WorldWideScience

Sample records for carbonyl compounds metal

  1. Metal-free oxidation of alcohols to their corresponding carbonyl compounds using NH4NO3/Silica sulfuric acid

    International Nuclear Information System (INIS)

    A metal-free and efficient procedure for the oxidation of alcohols into the corresponding carbonyl compounds has been described using ammonium nitrate in the presence of silica sulfuric acid under mild and heterogeneous conditions. The use of non-toxic and inexpensive materials, simple and clean work-up, short reaction times and good yields of the products are among the advantages of this method

  2. The interaction of metal carbonyl compounds with organic polymers and monomers

    OpenAIRE

    Lyons, Michael P.

    1993-01-01

    The photochemistry of W(CO)6, Mo(CO)6, and Cr(CO)6 in the presence of monomeric and polymeric triphenylphosphine ligands was investigated in toluene solution, using laser flash photolysis with 355nm excitation. The mechanism and kinetics of interaction of the primary photoproducts M(CO)5(toluene) (M = W, Mo, or Cr) with the various monomeric ligands were investigated. Interaction of the metal carbonyl photofragments with various homopolymers is also discussed. The polymerisation methods used ...

  3. Separation and Identification of a Mixture of Group 6 Transition-Metal Carbonyl Compounds Using GC-MS in the General Chemistry Curriculum

    Science.gov (United States)

    Fong, Lawrence K.

    2004-01-01

    Students in the general chemistry course are advised to scrutinize data obtained by gas chromatograph (GC) for segregation, and mass spectroscopy (MS) for recognizing combination of group 6 transition-metal carbonyl compounds. The GC-MS method arouses students' interest, as it can be applied to real-world situations, such as the routine…

  4. Metal-free oxidation of alcohols to their corresponding carbonyl compounds using NH{sub 4}NO{sub 3}/Silica sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Zarei, Amin [Islamic Azad Univ., Fars (Iran, Islamic Republic of)

    2012-07-15

    A metal-free and efficient procedure for the oxidation of alcohols into the corresponding carbonyl compounds has been described using ammonium nitrate in the presence of silica sulfuric acid under mild and heterogeneous conditions. The use of non-toxic and inexpensive materials, simple and clean work-up, short reaction times and good yields of the products are among the advantages of this method.

  5. Transition metal-free oxidation of benzylic alcohols to carbonyl compounds by hydrogen peroxide in the presence of acidic silica gel

    Directory of Open Access Journals (Sweden)

    Hossein Ghafuri

    2015-01-01

    Full Text Available Oxidation of alcohols to carbonyl compounds has become an important issue in the process industry as well as many other applications. In this method, various benzylic alcohols were successfully converted to corresponding aldehydes and ketones under transition metal-free condition using hydrogen peroxide in the presence of some amount of catalytic acidic silica gel. Silica gel is inexpensive and available. One of the most important features of this method is its short reaction time.

  6. Trifluoromethylation of Carbonyl Compounds with Sodium Trifluoroacetate

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In the presence of copper (Ⅰ) halide as catalyst, a variety of carbonyl compounds could be trifluoromethylated with sodium trifluoroacetate to give the corresponding alcohols in moderate to high yields.

  7. Carbonyl Compounds Generated from Electronic Cigarettes

    Directory of Open Access Journals (Sweden)

    Kanae Bekki

    2014-10-01

    Full Text Available Electronic cigarettes (e-cigarettes are advertised as being safer than tobacco cigarettes products as the chemical compounds inhaled from e-cigarettes are believed to be fewer and less toxic than those from tobacco cigarettes. Therefore, continuous careful monitoring and risk management of e-cigarettes should be implemented, with the aim of protecting and promoting public health worldwide. Moreover, basic scientific data are required for the regulation of e-cigarette. To date, there have been reports of many hazardous chemical compounds generated from e-cigarettes, particularly carbonyl compounds such as formaldehyde, acetaldehyde, acrolein, and glyoxal, which are often found in e-cigarette aerosols. These carbonyl compounds are incidentally generated by the oxidation of e-liquid (liquid in e-cigarette; glycerol and glycols when the liquid comes in contact with the heated nichrome wire. The compositions and concentrations of these compounds vary depending on the type of e-liquid and the battery voltage. In some cases, extremely high concentrations of these carbonyl compounds are generated, and may contribute to various health effects. Suppliers, risk management organizations, and users of e-cigarettes should be aware of this phenomenon.

  8. Theoretical Estimate of Hydride Affinities of Aromatic Carbonyl Compounds

    Institute of Scientific and Technical Information of China (English)

    AI Teng; ZHU Xiao-Qing; CHENG Jin-Pei

    2003-01-01

    @@ Aromatic carbonyl compounds are one type of the most important organic compounds, and the reductions ofthem by hydride agents such as LiAlH4 or NaBH4 are widely used in organic synthesis. The reactivity of carbonyl compounds generally increases in the following order: ketone < aldehyde, and amide < acid < ester < acid halide, which could be related to their hydride affinities (HA). In the previous paper, Robert[1] calculated the absolute HAof a series of small non-aromatic carbonyl compounds. In this paper, we use DFT method at B3LYP/6-311 + + G (2d, 2p)∥B3LYP/6-31 + G* level to estimate hydride affinities of five groups of aromatic carbonyl compounds. The detailed results are listed in Table 1.

  9. A New HPLC Method to Determine Carbonyl Compounds in Air

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper, a new HPLC method was established to determine the carbonyl compounds in air. As the absorbent, 2, 4-dinitrophenylhydrazine (2, 4-DNPH) reacted with carbonyls specifically, which form the corresponding 2,4-dinitrophenylhydrazones, then analyzed by HPLC. The chromatographic conditions, the recovery rate, stability of samples, reagent blank, sampling efficiency were all studied systematically. The results showed that this established method had high sensitivity and good selectivity compared with other analytical methods, and it can determine ten carbonyl compounds in air in 26 min simultaneously.

  10. α-Regioselective Barbier Reaction of Carbonyl Compounds and Allyl Halides Mediated by Praseodymium.

    Science.gov (United States)

    Wu, San; Li, Ying; Zhang, Songlin

    2016-09-01

    The first utility of praseodymium as a mediating metal in the Barbier reaction of carbonyl compounds with allyl halides was reported in this paper. In contrast to the traditional metal-mediated or catalyzed Barbier reactions, exclusive α-adducts were obtained in this one-pot reaction with a broad scope of substrates and feasible reaction conditions. PMID:27490708

  11. Green Synthesis and Regioselective Control of Sn/I2 Mediated Allylation of Carbonyl Compounds with Crotyl Halide in Water

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Yan; ZHA,Zhang-Gen; ZHOU,Yu-Qing; WANG,Zhi-Yong

    2004-01-01

    @@ Barbier-type carbonyl allylation is particularly useful due to ease of operation and the availability and tractability of allylic substrates,[1] Metals such as indium, zinc and tin are often used as the mediator. Here we present a green approach toward the synthesis, that is, Sn/I2 mediated allylation of carbonyl compounds with crotyl halide in water.

  12. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account.

    Science.gov (United States)

    Wu, Xiao-Feng; Fang, Xianjie; Wu, Lipeng; Jackstell, Ralf; Neumann, Helfried; Beller, Matthias

    2014-04-15

    Carbon monoxide was discovered and identified in the 18th century. Since the first applications in industry 80 years ago, academic and industrial laboratories have broadly explored CO's use in chemical reactions. Today organic chemists routinely employ CO in organic chemistry to synthesize all kinds of carbonyl compounds. Despite all these achievements and a century of carbonylation catalysis, many important research questions and challenges remain. Notably, apart from academic developments, industry applies carbonylation reactions with CO on bulk scale. In fact, today the largest applications of homogeneous catalysis (regarding scale) are carbonylation reactions, especially hydroformylations. In addition, the vast majority of acetic acid is produced via carbonylation of methanol (Monsanto or Cativa process). The carbonylation of olefins/alkynes with nucleophiles, such as alcohols and amines, represent another important type of such reactions. In this Account, we discuss our work on various carbonylations of unsaturated compounds and related reactions. Rhodium-catalyzed isomerization and hydroformylation reactions of internal olefins provide straightforward access to higher value aldehydes. Catalytic hydroaminomethylations offer an ideal way to synthesize substituted amines and even heterocycles directly. More recently, our group has also developed so-called alternative metal catalysts based on iridium, ruthenium, and iron. What about the future of carbonylation reactions? CO is already one of the most versatile C1 building blocks for organic synthesis and is widely used in industry. However, because of CO's high toxicity and gaseous nature, organic chemists are often reluctant to apply carbonylations more frequently. In addition, new regulations have recently made the transportation of carbon monoxide more difficult. Hence, researchers will need to develop and more frequently use practical and benign CO-generating reagents. Apart from formates, alcohols, and metal

  13. Infrared spectroscopy of mass-selected metal carbonyl cations

    Science.gov (United States)

    Ricks, A. M.; Reed, Z. E.; Duncan, M. A.

    2011-04-01

    Metal carbonyl cations of the form M(CO)n+ are produced in a molecular beam by laser vaporization in a pulsed nozzle source. These ions, and their corresponding rare gas atom "tagged" analogs, M(CO)n(RG)m+, are studied with mass-selected infrared photodissociation spectroscopy in the carbonyl stretching region and with density functional theory computations. The number of infrared-active bands, their frequency positions, and their relative intensities provide distinctive patterns allowing determination of the geometries and electronic structures of these complexes. Cobalt penta carbonyl and manganese hexacarbonyl cations are compared to isoelectronic iron pentacarbonyl and chromium hexacarbonyl neutrals. Gold and copper provide examples of "non-classical" carbonyls. Seven-coordinate carbonyls are explored for the vanadium group metal cations (V +, Nb + and Ta +), while uranium cations provide an example of an eight-coordinate carbonyl.

  14. Frustrated Lewis pairs-assisted reduction of carbonyl compounds

    DEFF Research Database (Denmark)

    Marek, Ales; Pedersen, Martin Holst Friborg

    2015-01-01

    An alternative and robust method for the reduction of carbonyl groups by frustrated Lewis pairs (FLPs) is reported in this paper. With its very mild reaction conditions, good to excellent yields, absolute regioselectivity and the non-metallic character of the reagent, it provides an excellent too...

  15. Nucleophilic tetrafluoroethylation of carbonyl compounds with fluorinated sulfones

    Czech Academy of Sciences Publication Activity Database

    Václavík, Jiří; Chernykh, Yana; Jurásek, Bronislav; Beier, Petr

    2015-01-01

    Roč. 169, Jan (2015), s. 24-31. ISSN 0022-1139 R&D Projects: GA ČR GAP207/11/0421 Grant ostatní: GA MŠk(CZ) ED3.2.00/08.0144; GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : fluorine * tetrafluoroethylation * sulfones * nucleophilic addition * carbonyl compounds Subject RIV: CC - Organic Chemistry Impact factor: 1.948, year: 2014

  16. Determination of carbonyl compounds in air by HPLC

    International Nuclear Information System (INIS)

    A method for the determination of seven carbonyl compounds in air is presented. The procedure involve sampling of air by a Sep-Pak cartridge impregnated with 2,4-dinitrophenylhydrazine. Elution was done with 3 mL of acetonitrile and the eluate was diluted to 5 mL. The analysis was done by HPLC with UV detection and external standard method quantification. It has been achieved relative standard deviations about 5% and detection limits of 80 ng/cartridge for formaldehyde, acetaldehyde and acetone+acrolein. Three different types of samples (rural, urban, petrol emission) were successfully analyzed

  17. Infrared Photodissociation Spectroscopy of Metal Oxide Carbonyl Cations.

    Science.gov (United States)

    Brathwaite, Antonio D.; Duncan, Michael A.

    2013-06-01

    Mass selected metal oxide-carbonyl cations of the form MO_{m}(CO)_{n}^{+} are studied via infrared laser photodissociation spectroscopy, in the 600-2300cm^{1} region. Insight into the structure and bonding of these complexes is obtained from the number of infrared active bands, their relative intensities and their frequency positions. Density functional theory calculations are carried out in support of the experimental data. Insight into the bonding of CO ligands to metal oxides is obtained and the effect of oxidation on the carbonyl stretching frequency is revealed.

  18. Organometallic and Bioorganometallic Chemistry - Ferrocene and Metal Carbonyls

    Directory of Open Access Journals (Sweden)

    Čakić Semenčić, M.

    2011-02-01

    Full Text Available Organometallic chemistry deals with compounds containing metal-carbon bonds. Basic organometallics derived from the s- and p-block metals (containing solely σ-bonds were understood earlier, while organometallic chemistry of the d- and f-block has developed much more recently. These compounds are characterized by three types of M-C bonds (σ, π and δand their structures are impossible to deduce by chemical means alone; fundamental advances had to await the development of X-ray diffraction, as well as IR- and NMR-spectroscopy. On the other hand, elucidation of the structure of e. g. vitamin B12 and ferrocene (discovered in 1951 contributed to progress in these instrumental analytical methods, influencing further phenomenal success of transition-metal organometallic chemistry in the second half of the twentieth century. The most thoroughly explored fields of application of organometallics were in the area of catalysis, asymmetric synthesis, olefin metathesis, as well as organic synthesis and access to new materials and polymers.The most usual ligands bound to d- and f-metals are carbon monoxide, phosphines, alkyls, carbenes and arenes, and in this review the bonding patterns in the metal carbonyls and ferrocene are elaborated. The common characteristics of these two classes are two-component bonds. The CO-M bonds include (i donation from ligand HOMO to vacant M d-orbitals (σ-bond, and (ii back-donation from the filled M d-orbitals in the ligand LUMO (π-bond. Similar (but much more complicated ferrocene contains delocalized bonds consisting of electron donation from Cp to Fe (σ-bonds- and π-bonding and δ-back-bonding from metal to Cp. In such a way ferrocene, i. e. (η5-Cp2Fe contains 18 bonding electrons giving to this compound "superaromatic" properties in the sense of stability and electrophilic substitution. In contrast to benzenoid aromatic compounds reactions in two Cp-rings can occur giving homo- and heteroannularly mono-, two-… per

  19. Development of an automatic sampling device for the continuous measurement of atmospheric carbonyls compounds

    International Nuclear Information System (INIS)

    Two sampling strategies were studied to develop an automatic instrument for the continuous measurement of atmospheric carbonyl compounds. Because of its specificity towards carbonyls compounds, sampling by using a transfer of gaseous phase in a liquid phase associated with a simultaneous chemical derivatization of the trapped compounds was first studied. However, this method do not allow a quantitative sampling of all studied carbonyl compounds, nor a continuous measurement in the field. To overcome the difficulties, a second strategy was investigated: the cryogenic adsorption onto solid adsorbent followed by thermodesorption and a direct analysis by GC/MS. Collection efficiency using different solid adsorbents was found greater than 95% for carbonyl compounds consisting of 1 to 7 carbons. This work is a successful first step towards the realization of the automatic sampling device for a continuous measurement of atmospheric carbonyls compounds. (author)

  20. Indoor carbonyl compounds in an academic building in Beijing, China: concentrations and influencing factors

    Institute of Scientific and Technical Information of China (English)

    Chuanjia JIANG; Pengyi ZHANG

    2012-01-01

    Carbonyl compounds in indoor air are of great concern for their adverse health effects. Between February and May, 2009, concentrations of 13 carbonyl compounds were measured in an academic building in Beijing, China. Total concentration of the detected carbonyls ranged from 20.7 to 189.1 I.tg.m3, and among them acetone and formaldehyde were the most abundant, with mean concentrations of 26.4 and 22.6gg.m-3, respectively. Average indoor concentrations of other carbonyls were below I 0 gg. m~3. Principal component analysis identified a combined effect of common indoor carbonyl sources and ventilation on indoor carbonyl levels. Diurnal variations of the carbonyl compounds were investigated in one office room, and carbonyl concentrations tended to be lower in the daytime than at night, due to enhanced ventilation. Average concentrations of carbonyl compounds in the office room were generally higher in early May than in late February, indicating the influence of temperature. Carbo- nyl source emission rates from both the room and human occupants were estimated during two lectures, based on one-compartment mass balance model. The influence of human occupants on indoor carbonyl concentrations varies with environmental conditions, and may become signifi- cant in the case of a large human occupancy.

  1. Aldol Condensation of Volatile Carbonyl Compounds in Acidic Aerosols

    Science.gov (United States)

    Noziere, B.; Esteve, W.

    2003-12-01

    Reactions of volatile organic compounds in acidic aerosols have been shown recently to be potentially important for organic aerosol formation and growth. Aldol condensation, the acid-catalyzed polymerization of carbonyl compounds, is a likely candidate to enhance the flux of organic matter from the gas phase to the condensed phase in the atmosphere. Until now these reactions have only been characterized for conditions relevant to synthesis (high acidities and liquid phase systems) and remote from atmospheric ones. In this work, the uptake of gas-phase acetone and 2,4\\-pentanedione by sulfuric acid solutions has been measured at room temperature using a Rotated Wetted Wall Reactor coupled to a Mass Spectrometer. The aldol condensation rate constants for 2,4\\-pentanedione measured so far for sulfuric acid solutions between 96 and 70 % wt. display a variation with acidity in agreement with what predicted in the organic chemical literature. The values of these constants, however, are much lower than expected for this compound, and comparable to the ones of acetone. Experiments are underway to complete this study to lower acidities and understand the discrepancies with the predicted reactivity.

  2. Ambient levels of carbonyl compounds and their sources in Guangzhou, China

    Science.gov (United States)

    Feng, Yanli; Wen, Sheng; Chen, Yingjun; Wang, Xinming; Lü, Huixiong; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo

    Ambient levels of carbonyl compounds and their possible sources, vehicular exhaust and cooking exhaust, were studied at seven places in Guangzhou, including five districts (a residential area, an industrial area, a botanical garden, a downtown area and a semi-rural area), a bus station and a restaurant during the period of June-September 2003. Nineteen carbonyl compounds were identified in the ambient air, of which acetone was the most abundant carbonyl, followed by formaldehyde and acetaldehyde. Only little changes were found in carbonyl concentration levels in the five different districts because of their dispersion and mixture in the atmosphere in summer. The lower correlations between the carbonyls' concentrations might result from the mixture of carbonyls derived from different sources, including strong photochemical reactions at noon in summer. Formaldehyde and acetaldehyde were the main carbonyls in bus station, while straight-chain carbonyls were comparatively abundant in cooking exhaust. Besides vehicular exhaust, cooking might be another major source of carbonyl compounds in Guangzhou City, especially for high molecular weight carbonyls.

  3. Efficient and selective α-bromination of carbonyl compounds with N-bromosuccinimide under microwave

    KAUST Repository

    Guan, Xiao-Yu

    2014-02-07

    A highly efficient method for the synthesis of α-halocarbonyl compounds has been achieved via selective monobromination of aromatic and aliphatic carbonyl compounds with N-bromosuccinimide catalyzed by p-toluenesulfonic acid under microwave irradiation within 30 min.

  4. Formation of vesicles with an organometallic amphiphilic bilayer by supramolecular arrangement of metal carbonyl metallosurfactants

    OpenAIRE

    Parera Piella, Elisabet; Comelles, Francesc; Barnadas Rodríguez, Ramon; Suades Ortuño, Joan

    2011-01-01

    Metallo-vesicles are formed in water medium as a result of the supramolecular arrangement of molybdenum carbonyl metallosurfactants. These new kind of surfactants contain a hydrophobic metal carbonyl fragment and are easily prepared from surfactant phosphine ligands

  5. Evaluation of carbonyl compounds formed during gamma irradiation of maize starch

    International Nuclear Information System (INIS)

    Changes in the levels of radionduced carbonyl compounds were analysed as a function of irradiation conditions (dose, dose rate, temperature, atmosphere), starch properties (water content) and post irradiation treatments (storage, autoclaving). The percentages of identified and unknown carbonyl fractions were respectively 40 and 60%. The half unknown fraction was linked on the radiodextrins (polysaccharides formed during irradiation of starch). (orig.)

  6. Carbonyl compounds in gas and particle phases of mainstream cigarette smoke

    International Nuclear Information System (INIS)

    Carbonyl compounds (carbonyls) are important constituents of cigarette smoke and some are toxic and may be carcinogenic or mutagenic to humans. In this study carbonyl emissions in the gas and particle phases of mainstream cigarette smoke were assessed by GC-MS with pentafluorophenyl hydrazine (PFPH) derivatization. Seven brands of cigarettes and one brand of cigar common in the UK market and having differing nicotine, tar and carbon monoxide yields were investigated. Sixteen carbonyl components were identified in gaseous emissions and twenty in the particle phase. In the gaseous emissions, acetaldehyde presented as the predominant species, followed by formaldehyde, 2-propenal, and pentanal. In the particulate emissions, 1-hydroxy-2-propanone was the most abundant followed by formaldehyde, benzaldehyde, and 2,5-dimethylbenzaldehyde. Significant differences were found in carbonyl emissions among the brands of cigarettes. The gaseous carbonyl emissions varied in the range of 216-405 μg cigarette-1 (μg cig-1) and the particulate carbonyl emissions varied in the range of 23-127 μg cig-1. Positive correlations were found between the total emission of carbonyls, tar yield and carbon monoxide yield. Similar gas/particle (G/P) partitioning ratios of carbonyls were found among all cigarettes, which implies that G/P partitions of carbonyls in smoke mainly depend on the physical properties of the carbonyls. The gaseous carbonyl emissions were enhanced by 40% to 130% when some of the water, accounting for 8-12% of cigarettes in mass, was removed from the tobacco. Non-filtered cigarettes showed significantly higher carbonyl emissions compared to their filtered equivalents. Carbonyl particulate accounted for 11-19% by mass of total particulate matter from tobacco smoke. The cigar generated 806 μg cig-1 gaseous and 141 μg cig-1 particulate carbonyls, which is 2-4 times greater than the cigarettes. - Highlights: → Carbonyl emission factors in both gas (16 species) and

  7. Carbonyl compounds in gas and particle phases of mainstream cigarette smoke

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xiaobing, E-mail: pangxbyuanj@gmail.com [Department of Chemistry, University of York, Heslington, York, YO10 5DD (United Kingdom); Lewis, Alastair C., E-mail: ally.lewis@york.ac.uk [National Centre for Atmospheric Science, University of York, Heslington, York, YO10 5DD (United Kingdom)

    2011-11-01

    Carbonyl compounds (carbonyls) are important constituents of cigarette smoke and some are toxic and may be carcinogenic or mutagenic to humans. In this study carbonyl emissions in the gas and particle phases of mainstream cigarette smoke were assessed by GC-MS with pentafluorophenyl hydrazine (PFPH) derivatization. Seven brands of cigarettes and one brand of cigar common in the UK market and having differing nicotine, tar and carbon monoxide yields were investigated. Sixteen carbonyl components were identified in gaseous emissions and twenty in the particle phase. In the gaseous emissions, acetaldehyde presented as the predominant species, followed by formaldehyde, 2-propenal, and pentanal. In the particulate emissions, 1-hydroxy-2-propanone was the most abundant followed by formaldehyde, benzaldehyde, and 2,5-dimethylbenzaldehyde. Significant differences were found in carbonyl emissions among the brands of cigarettes. The gaseous carbonyl emissions varied in the range of 216-405 {mu}g cigarette{sup -1} ({mu}g cig{sup -1}) and the particulate carbonyl emissions varied in the range of 23-127 {mu}g cig{sup -1}. Positive correlations were found between the total emission of carbonyls, tar yield and carbon monoxide yield. Similar gas/particle (G/P) partitioning ratios of carbonyls were found among all cigarettes, which implies that G/P partitions of carbonyls in smoke mainly depend on the physical properties of the carbonyls. The gaseous carbonyl emissions were enhanced by 40% to 130% when some of the water, accounting for 8-12% of cigarettes in mass, was removed from the tobacco. Non-filtered cigarettes showed significantly higher carbonyl emissions compared to their filtered equivalents. Carbonyl particulate accounted for 11-19% by mass of total particulate matter from tobacco smoke. The cigar generated 806 {mu}g cig{sup -1} gaseous and 141 {mu}g cig{sup -1} particulate carbonyls, which is 2-4 times greater than the cigarettes. - Highlights: {yields} Carbonyl

  8. Design and Synthesis of 11C-Labelled Compound Libraries for the Molecular Imaging of EGFr, VEGFr-2, AT1 and AT2 Receptors: Transition-Metal Mediated Carbonylations Using [11C]Carbon Monoxide

    International Nuclear Information System (INIS)

    This work deals with radiochemistry and new approaches to develop novel PET tracers labelled with the radionuclide 11C. Two methods for the synthesis of 11C-labelled acrylamides have been explored. First, [1-11C]-acrylic acid was obtained from a palladium(0)-mediated 11C-carboxylation of acetylene with [11C]carbon monoxide; this could be converted to the corresponding acyl chloride and then combined with benzylamine to form N-benzyl[carbonyl-11C]acrylamide. In the second method, the palladium(0)-mediated carbonylation of vinyl halides with [11C]carbon monoxide was explored. This latter method, yielded labelled acrylamides in a single step with retention of configuration at the C=C double bond, and required less amine compared to the acetylene method. The vinyl halide method was used to synthesize a library of 11C-labelled EGFr-inhibitors in 7-61% decay corrected radiochemical yield via a combinatorial approach. The compounds were designed to target either the active or the inactive form of EGFr, following computational docking studies. The rhodium(I)-mediated carbonylative cross-coupling of an azide and an amine was shown to be a very general reaction and was used to synthesize a library of dual VEGFr-2/PDGFrβ inhibitors that were 11C-labelled at the urea position in 38-78% dc rcy. The angiotensin II AT1 receptor antagonist eprosartan was 11C-labelled at one of the carboxyl groups in one step using a palladium(0)-mediated carboxylation. Autoradiography shows specific binding in rat kidney, lung and adrenal cortex, and organ distribution shows a high accumulation in the intestines, kidneys and liver. Specific binding in frozen sections of human adrenal incidentalomas warrants further investigations of this tracer. Three angiotensin II AT2 ligands were 11C-labelled at the amide group in a palladium(0)-mediated aminocarbonylation in 16-36% dc rcy. One of the compounds was evaluated using in vitro using autoradiography, and in vivo using organ distribution and animal

  9. Influence of gamma radiation reaction on the hydroesterification of butenes catalyzed by metal carbonyls

    International Nuclear Information System (INIS)

    In the hydro carboxylation reaction, which first has been studied by Reppe, olefine and acetylene compounds are processed with carbon monoxide and water at high pressures and high temperatures in the presence of metal carbonyls. This reaction can be enhanced considerably by application of ionizing radiation. Lower pressures and in particular lower temperatures can be used if gamma irradiation is performed during carboxylation. For the experiments a mixture of buten-1 and buten-2 as well as pure buten-1 and pure buten-2 has been used to study the behaviour of these olefines with respect to the isomerization of the reaction products and to the olefines not transformed in the reaction process. Replacing water, methanol has been used as a reaction component, thus obtaining directly the respective carbonyl acid esters, which can be analysed quantitatively and qualitatively with respect to their isomeric composition by gaschromatography. (orig./HK)

  10. Direct photolysis of carbonyl compounds dissolved in cloud and fog~droplets

    Science.gov (United States)

    Epstein, S. A.; Tapavicza, E.; Furche, F.; Nizkorodov, S. A.

    2013-09-01

    Gas-phase photolysis is an important tropospheric sink for many carbonyl compounds; however the significance of direct photolysis of these compounds dissolved in cloud and fog droplets is uncertain. We develop a theoretical approach to assess the importance of aqueous photolysis for a series of carbonyls that possess carboxyl and hydroxyl functional groups by comparison with rates of other atmospheric processes. We use computationally and experimentally derived effective Henry's law constants, hydration equilibrium parameters, aqueous hydroxyl radical (OH) rate constants, and optical extinction coefficients to identify types of compounds that will (or will not) have competitive aqueous photolysis rates. We also present molecular dynamics simulations designed to estimate gas- and aqueous-phase extinction coefficients of unstudied atmospherically relevant compounds found in d-limonene and isoprene secondary organic aerosol. In addition, experiments designed to measure the photolysis rate of glyceraldehyde, an atmospherically relevant water-soluble organic compound, reveal that aqueous quantum yields are highly molecule-specific and cannot be extrapolated from measurements of structurally similar compounds. We find that only two out of the 92 carbonyl compounds investigated, pyruvic acid and acetoacetic acid, may have aqueous photolysis rates that exceed the rate of oxidation by dissolved OH. For almost all carbonyl compounds lacking α,β-conjugation that were investigated, atmospheric removal by direct photolysis in cloud and fog droplets can be neglected under typical atmospheric conditions.

  11. Efficient and selective α-bromination of carbonyl compounds with N-bromosuccinimide under microwave

    Directory of Open Access Journals (Sweden)

    Xiao-Yu Guan

    2015-11-01

    Full Text Available A highly efficient method for the synthesis of α-halocarbonyl compounds has been achieved via selective monobromination of aromatic and aliphatic carbonyl compounds with N-bromosuccinimide catalyzed by p-toluenesulfonic acid under microwave irradiation within 30 min.

  12. Vapor phase carbonylation of dimethyl ether and methyl acetate with supported transition metal catalysts

    International Nuclear Information System (INIS)

    The synthesis of acetic acid (AcOH) from methanol (MeOH) and carbon monoxide has been performed industrially in the liquid phase using a rhodium complex catalyst and an iodide promoter. The selectivity to AcOH is more than 99% under mild conditions (1750C, 28 atm). The homogeneous rhodium catalyst has been also effective for the synthesis of acetic anhydride (Ac2O) by carbonylation of dimethyl ether (DME) or methyl acetate (AcOMe). However, rhodium is one of the most expensive metals and its proved reserves are quite limited. It is highly desired, therefore, to develop a new catalyst as a substitute for rhodium. The authors have already reported that nickel supported on active carbon exhibits an excellent activity for the vapor phase carbonylation of MeOh in the presence of iodide promoter and under moderately pressurized conditions. In addition, corrosive attack on reactors by iodide compounds is expected to be negligible in the vapor phase system. In the present work, vapor phase carbonylation of DME and AcOMe on nickel-active carbon (Ni/A.C.) and molybdenum-active carbon (Mo/A.C.) catalysts was studied

  13. Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective

    DEFF Research Database (Denmark)

    Møller, Ian Max; Rogowska-Wrzesinska, Adelina; Rao, R S P

    2011-01-01

    be relevant in physiological processes, irreversible oxidative modifications are known to contribute to cellular damage and disease. The most well-studied irreversible protein oxidation is carbonylation. In this work we first examine how protein carbonylation occurs via metal-catalyzed oxidation (MCO...

  14. Magnetically Recoverable Supported Ruthenium Catalyst for Hydrogenation of Alkynes and Transfer Hydrogenation of Carbonyl Compounds

    Science.gov (United States)

    A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...

  15. Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds

    Science.gov (United States)

    One-pot synthesis of ruthenium nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium nano particles immobilization; the hydration of nitriles and transfer hydrogenation of carbonyl compounds occurs in hi...

  16. An Eco-Friendly System for Oximation of Organic Carbonyl Compounds Under Microwave Irradiation

    OpenAIRE

    Hana Batmani; Davood Setamdideh

    2014-01-01

    The oximation of a variety of organic carbonyl compounds was efficiently carried out with NH2OH·HCl under microwave irradiation. The reactions were performed in water or water-ethanol as green solvents to give Z-aldoxime isomers from the corresponding aldehydes and E-ketoxime isomers from the corresponding ketones in a perfect selectively with excellent yields.

  17. Temporal variation of carbonyl compound concentrations at a semi-rural site in Denmark

    DEFF Research Database (Denmark)

    Christensen, C.S.; Skov, H.; Nielsen, T.; Lohse, C.

    2000-01-01

    for PAN and ozone during high-pressure episodes also indicated that photochemical production was a major controlling factor. Here the highest concentrations of carbonyl compounds were observed in air masses with the highest photochemical age (PCA) and a likely source was determined to be the oxidation...

  18. Structure and Bonding in Binuclear Metal Carbonyls. Classical Paradigms vs. Insights from Modern Theoretical Calculations

    Czech Academy of Sciences Publication Activity Database

    Ponec, Robert

    2015-01-01

    Roč. 1053, SI (2015), s. 195-213. ISSN 2210-271X Institutional support: RVO:67985858 Keywords : binuclear metal carbonyls * DAFH analysis * 18-electron rule Subject RIV: CC - Organic Chemistry Impact factor: 1.545, year: 2014

  19. Frustrated Lewis pairs-assisted reduction of carbonyl compounds

    Czech Academy of Sciences Publication Activity Database

    Marek, Aleš; Pedersen, M. H. F.

    2015-01-01

    Roč. 71, č. 6 (2015), s. 917-921. ISSN 0040-4020 Institutional support: RVO:61388963 Keywords : frustrated Lewis pairs * hydrogen activation * benzyl alcohol * tritium labeling * labeled compounds Subject RIV: CC - Organic Chemistry Impact factor: 2.641, year: 2014

  20. Light metal compound casting

    Institute of Scientific and Technical Information of China (English)

    Konrad; J.; M.; PAPIS; Joerg; F.; LOEFFLER; Peter; J.; UGGOWITZER

    2009-01-01

    Compound casting’simplifies joining processes by directly casting a metallic melt onto a solid metal substrate. A continuously metallurgic transition is very important for industrial applications, such as joint structures of spaceframe constructions in transport industry. In this project, ‘compound casting’ of light metals is investigated, aiming at weight-saving. The substrate used is a wrought aluminium alloy of type AA5xxx, containing magnesium as main alloying element. The melts are aluminium alloys, containing various alloying elements (Cu, Si, Zn), and magnesium. By replacing the natural oxygen layer with a zinc layer, the inherent wetting difficulties were avoided, and compounds with flawless interfaces were successfully produced (no contraction defects, cracks or oxides). Electron microscopy and EDX investigations as well as optical micrographs of the interfacial areas revealed their continu- ously metallic constitution. Diffusion of alloying elements leads to heat-treatable microstructures in the vicinity of the joining interfaces in Al-Al couples. This permits significant variability of mechanical properties. Without significantly cutting down on wettability, the formation of low-melting intermetallic phases (Al3Mg2 and Al12Mg17 IMPs) at the interface of Al-Mg couples was avoided by applying a protective coating to the substrate.

  1. Light metal compound casting

    Institute of Scientific and Technical Information of China (English)

    Konrad J.M.PAPIS; Joerg F.LOEFFLER; Peter J.UGGOWITZER

    2009-01-01

    'Compound casting'simplifies joining processes by directly casting a metallic melt onto a solid metal substrate. A continuously metallurgic transition is very important for industrial applications, such as joint structures of spaceframe constructions in transport industry. In this project, 'compound casting' of light metals is investigated, aiming at weight-saving. The substrate used is a wrought aluminium alloy of type AA5xxx, containing magnesium as main alloying element. The melts are aluminium alloys, containing various alloying elements (Cu, Si, Zn), and magnesium. By replacing the natural oxygen layer with a zinc layer, the inherent wetting difficulties were avoided, and compounds with flawless interfaces were successfully produced (no contraction defects, cracks or oxides). Electron microscopy and EDX investigations as well as optical micrographs of the interfacial areas revealed their continu-ously metallic constitution. Diffusion of alloying elements leads to heat-treatable microstructures in the vicinity of the joining interfaces in Al-Al couples. This permits significant variability of mechanical properties. Without significantly cutting down on wettability, the formation of low-melting intermetallic phases (Al3Mg2 and AI12Mg17 IMPs) at the interface of Al-Mg couples was avoided by applying a protec-tive coating to the substrate.

  2. Density functional theory study of electroreductive hydrocoupling of alpha,beta-unsaturated carbonyl compounds.

    Science.gov (United States)

    Kise, Naoki

    2006-11-24

    [reaction: see text] The electroreductive hydrocoupling of methyl cinnamate, methyl crotonate, cumarin, and benzalacetone was studied by DFT (B3LYP/6-311++ G**) calculations. The computational outcomes for the transition states in the hydrocoupling of anion radicals generated by a one-electron transfer to the alpha,beta-unsaturated carbonyl compounds well agree with the diastereoselectivities in the experimental results previously reported. PMID:17109548

  3. Asymmetric Conjugate Alkynylation of Cyclic α,β-Unsaturated Carbonyl Compounds with a Chiral Diene Rhodium Catalyst.

    Science.gov (United States)

    Dou, Xiaowei; Huang, Yinhua; Hayashi, Tamio

    2016-01-18

    Asymmetric conjugate alkynylation of cyclic α,β-unsaturated carbonyl compounds (ketones, esters, and amides) was realized by use of diphenyl[(triisopropylsilyl)ethynyl]methanol as an alkynylating reagent in the presence of a rhodium catalyst coordinated with a new chiral diene ligand (Fc-bod; bod=bicyclo[2.2.2]octa-2,5-diene, Fc=ferrocenyl) to give high yields of the corresponding β-alkynyl-substituted carbonyl compounds with 95-98% ee. PMID:26636764

  4. Spatial distributions of and diurnal variations in low molecular weight carbonyl compounds in coastal seawater, and the controlling factors

    International Nuclear Information System (INIS)

    We studied the spatial distributions of and the diurnal variations in four low molecular weight (LMW) carbonyl compounds, formaldehyde, acetaldehyde, propionaldehyde, and glyoxal, in coastal seawater. The samples were taken from the coastal areas of Hiroshima Bay, the Iyo Nada, and the Bungo Channel, western Japan. The formaldehyde, acetaldehyde, and glyoxal concentrations were higher in the northern part of Hiroshima Bay than at offshore sampling points in the Iyo Nada and the Bungo Channel. These three compounds were found at much higher concentrations in the surface water than in deeper water layers in Hiroshima Bay. It is noteworthy that propionaldehyde was not detected in any of the seawater samples, the concentrations present being lower than the detection limit (1 nanomole per liter (nM)) of the high performance liquid chromatography (HPLC) system we used. Photochemical and biological experiments were performed in the laboratory to help understand the characteristic distributions and fates of the LMW carbonyl compounds. The primary process controlling their fate in the coastal environment appears to be their biological consumption. The direct photo degradation of propionaldehyde, initiated by ultraviolet (UV) absorption, was observed, although formaldehyde and acetaldehyde were not degraded by UV irradiation. Our results suggest that the degradation of the LMW carbonyl compounds by photochemically formed hydroxyl radicals is relatively insignificant in the study area. Atmospheric deposition is a possible source of soluble carbonyl compounds in coastal surface seawater, but it may not influence the carbonyl concentrations in offshore waters. - Highlights: • Low molecular weight (LMW) carbonyl compounds in coastal seawater were determined. • Photochemical productions of LMW carbonyl compounds in seawater were observed. • LMW carbonyl compounds were largely consumed biologically. • Photochemical degradation was relatively insignificant in the study area

  5. Gas chromatographic analysis of reactive carbonyl compounds formed from lipids upon UV-irradiation

    International Nuclear Information System (INIS)

    Peroxidation of lipids produces carbonyl compounds; some of these, e.g., malonaldehyde and 4-hydroxynonenal, are genotoxic because of their reactivity with biological nucleophiles. Analysis of the reactive carbonyl compounds is often difficult. The methylhydrazine method developed for malonaldehyde analysis was applied to simultaneously measure the products formed from linoleic acid, linolenic acid, arachidonic acid, and squalene upon ultraviolet-irradiation (UV-irradiation). The photoreaction products, saturated monocarbonyl, alpha,beta-unsaturated carbonyls, and beta-dicarbonyls, were derivatized with methylhydrazine to give hydrazones, pyrazolines, and pyrazoles, respectively. The derivatives were analyzed by gas chromatography and gas chromatography-mass spectrometry. Lipid peroxidation products identified included formaldehyde, acetaldehyde, acrolein, malonaldehyde, n-hexanal, and 4-hydroxy-2-nonenal. Malonaldehyde levels formed upon 4 hr of irradiation were 0.06 micrograms/mg from squalene, 2.4 micrograms/mg from linolenic acid, and 5.7 micrograms/mg from arachidonic acid. Significant levels of acrolein (2.5 micrograms/mg) and 4-hydroxy-2-nonenal (0.17 micrograms/mg) were also produced from arachidonic acid upon 4 hr irradiation

  6. Gas chromatographic analysis of reactive carbonyl compounds formed from lipids upon UV-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, K.J.; Shibamoto, T. (Univ. of California, Davis (USA))

    1990-08-01

    Peroxidation of lipids produces carbonyl compounds; some of these, e.g., malonaldehyde and 4-hydroxynonenal, are genotoxic because of their reactivity with biological nucleophiles. Analysis of the reactive carbonyl compounds is often difficult. The methylhydrazine method developed for malonaldehyde analysis was applied to simultaneously measure the products formed from linoleic acid, linolenic acid, arachidonic acid, and squalene upon ultraviolet-irradiation (UV-irradiation). The photoreaction products, saturated monocarbonyl, alpha,beta-unsaturated carbonyls, and beta-dicarbonyls, were derivatized with methylhydrazine to give hydrazones, pyrazolines, and pyrazoles, respectively. The derivatives were analyzed by gas chromatography and gas chromatography-mass spectrometry. Lipid peroxidation products identified included formaldehyde, acetaldehyde, acrolein, malonaldehyde, n-hexanal, and 4-hydroxy-2-nonenal. Malonaldehyde levels formed upon 4 hr of irradiation were 0.06 micrograms/mg from squalene, 2.4 micrograms/mg from linolenic acid, and 5.7 micrograms/mg from arachidonic acid. Significant levels of acrolein (2.5 micrograms/mg) and 4-hydroxy-2-nonenal (0.17 micrograms/mg) were also produced from arachidonic acid upon 4 hr irradiation.

  7. A green synthesis of α,β-unsaturated carbonyl compounds from glyceraldehyde acetonide

    Directory of Open Access Journals (Sweden)

    Cláudia O. Veloso

    2011-01-01

    Full Text Available The catalytic behavior of Cs-exchanged and Cs-impregnated zeolites (X and Y was studied using the Knoevenagel condensation between glyceraldehyde acetonide and ethyl acetoacetate in order to produce the corresponding α,β-unsaturated carbonyl compound that is an important intermediate for fine chemicals. The influence of reaction temperature, type of zeolite, and basicity of the sites on the catalytic behavior of the samples was evaluated. All zeolites were active for the studied reaction. The formation of the main condensation product was favored at lower reaction temperatures. Products of further condensations were also observed especially for samples that were only dried before catalytic test.

  8. Gas phase carbonyl compounds in ship emissions: Differences between diesel fuel and heavy fuel oil operation

    Science.gov (United States)

    Reda, Ahmed A.; Schnelle-Kreis, J.; Orasche, J.; Abbaszade, G.; Lintelmann, J.; Arteaga-Salas, J. M.; Stengel, B.; Rabe, R.; Harndorf, H.; Sippula, O.; Streibel, T.; Zimmermann, R.

    2014-09-01

    Gas phase emission samples of carbonyl compounds (CCs) were collected from a research ship diesel engine at Rostock University, Germany. The ship engine was operated using two different types of fuels, heavy fuel oil (HFO) and diesel fuel (DF). Sampling of CCs was performed from diluted exhaust using cartridges and impingers. Both sampling methods involved the derivatization of CCs with 2,4-Dinitrophenylhydrazine (DNPH). The CCs-hydrazone derivatives were analyzed by two analytical techniques: High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) and Gas Chromatography-Selective Ion Monitoring-Mass Spectrometry (GC-SIM-MS). Analysis of DNPH cartridges by GC-SIM-MS method has resulted in the identification of 19 CCs in both fuel operations. These CCs include ten aliphatic aldehydes (formaldehyde, acetaldehyde, propanal, isobutanal, butanal, isopentanal, pentanal, hexanal, octanal, nonanal), three unsaturated aldehydes (acrolein, methacrolein, crotonaldehyde), three aromatic aldehyde (benzaldehyde, p-tolualdehyde, m,o-molualdehyde), two ketones (acetone, butanone) and one heterocyclic aldehyde (furfural). In general, all CCs under investigation were detected with higher emission factors in HFO than DF. The total carbonyl emission factor was determined and found to be 6050 and 2300 μg MJ-1 for the operation with HFO and DF respectively. Formaldehyde and acetaldehyde were found to be the dominant carbonyls in the gas phase of ship engine emission. Formaldehyde emissions factor varied from 3500 μg MJ-1 in HFO operation to 1540 μg MJ-1 in DF operation, which is 4-30 times higher than those of other carbonyls. Emission profile contribution of CCs showed also a different pattern between HFO and DF operation. The contribution of formaldehyde was found to be 58% of the emission profile of HFO and about 67% of the emission profile of DF. Acetaldehyde showed opposite behavior with higher contribution of 16% in HFO compared to 11% for DF. Heavier carbonyls

  9. Hydrogen bond and protonation during interaction of transition metal carbonyl complexes with HCl and perfluoro-tert-butanol

    International Nuclear Information System (INIS)

    Using the method of IR-spectrometry HCl interaction with some carbonyl complexes of transition metals: (Et5C5)Re(CO)3, (η6 - Me3C6H3)M(CO)3, where M = Cr, Mo, W at low temperatures in solution of liquid xenon, as well as interaction of certain complexes of Arene M (CO)L2 type with perfluoro-tert-butanol, have been investigated. It is ascertained that HCl is able to form H-bond with carbonyl Π-complexes by transition metals via oxygen atom of carbonyl group at metal atom in xenon solution. The protonation of carbonyl complexes of transition metals to metal atom can proceed via the stage of hydrogen bond formation to oxygen atom of CO group

  10. A highly efficient procedure for the oxathioacetalization of carbonyl compounds under solvent-free conditions

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The novel efficient procedure has been developed for the oxathioacetalization of carbonyl compounds and 2-mercaptoethanol using the novel carbon-based sulfonic acid as catalyst under solvent-free condition at room temperature. The results showed that the novel catalyst was very efficient for the reactions with good to excellent yields in short time. The novel catalyst owned many advantages such as operational simplicity,without need of any solvent,small amount of usage,low cost of the catalyst used,high yields,applicability to large-scale reactions,reusability and chemoselectivity over the traditional catalysts,which made the catalyst one of the best choices for the reactions.

  11. THE MIXTURES OF 2.4-DINITROPHENYLHIDRAZONES OF INFERIOR CARBONYL COMPOUNDS AND THEIR HPLC SEPARATION WITH GRADIENT BINARY MIXTURES PHASES

    Directory of Open Access Journals (Sweden)

    Gheorghe Zgherea

    2008-06-01

    Full Text Available Mixtures of small quantities of carbonyl compounds are presents in foods, concerning sensorial qualities. The inferior carbonyl compounds (C2-C4, boiling point <100°C – mono and dicarbonyl – can be identified and measured their concentrations, after a separation by distillation on the water bath. They are transferred in a strongly acid solution of 2.4-dinitrophenylhidrazine (2.4-DNPH, generating a mixture of insoluble 2.4-dinitrophenylhidrazones (2.4-DNPH-ones. The 2.4-DNPH-ones are organic compounds with weak polarity, solids, crystallized, yellows and water insoluble, soluble in organic solvents. The mixture of 2.4dinitrophenylhidrazones may be separated by liquid chromatography, using the reverse phase mechanism [1-3]. This paper contains experimental and theoretical considerations to the means of separation through liquid chromatography of two synthetically and a natural mixtures that contain 2.4-DNPH-ones provided by inferior carbonyl compounds; to obtain conclude results, in the synthetically mixtures was introduce and 2.4-DNPH-ones provided by carbonyl compounds having three (acetone and propanal and four (isobutyl aldehyde atoms of carbon.

  12. Carbonyl compounds in dining areas, kitchens and exhaust streams in restaurants with varying cooking methods in Kaohsiung, Taiwan.

    Science.gov (United States)

    Cheng, Jen-Hsuan; Lee, Yi-Shiun; Chen, Kang-Shin

    2016-03-01

    Eighteen carbonyl species in C1-C10 were measured in the dining areas, kitchens and exhaust streams of six different restaurant types in Kaohsiung, southern Taiwan. Measured results in the dining areas show that Japanese barbecue (45.06ppb) had the highest total carbonyl concentrations (sum of 18 compounds), followed by Chinese hotpot (38.21ppb), Chinese stir-frying (8.99ppb), Western fast-food (8.22ppb), Chinese-Western mixed style (7.38ppb), and Chinese buffet (3.08ppb), due to their different arrangements for dining and cooking spaces and different cooking methods. On average, low carbon-containing species (C1-C4), e.g., formaldehyde, acetaldehyde, acetone and butyraldehyde were dominant and contributed 55.01%-94.52% of total carbonyls in the dining areas of all restaurants. Meanwhile, Chinese-Western mixed restaurants (45.48ppb) had high total carbonyl concentrations in kitchens mainly because of its small kitchen and poor ventilation. However, high carbon-containing species (C5-C10) such as hexaldehyde, heptaldehyde and nonanaldehyde (16.62%-77.00% of total carbonyls) contributed comparatively with low carbon-containing compounds (23.01%-83.39% of total carbonyls) in kitchens. Furthermore, Chinese stir-frying (132.10ppb), Japanese barbecue (125.62ppb), Western fast-food (122.67ppb), and Chinese buffet (119.96ppb) were the four restaurant types with the highest total carbonyl concentrations in exhaust streams, indicating that stir-frying and grilling are inclined to produce polluted gases. Health risk assessments indicate that Chinese hotpot and Japanese barbecue exceeded the limits of cancer risk (10(-6)) and hazard index (=1), mainly due to high concentrations of formaldehyde. The other four restaurants were below both limits. PMID:26969068

  13. Spectrophotometric determination of carbonyl compounds as γ-radiation degradation products in the extraction system of TBP-kerosene-HNO3-UO2(NO3)2

    International Nuclear Information System (INIS)

    A method for determinating trace quantities of carbonyl compounds using spectrophotometry in the extraction system of TBP-kerosens-HNO3-UO2(NO3)2 is reported. The effects of radiation dose, acidity of nitric acid and the concentration of uranium in the aqueous phase, and radiation temperature on the production of carbonyl compounds are investigated

  14. Ruthenium supported on magnetic nanoparticles: An efficient and recoverable catalyst for hydrogenation of alkynes and transfer hydrogenation of carbonyl compounds

    Science.gov (United States)

    Ruthenium supported on surface modified magnetic nanoparticles (NiFe2O4) has been successfully synthesized and applied for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The ...

  15. Pyrrolidine catalyzed reactions of cyclopentadiene with α,β-unsaturated carbonyl compounds: 1,2- versus 1,4-additions

    OpenAIRE

    Coskun, Necdet; Çetin, Meliha; Gronert, Scott; Ma, Jingxiang; Erden, Ihsan

    2015-01-01

    A systematic study of the reactions of cyclopentadiene with α,β-unsaturated carbonyl compounds in the presence of catalytic pyrrolidine-H2O revealed that the reactions can either proceed with a Michael attack at the β-carbon of enone, or 1,2-addition to the carbonyl, leadingeither to 4-cyclopentadienyl-2-butanones or 6-vinylfulvenes. The former can be isolated and/or converted to the corresponding 1,2-dihydropentalenes with base (or in one-pot at longer reaction times). Substitution pattern o...

  16. Regulation of nonadiabatic processes in the photolysis of some carbonyl compounds.

    Science.gov (United States)

    Lin, King-Chuen

    2016-03-14

    Carbonyl compounds studied are confined to acetyl halide (CH3COCl), acetyl cyanide (CH3COCN), acetyl sulfide (CH3COSH), acetaldehyde (CH3CHO), and methyl formate (HCOOCH3). They are asymmetrically substituted, but do not follow the well-known Norrish type I reactions. Each compound ejected in an effusive beam at about 300 K is commonly excited to the (1)(n, π*)CO lower state; that is, a nonbonding electron on O of the C[double bond, length as m-dash]O group is promoted to the antibonding orbital of π*CO. The photolysis experiments are conducted in the presence of Ar gas and the corresponding fragments are detected using time-resolved Fourier-transform Infrared (FTIR) emission spectroscopy. The enhancement of the collision-induced internal conversion or intersystem crossing facilitates the dissociation channels via highly vibrational states of the ground singlet (So) or triplet (T1) potential energy surfaces. In this manner, an alternative nonadiabatic channel is likely to open yielding different products, even if the diabatic coupling strength is strong between the excited state and the neighboring state. For instance, the photodissociation of CH3COCl at 248 nm produces HCl, CO, and CH2 fragments, in contrast to the supersonic jet experiments showing dominance of the Cl fragment eliminated from the excited state. If the diabatic coupling strength is weak, dissociation proceeds mainly through internal conversion, such as the cases of CH3COCN and CH3COSH. The photodissociation of CH3COCN at 308 nm has never been reported before, while for CH3COSH matrix-isolated photodissociation was conducted that shows a distinct spectral feature from the current FTIR method. The CH3CHO and HCOOCH3 molecules belong to the same type of carbonyl compounds, in which the molecular products, CO + CH4 and CO + CH3OH, are produced through both transition state and roaming pathways. Their products are characterized differently between molecular beam and current FTIR experiments. For

  17. Study of the formation of carbonyl compounds in edible oils and fats by 1H-NMR and FTIR

    Science.gov (United States)

    Moya Moreno, M. C. M.; Mendoza Olivares, D.; Amézquita López, F. J.; Peris Martínez, V.; Bosch Reig, F.

    1999-05-01

    Oils and fats start decomposing from the moment they are isolated from their natural environment. Heating accelerates oxidative rancidity and frying at high temperatures produces thermal degradation with the formation of decomposition products, such as aldehydes, ketones, free acids and hydroxilic compounds that in high levels can be harmful to human health. The decomposition products formed up to 300°C were determined by means of 1H-NMR spectroscopy and an FTIR spectroscopic method was developed for the quantification of carbonyl compounds generated during heating. The results show that there is a formation of carbonyl compounds starting at 150°C and when the sample was heated at 300°C for 40 min, the following contents (expressed as butyraldehyde mass fraction) were found: olive oil 10.5%, sunflower oil 11.3%, corn oil 3.0%, seeds oil (sunflower, safflower and canola seed) 6.6% and lard 3.5%.

  18. Structure-activity relationship for the estimation of OH-oxidation rate constants of carbonyl compounds in the aqueous phase

    Directory of Open Access Journals (Sweden)

    J. F. Doussin

    2013-06-01

    Full Text Available In the atmosphere, one important class of reactions occurs in the aqueous phase in which organic compounds are known to undertake oxidation towards a number of radicals, among which OH radicals are the most reactive oxidants. In 2008, Monod and Doussin have proposed a new structure activity relationship (SAR to calculate OH-oxidation rate constants in the aqueous phase. This estimation method is based on the group-additivity principle and was until now limited to alkanes, alcohols, acids, bases and related polyfunctional compounds. In this work, the initial SAR is extended to carbonyl compounds, including aldehydes, ketones, dicarbonyls, hydroxy-carbonyls, acidic carbonyls, their conjugated bases, and the hydrated form of all these compounds. To do so, only five descriptors have been added and none of the previously attributed descriptors were modified. This extension leads now to a SAR which is based on a database of 102 distinct compounds for which 252 experimental kinetic rate constants have been gathered and reviewed. The efficiency of this updated SAR is such that 58% of the rate constants could be calculated within ±20% of the experimental data and 76% within ±40%.

  19. LASER-INDUCED DECOMPOSITION OF METAL CARBONYLS FOR CHEMICAL VAPOR DEPOSITION OF MICROSTRUCTURES

    OpenAIRE

    Tonneau, D.; Auvert, G.; Pauleau, Y.

    1989-01-01

    Tungsten and nickel carbonyls were used to produce metal microstructures by laser-induced chemical vapor deposition (CVD) on various substrates. The deposition rate of microstructures produced by thermodecomposition of W(CO)6 on Si substrates heated with a cw Ar+ laser beam was relatively low (10 to 30 nm/s) even at high temperatures (above 900°C). Ni microstructures were deposited on quartz substrates irradiated with a CO2 laser beam. Relatively high laser powers were needed to heat the Ni s...

  20. Evaluation of Volatile Organic Compounds and Carbonyl Compounds Present in the Cabins of Newly Produced, Medium- and Large-Size Coaches in China

    OpenAIRE

    Yan-Yang Lu; Yi Lin; Han Zhang; Dongxiao Ding; Xia Sun; Qiansheng Huang; Lifeng Lin; Ya-Jie Chen; Yu-Lang Chi; Sijun Dong

    2016-01-01

    An air-conditioned coach is an important form of transportation in modern motorized society; as a result, there is an increasing concern of in-vehicle air pollution. In this study, we aimed to identify and quantify the levels of volatile organic compounds (VOCs) and carbonyl compounds (CCs) in air samples collected from the cabins of newly produced, medium- and large-size coaches. Among the identified VOCs and CCs, toluene, ethylbenzene, xylene, formaldehyde, acetaldehyde, acrolein/acetone, a...

  1. AgOTf-catalyzed one-pot reactions of 2-alkynylbenzaldoximes with α,β-unsaturated carbonyl compounds

    Directory of Open Access Journals (Sweden)

    Qiuping Ding

    2013-09-01

    Full Text Available AgOTf-catalyzed one-pot reactions of 2-alkynylbenzaldoximes with various α,β-unsaturated carbonyl compounds under mild conditions are described, which provides a facile and efficient pathway for the synthesis of 1-alkylated isoquinoline derivatives. The method tolerates a wide range of substrates and allows for the preparation of the products of interest in moderate to excellent yields.

  2. Evaluation of Ternary Mobile Phases for the Analysis of Carbonyl Compound Derivatives Using High-Performance Liquid Chromatography

    OpenAIRE

    Duy Xuan Ho; Ki-Hyun Kim

    2011-01-01

    In this study, the feasibility of ternary mobile phases was examined in a high-performance liquid chromatography (HPLC)-based analysis of carbonyl compounds (CCs). To test the performance of different ternary phases, the liquid phase standards containing a 15 aldehyde/ketone-DNPH(o) mix were analyzed through a series of five-point calibration experiments. For this comparison, three types of ternary mobile phases were prepared initially by mixing water (W) with two of the following three organ...

  3. Effects of low concentration biodiesel blends application on modern passenger cars. Part 2: Impact on carbonyl compound emissions

    Energy Technology Data Exchange (ETDEWEB)

    Fontaras, Georgios [Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, P.O. Box 458, GR 54124 Thessaloniki (Greece); Karavalakis, Georgios [Laboratory of Fuels Technology and Lubricants, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens (Greece); Kousoulidou, Marina; Ntziachristos, Leonidas [Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, P.O. Box 458, GR 54124 Thessaloniki (Greece); Bakeas, Evangelos [Laboratory of Analytical Chemistry, Chemistry Department, National and Kapodistrian University of Athens (Greece); Stournas, Stamoulis [Laboratory of Fuels Technology and Lubricants, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens (Greece); Samaras, Zissis, E-mail: zisis@auth.g [Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, P.O. Box 458, GR 54124 Thessaloniki (Greece)

    2010-07-15

    Today in most European member states diesel contains up to 5% vol biodiesel. Since blending is expected to increase to 10% vol, the question arises, how this higher mixing ratio will affect tailpipe emissions particularly those linked to adverse health effects. This paper focuses on the impact of biodiesel on carbonyl compound emissions, attempting also to identify possible relationship between biodiesel feedstock and emissions. The blends were produced from five different feedstocks, commonly used in Europe. Measurements were conducted on a Euro 3 common-rail passenger car over various driving cycles. Results indicate that generally the use of biodiesel at low concentrations has a minor effect on carbonyl compound emissions. However, certain biodiesels resulted in significant increases while others led to decreases. Biodiesels associated with increases were those derived from rapeseed oil (approx. 200%) and palm oil (approx. 180%), with the highest average increases observed at formaldehyde and acroleine/acetone. - Biodiesel application, may increase the levels of certain pollutants such as carbonyl compounds which are associated with both environmental and health risks.

  4. Effects of low concentration biodiesel blends application on modern passenger cars. Part 2: Impact on carbonyl compound emissions

    International Nuclear Information System (INIS)

    Today in most European member states diesel contains up to 5% vol biodiesel. Since blending is expected to increase to 10% vol, the question arises, how this higher mixing ratio will affect tailpipe emissions particularly those linked to adverse health effects. This paper focuses on the impact of biodiesel on carbonyl compound emissions, attempting also to identify possible relationship between biodiesel feedstock and emissions. The blends were produced from five different feedstocks, commonly used in Europe. Measurements were conducted on a Euro 3 common-rail passenger car over various driving cycles. Results indicate that generally the use of biodiesel at low concentrations has a minor effect on carbonyl compound emissions. However, certain biodiesels resulted in significant increases while others led to decreases. Biodiesels associated with increases were those derived from rapeseed oil (approx. 200%) and palm oil (approx. 180%), with the highest average increases observed at formaldehyde and acroleine/acetone. - Biodiesel application, may increase the levels of certain pollutants such as carbonyl compounds which are associated with both environmental and health risks.

  5. Hydrogen bonding of transition metal carbonyl complexes with perfluoro-tert-butanol

    International Nuclear Information System (INIS)

    OH...OC type H-bond formation under perfluoro-tert-butanol interaction with transition metal carbonyl π-complexes: CpM(CO)3 (Cp=η5-C5H5 and η5-Et5C5, M=Mn,Re), MezM(CO)3 (Mez=η6-Me3H3C6, M=Cr, Mo, W), (η5-C5H5)H(CO)2PR3 (R=Ph, i-Pr, M=Mn, Re) is studied at low temperatures in liquid xenon and at ∼20 deg C-in CCl4. For isostructural complexes CO group O atom basisity grows under the replacement of one of CO groups by a phosphyne ligand, alkyl substituent introduction into π-ring and under the transition from Mn to Re. M(CO)6 (M=Cr, Mo, W) hexacarbonyls do not form H-bond with perfluoro-tert-butanol

  6. A selective palladium-catalyzed carbonylative arylation of aryl ketones to give vinylbenzoate compounds.

    Science.gov (United States)

    Schranck, Johannes; Tlili, Anis; Neumann, Helfried; Alsabeh, Pamela G; Stradiotto, Mark; Beller, Matthias

    2012-12-01

    Preparation of enols: when treated with [{Pd(cinnamyl)Cl}(2)]/cataCXium A (nBuPAd(2), Ad=adamantyl) under an atmosphere of CO, aryl ketones react with aryl halides in a carbonylative C-O coupling reaction to form (Z)-vinyl benzoates. PMID:23143936

  7. Quantitative structure-retention relationships applied to liquid chromatography gradient elution method for the determination of carbonyl-2,4-dinitrophenylhydrazone compounds.

    Science.gov (United States)

    Cirera-Domènech, Elisenda; Estrada-Tejedor, Roger; Broto-Puig, Francesc; Teixidó, Jordi; Gassiot-Matas, Miquel; Comellas, Lluís; Lliberia, Josep Lluís; Méndez, Alberto; Paz-Estivill, Susanna; Delgado-Ortiz, Maria Rosa

    2013-02-01

    A usual method for the determination of aldehydes and ketones in different matrices consists of a derivatization with 2,4-dinitrophenylhydrazine (DNPH) followed by HPLC-UV analysis. In the present work, a HPLC-UV gradient elution method has been applied to the analysis of 13 aldehydes and ketones-DNPH in automotive emission samples. In addition to these 13 compounds-DNPH, several carbonyl-DNPH compounds (linear, ramified and cyclic, saturated and unsaturated compounds) have been analyzed by HPLC-UV. Quantitative structure-retention relationships (QSRR) methods have been applied to predict the logarithm of capacity factor (logk') of carbonyl-DNPH compounds. According to its physicochemical meaning, combinations of 2 and 3 molecular descriptors have been proposed in order to achieve higher correlation with logk'. Using linear and non-linear QSRR methodologies, the resulting prediction models allowed the screening of the most probable carbonyl-DNPH derivative candidates that correspond to unknown compounds detected in automotive emission samples. This information has been useful for their identification by UPLC(®)-MS/MS. In addition, the chromatographic retention of different carbonyl-DNPH compound families was studied using two HPLC isocratic methods working with two orthogonal stationary phases (octadecylpolyethoxysilane and cyanopropyl). Differences between the retention indexes obtained for each column were used for classifying carbonyl-DNPH into compounds families. PMID:23298845

  8. Excited state evolution towards ligand loss and ligand chelation at group 6 metal carbonyl centres.

    Science.gov (United States)

    Manton, Jennifer C; Amirjalayer, Saeed; Coleman, Anthony C; McMahon, Suzanne; Harvey, Emma C; Greetham, Gregory M; Clark, Ian P; Buma, Wybren Jan; Woutersen, Sander; Pryce, Mary T; Long, Conor

    2014-12-21

    The photochemistry and photophysics of three model "half-sandwich" complexes (η(6)-benzophenone)Cr(CO)3, (η(6)-styrene)Cr(CO)3, and (η(6)-allylbenzene)Cr(CO)3 were investigated using pico-second time-resolved infrared spectroscopy and time-dependent density functional theory methods. The (η(6)-benzophenone)Cr(CO)3 complex was studied using two excitation wavelengths (470 and 320 nm) while the remaining complexes were irradiated using 400 nm light. Two independent excited states were detected spectroscopically for each complex, one an unreactive excited state of metal-to-arene charge-transfer character and the other with metal-to-carbonyl charge transfer character. This second excited state leads to an arrested release of CO on the pico-second time-scale. Low-energy excitation (470 nm) of (η(6)-benzophenone)Cr(CO)3 populated only the unreactive excited state which simply relaxes to the parent complex. Higher energy irradiation (320 nm) induced CO-loss. Irradiation of (η(6)-styrene)Cr(CO)3, or (η(6)-allylbenzene)Cr(CO)3 at 400 nm provided evidence for the simultaneous population of both the reactive and unreactive excited states. The efficiency at which the unreactive excited state is populated depends on the degree of conjugation of the substituent with the arene π-system and this affects the efficiency of the CO-loss process. The quantum yield of CO-loss is 0.50 for (η(6)-allylbenzene)Cr(CO)3 and 0.43 for (η(6)-styrene)Cr(CO)3. These studies provide evidence for the existence of two photophysical routes to CO loss, a minor ultrafast route and an arrested mechanism involving the intermediate population of a reactive excited state. This reactive excited state either relaxes to reform the parent species or eject CO. Thus the quantum yield of the CO-loss is strongly dependent on the excitation wavelength. Time-dependent density functional theory calculations confirm that the state responsible for ultrafast CO-loss has significant metal-centred character while

  9. Nanostructured RuO2 on MWCNTs: Efficient catalyst for transfer hydrogenation of carbonyl compounds and aerial oxidation of alcohols

    OpenAIRE

    Gopiraman, M; Babu, S. Ganesh; Karvembu, R.; Kim, I. S.

    2014-01-01

    Multiwall carbon nanotubes (MWCNTs)/ruthenium dioxide nanoparticles (RuO2NPs) composite was prepared by a straightforward ‘dry synthesis’ method. After being well characterized, the prepared composite was used as a nanocatalyst (RuO2/MWCNT) for the transfer hydrogenation of carbonyl compounds. The excellent adhesion of RuO2NPs on the anchoring sites of MWCNTs was confirmed by TEM and Raman analyses. The weight percentage (7.97 wt%) and the chemical state (+4) of Ru in RuO2/MWCNT was confirmed...

