WorldWideScience

Sample records for carbonized polyaniline nanotubes

  1. Conducting carbonized polyaniline nanotubes

    International Nuclear Information System (INIS)

    Mentus, Slavko; Ciric-Marjanovic, Gordana; Trchova, Miroslava; Stejskal, Jaroslav

    2009-01-01

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 deg. C min -1 up to a maximum temperature of 800 deg. C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 μm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 μm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm -1 , increased to 0.7 S cm -1 upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  2. Conducting carbonized polyaniline nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mentus, Slavko; Ciric-Marjanovic, Gordana [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Trchova, Miroslava; Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague 6 (Czech Republic)], E-mail: gordana@ffh.bg.ac.rs

    2009-06-17

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 deg. C min{sup -1} up to a maximum temperature of 800 deg. C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 {mu}m, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 {mu}m, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm{sup -1}, increased to 0.7 S cm{sup -1} upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  3. Lithium storage performance of carbon nanotubes prepared from polyaniline for lithium-ion batteries

    International Nuclear Information System (INIS)

    Xiang Xiaoxia; Huang Zhengzheng; Liu Enhui; Shen Haijie; Tian Yingying; Xie Hui; Wu Yuhu; Wu Zhilian

    2011-01-01

    Highlights: → Polyaniline nanotube is synthesized by the self-assembly method in aqueous media. → Carbon nanotubes were prepared from polyaniline nanotube by physical activation. → Activation leads to large surface area, and surface nitrogen and oxygen functional groups. → Such physical and chemical properties lead to the good electrochemical properties. → After 20 cycles, a reversible capacity of 728 mAh g -1 was obtained. - Abstract: Carbon nanotubes with large surface area and surface nitrogen and oxygen functional groups are prepared by carbonizing and activating of polyaniline nanotubes, which is synthesized by polymerization of aniline with the self-assembly method in aqueous media. The physicochemical properties of the carbon nanotubes are characterized by scanning electron microscope, transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller, elemental analyses and X-ray photoelectron spectroscopy measurements. The surface area and pore diameter are 618.9 m 2 g -1 and 3.10 nm. The electrochemical properties of the carbon nanotubes as anode materials in lithium ion batteries are evaluated. At a current density of 100 mA g -1 , the activated carbon nanotube shows an enormously first discharge capacity of about 1370 mAh g -1 and a charge capacity of 907 mAh g -1 . After 20 cycling tests, the activated carbon nanotube retains a reversible capacity of 728 mAh g -1 . These indicate it may be a promising candidate for an anode material for lithium secondary batteries.

  4. Perspectives on State-of-the-Art Carbon Nanotube/Polyaniline and Graphene/Polyaniline Composites for Hybrid Supercapacitor Electrodes.

    Science.gov (United States)

    Srikanth, Vadali V S S; Ramana, Gedela Venkata; Kumar, Puttapati Sampath

    2016-03-01

    Supercapacitors are attractive alternative energy storage sources. They offer high energy/power density with other characteristics like fast discharge/charge time, long operation stability, safety etc. In a supercapacitor, working electrode material is the principal constituent. At present there are numerous electrode materials (with properties) suitable for their use in hybrid type supercapacitors. Carbon/polyaniline (PANi) composites are one class of such electrode materials. Here, perspectives on state-of-the-art carbon/PANi composites namely carbon nanotube/polyaniline and graphene/polyaniline composites expedient as hybrid type supercapacitor electrode materials will be presented.

  5. Crosslinked Carbon Nanotubes/Polyaniline Composites as a Pseudocapacitive Material with High Cycling Stability

    Directory of Open Access Journals (Sweden)

    Dong Liu

    2015-06-01

    Full Text Available The poor cycling stability of polyaniline (PANI limits its practical application as a pseudocapacitive material due to the volume change during the charge-discharge procedure. Herein, crosslinked carbon nanotubes/polyaniline (C-CNTs/PANI composites had been designed by the in situ chemical oxidative polymerization of aniline in the presence of crosslinked carbon nanotubes (C-CNTs, which were obtained by coupling of the functionalized carbon nanotubes with 1,4-benzoquinone. The composite showed a specific capacitance of 294 F/g at the scan rate of 10 mV/s, and could retain 95% of its initial specific capacitance after 1000 CV cycles. Such high electrochemical cycling stability resulting from the crosslinked skeleton of the C-CNTs makes them potential electrode materials for a supercapacitor.

