifically hydrolyze both iso- and endopeptide bonds with different sequences. This is achieved by the use of multiple specificity determinants, as recognition of substrate patches distant from the cleavage sites allows a relaxed specificity of PRO at the sites themselves. Our results thus shed light on how such a compact protein achieves a diversity of key functions in viral genome replication and host-pathogen interaction.

  3. Novel Polymers with Carboxylic Acid Loading

    DEFF Research Database (Denmark)

    Thomsen, Anders Daugaard; Malmström, Eva; Hvilsted, Søren

    2006-01-01

    Click chemistry has been used to prepare a range of novel polymers with pendant carboxylic acid side groups. Four azido carboxylic acids, either mono- or difunctional and aliphatic or aromatic, have been prepared and thoroughly characterized. Extensive model reactions with 1-ethyl-4-hydroxybenzene......, the simplest model for poly(4-hydroxystyrene), and the four azido carboxylic acids have been conducted to establish the proper reaction conditions and provide an analytical frame for the corresponding polymers. Poly(4-hydroxystyrene) moieties in three different polymers—poly(4-hydroxystyrene), poly(4...... the polymers in general exhibit [when poly(4-hydroxystyrene) is a substantial part] significant changes in the glass-transition temperature from the polar poly(4-hydroxystyrene) (120–130 °C) to the much less polar alkyne polymers (46–60 °C). A direct correlation between the nature of the pendant groups...

  4. Phage Endolysin: A Way To Understand A Binding Function Of C-Terminal Domains A Mini Review

    OpenAIRE

    Jarábková Veronika; Tišáková Lenka; Godány Andrej

    2015-01-01

    Endolysins are bacteriophage-encoded peptidoglycan hydrolases, which are synthesized in the end of phage reproduction cycle, in an infected host cell. Usually, for endolysins from phages that infect Gram-positive bacteria, a modular structure is typical. Therefore, these are composed of at least two separate functional domains: an N-terminal catalytic domain (EAD) and a C-terminal cell wall binding domain (CBD). Specific ligand recognition of CBDs and following peptidoglycan (PG) binding most...

  5. Modular system for assessment of glycosyl hydrolase secretion in Geobacillus thermoglucosidasius.

    Science.gov (United States)

    Bartosiak-Jentys, Jeremy; Hussein, Ali H; Lewis, Claire J; Leak, David J

    2013-07-01

    The facultatively anaerobic, thermophilic bacterium Geobacillus thermoglucosidasius is being developed as an industrial micro-organism for cellulosic bioethanol production. Process improvement would be gained by enhanced secretion of glycosyl hydrolases. Here we report the construction of a modular system for combining promoters, signal peptide encoding regions and glycosyl hydrolase genes to facilitate selection of the optimal combination in G. thermoglucosidasius. Initially, a minimal three-part E. coli-Geobacillus sp. shuttle vector pUCG3.8 was constructed using Gibson isothermal DNA assembly. The three PCR amplicons contained the pMB1 E. coli origin of replication and multiple cloning site (MCS) of pUC18, the Geobacillus sp. origin of replication pBST1 and the thermostable kanamycin nucleotidyltransferase gene (knt), respectively. G. thermoglucosidasius could be transformed with pUCG3.8 at an increased efficiency [2.8×10(5) c.f.u. (µg DNA)(-1)] compared to a previously reported shuttle vector, pUCG18. A modular cassette for the inducible expression and secretion of proteins in G. thermoglucosidasius, designed to allow the simple interchange of parts, was demonstrated using the endoglucanase Cel5A from Thermotoga maritima as a secretion target. Expression of cel5A was placed under the control of a cellobiose-inducible promoter (Pβglu) together with a signal peptide encoding sequence from a G. thermoglucosidasius C56-YS93 endo-β-1,4-xylanase. The interchange of parts was demonstrated by exchanging the cel5A gene with the 3' region of a gene with homology to celA from Caldicellulosiruptor saccharolyticus and substituting Pβglu for the synthetic, constitutive promoter PUp2n38, which increased Cel5A activity five-fold. Cel5A and CelA activities were detected in culture supernatants indicating successful expression and secretion. N-terminal protein sequencing of Cel5A carrying a C-terminal FLAG epitope confirmed processing of the signal peptide sequence.

  6. Molecular basis of the general base catalysis of an α/β-hydrolase catalytic triad.

    Science.gov (United States)

    Sun, Yueru; Yin, Shuhui; Feng, Yitao; Li, Jie; Zhou, Jiahai; Liu, Changdong; Zhu, Guang; Guo, Zhihong

    2014-05-30

    The serine-histidine-aspartate triad is well known for its covalent, nucleophilic catalysis in a diverse array of enzymatic transformations. Here we show that its nucleophilicity is shielded and its catalytic role is limited to being a specific general base by an open-closed conformational change in the catalysis of (1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase (or MenH), a typical α/β-hydrolase fold enzyme in the vitamin K biosynthetic pathway. This enzyme is found to adopt an open conformation without a functional triad in its ligand-free form and a closed conformation with a fully functional catalytic triad in the presence of its reaction product. The open-to-closed conformational transition involves movement of half of the α-helical cap domain, which causes extensive structural changes in the α/β-domain and forces the side chain of the triad histidine to adopt an energetically disfavored gauche conformation to form the functional triad. NMR analysis shows that the inactive open conformation without a triad prevails in ligand-free solution and is converted to the closed conformation with a properly formed triad by the reaction product. Mutation of the residues crucial to this open-closed transition either greatly decreases or completely eliminates the enzyme activity, supporting an important catalytic role for the structural change. These findings suggest that the open-closed conformational change tightly couples formation of the catalytic triad to substrate binding to enhance the substrate specificities and simultaneously shield the nucleophilicity of the triad, thus allowing it to expand its catalytic power beyond the nucleophilic catalysis.

  7. Rational design of carboxyl groups perpendicularly attached to a graphene sheet: a platform for enhanced biosensing applications.

    Science.gov (United States)

    Bonanni, Alessandra; Chua, Chun Kiang; Pumera, Martin

    2014-01-01

    Graphene oxide (GO)-based materials offer great potential for biofunctionalization with applications ranging from biosensing to drug delivery. Such biofunctionalization utilizes specific functional groups, typically a carboxyl moiety, as anchoring points for biomolecule. However, due to the fact that the exact chemical structure of GO is still largely unknown and poorly defined (it was postulated to consist of various oxygen-containing groups, such as epoxy, hydroxyl, carboxyl, carbonyl, and peroxy in varying ratios), it is challenging to fabricate highly biofunctionalized GO surfaces. The predominant anchoring sites (i.e., carboxyl groups) are mainly present as terminal groups on the edges of GO sheets and thus account for only a fraction of the oxygen-containing groups on GO. Herein, we suggest a direct solution to the long-standing problem of limited abundance of carboxyl groups on GO; GO was first reduced to graphene and consequently modified with only carboxyl groups grafted perpendicularly to its surface by a rational synthesis using free-radical addition of isobutyronitrile with subsequent hydrolysis. Such grafted graphene oxide can contain a high amount of carboxyl groups for consequent biofunctionalization, at which the extent of grafting is limited only by the number of carbon atoms in the graphene plane; in contrast, the abundance of carboxyl groups on "classical" GO is limited by the amount of terminal carbon atoms. Such a graphene platform embedded with perpendicularly grafted carboxyl groups was characterized in detail by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy, and its application was exemplified with single-nucleotide polymorphism detection. It was found that the removal of oxygen functionalities after the chemical reduction enhanced the electron-transfer rate of the graphene. More importantly, the introduction of carboxyl groups promoted a more efficient immobilization of DNA probes on the

  8. The cannabinoid type-1 receptor carboxyl-terminus, more than just a tail.

    Science.gov (United States)

    Stadel, Rebecca; Ahn, Kwang H; Kendall, Debra A

    2011-04-01

    The cannabinoid type-1 (CB(1)) receptor is a G protein-coupled receptor that binds the main active ingredient of marijuana, Δ(9)-tetrahydrocannabinol, and has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. In the two decades since the discovery of CB(1), studies at the molecular level have centered on the transmembrane core. This interest has now expanded as we discover that other regions of CB(1), including the CB(1) carboxyl-terminus, have critical structures that are important for CB(1) activity and regulation. Following the recent description of the three dimensional structure of the full-length CB(1) carboxyl-terminal tail [Biopolymers (2009) vol. 91, pp. 565-573], several residues and structural motifs including two α-helices (termed H8 and H9) have been postulated to interact with common G protein-coupled receptor accessory proteins, such as G-proteins and β-arrestins. This discourse will focus on the CB(1) carboxyl-terminus; our current understanding of the structural features of this region, evidence for its interaction with proteins, and the impact of structure on the binding and regulatory function of CB(1) accessory proteins. The involvement of the carboxyl-terminus in the receptor life cycle including activation, desensitization, and internalization will be highlighted.

  9. Improvement in organophosphorus hydrolase activity of cell surface-engineered yeast strain using Flo1p anchor system.

    Science.gov (United States)

    Fukuda, Takeshi; Tsuchiyama, Kouta; Makishima, Hirokazu; Takayama, Katsumi; Mulchandani, Ashok; Kuroda, Kouichi; Ueda, Mitsuyoshi; Suye, Shin-ichiro

    2010-05-01

    Organophosphorus hydrolase (OPH) hydrolyzes organophosphorus esters. We constructed the yeast-displayed OPH using Flo1p anchor system. In this system, the N-terminal region of the protein was fused to Flo1p and the fusion protein was displayed on the cell surface. Hydrolytic reactions with paraoxon were carried out during 24 h of incubation of OPH-displaying cells at 30 degrees C. p-Nitrophenol produced in the reaction mixture was detected by HPLC. The strain with highest activity showed 8-fold greater OPH activity compared with cells engineered using glycosylphosphatidylinositol anchor system, and showed 20-fold greater activity than Escherichia coli using the ice nucleation protein anchor system. These results indicate that Flo1p anchor system is suitable for display of OPH in the cell surface-expression systems.

  10. The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery

    Science.gov (United States)

    Nicholson, John W.; Wilson, Alan D.

    2004-01-01

    The conversion of carboxylic acids to ketones is a useful chemical transformation with a long history. Several chemists have claimed that they discovered the conversion of carboxylic acids to ketones yet in fact the reaction is actually known for centuries.

  11. Aging, Terminal Decline, and Terminal Drop

    Science.gov (United States)

    Palmore, Erdman; Cleveland, William

    1976-01-01

    Data from a 20-year longitudinal study of persons over 60 were analyzed by step-wise multiple regression to test for declines in function with age, for terminal decline (linear relationship to time before death), and for terminal drop (curvilinear relationship to time before death). There were no substantial terminal drop effects. (Author)

  12. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids.

    Science.gov (United States)

    Naruto, Masayuki; Saito, Susumu

    2015-08-28

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)](+)) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru-H](+), which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources.

  13. Coffee pulp koji of Aspergillus sojae as stable immobilized catalyst of chlorogenate hydrolase.

    Science.gov (United States)

    Adachi, Osao; Ano, Yoshitaka; Akakabe, Yoshihiko; Shinagawa, Emiko; Matsushita, Kazunobu

    2008-11-01

    Chlorogenate hydrolase (EC 3.1.1.42, CHase) was highly induced in mycelia of Aspergillus sojae AKU 3312 grown in Czapek medium containing either instant coffee powder or coffee pulp as inducer. No CHase formation was observed in the mycelia when cultivated without the inducer. CHase was purified readily from CHase-induced mycelia to high homogeneity, and the purified CHase revealed the molecular weight of 180,000 consisting of two identical subunits of 88 kDa. Equimolar quinate (QA) and caffeate (CA) were confirmed on hydrolysis of chlorogenate (CGA). The purified CHase was only useful for a laboratory scale hydrolysis of CGA. For practical QA and CA production using scaled up hydrolysis of vegetable extracts of natural CGA resources, the enzyme activity of purified CHase decreased and denatured irreversibly. Preparation of coffee pulp koji and its application to QA and CA production were proposed instead of purified CHase. When coffee pulp koji was heated at 60 degrees C for 30 min, CHase survived without any appreciable loss of enzyme activity while vegetative mycelial growth and spore germination were terminated. The heated coffee pulp koji thus prepared was effective itself as stable immobilized catalyst of CHase for QA and CA production from vegetable CGA resources such as coffee powders, coffee pulp, and others.

  14. The ubiquitin hydrolase USP22 contributes to 3'-end processing of JAK-STAT-inducible genes.

    Science.gov (United States)

    Chipumuro, Edmond; Henriksen, Melissa A

    2012-02-01

    The JAK-STAT (Janus kinase-signal transducer and activator of transcription) signaling pathway drives cellular growth, differentiation, and the immune response. STAT-activated gene expression is both rapid and transient and requires dynamic post-translational modification of the chromatin template. We previously showed that monoubiquitination of histone H2B (ubH2B) is highly dynamic at the STAT1 target gene, interferon regulatory factor 1 (IRF1), suggesting that a deubiquitinase is recruited during gene activation. Here, we report that RNAi-mediated knockdown of the ubiquitin hydrolase, USP22, results in 2-fold higher ubH2B, and 2-fold lower transcriptional elongation at IRF1. We also demonstrate that USP22 depletion diminishes 3'-end cleavage/polyadenylation by 2- to 3-fold. Furthermore, the polyadenylation factor CPSF73 is not effectively recruited, and serine 2 phosphorylation (Ser2P) of the C-terminal domain of RNA polymerase II is also disrupted. The transcriptional and processing defects observed in the USP22-knockdown cells are reversed by transient USP22 overexpression. Together, these results suggest that ubH2B helps recruit polyadenylation factors to STAT1-activated genes. We propose a working model, wherein a cycle of H2B ubiquitination/deubiquitination specifies Ser2P to regulate elongation and 3'-end processing of JAK-STAT-inducible mRNAs. These results further elaborate USP22 function and its role as a putative cancer stem cell marker.

  15. Tertiary structure and characterization of a glycoside hydrolase family 44 endoglucanase from Clostridium acetobutylicum.

    Science.gov (United States)

    Warner, Christopher D; Hoy, Julie A; Shilling, Taran C; Linnen, Michael J; Ginder, Nathaniel D; Ford, Clark F; Honzatko, Richard B; Reilly, Peter J

    2010-01-01

    A gene encoding a glycoside hydrolase family 44 (GH44) protein from Clostridium acetobutylicum ATCC 824 was synthesized and transformed into Escherichia coli. The previously uncharacterized protein was expressed with a C-terminal His tag and purified by nickel-nitrilotriacetic acid affinity chromatography. Crystallization and X-ray diffraction to a 2.2-A resolution revealed a triose phosphate isomerase (TIM) barrel-like structure with additional Greek key and beta-sandwich folds, similar to other GH44 crystal structures. The enzyme hydrolyzes cellotetraose and larger cellooligosaccharides, yielding an unbalanced product distribution, including some glucose. It attacks carboxymethylcellulose and xylan at approximately the same rates. Its activity on carboxymethylcellulose is much higher than that of the isolated C. acetobutylicum cellulosome. It also extensively converts lichenan to oligosaccharides of intermediate size and attacks Avicel to a limited extent. The enzyme has an optimal temperature in a 10-min assay of 55 degrees C and an optimal pH of 5.0.

  16. Structure of the Ubiquitin Hydrolase UCH-L3 Complexed with a Suicide Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Misaghi, S.; Galardy, P.J.; Meester, W.J.; Ovaa, H.; Ploegh, H.L.; Gaudet, R. (Harvard)

    2009-03-24

    Ubiquitin C-terminal hydrolases (UCHs) comprise a family of small ubiquitin-specific proteases of uncertain function. Although no cellular substrates have been identified for UCHs, their highly tissue-specific expression patterns and the association of UCH-L1 mutations with human disease strongly suggest a critical role. The structure of the yeast UCH Yuh1-ubiquitin aldehyde complex identified an active site crossover loop predicted to limit the size of suitable substrates. We report the 1.45 {angstrom} resolution crystal structure of human UCH-L3 in complex with the inhibitor ubiquitin vinylmethylester, an inhibitor that forms a covalent adduct with the active site cysteine of ubiquitin-specific proteases. This structure confirms the predicted mechanism of the inhibitor and allows the direct comparison of a UCH family enzyme in the free and ligand-bound state. We also show the efficient hydrolysis by human UCH-L3 of a 13-residue peptide in isopeptide linkage with ubiquitin, consistent with considerable flexibility in UCH substrate size. We propose a model for the catalytic cycle of UCH family members which accounts for the hydrolysis of larger ubiquitin conjugates.

  17. 40 CFR 721.2950 - Carboxylic acid glycidyl esters.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Carboxylic acid glycidyl esters. 721... Substances § 721.2950 Carboxylic acid glycidyl esters. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as carboxylic acid glycidyl...

  18. The structure of a glycoside hydrolase family 81 endo-β-1,3-glucanase.

    Science.gov (United States)

    Zhou, Peng; Chen, Zhongzhou; Yan, Qiaojuan; Yang, Shaoqing; Hilgenfeld, Rolf; Jiang, Zhengqiang

    2013-10-01

    Endo-β-1,3-glucanases catalyze the hydrolysis of β-1,3-glycosidic linkages in glucans. They are also responsible for rather diverse physiological functions such as carbon utilization, cell-wall organization and pathogen defence. Glycoside hydrolase (GH) family 81 mainly consists of β-1,3-glucanases from fungi, higher plants and bacteria. A novel GH family 81 β-1,3-glucanase gene (RmLam81A) from Rhizomucor miehei was expressed in Escherichia coli. Purified RmLam81A was crystallized and the structure was determined in two crystal forms (form I-free and form II-Se) at 2.3 and 2.0 Å resolution, respectively. Here, the crystal structure of a member of GH family 81 is reported for the first time. The structure of RmLam81A is greatly different from all endo-β-1,3-glucanase structures available in the Protein Data Bank. The overall structure of the RmLam81A monomer consists of an N-terminal β-sandwich domain, a C-terminal (α/α)6 domain and an additional domain between them. Glu553 and Glu557 are proposed to serve as the proton donor and basic catalyst, respectively, in a single-displacement mechanism. In addition, Tyr386, Tyr482 and Ser554 possibly contribute to both the position or the ionization state of the basic catalyst Glu557. The first crystal structure of a GH family 81 member will be helpful in the study of the GH family 81 proteins and endo-β-1,3-glucanases.

  19. Importance of the carboxyl terminus in the folding and function of alpha-hemolysin of Staphylococcus aureus.

    Science.gov (United States)

    Sangha, N; Kaur, S; Sharma, V; Krishnasastry, M V

    1999-04-02

    The physical state of two model mutants of alpha-hemolysin (alphaHL), alphaHL(1-289), a carboxyl-terminal deletion mutant (CDM), and alphaHL(1-331), a carboxyl-terminal extension mutant (CEM), were examined in detail to identify the role of the carboxyl terminus in the folding and function of native alphaHL. Denatured alphaHL can be refolded efficiently with nearly total recovery of its activity upon restoration of nondenaturing conditions. Various biophysical and biochemical studies on the three proteins have revealed the importance of an intact carboxyl terminus in the folding of alphaHL. The CDM exhibits a marked increase in susceptibility to proteases as compared with alphaHL. alphaHL and CEM exhibit similar fluorescence emission maxima, and that of the CDM is red-shifted by 9 nm, which indicates a greater solvent exposure of the tryptophan residues of the CDM. In addition, the CDM binds 8-anilino-1-naphthalene sulfonic acid (ANS) and increases its fluorescence intensity significantly unlike alphaHL and CEM, which show marginal binding. The circular dichroism studies point that the CDM possesses significant secondary structure, but its tertiary structure is greatly diminished as compared with alphaHL. These data show that the CDM has several of the features that characterize a molten globule state. Experiments with freshly translated mutants, using coupled in vitro transcription and translation, have further supported our observations that deletion at the carboxyl terminus leads to major structural perturbations in the water-soluble form of alphaHL. The studies demonstrate a critical role of the carboxyl terminus of alphaHL in attaining the native folded state.

  20. Acetylcarnitine hydrolase activity in bovine caudal epididymal spermatozoa

    Energy Technology Data Exchange (ETDEWEB)

    Bruns, K.; Foster, R.A.; Casillas, E.R.

    1986-05-01

    Recently, the authors identified mM concentrations of acetylcarnitine in epidiymal fluids and have investigated the metabolism of acetylcarnitine by bovine and hamster caudal epididymal spermatozoa. (1-/sup 14/C)acetyl-L-carnitine is oxidized to /sup 14/CO/sub 2/ by washed, intact hamster and bovine sperm at maximal rates of 8.4 and 15.2 nmol/hr/10/sup 7/ cells respectively. Conversely, the carnitine moiety of acetyl-L-(/sup 3/H-methyl)carnitine is not accumulated by sperm under similar conditions. Hydrolysis of (/sup 3/H)acetyl-L-carnitine and competition of uptake of (/sup 3/H)acetate by unlabeled acetate was demonstrated in incubations of intact cells of both species. The amount of (/sup 3/H)acetate accumulated in the incubation medium is time-dependent and also depends on the concentration of unlabeled acetate. A partial solubilization of acetylcarnitine hydrolase activity from washed, intact bovine caudal epididymal spermatozoa in buffer or 0.01% Triton X-100 is observed. There is an enrichment of acetylcarnitine hydrolase activity in purified plasma membranes from bovine caudal epididymal spermatozoa when compared to the activity present in broken cell preparations or other cellular fractions. The results suggest that acetylcarnitine is a substrate for spermatozoa as they traverse the epididymis.

  1. Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Gabriel Zamith Leal Dalmaso

    2015-04-01

    Full Text Available The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications.

  2. Degradation of Polyester Polyurethane by Bacterial Polyester Hydrolases

    Directory of Open Access Journals (Sweden)

    Juliane Schmidt

    2017-02-01

    Full Text Available Polyurethanes (PU are widely used synthetic polymers. The growing amount of PU used industrially has resulted in a worldwide increase of plastic wastes. The related environmental pollution as well as the limited availability of the raw materials based on petrochemicals requires novel solutions for their efficient degradation and recycling. The degradation of the polyester PU Impranil DLN by the polyester hydrolases LC cutinase (LCC, TfCut2, Tcur1278 and Tcur0390 was analyzed using a turbidimetric assay. The highest hydrolysis rates were obtained with TfCut2 and Tcur0390. TfCut2 also showed a significantly higher substrate affinity for Impranil DLN than the other three enzymes, indicated by a higher adsorption constant K. Significant weight losses of the solid thermoplastic polyester PU (TPU Elastollan B85A-10 and C85A-10 were detected as a result of the enzymatic degradation by all four polyester hydrolases. Within a reaction time of 200 h at 70 °C, LCC caused weight losses of up to 4.9% and 4.1% of Elastollan B85A-10 and C85A-10, respectively. Gel permeation chromatography confirmed a preferential degradation of the larger polymer chains. Scanning electron microscopy revealed cracks at the surface of the TPU cubes as a result of enzymatic surface erosion. Analysis by Fourier transform infrared spectroscopy indicated that the observed weight losses were a result of the cleavage of ester bonds of the polyester TPU.

  3. UniProt search blastx result: AK287848 [KOME

    Lifescience Database Archive (English)

    Full Text Available uitinating enzyme FAF-X) (Fat facets protein-related, X-linked) (Ubiquitin-specific protease 9, X chromosome...) (Ubiquitin carboxyl-terminal hydrolase FAM) (Fat facets homolog) - Mus musculus (Mouse) 4.00E-16 ...

  4. Cholesteryl ester hydrolase activity is abolished in HSL-/- macrophages but unchanged in macrophages lacking KIAA1363.

    Science.gov (United States)

    Buchebner, Marlene; Pfeifer, Thomas; Rathke, Nora; Chandak, Prakash G; Lass, Achim; Schreiber, Renate; Kratzer, Adelheid; Zimmermann, Robert; Sattler, Wolfgang; Koefeler, Harald; Fröhlich, Eleonore; Kostner, Gerhard M; Birner-Gruenberger, Ruth; Chiang, Kyle P; Haemmerle, Guenter; Zechner, Rudolf; Levak-Frank, Sanja; Cravatt, Benjamin; Kratky, Dagmar

    2010-10-01

    Cholesteryl ester (CE) accumulation in macrophages represents a crucial event during foam cell formation, a hallmark of atherogenesis. Here we investigated the role of two previously described CE hydrolases, hormone-sensitive lipase (HSL) and KIAA1363, in macrophage CE hydrolysis. HSL and KIAA1363 exhibited marked differences in their abilities to hydrolyze CE, triacylglycerol (TG), diacylglycerol (DG), and 2-acetyl monoalkylglycerol ether (AcMAGE), a precursor for biosynthesis of platelet-activating factor (PAF). HSL efficiently cleaved all four substrates, whereas KIAA1363 hydrolyzed only AcMAGE. This contradicts previous studies suggesting that KIAA1363 is a neutral CE hydrolase. Macrophages of KIAA1363(-/-) and wild-type mice exhibited identical neutral CE hydrolase activity, which was almost abolished in tissues and macrophages of HSL(-/-) mice. Conversely, AcMAGE hydrolase activity was diminished in macrophages and some tissues of KIAA1363(-/-) but unchanged in HSL(-/-) mice. CE turnover was unaffected in macrophages lacking KIAA1363 and HSL, whereas cAMP-dependent cholesterol efflux was influenced by HSL but not by KIAA1363. Despite decreased CE hydrolase activities, HSL(-/-) macrophages exhibited CE accumulation similar to wild-type (WT) macrophages. We conclude that additional enzymes must exist that cooperate with HSL to regulate CE levels in macrophages. KIAA1363 affects AcMAGE hydrolase activity but is of minor importance as a direct CE hydrolase in macrophages.

  5. Thermodynamics of Enzyme-Catalyzed Reactions. Part 3. Hydrolases

    Science.gov (United States)

    Goldberg, Robert N.; Tewari, Yadu B.

    1994-11-01

    Equilibrium constants and enthalpy changes for reactions catalyzed by the hydrolase class of enzymes have been compiled. For each reaction the following information is given: The reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement [temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used]; the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 145 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  6. Epoxides and soluble epoxide hydrolase in cardiovascular physiology.

    Science.gov (United States)

    Imig, John D

    2012-01-01

    Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites that importantly contribute to vascular and cardiac physiology. The contribution of EETs to vascular and cardiac function is further influenced by soluble epoxide hydrolase (sEH) that degrades EETs to diols. Vascular actions of EETs include dilation and angiogenesis. EETs also decrease inflammation and platelet aggregation and in general act to maintain vascular homeostasis. Myocyte contraction and increased coronary blood flow are the two primary EET actions in the heart. EET cell signaling mechanisms are tissue and organ specific and provide significant evidence for the existence of EET receptors. Additionally, pharmacological and genetic manipulations of EETs and sEH have demonstrated a contribution for this metabolic pathway to cardiovascular diseases. Given the impact of EETs to cardiovascular physiology, there is emerging evidence that development of EET-based therapeutics will be beneficial for cardiovascular diseases.

  7. Methyl (Sp-2-(diphenylphosphinoferrocene-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Petr Štěpnička

    2009-10-01

    Full Text Available The title compound, [Fe(C5H5(C19H16O2P], obtained serendipitously during recrystallization of 1-hydroxybenzotriazolyl (Sp-2-(diphenylphosphinoferrocene-1-carboxylate from methanol, crystallizes in the chiral space group P212121. Its crystal structure not only confirms the anticipated absolute configuration but also establishes a rather regular geometry for the ferrocene unit, devoid of any significant deformation due to the attached substituents. In the crystal, symmetry-related molecules are linked via weak C—H...O interactions.

  8. kbpt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kali Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kwmc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kont Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kcrg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kbpi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kaus Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. Terminated Multifamily Mortgages Database

    Data.gov (United States)

    Department of Housing and Urban Development — Includes all terminated HUD Multifamily insured mortgages. It includes the Holder and Servicer at the time the mortgage was terminated. The data is good as of...

  16. Terminated Multifamily Mortgages Database

    Data.gov (United States)

    Department of Housing and Urban Development — This Excel 2010 file includes all terminated HUD Multifamily insured mortgages. It includes the Holder and Servicer at the time the mortgage was terminated. The data...