  10. Determination of bond energies by mass spectrometry. Some transition metal carbonyls

    International Nuclear Information System (INIS)

    Two groups of transition metal carbonyls have been studied, M(CO)6 and M(CO)5CS complexes of the Group VIB metals and M2(CO)10 complexes of the Group VIIB metals. Results for the hexacarbonyl complexes indicate that the measured fragmentation energies are in error by 0.25 +- 0.02 eV per CO produced. This is attributed to excitation of CO to the first vibrational state. Least-squares dissociation energies calculated from corrected data for M(CO)5CS complexes indicate that the M--CS bond is 3 to 4 times stronger than the M--CO bonds. Substitution of CS for CO in going from M(CO)6 to M(CO)5CS weakens the remaining M--CO bonds by an average of 0.2 eV. Previously unreported MnTc(CO)10 and TcRe(CO)10 are prepared by halide substitution of Tc(CO)5Br and Re(CO)5Br with Mn(CO)5- and Tc(CO)5-, respectively. In the positive ion, metal and mixed-metal decacarbonyls are considered as (CO)5M+--M(CO)5 complexes possessing five strong and five weak M--CO bonds. For Mn2(CO)10 and Re2(CO)10, M+--M dissociation energies are 3.0 +- 0.1 and 4.0 +- 0.3 eV, respectively. These energies are 2.5 times greater than those reported for homolytic cleavage to M(CO)5+ and M(CO)5

  11. Determination of bond energies by mass spectrometry. Some transition metal carbonyls

    Energy Technology Data Exchange (ETDEWEB)

    Michels, G.D.

    1979-01-01

    Two groups of transition metal carbonyls have been studied, M(CO)/sub 6/ and M(CO)/sub 5/CS complexes of the Group VIB metals and M/sub 2/(CO)/sub 10/ complexes of the Group VIIB metals. Results for the hexacarbonyl complexes indicate that the measured fragmentation energies are in error by 0.25 +- 0.02 eV per CO produced. This is attributed to excitation of CO to the first vibrational state. Least-squares dissociation energies calculated from corrected data for M(CO)/sub 5/CS complexes indicate that the M--CS bond is 3 to 4 times stronger than the M--CO bonds. Substitution of CS for CO in going from M(CO)/sub 6/ to M(CO)/sub 5/CS weakens the remaining M--CO bonds by an average of 0.2 eV. Previously unreported MnTc(CO)/sub 10/ and TcRe(CO)/sub 10/ are prepared by halide substitution of Tc(CO)/sub 5/Br and Re(CO)/sub 5/Br with Mn(CO)/sub 5//sup -/ and Tc(CO)/sub 5//sup -/, respectively. In the positive ion, metal and mixed-metal decacarbonyls are considered as (CO)/sub 5/M/sup +/--M(CO)/sub 5/ complexes possessing five strong and five weak M--CO bonds. For Mn/sub 2/(CO)/sub 10/ and Re/sub 2/(CO)/sub 10/, M/sup +/--M dissociation energies are 3.0 +- 0.1 and 4.0 +- 0.3 eV, respectively. These energies are 2.5 times greater than those reported for homolytic cleavage to M(CO)/sub 5//sup +/ and M(CO)/sub 5/.

  12. The chemical processing of gas-phase carbonyl compounds by sulfuric acid aerosols: 2,4-pentanedione

    Science.gov (United States)

    Nozière, Barbara; Riemer, Daniel D.

    This work investigates the interactions between gas-phase carbonyl compounds and sulfuric acid aerosols. It focuses on understanding the chemical processes, giving a first estimate of their importance in the atmosphere, and suggesting directions for further investigations. The solubility and reactivity of a compound with a large enolization constant, 2,4-pentanedione, in water/sulfuric acid solutions 0-96 wt% have been investigated at room temperature using the bubble column/GC-FID technique. 2,4-pentanedione was found to undergo aldol condensation at acidities as low as 20 wt% H 2SO 4, that is, well in the tropospheric range of aerosol composition. In agreement with well-established organic chemical knowledge, this reaction resulted in changes of color of the solutions of potential importance for the optical properties of the aerosols. 2,4-pentanedione was also found to undergo retroaldol reaction, specific to dicarbonyl compounds, producing acetone and acetaldehyde. The Henry's law coefficient for 2,4-pentanedione was found to be a factor 5 larger than the one of acetone over the whole range of acidity, with a value in water of H (297 K)=(155±27) M atm -1. A chemical system is proposed to describe the transformations of carbonyl compounds in sulfuric acid aerosols. Aldol condensation is likely to be the most common reaction for these compounds, probably involving a large number of the ones present in the atmosphere and a wide range of aerosol compositions. The enolization constant contributes as a proportional factor to the rate constant for aldol condensation, and is shown in this work to contribute as an additive constant to the Henry's law coefficient. In addition to the many important aspects of these reactions illustrated in this work, the rate of aldol condensation was estimated to be potentially fast enough for the losses of some compounds in acidic aerosols to compete with their gas-phase chemistry in the atmosphere.

  13. Apple phenolics as inhibitors of the carbonylation pathway during in vitro metal-catalyzed oxidation of myofibrillar proteins.

    Science.gov (United States)

    Rysman, Tine; Utrera, Mariana; Morcuende, David; Van Royen, Geert; Van Weyenberg, Stephanie; De Smet, Stefaan; Estévez, Mario

    2016-11-15

    The effect of apple phenolics on the oxidative damage caused to myofibrillar proteins by an in vitro metal-catalyzed oxidation system was investigated. Three pure phenolic compounds (chlorogenic acid, (-)-epicatechin and phloridzin) and an apple peel extract were added to myofibrillar proteins in three concentrations (50, 100 and 200μM), and a blank treatment was included as a control. All suspensions were subjected to Fe(3+)/H2O2 oxidation at 37°C during 10days, and protein oxidation was evaluated as carbonylation (α-amino adipic and γ-glutamic semialdehydes) and Schiff base cross-links. Significant inhibition by apple phenolics was found as compared to the control treatment, with (-)-epicatechin being the most efficient antioxidant and phloridzin showing the weakest antioxidant effect. The higher concentrations of apple extract showed effective antioxidant activity against protein oxidation in myofibrillar proteins, emphasizing the potential of apple by-products as natural inhibitors of protein oxidation in meat products. PMID:27283697

  14. Palladium-Catalyzed Decarbonylative Dehydration for the Synthesis of α-Vinyl Carbonyl Compounds and Total Synthesis of (-)-Aspewentins A, B, and C.

    Science.gov (United States)

    Liu, Yiyang; Virgil, Scott C; Grubbs, Robert H; Stoltz, Brian M

    2015-09-28

    The direct α-vinylation of carbonyl compounds to form a quaternary stereocenter is a challenging transformation. It was discovered that δ-oxocarboxylic acids can serve as masked vinyl compounds and be unveiled by palladium-catalyzed decarbonylative dehydration. The carboxylic acids are readily available through enantioselective acrylate addition or asymmetric allylic alkylation. A variety of α-vinyl quaternary carbonyl compounds are obtained in good yields, and an application in the first enantioselective total synthesis of (-)-aspewentins A, B, and C is demonstrated. PMID:26230413

  15. Metal-carbonyl organometallic polymers, PFpP, as resists for high-resolution positive and negative electron beam lithography.

    Science.gov (United States)

    Zhang, J; Cao, K; Wang, X S; Cui, B

    2015-12-25

    Metal-containing resists for electron beam lithography (EBL) are attracting attention owing to their high dry etching resistance and possibility for directly patterning metal-containing nanostructures. The newly developed organometallic metal carbonyl polymers, PFpP, can function as EBL resists with strong etching resistance. One significant feature of the PFpP resist is its high resolution. Line arrays with line-widths as narrow as 17 nm have been created. The resist can also be used in positive tone. PMID:26481609

  16. Optical chemical sensors for atmospheric pollutants based on nano porous materials: application to the formaldehyde and the other carbonyl compounds

    International Nuclear Information System (INIS)

    Formaldehyde, a well-identified indoor pollutant, was recently classified as carcinogenic. New regulations for the air quality are expected and therefore there is a need for low-cost sensors, sensitive and selective with a fast response time for the detection of formaldehyde at ppb level. In the present work, we had developed a chemical sensor based on nano-porous matrices doped with Fluoral-P and optical methods of detection. The nano-porous matrices, elaborated via the Sol-Gel process, display nano-pores whose cavity is tailored for the trapping of the targeted pollutant. They provide a first selectivity with the discrimination of the pollutants by their size. A second selectivity is obtained with a molecular probe, Fluoral-P, which reacts specifically with formaldehyde leading to the 3,5- di-acetyl-1,4-dihydro-lutidine (DDL). The kinetics of formation of DDL was studied as function of many parameters such as the concentration of Fluoral-P in the matrix, the pollutant content in gas mixture, the flow rate, the relative humidity of the gas mixtures and interference with other carbonylated compounds. The present chemical sensor can detect, via absorbance measurements, 2 ppb of formaldehyde within 30 min over a O to 60% relative humidity range. Moreover, to detect the total carbonylated compounds, we also explored the potentiality of a chemical sensor using, as a probe molecule, the 2'4-dinitro-phenyl-hydrazine which forms with these compounds the corresponding hydrazones derivatives. A patent was deposited for these two sensors. We have also developed a semi-miniaturized prototype for demonstration, using a flow cell, a miniaturized spectrophotometer, a light source and a lap-top. (author)

  17. Mild and Selective Catalytic Hydrogenation of the C=C Bond in α,β-Unsaturated Carbonyl Compounds Using Supported Palladium Nanoparticles.

    Science.gov (United States)

    Nagendiran, Anuja; Pascanu, Vlad; Bermejo Gómez, Antonio; González Miera, Greco; Tai, Cheuk-Wai; Verho, Oscar; Martín-Matute, Belén; Bäckvall, Jan-E

    2016-05-17

    Chemoselective reduction of the C=C bond in a variety of α,β-unsaturated carbonyl compounds using supported palladium nanoparticles is reported. Three different heterogeneous catalysts were compared using 1 atm of H2 : 1) nano-Pd on a metal-organic framework (MOF: Pd(0) -MIL-101-NH2 (Cr)), 2) nano-Pd on a siliceous mesocellular foam (MCF: Pd(0) -AmP-MCF), and 3) commercially available palladium on carbon (Pd/C). Initial studies showed that the Pd@MOF and Pd@MCF nanocatalysts were superior in activity and selectivity compared to commercial Pd/C. Both Pd(0) -MIL-101-NH2 (Cr) and Pd(0) -AmP-MCF were capable of delivering the desired products in very short reaction times (10-90 min) with low loadings of Pd (0.5-1 mol %). Additionally, the two catalytic systems exhibited high recyclability and very low levels of metal leaching. PMID:27111403

  18. Sulfamic acid as a cost-effective and recyclable solid acid catalyst for Friedel-Crafts alkylation of indole with α,β-unsaturated carbonyl compound and benzyl alcohol

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Juan Zhang; Tian Tian Chen; De Mei Sun; Ji Li; Xue Fen Wu

    2011-01-01

    Sulfamic acid was proved to be a cost-effective and recyclable catalyst for Friedel-Crafts type reaction of indole with α,β-unsaturated carbonyl compound and benzyl alcohol. Various indoles, α,β-unsaturated carbonyl compounds and a benzyl alcohol were successfully used in this type of reaction, and the corresponding products were obtained in good to excellent yields.

  19. Chemoselective Reductive Amination of Carbonyl Compounds for the Synthesis of Tertiary Amines Using SnCl2·2H2O/PMHS/MeOH.

    Science.gov (United States)

    Nayal, Onkar S; Bhatt, Vinod; Sharma, Sushila; Kumar, Neeraj

    2015-06-01

    Stannous chloride catalyzed chemoselective reductive amination of a variety of carbonyl compounds with aromatic amines has been developed for the synthesis of a diverse range of tertiary amines using inexpensive polymethylhydrosiloxane as reducing agent in methanol. The present method is also applicable for the synthesis of secondary amines including heterocyclic ones. PMID:25938581

  20. Detection of Metallic Compounds in Rocket Plumes

    Science.gov (United States)

    Rogers, Chris; Dunn, Dr. Robert

    1998-04-01

    Recent experiments using metal mixed in hydroxyl-terminated polybutadiene (HTPB) fuel grains in small hybrid rocket indicates ion detectors may be effective in detection of metallic compounds in rocket plumes. We wanted to ascertain the extent to which the presence of metallic compounds in rocket plumes could be detected using ion probes and Gaussian rings. Charges that collide with or pass near the intruding probe are detected. Gaussian rings, short insulated cylindrical Gaussian surfaces, enclose the plume without intruding into the plume. Charges in the plume are detected by currents they induce in the cylinder.

  1. Polymers contamination by heavy metal compounds

    Directory of Open Access Journals (Sweden)

    Jovanić Saša

    2002-01-01

    Full Text Available The contamination of important synthetic (surface unmodified polymers by various heavy metal compounds (such as copper, manganese and lead in aqueous medium was investigated in this study. The influence of the pH of the aqueous medium, temperature and metal type on contamination was investigated during a 10 day period. It was found that increasing pH contributed to higher polymer contamination (at higher pH 100 times for copper and up to 400 times for lead, as well as contact with easily penetrable substances. Increasing temperature decreased contamination by the metal compound for PELD and PET which was not the case for PEHD and PR.

  2. Chemoselective hydrogenation of carbonyl compounds and acceptorless dehydrogenative coupling of alcohols.

    Science.gov (United States)

    Spasyuk, Denis; Vicent, Cristian; Gusev, Dmitry G

    2015-03-25

    OsHCl(CO)[κ(3)-PyCH2NHC2H4NHPtBu2] is the first efficient catalyst for chemoselective reduction of challenging unsaturated esters to enols and for acceptorless coupling of amines with MeOH and EtOH affording formamides and acetamides. The NMR, ESI-MS, and DFT data indicate a mechanism proceeding in the metal coordination sphere and producing no free organic intermediates. PMID:25741992

  3. Ambient levels and temporal trends of VOCs, including carbonyl compounds, and ozone at Cabañeros National Park border, Spain

    Science.gov (United States)

    Villanueva, Florentina; Tapia, Araceli; Notario, Alberto; Albaladejo, José; Martínez, Ernesto

    2014-03-01

    Concentration levels of 15 carbonyls, 17 VOCs and ozone were studied at Cabañeros National Park border, Spain, in an area mainly constituted by holm oaks (Quercus ilex) and cork oaks (Quercus suber), along with scrubland formations such as rock-rose and heather. The compounds were collected by means of diffusive samplers from August-November 2010 and February-August 2011. Carbonyl compounds, VOCs and O3 were analysed by HPLC with diode array UV-Vis detector, GC-FID and by UV-visible spectrophotometry, respectively. The most abundant carbonyls were hexanal, acetone-acrolein, formaldehyde and acetaldehyde. Seasonal variation was apparent with maximum values observed in summer months. Total carbonyl concentrations ranged from 2.8 to 19.7 μg m-3. Most VOCs studied (using chemically desorbable cartridges) were either not detected or were below their detection limits, however, a parallel sampling using thermally desorbable cartridges, from May 22 to June 19, revealed the presence of much more VOCs, identified using GC-MS. O3 concentration ranged from 27.2 to 90.5 μg m-3, reaching the maximum monthly mean concentration in March (84.4 μg m-3). The analysis of back trajectories indicates the transport of polluted air masses from remote areas, mainly from the Mediterranean basin that should contribute to the high levels of ozone observed.

  4. Organic carbonyl compounds in Albuquerque, New Mexico, air: A preliminary study of the effects of oxygenated fuel use

    Energy Technology Data Exchange (ETDEWEB)

    Popp, C.J.; Zhang, Lin [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Chemistry; Gaffney, J.S. [Argonne National Lab., IL (United States)

    1993-06-01

    A suite of inorganic and organic species were analyzed for four 2--4 day time periods over a year in Albuquerque, New Mexico to determine baseline conditions for organic pollutants under the current air pollution control parameters. Concentrations of low molecular weight carbonyl compounds were relatively high compared with areas such as Los Angeles. Formio acid concentrations in air samples were significant even in winter. In addition, ratios of peroxypropionyl nitrate to peroxyacyetyl nitrate are higher than expected and may be related to the use of oxygenated fuels which are used to mitigate CO concentrations. The number of CO violations in Albuquerque has decreased steadily since 1982 and the downward trend has continued since 1989 when oxygenated fuel use was mandated. It is, therefore, difficult to correlate the drop in CO violations directly to the use of oxygenated fuels when such factors as fleet turnover, woodburning controls, emissions testing and meteorological conditions also may be playing significant roles. More detailed studies are needed to determine the specific relationship between the use of oxygenated fuels and the air quality in Albuquerque, New Mexico and similar urban areas in the western United States.

  5. Evaluation of ternary mobile phases for the analysis of carbonyl compound derivatives using high-performance liquid chromatography.

    Science.gov (United States)

    Ho, Duy Xuan; Kim, Ki-Hyun

    2011-01-01

    In this study, the feasibility of ternary mobile phases was examined in a high-performance liquid chromatography (HPLC)-based analysis of carbonyl compounds (CCs). To test the performance of different ternary phases, the liquid phase standards containing a 15 aldehyde/ketone-DNPH(o) mix were analyzed through a series of five-point calibration experiments. For this comparison, three types of ternary mobile phases were prepared initially by mixing water (W) with two of the following three organic solvents: isopropanol (I), methanol (M), and tetrahydrofuran (T). The resulting three types of ternary phases (named as WIM, WTM, and WIT) were tested and evaluated in relation to the water content or in terms of methanol-to-water ratio (M/W). The results derived by the three ternary phases revealed that the optimal resolution was attained near maximum water content, while those of WIT consistently suffered from poor resolution problems. The relative performances of WIM and WTM phases, if assessed by three key operating parameters (sensitivity, retention time, and resolution), were found to be reliable for most selected CCs with the decreasing M/W ratio. PMID:21218260

  6. Evaluation of Ternary Mobile Phases for the Analysis of Carbonyl Compound Derivatives Using High-Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Duy Xuan Ho

    2011-01-01

    Full Text Available In this study, the feasibility of ternary mobile phases was examined in a high-performance liquid chromatography (HPLC-based analysis of carbonyl compounds (CCs. To test the performance of different ternary phases, the liquid phase standards containing a 15 aldehyde/ketone-DNPH(o mix were analyzed through a series of five-point calibration experiments. For this comparison, three types of ternary mobile phases were prepared initially by mixing water (W with two of the following three organic solvents: isopropanol (I, methanol (M, and tetrahydrofuran (T. The resulting three types of ternary phases (named as WIM, WTM, and WIT were tested and evaluated in relation to the water content or in terms of methanol-to-water ratio (M/W. The results derived by the three ternary phases revealed that the optimal resolution was attained near maximum water content, while those of WIT consistently suffered from poor resolution problems. The relative performances of WIM and WTM phases, if assessed by three key operating parameters (sensitivity, retention time, and resolution, were found to be reliable for most selected CCs with the decreasing M/W ratio.

  7. Contribution to radiation-chemically catalyzed hydroformylation of butenes in the presence of metal carbonyls

    International Nuclear Information System (INIS)

    In this paper a study is presented of the influence of gamma-radiation on the catalytic hydroformylation of olefines. As model olefines buten-1 and buten-2 as well as their mixtures have been used together with the catalysts di-cobalt octacarbonyle and rhodium (I) tristri phenyl-phosphine carbonyle hydride. In addition the catalytic activity of the VI. side group carbonyles Cr(CO)6, Mo(CO)6 and W(CO)6 has been studied under radiation chemical conditions. For this purpose a mixture of olefine, solvent (cyclo hexane) and calalyst has been pressurized and processed in a mixing autoklave together with a Co and H2 (1:1) mixture, variing the reaction variables within certain limits. (orig.)

  8. Heteroaromatic organic compound with conjugated multi-carbonyl as cathode material for rechargeable lithium batteries

    Science.gov (United States)

    Lv, Meixiang; Zhang, Fen; Wu, Yiwen; Chen, Mujuan; Yao, Chunfeng; Nan, Junmin; Shu, Dong; Zeng, Ronghua; Zeng, Heping; Chou, Shu-Lei

    2016-04-01

    The heteroaromatic organic compound, N,N’-diphenyl-1,4,5,8-naphthalenetetra- carboxylic diimide (DP-NTCDI-250) as the cathode material of lithium batteries is prepared through a simple one-pot N-acylation reaction of 1,4,5,8-naphthalenetetra-carboxylic dianhydride (NTCDA) with phenylamine (PA) in DMF solution followed by heat treatment in 250 °C. The as prepared sample is characterized by the combination of elemental analysis, NMR, FT-IR, TGA, XRD, SEM and TEM. The electrochemical measurements show that DP-NTCDI-250 can deliver an initial discharge capacity of 170 mAh g‑1 at the current density of 25 mA g‑1. The capacity of 119 mAh g‑1 can be retained after 100 cycles. Even at the high current density of 500 mA g‑1, its capacity still reaches 105 mAh g‑1, indicating its high rate capability. Therefore, the as-prepared DP-NTCDI-250 could be a promising candidate as low cost cathode materials for lithium batteries.

  9. Evaluation of Volatile Organic Compounds and Carbonyl Compounds Present in the Cabins of Newly Produced, Medium- and Large-Size Coaches in China

    Science.gov (United States)

    Lu, Yan-Yang; Lin, Yi; Zhang, Han; Ding, Dongxiao; Sun, Xia; Huang, Qiansheng; Lin, Lifeng; Chen, Ya-Jie; Chi, Yu-Lang; Dong, Sijun

    2016-01-01

    An air-conditioned coach is an important form of transportation in modern motorized society; as a result, there is an increasing concern of in-vehicle air pollution. In this study, we aimed to identify and quantify the levels of volatile organic compounds (VOCs) and carbonyl compounds (CCs) in air samples collected from the cabins of newly produced, medium- and large-size coaches. Among the identified VOCs and CCs, toluene, ethylbenzene, xylene, formaldehyde, acetaldehyde, acrolein/acetone, and isovaleraldehyde were relatively abundant in the cabins. Time was found to affect the emissions of the contaminants in the coaches. Except for benzaldehyde, valeraldehyde and benzene, the highest in-vehicle concentrations of VOCs and CCs were observed on the 15th day after coming off the assembly line, and the concentrations exhibited an approximately inverted U-shaped pattern as a function of time. Interestingly, this study also showed that the interior temperature of the coaches significantly affected the VOCs emissions from the interior materials, whereas the levels of CCs were mainly influenced by the relative humidity within the coaches. In China, guidelines and regulations for the in-vehicle air quality assessment of the coaches have not yet been issued. The results of this study provide further understanding of the in-vehicle air quality of air-conditioned coaches and can be used in the development of both specific and general rules regarding medium- and large-size coaches. PMID:27314375

  10. Visible-light-induced, Ir-catalyzed reactions of N-methyl-N-((trimethylsilylmethylaniline with cyclic α,β-unsaturated carbonyl compounds

    Directory of Open Access Journals (Sweden)

    Dominik Lenhart

    2014-04-01

    Full Text Available N-Methyl-N-((trimethylsilylmethylaniline was employed as reagent in visible-light-induced, iridium-catalyzed addition reactions to cyclic α,β-unsaturated carbonyl compounds. Typical reaction conditions included the use of one equivalent of the reaction substrate, 1.5 equivalents of the aniline and 2.5 mol % (in MeOH or 1.0 mol % (in CH2Cl2 [Ir(ppy2(dtbbpy]BF4 as the catalyst. Two major reaction products were obtained in combined yields of 30–67%. One product resulted from aminomethyl radical addition, the other product was a tricyclic compound, which is likely formed by attack of the intermediately formed α-carbonyl radical at the phenyl ring. For five-membered α,β-unsaturated lactone and lactam substrates, the latter products were the only products isolated. For the six-membered lactones and lactams and for cyclopentenone the simple addition products prevailed.

  11. Molecular metal-metal bonds compounds, synthesis, properties

    CERN Document Server

    Liddle, Stephen T

    2015-01-01

    Systematically covering all areas of the Periodic Table, this is a comprehensive and handy introduction to metal-metal bonding. The 15 chapters follow a uniform, coherent structure for a clear overview, allowing readers easy access to the information. The important molecules at the genesis of each area are mentioned but the focus lies principally on research published since 2005. Important topics such as synthesis, properties, structures,notable features, reactivity and examples of applications of the most important compounds in each group with metal-metal bonding throughout the periodic ta

  12. In-situ formation, thermal decomposition, and adsorption studies of transition metal carbonyl complexes with short-lived radioisotopes

    International Nuclear Information System (INIS)

    We report on the in-situ synthesis of metal carbonyl complexes with short-lived isotopes of transition metals. Complexes of molybdenum, technetium, ruthenium and rhodium were synthesized by thermalisation of products of neutron-induced fission of 249Cf in a carbon monoxide-nitrogen mixture. Complexes of tungsten, rhenium, osmium, and iridium were synthesized by thermalizing short-lived isotopes produced in 24Mg-induced fusion evaporation reactions in a carbon monoxide containing atmosphere. The chemical reactions took place at ambient temperature and pressure conditions. The complexes were rapidly transported in a gas stream to collection setups or gas phase chromatography devices. The physisorption of the complexes on Au and SiO2 surfaces was studied. We also studied the stability of some of the complexes, showing that these start to decompose at temperatures above 300 C in contact with a quartz surface. Our studies lay a basis for the investigation of such complexes with transactinides.

  13. Solid-supported sulfonic acid-containing catalysts efficiently promoted one-pot multi-component synthesis of -acetamido carbonyl compounds

    Indian Academy of Sciences (India)

    Mohammad Ali Zolfigol; Ardeshir Khazaei; Abdolkarim Zare; Mohammad Mokhlesi; Tahereh Hekmat-Zadeh; Alireza Hasaninejad; Fatemeh Derakhshan-Panah; Ahmad Reza Moosavi-Zare; Hassan Keypour; Ahmad Ali Dehghani-Firouzabadid; Maria Merajoddin

    2012-03-01

    Silica-functionalized sulfonic acid (SFSA) and sulfuric acid-modified polyethylene glycol-6000 (PEG-OSO3H) efficiently catalysed one-pot multi-component condensation of enolizable ketones or alkyl acetoacetates with arylaldehydes, acetonitrile and acetyl chloride to afford the corresponding -acetamido ketone or ester derivatives in high to excellent yields and in relatively short reaction times. Moreover, in this work, some novel -acetamido carbonyl compounds (i.e., one complex structure) are synthesized.

  14. Carbonyl compounds emitted by a diesel engine fuelled with diesel and biodiesel-diesel blends: Sampling optimization and emissions profile

    Science.gov (United States)

    Guarieiro, Lílian Lefol Nani; Pereira, Pedro Afonso de Paula; Torres, Ednildo Andrade; da Rocha, Gisele Olimpio; de Andrade, Jailson B.

    Biodiesel is emerging as a renewable fuel, hence becoming a promising alternative to fossil fuels. Biodiesel can form blends with diesel in any ratio, and thus could replace partially, or even totally, diesel fuel in diesel engines what would bring a number of environmental, economical and social advantages. Although a number of studies are available on regulated substances, there is a gap of studies on unregulated substances, such as carbonyl compounds, emitted during the combustion of biodiesel, biodiesel-diesel and/or ethanol-biodiesel-diesel blends. CC is a class of hazardous pollutants known to be participating in photochemical smog formation. In this work a comparison was carried out between the two most widely used CC collection methods: C18 cartridges coated with an acid solution of 2,4-dinitrophenylhydrazine (2,4-DNPH) and impinger bottles filled in 2,4-DNPH solution. Sampling optimization was performed using a 2 2 factorial design tool. Samples were collected from the exhaust emissions of a diesel engine with biodiesel and operated by a steady-state dynamometer. In the central body of factorial design, the average of the sum of CC concentrations collected using impingers was 33.2 ppmV but it was only 6.5 ppmV for C18 cartridges. In addition, the relative standard deviation (RSD) was 4% for impingers and 37% for C18 cartridges. Clearly, the impinger system is able to collect CC more efficiently, with lower error than the C18 cartridge system. Furthermore, propionaldehyde was nearly not sampled by C18 system at all. For these reasons, the impinger system was chosen in our study. The optimized sampling conditions applied throughout this study were: two serially connected impingers each containing 10 mL of 2,4-DNPH solution at a flow rate of 0.2 L min -1 during 5 min. A profile study of the C1-C4 vapor-phase carbonyl compound emissions was obtained from exhaust of pure diesel (B0), pure biodiesel (B100) and biodiesel-diesel mixtures (B2, B5, B10, B20, B50, B

  15. Polymers contamination by heavy metal compounds

    OpenAIRE

    Jovanić Saša; Stoiljković Dragoslav M.; Popović Ivanka G.

    2002-01-01

    The contamination of important synthetic (surface unmodified) polymers by various heavy metal compounds (such as copper, manganese and lead) in aqueous medium was investigated in this study. The influence of the pH of the aqueous medium, temperature and metal type on contamination was investigated during a 10 day period. It was found that increasing pH contributed to higher polymer contamination (at higher pH 100 times for copper and up to 400 times for lead), as well as contact with easily p...

  16. Dissociative electron attachment reactions of transition metal carbonyls and their apparent influence on the thermalization of electrons by CO2

    OpenAIRE

    George, Patricia M.; Beauchamp, J. L.

    1982-01-01

    Dissociative electron attachment rates are measured for the transition metal carbonyls V(CO)6, Cr(CO)6, Fe(CO)5, Ni(CO)4, Mo(CO)6, and W(CO)6. Rates are measured as a function of the pressure of CO2 added to relax epithermal electrons. Derived thermal rate constants for the formation of M(CO)-n-1 from M(CO)n are 0.6, 3.0, 2.0, 2.0, 1.3, and 1.2×10^−7 cm3 molecule−1 s−1, respectively. The differences in these rate constants may be attributed to the different stabilities of the molecular anion ...

  17. Mechanism of buffer gases influence on the rate of photostimulated laser-chemical deposition from vapors on transition metal carbonyls

    International Nuclear Information System (INIS)

    A method is proposed for deactivation of the excited state of molecules of transitional-metal carbonyls due to collisions with atoms or molecules of buffer gas, enabling the explanation of the experimental results of the photostimulated laser-chemical deposition (LCD). The model is constructed according to which deactivation of the excited state as a result of a translational relaxation of the kinetic energy of fragments in the molecule during the transition. The conclusion is drawn that owing to a high correlation of the experimental results and the model calculations it is possible to use the LCD method as an analytical tool for quantitative measurements of the parameters of photochemical reactions proceeding under the action of laser radiation, in particular, constants of monomolecular decay of excited molecules

  18. Transition metal mediated [(11) C]carbonylation reactions: recent advances and applications.

    Science.gov (United States)

    Kealey, Steven; Gee, Antony; Miller, Philip W

    2014-04-01

    [(11) C]Carbon monoxide is undoubtedly a highly versatile radiolabelling synthon with many potential applications for the synthesis of positron emission tomography (PET) tracer molecules and functional groups, but why has it not found more applications in the PET radiolabelling arena? Today, (11) CO radiolabelling is still primarily viewed as a niche area; however, there are signs that this is beginning to change as some of the technical and chemistry challenges of producing, handling and reacting (11) CO are overcome. This mini review covers the more recent developments of (11) CO-labelling chemistry and is focused on palladium and rhodium-mediated carbonylation reactions that are growing in importance and finding wider application for carbon-11 PET radiotracer development. PMID:24425679

  19. Metal-Free Oxidative Nitration of α-Carbon of Carbonyls Leads to One-Pot Synthesis of Thiohydroximic Acids from Acetophenones.

    Science.gov (United States)

    Dighe, Shashikant U; Mukhopadhyay, Sushobhan; Priyanka, Kumari; Batra, Sanjay

    2016-09-01

    A metal-free nitration of the α-C-H to carbonyl in propiophenones was achieved with I2/NaNO2 in the presence of an oxidant in dimethyl sulfoxide (DMSO) as the medium. Conversely under similar conditions, reaction of acetophenones produced thiohydroximic acids via a radical-based cascade event which involves oxidative nitration of the α-carbon to a carbonyl followed by Michael addition of the thiomethyl group from DMSO and subsequent rearrangement. Besides DMSO, the scope of the reaction encompasses other symmetrical and unsymmetrical dialkylsulfoxides. PMID:27541178

  20. PAH, BTEX, carbonyl compound, black-carbon, NO2 and ultrafine particle dynamometer bench emissions for Euro 4 and Euro 5 diesel and gasoline passenger cars

    Science.gov (United States)

    Louis, Cédric; Liu, Yao; Tassel, Patrick; Perret, Pascal; Chaumond, Agnès; André, Michel

    2016-09-01

    Although implementing Diesel particulate filters (DPF) and other novel aftertreatment technologies makes it possible to achieve significant reductions in particle mass emissions, it may induce the release of ultrafine particles and emissions of many other unregulated compounds. This paper focuses on (i) ultrafine particles, black carbon, BTEX, PAH, carbonyl compounds, and NO2 emissions from Euro 4 and Euro 5 Diesel and gasoline passenger cars, (ii) the influence of driving conditions (e.g., cold start, urban, rural and motorway conditions), and (iii) the impact of additive and catalysed DPF devices on vehicle emissions. Chassis dynamometer tests were conducted on four Euro 5 vehicles and two Euro 4 vehicles: gasoline vehicles with and without direct injection system and Diesel vehicles equipped with additive and catalysed particulate filters. The results showed that compared to hot-start cycles, cold-start urban cycles increased all pollutant emissions by a factor of two. The sole exception was NO2, which was reduced by a factor of 1.3-6. Particulate and black carbon emissions from the gasoline engines were significantly higher than those from the Diesel engines equipped with DPF. Moreover, the catalysed DPF emitted about 3-10 times more carbonyl compounds and particles than additive DPF, respectively, during urban driving cycles, while the additive DPF vehicles emitted 2 and 5 times more BTEX and carbonyl compounds during motorway driving cycles. Regarding particle number distribution, the motorway driving cycle induced the emission of particles smaller in diameter (mode at 15 nm) than the urban cold-start cycle (mode at 80-100 nm). The results showed a clear positive correlation between particle, black carbon, and BTEX emissions, and a negative correlation between particles and NO2.

  1. Iodine-catalyzed addition of 2-mercaptoethanol to chalcone derivatives: Synthesis of the novel β-mercapto carbonyl compounds

    OpenAIRE

    Gürkan Yerli; Hayreddin Gezegen; Mustafa Ceylan

    2012-01-01

    In this study, a series of novel β-mercapto carbonyl derivatives (3-(2-hydroxyethylthio)-1,3-diarylpropan-1-one) (5a-i) were prepared by addition of 2-mercaptoethanol (4) to chalcones (3a-i) in the presence of catalytic amount of iodine (10 mol %) in CH 2Cl 2.

  2. Iodine-catalyzed addition of 2-mercaptoethanol to chalcone derivatives: Synthesis of the novel β-mercapto carbonyl compounds

    Directory of Open Access Journals (Sweden)

    Gürkan Yerli

    2012-01-01

    Full Text Available In this study, a series of novel β-mercapto carbonyl derivatives (3-(2-hydroxyethylthio-1,3-diarylpropan-1-one (5a-i were prepared by addition of 2-mercaptoethanol (4 to chalcones (3a-i in the presence of catalytic amount of iodine (10 mol % in CH 2Cl 2.

  3. Measurements of C1-C4 alkyl nitrates and their relationships with carbonyl compounds and O3 in Chinese cities

    Science.gov (United States)

    Wang, Ming; Shao, Min; Chen, Wentai; Lu, Sihua; Wang, Chen; Huang, Daikuan; Yuan, Bin; Zeng, Limin; Zhao, Yue

    2013-12-01

    Ambient alkyl nitrates (RONO2) are important byproducts of O3 formation. Although concern about O3 pollution has increased recently, few studies have investigated RONO2 chemistry and distributions in China. In this study, ambient levels of C1-C4 RONO2 were measured in Chinese cities, and their relationships with parent hydrocarbons (RH), carbonyls, and total oxidant (Ox = O3 + NO2) were investigated. Our measurements showed that 2-butyl nitrate (2-BuONO2) was the most abundant RONO2 species, with mixing ratios of 48-88 pptv, followed by 2-propyl nitrate (2-PrONO2), ethyl nitrate (EtONO2), methyl nitrate (MeONO2), and 1-propyl nitrate (1-PrONO2). The measured RONO2 species exhibited maximum levels in the early afternoon (13:00-14:00) of summer, suggesting the importance of RONO2 photochemical production. Relative to 2-BuONO2/n-butane, the measured 1-PrONO2/propane agreed well with the modeled ratio based on laboratory kinetic data, suggesting that propane was the dominant precursor of ambient 1-PrONO2. However, the measured ratios for MeONO2/methane, EtONO2/ethane, and summertime 2-PrONO2/propane showed significant positive deviations from the predicted values, indicating the existence of additional sources other than OH oxidation of the parent hydrocarbons. Initial mixing ratios of C1-C3 carbonyls during 08:00-12:00 in summer at the PKU site exhibited significant correlations with RONO2 levels, suggesting the importance of secondary sources for ambient carbonyls. The measured ratios of formaldehyde/MeONO2 were close to the theoretical ratio, whereas the derived ratios for acetaldehyde/EtONO2, propanal/1-PrONO2, and acetone/2-PrONO2 were higher than the kinetic ratios, indicating that these carbonyls might be produced from sources other than the reaction of alkoxy radicals with O2. Carbonyls are important precursors of Ox, but their photochemical reactions do not result in RONO2 production. Therefore, Ox/RONO2 could indicate the relative importance of carbonyls to

  4. Heavy metal screening in compounds feeds

    Directory of Open Access Journals (Sweden)

    Tomas Toth

    2015-05-01

    Full Text Available Heavy metals are generally classified as basic groups of pollutants that are now a days found in different environmental compartments. This is quite a large group of contaminants, which have different characteristics, effects on the environment and sources of origin. For environment pose the greatest risks, especially heavy metals produced by anthropogenic activities that adversely affect the health and vitality of organisms and natural environmental conditions. Livestock nutrition is among the main factors which affect not only the deficiency of livestock production and quality of food of animal origin, but they are also a factor affecting the safety and wholesomeness and the animal health. Compound feeds is characterized as a mixture of two or more feed grain. Containing organic, inorganic nutrients and specifically active compound feed meet the nutritional requirements of a given kind and age category of animals. They are used mainly in the diet of pigs, poultry, but also the nutrition of cattle, sheep, horses and other animal categories. The basic ingredients are cereals in proportion of 60-70 %. The aim of this thesis was to analyze the content of hazardous elements (copper, zinc, iron, manganese, cobalt, nickel, chromium, lead, cadmium, mercury in 15 samples of compound feeds and then evaluating their content in comparison with maximum limits laid down by Regulation of the Government of the Slovak Republic and Regulation Commission (EC.

  5. A monotonic increase of formal metal–metal bond orders from one to five upon loss of carbonyl groups from binuclear benzene chromium carbonyls

    International Nuclear Information System (INIS)

    Highlights: • Density functional theory studies on (C6H6)2Cr2(CO)n (n = 5, 4, 3, 2, 1) are reported. • The predicted Cr–Cr distances in (C6H6)2Cr2(CO)n (n = 5, 4, 3, 2, 1) decrease monotonically as CO groups are lost. • The formal Cr–Cr bond orders in (C6H6)2Cr2(CO)n (n = 5, 4, 3, 2, 1) increase monotonically from 1 to 5 as CO groups are lost. • Comparison of the (C6H6)2Cr2(CO)n and (C5H5)2Mn2(CO)n systems are made. - Abstract: Benzene forms a binuclear chromium carbonyl derivative (η6-C6H6)2Cr2(μ-CO)3, shown by X-ray crystallography to have a very short Cr≡Cr distance, suggesting the formal triple bond required to give each chromium atom the favored 18-electron configuration. We now describe theoretical studies on the entire series of binuclear benzene chromium carbonyls (C6H6)2Cr2(CO)n (n = 5, 4, 3, 2, 1). The predicted Cr–Cr distances in the lowest energy singlet structures determined by the BP86 method decrease monotonically as carbonyl groups are lost starting from 2.95 Å in (C6H6)2Cr2(CO)5 to 1.95 Å in (C6H6)2Cr2(CO) corresponding to a steady increase in the formal bond order from one to five. This increase in formal Cr–Cr bond order is also supported by a monotonic increase in the Wiberg bond indices ranging from 0.29 for the single bond in (C6H6)2Cr2(CO)5 to ∼2 for the formal quintuple bond in (C6H6)2Cr2(CO)

  6. Novel and Efficient One Pot Condensation Reactions between Ketones and Aromatic Alcohols in the Presence of CrO3 Producing α,β-Unsaturated Carbonyl Compounds%Novel and Efficient One Pot Condensation Reactions between Ketones and Aromatic Alcohols in the Presence of CrO3 Producing α,β-Unsaturated Carbonyl Compounds

    Institute of Scientific and Technical Information of China (English)

    李亚男; 陈道勇

    2011-01-01

    We report a new, effective and simple method for preparing a,fl-unsaturated carbonyl compounds by reacting ketones and aromatic alcohols at 56 ℃ in the presence of CrO3 (CrO3 acts as an oxidant and also a catalyst) for around 10 h. The condensation reactions occurred effectively among a wide combination of ketones and alcohols. The procedure is simple and the yields can be high up to 98%. And a probable mechanism is proposed.

  7. Hydrogen bond and protonation in carbonyl nitrosyl complexes of transition metals

    International Nuclear Information System (INIS)

    Infrared spectroscopy was used to study interaction of CoM(CO)2(NO) π-complexes, where M=Cr, Mo, Cp=η5-C5H5, with perfluorotert butanol (PFTB) and HCl in liquid Xe solutions at low temperatures. It is shown that mentioned complexes can form earlier unknown type of hydrogen bond with PFTB and HCl by oxygen atom of nitrosyl group of transition metal atom. Protonation of complexes dissolved in liquid Xe by transition metal atom during their interaction with HCl was reveald

  8. Vibrational spectra and structure of staircase carbonyl π-complexes of transition metals. 2. Rotational isomerism

    International Nuclear Information System (INIS)

    FTIR spectra have been studied of staircase cyclopentadienyl complexes containing two or three metalcarbonyl fragments bond by the metal-carbon σ-bond: Cp(CO)3Mo(W)-Cpm(CO)2Fe-CpmMn(CO)3, where Cp = η5-C5H5, Cpm = η1:η5-C5H4. The spectra were measured in n-pentane solutions in a wide range of temperatures and in the low temperature solid matrices of argon and nitrogen. Rotamers were found in solutions resulted from the internal rotation about the metal-carbon σ-bond. 13 refs.; 3 figs.; 2 tabs

  9. Michael Addition of Thiols to á,(a)-Unsaturated Carbonyl Compounds Catalyzed by Bifunctional Organocatalysts:Asymmetric Michael Addition and Asymmetric Protonation

    Institute of Scientific and Technical Information of China (English)

    LI Bang-Jing; JIANG Lin; LIU Min; DING Li-Sheng; CHEN Ying-Chun

    2004-01-01

    Recently the hydrogen-bond activated reactions have attracted much attention.1 Takemoto2 reported a highly enantioselective Michael addition of manolate to nitroolefins catalyzed by a bifunctional organocatalyst with tertiary amine and thiourea moiety. As we known,stereoselective conjugate additions of thiols are interesting due to the standpoint of biological and synthetic importance, however, only very limited good results have been obtained except for the works of Shibasaki3, Kanemasa4 and Deng5 et al.In this letter, we report an efficient catalytic asymmetric Michael reactions of thiols to a,a-unsaturated carbonyl compounds promoted by bifunctional organocatalysts. A series of organocatalysts with chiral amine and thiourea structures were designed and synthesized and have been successfully applied in the conjugated additions of thiols to a,a-unsaturated imides and enones.The reactions got quantitative yields and the ee values were up to 84%. It is noteworthy that the a-asymmetric protonation (up to 43% ee) also could be achieved.The Michael addition between aromatic thiols and a,a-unsaturated carbonyl compounds isdescribed as follows:Works to further increase the enantioselectivity is under investigation in our laboratory.

  10. Determination of carbonyl compounds in beer by derivatisation and headspace solid-phase microextraction in combination with gas chromatography and mass spectrometry.

    Science.gov (United States)

    Saison, Daan; De Schutter, David P; Delvaux, Filip; Delvaux, Freddy R

    2009-06-26

    Headspace solid-phase microextraction (SPME) followed by gas chromatography and mass spectrometry was applied for quantification of 41 chemically diverse carbonyl compounds in beer. Therefore, in-solution derivatisation with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) combined with SPME was optimised for fibre selection, PFBHA concentration, extraction temperature and time and ionic strength. Afterwards, the method was calibrated and validated successfully and extraction efficiency was compared to sampling with on-fibre derivatisation. In-solution derivatisation enabled the detection of several compounds that were poorly extracted with on-fibre derivatisation such as 5-hydroxymethylfurfural, acrolein, hydroxyacetone, acetoin, glyoxal and methylglyoxal. Others, especially (E)-2-nonenal, were extracted better with on-fibre derivatisation. PMID:19450805

  11. Pressure-induced Transformations of Dense Carbonyl Sulfide to Singly Bonded Amorphous Metallic Solid.

    Science.gov (United States)

    Kim, Minseob; Dias, Ranga; Ohishi, Yasuo; Matsuoka, Takehiro; Chen, Jing-Yin; Yoo, Choong-Shik

    2016-01-01

    The application of pressure, internal or external, transforms molecular solids into non-molecular extended network solids with diverse crystal structures and electronic properties. These transformations can be understood in terms of pressure-induced electron delocalization; however, the governing mechanisms are complex because of strong lattice strains, phase metastability and path dependent phase behaviors. Here, we present the pressure-induced transformations of linear OCS (R3m, Phase I) to bent OCS (Cm, Phase II) at 9 GPa; an amorphous, one-dimensional (1D) polymer at 20 GPa (Phase III); and an extended 3D network above ~35 GPa (Phase IV) that metallizes at ~105 GPa. These results underscore the significance of long-range dipole interactions in dense OCS, leading to an extended molecular alloy that can be considered a chemical intermediate of its two end members, CO2 and CS2. PMID:27527241

  12. Task-specific ionic liquids for solubilizing metal compounds

    OpenAIRE

    Thijs, Ben

    2007-01-01

    The main goal of this PhD thesis was to design new task-specific ionic liquids with the ability to dissolve metal compounds. Despite the large quantity of papers published on ionic liquids, not much is known about the mechanisms of dissolving metals in ionic liquids or about metal-containing ionic liquids. Additionally, many of the commercially available ionic liquids exhibit a very limited solubilizing power for metal compounds, although this is for many applications like electrodeposition a...

  13. Process for forming a metal compound coating on a substrate

    International Nuclear Information System (INIS)

    This patent describes a method of coating a substrate with a thin layer of a metal compound by forming a dispersion of an electrophoretically active organic colloid and a precursor of the metal compound in an electrolytic cell in which the substrate is an electrode. Upon application of an electric potential, the electrode is coated with a mixture of the organic colloid and the precursor to the metal compound, and the coated substrate is then heated in the presence of an atmosphere or vacuum to decompose the organic colloid and form a coating of either a combination of metal compound and carbon, or optionally forming a porous metal compound coating by heating to a temperature high enough to chemically react the carbon

  14. Quantification of reactive carbonyl compounds in icodextrin-based peritoneal dialysis fluids by combined UHPLC-DAD and -MS/MS detection.

    Science.gov (United States)

    Gensberger-Reigl, Sabrina; Huppert, Jochen; Pischetsrieder, Monika

    2016-01-25

    During heat sterilization of peritoneal dialysis (PD) fluids, the glucose component is partially degraded. The formed glucose degradation products impair biocompatibility and limit the long-term application of PD fluids. As an alternative to glucose, icodextrin, a polyglucose, is used as osmotic agent in PD fluids. After targeted screening for reactive carbonyl compounds, NMR- and MS-analyses very recently revealed 4-deoxyglucosone (4-DG), 3-deoxyglucosone (3-DG), 3-deoxygalactosone (3-DGal), 3,4-dideoxypentosone (3,4-DDPS), and 5-hydroxymethylfurfural (5-HMF) as main polyglucose degradation products (pGDPs) in icodextrin-based PD fluids. Now, the present study established and validated a UHPLC method with DAD as well as a UHPLC-MS/MS method for the first-time quantification of those five major pGDPs in commercial icodextrin PD fluids after derivatization with o-phenylenediamine. Thus, 4-DG was identified to be the main degradation product (in concentrations up to 20 μM). In contrast to the values measured in glucose-based products, the concentration of 3-DGal (≤ 16 μM) was higher than the concentration of 3-DG (≤ 7 μM) indicating different reaction pathways starting from polyglucose compared to glucose. The compounds 3,4-DDPS and 5-HMF were present in minor quantities (≤ 0.3 μM each). PMID:26540628

  15. Measurement of Secondary Products During Oxidation Reactions of Terpenes and Ozone Based on the PTR-MS Analysis: Effects of Coexistent Carbonyl Compounds

    Directory of Open Access Journals (Sweden)

    Yukio Yanagisawa

    2010-11-01

    Full Text Available Continuous measurements using proton transfer reaction mass spectrometry (PTR-MS can be used to describe the production processes of secondary products during ozone induced oxidation of terpenes. Terpenes are emitted from woody building materials, and ozone is generated from ozone air purifiers and copy machines in indoor environments. Carbonyl compounds (CCs are emitted by human activities such as smoking and drinking alcohol. Moreover, CCs are generated during ozone oxidation of terpenes. Therefore, coexistent CCs should affect the ozone oxidation. This study has focused on the measurement of secondary products during the ozone oxidation of terpenes based on the use of PTR-MS analysis and effects of coexistent CCs on oxidized products. Experiments were performed in a fluoroplastic bag containing α-pinene or limonene as terpenes, ozone and acetaldehyde or formaldehyde as coexistent CCs adjusted to predetermined concentrations. Continuous measurements by PTR-MS were conducted after mixing of terpenes, ozone and CCs, and time changes of volatile organic compounds (VOCs concentrations were monitored. Results showed that, high-molecular weight intermediates disappeared gradually with elapsed time, though the production of high-molecular weight intermediates was observed at the beginning. This phenomenon suggested that the ozone oxidation of terpenes generated ultrafine particles. Coexistent CCs affected the ozone oxidation of α-pinene more than limonene.

  16. Determination of nicotine, tar, volatile organic compounds and carbonyls in mainstream cigarette smoke using a glass filter and a sorbent cartridge followed by the two-phase/one-pot elution method with carbon disulfide and methanol.

    Science.gov (United States)

    Uchiyama, Shigehisa; Hayashida, Hideki; Izu, Rina; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2015-12-24

    We have developed a new analytical method for the determination of nicotine, tar, volatile organic compounds and carbonyls in main-stream cigarette smoke using a sorbent cartridge packed with Carboxen 572 (CX-572) and a Cambridge filter pad (CFP) followed by the two-phase/one-pot elution method. A CX-572 cartridge is installed between the intake of the CFP and the pump of the smoking machine. Gaseous compounds collected with the CX-572 cartridge and total particulate matter (TPM) collected with the CFP are coeluted simultaneously in the same vial and then analyzed by high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC/MS) and gas chromatograph-thermal conductivity detector (GC/TCD). Carbonyl compounds are determined by adding derivatizing reagent (2,4-dinitrophenylhydrazine, DNPH) to the eluate followed by HPLC analysis. VOCs and nicotine are determined by GC/MS, and water is determined by GC/TCD. The same sample eluate solution is used for HPLC, GC/MS and GC/TCD analyses. As a result of measuring main-stream cigarette smoke generated from reference cigarettes, almost all carbonyl compounds and VOCs except formaldehyde were passed through a CFP and trapped in a CX-572 cartridge. 100% of nicotine, tar and TPM were trapped in a CFP. 50% of water and 53% of formaldehyde were trapped in a CFP. The one-pot data is almost equal to the sums of CFP (particulate matter) and CX-572 (gaseous compounds) data. The two-phase/one-pot elution method can simultaneously measure nicotine, tar, volatile organic compounds and carbonyl compounds in cigarette smoke with simple operation and small amounts of reagents. PMID:26653840

  17. Production of metal powders and compounds, especially of refractory metals

    International Nuclear Information System (INIS)

    Since the invention of filament lamps and hard metals, powder metallurgy has increasingly been used for production of semifinished products and finished products from a multitude of metals, hard metals and composite materials. Methods have been developed by which powders can be made to measured, usually physical methods, chemical-metallurgical methods, or combined methods. Requirements on metal powders are listed as well as suitable methods of fabrication. (orig.)

  18. Levels and sources of volatile organic compounds including carbonyls in indoor air of homes of Puertollano, the most industrialized city in central Iberian Peninsula. Estimation of health risk.

    Science.gov (United States)

    Villanueva, Florentina; Tapia, Araceli; Amo-Salas, Mariano; Notario, Alberto; Cabañas, Beatriz; Martínez, Ernesto

    2015-08-01

    Twenty nine organic air pollutants including carbonyl compounds, alkanes, aromatic hydrocarbons and terpenes were measured in the indoor environment of different houses together with the corresponding outdoor measurements in Puertollano, the most industrialized city in central Iberian Peninsula. VOCs were sampled during 8 weeks using Radiello(®) passive samplers, and a questionnaire on potential VOCs sources was filled out by the occupants. The results show that formaldehyde and hexanal was the most abundant VOCs measured in indoor air, with a median concentration of 55.5 and 46.4μgm(-3), respectively followed by butanal (29.1μgm(-3)), acetone (28.4μgm(-3)) and acetaldehyde (21.4μgm(-3)). After carbonyls, n-dodecane (13.1μgm(-3)) and terpenes (α-pinene, 13.4μgm(-3) and limonene, 13.4μgm(-3)) were the compounds with higher median concentrations. The indoor/outdoor (I/O) ratios demonstrated that sources in the indoor environment are prevailing for most of the investigated VOCs especially for limonene, α-pinene, hexanal, formaldehyde, pentanal, acetaldehyde, o-xylene, n-dodecane and acetone with I/O ratio >6. Multiple linear regressions were applied to investigate the indoor VOC determinants and Spearman correlation coefficients were used to establish common sources between VOCs. Finally, the lifetime cancer risk associated to formaldehyde, acetaldehyde and benzene exposure was estimated and they varied from 7.8×10(-5) to 4.1×10(-4) for formaldehyde, from 8.6×10(-6) to 3.5×10(-5) for acetaldehyde and from 2.0×10(-6) to 1.5×10(-5) for benzene. For formaldehyde, the attributed risk in most sampled homes was two orders of magnitude higher than the one (10(-6)) proposed as acceptable by risk management bodies. PMID:26025206

  19. Identification of major metal complexing compounds in Blepharis aspera

    International Nuclear Information System (INIS)

    Verbascoside and isoverbascoside, present at 0.7% and 0.2% (w/w dryweight), were identified to be major compounds that could contribute to the metal complexation in Blepharis aspera collected in Botswana, Africa. The metallophyte B. aspera has high ability to cope with a high level of metal accumulation. The presence of metal complexing compounds and/or antioxidants can prevent oxidative reactions in lipids, proteins and DNA that take place due to the metal accumulation. On-line liquid chromatography-solid phase extraction-nuclear magnetic resonance (LC-SPE-NMR) was applied for the identification, while electrospray-mass spectrometry (ESI-MS) and UV-vis spectroscopy was used to assess whether these compounds can complex with metals. It was found that verbascoside and isoverbascoside may form complexes with nickel, iron (verbascoside only) and copper. Thus, the presence of verbascoside and isoverbascoside can explain the survival of B. aspera in mineral-rich areas

  20. Synthesis of an Epoxide Carbonylation Catalyst: Exploration of Contemporary Chemistry for Advanced Undergraduates

    Science.gov (United States)

    Getzler, Yutan D. Y. L.; Schmidt, Joseph A. R.; Coates, Geoffrey W.

    2005-01-01

    A class of highly active, well-defined compounds for the catalytic carbonylation of epoxides and aziridines to beta-lactones and beta-lactams are introduced. The synthesis of one of the catalysts involves a simple imine condensation to form the ligand followed by air-sensitive metalation and salt metathesis steps.

  1. Heavy metal screening in compounds feeds

    OpenAIRE

    Tomas Toth

    2015-01-01

    Heavy metals are generally classified as basic groups of pollutants that are now a days found in different environmental compartments. This is quite a large group of contaminants, which have different characteristics, effects on the environment and sources of origin. For environment pose the greatest risks, especially heavy metals produced by anthropogenic activities that adversely affect the health and vitality of organisms and natural environmental conditions. Livestock nutrition is among t...

  2. Superconductivity of ternary metal compounds prepared at high pressures

    CERN Document Server

    Shirotani, I

    2003-01-01

    Various ternary metal phosphides, arsenides, antimonides, silicides and germanides have been prepared at high temperatures and high pressures. These ternary metal compounds can be classified into four groups: [1] metal-rich compounds MM' sub 4 X sub 2 and [2] MM'X, [3] non-metal-rich compounds MXX' and [4] MM' sub 4 X sub 1 sub 2 (M and M' = metal element; X and X' = non-metal element). We have studied the electrical and magnetic properties of these materials at low temperatures, and found many new superconductors with the superconducting transition temperature (T sub c) of above 10 K. The metal-rich compound ZrRu sub 4 P sub 2 with a tetragonal structure showed the superconducting transition at around 11 K, and had an upper critical field (H sub c sub 2) of 12.2 tesla (T) at 0 K. Ternary equiatomic compounds ZrRuP and ZrRuSi crystallize in two modifications, a hexagonal Fe sub 2 P-type structure [h-ZrRuP(Si)] and an orthorhombic Co sub 2 P-type structure [o-ZrRuP(Si)]. Both h-ZrRuP and h-ZrRuSi have rather h...

  3. Decomplexing metallic cations from metallo-organic compounds

    OpenAIRE

    Melian, C.I.; Kapteijn F.; Moulijn, J.A.

    2006-01-01

    The invention is directed to a process for liberating metallic cations from metallo-organic compounds, said process comprising contacting an aqueous solution of the metallo-organic compound with an oxidising agent, thereby oxidising the organic component and obtaining the free cation

  4. Characterization of the variation of carbonyl compounds concentrations before, during, and after the renovation of an apartment at Niterói, Brazil.

    Science.gov (United States)

    Ochs, Soraya de Mendonça; Furtado, Leonardo de Almeida; Cerqueira, Wildson Vieira; Pereira Netto, Annibal Duarte

    2016-08-01

    The present work reports the variation of 31 carbonyl compounds (CC) in an apartment located at Niterói City, Rio de Janeiro State, Brazil. Eight sampling campaigns were conducted through a 1-year period, and three areas (living room, kitchen, and bedroom) were evaluated before, during, and after the renovation activities and reoccupation of the apartment. Samples were collected using SEP-PAK cartridges impregnated with 2,4-dinitrophenylhydrazine, and the hydrazones were analyzed using rapid resolution liquid chromatography with UV detection. The lowest total concentration of CC (19.0 ± 1.5 μg m(-3)) was found before the renovation when the apartment was empty, but door varnishing resulted in highest contamination of the apartment (1386 ± 384 μg m(-3)); however, an important dispersion of CC was observed in the subsequent sampling (148 ± 1.8 μg m(-3)). After apartment reoccupation, the indoor contamination seemed to depend on the routine activities taken there, such as household product use and cooking activities, but apparently, local temperature increase favored the vaporization of the volatile CC from the building materials in the apartment. As far as we are concerned, this is the first study comparing the concentrations of 31 CC in residential areas before, during, and after renovation activities taken in Brazil. PMID:27130339

  5. Regioselectivity in the [2 + 2] cyclo-addition reaction of triplet carbonyl compounds to substituted alkenes (Paterno-Büchi reaction): A spin-polarized conceptual DFT approach

    Indian Academy of Sciences (India)

    B Pintér; F De Proft; T Veszprémi; P Geerlings

    2005-09-01

    Regioselectivity of the photochemical [2 + 2] cyclo-addition of triplet carbonyl compounds with a series of ground state electron-rich and electron-poor alkenes, the Paterno-Büchi reaction, is studied. Activation barriers for the first step of the triplet reaction are computed in the case of the O-attack. Next, the observed regioselectivity is explained using a series of DFT-based reactivity indices. In the first step, we use the local softness and the local HSAB principle within a softness matching approach, and explain the relative activation barriers of the addition step. In the final step, the regioselectivity is assessed within the framework of spin-polarized conceptual density functional theory, considering response functions of the system's external potential , number of electrons and spin number , being the difference between the number of and electrons in the spin-polarized system. Although the concept of local spin philicity, introduced recently within this theory, appears less suited to predict the regioselectivity in this reaction, the correct regioselectivity emerges from considering an interaction between the largest values of the generalized Fukui functions ss on both interacting molecules.

  6. Elementary boron and metal-boron compounds

    International Nuclear Information System (INIS)

    Elementary boron is of interest for its peculiar and difficult bonding behaviour in solids. Due to its high oxygen affinity we find no elementary boron in nature. For the same reason it is difficult to isolate pure, elementary boron, and much confusion about 'boron crystals' has been the result of more than 100 years of research. The polymorphic forms of elementary boron and its closely related higher carbides and higher metal borides as well as the simple metal borides, B3C and BN are reported. The quantum-mechanical background responsible for structure and stoichiometry of these crystals is given. (orig.)

  7. Stabilization of explosive compounds on metallic surfaces

    International Nuclear Information System (INIS)

    Full text: Previous experiments on explosives like RDX, TNT or PETN in gas phase have shown that these molecules decay easily into several fragments upon low-energy electron attachment. These unimolecular decompositions are rather time consuming (several μs) and can be quenched when the molecules are embedded in helium nano droplets. With the use of a variable temperature scanning tunneling microscope, electron induced fragmentation of explosives is investigated for molecules adsorbed on single crystal metal surfaces. (author)

  8. An Exploration on the Suitability of Airborne Carbonyl Compounds Analysis in relation to Differences in Instrumentation (GC-MS versus HPLC-UV) and Standard Phases (Gas versus Liquid)

    OpenAIRE

    Ki-Hyun Kim; Jan E. Szulejko; Yong-Hyun Kim; Min-Hee Lee

    2014-01-01

    The relative performance figure of merits was investigated for the two most common analytical methods employed for carbonyl compounds (CC), for example, between high performance liquid chromatography (HPLC)-UV detector (with 2,4-dinitrophenylhydrazine (DNPH) derivatization) and thermal desorption (TD)-gas chromatography (GC)-mass spectrometry (MS) (without derivatization). To this end, the suitability of each method is assessed by computing the relative recovery (RR) between the gas- and liqu...

  9. [11C]Carbon Monoxide in Palladium- / Selenium-Promoted Carbonylation Reactions : Synthesis of 11C-Imides, Hydrazides, Amides, Carboxylic Acids, Carboxylic Esters, Carbothioates, Ketones and Carbamoyl Compounds

    OpenAIRE

    Karimi, Farhad

    2002-01-01

    [11C]Carbon monoxide in low concentrations has been used in palladium- or seleniummediated carbonylation reactions such as the synthesis of 11C-imides, hydrazides, amides, carboxylic acids, esters, carbothioates, ketones and carbamoyl compounds. In these reactions aryl iodides have been used in most cases. However, less reactive aryl triflate, chloride and bromides were activated using tetrabutylammonium iodide. The reactivities of nucleophiles may have influence on the radiochemical yield of...

  10. K3[Fe(CN)6].3H2O supported on silica gel: An efficient and selective reagent for the cleavage of oximes to their corresponding carbonyl compounds in aqueous medium

    Indian Academy of Sciences (India)

    Abbas Amini Manesh; Behzad Shirmardi Shaghasemi

    2015-03-01

    K3[Fe(CN)6].3H2O supported on silica gel, a new oxidant, for efficient, simple and selective cleavage of ketoximes and aldoximes to their corresponding carbonyl compounds in aqueous medium is described. Further oxidation of aldehydes to carboxylic acid and formation of by-products were not observed. − unsaturated oxime was deoximated smoothly without oxidation of the double bond.

  11. Organometallic compounds of the lanthanides, actinides and early transition metals

    International Nuclear Information System (INIS)

    This book provides a reference compilation of physical and biographical data on over 1500 of the most important and useful organometallic compounds of the lanthanides, actinides and early transition metals representing 38 different elements. The compounds are listed in molecular formula order in a series of entries in dictionary format. Details of structure, physical and chemical properties, reactions and key references are clearly set out. All the data is fully indexed and a structural index is provided. (U.K.)

  12. Excited states and transition metal compounds with quantum Monte Carlo

    OpenAIRE

    Bande, Annika

    2007-01-01

    To the most challenging electron structure calculations belong weak interactions, excited state calculations, transition metals and properties. In this work the performance of variational (VMC) and fixed-node diffusion quantum Monte Carlo (FN-DMC) is tested for challenging electron structure problems using the quantum Monte Carlo amolqc code by Lüchow et al. The transition metal compounds under consideration are vanadium oxides. Here excitation, ionization, oxygen atom and molecule abstractio...

  13. Raman scattering in transition metal compounds: Titanium and compounds of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J.; Ederer, D.L.; Shu, T. [Tulane Univ., New Orleans, LA (United States)] [and others

    1997-04-01

    The transition metal compounds form a very interesting and important set of materials. The diversity arises from the many states of ionization the transition elements may take when forming compounds. This variety provides ample opportunity for a large class of materials to have a vast range of electronic and magnetic properties. The x-ray spectroscopy of the transition elements is especially interesting because they have unfilled d bands that are at the bottom of the conduction band with atomic like structure. This group embarked on the systematic study of transition metal sulfides and oxides. As an example of the type of spectra observed in some of these compounds they have chosen to showcase the L{sub II, III} emission and Raman scattering in some titanium compounds obtained by photon excitation.

  14. Chemical compatibility between lithium compounds and transition metals

    International Nuclear Information System (INIS)

    The aim is to investigate the chemical reactions or otherwise of lithium compounds; Li7Pb2 (a tritium breeder), Li2O (breeder and impurity), Li3N and LiH (impurities) with containment and fusion reactor component metals - 316 and austenitic steels, titanium. Experimental details are given and results are summarized. (author)

  15. On thermal lattice dilatation of some transition metal compounds

    International Nuclear Information System (INIS)

    The report deals with the thermal lattice dilatation of cubic transition metal compounds. The thermal dilatation is determined through the variation of the lattice constants. The measurements are carried out 'in situ' by use of a high-temperature X-ray diffractometer chamber. The evaluation relates to both the linear thermal expansion coefficient α and, for some compounds, the specific heat at constant volume Csub(V) and the Grueneisen constant γ. In general a higher thermal dilatation is observed for nitrides than for carbides with the compounds formed by the transition metals belonging to the IVA and VA groups. The influence exerted by vacancies and by the oxygen dissolved in the lattice on the thermal dilatation of carbonitrides of zirconium, hafnium and tantalum is explained by the more pronounced anharmonic character of atomic vibrations in the crystal lattice. (orig.)

  16. Quantification of Carbonyl Compounds Generated from Ozone-Based Food Colorants Decomposition Using On-Fiber Derivatization-SPME-GC-MS

    Directory of Open Access Journals (Sweden)

    Wenda Zhu

    2014-12-01

    Full Text Available Fruit leathers (FLs production produces some not-to-specification material, which contains valuable ingredients like fruit pulp, sugars and acidulates. Recovery of FL for product recycling requires decolorization. In earlier research, we proved the efficiency of an ozone-based decolorization process; however, it produces carbonyls as major byproducts, which could be of concern. A headspace solid-phase microextraction with on-fiber derivatization followed by gas chromatography-mass spectrometry was developed for 10 carbonyls analysis in ozonated FL solution/suspension. Effects of dopant concentration, derivatization temperature and time were studied. The adapted method was used to analyze ozonated FL solution/suspension samples. Dopant concentration and derivatization temperature were optimized to 17 mg/mL and 60 °C, respectively. Competitive extraction was studied, and 5 s extraction time was used to avoid non-linear derivatization of 2-furfural. The detection limits (LODs for target carbonyls ranged from 0.016 and 0.030 µg/L. A much lower LOD (0.016 ppb for 2-furfural was achieved compared with 6 and 35 ppb in previous studies. Analysis results confirmed the robustness of the adapted method for quantification of carbonyls in recycled process water treated with ozone-based decolorization. Ethanal, hexanal, 2-furfural, and benzaldehyde were identified as byproducts of known toxicity but all found below levels for concern.