  6. Polyaniline-encapsulated silicon on three-dimensional carbon nanotubes foam with enhanced electrochemical performance for lithium-ion batteries

    Science.gov (United States)

    Zhou, Xiaoming; Liu, Yang; Du, Chunyu; Ren, Yang; Mu, Tiansheng; Zuo, Pengjian; Yin, Geping; Ma, Yulin; Cheng, Xinqun; Gao, Yunzhi

    2018-03-01

    Seeking free volume around nanostructures for silicon-based anodes has been a crucial strategy to improve cycling and rate performance in the next generation Li-ion batteries. Herein, through a simple pyrolysis and in-situ polymerization approach, the low cost commercially available melamine foam as a soft template converts carbon nanotubes into highly dispersed and three-dimensionally interconnected framework with encapsulated silicon/polyaniline hierarchical nanoarchitecture. This unique core-sheath structure based on carbon nanotubes foam integrates a large number of mesoporous, thus providing well-accessible space for electrolyte wetting, whereas the carbon nanotubes matrix serves as conductive thoroughfares for electron transport. Meanwhile, the outer polyaniline coated on silicon nanoparticles provides effective space for volume expansion of silicon, further inhibiting the active material escape from the current collector. As expected, the PANI-Si@CNTs foam exhibits a high initial specific capacity of 1954 mAh g-1 and retains 727 mAh g-1 after 100 cycles at 100 mA g-1, which can be attributed to highly electrical conductivity of carbon nanotubes and protective layer of polyaniline sheath, together with three-dimensionally interconnected porous skeleton. This facile structure can pave a way for large scale synthesis of high durable silicon-based anodes or other electrode materials with huge volume expansion.

  7. The sorption of influenza viruses and antibiotics on carbon nanotubes and polyaniline nanocomposites

    International Nuclear Information System (INIS)

    Ivanova, V T; Ilyna, M V; Kurochkina, Y E; Katrukha, G S; Timofeeva, A V; Baratova, L A; Sapurina, I Yu; Ivanov, V F

    2011-01-01

    The decontamination of the solutions from micropatogens and drug delivery are the important problems of modern life. It was shown that carbon nanotubes, polyaniline and their composites can interact with antibiotics-polypeptides and some viruses (pandemic strain of influenza viruses A(H1N1)v circulated in Russia in 2009-2010. During a short time drug and viruses can be absorbed by polyaniline and removed from aqueous solutions at the normal conditions. Polyaniline composites can be useful for the preparation of drug delivery and virus control filters and also in biotechnology for the improvement the methods of antibiotics purification.

  8. The sorption of influenza viruses and antibiotics on carbon nanotubes and polyaniline nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, V T; Ilyna, M V; Kurochkina, Y E [D.I. Ivanovsky Research Institute of Virology RAMS, Gamaleya st, 16, Moscow 123098 (Russian Federation); Katrukha, G S [G.F.Gause Institute of New Antibiotics RAMS, Moscow 119021 (Russian Federation); Timofeeva, A V; Baratova, L A [A.N. Belozersky Research Institute for Physico-Chemical Biology, M.V.Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Sapurina, I Yu [Institute of Macromolecular Compounds RAS, 199004, St. Petersburgr. Bolshoy Pr.31 (Russian Federation); Ivanov, V F, E-mail: valivanova1946@mail.ru [A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Leninsky prospect, 31, Moscow 119991 (Russian Federation)

    2011-04-01

    The decontamination of the solutions from micropatogens and drug delivery are the important problems of modern life. It was shown that carbon nanotubes, polyaniline and their composites can interact with antibiotics-polypeptides and some viruses (pandemic strain of influenza viruses A(H1N1)v circulated in Russia in 2009-2010. During a short time drug and viruses can be absorbed by polyaniline and removed from aqueous solutions at the normal conditions. Polyaniline composites can be useful for the preparation of drug delivery and virus control filters and also in biotechnology for the improvement the methods of antibiotics purification.