  17. ktup Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kolm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kdfw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kbur Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kfay Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. ktxk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kyng Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kpou Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. ksrq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. pmdy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kacy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. ksmx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. ksbp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kavl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kjct Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kpsc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. keyw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. klar Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. patk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kogd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. klse Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. khdc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kmaf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kgsp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kdsm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. paga Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kosh Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. ksns Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. koaj Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kmss Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kbyi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kcnm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. pasi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. keat Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kpuw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kcon Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. krut Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. padq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. ktyr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kgfk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kdet Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kjac Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kfoe Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. pasc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. koun Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. koak Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. klee Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kcak Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kiag Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kbmg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kpdx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. tjsj Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kpae Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kpbi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kbna Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kact Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kpia Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. krow Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kbtv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kbke Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. krap Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. krog Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. pajn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kmci Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. krwl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kpsp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kcmi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. ktlh Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kteb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kbis Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kagc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. krbg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kelm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. khln Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kgeg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kazo Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. klan Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. ksmn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. klbx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kbvi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. ksjc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. klnd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. klru Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kbrl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. pawg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. klaf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kgon Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. ksdy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. ksea Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kofk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. krdg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kdug Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kbwg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kbbg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. krdu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kiwd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. krbl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kssf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. ksaw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kmot Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kiso Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kgck Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kcvg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. pafa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kcrq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. ksun Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. khdn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. pabe Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. ktop Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. ktrk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. krvs Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. phny Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. ktcl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kmrb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kcub Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kpdt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. ptkk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kcsm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. ksfo Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kcgi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kjhw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kdab Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kecp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kmls Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kroc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kfod Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kmia Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. Structure investigations of group 13 organometallic carboxylates.

    Science.gov (United States)

    Justyniak, Iwona; Prochowicz, Daniel; Tulewicz, Adam; Bury, Wojciech; Goś, Piotr; Lewiński, Janusz

    2017-01-17

    The octet-compliant group 13 organometallics with highly polarized bonds in the metal coordination sphere exhibit a significant tendency to maximize their coordination number through the formation of adducts with a wide range of neutral donor ligands or by self-association to give aggregates containing tetrahedral and higher coordinated aluminium centres, and even in some cases molecular complexes equilibrate with ionic species of different coordination numbers of the metal centre. This work provides a comprehensive overview of the structural chemistry landscape of the group 13 carboxylates. Aside from a more systematic approach to the general structural chemistry of the title compounds, the structure investigations of [R2M(μ-O2CPh)]2-type benzoate complexes (where M = B, Al and Ga) and their Lewis acid-base adducts [(R2M)(μ-O2CPh)(py-Me)] are reported. DFT calculations were also performed to obtain a more in-depth understanding of both the changes in the bonding of group 13 organometallic carboxylate adducts with a pyridine ligand.

  5. Short Carboxylic Acid–Carboxylate Hydrogen Bonds Can Have Fully Localized Protons

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A.

    2017-01-17

    Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15–0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor–acceptor distance criteria for a LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [O–O> = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O–O distance with increasing H-bond donor pKa. This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid–carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.

  6. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis.

    Science.gov (United States)

    Ventre, Sandrine; Petronijevic, Filip R; MacMillan, David W C

    2015-05-06

    The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F(•) transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol.

  7. Les lipases sont des hydrolases atypiques : principales caractéristiques et applications

    Directory of Open Access Journals (Sweden)

    Fickers P.

    2008-01-01

    Full Text Available ipases are atypical hydrolases: principal characteristics and applications. Due to their kinetic and substrate specificities, triacylglycerol acyl-hydrolases or lipases are atypical enzymes. In function of their microenvironment, lipases are able to act as hydrolases in aqueous solution or as biocatalysts in organic synthesis. As hydrolases, they are responsible of the triglycerids catabolism into fatty acids and glycerol. In many organisms, this reaction plays a major role in the fat and lipid metabolism. In addition, lipases are also able to hydrolyse phospholipids and cholesterol esters. In organic solvent, lipases could catalyse reactions such as esterifications, acidolysis or alcoolysis with enantio-, regio- and chimioselectivity. Lipases form a mixed class of enzyme due to their animal, vegetal or microbial origins. All those properties led to the development of many applications in the food and chemical industries but also in the medical and therapeutic field.

  8. 49 CFR 1242.27 - Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor vehicle loading and distribution facilities, and... Structures § 1242.27 Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine...

  9. 甲基对硫磷水解酶纯化与保存%The Purification and Preservation of Methyl Parathion Hydrolase

    Institute of Scientific and Technical Information of China (English)

    张俊卓; 谢卫红

    2012-01-01

    Through the cultivation of E. coli strains with the restructuring of expression plasmid under the induced by isopropyl-β- D -galatose, the methyl parathion hydrolase was expressed in E. coli BL21 (DE3) as a fusion protein tagged with (His) 6 at C - terminus. The fusion protein was purified to homogeneity by Ni - affinity chromatography under undenaturing condition, the protein could degrade methyl parathion effectively. The gradient elution aconditions were de- termined to reduce the hybrid protein and improve the protein puriry, and the biological activity and enzyme kinetic of the methyl parathion hydrolase was detected. The effects of storage environmental factors on the activity of methyl parathion hydrolase were analyzed. The enzyme prepared by the freeze - dried powder was more conductive to the preservation.%对带有重组表达质粒E.coli菌种进行了扩大培养,在IPTG的诱导下大量表达,获得了C-末端含有6个寡聚组氨酸的甲基对硫磷水解酶。经Ni-NTA亲和层析获得了具有较高生物活性的甲基对硫磷水解酶。本文对该酶纯化的梯度洗脱条件和酶动力学进行了考察,并通过环境对酶活性的影响检测,确定了将酶制备成冻干粉,更利于保存。

  10. Organizational Relationship Termination Competence

    DEFF Research Database (Denmark)

    Ritter, Thomas; Geersbro, Jens

    2011-01-01

    that a firm's percentage of unwanted customers decreases significantly as acceptance of termination increases, if the firm's definition of unwanted customers is well understood, and if a firm has clear termination routines. In addition, general focus on profitability and external constraints on relationship...... termination are found to significantly affect a firm's relationship termination competence. The findings suggest that managers should regard termination as a legitimate option in customer relationship management. In order to decrease the number of unwanted customers, managers must accept termination......Most firms are involved in a number of customer relationships that drain the firm's resources. However, many firms are hesitant to address this problem. This paper investigates customer relationship termination at the organizational level. We develop and analyze the organizational dimensions...

  11. Characterization and functional analysis of Trichinella spiralis Nudix hydrolase.

    Science.gov (United States)

    Long, Shao Rong; Wang, Zhong Quan; Jiang, Peng; Liu, Ruo Dan; Qi, Xin; Liu, Pei; Ren, Hui Jun; Shi, Hai Ning; Cui, Jing

    2015-12-01

    Trichinella spiralis Nudix hydrolase (TsNd) was identified by screening a T7 phage display cDNA library from T. spiralis intestinal infective larvae (IIL), and vaccination of mice with recombinant TsNd protein (rTsNd) or TsNd DNA vaccine produced a partial protective immunity. The aim of this study was to identify the characteristics and biological functions of TsNd in the process of invasion and development of T. spiralis larvae. Transcription and expression of TsNd gene at all developmental stages of T. spiralis were observed by qPCR and immunofluorescent test (IFT). The rTsNd had the Nd enzymatic activity to dGTP, NAD, NADP and CoA. Its kinetic properties on the preferred substrate dGTP were calculated, and the Vmax, Km, and kcat/Km values at pH 8.0 were 3.19 μM min(-1) μg(-1), 370 μM, and 144 s(-1) M(-1), respectively, in reaction matrix containing 5 mM Zn(2+) and 2 mM DTT. The rTsNd was active from 25 °C to 50 °C, with optimal activity at 37 °C. rTsNd was able to bind specifically to mouse intestinal epithelial cells (IECs) and promoted the larval invasion of IECs, whereas anti-rTsNd antibodies inhibited the larval invasion of IECs in a dose-dependent manner. Anti-rTsNd antibodies could kill T. spiralis infective larvae by an ADCC-mediated mechanism. Our results showed that the rTsNd protein was able to interact with host IECs, had the Nudix hydrolasing activity and the enzymatic activity appeared to be essential indispensable for the T. spiralis larval invasion, development and survival in host.

  12. Expression of Nudix hydrolase genes in barley under UV irradiation

    Science.gov (United States)

    Tanaka, Sayuri; Sugimoto, Manabu; Kihara, Makoto

    Seed storage and cultivation should be necessary to self-supply foods when astronauts would stay and investigate during long-term space travel and habitation in the bases on the Moon and Mars. Thought the sunlight is the most importance to plants, both as the ultimate energy source and as an environmental signal regulating growth and development, UV presenting the sunlight can damage many aspects of plant processes at the physiological and DNA level. Especially UV-C, which is eliminated by the stratospheric ozone layer, is suspected to be extremely harmful and give a deadly injury to plants in space. However, the defense mechanism against UV-C irradiation damage in plant cells has not been clear. In this study, we investigated the expression of Nudix hydrolases, which defense plants from biotic / abiotic stress, in barley under UV irradiation. The genes encoding the amino acid sequences, which show homology to those of 28 kinds of Nudix hydrolases in Arabidopsis thaliana, were identified in the barley full-length cDNA library. BLAST analysis showed 14 kinds of barley genes (HvNUDX1-14), which encode the Nudix motif sequence. A phylogenetic tree showed that HvNUDX1, HvNUDX7, HvNUDX9 and HvNUDX11 belonged to the ADP-ribose pyrophosphohydrolase, ADP-sugar pyrophosphohydrolase, NAD(P)H pyrophosphohydrolase and FAD pyrophosphohydrolase subfamilies, respectively, HvNUDX3, HvNUDX6, and HvNUDX8 belonged to the Ap _{n}A pyrophosphohydrolase subfamilies, HvNUDX5 and HvNUDX14 belonged to the coenzyme A pyrophosphohydrolase subfamilies, HvNUDX12 and HvNUDX13 belonged to the Ap _{4}A pyrophosphohydrolase subfamilies. Induction of HvNUDX genes by UV-A (340nm), UV-B (312nm), and UV-C (260nm) were analyzed by quantitative RT-PCR. The results showed that HvNUDX4 was induced by UV-A and UV-B, HvNUDX6 was induced by UV-B and UV-C, and HvNUDX7 and HvNUDX14 were induced by UV-C, significantly. Our results suggest that the response of HvNUDXs to UV irradiation is different by UV

  13. Carboxylates and the uptake of ammonium by excised maize roots

    NARCIS (Netherlands)

    Breteler, H.

    1975-01-01

    The effect of carboxylates (organic acid anions) on NH 4 uptake was studied by changing the carboxylate level of roots prior to uptake experi ments. Succinate was the most effective stimulator of ammonium uptake. The oxocarboxylates (α-oxoglutarate, oxaloacetate and

  14. Carboxylate-bridged helical chains based on an azo carboxylate oximate ligand

    Institute of Scientific and Technical Information of China (English)

    KOU HuiZhong; ZHANG YanDong; CUI AiLi

    2012-01-01

    Two helical one-dimensional complexes[MnⅡ(MeOH)4][MnⅣ(L·)2]· 2MeOH(1)and[MnⅢ(salen)][MnⅢ(L)2](2)(H2L =HON=C(Ph)N=NC6H4CO2H)contain the noninnocent ligand[Mn(L·)2]2- and innocent low-spin[Mn(L)2]-.Intrachain anfiferromagnetic interaction between adjacent manganese ions via the syn-anti carboxylate bridges in complex 1.Alternate syn-anti and anti-anti carboxylate bridges have been found to transmit ferro- and antiferromagnetic coupling between high-spin and low-spin Mn(Ⅲ)ions in complex 2.

  15. A novel α-L-arabinofuranosidase of family 43 glycoside hydrolase (Ct43Araf from Clostridium thermocellum.

    Directory of Open Access Journals (Sweden)

    Shadab Ahmed

    Full Text Available The study describes a comparative analysis of biochemical, structural and functional properties of two recombinant derivatives from Clostridium thermocellum ATCC 27405 belonging to family 43 glycoside hydrolase. The family 43 glycoside hydrolase encoding α-L-arabinofuranosidase (Ct43Araf displayed an N-terminal catalytic module CtGH43 (903 bp followed by two carbohydrate binding modules CtCBM6A (405 bp and CtCBM6B (402 bp towards the C-terminal. Ct43Araf and its truncated derivative CtGH43 were cloned in pET-vectors, expressed in Escherichia coli and functionally characterized. The recombinant proteins displayed molecular sizes of 63 kDa (Ct43Araf and 34 kDa (CtGH43 on SDS-PAGE analysis. Ct43Araf and CtGH43 showed optimal enzyme activities at pH 5.7 and 5.4 and the optimal temperature for both was 50°C. Ct43Araf and CtGH43 showed maximum activity with rye arabinoxylan 4.7 Umg(-1 and 5.0 Umg(-1, respectively, which increased by more than 2-fold in presence of Ca(2+ and Mg(2+ salts. This indicated that the presence of CBMs (CtCBM6A and CtCBM6B did not have any effect on the enzyme activity. The thin layer chromatography and high pressure anion exchange chromatography analysis of Ct43Araf hydrolysed arabinoxylans (rye and wheat and oat spelt xylan confirmed the release of L-arabinose. This is the first report of α-L-arabinofuranosidase from C. thermocellum having the capacity to degrade both p-nitrophenol-α-L-arabinofuranoside and p-nitrophenol-α-L-arabinopyranoside. The protein melting curves of Ct43Araf and CtGH43 demonstrated that CtGH43 and CBMs melt independently. The presence of Ca(2+ ions imparted thermal stability to both the enzymes. The circular dichroism analysis of CtGH43 showed 48% β-sheets, 49% random coils but only 3% α-helices.

  16. Effect of choline carboxylate ionic liquids on biological membranes.

    Science.gov (United States)

    Rengstl, Doris; Kraus, Birgit; Van Vorst, Matthew; Elliott, Gloria D; Kunz, Werner

    2014-11-01

    Choline carboxylates, ChCm, with m=2-10 and choline oleate are known as biocompatible substances, yet their influence on biological membranes is not well-known, and the effect on human skin has not previously been investigated. The short chain choline carboxylates ChCm with m=2, 4, 6 act as hydrotropes, solubilizing hydrophobic compounds in aqueous solution, while the longer chain choline carboxylates ChCm with m=8, 10 and oleate are able to form micelles. In the present study, the cytotoxicity of choline carboxylates was tested using HeLa and SK-MEL-28 cells. The influence of these substances on liposomes prepared from dipalmitoylphosphatidylcholine (DPPC) was also evaluated to provide insights on membrane interactions. It was observed that the choline carboxylates with a chain length of m>8 distinctly influence the bilayer, while the shorter ones had minimal interaction with the liposomes.

  17. Aqueous infrared carboxylate absorbances: Aliphatic di-acids

    Science.gov (United States)

    Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.

    1998-01-01

    Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.

  18. Silver-catalyzed decarboxylative chlorination of aliphatic carboxylic acids.

    Science.gov (United States)

    Wang, Zhentao; Zhu, Lin; Yin, Feng; Su, Zhongquan; Li, Zhaodong; Li, Chaozhong

    2012-03-07

    Decarboxylative halogenation of carboxylic acids, the Hunsdiecker reaction, is one of the fundamental functional group transformations in organic chemistry. As the initial method requires the preparations of strictly anhydrous silver carboxylates, several modifications have been developed to simplify the procedures. However, these methods suffer from the use of highly toxic reagents, harsh reaction conditions, or limited scope of application. In addition, none is catalytic for aliphatic carboxylic acids. In this Article, we report the first catalytic Hunsdiecker reaction of aliphatic carboxylic acids. Thus, with the catalysis of Ag(Phen)(2)OTf, the reactions of carboxylic acids with t-butyl hypochlorite afforded the corresponding chlorodecarboxylation products in high yields under mild conditions. This method is not only efficient and general, but also chemoselective. Moreover, it exhibits remarkable functional group compatibility, making it of more practical value in organic synthesis. The mechanism of single electron transfer followed by chlorine atom transfer is proposed for the catalytic chlorodecarboxylation.

  19. Noncovalent catch and release of carboxylates in water.

    Science.gov (United States)

    Beck, Christie L; Winter, Arthur H

    2014-04-01

    Association constants of a bis-(acetylguanidinium)ferrocene dication to various (di)carboxylates were determined through UV-vis titrations. Association constant values greater than 10(4) M(-1) were determined for both phthalate and maleate carboxylates to the bis-(acetylguanidinium)ferrocene salt in pure water. Density functional theory computations of the binding enthalpy of the rigid carboxylates for these complexes agree well with the experimentally determined association constants. Catch and release competitive binding experiments were done by NMR for the cation-carboxylate ion-pair complexes with cucurbit[7]uril, and they show dissociation of the ion-pair complex upon addition of cucurbit[7]uril and release of the free (di)carboxylate.

  20. Discovery of enantioselectivity of urea inhibitors of soluble epoxide hydrolase.

    Science.gov (United States)

    Manickam, Manoj; Pillaiyar, Thanigaimalai; Boggu, PullaReddy; Venkateswararao, Eeda; Jalani, Hitesh B; Kim, Nam-Doo; Lee, Seul Ki; Jeon, Jang Su; Kim, Sang Kyum; Jung, Sang-Hun

    2016-07-19

    Soluble epoxide hydrolase (sEH) hydrolyzes epoxyeicosatrienoic acids (EETs) in the metabolic pathway of arachidonic acid and has been considered as an important therapeutic target for chronic diseases such as hypertension, diabetes and inflammation. Although many urea derivatives are known as sEH inhibitors, the enantioselectivity of the inhibitors is not highlighted in spite of the stereoselective hydrolysis of EETs by sEH. In an effort to explore the importance of enantioselectivity in the urea scaffold, a series of enantiomers with the stereocenter adjacent to the urea nitrogen atom were prepared. The selectivity of enantiomers of 1-(α-alkyl-α-phenylmethyl)-3-(3-phenylpropyl)ureas showed wide range differences up to 125 fold with the low IC50 value up to 13 nM. The S-configuration with planar phenyl and small alkyl groups at α-position is crucial for the activity and selectivity. However, restriction of the free rotation of two α-groups with indan-1-yl or 1,2,3,4-tetrahydronaphthalen-1-yl moiety abolishes the selectivity between the enantiomers, despite the increase in activity up to 13 nM. The hydrophilic group like sulfonamido group at para position of 3-phenylpropyl motif of 1-(α-alkyl-α-phenylmethyl-3-(3-phenylpropyl)urea improves the activity as well as enantiomeric selectivity. All these ureas are proved to be specific inhibitor of sEH without inhibition against mEH.

  1. CONTAINER TERMINALS IN EUROPE

    Directory of Open Access Journals (Sweden)

    Bart W. WIEGMANS

    2001-01-01

    Full Text Available This paper aims to address the linkage between logistics (in particular, the management of marketing channel flows and transport markets, while also the interaction between these two markets and intermodal container terminals is analysed. The marketing channel theory is used to describe all relevant actors and flows that run through marketing channels, starting with customer needs and ending with customer satisfaction. Porter's theory of competitive advantages is used to review competitive forces in both markets. Finally, a competitor analysis is performed for the logistics and transport market. These theories are applied so as to be able to determine the competitive position of intermodal container terminals with a view to the management of marketing channel flows and the physical transport of freight flows. Hence, the central question of this paper is: Which markets are served by intermodal container terminals and with whom are they competing? At present, neither the maritime container terminals nor the continental container terminals appear to have a significant influence in the logistics service market; they concentrate mainly on the physical movement of containers (transshipment. Furthermore, maritime container terminals and continental container terminals are not dominant players in the transport service market. Our conclusion is that continental terminals are predominantly competing with unimodal road transport, with neighbouring continental terminals and with barge transport companies.

  2. Analysis of Chiral Carboxylic Acids in Meteorites

    Science.gov (United States)

    Burton, A. S.; Elsila, J. E.; Hein, J. E.; Aponte, J. C.; Parker, E. T.; Glavin, D. P.; Dworkin, J. P.

    2015-01-01

    Homochirality of amino acids in proteins and sugars in DNA and RNA is a critical feature of life on Earth. In the absence of a chiral driving force, however, reactions leading to the synthesis of amino acids and sugars result in racemic mixtures. It is currently unknown whether homochirality was necessary for the origins of life or if it was a product of early life. The observation of enantiomeric excesses of certain amino acids of extraterrestrial origins in meteorites provides evidence to support the hypothesis that there was a mechanism for the preferential synthesis or destruction of a particular amino acid enantiomer [e.g., 1-3]. The cause of the observed chiral excesses is un-clear, although at least in the case of the amino acid isovaline, the degree of aqueous alteration that occurred on the meteorite parent body is correlated to the isovaline L-enantiomeric excess [3, 4]. This suggests that chiral symmetry is broken and/or amplified within the meteorite parent bodies. Besides amino acids, there have been only a few reports of other meteoritic compounds found in enantiomeric excess: sugars and sugar acids [5, 6] and the hydroxy acid lactic acid [7]. Determining whether or not additional types of molecules in meteorites are also present in enantiomeric excesses of extraterrestrial information will provide insights into mechanisms for breaking chiral symmetry. Though the previous measurements (e.g., enantiomeric composition of lactic acid [7], and chiral carboxylic acids [8]) were made by gas chromatography-mass spectrometry, the potential for increased sensitivity of liquid chromatography-mass spectrometry (LC-MS) analyses is important because for many meteorite samples, only small sample masses are available for study. Furthermore, at least in the case of amino acids, many of the largest amino acid enantiomeric excesses were observed in samples that contained lower abundances (tens of ppb) of a given amino acid enantiomer. In the present work, we describe

  3. Aspartic acid-484 of nascent placental alkaline phosphatase condenses with a phosphatidylinositol glycan to become the carboxyl terminus of the mature enzyme.

    Science.gov (United States)

    Micanovic, R; Bailey, C A; Brink, L; Gerber, L; Pan, Y C; Hulmes, J D; Udenfriend, S

    1988-01-01

    A carboxyl-terminal chymotryptic peptide from mature human placental alkaline phosphatase was purified by HPLC and monitored by a specific RIA. Sequencing and amino acid assay showed that the carboxyl terminus of the peptide was aspartic acid, representing residue 484 of the proenzyme as deduced from the corresponding cDNA. Further analysis of the peptide showed it to be a peptidoglycan containing one residue of ethanolamine, one residue of glucosamine, and two residues of neutral hexose. The inositol glycan is apparently linked to the alpha carboxyl group of the aspartic acid through the ethanolamine. Location of the inositol glycan on Asp-484 of the proenzyme indicates that a 29-residue peptide is cleaved from the nascent protein during the post-translational condensation with the phosphatidylinositol-glycan. PMID:3422741

  4. Chlamydia trachomatis CT771 (nudH) is an asymmetric Ap4A hydrolase

    Science.gov (United States)

    Barta, Michael L.; Lovell, Scott; Sinclair, Amy N.; Battaile, Kevin P.; Hefty, P. Scott

    2014-01-01

    Asymmetric diadenosine 5′,5′″-P1,P4-tetraphosphate (Ap4A) hydrolases are members of the Nudix superfamily that asymmetrically cleave the metabolite Ap4A into ATP and AMP while facilitating homeostasis. The obligate intracellular mammalian pathogen Chlamydia trachomatis possesses a single Nudix family protein, CT771. As pathogens that rely on a host for replication and dissemination typically have one or zero Nudix family proteins, this suggests that CT771 could be critical for chlamydial biology and pathogenesis. We identified orthologs to CT771 within environmental Chlamydiales that share active site residues suggesting a common function. Crystal structures of both apo- and ligand-bound CT771 were determined to 2.6 Å and 1.9 Å resolution, respectively. The structure of CT771 shows a αβα-sandwich motif with many conserved elements lining the putative Nudix active site. Numerous aspects of the ligand-bound CT771 structure mirror those observed in the ligand-bound structure of the Ap4A hydrolase from Caenorhabditis elegans. These structures represent only the second Ap4A hydrolase enzyme member determined from eubacteria and suggest that mammalian and bacterial Ap4A hydrolases might be more similar than previously thought. The aforementioned structural similarities, in tandem with molecular docking, guided the enzymatic characterization of CT771. Together, these studies provide the molecular details for substrate binding and specificity, supporting the analysis that CT771 is an Ap4A hydrolase (nudH). PMID:24354275

  5. Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Li L. L.; van der Lelie D.; Taghavi, S.; McCorkle, S. M.; Zhang, Y.-B.; Blewitt, M. G.; Brunecky, R.; Adney, W. S.; Himmel, M. E.; Brumm, P.; Drinkwater, C.; Mead, D. A.; Tringe, S. G.

    2011-08-01

    To efficiently deconstruct recalcitrant plant biomass to fermentable sugars in industrial processes, biocatalysts of higher performance and lower cost are required. The genetic diversity found in the metagenomes of natural microbial biomass decay communities may harbor such enzymes. Our goal was to discover and characterize new glycoside hydrolases (GHases) from microbial biomass decay communities, especially those from unknown or never previously cultivated microorganisms. From the metagenome sequences of an anaerobic microbial community actively decaying poplar biomass, we identified approximately 4,000 GHase homologs. Based on homology to GHase families/activities of interest and the quality of the sequences, candidates were selected for full-length cloning and subsequent expression. As an alternative strategy, a metagenome expression library was constructed and screened for GHase activities. These combined efforts resulted in the cloning of four novel GHases that could be successfully expressed in Escherichia coli. Further characterization showed that two enzymes showed significant activity on p-nitrophenyl-{alpha}-L-arabinofuranoside, one enzyme had significant activity against p-nitrophenyl-{beta}-D-glucopyranoside, and one enzyme showed significant activity against p-nitrophenyl-{beta}-D-xylopyranoside. Enzymes were also tested in the presence of ionic liquids. Metagenomics provides a good resource for mining novel biomass degrading enzymes and for screening of cellulolytic enzyme activities. The four GHases that were cloned may have potential application for deconstruction of biomass pretreated with ionic liquids, as they remain active in the presence of up to 20% ionic liquid (except for 1-ethyl-3-methylimidazolium diethyl phosphate). Alternatively, ionic liquids might be used to immobilize or stabilize these enzymes for minimal solvent processing of biomass.

  6. Fatty acid amide hydrolase inhibition by neurotoxic organophosphorus pesticides.

    Science.gov (United States)

    Quistad, G B; Sparks, S E; Casida, J E

    2001-05-15

    Organophosphorus (OP) compound-induced inhibition of acetylcholinesterase (AChE) and neuropathy target esterase explains the rapid onset and delayed neurotoxic effects, respectively, for OP insecticides and related compounds but apparently not a third or intermediate syndrome with delayed onset and reduced limb mobility. This investigation tests the hypothesis that fatty acid amide hydrolase (FAAH), a modulator of endogenous signaling compounds affecting sleep (oleamide) and analgesia (anandamide), is a sensitive target for OP pesticides with possible secondary neurotoxicity. Chlorpyrifos oxon inhibits 50% of the FAAH activity (IC50 at 15 min, 25 degrees C, pH 9.0) in vitro at 40--56 nM for mouse brain and liver, whereas methyl arachidonyl phosphonofluoridate, ethyl octylphosphonofluoridate (EOPF), oleyl-4H-1,3,2-benzodioxaphosphorin 2-oxide (oleyl-BDPO), and dodecyl-BDPO give IC50s of 0.08--1.1 nM. These BDPOs and EOPF inhibit mouse brain FAAH in vitro with > or =200-fold higher potency than for AChE. Five OP pesticides inhibit 50% of the brain FAAH activity (ED50) at diazinon, and methamidophos occurs near acutely toxic levels, profenofos and tribufos are effective at asymptomatic doses. Two BDPOs (dodecyl and phenyl) and EOPF are potent inhibitors of FAAH in vivo (ED50 0.5--6 mg/kg). FAAH inhibition of > or =76% in brain depresses movement of mice administered anandamide at 30 mg/kg ip, often leading to limb recumbency. Thus, OP pesticides and related inhibitors of FAAH potentiate the cannabinoid activity of anandamide in mice. More generally, OP compound-induced FAAH inhibition and the associated anandamide accumulation may lead to reduced limb mobility as a secondary neurotoxic effect.

  7. Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases

    Directory of Open Access Journals (Sweden)

    Li Luen-Luen

    2011-08-01

    Full Text Available Abstract Background To efficiently deconstruct recalcitrant plant biomass to fermentable sugars in industrial processes, biocatalysts of higher performance and lower cost are required. The genetic diversity found in the metagenomes of natural microbial biomass decay communities may harbor such enzymes. Our goal was to discover and characterize new glycoside hydrolases (GHases from microbial biomass decay communities, especially those from unknown or never previously cultivated microorganisms. Results From the metagenome sequences of an anaerobic microbial community actively decaying poplar biomass, we identified approximately 4,000 GHase homologs. Based on homology to GHase families/activities of interest and the quality of the sequences, candidates were selected for full-length cloning and subsequent expression. As an alternative strategy, a metagenome expression library was constructed and screened for GHase activities. These combined efforts resulted in the cloning of four novel GHases that could be successfully expressed in Escherichia coli. Further characterization showed that two enzymes showed significant activity on p-nitrophenyl-α-L-arabinofuranoside, one enzyme had significant activity against p-nitrophenyl-β-D-glucopyranoside, and one enzyme showed significant activity against p-nitrophenyl-β-D-xylopyranoside. Enzymes were also tested in the presence of ionic liquids. Conclusions Metagenomics provides a good resource for mining novel biomass degrading enzymes and for screening of cellulolytic enzyme activities. The four GHases that were cloned may have potential application for deconstruction of biomass pretreated with ionic liquids, as they remain active in the presence of up to 20% ionic liquid (except for 1-ethyl-3-methylimidazolium diethyl phosphate. Alternatively, ionic liquids might be used to immobilize or stabilize these enzymes for minimal solvent processing of biomass.