  17. Aqueous high-temperature chemistry of carbo- and heterocycles. 29. Reactions of aryl hydrocarbons, aryl N-oxides and aryl carbonyl compounds in supercritical water at 460{degree}C

    Energy Technology Data Exchange (ETDEWEB)

    Katritzky, A.R.; Ignatchenko, E.S.; Allin, S.M.; Barcock, R.A.; Siskin, M.; Hudson, C.W. [University of Florida, Gainesville, FL (United States). Center for Heterocyclic Compounds, Dept. of Chemistry

    1997-01-01

    A series of aryl hydrocarbons, aryl N-oxides, and aryl carbonyl compounds were subjected to thermolysis at 460{degree}C in water alone, in 15% aqueous formic acid, in 15% aqueous sodium formate, and, for comparison of purely thermal reactions, in cyclohexane. The runs were carried out initially for 7 min and, in most cases, also for 1 h. The aryl carbonyl substrates underwent mainly carbonyl reduction mainly under reduction conditions, with ring opening only observed in significant amounts for 1,4-naphthoquinone and 3,4-benzocoumarin. The arenes produced mainly reduction products with only low yields of ring-opened products observed. Aryl oximes underwent significant denitrogenation and subsequent reduction with only very little cleavage to simpler aromatic systems. The N-oxides underwent deoxygenation, and in the case of isoquinoline, ring opening of the heterocyclce was prevalent. 2-Aminobiphenyl was denitrogenated and cleaved to simpler systems in cyclohexane, but in the aqueous systems it underwent mainly cyclization to yield carbazole with only low yields of denitrogenated products. 2-Phenylphenol was unreactive under aqueous conditions with only low yields of deoxygenated products observed. 11 refs., 15 figs., 1 tab.

  18. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review

    Science.gov (United States)

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang

    2013-01-01

    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  19. SYNTHESIS, STRUCTURE AND BIOLOGICAL ACTIVITY OF N(4-ALLYL-3-THIOSEMICARBAZONES AND THEIR COORDINATION COMPOUNDS WITH SOME 3D METALS

    Directory of Open Access Journals (Sweden)

    Vasilii GRAUR

    2016-02-01

    Full Text Available The paper presents a review of different N(4-allyl-3-thiosemicarbazones and their coordination compounds described in literature. N(4-allyl-3-thiosemicarbazide can form corresponding thiosemicarbazones with aliphatic, aromatic and heteroaromatic carbonyl compounds. In the presence of transitional metal ions they can form coordination compounds of different structures. Both coordination compounds and proligands manifest antitumor, antibacterial, antiviral, and antimalarial activities. Copper(II coordination compounds with these ligands manifest better antitumor activity than corresponding proligands. SINTEZA, STRUCTURA ŞI ACTIVITATEA BIOLOGICĂ A N(4-ALIL-3-TIOSEMICARBAZONELOR ŞI A COMPUŞILOR COORDINATIVI AI UNOR METALE 3D CU ACEŞTI LIGANZILucrarea prezintă o revistă a N(4-alil-3-tiosemicarbazonelor şi a compuşilor coordinativi cu aceşti liganzi descrise în literatura de specialitate. N(4-alil-3-tiosemicarbazida formează tiosemicarbazone cu aldehide şi cetone alifatice, aro­matice şi heteroaromatice. În prezenţa ionilor de metale de tranziţie acestea pot forma compuşi coordinativi cu diferite structuri. N(4-alil-3-tiosemicarbazonele şi compuşii coordinativi manifestă activitate antitumorală, antibacterială, antivirală şi antimalarică. Compuşii coordinativi ai cuprului cu aceşti liganzi manifestă activitate antitumorală sporită în comparaţie cu N(4-alil-3-tiosemicarbazonele corespunzătoare. 

  20. Alkaline-earth metal compounds. Oddities and applications

    International Nuclear Information System (INIS)

    This book contains the following six topics: heavy alkaline-earth metal organometallic and metal organic chemistry: synthetic methods and properties (Ana Torvisco, Karin Ruhlandt-Senge); Heavier group 2 Grignard reagents of the type aryl-ae(l)n-x post-Grignard reagents (Matthias Westerhausen, Jens Langer, Sven Krieck, Reinald Fischer, Helmar Goerls, Mathias Koehler); stable molecular magnesium(I) dimers: A fundamentally appealing yet synthetically versatile compound class (Cameron Jones, Andreas Stasch); Modern developments in magnesium reagent chemistry for synthesis (Robert E. Mulvey, Stuart D. Robertson); Alkaline-earth metal complexes in homogeneous polymerization catalysis (Jean-Francois Carpentier, Yann Sarazin); homogeneous catalysis with organometallic complexes of group 2 (Mark R. Crimmin, Michael S. Hill); Chiral Ca, Sr and Ba-catalyzed asymmetric direct-type aldol, Michael, and Mannich and related reactions (Tetsu Tsubogo, Yasuhiro Yamashita, Shu- Kobayashi).

  1. Validation and Verification the Expanded Table for Transition Metal Carbonyl and Main Group Element Cluster Series which obey the 18-Electron and 8-Electron (octet Rules respectively

    Directory of Open Access Journals (Sweden)

    Enos Masheija Kiremire

    2014-12-01

    Full Text Available The transition metal carbonyl clusters and Main group element clusters belong to natural series based on the number theory. The number series of the cluster series have been generated using the empirical formula k = ½ (E-V where k represents the linkages or bonds that glue together the cluster elements which obey the eighteen electron rule or the octet rule and E is related to the sum of eighteen electrons or the eight electrons and V is the sum of the valence electrons. An expanded cluster table been constructed to accommodate the analysis of medium to relatively large clusters of high nuclearity. Using the knowledge of k-value and the cluster table it is possible for a given cluster formula to be categorized into its type of series and its geometry deduced. This is relatively easy for simple to medium clusters. It is hoped that this simple approach to be adapted to categorize and deduce structures of clusters with high nuclearity. This approach to clusters using number theory will complement the existing clusters theories such as Wade-Mingos rules1-7, Jemmismno rules8-9 and topology rules10.

  2. Rare Earth Metal/semiconductor Interfaces and Compounds

    Science.gov (United States)

    Nogami, Jun

    Interfaces formed at room temperature by incremental deposition of rare earth metals onto semiconductor substrates have been studied with surface sensitive soft X-ray photoelectron spectroscopy. The trends in core level lineshape and intensity with increasing metal coverage have been used to deduce an outline of the evolution and the final morphology of the interfacial region on a microscopic scale. Measurements were taken for Ytterbium (Yb) on Silicon (Si), Germanium, and Gallium Arsenide, and for Gadolinium (Gd) and Europium (Eu) on Silicon. The Yb/Si interface work was supported by comparable measurements of bulk Yb silicide samples of known composition and crystal structure. In a general sense, the behavior of all the systems studied is similar. At very low metal coverages, the metal atoms chemisorb and are weakly bonded to the substrate. The 4f core levels indicate that the metal-metal atom coordination is relatively low at this stage. The interaction with the substrate strengthens with increasing coverage, culminating in the formation of a strongly reacted phase at between 1 and 3 monolayers (ML). The strong reaction is limited to a narrow region at room temperature. At less than 10 ML coverage, the surface of the sample is almost indistinguishable from the pure metal. Details of the behavior such as the reactivity at low coverage, the compounds formed at the interface, the morphology at the surface at intermediate coverages, the final interfacial width, and the amount of substrate atom outdiffusion and surface segregation can all vary from system to system. It is in explaining the causes of some of these differences that insight about what governs the behavior of all of these rare earth metal/semiconductor systems has been obtained. The divalent metals (Yb, Eu) are significantly less reactive than trivalent Gd at sub-monolayer coverages. For the divalent metals the formation of a metal-rich phase is strongly favored in the reaction at the interface, whereas

  3. Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds

    OpenAIRE

    Kandpal, Hem C.; FECHER, GERHARD H.; Felser, Claudia

    2006-01-01

    In this work, results of {\\it ab-initio} band structure calculations for $A_2BC$ Heusler compounds that have $A$ and $B$ sites occupied by transition metals and $C$ by a main group element are presented. This class of materials includes some interesting half-metallic and ferromagnetic properties. The calculations have been performed in order to understand the properties of the minority band gap and the peculiar magnetic behavior found in these materials. Among the interesting aspects of the e...

  4. Transition metal catalysed Grignard-like allylic activation across tetragonal tin(II) oxide

    Indian Academy of Sciences (India)

    Pradipta Sinha; Moloy Banerjee; Abhijit Kundu; Sujit Roy

    2002-08-01

    The reaction of allyl halide and a carbonyl compound under the aegis of tetragonal tin(II) oxide and catalytic 8, 10 metal complexes provides the corresponding homoallylic alcohol, via a novel allyl tin intermediate.

  5. Electrochemical decontamination of metallic waste contaminated with uranium compounds

    International Nuclear Information System (INIS)

    A study on the electrolytic dissolution of SUS-304 and Inconel-600 specimen was carried out in neutral salt electrolyte to evaluate the applicability of electrochemical decontamination process for recycle ro self disposal with authorization of large amount of metallic wastes contamination with uranium compounds generated by dismantling a retired uranium conversion plant in Korea. Although the best electrolytic dissolution performance for the specimens was observed in a Na2SO4 electrolyte, a Na3NO3 neutral salt electrolyte, in which about 30% for SUS-304 and the same for Inconel-600 in the weight loss was shown in comparison with that in Na2 SO4 solution, was selected as an electrolyte for the electrochemical decontamination of metallic wastes with the consideration on the surface of system components contacted with nitric acid and the compatibility with lagoon wastes generated during the facility operation. The effects of current density, electrolytic dissolution time, and concentration of NaNO3 on the electrolytic dissolution of the specimens were investigated. On the basis of the results obtained through the basic inactive experiments, electrochemical decontamination tests using the specimens contaminated with uranium compounds such as UO2, AUC (ammonium uranyl carbonate) and ADU (ammonium diuranate) taken from an uranium conversion facility were performed in 1M NaNO3 solution with the current density of 100 mA/cm2. It was verified that the electrochemical decontamination of the metallic wastes contaminated uranium compounds was quite successful in a NaNO3 neutral salt electrolyte by reducing α and β radioactivities below the level of self disposal within 10 minutes regardless of the type of contaminants and the degree of contamination.

  6. Formation and properties of metallic nanoparticles on compound semiconductor surfaces

    Science.gov (United States)

    Kang, Myungkoo

    When electromagnetic radiation is incident upon metallic nanoparticles (NPs), a collective oscillation, termed a surface plasmon resonance (SPR), is generated. Recently, metallic NPs on semiconductor surfaces have enabled the generation of SPR, promising for enhanced light emission, efficient solar energy harvesting, biosensing, and metamaterials. Metallic NPs have been fabricated by focused ion beam (FIB) which has an advantage of cost-effectiveness over conventional lithography process requiring multi-step processes. Here, we report formation and properties of FIB-induced metallic NPs on compound semiconductor surfaces. Results presented in this thesis study suggest that FIB-induced Ga NPs can be a promising alternative plasmonic material. In particular, using a combined experimental-computational approach, we discovered a universal mechanism for ion-induced NP formation, which is governed by the sputtering yield of semiconductor surfaces. We also discovered a governing mechanism for ion-induced NP motion, which is driven by thermal fluctuation and anisotropic mass transport. Furthermore, we demonstrated Ga NP arrays with plasmon resonances with performance comparable to those of traditionally-used silver and gold NPs. We then finally demonstrated the Ga NP plasmoninduced enhancement of light emission from GaAs, which is the first ever combination of a new plasmonic material (Ga) and a new fabrication method (FIB) for the plasmon-enhanced light emission.

  7. Electron and nuclear magnetic resonances in compounds and metallic hydrides

    International Nuclear Information System (INIS)

    Proton pulsed Nuclear Magnetic Resonance measurements were performed on the metallic hydrides ZrCr2Hx (x = 2, 3, 4) and ZrV2Hy (y = 2, 3, 4, 5) as a function of temperature between 180 and 400K. The ultimate aim was the investigation of the relaxation mechanisms in these systems by means of the measurement of both the proton (1H) spin-lattice (T1) and spin-spin (T2) relaxation times and to use these data to obtain information about the diffusive motion of the hydrogen atoms. The diffusional activation energies, the jump frequencies and the Korringa constant, Ck, related with the conduction electron contribution to the 1H relaxation were determined for the above hydrides as a function of hydrogen concentration. Our results were analysed in terms of the relaxation models described by Bloembergen, Purcell and Pound (BPP model) and by Torrey. The Korringa type relaxation due to the conduction electrons in metallic systems was also used to interpret the experimental results. We also present the Electron Paramagnetic Ressonance (EPR) study of Gd3+, Nd3+ and Er3+ ions as impurities in several AB3 intermetallic compounds where A = LA, Ce, Y, Sc, Th, Zr and B = Rh, Ir, Pt. The results were analysed in terms of the multiband model previously suggested to explain the behaviour of the resonance parameter in AB2 Laves Phase compounds. (author)

  8. Analysis of carbonyl compounds via headspace solid-phase microextraction with on-fiber derivatization and gas chromatographic-ion trap tandem mass spectrometric determination of their O-(2,3,4,5,6-pentafluorobenzyl)oxime derivatives

    International Nuclear Information System (INIS)

    An improved method for the analysis of carbonyls is described utilizing a headspace solid-phase microextraction (HS-SPME) step and on-fiber derivatization with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) hydrochloride. Thermal desorption of the oxime derivatives formed on the fiber is followed by gas chromatographic separation coupled to an ion trap tandem mass spectrometer (GC-ITMS). Selecting specific fragment ions within the electron ionization (EI+) mass spectra of these oxime derivatives as precursor ions for MS-MS fragmentation provides a suitable method for the target analysis of individual carbonyl classes, such as alkanals, (E)-2-alkenals, (E,E)-2,4-alkadienals, and others. Retention indices on polar as well as on apolar stationary phases along with EI+ mass spectra patterns are presented for a large set of oxime derivatives, giving valuable information needed for unambiguous assignment of substances in complex sample matrices. The fast sample preparation and derivatization step via HS-SPME can be automated and is applicable to a variety of biological samples and foodstuffs, allowing rapid and sensitive screening analyses of important aldehydic biomarkers and aroma active compounds

  9. Analysis of carbonyl compounds via headspace solid-phase microextraction with on-fiber derivatization and gas chromatographic-ion trap tandem mass spectrometric determination of their O-(2,3,4,5,6-pentafluorobenzyl)oxime derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Schmarr, Hans-Georg [Dienstleistungszentrum Laendlicher Raum (DLR) Rheinpfalz, Breitenweg 71, D-67435 Neustadt an der Weinstrasse (Germany)], E-mail: hans-georg.schmarr@dlr.rlp.de; Potouridis, Theodoros; Ganss, Sebastian; Sang, Wei; Koepp, Benedikt; Bokuz, Ursula; Fischer, Ulrich [Dienstleistungszentrum Laendlicher Raum (DLR) Rheinpfalz, Breitenweg 71, D-67435 Neustadt an der Weinstrasse (Germany)

    2008-06-09

    An improved method for the analysis of carbonyls is described utilizing a headspace solid-phase microextraction (HS-SPME) step and on-fiber derivatization with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) hydrochloride. Thermal desorption of the oxime derivatives formed on the fiber is followed by gas chromatographic separation coupled to an ion trap tandem mass spectrometer (GC-ITMS). Selecting specific fragment ions within the electron ionization (EI{sup +}) mass spectra of these oxime derivatives as precursor ions for MS-MS fragmentation provides a suitable method for the target analysis of individual carbonyl classes, such as alkanals, (E)-2-alkenals, (E,E)-2,4-alkadienals, and others. Retention indices on polar as well as on apolar stationary phases along with EI{sup +} mass spectra patterns are presented for a large set of oxime derivatives, giving valuable information needed for unambiguous assignment of substances in complex sample matrices. The fast sample preparation and derivatization step via HS-SPME can be automated and is applicable to a variety of biological samples and foodstuffs, allowing rapid and sensitive screening analyses of important aldehydic biomarkers and aroma active compounds.

  10. Superconductivity of graphite intercalation compounds with alkali-metal amalgams

    International Nuclear Information System (INIS)

    Superconductivity of the alkali-metal amalgam graphite intercalation compounds of stage 1 (C4KHg, C4RbHg) and stage 2 (C8KHg, C8RbHg) has been studied as well as that of the pristine amalgams (KHg, RbHg). The transition temperatures are 0.73, 0.99, 1.90, and 1.40 K for C4KHg, C4RbHg, C8KHg, and C8RbHg, respectively. The critical-field anisotropy ratio H/sup parallel//sub c/2/H/sup perpendicular//sub c/2 is about 10 for the stage 1 and about 15 to 40 for the stage 2. It is argued that electrons in the intercalant bands rather than the graphitic bands play the main role in the superconductivity. An interesting feature is that the stage-2 compound, which has a lower density of states at the Fermi level, has a higher transition temperature than the corresponding state-1 compound

  11. Synthesis of α,β-Unsaturated Carbonyl-Based Compounds, Oxime and Oxime Ether Analogs as Potential Anticancer Agents for Overcoming Cancer Multidrug Resistance by Modulation of Efflux Pumps in Tumor Cells.

    Science.gov (United States)

    Qin, Hua-Li; Leng, Jing; Zhang, Cheng-Pan; Jantan, Ibrahim; Amjad, Muhammad Wahab; Sher, Muhammad; Naeem-Ul-Hassan, Muhammad; Hussain, Muhammad Ajaz; Bukhari, Syed Nasir Abbas

    2016-04-14

    Sixty-nine novel α,β-unsaturated carbonyl based compounds, including cyclohexanone, tetralone, oxime, and oxime ether analogs, were synthesized. The antiproliferative activity determined by using seven different human cancer cell lines provided a structure-activity relationship. Compound 8ag exhibited high antiproliferative activity against Panc-1, PaCa-2, A-549, and PC-3 cell lines, with IC50 value of 0.02 μM, comparable to the positive control Erlotinib. The ten most active antiproliferative compounds were assessed for mechanistic effects on BRAF(V600E), EGFR TK kinases, and tubulin polymerization, and were investigated in vitro to reverse efflux-mediated resistance developed by cancer cells. Compound 8af exhibited the most potent BRAF(V600E) inhibitory activity with an IC50 value of 0.9 μM. Oxime analog 7o displayed the most potent EGFR TK inhibitory activity with an IC50 of 0.07 μM, which was analogous to the positive control. Some analogs including 7f, 8af, and 8ag showed a dual role as anticancer and MDR reversal agents. PMID:27010345

  12. Carbonyl emissions from gasoline and diesel motor vehicles.

    Science.gov (United States)

    Jakober, Chris A; Robert, Michael A; Riddle, Sarah G; Destaillats, Hugo; Charles, M Judith; Green, Peter G; Kleeman, Michael J

    2008-07-01

    Carbonyls from gasoline-powered light-duty vehicles (LDVs) and heavy-duty diesel-powered vehicles (HDDVs) operated on chassis dynamometers were measured by use of an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery: 4-fluorobenzaldehyde for or = C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 to 2000 microg/L of fuel for LDVs and from 1.8 to 27 000 microg/L of fuel for HDDVs. Gas-phase species accounted for 81-95% of the total carbonyls from LDVs and 86-88% from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19% of particulate organic carbon (POC) emissions from low-emission LDVs and 37% of POC emissions from three-way catalyst-equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9% depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas and particle phases under the dilution factors of 126-584 used in the present study. PMID:18677993

  13. 不同类型新车内醛酮类化合物的污染研究%Study on the Carbonyl Compounds Pollution in New Cars of Different Types

    Institute of Scientific and Technical Information of China (English)

    邹钱秀; 张卫东; 赵琦; 肖艳红

    2012-01-01

    Nowadays people show more attentions to their living environments and more and more families have owned their own private vehicles. So the air quality, especially the toxic carbonyl compounds, in these vehicles is becoming the major concern. The study selected 93 vehicles belonged to 8 types. Under static and airtight conditions, the concentrations of carbonyl compounds in these vehicles were analyzed. The results showed that all the tested vehicles suffered a certain degree of air pollution caused by carbonyl compounds. The total concentration of carbonyl compounds was 0. 09 ~0. 31mg/m3 and the average concentration was 0. 16mg/m3 . And formaldehyde was the main pollutant followed by acetone, n-butanal and acetaldehyde, and their concentrations were 0. 08、0. 04、0. 02、0. 0003mg/m3, respectively. Except luxury car all the tested vehicles suffered a certain degree of formaldehyde limit-exceeding, and the exceeded rale was 21% -50%. Furthermore, the study did cancer risk evaluation for formaldehyde, and the result showed that the risk had exceeded the safety limits and it might lead to cancer.%随着人们对环境质量要求的提高,轿车逐步普及,车内空气质量正成为人们关注的焦点,特别是车内毒性较大的醛酮类物质更是受到普遍关注.选取了8种类型共93辆新车,在静止并且密闭条件下,对其内部环境的醛酮类物质的浓度水平进行测定分析.结果表明,大部分新车内都存在不同程度的醛酮类物质污染,总醛酮质量浓度为0.09~0.31 mg/m3,平均质量浓度0.16mg/m3,其中甲醛为最高组分,其次为丙酮、正丁醛、乙醛,平均质量浓度分别为0.08、0.04、0.02、0.0003mg/m3.8类新车有7类都存在一定程度的甲醛超标,超标率为21%~50%,只有豪华车不超标.还对甲醛进行了癌症风险评价,结果表明风险值超过安全限值,存在癌症风险.

  14. Polyimides Containing Carbonyl and Ether Connecting Groups

    Science.gov (United States)

    Hergenrother, Paul M.; Havens, Stephen J.

    1987-01-01

    Semicrystallinity gives rise to tough, solvent-resistant polymers. New polyimides prepared from reaction of aromatic dianhydrides with new diamines containing carbonyl and ether connecting groups between aromatic rings. Damines prepared from reaction of 4-aminophenol with activated aromatic difluoro compounds in presence of potassium carbonate. These types of polymers have potential applications in molded products, films, adhesives, and composites.

  15. Bonding in transition-metal cluster compounds. 2. The metal cluster-borane analogy

    International Nuclear Information System (INIS)

    Following the detailed discussion of the transition-metal cluster moiety M6(μ3-X)8 in the preceding paper, a more general account of the importance of the d electrons in transition-metal cluster chemistry is presented. The putative analogy with borane clusters (and their derivatives) is examined critically. Although an isolobal relationship exists between, e.g., BH and appropriate ML/sub n/ fragments (e.g. conical Fe(CO)3), this does not imply that the BH and ML/sub n/ fragments behave in electronically similar ways when cluster formation occurs, even when structurally related clusters are formed. Nonidentical isolobal fragments have orbital differences that manifest themselves in interfragment resonance integrals and require a qualitative distinction to be drawn between the bonding modes and detailed electronic structures of (i) transition-metal cluster compounds and (ii) boranes, carboranes, and their metalla derivatives; an analysis developed in the electronic structure theory of transition-metal systems shows why this is the case. The isolobal principle and Wade's rule owe their generality and utility to being symmetry-based statements; the energetics and details of the electronic structure of cluster compounds however are a separate matter requiring appropriate methods of theoretical chemistry. 39 references, 3 figures

  16. Optimisation and validation of a HS-SPME-GC-IT/MS method for analysis of carbonyl volatile compounds as biomarkers in human urine: Application in a pilot study to discriminate individuals with smoking habits.

    Science.gov (United States)

    Calejo, Isabel; Moreira, Nathalie; Araújo, Ana Margarida; Carvalho, Márcia; Bastos, Maria de Lourdes; de Pinho, Paula Guedes

    2016-02-01

    A new and simple analytical approach consisting of an automated headspace solid-phase microextraction (HS-SPME) sampler coupled to gas chromatography-ion trap/mass spectrometry detection (GC-IT/MS) with a prior derivatization step with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was developed to detect volatile carbonyl metabolites with low molecular weights in human urine. A central composite design (CCD) was used to optimise the PFBHA concentration and extraction conditions that affect the efficiency of the SPME procedure. With a sample volume of 1 mL, optimal conditions were achieved by adding 300 mg/L of PFBHA and allowing the sample to equilibrate for 6 min at 62°C and then extracting the samples for 51 min at the same temperature, using a divinylbenzene/polydimethylsiloxane (DVB/PDMS) fibre. The method allowed the simultaneous identification and quantification of 44 carbonyl compounds consisting of aldehydes, dialdehydes, heterocyclic aldehydes and ketones. The method was validated with regards to the linearity, inter- and intra-day precision and accuracy. The detection limits ranged from 0.009 to 0.942 ng/mL, except for 4-hydroxy-2-nonenal (15 ng/mL), and the quantification limits varied from 0.029 to 1.66 ng/mL, except for butanal (2.78 ng/mL), 2-butanone (2.67 ng/mL), 4-heptanone (3.14 ng/mL) and 4-hydroxy-2-nonenal (50.0 ng/mL). The method accuracy was satisfactory, with recoveries ranging from 90 to 107%. The proof of applicability of the methodology was performed in a pilot target analysis of urine samples obtained from 18 healthy smokers and 18 healthy non-smokers (control group). Chemometric supervised analysis was performed using the volatile patterns acquired for these samples and clearly showed the potential of the volatile carbonyl profiles to discriminate urine from smoker and non-smoker subjects. 5-Methyl-2-furfural (p<0.0001), 2-methylpropanal, nonanal and 2-methylbutanal (p<0.05) were identified as potentially useful

  17. Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction.

    Science.gov (United States)

    Barkhordarian, Gagik; Klassen, Thomas; Bormann, Rüdiger

    2006-06-01

    The catalytic mechanisms of transition-metal compounds during the hydrogen sorption reaction of magnesium-based hydrides were investigated through relevant experiments. Catalytic activity was found to be influenced by four distinct physico-thermodynamic properties of the transition-metal compound: a high number of structural defects, a low stability of the compound, which however has to be high enough to avoid complete reduction of the transition metal under operating conditions, a high valence state of the transition-metal ion within the compound, and a high affinity of the transition-metal ion to hydrogen. On the basis of these results, further optimization of the selection of catalysts for improving sorption properties of magnesium-based hydrides is possible. In addition, utilization of transition-metal compounds as catalysts for other hydrogen storage materials is considered. PMID:16771356

  18. Fast photolysis of carbonyl nitrates from isoprene

    Science.gov (United States)

    Müller, Jean-Francois; Peeters, Jozef; Stavrakou, Trisevgeni

    2014-05-01

    We show that photolysis is, by far, the major atmospheric sink of isoprene-derived carbonyl nitrates. Empirical evidence from published laboratory studies on the absorption cross sections and photolysis rates of α-nitrooxy ketones suggests that the presence of the nitrate group (i) greatly enhances the absorption cross sections, and (ii) facilitates dissociation to a point that the photolysis quantum yield is close to unity, with O-NO2 dissociation as the likely major channel. On this basis, we provide new recommendations for estimating the cross sections and photolysis rates of carbonyl nitrates. The newly estimated photorates are validated using a chemical box model against measured temporal profiles of carbonyl nitrates in an isoprene oxidation experiment by Paulot et al. (2009). The comparisons for ethanal nitrate and for the sum of methacrolein- and methylvinylketone nitrates strongly supports our assumptions of large cross section enhancements and a near-unit quantum yield for these compounds. These findings have significant atmospheric implications, as carbonyl nitrates constitute an important component of the total organic nitrate pool over vegetated areas: the photorates of key carbonyl nitrates from isoprene are estimated to be typically between ~3 and 20 times higher than their sink due to reaction with OH in relevant atmospheric conditions. Moreover, since the reaction is expected to release NO2, photolysis is especially effective in depleting the total organic nitrate pool.

  19. Efeito da presença e concentração de compostos carbonílicos na qualidade de vinhos Effects of carbonylic compound presence and concentration on wine quality

    Directory of Open Access Journals (Sweden)

    Luciana C. de Azevêdo

    2007-01-01

    Full Text Available Studies on identification of compounds that make up the aroma and flavor in wines involve research evaluating mainly the influence of terpenes, esters, lactones and alcohols upon these sensory characteristics. However, carbonylic compounds (CC play an important role concerning the substances that impact aroma to these drinks. Their origin is reported to be linked to the grape's chemical composition, must fermentation or micro-oxidation occurring during storage in barrels. Some CCs, like E-ionone, E-damascenone, siryngaldehyde, can contribute a pleasant aroma and improve the wine quality whereas others are responsible for unpleasant characteristics (acetaldehyde, furfural, 5-hydroxy-methyl furfural, diacetil, E-non-2-enal, etc. A fraction of CCs present is associated with bisulfite ions in the form of hydroxyalkylsulfonic acids. Some of them are stable and play an important role in determining wine quality. The reaction involving the formation of this aduct commonly occurs with CCs of low molar mass, such as formaldehyde and acetaldehyde. The reaction involving CCs with more than three carbon atoms demands further studies.

  20. Direct one step preparation and 13 C-NMR spectroscopy characterization of α-ferrocenyl carbocations derived from ferrocene and carbonyl compounds in trifluoroacetic acid medium1a

    International Nuclear Information System (INIS)

    Reactions of aldehydes and ketones with ferrocene, in the presence of trifluoroacetic acid, afforded a series of stable long lived αferrocenylalkyl carbocations which were characterized by 13 C-NMR spectroscopy. When this reactions was attempted using tetraphenyl cyclopentadienone quite unexpectedly corresponding dihydro derivative 3 was isolated, in very good yield. Formation of this compound may require ferrocene acting as a reducing agent. (author)

  1. Coordination compounds of transition metal chlorides with tetrazoles

    International Nuclear Information System (INIS)

    Coordination compounds (CC) of Co(2), Ni(2), Cu(2), Cd(2) chlorides with tetrazole and Ni(2) and Cd(2) chloride CC with tetrazolylhydrazone benzaldehyde are synthesized. The compounds are characterized by electron- and IR-spectroscopy, magnetic measurements (78-300 K), radiography. Conclusions are made on polynuclear structure of coordination compounds and Msup((2)) octahedron coordination

  2. Transformation of Heavy Metal Compounds during the Remediation of Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Tatiana Minkina

    2011-03-01

    Full Text Available The effect of ameliorants, chalk, glauconite and semidecomposed cattle manure, on ordinary chernozem contaminated with Zn and Pb was studied in a long-term field experiment. The application of ameliorants significantly decreased the mobility of metals. Their effect depended on the ameliorant and was most significant at the simultaneous application of chalk and manure. This effect was presumably due to the strong binding of metals by carbonates through chemisorption and formation of lowsoluble Zn and Pb compounds and to the additional fixation in the form of complexes at the addition of organic material. The share of loosely bound metal compounds in the contaminated soils decreased to the level typical for the clean soils or even below. The general evolution of the transformation of metal compounds (from less to more firmly bound compounds accelerated by ameliorants remained for both metals.

  3. DeNO{sub x} reaction studies. Reactivity of carbonyl or nitro-compounds compared to C{sub 3}H{sub 6}. Influence of adsorbed species in N{sub 2} and N{sub 2}O formation

    Energy Technology Data Exchange (ETDEWEB)

    Oulad Haj, Khadija; Ziyade, Souad; Ziyad, Mahfoud [Laboratoire d' Etude Physico-Chimiques des Materiaux et Catalyse, Faculte des Sciences, Avenue Ibn Batouta, Rabat (Morocco); Garin, Francois [Laboratoire des Materiaux, Surfaces et Procedes pour la Catalyse LMSPC UMR 7515 du CNRS, ECPM, 25, Rue Becquerel, 67087 Cedex 2 Srasbourg (France)

    2002-04-08

    There is not yet a straightforward answer concerning the mechanism(s) of selective catalytic reduction of NO{sub x} by hydrocarbons. In this study, a systematic approach of this reaction was undertaken over 0.5wt.% Pd/Al{sub 2}O{sub 3}. Successively, oxygen, NO and C{sub 3}H{sub 6}, which is the reductant, were either suppressed or substituted by NO{sub 2}, acetone, propanal, 1- or 2-nitropropane. A 'memory effect', i.e. N{sub 2} formation in (NO+O{sub 2}) after (NO+O{sub 2}+C{sub 3}H{sub 6}) reaction, was observed. Moreover, a concurrence exists between the overshoot in the CO{sub 2} formation and N{sub 2} formation peaks in (NO+O{sub 2}+C{sub 3}H{sub 6}) reaction under transient conditions, continuously raising the temperature. The more the reactants were adsorbed, the higher the nitrogen production amount was. To interpret these results, strong adsorption phenomena have to be invoked. >From the results obtained with the use of carbonyl and nitro-compounds, it seems that both species may be involved in the DeNO{sub x} reaction mechanisms.

  4. Solvent-free oxidation of secondary alcohols to carbonyl compounds by 1, 3-Dibromo-5, 5-Dimethylhydantoin (DBDMH) and 1, 3-Dichloro-5, 5-Dimethylhydantoin (DCDMH)

    Energy Technology Data Exchange (ETDEWEB)

    Khazaei, Ardeshir; Abbasi, Fatemeh, E-mail: Khazaei_1326@yahoo.com, E-mail: fatemehabbasi807@gmail.com [Faculty of Chemistry, Department of Organic Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Kianiborazjani, Maryam [Faculty of Science, Department of Chemistry, Bushehr Payame Noor University (PNU), Bushehr (Iran, Islamic Republic of); Saednia, Shahnaz [Young Researchers Club, Toyserkan Branch, Islamic Azad University, Toyserkan (Iran, Islamic Republic of)

    2014-02-15

    Aldehydes and ketones are important intermediates, especially for the construction of carbon-skeletons. The oxidation of alcohols is so important that a large number of methods and reagents have been reported for this purpose. N-halo reagents are widely used in organic synthesis and as a continuation of our interest in the application of N-halo compounds in organic synthesis, dibromo dimethylhydantoin (DBDMH) and dichloro dimethylhydantoin (DCDMH) were used for the oxidation of alcohols and our ongoing work on development of highly efficient oxidation protocols. We observed the oxidation of secondary alcohols with stoichiometric amounts of DBDMH and DCDMH under solvent-free conditions in the range of temperature 70-80 deg C. (author)

  5. 16th Carbonyl Metabolism Meeting: from enzymology to genomics

    Directory of Open Access Journals (Sweden)

    Maser Edmund

    2012-12-01

    Full Text Available Abstract The 16th International Meeting on the Enzymology and Molecular Biology of Carbonyl Metabolism, Castle of Ploen (Schleswig-Holstein, Germany, July 10–15, 2012, covered all aspects of NAD(P-dependent oxido-reductases that are involved in the general metabolism of xenobiotic and physiological carbonyl compounds. Starting 30 years ago with enzyme purification, structure elucidation and enzyme kinetics, the Carbonyl Society members have meanwhile established internationally recognized enzyme nomenclature systems and now consider aspects of enzyme genomics and enzyme evolution along with their roles in diseases. The 16th international meeting included lectures from international speakers from all over the world.

  6. Half-metallic ferromagnetism in the CsSe compound by density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Karaca, Mustafa; Kervan, Selçuk; Kervan, Nazmiye, E-mail: nkervan@gazi.edu.tr

    2015-08-05

    Graphical abstract: The ferromagnetic ground state of the CsSe compound is the most stable with CsCl-type structure with a total magnetic moment of 1 μ{sub B}/f.u. although this compound does not include transition metal atoms. The CsSe compound is half-metallic ferromagnet with a half-metallic band gap of 3.75 eV. The half-metallicity is also found to be robust with respect to the lattice distortion in the CsCl-type structure. The Curie temperature is estimated to be 390 K in the mean field approximation (MFA). - Highlights: • The CsSe compound is the most stable with CsCl-type structure. • The half-metallic band gap is about 3.5 eV for all types of structure. • The total magnetic moment is of 1 μ{sub B}/f.u. • The Curie temperature is estimated to be 390 K. - Abstract: The full-potential linearized augmented plane wave (FPLAPW) method based on the density functional theory is used to investigate the structural, magnetic and half-metallic properties of the CsSe compound in the CsCl-type, NaCl-type, ZnS-type, NiAs-type and wurtzite structures. The results show that the ferromagnetic ground state of the CsSe compound is the most stable with CsCl-type structure with a total magnetic moment of 1 μ{sub B}/f.u. although this compound does not include transition metal atoms. The CsSe compound is half-metallic ferromagnet for all types of structure. The half-metallic band gap is about 3.5 eV for all types of structure. The Curie temperature is estimated to be 390 K in the mean field approximation (MFA)

  7. Half-metallic ferromagnetism in the CsSe compound by density functional theory

    International Nuclear Information System (INIS)

    Graphical abstract: The ferromagnetic ground state of the CsSe compound is the most stable with CsCl-type structure with a total magnetic moment of 1 μB/f.u. although this compound does not include transition metal atoms. The CsSe compound is half-metallic ferromagnet with a half-metallic band gap of 3.75 eV. The half-metallicity is also found to be robust with respect to the lattice distortion in the CsCl-type structure. The Curie temperature is estimated to be 390 K in the mean field approximation (MFA). - Highlights: • The CsSe compound is the most stable with CsCl-type structure. • The half-metallic band gap is about 3.5 eV for all types of structure. • The total magnetic moment is of 1 μB/f.u. • The Curie temperature is estimated to be 390 K. - Abstract: The full-potential linearized augmented plane wave (FPLAPW) method based on the density functional theory is used to investigate the structural, magnetic and half-metallic properties of the CsSe compound in the CsCl-type, NaCl-type, ZnS-type, NiAs-type and wurtzite structures. The results show that the ferromagnetic ground state of the CsSe compound is the most stable with CsCl-type structure with a total magnetic moment of 1 μB/f.u. although this compound does not include transition metal atoms. The CsSe compound is half-metallic ferromagnet for all types of structure. The half-metallic band gap is about 3.5 eV for all types of structure. The Curie temperature is estimated to be 390 K in the mean field approximation (MFA)

  8. NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds

    Science.gov (United States)

    Chen, J. G.

    Owing to their unique physical and chemical properties, transition metal compounds, especially transition metal oxides, nitrides, carbides and sulfides, have been the subject of many surface science investigations. In this article we will review applications of the near-edge X-ray absorption fine structure (NEXAFS) technique in the investigations of electronic and structural properties of transition metal compounds. This review covers NEXAFS studies of compounds in various physical forms, including bulk single crystals, well-characterized overlayers on surfaces of corresponding parent metals, and amorphous powder materials. In addition to transition metal oxides, nitrides, carbides and sulfides, we will also briefly discuss NEXAFS studies of interstitial compounds containing other 2p and 3p non-metal components, namely boron, fluorine, silicon, phosphorus and chlorine. We will discuss the correlation between experimental NEXAFS spectra and the local bonding environment of these compounds, such as the number of d-electrons, spin configurations, ligand-field splitting, coordination numbers, local symmetries, and crystal structures. In addition, NEXAFS investigations of the adsorption and reaction of probing molecules will also be discussed to reveal the underlying chemical reactivities of these materials. We will use many examples to demonstrate the importance of NEXAFS studies in the overall understanding of the physical and chemical properties of transition metal compounds. Finally, we will conclude this review by summarizing the current applications, as well as potential research opportunities, of NEXAFS in several technologically important research areas, including materials science, catalysis, biological science, earth science and environmental science.

  9. Superconductivity in ferromagnetic metals and in compounds without inversion centre

    OpenAIRE

    Mineev, V. P.

    2004-01-01

    The symmetry properties and the general overview of the superconductivity theory in the itinerant ferromagnets and in materials without space parity are presented. The basic notions of unconventional superconductivity are introduced in broad context of multiband superconductivity which is inherent property of ferromagnetic metals or metals without centre of inversion.

  10. Carbonyl Emissions From Oil and Gas Production Facilities

    Science.gov (United States)

    Lyman, S. N.; O'Neil, T.; Tran, T.

    2015-12-01

    A number of recent studies have targeted emissions of methane and other hydrocarbons from oil and gas exploration and production activity. These measurements are greatly increasing understanding of the atmospheric impacts of oil and gas development. Very few measurements exist, however, of emissions of formaldehyde and other carbonyls from oil and gas equipment. Carbonyls are toxic and serve as important ozone precursors, especially during winter ozone episodes in places like Utah's Uintah Basin. Current air quality models are only able to reproduce observed high wintertime ozone if they incorporate emissions inventories with very high carbonyl emissions. We measured carbonyl emissions from oil and gas equipment and facilities—including glycol dehydrators, liquid storage tanks, raw gas leaks, raw gas-burning engines, and produced water surface impoundments—in Rocky Mountain oil and gas fields. Carbonyl emissions from raw gas were below detection, but emissions of formaldehyde, acetaldehyde, and other carbonyls were detected from liquid storage tanks, glycol dehydrators, and other oil and gas equipment. In some cases, carbonyls may be formed from the degradation of methanol and other chemicals used in oil and gas production, but the collected data provide evidence for other non-combustion formation pathways. Raw gas-burning engines also emitted carbonyls. Emissions from all measured sources were a small fraction of total volatile organic compound emissions. We incorporated our measurements into an emissions inventory, used that inventory in an air quality model (WRF-SMOKE-CAMx), and were unable to reproduce observed high wintertime ozone. This could be because (1) emission sources we have not yet measured, including compressors, gas processing plants, and others, are large; (2) non-carbonyl emissions, especially those that quickly degrade into carbonyls during photochemical processing, are underestimated in the inventory; or (3) the air quality model is unable

  11. HPLC Determination of Carbonyl Compounds in Ethanol Used for Cigarettes%高效液相色谱法测定烟用酒精中羰基化合物

    Institute of Scientific and Technical Information of China (English)

    张建平

    2012-01-01

    A method of HPI.C for the simultaneous determination of 7 carbonyl compounds, i. e., formaldehyde, acetaldehyde, acetone, acraldehyde, crotonaldehyde, 2-butanone and butyraldehyde, in ethanol used for cigarettes was proposed. In an acidic medium, the sample was derivatized with the derivatizing reagent, 2,4-dinitrophenylhydrazine (2,4-DNPH). The derivatives of 7 carbonyl compounds were used for HPLC analysis, using Phenomenex Luna 5u C18 column as stationary phase and mixtures of acetonitrile and water mixed in different ratios as mobile phases in gradient elution. PAD at the wavelength of 352 nm was adopted in the determination. Linear relationships between values of peak area and concentration of 7 earbonyl compounds were obtained in the definite ranges, with detection limits (3S/N) in the range of 3.9-9. 9μg ·L^-1. Using samples of blank ethanol as matrixes, tests for recovery were made by standard addition method, and values of recovery obtained were in the range of 97. 0%-99.0%, with values of RSD's (n=5) in the range of 0. 2%--2. 1%.%提出了高效液相色谱法同时测定烟用酒精中7种羰基化合物(甲醛、乙醛、丙酮、丙烯醛、巴豆醛、2-丁酮和丁醛)含量的方法。烟用酒精在酸性条件下经2,4-二硝基苯肼(2,4-DNPH)衍生化,所得衍生物用Phenomenex Luna5uC18色谱柱分离,用不同体积比的乙腈和水混合作流动相梯度洗脱,用二极管阵列检测器于波长352nm处检测。7种羰基化合物的质量浓度分别在一定范围内与其峰面积呈线性关系,检出限(3S/N)在3.9~9.9μg·L^-1之间。以空白烟用酒精为基体进行加标回收试验,回收率在97.0%~99.0%之间,相对标准偏差(n=5)在0.2%~2.1%之间。

  12. Surface decorated platinum carbonyl clusters

    Science.gov (United States)

    Ciabatti, Iacopo; Femoni, Cristina; Iapalucci, Maria Carmela; Longoni, Giuliano; Zacchini, Stefano; Zarra, Salvatore

    2012-06-01

    Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters.Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters. CCDC 867747 and 867748. For crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30400g

  13. Carbonyl species characteristics during the evaporation of essential oils

    Science.gov (United States)

    Chiang, Hsiu-Mei; Chiu, Hua-Hsien; Lai, Yen-Ming; Chen, Ching-Yen; Chiang, Hung-Lung

    2010-06-01

    Carbonyls emitted from essential oils can affect the air quality when they are used in indoors, especially under poor ventilation conditions. Lavender, lemon, rose, rosemary, and tea tree oils were selected as typical and popular essential oils to investigate in terms of composition, thermal characteristics and fifteen carbonyl constituents. Based on thermogravimetric (TG) analysis, the activation energy was 7.6-8.3 kcal mol -1, the reaction order was in the range of 0.6-0.7 and the frequency factor was 360-2838 min -1. Formaldehyde, acetaldehyde, acetone, and propionaldehyde were the dominant carbonyl compounds, and their concentrations were 0.034-0.170 ppm. The emission factors of carbonyl compounds were 2.10-3.70 mg g -1, and acetone, propionaldehyde, acetaldehyde, and formaldehyde accounted for a high portion of the emission factor of carbonyl compounds in essential oil exhaust. Some unhealthy carbonyl species such as formaldehyde and valeraldehyde, were measured at low-temperature during the vaporization of essential oils, indicating a potential effect on indoor air quality and human health.

  14. From carbanions to organometallic compounds: quantification of metal ion effects on nucleophilic reactivities.

    Science.gov (United States)

    Corral-Bautista, Francisco; Klier, Lydia; Knochel, Paul; Mayr, Herbert

    2015-10-12

    The influence of the metal on the nucleophilic reactivities of indenyl metal compounds was quantitatively determined by kinetic investigations of their reactions with benzhydrylium ions (Ar2 CH(+) ) and structurally related quinone methides. With the correlation equation log k2 =sN (N+E), it can be derived that the ionic indenyl alkali compounds are 10(18) to 10(24) times more reactive (depending on the reference electrophile) than the corresponding indenyltrimethylsilane. PMID:25951612

  15. A Case Study of In Silico Modelling of Ciprofloxacin Hydrochloride/Metallic Compound Interactions

    OpenAIRE

    Stojkovic, Aleksandra; Parojcic, Jelena; Djuric, Zorica; Corrigan, Owen I.

    2013-01-01

    With the development of physiologically based absorption models, there is an increased scientific and regulatory interest in in silico modelling and simulation of drug–drug and drug–food interactions. Clinically significant interactions between ciprofloxacin and metallic compounds are widely documented. In the current study, a previously developed ciprofloxacin-specific in silico absorption model was employed in order to simulate ciprofloxacin/metallic compound interaction observed in vivo. C...

  16. Structure and bonding in metal-rich compounds: pnictides, chalcides and halides

    International Nuclear Information System (INIS)

    The subject is reviewed under the following headings: introduction (compounds included in the review; purpose of the review); MX compounds with M = transition metal and X = O,N,S or P; sulfides and selenides of the transition metals; transition-metal phosphides; alkali oxides; transition-metal oxides and nitrides with X/M < 1; metal-rich halides; conclusion. The references number 238. Compounds of the following principal elements of nuclear interest are included in the tables and text: Am, Ce, Cs, Eu, Gd, Hf, La, Mo, Np, Nb, Pu, Pr, Pa, Re, Ru, Sc, Ta, Tb, Th, W, U, V, Y, Zr. The information in the tables is presented under: structure type, space group, lattice parameters and remarks. (U.K.)

  17. Validation of protein carbonyl measurement

    DEFF Research Database (Denmark)

    Augustyniak, Edyta; Adam, Aisha; Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina; Willetts, Rachel; Korkmaz, Ayhan; Atalay, Mustafa; Weber, Daniela; Grune, Tilman; Borsa, Claudia; Gradinaru, Daniela; Chand Bollineni, Ravi; Fedorova, Maria; Griffiths, Helen R

    Protein carbonyls are widely analysed as a measure of protein oxidation. Several different methods exist for their determination. A previous study had described orders of magnitude variance that existed when protein carbonyls were analysed in a single laboratory by ELISA using different commercial...... protein carbonyl analysis across Europe. ELISA and Western blotting techniques detected an increase in protein carbonyl formation between 0 and 5min of UV irradiation irrespective of method used. After irradiation for 15min, less oxidation was detected by half of the laboratories than after 5min...

  18. PEROXOTITANATE- AND MONOSODIUM METAL-TITANATE COMPOUNDS AS INHIBITORS OF BACTERIAL GROWTH

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.

    2011-01-19

    Sodium titanates are ion-exchange materials that effectively bind a variety of metal ions over a wide pH range. Sodium titanates alone have no known adverse biological effects but metal-exchanged titanates (or metal titanates) can deliver metal ions to mammalian cells to alter cell processes in vitro. In this work, we test a hypothesis that metal-titanate compounds inhibit bacterial growth; demonstration of this principle is one prerequisite to developing metal-based, titanate-delivered antibacterial agents. Focusing initially on oral diseases, we exposed five species of oral bacteria to titanates for 24 h, with or without loading of Au(III), Pd(II), Pt(II), and Pt(IV), and measuring bacterial growth in planktonic assays through increases in optical density. In each experiment, bacterial growth was compared with control cultures of titanates or bacteria alone. We observed no suppression of bacterial growth by the sodium titanates alone, but significant (p < 0.05, two-sided t-tests) suppression was observed with metal-titanate compounds, particularly Au(III)-titanates, but with other metal titanates as well. Growth inhibition ranged from 15 to 100% depending on the metal ion and bacterial species involved. Furthermore, in specific cases, the titanates inhibited bacterial growth 5- to 375-fold versus metal ions alone, suggesting that titanates enhanced metal-bacteria interactions. This work supports further development of metal titanates as a novel class of antibacterials.

  19. Volatile Metals Coordination Compounds as Precursors for Functional Materials Synthesis by CVD-Method

    OpenAIRE

    Mazurenko, E.; Gerasimchuk, A.

    1995-01-01

    The applications of such coordination compounds (chelates) as metal β-diketonates in different CVD techniques were examined. It was shown that high chemical and physical characteristics of these compounds allow their favourable use comparatively with other volatile compounds. The general rules in volatility and thermal stability of β-diketonates and their fluorine derivatives were discussed. The ways of preparation of various functional materials with specific properties were determined.

  20. Composites for removing metals and volatile organic compounds and method thereof

    Science.gov (United States)

    Coronado, Paul R.; Coleman, Sabre J.; Reynolds, John G.

    2006-12-12

    Functionalized hydrophobic aerogel/solid support structure composites have been developed to remove metals and organic compounds from aqueous and vapor media. The targeted metals and organics are removed by passing the aqueous or vapor phase through the composite which can be in molded, granular, or powder form. The composites adsorb the metals and the organics leaving a purified aqueous or vapor stream. The species-specific adsorption occurs through specific functionalization of the aerogels tailored towards specific metals and/or organics. After adsorption, the composites can be disposed of or the targeted metals and/or organics can be reclaimed or removed and the composites recycled.

  1. 50 years of superbases made from organolithium compounds and heavier alkali metal alkoxides

    Czech Academy of Sciences Publication Activity Database

    Lochmann, Lubomír; Janata, Miroslav

    2014-01-01

    Roč. 12, č. 5 (2014), s. 537-548. ISSN 1895-1066 R&D Projects: GA ČR GAP106/12/0844 Institutional support: RVO:61389013 Keywords : superbases * heavier alkali metal compounds * lithium -heavier alkali metal interchange Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.329, year: 2013

  2. Physicochemical aspects of inhibition of acid corrosion of metals by unsaturated organic compounds

    Science.gov (United States)

    Avdeev, Ya G.; Kuznetsov, Yurii I.

    2012-12-01

    The state-of-the-art in the development and improvement of methods for protecting metals from corrosion in mineral acid solutions using unsaturated organic compounds is considered. Characteristic features of the mechanism of their protective action on metal corrosion in acidic media are discussed. The bibliography includes 203 references.

  3. Single crystal growth of europium and ytterbium based intermetallic compounds using metal flux technique

    Indian Academy of Sciences (India)

    Sumanta Sarkar; Sebastian C Peter

    2012-11-01

    This article covers the use of indium as a potential metal solvent for the crystal growth of europium and ytterbium-based intermetallic compounds. A brief view about the advantage of metal flux technique and the use of indium as reactive and non-reactive flux are outlined. Large single crystals of EuGe2, EuCoGe3 and Yb2AuGe3 compounds were obtained in high yield from the reactions of the elements in liquid indium. The results presented here demonstrate that considerable advances in the discovery of single crystal growth of complex phases are achievable utilizing molten metals as solvents.

  4. Electron dynamics of transition metal compounds studied with resonant soft X-ray scattering

    International Nuclear Information System (INIS)

    High resolution experimental data for resonant soft x-ray scattering of transition metal compounds are shown. The compounds studied are the ionic transition metal di-fluorides, ionic and covalent ortho vanadates and members of the La1-xSrxCoO3 perovskite family. In all compounds we studied the transition metal L2,3 edge and also the ligand (oxygen or fluorine) K edge. For the ionic compounds the transition metal data are in good agreement with atomic multiplet ligand field calculations that include charge transfer effects. Density functional calculations give very useful information to interpret the ligand x-ray emission data. The experimental metal Lα emission data show that the region between valence and conduction bands in the di-fluorides has several d-excited states. At the L2 edge of the ionic ortho vanadates we found the signature of a fast Coster-Kronig decay process that results in a very localized emission peak. Changes in the oxidation states in the La1-xSrxCoO3 compounds are observed at both the metal L2,3 edge and the oxygen K edge absorption spectra. (Author)

  5. The Systematic Study of the Organotransition Metal Compounds.

    Science.gov (United States)

    Carriedo, Gabino A.

    1990-01-01

    Discussed is an extension of the conventional method for studying the organometallic chemistry of transition metals that may be useful to show how the various existing types of low-valence complexes can be constructed. This method allows students to design new types of complexes that may still be nonexistent. (CW)

  6. Alkali-doped metal-phthalocyanine and pentacene compounds

    NARCIS (Netherlands)

    Craciun, M.F.

    2006-01-01

    The ability to introduce charge carriers in organic molecular materials and control their concentration is of great relevance for both fundamental research and applications. In this thesis, it has been demonstrated that the electronic properties of Metal Phthalocyanines (MPc) and pentacene (PEN) mol

  7. Electronic and thermodynamic properties of transition metal elements and compounds

    International Nuclear Information System (INIS)

    This thesis focuses on the use of band-structure calculations for studying thermodynamic properties of solids. We discuss 3d-, 4d- and 5d-transition metal carbides and nitrides. Through a detailed comparison between theoretical and experimental results, we draw conclusions on the character of the atomic bonds in these materials. We show how electronic structure calculations can be used to give accurate predictions for bonding energies. Part of the thesis is devoted to the application of the generalized gradient approximation in electronic structure calculations on transition metals. For structures with vibrational disorder, we present a method for calculating averaged phonon frequencies without using empirical information. For magnetic excitations, we show how a combined use of theoretical results and experimental data can yield information on magnetic fluctuations at high temperatures. The main results in the thesis are: Apart for an almost constant shift, theoretically calculated bonding energies for transition metal carbides and nitrides agree with experimental data or with values from analysis of thermochemical information. The electronic spectrum of transition metal carbides and nitrides can be separated into bonding, antibonding and nonbonding electronic states. The lowest enthalpy of formation for substoichiometric vanadium carbide VC1-X at zero temperature and pressure occurs for a structure containing vacancies (x not equal to 0). The generalized gradient approximation improves theoretical calculated cohesive energies for 3d-transition metals. Magnetic phase transitions are sensitive to the description of exchange-correlation effects in electronic structure calculations. Trends in Debye temperatures can be successfully analysed in electronic structure calculations on disordered lattices. For the elements, there is a clear dependence on the crystal structure (e.g., bcc, fcc or hcp). Chromium has fluctuating local magnetic moments at temperatures well above

  8. Investigation on the gas-phase radiolysis of metal complexes

    International Nuclear Information System (INIS)

    Gas-phase radiolysis of metal carbonyls has been performed. These carbonyls with iron, chromium and cobalt are sublimed easily by heating under atmospheric condition, and formed fine powder by gamma-ray-or electron-irradiation. Chemical compositions of fine powders prepared by electron beam irradiation are estimated as metal oxide after physical analysis such as microscopic observation, particle sizing, thermal and chemical analysis. These metal oxides thus obtained contain CO2, H2O, and some carbonic compounds, and they are removed easily by heating up to 400degC. (author)

  9. Crossover from metal to insulator in dense lithium-rich compound CLi4.

    Science.gov (United States)

    Jin, Xilian; Chen, Xiao-Jia; Cui, Tian; Mao, Ho-kwang; Zhang, Huadi; Zhuang, Quan; Bao, Kuo; Zhou, Dawei; Liu, Bingbing; Zhou, Qiang; He, Zhi

    2016-03-01

    At room environment, all materials can be classified as insulators or metals or in-between semiconductors, by judging whether they are capable of conducting the flow of electrons. One can expect an insulator to convert into a metal and to remain in this state upon further compression, i.e., pressure-induced metallization. Some exceptions were reported recently in elementary metals such as all of the alkali metals and heavy alkaline earth metals (Ca, Sr, and Ba). Here we show that a compound of CLi4 becomes progressively less conductive and eventually insulating upon compression based on ab initio density-functional theory calculations. An unusual path with pressure is found for the phase transition from metal to semimetal, to semiconductor, and eventually to insulator. The Fermi surface filling parameter is used to describe such an antimetallization process. PMID:26884165

  10. Preliminary research on the carbonyl compounds under of sea-land breeze at the west coast of the Pearl River Estuary%珠江口西岸冬季海陆风背景下羰基化合物的初步研究

    Institute of Scientific and Technical Information of China (English)

    庄延娟; 王伯光; 刘灿

    2011-01-01

    A field observation was continuously conducted at Xinken, Guangzhou, China, using DNPH-HPLC/UV method to measure the composition and the concentration of volatile carbonyl compounds under sea-land breeze in the winter period from December 7th-9th, 2008. The distribution of carbonyl and their sources were studied. The results show that 17 carbonyl species were detected with a concentration range from 7.78×10 9 to 31.78×10-9. The concentrations of most carbonyls were higher on the ground than on the roof. Acetone was the most abundant carbonyl species at Xinken,followed by formaldehyde and acetaldehyde. The three compounds accounted for more than 70% of all measured carbonyls. Two different variation trends of the carbonyl compounds at Xinken were found. The first one was on December 8th suggesting the long-distance transport of urban pollutants while the other one was on December 7th and December 9th showing the influence of sea-land breeze. Based on the ratios among formaldehyde, acetaldehyde and propanal and the component correlation analysis, it indicates that the carbonyl compounds were mainly impacted by the urban anthropogenic pollution sources which had a close relationship with the long-distance transport and sea-land breeze influence. Secondary products from atmospheric photochemical reactions and local emission from vegetation were also the important contributors.%于2008年12月7~9日对珠江三角洲新垦的大气环境进行连续加强观测,采用DNPH-HPL洲分析方法测量了冬季海陆风条件下大气挥发性羰基化合物的组成及浓度水平,研究了污染特征和来源.结果表明,新垦大气中共检测到17种挥发性羰基化合物,浓度变化范围为7.78×10-9~31.78×10-9,大多数物质地面浓度高于楼顶.其中浓度最高的污染物是丙酮,其次是甲醛和乙醛,三者占总羰基化合物浓度的比例高于70%.大气挥发性羰基化合物的浓度分布呈现出以12月8日为代表的受城区污

  11. Metal(loid)organic compounds in contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Hirner, A.V.; Grueter, U.M.; Kresimon, J. [Univ. of Essen (Germany). Inst. of Environmental Analytical Chemistry

    2000-10-01

    13 samples of soils contaminated with petrol, coaly residues, shredder and domestic waste have been investigated by low temperature gas chromatography with plasma mass spectrometry detection after sample derivatisation by hydride generation (HG/LT-GC/ICP-MS). 24 organic compounds of 9 elements could be analysed, one fifth of them exceeding the concentration of 1 {mu}g/kg. These results are roughly comparable with those on harbour and river sediments, and are discussed in respect to a preliminary evaluation of the emission potential of solid waste and contaminated soil as well as waste treatment processes. (orig.)

  12. Crystalline and amorphous rare-earth metallic compounds

    International Nuclear Information System (INIS)

    During the last years the study of magnetic behaviour of rare-earth (or yttrium) compounds with cobalt and iron has growth of interest. This interest of justified by a large area of experimental and theoretical problems coming into being in the study of some rare-earth materials as well as in their technical applications. In the last three years a great number of new rare earth materials were studied and also new models explaining the magnetic behaviour of these systems have been used. In this paper we refer especially to some typical systems in order to analyse the magnetic behaviour of iron and cobalt and also the part played by the magnetic interactions in the values of the cobalt or iron moments. The model used will be generally the molecular field model. In the second chapter we present comparatively the structure of crystalline and amorphous compounds for further correlation with the magnetic properties. In chapter III we analyse the magnetic interactions in some crystalline and amorphous rare-earth alloys. Finally, we exemplify the ways in which we ensure better requried characteristics by the technical utilizations of these materials. These have in view the modifications of the magnetic interactions and are closely related with the analysis made in chapter III

  13. METALLIC COMPOUNDS IN THE PHASE OF THE RETICULATED IONIC POLYMERS

    Directory of Open Access Journals (Sweden)

    Vasilii Gutsanu

    2010-12-01

    Full Text Available Using the Mossbauer spectroscopy and other physical methods it was demonstrated the presence of different iron compounds like β-FeOOH, α-Fe2O3, and jarosite mineral type compounds: (R4N,H3O[Fe3(OH6(SO42] or coordination modes: {RCOO-Fe(L4-OOCR}1+, {R-CO2=Fe(X2=O2C-R}n, {R-COO-Fe(X4-OOC-R}n, and {(-NCH2CH2N-= Fe(X2 =(-NCH2CH2N-}, where X= H2O, OH-, SO42-., n= from 3- to 1+ in the ion-exchange resins (KU-2, AN-31, AV-17, Varian – AD, EDE-10P after the contact with sulphate of iron(III solutions at different conditions: type of solvent, temperature, air atmosphere. In special conditions the ultrafine superparamagnetic particles of Fe2O3 have been obtained

  14. Carbon based secondary compounds do not provide protection against heavy metal road pollutants in epiphytic macrolichens.

    Science.gov (United States)

    Gauslaa, Yngvar; Yemets, Olena A; Asplund, Johan; Solhaug, Knut Asbjørn

    2016-01-15

    Lichens are useful monitoring organisms for heavy metal pollution. They are high in carbon based secondary compounds (CBSCs) among which some may chelate heavy metals and thus increase metal accumulation. This study quantifies CBSCs in four epiphytic lichens transplanted for 6months on stands along transects from a highway in southern Norway to search for relationships between concentrations of heavy metals and CBSCs along a gradient in heavy metal pollutants. Viability parameters and concentrations of 21 elements including nutrients and heavy metals in these lichen samples were reported in a separate paper. Medullary CBSCs in fruticose lichens (Ramalina farinacea, Usnea dasypoga) were reduced in the most polluted sites, but not in foliose ones (Parmelia sulcata, Lobaria pulmonaria), whereas cortical CBSC did not change with distance from the road in any species. Strong positive correlations only occurred between the major medullary compound stictic acid present in L. pulmonaria and most heavy metals, consistent with a chelating role of stictic acid, but not of other studied CBSCs or in other species. However, heavy metal chelating did not protect L. pulmonaria against damage because this species experienced the strongest reduction in viability in the polluted sites. CBSCs with an accumulation potential for heavy metals should be quantified in lichen biomonitoring studies of heavy metals because they, like stictic acid, could overshadow pollutant inputs in some species rendering biomonitoring data less useful. In the two fruticose lichen species, CBSCs decreased with increasing heavy metal concentration, probably because heavy metal exposure impaired secondary metabolism. Thus, we found no support for a heavy metal protection role of any CBSCs in studied epiphytic lichens. No intraspecific relationships occurred between CBSCs versus N or C/N-ratio. Interspecifically, medullary CBSCs decreased and cortical CBSCs increased with increasing C/N-ratio. PMID:26437350

  15. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    Science.gov (United States)

    Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-01

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  16. Modeling of Intermetallic Compounds Growth Between Dissimilar Metals

    Science.gov (United States)

    Wang, Li; Wang, Yin; Prangnell, Philip; Robson, Joseph

    2015-09-01

    A model has been developed to predict growth kinetics of the intermetallic phases (IMCs) formed in a reactive diffusion couple between two metals for the case where multiple IMC phases are observed. The model explicitly accounts for the effect of grain boundary diffusion through the IMC layer, and can thus be used to explore the effect of IMC grain size on the thickening of the reaction layer. The model has been applied to the industrially important case of aluminum to magnesium alloy diffusion couples in which several different IMC phases are possible. It is demonstrated that there is a transition from grain boundary-dominated diffusion to lattice-dominated diffusion at a critical grain size, which is different for each IMC phase. The varying contribution of grain boundary diffusion to the overall thickening kinetics with changing grain size helps explain the large scatter in thickening kinetics reported for diffusion couples produced under different conditions.

  17. Heavy metal ion extraction of crownether compounds with supercritical CO2 fluid

    International Nuclear Information System (INIS)

    Benzocrownether-diarylethene derivatives (5BCD, 6BCD) were synthesized and utilized to extract metal ions into supercritical CO2. In order to enhance the CO2-phillicity and the extraction capability, synthesized compounds have both perfluoro unit and benzocrown moiety and were compared with dicyclohexano 18-crown-6(DC18C6). With minimal amount of water and counter ions such as perfluorooctanesulphonic acid or perfluorooctanic acid, their metal ion(Sr2+, Co+2, Na+) extraction efficiency was investigated. 5BCD, 6BCD showed more than 50% extraction for Sr+2, Na+ions and their extraction efficiency was better than that of DC18C6 compound

  18. Soft X-Ray Spectroscopic Study of Fullerene Based Transition-Metal Compounds and Related Systems

    OpenAIRE

    Qian, Limin

    2001-01-01

    This thesis addresses the electronic and geometric structures of fullerene based transition-metal compounds and other related systems. The formation of TixC60, VxC60 and NbxC60 compounds has been examined by X-ray photoelectron, soft X-ray absorption and emission and spectroscopy techniques, including resonant inelastic X-ray scattering (RIXS). The symmetry and character of the chemical bond of transition metal-fulleride has been determined. A related study of single-walled carbon nanotubes i...

  19. Development of an experimental protocol for uptake studies of metal compounds in adherent tumor cells

    OpenAIRE

    Egger, Alexander E.; Rappel, Christina; Jakupec, Michael A.; Hartinger, Christian G.; Heffeter, Petra; Keppler, Bernhard K.

    2009-01-01

    Cellular uptake is being widely investigated in the context of diverse biological activities of metal compounds on the cellular level. However, the applied techniques differ considerably, and a validated methodology is not at hand. Therefore, we have varied numerous aspects of sample preparation of the human colon carcinoma cell line SW480 exposed in vitro to the tumor-inhibiting metal complexes cisplatin and indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(iii)] (KP1019) prior to analy...