  9. Microwave absorbing properties of polyaniline/multi-walled carbon nanotube composites with various polyaniline contents

    International Nuclear Information System (INIS)

    Ting, T.H.; Jau, Y.N.; Yu, R.P.

    2012-01-01

    Polyaniline/multi-walled carbon nanotube (PANI/MWNT) composites were synthesized using in situ polymerization at different aniline/multi-walled carbon nanotube weight ratios (Ani/MWNT = 1/2, 1/1, 2/1 and 3/1) and introduced into an epoxy resin to act as a microwave absorber. The spectroscopic characterization of the process of formation of PANI/MWNT composites were studied using Fourier transform infrared spectroscopy, an ultraviolet-visible spectrophotometer, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron spin resonance. The microwave absorbing properties were investigated by measuring complex permittivity, complex permeability and reflection loss in the 2-18 and 18-40 GHz microwave frequency range, using the free space method. The results showed that the addition of PANI was useful for achieving a large absorption over a wide frequency range, especially for higher frequency values.

  10. Polyaniline/carbon nanotube/CdS quantum dot composites with enhanced optical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Mrinmoy [Department of Physics, National Institute of Technology, Durgapur, 713209 (India); Ghosh, Ranajit, E-mail: ghosh.ranajit@gmail.com [CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 (India); Maruyama, Takahiro [Department of Applied Chemistry, Meijo University, Nagoya, 4688502 (Japan); Meikap, Ajit Kumar [Department of Physics, National Institute of Technology, Durgapur, 713209 (India)

    2016-02-28

    Graphical abstract: - Highlights: • A new kind of polyaniline/carbon nanotube/CdS quantum dot composites have been synthesized via in-situ polymerization of aniline monomer. • A degree of increase in conductivity. • Size-dependent optical properties of CdS quantum dots have been observed. - Abstract: A new kind of polyaniline/carbon nanotube/CdS quantum dot composites have been developed via in-situ polymerization of aniline monomer in the presence of dispersed CdS quantum dots (size: 2.7–4.8 nm) and multi-walled carbon nanotubes (CNT), which exhibits enhanced optical and electrical properties. The existences of 1st order, 2nd order, and 3rd order longitudinal optical phonon modes, strongly indicate the high quality of synthesized CdS quantum dots. The occurrence of red shift of free exciton energy in photoluminescence is due to size dependent quantum confinement effect of CdS. The conductivity of the composites (for example PANI/CNT/CdS (2 wt.% CdS)) is increased by about 7 of magnitude compared to that of pure PANI indicating a charge transfer between CNT and polymer via CdS quantum dots. This advanced material has a great potential for high-performance of electro-optical applications.

  11. On the high charge-carrier mobility in polyaniline molecular channels in nanogaps between carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Emelianov, A. V., E-mail: emmsowton@gmail.com; Romashkin, A. V.; Tsarik, K. A. [National Research University of Electronic Technology (MIET) (Russian Federation); Nasibulin, A. G. [Skolkovo Institute of Science and Technology (Russian Federation); Nevolin, V. K.; Bobrinetskiy, I. I. [National Research University of Electronic Technology (MIET) (Russian Federation)

    2017-04-15

    This study is devoted to the fabrication of molecular semiconductor channels based on polymer molecules with nanoscale electrodes made of single-walled carbon nanotubes. A reproducible technology for forming nanoscale gaps in carbon nanotubes using a focused Ga{sup +} ion beam is proposed. Polyaniline molecules are deposited into nanogaps up to 30 nm wide between nanotubes by electrophoresis from N-methyl-2-pyrrolidone solution. As a result, molecular organic transistors are fabricated, in which the field effect is studied and the molecular-channel mobility is determined as 0.1 cm{sup 2}/(V s) at an on/off current ratio of 5 × 10{sup 2}.