  8. Applications of Carboxylic Acid Reductases in Oleaginous Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Michael G.; Linger, Jeffrey; McGeehan, John; Tyo, Keith; Beckham, Gregg

    2016-04-24

    Carboxylic acid reductases (CARs) are recently emerging reductive enzymes for the direct production of aldehydes from biologically-produced carboxylic acids. Recent work has demonstrated that these powerful enzymes are able to reduce a very broad range of volatile- to long-chain fatty acids as well as aromatic acids. Here, we express four CAR enzymes from different fungal origins to test their activity against fatty acids commonly produced in oleaginous microbes. These in vitro results will inform metabolic engineering strategies to conduct mild biological reduction of carboxylic acids in situ, which is conventionally done via hydrotreating catalysis at high temperatures and hydrogen pressures.

  9. Murein hydrolase activity of surface layer proteins from Lactobacillus acidophilus against Escherichia coli.

    Science.gov (United States)

    Meng, Jun; Gao, Shu-Ming; Zhang, Qiu-Xiang; Lu, Rong-Rong

    2015-08-01

    The aim of this study was to investigate the murein hydrolase activities of the surface layer proteins (SLPs) from two strains of Lactobacillus acidophilus using zymography. The influence of these hydrolase activities on Escherichia coli ATCC 43893 was also evaluated by analysing their growth curve, cell morphology and physiological state. After the incubation of E. coli with SLPs, growth was inhibited, the number of viable cells was significantly reduced, examination by transmission electron microscopy showed that the cell wall was damaged and flow cytometry results indicated that the majority of the cells were sublethally injured. All of these results suggested that the SLPs of both L. acidophilus strains possessed murein hydrolase activities that were sublethal to E. coli cells.

  10. Structure-guided engineering of molinate hydrolase for the degradation of thiocarbamate pesticides.

    Science.gov (United States)

    Leite, José P; Duarte, Márcia; Paiva, Ana M; Ferreira-da-Silva, Frederico; Matias, Pedro M; Nunes, Olga C; Gales, Luís

    2015-01-01

    Molinate is a recalcitrant thiocarbamate used to control grass weeds in rice fields. The recently described molinate hydrolase, from Gulosibacter molinativorax ON4T, plays a key role in the only known molinate degradation pathway ending in the formation of innocuous compounds. Here we report the crystal structure of recombinant molinate hydrolase at 2.27 Å. The structure reveals a homotetramer with a single mononuclear metal-dependent active site per monomer. The active site architecture shows similarities with other amidohydrolases and enables us to propose a general acid-base catalysis mechanism for molinate hydrolysis. Molinate hydrolase is unable to degrade bulkier thiocarbamate pesticides such as thiobencarb which is used mostly in rice crops. Using a structural-based approach, we were able to generate a mutant (Arg187Ala) that efficiently degrades thiobencarb. The engineered enzyme is suitable for the development of a broader thiocarbamate bioremediation system.

  11. Structure-guided engineering of molinate hydrolase for the degradation of thiocarbamate pesticides.

    Directory of Open Access Journals (Sweden)

    José P Leite

    Full Text Available Molinate is a recalcitrant thiocarbamate used to control grass weeds in rice fields. The recently described molinate hydrolase, from Gulosibacter molinativorax ON4T, plays a key role in the only known molinate degradation pathway ending in the formation of innocuous compounds. Here we report the crystal structure of recombinant molinate hydrolase at 2.27 Å. The structure reveals a homotetramer with a single mononuclear metal-dependent active site per monomer. The active site architecture shows similarities with other amidohydrolases and enables us to propose a general acid-base catalysis mechanism for molinate hydrolysis. Molinate hydrolase is unable to degrade bulkier thiocarbamate pesticides such as thiobencarb which is used mostly in rice crops. Using a structural-based approach, we were able to generate a mutant (Arg187Ala that efficiently degrades thiobencarb. The engineered enzyme is suitable for the development of a broader thiocarbamate bioremediation system.

  12. Lytic activity of the virion-associated peptidoglycan hydrolase HydH5 of Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88

    Directory of Open Access Journals (Sweden)

    Donovan David M

    2011-06-01

    Full Text Available Abstract Background Staphylococcus aureus is a food-borne pathogen and the most common cause of infections in hospitalized patients. The increase in the resistance of this pathogen to antibacterials has made necessary the development of new anti-staphylococcal agents. In this context, bacteriophage lytic enzymes such as endolysins and structural peptidoglycan (PG hydrolases have received considerable attention as possible antimicrobials against gram-positive bacteria. Results S. aureus bacteriophage vB_SauS-phiIPLA88 (phiIPLA88 contains a virion-associated muralytic enzyme (HydH5 encoded by orf58, which is located in the morphogenetic module. Comparative bioinformatic analysis revealed that HydH5 significantly resembled other peptidoglycan hydrolases encoded by staphylococcal phages. The protein consists of 634 amino acid residues. Two putative lytic domains were identified: an N-terminal CHAP (cysteine, histidine-dependent amidohydrolase/peptidase domain (135 amino acid residues, and a C-terminal LYZ2 (lysozyme subfamily 2 domain (147 amino acid residues. These domains were also found when a predicted three-dimensional structure of HydH5 was made which provided the basis for deletion analysis. The complete HydH5 protein and truncated proteins containing only each catalytic domain were overproduced in E. coli and purified from inclusion bodies by subsequent refolding. Truncated and full-length HydH5 proteins were all able to bind and lyse S. aureus Sa9 cells as shown by binding assays, zymogram analyses and CFU reduction analysis. HydH5 demonstrated high antibiotic activity against early exponential cells, at 45°C and in the absence of divalent cations (Ca2+, Mg2+, Mn2+. Thermostability assays showed that HydH5 retained 72% of its activity after 5 min at 100°C. Conclusions The virion-associated PG hydrolase HydH5 has lytic activity against S. aureus, which makes it attractive as antimicrobial for food biopreservation and anti

  13. Inhibiting Inosine Hydrolase and Alanine Racemase to Enhance the Germination of Bacillus anthracis Sterne Spores: Potential Spore Decontamination Strategies

    Science.gov (United States)

    2015-06-19

    2015): << Inhibiting inosine hydrolase and alanine racemase to enhance the germination of Bacillus anthracis Sterne spores: potential spore...inosine hydrolase and alanine racemase to enhance the germination of Bacillus anthracis Sterne spores potential spore decontamination strategies 5a...EASIER, SAFER, and CHEAPER Inducing spore germination should make resulting bacteria much more susceptible to decontamination methods and will be

  14. The putative α/β-hydrolases of Dietzia cinnamea P4 strain as potential enzymes for biocatalytic applications

    NARCIS (Netherlands)

    Procopio da Silva, Luciano; Macrae, Andrew; van Elsas, Jan Dirk; Seldin, Lucy

    2013-01-01

    The draft genome of the soil actinomycete Dietzia cinnamea P4 reveals a versatile group of alpha/beta-hydrolase fold enzymes. Phylogenetic and comparative sequence analyses were used to classify the alpha/beta-hydrolases of strain P4 into six different groups: (i) lipases, (ii) esterases, (iii) epox

  15. Synthesis and crystal structures of 2-methyl-4-aryl-5-oxo-5H-indeno [1,2-b] pyridine carboxylate derivatives

    DEFF Research Database (Denmark)

    Pandian, Ramesh; Naushad, Edayadulla; Vijayakumar, Vinodhkumar;

    2014-01-01

    pyridine derivatives through oxidation. Consequently, the interest in this aromatization reaction, investigation of a wide range of 1, 4-DHPs continues to attract the attention of researchers. Herein, we report the preparation of pyridine derivatives and the crystal structures determined by X......-ray crystallographic methods.Results: The crystal structures and conformational studies of two organic compounds, namely ethyl 2-methyl-4-phenyl-5-oxo-5H-indeno [1,2-b] pyridine-3-carboxylate (I) and ethyl 2-methyl-4-(4 chlorophenyl)-5-oxo-5H-indeno [1,2-b] pyridine-3-carboxylate (II) are reported. The terminal ethyl......) dimer running along 011 direction.Conclusion: The crystal structures ethyl 2-methyl-4-phenyl-5-oxo-5H-indeno [1,2-b] pyridine-3-carboxylate and ethyl 2-methyl-4-(4 chlorophenyl)-5-oxo-5H-indeno [1,2-b] pyridine-3-carboxylate have been investigated in detail. The terminal ethyl group of compound I...

  16. Direct esterification of ammonium salts of carboxylic acids

    Science.gov (United States)

    Halpern, Yuval

    2003-06-24

    A non-catalytic process for producing esters, the process comprising reacting an ammonium salt of a carboxylic acid with an alcohol and removing ammonia from the reaction mixture. Selectivities for the desired ester product can exceed 95 percent.

  17. Peptidoglycan Hydrolases of Local Lactic Acid Bacteria from Kazakh Traditional Food

    Directory of Open Access Journals (Sweden)

    Serik Shaikhin

    2014-01-01

    Full Text Available Introduction: Peptidoglycan (PG is a major component of the cell wall of Gram-positive bacteria and is essential for maintaining the integrity of the bacterial cell and its shape. The bacteria synthesize PG hydrolases, which are capable of cleaving the covalent bonds of PG. They also play an important role in modeling PG, which is required for bacterial growth and division. In an era of increasing antibiotic-resistant pathogens, PG hydrolases that destroy these important structures of the cell wall act as a potential source of new antimicrobials. The aim of this study is to identify the main PG hydrolases of local lactic acid bacteria isolated from traditional foods that enhance probiotic activity of a biological preparation. Methods. Lactococcus lactis 17А and Lactococcus garvieae 19А were isolated from the traditional sausage-like meat product called kazy. They were isolated according to standards methods of microbiology. Genetic identification of the isolates were tested by determining the nucleotide sequences of 16S rDNA. The Republican collection of microorganisms took strains of Lactobacillus casei subsp. Rhamnosus 13-P, L. delbrueckii subsp. lactis CG-1 B-RKM 0044 from cheese, Lactobacillus casei subsp. casei B-RKM 0202 from homemade butter. They used the standard technique of renaturating polyacrylamide gel electrophoresis to detect PG hydrolases activity. Results. According to the profiles of PG hydrolase activity on zymograms, the enzymes of Lactococci 17A and 19A in kazy are similar in electrophoretic mobility to major autolysin AcmA, while the lactobacilli of industrial and home-made dairy products have enzymes similar to extracellular proteins p40 and p75, which have probiotic activity. Conclusions. Use of peptidoglycan hydrolases seems to be an interesting approach in the fight against multi-drug resistant strains of bacteria and could be a valuable tool for the treatment of diseases caused by these microorganisms in Kazakhstan.

  18. Sequential changes of lamellar body hydrolases during ozone-induced alveolar injury and repair

    Energy Technology Data Exchange (ETDEWEB)

    Glew, R.H.; Basu, A.; Shelley, S.A.; Paterson, J.F.; Diven, W.F.; Montgomery, M.R.; Balis, J.U.

    1989-05-01

    Lamellar body hydrolases in acutely damaged and regenerating type II cells were determined using an established rat model with well-defined stages of bronchiolo-alveolar injury and repair. Lamellar bodies were isolated from control and ozone-exposed (3.0 ppm for 8 hours) adult male rats by sucrose density gradient centrifugation and analyzed for their content of six different lysosomal hydrolases. Immediately after 3 ppm ozone exposure (zero-time) there was a significant decrease in specific enzyme activity (units/mg protein) of five lamellar body hydrolases and these activities remained depressed for at least 24 hours after exposure. In addition, total enzyme activity (units/lung) was reduced at zero-time for beta-hexosaminidase and at 24 hours postexposure for alpha-mannosidase and alpha-L-fucosidase. During the reparative and recovery stages (48 to 96 hours) the hydrolases demonstrated variable elevations in both specific activity and total activity (units/lung). Characteristically, beta-hexosaminidase and beta-galactosidase reached supranormal values at 96 hours, whereas alpha-mannosidase remained below normal levels through the recovery stage. Moreover, at 24 to 48 hours the lamellar body fraction demonstrated prominent enzyme depletion relative to the expanding pool of stored surfactant. It is concluded that acute ozone stress initiates the development of hydrolase deficiency within the lamellar bodies of injured and regenerating type II cells. This deficiency state is followed by asynchronous lamellar body hydrolase elevations that reflect distinct patterns of response rather than uniform return to normal condition. The lysosomal enzyme changes of lamellar bodies may be pathogenetically linked to the development of associated alterations in the storage and secretion of surfactant.

  19. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    Energy Technology Data Exchange (ETDEWEB)

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.; Das, Chittaranjan (Purdue)

    2010-07-06

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarily at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.

  20. Corrosion inhibition of steel in concrete by carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Sagoe-Crentsil, K.K.; Glasser, F.P. (Univ. of Aberdeen, Old Aberdeen (United Kingdom). Dept. of Chemistry); Yilmaz, V.T. (Ondokuz Mayis Univ., Samsun (Turkey))

    1993-11-01

    Water soluble carboxylic acids have been used as corrosion inhibitors. They remain largely soluble after curing in cement for up to 90d. Corrosion current measurements are presented showing malonic acid, a dicarboxylic acid, to be a very effective corrosion inhibitor even in the presence of 2.5 wt % chloride. Unfortunately, it has an initial retarding effect on the set of Portland cement. The investigation suggests that corrosion inhibitors based on carboxylic acids remain a fruitful field of investigation.

  1. PHOTOLYSIS OF GOETHITE WITH SORBED LOW MOLECULAR WEIGHT CARBOXYLATES.

    Science.gov (United States)

    Goldberg, Marvin C.; Cunningham, Kirkwood M.

    1984-01-01

    Goethite ( alpha -FeOOH) is a common mineral constituent of suspended and bed sediments in aquatic environments. Many types of naturally-occurring organic molecules, including organic carboxylates, are known to sorb to its surface. Carboxylates should be susceptable to photo-oxidation. An experimental program was conducted with systems containing adsorbed films of oxalate, citrate, tartrate, glycolate, formate, maleate, fumarate, butanoate, and benzoate on Goethite, respectively. Photolytic effects were observed at pH 6. 5 and 5. 5.

  2. Ethyl coumarin-3-carboxylate: synthesis and chemical properties

    Directory of Open Access Journals (Sweden)

    Bakr F. Abdel-Wahab

    2014-03-01

    Full Text Available Ethyl coumarin-3-carboxylate occupies an important position in the organic synthesis and is used in production of biologically active compounds. Thus, the data published over the last few years on the methods of synthesis and chemical properties of ethyl coumarin-3-carboxylate are reviewed here for the first time. The reactions were classified as coumarin ring reactions and ester group reactions, and some of these reactions have been applied successfully to the synthesis of biologically and industrially important compounds.

  3. Biosynthesis of intestinal microvillar proteins. Intracellular processing of lactase-phlorizin hydrolase

    DEFF Research Database (Denmark)

    Danielsen, E M; Skovbjerg, H; Norén, Ove

    1984-01-01

    The biosynthesis of pig small intestinal lactase-phlorizin hydrolase (EC 3.2.1.23-62) was studied by labelling of organ cultured mucosal explants with [35S]methionine. The earliest detactable form of the enzyme was an intracellular, membrane-bound polypeptide of Mr 225 000, sensitive to endo H...... 000 polypeptide is of the same size as the mature lactase-phlorizin hydrolase and was the only form expressed in the microvillar membrane. Together, these data are indicative of an intracellular proteolytic cleavage during transport. The presence of leupeptin during labelling prevented the appearance...

  4. Diversity of glycosyl hydrolase enzymes from metagenome and their application in food industry.

    Science.gov (United States)

    Sathya, T A; Khan, Mahejibin

    2014-11-01

    Traditional use of enzymes for food processing and production of food ingredients resulted in fast-growing enzyme industries world over. The advances in technologies gave rise to exploring newer enzymes and/or modified enzymes for specific application. Search for novel enzymes that can augment catalytic efficiency and advances in molecular biology techniques including sequencing has targeted microbial diversity through metagenomic approaches for sourcing enzymes from difficult to culture organisms. Such mining studies have received more attention in characterizing hydrolases, their prevalence, broad substrate specificities, stability, and independence of cofactors. The focus on glycosyl hydrolases from metagenome for their application in food sector is reviewed.

  5. Ubiquitin C-Terminal Hydrolase-L1 as a Biomarker for Ischemic and Traumatic Brain Injury in Rats

    Science.gov (United States)

    2010-01-01

    described biomarker, SBDP, was identified in that study. As a follow-up, we then further applied a systems biology based approach to select top ...rostrally to the pterygopalatine branch, and the ECAwas ligated and cut at its lingual and maxillary branches. A 3-0 nylon suture was then introduced into the

  6. Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity

    Directory of Open Access Journals (Sweden)

    Denton Jai A

    2011-11-01

    Full Text Available Abstract Background The filamentous fungus Trichoderma reesei (Hypocrea jecorina is an important source of cellulases for use in the textile and alternative fuel industries. To fully understand the regulation of cellulase production in T. reesei, the role of a gene known to be involved in carbon regulation in Aspergillus nidulans, but unstudied in T. reesei, was investigated. Results The T. reesei orthologue of the A. nidulans creB gene, designated cre2, was identified and shown to be functional through heterologous complementation of a creB mutation in A. nidulans. A T. reesei strain was constructed using gene disruption techniques that contained a disrupted cre2 gene. This strain, JKTR2-6, exhibited phenotypes similar to the A. nidulans creB mutant strain both in carbon catabolite repressing, and in carbon catabolite derepressing conditions. Importantly, the disruption also led to elevated cellulase levels. Conclusions These results demonstrate that cre2 is involved in cellulase expression. Since the disruption of cre2 increases the amount of cellulase activity, without severe morphological affects, targeting creB orthologues for disruption in other industrially useful filamentous fungi, such as Aspergillus oryzae, Trichoderma harzianum or Aspergillus niger may also lead to elevated hydrolytic enzyme activity in these species.

  7. Carboxylic acid (bio)isosteres in drug design.

    Science.gov (United States)

    Ballatore, Carlo; Huryn, Donna M; Smith, Amos B

    2013-03-01

    The carboxylic acid functional group can be an important constituent of a pharmacophore, however, the presence of this moiety can also be responsible for significant drawbacks, including metabolic instability, toxicity, as well as limited passive diffusion across biological membranes. To avoid some of these shortcomings while retaining the desired attributes of the carboxylic acid moiety, medicinal chemists often investigate the use of carboxylic acid (bio)isosteres. The same type of strategy can also be effective for a variety other purposes, for example, to increase the selectivity of a biologically active compound or to create new intellectual property. Several carboxylic acid isosteres have been reported, however, the outcome of any isosteric replacement cannot be readily predicted as this strategy is generally found to be dependent upon the particular context (i.e., the characteristic properties of the drug and the drug-target). As a result, screening of a panel of isosteres is typically required. In this context, the discovery and development of novel carboxylic acid surrogates that could complement the existing palette of isosteres remains an important area of research. The goal of this Minireview is to provide an overview of the most commonly employed carboxylic acid (bio)isosteres and to present representative examples demonstrating the use and utility of each isostere in drug design.

  8. Effect of Alkyl Chain Length on Carboxylic Acid SAMs on Ti-6Al-4V

    Directory of Open Access Journals (Sweden)

    Gavin A. Buckholtz

    2012-07-01

    Full Text Available The formation of methyl-terminated carboxylic acid self-assembled monolayers (SAMs with even numbers of carbons, from eighteen to thirty, was investigated on the oxide surface of Ti-6Al-4V and component metal oxides. Modified surfaces were characterized using diffuse reflectance infrared Fourier transform spectroscopy (DRIFT, matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS and contact angle analysis. Infrared spectroscopy indicated that using aerosol spray deposition techniques, stable, all-trans SAMs of octacosanoic (28 carbons and triacontanoic (30 carbons acids were formed on the alloy. Films were similarly formed on titanium and aluminum oxide. The surface of vanadium oxide exhibited limited reactivity. MALDI-TOF MS confirmed that formed films were monolayers, without multilayers or aggregates present. Water contact angles are indicative of the presence of hydrophobic methyl groups at the interface. This stable carboxylic acid SAM formation could be a useful alternative to phosphonic acid SAMs for corrosion and other applications.

  9. Conformational Variability of Organophosphorus Hydrolase upon Soman and Paraoxon Binding

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Diego Eb; Lins, Roberto D.; Pascutti, Pedro G.; Lei, Chenghong; Soares, Thereza A.

    2011-12-31

    The bacterial enzyme organophosphorus hydrolase (OPH) exhibits both catalytic and substrate promiscuity. It hydrolyzes bonds in a variety of phosphotriester (P-O), phosphonothioate (P-S), phosphofluoridate (P-F) and phosphonocyanate (F-CN) compounds. However, its catalytic efficiency varies markedly for different substrates, limiting the broad-range application of OPH as catalyst in the bioremediation of pesticides and chemical war agents. In the present study, pK{sub a} calculations and multiple explicit-solvent molecular dynamics (MD) simulations were performed to characterize and contrast the structural dynamics of OPH bound to two substrates hydrolyzed with very distinct catalytic efficiencies: the nerve agent soman (O-pinacolyl-methyl-phosphonofluoridate) and the pesticide paraoxon (diethyl p-nitrophenyl phosphate). pK{sub a} calculations for the substrate-bound and unbound enzyme showed a significant pK{sub a} shift from standard values ({Delta}pK{sub a} = {+-} 3 units) for residues 254His and 275Arg. MD simulations of the doubly protonated 254His revealed a dynamic hydrogen bond network connecting the catalytic residue 301Asp via 254His to 232Asp, 233Asp, 275Arg and 235Asp, and is consistent with a previously postulated proton relay mechanism to ferry protons away from the active site with substrates that do not require activation of the leaving group. Hydrogen bonds between 301Asp and 254His were persistent in the OPH-paraoxon complex but not in the OPH-soman one, suggesting a potential role for such interaction in the more efficient hydrolysis of paraoxon over soman by OPH. These results are in line with previous mutational studies of residue 254His, which led to an increase of the catalytic efficiency of OPH over soman yet decreased its efficiency for paraoxon. In addition, comparative analysis of the molecular trajectories for OPH bound to soman and paraoxon suggests that binding of the latter facilitates the conformational transition of OPH from the

  10. Binding of carboxylate and trimethylammonium salts to octa-acid and TEMOA deep-cavity cavitands

    Science.gov (United States)

    Sullivan, Matthew R.; Sokkalingam, Punidha; Nguyen, Thong; Donahue, James P.; Gibb, Bruce C.

    2017-01-01

    In participation of the fifth statistical assessment of modeling of proteins and ligands (SAMPL5), the strength of association of six guests ( 3- 8) to two hosts ( 1 and 2) were measured by 1H NMR and ITC. Each host possessed a unique and well-defined binding pocket, whilst the wide array of amphiphilic guests possessed binding moieties that included: a terminal alkyne, nitro-arene, alkyl halide and cyano-arene groups. Solubilizing head groups for the guests included both positively charged trimethylammonium and negatively charged carboxylate functionality. Measured association constants ( K a ) covered five orders of magnitude, ranging from 56 M-1 for guest 6 binding with host 2 up to 7.43 × 106 M-1 for guest 6 binding to host 1.

  11. Kinetics of the esterification of active pharmaceutical ingredients containing carboxylic Acid functionality in polyethylene glycol

    DEFF Research Database (Denmark)

    Schou-Pedersen, Anne Marie V; Hansen, Steen Honoré; Moesgaard, Birthe;

    2014-01-01

    Polyethylene glycols (PEGs) are attractive as excipients in the manufacture of drug products because they are water soluble and poorly immunogenic. They are used in various pharmaceutical preparations. However, because of their terminal hydroxyl groups, PEGs can participate in esterification...... reactions. In this study, kinetics of two active pharmaceutical ingredients, cetirizine and indomethacin possessing carboxylic acid functionality, has been studied in PEG 400 and PEG 1000 at 50°C, 60°C, 70°C, and 80°C. HPLC-UV was applied for the determination of concentrations in the kinetic studies......, it is important to be aware of this drug-excipient interaction, as it can reduce the shelf-life of a low-average molecular weight PEG formulation considerably. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:2424-2433, 2014....

  12. Stereocontrol in proline-catalyzed asymmetric amination: a comparative assessment of the role of enamine carboxylic acid and enamine carboxylate.

    Science.gov (United States)

    Sharma, Akhilesh K; Sunoj, Raghavan B

    2011-05-28

    The transition state models in two mechanistically distinct pathways, involving (i) an enamine carboxylic acid (path-A, 4) and (ii) an enamine carboxylate (path-B, 8), in the proline-catalyzed asymmetric α-amination have been examined using DFT methods. The path-A predicts the correct product stereochemistry under base-free conditions while path-B accounts for reversal of configuration in the presence of a base.

  13. Terminated Multifamily Mortgages Database

    Data.gov (United States)

    Department of Housing and Urban Development — This dataset includes all terminated HUD Multifamily mortgages except those from the Hospital Mortgage Insurance Program. It includes the Holder and Servicer at the...

  14. Coal terminal directory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-06-15

    The directory gives a comprehensive listing of the world's coal terminals, in a total of 50 countries including information on throughput, facilities, storage capacity, and vessel size limitation.

  15. SYNTHESIS OF AN EPOXY-TERMINATED HYPERBRANCHED AROMATIC POLYESTER

    Institute of Scientific and Technical Information of China (English)

    Xia Wang; W.J. Feast

    2002-01-01

    An epoxy-terminated hyperbranched aromatic polyester (P3) was synthesized from a hyperbranched aromaticpolyester containing carboxylic acid end groups (P1), which was derived from the condensation polymerization of the AB2monomer, 5-acetoxyisophthalic acid. Polymer P1 was converted into the polymeric acid chloride by reaction with thionylchloride. The acid chloride was reacted with ethanol and glycidol to form a poly(ethyl ester) (P2) and an epoxy terminatedmaterial (P3), respectively. The reaction conditions in each step of these processes had to be controlled very carefully toavoid unwanted cross-linking reactions. The characterization of products and intermediates, including molecular weightdistributions and thermal properties, are reported.

  16. How to find soluble proteins: a comprehensive analysis of alpha/beta hydrolases for recombinant expression in E. coli

    Directory of Open Access Journals (Sweden)

    Barth Sandra

    2005-04-01

    Full Text Available Abstract Background In screening of libraries derived by expression cloning, expression of active proteins in E. coli can be limited by formation of inclusion bodies. In these cases it would be desirable to enrich gene libraries for coding sequences with soluble gene products in E. coli and thus to improve the efficiency of screening. Previously Wilkinson and Harrison showed that solubility can be predicted from amino acid composition (Biotechnology 1991, 9(5:443–448. We have applied this analysis to members of the alpha/beta hydrolase fold family to predict their solubility in E. coli. alpha/beta hydrolases are a highly diverse family with more than 1800 proteins which have been grouped into homologous families and superfamilies. Results The predicted solubility in E. coli depends on hydrolase size, phylogenetic origin of the host organism, the homologous family and the superfamily, to which the hydrolase belongs. In general small hydrolases are predicted to be more soluble than large hydrolases, and eukaryotic hydrolases are predicted to be less soluble in E. coli than prokaryotic ones. However, combining phylogenetic origin and size leads to more complex conclusions. Hydrolases from prokaryotic, fungal and metazoan origin are predicted to be most soluble if they are of small, medium and large size, respectively. We observed large variations of predicted solubility between hydrolases from different homologous families and from different taxa. Conclusion A comprehensive analysis of all alpha/beta hydrolase sequences allows more efficient screenings for new soluble alpha/beta hydrolases by the use of libraries which contain more soluble gene products. Screening of hydrolases from families whose members are hard to express as soluble proteins in E. coli should first be done in coding sequences of organisms from phylogenetic groups with the highest average of predicted solubility for proteins of this family. The tools developed here can be used

  17. Selective esterification of non-conjugated carboxylic acids in the presence of conjugated or aromatic carboxylic acids over active carbon supported methanesulfonic acid

    Institute of Scientific and Technical Information of China (English)

    FENG ZeWang; ZHAO XinQi; BI Hua

    2008-01-01

    Non-conjugated carboxylic acids are selectively esterified in good yields in the presence of conjugated or aromatic carboxylic acids by stirring over active carbon supported methanesulfonic acid in dichloromethane at room temperature.