  20. The use of biodiesel blends on a non-road generator and its impacts on ozone formation potentials based on carbonyl emissions

    International Nuclear Information System (INIS)

    In this study, emissions of carbonyl compounds from the use B50 and B100 were measured with a non-road diesel generator. A total of 25 carbonyl compounds were identified in the exhaust, including 10 with laboratory-synthesized standards. Formaldehyde, acetaldehyde, and acrolein were found as the most abundant carbonyl compounds emitted for both diesel and biodiesel. The sulphur content of diesel fuels and the source of biodiesel fuels were not found to have a significant impact on the emission of carbonyl compounds. The overall maximum incremental reactivity (MIR) was the highest at 0 kW and slightly increased from 25 to 75 kW. The MIR of B100 was the highest, followed by diesel and B50, which is consistent with the emission rates of total carbonyl compounds. This suggests that the use of biodiesel blends may be more beneficial to the environment than using pure biodiesel. -- Highlights: •Carbonyl compound emission from biodiesel blends combustion on a non-road generator. •25 compounds were identified, including 10 by laboratory-synthesized standards. •Sources of biodiesel have insignificant impacts on carbonyl compounds emission. •Sulphur contents have insignificant impacts on carbonyl compounds emission. •MIR of emitted carbonyls decreases in the following order: B100, diesel, B50. -- The study found that B50 resulted in lower total carbonyl emission rates and ozone formation potential resultant from these compounds, whereas both increased with B100

  1. Oligomer and mixed-metal compounds potential multielectron transfer catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rillema, D.P.

    1992-03-30

    Projects related to the design and characterization of multimetallic complexes has proceeded forward with a number of achievements. First, photoprocesses in hydrogel matrices lead to the conclusion that cationic metallochromophores could be ion exchanged into a hydrogel matrix ({kappa}-carageenan) and substantial photocurrents could be generated. Second, X-ray structures of Ru(bpy){sub 3}{sup 2+}, Ru(bpm){sub 3}{sup 2+} and Ru(bpz){sub 3}{sup 2+}, where bpy is 2,2{prime}-bipyridine, bpm is 2,2{prime}-bipyrimidine and bpz is 2,2{prime}-bipyrizine, were obtained and revealed similar Ru-N bond distances in each complex even though their {sigma}-donor and {pi}-acceptor character differ markedly. The structure parameters are expected to provide theoreticians with the information needed to probe the electronic character of the molecular systems and provide us with direction in our synthetic strategies. Third, a copper(I) complex was synthesized with a dimeric-ethane-bridged, 1,10-phenanthroline ligand that resulted in isolation of a bimetallic species. The copper(I) complex did luminesce weakly, suggesting that the dimer possesses potential electron transfer capability. Fourth, the photophysical properties of (Re(CO){sub 4}(L-L)){sup +}, where L-L = heterocyclic diimine ligands, and Pt(bph)X{sub 2}, where bph = the dianion of biphenyl and X = CH{sub 3}CN, py or ethylendiamine, displayed luminescence at high energy and underwent excited-state electron transfer. Such high energy emitters provide high driving forces for undergoing excited-state electron transfer. Fifth, both energy and electron transfer were observed in mixed-metal complexes bridged by 1,2-bis(2,2{prime}-bipyridyl-4{prime}-yl) ethane.

  2. Site specific X-ray induced changes in organic and metal organic compounds and their influence on global radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, Desiree Ellen

    2012-07-15

    The aim of this work was to systematically investigate the effects of specific and global X-ray radiation damage to biological samples and obtain a conclusive model to describe the underlying principles. Based on the systematic studies performed in this work, it was possible to propose two conclusive mechanisms to describe X-ray induced photoreduction and global radiation damage. The influence of chemical composition, temperature and solvent on X-ray induced photoreduction was investigated by X-ray Absorption Near Edge Spectroscopy and single crystal X-ray diffraction of two B12 cofactors - cyano- and methylcobalamin - as well as iron(II) and iron(III) complexes. The obtained results revealed that X-ray induced photoreduction is a ligand dependent process, with a redox reaction taking place within the complex. It could further be shown that selective hydrogen abstraction plays an important role in the process of X-ray induced photoreduction. Based on the experimental results of this work, a model to describe X-ray induced photoreduction of metal organic complexes could be proposed. The process of X-ray induced hydrogen abstraction was further investigated in a combined X-ray and neutron diffraction study on the amino acids L-serine and L-alanine, which were used as model compounds for proteins, and the nucleoside deoxythymidine (thymidine) as a model for DNA. A damage mechanism for L-serine could be found. It involves the abstraction of two hydrogen atoms, one from the hydroxyl group and one from the adjacent methylene group. Such a hydrogen abstraction results in the formation of a carbonyl group. X-ray diffraction measurements on cyano- and methylcobalamin as well as on three metal amino acid complexes, containing nickel(II) and copper(II), respectively, were conducted to investigate the contribution of X-ray induced photoreduction to global radiation damage. Results from these measurements combined with the results from L-serine, L-alanine and thymidine allowed

  3. Site specific X-ray induced changes in organic and metal organic compounds and their influence on global radiation damage

    International Nuclear Information System (INIS)

    The aim of this work was to systematically investigate the effects of specific and global X-ray radiation damage to biological samples and obtain a conclusive model to describe the underlying principles. Based on the systematic studies performed in this work, it was possible to propose two conclusive mechanisms to describe X-ray induced photoreduction and global radiation damage. The influence of chemical composition, temperature and solvent on X-ray induced photoreduction was investigated by X-ray Absorption Near Edge Spectroscopy and single crystal X-ray diffraction of two B12 cofactors - cyano- and methylcobalamin - as well as iron(II) and iron(III) complexes. The obtained results revealed that X-ray induced photoreduction is a ligand dependent process, with a redox reaction taking place within the complex. It could further be shown that selective hydrogen abstraction plays an important role in the process of X-ray induced photoreduction. Based on the experimental results of this work, a model to describe X-ray induced photoreduction of metal organic complexes could be proposed. The process of X-ray induced hydrogen abstraction was further investigated in a combined X-ray and neutron diffraction study on the amino acids L-serine and L-alanine, which were used as model compounds for proteins, and the nucleoside deoxythymidine (thymidine) as a model for DNA. A damage mechanism for L-serine could be found. It involves the abstraction of two hydrogen atoms, one from the hydroxyl group and one from the adjacent methylene group. Such a hydrogen abstraction results in the formation of a carbonyl group. X-ray diffraction measurements on cyano- and methylcobalamin as well as on three metal amino acid complexes, containing nickel(II) and copper(II), respectively, were conducted to investigate the contribution of X-ray induced photoreduction to global radiation damage. Results from these measurements combined with the results from L-serine, L-alanine and thymidine allowed

  4. The role of a solvent in synthesis of organometallic and metal-containing compounds by direct oxidation of metal

    International Nuclear Information System (INIS)

    Solubility of magnesium, zinc and cadmium iodides in some organic solvents at 293 K was determined to study the role of solvent in the synthesis of organometallic and metal-containing compounds by direct oxidation of metal in the medium of polar solvent. On the basis of comparison of the experimental data on solubility and published data on oxidation rate of magnesium, zinc and cadmium by halogenated hydrocarbons in polar solvents it was shown that solubility of the reaction products in the reactive mixture is not responsible for the process rate in the systems studied

  5. Adsorption of volatile organic compounds in porous metal-organic frameworks functionalized by polyoxometalates

    International Nuclear Information System (INIS)

    The functionalization of porous metal-organic frameworks (Cu3(BTC)2) was achieved by incorporating Keggin-type polyoxometalates (POMs), and further optimized via alkali metal ion-exchange. In addition to thermal gravimetric analysis, IR, single-crystal X-ray diffraction, and powder X-ray diffraction, the adsorption properties were characterized by N2 and volatile organic compounds (VOCs) adsorption measurements, including short-chain alcohols (C<4), cyclohexane, benzene, and toluene. The adsorption enthalpies estimated by the modified Clausius-Clapeyron equation provided insight into the impact of POMs and alkali metal cations on the adsorption of VOCs. The introduction of POMs not only improved the stability, but also brought the increase of adsorption capacity by strengthening the interaction with gas molecules. Furthermore, the exchanged alkali metal cations acted as active sites to interact with adsorbates and enhanced the adsorption of VOCs. - Graphical Abstract: The adsorption behavior of volatile organic compounds in porous metal-organic frameworks functionalized by polyoxometalates has been systematically evaluated. Highlights: → Functionalization of MOFs was achieved by incorporating Keggin-type POMs. → Introduction of POMs improved the thermal stability and adsorption capacity. → Alkali metal ion-exchange modified the inclusion state and also enhanced the adsorption. → Adsorption enthalpies were estimated to study the impact of POMs and alkali metal cations.

  6. Effects of carbonyl bond, metal cluster dissociation, and evaporation rates on predictions of nanotube production in high-pressure carbon monoxide

    Science.gov (United States)

    Scott, Carl D.; Smalley, Richard E.

    2003-01-01

    The high-pressure carbon monoxide (HiPco) process for producing single-wall carbon nanotubes (SWNTs) uses iron pentacarbonyl as the source of iron for catalyzing the Boudouard reaction. Attempts using nickel tetracarbonyl led to no production of SWNTs. This paper discusses simulations at a constant condition of 1300 K and 30 atm in which the chemical rate equations are solved for different reaction schemes. A lumped cluster model is developed to limit the number of species in the models, yet it includes fairly large clusters. Reaction rate coefficients in these schemes are based on bond energies of iron and nickel species and on estimates of chemical rates for formation of SWNTs. SWNT growth is measured by the conformation of CO2. It is shown that the production of CO2 is significantly greater for FeCO because of its lower bond energy as compared with that of NiCO. It is also shown that the dissociation and evaporation rates of atoms from small metal clusters have a significant effect on CO2 production. A high rate of evaporation leads to a smaller number of metal clusters available to catalyze the Boudouard reaction. This suggests that if CO reacts with metal clusters and removes atoms from them by forming MeCO, this has the effect of enhancing the evaporation rate and reducing SWNT production. The study also investigates some other reactions in the model that have a less dramatic influence.

  7. Structure and catalytic properties of metal β-diketonate complexes with oxygen-containing compounds

    International Nuclear Information System (INIS)

    The results of researches published in recent 15-20 years of complexes of metal β-diketonates (including Cr3+, VO2+, MoOΛ22+, Co3+, Mn3+, Ni2+, Fe3+) with oxygen-containing compounds (alcohols, glycols, phenols, hydroperoxides, aldehydes, esters, etc.) playing an important role in catalytic processes of oxidation, addition, polymerization and copolymerization are reviewed. Data on the nature of chemical bond of oxygen-containing reacting agents with metal β-diketonates, on structure of metal β-diketonate complexes with oxygen-containing reacting agents and thermodynamics of complexing as well as on activation of reacting agents in complexes and catalytic properties of metal β-diketonates are discussed. Stored materials make it possible to exercise directed control of metal β-diketonate activity

  8. Structure, production and properties of high-melting compounds and systems (hard materials and hard metals)

    International Nuclear Information System (INIS)

    The report contains contributions by various authors to the research project on the production, structure, and physical properties of high-melting compounds and systems (hard metals and hard materials), in particular WC-, TaC-, and MoC-base materials. (GSCH)

  9. Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Stephen [SIMBOL Materials

    2014-04-30

    Executive Summary Simbol Materials studied various methods of extracting valuable minerals from geothermal brines in the Imperial Valley of California, focusing on the extraction of lithium, manganese, zinc and potassium. New methods were explored for managing the potential impact of silica fouling on mineral extraction equipment, and for converting silica management by-products into commercial products.` Studies at the laboratory and bench scale focused on manganese, zinc and potassium extraction and the conversion of silica management by-products into valuable commercial products. The processes for extracting lithium and producing lithium carbonate and lithium hydroxide products were developed at the laboratory scale and scaled up to pilot-scale. Several sorbents designed to extract lithium as lithium chloride from geothermal brine were developed at the laboratory scale and subsequently scaled-up for testing in the lithium extraction pilot plant. Lithium The results of the lithium studies generated the confidence for Simbol to scale its process to commercial operation. The key steps of the process were demonstrated during its development at pilot scale: 1. Silica management. 2. Lithium extraction. 3. Purification. 4. Concentration. 5. Conversion into lithium hydroxide and lithium carbonate products. Results show that greater than 95% of the lithium can be extracted from geothermal brine as lithium chloride, and that the chemical yield in converting lithium chloride to lithium hydroxide and lithium carbonate products is greater than 90%. The product purity produced from the process is consistent with battery grade lithium carbonate and lithium hydroxide. Manganese and zinc Processes for the extraction of zinc and manganese from geothermal brine were developed. It was shown that they could be converted into zinc metal and electrolytic manganese dioxide after purification. These processes were evaluated for their economic potential, and at the present time Simbol

  10. Comparing Carbonyl Chemistry in Comprehensive Introductory Organic Chemistry Textbooks

    Science.gov (United States)

    Nelson, Donna J.; Kumar, Ravi; Ramasamy, Saravanan

    2015-01-01

    Learning the chemistry of compounds containing carbonyl groups is difficult for undergraduate students partly because of a convolution of multiple possible reaction sites, competitive reactions taking place at those sites, different criteria needed to discern between the mechanisms of these reactions, and no straightforward selection method…

  11. Ionic conduction in alkali metal doped ZnFe/sub 2/O/sub 4/ compound

    International Nuclear Information System (INIS)

    Zinc ferric oxide (ZnFe/sub 2/O/sub 4/) has been synthesized by liquid phase chemical reaction from aqueous mixture of zinc chloride and ferric chloride in sodium hydroxide (4N) solution and effect of alkali metal on electrical characteristics was explored. The well characterized powder was pressed into pellets and dried at 80 degree C. Samples with alkali metal concentrations 10-100 ppm have been investigated to I-V measurements. The conductivity of pure compound (10-/sub 2/omega-cm)/sup-1/) lies in the semiconductor range but due to alkali metal doping the compound shows ionic conduction at room temperature. The ionic conduction is found to be increased as the dopant concentration increases.(author)

  12. A Initio Lcao Electronic Structure Calculations of Layered Transition Metal Compounds.

    Science.gov (United States)

    Dawson, William G.

    1987-09-01

    Available from UMI in association with The British Library. In this work the electronic structure of three systems of layered transition metal compounds are examined using an ab initio tight binding (LCAO) method using the Xalpha exchange/correlation approximation: group VI ditellurides, group IV trichalcogenides and quaternary copper oxide defect-perovskites. A chemical pseudopotential argument is presented in order to justify the use of a small basis set of atomic orbitals. The group VI transition metal compounds MoTe_2 and WTe _2 show strong metal-metal interactions and MoTe_2 undergoes an unusual phase transition with the lattice parameter perpendicular to the layers decreasing with increasing temperature. The group IV transition metal trichalcogenides provide a useful series for study due to their quasi-1-dimensional character and the occurrence of two closely related structural variants. The atypical compound ZrTe_3 is given special attention because of its apparent semimetallic nature. The final group of compounds studied are the high Tc superconducting ceramics Ba-La-Cu-O and Ba-Y-Cu-O. The technological importance of compounds with zero resistance and showing the Meissner effect (expelling magnetic fields) above liquid nitrogen temperatures and the, as yet, undefined nature of the mechanism of superconductivity stresses the need to carefully examine the electronic structure of these materials. The role of oxygen vacancies, the charge state of the copper ions and the possibility of structural phase transitions are some of the topics considered here. The use of an atomic-orbital basis allows a comparatively straightforward description of the chemical bonding in a crystal--especially useful when the unit cell contains a large number of atoms.

  13. New spintronic superlattices composed of half-metallic compounds with zinc-blende structure

    Science.gov (United States)

    Fong, C. Y.; Qian, M. C.

    2004-12-01

    The successful growth of zinc-blende half-metallic compounds, namely CrAs and CrSb, in thin film forms offers a new direction to search for novel spintronic materials. By using a well documented first-principles algorithm, the VASP code, we predict the electronic and magnetic properties of superlattices made of these exciting half-metallic materials. Not only are the superlattices constructed with two of the half-metallic compounds (CrAs/MnAs) but also they are modelled to combine with both a III-V (GaAs-MnAs/CrAs/GaAs) and a IV-IV (MnC/SiC) semiconductor. We investigate variable thicknesses for the combinations. For every case, we find the equilibrium lattice constant as well as the lattice constant at which the superlattice exhibits the half-metallic properties. For CrAs/MnAs, the half-metallic properties are presented and the magnetic moments are shown to be the sum of the moments for MnAs and CrAs. The half-metallic properties of GaAs-MnAs/CrAs/GaAs are found to be crucially dependent on the completion of the d-p hybridization. The magnetic properties of MnC/SiC are discussed with respect to the properties of MnC.

  14. New spintronic superlattices composed of half-metallic compounds with zinc-blende structure

    Energy Technology Data Exchange (ETDEWEB)

    Fong, C Y; Qian, M C [Department of Physics, University of California, Davis, CA 95616-8677 (United States)

    2004-12-08

    The successful growth of zinc-blende half-metallic compounds, namely CrAs and CrSb, in thin film forms offers a new direction to search for novel spintronic materials. By using a well documented first-principles algorithm, the VASP code, we predict the electronic and magnetic properties of superlattices made of these exciting half-metallic materials. Not only are the superlattices constructed with two of the half-metallic compounds (CrAs/MnAs) but also they are modelled to combine with both a III-V (GaAs-MnAs/CrAs/GaAs) and a IV-IV (MnC/SiC) semiconductor. We investigate variable thicknesses for the combinations. For every case, we find the equilibrium lattice constant as well as the lattice constant at which the superlattice exhibits the half-metallic properties. For CrAs/MnAs, the half-metallic properties are presented and the magnetic moments are shown to be the sum of the moments for MnAs and CrAs. The half-metallic properties of GaAs-MnAs/CrAs/GaAs are found to be crucially dependent on the completion of the d-p hybridization. The magnetic properties of MnC/SiC are discussed with respect to the properties of MnC.

  15. Hydrolytic stability of heavy metal compounds in fly ash of a heat power plant

    International Nuclear Information System (INIS)

    Ash and slag from solid fuels are utilized widely in building materials and road surfaces, and in agriculture for soil acidulation. For all these uses it is important to know the amount and form of heavy metal compounds contained in ash and their likely behavior when ash and slag wastes are utilized. Studying the behavior of heavy metals in ash residues at contact with water media is important also because, for most trace elements, the authors lack experimental data that would enable us to predict their behavior after prolonged storage and industrial utilization. The present paper describes a study of lixiviation (at various pH in static conditions) of heavy metals form fly ash obtained by burning Azeisk coal. Homogenized ash selected from electric filter sections 1-4 was used, which has the following composition (%): SiO2 59.8; Al2O3; Fe23O3 7.1; CaO 4.1; MgO 1.3; other 2.8. In a neutral medium, Ni, Cu, Zn, Pb, and Mn lixiviation was slight, amounting to 0.01-0.4%. During coal combustion, these elements apparently form compounds that are slightly soluble in water, although it is also possible that ash retains high adsorptivity for heavy metals. As a result, in these conditions the reverse process of sorption of heavy metals from the solution by fly ash is also possible, which would reduce the heavy metal concentration in the solution

  16. New spintronic superlattices composed of half-metallic compounds with zinc-blende structure

    International Nuclear Information System (INIS)

    The successful growth of zinc-blende half-metallic compounds, namely CrAs and CrSb, in thin film forms offers a new direction to search for novel spintronic materials. By using a well documented first-principles algorithm, the VASP code, we predict the electronic and magnetic properties of superlattices made of these exciting half-metallic materials. Not only are the superlattices constructed with two of the half-metallic compounds (CrAs/MnAs) but also they are modelled to combine with both a III-V (GaAs-MnAs/CrAs/GaAs) and a IV-IV (MnC/SiC) semiconductor. We investigate variable thicknesses for the combinations. For every case, we find the equilibrium lattice constant as well as the lattice constant at which the superlattice exhibits the half-metallic properties. For CrAs/MnAs, the half-metallic properties are presented and the magnetic moments are shown to be the sum of the moments for MnAs and CrAs. The half-metallic properties of GaAs-MnAs/CrAs/GaAs are found to be crucially dependent on the completion of the d-p hybridization. The magnetic properties of MnC/SiC are discussed with respect to the properties of MnC

  17. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    Science.gov (United States)

    Pierantozzi, Ronald

    1985-01-01

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  18. Heavy-metal compounds in the environment of the Zagorsk pumped-storage station region

    International Nuclear Information System (INIS)

    The Zagorsk pumped-storage station (ZPSS) is being constructed in a rather developed area. Pollution of the environment by compounds of metals is, in particular, a consequence. The tasks of this investigation included: the establishment of the main sources of pollution of terrestrial and aquatic ecosystems by metal compounds in the region of construction of the ZPSS; determination of the level of content of these substances in various components of the landscape; and evaluation of the effect of regulating the Kun'ya River on processes of migration and accumulation of heavy metals in aquatic ecosystems. In conformity with these tasks, a comprehensive geochemical study was performed in 1990-1991 of the drainage basin of the Kun'ya River, the results of which are presented here. Samples were collected of soil, forest litter, snow, bottom sediments, and surface waters. The investigation showed that the main sources of pollution of the aquatic environment in the ZPSS construction region by heavy-metal compounds were surface runoff from developed territories and insufficiently treated industrial wastewaters. 5 refs., 2 figs., 4 tabs

  19. Oxidation of oil sulfur compounds to sulfones under foam-emulsion conditions in presence of metals

    International Nuclear Information System (INIS)

    Oxidation of sulfur compounds in diesel fraction, as well as of sulfoxide concentrate, by hydrogen peroxide to sulfones under foam-emulsion conditions in the presence of variable valency metal (V, Mo, W, Ti, Cr) compounds has been studied. It is ascertained that organic derivatives of molybdenum and vanadium are effective catalysts of sulfides to sulfones. The best results are obtained in the presence of water soluble ethylene glycolate of molybdenum. The mechanisms of chemical reactions occurring in the process is considered. Refs. 10

  20. Optical properties across the insulator to metal transitions in vanadium oxide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Perucchi, A; Baldassarre, L [Sincrotrone Trieste S.C.p.A., Area Science Park, I-34012 Basovizza, Trieste (Italy); Postorino, P; Lupi, S, E-mail: andrea.perucchi@elettra.trieste.i [CNR-INFM Coherentia and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, I-00185 Roma (Italy)

    2009-08-12

    We review the optical properties of three vanadium oxide compounds V{sub 2}O{sub 3}, VO{sub 2} and V{sub 3}O{sub 5}, belonging to the so-called Magneli phase. Their electrodynamics across a metal to insulator transition is investigated as a function of both temperature and pressure. We analyse thoroughly the optical results, with a special emphasis on the infrared spectral weight. This allows us to discuss the nature of the mechanisms driving the phase transitions in the three compounds, pointing out the role of electron-electron and electron-phonon interactions in the various cases. (topical review)

  1. Optical properties across the insulator to metal transitions in vanadium oxide compounds

    International Nuclear Information System (INIS)

    We review the optical properties of three vanadium oxide compounds V2O3, VO2 and V3O5, belonging to the so-called Magneli phase. Their electrodynamics across a metal to insulator transition is investigated as a function of both temperature and pressure. We analyse thoroughly the optical results, with a special emphasis on the infrared spectral weight. This allows us to discuss the nature of the mechanisms driving the phase transitions in the three compounds, pointing out the role of electron-electron and electron-phonon interactions in the various cases. (topical review)

  2. Optical properties across the insulator to metal transitions in vanadium oxide compounds.

    Science.gov (United States)

    Perucchi, A; Baldassarre, L; Postorino, P; Lupi, S

    2009-08-12

    We review the optical properties of three vanadium oxide compounds V(2)O(3), VO(2) and V(3)O(5), belonging to the so-called Magnéli phase. Their electrodynamics across a metal to insulator transition is investigated as a function of both temperature and pressure. We analyse thoroughly the optical results, with a special emphasis on the infrared spectral weight. This allows us to discuss the nature of the mechanisms driving the phase transitions in the three compounds, pointing out the role of electron-electron and electron-phonon interactions in the various cases. PMID:21693963

  3. Stability and electronic structure of Zr-based ternary metallic glasses and relevant compounds

    International Nuclear Information System (INIS)

    The electronic structure of the Zr-based metallic glasses has been investigated by theoretical and experimental approaches. One approach is band calculations of the Zr2Ni (Zr66.7Ni33.3) compound to investigate the electronic structure of the Zr66.7Ni33.3 metallic glass (ΔT x = 0 K) of which the local atomic structure is similar to that of the Zr2Ni compound. The other is photoemission spectroscopy of the Zr50Cu35Al15 bulk metallic glass (BMG) (ΔT x = 69 K). Here ΔT x = T x - T g where T x and T g are crystallization and glass transition temperature, respectively. Both results and previous ones on the Zr55Cu30Ni5Al10 BMG indicate that there is a pseudogap at the Fermi level in the electronic structure of these Zr-based metallic glasses, independent of the value of the ΔT x. This implies that the pseudogap at the Fermi level is one of the factors that stabilize the glass phase of Zr-based metallic glasses

  4. Generation, detection and characterization of gas-phase transition metal aggregates and compounds

    International Nuclear Information System (INIS)

    The goal of our research is to employ spectroscopic techniques to characterize the bound portions of the potential energy surface (PES) for chemical systems involving diatomic and triatomic transition metal molecules. The approach incorporates the generation and isolation of new metal compounds via supersonic laser ablation molecular beam techniques. Detection and characterization is achieved using high resolution dye laser induced fluorescence spectroscopy. A major objective is to produce information which can be compared to theoretical predictions and thereby provide guidelines and insight into the development of reaction models

  5. Electrochemical decontamination of metallic wastes contaminated with uranium compounds in a neutral salt electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Choi, W. K.; Yang, Y. M.; Jung, C. H.; Won, H. J.; Oh, W. Z.; Park, J. H. [KAERI, Taejon (Korea, Republic of)

    2003-07-01

    Electrochemical decontamination process has been applied for recycle or self disposal with authorization of large amount of metallic wastes contaminated with uranium compounds such as UO{sub 2}, ammonium uranyl carbonate (AUC), ammonium di-uranate (ADU), and uranyl nitrate (UN) with tributylphosphate (TBP) and dodecane, which are generated by dismantling the contaminated system components and equipment of a retired uranium conversion plant in Korea Atomic Energy Research Institute (KAERI). Electrochemical decontamination for metallic wastes contaminated with uranium compounds was evaluated through the experiments on the electrolytic dissolution of stainless steel as the material of the system components in neutral concentration of electrolyte on the dissolution of the materials were evaluated. Decontamination performance tests using the specimens taken from a uranium conversion plant were quite successful with the application electrochemical decontamination conditions obtained through the basic studies on the electrolytic dissolution of structural material of the system components.

  6. Technology Development and Production of Certain Chemical Platinum Metals Compounds at JSC "Krastsvetmet"

    Institute of Scientific and Technical Information of China (English)

    ILYASHEVICH V.D.; PAVLOVA E.I.; KORITSKAYA N.G.; MAMONOV S.N.; SHULGIN D.R.; MALTSEV E.V.

    2012-01-01

    In recent years JSC "Krastsvetmet" has successfully developed the production of chemically pure compounds of precious metals.Currently methods have been developed and facilities have been provided for industrial production of the following platinum metals compounds:- Rhodium (Ⅲ) chloride hydrate,rhodium (Ⅲ) chloride solution,rhodium ( Ⅲ) nitrate solution,rhodium ( Ⅲ)iodide,rhodium ( Ⅲ) sulfate,hydrated rhodium ( Ⅲ) oxide,ammonium hexachlororodiate,rhodium ( Ⅲ)phosphate solution,rhodium electrolytes;Iridium (Ⅳ) chloride hydrate,iridium (Ⅲ) chloride hydrate,ammonium hexachloroiridate (Ⅳ),hexachloriridium acid solution,hexachloriridium crystalline acid;- Ruthenium (Ⅲ) chloride hydrate,ruthenium (Ⅳ) hydroxide chloride,ruthenium (Ⅳ) hydroxide chloride solution,ammonium hexachlororuthenate,ruthenium (Ⅲ) chloride solution,potassium,diaquaoctachloronitrido diruthenate.The quality of the production meets the requirements of Russian and foreign consumers.

  7. A standardized evaluation of artifacts from metallic compounds during fast MR imaging

    DEFF Research Database (Denmark)

    Murakami, Shumei; Verdonschot, Rinus G; Kataoka, Miyoshi;

    2016-01-01

    OBJECTIVE: Metallic compounds present in the oral and maxillofacial regions (OMR) cause large artifacts during MR scanning. We quantitatively assessed these artifacts embedded within a phantom according to standards set by the American Society for Testing and Materials (ASTM). MATERIALS AND METHODS...... according to the ASTM-F2119 standard and artifact volumes were assessed using OsiriX MD software Results: Tukey-Kramer post-hoc tests were used for statistical comparisons. For most materials, scanning sequences eliciting artifact volumes in the following (ascending) order FSE-T1/FSE-T2 ... plane (i.e. a circular pattern for axial plane and a "clover-like" pattern for sagittal plane). CONCLUSION: The availability of standardized information on artifact size and configuration during MR imaging will enhance diagnosis when faced with metallic compounds in the OMR....

  8. Electrochemical decontamination of metallic wastes contaminated with uranium compounds in a neutral salt electrolyte

    International Nuclear Information System (INIS)

    Electrochemical decontamination process has been applied for recycle or self disposal with authorization of large amount of metallic wastes contaminated with uranium compounds such as UO2, ammonium uranyl carbonate (AUC), ammonium di-uranate (ADU), and uranyl nitrate (UN) with tributylphosphate (TBP) and dodecane, which are generated by dismantling the contaminated system components and equipment of a retired uranium conversion plant in Korea Atomic Energy Research Institute (KAERI). Electrochemical decontamination for metallic wastes contaminated with uranium compounds was evaluated through the experiments on the electrolytic dissolution of stainless steel as the material of the system components in neutral concentration of electrolyte on the dissolution of the materials were evaluated. Decontamination performance tests using the specimens taken from a uranium conversion plant were quite successful with the application electrochemical decontamination conditions obtained through the basic studies on the electrolytic dissolution of structural material of the system components

  9. X-ray absorption to determine the metal oxidation state of transition metal compounds

    Science.gov (United States)

    Jiménez-Mier, J.; Olalde-Velasco, P.; Carabalí-Sandoval, G.; Herrera-Pérez, G.; Chavira, E.; Yang, W.-L.; Denlinger, J.

    2013-07-01

    We present three examples where x-ray absorption at the transition metal L2,3 edges is used to investigate the valence states of various strongly correlated (SC) and technological relevant materials. Comparison with ligand field multiplet calculations is needed to determine the metal oxidation states. The examples are CrF2, the La1-xSrxCoO3 family and YVO3. For CrF2 the results indicate a disproportionation reaction that generates Cr+, Cr2+ and Cr3+ in different proportions that can be quantified directly from the x-ray spectra. Additionally, it is shown that Co2+ is present in the catalytic La1-xSrxCoO3 perovskite family. Finally, surface effects that change the vanadium valence are also found in YVO3 nanocrystals.

  10. Apoptosis induction in human lymphocytes after in vitro exposure to cobalt/hard metal compounds

    International Nuclear Information System (INIS)

    Full text: An increased risk of lung cancer is associated with occupational exposure to mixtures of cobalt metal (Co) and tungsten carbide (WC) particles, but apparently not when exposure is to cobalt alone. The mechanism for this increased cancer risk is not fully understood. The evaluation of the in vitro genotoxic effects in lymphocytes exposed to varying cobalt species demonstrated that the WC-Co hard metal mixture is more genotoxic (DNA damage, chromosome/genome mutations) than metallic Co alone. WC alone was not genotoxic. Thus, WC-Co represents a specific (geno)toxic entity. In order to assess the survival of human lymphocytes after in vitro exposure to metallic Co, CoCl2, WC and the WC-Co mixture, two apoptosis/necrosis detection methods were applied (annexin V staining and flow cytometry). Annexin-V staining of early apoptotic cells demonstrated a dose- and time dependent induction of apoptosis by metallic Co, CoCl2, WC and the WC-Co mixture. The time course of the process varied according to the metal species tested. Metallic Co and CoCl2 caused a gradually increasing frequency of apoptotic cells with time (up to 24 h). WC-induced apoptosis displayed a typical 6 hour peak, which was not the case for the WC-Co mixture or for Co. Apoptosis induction by the WC-Co mixture was intermediate between that induced by Co and WC separately. Analysis of propidium iodide stained cells by flow cytometry was performed as a later marker for apoptosis induction. Preliminary data indicate similar tendencies of apoptosis induction as those detected by annexin-V. Identification of the apoptotic pathway triggered by the metal compounds was studied by inhibition of the ceramide-apoptosis pathway by fumonisin causing reduction of apoptosis induction for all compounds, but strongest after 6 hour exposure to WC. The use of specific caspase inhibitors will allow to further elucidate the different pathways involved. The current data demonstrating in vitro the apoptosis induction by

  11. trans-Di-μ-carbonyl-bis{carbonyl[η5-2,3,4,5-tetramethyl-1-(5-methyl-2-furylcyclopentadienyl]ruthenium(I}(Ru—Ru

    Directory of Open Access Journals (Sweden)

    Jin Lin

    2009-08-01

    Full Text Available In the crystal structure of the title compound, [Ru2(C14H17O2(CO4], each RuI atom is connected to one end-on and two bridging carbonyl groups and one cyclopentadienyl ring. The two Ru atoms are connected into binuclear complexes via two bridging carbonyl groups, forming four-membered rings which are located on centres of inversion. The Ru—Ru distance of 2.7483 (11 Å corresponds to a single bond. The two carbonyl groups in these binuclear complexes are trans-oriented.

  12. Thermodynamic Properties and Mixing Thermodynamic Parameter of Binary Metallic Melt Involving Compound Formation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian

    2005-01-01

    Based on the coexistence theory of metallic melts involving compound formation,the theoretical cal culation equations of mixing thermodynamic parameters are established by giving up some empirical parameters in the associated solution model.For Fe-Al,Mn-Al and Ni-Al,the calculated results agree well with the experimental values,testifying that these equations can exactly embody mixing thermodynamic characteristics of these melts.

  13. μSR-studies of magnetic properties of metallic rare earth compounds

    International Nuclear Information System (INIS)

    Positive muons can probe the magnitude and the time dependence of the magnetic field at interstitial sites in condensed matter. Thus the relatively new techniques of muons spin rotation and muon spin relaxation have become unique tools for studying magnetism. After a brief introduction into the experimental method we then discuss measurements on the elemental rare earth metals and on intermetallic compounds, in particular on the cubic Laves phases REAl2

  14. Calculations of hyperfine interactions in transition metal compounds in the local density approximation

    International Nuclear Information System (INIS)

    A survey is made of some theoretical calculations of electrostatic and magnetic hyperfine interactions in transition metal compounds and complex irons. The molecular orbital methods considered are the Multiple Scattering and Discrete Variational, in which the local Xα approximation for the exchange interaction is employed. Emphasis is given to the qualitative informations, derived from the calculations, relating the hyperfine parameters to characteristics of the chemical bonds. (Author)

  15. Chemical shifts and EXAFS in some rare-earth metals and compounds

    International Nuclear Information System (INIS)

    The positions of the Lsub(111) absorption edge and accompanying Kossel and EXAFS oscillations of terbium, dysprosium and holmium in metals and compounds (acetate, carbonate, chloride, fluoride, nitrate, oxalate, oxide, phosphate and sulphate) have been measured. The chemical shifts of the main edge range from about 1 eV to about 10 eV and the EXAFS are observed up to about 150 eV. (author)

  16. Corrosion behavior of Zr(Fe, Cr)2 metallic compounds in 500 degree C superheated steam

    International Nuclear Information System (INIS)

    Zr(Fe, Cr)2 metallic compounds with different Fe/Cr ratio of 1.75 and 4.50 were prepared by non-consumable arc melting. X-ray diffraction, electron microprobe and transmission electron microscopy were employed for analyzing the corrosion products, the composition distribution and structure morphology after corrosion test of Zr(Fe, Cr)2 metallic compound powder at 500 degree C superheated steam with different exposure time. The corrosion products are the same for Zr(Fe, Cr)2 with different Fe/Cr ratio, but the corrosion resistant is better for Fe/Cr ratio of 1.75 than that of 4.50. Cubic ZrO2 and alpha Fe(Cr) are formed at the beginning of Zr(Fe, Cr)2 oxidation, then monoclinic ZrO2 transformed from cubic ZrO2 and (Fe, Cr)3O4 are observed at the late stage of oxidation. When the segregation of iron and chromium atoms occurs during the oxidation of Zr(Fe, Cr)2 metallic compounds, the diffusion rate of iron atoms is faster than that of chromium atoms. Based on the results obtained in present work, the effect of second phase particles on the corrosion behavior of Zircaloy-4 has been discussed

  17. Trivalent metal ions based on inorganic compounds with in vitro inhibitory activity of matrix metalloproteinase 13.

    Science.gov (United States)

    Wen, Hanyu; Qin, Yuan; Zhong, Weilong; Li, Cong; Liu, Xiang; Shen, Yehua

    2016-10-01

    Collagenase-3 (MMP-13) inhibitors have attracted considerable attention in recent years and have been developed as a therapeutic target for a variety of diseases, including cancer. Matrix metalloproteinases (MMPs) can be inhibited by a multitude of compounds, including hydroxamic acids. Studies have shown that materials and compounds containing trivalent metal ions, particularly potassium hexacyanoferrate (III) (K3[Fe(CN)6]), exhibit cdMMP-13 inhibitory potential with a half maximal inhibitory concentration (IC50) of 1.3μM. The target protein was obtained by refolding the recombinant histidine-tagged cdMMP-13 using size exclusion chromatography (SEC). The secondary structures of the refolded cdMMP-13 with or without metal ions were further analyzed via circular dichroism and the results indicate that upon binding with metal ions, an altered structure with increased domain stability was obtained. Furthermore, isothermal titration calorimetry (ITC) experiments demonstrated that K3[Fe(CN)6]is able to bind to MMP-13 and endothelial cell tube formation tests provide further evidence for this interaction to exhibit anti-angiogenesis potential. To the best of our knowledge, no previous report of an inorganic compound featuring a MMP-13 inhibitory activity has ever been reported in the literature. Our results demonstrate that K3[Fe(CN)6] is useful as a new effective and specific inhibitor for cdMMP-13 which may be of great potential for future drug screening applications. PMID:27542739

  18. Strongly correlated transition metal compounds investigated by soft X-ray spectroscopies and multiplet calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Mier, J., E-mail: jimenez@nucleares.unam.mx [Instituto de Ciencias Nucleares, UNAM, 04510 México, DF (Mexico); Olalde-Velasco, P. [Instituto de Ciencias Nucleares, UNAM, 04510 México, DF (Mexico); The Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, CA 94720 (United States); Herrera-Pérez, G.; Carabalí -Sandoval, G. [Instituto de Ciencias Nucleares, UNAM, 04510 México, DF (Mexico); Chavira, E. [Instituto de Investigaciones en Materiales, UNAM, 04510 México, DF (Mexico); Yang, W.-L.; Denlinger, J. [The Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, CA 94720 (United States)

    2014-10-15

    Direct probe of Mott–Hubbard (MH) to charge-transfer (CT) insulator transition in the MF{sub 2} (M = Cr–Zn) family of compounds was observed by combining F K and M L X-ray emission spectra (XES). This transition is evident as a crossover of the F-2p and M-3d occupied states. By combining F K XES data with F K edge X-ray absorption (XAS) data we directly obtained values for the M-3d Hubbard energy (U{sub dd}) and the F-2p to M-3d charge-transfer energy (Δ{sub CT}). Our results are in good agreement with the Zaanen–Sawatzky–Allen theory. We also present three examples where X-ray absorption at the transition metal L{sub 2,3} edges is used to study the oxidation state of various strongly correlated transition metal compounds. The metal oxidation state is obtained by direct comparison with crystal field multiplet calculations. The compounds are CrF{sub 2}, members of the La{sub 1−x}Sr{sub x}CoO{sub 3} family, and the MVO{sub 3} (M = La and Y) perovskites.

  19. APPLICABILITY OF THE MASS ACTION LAW IN COMBINATION WITH THE COEXISTENCE THEORY OF METALLIC MELTS INVOLVING COMPOUND TO BINARY METALLIC MELTS

    Institute of Scientific and Technical Information of China (English)

    J. Zhang

    2002-01-01

    Based on the atomicity and molecularity as well as the consistency of thermodynamicproperties and activities of metallic melts with their structures, the coexistence the-ory of metallic melts structure involving compound has been suggested. According tothis theory, the calculating models of mass action concentrations for different binarymetallic melts have been formulated. The calculated mass action concentrations agreewell with corresponding measured activities, which confirms that the suggested theorycan reflect the structural characteristics of metallic melts involving compound and thatthe mass action law is widely applicable to this kind of metallic melts.

  20. Evolution of phenolic compounds and metal content of wine during alcoholic fermentation and storage.

    Science.gov (United States)

    Bimpilas, Andreas; Tsimogiannis, Dimitrios; Balta-Brouma, Kalliopi; Lymperopoulou, Theopisti; Oreopoulou, Vassiliki

    2015-07-01

    Changes in the principal phenolic compounds and metal content during the vinification process and storage under modified atmosphere (50% N2, 50% CO2) of Merlot and Syrah wines, from grapes cultivated in Greece, have been investigated. Comparing the variation of metals at maceration process, with the variation of monomeric anthocyanins and flavonols, an inverse relationship was noticed, that can be attributed to complexing reactions of polyphenols with particular trace elements. Cu decreased rapidly, whereas a similar behavior that could be expected for Fe and Mn was not confirmed. Differences in the profile of anthocyanins and flavonols in the fresh Merlot and Syrah wines are reported. During 1 year of storage monomeric anthocyanins declined almost tenfold, probably due to polymerization reactions and copigmentation. Also, a decrease in flavonol glycosides and increase in the respective aglycones was observed, attributed to enzymatic hydrolysis. The concentration of total phenols and all metals remained practically constant. PMID:25704697

  1. Safety Evaluation of Osun River Water Containing Heavy Metals and Volatile Organic Compounds (VOCs) in Rats.

    Science.gov (United States)

    Azeez, L; Salau, A K; Adewuyi, S O; Osineye, S O; Tijani, K O; Balogun, R O

    2015-01-01

    This study evaluated the pH, heavy metals and volatile organic compounds (VOCs) in Osun river water. It also evaluated its safety in rats. Heavy metals were determined by atomic absorption spectrophotometry (AAS) while VOCs were determined by gas chromatography coupled with flame ionization detector (GC-FID). Male and female rats were exposed to Osun river water for three weeks and then sacrificed. The abundance of heavy metals in Osun river followed the trend Pb > Cd > Zn > Fe > Cr > Cu while VOCs followed the trend benzene water for three weeks had increased WBC, thiobarbituric acid reactive substances (TBARS), serum proteins and serum aminotransferases. There were also significant decreases in HCT, PLT, liver aminotransferases and liver glutathione compared to the control. These results show that the pollutants in Osun river water are capable of inducing hematological imbalance and liver cell injury. The toxicity induced in blood was sex-dependent affecting female rats more than male rats. PMID:27506174

  2. Radical carbonylations using a continuous microflow system

    Directory of Open Access Journals (Sweden)

    Takahide Fukuyama

    2009-07-01

    Full Text Available Radical-based carbonylation reactions of alkyl halides were conducted in a microflow reactor under pressurized carbon monoxide gas. Good to excellent yields of carbonylated products were obtained via radical formylation, carbonylative cyclization and three-component coupling reactions, using tributyltin hydride or TTMSS as a radical mediator.

  3. Studies about interaction of hydrogen isotopes with metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Hydrogen is a nontoxic but highly inflammable gas. Compared to other inflammable gasses, its range of inflammability in air is much broader (4-74.5%) but it also vaporizes much more easily. Handling of hydrogen in form of hydrides enhances safety. Experiments with gaseous and liquid hydrogen should be performed in rooms with good ventilation. The interaction of hydrogen with metals and intermetallic compounds is a major field within physical chemistry. The essential feature of hydrogen-element system consists in the formation of chemical bond between hydrogen and metal atoms. The study of the interactions of hydride-forming metals and intermetallic compounds with heavy hydrogen isotopes -deuterium and tritium- offers new possibilities for investigating hydrogen behavior on surfaces and in a solid matrix. Using hydride-forming metals and intermetallic compounds, for example, recovery, purification and storage of heavy isotopes in tritium containing systems, can solve many problems arising in the nuclear-fuel cycle. The Nuclear Power Plant Cernavoda is equipped with a Canadian reactor of CANDU type. In the long term, Cernavoda area will be contaminated with on increasing quantity of tritium. In addition, the continuous contamination of heavy water from the reactor reduces the moderator's efficiency. For these reasons, ICSI - Rm. Valcea has developed a detritiation technology, based on catalytic isotopic exchange and cryogenic distillation. Tritium should be removed from the tritiated heavy water, and this will require the storage of tritium in a special vessel that can provide a high level of protection and safety of environment and personnel. Several metals have been studied as storage beds for hydrogen isotopes. One of the reference materials used for storing of hydrogen isotopes is uranium, a material with a great storage capacity, but unfortunately it is a radioactive metal and can react with the impurities in the stored gas. Other metals and alloys as ZrCo, Ti

  4. Impact of metal-induced degradation on the determination of pharmaceutical compound purity and a strategy for mitigation.

    Science.gov (United States)

    Dotterer, Sally K; Forbes, Robert A; Hammill, Cynthia L

    2011-04-01

    Case studies are presented demonstrating how exposure to traces of transition metals such as copper and/or iron during sample preparation or analysis can impact the accuracy of purity analysis of pharmaceuticals. Some compounds, such as phenols and indoles, react with metals in the presence of oxygen to produce metal-induced oxidative decomposition products. Compounds susceptible to metal-induced decomposition can degrade following preparation for purity analysis leading to falsely high impurity results. Our work has shown even metals at levels below 0.1 ppm can negatively impact susceptible compounds. Falsely low results are also possible when the impurities themselves react with metals and degrade prior to analysis. Traces of metals in the HPLC mobile phase can lead to chromatographic artifacts, affecting the reproducibility of purity results. To understand and mitigate the impact of metal induced decomposition, a proactive strategy is presented. The pharmaceutical would first be tested for reactivity with specific transition metals in the sample solvent/diluents and in the HPLC mobile phase. If found to be reactive, alternative sample diluents and/or mobile phases with less reactive solvents or addition of a metal chelator would be explored. If unsuccessful, glassware cleaning or sample solution refrigeration could be investigated. By employing this strategy during method development, robust purity methods would be delivered to the quality control laboratories, preventing future problems from potential sporadic contamination of glassware with metals. PMID:21163601

  5. Study of reactions of metals with sulphur and phosphorus compounds by pulsed temperatures

    International Nuclear Information System (INIS)

    The anti-wear action of sulphur and phosphorus compounds which are usually added to gear-oils depends on chemical reactions with the metallic surfaces of the gears. These reactions occur both at the bulk oil temperature (approx. 100°C) and during high temperatures (approx. 600°C) of short duration when the gearteeth come into contact under lead. The temperature flashes were simulated in an apparatus in which short pulses of electric current were used to heat metal wires immersed in mineral oil containing S35 and P32 labelled compounds in solution. The radioactivity acquired by the wires was measured. The extent of the reactions was determined as a function of temperature and time and the results were interpreted in terms of conventional kinetic laws. The modification of the reaction rates by the presence of other compounds in the solution was studied. The effect of pre-formed surface films containing sulphur phosphorus, chlorine and/or oxygen was also determined. In explaining the results, the structure of the materials used and the diffusion processes whereby the reactions occur beyond the initial stages were considered. (author)

  6. Protective mechanisms of Cucumis sativus in diabetes-related modelsof oxidative stress and carbonyl stress

    Science.gov (United States)

    Heidari, Himan; Kamalinejad, Mohammad; Noubarani, Maryam; Rahmati, Mokhtar; Jafarian, Iman; Adiban, Hasan; Eskandari, Mohammad Reza

    2016-01-01

    Introduction: Oxidative stress and carbonyl stress have essential mediatory roles in the development of diabetes and its related complications through increasing free radicals production and impairing antioxidant defense systems. Different chemical and natural compounds have been suggested for decreasing such disorders associated with diabetes. The objectives of the present study were to investigate the protective effects of Cucumis sativus (C. sativus) fruit (cucumber) in oxidative and carbonyl stress models. These diabetes-related models with overproduction of reactive oxygen species (ROS) and reactive carbonyl species (RCS) simulate conditions observed in chronic hyperglycemia. Methods: Cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonyl stress model) were measured and the protective effects of C. sativus were evaluated using freshly isolated rat hepatocytes. Results: Aqueous extract of C. sativus fruit (40 μg/mL) prevented all cytotoxicity markers in both the oxidative and carbonyl stress models including cell lysis, ROS formation, membrane lipid peroxidation, depletion of glutathione, mitochondrial membrane potential decline, lysosomal labialization, and proteolysis. The extract also protected hepatocytes from protein carbonylation induced by glyoxal. Our results indicated that C. sativus is able to prevent oxidative stress and carbonyl stress in the isolated hepatocytes. Conclusion: It can be concluded that C. sativus has protective effects in diabetes complications and can be considered a safe and suitable candidate for decreasing the oxidative stress and carbonyl stress that is typically observed in diabetes mellitus.

  7. Thermochemistry of some binary lead and transition metal compounds by high temperature direct synthesis calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Meschel, S.V., E-mail: meschel@jfi.uchicago.edu [Illinois Institute of Technology,Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, Illinois 60615 (United States); Gordon Center for Integrated Science, 929 E. 57th Street, Chicago, Illinois 60637 (United States); Nash, P. [Illinois Institute of Technology,Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, Illinois 60615 (United States); Chen, X.Q.; Wei, P. [Materials processing Modeling Division, Shenyang National Laboratory for Materials Science, Institute of Metals Research, 72 Wenhua Road, Shenyang City (China)

    2015-06-05

    Highlights: • Studied binary lead-transition metal alloys by high temperature calorimetry. • Determined the enthalpies of formation of 8 alloys. • Compared the measurements with predictions by the model of Miedema and by the ab initio method. - Abstract: The standard enthalpies of formation of some binary lead and transition metal compounds have been measured by high temperature direct synthesis calorimetry. The reported results are: Pb{sub 3}Sc{sub 5}(−61.3 ± 2.9); PbTi{sub 4}(−16.6 ± 2.4); Pb{sub 3}Y{sub 5}(−64.8 ± 3.6); Pb{sub 3}Zr{sub 5}(−50.6 ± 3.1); PbNb{sub 3}(−10.4 ± 3.4); PbRh(−16.5 ± 3.3); PbPd{sub 3}(−29.6 ± 3.1); PbPt(−34.7 ± 3.3) kJ/mole of atoms. We will compare our results with previously published measurements. We will also compare the experimental measurements with enthalpies of formation of transition metal compounds with elements in the same vertical column in the periodic table. We will compare our measurements with predicted values on the basis of the semi empirical model of Miedema and coworkers and with ab initio values when available.

  8. Photo-induced charge-orbital switching in transition-metal compounds probed by photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Takubo, K; Mizokawa, T [Department of Physics and Department of Complexity Science and Engineering, University of Tokyo, Kashiwa, Chiba 277-8561 (Japan); Takubo, N; Miyano, K [Research Center for Advanced Science and Technology (RCAST), University of Tokyo, Tokyo 153-8904 (Japan); Matsumoto, N; Nagata, S, E-mail: takubo@sces.k.u-tokyo.ac.j [Department of Materials Science and Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido, 050-8585 Japan (Japan)

    2009-02-01

    Transition-metal compounds with spin, charge, and orbital degrees of freedom tend to have frustrated electronic states coupled with local lattice distortions and to show drastic response to external stimuli such as photo-excitation. We have studied the charge-orbital states in perovskite-type Pr{sub 0.55}(Ca{sub 1-y}Sr{sub y}){sub 0.45}MnO{sub 3} thin films (PCSMO) and spinel-type CuIr{sub 2}S{sub 4} using photoemission spectroscopy combined with additional laser illumination. PCSMO and CuIr{sub 2}S{sub 4} are clear-cut examples of transition-metal compounds showing photo-induced metallic conductivities but the charge-orbital states in the two systems show contrasting responses to the photo-excitation. The charge-orbital states in PCSMO are stabilized by Jahn-Teller or Breathing-type lattice distortions and can be destroyed by photo-excitation. On the other hand, the charge-orbital states in CuIr{sub 2}S{sub 4} are stabilized by dimer formation and tend to be robust against photo-excitation.

  9. Thermochemistry of some binary lead and transition metal compounds by high temperature direct synthesis calorimetry

    International Nuclear Information System (INIS)

    Highlights: • Studied binary lead-transition metal alloys by high temperature calorimetry. • Determined the enthalpies of formation of 8 alloys. • Compared the measurements with predictions by the model of Miedema and by the ab initio method. - Abstract: The standard enthalpies of formation of some binary lead and transition metal compounds have been measured by high temperature direct synthesis calorimetry. The reported results are: Pb3Sc5(−61.3 ± 2.9); PbTi4(−16.6 ± 2.4); Pb3Y5(−64.8 ± 3.6); Pb3Zr5(−50.6 ± 3.1); PbNb3(−10.4 ± 3.4); PbRh(−16.5 ± 3.3); PbPd3(−29.6 ± 3.1); PbPt(−34.7 ± 3.3) kJ/mole of atoms. We will compare our results with previously published measurements. We will also compare the experimental measurements with enthalpies of formation of transition metal compounds with elements in the same vertical column in the periodic table. We will compare our measurements with predicted values on the basis of the semi empirical model of Miedema and coworkers and with ab initio values when available

  10. Calculation of transition metal compounds using an extension of the CNDO formalism. IV. CNDO-CI-calculations on tetracarbonylnickel and pentacarbonyliron; electronic spectra and photochemical implications

    OpenAIRE

    Dick, Bernhard; Freund, Hans-Joachim; Hohlneicher, Georg

    1982-01-01

    CI-calcns. based on an extended CNDO formalism, were used to analyze the low lying excited states of Ni(CO)4 and Fe(CO)5. At. d -> s and d -> p excitations are important in the low energy region. Inspection of the d. matrixes of excited states indicates that these transitions are responsible for the photochem. activity of metal carbonyls. The influence of double excited configurations is reduced with respect to that for org. compds.

  11. Analysis of Carbonyl Compounds in Water-based Adhesive by Direct Derivatization and High-performance Liquid Chromatography%直接衍生/高效液相色谱法分析水基胶中羰基化合物

    Institute of Scientific and Technical Information of China (English)

    万小红; 吴名剑; 蒋新宇; 戴云辉; 李绍晔

    2011-01-01

    A direct derivatization and high-performance liquid chromatographic method was developed for the trace analysis of 8 carbonyl compounds, e. G. Formaldehyde, acetaldehyde, acetone, acrole-in, propaldehyde, crotonaldehyde and 2-butanone and butaldehyde in water-based adhesive. The method adopted 2, 4-dinitrophenylhydrazine(DNPH) to directly react with the adhesive sample solution , and the influence factors were investigated and optimized. The best derivatization condition was using the adhesive to react directly with DNPH at 40 °C for 20 min. The optimized chromatograpic conditions were as follows: DIONEX Acclaim Explosives E2 reversed-phase column as separation column, water and acetonitrile as mobile phase by double gradient elution. The flow rate was set at 1. 2 mL/min, and the column temperature was set at 35 ℃. Under the optimal conditions, the linear ranges of 8 carbonyl compounds were all in 0. 001 1 -55. 32 mg/L, with correlation coefficients higher than 0. 999. The limits of detection for 8 carbonyl compounds were 0. 066 3 - 1. 691 1 mg/kg, and the limits of quantitation were 0. 221 -5. 637 mg/kg. The relative standard deviations were between 4. 3% and 9. 3% , and the recoveries were 62% -100% . The established method was sensitive , simple and accurate, and was practical for the determination of 8 carbonyl compounds in water-based adhesive.%建立了直接衍生/高效液相色谱分析水基胶中8种痕量羰基化合物(甲醛、乙醛、丙酮、丙烯醛、丙醛、丁烯醛、2-丁酮和丁醛)的方法.对影响分析效率的因素进行了考察,确定最佳衍生条件为:水基胶样品与2,4-二硝基苯肼衍生剂在40℃下反应20 min;最佳色谱分析条件为:采用DIONEX Acclaim Explosives E2反相柱,用水和乙腈进行二元梯度洗脱,流速1.2 mL/min,色谱柱温度35℃.8种羰基化合物的线性范围为0.001 1~55.32 mg/L,相关系数均大于0.999,方法的检出限为0.066 3~1.6911mg/kg,定量下限为0.221 ~5

  12. Optical Parameters and Absorption of Azo Dye and Its Metal-Substituted Compound Thin Films

    Institute of Scientific and Technical Information of China (English)

    魏斌; 吴谊群; 顾冬红; 干福熹

    2003-01-01

    We determine the complex refractive indices N ( N = n - ik), dielectric constants ε(ε = ε1 - iε2), and absorption coefficients α of a new azo dye [2-(6-methyl-2-benzothiazolyazo)-5-diethylaminophenol(MBADP)]-doped polymer and its nickel- and zinc-substituted compounds(Ni-MBADP and Zn-MBADP) spin-coated thin films from a scanning ellipsometer in the wavelength 400-700 nm region. Metal chelation strongly (about one times) enhances the optical and dielectric parameters at the peaks and results in a large bathochromic shift (50-60nm) of absorption band. Bathochromic shift of Ni-MBADP is about 10nm larger than that of Zn-MBADP due to different spatial configurations formed in the metal-azo complexes.

  13. Influence of main-group element on half-metallic properties in half-Heusler compound

    Science.gov (United States)

    Liu, Hongyan; Li, Yushan; Tian, Fuyang; Li, Getian

    2016-04-01

    We investigate the band structure, magnetism and density of states of half-Heusler compounds CoCrZ (Z = Si,Ge,P,As) based on the first-principle calculations. Combined with molecular orbital hybridization theory, we discuss the influence of the main-group element on half-metallic properties of CoCrZ. It is found that the replacement of Ge for Si in CoCrSi can adjust the position of the Fermi level, and while it has no impact on the energy gap width and magnetic structure. However, the substitution of P for Si can effectively adjust the magnetism without disrupting its half-metallicity. Our results demonstrate that the electronic structure of CoCrZ is mainly dependent on the number of valence electrons of the main-group element.

  14. Enhancement of nonlinear optical properties of compounds of silica glass and metallic nanoparticle

    Indian Academy of Sciences (India)

    GHARAATI A; KAMALDAR A

    2016-06-01

    The aim of this paper is to introduce a method for enhancing the nonlinear optical properties in silica glass by using metallic nanoparticles. First, the T-matrix method is developed to calculate the effective dielectric constant for the compound of silica glass and metallic nanoparticles, both of which possess nonlinear dielectric constants. In the second step, the Maxwell–Garnetttheory is exploited to replace the spherical nanoparticles with cylindrical and ellipsoidal ones, facilitating the calculation of the third-order nonlinear effective susceptibility for a degenerate four-wave mixing case. The results are followed by numerical computations for silver, copper and gold nanoparticles. It is shown, graphically, that the maximum and minimum of the real part of thereflection coefficient for nanoparticles of silver occurs in smaller wavelengths compared to that of copper and gold. Further, it is found that spherical nanoparticles exhibit greater figure-of-merit compared to those with cylindrical or ellipsoidal geometries.

  15. Composite materials obtained by the ion-plasma sputtering of metal compound coatings on polymer films

    Science.gov (United States)

    Khlebnikov, Nikolai; Polyakov, Evgenii; Borisov, Sergei; Barashev, Nikolai; Biramov, Emir; Maltceva, Anastasia; Vereshchagin, Artem; Khartov, Stas; Voronin, Anton

    2016-01-01

    In this article, the principle and examples composite materials obtained by deposition of metal compound coatings on polymer film substrates by the ion-plasma sputtering method are presented. A synergistic effect is to obtain the materials with structural properties of the polymer substrate and the surface properties of the metal deposited coatings. The technology of sputtering of TiN coatings of various thicknesses on polyethylene terephthalate films is discussed. The obtained composites are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and scanning tunneling microscopy (STM) is shown. The examples of application of this method, such as receiving nanocomposite track membranes and flexible transparent electrodes, are considered.

  16. Incorporating functional groups on the structure of Acrylic fibers for adsorption of metal ionic compounds

    International Nuclear Information System (INIS)

    Common commercial acrylic fibers were modified by incorporating different suitable ion adsorbing functional groups into their structures. To study the ion adsorption ability of modified fibers against ionic compounds, the raw fibers were treated with hydroxylamine, hydrazine and urea. The new incorporated functional groups were characterized and appropriate formula for each reaction was suggested. In order to evaluate the ion adsorption capacity of the system, the modified fibers were immersed in separated metal salt solutions. The results show that the samples modified by hydroxylamine, have higher adsorption capacity than others, however, by pretreatment with hydrazine or urea not only the functional groups were increased but also the efficiency of the adsorption was improved

  17. On features of metal and binary compound sputtering by low-energy ions

    International Nuclear Information System (INIS)

    Molecular dynamic simulation has been used to study how the characteristics of metal and binary compound sputtering change under the bombardment by different low-energy ions. The influence of the target parameters on the anomalous mass dependence of sputtering yield has been investigated, both for targets with similar and very different values of density, the lattice constant and the surface binding energy. Together with the ratio of the target atoms' mass to the mass of the ions, the density of the target and the binding energy turn out to be the important parameters that determine the unusual shape of the mass dependence of sputtering by low-energy ions.

  18. On features of metal and binary compound sputtering by low-energy ions

    Energy Technology Data Exchange (ETDEWEB)

    Zykova, E.Yu. [Physics Faculty, Moscow State University, 119992 Moscow (Russian Federation)], E-mail: zykova@rambler.ru; Yurasova, V.E.; Elovikov, S.S. [Physics Faculty, Moscow State University, 119992 Moscow (Russian Federation)

    2009-08-15

    Molecular dynamic simulation has been used to study how the characteristics of metal and binary compound sputtering change under the bombardment by different low-energy ions. The influence of the target parameters on the anomalous mass dependence of sputtering yield has been investigated, both for targets with similar and very different values of density, the lattice constant and the surface binding energy. Together with the ratio of the target atoms' mass to the mass of the ions, the density of the target and the binding energy turn out to be the important parameters that determine the unusual shape of the mass dependence of sputtering by low-energy ions.

  19. Micro- and Nanostructured Metal Oxide Chemical Sensors for Volatile Organic Compounds

    Science.gov (United States)

    Alim, M. A.; Penn, B. G.; Currie, J. R., Jr.; Batra, A. K.; Aggarwal, M. D.

    2008-01-01

    Aeronautic and space applications warrant the development of chemical sensors which operate in a variety of environments. This technical memorandum incorporates various kinds of chemical sensors and ways to improve their performance. The results of exploratory investigation of the binary composite polycrystalline thick-films such as SnO2-WO3, SnO2-In2O3, SnO2-ZnO for the detection of volatile organic compound (isopropanol) are reported. A short review of the present status of the new types of nanostructured sensors such as nanobelts, nanorods, nanotube, etc. based on metal oxides is presented.

  20. Non-traditional metal electrode materials in electrochemical nvironmental analysis of biologically active compounds

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Šestáková, Ivana

    Tenerife: WSEAS, 2007 - (Otesteanu, M.; Celikyay, S.; Mastorakis, N.; Lache, S.; Benra, F.), s. 181-185 ISBN 978-960-6766-20-6. [WSEAS International Conference on ENVIRONMENT, ECOSYSTEMS and DEVELOPMENT (EED'07) /5./. Tenerife (ES), 14.12.2007-16.12.2007] R&D Projects: GA ČR GA203/07/1195; GA ČR GA521/06/0496 Institutional research plan: CEZ:AV0Z40400503 Keywords : metal electrode materials * biologically actove compounds * electrochemistry Subject RIV: CG - Electrochemistry

  1. Evolution of metal-compound residues on the walls of plasma etching reactor and their effect on critical dimensions of high-k/metal gate

    International Nuclear Information System (INIS)

    It was found that critical dimensions of high-k/metal gates obey the multivariate linear approximation with the precision of 3σ=±0.86 nm, whose explanatory variables are amounts of metal compounds remaining on the plasma reactor walls. To measure their amounts, the authors assumed they are proportional to amounts of atoms sputtered out by Ar plasma and falling onto a Si wafers placed on a wafer stage. In this study, effects of metal compounds of W, Ti, Ta, and Hf, which are used to construct full-metal/high-k gates, were measured. It was found that Ti and Ta compounds dominate the fluctuation of critical dimensions and the dependency of their amount on wafer numbers being etched obeys a simple difference equation. From these results, they can estimate and minimize the fluctuations of critical dimensions in mass fabrications.

  2. Some reduced ternary and quaternary oxides of molybdenum. A family of compounds with strong metal-metal bonds

    International Nuclear Information System (INIS)

    Several new, reduced ternary and quaternary oxides of molybdenum are reported, each containing molybdenum in an average oxidation state 2 sealed in Mo tubes held at 11000C for ca. 7 days. Refinement of the substructure of the new compound Ba062Mo4O6 was based on an orthorhombic cells, with a = 9.509(2), b = 9.825(2), c = 2.853(1) A, Z = 2 in space group Pbam; weak supercell reflections indicate the true structure has c = 8(2.853) A. The chief structural feature is closely related to that of NaMo4O6 which consists of infinite chains of Mo6 octahedral clusters fused on opposite edges, bridged on the outer edges by O atoms and crosslinked by Mo-O-Mo bonding to create four-sided tunnels in which the Ba2+ ions are located. The structure of Ba113Mo8O16 is triclinic, a = 7.311(1), b = 7.453(1), c = 5.726(1) A, α = 101.49(2), β = 99.60(2), γ = 89.31(2)0, Z = 1, space group P1. It is a low-symmetry, metal-metal bonded variant of the hollandite structure, in which two different infinite chains, built up from Mo4O82- and Mo4O8026- cluster units, respectively, are interlinked via Mo-O-Mo bridge bonding to create again four-sided tunnels in which the Ba2+ ions reside. Other compounds prepared and characterized by analyses and x-ray powder diffraction data are Pb/sub x/Mo4O6 (x approx. 0.6), LiZn2Mo3O8, , CaMo5O8, K2Mo12O19, and Na2Mo12O19

  3. Identification of 1-({[1-(4-Fluorophenyl)-5-(2-methoxyphenyl)-1H-pyrazol-3-yl]carbonyl}amino)cyclohexane Carboxylic Acid as a Selective Nonpeptide Neurotensin Receptor Type 2 Compound

    OpenAIRE

    Thomas, James B.; Giddings, Angela M.; Wiethe, Robert W.; Olepu, Srinivas; Warner, Keith R.; Sarret, Philippe; Gendron, Louis; Longpre, Jean-Michel; Zhang, Yanan; Runyon, Scott P.; Gilmour, Brian P.

    2014-01-01

    Compounds active at neurotensin receptors (NTS1 and NTS2) exert analgesic effects on different types of nociceptive modalities, including thermal, mechanical, and chemical stimuli. The NTS2 preferring peptide JMV-431 (2) and the NTS2 selective nonpeptide compound levocabastine (6) have been shown to be effective in relieving the pain associated with peripheral neuropathies. With the aim of identifying novel nonpeptide compounds selective for NTS2, we examined analogues of SR48692 (5a) using a...