  12. Ferromagnetic behaviour of polyaniline-coated multi-wall carbon nanotubes containing nickel nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Konyushenko, Elena; Kazantseva, N. E.; Stejskal, Jaroslav; Trchová, Miroslava; Kovářová, Jana; Sapurina, I.; Tomishko, M. M.

    2008-01-01

    Roč. 320, 3-4 (2008), s. 231-240 ISSN 0304-8853 R&D Projects: GA AV ČR IAA4050313; GA AV ČR IAA400500504; GA MŠk ME 847; GA ČR GA202/06/0419 Institutional research plan: CEZ:AV0Z40500505 Keywords : multi-wall carbon nanotube * conducting polymer * polyaniline coating Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.283, year: 2008

  13. Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor

    International Nuclear Information System (INIS)

    Yang Miaomiao; Cheng Bin; Song Huaihe; Chen Xiaohong

    2010-01-01

    Nitrogen-containing carbon nanotubes (CNTs) with open end and low specific surface area were prepared via the carbonization of polyaniline (PANI) nanotubes synthesized by a rapidly mixed reaction. On the basis of analyzing the morphologies and structures of the original and carbonized PANI nanotubes, the electrochemical properties of PANI-based CNTs obtained at different temperatures as electrode materials for supercapacitors using 30 wt.% aqueous solution of KOH as electrolyte were investigated by galvanostatic charge/discharge and cyclic voltammetry. It was found that the carbonized PANI nanotubes at 700 o C exhibit high specific capacitance of 163 F g -1 at a current density of 0.1 A g -1 and excellent rate capability in KOH solution. Using X-ray photoelectron spectroscopy measurement the nitrogen state and content in PANI-CNTs were analysed, which could play important roles for the enhancement of electrochemical performance. When the appropriate content of nitrogen is present, the presence of pyrrole or pyridone and quaternary nitrogen is beneficial for the improvement of electron mobility and the wettability of electrode.

  14. Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Yang Miaomiao; Cheng Bin [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Song Huaihe, E-mail: songhh@mail.buct.edu.c [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Chen Xiaohong [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2010-09-30

    Nitrogen-containing carbon nanotubes (CNTs) with open end and low specific surface area were prepared via the carbonization of polyaniline (PANI) nanotubes synthesized by a rapidly mixed reaction. On the basis of analyzing the morphologies and structures of the original and carbonized PANI nanotubes, the electrochemical properties of PANI-based CNTs obtained at different temperatures as electrode materials for supercapacitors using 30 wt.% aqueous solution of KOH as electrolyte were investigated by galvanostatic charge/discharge and cyclic voltammetry. It was found that the carbonized PANI nanotubes at 700 {sup o}C exhibit high specific capacitance of 163 F g{sup -1} at a current density of 0.1 A g{sup -1} and excellent rate capability in KOH solution. Using X-ray photoelectron spectroscopy measurement the nitrogen state and content in PANI-CNTs were analysed, which could play important roles for the enhancement of electrochemical performance. When the appropriate content of nitrogen is present, the presence of pyrrole or pyridone and quaternary nitrogen is beneficial for the improvement of electron mobility and the wettability of electrode.

  15. Processable Conducting Polyaniline, Carbon Nanotubes, Graphene and Their Composites

    Science.gov (United States)