  18. Selective esterification of non-conjugated carboxylic acids in the presence of conjugated or aromatic carboxylic acids over active carbon supported methanesulfonic acid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Non-conjugated carboxylic acids are selectively esterified in good yields in the presence of conjugated or aromatic carboxylic acids by stirring over active carbon supported methanesulfonic acid in di-chloromethane at room temperature.

  19. Kinetic and Thermodynamic Parameters for Uncatalyzed Esterification of Carboxylic Acid

    Directory of Open Access Journals (Sweden)

    Kehinde S. Bankole

    2014-06-01

    Full Text Available A fundamental study on uncatalyzed esterification of various biomass-derived aliphatic carboxylic acids with stoichiometric amount of ethanol has been investigated in an isothermal batch reactor, with the objective to convert carboxylic acids to corresponding ethyl esters and to determine both the kinetic and thermodynamic parameters. The effects of temperature on the conversion of carboxylic acid, kinetic and thermodynamic parameters have been investigated. Temperature was found to have significant effect on the rate of reaction and conversion of carboxylic acid. A simple second order reversible kinetic model was developed to determine the kinetic and thermodynamic parameters. The thermodynamic and kinetic parameters varied for uncatalyzed esterification reaction of both short-chain and long-chain carboxylic acids considered. The predicted data from the kinetic model were correlated with experimental data and the two sets of data agreed reasonably well for the uncatalyzed esterification systems. It was observed that the Van’t Hoff plot for uncatalyzed esterification of linoleic acid was non-linear curve, whereas for the Arrhenius and Eyring plots, they were linear. Additional experiments to assess the catalytic and corrosion effects of several metallic substances revealed Inconel 625 alloy, nickel wire and stainless steel materials were susceptible to corrosion problem with uncatalyzed esterification reaction at elevated reaction temperatures. However, tantalum and grade-5 titanium materials were corrosion resistance metals, suitable for similar reaction conditions and this can encourage the design of a flow reactor system. Although, uncatalyzed esterification of carboxylic acids at elevated reaction temperature is still at laboratory scale. It is our hope that the estimated kinetic and thermodynamic parameters would be the guiding tools for reactor scale-up, thus providing a new perspective into the conversion of biomass-derived carboxylic

  20. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lu; Shao, Jinyou, E-mail: jyshao@mail.xjtu.edu.cn; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao

    2016-11-15

    Highlights: • The flexible chemiresistive pH sensor based on two-terminal microsensors eliminating the need for a reference electrode, is simple in structure and can be fabricated on a variety of substrates such as PET, PI and PVC. • SWNTs as an ideal one dimensional material are carboxyl-functionalized to make the pH sensor show high sensitivity and outstanding flexibility for practical applications. • DEP technique is used to manipulate and position SWNTs into appropriate locations and desired formations to improve the metal-nanotube interface and highly rapid detection of pH value, resulting in better overall device performance. • Mechanical bendability of the pH sensor, which arises from the combination of flexible PET substrates and SWNTs, offer a significant improvement for applications that are difficult or impossible to achieve with traditional sensors on rigid substrates. - Abstract: The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H{sup +}) and hydroxide (OH{sup −}) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H{sup +} and OH{sup −} ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results

  1. Purification and Characterization of Conjugated Bile Salt Hydrolase from Bifidobacterium longum BB536

    OpenAIRE

    Grill, J; Schneider, F.; Crociani, J.; Ballongue, J.

    1995-01-01

    Bifidobacterium species deconjugate taurocholic, taurodeoxycholic, taurochenodeoxycholic, glycocholic, glycodeoxycholic, and glycochenodeoxycholic acids. The enzyme level increases in the growth phase. No increase in activity is observed for the cytoplasmic enzyme after addition of conjugated bile acids to a stationary-phase culture. Conjugated bile salt hydrolase (BSH) was purified from Bifidobacterium longum BB536. Its apparent molecular mass in denaturing polyacrylamide gel electrophoresis...

  2. Fungal lytic polysaccharide monooxygenases bind starch and β-cyclodextrin similarly to amylolytic hydrolases

    DEFF Research Database (Denmark)

    Nekiunaite, Laura; Isaksen, Trine; Vaaje-Kolstad, Gustav;

    2016-01-01

    , the clustering of CBM20s from starch-targeting LPMOs and hydrolases was in accord with taxonomy and did not correlate to appended catalytic activity. Altogether, these results demonstrate that the CBM20-binding scaffold is retained in the evolution of hydrolytic and oxidative starch-degrading activities....

  3. A flow cytometer-based whole cell screening toolbox for directed hydrolase evolution through fluorescent hydrogels.

    Science.gov (United States)

    Lülsdorf, Nina; Pitzler, Christian; Biggel, Michael; Martinez, Ronny; Vojcic, Ljubica; Schwaneberg, Ulrich

    2015-05-21

    A high throughput whole cell flow cytometer screening toolbox was developed and validated by identifying improved variants (1.3-7-fold) for three hydrolases (esterase, lipase, cellulase). The screening principle is based on coupled enzymatic reaction using glucose derivatives which yield upon hydrolysis a fluorescent-hydrogel-layer on the surface of E. coli cells.

  4. In Silico Investigation of Flavonoids as Potential Trypanosomal Nucleoside Hydrolase Inhibitors

    Directory of Open Access Journals (Sweden)

    Christina Hung Hung Ha

    2015-01-01

    Full Text Available Human African Trypanosomiasis is endemic to 37 countries of sub-Saharan Africa. It is caused by two related species of Trypanosoma brucei. Current therapies suffer from resistance and public accessibility of expensive medicines. Finding safer and effective therapies of natural origin is being extensively explored worldwide. Pentamidine is the only available therapy for inhibiting the P2 adenosine transporter involved in the purine salvage pathway of the trypanosomatids. The objective of the present study is to use computational studies for the investigation of the probable trypanocidal mechanism of flavonoids. Docking experiments were carried out on eight flavonoids of varying level of hydroxylation, namely, flavone, 5-hydroxyflavone, 7-hydroxyflavone, chrysin, apigenin, kaempferol, fisetin, and quercetin. Using AutoDock 4.2, these compounds were tested for their affinity towards inosine-adenosine-guanosine nucleoside hydrolase and the inosine-guanosine nucleoside hydrolase, the major enzymes of the purine salvage pathway. Our results showed that all of the eight tested flavonoids showed high affinities for both hydrolases (lowest free binding energy ranging from −10.23 to −7.14 kcal/mol. These compounds, especially the hydroxylated derivatives, could be further studied as potential inhibitors of the nucleoside hydrolases.

  5. Intestinal Uptake of Quercetin-3- Glucoside in Rats Involves Hydrolysis by Lactase Phlorizin Hydrolase

    NARCIS (Netherlands)

    Sesink, A.L.A.; Arts, I.C.W.; Faassen-Peters, M.; Hollman, P.C.H.

    2003-01-01

    Quercetin has antioxidant, anti-inflammatory, antiproliferative and anticarcinogenic properties. In plant foods, quercetin occurs mainly bound to various sugars via a ß-glycosidic link. We hypothesized that lactase phlorizin hydrolase (LPH), an enzyme at the brush border membrane of intestinal cells

  6. Genetically lowered microsomal epoxide hydrolase activity and tobacco-related cancer in 47,000 individuals

    DEFF Research Database (Denmark)

    Lee, Julie; Dahl, Morten; Nordestgaard, Børge G

    2011-01-01

    Two functional polymorphisms of the microsomal epoxide hydrolase (mEH) gene (EPHX1), Tyr113His (rs1051740) and His139Arg (rs2234922), have variably been found to influence susceptibility to various cancer forms. We tested whether genetically lowered mEH activity affects risk of developing cancer...

  7. Improved annotation of conjugated bile acid hydrolase superfamily members in Gram-positive bacteria.

    NARCIS (Netherlands)

    Lambert, J.M.; Siezen, R.J.; Vos, W.M. de; Kleerebezem, M.

    2008-01-01

    Most Gram-positive bacteria inhabiting the gastrointestinal tract are capable of hydrolysing bile salts. Bile salt hydrolysis is thought to play an important role in various biological processes in the host. Therefore, correct annotation of bacterial bile salt hydrolases (Bsh) in public databases (E

  8. Improved annotation of conjugated bile acid hydrolase superfamily members in Gram-positive bacteria

    NARCIS (Netherlands)

    Lambert, J.M.; Siezen, R.J.; Vos, de W.M.; Kleerebezem, M.

    2008-01-01

    Most Gram-positive bacteria inhabiting the gastrointestinal tract are capable of hydrolysing bile salts. Bile salt hydrolysis is thought to play an important role in various biological processes in the host. Therefore, correct annotation of bacterial bile salt hydrolases (Bsh) in public databases (E

  9. Discovery and characterization of thermophilic limonene-1,2-epoxide hydrolases from hot spring metagenomic libraries

    DEFF Research Database (Denmark)

    Ferrandi, Erica Elisa; Sayer, Christopher; Isupov, Michail N.;

    2015-01-01

    The epoxide hydrolases (EHs) represent an attractive option for the synthesis of chiral epoxides and 1,2-diols which are valuable building blocks for the synthesis of several pharmaceutical compounds. A metagenomic approach has been used to identify two new members of the atypical EH limonene-1,2...

  10. Microsomal epoxide hydrolase genotypes and the risk for head and neck cancer.

    NARCIS (Netherlands)

    Lacko, M.; Roelofs, H.M.J.; Morsche, R.H.M. te; Voogd, A.C.; Ophuis, MB Oude; Peters, W.H.M.; Manni, J.J.

    2008-01-01

    BACKGROUND: Microsomal epoxide hydrolase (mEH) is an enzyme involved in the metabolism of (pre)carcinogens in tobacco smoke. We investigated whether functional genetic polymorphisms in mEH may have a risk-modifying effect on head and neck carcinogenesis. METHODS: Blood from 429 patients with oral, p

  11. Improvement of enantioselectivity by immobilized imprinting of epoxide hydrolase from Rhodotorula glutinis

    NARCIS (Netherlands)

    Kronenburg, N.A.E.; Bont, de J.A.M.; Fischer, L.

    2001-01-01

    The yeast Rhodotorula glutinis contains an enantioselective, membrane-associated epoxide hydrolase (EH). Partially purified EH was immobilized in a two-step procedure. In the first step, the proteins were derivatized with itaconic anhydride. In the second step, the derivatized proteins were co-polym

  12. Genetically reduced soluble epoxide hydrolase activity and risk of stroke and other cardiovascular disease

    DEFF Research Database (Denmark)

    Lee, Julie; Dahl, Morten; Grande, Peer;

    2010-01-01

    BACKGROUND AND PURPOSE: The development of stroke has been linked to lowered levels of epoxyeicosatrienoic acids in the cerebral microvasculature. These substances are metabolized by the enzyme-soluble epoxide hydrolase encoded by the EPHX2 gene. We tested whether genetically reduced soluble...

  13. BIODEGRADATION OF ORGANOPHOSPHORUS PESTICIDES BY SURFACE-EXPRESSED ORGANOPHOSPHORUS HYDROLASE. (R823663)

    Science.gov (United States)

    Organophosphorus hydrolase (OPH) was displayed and anchored onto the surface ofEscherichia coli using an Lpp-OmpA fusion system. Production of the fusion proteins in membranefractions was verified by immunoblotting with OmpA antisera. inclusion of the organophosphorus...

  14. The role of epoxide hydrolase Y113H gene variant in pancreatic diseases.

    NARCIS (Netherlands)

    Ockenga, J.; Strunck, S.; Post, C.; Schulz, H.U.; Halangk, J.; Pfutzer, R.H.; Lohr, M.; Oettle, H.; Kage, A.; Rosendahl, J.; Keim, V.; Drenth, J.P.H.; Jansen, J.B.M.J.; Lochs, H.; Witt, H.

    2009-01-01

    OBJECTIVES: Chronic pancreatitis (CP) and pancreatic adenocarcinoma (pCA) are associated with risk factors such as alcohol intake and tobacco smoking. Microsomal epoxide hydrolase (EPHX1) is a phase II detoxifying enzyme capable of tobacco-borne toxicant inactivation. We studied the role of the EPHX

  15. Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats

    NARCIS (Netherlands)

    Koeners, Maarten P.; Wesseling, Sebastiaan; Ulu, Arzu; Lopez Sepulveda, Rocio; Morisseau, Christophe; Braam, Branko; Hammock, Bruce D.; Joles, Jaap A.

    2011-01-01

    Koeners MP, Wesseling S, Ulu A, Sepulveda RL, Morisseau C, Braam B, Hammock BD, Joles JA. Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats. Am J Physiol Endocrinol Metab 300: E691-E698, 2011. First published January 25, 2011; doi:

  16. Prunasin hydrolases localization during fruit development in sweet and bitter almonds

    DEFF Research Database (Denmark)

    Sánchez Pérez, Raquel; Belmonte, Fara Sáez; Borch-Jensen, Jonas;

    2012-01-01

    , and benzaldehyde by the action of the β-glucosidase prunasin hydrolase (PH) and mandelonitirile lyase or be glucosylated to form amygdalin. The tissue and cellular localization of PHs was determined during fruit development in two sweet and two bitter almond cultivars using a specific antibody toward PHs. Confocal...

  17. Documents from malicious terminals

    Science.gov (United States)

    Berta, Istvan Z.; Vajda, Istvan

    2003-04-01

    The user wishes to communicate with a remote partner over an insecure network. Since the user is a human being, a terminal is needed for communication. Cryptographic algorithms running on the terminal may provide authenticity for the user's messages. In this paper the problem of sending authentic messages from insecure or untrusted terminals is analyzed. In this case attackers are able to gain total control over the terminal, so the user must consider the terminal a potential attacker. Smart cards are often considered the ultimate tool for secure messaging from untrusted terminals. However, their lack of user interface enables man-in-the middle attack from the terminal. The authors assume, that user is a human being with limited memory and computational power, and also makes mistakes in his calculations. They demnostrate, that only exceptional useres are able to authenticate messages without a trusted device. Several biometric media encapsulate the content of the message and the identity of the sender, such as speech, video and handwriting. The authors suggest, that such media is far more difficult to counterfeit than plaintext. Thus, the user must rely on his other resources, like biometric ones. In the protocol proposed by the authors, the user sends messages in a biometric format, strengthened by simple algorithmic authenticators. The smart card functions as a secure time gate ensuring, that the attacker has extremely little time to counterfeit both the biometric and the algorithmic protection on the message. The authors claim, that with the proper calibration of the biometric method and the time gate of the smart card, their protocol is strong enough for practical use.

  18. Local Termination: theory and practice

    CERN Document Server

    Endrullis, Joerg; Waldmann, Johannes

    2010-01-01

    The characterisation of termination using well-founded monotone algebras has been a milestone on the way to automated termination techniques, of which we have seen an extensive development over the past years. Both the semantic characterisation and most known termination methods are concerned with global termination, uniformly of all the terms of a term rewriting system (TRS). In this paper we consider local termination, of specific sets of terms within a given TRS. The principal goal of this paper is generalising the semantic characterisation of global termination to local termination. This is made possible by admitting the well-founded monotone algebras to be partial. We also extend our approach to local relative termination. The interest in local termination naturally arises in program verification, where one is probably interested only in sensible inputs, or just wants to characterise the set of inputs for which a program terminates. Local termination will be also be of interest when dealing with a specif...

  19. γ-PGA Hydrolases of Phage Origin in Bacillus subtilis and Other Microbial Genomes.

    Directory of Open Access Journals (Sweden)

    Stefania Mamberti

    Full Text Available Poly-γ-glutamate (γ-PGA is an industrially interesting polymer secreted mainly by members of the class Bacilli which forms a shield able to protect bacteria from phagocytosis and phages. Few enzymes are known to degrade γ-PGA; among them is a phage-encoded γ-PGA hydrolase, PghP. The supposed role of PghP in phages is to ensure access to the surface of bacterial cells by dismantling the γ-PGA barrier. We identified four unannotated B. subtilis genes through similarity of their encoded products to PghP; in fact these genes reside in prophage elements of B. subtilis genome. The recombinant products of two of them demonstrate efficient polymer degradation, confirming that sequence similarity reflects functional homology. Genes encoding similar γ-PGA hydrolases were identified in phages specific for the order Bacillales and in numerous microbial genomes, not only belonging to that order. The distribution of the γ-PGA biosynthesis operon was also investigated with a bioinformatics approach; it was found that the list of organisms endowed with γ-PGA biosynthetic functions is larger than expected and includes several pathogenic species. Moreover in non-Bacillales bacteria the predicted γ-PGA hydrolase genes are preferentially found in species that do not have the genetic asset for polymer production. Our findings suggest that γ-PGA hydrolase genes might have spread across microbial genomes via horizontal exchanges rather than via phage infection. We hypothesize that, in natural habitats rich in γ-PGA supplied by producer organisms, the availability of hydrolases that release glutamate oligomers from γ-PGA might be a beneficial trait under positive selection.

  20. Novel Polymers with a High Carboxylic Acid Loading

    DEFF Research Database (Denmark)

    Thomsen, Anders Daugaard; Malmström, Eva; Hvilsted, Søren

    2006-01-01

    ABSTRACT: Click chemistry has been used to prepare a range of novel polymers with pendant carboxylic acid side groups. Four azido carboxylic acids, either mono- or difunctional and aliphatic or aromatic, have been prepared and thoroughly characterized. Extensive model reactions with 1-ethyl-4......-hydroxybenzene, the simplest model for poly(4-hydroxystyrene), and the four azido carboxylic acids have been conucted to establish the proper reaction conditions and provide an analytical frame for the corresponding polymers. Poly(4-hydroxystyrene) moieties in three different polymers—poly (4-hydroxystyrene...... investigations of ali the polymers in general exhibit [when poly(4-hydroxystyrene) is a subetantial parti significant changes in the glass-transition temperature from the polar poly(4-hydroxystyr- ene) (120—130 “C) to the much less polar alkyne polymers (46—60 DC). A direct correlation between the nature...

  1. Gas Phase Reactivity of Carboxylates with N-Hydroxysuccinimide Esters

    Science.gov (United States)

    Peng, Zhou; McGee, William M.; Bu, Jiexun; Barefoot, Nathan Z.; McLuckey, Scott A.

    2015-01-01

    N-hydroxysuccinimide (NHS) esters have been used for gas-phase conjugation reactions with peptides at nucleophilic sites, such as primary amines (N-terminus, ɛ-amine of lysine) or guanidines, by forming amide bonds through a nucleophilic attack on the carbonyl carbon. The carboxylate has recently been found to also be a reactive nucleophile capable of initiating a similar nucleophilic attack to form a labile anhydride bond. The fragile bond is easily cleaved, resulting in an oxygen transfer from the carboxylate-containing species to the reagent, nominally observed as a water transfer. This reactivity is shown for both peptides and non-peptidic species. Reagents isotopically labeled with O18 were used to confirm reactivity. This constitutes an example of distinct differences in reactivity of carboxylates between the gas phase, where they are shown to be reactive, and the solution phase, where they are not regarded as reactive with NHS esters.

  2. Combining protein identification and quantification: C-terminal isotope-coded tagging using sulfanilic acid.

    Science.gov (United States)

    Panchaud, Alexandre; Guillaume, Elisabeth; Affolter, Michael; Robert, Fabien; Moreillon, Philippe; Kussmann, Martin

    2006-01-01

    Two methods of differential isotopic coding of carboxylic groups have been developed to date. The first approach uses d0- or d3-methanol to convert carboxyl groups into the corresponding methyl esters. The second relies on the incorporation of two 18O atoms into the C-terminal carboxylic group during tryptic digestion of proteins in H(2)18O. However, both methods have limitations such as chromatographic separation of 1H and 2H derivatives or overlap of isotopic distributions of light and heavy forms due to small mass shifts. Here we present a new tagging approach based on the specific incorporation of sulfanilic acid into carboxylic groups. The reagent was synthesized in a heavy form (13C phenyl ring), showing no chromatographic shift and an optimal isotopic separation with a 6 Da mass shift. Moreover, sulfanilic acid allows for simplified fragmentation in matrix-assisted laser desorption/ionization (MALDI) due the charge fixation of the sulfonate group at the C-terminus of the peptide. The derivatization is simple, specific and minimizes the number of sample treatment steps that can strongly alter the sample composition. The quantification is reproducible within an order of magnitude and can be analyzed either by electrospray ionization (ESI) or MALDI. Finally, the method is able to specifically identify the C-terminal peptide of a protein by using GluC as the proteolytic enzyme.

  3. Helix A Stabilization Precedes Amino-terminal Lobe Activation upon Calcium Binding to Calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baowei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lowry, David [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mayer, M. Uljana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Squier, Thomas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2008-08-09

    The structural coupling between opposing domains of CaM was investigated using the conformationally sensitive biarsenical probe 4,5-bis(1,3,2-dithioarsolan-2-yl)-resorufin (ReAsH), which upon binding to an engineered tetracysteine binding motif near the end of helix A (Thr-5 to Phe-19) becomes highly fluorescent. Changes in conformation and dynamics are reflective of the native CaM structure, as there is no change in the 1H-15N HSQC NMR spectrum in comparison to wild-type CaM. We find evidence of a conformational intermediate associated with CaM activation, where calcium occupancy of sites in the amino-terminal and carboxyl-terminal lobes of CaM differentially affect the fluorescence intensity of bound ReAsH. Insight into the structure of the conformational intermediate is possible from a consideration of calcium-dependent changes in rates of ReAsH binding and helix A mobility, which respectively distinguish secondary structural changes associated with helix A stabilization from the tertiary structural reorganization of the amino-terminal lobe of CaM necessary for high-affinity binding to target proteins. Helix A stabilization is associated with calcium occupancy of sites in the carboxyl-terminal lobe (Kd = 0.36 ± 0.04 μM), which results in a reduction in the rate of ReAsH binding from 4900 M-1 sec-1 to 370 M-1 sec-1. In comparison, tertiary structural changes involving helix A and other structural elements in the amino-terminal lobe requires calcium-occupancy of amino-terminal sites (Kd = 18 ± 3 μM). Observed secondary and tertiary structural changes involving helix A in response to the sequential calcium occupancy of carboxyl- and amino-terminal lobe calcium binding sites suggest an important involvement of helix A in mediating the structural coupling between the opposing domains of CaM. These results are discussed in terms of a model in which carboxyl-terminal lobe calcium activation induces

  4. Silver-Catalyzed Decarboxylative Azidation of Aliphatic Carboxylic Acids.

    Science.gov (United States)

    Zhu, Yuchao; Li, Xinyao; Wang, Xiaoyang; Huang, Xiaoqiang; Shen, Tao; Zhang, Yiqun; Sun, Xiang; Zou, Miancheng; Song, Song; Jiao, Ning

    2015-10-02

    The catalytic decarboxylative nitrogenation of aliphatic carboxylic acids for the synthesis of alkyl azides is reported. A series of tertiary, secondary, and primary organoazides were prepared from easily available aliphatic carboxylic acids by using K2S2O8 as the oxidant and PhSO2N3 as the nitrogen source. The EPR experiment sufficiently proved that an alkyl radical process was generated in the process, and DFT calculations further supported the SET process followed by a stepwise SH2 reaction to afford azide product.

  5. Biotin Carboxyl Carrier Protein in Barley Chloroplast Membranes

    DEFF Research Database (Denmark)

    Kannangara, C. G.; Jense, C J

    1975-01-01

    Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained by solubil......Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained...

  6. Crystal structure of a raw-starch-degrading bacterial α-amylase belonging to subfamily 37 of the glycoside hydrolase family GH13

    Science.gov (United States)

    Liu, Yanhong; Yu, Jigang; Li, Fudong; Peng, Hui; Zhang, Xuecheng; Xiao, Yazhong; He, Chao

    2017-01-01

    Subfamily 37 of the glycoside hydrolase family GH13 was recently established on the basis of the discovery of a novel α-amylase, designated AmyP, from a marine metagenomic library. AmyP exhibits raw-starch-degrading activity and consists of an N-terminal catalytic domain and a C-terminal starch-binding domain. To understand this newest subfamily, we determined the crystal structure of the catalytic domain of AmyP, named AmyPΔSBD, complexed with maltose, and the crystal structure of the E221Q mutant AmyPΔSBD complexed with maltotriose. Glu221 is one of the three conserved catalytic residues, and AmyP is inactivated by the E221Q mutation. Domain B of AmyPΔSBD forms a loop that protrudes from domain A, stabilizes the conformation of the active site and increases the thermostability of the enzyme. A new calcium ion is situated adjacent to the -3 subsite binding loop and may be responsible for the increased thermostability of the enzyme after the addition of calcium. Moreover, Tyr36 participates in both stacking and hydrogen bonding interactions with the sugar motif at subsite -3. This work provides the first insights into the structure of α-amylases belonging to subfamily 37 of GH13 and may contribute to the rational design of α-amylase mutants with enhanced performance in biotechnological applications. PMID:28303907

  7. Modeling Terminal Velocity

    Science.gov (United States)

    Brand, Neal; Quintanilla, John A.

    2013-01-01

    Using a simultaneously falling softball as a stopwatch, the terminal velocity of a whiffle ball can be obtained to surprisingly high accuracy with only common household equipment. This classroom activity engages students in an apparently daunting task that nevertheless is tractable, using a simple model and mathematical techniques at their…

  8. Navy Multiband Terminal (NMT)

    Science.gov (United States)

    2015-12-01

    military satellite communications terminal. The NMT Program is the required Navy component to the Advanced Extremely High Frequency (AEHF) Program... Advanced Extremely High Frequency ATO - Approval to Operate DAA - Designated Approval Authority deg - degree DISR - DoD Information Standards...Intermediate, and Depot. The Intermediate maintenance will be performed by the Regional Maintenance Centers and further supported by the In Service

  9. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    Energy Technology Data Exchange (ETDEWEB)

    Germane, Katherine L., E-mail: katherine.germane.civ@mail.mil [Oak Ridge Associated Universities, 4692 Millennium Drive, Suite 101, Belcamp, MD 21017 (United States); Servinsky, Matthew D. [US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783 (United States); Gerlach, Elliot S. [Federal Staffing Resources, 2200 Somerville Road, Annapolis, MD 21401 (United States); Sund, Christian J. [US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783 (United States); Hurley, Margaret M., E-mail: katherine.germane.civ@mail.mil [US Army Research Laboratory, 4600 Deer Creek Loop, Aberdeen Proving Ground, MD 21005 (United States); Oak Ridge Associated Universities, 4692 Millennium Drive, Suite 101, Belcamp, MD 21017 (United States)

    2015-07-29

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  10. IS30-related transposon mediated insertional inactivation of bile salt hydrolase (bsh1) gene of Lactobacillus plantarum strain Lp20.

    Science.gov (United States)

    Kumar, Rajesh; Grover, Sunita; Kaushik, Jai K; Batish, Virender Kumar

    2014-01-01

    Lactobacillus plantarum is a flexible and versatile microorganism that inhabits a variety of niches, and its genome may express up to four bsh genes to maximize its survival in the mammalian gut. However, the ecological significance of multiple bsh genes in L. plantarum is still not clearly understood. Hence, this study demonstrated the disruption of bile salt hydrolase (bsh1) gene due to the insertion of a transposable element in L. plantarum Lp20 - a wild strain of human fecal origin. Surprisingly, L. plantarum strain Lp20 produced a ∼2.0 kb bsh1 amplicon against the normal size (∼1.0 kb) bsh1 amplicon of Bsh(+)L. plantarum Lp21. Strain Lp20 exhibited minimal Bsh activity in spite of having intact bsh2, bsh3 and bsh4 genes in its genome and hence had a Bsh(-) phenotype. Cloning and sequence characterization of Lp20 bsh1 gene predicted four individual open reading frames (ORFs) within this region. BLAST analysis of ORF1 and ORF2 revealed significant sequence similarity to the L. plantarum bsh1 gene while ORF3 and ORF4 showed high sequence homology to IS30-family transposases. Since, IS30-related transposon element was inserted within Lp20 bsh1 gene in reverse orientation (3'-5'), it introduced several stop codons and disrupted the protein reading frames of both Bsh1 and transposase. Inverted terminal repeats (GGCAGATTG) of transposon, mediated its insertion at 255-263 nt and 1301-1309 nt positions of Lp20 bsh1 gene. In conclusion, insertion of IS30 related-transposon within the bsh1 gene sequence of L. plantarum strain Lp20 demolished the integrity and functionality of Bsh1 enzyme. Additionally, this transposon DNA sequence remains active among various Lactobacillus spp. and hence harbors the potential to be explored in the development of efficient insertion mutagenesis system.