  4. Iron(III)-catalysed carbonyl-olefin metathesis.

    Science.gov (United States)

    Ludwig, Jacob R; Zimmerman, Paul M; Gianino, Joseph B; Schindler, Corinna S

    2016-05-19

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon-carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl-olefin metathesis reaction can also be used to construct carbon-carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl-olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl-olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis. PMID:27120158

  5. Electrolytic decontamination of the dismantled metallic wastes contaminated with uranium compounds in neutral salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Wang Kyu; Lee, Sung Yeal; Kim, Kye Nam; Won, Hee Jun; Jung, Jong Heon; Oh, Won Zin [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Electrolytic dissolution study was carried out to evaluate the applicability of electrochemical decontamination process using a neutral salt electrolyte as a decontamination technology for the recycle or self disposal with authorization of large amount of metallic wastes contaminated with uranium compounds generated by dismantling a retired uranium conversion plant using SUS-304 and Inconel-600 specimen as the main materials of internal system components of the plant. The effects of type of neutral salt as an electrolyte, current density, and concentration of electrolyte on the dissolution of the materials were evaluated. On the basis of the results obtained through the basic inactive experiments, electrochemical decontamination tests using the specimens contaminated with uranium compounds such as UO{sub 2}, AUC (ammonium uranyl carbonate) and ADU (ammonium diuranate) taken from an uranium conversion plant were performed in Na{sub 2}SO{sub 4} and NaNO{sub 3} solution. It was verified that the electrochemical decontamination of the dismantled metallic wastes was quite successful in Na{sub 2}SO{sub 4} and NaNO{sub 3} neutral salt electrolyte by reducing {beta} radioactivities below the level of self disposal with authorization within 10 minutes regardless of the type of contaminants and the degree of contamination.

  6. Electrolytic decontamination of the dismantled metallic wastes contaminated with uranium compounds in neutral salt solutions

    International Nuclear Information System (INIS)

    Electrolytic dissolution study was carried out to evaluate the applicability of electrochemical decontamination process using a neutral salt electrolyte as a decontamination technology for the recycle or self disposal with authorization of large amount of metallic wastes contaminated with uranium compounds generated by dismantling a retired uranium conversion plant using SUS-304 and Inconel-600 specimen as the main materials of internal system components of the plant. The effects of type of neutral salt as an electrolyte, current density, and concentration of electrolyte on the dissolution of the materials were evaluated. On the basis of the results obtained through the basic inactive experiments, electrochemical decontamination tests using the specimens contaminated with uranium compounds such as UO2, AUC (ammonium uranyl carbonate) and ADU (ammonium diuranate) taken from an uranium conversion plant were performed in Na2SO4 and NaNO3 solution. It was verified that the electrochemical decontamination of the dismantled metallic wastes was quite successful in Na2SO4 and NaNO3 neutral salt electrolyte by reducing β radioactivities below the level of self disposal with authorization within 10 minutes regardless of the type of contaminants and the degree of contamination

  7. Pressure induced structural phase transition in IB transition metal nitrides compounds

    Science.gov (United States)

    Soni, Shubhangi; Kaurav, Netram; Jain, A.; Shah, S.; Choudhary, K. K.

    2015-06-01

    Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  8. Impedance study of tea with added taste compounds using conducting polymer and metal electrodes.

    Science.gov (United States)

    Dhiman, Mopsy; Kapur, Pawan; Ganguli, Abhijit; Singla, Madan Lal

    2012-09-01

    In this study the sensing capabilities of a combination of metals and conducting polymer sensing/working electrodes for tea liquor prepared by addition of different compounds using an impedance mode in frequency range 1 Hz-100 KHz at 0.1 V potential has been carried out. Classification of six different tea liquor samples made by dissolving various compounds (black tea liquor + raw milk from milkman), (black tea liquor + sweetened clove syrup), (black tea liquor + sweetened ginger syrup), (black tea liquor + sweetened cardamom syrup), (black tea liquor + sweet chocolate syrup) and (black tea liquor + vanilla flavoured milk without sugar) using six different working electrodes in a multi electrode setup has been studied using impedance and further its PCA has been carried out. Working electrodes of Platinum (Pt), Gold (Au), Silver (Ag), Glassy Carbon (GC) and conducting polymer electrodes of Polyaniline (PANI) and Polypyrrole (PPY) grown on an ITO surface potentiostatically have been deployed in a three electrode set up. The impedance response of these tea liquor samples using number of working electrodes shows a decrease in the real and imaginary impedance values presented on nyquist plots depending upon the nature of the electrode and amount of dissolved salts present in compounds added to tea liquor/solution. The different sensing surfaces allowed a high cross-selectivity in response to the same analyte. From Principal Component Analysis (PCA) plots it was possible to classify tea liquor in 3-4 classes using conducting polymer electrodes; however tea liquors were well separated from the PCA plots employing the impedance data of both conducting polymer and metal electrodes. PMID:23035436

  9. Pore size dynamics in interpenetrated metal organic frameworks for selective sensing of aromatic compounds.

    Science.gov (United States)

    Myers, Matthew; Podolska, Anna; Heath, Charles; Baker, Murray V; Pejcic, Bobby

    2014-03-28

    The two-fold interpenetrated metal-organic framework, [Zn2(bdc)2(dpNDI)]n (bdc=1,4-benzenedicarboxylate, dpNDI=N'N'-di(4-pyridyl)-1,4,5,8-naphthalenediimide) can undergo structural re-arrangement upon adsorption of chemical species changing its pore structure. For a competitive binding process with multiple analytes of different sizes and geometries, the interpenetrated framework will adopt a conformation to maximize the overall binding interactions. In this study, we show for binary mixtures that there is a high selectivity for the larger methylated aromatic compounds, toluene and p-xylene, over the small non-methylated benzene. The dpNDI moiety within [Zn2(bdc)2(dpNDI)]n forms an exciplex with these aromatic compounds. The emission wavelength is dependent on the strength of the host-guest CT interaction allowing these compounds to be distinguished. We show that the sorption selectivity characteristics can have a significant impact on the fluorescence sensor response of [Zn2(bdc)2(dpNDI)]n towards environmentally important hydrocarbons based contaminants (i.e., BTEX, PAH). PMID:24636414

  10. Tuning the luminescence of metal-organic frameworks for detection of energetic heterocyclic compounds.

    Science.gov (United States)

    Guo, Yuexin; Feng, Xiao; Han, Tianyu; Wang, Shan; Lin, Zhengguo; Dong, Yuping; Wang, Bo

    2014-11-01

    Herein we report three metal-organic frameworks (MOFs), TABD-MOF-1, -2, and -3, constructed from Mg(2+), Ni(2+), and Co(2+), respectively, and deprotonated 4,4'-((Z,Z)-1,4-diphenylbuta-1,3-diene-1,4-diyl)dibenzoic acid (TABD-COOH). The fluorescence of these three MOFs is tuned from highly emissive to completely nonemissive via ligand-to-metal charge transfer by rational alteration of the metal ion. Through competitive coordination substitution, the organic linkers in the TABD-MOFs are released and subsequently reassemble to form emissive aggregates due to aggregation-induced emission. This enables highly sensitive and selective detection of explosives such as five-membered-ring energetic heterocyclic compounds in a few seconds with low detection limits through emission shift and/or turn-on. Remarkably, the cobalt-based MOF can selectively sense the powerful explosive 5-nitro-2,4-dihydro-3H-1,2,4-triazole-3-one with high sensitivity discernible by the naked eye (detection limit = 6.5 ng on a 1 cm(2) testing strip) and parts per billion-scale sensitivity by spectroscopy via pronounced fluorescence emission. PMID:25325884

  11. Kinetics of the Double Carbonylation of Benzylchloride

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    It is a multi-phase-catalyzed reaction to produce calcium phenylpyruvate by double carbonylation of benzylchloride. Based on the analysis of the reaction mechanism, a kinetic model of the carbonylation reaction was obtained. The model was verified through experiments in which the diffusion effect was neglected with the appropriate operation manner. But it is inevitable that the carbonylation process is controlled by diffusion as the autoclave scaling up.

  12. Airborne Release of Particles in Overheating Incidents Involving Plutonium Metal and Compounds

    International Nuclear Information System (INIS)

    Ever-increasing utilization of nuclear fuels will result in wide-scale plutonium recovery processing, reconstitution of fuels, transportation, and extensive handling of this material. A variety of circumstances resulting in overheating and fires involving plutonium may occur, releasing airborne particles. This work describes the observations from a study in which the airborne release of plutonium and its compounds was measured during an exposure of the material of interest containing plutonium to temperatures which may result from fires. Aerosol released from small cylinders of metallic plutonium ignited in air at temperatures from 410 to 650°C ranged from 3 x 10-6 to 5 x 10-5 wt%. Particles smaller than 15μm in diameter represented as much as 0.03% of the total released. Large plutonium pieces weighing from 456 to 1770 g were ignited and allowed to oxidize completely in air with a velocity of around 500 cm/sec. Release rates of from 0.0045 to 0.032 wt% per hour were found. The median mass diameter of airborne material was 4 μm. Quenching the oxidation with magnesium oxide sand reduced the release to 2.9 X 10-4 wt% per hour. Many experiments were carried out in which plutonium compounds as powders were heated at temperatures ranging from 700 to 1000°C with several air flows. Release rates ranged from 5 x 10-8 to 0.9 wt% per hour, depending upon the compound and the conditions imposed. The airborne release from boiling solutions of plutonium nitrate were roughly related to energy of boiling, and ranged from 4 x 10-4 to 2 x 10-1 % for the evaporation of 90% of the solution. The fraction airborne when combustibles contaminated with plutonium are burned is under study. The data reported can be used in assessing the consequences of off-standard situations involving plutonium and its compounds in fires. (author)

  13. Variation of ambient carbonyl levels in urban Beijing between 2005 and 2012

    Science.gov (United States)

    Chen, Wentai; Shao, Min; Wang, Ming; Lu, Sihua; Liu, Ying; Yuan, Bin; Yang, Yudong; Zeng, Limin; Chen, Zhongming; Chang, Chih-Chung; Zhang, Qian; Hu, Min

    2016-03-01

    Carbonyl compounds are important precursors of secondary air pollutants. With the rapid economic development and the implementation of stricter control measures in Beijing, the sources of carbonyls possibly changed. Based on measurement data obtained at an urban site in Beijing between 2005 and 2012, we investigated annual variations in carbonyl levels and sources during these years. In summer, formaldehyde and acetaldehyde levels decreased significantly at a rate of 9.1%/year and 7.2%/year, respectively, while acetone levels increased at a rate of 4.3%/year. In winter, formaldehyde levels increased and acetaldehyde levels decreased. We also investigated the factors driving the variation in carbonyls levels during summer by determination of emission ratios for carbonyls and their precursors, and calculation of photochemical formation of carbonyls. The relative declines for primary formaldehyde and acetaldehyde levels were larger than those for secondary formation. This is possibly due to the increasing usage of natural gas and liquefied petroleum gas which could result in the rise of carbonyl precursor emission ratios. The increase in acetone levels might be related to the rising solvent usage in Beijing during these years. The influences of these sources should be paid more attention in future research.

  14. Luminescent property and catalytic activity of Ru(II) carbonyl complexes containing N, O donor of 2-hydroxy-1-naphthylideneimines

    Science.gov (United States)

    Sivagamasundari, M.; Ramesh, R.

    2007-05-01

    The reaction of the chelating ligands (obtained by the condensation of 2-hydroxy-1-naphthaldehyde with various primary amines) with [RuHCl(CO)(EPh 3) 2(B)] (where E = P; B = PPh 3, py or pip: E = As; B = AsPh 3) in benzene afforded new stable ruthenium(II) carbonyl complexes of the general formula [Ru(Cl)(CO)(EPh 3)(B)(L)] (L = anion of bidentate Schiff bases). The structure of the new complexes was investigated using elemental analyses, spectral (FT-IR, UV-vis and 1H NMR) and electrochemical studies and is found to be octahedral. All the metal complexes exhibit characteristic MLCT absorption and luminescence bands in the visible region. The luminescence efficiency of the ruthenium(II) complexes was explained based on the ligand environment around the metal ion. These complexes catalyze oxidation of primary and secondary alcohols into their corresponding carbonyl compounds in the presence of N-methylmorpholine- N-oxide (NMO) as the source of oxygen. The formation of high valent Ru IVdbnd O species as a catalytic intermediate is proposed for the catalytic process.

  15. [Carbonyl stress and oxidatively modified proteins in chronic renal failure].

    Science.gov (United States)

    Bargnoux, A-S; Morena, M; Badiou, S; Dupuy, A-M; Canaud, B; Cristol, J-P

    2009-01-01

    Oxidative stress is commonly observed in chronic renal failure patients resulting from an unbalance between overproduction of reactive oxygen species and impairement of defense mechanisms. Proteins appear as potential targets of uremia-induced oxidative stress and may undergo qualitative modifications. Proteins could be directly modified by reactive oxygen species which leads to amino acid oxydation and cross-linking. Proteins could be indirectly modified by reactive carbonyl compounds produced by glycoxidation and lipo-peroxidation. The resulting post-traductional modifications are known as carbonyl stress. In addition, thiols could be oxidized or could react with homocystein leading to homocysteinylation. Finally, tyrosin could be oxidized by myeloperoxidase leading to advanced oxidative protein products (AOPP). Oxidatively modified proteins are increased in chronic renal failure patients and may contribute to exacerbate the oxidative stress/inflammation syndrome. They have been involved in long term complications of uremia such as amyloidosis and accelerated atherosclerosis. PMID:19297289

  16. Coordination compounds of nitrates and sulfates of some metals with isonicotinic acid hydrazide

    International Nuclear Information System (INIS)

    The complexes M(No3)2x2HINA, MSO4x2HINA, Cu(NO3)2xHINA, and CuSO4xHINAx1, 5C2H5OH (where M=Co, Ni, Cu, Zn, Cd; HINA is hydrazide of isonicotinic acid) are obtained, their infrared (400-4000 cm-1) and Raman (50-4000 cm-1) spectra are studied. It is shown that HINA molecules in all compounds are bound with the metal by the nitrogen atoms of the amino group. In nickel, zink, and cadmium complexes the nitrogen atoms of the heterocycle are also bound with the central atom, thus forming tubazid bridges

  17. Metals elements and chlorinated compounds in cetaceans; Elementi metallici e composti organoclorurati in cetacei

    Energy Technology Data Exchange (ETDEWEB)

    Cardellicchio, N. [Consiglio Nazionale delle Ricerche. Ist. Sperimentale Talassografico, Taranto (Italy)

    1997-01-01

    Non-degradable pollutants determination in cetacea, high tropic level organisms, represents an evaluating element both for bioaccumulation phenomena and sea ecosystem quality. In this paper is shown determination results for metals, chlorinated pesticides, and polychlorinated biphenyls (PCB) in Stenella coeruleoalba specimens, beached along the coast of Puglia (Italy), in the period February-June 1987. Chemical-toxicological surveys verified that in there Mediterranean marine mammals pollutant accumulation is higher than in Atlantic species. Lipophylous toxical compounds transferred from mothers to offspring represents a high risk for their survival. even though this survey failed to establish a direct cause-effect relationship between pollutant levels and anatomical-pathological lesions, it is apparent that sea pollution phenomena are reflected negatively in the top of the food chains.

  18. Application of humic compounds for remediation of soils contaminated with heavy metals: the benefits and risks

    Science.gov (United States)

    Motuzova, Galina; Barsova, Natalia; Stepanov, Andrey; Kiseleva, Violetta; Kolchanova, Ksenia; Starkova, Irina; Karpukhin, Mikhail

    2015-04-01

    found to contain only 3-9% of copper. The content of free Cu2+ ions in the sample extract was negligible. The samples used for field experiments were tested in laboratory to estimate their sorption capacity for Cu. For this purpose, 300 g of substrate (loam and mixed organic substrate) with addition of water (control) and humic preparation (same dose as in the field experiment) were kept in the laboratory for 1 week. Soil samples were then dried and brought into equilibrium with the solution of copper sulfate at concentration of 50 mg/l. The concentration of copper in the solution in equilibrium with HC was 2.5-4 times higher than in the control variant; absorption of copper by solid phase decreased by 5-6%. Results of the laboratory study were in good agreement with the results of the field experiment. Addition of HC increased the content of soluble organic matter and copper complexation by an order of magnitude and thus reduced the activity of copper ions in the liquid phase that was treated as a possible remediation effect of the humic compound for plants and biota. However the increased total metal content mainly in a migration-capable form (negatively charged complexes with organic matter) may increase the risk of contaminating ground waters with heavy metals. Therefore, application of the artificial humic compounds for remediation of soils contaminated with heavy metals requires monitoring and further development of means to prevent their migration.

  19. Oxidative Stress and Carbonyl Lesions in Ulcerative Colitis and Associated Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Zhiqi Wang

    2016-01-01

    Full Text Available Oxidative stress has long been known as a pathogenic factor of ulcerative colitis (UC and colitis-associated colorectal cancer (CAC, but the effects of secondary carbonyl lesions receive less emphasis. In inflammatory conditions, reactive oxygen species (ROS, such as superoxide anion free radical (O2∙-, hydrogen peroxide (H2O2, and hydroxyl radical (HO∙, are produced at high levels and accumulated to cause oxidative stress (OS. In oxidative status, accumulated ROS can cause protein dysfunction and DNA damage, leading to gene mutations and cell death. Accumulated ROS could also act as chemical messengers to activate signaling pathways, such as NF-κB and p38 MAPK, to affect cell proliferation, differentiation, and apoptosis. More importantly, electrophilic carbonyl compounds produced by lipid peroxidation may function as secondary pathogenic factors, causing further protein and membrane lesions. This may in turn exaggerate oxidative stress, forming a vicious cycle. Electrophilic carbonyls could also cause DNA mutations and breaks, driving malignant progression of UC. The secondary lesions caused by carbonyl compounds may be exceptionally important in the case of host carbonyl defensive system deficit, such as aldo-keto reductase 1B10 deficiency. This review article updates the current understanding of oxidative stress and carbonyl lesions in the development and progression of UC and CAC.

  20. Beads,Necklaces, Chains and Strings in Capping Carbonyl Clusters

    Directory of Open Access Journals (Sweden)

    Enos Masheija Kiremire

    2015-09-01

    Full Text Available The paper attempts to explain at length the close relationship between transition metal carbonyl clusters with main group clusters especially the boranes using the 14n and 4n rules. When the ‘shielding’ electrons are removed from a transition metal carbonyl cluster and becomes ‘naked’, it resembles a corresponding one in the main group elements. A an expanded table of osmium carbonyl clusters was constructed using the capping fragment Os(CO2(14n-2 and the fragment Os(CO3 (14n+0. The table reveals the fact that the known series such closo, nido and arachno are part and parcel of a wide range of series especially the capping series 14n+q, where q takes up negative multiple integers of two including 0 such as such = 0, -2,-4, -6, and so on. The linkage between capping series in transition metal carbonyl clusters has also been identified. Apart from the capping series generated in the table, there is another type of series where the skeletal cluster elements remained the same but the number of carbonyl ligands successively decreased. These types of series are referred to as stripping series. Mapping generating functions were also derived which produces any cluster formula or series required. Also the table shows that many clusters form utilizing some of its atoms as closo nucleus around which the larger ones are built and thus forming clusters within larger clusters. The table may be used to categorize a given cluster formula that falls within its range. Otherwise, using the 14n rule or 4n rule can be used for cluster classification. Furthermore, the table indicated that atoms, fragments and molecules can be classified into series. Through this approach of using series, Hoffmann’s important isolobal relationship of chemical species can splendidly be explained.Using the 14n rule and 4n rules creates a framework under which chemical species such as atoms, fragments, molecules and ions some of which may appear unrelated from main group

  1. Electronic computer prediction of properties of binary refractory transition metal compounds on the base of their simplificated electronic structure

    International Nuclear Information System (INIS)

    An attempt is made to obtain calculation equations of macroscopic physico-chemical properties of transition metal refractory compounds (density, melting temperature, Debye characteristic temperature, microhardness, standard formation enthalpy, thermo-emf) using the method of the regression analysis. Apart from the compound composition the argument of the regression equation is the distribution of electron bands of d-transition metals, created by the energy electron distribution in the simplified zone structure of transition metals and approximated by Chebishev polynoms, by the position of Fermi energy on the map of distribution of electron band energy depending upon the value of quasi-impulse, multiple to the first, second and third Brillouin zone for transition metals. The maximum relative error of the regressions obtained as compared with the literary data is 15-20 rel.%

  2. A synthetic, spectroscopic and magnetic susceptibility study of selected main group and transition metal fluoro compounds

    Energy Technology Data Exchange (ETDEWEB)

    Cader, M.S.R.

    1992-01-01

    This study was initiated in order to synthesize and to investigate the magnetic properties of selected main group and transition metal cationic complexes, all stabilized by weakly basic fluoro anions derived either from the Broensted superacids HSO[sub 3]F and HSO[sub 3]CF[sub 3], or the Lewis acids SbF[sub 5] and AsF[sub 5]. The solvolysis of metal(II) fluorosulfates in excess SbF[sub 5] is found to be a useful synthetic route to the corresponding divalent hexafluoro antimonates. The Sn(SbF[sub 6])[sub 2] product from the above synthesis, and its precursor Sn(SO[sub 3]F)[sub 2], react with excess 1,3,5-trimethylbenzene(mes) to give the [pi]-arene adducts Sn(SbF[sub 6])[sub 2][center dot]2mes and Sn(SO[sub 3]F)[sub 2][center dot]mes in high yield. The adducts are characterized by elemental analysis and infrared spectra. The adduct formation is followed by [sup 119]Sn Moessbauer spectroscopy. The divalent fluorosulfates Ni(SO[sub 3]F)[sub 2], Pd(SO[sub 3]F)[sub 2], Pd(SO[sub 3]F)[sub 2] and Ag(SO[sub 3]F)[sub 2], precursors to the M(SbF[sub 6])[sub 2] compounds, and the mixed valency Pd(II) [Pd(IV)(SO[sub 3]F)[sub 6

  3. Investigation of Dissolution Behavior of Metallic Substrates and Intermetallic Compound in Molten Lead-free Solders

    Science.gov (United States)

    Yen, Yee-Wen; Chou, Weng-Ting; Tseng, Yu; Lee, Chiapyng; Hsu, Chun-Lei

    2008-01-01

    This study investigates the dissolution behavior of the metallic substrates Cu and Ag and the intermetallic compound (IMC)-Ag3Sn in molten Sn, Sn-3.0Ag-0.5Cu, Sn-58Bi and Sn-9Zn (in wt.%) at 300, 270 and 240°C. The dissolution rates of both Cu and Ag in molten solder follow the order Sn > Sn-3.0Ag-0.5Cu >Sn-58Bi > Sn-9Zn. Planar Cu3Sn and scalloped Cu6Sn5 phases in Cu/solders and the scalloped Ag3Sn phase in Ag/solders are observed at the metallic substrate/solder interface. The dissolution mechanism is controlled by grain boundary diffusion. The planar Cu5Zn8 layer formed in the Sn-9Zn/Cu systems. AgZn3, Ag5Zn8 and AgZn phases are found in the Sn-9Zn/Ag system and the dissolution mechanism is controlled by lattice diffusion. Massive Ag3Sn phases dissolved into the solders and formed during solidification processes in the Ag3Sn/Sn or Sn-3.0Ag-0.5Cu systems. AgZn3 and Ag5Zn8 phases are formed at the Sn-9Zn/Ag3Sn interface. Zn atoms diffuse through Ag-Zn IMCs to form (Ag, Zn)Sn4 and Sn-rich regions between Ag5Zn8 and Ag3Sn.

  4. Adsorptive removal of nitrogen-containing compounds from fuel by metal-organic frameworks

    Institute of Scientific and Technical Information of China (English)

    Zhaoyang; Wang; Zhiguo; Sun; Linghao; Kong; Gang; Li

    2013-01-01

    The adsorptive denitrogenation from fuels over three metal-organic frameworks(MIL-96(Al),MIL-53(Al)and MIL-101(Cr))was studied by batch adsorption experiments.Four nitrogen-containing compounds(NCCs)pyridine,pyrrole,quinoline and indole were used as model NCCs in fuels to study the adsorption mechanism.The physicochemical properties of the adsorbents were characterized by XRD,N2physical adsorption,FT-IR spectrum and Hammett indicator method.The metal-organic frameworks(MOFs),especially the MIL-101(Cr)containing Lewis acid sites as well as high specific surface area,can adsorb large quantities of NCCs from fuels.In addition,the adsorptive capacity over MIL-101(Cr)will be different for NCCs with different basicity.The stronger basicity of the NCC is,the more it can be absorbed over MIL-101(Cr).Furthermore,pore size and shape also affect the adsorption capacity for a given adsorbate,which can be proved by the adsorption over MIL-53(Al)and MIL-96(Al).The pseudo-second-order kinetic model and Langmuir equation can be used to describe kinetics and thermodynamics of the adsorption process,respectively.Finally,the regeneration of the used adsorbent has been conducted successfully by just washing it with ethanol.

  5. Electronic Structures of Square Planar Coordinated Transition Metal Ions in Compounds with Gillespite Structure

    Institute of Scientific and Technical Information of China (English)

    林传易

    1990-01-01

    Electronic structures of square planar coordinated transition metal ions in BaCuSi4O10 and CaCrSi4O10 are investigated using the ligand-field theory(LFT),angular overlap model(AOM) and iterative extended Hueckel molecular orbital theory(IET).The electronic energy levels of the natural mineral dioptase are also investigated,in which the Cu2+ ions occupy the sites of pseudo D4h symmetry,Both LFT and AOM predict that the crystal-field levels of transition metal ions in these compounds follow such an order that E(2B1g)

  6. Determination of volatile metal and metalloid compounds in gases from domestic waste deposits with GC/ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Feldmann, J. (Inst. of Environmental Analytical Chemistry, Univ. of Essen (Germany)); Gruemping, R. (Inst. of Environmental Analytical Chemistry, Univ. of Essen (Germany)); Hirner, A.V. (Inst. of Environmental Analytical Chemistry, Univ. of Essen (Germany))

    1994-10-01

    Low temperature GC coupled on-line with ICP-MS was used to identify volatile metal and metalloid compounds in gases and condensates from a domestic waste deposit. Seven tin species could be identified by external standard addition and further volatile compounds of tin, bismuth, mercury, arsenic, antimony and tellurium could be found by boiling point calibration, respectively. Some technical and methodical concepts towards quantification of the results are indicated. (orig.)

  7. Serum heavy metals and hemoglobin related compounds in Saudi Arabia firefighters

    Directory of Open Access Journals (Sweden)

    Al-Malki Abdulrahman L

    2009-07-01

    Full Text Available Abstract Background Firefighters are frequently exposed to significant concentrations of hazardous materials including heavy metals, aldehydes, hydrogen chloride, dichlorofluoromethane and some particulates. Many of these materials have been implicated in the triggering of several diseases. The aim of the present study is to investigate the effect of fire smoke exposure on serum heavy metals and possible affection on iron functions compounds (total iron binding capacity, transferrin saturation percent, ferritin, unsaturated iron-binding capacity blood hemoglobin and carboxyhemoglobin,. Subjects and methods Two groups of male firefighter volunteers were included; the first included 28 firefighters from Jeddah city, while the second included 21 firefighters from Yanbu city with an overall age rang of 20–48 years. An additional group of 23 male non-firefighters volunteered from both cities as normal control subjects. Blood samples were collected from all volunteer subjects and investigated for relevant parameters. Results The results obtained showed that there were no statistically significant changes in the levels of serum heavy metals in firefighters as compared to normal control subjects. Blood carboxyhemoglobin and serum ferritin were statistically increased in Jeddah firefighters, (p Conclusion Such results might point to the need for more health protective and prophylactic measures to avoid such hazardous health effects (elevated Blood carboxyhemoglobin and serum ferritin and decreased serum TIBC and UIBC that might endanger firefighters working under dangerous conditions. Firefighters must be under regular medical follow-up through standard timetabled medical laboratory investigations to allow for early detection of any serum biochemical or blood hematological changes.

  8. Effects of Different Lead Compounds on Growth and Heavy Metal Uptake of Wetland Rice

    Institute of Scientific and Technical Information of China (English)

    CHENHUAI-MAN; ZHENGCHUN-RONG; 等

    1991-01-01

    Effects of different lead compounds,PbCl2,Pb(NO3)2 and Pb(OAc)2,on the rice growth and uptake of lead and some microelements by wetland rice were studied.The results showed that the seed germination,rice seedling growth,chlorophyl content,grain yield and uptake of Pb,Cu,Zn,Fe and Mn by rice plant were affected by the chemical forms of Pb compunds added in soil to a certain degree.The germination rate and the amount of chlorophyl decreased remarkably with increasing Pb concentration,the root extension was restrained obviously by the presence of Pb,and the effect of PbCl2 was more evident than that of Pb(NO3)2 or Pb(OAc)2.The pot incubation test with yellow brown soil and redsoil showed that there was no significant regularity in effect of Pb on grain yield,but the difference in the influence of various Pb compounds on yield was clearer.The effect on the amount of Pb in straw and brown rice was in the sequence of Pb(NO3)2>Pb(OAc)2>PbCl1.In case the content of Pb in brown rice was 0.5mg/kg,the relative loading capacities of yellow brown soil for Pb added as PbCl2,Pb(OAc)2 and Pb(NO3)2 were 100,90 and 60 respectively.Pb uptake by wetland rice was closely related to the chemical species of Pb in soil,but there was no comparability among chemical forms of different Pb compounds in the same soil.The uptake of Cu,Zn,Fe and Mn by wetland rice was markedly affected by the addition of Pb,and different Pb compounds varied in their impacts on the uptake of other metals by different organs of wetland rice,e.g.the concentration of Fe in root increased significantly (r=0.92**),while opposite was true for Fe in brown rice (r=-0.92**) due to the application of Pb(OAc)2 in soil.These results demonstrate that the effect of accompanying anions of Pb on the physiological and biochemical processes of wetland rice was rather complex.

  9. Comparative Studies of Chemical Effects following Nuclear Reactions and Transformations on Metal Organic Phenyl Compounds

    International Nuclear Information System (INIS)

    A study of the chemical effects created by the energetic recoil atoms of nuclear reactions in solids and liquids was made on the basis of a broad comparison of the products formed by (n, γ) and (n, 2n) processes in the metalphenyl compounds of germanium, tin, lead, arsenic and antimony. In addition, the radioactive recoil products formed after the K-capture process on Ge68 - tetraphenyl are compared with the results from the (n, γ) -process on Ga-triphenyl and the (n,p) process on Ge-tetra phenyl. Finally, the studies include the β- transition on Ge77-tetraphenyl to As77. Applying different separation methods, e.g. adsorption chromatography on alumina, ion exchange and electrophoresis, the various radioactive recoil products were separated and the individual yields determined. It was found that in nuclear reactions the compounds of the mentioned metals having identical ligands formed practically the same classes of recoil products. The yield distribution however reveals characteristic alterations between the (n, γ) and (n, 2n) reaction. Only a small influence on the yields is perceptible when irradiations are performed in liquids and solutions. The large differences found for the new compounds formed by nuclear transformations are striking, not only in the kind of typical products but also in their percentage yields. Thus, several recoil products of Ge and Ga with metalorganic character were found by nuclear reactions on Ge-tetraphenyl that could not be detected at all by the K-capture process on Ge68-tetraphenyl. The β- decay on Ge77-tetraphenyl produces practically the same chemical compounds as were observed by nuclear reactions. However, a remarkable increase in the portion of the labelled parent molecules (retention) is typical for the β- transition. The results are discussed on the basis of theoretical considerations of the amount of kinetic energy transferred to the reacting molecule by the nuclear recoil and the resulting excitation. The hypothesis is

  10. Purification and characterization of a novel carbonyl reductase isolated from Rhodococcus erythropolis.

    Science.gov (United States)

    Zelinski, T; Peters, J; Kula, M R

    1994-04-15

    During growth on n-tetradecane a novel NADH-dependent carbonyl reductase is induced in the Gram-positive bacterium Rhodococcus erythropolis (Peters, P., Zelinski, T. and Kula, M.R. (1992) Appl. Microbiol. Biotechnol. 38, 334-340). The enzyme has been purified to homogeneity using fractional pH precipitation, anion exchange chromatography and affinity chromatography. The isoelectric point of the oxidoreductase is 4.4. The apparent molecular mass of the native enzyme is 161 kDa, that of the subunits 40 kDa as determined by SDS gel electrophoresis. A tetrameric structure of the carbonyl reductase is consistent with these results. Important biochemical data concerning the application of the reductase are: a broad pH-optimum, temperature optimum at 40 degrees C and stability at room temperature for more than 5 days. The oxidoreductase accepted as substrate aliphatic and aromatic ketones, keto esters (esters of keto carboxylic acids) and halogenated carbonyl compounds and reduced them to the corresponding hydroxyl compounds with (S)-configuration with more than 98% enantiomeric excess. The NAD(+)-dependent oxidation of primary alcohols was not catalyzed by the carbonyl reductase, whereas secondary alcohols and hydroxy acid esters were oxidized to the corresponding carbonyl compounds at about 10-fold slower reaction rates compared to the reduction. PMID:7764739

  11. Semivolatile organic compounds, organochlorine pesticides and heavy metals in sediments and risk assessment in Huaihe River of China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The concentrations of semivolatile organic compounds, organochlorine pesticides and heavy metals in sediments from Jiangsu reach of Huaihe River, China, were presented. The organic compounds were extracted by acetone: n-hexane using a Soxhlet apparatus and concentrations were performed using HP6890 gas chromatography coupled by FID and ECD detector. The total contents of 8 heavy metals by inductively coupled plasma atomic emission spectrometry or cold-vapor/atomic absorption spectrometry were developed. 30 semivolatile organic compounds were detected, including substituted benzenes, phenols, phthalates and polycyclic aromatic hydrocarbons, from 0.01 to 3.01 mg/kg. 16 organochlorine pesticides were almost detected and from 0.010 to 2.339 μg/kg.Concentrations of major metals were 50 mg/kg or less, mean level of mercury was only 0.055 mg/kg. Compared to sediment quality guidelines (SQGs), concentrations of some semivolatile organic compounds were high enough to cause possible toxic effects to living resources. The organochlorine pesticides presented relatively low, lower than threshold effect concentrations (TECs), harmful effects on sediment-dwelling organisms were not expected. Chromium posed probable toxic effects to the living resources, other heavy metals had no threat temporarily according to SQGs.

  12. Identification of compounds that contribute to trigeminal burn in aqueous ethanol solutions.

    Science.gov (United States)

    Kokkinidou, Smaro; Peterson, Devin G

    2016-11-15

    The influence of carbonyl species on the trigeminal burn of distilled spirit model systems was investigated. Quantities of the intrinsic carbonyl compounds were significantly altered in 40% ethanol solutions using two methods; (1) increasing or decreasing the product pH, to induce hemiacetal formation and acetal stabilization or induce and stabilize carbonyl species such as aldehydes, respectively and (2) utilizing a sulfonyl hydrazine polymer treatment. Samples with reduced carbonyl concentrations had significantly lower perceived trigeminal burn intensity. Sensory recombination experiments revealed that addition of carbonyl compounds increased trigeminal burn perception in model systems; confirming the direct relationship between the concentration of carbonyl compounds and trigeminal burn. The strongest potentiators of the trigeminal response were carbonyl compounds octanal, nonanal, benzaldehyde and 2-heptanone suggesting the probability that carbonyl species such as saturated aldehydes and ketones act as agonists to activate nociceptors such as TRPV1 and TRPA1 and elicit trigeminal burn. PMID:27283693

  13. Flexible metal-organic framework compounds: In situ studies for selective CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Allen, A.J., E-mail: andrew.allen@nist.gov [Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899-8520 (United States); Espinal, L.; Wong-Ng, W. [Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899-8520 (United States); Queen, W.L. [NIST Center for Neutron Research, Gaithersburg, MD 20899-6102 (United States); The Molecular Foundry, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720 (United States); Brown, C.M. [NIST Center for Neutron Research, Gaithersburg, MD 20899-6102 (United States); Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 (United States); Kline, S.R. [NIST Center for Neutron Research, Gaithersburg, MD 20899-6102 (United States); Kauffman, K.L. [National Energy Technology Laboratory (NETL), US Department of Energy, Pittsburgh, PA 15236 (United States); Culp, J.T. [National Energy Technology Laboratory (NETL), US Department of Energy, Pittsburgh, PA 15236 (United States); URS Corporation, South Park, PA 15219 (United States); Matranga, C. [National Energy Technology Laboratory (NETL), US Department of Energy, Pittsburgh, PA 15236 (United States)

    2015-10-25

    Results are presented that explore the dynamic structural changes occurring in two highly flexible nanocrystalline metal-organic framework (MOF) compounds during the adsorption and desorption of pure gases and binary mixtures. The Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN){sub 4}] and catena-bis(dibenzoylmethanato)-(4,4′-bipyridyl)nickel(II) chosen for this study are 3-D and 1-D porous coordination polymers (PCP) with a similar gate opening pressure response for CO{sub 2} isotherms at 303 K, but with differing degrees of flexibility for structural change to accommodate guest molecules. As such, they serve as a potential model system for evaluating the complex kinetics associated with dynamic structure changes occurring in response to gas adsorption in flexible MOF systems. Insights into the crystallographic changes occurring as the MOF pore structure expands and contracts in response to interactions with CO{sub 2}, N{sub 2}, and CO{sub 2}/N{sub 2} mixtures have been obtained from in situ small-angle neutron scattering and neutron diffraction, combined with ex situ X-ray diffraction structure measurements. The role of structure in carbon capture functionality is discussed with reference to the ongoing characterization challenges and a possible materials-by-design approach. - Graphical abstract: We present in situ small-angle neutron scattering results for two flexible metal-organic frameworks (MOFs). The figure shows that for one (NiBpene, high CO{sub 2} adsorption) the intensity of the Bragg peak for the expandable d-spacing most associated with CO{sub 2} adsorption varies approximately with the isotherm, while for the other (NiDBM-Bpy, high CO{sub 2} selectivity) the d-spacing, itself, varies with the isotherm. The cartoons show the proposed modes of structural change. - Highlights: • Dynamic structures of two flexible MOF CO{sub 2} sorbent compounds are compared in situ. • These porous solid sorbents serve as models for pure & dual gas adsorption. • Different

  14. Synthesis and characterization of porous metal oxides and desulfurization studies of sulfur containing compounds

    Science.gov (United States)

    Garces Trujillo, Hector Fabian

    This thesis contains two parts: 1) synthesis and characterization of porous metal oxides that include zinc oxide and a porous mixed-valent manganese oxide with an amorphous structure (AMO) 2) the desulfurization studies for the removal of sulfur compounds. Zinc oxide with different nano-scale morphologies may result in various porosities with different adsorption capabilities. A tunable shape microwave synthesis of ZnO nano-spheres in a co-solvent mixture is presented. The ZnO nano-sphere material is investigated as a desulfurizing sorbent in a fixed bed reactor in the temperature range 200 to 400 °C and compared with ZnO nanorods and platelet-like morphologies. Fresh and sulfided materials were characterized by X-ray diffraction (XRD), BET specific surface area, pore volume, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (SEM/EDX), Raman spectroscopy, and thermogravimetric analysis (TGA). The tunable shape microwave synthesis of ZnO presents a high sulfur sorption capacity at temperatures as low as 200 °C which accounts for a three and four fold enhancement over the other preparations presented in this work, and reached 76 % of the theoretical sulfur capacity (TSC) at 300 °C. Another ZnO material with a bimodal micro- and mesopore size distribution investigated as a desulfurizing sorbent presents a sorption capacity that reaches 87% of the theoretical value for desulfurization at 400 °C at breakthrough time. A deactivation model that considers the activity of the solid reactant was used to fit the experimental data. Good agreement between the experimental breakthrough curves and the model predictions are obtained. Manganese oxides are a type of metal oxide materials commonly used in catalytic applications. Little is known about the adsorption capabilities for the removal of sulfur compounds. One of these manganese oxides; amorphous manganese oxide (AMO) is highly promising material for low temperature sorption processes. Amorphous

  15. Flexible metal-organic framework compounds: In situ studies for selective CO2 capture

    International Nuclear Information System (INIS)

    Results are presented that explore the dynamic structural changes occurring in two highly flexible nanocrystalline metal-organic framework (MOF) compounds during the adsorption and desorption of pure gases and binary mixtures. The Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)4] and catena-bis(dibenzoylmethanato)-(4,4′-bipyridyl)nickel(II) chosen for this study are 3-D and 1-D porous coordination polymers (PCP) with a similar gate opening pressure response for CO2 isotherms at 303 K, but with differing degrees of flexibility for structural change to accommodate guest molecules. As such, they serve as a potential model system for evaluating the complex kinetics associated with dynamic structure changes occurring in response to gas adsorption in flexible MOF systems. Insights into the crystallographic changes occurring as the MOF pore structure expands and contracts in response to interactions with CO2, N2, and CO2/N2 mixtures have been obtained from in situ small-angle neutron scattering and neutron diffraction, combined with ex situ X-ray diffraction structure measurements. The role of structure in carbon capture functionality is discussed with reference to the ongoing characterization challenges and a possible materials-by-design approach. - Graphical abstract: We present in situ small-angle neutron scattering results for two flexible metal-organic frameworks (MOFs). The figure shows that for one (NiBpene, high CO2 adsorption) the intensity of the Bragg peak for the expandable d-spacing most associated with CO2 adsorption varies approximately with the isotherm, while for the other (NiDBM-Bpy, high CO2 selectivity) the d-spacing, itself, varies with the isotherm. The cartoons show the proposed modes of structural change. - Highlights: • Dynamic structures of two flexible MOF CO2 sorbent compounds are compared in situ. • These porous solid sorbents serve as models for pure & dual gas adsorption. • Different degrees of structural freedom give different CO2 adsorption

  16. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies

    Directory of Open Access Journals (Sweden)

    Balakrishna Pillay

    2013-05-01

    Full Text Available Co-contamination of the environment with toxic chlorinated organic and heavy metal pollutants is one of the major problems facing industrialized nations today. Heavy metals may inhibit biodegradation of chlorinated organics by interacting with enzymes directly involved in biodegradation or those involved in general metabolism. Predictions of metal toxicity effects on organic pollutant biodegradation in co-contaminated soil and water environments is difficult since heavy metals may be present in a variety of chemical and physical forms. Recent advances in bioremediation of co-contaminated environments have focussed on the use of metal-resistant bacteria (cell and gene bioaugmentation, treatment amendments, clay minerals and chelating agents to reduce bioavailable heavy metal concentrations. Phytoremediation has also shown promise as an emerging alternative clean-up technology for co-contaminated environments. However, despite various investigations, in both aerobic and anaerobic systems, demonstrating that metal toxicity hampers the biodegradation of the organic component, a paucity of information exists in this area of research. Therefore, in this review, we discuss the problems associated with the degradation of chlorinated organics in co-contaminated environments, owing to metal toxicity and shed light on possible improvement strategies for effective bioremediation of sites co-contaminated with chlorinated organic compounds and heavy metals.

  17. Intra-chain superexchange couplings in quasi-1D 3d transition-metal magnetic compounds

    Science.gov (United States)

    Xiang, Hongping; Tang, Yingying; Zhang, Suyun; He, Zhangzhen

    2016-07-01

    The electronic structure and magnetic properties of the quasi-1D transition-metal borates PbMBO4 (M  =  Ti, V, Cr, Mn, Fe, Co) have been investigated by density functional theory, including electronic correlation. The results evidence PbCrBO4 and PbFeBO4 as antiferromagnetic (AFM) semiconductors (intra-chain AFM and inter-chain FM) and PbMnBO4 as a ferromagnetic (FM) semiconductor (both intra- and inter-chain FM) in accordance with experimental observations. For non-synthesized PbTiBO4, PbVBO4, and PbCoBO4, the ground-state magnetic structures are paramagnetic, FM, and paramagnetic, respectively. In this series of compounds, there are two kinds of superexchange couplings dominating their magnetic properties, i.e. the direction M–M delocalization superexchange and indirect M–O–M correlation superexchange. For PbMBO4 with M 3+ d  n , n  ⩽  3 (M  =  V and Cr), the main intra-chain spin coupling is the M–M t 2g–t 2g direct delocalization superexchange, while for PbMBO4 with M 3+ d  n , n  >  3 (M  =  Mn and Fe), the main intra-chain spin coupling is the near 90° M–O–M e g–p–e g indirect correlation superexchange.

  18. Intra-chain superexchange couplings in quasi-1D 3d transition-metal magnetic compounds.

    Science.gov (United States)

    Xiang, Hongping; Tang, Yingying; Zhang, Suyun; He, Zhangzhen

    2016-07-13

    The electronic structure and magnetic properties of the quasi-1D transition-metal borates PbMBO4 (M  =  Ti, V, Cr, Mn, Fe, Co) have been investigated by density functional theory, including electronic correlation. The results evidence PbCrBO4 and PbFeBO4 as antiferromagnetic (AFM) semiconductors (intra-chain AFM and inter-chain FM) and PbMnBO4 as a ferromagnetic (FM) semiconductor (both intra- and inter-chain FM) in accordance with experimental observations. For non-synthesized PbTiBO4, PbVBO4, and PbCoBO4, the ground-state magnetic structures are paramagnetic, FM, and paramagnetic, respectively. In this series of compounds, there are two kinds of superexchange couplings dominating their magnetic properties, i.e. the direction M-M delocalization superexchange and indirect M-O-M correlation superexchange. For PbMBO4 with M (3+) d  (n) , n  ⩽  3 (M  =  V and Cr), the main intra-chain spin coupling is the M-M t 2g-t 2g direct delocalization superexchange, while for PbMBO4 with M (3+) d  (n) , n  >  3 (M  =  Mn and Fe), the main intra-chain spin coupling is the near 90° M-O-M e g-p-e g indirect correlation superexchange. PMID:27213502

  19. Acrolein induces selective protein carbonylation in synaptosomes

    OpenAIRE

    C.F. Mello; R. Sultana; Piroddi, M.; J. Cai; PIERCE, W. M; Klein, J.B.; D. A. Butterfield

    2007-01-01

    Acrolein, the most reactive of the α,β-unsaturated aldehydes, is endogenously produced by lipid peroxidation, and has been found increased in the brain of patients with Alzheimer's disease. Although it is known that acrolein increases total protein carbonylation and impairs the function of selected proteins, no study has addressed which proteins are selectively carbonylated by this aldehyde. In this study we investigated the effect of increasing concentrations of acrolein (0, 0.005, 0.05, 0.5...

  20. Particle formation of gas-phase silicon compounds and aromatic compounds by light or electron irradiation

    International Nuclear Information System (INIS)

    A number of silicon compounds and aromatic compounds form particles under UV light or electron beam irradiation in the gas phase. Carbonyl compounds, halogen compounds and some aromatic compounds act as initiators for photo-induced particle formation of silicon compounds. (author)

  1. Compound surface-plasmon-polariton waves guided by a thin metal layer sandwiched between a homogeneous isotropic dielectric material and a structurally chiral material

    CERN Document Server

    Chiadini, Francesco; Scaglione, Antonio; Lakhtakia, Akhlesh

    2015-01-01

    Multiple compound surface plasmon-polariton (SPP) waves can be guided by a structure consisting of a sufficiently thick layer of metal sandwiched between a homogeneous isotropic dielectric (HID) material and a dielectric structurally chiral material (SCM). The compound SPP waves are strongly bound to both metal/dielectric interfaces when the thickness of the metal layer is comparable to the skin depth but just to one of the two interfaces when the thickness is much larger. The compound SPP waves differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. Some compound SPP waves are not greatly affected by the choice of the direction of propagation in the transverse plane but others are, depending on metal thickness. For fixed metal thickness, the number of compound SPP waves depends on the relative permittivity of the HID material, which can be useful for sensing applications.

  2. Palladium-catalyzed oxidative carbonylation reactions.

    Science.gov (United States)

    Wu, Xiao-Feng; Neumann, Helfried; Beller, Matthias

    2013-02-01

    Palladium-catalyzed coupling reactions have become a powerful tool for advanced organic synthesis. This type of reaction is of significant value for the preparation of pharmaceuticals, agrochemicals, as well as advanced materials. Both, academic as well as industrial laboratories continuously investigate new applications of the different methodologies. Clearly, this area constitutes one of the major topics in homogeneous catalysis and organic synthesis. Among the different palladium-catalyzed coupling reactions, several carbonylations have been developed and widely used in organic syntheses and are even applied in the pharmaceutical industry on ton-scale. Furthermore, methodologies such as the carbonylative Suzuki and Sonogashira reactions allow for the preparation of interesting building blocks, which can be easily refined further on. Although carbonylative coupling reactions of aryl halides have been well established, palladium-catalyzed oxidative carbonylation reactions are also interesting. Compared with the reactions of aryl halides, oxidative carbonylation reactions offer an interesting pathway. The oxidative addition step could be potentially avoided in oxidative reactions, but only few reviews exist in this area. In this Minireview, we summarize the recent development in the oxidative carbonylation reactions. PMID:23307763

  3. Synthesis, characterization and thermal behaviour of solid-state compounds of benzoates with some bivalent transition metal ions

    Directory of Open Access Journals (Sweden)

    Adriano B. Siqueira

    2007-04-01

    Full Text Available Solid-state MBz compounds, where M stands for bivalent Mn, Fe, Co, Ni, Cu and Zn and Bz is benzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA, differential scanning calorimetry (DSC, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The procedure used in the preparation of the compounds via reaction of basic carbonates with benzoic acid is not efficient in eliminating excess acid. However the TG-DTA curves permitted to verify that the binary compounds can be obtained by thermosynthesis, because the benzoic acid can be eliminated before the thermal decomposition of these compounds. The results led to information about the composition, dehydration, thermal stability, thermal decomposition and structure of the isolated compounds. On heating, these compounds decompose in two (Mn, Co, Ni, Zn or three (Fe, Cu steps with formation of the respective oxide (Mn3O4, Fe2O3, Co3O4, NiO, CuO and ZnO as final residue. The theoretical and experimental spectroscopic studies suggest a covalent bidentate bond between ligand and metallic center.

  4. Cytoprotective Effects of Hydrophilic and Lipophilic Extracts of Pistacia vera against Oxidative Versus Carbonyl Stress in Rat Hepatocytes

    OpenAIRE

    Shahraki, Jafar; Zareh, Mona; Kamalinejad, Mohammad; Pourahmad, Jalal

    2014-01-01

    This study was conducted to evaluate the cytoprotection of various extracts and bioactive compounds found in Pistacia vera againts cytotoxicity, ROS formation, lipid peroxidation, protein carbonylation, mitochondrial and lysosomal membrane damages in cell toxicity models of diabetes related carbonyl (glyoxal) and oxidative stress (hydroperoxide). Methanol, water and ethyl acetate were used to prepare crude pistachios extracts, which were then used to screen for in-vitro cytoprotection of fres...

  5. Stratospheric carbonyl sulfide (OCS) burden

    Science.gov (United States)

    Kloss, Corinna; Walker, Kaley A.; Deshler, Terry; von Hobe, Marc

    2015-04-01

    An estimation of the global stratospheric burden of carbonyl sulfide (OCS) calculated using satellite based measurements from the Atmospheric Chemistry Experiment - Fourier Transform Spectrometer (ACE-FTS) will be presented. OCS is the most abundant sulfur containing gas in the atmosphere in the absence of volcanic eruptions. With a long lifetime of 2-6 years it reaches the stratosphere where it is photolyzed and the sulfur oxidized and condensed to aerosols, contributing to the stratospheric aerosol layer. The aerosol layer is the one factor of the middle-atmosphere with a direct impact on the Earth's climate by scattering incoming solar radiation back to space. Therefore it is crucial to understand and estimate the different processes and abundances of the species contributing to the aerosol layer. However, the exact amount of OCS in the stratosphere has not been quantified yet. A study on the OCS mixing ratio distribution based on ACE-FTS data has already been made by Barkley et al. (2008), also giving an estimation for the total atmospheric OCS mass. ACE-FTS is an infrared solar occultation spectrometer providing high- resolution profile observations since 2004. In the scope of this work the focus lies on the stratospheric OCS burden, calculated by integrating the ACE profiles. A global overview on the stratospheric OCS amount in the past and present based on the ACE data as well as a look at regional and seasonal variability will be given. Furthermore, the results of this work will be useful for further studies on OCS fluxes and lifetimes, and in quantifying the contribution of OCS to the global stratospheric sulfur burden. Barkley et al., 2008, Geophys. Res. Lett., 35, L14810.

  6. NMR Studies of Structure-Reactivity Relationships in Carbonyl Reduction: A Collaborative Advanced Laboratory Experiment

    Science.gov (United States)

    Marincean, Simona; Smith, Sheila R.; Fritz, Michael; Lee, Byung Joo; Rizk, Zeinab

    2012-01-01

    An upper-division laboratory project has been developed as a collaborative investigation of a reaction routinely taught in organic chemistry courses: the reduction of carbonyl compounds by borohydride reagents. Determination of several trends regarding structure-activity relationship was possible because each student contributed his or her results…

  7. MOVPE Growth of InP-based III-V compounds doped with transition metals (Fe,Mn)

    OpenAIRE

    Jakomin, Roberto

    2008-01-01

    The project of thesis has concerned the growth through phase epitassia vapor with metal-organic precursors (MOVPE) of semiconductors compounds III-V "InP-based" (InGaAsp/ InP o GaAs)and their structural optimization, electric and optics to the goals of the study of the effects of the introduction of metals of transition (Fe, Mn) obtained through ionic implantation after the growth or through doping during the same one. The first aspect is concerning the possibility of obtaining areas to h...

  8. Diffusion of alkali metals in the first stage graphite intercalation compounds by vdW-DFT calculations

    OpenAIRE

    Wang, Zhaohui; Ratvik, Arne Petter; Grande, Tor; Selbach, Sverre Magnus

    2015-01-01

    Diffusion of alkali metal cations in the first stage graphite intercalation compounds (GIC) LiC6, NaC6, NaC8 and KC8 has been investigated with density functional theory (DFT) calculations using the optPBE-vdW van der Waals functional. The formation energies of alkali vacancies, interstitials and Frenkel defects were calculated and vacancies were found to be the dominating point defects. The diffusion coefficients of the alkali metals in GIC were evaluated by a hopping model of point defects ...

  9. Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound.

    Science.gov (United States)

    Coronado, E; Galán-Mascarós, J R; Gómez-García, C J; Laukhin, V

    2000-11-23

    Crystal engineering--the planning and construction of crystalline supramolecular architectures from modular building blocks--permits the rational design of functional molecular materials that exhibit technologically useful behaviour such as conductivity and superconductivity, ferromagnetism and nonlinear optical properties. Because the presence of two cooperative properties in the same crystal lattice might result in new physical phenomena and novel applications, a particularly attractive goal is the design of molecular materials with two properties that are difficult or impossible to combine in a conventional inorganic solid with a continuous lattice. A promising strategy for creating this type of 'bi-functionality' targets hybrid organic/inorganic crystals comprising two functional sub-lattices exhibiting distinct properties. In this way, the organic pi-electron donor bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and its derivatives, which form the basis of most known molecular conductors and superconductors, have been combined with molecular magnetic anions, yielding predominantly materials with conventional semiconducting or conducting properties, but also systems that are both superconducting and paramagnetic. But interesting bulk magnetic properties fail to develop, owing to the discrete nature of the inorganic anions. Another strategy for achieving cooperative magnetism involves insertion of functional bulky cations into a polymeric magnetic anion, such as the bimetallic oxalato complex [MnIICrIII(C2O4)3]-, but only insoluble powders have been obtained in most cases. Here we report the synthesis of single crystals formed by infinite sheets of this magnetic coordination polymer interleaved with layers of conducting BEDT-TTF cations, and show that this molecule-based compound displays ferromagnetism and metallic conductivity. PMID:11100721

  10. Electrocatalysis of the oxidations of some organic compounds on noble-metal electrodes by foreign-metal ad-atoms

    International Nuclear Information System (INIS)

    Electrochemical oxidation of formic acid was studied on Pt electrodes in acid, and that of dextrose was studied on Pt and Au in alkali. Poisoning was observed on Pt but not on Au. Several heavy-metal ad-atoms (Pb, Bi, Tl) enhance greatly the anodic currents on Pt, while transition metals (Cu, Zn) inhibit the oxidation on Pt. The enhancement effect of the metal ad-atoms is correlated with electron structure. All metal ad-atoms showed an inhibitory effect on Au. Amperometry showed that Pt electrodes are completely deactivated within 10 s during dextrose oxidation without ad-atoms, while Au retains much of its activity even after 10 min. Ad-atoms maintains the Pt activity over much more than 10 s. 50 figures, 38 tables

  11. [pi] Backbonding in Carbonyl Complexes and Carbon-Oxygen Stretching Frequencies: A Molecular Modeling Exercise

    Science.gov (United States)

    Montgomery, Craig D.

    2007-01-01

    An exercise is described that has illustrated the effect of various factors on [pi] backbonding to carbonyl ligands, where the students can view the molecular orbitals corresponding to the M-CO [pi] interaction as well as the competing interaction between the metal and co-ligands. The visual and hands-on nature of the modeling exercise has helped…

  12. Carbonylative Heck Reactions Using CO Generated ex Situ in a Two-Chamber System

    DEFF Research Database (Denmark)

    Hermange, Philippe; Gøgsig, Thomas; Lindhardt, Anders Thyboe; Taaning, Rolf Hejle; Skrydstrup, Troels

    2011-01-01

    A carbonylative Heck reaction of aryl iodides and styrene derivatives employing a two-chamber system using a stable, crystalline, and nontransition metal based carbon monoxide source is reported. By applying near-stoichiometric amounts of the carbon monoxide precursor, an effective exploitation of...

  13. Isolation and characterization of nanosheets containing few layers of the Aurivillius family of oxides and metal-organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sreedhara, M.B.; Prasad, B.E.; Moirangthem, Monali [Chemistry and Physics of Materials Unit, New Chemistry Unit, International Centre for Materials Science and Sheik Saqr Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India); Murugavel, R. [Department of Chemistry, Indian Institute of Technology–Bombay, Powai, Mumbai 400076 (India); Rao, C.N.R., E-mail: cnrrao@jncasr.ac.in [Chemistry and Physics of Materials Unit, New Chemistry Unit, International Centre for Materials Science and Sheik Saqr Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India)

    2015-04-15

    Nanosheets containing few-layers of ferroelectric Aurivillius family of oxides, Bi{sub 2}A{sub n−1}B{sub n}O{sub 3n+3} (where A=Bi{sup 3+}, Ba{sup 2+} etc. and B=Ti{sup 4+}, Fe{sup 3+} etc.) with n=3, 4, 5, 6 and 7 have been prepared by reaction with n-butyllithium, followed by exfoliation in water. The few-layer samples have been characterized by Tyndall cones, atomic force microscopy, optical spectroscopy and other techniques. The few-layer species have a thickness corresponding to a fraction of the c-parameter along which axis the perovskite layers are stacked. Magnetization measurements have been carried out on the few-layer samples containing iron. Few-layer species of a few layered metal-organic compounds have been obtained by ultrasonication and characterized by Tyndall cones, atomic force microscopy, optical spectroscopy and magnetic measurements. Significant changes in the optical spectra and magnetic properties are found in the few-layer species compared to the bulk samples. Few-layer species of the Aurivillius family of oxides may find uses as thin layer dielectrics in photovoltaics and other applications. - Graphical abstract: Exfoliation of the layered Aurivillius oxides into few-layer nanosheets by chemical Li intercalation using n-BuLi followed by reaction in water. Exfoliation of the layered metal-organic compounds into few-layer nanosheets by ultrasonication. - Highlights: • Few-layer nanosheets of Aurivillius family of oxides with perovskite layers have been generated by lithium intercalation. • Few-layer nanosheets of few layered metal-organic compounds have been generated by ultrasonication. • Few-layer nanosheets of the Aurivillius oxides have been characterized by AFM, TEM and optical spectroscopy. • Aurivillius oxides containing Fe show layer dependent magnetic properties. • Exfoliated few-layer metal-organic compounds show changes in spectroscopic and magnetic properties compared with bulk materials.

  14. Preparing poly(aryl ethers) using alkaline earth metal carbonates, organic acid salts, and optionally copper compounds, as catalysts

    International Nuclear Information System (INIS)

    This patent describes an improved process for preparing poly(aryl ethers) and poly(aryl ether ketones) by the reaction of a mixture of at least one bisphenol and at least one dihalobenzenoid compound, and/or a halophenol. The improvement comprises providing to the reaction, a base which is a combination of an alkaline earth metal carbonate and/or bicarbonate and a potassium, rubidium, or cesium salt of an organic acid or combination of organic salts thereof

  15. Preparing poly(aryl ethers) using alkaline earth metal carbonates, organic acid salts, and optionally copper compounds, as catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Winslow, P.A.; Kelsey, D.R.; Matzner, M.

    1988-09-27

    This patent describes an improved process for preparing poly(aryl ethers) and poly(aryl ether ketones) by the reaction of a mixture of at least one bisphenol and at least one dihalobenzenoid compound, and/or a halophenol. The improvement comprises providing to the reaction, a base which is a combination of an alkaline earth metal carbonate and/or bicarbonate and a potassium, rubidium, or cesium salt of an organic acid or combination of organic salts thereof.

  16. Isolation and characterization of nanosheets containing few layers of the Aurivillius family of oxides and metal-organic compounds

    International Nuclear Information System (INIS)

    Nanosheets containing few-layers of ferroelectric Aurivillius family of oxides, Bi2An−1BnO3n+3 (where A=Bi3+, Ba2+ etc. and B=Ti4+, Fe3+ etc.) with n=3, 4, 5, 6 and 7 have been prepared by reaction with n-butyllithium, followed by exfoliation in water. The few-layer samples have been characterized by Tyndall cones, atomic force microscopy, optical spectroscopy and other techniques. The few-layer species have a thickness corresponding to a fraction of the c-parameter along which axis the perovskite layers are stacked. Magnetization measurements have been carried out on the few-layer samples containing iron. Few-layer species of a few layered metal-organic compounds have been obtained by ultrasonication and characterized by Tyndall cones, atomic force microscopy, optical spectroscopy and magnetic measurements. Significant changes in the optical spectra and magnetic properties are found in the few-layer species compared to the bulk samples. Few-layer species of the Aurivillius family of oxides may find uses as thin layer dielectrics in photovoltaics and other applications. - Graphical abstract: Exfoliation of the layered Aurivillius oxides into few-layer nanosheets by chemical Li intercalation using n-BuLi followed by reaction in water. Exfoliation of the layered metal-organic compounds into few-layer nanosheets by ultrasonication. - Highlights: • Few-layer nanosheets of Aurivillius family of oxides with perovskite layers have been generated by lithium intercalation. • Few-layer nanosheets of few layered metal-organic compounds have been generated by ultrasonication. • Few-layer nanosheets of the Aurivillius oxides have been characterized by AFM, TEM and optical spectroscopy. • Aurivillius oxides containing Fe show layer dependent magnetic properties. • Exfoliated few-layer metal-organic compounds show changes in spectroscopic and magnetic properties compared with bulk materials

  17. Wafer-scale laser lithography. I. Pyrolytic deposition of metal microstructures

    International Nuclear Information System (INIS)

    Mechanisms for laser-driven pyrolytic deposition of micron-scale metal structures on crystalline silicon have been studied. Models have been developed to predict temporal and spatial propeties of laser-induced pyrolytic deposition processes. An argon ion laser-based apparatus has been used to deposit metal by pyrolytic decomposition of metal alkyl and carbonyl compounds, in order to evaluate the models. These results of these studies are discussed, along with their implications for the high-speed creation of micron-scale metal structures in ultra-large scale integrated circuit systems. 4 figures

  18. Synthesis of diversely substituted 2-(furan-3-yl)acetates from allenols through cascade carbonylations.

    Science.gov (United States)

    He, Yan; Zhang, Xinying; Fan, Xuesen

    2015-11-21

    Novel synthesis of diversely substituted 2-(furan-3-yl)acetates via palladium-catalyzed one-pot multi-component reactions of allenols, aryl iodides, alcohols, and carbon monoxide has been developed. Notably, the formation of the title compounds features a cascade process combining carbonylation of aryl iodide, alcohoxyl carbonylation of the in situ formed allyl palladium complex, and intramolecular condensation of the α-hydroxyl enone intermediate. Moreover, the 2-(furan-3-yl)acetates obtained herein were found to be ready intermediates for the construction of the biologically significant naphtho[1,2-b]furan-5-ol scaffold. PMID:26399394

  19. New pathway for the formation of metallic cubic phase Ge-Sb-Te compounds induced by an electric current

    Science.gov (United States)

    Park, Yong-Jin; Cho, Ju-Young; Jeong, Min-Woo; Na, Sekwon; Joo, Young-Chang

    2016-02-01

    The novel discovery of a current-induced transition from insulator to metal in the crystalline phase of Ge2Sb2Te5 and GeSb4Te7 have been studied by means of a model using line-patterned samples. The resistivity of cubic phase Ge-Sb-Te compound was reduced by an electrical current (~1 MA/cm2), and the final resistivity was determined based on the stress current density, regardless of the initial resistivity and temperature, which indicates that the conductivity of Ge-Sb-Te compound can be modulated by an electrical current. The minimum resistivity of Ge-Sb-Te materials can be achieved at high kinetic rates by applying an electrical current, and the material properties change from insulating to metallic behavior without a phase transition. The current-induced metal transition is more effective in GeSb4Te7 than Ge2Sb2Te5, which depends on the intrinsic vacancy of materials. Electromigration, which is the migration of atoms induced by a momentum transfer from charge carriers, can easily promote the rearrangement of vacancies in the cubic phase of Ge-Sb-Te compound. This behavior differs significantly from thermal annealing, which accompanies a phase transition to the hexagonal phase. This result suggests a new pathway for modulating the electrical conductivity and material properties of chalcogenide materials by applying an electrical current.

  20. Analysis of rhodium-base intermetallic compound, white metal and high speed steel by ICP-AES

    International Nuclear Information System (INIS)

    The determination procedures of major component of intermetallic compound and alloys which were difficult to dissolve was investigated with ICP-AES. NdRhxBy as intermetallic compound was dissolved in aqua regia, and the residue was fused with NaHSO4 · H2O. RhAl as intermetallic compound was dissolved in hydrochloric acid after fusion with NaHSO4 · H2O. Nd, Rh, B, Al and Cu in these samples were determined with correction of spectral interference caused by Nd. White metal was dissolved in mixture of nitric acid and hydrochloric acid containing tartaric acid for prevention of hydrolysis of Sn and Sb in the sample. Pb, Sn, Sb and Cu as major element in it were determined. High speed steel was dissolved in mixture of sulfuric acid and phosphoric acid. Mo, V, Co, W and Cr as minor component were determined. Spectral interferences caused by Fe, V and Co were corrected. (author)

  1. Unusual regenerable porous metal-organic framework based on a new triple helical molecular necklace for separating organosulfur compounds.