  11. The putative α/β-hydrolases of Dietzia cinnamea P4 strain as potential enzymes for biocatalytic applications.

    Science.gov (United States)

    Procópio, Luciano; Macrae, Andrew; van Elsas, Jan Dirk; Seldin, Lucy

    2013-03-01

    The draft genome of the soil actinomycete Dietzia cinnamea P4 reveals a versatile group of α/β-hydrolase fold enzymes. Phylogenetic and comparative sequence analyses were used to classify the α/β-hydrolases of strain P4 into six different groups: (i) lipases, (ii) esterases, (iii) epoxide hydrolases, (iv) haloacid dehalogenases, (v) C-C breaking enzymes and (vi) serine peptidases. The high number of lipases/esterases (41) and epoxide hydrolase enzymes (14) present in the relatively small (3.6 Mb) P4 genome is unusual; it is likely to be linked to the survival of strain P4 in its natural environment. Strain P4 is thus equipped with a large number of genes which would appear to confer survivability in harsh hot tropical soil. As such, this highly resilient soil bacterial strain provides an interesting genome for enzyme mining for applications in the field of biotransformations of polymeric compounds.

  12. Synthesis, Crystal and Molecular Structure Studies and DFT Calculations of Phenyl Quinoline-2-Carboxylate and 2-Methoxyphenyl Quinoline-2-Carboxylate; Two New Quinoline-2 Carboxylic Derivatives

    Directory of Open Access Journals (Sweden)

    Edakot Fazal

    2015-02-01

    Full Text Available The crystal and molecular structures of the title compounds, phenyl quinoline-2-carboxylate and 2-methoxyphenyl quinoline-2-carboxylate, two new derivatives of quinolone-2-carboxylic acid, are reported and confirmed by single crystal X-ray diffraction and spectroscopic data. Compound (I, C16H11NO2, crystallizes in the monoclinic space group P21/c, with 8 molecules in the unit cell. The unit cell parameters are a = 14.7910(3 Å; b = 5.76446(12 Å; c = 28.4012(6 Å; β = 99.043(2°; V = 2391.45(9 Å3. Compound (II, C17H13NO5, crystallizes in the monoclinic space group P21/n with 4 molecules in the unit cell. The unit cell parameters are a = 9.6095(3 Å; b = 10.8040(3 Å; c = 13.2427(4 Å; β = 102.012(3°; V = 1344.76(7 Å3. Density functional theory (DFT geometry optimized molecular orbital calculations were performed and frontier molecular orbitals of each compound are displayed. Correlation between the calculated molecular orbital energies (eV for the surfaces of the frontier molecular orbitals to the electronic excitation transitions from the absorption spectra of each compound has been proposed. Additionally, similar correlations observed among six closely related compounds examining small structural differences to their frontier molecular orbital surfaces and from their DFT molecular orbital energies, provide further support for the suggested assignments of the title compounds.

  13. 21 CFR 177.1600 - Polyethylene resins, carboxyl modified.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as... resins used in food-packaging adhesives complying with § 175.105 of this chapter. ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene resins, carboxyl modified....

  14. Synthon preferences in cocrystals of cis-carboxamides:carboxylic acids

    NARCIS (Netherlands)

    Moragues-Bartolome, A.M.; Jones, W.; Cruz-Cabeza, A.J.

    2012-01-01

    We study synthon preferences in cocrystals of cis-carboxamides with carboxylic acids using a combination of database analyses, cocrystallisation experiments and theoretical calculations. We classify the cis-carboxamides into three families: primary amides, cyclic amides (lactams) and cyclic imides.

  15. Dimerization of Carboxylic Acids: An Equation of State Approach

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Panayiotou, Costas

    2017-01-01

    The association term of the nonrandom hydrogen bonding theory, which is an equation of state model, is extended to describe the dimerization of carboxylic acids in binary mixtures with inert solvents and in systems of two different acids. Subsequently, the model is applied to describe the excess...

  16. Palladium-Catalyzed Carboxylation of Activated Vinylcyclopropanes with CO2.

    Science.gov (United States)

    Mita, Tsuyoshi; Tanaka, Hiroyuki; Higuchi, Yuki; Sato, Yoshihiro

    2016-06-01

    By using a palladium catalyst with ZnEt2, activated vinylcyclopropanes were successfully converted into the corresponding β,γ-unsaturated carboxylic acids in high yields under a CO2 atmosphere (1 atm). The intermediate in this reaction is thought to be a nucleophilic η(1)-allylethylpalladium species, which would be produced from π-allylpalladium and ZnEt2 (umpolung reactivity).

  17. Improvement of ruthenium based decarboxylation of carboxylic acids

    Science.gov (United States)

    The removal of oxygen atoms from biobased carboxylic acids is an attractive route to provide the drop in replacement feedstocks that industry needs to continue to provide high performance products. Through the use of ruthenium catalysis, an efficient method where this process can be accomplished on ...

  18. Dissolving Carboxylic Acids and Primary Amines on the Overhead Projector

    Science.gov (United States)

    Solomon, Sally D.; Rutkowsky, Susan A.

    2010-01-01

    Liquid carboxylic acids (or primary amines) with limited solubility in water are dissolved by addition of aqueous sodium hydroxide (or hydrochloric acid) on the stage of an overhead projector using simple glassware and very small quantities of chemicals. This effective and colorful demonstration can be used to accompany discussions of the…

  19. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae.

    Science.gov (United States)

    Casal, Margarida; Queirós, Odília; Talaia, Gabriel; Ribas, David; Paiva, Sandra

    2016-01-01

    This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.

  20. Cyclodextrin derivatives with cyanohydrin and carboxylate groups as artificial glycosidases

    DEFF Research Database (Denmark)

    Bols, Mikael; Ortega-Caballero, Fernando

    2006-01-01

    Two cyclodextrin derivatives (1 and 2) were prepared in an attempt to create glycosidase mimics with a general acid catalyst and a nucleophilic carboxylate group. The catalysts 1 and 2 were found to catalyse the hydrolysis of 4-nitrophenyl beta-D-glucopyranoside at pH 8.0, but rapidly underwent...

  1. Light dependence of carboxylation capacity for C3 photosynthesis models

    Science.gov (United States)

    Photosynthesis at high light is often modelled by assuming limitation by the maximum capacity of Rubisco carboxylation at low carbon dioxide concentrations, by electron transport capacity at higher concentrations, and sometimes by triose-phosphate utilization rate at the highest concentrations. Pho...

  2. Novel Lactate Transporters from Carboxylic Acid-Producing Rhizopus

    Science.gov (United States)

    The fungus Rhizopus is frequently used for fermentative production of lactic acid, but little is known about the mechanisms or proteins for transporting this carboxylic acid. Since transport of the lactate anion across the plasma membrane is critical to prevent acidification of the cytoplasm, we ev...

  3. Carboxylate shifts steer interquinone electron transfer in photosynthesis.

    Science.gov (United States)

    Chernev, Petko; Zaharieva, Ivelina; Dau, Holger; Haumann, Michael

    2011-02-18

    Understanding the mechanisms of electron transfer (ET) in photosynthetic reaction centers (RCs) may inspire novel catalysts for sunlight-driven fuel production. The electron exit pathway of type II RCs comprises two quinone molecules working in series and in between a non-heme iron atom with a carboxyl ligand (bicarbonate in photosystem II (PSII), glutamate in bacterial RCs). For decades, the functional role of the iron has remained enigmatic. We tracked the iron site using microsecond-resolution x-ray absorption spectroscopy after laser-flash excitation of PSII. After formation of the reduced primary quinone, Q(A)(-), the x-ray spectral changes revealed a transition (t½ ≈ 150 μs) from a bidentate to a monodentate coordination of the bicarbonate at the Fe(II) (carboxylate shift), which reverted concomitantly with the slower ET to the secondary quinone Q(B). A redox change of the iron during the ET was excluded. Density-functional theory calculations corroborated the carboxylate shift both in PSII and bacterial RCs and disclosed underlying changes in electronic configuration. We propose that the iron-carboxyl complex facilitates the first interquinone ET by optimizing charge distribution and hydrogen bonding within the Q(A)FeQ(B) triad for high yield Q(B) reduction. Formation of a specific priming intermediate by nuclear rearrangements, setting the stage for subsequent ET, may be a common motif in reactions of biological redox cofactors.

  4. Cirrus Crystal Terminal Velocities.

    Science.gov (United States)

    Heymsfield, Andrew J.; Iaquinta, Jean

    2000-04-01

    Cirrus crystal terminal velocities are of primary importance in determining the rate of transport of condensate from upper- to middle-tropospheric levels and profoundly influence the earth's radiation balance through their effect on the rate of buildup or decay of cirrus clouds. In this study, laboratory and field-based cirrus crystal drag coefficient data, as well as analytical descriptions of cirrus crystal shapes, are used to derive more physically based expressions for the velocities of cirrus crystals than have been available in the past.Polycrystals-often bullet rosettes-are shown to be the dominant crystal types in synoptically generated cirrus, with columns present in varying but relatively large percentages, depending on the cloud. The two critical parameters needed to calculate terminal velocity are the drag coefficient and the ratio of mass to cross-sectional area normal to their fall direction. Using measurements and calculations, it is shown that drag coefficients from theory and laboratory studies are applicable to crystals of the types found in cirrus. The ratio of the mass to area, which is shown to be relatively independent of the number of bullets in the rosette, is derived from an analytic model that represents bullet rosettes containing one to eight bullets in 19 primary geometric configurations. The ratio is also derived for columns. Using this information, a general set of equations is developed to calculate the terminal velocities and masses in terms of the aspect ratio (width divided by length), ice density, and rosette maximum dimension. Simple expressions for terminal velocity and mass as a function of bullet rosette maximum dimension are developed by incorporating new information on bullet aspect ratios.The general terminal velocity and mass relations are then applied to a case from the First International Satellite Cloud Climatology Project (ISCCP) Research Experiment (FIRE) 2, when size spectra from a balloon-borne ice crystal

  5. A new insight into the physiological role of bile salt hydrolase among intestinal bacteria from the genus Bifidobacterium.

    Directory of Open Access Journals (Sweden)

    Piotr Jarocki

    Full Text Available This study analyzes the occurrence of bile salt hydrolase in fourteen strains belonging to the genus Bifidobacterium. Deconjugation activity was detected using a plate test, two-step enzymatic reaction and activity staining on a native polyacrylamide gel. Subsequently, bile salt hydrolases from B. pseudocatenulatum and B. longum subsp. suis were purified using a two-step chromatographic procedure. Biochemical characterization of the bile salt hydrolases showed that the purified enzymes hydrolyzed all of the six major human bile salts under the pH and temperature conditions commonly found in the human gastrointestinal tract. Next, the dynamic rheometry was applied to monitor the gelation process of deoxycholic acid under different conditions. The results showed that bile acids displayed aqueous media gelating properties. Finally, gel-forming abilities of bifidobacteria exhibiting bile salt hydrolase activity were analyzed. Our investigations have demonstrated that the release of deconjugated bile acids led to the gelation phenomenon of the enzymatic reaction solution containing purified BSH. The presented results suggest that bile salt hydrolase activity commonly found among intestinal microbiota increases hydrogel-forming abilities of certain bile salts. To our knowledge, this is the first report showing that bile salt hydrolase activity among Bifidobacterium is directly connected with the gelation process of bile salts. In our opinion, if such a phenomenon occurs in physiological conditions of human gut, it may improve bacterial ability to colonize the gastrointestinal tract and their survival in this specific ecological niche.

  6. Proteins with an alpha/beta hydrolase fold: Relationships between subfamilies in an ever-growing superfamily.

    Science.gov (United States)

    Lenfant, Nicolas; Hotelier, Thierry; Bourne, Yves; Marchot, Pascale; Chatonnet, Arnaud

    2013-03-25

    Alpha/beta hydrolases function as hydrolases, lyases, transferases, hormone precursors or transporters, chaperones or routers of other proteins. The amount of structural and functional available data related to this protein superfamily expands exponentially, as does the number of proteins classified as alpha/beta hydrolases despite poor sequence similarity and lack of experimental data. However the superfamily can be rationally divided according to sequence or structural homologies, leading to subfamilies of proteins with potentially similar functions. Since the discovery of proteins homologous to cholinesterases but devoid of enzymatic activity (e.g., the neuroligins), divergent functions have been ascribed to members of other subfamilies (e.g., lipases, dipeptidylaminopeptidase IV, etc.). To study the potentially moonlighting properties of alpha/beta hydrolases, the ESTHER database (for ESTerase and alpha/beta Hydrolase Enzymes and Relatives; http://bioweb.ensam.inra.fr/esther), which collects, organizes and disseminates structural and functional information related to alpha/beta hydrolases, has been updated with new tools and the web server interface has been upgraded. A new Overall Table along with a new Tree based on HMM models has been included to tentatively group subfamilies. These tools provide starting points for phylogenetic studies aimed at pinpointing the origin of duplications leading to paralogous genes (e.g., acetylcholinesterase versus butyrylcholinesterase, or neuroligin versus carboxylesterase). Another of our goals is to implement new tools to distinguish catalytically active enzymes from non-catalytic proteins in poorly studied or annotated subfamilies.

  7. Antecedents of Customer Relationship Termination

    DEFF Research Database (Denmark)

    Geersbro, Jens; Ritter, Thomas

    To end business relationships, or to more actively terminate relationships, has long been acknowledged as part of customer relationship management. However, compared to other elements such as initiation and maintenance of relationships, little is known about the termination of business...... relationships as a managerial task. This paper contributes by (1) developing a conceptualization of relationship termination competence and (2) analyzing its antecedents. The empirical results identify termination acceptance, definition non-customers, organizational relationship termination routines......, and motivation as significant antecedents. Because of this, managers need to develop their organizations in order to use relationship termination as a vital strategy....

  8. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    Science.gov (United States)

    Vaïtilingom, M.; Charbouillot, T.; Deguillaume, L.; Maisonobe, R.; Parazols, M.; Amato, P.; Sancelme, M.; Delort, A.-M.

    2011-02-01

    Clouds are multiphasic atmospheric systems in which the dissolved organic compounds, dominated by carboxylic acids, are subject to multiple chemical transformations in the aqueous phase. Among them, solar radiation, by generating hydroxyl radicals (•OH), is considered as the main catalyzer of the reactivity of organic species in clouds. We investigated to which extent the active biomass existing in cloud water represents an alternative route to the chemical reactivity of carboxylic acids. Pure cultures of seventeen bacterial strains (Arthrobacter, Bacillus, Clavibacter, Frigoribacterium, Pseudomonas, Sphingomonas and Rhodococcus), previously isolated from cloud water and representative of the viable community of clouds were first individually incubated in two artificial bulk cloud water solutions at 17 °C and 5 °C. These solutions mimicked the chemical composition of cloud water from "marine" and "continental" air masses, and contained the major carboxylic acids existing in the cloud water (i.e. acetate, formate, succinate and oxalate). The concentrations of these carboxylic compounds were monitored over time and biodegradation rates were determined. In average, they ranged from 2 ×10-19 for succinate to 1 × 10-18 mol cell-1 s-1 for formate at 17 °C and from 4 × 10-20 for succinate to 6 × 10-19 mol cell-1 s-1 for formate at 5 °C, with no significant difference between "marine" and "continental" media. In parallel, irradiation experiments were also conducted in these two artificial media to compare biodegradation and photodegradation of carboxylic compounds. To complete this comparison, the photodegradation rates of carboxylic acids by •OH radicals were calculated from literature data. Inferred estimations suggested a significant participation of microbes to the transformation of carboxylic acids in cloud water, particularly for acetate and succinate (up to 90%). Furthermore, a natural cloud water sample was incubated (including its indigenous microflora

  9. Termination Casts: A Flexible Approach to Termination with General Recursion

    Directory of Open Access Journals (Sweden)

    Aaron Stump

    2010-12-01

    Full Text Available This paper proposes a type-and-effect system called Teqt, which distinguishes terminating terms and total functions from possibly diverging terms and partial functions, for a lambda calculus with general recursion and equality types. The central idea is to include a primitive type-form "Terminates t", expressing that term t is terminating; and then allow terms t to be coerced from possibly diverging to total, using a proof of Terminates t. We call such coercions termination casts, and show how to implement terminating recursion using them. For the meta-theory of the system, we describe a translation from Teqt to a logical theory of termination for general recursive, simply typed functions. Every typing judgment of Teqt is translated to a theorem expressing the appropriate termination property of the computational part of the Teqt term.

  10. Biosynthesis of intestinal microvillar proteins. Dimerization of aminopeptidase N and lactase-phlorizin hydrolase

    DEFF Research Database (Denmark)

    Danielsen, E M

    1990-01-01

    The pig intestinal brush border enzymes aminopeptidase N (EC 3.4.11.2) and lactase-phlorizin hydrolase (EC 3.2.1.23-62) are present in the microvillar membrane as homodimers. Dimethyl adipimidate was used to cross-link the two [35S]methionine-labeled brush border enzymes from cultured mucosal...... explants. For aminopeptidase N, dimerization did not begin until 5-10 min after synthesis, and maximal dimerization by cross-linking of the transient form of the enzyme required 1 h, whereas the mature form of aminopeptidase N cross-linked with unchanged efficiency from 45 min to 3 h of labeling. Formation...... of dimers of this enzyme therefore occurs prior to the Golgi-associated processing, and the slow rate of dimerization may be the rate-limiting step in the transport from the endoplasmic reticulum to the Golgi complex. For lactase-phlorizin hydrolase, the posttranslational processing includes a proteolytic...

  11. Mobile Phone Terminal

    Science.gov (United States)

    1978-01-01

    In the photo, an employee of a real estate firm is contacting his office by means of HICOM, an advanced central terminal for mobile telephones. Developed by the Orlando Division of Martin Marietta Aerospace, Orlando, Florida, and manufactured by Harris Corporation's RF Division, Rochester, N.Y., HICOM upgrades service to users, provides better system management to telephone companies, and makes more efficient use of available mobile telephone channels through a computerized central control terminal. The real estate man, for example, was able to dial his office and he could also have direct-dialed a long distance number. Mobile phones in most areas not yet served by HICOM require an operator's assistance for both local and long distance calls. HICOM improves system management by automatically recording information on all calls for accurate billing, running continual performance checks on its own operation, and reporting any malfunctions to a central office.

  12. Selective Inhibition of Plant Serine Hydrolases by Agrochemicals Revealed by Competitive ABPP

    OpenAIRE

    Kaschani, Farnusch; Nickel, Sabrina; Pandey, Bikram; Benjamin F Cravatt; Kaiser, Markus; van der Hoorn, Renier A L

    2011-01-01

    Organophosphate and –phosphonates and their thiol derivatives are often used in agroindustry as herbicides and insecticides, but their potential off-targets in the plant and their consumers are poorly investigated. Here, we use competitive Activity-based Protein Profiling (ABPP) of serine hydrolases (SHs) to detect targets of these agrochemicals and other compounds in Arabidopsis thaliana. Using broad-range and specific probes, and by overexpression of various SHs in planta, we are able to co...

  13. The Crystal Structure of Bacillus subtilis Lipase : A Minimal α/β Hydrolase Fold Enzyme

    NARCIS (Netherlands)

    Pouderoyen, Gertie van; Eggert, Thorsten; Jaeger, Karl-Erich; Dijkstra, Bauke W.

    2001-01-01

    The X-ray structure of the lipase LipA from Bacillus subtilis has been determined at 1.5 Å resolution. It is the first structure of a member of homology family I.4 of bacterial lipases. The lipase shows a compact minimal α/β hydrolase fold with a six-stranded parallel β-sheet flanked by five α-helic

  14. Organophosphate Hydrolase in Conductometric Biosensor for the Detection of Organophosphate Pesticides

    OpenAIRE

    2015-01-01

    The research has developed an enzyme biosensor for the detection organophosphate pesticide residues. The biosensor consists of a pair of screen-printed carbon electrode (SPCEs). One of electrodes contains immobilized organophosphate hydrolase (OPH) on a chitosan membrane by cross-linking it with glutaraldehyde. The area of the electrodes was optimized to 3, 5, and 7 mm2. The OPH was isolated from Pseudomonas putida, and was purified by the ammonium sulfate precipitation method, with 6444 ppm ...

  15. Navy Multiband Terminal (NMT)

    Science.gov (United States)

    2013-12-01

    Acquisition Management Information Retrieval Dev Est - Development Estimate DoD - Department of Defense DSN - Defense Switched Network Econ - Economic Eng...Memo Note for Shore (for MTBF and MTBCF): Represents IOT &E and Verification of Correction of Deficiencies testing results; mission impact deemed...insignificant due to multiple terminals at Shore site. Note for Sub (for MTBF, MTBCF and MTTR): Represents IOT &E hours; test duration limit for

  16. Synthesis of Stereoisomers of 3-Aminocyclohexanecarboxylic Acid and cis-3-Aminocyclohexene-5-carboxylic Acid

    Institute of Scientific and Technical Information of China (English)

    HU Yu; YU Sheng-Liang; YANG Yu-Jin; ZHU Jin; DENG Jin-Gen

    2006-01-01

    A practical synthesis of stereoisomers of 3-aminocyclohexanecarboxylic acid and cis-3-aminocyclohexene-5-carboxylic acid was achieved from cyclohexene-4-carboxylic acid via a key resolving approach with chiral 1-phenylethylamine.

  17. Molecular Cloning of a Novel cDNA From Mus Muscular BALB/c Mice Encoding Glycosyl Hydrolase Family 1: A Homolog of HumanLactase-Phlorizin Hydrolase

    Institute of Scientific and Technical Information of China (English)

    WEI HE; ZHEN-YU JI; CHENG-YU HUANG

    2006-01-01

    Objective To study the mechanism of lactose intolerance (LI) by cloning the mouse lactase cDNA and recombining a vector. Methods Total murine RNA was isolated from the small intestine of a 4-week-old BALB/c mouse (♂).Gene-specific primers were designed and synthesized according to the cDNA sequences of lactase-phlorizin hydrolase (LPH) in human, rat, and rabbit. A coding sequence (CDS) fragment was obtained using RT-PCR, and inserted into a clone vector pNEB-193, then the cDNA was sequenced and analyzed using bioinformatics. Results The cDNA from the BALB/c mouse with 912 bp encoding 303 amino acid residues. Analysis of the deduced amino acid sequence using bioinformatics revealed that this cDNA shared extensive sequence homology with human LPH containing a conserved glycosy1 hydrolase family 1 motif important for regulating lactase intolerance. Conclusion BALB/c mouse LPH cDNA (GenBank accession No: AY751548) provides a necessary foundation for study of the biological function and regulatory mechanism of the lactose intolerance in mice.

  18. Development of monoclonal antibodies to human microsomal epoxide hydrolase and analysis of “preneoplastic antigen”-like molecules

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hongying [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Yoshimura, Kazunori [Department of Physiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Kobayashi, Nobuharu; Sugiyama, Kazuo [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Sawada, Jun-ichi; Saito, Yoshiro [Division of Biochemistry and Immunochemistry, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501 (Japan); Morisseau, Christophe; Hammock, Bruce D. [Department of Entomology and Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616-8584 (United States); Akatsuka, Toshitaka, E-mail: akatsuka@saitama-med.ac.jp [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan)

    2012-04-01

    Microsomal epoxide hydrolase (mEH) is a drug metabolizing enzyme which resides on the endoplasmic reticulum (ER) membrane and catalyzes the hydration of reactive epoxide intermediates that are formed by cytochrome P450s. mEH is also thought to have a role in bile acid transport on the plasma membrane of hepatocytes. It is speculated that efficient execution of such multiple functions is secured by its orientation and association with cytochrome P450 enzymes on the ER membrane and formation of a multiple transport system on the plasma membrane. In certain disease status, mEH loses its association with the membrane and can be detected as distinct antigens in the cytosol of preneoplastic foci of liver (preneoplastic antigen), in the serum in association with hepatitis C virus infection (AN antigen), or in some brain tumors. To analyze the antigenic structures of mEH in physiological and pathological conditions, we developed monoclonal antibodies against different portions of mEH. Five different kinds of antibodies were obtained: three, anti-N-terminal portions; one anti-C-terminal; and one, anti-conformational epitope. By combining these antibodies, we developed antigen detection methods which are specific to either the membrane-bound form or the linearized form of mEH. These methods detected mEH in the culture medium released from a hepatocellular carcinoma cell line and a glioblastoma cell line, which was found to be a multimolecular complex with a unique antigenic structure different from that of the membrane-bound form of mEH. These antibodies and antigen detection methods may be useful to study pathological changes of mEH in various human diseases. -- Highlights: ► Monoclonal antibodies against different portions of mEH were developed. ► They discriminate between the membrane-bound and the linearized forms of mEH. ► We analyze the antigenic structure of the altered form of mEH in tumor cells. ► Preneoplastic antigen is a multimolecular complex of mEH with

  19. Role of Intestinal Hydrolase in the Absorption of Prenylated Flavonoids Present in Yinyanghuo

    Directory of Open Access Journals (Sweden)

    Ming Hu

    2011-02-01

    Full Text Available Purpose: Yinyanghuo (Herba Epimdii is a traditional Chinese herb containing prenylated flavonoids as its active constituents. The aim of this study was to examine the significance of the intestinal hydrolysis of prenylated flavonoids by lactase phlorizin hydrolase (LPH, an enzyme at the brush border membrane of intestinal cells. Methods: A four-site perfused rat intestinal model was used. The concentration of the flavonoids of interest and their metabolites in different intestinal segements were analyzed by HPLC, and the apparent permeabilities were calculated. A lactase phlorizin hydrolase inhibitor (gluconolactone was employed to investigate the mechanism of the intestinal absorption, and the metabolites of the four flavonoids were identified using LC/MS/MS. Results: Diglycosides (icariin or triglycosides (epimedin A, epimedin B, and epimedin C were hydrolyzed rapidly in duodenum and jejunum producing one or two metabolites, while a monoglycoside (baohuoside I was absorbed directly. When co-perfused with glucono-lactone, both the hydrolysis of diglycosides and triglycosides were significantly inhibited, with inhibition rates for icariin (62%, 50%, 40%, 46%, epimedin A, (55%, 26%, 21%, 14%; epimedin B (42%, 40%, 74%, 22%, and epimedin C (42%, 40%, 52%, 35% in duodenum, jejunum, ileum, and colon, respectively. Also the metabolites of icariin, epimedin A, epimedin B, and epimedin C were identified as baohuoside I (one of two, sagittatoside A, sagittatoside B, and 2"-O-rhamnosylicariside II, respectively. Conclusions: The results showed that lactase phlorizin hydrolase was a major determinant of the intestinal absorption of prenylated flavonoids present in Yinyanghuo.

  20. Exported Epoxide Hydrolases Modulate Erythrocyte Vasoactive Lipids during Plasmodium falciparum Infection

    Directory of Open Access Journals (Sweden)

    Natalie J. Spillman

    2016-10-01

    Full Text Available Erythrocytes are reservoirs of important epoxide-containing lipid signaling molecules, including epoxyeicosatrienoic acids (EETs. EETs function as vasodilators and anti-inflammatory modulators in the bloodstream. Bioactive EETs are hydrolyzed to less active diols (dihydroxyeicosatrienoic acids by epoxide hydrolases (EHs. The malaria parasite Plasmodium falciparum infects host red blood cells (RBCs and exports hundreds of proteins into the RBC compartment. In this study, we show that two parasite epoxide hydrolases, P. falciparum epoxide hydrolases 1 (PfEH1 and 2 (PfEH2, both with noncanonical serine nucleophiles, are exported to the periphery of infected RBCs. PfEH1 and PfEH2 were successfully expressed in Escherichia coli, and they hydrolyzed physiologically relevant erythrocyte EETs. Mutations in active site residues of PfEH1 ablated the ability of the enzyme to hydrolyze an epoxide substrate. Overexpression of PfEH1 or PfEH2 in parasite-infected RBCs resulted in a significant alteration in the epoxide fatty acids stored in RBC phospholipids. We hypothesize that the parasite disruption of epoxide-containing signaling lipids leads to perturbed vascular function, creating favorable conditions for binding and sequestration of infected RBCs to the microvascular endothelium.

  1. Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Asim K.; Aukema, Kelly G.; Elias, Mikael; Wackett, Lawrence P.

    2017-03-27

    Cyanuric acid hydrolases are of industrial importance because of their use in aquatic recreational facilities to remove cyanuric acid, a stabilizer for the chlorine. Degradation of excess cyanuric acid is necessary to maintain chlorine disinfection in the waters. Cyanuric acid hydrolase opens the cyanuric acid ring hydrolytically and subsequent decarboxylation produces carbon dioxide and biuret. In the present study, we report the X-ray structure of TrzD, a cyanuric acid hydrolase from Acidovorax citrulli. The crystal structure at 2.19 Å resolution shows a large displacement of the catalytic lysine (Lys163) in domain 2 away from the active site core, whereas the two other active site lysines from the two other domains are not able to move. The lysine displacement is proposed here to open up a channel for product release. Consistent with that, the structure also showed two molecules of the co-product, carbon dioxide, one in the active site and another trapped in the proposed exit channel. Previous data indicated that the domain 2 lysine residue plays a role in activating an adjacent serine residue carrying out nucleophilic attack, opening the cyanuric acid ring, and the mobile lysine guides products through the exit channel.

  2. Brucella abortus choloylglycine hydrolase affects cell envelope composition and host cell internalization.

    Directory of Open Access Journals (Sweden)

    María Inés Marchesini

    Full Text Available Choloylglycine hydrolase (CGH, E.C. 3.5.1.24 is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization.

  3. Highly Regioselective Palladium-Catalyzed Carboxylation of Allylic Alcohols with CO2.

    Science.gov (United States)

    Mita, Tsuyoshi; Higuchi, Yuki; Sato, Yoshihiro

    2015-11-01

    Various allylic alcohols were carboxylated in the presence of a catalytic amount of PdCl2 and PPh3 using ZnEt2 as a stoichiometric transmetalation agent under a CO2 atmosphere (1 atm). This carboxylation proceeded in a highly regioselective manner to afford branched carboxylic acids predominantly. The β,γ-unsaturated carboxylic acid thus obtained was successfully converted into an optically active γ-butyrolactone, a known intermediate of (R)-baclofen.

  4. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  5. 40 CFR 721.2088 - Carboxylic acids, (C6-C9) branched and linear.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Carboxylic acids, (C6-C9) branched and... Specific Chemical Substances § 721.2088 Carboxylic acids, (C6-C9) branched and linear. (a) Chemical... as carboxylic acids, (C6-C9) branched and linear (PMNs P-93-313, 314, 315, and 316) are subject...

  6. Kinetic resolution of racemic carboxylic acids through asymmetric protolactonization promoted by chiral phosphonous acid diester.

    Science.gov (United States)

    Sakuma, Masayuki; Sakakura, Akira; Ishihara, Kazuaki

    2013-06-07

    Chiral phosphonium salts induce the kinetic resolution of racemic α-substituted unsaturated carboxylic acids through asymmetric protolactonization. Both the lactones and the recovered carboxylic acids are obtained with high enantioselectivities and high S (= kfast/kslow) values. Asymmetric protolactonization also leads to the desymmetrization of achiral carboxylic acids. Notably, chiral phosphonous acid diester not only induced the enantioselectivity but also promoted protolactonization.

  7. Crystal structure of an Exo-1,5-{alpha}-L-arabinofuranosidase from Streptomyces avermitilis provides insights into the mechanism of substrate discrimination between exo- and endo-type enzymes in glycoside hydrolase family 43.

    Science.gov (United States)

    Fujimoto, Zui; Ichinose, Hitomi; Maehara, Tomoko; Honda, Mariko; Kitaoka, Motomitsu; Kaneko, Satoshi

    2010-10-29

    Exo-1,5-α-L-arabinofuranosidases belonging to glycoside hydrolase family 43 have strict substrate specificity. These enzymes hydrolyze only the α-1,5-linkages of linear arabinan and arabino-oligosaccharides in an exo-acting manner. The enzyme from Streptomyces avermitilis contains a core catalytic domain belonging to glycoside hydrolase family 43 and a C-terminal arabinan binding module belonging to carbohydrate binding module family 42. We determined the crystal structure of intact exo-1,5-α-L-arabinofuranosidase. The catalytic module is composed of a 5-bladed β-propeller topologically identical to the other family 43 enzymes. The arabinan binding module had three similar subdomains assembled against one another around a pseudo-3-fold axis, forming a β-trefoil-fold. A sugar complex structure with α-1,5-L-arabinofuranotriose revealed three subsites in the catalytic domain, and a sugar complex structure with α-L-arabinofuranosyl azide revealed three arabinose-binding sites in the carbohydrate binding module. A mutagenesis study revealed that substrate specificity was regulated by residues Asn-159, Tyr-192, and Leu-289 located at the aglycon side of the substrate-binding pocket. The exo-acting manner of the enzyme was attributed to the strict pocket structure of subsite -1, formed by the flexible loop region Tyr-281-Arg-294 and the side chain of Tyr-40, which occupied the positions corresponding to the catalytic glycon cleft of GH43 endo-acting enzymes.

  8. Density functional theory study of the oligomerization of carboxylic acids.

    Science.gov (United States)

    Di Tommaso, Devis; Watson, Ken L

    2014-11-20

    We present a density functional theory [M06-2X/6-31+G(d,p)] study of the structures and free energies of formation of oligomers of four carboxylic acids (formic acid, acetic acid, tetrolic acid, and benzoic acid) in water, chloroform, and carbon tetrachloride. Solvation effects were treated using the SMD continuum solvation model. The low-lying energy structures of molecular complexes were located by adopting an efficient search procedure to probe the potential energy surfaces of the oligomers of carboxylic acids (CA)n (n = 2-6). The free energies of the isomers of (CA)n in solution were determined as the sum of the electronic energy, vibrational-rotational-translational gas-phase contribution, and solvation free energy. The assessment of the computational protocol adopted in this study with respect to the dimerization of acetic acid, (AA)2, and formic acid, (FA)2, located new isomers of (AA)2 and (FA)2 and gave dimerization constants in good agreement with the experimental values. The calculation of the self-association of acetic acid, tetrolic acid, and benzoic acid shows the following: (i) Classic carboxylic dimers are the most stable isomer of (CA)2 in both the gas phase and solution. (ii) Trimers of carboxylic acid are stable in apolar aprotic solvents. (iii) Molecular clusters consisting of two interacting classic carboxylic dimers (CA)4,(D+D) are the most stable type of tetramers, but their formation from the self-association of classic carboxylic dimers is highly unfavorable. (iv) For acetic acid and tetrolic acid the reactions (CA)2 + 2CA → (CA)4,(D+D) and (CA)3 + CA → (CA)4,(D+D) are exoergonic, but these aggregation pathways go through unstable clusters that could hinder the formation of tetrameric species. (v) For tetrolic acid the prenucleation species that are more likely to form in solution are dimeric and trimeric structures that have encoded structural motifs resembling the α and β solid forms of tetrolic acid. (vi) Stable tetramers of

  9. Rh(III)-catalyzed decarboxylative ortho-heteroarylation of aromatic carboxylic acids by using the carboxylic acid as a traceless directing group.

    Science.gov (United States)

    Qin, Xurong; Sun, Denan; You, Qiulin; Cheng, Yangyang; Lan, Jingbo; You, Jingsong

    2015-04-03

    Highly selective decarboxylative ortho-heteroarylation of aromatic carboxylic acids with various heteroarenes has been developed through Rh(III)-catalyzed two-fold C-H activation, which exhibits a wide substrate scope of both aromatic carboxylic acids and heteroarenes. The use of naturally occurring carboxylic acid as the directing group avoids troublesome extra steps for installation and removal of an external directing group.

  10. Substrate specificity within a family of outer membrane carboxylate channels.

    Directory of Open Access Journals (Sweden)

    Elif Eren

    2012-01-01

    Full Text Available Many Gram-negative bacteria, including human pathogens such as Pseudomonas aeruginosa, do not have large-channel porins. This results in an outer membrane (OM that is highly impermeable to small polar molecules, making the bacteria intrinsically resistant towards many antibiotics. In such microorganisms, the majority of small molecules are taken up by members of the OprD outer membrane protein family. Here we show that OprD channels require a carboxyl group in the substrate for efficient transport, and based on this we have renamed the family Occ, for outer membrane carboxylate channels. We further show that Occ channels can be divided into two subfamilies, based on their very different substrate specificities. Our results rationalize how certain bacteria can efficiently take up a variety of substrates under nutrient-poor conditions without compromising membrane permeability. In addition, they explain how channel inactivation in response to antibiotics can cause resistance but does not lead to decreased fitness.

  11. Soluble, High Molecular Weight Polysilsesquioxanes with Carboxylate Functionalities

    Energy Technology Data Exchange (ETDEWEB)

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.; WHEELER,DAVID R.

    2000-07-14

    Trialkoxysilyl-containing monomers of the type (RO){sub 3}Si(CH{sub 2}){sub 3}C(O)OtBu (R = Me, Et) were prepared by hydrosilation of the corresponding vinylic tert-butyl esters CH{sub 3}CHCH{sub 2}C(O)OtBu. Acid- or base-catalyzed polymerization of the monomers leads to very high molecular weight polymers with relatively narrow polydispersities. The polymerization results in complete condensation of the alkoxy groups while the tert-butyl ester functionality remains fully intact. Partial or full deprotection of the tert-butyl group can easily be achieved to yield the corresponding carboxylic acid polymers. The ester and carboxylic acid functionalities of these new materials allow for their potential use in a variety of applications such as scavenging of heavy metals.

  12. Propensity of salicylamide and ethenzamide cocrystallization with aromatic carboxylic acids.

    Science.gov (United States)

    Przybyłek, Maciej; Ziółkowska, Dorota; Mroczyńska, Karina; Cysewski, Piotr

    2016-03-31

    The cocrystallization of salicylamide (2-hydroxybenzamide, SMD) and ethenzamide (2-ethoxybenzamide, EMD) with aromatic carboxylic acids was examined both experimentally and theoretically. The supramolecular synthesis taking advantage of the droplet evaporative crystallization (DEC) technique was combined with powder diffraction and vibrational spectroscopy as the analytical tools. This led to identification of eleven new cocrystals including pharmaceutically relevant coformers such as mono- and dihydroxybenzoic acids. The cocrystallization abilities of SMD and EMD with aromatic carboxylic acids were found to be unexpectedly divers despite high formal similarities of these two benzamides and ability of the R2,2(8) heterosynthon formation. The source of diversities of the cocrystallization landscapes is the difference in the stabilization of possible conformers by adopting alternative intramolecular hydrogen boding patterns. The stronger intramolecular hydrogen bonding the weaker affinity toward intermolecular complexation potential. The substituent effects on R2,2(8) heterosynthon properties are also discussed.

  13. Carboxylic Acids as Indicators of Parent Body Conditions

    Science.gov (United States)

    Lerner N. R.; Chang, Sherwood (Technical Monitor)

    1995-01-01

    Alpha-hydroxy and alpha-amino carboxylic acids found on the Murchison meteorite are deuterium enriched. It is postulated that they arose from a common interstellar scurce: the reaction of carbonyl compounds in an aqueous mixture containing HCN and NH3. Carbonyl compounds react with HCN to form alpha-hydroxy nitriles, RR'CO + HCN right and left arrow RR'C(OH)CN. If ammonia is also present, the alpha-hydroxy nitriles will exist in equilibrium with the alpha-amino nitriles, RR'C(OH)CN + NH3 right and left arrow - RRCNH2CN + H2O. Both nitrites are hydrolyzed by water to form carboxylic acids: RR'C(OH)CN + H2O yields RR'C(OH)CO2H and RR'C(NH2)CN + H2O yields RR'C(NH2)CO2H.

  14. Influences of Carboxyl Methyl Cellulose on Performances of Mortar

    Institute of Scientific and Technical Information of China (English)

    WANG Yuli; ZHOU Mingkai; SHAN Junhong; XU Fang; YANG Yuhui

    2007-01-01

    Carboxyl methyl cellulose (CMC) was mixed into mortar to improve the waterretention performance of mortar, the quality of floated coat of aerated concrete became better. The consistency and compression strength of mortar with CMC were studied. The water absorption was studied with the method of filter paper. The micro mechanism was researched with X-ray diffraction and scanning electron microscopy(SEM). The experimental results show the water-holding performance of mortar with CMC is largely improved and it is better when the mixed amount is about 1.5%; the compression strength had a descending trend with the increase of CMC; CMC reacted with calcium hydroxide(CH) into the deposition of calcium carboxyl methyl cellulose.

  15. Quinoline based receptor in fluorometric discrimination of carboxylic acids

    Directory of Open Access Journals (Sweden)

    2008-12-01

    Full Text Available Quinoline and naphthalene-based fluororeceptors 1 and 2 have been designed and synthesized for detection of hydroxy carboxylic acids in less polar solvents. The receptor 1 shows monomer emission quenching followed by excimer emission upon hydrogen bond-mediated complexation of carboxylic acids. The excimer emission distinguishes aromatic dicarboxylic acids from aliphatic dicarboxylic acids and even long chain aliphatic dicarboxylic acids from short chain aliphatic dicarboxylic acids. The receptor 1 is found to be selective for citric acid with a strong excimer emission in CHCl3. On the contrary, the receptor 2 exhibited less binding constant value and did not form any excimer upon complexation with the same acids under similar conditions. This established the role of quinoline ring nitrogen in binding with the acids.

  16. CARBOXYLIC ACIDS OF HERB OF THYMUS CRETACEUS KLOK. ET SCHOST

    Directory of Open Access Journals (Sweden)

    V. N. Bubenchikova

    2014-01-01

    Full Text Available We have studied carboxylic acids of the herb of Thymus cretaceus Klok. et Schost which is widespread on a territory of some regions (Belgorod, Voronezh. The study was carried out using gas-liquid chromatography at Agilent Technologies 6890 chromatographer with massspectrometric detector 5973 N. Acids concentration was calculated by means of inner standard.We have established that carboxylic acids of Thymus cretaceus are represented by 34 compounds. Palmitic (1779.02 mg/kg, behenic (1084.15 mg/kg, levulinic (986.24 mg/kg and linoleic acids (678.82 mg/kg predominate among fatty acids; citric (9835.14 mg/kg, malonic (447.91 mg/kg and oxalic acids (388.32 mg/kg predominate among organic acids; andferulic acid predominate amongphenolcarbonic acids.

  17. Silver-catalyzed arylation of (hetero)arenes by oxidative decarboxylation of aromatic carboxylic acids.

    Science.gov (United States)

    Kan, Jian; Huang, Shijun; Lin, Jin; Zhang, Min; Su, Weiping

    2015-02-09

    A long-standing challenge in Minisci reactions is achieving the arylation of heteroarenes by oxidative decarboxylation of aromatic carboxylic acids. To address this challenge, the silver-catalyzed intermolecular Minisci reaction of aromatic carboxylic acids was developed. With an inexpensive silver salt as a catalyst, this new reaction enables a variety of aromatic carboxylic acids to undergo decarboxylative coupling with electron-deficient arenes or heteroarenes regardless of the position of the substituents on the aromatic carboxylic acid, thus eliminating the need for ortho-substituted aromatic carboxylic acids, which were a limitation of previously reported methods.

  18. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2015-08-01

    Full Text Available In this study, fluorescent nitrogen-doped carbon dots (NCDs were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  19. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Wang, Yun; Dai, Xiao; Zou, Guifu, E-mail: kqzhang@suda.edu.cn, E-mail: zouguifu@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Gao, Peng; Zhang, Ke-Qin, E-mail: kqzhang@suda.edu.cn, E-mail: zouguifu@suda.edu.cn; Du, Dezhuang [National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123 (China); Guo, Jun [Testing and Analysis Center, Soochow University, Suzhou 215123 (China)

    2015-08-01

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  20. Crystal structure of ethyl 2,4-dichloroquinoline-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Alberto Cabrera

    2015-12-01

    Full Text Available In the crystal structure of the title compound, C12H9Cl2NO2, the mean planes through the quinoline and carboxylate groups have r.m.s. deviations of 0.006 and 0.021 Å, respectively, and form a dihedral angle of 87.06 (19°. In the crystal, molecules are linked via very weak C—H...O hydrogen bonds, forming chains, which propagate along the c-axis direction.

  1. STUDY OF CARBOXYL METHYL STARCH ON PAPER STRENGTH

    Institute of Scientific and Technical Information of China (English)

    Li Xinping; Liu Ye; Lin Youfeng

    2004-01-01

    A novel starch derivative--carboxyl methyl starch (CMS) was investigated in this paper. Through a series of experiments, the results showed that CMS has considerable effect on paper strength as internal additive, and the better technology conditions are as follows: pH=7.0, CMS dosage is 1.0% (on o.d. pulp),mixing time is 45min and drying temperature is 105℃.

  2. STUDY OF CARBOXYL METHYL STARCH ON PAPER STRENGTH

    Institute of Scientific and Technical Information of China (English)

    LiXinping; LiuYe; LinYoufeng

    2004-01-01

    A novel starch derivative--carboxyl methyl starch(CMS) was investigated in this paper. Through aseries of experiments, the results showed that CMShas considerable effect on paper strength as internaladditive, and the better technology conditions are asfollows: pH=7.0, CMS dosage is 1.0% (on o.d. pulp),mixing time is 45min and drying temperature is105~C.

  3. 2-Oxo-1,2-dihydroquinoline-4-carboxylic acid monohydrate

    Directory of Open Access Journals (Sweden)

    Yassir Filali Baba

    2016-06-01

    Full Text Available In the title compound, C10H7NO3·H2O, O—H...O hydrogen bonds involving the carboxyl groups, the keto groups and the lattice water molecules form stepped sheets approximately parallel to {010} which are tied together by pairwise N—H...O interactions. The asymmetric unit contains two independent quinolone derivatives and two water molecules, one of which is disordered over two positions, of equal occupancy.

  4. ELECTROANALYTICAL APPLICATIONS OF CARBOXYL-MODIFIED CARBON NANOTUBE FILM ELECTRODES

    Institute of Scientific and Technical Information of China (English)

    C.G. Hu; W.L. Wang; K.J. Liao; W. Zhu

    2003-01-01

    The electrochemical behavior of a carboxyl-modified carbon nanotube films was investigated to explore its possibility in electroanalytical applicaton. Cyclic voltammetry of quinone was conducted in 1mol/L Na2SO4, which showed a stable, quasi-reversible voltammetric response for quinone / hydroquinone, and the anodic and the cathodic peak potentials were 0.657V and -0.029V (vs. SCE) at a scan rate of 0.1V.s-1, respectively. Both anodic and cathodic peak currents depended linearly on the square root of the scan rate over the range of 0.01-0. 5 V.s-1, which suggested that the process of the electrode reactions was diffusion-controlled. Carboxyl-modified carbon nanotube electrodes made it possible to determine low level of dopamine selectively in the presence of a large excess of ascorbic acid in acidic media using derivative voltammetry.The results obtained were discussed in details. This work demonstrates the potential of carboxyl-modified carbon nanotube electrodes for electroanalytical applications.

  5. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery

    Science.gov (United States)

    Bahrami, Zohreh; Badiei, Alireza; Ziarani, Ghodsi Mohammadi

    2015-03-01

    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N2 adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples.

  6. Behavior of carboxylic acids upon complexation with beryllium compounds.

    Science.gov (United States)

    Mykolayivna-Lemishko, Kateryna; Montero-Campillo, M Merced; Mó, Otilia; Yáñez, Manuel

    2014-07-31

    A significant acidity enhancement and changes on aromaticity were previously observed in squaric acid and its derivatives when beryllium bonds are present in those systems. In order to know if these changes on the chemical properties could be considered a general behavior of carboxylic acids upon complexation with beryllium compounds, complexes between a set of representative carboxylic acids RCOOH (formic acid, acetic acid, propanoic acid, benzoic acid, and oxalic acid) and beryllium compounds BeX2 (X = H, F, Cl) were studied by means of density functional theory calculations. Complexes that contain a dihydrogen bond or a OH···X interaction are the most stable in comparison with other possible BeX2 complexation patterns in which no other weak interactions are involved apart from the beryllium bond. Formic, acetic, propanoic, benzoic, and oxalic acid complexes with BeX2 are much stronger acids than their related free forms. The analysis of the topology of the electron density helps to clarify the reasons behind this acidity enhancement. Importantly, when the halogen atom is replaced by hydrogen in the beryllium compound, the dihydrogen bond complex spontaneously generates a new neutral complex [RCOO:BeH] in which a hydrogen molecule is lost. This seems to be a trend for carboxylic acids on complexing BeX2 compounds.

  7. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Zohreh; Badiei, Alireza, E-mail: abadiei@khayam.ut.ac.ir [University of Tehran, School of Chemistry, College of Science (Iran, Islamic Republic of); Ziarani, Ghodsi Mohammadi [Alzahra University, Research Laboratory of Pharmaceutical (Iran, Islamic Republic of)

    2015-03-15

    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N{sub 2} adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples.

  8. Oxidation of Alpha-Ketoglutarate Is Required for Reductive Carboxylation in Cancer Cells with Mitochondrial Defects

    Directory of Open Access Journals (Sweden)

    Andrew R. Mullen

    2014-06-01

    Full Text Available Mammalian cells generate citrate by decarboxylating pyruvate in the mitochondria to supply the tricarboxylic acid (TCA cycle. In contrast, hypoxia and other impairments of mitochondrial function induce an alternative pathway that produces citrate by reductively carboxylating α-ketoglutarate (AKG via NADPH-dependent isocitrate dehydrogenase (IDH. It is unknown how cells generate reducing equivalents necessary to supply reductive carboxylation in the setting of mitochondrial impairment. Here, we identified shared metabolic features in cells using reductive carboxylation. Paradoxically, reductive carboxylation was accompanied by concomitant AKG oxidation in the TCA cycle. Inhibiting AKG oxidation decreased reducing equivalent availability and suppressed reductive carboxylation. Interrupting transfer of reducing equivalents from NADH to NADPH by nicotinamide nucleotide transhydrogenase increased NADH abundance and decreased NADPH abundance while suppressing reductive carboxylation. The data demonstrate that reductive carboxylation requires bidirectional AKG metabolism along oxidative and reductive pathways, with the oxidative pathway producing reducing equivalents used to operate IDH in reverse.

  9. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases

    Directory of Open Access Journals (Sweden)

    Saito Koji

    2005-08-01

    Full Text Available Abstract Background In Arabidopsis, ETO1 (ETHYLENE-OVERPRODUCER1 is a negative regulator of ethylene evolution by interacting with AtACS5, an isoform of the rate-limiting enzyme, 1-aminocyclopropane-1-carboxylate synthases (ACC synthase or ACS, in ethylene biosynthetic pathway. ETO1 directly inhibits the enzymatic activity of AtACS5. In addition, a specific interaction between ETO1 and AtCUL3, a constituent of a new type of E3 ubiquitin ligase complex, suggests the molecular mechanism in promoting AtACS5 degradation by the proteasome-dependent pathway. Because orthologous sequences to ETO1 are found in many plant species including tomato, we transformed tomato with Arabidopsis ETO1 to evaluate its ability to suppress ethylene production in tomato fruits. Results Transgenic tomato lines that overexpress Arabidopsis ETO1 (ETO1-OE did not show a significant delay of fruit ripening. So, we performed yeast two-hybrid assays to investigate potential heterologous interaction between ETO1 and three isozymes of ACC synthases from tomato. In the yeast two-hybrid system, ETO1 interacts with LE-ACS3 as well as AtACS5 but not with LE-ACS2 or LE-ACS4, two major isozymes whose gene expression is induced markedly in ripening fruits. According to the classification of ACC synthases, which is based on the C-terminal amino acid sequences, both LE-ACS3 and AtACS5 are categorized as type 2 isozymes and possess a consensus C-terminal sequence. In contrast, LE-ACS2 and LE-ACS4 are type 1 and type 3 isozymes, respectively, both of which do not possess this specific C-terminal sequence. Yeast two-hybrid analysis using chimeric constructs between LE-ACS2 and LE-ACS3 revealed that the type-2-ACS-specific C-terminal tail is required for interaction with ETO1. When treated with auxin to induce LE-ACS3, seedlings of ETO1-OE produced less ethylene than the wild type, despite comparable expression of the LE-ACS3 gene in the wild type. Conclusion These results suggest that ETO1

  10. "S" shaped organotin(IV) carboxylates based on amide carboxylic acids: Syntheses, crystal structures and antitumor activities

    Science.gov (United States)

    Xiao, Xiao; Li, Yan; Dong, Yuan; Li, Wenliang; Xu, Kun; Shi, Nianqiu; Liu, Xin; Xie, Jingyi; Liu, Peigen

    2017-02-01

    Three organotin carboxylates based on amide carboxylic acids: (Ph3Sn)2(L1) (1) (L1 = 3,3‧-(1,3,5,7-tetraoxo-5,7-dihydropyrrolo[3,4-f]isoindole-2,6(1H,3H)-diyl)dipropionic acid), (Ph3Sn)2(L2)·C7H8 (2) (L2 = 3,3‧-(1,3,6,8-tetraoxo-1,3,6,8-tetrahydrobenzo [lmn][3,8]phenanthroline-2,7-diyl)dipropionic acid), [(Ph3Sn)(CH3CH2O)]2(L3) (3) (L3 = 2,2‧-(1,3,5,7-tetraoxo-5,7-dihydropyrrolo[3,4-f]isoindole-2,6(1H,3H)-diyl) dibenzoic acid) were synthesized and characterized by elemental analysis, IR, 1H, 13C, 119Sn NMR spectroscopy and X-ray crystallography diffraction analyses. Complexes 1-3 are di-nuclear triphenlytin carboxylates owning "S" shaped monomer structures. Ligands in 1-3 adopt unidentate coordination. Intermolecular hydrogen bonds and Sn···O interactions help complexes 1-3 build their supramolecular structures which are discussed in detail. The preliminary antitumor activities of 1-3 against HepG2 cell lines have also been studied.

  11. Cysteine amide adduct formation from carboxylic acid drugs via UGT-mediated bioactivation in human liver microsomes.

    Science.gov (United States)

    Harada, H; Toyoda, Y; Endo, T; Kobayashi, M

    2015-10-01

    Although chemical trapping has been widely used to evaluate cytochrome P450-mediated drug bioactivation, thus far, only a few in vitro-trapping studies have been performed on UDP-glucuronosyltransferase (UGT)-mediated drug bioactivation. In this study, we used cysteine (Cys) as trapping agent to gain new insights into the UGT-mediated bioactivation involving acyl glucuronides of carboxylic acid drugs. Diclofenac, ketoprofen and ibuprofen were incubated in human liver microsomes with UDPGA and Cys, followed by analysis using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). The N-acyl-Cys amide adduct of diclofenac was characterized by mass analysis and was detectable even in photodiode array analysis. Our data indicated that the formation of such adducts reflects the reactivity of the corresponding acyl glucuronides. In addition, it was suggested that the adduct formation requires an N-terminal Cys moiety with both a free amine and a free thiol group, from the results using various cysteine derivatives. We propose that the S-acyl-Cys thioester adduct can form via transacylation of an acyl glucuronide and can then form to an N-acyl-Cys amide adduct through intramolecular S- to N-acyl rearrangement. This series of the reactions has important implications as a possible bioactivation mechanism for covalent binding of carboxylic acid drugs to macromolecules.

  12. X-ray crystalline structures of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus, and its cys-free mutant.

    Science.gov (United States)

    Tanaka, H; Chinami, M; Mizushima, T; Ogasahara, K; Ota, M; Tsukihara, T; Yutani, K

    2001-07-01

    In order to elucidate the mechanism of the thermostability of proteins from hyperthermophiles, X-ray crystalline structures of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus (PfPCP), and its mutant protein with Ser substituted at Cys142 and Cys188 were determined at 2.2 and 2.7 A resolution, respectively. The obtained structures were compared with those previously reported for pyrrolidone carboxyl peptidases from a hyperthermophilie, Thermococcus litoralis (TlPCP), and from a mesophile, Bacillus amyloliquefaciens (BaPCP). The PfPCP structure is a tetramer of four identical subunits similar to that of the TlPCP and BaPCP. The largest structural changes among the three PCPs were detected in the C-terminal protrusion, which interacts with that of another subunit. A comparison of the three structures indicated that the high stability of PfPCP is caused by increases in hydrophobic interactions and hydrogen bonds, the formation of an intersubunit ion-pair network, and improvement to an ideal conformation. On the basis of the structures of the three proteins, it can be concluded that PfPCP does not have any special factors responsible for its extremely high stability and that the conformational structure of PfPCP is superior in its combination of positive and negative stabilizing factors compared with BaPCP.

  13. Cu(I)-catalyzed (11)C carboxylation of boronic acid esters: a rapid and convenient entry to (11)C-labeled carboxylic acids, esters, and amides.