    Science.gov (United States)

    Li, Shun-Li; Lan, Ya-Qian; Sakurai, Hiroaki; Xu, Qiang

    2012-12-14

    Desulfurization of fuels is receiving more and more attention all over the world due to the increase of stringent environmental regulations and fuel specifications. The metal-organic framework (MOF) is a new class of crystalline materials, and high porosity, one of the most important properties of MOFs, plays a central role in the functional properties. However, the investigation of MOFs, being employed as sorbents for adsorptive desulfurization, is still scarce. In this regard, we have constructed a new 3D porous compound 1 by using rigidly designed carboxylate ligands, which, for the first time, exhibit an unusual triple molecular necklace-like helix. The N(2) sorption isotherms of 1 show that it has a large Brunauer-Emmett-Teller (BET) surface area and pore volume. With the stable pore structure and appropriate pore sizes, compound 1 has been used as a sorbent for adsorptive desulfurization. The results indicate that compound 1 shows an excellent adsorption property and, more importantly, displays excellent stability, repeatability, and regenerability. Thus, the design and synthesis of targeted MOFs with appropriate pore size and increased interactions between organosulfur compounds and ligands/metals from MOFs is crucial for adsorptive desulfurization, which might be an effective guide to find an efficient and green adsorbent for desulfurization. PMID:23168579

  2. An expert system for process planning of sheet metal parts produced on compound die for use in stamping industries

    Indian Academy of Sciences (India)

    SACHIN SALUNKHE; DEEPAK PANGHAL; SHAILENDRA KUMAR; H M A HUSSEIN

    2016-08-01

    Process planning of sheet metal part is an important activity in the design of compound die. Traditional methods of carrying out this task are manual, tedious, time-consuming, error-prone and experiencebased. This paper describes the research work involved in the development of an expert system for process planning of sheet metal parts produced on compound die. The proposed system is organized in six modules. For development of system modules, domain knowledge acquired from various sources of knowledge acquisition is refined and then framed in form of ‘IF-Then’ variety of production rules. System modules are coded in AutoLISP language and user interface is created using visual basic (VB). The system is capable to automate various activities of process planning including blank modeling, blank nesting, determining punch force required, election of clearance between punch and die, identifying sheet metal operations, and determining proper sequence of operations for manufacturing the part. The proposed system can be implemented on a PC having VB and AutoCAD software, therefore its low cost of implementation makes it affordable even for small scale sheet metal industries.

  3. Synthesis and Insecticidal Activity of Novel N-Pyridylpyrazole Carbonyl Thioureas

    Institute of Scientific and Technical Information of China (English)

    王宝雷; 马翼; 熊丽霞; 李正名

    2012-01-01

    A series of novel N-pyridylpyrazole carbonyl thioureas were designed and synthesized. Their structures were characterized by melting points, 1H NMR, IR and elemental analysis or HRMS. The bioassay tests indicated that some of these compounds exhibited moderate insecticidal activity against Mythirnna separata Walker and Culex pipiens pallens. Among 17 compounds, 5n and 5p showed 100% larvicidal activity against Mythimna separata Walker at the test concentration of 100 mg/L.

  4. Metals, pesticides, and semivolatile organic compounds in sediment in Valley Forge National Historical Park, Montgomery County, Pennsylvania

    Science.gov (United States)

    Reif, Andrew G.; Sloto, Ronald A.

    1997-01-01

    The Schuylkill River flows through Valley Forge National Historical Park in Lower Providence and West Norriton Townships in Montgomery County, Pa. The concentration of selected metals, pesticides, semivolatile organic compounds, and total carbon in stream-bottom sediments from Valley Forge National Historical Park were determined for samples collected once at 12 sites in and around the Schuylkill River. Relatively low concentrations of arsenic, chromium, copper, and lead were detected in all samples. The concentrations of these metals are similar to concentrations in other stream-bottom sediment samples collected in the region. The concentrations of iron, manganese, and zinc were elevated in samples from four sites in the Schuylkill River, and the concentration of mercury was elevated in a sample from an impoundment along the river. The organophosphorus insecticide diazinon was detected in relatively low concentrations in half of the 12 samples analyzed. The organo-chlorine insecticide DDE was detected in all 12 samples analyzed; dieldrin was detected in 10 samples, chlordane, DDD, and DDT were detected in 9 samples, and heptachlor epoxide was detected in one sample. The concentrations of organo-chlorine and organophosphorus insecticides were relatively low and similar to concentrations in samples collected in the region. Detectable concentrations of 17 semivolatile organic compounds were measured in the 12 samples analyzed. The most commonly detected compounds were fluoranthene, phenanthrene, and pyrene. The maximum concentration detected was 4,800 micrograms per kilogram of phenanthrene. The highest concentrations of compounds were detected in Lamb Run, a small tributary to the Schuylkill River with headwaters in an industrial corporate center. The concentration of compounds in the Schuylkill River below Lamb Run is higher than the Schuylkill River above Lamb Run, indicating that sediment from Lamb Run is increasing the concentration of semivolatile organic

  5. Synthesis of carbonyl-14C labelled 'acetochlor'

    International Nuclear Information System (INIS)

    Carbonyl-14C labelled 'acetochlor' (2-chloro-N-ethoxymethyl-N-(2-ethyl-6-methylphenyl)acetamide) was prepared by chlorination of acetic-1-14C acid obtained from barium radiocarbonate to monochloroacetic-1-14C acid which was further chlorinated to monochloroacetyl-1-14C chloride. The addition reaction of this latter with 2-ethyl-6-methylene aniline gave a chloromethyl derivative the ethanolysis of which resulted in 'acetochlor' labelled in its carbonyl carbon. The overall radiochemical yield is 51%. (author)

  6. Effects of complexing compounds on sorption of metal ions to cement

    Energy Technology Data Exchange (ETDEWEB)

    Loevgren, Lars [Umeaa Univ. (Sweden). Inorganic chemistry

    2005-12-15

    This present report is a literature review addressing the effects of complexing ligands on the sorption of radionuclides to solid materials of importance for repositories of radioactive waste. Focus is put on laboratory studies of metal ion adsorption to cement in presence of chelating agents under strongly alkaline conditions. As background information, metal sorption to different mineral and cement phases in ligand free systems is described. Furthermore, surface complexation model (SCM) theories are introduced. According to surface complexation theories these interactions occur at specific binding sites at the particle/water interface. Adsorption of cationic metals is stronger at high pH, and the adsorption of anions occurs preferentially at low pH. The adsorption of ions to mineral surfaces is a result of both chemical bonding and electrostatic attraction between the ions and charged mineral surfaces. By combining uptake data with spectroscopic information the sorption can be explained on a molecular level by structurally sound surface complexation models. Most of the metal sorption studies reviewed are dealing with minerals exhibiting oxygen atoms at their surfaces, mainly oxides of Fe(II,III) and Al(III), and aluminosilicates. Investigations of radionuclides are focused on clay minerals, above all montmorillonite and illite. Which mechanism that is governing the metal ion adsorption to a given mineral is to a large extent depending on the metal adsorbed. For instance, sorption of Ni to montmorillonite can occur by formation of inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and by formation of a Ni phyllosilicate phase parallel to montmorillonite layers. Also metal uptake to cement materials can occur by different mechanisms. Cationic metals can both be attached to cement (calcium silicate hydrate, CSH) and hardened cement paste (HCP) by formation of inner-sphere complexes at specific surface sites and by

  7. Effects of complexing compounds on sorption of metal ions to cement

    International Nuclear Information System (INIS)

    This present report is a literature review addressing the effects of complexing ligands on the sorption of radionuclides to solid materials of importance for repositories of radioactive waste. Focus is put on laboratory studies of metal ion adsorption to cement in presence of chelating agents under strongly alkaline conditions. As background information, metal sorption to different mineral and cement phases in ligand free systems is described. Furthermore, surface complexation model (SCM) theories are introduced. According to surface complexation theories these interactions occur at specific binding sites at the particle/water interface. Adsorption of cationic metals is stronger at high pH, and the adsorption of anions occurs preferentially at low pH. The adsorption of ions to mineral surfaces is a result of both chemical bonding and electrostatic attraction between the ions and charged mineral surfaces. By combining uptake data with spectroscopic information the sorption can be explained on a molecular level by structurally sound surface complexation models. Most of the metal sorption studies reviewed are dealing with minerals exhibiting oxygen atoms at their surfaces, mainly oxides of Fe(II,III) and Al(III), and aluminosilicates. Investigations of radionuclides are focused on clay minerals, above all montmorillonite and illite. Which mechanism that is governing the metal ion adsorption to a given mineral is to a large extent depending on the metal adsorbed. For instance, sorption of Ni to montmorillonite can occur by formation of inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and by formation of a Ni phyllosilicate phase parallel to montmorillonite layers. Also metal uptake to cement materials can occur by different mechanisms. Cationic metals can both be attached to cement (calcium silicate hydrate, CSH) and hardened cement paste (HCP) by formation of inner-sphere complexes at specific surface sites and by

  8. Radionuclides, Trace Metals, and Organic Compounds in Shells of Native Freshwater Mussels Along the Hanford Reach of the Columbia River: 6000 Years Before Present to Current Times

    Energy Technology Data Exchange (ETDEWEB)

    B. L. Tiller; T. E. Marceau

    2006-01-25

    This report documents concentrations of radionuclides, trace metals, and semivolatile organic compounds measured in shell samples of the western pearl shell mussel collected along the Hanford Reach of the Columbia River.

  9. Investigating the molecule-substrate interaction of prototypic tetrapyrrole compounds: Adsorption and self-metalation of porphine on Cu(111)

    International Nuclear Information System (INIS)

    We report on the adsorption and self-metalation of a prototypic tetrapyrrole compound, the free-base porphine (2H-P), on the Cu(111) surface. Our multitechnique study combines scanning tunneling microscopy (STM) results with near-edge X-ray absorption fine-structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) data whose interpretation is supported by density functional theory calculations. In the first layer in contact with the copper substrate the molecules adsorb coplanar with the surface as shown by angle-resolved NEXAFS measurements. The quenching of the first resonance in the magic angle spectra of both carbon and nitrogen regions indicates a substantial electron transfer from the substrate to the LUMO of the molecule. The stepwise annealing of a bilayer of 2H-P molecules sequentially transforms the XP and NEXAFS signatures of the nitrogen regions into those indicative of the coordinated nitrogen species of the metalated copper porphine (Cu-P), i.e., we observe a temperature-induced self-metalation of the system. Pre- and post-metalation species are clearly discriminable by STM, corroborating the spectroscopic results. Similar to the free-base porphine, the Cu-P adsorbs flat in the first layer without distortion of the macrocycle. Additionally, the electron transfer from the copper surface to the molecule is preserved upon metalation. This behavior contrasts the self-metalation of tetraphenylporphyrin (2H-TPP) on Cu(111), where both the molecular conformation and the interaction with the substrate are strongly affected by the metalation process.

  10. Investigating the molecule-substrate interaction of prototypic tetrapyrrole compounds: Adsorption and self-metalation of porphine on Cu(111)

    Energy Technology Data Exchange (ETDEWEB)

    Diller, K.; Klappenberger, F.; Allegretti, F.; Papageorgiou, A. C.; Fischer, S.; Wiengarten, A.; Joshi, S.; Seufert, K.; Ecija, D.; Auwaerter, W.; Barth, J. V. [Physik Department E20, Technische Universitaet Muenchen, James-Franck-Str. 1, D-85748 Garching (Germany)

    2013-04-21

    We report on the adsorption and self-metalation of a prototypic tetrapyrrole compound, the free-base porphine (2H-P), on the Cu(111) surface. Our multitechnique study combines scanning tunneling microscopy (STM) results with near-edge X-ray absorption fine-structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) data whose interpretation is supported by density functional theory calculations. In the first layer in contact with the copper substrate the molecules adsorb coplanar with the surface as shown by angle-resolved NEXAFS measurements. The quenching of the first resonance in the magic angle spectra of both carbon and nitrogen regions indicates a substantial electron transfer from the substrate to the LUMO of the molecule. The stepwise annealing of a bilayer of 2H-P molecules sequentially transforms the XP and NEXAFS signatures of the nitrogen regions into those indicative of the coordinated nitrogen species of the metalated copper porphine (Cu-P), i.e., we observe a temperature-induced self-metalation of the system. Pre- and post-metalation species are clearly discriminable by STM, corroborating the spectroscopic results. Similar to the free-base porphine, the Cu-P adsorbs flat in the first layer without distortion of the macrocycle. Additionally, the electron transfer from the copper surface to the molecule is preserved upon metalation. This behavior contrasts the self-metalation of tetraphenylporphyrin (2H-TPP) on Cu(111), where both the molecular conformation and the interaction with the substrate are strongly affected by the metalation process.

  11. Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals

    Science.gov (United States)

    Ling-Wei, Li

    2016-03-01

    The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively investigated during the last two decades, not only due to their potential applications for magnetic refrigeration but also for better understanding of the fundamental problems of the materials. This paper reviews our recent progress on studying the magnetic properties and MCE in some binary or ternary intermetallic compounds of RE with low boiling point metal(s) (Zn, Mg, and Cd). Some of them exhibit promising MCE properties, which make them attractive for low temperature magnetic refrigeration. Characteristics of the magnetic transition, origin of large MCE, as well as the potential application of these compounds are thoroughly discussed. Additionally, a brief review of the magnetic and magnetocaloric properties in the quaternary rare earth nickel boroncarbides RENi2B2C superconductors is also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374081 and 11004044), the Fundamental Research Funds for the Central Universities, China (Grant Nos. N150905001, L1509006, and N140901001), the Japan Society for the Promotion of Science Postdoctoral Fellowships for Foreign Researchers (Grant No. P10060), and the Alexander von Humboldt (AvH) Foundation (Research stipend to L. Li).

  12. Toxicity assessment of heavy metals and organic compounds using CellSense biosensor with E.coli

    Institute of Scientific and Technical Information of China (English)

    Hong Wang; Xue Jiang Wang; Jian Fu Zhao; Ling Chen

    2008-01-01

    A new strategy using an amperometric biosensor with Escherichia coli(E.coli)that provides a rapid toxicity determination of chemical compounds is described.The CellSense biosensor system comprises a biological component immobilized in intimate contact with a transducer which converts the biochemical signal into a quantifiable electrical signal.Toxicity assessment of heavy metals using E.coli biosensors could be finished within 30 min and the 50% effective concentrations(EC50)values of four heavy metals were determined.The results shows that inhibitory effects of four heavy metals to E.coli can be ranked in a decreasing order of Hg2+>Cu2+>Zn2+>Ni2+,which accords to the results of conventional bacterial counting method.The toxicity test of organic compounds by using CellSense biosensor was also demonstrated.The CellSense biosensor with E.coli shows a good,reproducible behavior and can be used for reproducible measurements.

  13. Transient compounds of high alkaline earth metals with custom-made organic ligands as potential precursors for the gas phase separator of high temperature ceramic superconductors

    International Nuclear Information System (INIS)

    The aim of this work was the representation of new transient custom-made metal/organic compounds of the high alkaline earth metals Ca, Sr and Ba as potential precursors for the gas phase separation (chemical vapour deposition, CVD) of high temperature ceramic superconductors. There is a report on the synthesis and comprehensive characterisation of representatives of the class of compounds of substituted metallocenes and the B diketone compounds of these metals. Some selected compounds were examined as regards their suitability for CVD. The main task was the examination of the effect of structural and electronic parameters of ligands on the properties of the compounds, where the volatility was to the fore. (orig./MM)

  14. Bonding in the Extended Metal Chain Compound La{sub 4}Cl{sub 5}C{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Daebok [Kyungsung Univ., Busan (Korea, Republic of)

    2014-06-15

    The bonding in La{sub 4}Cl{sub 5}C{sub 2} is dominated by strong covalent La-C with lesser La-Cl and La-La interactions. Interstitial C{sub 2} units are essential to the stability of the compound; formally, they provide electrons to the La{sub 6} cage and engage in strong La-C bonding that is much stronger than the La-La bonding. The band structure calculations for a La{sub 4}Cl{sub 6}C{sub 2}. chain reveal that 2σ{sub g} and 1π{sub g} levels of C{sub 2} are substantially stabilized. All La-C and La-Cl bonding states are occupied and La x{sup 2}-y{sup 2} orbitals combine to form the highest occupied x{sup 2}-y{sup 2} bonding band. The shortened C-C single bond may be understood by π{sup *}-backbonding from the occupied C{sub 2} 1π{sub g} orbitals into the empty La dπ states, in agreement with the formal charge distribution of (La{sup 3+}){sub 4-}(Cl{sup -}){sub 5}(C{sub 2}{sup 5-})·2e{sup -}. The two excess electrons are available for intra-cluster bonding and are likely to be localized in the shortened La-La bonds forming the shared edges between the La{sub 6}C{sub 2} octahedra within the chain. The rare-earth metal halides form a variety of highly reduced phases that contain metal clusters. The basic framework in most of these compounds consists of either discrete or condensed edge-sharing M{sub 6}X{sub 12}-type octahedral cluster units that are interstitially centered by an endohedral entity ranging from main group atoms to transition metals. The halogen atoms are located over free edges of the metal octahedra. Over the past 30 years the structures of a large number of new cluster compounds of rare-earth metal halides have been described in the literature. These rare-earth cluster units may be understood as anti-Werner complexes with the endohedral atom surrounded by a first coordination sphere of rare earth metal atoms and a second coordination sphere of halogen atoms.

  15. Metal-Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production.

    Science.gov (United States)

    Dhakshinamoorthy, Amarajothi; Asiri, Abdullah M; García, Hermenegildo

    2016-04-25

    Metal-organic frameworks (MOFs) are crystalline porous materials formed from bi- or multipodal organic linkers and transition-metal nodes. Some MOFs have high structural stability, combined with large flexibility in design and post-synthetic modification. MOFs can be photoresponsive through light absorption by the organic linker or the metal oxide nodes. Photoexcitation of the light absorbing units in MOFs often generates a ligand-to-metal charge-separation state that can result in photocatalytic activity. In this Review we discuss the advantages and uniqueness that MOFs offer in photocatalysis. We present the best practices to determine photocatalytic activity in MOFs and for the deposition of co-catalysts. In particular we give examples showing the photocatalytic activity of MOFs in H2 evolution, CO2 reduction, photooxygenation, and photoreduction. PMID:26970539

  16. Thin films of metal-organic compounds and metal nanoparticle-embedded polymers for nonlinear optical applications

    Indian Academy of Sciences (India)

    S Philip Anthony; Shatabdi Porel; D Narayana Rao; T P Radhakrishnan

    2005-11-01

    Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which form perfectly polar assemblies in their crystalline state are found to organize as uniaxially oriented crystallites in vapor deposited thin films on glass substrate. Optical second harmonic generation from these films is investigated. A simple protocol is developed for the in-situ fabrication of highly monodisperse silver nanoparticles in a polymer film matrix. The methodology can be used to produce free-standing films. Optical limiting capability of the nanoparticle-embedded polymer film is demonstrated.

  17. Fundamental Studies of the Reforming of Oxygenated Compounds over Supported Metal Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James

    2016-01-04

    The main objective of our research has been to elucidate fundamental concepts associated with controlling the activity, selectivity, and stability of bifunctional, metal-based heterogeneous catalysts for tandem reactions, such as liquid-phase conversion of oxygenated hydrocarbons derived from biomass. We have shown that bimetallic catalysts that combine a highly-reducible metal (e.g., platinum) with an oxygen-containing metal promoter (e.g., molybdenum) are promising materials for conversion of oxygenated hydrocarbons because of their high activity for selective cleavage for carbon-oxygen bonds. We have developed methods to stabilize metal nanoparticles against leaching and sintering under liquid-phase reaction conditions by using atomic layer deposition (ALD) to apply oxide overcoat layers. We have used controlled surface reactions to produce bimetallic catalysts with controlled particle size and controlled composition, with an important application being the selective conversion of biomass-derived molecules. The synthesis of catalysts by traditional methods may produce a wide distribution of metal particle sizes and compositions; and thus, results from spectroscopic and reactions kinetics measurements have contributions from a distribution of active sites, making it difficult to assess how the size and composition of the metal particles affect the nature of the surface, the active sites, and the catalytic behavior. Thus, we have developed methods to synthesize bimetallic nanoparticles with controlled particle size and controlled composition to achieve an effective link between characterization and reactivity, and between theory and experiment. We have also used ALD to modify supported metal catalysts by addition of promoters with atomic-level precision, to produce new bifunctional sites for selective catalytic transformations. We have used a variety of techniques to characterize the metal nanoparticles in our catalysts, including scanning transmission electron

  18. Observation of an unconventional metal-insulator transition in overdoped CuO_2 compounds

    OpenAIRE

    Venturini, F.; Opel, M.; Devereaux, T. P.; Freericks, J. K.; Tüttő, I.; Revaz, B.; Walker, E.; Berger, H; Forró, L.; Hackl, R.

    2002-01-01

    The electron dynamics in the normal state of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\\delta}$ is studied by inelastic light scattering over a wide range of doping. A strong anisotropy of the electron relaxation is found which cannot be explained by single-particle properties alone. The results strongly indicate the presence of an unconventional quantum-critical metal-insulator transition where "hot" (antinodal) quasiparticles become insulating while "cold" (nodal) quasiparticles remain metallic. A phenomen...

  19. Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds.

    Science.gov (United States)

    Mu, Wei; Ben, Haoxi; Du, Xiaotang; Zhang, Xiaodan; Hu, Fan; Liu, Wei; Ragauskas, Arthur J; Deng, Yulin

    2014-12-01

    Aqueous phase hydrodeoxygenation of lignin pyrolysis oil and related model compounds were investigated using four noble metals supported on activated carbon. The hydrodeoxygenation of guaiacol has three major reaction pathways and the demethylation reaction, mainly catalyzed by Pd, Pt and Rh, produces catechol as the products. The presence of catechol and guaiacol in the reaction is responsible for the coke formation and the catalysts deactivation. As expected, there was a significant decrease in the specific surface area of Pd, Pt and Rh catalysts during the catalytic reaction because of the coke deposition. In contrast, no catechol was produced from guaiacol when Ru was used so a completely hydrogenation was accomplished. The lignin pyrolysis oil upgrading with Pt and Ru catalysts further validated the reaction mechanism deduced from model compounds. Fully hydrogenated bio-oil was produced with Ru catalyst. PMID:25280108

  20. Synthesis, spectroscopic characterizations, crystal structures and DFT studies of nalidixic acid carbonyl hydrazones derivatives

    Science.gov (United States)

    Bergamini, F. R. G.; Ribeiro, M. A.; Lancellotti, M.; Machado, D.; Miranda, P. C. M. L.; Cuin, A.; Formiga, A. L. B.; Corbi, P. P.

    2016-09-01

    This article describes the synthesis and characterization of the 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide (hzd) and six carbonyl hydrazones derivatives of the nalidixic with 1H-pyrrol-2-ylmethylidene (hpyrr), 1H-imidazol-2-ylmethylidene (h2imi), pyridin-2-ylmethylidene (h2py), pyridin-3-ylmethylidene (h3py), pyridin-4-ylmethylidene(h4py) and (2-hydroxyphenyl)methylidene (hsali). The carbonyl hydrazones were characterized by elemental and ESI-QTOF-MS analyses, IR and detailed NMR spectroscopic measurements. The 2D NMR experiments allowed the unambiguous assignment of the hydrogen, carbon and nitrogen atoms, which have not been reported for nalidixic acid carbonyl hydrazone derivatives so far. Crystal structures of hzd and the new carbonyl hydrazones h2imi, hpyrr and h3py were determined by X-ray diffraction studies. Although the synthesis of hzd was reported decades ago, the hzd crystal structure have not been reported yet. Geometric optimizations of all the characterized structures were performed with the aid of DFT studies. Despite the fact that the hydrazones with 2-pyridine carboxylic acid (h2py) and salicyl aldehyde (hsali) were already reported by literature, a detailed spectroscopic study followed by DFT studies are also reported for such compounds in this manuscript. Antimicrobial studies of the compounds are also presented.

  1. The adsorption and reaction of halogenated volatile organic compounds (VOC's) on metal oxides. 1998 annual progress report

    International Nuclear Information System (INIS)

    'The goal of the research is to elucidate the properties of the materials responsible for the activation of halocarbons and the nature of the intermediates formed in the dissociative adsorption of this class of compounds. This information is essential for interpreting and predicting stoichiometric and catalytic pathways for the safe destruction of halocarbon pollutants. The specific objectives are: (1) to study the adsorption and reactivity of chloromethanes and chloroethanes on metal oxides; (2) to identify the reaction intermediates using spectroscopic methods; and (3) to develop kinetic models for the reaction of these halocarbons with oxide surfaces. This report summarizes work after 20 months of a 36-month project. Emphasis has been placed understanding the surfaces phases, as well as the bulk phases that are present during the reactions of chlorinated hydrocarbons with strongly basic metal oxides. Most of the research has been carried out with carbon tetrachloride.'

  2. Relation between various chromium compounds and some other elements in fumes from manual metal arc stainless steel welding.

    OpenAIRE

    Matczak, W; Chmielnicka, J

    1993-01-01

    For the years 1987-1990 160 individual samples of manual metal arc stainless steel (MMA/SS) welding fumes from the breathing zone of welders in four industrial plants were collected. Concentrations of soluble and insoluble chromium (Cr) III and Cr VI compounds as well as of some other welding fume elements (Fe, Mn, Ni, F) were determined. Concentration of welding fumes in the breathing zone ranged from 0.2 to 23.4 mg/m3. Total Cr amounted to 0.005-0.991 mg/m3 (including 0.005-0.842 mg/m3 Cr V...

  3. Antimicrobial activity of seven metallic compounds against penicillinase producing and non-penicillinase producing strains of Neisseria gonorrhoeae.

    OpenAIRE

    Peeters, M.; Vanden Berghe, D; Meheus, A.

    1986-01-01

    The in vitro activity of seven metallic compounds was tested against penicillinase (beta lactamase) producing strains of Neisseria gonorrhoeae (PPNG) and non-PPNG strains. On a weight basis, the mercurials showed the greatest in vitro activity. Phenylmercuric borate, thiomersal, and mercuric chloride inhibited 90% of all strains at concentrations of 5 mg/l, 5 mg/l, and 20 mg/l respectively. Silver nitrate inhibited 90% of the strains at 80 mg/l and the MIC90 for mild silver protein was 200 mg...

  4. Volatile organic compounds and metal leaching from composite products made from fiberglass-resin portion of printed circuit board waste.

    Science.gov (United States)

    Guo, Jie; Jiang, Ying; Hu, Xiaofang; Xu, Zhenming

    2012-01-17

    This study focused on the volatile organic compounds (VOCs) and metal leaching from three kinds of composite products made from fiberglass-resin portion (FRP) of crushed printed circuit board (PCB) waste, including phenolic molding compound (PMC), wood plastic composite (WPC), and nonmetallic plate (NMP). Released VOCs from the composite products were quantified by air sampling on adsorbent followed by thermal desorption and GC-MS analysis. The results showed that VOCs emitted from composite products originated from the added organic components during manufacturing process. Phenol in PMC panels came primarily from phenolic resin, and the airborne concentration of phenol emitted from PMC product was 59.4 ± 6.1 μg/m(3), which was lower than odor threshold of 100% response for phenol (180 μg/m(3)). VOCs from WPC product mainly originated from wood flour, e.g., benzaldehyde, octanal, and d-limonene were emitted in relatively low concentrations. For VOCs emitted from NMP product, the airborne concentration of styrene was the highest (633 ± 67 μg/m(3)). Leaching characteristics of metal ions from composite products were tested using acetic acid buffer solution and sulphuric acid and nitric acid solution. Then the metal concentrations in the leachates were tested by ICP-AES. The results showed that only the concentration of Cu (average = 893 mg/L; limit = 100 mg/L) in the leachate solution of the FRP using acetic acid buffer solution exceeded the standard limit. However, concentrations of other metal ions (Pb, Cd, Cr, Ba, and Ni) were within the standard limit. All the results indicated that the FRP in composite products was not a major concern in terms of environmental assessment based upon VOCs tests and leaching characteristics. PMID:22142243

  5. Compound surface-plasmon-polariton waves guided by a thin metal layer sandwiched between a homogeneous isotropic dielectric material and a periodically multilayered isotropic dielectric material

    CERN Document Server

    Chiadini, Francesco; Scaglione, Antonio; Lakhtakia, Akhlesh

    2015-01-01

    Multiple p- and s-polarized compound surface plasmon-polariton (SPP) waves at a fixed frequency can be guided by a structure consisting of a metal layer sandwiched between a homogeneous isotropic dielectric (HID) material and a periodic multilayered isotropic dielectric (PMLID) material. For any thickness of the metal layer, at least one compound SPP wave must exist. It possesses the p-polarization state, is strongly bound to the metal/HID interface when the metal thickness is large but to both metal/dielectric interfaces when the metal thickness is small. When the metal layer vanishes, this compound SPP wave transmutes into a Tamm wave. Additional compound SPP waves exist, depending on the thickness of the metal layer, the relative permittivity of the HID material, and the period and the composition of the PMLID material. Some of these are p polarized, the others being s polarized. All of them differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. The...

  6. Magnetic behavior of inorganic-organic hybrid phosphite compounds with 3-d transition metals

    International Nuclear Information System (INIS)

    The (C2H10N2)[M(HPO3)F3](MIII=V, Cr, Fe) [I], (C2H10N2)[M3(HPO3)4] (MII=Mn, Co) [II] and (C2H10N2)0.5[Fe(HPO3)2](MIII=V, Fe) [III] compounds have been synthesized by using mild hydrothermal conditions. The crystal structure of the compounds shows different dimensionality. The compounds exhibit antiferromagnetic behavior, with hysteresis loops for the bimetallic (C2H10N2)[Mn2.09Co0.91(HPO3)4] and (C2H10N2)0.5[V0.48Fe0.52(HPO3)2] phases, indicating the existence of a ferrimagnetic behavior probably due to a spin descompensation

  7. Transport Properties of YbCu4.4 Giant-unit-cell Metallic Compound

    OpenAIRE

    Popčević, Petar; Smiljanić, Igor; Barišić, Neven; Smontara, Ana; Dolinšek, Janez; Gottlieb-Schönmeyer, Saskia

    2010-01-01

    The experimental results of the transport properties: electrical resistivity, ρ, thermopower, S, and thermal conductivity, κ, of a polycrystalline sample of YbCu4.4, in the temperature range 2 to 300 K, are presented. In contrast to the divalent YbCu2 compound, YbCu4.4 has transport properties typical of an intermediate valence compound: relatively high electrical resistivity and large thermoelectric power. The electrical resistivity ρ(T) exhibits a typical Kondo lattice systems’ behaviour, w...

  8. 两种烟用助燃剂对卷烟主流烟气中羰基化合物释放量的影响研究%Study on the Effects of Two Combustion Improvers on the Yield of Carbonyl Compounds in Main Stream Smoke

    Institute of Scientific and Technical Information of China (English)

    赵娟; 张峻松; 李春; 任卓英; 向能军

    2012-01-01

    In order to study on the effect of burn additives on selective reduction of carbonyl compounds in mainstream smoke,different amount of potassium citrate and potassium sodium tartrate solution are added into cut tobacco though wet adding method.The results showed that: when the addition rate is in the range of 2 ‰-15 ‰,(1) With the increase of potassium citrate improver,the content of formaldehyde,acrolein and propionaldehyde in mainstream smoke increase while the content of acetone was stable.On the contrary,Crotonal-dehyde and methyl-ethyl-ketone deliveries decreased and the trend of decreasing dropt to zero with the increase of adding amount.Butyraldehyde delivery decreased followed by increasing initially.When the adding amount of potassium citrate was 8 ‰,the delivery of acetaldehyde was the lowest;(2) Adding potassium sodium tartrate into tobacco results in the increasing of formaldehyde,acrolein and propionaldehyde in mainstream smoke.Meanwhile,there was little change in the content of acetone and acetaldehyde deliveries.Further more,Crotonaldehyde and 2-butanone content declined in mainstream smoke.%以湿法按不同比例添加助燃剂柠檬酸钾、酒石酸钾钠到烟丝中,研究其对卷烟烟气中挥发性羰基化合物释放量的影响。结果表明:在添加量为2‰-15‰范围内焦油有下降趋势,其中:(1)加入柠檬酸钾,主流烟气中甲醛、丙醛、丙烯醛的释放量依次增加;丙酮的释放量变化不大;巴豆醛、2-丁酮释放量呈下降趋势,但随着添加量的增加,下降趋于零;丁醛的释放量呈先增加后减少的趋势;添加量为8‰时,乙醛释放量达到最低;(2)酒石酸钾钠的加入使得主流烟气中甲醛、丙烯醛、丙醛的释放量增加;乙醛和丙酮的释放量变化不大;巴豆醛、2-丁酮释放量呈下降趋势。

  9. Trends in air concentration and deposition at background monitoring sites in Sweden - major inorganic compounds, heavy metals and ozone

    Energy Technology Data Exchange (ETDEWEB)

    Kindbom, K.; Svensson, Annika; Sjoeberg, K.; Pihl Karlsson, G.

    2001-09-01

    This report describes concentrations in air of sulphur compounds, soot, nitrogen compounds and ozone in Sweden between 1985-1998. Time trends of concentration in precipitation and deposition of sulphate, nitrate, ammonium, acidity, base cations and chloride in six different regions covering Sweden are evaluated during the period 1983-1998. Trends of heavy metals in precipitation have been analysed for the period 1983-1998 and the change in heavy metal concentration, 1975-1995, in mosses is described. Data used in the trend analyses originates from measurements performed at six Swedish EMEP stations and from approximately 25 stations within the national Precipitation Chemistry Network. Two different statistical methods, linear regression and the non-parametric Mann Kendall test, have been used to evaluate changes in annual mean values. Time trends of concentration of sulphur dioxide, particulate sulphate, soot, nitrogen dioxide, total nitrate and total ammonium in air show highly significant decreasing trends, except for soot at one station in northern Sweden. Concentrations of ozone have a strong seasonal variation with a peak occurring in spring every year. However, annual ozone concentrations show no obvious trends in spite of decreasing emissions of the precursors NOx and VOC. A slight indication of a decreasing trend in the number of ozone episodes might be seen from 1990 to 1998. Sulphate concentrations in precipitation and deposition show strongly significant decreasing trends in the whole country. Concentrations and deposition of nitrate and ammonium have been decreasing in all areas except for nitrate at stations in south-west and north-west Sweden and ammonium in south-west Sweden. Acidity has decreased in all areas since 1989, resulting in increasing pH values in Sweden. The interannual variations of concentration and deposition of base cations and chloride are large and few general trends can be seen during 1983-1997. Time trends of four heavy metals in

  10. HPIC separation and quantification of Ca and Fe in uranium metal and alloy compounds

    International Nuclear Information System (INIS)

    The paper describes the separation and quantification of Ca and Fe from uranium metal and uranium based alloy fuels employing ion chromatography (IC). Ca separation from other metal ions of alkali and alkaline groups was carried out on a cation exchange column and the same was detected and quantified by means of conductivity detector. In case of Fe, it was separated from other transition elements using chelation ion chromatography where detection and quantification was carried out photometrically after the addition of PAR as post column reagent. For both the analyses a preliminary column chromatography separation for eliminating the bulk matrix uranium was performed. (author)

  11. New electrolyte systems for capillary zone electrophoresis of metal cations and non-ionic organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Y.

    1995-06-19

    Excellent separations of metal ions can be obtained very quickly by capillary electrophoresis provided a weak complexing reagent is incorporated into the electrolyte to alter the effective mobilities of the sample ions. Indirect photometric detection is possible by also adding a UV-sensitive ion to the electrolyte. Separations are described using phthalate, tartrate, lactate or hydroxyisobutyrate as the complexing reagent. A separation of twenty-seven metal ions was achieved in only 6 min using a lactate system. A mechanism for the separation of lanthanides is proposed for the hydroxyisobutyrate system.

  12. Interaction between graphite and some refractory metallic compounds at high temperature

    International Nuclear Information System (INIS)

    The behavior of thermocouples, used in nuclear reactors, made of molybdenum, niobium, rhenium or ceramic compounds such as titanium nitride and molybdenum borides in contact with graphite under vacuum in a temperature range between 1000 to 16000C during 500 hours is studied. Phases and growth rates are examined

  13. Structure of metal-rich (001) surfaces of III-V compound semiconductors

    DEFF Research Database (Denmark)

    Kumpf, C.; Smilgies, D.; Landemark, E.; Nielsen, M.; Feidenhans'l, R.; Bunk, O.; Zeysing, J.H.; Su, Y.; Johnson, R.L.; Cao, L.; Zegenhagen, J.; Fimland, B.O.; Marks, L.D.; Ellis, D.

    2001-01-01

    feature of the structure is accompanied by linear arrays of atoms on nonbulklike sites at the surface which, depending on the compounds, exhibit a certain degree of disorder. A tendency to group-III-dimer formation within these chains increases when descending the periodic table. We propose that all the c...

  14. Pattern of occurrence and occupancy of carbonylation sites in proteins

    DEFF Research Database (Denmark)

    Rao, R Shyama Prasad; Møller, Ian Max

    2011-01-01

    Proteins are targets for modification by reactive oxygen species, and carbonylation is an important irreversible modification that increases during oxidative stress. While information on protein carbonylation is accumulating, its pattern is not yet understood. We have made a meta-analysis of the...... available literature data (456 carbonylation sites on 208 proteins) to appreciate the nature of carbonylation sites in proteins. Of the carbonylated (Arg, Lys, Pro, and Thr – RKPT) amino acids, Lys is the most abundant, whereas Pro is the most susceptible and Thr is the least susceptible. The incidence of...

  15. Congruent evaporation and epitaxy in thin film laser ablation deposition (LAD) of rare earth transition metal elements and compounds

    International Nuclear Information System (INIS)

    This paper reports that laser ablation deposition (LAD) is a versatile thin film preparation technique which has been slowly developing for a number of years, and is currently receiving a lot of attention as demand increasingly exploits its advantages over other established techniques. Apart from its simplicity, one of its main advantages is the possibility of congruently evaporating any solid compound target, be it metal or insulator, due to the extremely high energy and instantaneous power densities attainable with pulsed lasers (up to 50 Jcm-2 and 1012 Wcm-2 for picosecond pulses). In this paper, we report on tests for both congruent evaporation in LAD of a number of rate earth -- transition metal intermetallic compounds including Nd2Fe13B, YZn0.7, YNi3, Y2Fe15 and YNi5 for different preparation conditions (using a Nd:YAG laser λ = 1064, 532, 355 nm, τ = 35 ps and 20 ns) and on the epitaxial growth of YNi5 and W on monocrystalline sapphire substrates. Optical and electron microscopy were used to examine film morphology while congruent evaporation was confirmed using x-ray microprobe analysis. In-situ RHEED revealed good epitax of the films deposited on sapphire, with the hexagonal diffraction patterns obtained for YNi5 being identical to those of an YNi5 reference single crystal

  16. A novel stir bar sorptive extraction coating based on monolithic material for apolar, polar organic compounds and heavy metal ions.

    Science.gov (United States)

    Huang, Xiaojia; Qiu, Ningning; Yuan, Dongxing; Huang, Benli

    2009-04-15

    In this study, a novel stir bar sorptive extraction (SBSE) based on monolithic material (SBSEM) was prepared. The monolithic material was obtained by in situ copolymerization of vinylpyrrolidone and divinylbenzene in the presence of a porogen solvent containing cyclohexanol and 1-dodecanol with azobisisobutyronitrile as initiator. The influences of polymerization conditions on the extraction efficiencies were investigated, using phenol and p-nitrophenol as detected solutes. The monolithic material was characterized by various techniques, such as elemental analysis, scanning electron microscopy, mercury intrusion porosimetry, infrared spectroscopy. Polycyclic aromatic hydrocarbons were used to investigate the extraction efficiencies of SBSEM for apolar analytes. Hormones, aromatic amines and phenols were selected as test analytes to investigate the extraction efficiencies of SBSEM for weakly and strongly polar compounds. The results showed that the new SBSEM could enrich the above-mentioned organic compounds effectively. It is worthy to mention that the SBSEM can enrich some heavy metal ions, such as Cu(2+), Pb(2+), Cr(3+) and Cd(2+), through coordination adsorption. To our best knowledge, that is the first to use SBSE to enrich heavy metal ions. PMID:19174210

  17. SILP catalysis in gas-phase hydroformylation and carbonylation

    Energy Technology Data Exchange (ETDEWEB)

    Riisager, A.; Fehrmann, R. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemistry; Haumann, M.; Wasserscheid, P. [Univ. Erlangen-Nuernberg (Germany). Lehrstuhl fuer Chemische Reaktionstechnik

    2006-07-01

    Supported ionic liquid phase (SILP) catalysts are new materials consisting of an ionic liquid-metal catalyst solution highly dispersed on a porous support. The use of a non-volatile, ionic liquid catalyst phase in SILP catalysts results in a stable heterogeneous-type material with selectivity and efficiency like homogeneous catalysts. The silica-supported SILP Rh-bisphosphine hydroformylation catalyst exhibited good activities and excellent selectivities in gas phase hydroformylation with stability exceeding 700 hours time-on-stream. Spectroscopic and kinetic data confirmed the homogeneous nature of the catalyst. In the Rh- SILP catalysed carbonylation of methanol the formation of undesired by-products could be suppressed by variation of residence time and gas pressure. (orig.)

  18. Effects of heavy metals and nitroaromatic compounds on horseradish glutathione S-transferase and peroxidase

    Czech Academy of Sciences Publication Activity Database

    Nepovím, Aleš; Podlipná, Radka; Soudek, Petr; Schröder, P.; Vaněk, Tomáš

    2004-01-01

    Roč. 57, - (2004), s. 1007-1015. ISSN 0045-6535 R&D Projects: GA ČR GP206/02/P065; GA MŠk OC 837.10 Institutional research plan: CEZ:AV0Z4055905 Keywords : GST * POX * heavy metals Subject RIV: CE - Biochemistry Impact factor: 2.359, year: 2004

  19. Depolymerization of organosolv lignin to aromatic compounds over Cu-doped porous metal oxides

    NARCIS (Netherlands)

    Barta, Katalin; Warner, Genoa R.; Beach, Evan S.; Anastas, Paul T.

    2014-01-01

    Isolated, solvent-extracted lignin from candlenut (Aleurites moluccana) biomass was subjected to catalytic depolymerization in methanol with an added pressure of H-2, using a porous metal oxide catalyst (PMO) derived from a Cu-doped hydrotalcite-like precursor. The Cu-PMO was effective in converting

  20. Simultaneous removal of metals and organic compounds from a heavily polluted soil

    Energy Technology Data Exchange (ETDEWEB)

    Szpyrkowicz, L. [University of Venice, Department of Environmental Sciences, Dorsoduro 2137, 30123 Venice (Italy)]. E-mail: lidia@unive.it; Radaelli, M. [University of Venice, Department of Environmental Sciences, Dorsoduro 2137, 30123 Venice (Italy); Bertini, S. [University of Venice, Department of Environmental Sciences, Dorsoduro 2137, 30123 Venice (Italy); Daniele, S. [University of Venice, Department of Physical Chemistry, Dorsoduro 2137, 30123 Venice (Italy); Casarin, F. [Via S. Trentin 5A, 30171 Mestre-Venice (Italy)

    2007-02-25

    The paper describes the results of treatment of soil samples, deriving from a dismissed industrial site, contaminated with several metals: Hg, Ni, Co, Zn, Pb, Cu, Cr, As and organic substances. The soil was subjected to remediation based on a process in which an oxidising leaching agent was produced electrochemically in-line in an undivided electrochemical cell reactor equipped with a Ti/Pt-Ir anode and a stainless steel cathode. Leaching of the soil samples was performed under dynamic conditions using a leaching column. A subsequent regeneration of the leaching solution, which consisted in electrodeposition of metals and electro-oxidation of organic substances, was carried out in a packed-bed reactor equipped with a centrally positioned graphite rod, serving as an anode, and stainless steel three-dimensional filling as a cathode. The study was focused on how and to which extent the metals present in the soil, as organic complexes, can be solubilised and how the process rates are impacted by the solution pH and other process variables. Data obtained under non-oxidising conditions, typically adopted for leaching of metals, are compared with the performance of chlorine-enriched leaching solutions. The results obtained under various conditions are also discussed in terms of the total organic carbon (TOC) removal from the water phase.

  1. Impedance spectroscopy based conductivity study of two aluminum metal – organic framework compound

    Czech Academy of Sciences Publication Activity Database

    Konale, M.; Lin, C. H.; Patil, D.; Zima, Vítězslav; Wágner, T.; Shimakawa, K.

    Pardubice: Univerzita Pardubice, 2014. s. 36-36. ISBN 978-80-7395-820-6. [International Days of Materials Science 2014 - ReAdMat. 16.09.2014-17.09.2014, Pardubice] Institutional support: RVO:61389013 Keywords : proton conductivity * metal organic framework * aluminium Subject RIV: CA - Inorganic Chemistry

  2. Selective hydrogenation of dienic and acetylenic compounds on metal-containing catalysts

    Science.gov (United States)

    Stytsenko, V. D.; Mel'nikov, D. P.

    2016-05-01

    Studies on selective hydrogenation of dienic and acetylenic hydrocarbons and their derivatives on metal-containing catalysts are reviewed. The review covers publications over a wide period of time and concentrates on the fundamental principles of catalyst operation. The catalysts modified in the surface layer were shown to be promising for selective hydrogenation.

  3. Transition-Metal-Mediated or -Catalyzed Syntheses of Steroids and Steroid-Like Compounds

    Czech Academy of Sciences Publication Activity Database

    Kotora, Martin; Hessler, F.; Eignerová, B.

    -, č. 1 (2012), s. 29-42. ISSN 1434-193X R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : steroids * synthesis design * synthetic methods * asymmetric synthesis * transition metals Subject RIV: CC - Organic Chemistry Impact factor: 3.344, year: 2012

  4. Effects of Ga substitution on the structural and magnetic properties of half metallic Fe{sub 2}MnSi Heusler compound

    Energy Technology Data Exchange (ETDEWEB)

    Pedro, S. S., E-mail: sandrapedro@uerj.br; Caraballo Vivas, R. J.; Andrade, V. M.; Cruz, C.; Paixão, L. S.; Contreras, C.; Costa-Soares, T.; Rocco, D. L.; Reis, M. S. [Instituto de Física, Universidade Federal Fluminense, Niterói-RJ (Brazil); Caldeira, L. [IF Sudeste MG, Campus Juiz de Fora - Núcleo de Física, Juiz de Fora-MG (Brazil); Coelho, A. A. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas - Unicamp, Campinas-SP (Brazil); Carvalho, A. Magnus G. [Laboratório Nacional de Luz Sincrotron, CNPEM, Campinas-SP (Brazil)

    2015-01-07

    The so-called half-metallic magnets have been proposed as good candidates for spintronic applications due to the feature of exhibiting a hundred percent spin polarization at the Fermi level. Such materials follow the Slater-Pauling rule, which relates the magnetic moment with the valence electrons in the system. In this paper, we study the bulk polycrystalline half-metallic Fe{sub 2}MnSi Heusler compound replacing Si by Ga to determine how the Ga addition changes the magnetic, the structural, and the half-metal properties of this compound. The material does not follow the Slater-Pauling rule, probably due to a minor structural disorder degree in the system, but a linear dependence on the magnetic transition temperature with the valence electron number points to the half-metallic behavior of this compound.

  5. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sujan, G.K., E-mail: sgkumer@gmail.com; Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Afifi, A.B.M., E-mail: amalina@um.edu.my

    2014-11-15

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu{sub 6}Sn{sub 5} from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping

  6. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    International Nuclear Information System (INIS)

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu6Sn5 from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping of flux with

  7. Synchrotron Diffraction Studies of Spontaneous Magnetostriction in Rare Earth Transition Metal Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ning Yang

    2004-12-19

    Thermal expansion anomalies of R{sub 2}Fe{sub 14}B and R{sub 2}Fe{sub 17}C{sub x} (x = 0,2) (R = Y, Nd, Gd, Tb, Er) stoichiometric compounds are studied with high-energy synchrotron X-ray powder diffraction using Debye-Schemer geometry in temperature range 10K to 1000K. Large spontaneous magnetostriction up to their Curie temperatures (T{sub c}) is observed. The a-axes show relatively larger invar effects than c-axes in the R{sub 2}Fe{sub 14}B compounds whereas the R{sub 2}Fe{sub 17}C{sub x} show the contrary anisotropies. The iron sub-lattice is shown to dominate the spontaneous magnetostriction of the compounds. The contribution of the rare earth sublattice is roughly proportional to the spin magnetic moment of the rare earth in the R{sub 2}Fe{sub 14}B compounds but in R{sub 2}Fe{sub 17}C{sub x}, the rare earth sub-lattice contribution appears more likely to be dominated by the local bonding. The calculation of spontaneous magnetostrain of bonds shows that the bonds associated with Fe(j2) sites in R{sub 2}Fe{sub 14}B and the dumbbell sites in R{sub 2}Fe{sub 17}C{sub x} have larger values, which is strongly related to their largest magnetic moment and Wigner-Seitz atomic cell volume. The roles of the carbon atoms in increasing the Curie temperatures of the R{sub 2}Fe{sub 17} compounds are attributed to the increased separation of Fe hexagons. The R{sub 2}Fe{sub 17} and R{sub 2}Fe{sub 14}B phases with magnetic rare earth ions also show anisotropies of thermal expansion above T{sub c}. For R{sub 2}Fe{sub 17} and R{sub 2}Fe{sub 14}B the a{sub a}/a{sub c} > 1 whereas the anisotropy is reversed with the interstitial carbon in R{sub 2}Fe{sub 17}. The average bond magnetostrain is shown to be a possible predictor of the magnetic moment of Fe sites in the compounds. Both of the theoretical and phenomenological models on spontaneous magnetostriction are discussed and a Landau model on the spontaneous magnetostriction is proposed.

  8. Predicting density functional theory total energies and enthalpies of formation of metal-nonmetal compounds by linear regression

    Science.gov (United States)

    Deml, Ann M.; O'Hayre, Ryan; Wolverton, Chris; Stevanović, Vladan

    2016-02-01

    The availability of quantitatively accurate total energies (Etot) of atoms, molecules, and solids, enabled by the development of density functional theory (DFT), has transformed solid state physics, quantum chemistry, and materials science by allowing direct calculations of measureable quantities, such as enthalpies of formation (Δ Hf ). Still, the ability to compute Etot and Δ Hf values does not, necessarily, provide insights into the physical mechanisms behind their magnitudes or chemical trends. Here, we examine a large set of calculated Etot and Δ Hf values obtained from the DFT+U -based fitted elemental-phase reference energies (FERE) approach [V. Stevanović, S. Lany, X. Zhang, and A. Zunger, Phys. Rev. B 85, 115104 (2012), 10.1103/PhysRevB.85.115104] to probe relationships between the Etot/Δ Hf of metal-nonmetal compounds in their ground-state crystal structures and properties describing the compound compositions and their elemental constituents. From a stepwise linear regression, we develop a linear model for Etot, and consequently Δ Hf , that reproduces calculated FERE values with a mean absolute error of ˜80 meV/atom. The most significant contributions to the model include calculated total energies of the constituent elements in their reference phases (e.g., metallic iron or gas phase O2), atomic ionization energies and electron affinities, Pauling electronegativity differences, and atomic electric polarizabilities. These contributions are discussed in the context of their connection to the underlying physics. We also demonstrate that our Etot/Δ Hf model can be directly extended to predict the Etot and Δ Hf of compounds outside the set used to develop the model.

  9. Effect of transition metal compounds on the formation of LaAlO3 by the sol-gel method

    International Nuclear Information System (INIS)

    LaAlO3 is used industrially as an oxygen ion dielectric material. In La2O3-Al2O3 system, usually two kinds of the compound have been known. One of them is the cubic crystals LaAlO3 having Perovskite structure, and as to the formation of its single phase, the different results have been obtained. Therefore, it seems necessary to clarify this point. Recently, the author synthesized La2O3 or α-Al2O3 utilizing sol-gel method, one of the methods of synthesizing ceramic powder, from the mixed solution prepared by adding a small quantity of ethyl silicate Si(OC2H5)4 as a hydrolysis agent to La(NO3)3 solution or Al(NC3)3 solution. In this study, LaAlO3 was synthesized at low temperature by sol-gel method from the mixed solution prepared by adding small quantities of the aqueous solution of transition metal compounds and ethyl silicate to the aqueous solution containing La(NO3)3 and Al(NO3)3, therefore, the results are reported. The experimental method is explained. The formation of LaAlO3 became conspicuous from 1100 deg C of the heat treatment temperature of the gel made from the solution without the addition of transition metal compounds, but the single phase was not obtained. By adding Fe(NO3)3, the temperature of LaAlO3 formation lowered, and the nearly single phase was obtained. (Kako, I.)

  10. Volatile organic compounds and trace metal level in some beers collected from Romanian market

    Science.gov (United States)

    Voica, Cezara; Kovacs, Melinda; Vadan, Marius

    2013-11-01

    Beer is one of the most popular beverages at worldwide level. Through this study fifteen different types of beer collected from Romanian market were analysed in order to evaluate their mineral, trace element as well the their organic content. Importance of such characterization of beer samples is supported by the fact that their chemical composition can affect both taste and stability of beer, as well the consumer health. Minerals and trace elements analysis were performed on ICP-MS while organic compounds analysis was done through GC-MS. Through ICP-MS analysis, elements as Ca, Na, K and Mg were evidenced at mgṡkg-1 order while elements as Cr, Ba, Co, Ni were detected at lower level. After GC-MS analysis the major volatile compounds that were detected belong to alcohols namely ethanol, propanol, isobutanol, isoamyl alcohol and linalool. Selected fatty acids and esters were evidenced also in the studied beer samples.

  11. Large scale simulations of the mechanical properties of layered transition metal ternary compounds for fossil energy power system applications

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Wai-Yim [Univ. of Missouri, Kansas City, MO (United States)

    2014-12-31

    Advanced materials with applications in extreme conditions such as high temperature, high pressure, and corrosive environments play a critical role in the development of new technologies to significantly improve the performance of different types of power plants. Materials that are currently employed in fossil energy conversion systems are typically the Ni-based alloys and stainless steels that have already reached their ultimate performance limits. Incremental improvements are unlikely to meet the more stringent requirements aimed at increased efficiency and reduce risks while addressing environmental concerns and keeping costs low. Computational studies can lead the way in the search for novel materials or for significant improvements in existing materials that can meet such requirements. Detailed computational studies with sufficient predictive power can provide an atomistic level understanding of the key characteristics that lead to desirable properties. This project focuses on the comprehensive study of a new class of materials called MAX phases, or Mn+1AXn (M = a transition metal, A = Al or other group III, IV, and V elements, X = C or N). The MAX phases are layered transition metal carbides or nitrides with a rare combination of metallic and ceramic properties. Due to their unique structural arrangements and special types of bonding, these thermodynamically stable alloys possess some of the most outstanding properties. We used a genomic approach in screening a large number of potential MAX phases and established a database for 665 viable MAX compounds on the structure, mechanical and electronic properties and investigated the correlations between them. This database if then used as a tool for materials informatics for further exploration of this class of intermetallic compounds.

  12. Catalytic Oxidation of Volatile Organic Compounds over Ceria-zirconia Supported Noble Metal Catalysts

    Czech Academy of Sciences Publication Activity Database

    Topka, Pavel; Kaluža, Luděk

    - : -, 2014, O9. ISBN N. [Pannonian Symposium on Catalysis /12./. Třešť (CZ), 16.09.2014-20.09.2014] R&D Projects: GA ČR GP13-24186P Institutional support: RVO:67985858 Keywords : volatile organic compounds * platinum * ceria Subject RIV: CF - Physical ; Theoretical Chemistry http://pannonia2014.icpf.cas.cz/wp-content/uploads/2014/09/abstrakty_final.pdf

  13. Palladium-mediated borylation of pentafluorosulfanyl functionalized compounds: the crucial role of metal fluorido complexes.

    Science.gov (United States)

    Berg, Claudia; Braun, Thomas; Laubenstein, Reik; Braun, Beatrice

    2016-03-11

    Stoichiometric reactions of SF5 functionalized bromo or iodo aromatics at [Pd(PiPr3)2] (1) led to the oxidative addition products 3, 5 and 7. They were converted into their corresponding palladium fluorido complexes, which reacted readily with bis(pinacolato)diboron (B2pin2) to give the borylated SF5 aromatic compounds. Based on these studies a catalytic borylation of SF5 organyls was developed. PMID:26872070

  14. Oxidation of Reduced Sulfur Species: Carbonyl Sulfide

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2013-01-01

    A detailed chemical kinetic model for oxidation of carbonyl sulfide (OCS) has been developed, based on a critical evaluation of data from the literature. The mechanism has been validated against experimental results from batch reactors, flow reactors, and shock tubes. The model predicts satisfact......A detailed chemical kinetic model for oxidation of carbonyl sulfide (OCS) has been developed, based on a critical evaluation of data from the literature. The mechanism has been validated against experimental results from batch reactors, flow reactors, and shock tubes. The model predicts...... satisfactorily oxidation of OCS over a wide range of stoichiometric air–fuel ratios (0.5 ≤λ≤7.3), temperatures (450–1700 K), and pressures (0.02–3.0 atm) under dry conditions. The governing reaction mechanisms are outlined based on calculations with the kinetic model. The oxidation rate of OCS is controlled...

  15. The Oxidation of Sulfur-Containing Compounds Using Heterogeneous Catalysts of Transition Metal Oxides Deposited on the Polymeric Matrix

    Science.gov (United States)

    Dinh Vu, Ngo; Dinh Bui, Nhi; Thi Minh, Thao; Thi Thanh Dam, Huong; Thi Tran, Hang

    2016-05-01

    We investigate the activity of heterogeneous catalysts of transition metal oxides deposited on the polymeric matrix in the oxidation of sulfur-containing compounds. It is shown that MnO2-10/CuO-10 has the highest catalytic activity. The physicomechanical properties of polymeric heterogeneous catalysts of transition-metal oxides, including the specific surface area, elongation at break and breaking strength, specific electrical resistance, and volume resistivity were studied by using an Inspekt mini 3 kN universal tensile machine in accordance with TCVN 4509:2006 at a temperature of 20 ± 2°C. Results show that heterogeneous polymeric catalysts were stable under severe reaction conditions. Scanning electron microscopy, and energy-dispersive analysis are used to study the surfaces of the catalysts. Microstructural characterization of the catalysts is performed by using x-ray computed tomography. We demonstrate the potential application of polymeric heterogeneous catalysts of transition-metal oxides in industrial wastewater treatment.

  16. Loadings of polynuclear aromatic compounds and metals to the Athabasca River watershed by oil sands mining and processing

    International Nuclear Information System (INIS)

    The contribution of oil sands operations to pollution in the Athabasca River has not yet been determined. Wastes from oil sands processes include recycled water, sand, silt, clay, bitumen, and polycyclic aromatic compounds (PAC) and metals. Upgrading processes can also release significant quantities of PAC and heavy metals. This paper discussed a study in which PAC and metals in the snow pack and river water of the Athabasca watershed were assessed. The study showed that the oil sands industry is a significant source of contamination. The equivalent of 600 T of bitumen was observed at sites within 50 km of oil sands upgrading facilities. The strongest contamination signals occurred during the summer months, which suggested that the surface run-off of contaminated water was related to recent oil sands developments. Samples taken from tributaries in watersheds with little or no development indicated that increased concentrations of oil sands related contaminants were not caused by natural erosion. The contaminants may contribute to higher levels of mercury (Hg) and cadmium (Cd) in the flesh of fish and wildlife and increase toxicity to the embryos of spring-spawning fish.

  17. Structure and constitution of glass and steel compound in glass-metal composite

    International Nuclear Information System (INIS)

    The research using methods of optical and scanning electronic microscopy was conducted and it discovered common factors on structures and diffusing zone forming after welding glass C49-1 and steel Ct3sp in technological process of creating new glass-metal composite. Different technological modes of steel surface preliminary oxidation welded with and without glass were investigated. The time of welding was varied from minimum encountering time to the time of stabilizing width of diffusion zone

  18. Random and block copolymerization in metal oxide gel synthesis from metalorganic compounds

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    The introduction and development of the block copolymerization concept in metal oxide gel synthesis will in the future generate a new class of glass/microcrystalline materials. By the year 2004, better scientific understanding of the chemical principles controlling the distribution of network formers or modifiers in silicate gels will permit the synthesis of architecturally well-defined block polymers with unique high-performance behavior.

  19. Structure and constitution of glass and steel compound in glass-metal composite

    Energy Technology Data Exchange (ETDEWEB)

    Lyubimova, Olga N.; Morkovin, Andrey V.; Dryuk, Sergey A. [School of Engineering, Mechanics and Mathematical Modeling Department, Far Eastern Federal University, Vladivostok, 690950 (Russian Federation); Nikiforov, Pavel A., E-mail: nikiforovpa@gmail.com [School of Engineering, Materials Science and Technology Department, Far Eastern Federal University, Vladivostok, 690950 (Russian Federation)

    2014-11-14

    The research using methods of optical and scanning electronic microscopy was conducted and it discovered common factors on structures and diffusing zone forming after welding glass C49-1 and steel Ct3sp in technological process of creating new glass-metal composite. Different technological modes of steel surface preliminary oxidation welded with and without glass were investigated. The time of welding was varied from minimum encountering time to the time of stabilizing width of diffusion zone.

  20. Metal compounds in zeolites as active components of chemisorption and catalysis. Quantum chemical approach

    International Nuclear Information System (INIS)

    A short review of possible catalitic active sites associated with various types of metal species in zoolite is presented. The structural and electronic peculiarity of aluminum ions in zeolite lattice and their distribution in the lattice are discussed on the basis of quantum chemical calculations in connection with the formation of Broensted activity of zeolites. Various molecular models of Lewis Acid Sites associated the extra-lattice oxide-hydroxide aluminum species have been investigated by means of density functional model cluster calculations using CO molecule as a probe. Probable ways of formation of the selective oxidation center in FeZSM-5 by decomposition of dinitrogen monoxide have been studied by ab-initio quantum chemical calculations. The immediate oxidizing site is reasonably represented by the binuclear iron-hydroxide cluster with peroxo-like fragment located between iron atoms. Various probable intermediates of the selective oxidation center formation resulted from interaction of a hydroperoxide molecule with a lattice titanium ion in titanium silicalite have been investigated by quantum chemical calculations. It was concluded that this reaction requires essential structural reconstruction in the vicinity of the titanium ion. Probability of this structural reconstruction is discussed. Possible reasons of an electron-deficient and electron-enriched state of metal particles entrapped in zoolite cavities are discussed. Also, various probable molecular models of such modified metal particles in zeolite are considered

  1. Determination of polycyclic aromatic compounds and heavy metals in sludges from biological sewage treatment plants.

    Science.gov (United States)

    Bodzek, D; Janoszka, B; Dobosz, C; Warzecha, L; Bodzek, M

    1997-07-11

    The procedure of the analysis of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in the sludges from biological sewage treatment plants has been worked out. The analysis included isolation of organic matter from sludges, separation of the extract into fractions of similar chemical character, qualitative-quantitative analysis of individual PAHs and their nitrogenated and oxygenated derivatives. Liquid-solid chromatography, solid-phase extraction and semipreparative band thin-layer chromatography techniques were used for the separation. Capillary gas chromatography-mass spectrometry analysis of the separated fractions enabled identification of more than 21 PAHs, including hydrocarbons which contained 2-6 aromatic rings as well as their alkyl derivatives, 10 oxygen derivatives, 9 nitroarenes, aminoarenes and over 20 azaarenes and carbazoles. Using the capillary gas chromatography-flame ionization detection technique the content of 17 dominant PAHs was determined. The content of heavy metals was determined in investigated sludges with the use of atomic absorption spectrometry. The concentrations of the respective metals could be ranked in the order Cd coal mine wastes, taking into consideration the contents of toxic organic pollutants and heavy metals. PMID:9253190

  2. Magnetorheological characterisation of carbonyl iron based suspension

    Directory of Open Access Journals (Sweden)

    M. Kciuk

    2009-04-01

    Full Text Available Purpose: The main aim of this article was to present the investigation results of magnetorheological fluids (MR composed of carbonyl iron (CI particles and analyse their flow behaviour in terms of the internal structure formation by a control of applied external magnetic field. The morphology, magnetic properties, sedimentation stability, and magnetorheological properties of the examined MR fluids were studied.Design/methodology/approach: Model MR fluid was prepared using silicone oil OKS 1050 mixed with carbonyl iron powder CI. Furthermore, to reduce sedimentation Aerosil 200 was added as stabilizers. In the purpose to determine the properties of the analyzed fluids the sedimentation and dynamic viscosity were investigated.Findings: Dynamic viscosity of investigated magnetorheological fluids rapidly and reversibly change in response to the applied external magnetic field. Moreover added particles of fumed silica inhibited sedimentation of carbonyl iron particles.Research limitations/implications: MR fluids with excellent properties can be applied in various fields of civil engineering, safety engineering, transportation and life science. They offer an outstanding capability of active control of mechanical properties. But there are no systematic published studies of factors affecting the durability of MR fluids and devices. There is very little information on the effects of exposing different MR fluids to temperature, for this reasons further efforts are needed in order to obtain even better results.Originality/value: The investigation results are reliable and could be very useful both for designers and the practitioners of many branches of industry.

  3. The Pharmacological Activities of the Metabolites of N-[(Trimethylamineboryl)-Carbonyl]-L-Phenylalanine Methyl Ester

    OpenAIRE

    Miller, M. C.III; Sood, A.; Spielvogel, B. F.; Shrewsbury, R. P.; Hall, I. H.

    1996-01-01

    The metabolites of N-[(trimethylamineboryl)-carbonyl]-L-phenylalanine methyl ester 1 proved to be active in a number of pharmacological screens where the parent had previously demonstrated potent activity. The proposed metabolites demonstrated significant activity as cytotoxic, hypolipidemic, and anti-inflammatory agents. In cytotoxicity screens several of the proposed metabolites afforded better activity than the parent compound against the growth of suspended and solid tumor cell lines. Eva...

  4. Emissions of organo-metal compounds via the leachate and gas pathway from two differently pre-treated municipal waste materials - A landfill reactor study

    International Nuclear Information System (INIS)

    Due to their broad industrial production and use as PVC-stabilisers, agro-chemicals and anti-fouling agents, organo-metal compounds are widely distributed throughout the terrestrial and marine biogeosphere. Here, we focused on the emission dynamics of various organo-metal compounds (e.g., di,- tri-, tetra-methyl tin, di-methyl mercury, tetra-methyl lead) from two different kinds of pre-treated mass waste, namely mechanically-biologically pre-treated municipal solid waste (MBP MSW) and municipal waste incineration ash (MWIA). In landfill simulation reactors, the emission of the organo-metal compounds via the leachate and gas pathway was observed over a period of 5 months simulating different environmental conditions (anaerobic with underlying soil layer/aerated/anaerobic). Both waste materials differ significantly in their initial amounts of organo-metal compounds and their environmental behaviour with regard to the accumulation and depletion rates within the solid material during incubation. For tri-methyl tin, the highest release rates in leachates were found in the incineration ash treatments, where anaerobic conditions in combination with underlying soil material significantly promoted its formation. Concerning the gas pathway, anaerobic conditions considerably favour the emission of organo-metal compounds (tetra-methyl tin, di-methyl mercury, tetra-methyl lead) in both the MBP material and especially in the incineration ash

  5. Zinc-blende compounds of transition elements with N, P, As, Sb, S, Se, and Te as half-metallic systems

    Science.gov (United States)

    Galanakis, Iosif; Mavropoulos, Phivos

    2003-03-01

    We report systematic first-principles calculations for ordered zinc-blende compounds of the transition metal elements V, Cr, and Mn with the sp elements N, P, As, Sb, S, Se, and Te, motivated by a recent fabrication of zinc-blende CrAs, CrSb, and MnAs. They show a ferromagnetic half-metallic behavior for a wide range of lattice constants. We discuss the origin and trends of half-metallicity, present the calculated equilibrium lattice constants, and examine the half-metallic behavior of their transition element terminated (001) surfaces.

  6. Cytoprotective Effects of Hydrophilic and Lipophilic Extracts of Pistacia vera against Oxidative Versus Carbonyl Stress in Rat Hepatocytes.