    Science.gov (United States)

    Riss, Patrick J; Lu, Shuiyu; Telu, Sanjay; Aigbirhio, Franklin I; Pike, Victor W

    2012-03-12

    Rapid and direct: the carboxylation of boronic acid esters with (11)CO(2) provides [(11)C]carboxylic acids as a convenient entry into [(11)C]esters and [(11)C]amides. This conversion of boronates is tolerant to diverse functional groups (e.g., halo, nitro, or carbonyl).

  14. Cloning of novel cellulases from cellulolytic fungi: heterologous expression of a family 5 glycoside hydrolase from Trametes versicolor in Pichia pastoris.

    Science.gov (United States)

    Salinas, Alejandro; Vega, Marcela; Lienqueo, María Elena; Garcia, Alejandro; Carmona, Rene; Salazar, Oriana

    2011-12-10

    Total cDNA isolated from cellulolytic fungi cultured in cellulose was examined for the presence of sequences encoding for endoglucanases. Novel sequences encoding for glycoside hydrolases (GHs) were identified in Fusarium oxysporum, Ganoderma applanatum and Trametes versicolor. The cDNA encoding for partial sequences of GH family 61 cellulases from F. oxysporum and G. applanatum shares 58 and 68% identity with endoglucanases from Glomerella graminicola and Laccaria bicolor, respectively. A new GH family 5 endoglucanase from T. versicolor was also identified. The cDNA encoding for the mature protein was completely sequenced. This enzyme shares 96% identity with Trametes hirsuta endoglucanase and 22% with Trichoderma reesei endoglucanase II (EGII). The enzyme, named TvEG, has N-terminal family 1 carbohydrate binding module (CBM1). The full length cDNA was cloned into the pPICZαB vector and expressed as an active, extracellular enzyme in the methylotrophic yeast Pichia pastoris. Preliminary studies suggest that T. versicolor could be useful for lignocellulose degradation.

  15. Development of a Novel Optical Biosensor for Detection of Organophoshorus Pesticides Based on Methyl Parathion Hydrolase Immobilized by Metal-Chelate Affinity

    Directory of Open Access Journals (Sweden)

    Wensheng Lan

    2012-06-01

    Full Text Available We have developed a novel optical biosensor device using recombinant methyl parathion hydrolase (MPH enzyme immobilized on agarose by metal-chelate affinity to detect organophosphorus (OP compounds with a nitrophenyl group. The biosensor principle is based on the optical measurement of the product of OP catalysis by MPH (p-nitrophenol. Briefly, MPH containing six sequential histidines (6× His tag at its N-terminal was bound to nitrilotriacetic acid (NTA agarose with Ni ions, resulting in the flexible immobilization of the bio-reaction platform. The optical biosensing system consisted of two light-emitting diodes (LEDs and one photodiode. The LED that emitted light at the wavelength of the maximum absorption for p-nitrophenol served as the signal light, while the other LED that showed no absorbance served as the reference light. The optical sensing system detected absorbance that was linearly correlated to methyl parathion (MP concentration and the detection limit was estimated to be 4 μM. Sensor hysteresis was investigated and the results showed that at lower concentration range of MP the difference got from the opposite process curves was very small. With its easy immobilization of enzymes and simple design in structure, the system has the potential for development into a practical portable detector for field applications.

  16. A chemical genetic screen uncovers a small molecule enhancer of the N-acylethanolamine degrading enzyme, fatty acid amide hydrolase, in Arabidopsis

    Science.gov (United States)

    Khan, Bibi Rafeiza; Faure, Lionel; Chapman, Kent D.; Blancaflor, Elison B.

    2017-01-01

    N-Acylethanolamines (NAEs) are a group of fatty acid amides that play signaling roles in diverse physiological processes in eukaryotes. Fatty acid amide hydrolase (FAAH) degrades NAE into ethanolamine and free fatty acid to terminate its signaling function. In animals, chemical inhibitors of FAAH have been used for therapeutic treatment of pain and as tools to probe deeper into biochemical properties of FAAH. In a chemical genetic screen for small molecules that dampened the inhibitory effect of N-lauroylethanolamine (NAE 12:0) on Arabidopsis thaliana seedling growth, we identified 6-(2-methoxyphenyl)-1,3-dimethyl-5-phenyl-1H-pyrrolo[3,4-d]pyrimidine-2,4(3 H,6 H)-dione (or MDPD). MDPD alleviated the growth inhibitory effects of NAE 12:0, in part by enhancing the enzymatic activity of Arabidopsis FAAH (AtFAAH). In vitro, biochemical assays showed that MDPD enhanced the apparent Vmax of AtFAAH but did not alter the affinity of AtFAAH for its NAE substrates. Structural analogs of MDPD did not affect AtFAAH activity or dampen the inhibitory effect of NAE 12:0 on seedling growth indicating that MDPD is a specific synthetic chemical activator of AtFAAH. Collectively, our study demonstrates the feasibility of using an unbiased chemical genetic approach to identify new pharmacological tools for manipulating FAAH- and NAE-mediated physiological processes in plants. PMID:28112243

  17. Discovery of MK-3168: A PET Tracer for Imaging Brain Fatty Acid Amide Hydrolase.

    Science.gov (United States)

    Liu, Ping; Hamill, Terence G; Chioda, Marc; Chobanian, Harry; Fung, Selena; Guo, Yan; Chang, Linda; Bakshi, Raman; Hong, Qingmei; Dellureficio, James; Lin, Linus S; Abbadie, Catherine; Alexander, Jessica; Jin, Hong; Mandala, Suzanne; Shiao, Lin-Lin; Li, Wenping; Sanabria, Sandra; Williams, David; Zeng, Zhizhen; Hajdu, Richard; Jochnowitz, Nina; Rosenbach, Mark; Karanam, Bindhu; Madeira, Maria; Salituro, Gino; Powell, Joyce; Xu, Ling; Terebetski, Jenna L; Leone, Joseph F; Miller, Patricia; Cook, Jacquelynn; Holahan, Marie; Joshi, Aniket; O'Malley, Stacey; Purcell, Mona; Posavec, Diane; Chen, Tsing-Bau; Riffel, Kerry; Williams, Mangay; Hargreaves, Richard; Sullivan, Kathleen A; Nargund, Ravi P; DeVita, Robert J

    2013-06-13

    We report herein the discovery of a fatty acid amide hydrolase (FAAH) positron emission tomography (PET) tracer. Starting from a pyrazole lead, medicinal chemistry efforts directed toward reducing lipophilicity led to the synthesis of a series of imidazole analogues. Compound 6 was chosen for further profiling due to its appropriate physical chemical properties and excellent FAAH inhibition potency across species. [(11)C]-6 (MK-3168) exhibited good brain uptake and FAAH-specific signal in rhesus monkeys and is a suitable PET tracer for imaging FAAH in the brain.

  18. Radiation-induced alterations in the distribution of lysosomal hydrolases in rat spleen homogenates. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, S.L.; Eklund, S.K.

    1978-07-01

    Whole-body exposure of rats to /sup 60/Co-..gamma.. radiation results in increases in the activities of two lysosomal hydrolases, ..beta..-glucuronidase and ..cap alpha..-fucosidase, found in the supernatant fraction of spleen homogenates. The redistribution of these enzymes from the ''particulate-bound'' to the ''free-supernatant'' fraction of spleen homogenates has been studied as a function of radiation dose. The response curves for the ratio of free/bound enzyme versus dose sigmoidal with maximum occurring at 300 to 400 rad.

  19. Pyrazole phenylcyclohexylcarbamates as inhibitors of human fatty acid amide hydrolases (FAAH).

    Science.gov (United States)

    Aghazadeh Tabrizi, Mojgan; Baraldi, Pier Giovanni; Ruggiero, Emanuela; Saponaro, Giulia; Baraldi, Stefania; Romagnoli, Romeo; Martinelli, Adriano; Tuccinardi, Tiziano

    2015-06-05

    Fatty acid amide hydrolase (FAAH) inhibitors have gained attention as potential therapeutic targets in the management of neuropathic pain. Here, we report a series of pyrazole phenylcyclohexylcarbamate derivatives standing on the known carbamoyl FAAH inhibitor URB597. Structural modifications led to the recognition of compound 22 that inhibited human recombinant FAAH (hrFAAH) in the low nanomolar range (IC50 = 11 nM). The most active compounds of this series showed significant selectivity toward monoacylglycerol lipase (MAGL) enzyme. In addition, molecular modeling and reversibility behavior of the new class of FAAH inhibitors are presented in this article.

  20. The Ameliorative Effects of L-2-Oxothiazolidine-4-Carboxylate on Acetaminophen-Induced Hepatotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    Jun Ho Shin

    2013-03-01

    Full Text Available The aim of the study was to investigate the ameliorative effects and the mechanism of action of L-2-oxothiazolidine-4-carboxylate (OTC on acetaminophen (APAP-induced hepatotoxicity in mice. Mice were randomly divided into six groups: normal control group, APAP only treated group, APAP + 25 mg/kg OTC, APAP + 50 mg/kg OTC, APAP + 100 mg/kg OTC, and APAP + 100 mg/kg N-acetylcysteine (NAC as a reference control group. OTC treatment significantly reduced serum alanine aminotransferase and aspartate aminotransferase levels in a dose dependent manner. OTC treatment was markedly increased glutathione (GSH production and glutathione peroxidase (GSH-px activity in a dose dependent manner. The contents of malondialdehyde and 4-hydroxynonenal in liver tissues were significantly decreased by administration of OTC and the inhibitory effect of OTC was similar to that of NAC. Moreover, OTC treatment on APAP-induced hepatotoxicity significantly reduced the formation of nitrotyrosin and terminal deoxynucleotidyl transferase dUTP nick end labeling positive areas of liver tissues in a dose dependent manner. Furthermore, the activity of caspase-3 in liver tissues was reduced by administration of OTC in a dose dependent manner. The ameliorative effects of OTC on APAP-induced liver damage in mice was similar to that of NAC. These results suggest that OTC has ameliorative effects on APAP-induced hepatotoxicity in mice through anti-oxidative stress and anti-apoptotic processes.

  1. Genetic variants in microsomal epoxide hydrolase and N-acetyltransferase 2 in susceptibility of IBD in the Danish population

    DEFF Research Database (Denmark)

    Ernst, Anja; Andersen, Vibeke; Østergaard, Mette;

    induce or sustain an immune response. Changes in detoxification of substances that causes epithelial damage may confer susceptibility to IBD. Hence, polymorphic enzymes involved in the detoxification processes may be risk factors of IBD. Methods. The two biotransformation enzymes microsomal epoxide...... hydrolase and N-acetyltransferase 2 were genotyped using TaqMan based Real-Time PCR in 388 patients with Crohn's disease (CD), 565 patients with ulcerative colitis (UC) and 796 healthy Danish controls. Results. No association was found between low microsomal epoxide hydrolase activity or slow N......-acetyltransferase 2 acetylator status and IBD. An association between high activity of microsomal epoxide hydrolase and disease diagnosis before age 40 in CD with an OR of 2.2(1.1- 4.2) P=0.02) was found. No other phenotypic associations were found for the two enzymes and IBD, regarding age at onset, disease location...

  2. Distinct rat hepatic microsomal epoxide hydrolases catalyze the hydration of cholesterol 5,6 alpha-oxide and certain xenobiotic alkene and arene oxides.

    Science.gov (United States)

    Levin, W; Michaud, D P; Thomas, P E; Jerina, D M

    1983-02-01

    Metabolism of cholesterol 5,6 alpha-oxide to the 5,6-glycol is catalyzed by a rat liver microsomal epoxide hydrolase that is distinct from the microsomal epoxide hydrolase that metabolizes a wide range of xenobiotic alkene and arene oxides. The two enzymes are antigenically distinct, and the purified microsomal epoxide hydrolase that metabolizes xenobiotic oxides does not catalyze the hydration of cholesterol 5,6 alpha-oxide. In vivo treatment of rats with inducers of microsomal epoxide hydrolase does not enhance the activity of cholesterol 5,6 alpha-oxide hydrolase and, in some cases, actually depresses enzyme activity in the resultant microsomal preparations. Octene 1,2-oxide and benz[a]anthracene 5,6-oxide, both good substrates for xenobiotic epoxide hydrolase, are not competitive inhibitors of cholesterol oxide hydration by rat liver microsomes. The above results establish the existence of a liver microsomal epoxide hydrolase that is under different regulatory control and that appears to have a different substrate specificity than the well-characterized microsomal epoxide hydrolase involved in the metabolism of a widely diverse group of alkene and arene oxides.

  3. Aspergillus nidulans alpha-galactosidase of glycoside hydrolase family 36 catalyses the formation of alpha-galacto-oligosaccharides by transglycosylation.

    Science.gov (United States)

    Nakai, Hiroyuki; Baumann, Martin J; Petersen, Bent O; Westphal, Yvonne; Hachem, Maher Abou; Dilokpimol, Adiphol; Duus, Jens Ø; Schols, Henk A; Svensson, Birte

    2010-09-01

    The alpha-galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic alpha-galactosidases and alpha-galacto-oligosaccharide synthases of glycoside hydrolase family 36 (GH36). The recombinant AglC, produced in high yield (0.65 g.L(-1) culture) as His-tag fusion in Escherichia coli, catalysed efficient transglycosylation with alpha-(1-->6) regioselectivity from 40 mm 4-nitrophenol alpha-d-galactopyranoside, melibiose or raffinose, resulting in a 37-74% yield of 4-nitrophenol alpha-D-Galp-(1-->6)-D-Galp, alpha-D-Galp-(1-->6)-alpha-D-Galp-(1-->6)-D-Glcp and alpha-D-Galp-(1-->6)-alpha-D-Galp-(1-->6)-D-Glcp-(alpha1-->beta2)-d-Fruf (stachyose), respectively. Furthermore, among 10 monosaccharide acceptor candidates (400 mm) and the donor 4-nitrophenol alpha-D-galactopyranoside (40 mm), alpha-(1-->6) linked galactodisaccharides were also obtained with galactose, glucose and mannose in high yields of 39-58%. AglC did not transglycosylate monosaccharides without the 6-hydroxymethyl group, i.e. xylose, L-arabinose, L-fucose and L-rhamnose, or with axial 3-OH, i.e. gulose, allose, altrose and L-rhamnose. Structural modelling using Thermotoga maritima GH36 alpha-galactosidase as the template and superimposition of melibiose from the complex with human GH27 alpha-galactosidase supported that recognition at subsite +1 in AglC presumably requires a hydrogen bond between 3-OH and Trp358 and a hydrophobic environment around the C-6 hydroxymethyl group. In addition, successful transglycosylation of eight of 10 disaccharides (400 mm), except xylobiose and arabinobiose, indicated broad specificity for interaction with the +2 subsite. AglC thus transferred alpha-galactosyl to 6-OH of the terminal residue in the alpha-linked melibiose, maltose, trehalose, sucrose and turanose in 6-46% yield and the beta-linked lactose, lactulose and cellobiose in 28-38% yield. The product structures were identified using NMR and ESI-MS and five of the 13

  4. Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 β-glucosidase

    Directory of Open Access Journals (Sweden)

    Esen Asim

    2006-12-01

    Full Text Available Abstract Background Glycosyl hydrolase family 1 (GH1 β-glucosidases have been implicated in physiologically important processes in plants, such as response to biotic and abiotic stresses, defense against herbivores, activation of phytohormones, lignification, and cell wall remodeling. Plant GH1 β-glucosidases are encoded by a multigene family, so we predicted the structures of the genes and the properties of their protein products, and characterized their phylogenetic relationship to other plant GH1 members, their expression and the activity of one of them, to begin to decipher their roles in rice. Results Forty GH1 genes could be identified in rice databases, including 2 possible endophyte genes, 2 likely pseudogenes, 2 gene fragments, and 34 apparently competent rice glycosidase genes. Phylogenetic analysis revealed that GH1 members with closely related sequences have similar gene structures and are often clustered together on the same chromosome. Most of the genes appear to have been derived from duplications that occurred after the divergence of rice and Arabidopsis thaliana lineages from their common ancestor, and the two plants share only 8 common gene lineages. At least 31 GH1 genes are expressed in a range of organs and stages of rice, based on the cDNA and EST sequences in public databases. The cDNA of the Os4bglu12 gene, which encodes a protein identical at 40 of 44 amino acid residues with the N-terminal sequence of a cell wall-bound enzyme previously purified from germinating rice, was isolated by RT-PCR from rice seedlings. A thioredoxin-Os4bglu12 fusion protein expressed in Escherichia coli efficiently hydrolyzed β-(1,4-linked oligosaccharides of 3–6 glucose residues and laminaribiose. Conclusion Careful analysis of the database sequences produced more reliable rice GH1 gene structure and protein product predictions. Since most of these genes diverged after the divergence of the ancestors of rice and Arabidopsis thaliana, only

  5. Partial purification and characterization of an inducible indole-3-acetyl-L-aspartic acid hydrolase from Enterobacter agglomerans

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jyh-Ching [Department of Agriculture, Beltsville, MD (United States)]|[Univ. of Maryland, College Park, MD (United States); Cohen, J.D.; Mulbry, W.W. [Department of Agriculture, Beltsville, MD (United States)] [and others

    1996-11-01

    Indole-3-acetyl-amino acid conjugate hydrolases are believed to be important in the regulation of indole-3-acetic acid (IAA) metabolism in plants and therefore have potential uses for the alteration of plant IAA metabolism. To isolate bacterial strains exhibiting significant indole-3-acetyl-aspartate (IAA-Asp) hydrolase activity, a sewage sludge inoculation was cultured under conditions in which IAA-Asp served as the sole source of carbon and nitrogen. One isolate, Enterobacter agglomerans, showed hydrolase activity inducible by IAA-L-Asp or N-acetyl-L-Asp but not by IAA, (NH{sub 4}){sub 2}SO{sub 4}, urea, or indoleacetamide. Among a total of 17 IAA conjugates tested as potential substrates, the enzyme had an exclusively high substrate specificity for IAA-L-Asp of 13.5 mM. The optimal pH for this enzyme was between 8.0 and 8.5. In extraction buffer containing 0.8 mM Mg{sup 2+} the hydrolase activity was inhibited to 80% by 1 mM dithiothreitol and to 60% by 1 mm CuSO{sub 4}; the activity was increased by 40% with 1mM MnSO{sub 4}. However, in extraction buffer with no trace elements, the hydrolase activity was inhibited to 50% by either 1 mM dithiothreitol or 1% Triton X-100 (Sigma). These results suggest that disulfide bonding might be essential for enzyme activity. Purification of the hydrolase by hydroxyapatite and TSK-phenyl (HP-Genenchem, South San Francisco, CA) preparative high-performance liquid chromatography yielded a major 45-kD polypeptide as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 45 refs., 5 figs., 3 tabs.

  6. An α/β hydrolase and associated Per-ARNT-Sim domain comprise a bipartite sensing module coupled with diverse output domains.

    Directory of Open Access Journals (Sweden)

    Eugene V Nadezhdin

    Full Text Available The RsbQ α/β hydrolase and RsbP serine phosphatase form a signaling pair required to activate the general stress factor σ(B of Bacillus subtilis in response to energy limitation. RsbP has a predicted N-terminal Per-ARNT-Sim (PAS domain, a central coiled-coil, and a C-terminal protein phosphatase M (PPM domain. Previous studies support a model in which RsbQ provides an activity needed for PAS to regulate the phosphatase domain via the coiled-coil. RsbQ and the PAS domain (RsbP-PAS therefore appear to form a sensory module. Here we test this hypothesis using bioinformatic and genetic analysis. We found 45 RsbQ and RsbP-PAS homologues encoded by adjacent genes in diverse bacteria, with PAS and a predicted coiled-coil fused to one of three output domains: PPM phosphatase (Gram positive bacteria, histidine protein kinase (Gram negative bacteria, and diguanylate cyclase (both lineages. Multiple alignment of the RsbP-PAS homologues suggested nine residues that distinguish the class. Alanine substitutions at four of these conferred a null phenotype in B. subtilis, indicating their functional importance. The F55A null substitution lay in the Fα helix of an RsbP-PAS model. F55A inhibited interaction of RsbP with RsbQ in yeast two-hybrid and pull-down assays but did not significantly affect interaction of RsbP with itself. We propose that RsbQ directly contacts the PAS domains of an RsbP oligomer to provide the activating signal, which is propagated to the phosphatase domains via the coiled-coil. A similar mechanism would allow the RsbQ-PAS module to convey a common input signal to structurally diverse output domains, controlling a variety of physiological responses.

  7. Crystal structure of a ring-cleaving cyclohexane-1,2-dione hydrolase, a novel member of the thiamine diphosphate enzyme family.

    Science.gov (United States)

    Steinbach, Alma; Fraas, Sonja; Harder, Jens; Warkentin, Eberhard; Kroneck, Peter M H; Ermler, Ulrich

    2012-04-01

    The thiamine diphosphate (ThDP) dependent flavoenzyme cyclohexane-1,2-dione hydrolase (CDH) (EC 3.7.1.11) catalyses a key step of a novel anaerobic degradation pathway for alicyclic alcohols by converting cyclohexane-1,2-dione (CDO) to 6-oxohexanoate and further to adipate using NAD(+) as electron acceptor. To gain insights into the molecular basis of these reactions CDH from denitrifying anaerobe Azoarcus sp. strain 22Lin was structurally characterized at 1.26 Å resolution. Notably, the active site funnel is rearranged in an unprecedented manner providing the structural basis for the specific binding and cleavage of an alicyclic compound. Crucial features include a decreased and displaced funnel entrance, a semi-circularly shaped loop segment preceding the C-terminal arm and the attachment of the C-terminal arm to other subunits of the CDH tetramer. Its structural scaffold and the ThDP activation is related to that observed for other members of the ThDP enzyme family. The selective binding of the competitive inhibitor 2-methyl-2,4-pentane-diol (MPD) to the open funnel of CDH reveals an asymmetry of the two active sites found also in the dimer of several other ThDP dependent enzymes. The substrate binding site is characterized by polar and non-polar moieties reflected in the structures of MPD and CDO and by three prominent histidine residues (His28, His31 and His76) that most probably play a crucial role in substrate activation. The NAD(+) dependent oxidation of 6-oxohexanoate remains enigmatic as the redox-active cofactor FAD seems not to participate in catalysis, and no obvious NAD(+) binding site is found. Based on the structural data both reactions are discussed.

  8. Is Lake Tahoe Terminal?

    Science.gov (United States)

    Coats, R. N.; Reuter, J.; Heyvaert, A.; Lewis, J.; Sahoo, G. B.; Schladow, G.; Thorne, J. H.

    2014-12-01

    ) the climatic water deficit will increase, especially at high elevations that will be most affected by the loss of snow, with likely consequences for existing vegetation and fire frequency. Hydrologically, Lake Tahoe is intermittently terminal; in a medical sense it is not yet terminal, but its condition—especially its valued clarity and deep blue color--is serious.

  9. Synthesis and structure-activity relationship of piperidine-derived non-urea soluble epoxide hydrolase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Pecic, Stevan; Pakhomova, Svetlana; Newcomer, Marcia E.; Morisseau, Christophe; Hammock, Bruce D.; Zhu, Zhengxiang; Rinderspacher, Alison; Deng, Shi-Xian [UCD; (LSU); (Columbia)

    2013-09-27

    A series of potent amide non-urea inhibitors of soluble epoxide hydrolase (sEH) is disclosed. The inhibition of soluble epoxide hydrolase leads to elevated levels of epoxyeicosatrienoic acids (EETs), and thus inhibitors of sEH represent one of a novel approach to the development of vasodilatory and anti-inflammatory drugs. Structure–activities studies guided optimization of a lead compound, identified through high-throughput screening, gave rise to sub-nanomolar inhibitors of human sEH with stability in human liver microsomal assay suitable for preclinical development.

  10. Evidence for biosynthesis of lactase-phlorizin hydrolase as a single-chain high-molecular weight precursor

    DEFF Research Database (Denmark)

    Skovbjerg, H; Danielsen, E M; Noren, Ove

    1984-01-01

    Precursor forms of lactase-phlorizin hydrolase, sucrase-isomaltase and aminopeptidase N were studied by pulse-labelling of organ-cultured human intestinal biopsies. After labelling the biopsies were fractionated by the Ca2+-precipitation method and the enzymes isolated by immunoprecipitation....... The results indicate that the lactase-phlorizin hydrolase is synthesized as a Mr 245 000 polypeptide, which is intracellularly cleaved into its mature Mr 160 000 form. Sucrase-isomaltase is shown to be synthesized as a single chain precursor (Mr 245 000 and 265 000) while the precursor of aminopeptidase N...

  11. Physicochemical model of detonation synthesis of nanoparticles from metal carboxylates

    Science.gov (United States)

    Tolochko, B. P.; Chernyshev, A. P.; Ten, K. A.; Pruuel, E. R.; Zhogin, I. L.; Zubkov, P. I.; Lyakhov, N. Z.; Luk'yanchikov, L. A.; Sheromov, M. A.

    2008-02-01

    We have shown previously that when metal carboxylates are subjected to a shock-wave action, diamond nanoparticles and nanoparticles of metals (Ag, Bi, Co, Fe, Pb) are formed and their characteristic size is about 30-200 Å. The metal nanoparticles formed are covered by an amorphous-carbon layer up to 20 Å thick. In this work we put forward a physicochemical model of the formation of diamond and metal nanoparticles from metal carboxylates upon shock-wave action. The energy released upon detonation inside the precursor is lower than in regions not occupied by the stearates. The characteristic time of temperature equalization has been estimated to be on the order of ˜10-3 s, which is greater by a factor of ˜103 than the characteristic reaction time. Due to the adiabatic nature of the processes occurring, the typical temperature of a "particle" will be lower than the temperature of the surrounding medium. In the framework of the model suggested, it has been assumed that the growth of metal clusters should occur by the diffusion mechanism; i.e., the "building material" is supplied through diffusion. The calculation using our previous experimental data on the reaction time and average size of metal particles has shown that the diffusion properties of the medium in which the metal nanoparticles are formed are close to those of the liquid state of the substance. The temperature and pressure under detonation conditions markedly exceed the analogous parameters characteristic of experiments on the thermodestruction of metal carboxylates. The small time of existence of the reaction mixture is compensated by the high mobility and concentration of reagents.

  12. Cleavage of the Carboxyl-Terminus of LEACS2, a Tomato 1-Aminocycl opropane-1-Carboxylic Acid Synthase Isomer, by a 64-kDa Tomato Metalloprotease Produces a Truncated but Active Enzyme

    Institute of Scientific and Technical Information of China (English)

    Jian-Feng LI; Robert QI; Liang-Hu QU; Autar K Mattoo; Ning LI

    2005-01-01

    l-Aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) is the principal enzyme in phytohormone ethylene biosynthesis. Previous studies have shown that the hypervariable C-terminus of ACS is proteolytically processed in vivo. However, the protease responsible for this has not yet been identified. In the present study, we investigated the processing of the 55-kDa full-length tomato ACS (LeACS2) into 52-, 50- and 49-kDa truncated isoforms in ripening tomato (Lycopersicon esculentum Mill. cv.Cooperation 903) fruit using the sodium dodecyl sulfate-boiling method. Meanwhile, an LeACS2-processing protease was purified via multi-step column chromatography from tomato fruit. Subsequent biochemical analysis of the 64-kDa purified protease revealed that it is a metalloprotease active at multiple cleavage sites within the hypervariable C-terminus of LeACS2. N-terminal sequencing and matrix-assisted laser desorption/ionization time-of-flight analysis indicated that the LeACS2-processing metalloprotease cleaves at the C-terminal sites Lys438, Glu447, Lys448, Asn456, Ser460, Ser462, Lys463, and Leu474, but does not cleave the Nterminus of LeACS2. Four C-terminus-deleted (26-50 amino acids) LeACS2 fusion proteins were overproduced and subjected to proteolysis by this metalloprotease to identify the multiple cleavage sites located on the N-terminal side of the phosphorylation site Ser460. The results indisputably confirmed the presence of cleavage sites within the region between the α-helix domain (H14) and Ser460 for this metalloprotease.Furhermore, the resulting C-terminally truncated LeACS2 isoforms were active enzymatically. Because this protease could produce LeACS2 isoforms in vitro similar to those detected in vivo, it is proposed that this metalloprotease may be involved in the proteolysis of LeACS2 in vivo.

  13. Phage Endolysin: A Way To Understand A Binding Function Of C-Terminal Domains A Mini Review

    Directory of Open Access Journals (Sweden)

    Jarábková Veronika

    2015-12-01

    Full Text Available Endolysins are bacteriophage-encoded peptidoglycan hydrolases, which are synthesized in the end of phage reproduction cycle, in an infected host cell. Usually, for endolysins from phages that infect Gram-positive bacteria, a modular structure is typical. Therefore, these are composed of at least two separate functional domains: an N-terminal catalytic domain (EAD and a C-terminal cell wall binding domain (CBD. Specific ligand recognition of CBDs and following peptidoglycan (PG binding mostly allows a rapid lytic activity of an EAD. Here we briefly characterize phage endolysin CBDs in conjuction with their domain architecture, (nonnecessity for the following lytic activity and a high/low specificity of their ligands as well. Such an overall assessment of CBDs may help to find new ways to widen opportunities in their protein design to create ‛designer recombinant endolysins’ with diverse applications.

  14. Study on Copolymerization of Rare Earth-Carboxylic Acid Complex

    Institute of Scientific and Technical Information of China (English)

    Qiu Guanmin(邱关明); Zhang Ming(张明); Yan Chang hao(严长浩); Zhou Lanxiang(周兰香); Dai Shaojun(戴少俊); Okamo to Hiroshi

    2003-01-01

    Complex of rare earth with carboxylic acid was prepared by precipita tion and direct method. It was copolymerized with such monomers as acrylic acid and other ones to synthesize ionomer of rare earth and organic polymer with different rare earth contents. Its glass-transition temperature and heat stability were analyzed by TG and DTA. Infra-red detector was used to show its structure. The effect of rare earth complex prepared by different methods on copolymerization and properties of copolymers was also discussed.

  15. Bacterial conversion of phenylalanine and aromatic carboxylic acids into dihydrodiols.

    Science.gov (United States)

    Wegst, W; Tittmann, U; Eberspächer, J; Lingens, F

    1981-03-15

    Strain E of chloridazon-degrading bacteria, when grown on L-phenylalanine accumulates cis-2,3-dihydro-2,3-dihydroxyphenylalanine. In experiments with resting cells and during growth the bacterium converts the aromatic carboxylic acids phenylacetate, phenylpropionate, phenylbutyrate and phenyl-lactate into the corresponding cis-2,3-dihydrodiol compounds. The amino acids L-phenylalanine, N-acetyl-L-phenylalanine and t-butyloxycarbonyl-L-phenylalanine were also transformed into dihydrodiols. All seven dihydrodiols, thus obtained, were characterized both by conventional analytical techniques and by the ability to serve as substrates for a cis-dihydrodiol dehydrogenase.

  16. Uncatalysed Production of Coumarin-3-carboxylic Acids: A Green Approach

    Directory of Open Access Journals (Sweden)

    Joel Martínez

    2016-01-01

    Full Text Available A green contribution in short reaction times with moderate yields to produce coumarin-3-carboxylic acids is offered. Five different modes to activate the reactions (microwave, near-infrared, mechanical milling, and ultrasound were compared with mantle heating in the presence or absence of ethanol, a green solvent. Near-infrared and microwave irradiations deliver the best yields in contrast to ultrasound and mechanical milling; moreover, these four processes offered shorter reaction times in comparison with the conventional mantle heating method. It is also important to highlight that the obtained molecules were produced without the requirement of a catalyst and two nonconventional energies forms are presented as new processes.

  17. Azetidine-2-carboxylic acid in garden beets (Beta vulgaris).

    Science.gov (United States)

    Rubenstein, Edward; Zhou, Haihong; Krasinska, Karolina M; Chien, Allis; Becker, Christopher H

    2006-05-01

    Azetidine-2-carboxylic acid (L-Aze) is a toxic and teratogenic non-protein amino acid. In many species, including man, L-Aze is misincorporated into protein in place of proline, altering collagen, keratin, hemoglobin, and protein folding. In animal models of teratogenesis, it causes a wide range of malformations. The role of L-Aze in human disease has been unexplored, probably because the compound has not been associated with foods consumed by humans. Herein we report the presence of L-Aze in the garden or table beet (Beta vulgaris).

  18. Sodium borohydride reduction of aromatic carboxylic acids via methyl esters

    Indian Academy of Sciences (India)

    Aamer Saeed; Zaman Ashraf

    2006-09-01

    A number of important aromatic carboxylic acids precursors, or intermediates in the syntheses of natural products, are converted into methyl esters and reduced to the corresponding primary alcohols using a sodium borohydride-THF-methanol system. The alcohols are obtained in 70-92% yields in 2-5 hours, in a pure state. This two-step procedure not only provides a better alternative to aluminum hydride reduction of acids but also allows the selective reduction of esters in presence of acids, amides, nitriles or nitro functions which are not affected under these conditions.

  19. Separation and determination of some carboxylic acids by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Sladkov, V.; Fourest, B

    2006-07-01

    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  20. 2-Amino-4-methylpyridinium 6-carboxypyridine-2-carboxylate methanol monosolvate

    Directory of Open Access Journals (Sweden)

    Behrouz Notash

    2011-01-01

    Full Text Available In the title solvated molecular salt, C6H9N2+·C7H4NO4−·CH4O, the pyridine N atom of 2-amino-4-methylpyridine is protonated and one carboxyl group of pyridine-2,6-dicarboxylic acid is deprotonated. The dihedral angles between the –CO2 and –COH groups and the pyridine ring are 0.65 (13 and 7.4°. The crystal packing is stabilized by intermolecular N—H...O, O—H...O and weak C—H...O hydrogen bonds.

  1. Terminal Satisfiability in GSTE

    Directory of Open Access Journals (Sweden)

    Yongsheng Xu

    2014-01-01

    Full Text Available Generalized symbolic trajectory evaluation (GSTE is an extension of symbolic trajectory evaluation (STE and a method of model checking. GSTE specifications are given as assertion graphs. There are four efficient methods to verify whether a circuit model obeys an assertion graph in GSTE, Model Checking Strong Satisfiability (SMC, Model Checking Normal Satisfiability (NMC, Model Checking Fair Satisfiability (FMC, and Model Checking Terminal Satisfiability (TMC. SMC, NMC, and FMC have been proved and applied in industry, but TMC has not. This paper gives a six-tuple definition and presents a new algorithm for TMC. Based on these, we prove that our algorithm is sound and complete. It solves the SMC’s limitation (resulting in false negative without extending from finite specification to infinite specification. At last, a case of using TMC to verify a realistic hardware circuit round-robin arbiter is achieved. Avoiding verifying the undesired paths which are not related to the specifications, TMC makes it possible to reduce the computational complexity, and the experimental results suggest that the time cost by SMC is 3.14× with TMC in the case.

  2. Internalization and down-regulation of the human epidermal growth factor receptor are regulated by the carboxyl-terminal tyrosines

    DEFF Research Database (Denmark)

    Helin, K; Beguinot, L

    1991-01-01

    with receptors in which 1, 2, or all 3 tyrosines were changed to phenylalanines. The triple point mutant EGF-R, expressed in NIH-3T3, exhibited low autophosphorylation in vivo, low biological and reduced kinase activities. Single and double point mutants were down-regulated, as well as wild type EGF-R......The C terminus of the epidermal growth factor receptor (EGF-R) contains three tyrosines (Y1068, Y1148, and Y1173) which correspond to the major autophosphorylation sites. To investigate the role of the tyrosines in internalization and down-regulation of the EGF-R, mutational analysis was performed...... in response to EGF showing a half-life of about 1 h. Degradation of the triple point mutant, however, was impaired and resulted in a half-life of 4 h in the presence of EGF. EGF-dependent down-regulation of surface receptors was decreased in the triple point mutant EGF-R as was internalization and degradation...

  3. Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol

    DEFF Research Database (Denmark)

    Ploug, M; Rønne, E; Behrendt, N

    1991-01-01

    analysis of u-PAR after micropurification by affinity chromatography and N-[2-hydroxy-1,1-bis(hydroxymethyl)-ethyl]glycine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of 2-3 mol of ethanolamine/mol protein. 2) Membrane-bound u-PAR is efficiently released from the surface...

  4. Exploration of the chlorpyrifos escape pathway from acylpeptide hydrolases using steered molecular dynamics simulations.

    Science.gov (United States)

    Wang, Dongmei; Jin, Hanyong; Wang, Junling; Guan, Shanshan; Zhang, Zuoming; Han, Weiwei

    2016-01-01

    Acylpeptide hydrolases (APH) catalyze the removal of an N-acylated amino acid from blocked peptides. APH is significantly more sensitive than acetylcholinesterase, a target of Alzheimer's disease, to inhibition by organophosphorus (OP) compounds. Thus, OP compounds can be used as a tool to probe the physiological functions of APH. Here, we report the results of a computational study of molecular dynamics simulations of APH bound to the OP compounds and an exploration of the chlorpyrifos escape pathway using steered molecular dynamics (SMD) simulations. In addition, we apply SMD simulations to identify potential escape routes of chlorpyrifos from hydrolase hydrophobic cavities in the APH-inhibitor complex. Two previously proposed APH pathways were reliably identified by CAVER 3.0, with the estimated relative importance of P1 > P2 for its size. We identify the major pathway, P2, using SMD simulations, and Arg526, Glu88, Gly86, and Asn65 are identified as important residues for the ligand leaving via P2. These results may help in the design of APH-targeting drugs with improved efficacy, as well as in understanding APH selectivity of the inhibitor binding in the prolyl oligopeptidase family.

  5. Purification and characterisation of a novel enantioselective epoxide hydrolase from Aspergillus niger M200.

    Science.gov (United States)

    Kotik, Michael; Kyslík, Pavel

    2006-02-01

    Purification of a novel enantioselective epoxide hydrolase from Aspergillus niger M200 has been achieved using ammonium sulphate precipitation, ionic exchange, hydrophobic interaction, and size-exclusion chromatography, in conjunction with two additional chromatographic steps employing hydroxylapatite, and Mimetic Green. The enzyme was purified 186-fold with a yield of 15%. The apparent molecular mass of the enzyme was determined to be 77 kDa under native conditions and 40 kDa under denaturing conditions, implying a dimeric structure of the native enzyme. The isoelectric point of the enzyme was estimated to be 4.0 by isoelectric focusing electrophoresis. The enzyme has a broad substrate specificity with highest specificities towards tert-butyl glycidyl ether, para-nitrostyrene oxide, benzyl glycidyl ether, and styrene oxide. Enantiomeric ratios of 30 to more than 100 were determined for the hydrolysis reactions of 4 epoxidic substrates using the purified enzyme at a reaction temperature of 10 degrees C. Product inhibition studies suggest that the enzyme is able to differentiate to a high degree between the (R)-diol and (S)-diol product of the hydrolysis reaction with tert-butyl glycidyl ether as the substrate. The highest activity of the enzyme was at 42 degrees C and a pH of 6.8. Six peptide sequences, which were obtained by cleavage of the purified enzyme with trypsin and mass spectrometry analysis of the tryptic peptides, show high similarity with corresponding sequences originated from the epoxide hydrolase from Aspergillus niger LCP 521.

  6. Mfge8 regulates enterocyte lipid storage by promoting enterocyte triglyceride hydrolase activity

    Science.gov (United States)

    Khalifeh-Soltani, Amin; Gupta, Deepti; Ha, Arnold; Iqbal, Jahangir; Hussain, Mahmood; Podolsky, Michael J.

    2016-01-01

    The small intestine has an underappreciated role as a lipid storage organ. Under conditions of high dietary fat intake, enterocytes can minimize the extent of postprandial lipemia by storing newly absorbed dietary fat in cytoplasmic lipid droplets. Lipid droplets can be subsequently mobilized for the production of chylomicrons. The mechanisms that regulate this process are poorly understood. We report here that the milk protein Mfge8 regulates hydrolysis of cytoplasmic lipid droplets in enterocytes after interacting with the αvβ3 and αvβ5 integrins. Mice deficient in Mfge8 or the αvβ3 and αvβ5 integrins accumulate excess cytoplasmic lipid droplets after a fat challenge. Mechanistically, interruption of the Mfge8-integrin axis leads to impaired enterocyte intracellular triglyceride hydrolase activity in vitro and in vivo. Furthermore, Mfge8 increases triglyceride hydrolase activity through a PI3 kinase/mTORC2–dependent signaling pathway. These data identify a key role for Mfge8 and the αvβ3 and αvβ5 integrins in regulating enterocyte lipid processing. PMID:27812539

  7. Screening Brazilian Macrophomina phaseolina isolates for alkaline lipases and other extracellular hydrolases.

    Science.gov (United States)

    Schinke, Claudia; Germani, José C

    2012-03-01

    Macrophomina phaseolina, phylum Ascomycota, is a phytopathogenic fungus distributed worldwide in hot dry areas. There are few studies on its secreted lipases and none on its colony radial growth rate, an indicator of fungal ability to use nutrients for growth, on media other than potato-dextrose agar. In this study, 13 M. phaseolina isolates collected in different Brazilian regions were screened for fast-growth and the production of hydrolases of industrial interest, especially alkaline lipases. Hydrolase detection and growth rate determination were done on citric pectin, gelatin, casein, soluble starch, and olive oil as substrates. Ten isolates were found to be active on all substrates tested. The most commonly detected enzymes were pectinases, amylases, and lipases. The growth rate on pectin was significantly higher (P olive oil was followed for 4 days by measuring the activity in the cultivation broth. The specific lipolytic activity of isolate PEL was significantly higher at 96 h (130 mU mg protein(-1)). The broth was active at 37 °C, pH 8, indicating the potential utility of the lipases of this isolate in mild alkaline detergents. There was a strong and positive correlation (0.86) between radial growth rate and specific lipolytic activity.

  8. The Serine Hydrolase ABHD6 Is a Critical Regulator of the Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Gwynneth Thomas

    2013-10-01

    Full Text Available The serine hydrolase α/β hydrolase domain 6 (ABHD6 has recently been implicated as a key lipase for the endocannabinoid 2-arachidonylglycerol (2-AG in the brain. However, the biochemical and physiological function for ABHD6 outside of the central nervous system has not been established. To address this, we utilized targeted antisense oligonucleotides (ASOs to selectively knock down ABHD6 in peripheral tissues in order to identify in vivo substrates and understand ABHD6’s role in energy metabolism. Here, we show that selective knockdown of ABHD6 in metabolic tissues protects mice from high-fat-diet-induced obesity, hepatic steatosis, and systemic insulin resistance. Using combined in vivo lipidomic identification and in vitro enzymology approaches, we show that ABHD6 can hydrolyze several lipid substrates, positioning ABHD6 at the interface of glycerophospholipid metabolism and lipid signal transduction. Collectively, these data suggest that ABHD6 inhibitors may serve as therapeutics for obesity, nonalcoholic fatty liver disease, and type II diabetes.

  9. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community

    Energy Technology Data Exchange (ETDEWEB)

    Allgaier, M.; Reddy, A.; Park, J. I.; Ivanova, N.; D' haeseleer, P.; Lowry, S.; Sapra, R.; Hazen, T.C.; Simmons, B.A.; VanderGheynst, J. S.; Hugenholtz, P.

    2009-11-15

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Small-subunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, {approx}10% were putative cellulases mostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50 C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.

  10. α/β-Hydrolase Domain 6 in the Ventromedial Hypothalamus Controls Energy Metabolism Flexibility

    Directory of Open Access Journals (Sweden)

    Alexandre Fisette

    2016-10-01

    Full Text Available α/β-Hydrolase domain 6 (ABHD6 is a monoacylglycerol hydrolase that degrades the endocannabinoid 2-arachidonoylglycerol (2-AG. Although complete or peripheral ABHD6 loss of function is protective against diet-induced obesity and insulin resistance, the role of ABHD6 in the central control of energy balance is unknown. Using a viral-mediated knockout approach, targeted endocannabinoid measures, and pharmacology, we discovered that mice lacking ABHD6 from neurons of the ventromedial hypothalamus (VMHKO have higher VMH 2-AG levels in conditions of endocannabinoid recruitment and fail to physiologically adapt to key metabolic challenges. VMHKO mice exhibited blunted fasting-induced feeding and reduced food intake, energy expenditure, and adaptive thermogenesis in response to cold exposure, high-fat feeding, and dieting (transition to a low-fat diet. Our findings identify ABHD6 as a regulator of the counter-regulatory responses to major metabolic shifts, including fasting, nutrient excess, cold, and dieting, thereby highlighting the importance of ABHD6 in the VMH in mediating energy metabolism flexibility.

  11. Subcellullar localization, developmental expression and characterization of a liver triacylglycerol hydrolase.

    Science.gov (United States)

    Lehner, R; Cui, Z; Vance, D E

    1999-03-15

    The mechanism and enzymic activities responsible for the lipolysis of stored cytosolic triacylglycerol in liver and its re-esterification remain obscure. A candidate enzyme for lipolysis, a microsomal triacylglycerol hydrolase (TGH), was recently purified to homogeneity from pig liver and its kinetic properties were determined [Lehner and Verger (1997) Biochemistry 36, 1861-1868]. We have characterized the enzyme with regard to its species distribution, subcellular localization, developmental expression and reaction with lipase inhibitors. The hydrolase co-sediments with endoplasmic reticulum elements and is associated with isolated liver fat droplets. Immunocytochemical studies localize TGH exclusively to liver cells surrounding capillaries. Both TGH mRNA and protein are expressed in rats during weaning. The enzyme covalently binds tetrahydrolipstatin, an inhibitor of lipases and of triacylglycerol hydrolysis. The enzyme is absent from liver-derived cell lines (HepG2 and McArdle RH7777) known to be impaired in very-low-density lipoprotein (VLDL) assembly and secretion. The localization and developmental expression of TGH are consistent with a proposed role in triacylglycerol hydrolysis and with the proposal that some of the resynthesized triacylglycerol is utilized for VLDL secretion.

  12. Structure of HsaD, a steroid-degrading hydrolase, from Mycobacterium tuberculosis.

    Science.gov (United States)

    Lack, Nathan; Lowe, Edward D; Liu, Jie; Eltis, Lindsay D; Noble, Martin E M; Sim, Edith; Westwood, Isaac M

    2008-01-01

    Tuberculosis is a major cause of death worldwide. Understanding of the pathogenicity of Mycobacterium tuberculosis has been advanced by gene analysis and has led to the identification of genes that are important for intracellular survival in macrophages. One of these genes encodes HsaD, a meta-cleavage product (MCP) hydrolase that catalyzes the hydrolytic cleavage of a carbon-carbon bond in cholesterol metabolism. This paper describes the production of HsaD as a recombinant protein and, following crystallization, the determination of its three-dimensional structure to 2.35 A resolution by X-ray crystallography at the Diamond Light Source in Oxfordshire, England. To the authors' knowledge, this study constitutes the first report of a structure determined at the new synchrotron facility. The volume of the active-site cleft of the HsaD enzyme is more than double the corresponding active-site volumes of related MCP hydrolases involved in the catabolism of aromatic compounds, consistent with the specificity of HsaD for steroids such as cholesterol. Knowledge of the structure of the enzyme facilitates the design of inhibitors.

  13. Beta-glucuronidase of family-2 glycosyl hydrolase: a missing member in plants.

    Science.gov (United States)

    Arul, Loganathan; Benita, George; Sudhakar, Duraialagaraja; Thayumanavan, Balsamy; Balasubramanian, Ponnusamy

    2008-01-01

    Glycosyl hydrolases hydrolyze the glycosidic bond in carbohydrates or between a carbohydrate and a non-carbohydrate moiety. beta-glucuronidase (GUS) is classified under two glycosyl hydrolase families (2 and 79) and the family-2 beta-glucuronidase is reported in a wide range of organisms, but not in plants. The family-79 endo-beta-glucuronidase (heparanase) is reported in microorganisms, vertebrates and plants. The E. coli family-2 beta-glucuronidase (uidA) had been successfully devised as a reporter gene in plant transformation on the basis that plants do not have homologous GUS activity. On the contrary, histochemical staining with X-Gluc was reported in wild type (non-transgenic) plants. Data shows that, family-2 beta-glucuronidase homologous sequence is not found in plants. Further, beta-glucuronidases of family-2 and 79 lack appreciable sequence similarity. However, the catalytic site residues, glutamic acid and tyrosine of the family-2 beta-glucuronidase are found to be conserved in family-79 beta-glucuronidase of plants. This led to propose that the GUS staining reported in wild type plants is largely because of the broad substrate specificity of family-79 beta-glucuronidase on X-Gluc and not due to the family-2 beta-glucuronidase, as the latter has been found to be missing in plants.

  14. Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Amitha; Allgaier, Martin; Park, Joshua I.; Ivanoval, Natalia; Dhaeseleer, Patrik; Lowry, Steve; Sapra, Rajat; Hazen, Terry C.; Simmons, Blake A.; VanderGheynst, Jean S.; Hugenholtz, Philip

    2011-05-11

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Smallsubunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, ,10percent were putative cellulasesmostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50uC and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.

  15. Structural and kinetic insights into the mechanism of 5-hydroxyisourate hydrolase from Klebsiella pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    French, Jarrod B.; Ealick, Steven E., E-mail: see3@cornell.edu [Cornell University, Ithaca, NY 14853-1301 (United States)

    2011-08-01

    The crystal structure of 5-hydroxyisourate hydrolase from K. pneumoniae and the steady-state kinetic parameters of the native enzyme as well as several mutants provide insights into the catalytic mechanism of this enzyme and the possible roles of the active-site residues. The stereospecific oxidative degradation of uric acid to (S)-allantoin has recently been demonstrated to proceed via two unstable intermediates and requires three separate enzymatic reactions. The second step of this reaction, the conversion of 5-hydroxyisourate (HIU) to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, is catalyzed by HIU hydrolase (HIUH). The high-resolution crystal structure of HIUH from the opportunistic pathogen Klebsiella pneumoniae (KpHIUH) has been determined. KpHIUH is a homotetrameric protein that, based on sequence and structural similarity, belongs to the transthyretin-related protein family. In addition, the steady-state kinetic parameters for this enzyme and four active-site mutants have been measured. These data provide valuable insight into the functional roles of the active-site residues. Based upon the structural and kinetic data, a mechanism is proposed for the KpHIUH-catalyzed reaction.

  16. Glycosyl hydrolases of cell wall are induced by sugar starvation in Arabidopsis.

    Science.gov (United States)

    Lee, Eun-Jeong; Matsumura, Yasuhiro; Soga, Kouichi; Hoson, Takayuki; Koizumi, Nozomu

    2007-03-01

    Three Arabidopsis genes encoding a putative beta-galactosidase (At5g56870), beta-xylosidase (At5g49360) and beta-glucosidase (At3g60140) are induced by sugar starvation. The deduced proteins belong to the glycosyl hydrolase families 35, 3 and 1, respectively. They are predicted to be secretory proteins that play roles in modification of cell wall polysaccharides based on amino acid similarity. The beta-galactosidase encoded by At5g56870 was identified as a secretory protein in culture medium of suspension cells by mass spectrometry analysis. This protein was specifically detected under sugar-starved conditions with a specific antibody. Induction of these genes was repressed in suspension cells grown with galactose, xylose and glucose, as well as with sucrose. In planta, expression of the genes and protein accumulation were detected when photosynthesis was inhibited. Glycosyl hydrolase activity against galactan also increased during sugar starvation. The amount of monosaccharide in pectin and hemicellulose in detached leaves decreased in response to sugar starvation. These findings suggest that the cell wall may function as a storage reserve of carbon in addition to providing physical support for the plant body.

  17. Discovery and characterization of thermophilic limonene-1,2-epoxide hydrolases from hot spring metagenomic libraries.

    Science.gov (United States)

    Ferrandi, Erica Elisa; Sayer, Christopher; Isupov, Michail N; Annovazzi, Celeste; Marchesi, Carlotta; Iacobone, Gianluca; Peng, Xu; Bonch-Osmolovskaya, Elizaveta; Wohlgemuth, Roland; Littlechild, Jennifer A; Monti, Daniela

    2015-08-01

    The epoxide hydrolases (EHs) represent an attractive option for the synthesis of chiral epoxides and 1,2-diols which are valuable building blocks for the synthesis of several pharmaceutical compounds. A metagenomic approach has been used to identify two new members of the atypical EH limonene-1,2-epoxide hydrolase (LEH) family of enzymes. These two LEHs (Tomsk-LEH and CH55-LEH) show EH activities towards different epoxide substrates, differing in most cases from those previously identified for Rhodococcus erythropolis (Re-LEH) in terms of stereoselectivity. Tomsk-LEH and CH55-LEH, both from thermophilic sources, have higher optimal temperatures and apparent melting temperatures than Re-LEH. The new LEH enzymes have been crystallized and their structures solved to high resolution in the native form and in complex with the inhibitor valpromide for Tomsk-LEH and poly(ethylene glycol) for CH55-LEH. The structural analysis has provided insights into the LEH mechanism, substrate specificity and stereoselectivity of these new LEH enzymes, which has been supported by mutagenesis studies.

  18. Novel Strategies for Upstream and Downstream Processing of Tannin Acyl Hydrolase

    Directory of Open Access Journals (Sweden)

    Luis V. Rodríguez-Durán

    2011-01-01

    Full Text Available Tannin acyl hydrolase also referred as tannase is an enzyme with important applications in several science and technology fields. Due to its hydrolytic and synthetic properties, tannase could be used to reduce the negative effects of tannins in beverages, food, feed, and tannery effluents, for the production of gallic acid from tannin-rich materials, the elucidation of tannin structure, and the synthesis of gallic acid esters in nonaqueous media. However, industrial applications of tannase are still very limited due to its high production cost. Thus, there is a growing interest in the production, recovery, and purification of this enzyme. Recently, there have been published a number of papers on the improvement of upstream and downstream processing of the enzyme. These papers dealt with the search for new tannase producing microorganisms, the application of novel fermentation systems, optimization of culture conditions, the production of the enzyme by recombinant microorganism, and the design of efficient protocols for tannase recovery and purification. The present work reviews the state of the art of basic and biotechnological aspects of tannin acyl hydrolase, focusing on the recent advances in the upstream and downstream processing of the enzyme.

  19. Systematic Survey of Serine Hydrolase Activity in Mycobacterium tuberculosis Defines Changes Associated with Persistence

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Corrie; Anderson, Lindsey N.; Frando, Andrew; Sadler, Natalie C.; Brown, Robert W.; Smith, Richard D.; Wright, Aaron T.; Grundner, Christoph

    2016-02-01

    The transition between replication and non-replication underlies much of Mycobacterium tuberculosis (Mtb) pathogenicity, as non- or slowly replicating Mtb are responsible for persistence and poor treatment outcomes. Therapeutic targeting of non-replicating, persistent populations is a priority for tuberculosis treatment, but only few drug targets in non-replicating Mtb are currently known. Here, we directly measure the activity of the highly diverse and druggable serine hydrolases (SHs) during active replication and non-replication by activity-based proteomics. We predict serine hydrolase activity for 78 proteins, including 27 proteins with previously unknown function, and identify 37 SHs that remain active even in the absence of replication, providing a set of candidate persistence targets. Non-replication was associated with large shifts in the activity of the majority of SHs. These activity changes were largely independent of SH abundance, indicating extensive post-translational regulation. By probing a large cross-section of druggable Mtb enzyme space during replication and non-replication, we identify new SHs and suggest new persistence targets.

  20. Differential Recognition and Hydrolysis of Host Carbohydrate Antigens by Streptococcus pneumoniae Family 98 Glycoside Hydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, M.; Whitworth, G; El Warry, N; Randriantsoa, M; Samain, E; Burke, R; Vocadlo, D; Boraston, A

    2009-01-01

    The presence of a fucose utilization operon in the Streptococcus pneumoniae genome and its established importance in virulence indicates a reliance of this bacterium on the harvesting of host fucose-containing glycans. The identities of these glycans, however, and how they are harvested is presently unknown. The biochemical and high resolution x-ray crystallographic analysis of two family 98 glycoside hydrolases (GH98s) from distinctive forms of the fucose utilization operon that originate from different S. pneumoniae strains reveal that one enzyme, the predominant type among pneumococcal isolates, has a unique endo-{beta}-galactosidase activity on the LewisY antigen. Altered active site topography in the other species of GH98 enzyme tune its endo-{beta}-galactosidase activity to the blood group A and B antigens. Despite their different specificities, these enzymes, and by extension all family 98 glycoside hydrolases, use an inverting catalytic mechanism. Many bacterial and viral pathogens exploit host carbohydrate antigens for adherence as a precursor to colonization or infection. However, this is the first evidence of bacterial endoglycosidase enzymes that are known to play a role in virulence and are specific for distinct host carbohydrate antigens. The strain-specific distribution of two distinct types of GH98 enzymes further suggests that S. pneumoniae strains may specialize to exploit host-specific antigens that vary from host to host, a factor that may feature in whether a strain is capable of colonizing a host or establishing an invasive infection.