    Science.gov (United States)

    Shahraki, Jafar; Zareh, Mona; Kamalinejad, Mohammad; Pourahmad, Jalal

    2014-01-01

    This study was conducted to evaluate the cytoprotection of various extracts and bioactive compounds found in Pistacia vera againts cytotoxicity, ROS formation, lipid peroxidation, protein carbonylation, mitochondrial and lysosomal membrane damages in cell toxicity models of diabetes related carbonyl (glyoxal) and oxidative stress (hydroperoxide). Methanol, water and ethyl acetate were used to prepare crude pistachios extracts, which were then used to screen for in-vitro cytoprotection of freshly isolated rat hepatocytes against these toxins. The order of protection by Pistacia vera extracts against both hydroperoxide induced oxidative stress (ROS formation) and glyoxal induced protein carbonylation was: pistachio methanolic extract >pistachio water extract, gallic acid, catechin> α-tochoferol and pistachio ethyl acetate extract. Finally due to higher protection achieved by methanolic extract even compared to sole pretreatment of gallic acid, catechin or α-tochoferol, we suggest that cytoprotection depends on the variety of polar and non-polar compounds found in methanolic extract, it is likely that multiple cytoprotective mechanisms are acting against oxidative and carbonyl induced cytotoxicity. To our knowledge, we are the first to report the cytoprotective activity of Pistacia vera extracts against oxidative and carbonyl stress seen in type 2 diabetes hepatocytes model. PMID:25587316

  7. Evaluation of properties of concrete using fluosilicate salts and metal (Ni,W) compounds

    Institute of Scientific and Technical Information of China (English)

    Gyu-Yong KIM; Eui-Bae LEE; Bae-Su KHIL; Seung-Hum LEE

    2009-01-01

    To improve watertightness and antibiosis of sewage structure concrete, the antimierobial watertight admixture was made with fluosilicate salts and antimicrobial compounds. And fresh properties, watertightness, harmlessness and antibiosis of concrete were investigated experimentally. As a result, the fresh properties of concrete were similar to those of an ordinary concrete, without setting time delay. Compressive strength and carbonation resistance of concrete were better than those of an ordinary concrete. Finally it was confirmed that the antimierobial watenight admixture of concrete had an antibiosis inhibiting SOB growth.

  8. Rapid coastal survey of anthropogenic radionuclides, metals, and organic compounds in surficial marine sediments

    International Nuclear Information System (INIS)

    A towed survey system, the GIMS/CS3, has been developed to enable the rapid measurement and mapping of a variety of physical and geochemical parameters in the surficial sediments of aquatic environments while the survey vessel is underway. With its capability for measuring radiometric, elemental and organic compound constituents of sediments, as well as bathymetry and water quality parameters, the GIMS/CS3 provides a cost-effective means of performing reconnaissance determinations of contaminant distributions and environmental monitoring tasks over broad geographic regions

  9. Millimeter wave spectra of carbonyl cyanide

    Science.gov (United States)

    Bteich, S. B.; Tercero, B.; Cernicharo, J.; Motiyenko, R. A.; Margulès, L.; Guillemin, J.-C.

    2016-07-01

    Context. More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims: The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods: The rotational spectrum of carbonyl cyanide was measured in the frequency range 152-308 GHz and analyzed using Watson's A- and S-reduction Hamiltonians. Results: The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00009.SV. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan) with NRC (Canada), NSC, and ASIAA (Taiwan), and KASI (Republic of

  10. Synthesis of bidentate o-carborane-containing phosphine and arsine ligands and preparation of their complexes with chromium-, molybdenum-, tungsten-, iron- and nickel carbonyls

    International Nuclear Information System (INIS)

    A number of bidentate o-carborane phosphine and arsine ligands have been synthesized and their chelate complexes with carbonyls of chromium, molybdenum, tungsten, iron and nickel are obtained. 1-mercapto-2-dimethylarsnomethyl-o-carborane and 1-mercapto-2-diethylaminomethyl-o-carborane with molybdenum and tungsten carbonyls provide substitution products of only one CO group. 1-diphenylphosphino-2-diphenylphosphinomethyl-o-carborane and 1,2-bis(diphenylphosphinomethyl)-o-carborane form complexes with NiCl2. Simplicity of complex formation of bidentate carborane ligands with group 6 metal carbonyls increases in the series Cr(CO)6 6 6

  11. Electronic, thermal, and superconducting properties of metal nitrides (MN) and metal carbides (MC) (M=V, Nb, Ta) compounds by first principles studies

    Energy Technology Data Exchange (ETDEWEB)

    Subhashree, G.; Sankar, S.; Krithiga, R. [Anna Univ., Chennai, Tamil Nadu (India). Condensed Matter Lab.

    2015-07-01

    Structural, electronic, and superconducting properties of carbides and nitrides of vanadium (V), niobium (Nb), and tantalum (Ta) (group V transition elements) have been studied by computing their electronic band structure characteristics. The electronic band structure calculations have been carried out based on the density functional theory (DFT) within the local density approximation (LDA) by using the tight binding linear muffin tin orbital method. The NaCl-type cubic structures of MN and MC (M=V, Nb, Ta) compounds have been confirmed from the electronic total energy minimum of these compounds. The ground state properties, such as equilibrium lattice constant (a{sub 0}), bulk modulus (B), and Wigner-Seitz radius (S{sub 0}) are determined and compared with available data. The electronic density of states reveals the metallic nature of the chosen materials. The electronic specific heat coefficient, Debye temperature, and superconducting transition temperature obtained from the band structure results are found to agree well with the earlier reported literature.

  12. Theoretical modelling of intermediate band solar cell materials based on metal-doped chalcopyrite compounds

    International Nuclear Information System (INIS)

    Electronic structure calculations are carried out for CuGaS2 partially substituted with Ti, V, Cr or Mn to ascertain if some of these systems could provide an intermediate band material able to give a high efficiency photovoltaic cell. Trends in electronic level positions are analyzed and more accurate advanced theory levels (exact exchange or Hubbard-type methods) are used in some cases. The Ti-substituted system seems more likely to yield an intermediate band material with the desired properties, and furthermore seems realizable from the thermodynamic point of view, while those with Cr and Mn might give half-metal structures with applications in spintronics

  13. Ambient air monitoring for organic compounds, acids, and metals at Los Alamos National Laboratory, January 1991

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory (LANL) contracted Radian Corporation (Radian) to conduct a short-term, intensive air monitoring program whose goal was to estimate the impact of chemical emissions from LANL on the ambient air environment. A comprehensive emission inventory had identified more than 600 potential air contaminants in LANL's emissions. A subset of specific target chemicals was selected for monitoring: 20 organic vapors, 6 metals and 5 inorganic acid vapors. These were measured at 5 ground level sampling sites around LANL over seven consecutive days in January 1991. The sampling and analytical strategy used a combination of EPA and NIOSH methods modified for ambient air applications

  14. Theoretical modelling of intermediate band solar cell materials based on metal-doped chalcopyrite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, P. [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain)]. E-mail: pablop@etsit.upm.es; Sanchez, K. [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain); Conesa, J.C. [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, Cantoblanco, 28049 Madrid (Spain); Fernandez, J.J. [Dpt. de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, 28080, Madrid (Spain); Wahnon, P. [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2007-05-31

    Electronic structure calculations are carried out for CuGaS{sub 2} partially substituted with Ti, V, Cr or Mn to ascertain if some of these systems could provide an intermediate band material able to give a high efficiency photovoltaic cell. Trends in electronic level positions are analyzed and more accurate advanced theory levels (exact exchange or Hubbard-type methods) are used in some cases. The Ti-substituted system seems more likely to yield an intermediate band material with the desired properties, and furthermore seems realizable from the thermodynamic point of view, while those with Cr and Mn might give half-metal structures with applications in spintronics.

  15. Synthesis and complexing properties of carbonyl-containing thiacalyx[4]arenes

    International Nuclear Information System (INIS)

    Stereoisomers of unsubstituted by upper rim of thiacalyx(4)arenes containing four carbonyl fragments have been prepared for the first time, their structure has been investigated by one- and two-dimensional spectroscopy, NMR, IR-spectroscopy and mass-spectrometry. Complexing properties of macrocycles concerning alkali metal cations (Li+, Na+, K+, Cs+) is evaluated by picrate extraction. Lack of the preorganization in the case of unsubstituted by upper rim thiacalyxarenes accounts for sudden decreasing extraction ability

  16. Analysis of metal in organic compound used in the agriculture by x-ray fluorescence

    International Nuclear Information System (INIS)

    Using energy dispersive X-ray fluorescence analysis with an X-ray tube filtered with Ti. It was possible to determine the concentration of the elements at ppm level of several elements: K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn As, Rb, Sr, Y, Zr, and Pb in two types of organic compound enough used in the agriculture: organic compound of urban garbage (Fertilurb) and birds manure. The experimental setup is composed of: X-ray tube (Oxford, 30 kV, 50 mA and W anode), an ORTEC Si-Li detector, with an energy resolution of about 180 eV at 5.9 keV and an ORTEC multichannel-analyser. The X-ray beam is quasi-monochromatic by using Ti filter. The samples were prepared in pellet form with superficial density in the range of 100 mg/cm2. The fundamental parameter method was used in order to verify the elemental concentration. The radiation transmission method was going used to the radiation absorption effects correction in the samples

  17. On the R 5d band polarization in rare-earth-transition metal compounds.

    Science.gov (United States)

    Burzo, E; Chioncel, L; Tetean, R; Isnard, O

    2011-01-19

    Magnetic measurements and band structure calculations were performed on RT(2) and RT(5) compounds, where R is a heavy rare-earth and T = Fe, Co, Ni, Al, as well as on pseudobinary compounds GdCo(2 - x)A(x) (A = Ni, Cu, Si), YFe(2 - x)V(x) and YCo(4 - x)Ni(x)B. The calculated moments per formula unit described well the experimentally determined magnetizations. By considering the 4f-5d-3d exchange interactions, we evaluate the contributions of local 4f-5d and short range 5d-3d interactions to R 5d and Y 4d band polarizations. The 4f-5d induced polarizations are proportional to the De Gennes factor and are the same for a given R and a similar type structure. The R 5d and Y 4d band polarizations induced by R 5d-T3d or Y 4d-T3d hybridizations are proportional to the number of neighbouring T atoms, to a given R, and their magnetic moments. Previous results on the matter are also discussed. PMID:21406851

  18. Metal-based carboxamide-derived compounds endowed with antibacterial and antifungal activity.

    Science.gov (United States)

    Hanif, Muhammad; Chohan, Zahid H; Winum, Jean-Yves; Akhtar, Javeed

    2014-08-01

    A series of three bioactive thiourea (carboxamide) derivatives, N-(dipropylcarbamothioyl)-thiophene-2-carboxamide (L(1)), N-(dipropylcarbamothioyl)-5-methylthiophene-2-carboxamide (L(2)) and 5-bromo-N-(dipropylcarbamothioyl)furan-2-carboxamide (L(3)) and their cobalt(II), copper(II), nickel(II) and zinc(II) complexes (1)-(12) have been synthesized and characterized by their IR,(1)H-NMR spectroscopy, mass spectrometry and elemental analysis data. The Crystal structure of one of the ligand, N-(dipropylcarbamothioyl)thiophene-2-carboxamide (L(1)) and its nickel(II) and copper(II) complexes were determined from single crystal X-ray diffraction data. All the ligands and metal(II) complexes have been subjected to in vitro antibacterial and antifungal activity against six bacterial species (Escherichia coli. Shigella flexneri. Pseudomonas aeruginosa. Salmonella typhi. Staphylococcus aureus and Bacillus subtilis) and for antifungal activity against six fungal strains (Trichophyton longifusus. Candida albicans. Aspergillus flavus. Microsporum canis. Fusarium solani and Candida glabrata). The in vitro antibacterial and antifungal bioactivity data showed the metal(II) complexes to be more potent than the parent ligands against one or more bacterial and fungal strains. PMID:23914928

  19. First-principles calculations: The elemental transition metals and their compounds

    International Nuclear Information System (INIS)

    If done with sufficient care, present day a priori theory yields calculated enthalpies of formation whose agreement with experiment (when such data is available) is of the order of the experimental scatter. Comparisons will be made for the Pt-Ti systems for which such data exist and for which one crystal structure involves atomics sites of low symmetry. Two other cases will be considered for which there is no direct experimental heats data. The first of these will be the structural stabilities of the 4d elemental metals. Such structural stabilities have been an issue of contention between electronic structure theorists and those who construct phase diagrams for some twenty-five years. The second involves the energetics of forming metal adlayers and artificial multilayers. The distortion energies associated with the requirement that adlayers (or multilayers) conform to some given substrate are often the controlling factors in the fabrication of multilayer materials. This contribution is best understood by invoking a combination of elemental structural promotion energies plus elastic distortions from these structures. As will be seen, the fabrication of multilayers also involves a term not normally encountered in bulk phase diagram considerations, namely the difference in surface energies of the two multilayer constituents. 22 refs., 4 figs

  20. Fe based amorphous and compounds metallic alloys for magnetic and structural use

    International Nuclear Information System (INIS)

    Massive amorphous metals (thicker than 1mm) are new types of material that could have a wide range of future applications due to a unique combination of their physical properties, mechanics and magnetics. Among these are the elevated tension of fracture and hardness, and excellent soft magnetic properties. Since 1960, when an amorphous metallic alloy was first discovered, progress has continued on the application possibilities for these materials. One of their main limitations, maximum obtainable thickness, has continued to increase, since at first thicknesses of a few microns were obtained. Now amorphous alloys more than 70 mm thick are obtained using different metallic elements. Since 1995 massive amorphous metals can be produced using Fe as the base element. At first they were made in order to achieve good soft magnetic properties (thicknesses of ∼5 mm) and later a renewed interest in their use as structural material led to the development of materials with thicknesses of 16 mm and paramagnetics at room temperature. Increasing the toughness of these materials is also a challenge and investigators have proposed several solutions, among them is the development of composite materials where dendrites from a solid solution act as crack stoppers of fissures that are spread by an amorphous matrix. This work presents the results of studies with two types of synthesized materials using the rapid cooling technique from injection copper mold casting at air temperature: 1) a massive amorphous metallic alloy with composition (Fe0.375Co0.375B0.2Si0.05)96Nb4 (at.%) and 2) a composite of solid solution dendrites α-(FeCo) scattered in an amorphous matrix with a composition similar to alloy 1. Using the samples obtained structural studies were made (optic and electronic microscopy SEM, XRD, EDAX, DTA), magnetic studies (coercive field and saturation magnetization) and mechanical studies (Vickers microhardness). The fully amorphous alloy could be obtained with a maximum

  1. New group 6 metal carbonyl complexes with 4,5-dimethyl-N,N-bis(pyridine-2-yl-methylene)benzene-1,2-diimine Schiff base: Synthesis, spectral, cyclic voltammetry and biological activity studies

    Science.gov (United States)

    Mohamed, Rania G.; Elantabli, Fatma M.; Helal, Nadia H.; El-Medani, Samir M.

    2015-04-01

    Thermal reaction of M(CO)6 (M = Cr, Mo or W) with a Schiff base (DMPA) derived from the condensation of 4,5-dimethyl-1,2-phenylenediamine and pyridine-2-carboxaldehyde in THF in absence and presence of a secondary ligand; 2-aminobenzimidazole (Abz), thiourea (Tu) or 2-(2‧-pyridyl)benzimidazole (pybz) were studied. The reaction of Cr(CO)6 gave the four complexes Cr2(CO)2(DMPA)2; 1, Cr(DMPA)2(Abz)2; 2, Cr2(CO)4(DMPA)2(Tu)2; 3 and Cr(DMPA)2(Pybz); 4, while the thermal reaction of Mo(CO)6 resulted in the formation of the two complexes Mo2(O)6(DMPA)2; 5, and Mo2(O)2(CO)2(DMPA)2(Tu)2; 6. Thermal reaction of W(CO)6 and the Schiff base DMPA gave the complex W(O)2(DMPA)2; 7. The ligand DMPA and its metal complexes have been reported and characterized based on elemental analyses, IR, 1H NMR, magnetic measurements, and thermal analysis. Cyclic voltammetry and biological activity were also investigated.

  2. Enhanced Optical Transmission and Sensing of a Thin Metal Film Perforated with a Compound Subwavelength Circular Hole Array

    Science.gov (United States)

    Zhang, Xiangnan; Liu, Guiqiang; Liu, Zhengqi; Hu, Ying; Cai, Zhengjie

    2015-12-01

    We propose and numerically investigate the optical transmission behaviors of a sub-wavelength metal film perforated with a two-dimensional square array of compound circular holes. Enhanced optical transmission is obtained by using the finite-difference time-domain (FDTD) method, which can be mainly attributed to the excitation and coupling of localized surface plasmon resonances (LSPRs) and surface plasmon polaritons (SPPs), and Fano Resonances. The redshift of the transmission peak can be achieved by enlarging the size and number of small holes, the environmental dielectric constant. These indicate that the proposed structure has potential applications in integrated optoelectronic devices such as plasmonic filters and sensors. supported by National Natural Science Foundation of China (Nos. 11464019, 11264017, 11004088), Young Scientist Development Program of China (No. 20142BCB23008) and the Natural Science Foundation of Jiangxi Province, China (Nos. 2014BAB212001, 20112BBE5033)

  3. Solubility of some phenolic compounds in aqueous alkali metal nitrate solutions from (293.15 to 318.15) K

    International Nuclear Information System (INIS)

    This paper is continuation of the study concerning the solubility-temperature dependence data for some phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in two nitrate salts (KNO3 and NaNO3) aqueous solutions. The solubilities of PhC were determined in the temperature ranging from (293.15 to 318.15) K. It has been observed that the solubility, in aqueous nitrate solutions, increases with increasing temperature. Results showed that alkali metal nitrate has a salting-out effect on the solubility of PhC. The effect of the anion of the electrolyte on the solubility of PhC is observed by comparing these results with values reported in the previous papers for the effect of LiCl, NaCl and KCl. For each cation, the solubilites of the phenolic compounds are higher with nitrate anion than with chloride anion. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The solubility data were accurately correlated by a semi empirical equation. The standard molar Gibbs free energies of transfer of PhC (ΔtrG0) from pure water to aqueous solutions of the nitrate salts have been calculated from the solubility data. The decrease in solubility is correlated to the positive ΔtrG0 value which is mainly of enthalpic origin

  4. Half-metallic fully compensated ferrimagnetism in C1b-type half Heusler compounds Mn2Si1−xGex

    International Nuclear Information System (INIS)

    First-principles electronic structure calculations have been performed for the 18-valence electrons compounds Mn2Si1−xGex(x=0, 0.25, 0.5, 0.75, 1). The results suggest that Mn2Si1−xGex compounds in C1b structure are half-metallic fully compensated ferrimagnets. Furthermore, the size of the half-metallic band gap, the position of the Fermi level, and the magnetic moment of Mn atoms can be manipulated by changing x from 0 to 1 without destroying the half-metallic fully compensated ferrimagnetic property. - Highlights: • Confirmed the most favorable crystal structure for Mn2Si1−xGex is C1b structure. • Predicted that Mn2Si1−xGex were half-metallic fully compensated ferrimagnets. • Proposed a way to modulate the gap and the position of the Fermi level

  5. Structural and vibrational study of 8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone - A potential metal-protein attenuating compound (MPAC) for the treatment of Alzheimer's disease

    Science.gov (United States)

    de Freitas, Leonardo Viana; da Silva, Cecilia C. P.; Ellena, Javier; Costa, Luiz Antônio Sodré; Rey, Nicolás A.

    2013-12-01

    A comprehensive structural and vibrational study of the potential metal-protein attenuating compound 8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone is reported. X-ray diffraction data, as well as FT-IR and Raman frequencies, were compared with the respective theoretical values obtained from DFT calculations. Theory agrees well with experiment. In this context, an attempt of total assignment concerning the FT-IR and Raman spectra of the title compound was performed, shedding new light on previous partial assignments published elsewhere.

  6. Phytoremediation of soils co-contaminated by organic compounds and heavy metals: Bioassays with Lupinus luteus L. and associated endophytic bacteria

    OpenAIRE

    Gutierrez-Gines, M. J.; Hernandez, A. J.; Perez-Leblic, M. I.; Pastor, J.; Vangronsveld, Jaco

    2014-01-01

    In the central part of the Iberian Peninsula there are old sealed landfills containing soils co-contaminated by several heavy metals (Cu, Zn, Pb, Cd, Ni, As, Cr, Fe, Al, Mn) and organic pollutants of different families (hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pesticides and other organochlorinated compounds, phenols and volatile compounds), which this work will address. We have focused on phytoremedial plants that are able to deal with this type of complex p...

  7. Fe organoiron compounds. Pt. B11

    International Nuclear Information System (INIS)

    The chapter of compounds with ligands bonded by five carbon atoms deals with one 5L ligand, one 5L ligands and additional 1L ligands. In this chapter, there are different type compounds or complexes with iron containing carbonyl nitroxyl. The chapter of compounds with two CO ligands present the organoiron compounds with halide, where we find chemical properties, physical properties, analysis, adducts formation with halogen. In the last chapters, different compound with oxygen, nitrogen and their mechanism is discussed. (AB)

  8. Clinical Features of Schizophrenia With Enhanced Carbonyl Stress

    OpenAIRE

    Miyashita, Mitsuhiro; Arai, Makoto; Kobori, Akiko; Ichikawa, Tomoe; Toriumi, Kazuya; Niizato, Kazuhiro; Oshima, Kenichi; Okazaki, Yuji; Yoshikawa, Takeo; Amano, Naoji; Miyata, Toshio; Itokawa, Masanari

    2013-01-01

    Accumulating evidence suggests that advanced glycation end products, generated as a consequence of facilitated carbonyl stress, are implicated in the development of a variety of diseases. These diseases include neurodegenerative illnesses, such as Alzheimer disease. Pyridoxamine is one of the 3 forms of vitamin B6, and it acts by combating carbonyl stress and inhibiting the formation of AGEs. Depletion of pyridoxamine due to enhanced carbonyl stress eventually leads to a decrease in the other...

  9. Simultaneous removal of organic compounds and heavy metals from soils by electrokinetic remediation with a modified cyclodextrin.

    Science.gov (United States)

    Maturi, Kranti; Reddy, Krishna R

    2006-05-01

    Thousands of sites are contaminated with both heavy metals and organic compounds and these sites pose a major threat to public health and the environment. Previous studies have shown that electrokinetic remediation has potential to remove heavy metals and organic compounds when they exist individually in low permeability soils. This paper presents the feasibility of using cyclodextrins in electrokinetic remediation for the simultaneous removal of heavy metals and polycyclic aromatic hydrocarbons (PAHs) from low permeability soils. Kaolin was selected as a model low permeability soil and it was spiked with phenanthrene as well as nickel at concentrations of 500 mg kg-1 each to simulate typical mixed field contamination. Bench-scale electrokinetic experiments were conducted using hydroxypropyl beta-cyclodextrin (HPCD) at low (1%) and high (10%) concentrations and using deionized water in control test. A periodic voltage gradient of 2VDC cm-1 (with 5 d on and 2 d off) was applied to all the tests, and 0.01 M NaOH was added during the experiments to maintain neutral pH conditions at anode. In all tests, nickel migrated as Ni2+ ions towards the cathode and most of it was precipitated as Ni(OH)2 within the soil close to the cathode due to high pH condition generated by electrolysis reaction. The solubility of phenanthrene in the flushing solution and the amount of electroosmotic flow controlled the migration and removal of phenanthrene in all the tests. Even though high flow was generated in tests using deionized water and 1% HPCD, migration and removal of phenanthrene was low due to low solubility of phenanthrene in these solutions. The test with 10% HPCD solution showed higher solubility of phenanthrene which caused it migrate towards the cathode, but further migration and removal was retarded due to reduced electric current and electroosmotic flow. Approximately one pore volume of flushing resulted in approximately 50% removal of phenanthrene from the soil near the

  10. Evaluation of hazardous airborne carbonyls on a university campus in southern China.

    Science.gov (United States)

    Ho, Steven Sai Hang; Ip, Ho Sai Simon; Ho, Kin Fai; Ng, Louisa Pan Ting; Dai, W T; Cao, Junji; Chan, Chi Sing; Ho, Legolas Baggio

    2014-08-01

    A comprehensive assessment of indoor carbonyl compounds for the academic staff workers, and students was conducted on a university campus in Xiamen, China. A total of 15 representative environment categories, including 12 indoor workplaces and three residential units, were selected. The potential indoor pollution sources were identified based on the variability in the molar compositions and correlation analyses for the target carbonyls. Furnishing materials, cooking emissions, and electronic equipment, such as photocopiers, can generate various carbonyls in the workplace. Comparison studies were conducted in the clerical offices, demonstrating that off-gases from wooden furniture and lacquer coatings, environmental tobacco smoke (ETS), and the use of cleaning reagents elevated the indoor carbonyl levels. The measured concentrations of formaldehyde and acetaldehyde in most locations surpassed the exposure limit levels. The lifetime cancer hazard risk (R) associated with formaldehyde was above the concern risk level (1 x 10(-6)) in all of the workplaces. The results indicate that formaldehyde exposure is a valid occupational health and safety concern. Wooden furniture and refurbishing materials can pose serious health threats to occupants. The information in this study could act as a basis for future indoor air quality monitoring in Mainland China. Implications: A university campus represents a microscale city environment consisting of all the working, living, and commercial needs of staff and students. The scope of this investigation covers 21 hazardous carbonyl species based on samples collected from 15 categories of workplaces and residential building in a university campus in southern China. Findings of the study provide a comprehensive assessment of indoor air quality with regards to workers' health and safety. No similar study has been carried out in China. PMID:25185393

  11. Acute inhalation toxicity of carbonyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Hahn, F.F.; Barr, E.B. [and others

    1995-12-01

    Carbonyl sulfide (COS), a colorless gas, is a side product of industrial procedures sure as coal hydrogenation and gasification. It is structurally related to and is a metabolite of carbon disulfide. COS is metabolized in the body by carbonic anhydrase to hydrogen sulfide (H{sub 2}S), which is thought to be responsible for COS toxicity. No threshold limit value for COS has been established. Results of these studies indicate COS (with an LC{sub 50} of 590 ppm) is slightly less acutely toxic than H{sub 2}S (LC{sub 50} of 440 ppm).

  12. Monitoring of metals, organic compounds and coliforms in water catchment points from the Sinos River basin.

    Science.gov (United States)

    Nascimento, C A; Staggemeier, R; Bianchi, E; Rodrigues, M T; Fabres, R; Soliman, M C; Bortoluzzi, M; Luz, R B; Heinzelmann, L S; Santos, E L; Fleck, J D; Spilki, F R

    2015-05-01

    Unplanned use and occupation of the land without respecting its capacity of assimilation and environmental purification leads to the degradation of the environment and of water used for human consumption. Agricultural areas, industrial plants and urban centres developed without planning and the control of effluent discharges are the main causes of water pollution in river basins that receive all the liquid effluents produced in those places. Over the last decades, environmental management has become part of governmental agendas in search of solutions for the preservation of water quality and the restoration of already degraded resources. This study evaluated the conditions of the main watercourse of the Sinos River basin by monitoring the main physical, chemical and microbiological parameters described in the CONAMA Resolution no. 357/2005.The set of parameters evaluated at five catchment points of water human consumption revealed a river that has different characteristics in each reach, as the upper reach was class 1, whereas the middle and lower reaches of the basin were class 4. Monitoring pointed to households as the main sources of pollutants in those reaches, although metals used in the industrial production of the region were found in the samples analyzed. PMID:26270213

  13. Hypervalent Compounds as Ligands: I 3 -Anion Adducts with Transition Metal Pentacarbonyls

    KAUST Repository

    Rogachev, Andrey Yu.

    2013-06-17

    Just a couple of transition metal complexes of the familiar triiodide anion are known. To investigate the bonding in these, as well as isomeric possibilities, we examined theoretically adducts of I3 - with model organometallic fragments, [Cr(CO)5] and [Mn(CO) 5]+. Bonding energy computations were augmented by a Natural Bond Orbital (NBO) perturbation theory analysis and Energy Decomposition Analysis (EDA). The bonding between I3 - and the organometallic fragment is substantial, especially for the electrostatically driven anion-cation case. "End-on" coordination is favored by 5-13 kcal/mol over "side-on" (to the central I of I3 -), with a ∼10 kcal/mol barrier for isomerization. A developing asymmetry in the I-I bonding of "end-on" coordinated I 3 - led us to consider in some detail the obvious fragmentation to a coordinated I- and free I2. While the signs of incipient fragmentation in that direction are there, these is a definite advantage to maintaining some I- to I2 bonding in triiodide complexes. © 2013 American Chemical Society.

  14. Protein conjugated with aldehydes derived from lipid peroxidation as an independent parameter of the carbonyl stress in the kidney damage

    Directory of Open Access Journals (Sweden)

    Medina-Navarro Rafael

    2011-11-01

    Full Text Available Abstract Background One of the well-defined and characterized protein modifications usually produced by oxidation is carbonylation, an irreversible non-enzymatic modification of proteins. However, carbonyl groups can be introduced into proteins by non-oxidative mechanisms. Reactive carbonyl compounds have been observed to have increased in patients with renal failure. In the present work we have described a procedure designed as aldehyde capture to calculate the protein carbonyl stress derived solely from lipid peroxidation. Methods Acrolein-albumin adduct was prepared as standard at alkaline pH. Rat liver microsomal membranes and serum samples from patients with diabetic nephropathy were subjected to the aldehyde capture procedure and aldol-protein formation. Before alkalinization and incubation, samples were precipitated and redisolved in 6M guanidine. The absorbances of the samples were read with a spectrophotometer at 266 nm against a blank of guanidine. Results Evidence showed abundance of unsaturated aldehydes derived from lipid peroxidation in rat liver microsomal membranes and in the serum of diabetic patients with advanced chronic kidney disease. Carbonyl protein and aldol-proteins resulted higher in the diabetic nephropathy patients (p Conclusion The aldehyde-protein adduct represents a non oxidative component of carbonyl stress, independent of the direct amino acid oxidation and could constitute a practical and novelty strategy to measure the carbonyl stress derived solely from lipid peroxidation and particularly in diabetic nephropathy patients. In addition, we are in a position to propose an alternative explanation of why alkalinization of urine attenuates rhabdomyolysis-induced renal dysfunction.

  15. Proton and metal ion binding to natural organic polyelectrolytes-I. Studies with synthetic model compounds

    Science.gov (United States)

    Marinsky, J.A.; Reddy, M.M.

    1984-01-01

    A unified physico-chemical model, based on a modified Henderson-Hasselbalch equation, for the analysis of ion complexation reactions involving charged polymeric systems is presented and verified. In this model pH = pKa+p(??Ka) + log(??/1 - ??) where Ka is the intrinsic acid dissociation constant of the ionizable functional groups on the polymer, ??Ka is the deviation of the intrinsic constant due to electrostatic interaction between the hydrogen ion and the polyanion, and alpha (??) is the polyacid degree of ionization. Using this approach pKa values for repeating acidic units of polyacrylic (PAA) and polymethacrylic (PMA) acids were found to be 4.25 ?? 0.03 and 4.8 ?? 0.1, respectively. The polyion electrostatic deviation term derived from the potentiometric titration data (i.e. p(??Ka)) is used to calculate metal ion concentration at the complexation site on the surface of the polyanion. Intrinsic cobalt-polycarboxylate binding constants (7.5 for PAA and 5.6 for PMA), obtained using this procedure, are consistent with the range of published binding constants for cobalt-monomer carboxylate complexes. In two phase systems incorporation of a Donnan membrane potential term allows determination of the intrinsic pKa of a cross-linked PMA gel, pKa = 4.83, in excellent agreement with the value obtained for the linear polyelectrolyte and the monomer. Similarly, the intrinsic stability constant for cobalt ion binding to a PMA-gel (??CoPMA+ = 11) was found to be in agreement with the linear polyelectrolyte analogue and the published data for cobalt-carboxylate monodentate complexes. ?? 1984.

  16. Rapid and efficient synthesis of alkali metal-C[sub 60] compounds in liquid ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Buffinger, D.R.; Ziebarth, R.P.; Stenger, V.A.; Recchia, C.; Pennington, C.H. (Ohio State Univ., Columbus, OH (United States))

    1993-10-06

    The reaction of stoichiometric amounts of alkali metals with C[sub 60] in liquid ammonia provides a rapid and quantitative route to M[sub x]C[sub 60] superconductors (M[sub x] = K[sub 3]/, Rb[sub 3]/, CsRb[sub 2], RbCs[sub 2], KRbCs). Annealing of the samples for 24-48 h at 375[degrees]C is required to obtain large superconducting fractions. [sup 13]C and [sup 87]Rb NMR line shapes are reported for Rb[sub 3]C[sub 60]. The [sup 13]C line shapes show the degree of rotational motion of the C[sub 60] ions varies considerably from sample to sample and is dependent on the method of preparation and subsequent heat treatment. A correlation between the degree of rotational motion and the superconducting fraction is noted and attributed to the amount of disorder in the sample. [sup 87]Rb NMR shows three peaks indicating that Rb[sub 3]C[sub 60] actually contains three different cation sites, rather than the two suggested by X-ray powder diffraction data. The third site is occupied by approximately 15% of the Rb ions in Rb[sub 3]C[sub 60] and is shown to be a subset of the tetrahedral sites in the cubic close-packed C[sub 60] lattice. Although the exact nature of the distortion required to produce the third site is unknown, it appears to be unrelated to the orientations of the C[sub 60] ions creating the site. 18 refs., 2 figs.

  17. Synthesis of nanoporous carbohydrate metal-organic framework and encapsulation of selected organic compounds

    Science.gov (United States)

    Al-Ghamdi, Saleh

    Cyclodextrin metal organic frameworks (CDMOFs) with different types of cyclodextrins (CDs) (i.e., Alpha, Beta and Gamma-CD) and coordination potassium ion sources (KOH) CDMOF-a and (C7H5KO2) CDMOF-b were synthesized and fully characterized. The physical and thermal properties of the successfully produced CDMOFs were evaluated using N2 gas sorption, thermal gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The N2 gas sorption isotherm revealed high uptake into the micropores (330 cm3.g -1 for Gamma-CDMOF-a) to macropore (125 cm3.g -1 for Gamma-CDMOF-b) structures with isotherm types I and II for Gamma-CDMOFs and Alpha-CDMOFs, respectively. The Langmuir specific surface area (SSA) of Gamma-CDMOF-a (1376 m2.g-1) was significantly higher than the SSA of Alpha-CDMOF-a (289 m2.g -1) and Beta-CDMOF-a (54 m2.g-1). The TGA of dehydrated CDMOF crystals showed the structures were thermally stable up to 300 °C. The XRD of the Gamma-CDMOFs and Alpha-CDMOFs showed a highly face-centered-cubic symmetrical structure. An Aldol condensation reaction occurred during the encapsulation of acetaldehyde, hexanal, trans-2-hexenal, and ethanol into Gamma-CDMOF-a, with a SSA of 1416 m2.g -1. However, Gamma-CDMOF-b with a SSA of 499 m2.g -1 was successfully used to encapsulate acetaldehyde. The maximum release of acetaldehyde from CDMOF-b was 53 mug of acetaldehyde per g of CDMOF, which is greater than previously reported acetaldehyde encapsulation on Beta-CD inclusion complexes.

  18. Effect of carbonyl inhibitors and their H₂O₂ detoxification on lactic acid fermentation.

    Science.gov (United States)

    Li, Jing; Zhu, Caiqing; Tu, Maobing; Han, Pingping; Wu, Yonnie

    2015-04-01

    Biomass degradation compounds significantly inhibit biochemical conversion of biomass prehydrolysates to biofuels and chemicals, such as lactic acid. To characterize the structure-activity relationship of carbonyl inhibition on lactic acid fermentation, we examined effects of eight carbonyl compounds (furfural, 5-hydroxymethyl furfural, vanillin, syringaldehyde, 4-hydroxybenzaldehyde, phthalaldehyde, benzoic acid, and pyrogallol aldehyde) and creosol on lactic acid production by Lactobacillus delbrueckii. Pyrogallol aldehyde reduced the cell growth rate by 35 % at 1.0 mM and inhibited lactic acid production completely at 2.0 mM. By correlating the molecular descriptors to the inhibition constants in lactic acid fermentation, we found a good relationship between the hydrophobicity (Log P) of aldehydes and their inhibition constants in fermentation. The inhibitory effect of carbonyl inhibitors appeared to correlate with their thiol reactivity as well. In addition, we found that H2O2 detoxified pyrogallol aldehyde and phthalaldehyde inhibitory activity. H2O2 detoxification was applied to real biomass prehydrolysates in lactic acid fermentation. PMID:25666370

  19. Complex permeability and permittivity variation of carbonyl iron rubber in the frequency range of 2 to 18 GHz

    Directory of Open Access Journals (Sweden)

    Adriana Medeiros Gama

    2010-04-01

    Full Text Available The complex dielectric permittivity (e and magnetic permeability (m of Radar Absorbing Materials (RAM based on metallic magnetic particles (carbonyl iron particles embedded in a dielectric matrix (silicon rubber have been studied in the frequency range of 2 to 18 GHz. The relative permeability and permittivity of carbonyl iron-silicon composites for various mass fractions are measured by the transmission/reflection method using a vector network analyzer. The concentration dependence of permittivity and permeability on the frequency is analyzed. In a general way, the results show that e´ parameter shows a more significant variation among the evaluated parameters (e”, m”, m’. The comparison of dielectric and magnetic loss tangents (e”/e” and m”/m’, respectively shows more clearly the variation of both parameters (e and m according to the frequency. It is also observed that higher carbonyl iron content fractions favor both dielectric and magnetic loss tangents.

  20. Kinetics and Mechanism of the Gas-Phase Reaction of Selected Carbonyls with Cl Atoms between 250 and 340 K

    Science.gov (United States)

    Hasson, A. S.; Algrim, L.; Abdelhamid, A.; Tyndall, G. S.; Orlando, J. J.

    2013-12-01

    Carbonyls are important products from the gas phase degradation of most volatile organic compounds. Their atmospheric reactions therefore have a significant impact on atmospheric composition, particularly in aged air masses. While the reactions of short-chain linear carbonyls are well understood, the chemistry of larger (> C6) and branched carbonyl is more uncertain. To provide insight into these reactions, the reactions of three carbonyls (methyl isopropyl ketone, MIK; di-isopropyl ketone, DIK; and diethyl ketone, DEK) with chlorine atoms were investigated between 250 and 340 K and 1 atm in the presence and absence of NOx and an HO2 source (methanol). Experiments were performed in a photochemical reactor using a combination of long-path Fourier transform infra-red spectroscopy, proton transfer reaction mass spectrometry and gas chromatography with flame ionization detection. The kinetics were studied using the relative rate technique with butanone and isopropanol as the reference compounds. The Arrhenius expression for the three rate coefficients was determined to be k(DEK+Cl) = 3.87 x 10-11e(2 × 7 kJ/mol)/RT cm3 molecules-1 s-1 , k(MIPK+Cl) = 7.20 x 10-11e(0.2× 8 kJ/mol)/RT cm3 molecules-1 s-1 , and k(DIPK+Cl) = 3.33 x 10-10e(-3× 8 kJ/mol)/RT cm3 molecules-1 s-1 . Measured reaction products accounted for 38-72 % of the reacted carbon and were consistent with strong deactivation of the carbon atom adjacent to the carbonyl group with respect to H-atom abstraction by Cl atoms. The product distributions also provide insight into radical recycling from the organic peroxy + HO2 reaction, and the relative rates of isomerization, fragmentation and reaction with O2 for carbonyl-containing alkoxy radicals. Implications of these results will be discussed.

  1. Reactivity, Selectivity, and Reaction Mechanisms of Aminoguanidine, Hydralazine, Pyridoxamine, and Carnosine as Sequestering Agents of Reactive Carbonyl Species: A Comparative Study.

    Science.gov (United States)

    Colzani, Mara; De Maddis, Danilo; Casali, Gaia; Carini, Marina; Vistoli, Giulio; Aldini, Giancarlo

    2016-08-19

    Reactive carbonyl species (RCS) are endogenous or exogenous byproducts involved in the pathogenic mechanisms of different oxidative-based disorders. Detoxification of RCS by carbonyl quenchers is a promising therapeutic strategy. Among the most studied quenchers are aminoguanidine, hydralazine, pyridoxamine, and carnosine; their quenching activity towards four RCS (4-hydroxy-trans-2-nonenal, methylglyoxal, glyoxal, and malondialdehyde) was herein analyzed and compared. Their ability to prevent protein carbonylation was evaluated in vitro by using an innovative method based on high-resolution mass spectrometry (HRMS). The reactivity of the compounds was RCS dependent: carnosine efficiently quenched 4-hydroxy-trans-2-nonenal, pyridoxamine was particularly active towards malondialdehyde, aminoguanidine was active towards methylglyoxal and glyoxal, and hydralazine efficiently quenched all RCS. Reaction products were generated in vitro and were characterized by HRMS. Molecular modeling studies revealed that the reactivity was controlled by specific stereoelectronic parameters that could be used for the rational design of improved carbonyl quenchers. PMID:26891408

  2. Synthesis, electronic structure and catalytic activity of ruthenium-iodo-carbonyl complexes with thioether containing NNS donor ligand

    Science.gov (United States)

    Jana, Subrata; Jana, Mahendra Sekhar; Biswas, Sujan; Sinha, Chittaranjan; Mondal, Tapan Kumar

    2014-05-01

    The ruthenium carbonyl complexes 1 and 2 with redox noninnocent NNS donor ligand, 1-methyl-2-{(o-thiomethyl)phenylazo}imidazole (L) have been synthesized and characterized by various analytical and spectroscopic (IR, UV-Vis and 1H NMR) techniques. The complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 1.11 V for 1 and 0.76 V for 2 along with two successive one electron ligand reductions. Catalytic activity of the compounds has been investigated to the oxidation of PhCH2OH to PhCHO, 2-butanol (C4H9OH) to 2-butanone, 1-phenylethanol (PhC2H4OH) to acetophenone, cyclopentanol (C5H9OH) to cyclopentanone, cyclohexanol to cyclohexanone, cycloheptanol to cycloheptanone and cycloctanol to cycloctanone using N-methylmorpholine-N-oxide (NMO) as oxidant. The catalytic efficiency of 2 is greater than complex 1 and well correlate with the metal oxidation potential. DFT, NBO and TDDFT calculations in DFT/B3LYP/6-31G(d)/lanL2TZ(f) method are employed to interpret the structural and electronic features of the complexes.

  3. Quantitative mammalian cell mutagenesis and a preliminary study of the mutagenic potential of metallic compounds. [Cell system used was CHO/HGPRT

    Energy Technology Data Exchange (ETDEWEB)

    Hsie, A.W.; Johnson, N.P.; Couch, D.B.; San Sebastian, J.R.; O' Neill, J.P.; Forbes, N.L.

    1978-01-01

    We have defined a set of stringent conditions required to quantify specific gene mutation in a mammalian cell system, CHO/HGPRT. Greater than 98% of the 6-thioguanine (TG)-resistant variants were shown to be deficient in the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in Chinese hamster ovary (CHO) cells. The sensitive and quantitative nature of this assay was utilized to study the structure-activity (mutagenicity) relationship of various classes of chemicals. Mutagenicity as determined in the CHO/HGPRT assay, appears to correlate well (76/83 (92%)) with the reported animal carcinogenicity of 108 chemicals studied. The system also appears to be suitable for studying the mutagenicity and cytotoxicity of metallic compounds. We found that cis-dichlorodiammine Pt(II) (cis-Pt(NH/sub 3/)/sub 2/Cl/sub 2/) (cis-DDP), one of the widely used inorganic antitumor agents, is cytotoxic and mutagenic. Mutagenicity of cis-DDP correlates with its binding to DNA. However, trans-DDP, (Pt(NH/sub 3/)/sub 4/)Cl/sub 2/, and K/sub 2/(PtCl/sub 4/) exhibit greatly reduced biological activities. Among 14 other metals studied, we found that carcinogenic metallic compounds, such as MnCl/sub 2/, NiCl/sub 2/, and BeSO/sub 4/ are mutagenic, while non-carcinogenic compounds such as MgCl/sub 2/ and H/sub 2/SeO/sub 3/ are not. Determination of metal mutagenicity is apparently complicated by the ionic composition of the medium. This may account in part for varying results in studies of the mutagenicity of other metallic compounds. Further refinement of the assay conditions, especially with respect to the ionic environment necessary for quantifying mutagenesis of each metallic agent, is in progress.

  4. Occurrence and availability of prioritary compounds (chlorinated pesticides, polybrominated diphenyl ethers, alkylphenols and heavy metals) in freshwater sediments and fish

    International Nuclear Information System (INIS)

    Full text: The aim of this work was to determine priority organic and inorganic compounds in river sediments and fish and to study their availability. Twelve organ chlorinated compounds (OC), 40 polybromodiphenyl ethers (PBDEs), 2 alkylphenols (nonylphenol and octylphenol) (AP), and 9 heavy metals (HM) were investigated in samples taken in 20 locations along the Ebro river, in north east Spain. Sediment samples represent a stable matrix which indicate recent pollution episodes, whereas fish samples are good sentinels to monitor bioavailability and bioaccumulation. Compound selection was based on their inclusion in European priority lists (Directives 76/464/CEE and 60/2000/EU). The study area covered the Ebro hydrographic basin which is the main tributary in Spain and flows through large agricultural areas characterized by wines, corn and maize and represents an important water source for the many industrial and urban activities settled along its course. To control the quality of the river basin, and in accordance with EU Directives, priority pollutants have been determined in sediment and fish to determine most ubiquitous compounds, geographical distribution and bioavailability of pollutants to two different fish species. For such purpose, different analytical methods were developed to analyse all the above mentioned chemical species in the upper 2 cm sediment layer and in whole fish (Barbus graellsii, Cyprinus carpio). Among compounds studied, hexachlorocyclohexane, pentachlorophenol, aldrin, dieldrin and isodrin, and trichlorobenzene were never detected. All samples contained organic pollutants at total levels between 134 and 3199 μg/Kg-dw and total HM from 60.9 and 5131 mg/kg-dw, depending on sample location. For 18 of the 20 samples points, a correlation of 0.53 was found between total organic and total inorganic concentration. In sediment samples, among the 4 chemical groups studied, HM were present at levels between 0.17 and 4036 mg/kg dry weight (dw), being

  5. Occurrence and availability of prioritary compounds (chlorinated pesticides, polybrominated diphenyl ethers, alkylphenols and heavy metals) in freshwater sediments and fish

    International Nuclear Information System (INIS)

    Full text: The aim of this work was to determine priority organic and inorganic compounds in river sediments and fish and to study their availability. Twelve organ chlorinated compounds (OC), 40 polybromodiphenyl ethers (PBDEs), 2 alkylphenols (nonylphenol and octylphenol) (AP), and 9 heavy metals (HM) were investigated in samples taken in 20 locations along the Ebro river, in north east Spain. Sediment samples represent a stable matrix which indicate recent pollution episodes, whereas fish samples are good sentinels to monitor bioavailability and bioaccumulation. Compound selection was based on their inclusion in European priority lists (Directives 76/464/CEE and 60/2000/EU). The study area covered the Ebro hydrographic basin which is the main tributary in Spain and flows through large agricultural areas characterized by wines, corn and maize and represents an important water source for the many industrial and urban activities settled along its course. To control the quality of the river basin, and in accordance with EU Directives, priority pollutants have been determined in sediment and fish to determine most ubiquitous compounds, geographical distribution and bioavailability of pollutants to two different fish species. For such purpose, different analytical methods were developed to analyse all the above mentioned chemical species in the upper 2 cm sediment layer and in whole fish (Barbus graellsii, Cyprinus carpio). Among compounds studied, hexachlorocyclohexane, pentachlorophenol, aldrin, dieldrin and isodrin, and trichlorobenzene were never detected. All samples contained organic pollutants at total levels between 134 and 3199 μg/Kg-dw and total HM from 60.9 and 5131 mg/kg-dw, depending on sample location. For 18 of the 20 samples points, a correlation of 0.53 was found between total organic and total inorganic concentration. In sediment samples, among the 4 chemical groups studied, HM were present at levels between 0.17 and 4036 mg/kg dry weight (dw), being

  6. Uranium value leaching with ammonium carbonate and/or bicarbonate plus nitrate oxidant and optionally oxidation-catalytic metal compounds

    International Nuclear Information System (INIS)

    In accordance with the present invention, uranium values are extracted from solid materials containing uranium in lower valence states than its hexavalent state comprising contacting the solid materials containing uranium with an alkaline leach solution containing the ionic species NH4+ and NO3- in an amount sufficient to convert at least a portion of the uranium in valence states lower than its hexavalent state to its hexavalent state. In another embodiment of the present invention, the aqueous alkaline leach solution is an aqueous solution of a carbonate selected from the group consisting of ammonium carbonate, ammonium bicarbonate and mixtures thereof. In a further embodiment, ionic species NO3- is supplied by an alkaline nitrate. In yet another embodiment of the present invention, the aqueous alkaline leach solution additionally contains at least one catalytic compound of a metal selected from the group consisting of copper, cobalt, iron, nickel, chromium and mixtures thereof adapted to assure the pesence of the ionic species Cu++, Co++, Fe+++, Ni++, Cr+++ and mixtures thereof, respectively, is present during the contacting of the solid materials containing uranium with the aqueous alkaline leach solution in an amount sufficient to catalyze the oxidation of at least a part of the uranium in valence states lower than its hexavalent state to its hexavalent state

  7. Theoretical Calculations for Magnetic Property of FeRh Inter-Metallic Compound with Site-Exchange Defects

    Science.gov (United States)

    Kaneta, Yasunori; Ishino, Shiori; Chen, Ying; Iwata, Shuichi; Iwase, Akihiro

    2011-10-01

    To clarify the relationship between a magnetic property and a defect structure in FeRh inter-metallic compound theoretically, energy band calculations are performed based on the density functional theory. Under the assumption that the majority of defect structure is a type of site-exchanged one between Fe and Rh atoms, total energy for various magnetic structures is evaluated within a super-cell of 2×2×2 cubic cells. Due to the site-exchange defect pair of nearest neighbor Fe and Rh atoms in 12.5%/f.u. (f.u.: formula unit) density, the total energy increases by 1.91 eV/pair in the anti-ferromagnetic structure and 0.88 eV/pair in the ferromagnetic structure. Although the anti-ferromagnetic structure is the stable state at low temperatures in defect-free FeRh, it becomes unstable with an amount of the site-exchange defect density. Threshold defect density to stabilize ferromagnetic state is estimated to be 0.8%/f.u. This phenomenon is expected in ion irradiated FeRh.

  8. Development of production technology by metallic powder injection molding for TiAl-type intermetallic compound with high efficiency

    International Nuclear Information System (INIS)

    Since a TiAl-type intermetallic compound has an excellent high temperature strength and corrosion resistance, in addition to light weight, it is expected to be applicable to the engine parts. However, it is difficult for TiAI to produce a part with a complex shape, and considerable cost will be required. In this study, it was tried to develop a technology for producing TiAl products with high density and high efficiency by using metal powder injection molding (MIM) process. Several kinds of TiAI alloy powders made by the self-propagating high temperature synthesis process were mixed with an organic binder, kneaded and then injection-molded into tensile specimens. These compacts were subjected to the treatment for removing the binder and sintering, resulted in a relative density as high as 97 %. By room and high temperature tensile tests, it was found that, Ti-47.4Al-2.6Cr (at%) has the strength and ductility as those of the conventional processed materials. (author)

  9. 3D Online Submicron Scale Observation of Mixed Metal Powder's Microstructure Evolution in High Temperature and Microwave Compound Fields

    Directory of Open Access Journals (Sweden)

    Dan Kang

    2014-01-01

    Full Text Available In order to study the influence on the mechanical properties caused by microstructure evolution of metal powder in extreme environment, 3D real-time observation of the microstructure evolution of Al-Ti mixed powder in high temperature and microwave compound fields was realized by using synchrotron radiation computerized topography (SR-CT technique; the spatial resolution was enhanced to 0.37 μm/pixel through the designed equipment and the introduction of excellent reconstruction method for the first time. The process of microstructure evolution during sintering was clearly distinguished from 2D and 3D reconstructed images. Typical sintering parameters such as sintering neck size, porosity, and particle size of the sample were presented for quantitative analysis of the influence on the mechanical properties and the sintering kinetics during microwave sintering. The neck size-time curve was obtained and the neck growth exponent was 7.3, which indicated that surface diffusion was the main diffusion mechanism; the reason was the eddy current loss induced by the external microwave fields providing an additional driving force for mass diffusion on the particle surface. From the reconstructed images and the curve of porosity and average particle size versus temperature, it was believed that the presence of liquid phase aluminum accelerated the densification and particle growth.

  10. Decomposition Process of Alane and Gallane Compounds in Metal-Organic Chemical Vapor Deposition Studied by Surface Photo-Absorption

    Science.gov (United States)

    Yamauchi, Yoshiharu; Kobayashi, Naoki

    1992-09-01

    We used surface photo-absorption (SPA) to study trimethylamine alane (TMAA) and dimethylamine gallane (DMAG) decomposition processes on a substrate surface in metal-organic chemical vapor deposition. The decomposition onset temperatures of these group III hydride sources correspond to the substrate temperature at which the SPA reflectivity starts to increase during the supply of the group III source onto a group V stabilized surface. It was found that TMAA and DMAG start to decompose at about 150°C on an As-stabilized surface, which is much lower than the decomposition onsets of trialkyl Al and Ga compounds. Low temperature photoluminescence spectra exhibit dominant excitionic emissions for GaAs layers grown by DMAG at substrate temperatures above 400°C, indicating that carbon incorporation and the crystal quality deterioration due to incomplete decomposition on surface is much suppressed by using DMAG. A comparison of AlGaAs photoluminescence between layers by TMAA/triethylgallium and triethylaluminum/triethylgallium shows that the band-to-carbon acceptor transition is greatly reduced by using TMAA. TMAA and DMAG were verified to be promising group III sources for low-temperature and high-purity growth with low-carbon incorporation.

  11. Chalcones: compounds possessing a diversity in applications

    OpenAIRE

    Urmila Berar

    2012-01-01

    Chalcones are a class of α, β- unsaturated carbonyl compounds that form the central core for a variety of naturally occurring biologically active compounds. They exhibit tremendous potential to act as a pharmacological agent. Besides their various pharmacological activities, chalcones have been explored for different optical applications including second harmonic generation materials in non- linear optics, fluorescent probe for sensing different molecules.

  12. 4f-3d interaction and magnetic anisotropy in ThMn12-type rare-earth transition-metal compounds

    International Nuclear Information System (INIS)

    Rare-earth (R) transition-metal (T) compounds of the R(T,M)12-type with R=Y or one of the heavy-rare-earth elements, T=Fe or Co and M=Ti, V, Mo or Si, have been studied at 4.2 K in the Amsterdam High-Field Installation in magnetic fields up to 38 T and at temperatures between 4.2 and 1000 K in other magnetometers. The 4f-3d interaction is derived from magnetization measurements on single-crystalline particles that are free to rotate in the applied fields. The stabilizing element M is shown to have a pronounced influence on the 4f-3d interaction strength in these compounds. The large variation in Curie temperatures of the Y compounds and the different types of magnetic anisotropy found in the Y compounds demonstrate that the element M plays an important role in establishing these properties as well. (orig.)

  13. Catalytic pyrolysis of wheat bran for hydrocarbons production in the presence of zeolites and noble-metals by using TGA-FTIR method.

    Science.gov (United States)

    Lazdovica, K; Liepina, L; Kampars, V

    2016-05-01

    Pyrolysis of wheat bran with or without catalysts was investigated using TGA-FTIR method in order to determine the influence of zeolite and noble metal catalysts on the evolution profile and relative yield of the volatile compounds. The addition of all catalysts decreased the volatile matter of wheat bran from 76.3% to 75.9%, 73.9%, 73.5%, 69.7% and increased the solid residue from 18.0% to 18.4%, 20.4%, 20.8%, 24.6% under the catalyst of ZSM-5, 5% Pd/C, MCM-41, and 5% Pt/C. Noble-metal catalysts had higher activity for deoxygenation of compounds containing carbonyl, carboxyl, and hydroxyl groups than zeolites. Degradation of nitrogen containing compounds atom proceeded better in presence of zeolites. Noble-metal catalysts promoted formation of aromatics and changed the profiles of evolved compounds whereas zeolites advanced formation of aliphatics and olefins. PMID:26874441

  14. Green Aza-Michael Reaction of Aliphatic Amines to á,(a)-Unsaturated Compounds in Water

    Institute of Scientific and Technical Information of China (English)

    XU Li-Wen; XIA Chun-Gu

    2004-01-01

    The hydroamination of olefins is a long-standing goal for transition metal catalysis. And the metal-catalyzed addition of amines to carbon-carbon double bonds is an unsolved, synthetically important problem. Although recent advances have made using lanthanide and precious metal complexes, there are few excellent catalyst that display broad functional group tolerance and useful rates for an intermolecular aza-Michael addition. As such, the development of efficient synthetic methods leading to a-amino carbonyl compounds and derivatives has attracted much attention in organic synthesis. Although recent advances have made this route more attractive, development of cheaper, simpler, and more efficient metal catalyst is highly desirable. We also have been interested in developing a reaction that uses catalytic quantities of minimally toxic, readily available, economic reagent should greatly contribute to the creation of environmental benign processes.The recent interest in aqueous medium metal-mediated carbon-carbon and carbon-heteroatom and formations led to the contributors for such reactions. Furthermore, development of organic reactions in water will contribute to the progress of green and quasi-nature catalysis chemistry. Surprisingly however, there is few report on conjugate additions of amines to a,a-unsaturated carbonyl compounds in water.Herein, we report a new protocol that employs air stable copper salts as efficient catalyst in the aza-Michael reaction under mild reaction conditions. Advantages of the protocol include high-yielding reactions that can be conducted at ambient temperature; the use of readily available and stable copper salts as the catalyst, and the reaction was successfully performed in environmental benign solvent, water.Finally, we have utilized a variety of aliphatic amines successfully with different á,(a)-unsaturated compounds catalyzed by simple hydrophilic ionic liquid, bmimBF4 in water. Interestingly, all the aliphatic amines gave

  15. Half-metallicity in the half-Heusler RbSrC, RbSrSi and RbSrGe compounds

    International Nuclear Information System (INIS)

    Electronic structure and magnetic properties based on density functional theory (DFT) within the generalized gradient approximation (GGA) for RbSrX(X=C, Si, Ge) half-Heusler compounds have been performed using the full-potential linearized augmented plane wave (FP-LAPW+lo) method. The electronic band structures and density of states of three compounds show that the spin-down electrons have metallic, and the spin-up bands have a gap of 1.73, 1.61, and 1.23 eV for RbSrC, RbSrSi, and RbSrGe respectively, resulting in stable half-metallic ferromagnetic behavior with magnetic moments of 1 μB. - Highlights: ► There has been little work on HM ferromagnets with Heusler structure excluding transition metals. ► The optimization revealed the lowest energy for the structure type (I) for RbSrX(X=C, Si, Ge) compounds. ► The half metallicity is found to be robust with respect to the lattice constant contraction

  16. Half-metallicity in the half-Heusler RbSrC, RbSrSi and RbSrGe compounds

    Energy Technology Data Exchange (ETDEWEB)

    Rozale, H., E-mail: hrozale@yahoo.fr [Condensed Matter and sustainable development Laboratory (LMCDD), University of Sidi Bel-Abbes, Sidi Bel-Abbes 22000 (Algeria); Amar, A.; Lakdja, A.; Moukadem, A.; Chahed, A. [Condensed Matter and sustainable development Laboratory (LMCDD), University of Sidi Bel-Abbes, Sidi Bel-Abbes 22000 (Algeria)

    2013-06-15

    Electronic structure and magnetic properties based on density functional theory (DFT) within the generalized gradient approximation (GGA) for RbSrX(X=C, Si, Ge) half-Heusler compounds have been performed using the full-potential linearized augmented plane wave (FP-LAPW+lo) method. The electronic band structures and density of states of three compounds show that the spin-down electrons have metallic, and the spin-up bands have a gap of 1.73, 1.61, and 1.23 eV for RbSrC, RbSrSi, and RbSrGe respectively, resulting in stable half-metallic ferromagnetic behavior with magnetic moments of 1 μ{sub B}. - Highlights: ► There has been little work on HM ferromagnets with Heusler structure excluding transition metals. ► The optimization revealed the lowest energy for the structure type (I) for RbSrX(X=C, Si, Ge) compounds. ► The half metallicity is found to be robust with respect to the lattice constant contraction.

  17. Human TTR conformation altered by rhenium tris-carbonyl derivatives.

    Science.gov (United States)

    Ciccone, Lidia; Policar, Clotilde; Stura, Enrico A; Shepard, William

    2016-09-01

    Transthyretin (TTR) is a 54 kDa homotetrameric serum protein that transports thyroxine (T4) and retinol. TTR is potentially amyloidogenic due to homotetramer dissociation into monomeric intermediates that self-assemble as amyloid deposits and insoluble fibrils. Most crystallographic structures, including those of amyloidogenic variants show the same tetramer without major variations in the monomer-monomer interface nor in the volume of the interdimeric cavity. Soaking TTR crystals in a solution containing rhenium tris-carbonyl derivatives yields a TTR conformer never observed before. Only one of the two monomers of the crystallographic dimer is significantly altered, and the inner part of the T4 binding cavity is expanded at one end and shrunk at the other. The result redefines the mechanism of allosteric communication between the two sites, suggesting that negative cooperativity is a function of dimer asymmetry, which can be induced through internal or external binding. An aspect that remains unexplained is why the conformational changes are ubiquitous throughout the crystal although the heavy metal content of the derivatized crystals is relatively low. The conformational changes observed, which include Leu(82), may represent a form of TTR better at scavenging β-Amyloid. At a resolution of 1.69Å, with excellent refinement statistics and well defined electron density for all parts of the structure, it is possible to envisage answering important questions that range from protein cooperative behavior to heavy atom induced protein conformational modifications that can result in crystallographic non-isomorphism. PMID:27402536

  18. Uncertainties of polynuclear aromatic hydrocarbon and carbonyl measurements in heavy-duty diesel emission.

    Science.gov (United States)

    Mabilia, Rosanna; Cecinato, Angelo; Guerriero, Ettore; Possanzini, Massimiliano

    2006-02-01

    In this note we describe the speciated particle-phase PM2.5 polynuclear aromatic hydrocarbon (PAH) and gas-phase carbonyl emissions as collected from a heavy-duty diesel bus outfitted with an oxidation catalyst for exhaust after-treatment. The vehicle was run on a chassis dynamometer during a transient cycle test reproducing a typical city bus route (Azienda Tramviaria Municipalizzata cycle). The diluted tailpipe emissions were sampled for PAH using a 2.5 microm cut size cyclone glass fiber filter assembly, while carbonyls were absorbed onto dinitrophenyl hydrazine-coated silica cartridges. The former compounds were analysed by CGC-MS, the latter by HPLC-UV. Combining the two sets of speciation data resulting from 15 identical dynamometer tests provided a profile of both unregulated organic emissions. PAH emission rates decreased with the number of benzene fused rings. Fluoranthene and pyrene amounted to 90% of total PAHs quantified; six-ring PAHs accounted only for 0.5%. Similarly, formaldehyde and acetaldehyde accounted for approximately 80% of the total carbonyl emissions. Uncertainties of the method in the determination of individual emission factors were calculated. Statistical data processing revealed that all the measurements were quite unaffected by systematic errors and repeatability percentages did not exceed 50% for the majority of components of both groups. PMID:16524107

  19. A carnosine intervention study in overweight human volunteers: bioavailability and reactive carbonyl species sequestering effect

    Science.gov (United States)

    Regazzoni, Luca; de Courten, Barbora; Garzon, Davide; Altomare, Alessandra; Marinello, Cristina; Jakubova, Michaela; Vallova, Silvia; Krumpolec, Patrik; Carini, Marina; Ukropec, Jozef; Ukropcova, Barbara; Aldini, Giancarlo

    2016-06-01

    Carnosine is a natural dipeptide able to react with reactive carbonyl species, which have been recently associated with the onset and progression of several human diseases. Herein, we report an intervention study in overweight individuals. Carnosine (2 g/day) was orally administered for twelve weeks in order to evaluate its bioavailability and metabolic fate. Two carnosine adducts were detected in the urine samples of all subjects. Such adducts are generated from a reaction with acrolein, which is one of the most toxic and reactive compounds among reactive carbonyl species. However, neither carnosine nor adducts have been detected in plasma. Urinary excretion of adducts and carnosine showed a positive correlation although a high variability of individual response to carnosine supplementation was observed. Interestingly, treated subjects showed a significant decrease in the percentage of excreted adducts in reduced form, accompanied by a significant increase of the urinary excretion of both carnosine and carnosine-acrolein adducts. Altogether, data suggest that acrolein is entrapped in vivo by carnosine although the response to its supplementation is possibly influenced by individual diversities in terms of carnosine dietary intake, metabolism and basal production of reactive carbonyl species.

  20. Development of metal cation compound-loaded S-doped TiO2 photocatalysts having a rutile phase under visible light

    OpenAIRE

    Ohno, T; Murakami, N.; Tsubota, T.; Nishimura, H.

    2008-01-01

    We have synthesized S (S4+)-doped TiO2 photocatalysts having a rutile phase. Rutile S-doped TiO2 photocatalysts loaded with metal ion compounds (Fe3+, Rh3+, Cu2+, Co3+, Ni2+, Cr3+) have also been prepared (S-doped TiO2-Mn+). The metal ions were adsorbed on the surfaces of S-doped TiO2 nanoparticles by impregnation methods (IM) or photodeposition methods (PH). The photocatalytic activities of S-doped TiO2 for oxidation of acetaldehyde in gas phase were drastically improved after adsorbing trea...

  1. Formation of Small Gas Phase Carbonyls from Heterogeneous Oxidation of Polyunsaturated Fatty Acids (PUFA)

    Science.gov (United States)

    Zhou, S.; Zhao, R.; Lee, A.; Gao, S.; Abbatt, J.

    2011-12-01

    Fatty acids (FAs) are emitted into the atmosphere from gas and diesel powered vehicles, cooking, plants, and marine biota. Field measurements have suggested that FAs, including polyunsaturated fatty acids (PUFA), could make up an important contribution to the organic fraction of atmospheric aerosols. Due to the existence of carbon-carbon double bonds in their molecules, PUFA are believed to be highly reactive towards atmospheric oxidants such as OH and NO3 radicals and ozone, which will contribute to aerosol hygroscopicity and cloud condensation nuclei activity. Previous work from our group has shown that small carbonyls formed from the heterogeneous reaction of linoleic acid (LA) thin films with gas-phase O3. It is known that the formation of small carbonyls in the atmosphere is not only relevant to the atmospheric budget of volatile organic compounds but also to secondary organic aerosol formation. In the present study, using an online proton transfer reaction mass spectrometry (PTR-MS) and off-line gas chromatography-mass spectrometry (GC-MS) we again investigated carbonyl formation from the same reaction system, i.e. the heterogeneous ozonolysis of LA film. In addition to the previously reported carbonyls, malondialdehyde (MDA), a source of reactive oxygen species that is mutagenic, has been identified as a product for the first time. Small dicarbonyls, e.g. glyoxal, are expected to be formed from the further oxidation of MDA. In this presentation, the gas-phase chemistry of MDA with OH radicals using a newly built Teflon chamber in our group will also be presented.

  2. Radionuclides, metals, and organic compounds in water, eastern part of A and B irrigation district, Minidoka County, Idaho

    International Nuclear Information System (INIS)

    The US Geological Survey, in response to a US Department of Energy request, collected and analyzed water samples from 15 sites in Minidoka County, Idaho. Samples were collected from 12 groundwater and 3 irrigation wastewater sites. Samples were analyzed for tritium, gross alpha-particle and beta-particle radioactivity, total uranium, radium, radon-222, strontium-90, gross gamma radioactivity, trace metals, purgeable organic compounds, nutrients, and pesticides. Seven samples had tritium concentrations larger than the reporting level, ranging from 0.045 ±0.013 to 0.106 ±0.013 pCi/ml. Ranges of dissolved concentrations for some other radionuclides or types of radioactivity follow: gross alpha-particles radioactivity as thorium-230 - 2.23 ±0.61 to 9.10 ±1.25 pCiL; gross beta-particle radioactivity as strontium-90 in equilibrium with yttrium-90 - 2.50 ±1.28 to 10.3 ±2.5 pCi/L; total uranium - 1.38 +/-0.16 to 5.22 ±1.02 microg/L; radium-226 - 0.0102 ±0.0064 to 0.149 ±0.024 pCi/L; and strontium-90 - from < the reporting level to 0.483 ±0.071 pCi/L. Concentrations of nitrite plus nitrate as nitrogen ranged from 0.94 to 5 mg/L. Tetrachloroethylene and benzene were present in water from an irrigation drain

  3. Performance of metal compound on thermolysis and electrolysis on sugar industries waste water treatment: COD and color removal with sludge analysis (batch-experiment)

    Science.gov (United States)

    Sahu, Omprakash

    2016-06-01

    The sugar cane industry is one of the most water demanding industries. Sugar industries consume and generate excess amount of water. The generated water contains organic compounds, which would cause pollution. The aim of this research work is to study the effectiveness of metal compound for treatment of sugar industry waste water by thermolysis and electrolysis process. The result shows ferrous metal catalyst shows 80 and 85 % chemical oxygen demand and color removal at pH 6, optimum mass loading 4 kg/m3, treatment temperature 85 °C and treatment time 9 h. When ferrous material was used as electrode, maximum 81 % chemical oxygen demand and 84 % color removal at pH 6, current density 156 Am-2, treatment time 120 min and anode consumption 0.7 g for 1.5 L wastewater were obtained.

  4. Geochemical investigations into the retention of reactive carbon compounds for toxic heavy metals. Final report; Geochemische Untersuchungen zur Retention von reaktiven Kohlenstoffverbindungen fuer toxische Schwermetalle. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kupsch, H.; Mansel, A.; Crustewitz, C.

    2003-03-01

    The composition, reactivity and stability of reactive organic carbon compounds adsorbed on geogenic matrices was investigated. The surface deposits of NOM and its dependence on geochemical parameters was investigated in selected geomatrices. The retention of toxic heavy metals on these surface deposits of NOM was investigated in consideration of the presence of hydroxy species and inorganic ligands. The investigations of the reactivity of the NOM species requires analyses of these compounds and of the heavy metals in the ultratracer region. This was possible by means of radiochemical methods that were further developed in the context of this project. Radioactive labeling of identified reactive carbon compounds, e.g. with radioactive iodine, on the one hand, and the use of radioactive Cu, Pb, Hg isotopes on the other hand enabled speciation analyses in the binary systems (heavy metal + geomatrix, heavy metal + reactive carbon compounds, reactive carbon compounds + geomatrix) and especially in the ternary system (heavy metal + geomatrix + reactive carbon compounds) in defined conditions. The special labelling techniques were a precondition for distribution measurements in the near-natural, low concentration range. (orig.) [German] Ziel des Projektes war es, mit der vorhandenen Analytik und Expertise die Zusammensetzung, die Reaktivitaet und die Stabilitaet der auf den geogenen Matrizes sorbierten reaktiven organischen Kohlenstoffverbindungen und die damit verbundenen Stoffumsaetze aufzuklaeren. An ausgewaehlten Geomatrizes wurde die Ausbildung von Oberflaechendepositen des NOM und deren Abhaengigkeit gegenueber geochemischen Parametern untersucht. Unter der Beruecksichtigung der Gegenwart von Hydroxyspezies und anorganischen Liganden wurde die Retention toxischer Schwermetalle an diesen Oberflaechendepositen des NOM untersucht. Die Untersuchungen zur Reaktivitaet der NOM-Spezies setzt eine Analytik dieser Verbindungen und der Schwermetalle im Ultraspurenbereich

  5. Quantum Mechanical Investigation of the Electric and Thermal Characteristics of Magnetic Compound Fluid as a Semiconductor on Metal Combined with Rubber

    OpenAIRE

    Kunio Shimada

    2011-01-01

    By applying our developed intelligent fluid, magnetic compound fluid (MCF), to silicon oil rubber, we have made the MCF rubber highly sensitive to temperature and electric conduction. MCF is useful as an element material in haptic robot sensors and other related devices. By mixing metal particles in the silicon oil rubber and by applying a strong magnetic field to the rubber, high-density clusters of these particles can be formed. In a previous study, we investigated the electric current resu...

  6. Determination of gaseous and particulate carbonyls (glycolaldehyde, hydroxyacetone, glyoxal, methylglyoxal, nonanal and decanal) in the atmosphere at Mt. Tai

    Science.gov (United States)

    Kawamura, K.; Okuzawa, K.; Aggarwal, S. G.; Irie, H.; Kanaya, Y.; Wang, Z.

    2013-05-01

    Gaseous and particulate semi-volatile carbonyl compounds were determined every three hours in the atmosphere of Mount Tai (elevation, 1534 m) in the North China Plain during 2-5, 23-24 and 25 June 2006 under clear sky conditions. Using a two-step filter cartridge in a series, particulate carbonyls were first collected on a quartz filter and then gaseous carbonyls were collected on a quartz filter impregnated with O-benzylhydroxylamine (BHA). After the two-step derivatization with BHA and N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA), carbonyl derivatives were measured using a gas chromatography. The gaseous concentrations were obtained as follow: glycolaldehyde (range 0-826 ng m-3, average 303 ng m-3), hydroxyacetone (0-579 ng m-3, 126 ng m-3), glyoxal (46-1200 ng m-3, 487 ng m-3), methylglyoxal (88-2690 ng m-3, 967 ng m-3), n-nonanal (0-500 ng m-3, 89 ng m-3), and n-decanal (0-230 ng m-3, 39 ng m-3). These concentrations are among the highest ever reported in the urban and forest atmosphere. We found that gaseous α-dicarbonyls (glyoxal and methylglyoxal) are more than 20 times more abundant than particulate carbonyls and that glycolaldehyde is one order of magnitude more abundant than in aerosol phase. In contrast, hydroxyacetone and normal aldehydes (nonanal and decanal) are equally present in both phases. Time-resolved variations of carbonyls did not show any a clear diurnal pattern, except for hydroxyacetone. We found that glyoxal, methylglyoxal and glycolaldehyde positively correlated with levoglucosan (a tracer of biomass burning), suggesting that a contribution from field burning of agricultural wastes (wheat crops) is significant for the bifunctional carbonyls in the atmosphere of Mt. Tai. Upward transport of the pollutants to the mountaintop from the low lands in the North China Plain is a major process to control the distributions of carbonyls in the upper atmosphere over Mt. Tai.

  7. Chemical reactions in organic monomolecular layers. Condensation of hydrazine on carbonyl functions

    International Nuclear Information System (INIS)

    Evidence is given for chemical reactions of hydrazine (NH2-NH2) with different carbonyl functional groups of organic molecules in the solid state, in monomolecular layer structures. The condensation of hydrazine with these molecules leads to conjugated systems by bridging the N-N links, to cyclizations, and also to polycondensations. The reactions investigated were followed up by infrared spectrophotometry, by transmission and metallic reflection. These chemical reactions revealed in the solid phase constitute a polycondensation procedure which is valuable in obtaining organized polymers in monomolecular layers

  8. Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products

    DEFF Research Database (Denmark)

    Morgan, Philip E; Dean, Roger T; Davies, Michael Jonathan

    2002-01-01

    glycolaldehyde and hydroxyacetone. Incubation of these enzymes with proteins that had been preglycated with methylglyoxal, but not glucose, also resulted in significant time- and concentration-dependent inhibition with both isolated enzymes and cell lysates. This inhibition was not metal ion, oxygen, superoxide...... detection of cross-linked materials on protein gels. Though direct comparison of the extent of inhibition induced by free versus protein-bound carbonyls was not possible, the significantly higher concentrations of the latter materials over the former in diabetic plasma and cells lead us to suggest that...

  9. Targeting Reactive Carbonyl Species with Natural Sequestering Agents

    Directory of Open Access Journals (Sweden)

    Sung Won Hwang

    2016-02-01

    Full Text Available Reactive carbonyl species generated by the oxidation of polyunsaturated fatty acids and sugars are highly reactive due to their electrophilic nature, and are able to easily react with the nucleophilic sites of proteins as well as DNA causing cellular dysfunction. Levels of reactive carbonyl species and their reaction products have been reported to be elevated in various chronic diseases, including metabolic disorders and neurodegenerative diseases. In an effort to identify sequestering agents for reactive carbonyl species, various analytical techniques such as spectrophotometry, high performance liquid chromatography, western blot, and mass spectrometry have been utilized. In particular, recent advances using a novel high resolution mass spectrometry approach allows screening of complex mixtures such as natural products for their sequestering ability of reactive carbonyl species. To overcome the limited bioavailability and bioefficacy of natural products, new techniques using nanoparticles and nanocarriers may offer a new attractive strategy for increased in vivo utilization and targeted delivery of bioactives.

  10. Targeting Reactive Carbonyl Species with Natural Sequestering Agents.

    Science.gov (United States)

    Hwang, Sung Won; Lee, Yoon-Mi; Aldini, Giancarlo; Yeum, Kyung-Jin

    2016-01-01

    Reactive carbonyl species generated by the oxidation of polyunsaturated fatty acids and sugars are highly reactive due to their electrophilic nature, and are able to easily react with the nucleophilic sites of proteins as well as DNA causing cellular dysfunction. Levels of reactive carbonyl species and their reaction products have been reported to be elevated in various chronic diseases, including metabolic disorders and neurodegenerative diseases. In an effort to identify sequestering agents for reactive carbonyl species, various analytical techniques such as spectrophotometry, high performance liquid chromatography, western blot, and mass spectrometry have been utilized. In particular, recent advances using a novel high resolution mass spectrometry approach allows screening of complex mixtures such as natural products for their sequestering ability of reactive carbonyl species. To overcome the limited bioavailability and bioefficacy of natural products, new techniques using nanoparticles and nanocarriers may offer a new attractive strategy for increased in vivo utilization and targeted delivery of bioactives. PMID:26927058

  11. Variation of half metallicity and magnetism of Cd1−xCrxZ (Z=S, Se and Te) DMS compounds on reducing dilute limit

    International Nuclear Information System (INIS)

    The electronic and magnetic properties of Cr-doped Cd-Chalcogenides, Cd1−xCrxZ (Z=S, Se and Te) for dopant concentration, x=0.25 and 0.125 are presented in order to search new Dilute Magnetic Semiconductor (DMS) compounds suitable for spintronic applications. The calculations have been performed using full potential Linear Augmented Plane Wave (FPLAPW) method within generalized gradient approximation (GGA) as exchange–correlation (XC) potential. The calculated results show that the doping of Cr atom induces ferromagnetism in these compounds. Moreover, all DMS compounds retain half metallicity at both dopant concentrations with 100% spin polarization at Fermi level (EF). The total magnetic moments of these compounds are mainly due to Cr-d states present at EF where as there exist small induced magnetic moments on other non-magnetic atoms as well. -- Highlights: ► The half metallicity is preserved at lower doping concentration, x=0.125. ► The HM gap increases with reduction in doping concentration from 0.25 to 0.125. ► Induced ferromagnetism is explained by p–d hybridization between Cr-d and Z-p states. ► Double exchange mechanism is responsible for observed ferromagnetism in present DMS

  12. Targeting Reactive Carbonyl Species with Natural Sequestering Agents

    OpenAIRE

    Sung Won Hwang; Yoon-Mi Lee; Giancarlo Aldini; Kyung-Jin Yeum

    2016-01-01

    Reactive carbonyl species generated by the oxidation of polyunsaturated fatty acids and sugars are highly reactive due to their electrophilic nature, and are able to easily react with the nucleophilic sites of proteins as well as DNA causing cellular dysfunction. Levels of reactive carbonyl species and their reaction products have been reported to be elevated in various chronic diseases, including metabolic disorders and neurodegenerative diseases. In an effort to identify sequestering agents...

  13. Traditional reactive carbonyl scavengers do not prevent the carbonylation of brain proteins induced by acute glutathione depletion

    OpenAIRE

    Zheng, J; Bizzozero, O. A.

    2010-01-01

    This study investigated the effect of reactive carbonyl species (RCS)-trapping agents on the formation of protein carbonyls during depletion of brain glutathione (GSH). To this end, rat brain slices were incubated with the GSH-depletor diethyl maleate in the absence or presence of chemically different RCS scavengers (hydralazine, methoxylamine, aminoguanidine, pyridoxamine, carnosine, taurine and z-histidine hydrazide). Despite their strong reactivity towards the most common RCS, none of the ...

  14. Recherches récentes sur le cobalt carbonyle et ses dérivés Recent Studies of Cobalt Carbonyl and Its Derivatives

    Directory of Open Access Journals (Sweden)

    Poilblanc R.

    2006-11-01

    Full Text Available Faisant le point sur l'ensemble de leurs résultats obtenus au cours des dernières années, les auteurs développent divers aspects relatifs aux synthèses, à la physico-chimie et aux structures des complexes dérivés des cobalt carbonyle. L'étude concerne essentiellement : - les dérivés de simple substitution de l'octacarbonyle dicobalt et la tautomérie des complexes dinucléaires; - les dérivés mononucléaires ioniques et leur relation avec les formes alkyle et acétyle du cobalt (I; - le bis (tétracarbonyle cobalt mercure et ses dérivés de substitution ; - les dérivés tétranucléaires et le phénomène de « migration intramoléculaire » des ligands. Les caractéristiques spectrographiques de quelque soixante-dix complexes sont fournies en annexe. The authors review their findings concerning the synthesis, physico-chemical properties and structural nature of cobalt carbonyl derivatives. The article deals with : - Normal substitution of Col (CO,, and tautomerism of binuclear complexes; - lonic mononuclear derivatives in relation with alkyl and acetylcobaltcarbonyls ; - Bis (tetracarbonylcobalt mercury and its substituted derivatives ; - Tetranuclear cobalt complexes exhibiting intramolecular scrambling. Spectrographic data of some 70 compounds are given.

  15. New Ir Bis-Carbonyl Precursor for Water Oxidation Catalysis.

    Science.gov (United States)

    Huang, Daria L; Beltrán-Suito, Rodrigo; Thomsen, Julianne M; Hashmi, Sara M; Materna, Kelly L; Sheehan, Stafford W; Mercado, Brandon Q; Brudvig, Gary W; Crabtree, Robert H

    2016-03-01

    This paper introduces Ir(I)(CO)2(pyalc) (pyalc = (2-pyridyl)-2-propanoate) as an atom-efficient precursor for Ir-based homogeneous oxidation catalysis. This compound was chosen to simplify analysis of the water oxidation catalyst species formed by the previously reported Cp*Ir(III)(pyalc)OH water oxidation precatalyst. Here, we present a comparative study on the chemical and catalytic properties of these two precursors. Previous studies show that oxidative activation of Cp*Ir-based precursors with NaIO4 results in formation of a blue Ir(IV) species. This activation is concomitant with the loss of the placeholder Cp* ligand which oxidatively degrades to form acetic acid, iodate, and other obligatory byproducts. The activation process requires substantial amounts of primary oxidant, and the degradation products complicate analysis of the resulting Ir(IV) species. The species formed from oxidation of the Ir(CO)2(pyalc) precursor, on the other hand, lacks these degradation products (the CO ligands are easily lost upon oxidation) which allows for more detailed examination of the resulting Ir(pyalc) active species both catalytically and spectroscopically, although complete structural analysis is still elusive. Once Ir(CO)2(pyalc) is activated, the system requires acetic acid or acetate to prevent the formation of nanoparticles. Investigation of the activated bis-carbonyl complex also suggests several Ir(pyalc) isomers may exist in solution. By (1)H NMR, activated Ir(CO)2(pyalc) has fewer isomers than activated Cp*Ir complexes, allowing for advanced characterization. Future research in this direction is expected to contribute to a better structural understanding of the active species. A diol crystallization agent was needed for the structure determination of 3. PMID:26901517

  16. Mixed valence and metamagnetism in a metal flux grown compound Eu{sub 2}Pt{sub 3}Si{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Sumanta; Subbarao, Udumula [New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064 (India); Joseph, Boby [Elettra–Sincrotrone Trieste SCpA, SS14 Km 163.5, 34149 Basovizza, Trieste (Italy); Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in [New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064 (India)

    2015-05-15

    A new compound Eu{sub 2}Pt{sub 3}Si{sub 5} with plate shaped morphology has been grown from excess In flux. The compound crystallizes in the orthorhombic U{sub 2}Co{sub 3}Si{sub 5} structure type, Ibam space group and the lattice parameters are a=10.007(2) Å, b=11.666(2) Å and c=6.0011(12) Å. The crystal structure of this compound can be conceived as inter-twinned chains of [Pt{sub 2}Si{sub 2}] and [PtSi{sub 3}] tetrahedra connected along [100] direction to give rise to a complex three dimensional [Pt{sub 3}Si{sub 5}] network. Temperature dependent magnetic susceptibility data suggests that Eu{sub 2}Pt{sub 3}Si{sub 5} undergoes a strong antiferromagnetic ordering (T{sub N}=19 K) followed by a weak ferromagnetic transition (T{sub C}=5.5 K). The effective magnetic moment/Eu obtained from susceptibility data is 6.78 μ{sub B} accounts mixed valent Eu with almost 85% divalent Eu, which is supported by X-ray absorption near edge spectroscopy. The compound undergoes a metamagnetic transition under applied magnetic field through a probable spin flop mechanism. - Graphical abstract: Eu{sub 2}Pt{sub 3}Si{sub 5}, a new member in the U{sub 2}Co{sub 3}Si{sub 5} (Ibam) family undergoes metamagnetic transition at high magnetic field and Eu is in mixed valence state. - Highlights: • A new compound Eu{sub 2}Pt{sub 3}Si{sub 5} has been synthesized using indium as an inactive metal flux. • The compound undergoes metamagnetic transition at higher field. • Eu in this compound resides in a mixed valence state.

  17. New metals

    International Nuclear Information System (INIS)

    The aim of this report is to estimate the exposure to various metals and metal compounds and discuss the available information of the possible toxic effects of these metals and compounds. In the first section, some metals are defined as those with either a large or a fast increasing exposure to living organisms. The available information on toxicity is discussed in the second section. In the third section interesting metals are defined as compounds having a large exposure and an apparent insufficient knowledge of their possible toxic effects. Comments on each of these metals are also to be found in the third section. (G.B.)

  18. Onset of itinerant ferromagnetism associated with semiconductor-metal transition in TiNb1-CoSn half Heusler solid solution compounds

    Indian Academy of Sciences (India)

    M A Kouacou; A A Koua; J T Zoueu; K Konan; J Pierre

    2008-07-01

    In this paper, the magnetic and transport properties of the TiNb1−CoSn solid solution compounds with half Heusler cubic MgAgAs-type structure have been studied. This work shows the onset of ferromagnetism associated with a semiconductor to metal transition. The transition occurs directly from ferromagnetic metal to semiconducting state as it is the case in the TiCoNi1−Sn series studied previously. A weak quantity of Ti in NbCoSn is sufficient to allow the appearance of ferromagnetic order and metallic state. The variations of the Curie temperature as a function of saturation and effective paramagnetic moments are related to the itinerant ferromagnetism model. A comparison is made with the TiCoSnSb1− series (also studied previously), where the transition from TiCoSn ferromagnetic metal to non-magnetic semiconductor TiCoSb occurs through an intermediate metallic Pauli-like state.

  19. Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries.

    Science.gov (United States)

    Li, Jia; Wang, Guangxu; Xu, Zhenming

    2016-06-01

    The recycling of spent lithium-ion batteries brings benefits to both economic and environmental terms, but it can also lead to contaminants in a workshop environment. This study focused on metals, non-metals and volatile organic compounds generated by the discharging and dismantling pretreatment processes which are prerequisite for recycling spent lithium-ion batteries. After discharging in NaCl solution, metal contents in supernate and concentrated liquor were detected. Among results of condition #2, #3, #4 and #5, supernate and concentrated liquor contain high levels of Na, Al, Fe; middle levels of Co, Li, Cu, Ca, Zn; and low levels of Mn, Sn, Cr, Zn, Ba, K, Mg, V. The Hg, Ag, Cr and V are not detected in any of the analyzed supernate. 10wt% NaCl solution was a better discharging condition for high discharge efficiency, less possible harm to environment. To collect the gas released from dismantled LIB belts, a set of gas collecting system devices was designed independently. Two predominant organic vapour compounds were dimethyl carbonate (4.298mgh(-1)) and tert-amylbenzene (0.749mgh(-1)) from one dismantled battery cell. To make sure the concentrations of dimethyl carbonate under recommended industrial exposure limit (REL) of 100mgL(-1), for a workshop on dismantling capacity of 1000kg spent LIBs, the minimum flow rate of ventilating pump should be 235.16m(3)h(-1). PMID:27021697

  20. Clinical features of schizophrenia with enhanced carbonyl stress.

    Science.gov (United States)

    Miyashita, Mitsuhiro; Arai, Makoto; Kobori, Akiko; Ichikawa, Tomoe; Toriumi, Kazuya; Niizato, Kazuhiro; Oshima, Kenichi; Okazaki, Yuji; Yoshikawa, Takeo; Amano, Naoji; Miyata, Toshio; Itokawa, Masanari

    2014-09-01

    Accumulating evidence suggests that advanced glycation end products, generated as a consequence of facilitated carbonyl stress, are implicated in the development of a variety of diseases. These diseases include neurodegenerative illnesses, such as Alzheimer disease. Pyridoxamine is one of the 3 forms of vitamin B6, and it acts by combating carbonyl stress and inhibiting the formation of AGEs. Depletion of pyridoxamine due to enhanced carbonyl stress eventually leads to a decrease in the other forms of vitamin B6, namely pyridoxal and pyridoxine. We previously reported that higher levels of plasma pentosidine, a well-known biomarker for advanced glycation end products, and decreased serum pyridoxal levels were found in a subpopulation of schizophrenic patients. However, there is as yet no clinical characterization of this subset of schizophrenia. In this study, we found that these patients shared many clinical features with treatment-resistant schizophrenia. These include a higher proportion of inpatients, low educational status, longer durations of hospitalization, and higher doses of antipsychotic medication, compared with patients without carbonyl stress. Interestingly, psychopathological symptoms showed a tendency towards negative association with serum vitamin B6 levels. Our results support the idea that treatment regimes reducing carbonyl stress, such as supplementation of pyridoxamine, could provide novel therapeutic benefits for this subgroup of patients. PMID:24062594

  1. Fabrication and characterization of nanostructured Fe3S4, an isostructural compound of half-metallic Fe3O4

    KAUST Repository

    Li, Peng

    2015-06-10

    High-purity, well-crystallized spinel Fe3S4 nanoplatelets were synthesized by the hydrothermal method, and the saturation magnetic moment of Fe3S4 was measured at 1.83 μB/f.u. The temperature-dependent resistivity of Fe3S4 was metallic-like for T < 180 K: room-temperature resistivity was measured at 7.711 × 103  μΩ cm. The anomalous Hall conductivity of Fe3S4 decreased with increasing longitudinal conductivity, in sharp contrast with the accepted theory of the anomalous Hall effect in a dirty-metal regime. Furthermore, negligible spin-dependent magnetoresistance was observed. Band structure calculations confirmed our experimental observations that Fe3S4 is a metal and not a half metal as expected.

  2. Discovery of potent aryl-substituted 3-[(3-methylpyridine-2-carbonyl) amino]-2,4-dimethyl-benzoic acid EP4 antagonists with improved pharmacokinetic profile.

    Science.gov (United States)

    Blanco, Maria-Jesus; Vetman, Tatiana; Chandrasekhar, Srinivasan; Fisher, Matthew J; Harvey, Anita; Chambers, Mark; Lin, Chaohua; Mudra, Daniel; Oskins, Jennifer; Wang, Xu-Shan; Yu, Xiao-Peng; Warshawsky, Alan M

    2016-02-01

    Two new series of EP4 antagonists containing a 3-methylaryl-2-carbonyl core have been identified. One series has a 3-substituted-phenyl core, while the other one incorporates a 3-substituted pyridine. Both series led to compounds with potent activity in functional and human whole blood (hWB) assays. In the pyridine series, compound 7a was found to be a highly potent and selective EP4 antagonist, with suitable rat and dog pharmacokinetic profiles. PMID:26764191

  3. Synthesis and preclinical evaluation of [11C-carbonyl]PF-04457845 for neuroimaging of fatty acid amide hydrolase

    International Nuclear Information System (INIS)

    Introduction: Fatty acid amide hydrolase (FAAH) has a significant role in regulating endocannabinoid signaling in the central nervous system. As such, FAAH inhibitors are being actively sought for pain, addiction, and other indications. This has led to the recent pursuit of positron emission tomography (PET) radiotracers targeting FAAH. We report herein the preparation and preclinical evaluation of [11C-carbonyl]PF-04457845, an isotopologue of the potent irreversible FAAH inhibitor. Methods: PF-04457845 was radiolabeled at the carbonyl position via automated [11C]CO2-fixation. Ex vivo brain biodistribution of [11C-carbonyl]PF-04457845 was carried out in conscious rats. Specificity was determined by pre-administration of PF-04457845 or URB597 prior to [11C-carbonyl]PF-04457845. In a separate experiment, rats injected with the title radiotracer had whole brains excised, homogenized and extracted to examine irreversible binding to brain parenchyma. Results: The title compound was prepared in 5 ± 1% (n = 4) isolated radiochemical yield based on starting [11C]CO2 (decay uncorrected) within 25 min from end-of-bombardment in > 98% radiochemical purity and a specific activity of 73.5 ± 8.2 GBq/μmol at end-of-synthesis. Uptake of [11C-carbonyl]PF-04457845 into the rat brain was high (range of 1.2–4.4 SUV), heterogeneous, and in accordance with reported FAAH distribution. Saturable binding was demonstrated by a dose-dependent reduction in brain radioactivity uptake following pre-treatment with PF-04457845. Pre-treatment with the prototypical FAAH inhibitor, URB597, reduced the brain radiotracer uptake in all regions by 71–81%, demonstrating specificity for FAAH. The binding of [11C-carbonyl]PF-04457845 to FAAH at 40 min post injection was irreversible as 98% of the radioactivity in the brain could not be extracted. Conclusions: [11C-carbonyl]PF-04457845 was rapidly synthesized via an automated radiosynthesis. Ex vivo biodistribution studies in conscious rodents

  4. Electrodes modified with bismuth, antimony and tin precursor compounds for electrochemical stripping analysis of trace metals (a short review)

    OpenAIRE

    Lezi, Nikolitsa; Economou, Anastasios; Barek, Jiří

    2014-01-01

    Over the last decade, intensive research is being carried out towards the development of “green” electrochemical sensors. Bismuth, antimony and tin electrodes have been proposed as potential substitutes of mercury electrodes in electrochemical stripping analysis of trace metals. The main advantage of these metals as electrode materials is their lower toxicity compared to mercury. Among the different configuration of bismuth, antimony and tin electrodes, one of the most attractive inv...

  5. Separation of heavy metal from water samples--The study of the synthesis of complex compounds of heavy metal with dithiocarbamates.

    Science.gov (United States)

    Kane, Sonila; Lazo, Pranvera; Ylli, Fatos; Stafilov, Trajce; Qarri, Flora; Marku, Elda

    2016-01-01

    The toxicity and persistence of heavy metal (HM) ions may cause several problems to marine organisms and human beings. For this reason, it is growing the interest in the chemistry of sulphur donor ligands such as dithiocarbamates (DDTC), due to their applications particularly in analytical chemistry sciences. The aim of this work has been the study of heavy metal complexes with DDTC and their application in separation techniques for the preconcentration and/or removing of heavy metals from the water solutions or the water ecosystems prior to their analysis. The HM-DDTC complexes were prepared and characterized by elemental analysis, FTIR and UV-Vis spectroscopic methods. The elemental analysis and the yield of the synthesis (97.5-99.9%) revealed a good purity of the complexes. High values of complex formation yields of HM-DDTC complexes is an important parameter for quantitatively removing/and or preconcentration of heavy metal ions from water solution even at low concentration of heavy metals. Significant differences founded between the characteristic parameters of UV/Vis (λmax and ϵmax) and FTIR absorption spectra of the parent DDTC and HM-DDTC complexes revealed the complex formation. The presence of the peaks at the visible spectral zone is important to M(nd(10-m))-L electron charge transfer of the new complexes. The (C=N) (1450-1500 cm(-1)) and the un-splitting (C-S) band (950-1002 cm(-1)) in HM-DDTC FTIR spectra are important to the identification of their bidentate mode (HM[S2CNC4H10]2). The total CHCl3 extraction of trace level heavy metals from water samples after their complex formation with DDTC is reported in this article. PMID:26761072

  6. Analytical chemical system for the determination of heavy metals and organic compounds. Annual progress report, December 1, 1978-November 30, 1979

    International Nuclear Information System (INIS)

    Progress has been made in the synthesis and characterization of new resins for sequestering inorganic and organic compounds. The capabilities of the poly(dithiocarbamate) resin have been extended, a new poly(acrylamidoxime) resin prepared and characterized, and a series of resins for organic compounds prepared and tested. Limited actual sample analyses have been performed with these resins. A new inductively coupled plasma source, spectrometer, and computer system have been received and they are undergoing tests and installation. With this system in place, the multielement analysis of metals during the forthcoming period will insure the application of sequestering resins to practical analysis of energy-related materials. An automated sample handling and data system has been designed, some components purchased, and construction is scheduled for 1980

  7. Analytical chemical system for the determination of heavy metals and organic compounds. Annual progress report, December 1, 1978-November 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Siggia, S.; Barnes, R.M.

    1979-10-24

    Progress has been made in the synthesis and characterization of new resins for sequestering inorganic and organic compounds. The capabilities of the poly(dithiocarbamate) resin have been extended, a new poly(acrylamidoxime) resin prepared and characterized, and a series of resins for organic compounds prepared and tested. Limited actual sample analyses have been performed with these resins. A new inductively coupled plasma source, spectrometer, and computer system have been received and they are undergoing tests and installation. With this system in place, the multielement analysis of metals during the forthcoming period will insure the application of sequestering resins to practical analysis of energy-related materials. An automated sample handling and data system has been designed, some components purchased, and construction is scheduled for 1980.

  8. Effect of bioavailability on the fate of hydrophobic organic compounds and metal in treatment of young landfill leachate by membrane bioreactor.

    Science.gov (United States)

    Zolfaghari, M; Droguia, P; Brar, S K; Buelna, G; Dubé, R

    2016-10-01

    Complex dissolved organic matter (DOM) present in landfill leachate provides reliable media for adsorption of highly hydrophobic contaminants, such as Di 2-ethyl hexyl phthalate (DEHP). In this research, the feasibility of submerged membrane bioreactor (SMBR) for treatment of landfill leachate (LFL) was determined. Later, the operating conditions were optimized for removal of DEHP, COD, NH4(+) and PO4(3-), and finally the effect of bioavailability was examined by introduction of different concentrations of humic acid into the influent. The result revealed that presence of complex agglomerated organic compounds increased the removal efficiency of DEHP and COD, even though DEHP biodegradation rate in sludge dramatically decreased (from 58.8% to 12.8%). MBR retention of different metals in the absence and in the presence of recalcitrant DOM was also studied. Like DEHP, ternary interaction between metals, DOM, and sludge play a pivotal role in their removal efficiency and their concentration in sludge. PMID:27448320

  9. Group 11 Metal Compounds with Tripodal Bis(imidazole) Thioether Ligands. Applications as Catalysts in the Oxidation of Alkenes and as Antimicrobial Agents

    OpenAIRE

    Armando Varela-Ramírez; Aguilera, Renato J; María Contel; Eunmi Hwang; Rafael Ovalle; Reema Anis; Fangwei Liu

    2011-01-01

    New group 11 metal complexes have been prepared using the previously described tripodal bis(imidazole) thioether ligand (N-methyl-4,5-diphenyl-2-imidazolyl)2C(OMe)C(CH3)2S(tert-Bu) ({BITOMe,StBu}, 2). The pincer ligand offers a N2S donor atom set that can be used to coordinate the group 11 metals in different oxidation states [AuI, AuIII, AgI, CuI and CuII]. Thus the new compounds [Au{BITOMe,StBu}Cl][AuCl4]2 (3), [Au{BITOMe,StBu}Cl] (4), [Ag{BITOMe,StBu}X] (X = OSO2CF3 − 5, PF6 − 6) and [Cu{B...

  10. Vacuum Referred Binding Energy of the Single 3d, 4d, or 5d Electron in Transition Metal and Lanthanide Impurities in Compounds

    OpenAIRE

    Rogers, E.G.; Dorenbos, P.

    2014-01-01

    The vacuum referred binding energy (VRBE) of the single electron in the lowest energy 3d level of Sc2 +, V4 +, Cr5 +, the lowest 4d level of Y2 +, Zr3 +, Nb4 +, Mo5 + and the lowest 5d level of Ta4 +, and W5 + in various compounds are determined by means of the chemical shift model. They will be compared with the VRBE in the already established lowest 3d level of Ti3 + and the lowest 5d level of Eu2 + and Ce3 +. Clear trends with changing charge of the transition metal (TM) cation and with ch...

  11. Ground state properties and thermoelectric behavior of Ru2VZ (Z=Si, ge, sn) half-metallic ferromagnetic full-Heusler compounds

    Science.gov (United States)

    Yalcin, Battal Gazi

    2016-06-01

    The ground state properties namely structural, mechanical, electronic and magnetic properties and thermoelectric behavior of Ru2VZ (Z=Si, Ge and Sn) half-metallic ferromagnetic full-Heusler compounds are systematically investigated. These compounds are ferromagnetic and crystallize in the Heusler type L21 structure (prototype: Cu2MnAl, Fm-3m 225). This result is confirmed for Ru2VSi and Ru2VSn by experimental work reported by Yin and Nash using high temperature direct reaction calorimetry. The studied materials are half-metallic ferromagnets with a narrow direct band gap in the minority spin channel that amounts to 31 meV, 66 meV and 14 meV for Ru2VSi, Ru2VGe, and Ru2VSn, respectively. The total spin magnetic moment (Mtot) of the considered compounds satisfies a Slater-Pauling type rule for localized magnetic moment systems (Mtot=(NV-24)μB), where NV=25 is the number of valence electrons in the primitive cell. The Curie temperature within the random phase approximation (RPA) is found to be 23 K, 126 K and 447 K for Ru2VSi, Ru2VGe and Ru2VSn, respectively. Semi-classical Boltzmann transport theories have been used to obtain thermoelectric constants, such as Seebeck coefficient (S), electrical (σ/τ) and thermal conductivity (κ/τ), power factor (PF) and the Pauli magnetic susceptibility (χ). ZTMAX values of 0.016 (350 K), 0.033 (380 K) and 0.063 (315 K) are achieved for Ru2VSi, Ru2VGe and Ru2VSn, respectively. It is expected that the obtained results might be a trigger in future experimentally interest in this type of full-Heusler compounds.

  12. Traditional reactive carbonyl scavengers do not prevent the carbonylation of brain proteins induced by acute glutathione depletion.

    Science.gov (United States)

    Zheng, J; Bizzozero, O A

    2010-03-01

    This study investigated the effect of reactive carbonyl species (RCS)-trapping agents on the formation of protein carbonyls during depletion of brain glutathione (GSH). To this end, rat brain slices were incubated with the GSH-depletor diethyl maleate in the absence or presence of chemically different RCS scavengers (hydralazine, methoxylamine, aminoguanidine, pyridoxamine, carnosine, taurine and z-histidine hydrazide). Despite their strong reactivity towards the most common RCS, none of the scavengers tested, with the exception of hydralazine, prevented protein carbonylation. These findings suggest that the majority of protein-associated carbonyl groups in this oxidative stress paradigm do not derive from stable lipid peroxidation products like malondialdehyde (MDA), acrolein and 4-hydroxynonenal (4-HNE). This conclusion was confirmed by the observation that the amount of MDA-, acrolein- and 4-HNE-protein adducts does not increase upon GSH depletion. Additional studies revealed that the efficacy of hydralazine at preventing carbonylation was due to its ability to reduce oxidative stress, most likely by inhibiting mitochondrial production of superoxide and/or by scavenging lipid free radicals. PMID:20001647

  13. Observing the Transition from Equatorial to Axial CO Chemisorption: Infrared Photodissociation Spectroscopy of Yttrium Oxide-Carbonyls.

    Science.gov (United States)

    Xie, Hua; Liu, Zhiling; Zhao, Zhi; Kong, Xiangtao; Fan, Hongjun; Tang, Zichao; Jiang, Ling

    2016-06-01

    A series of yttrium oxide-carbonyls are prepared via a laser vaporization supersonic cluster source in the gas phase and identified by mass-selected infrared photodissociation (IRPD) spectroscopy in the C-O stretching region and by comparing the observed IR spectra with those from quantum chemical calculations. For YO(CO)4(+), all four CO ligands prefer to occupy the equatorial site of the YO(+) unit, leading to a quadrangular pyramid with C4v symmetry. Two energetically nearly degenerate isomers are responsible for YO(CO)5(+), in which the fifth CO ligand is either inserted into the equatorial plane of YO(CO)4(+) or coordinated opposite the oxygen on the C4 axis. YO(CO)6(+) has a pentagonal bipyramidal structure with C5v symmetry, which includes five equatorial CO ligands and one axial CO ligand. The present IRPD spectroscopic and theoretical study of YO(CO)n(+) extends the first shell coordination number of CO ligands in metal monoxide carbonyls to six. The transition from equatorial to axial CO chemisorption in these yttrium oxide-carbonyls is fortunately observed at n = 5, providing new insight into ligand interactions and coordination for the transition metal oxides. PMID:27158889

  14. Deep-blue phosphorescence from perfluoro carbonyl-substituted iridium complexes.

    Science.gov (United States)

    Lee, Sunghun; Kim, Seul-Ong; Shin, Hyun; Yun, Hui-Jun; Yang, Kiyull; Kwon, Soon-Ki; Kim, Jang-Joo; Kim, Yun-Hi

    2013-09-25

    The new deep-blue iridium(III) complexes, (TF)2Ir(pic), (TF)2Ir(fptz), (HF)2Ir(pic), and (HF)2Ir(fptz), consisting of 2',4″-difluororphenyl-3-methylpyridine with trifluoromethyl carbonyl or heptafluoropropyl carbonyl at the 3' position as the main ligand and a picolinate or a trifluoromethylated-triazole as the ancillary ligand, were synthesized and characterized for applications in organic light-emitting diodes (OLEDs). Density function theory (DFT) calculations showed that these iridium complexes had a wide band gap, owing to the introduction of the strong electron withdrawing perfluoro carbonyl group. Time-dependent DFT (TD-DFT) calculations suggested that their lowest triplet excited state was dominated by a HOMO → LUMO transition and that the contribution of the metal-to-ligand charge transfer (MLCT) was higher than 34% for all four complexes, indicating that strong spin-orbit coupling exists in the complexes. The 10 wt % (TF)2Ir(pic) doped 9-(3-(9H-carbazole-9-yl)phenyl)-3-(dibromophenylphosphoryl)-9H-carbazole (mCPPO1) film exhibited the highest photoluminescence quantum yield of 74 ± 3% among the films based on the four complexes. Phosphorescent OLEDs based on (TF)2Ir(pic) and (TF)2Ir(fptz) exhibited maximum external quantum efficiencies of 17.1% and 8.4% and Commission Internationale de l'Eclairage (CIE) coordinates of (0.141, 0.158) and (0.147, 0.116), respectively. These CIE coordinates represent some of the deepest blue emissions ever achieved from phosphorescent OLEDs with considerably high EQEs. PMID:23998654

  15. INTERRELATION OF VARIOUS FORMS OF COMPOUNDS HEAVY METALS IN AN ARABLE LAYER OF EARTH AND THEIR ACCUMULATION IN GRAIN OF WINTER CROPS

    Directory of Open Access Journals (Sweden)

    Gaydukova N. G.

    2015-09-01

    Full Text Available In the article we consider the influence of agricultural technologies of cultivation of winter crops on existence of various forms of heavy metals in an arable layer of earth in the conditions and their accumulation in grain production. The gross content of compounds of copper in an arable layer of black leached soil is above background values (maximum concentration limit 1,5-1,7, a share of the fixed connections makes 75 %. The gross content of zinc exceeds background value for chernozems (1,25 clark. The correlation of the water mode of the soil and the content of mobile compounds of heavy metals in an arable layer - a straight line for Cu and the return for Mn , Pb, Cd and Co. Supplement of an arable layer of earth with mobile forms of copper, zinc and cobalt low, manganese - corresponds to the average level. Speaking of the degree of actual mobility the studied elements settle down in sequence: Cd> Mn> Co> Pb> Zn> Cu. Degree of potential availability decreases among: Zn> Mn>Pb> Co> Cu. The existence of Mn, Cu, Zn and Co in grain of wheat is lower than maximum concentration limit, and accumulation of Pb and Cd is higher than maximum concentration limit in grain production for baby food for 10-15 %, that increases individual risk of death to the maximum permissible level

  16. Prediction of half-metallic ferromagnetism (HMF) in hypothetical Heusler compound Co2VSb using modified Becke Johnson (mBJ) potential

    International Nuclear Information System (INIS)

    Highlights: • Half-metallic ferromagnetism were studied using GGA, LSDA+U and mBJ. • The calculated magnetic moment of 4.00 μB (LSDA+U and mBJ). • mBJ is more effective to band gap calculation as compare to others. -- Abstract: In search of half-metallic ferromagnetism, we have studied the electronic and magnetic properties of Co2VSb by using the different tools like GGA, LSDA+U and mBJ potential based on density functional theory (DFT). The compound Co2VSb is analogous to Co2VAl, Co2VSn and Co2VGa , these compounds were studied theoretically and experimentally by Buschow and Engen. We expect the similar kind of properties from Co2VSb as that of Co2VAl, Co2VSn and Co2VGa. The mBJ potential is considered to be more effective as compared to LDA and GGA which gives higher value of band gap. The theoretical lattice constant obtained from volume optimization is 6.072 Å. The calculated value of energy gaps was found to be 0.20 eV, 1.00 eV and 1.30 eV for GGA, LSDA+U and mBJ respectively. Our results of band gap calculation predicts that mBJ overestimate the results of GGA, LSDA and LSDA+U

  17. Determination of carbon in uranium and its compounds; Determinacion de carbono en uranio metal y sus compuestos

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Garcia, M. M.

    1972-07-01

    This paper collects the analytical methods used our laboratories for the determination of carbon in uranium metal, uranate salts and the oxides, fluorides and carbides of uranium. The carbon is usually burned off in a induction or resistance oven under oxygen flow. The CO{sub 2} is collected in barite solution. Where it is backtitrated with potassium biphthalate. (Author)

  18. First principles study of a new half-metallic ferrimagnets Mn2-based full Heusler compounds: Mn2ZrSi and Mn2ZrGe

    International Nuclear Information System (INIS)

    Half-metallic properties of new predicted Mn2-based full Heusler alloys Mn2ZrSi and Mn2ZrGe have been studied by first-principles full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT). Our investigation is focused on the structural, elastic, electronic and magnetic properties of these compounds. The AlCu2Mn-type structure is found to be energetically more favorable than the CuHg2Ti-type structure for both compounds and are half-metallic ferrimagnets (HMFIs) with total magnetic moments of 2.000µB per formula unit, well consistent with Slater–Pauling rule (Mtot=(24–Ztot)µB). Calculations show that both the alloys have an indirect band gaps, in the majority-spin channel, with values of 0.505 eV and 0.278 eV for Mn2ZrSi and Mn2ZrGe, respectively. It was found that Mn2ZrSi and Mn2ZrGe preserved their half-metallicity for lattice constants range of 5.85–6.38 Å and 6.05–6.38 Å, respectively, and kept a 100% of spin polarization at the Fermi level. Moreover, the calculated formation energies and elastic constants confirm that these compounds are stable chemically and mechanically, and the good crystallographic compatibility with the lattice of semiconductors used industrially makes them promising magnetic materials in spintronic applications. - Highlights: • For Mn2ZrZ (Z=Si, Ge) the AlCu2Mn-type structure is more favorable than the CuHg2Ti-type. • The calculated elastic constants confirm their mechanical stability. • Their negative estimated formation energies means they can be synthesized. • Their lattice constants match well with those of many semiconductor substrates. • They are predicted to be true half-metallic ferrimagnets. • The band gaps of Mn2ZrSi~0.51 eV and Mn2ZrGe~0.28 eV are indirect along, the Γ–X

  19. Combined effects of ultrasonic vibration and manganese on Fe-containing inter-metallic compounds and mechanical properties of Al-17Si alloy with 3wt.%Fe

    Directory of Open Access Journals (Sweden)

    Lin Chong

    2013-05-01

    Full Text Available The research studied the combined effects of ultrasonic vibration (USV and manganese on the Fe-containing inter-metallic compounds and mechanical properties of Al-17Si-3Fe-2Cu-1Ni (wt.% alloys. The results showed that, without USV, the alloys with 0.4wt.% Mn or 0.8wt.% Mn both contain a large amount of coarse plate-like δ-Al4(Fe,MnSi2 phase and long needle-like β-Al5(Fe,MnSi phase. When the Mn content changes from 0.4wt.% to 0.8wt.% in the alloys, the amount and the length of needle-like β-Al5(Fe,MnSi phase decrease and the plate-like δ-Al4(Fe,MnSi2 phase becomes much coarser. After USV treatment, the Fe-containing compounds in the alloys are refined and exist mainly as δ-Al4(Fe,MnSi2 particles with an average grain size of about 20 μm, and only a small amount of β-Al5(Fe,MnSi phase remains. With USV treatment, the ultimate tensile strengths (UTS of the alloys containing 0.4wt.%Mn and 0.8wt.%Mn at room temperature are 253 MPa and 262 MPa, respectively, and the ultimate tensile strengths at 350 °C are 129 MPa and 135 MPa, respectively. It is considered that the modified morphology and uniform distribution of the Fe-containing inter-metallic compounds, which are caused by the USV process, are the main reasons for the increase in the tensile strength of these two alloys.

  20. Structure and characterization of zero- to two-dimensional compounds built up of the sandwich-type clusters and transition-metal linkers

    International Nuclear Information System (INIS)

    Five new heteropolyoxotungstates K2Na2Mn2(H2O)12[Mn2(H2O)10Mn4(H2O)2(XW9O34)2].18H2O (X=Ge, 1; X=Si, 2), Na4[Mn4(H2O)18Mn4(H2O)2(XW9O34)2].22H2O (X=Ge, 3; X=Si, 4) and K3Na5[Mn2(H2O)6Mn4(H2O)2(SiW9O34)2].23.5H2O (5) have been obtained by the routine synthetic reactions in aqueous solution. In 1 and 2, two isolated Mn2+ ions are covalently linked to the sandwich-type polyoxoanions [Mn4(H2O)2(B-α-XW9O34)2]12- (X=Ge or Si) by two μ2-oxygen atoms resulting in the disupporting sandwich-type polyoxometalates (POMs). Compounds 3 and 4 are built from the disupporting sandwich-type polyoxoanions 1 and 2, linked by additional four Mn2+ ions to construct a 1D ladder-like chain-like structure, which is rarely observed in the POM chemistry. Compound 5 represents the first example of the 2D structure consisting of the sandwich-type polyoxoanion [Mn4(H2O)2(SiW9O34)2]12- and the binuclear {Mn2(H2O)6}4+ group. The magnetic studies of compounds 1, 4 and 5 indicate that the antiferromagnetic interactions are predominant in the three compounds between Mn(II) metal ions. - Graphical abstract: Five new compounds, from zero- to two-dimensional built up of the sandwich-type clusters and transition-metal linkers, have been obtained by the routine synthetic reactions in aqueous solution. This polyoxoanion framework architecture represents the first example of the 2D structure consisting of the sandwich-type polyoxoanion [Mn4(H2O)2(SiW9O34)2]12- and the binuclear {Mn2(H2O)6}4+ group. Display Omitted

  1. Reduced sulfur compound oxidation by Thiobacillus caldus.

    OpenAIRE

    Hallberg, K. B.; Dopson, M; Lindström, E B

    1996-01-01

    The oxidation of reduced inorganic sulfur compounds was studied by using resting cells of the moderate thermophile Thiobacillus caldus strain KU. The oxygen consumption rate and total oxygen consumed were determined for the reduced sulfur compounds thiosulfate, tetrathionate, sulfur, sulfide, and sulfite in the absence and in the presence of inhibitors and uncouplers. The uncouplers 2,4-dinitrophenol and carbonyl cyanide m-chlorophenyl-hydrazone had no affect on the oxidation of thiosulfate, ...

  2. Removal of organic compounds and trace metals from oil sands process-affected water using zero valent iron enhanced by petroleum coke.

    Science.gov (United States)

    Pourrezaei, Parastoo; Alpatova, Alla; Khosravi, Kambiz; Drzewicz, Przemysław; Chen, Yuan; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2014-06-15

    The oil production generates large volumes of oil sands process-affected water (OSPW), referring to the water that has been in contact with oil sands or released from tailings deposits. There are concerns about the environmental impacts of the release of OSPW because of its toxicity. Zero valent iron alone (ZVI) and in combination with petroleum coke (CZVI) were investigated as environmentally friendly treatment processes for the removal of naphthenic acids (NAs), acid-extractable fraction (AEF), fluorophore organic compounds, and trace metals from OSPW. While the application of 25 g/L ZVI to OSPW resulted in 58.4% removal of NAs in the presence of oxygen, the addition of 25 g petroleum coke (PC) as an electron conductor enhanced the NAs removal up to 90.9%. The increase in ZVI concentration enhanced the removals of NAs, AEF, and fluorophore compounds from OSPW. It was suggested that the electrons generated from the oxidation of ZVI were transferred to oxygen, resulting in the production of hydroxyl radicals and oxidation of NAs. When OSPW was de-oxygenated, the NAs removal decreased to 17.5% and 65.4% during treatment with ZVI and CZVI, respectively. The removal of metals in ZVI samples was similar to that obtained during CZVI treatment. Although an increase in ZVI concentration did not enhance the removal of metals, their concentrations effectively decreased at all ZVI loadings. The Microtox(®) bioassay with Vibrio fischeri showed a decrease in the toxicity of ZVI- and CZVI-treated OSPW. The results obtained in this study showed that the application of ZVI in combination with PC is a promising technology for OSPW treatment. PMID:24681364

  3. First-principles point defect models in Zr7Ni10 and Zr2Ni7 binary intermetallic compounds and their implications in nickel-metal hydride batteries

    Science.gov (United States)

    Wong, Diana F.

    Zr-Ni-based alloys as nickel-metal hydride battery anode materials offer low-cost, flexible and tunable battery performance. Zr7Ni 10 is an important secondary phase found in multi-phased AB2 Laves-phase-based metal hydride alloys, and the synergetic effect between the Zr-Ni and the Laves phases allows access to the high hydrogen storage of the Zr-Ni phases despite the lower absorption/desorption kinetics. Zr7Ni10 displays a small solubility window for Zr-rich compositions, while Zr2Ni7, with no solubility window, shows poor capacity with good kinetics. Stability of point defects within the crystal structure allows Zr7Ni10 to maintain the same structure at off-stoichiometric compositions, thus it is theorized that defects may play a role in the difference between the electrochemical behaviors in Zr7Ni10 and Zr2Ni7. Defect models in Zr7Ni10 and Zr2Ni7 compounds computed using a combination of density functional theory and statistical mechanics offer a starting point for understanding the possible roles that point defects have on the performance of Zr-Ni based active negative electrode materials in Ni/MH batteries. Theoretical vacancy and anti-site defect formation energies are calculated and reported for Zr-rich, Ni-rich, and stoichiometric compounds of Zr7Ni 10 and Zr2Ni7, and the implications of the defect models on nickel-metal hydride negative electrode active material design and performance are discussed.

  4. Structure determination of a novel metal-organic compound synthesized from aluminum and 2,5-pyridinedicarboxylic acid

    DEFF Research Database (Denmark)

    Ståhl, Kenny; Brink, Bastian; Andersen, Jonas

    The structure of [Al2(pydc)2(μ2-OH)2(H2O)2]n(pydc=2,5-pyridinedicarboxylate) was successfully determined from powder X-ray diffraction data. The compound crystallizes in the triclinic system (space group P -1) with a=6.7813(1) A° , b=7.4944(1) A°, c=8.5013(1) A° , α=95.256(1)°, β=102.478(1)°, γ=1...

  5. Molecular characterization of aromatic compound and heavy metal detoxification systems in thermophilic microorganisms: impact on biomonitoring and bioremediation.

    OpenAIRE

    Del Giudice, Immacolata

    2013-01-01

    Both arsenic and aromatic compounds are naturally present in the environment but human activities, such as the chemical and pharmaceutical industries, use of fossil fuels and pesticides, have contributed to their anomalous accumulation in the biosphere, determining severe damages to all living organisms. Many microorganisms possess tuned mechanisms for sensing the level of pollutants in their growth environment and controlling intracellular concentrations according to their biochemical needs....

  6. Iron-Sulfur-Carbonyl and -Nitrosyl Complexes: A Laboratory Experiment.

    Science.gov (United States)

    Glidewell, Christopher; And Others

    1985-01-01

    Background information, materials needed, procedures used, and typical results obtained, are provided for an experiment on iron-sulfur-carbonyl and -nitrosyl complexes. The experiment involved (1) use of inert atmospheric techniques and thin-layer and flexible-column chromatography and (2) interpretation of infrared, hydrogen and carbon-13 nuclear…

  7. Studies on unusually reactive metal powders. Preparation of new organometallic and organic compounds including potential new catalysts. Final report, July 1, 1980-December 31, 1984

    International Nuclear Information System (INIS)

    This research project was involved with the preparation and study of highly reactive metal powders prepared by the reduction of metal salts with alkali metals. Studies concentrated on nickel, copper, cadmium, uranium, iron, and magnesium. The nickel powders have been found to react rapidly with benzylic halides, and the resulting organonickel complexes yield dibenzyl. Aryl halides react rapidly with the nickel powders to produce biaryl compounds in high yields. Benzylic halides react with the nickel powders in the presence of acylhalides to produce benzyl ketones in high yields. Reactions of ROCOCOC1 and benzylic halides with nickel powders yield benzyl ketones. These reactions proceed with a wide variety of substituents on the phenyl ring of the benzylic halides. Highly reactive uranium has been prepared, and found to react with a variety of oxygen containing substrates, such as nitrobenzene to yield azo benzene. Highly reactive magnesium has opened up a totally new area of low temperature Grignard chemistry. The preparation of highly reactive copper has allowed the direct preparation of organocopper species directly from organic halides. 16 refs., 6 tabs

  8. Organic compounds and trace metals of anthropogenic origin in sediments from Montego Bay, Jamaica: assessment of sources and distribution pathways

    International Nuclear Information System (INIS)

    Sources and distribution pathways were identified. - Surface sediments throughout Montego Bay, Jamaica were collected in 1995 and analyzed for their trace metal and trace organic contaminant content. A variety of trace metals, petroleum hydrocarbons, polycyclic aromatic hydrocarbons, coprostanol as well as chlorinated hydrocarbons such as pesticides and polychlorinated biphenyls were detected and provide evidence for several anthropogenic inputs to the bay. Two main sources of these chemicals are the Montego River and the North Gully, the latter being more significant. Particle-associated pollutants were found to be distributed along the Montego River plume, as well as being transported by the prevailing water currents to the South-Western sections of the bay, probably through re-suspension of enriched fine sediments from the North Gully outfall area

  9. High throughput assay for evaluation of reactive carbonyl scavenging capacity ☆

    OpenAIRE

    N. Vidal; J.P. Cavaille; Graziani, F.; M. Robin; Ouari, O; Pietri, S.; Stocker, P.

    2014-01-01

    Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or...

  10. Atomic force microscopy imaging of transition metal layered compounds: A two-dimensional stick–slip system

    OpenAIRE

    Kerssemakers, J.; De Hosson, J.Th.M.

    1995-01-01

    Various layered transition metal dichalcogenides were scanned with an optical-lever atomic force microscope (AFM). The microscopic images indicate the occurrence of strong lateral stick–slip effects. In this letter, two models are presented to describe the observations due to stick–slip, i.e., either as a static or as a dynamic phenomenon. Although both models describe correctly the observed shapes of the unit cell, details in the observed and simulated images point at dynamic nonequilibrium ...

  11. 2,2'-Fluorine mono-carbonyl curcumin induce reactive oxygen species-Mediated apoptosis in Human lung cancer NCI-H460 cells.

    Science.gov (United States)

    Liu, Guo-Yun; Zhai, Qiang; Chen, Jia-Zhuang; Zhang, Zhuo-Qing; Yang, Jie

    2016-09-01

    In this paper, we synthesized three fluorine-substituted mono-carbonyl curcumin analogs and evaluated their cytotoxicity against several cancer cells by the MTT assay. The results exhibited that all the three compounds were more active than the leading curcumin. Especially, 2,2'-F mono-carbonyl curcumin, 1a, surfaced as an important lead compound displaying almost 4-fold cytotoxicity relative to curcumin. More importantly, 1a was more stable in (RPMI)-1640 medium and more massive uptake than curcumin, which may be relationship to their cytotoxicity, apoptotic acitivity and reactive oxygen species generation. And then, the generation of reactive oxygen species can disrupt the intracellular redox balance, induce lipid peroxidation, cause the collapse of the mitochondrial membrane potential and ultimately lead to apoptosis. The results not only suggest that 2,2'-F mono-carbonyl curcumin (1a) may cause cancer cells apoptosis through reactive oxygen species-Mediated pathway, but also gives us an important information for design of mono-carbonyl curcumin analog. PMID:27266668

  12. Metal Complexes of Quinolone Antibiotics and Their Applications: An Update

    Directory of Open Access Journals (Sweden)

    Valentina Uivarosi

    2013-09-01

    Full Text Available Quinolones are synthetic broad-spectrum antibiotics with good oral absorption and excellent bioavailability. Due to the chemical functions found on their nucleus (a carboxylic acid function at the 3-position, and in most cases a basic piperazinyl ring (or another N-heterocycle at the 7-position, and a carbonyl oxygen atom at the 4-position quinolones bind metal ions forming complexes in which they can act as bidentate, as unidentate and as bridging ligand, respectively. In the polymeric complexes in solid state, multiple modes of coordination are simultaneously possible. In strongly acidic conditions, quinolone molecules possessing a basic side nucleus are protonated and appear as cations in the ionic complexes. Interaction with metal ions has some important consequences for the solubility, pharmacokinetics and bioavailability of quinolones, and is also involved in the mechanism of action of these bactericidal agents. Many metal complexes with equal or enhanced antimicrobial activity compared to the parent quinolones were obtained. New strategies in the design of metal complexes of quinolones have led to compounds with anticancer activity. Analytical applications of complexation with metal ions were oriented toward two main directions: determination of quinolones based on complexation with metal ions or, reversely, determination of metal ions based on complexation with quinolones.

  13. Optimized biotin-hydrazide enrichment and mass spectrometry analysis of peptide carbonyls

    DEFF Research Database (Denmark)

    Havelund, Jesper F.; Wojdyla, K; Jensen, O. N.; Møller, Ian Max; Rogowska-Wrzesinska, A.

    Irreversible cell damage through protein carbonylation is the result of reaction with reactive oxygen species (ROS) and has been coupled to many diseases. The precise molecular consequences of protein carbonylation, however, are still not clear. The localization of the carbonylated amino acid is ...

  14. Metal oxinitride

    OpenAIRE

    Xiao, Tiancun; Jiang, Zheng

    2008-01-01

    A process for preparing a metal oxynitride, said process comprising: a) forming a solution of a metal compound and a compound having a nitrogen-containing functional group in a polar organic solvent, and b) converting said solution into a solid residue

  15. Study of half-metallic ferromagnetism (HMF) in 4d transition metal based full Heusler compound Co2NbSi

    International Nuclear Information System (INIS)

    The structural, electronic and magnetic properties of Co2NbSi were performed by using generalized gradient approximation (GGA) within the-full potential linearized augmented plane wave (FP-LAPW) method. For computation we have used wien2K code based on density functional-theory (DFT). The calculated density of states (DOS) and band structure shows that it has a considerably large minority spin gap but the Fermi energy (EF) is not pinned exactly at the middle of the gap in spin down region. From the DOS the spin polarization was calculated to be almost 80% and the magnetic moment is 1.913μB. This shows that Co2NbSi can be a potential half metal ferromagnets (HMF) with an integer value of magnetic moment and larger minority gap when treated within a suitable approximation like LSDA+U. (author)

  16. Simultaneous Patterning of Independent Metal/Metal Oxide Multi-Layer Films Using Two-Tone Photo-Acid Generating Compound Systems

    Directory of Open Access Journals (Sweden)

    Hideo Honma

    2012-10-01

    Full Text Available (1 The photo-induced solubility and positive-tone direct photo-patterning of iron, copper and lanthanides chelated with 4-(2-nitrobenzyloxycarbonylcatechol (NBOC or 4-(6-nitroveratryloxycarbonylcatechol (NVOC was investigated. Photo-patterning of iron, copper, cerium, samarium, europium, terbium, dysprosium, holmium, erbium and lutetium complexes was accomplished. Continuous films were formed by the pyrolysis of metal complex films at 500 °C. (2 Based on the difference in the photo-reaction excitation wavelength profile of NBOC and NVOC complexes, a short and simple method for simultaneous micro-patterning of two independent films on each side of a transparent glass substrate was developed. Using the developed procedure, indium tin oxide and/or titanium oxide films were formed on each side of a quartz substrate without use of resist or etching.

  17. Influence of Gas Components on the Formation of Carbonyl Sulfide over Water-Gas Shift Catalyst B303Q

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Water-gas shift reaction catalyst at lower temperature (200-400 ℃) may improve the conversion of carbon monoxide. But carbonyl sulfide was found to be present over the sulfided cobaltmolybdenum/alumina catalyst for water-gas shift reaction. The influences of temperature, space velocity,and gas components on the formation of carbonyl sulfide over sulfided cobalt-molybdenum/alumina catalyst B303Q at 200-400 ℃ were studied in a tubular fixed-bed quartz-glass reactor under simulated water-gas shift conditions. The experimental results showed that the yield of carbonyl sulfide over B303Q catalyst reached a maximum at 220 ℃ with the increase in temperature, sharply decreased with the increase in space velocity and the content of water vapor, increased with the increase in the content of carbon monoxide and carbon dioxide, and its yield increased and then reached a stable value with the increase in the content of hydrogen and hydrogen sulfide. The formation mechanism of carbonyl sulfide over B303Q catalyst at 200-400 ℃ was discussed on the basis of how these factors influence the formation of COS. The yield of carbonyl sulfide over B303Q catalyst at 200-400 ℃ was the combined result of two reactions, that is, COS was first produced by the reaction of carbon monoxide with hydrogen sulfide,and then the as-produced COS was converted to hydrogen sulfide and carbon dioxide by hydrolysis. The mechanism of COS formation is assumed as follows: sulfur atoms in the Co9Ss-MoS2/Al2O3 crystal lattice were easily removed and formed carbonyl sulfide with CO, and then hydrogen sulfide in the water-gas shift gas reacted with the crystal lattice oxygen atoms in CoO-MoO3/Al2O3 to form Co9Ss-MoS2/Al2O3.This mechanism for the formation of COS over water-gas shift catalyst B303Q is in accordance with the Mars-Van Krevelen's redox mechanism over metal sulfide.

  18. Detection of volatile organic compounds using optical fibre long period grating modified with metal organic framework thin films

    Science.gov (United States)

    Hromadka, Jiri; Tokay, Begum; Korposh, Sergiy; James, Stephen; Tatam, Ralph P.

    2015-09-01

    An optical fibre long period grating (LPG) modified with a thin film of ZIF-8, a zeolitic immidazol framework (ZIF) material, a subgroup of the metal organic framework (MOF) family, was employed for the detection of organic vapours. ZIF-8 film was deposited onto the surface of the LPG using an in-situ crystallization technique. The sensing mechanism is based on the measurement of the refractive index (RI) change induced by the penetration of the chemical molecules into the ZIF-8 pores. An LPG modified with 5 growth cycles of ZIF-8 responded to exposure to methanol and ethanol vapours.

  19. Rare earth metal rich magnesium compounds RE4NiMg (RE=Y, Pr-Nd, Sm, Gd-Tm, Lu)-Synthesis, structure, and hydrogenation behavior

    International Nuclear Information System (INIS)

    The rare earth metal rich compounds RE4NiMg (RE=Y, Pr-Nd, Sm, Gd-Tm, Lu) were synthesized from the elements in sealed tantalum tubes in an induction furnace. All compounds were investigated by X-ray diffraction on powders and single crystals: Gd4RhIn type, space group F4-bar 3m, Z=16, a=1367.6(2) pm for Y4NiMg, a=1403.7(3) pm for Pr4NiMg, a=1400.7(1) pm for Nd4NiMg, a=1386.5(2) pm for Sm4NiMg, a=1376.1(2) pm for Gd4NiMg, a=1362.1(1) pm for Tb4NiMg, a=1355.1(2) pm for Dy4NiMg, a=1355.2(1) pm for Ho4NiMg, a=1354.3(2) pm for Er4NiMg, a=1342.9(3) pm for Tm4NiMg, and a=1336.7(3) pm for Lu4NiMg. The nickel atoms have trigonal prismatic rare earth coordination. These NiRE6 prisms are condensed via common edges to a three-dimensional network which leaves voids for Mg4 tetrahedra and the RE1 atoms which show only weak coordination to the nickel atoms. The single crystal data indicate two kinds of solid solutions. The RE1 positions reveal small RE1/Mg mixing and some compounds also show Ni/Mg mixing within the Mg4 tetrahedra. Y4NiMg and Gd4NiMg have been tested for hydrogenation. These compounds absorb up to eleven hydrogen atoms per formula unit under a hydrogen pressure of 1 MPa at room temperature. The structure of the metal atoms is maintained with only an increase of the lattice parameters (ΔV/V∼22%) if the absorption is done at T2-REH3 hydrides occurred. Moreover, the hydrogenation affects drastically the magnetic properties of these intermetallics. For instance, Gd4NiMg exhibits an antiferromagnetic behavior below TN=92 K whereas its hydride Gd4NiMgH11 is paramagnetic down to 1.8 K. - Graphical abstract: The Mg4 and NiGd6 units in Gd4NiMg and Gd4NiMgHx

  20. An efficient synthesis of 2-[carbonyl-11C]acetamido-2-deoxy-D-glucopyranose (N-[carbonyl-11C]acetyl-D-glucosamine)

    International Nuclear Information System (INIS)

    A rapid chemical synthesis of 2-[carbonyl-11C]acetamido-2-deoxy-D-glucopyranose (N-[carbonyl-11C]acetyl-D-glucosamine) starting from [11C]carbon dioxide is described. The total time required for the synthesis, the radiochemical yield, and purity of the titled sugar are ca. 60 min, 49.5% (based on [carbonyl-11C] acetic acid), and >98%, respectively. (author)