    Wang, Kan

    Good processability is often required for applications of conducting materials like polyaniline (PANI), carbon nanotubes (CNTs) and graphene. This can be achieved by either physical stabilization or chemical functionalization. Functionalization usually expands the possible applications for the conducting materials depending on the properties of the functional groups. Processable conducting materials can also be combined with other co-dissolving materials to prepare composites with desired chemical and physical properties. Polyanilines (PANI) doped with dodecylbenzenesulfonic acid (DBSA) are soluble in many organic solvents such as chloroform and toluene. Single wall carbon nanotubes (SWCNTs) can be dispersed into PANI/DBSA to form homogeneous solutions. PANI/DBSA functions as a conducting surfactant for SWCNTs. The mixture can be combined with two-parts polyurethanes that co-dissolve in the organic solvent to produce conducting polymer composites. The composite mixtures can be applied onto various substrates by simple spray-on methods to obtain transparent and conducting coatings. Graphene, a single layer of graphite, has drawn intense interest for its unique properties. Processable graphene has been produced in N-methyl-2-pyrrolidone (NMP) by a one-step solvothermal reduction of graphite oxide without the aid of any reducing reagent and/or surfactant. The as-synthesized graphene disperses well in a variety of organic solvents such as dimethylsulfoxide (DMSO), ethanol and tetrahydrogenfuran (THF). The conductivity of solvothermal reduced graphite oxide is comparable to hydrazine reduced graphite oxide. Attempts were made to create intrinsically conducting glue comparable to mussel adhesive protiens using polyaniline and graphene. Mussels can attach to a variety of substrates under water. Catechol residue in 3,4-dihydroxyphenylalanine (L-DOPA) is the key to the wet adhesion. Tyrosine and phosphoserine with primary alkyl amine groups also participate in adhesion. A

  16. Enhanced thermal stability of multi-walled carbon nanotubes after coating with polyaniline salt

    Czech Academy of Sciences Publication Activity Database

    Morávková, Zuzana; Trchová, Miroslava; Tomšík, Elena; Čechvala, J.; Stejskal, Jaroslav

    2012-01-01

    Roč. 97, č. 8 (2012), s. 1405-1414 ISSN 0141-3910 R&D Projects: GA AV ČR IAA100500902; GA ČR GA202/09/1626; GA ČR GPP108/11/P763; GA ČR GAP205/12/0911 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : carbon nanotubes * polyaniline * nano-composites Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.770, year: 2012

  17. A Facile Synthesis of a Palladium-Doped Polyaniline-Modified Carbon Nanotube Composites for Supercapacitors

    Science.gov (United States)

    Giri, Soumen; Ghosh, Debasis; Malas, Asish; Das, Chapal Kumar

    2013-08-01

    Supercapacitors have evolved as the premier choice of the era for storing huge amounts of charge in the field of energy storage devices, but it is still necessary to enhance their performance to meet the increasing requirements of future systems. This could be achieved either through advancing the interfaces of the material at the nanoscale or by using novel material compositions. We report a high-performance material composition prepared by combining a transition metal (palladium)-doped conductive polymer with multiwalled carbon nanotubes (MWCNTs). MWCNTs/palladium-doped polyaniline (MWCNTs/Pd/PANI) composites and multiwalled carbon nanotube/polyaniline (MWCNTs/PANI) composites (for comparison) were prepared via in situ oxidative polymerization of aniline monomer. The reported composites were characterized by Fourier-transform infrared (FTIR), x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) studies. FESEM and TEM studies indicated the narrow size distribution of the π-conjugated polymer-protected palladium nanoparticles on the surface of the carbon nanotubes. All the electrochemical characterizations were executed using a three-electrode system in 1 M H2SO4 electrolyte. Cyclic voltammetry (CV) analysis was performed to observe the capacitive performance and redox behavior of the composites. The ion transfer behavior and cyclic stability of the composites were investigated by electrochemical impedance spectroscopy (EIS) analysis and cyclic charge-discharge (CCD) testing, respectively. The MWCNTs/Pd/PANI composite was found to exhibit an especially high specific capacitance value of 920 F/g at scan rate of 2 mV/s.

  18. Electrocatalytic oxidative determination of reserpine at electrochemically functionalized single walled carbon nanotube with polyaniline

    International Nuclear Information System (INIS)

    Dar, Riyaz Ahmad; Naikoo, Gowhar Ahmad; Pitre, Krishna Sadashive

    2013-01-01

    Graphical abstract: Electrode oxidation mechanism of reserpine at PANI modified-SWCNT/CPE. -- Highlights: • Electropolymerization of polyaniline at SWCNT/CPE. • CV, EIS, CC SEM techniques were used for characterization of electrode. • Electrode showed electrocatalytic activity towards anodic oxidation of reserpine. • Oxidation process as irreversible and adsorption-controlled. • Reserpine in bark of Rauwolfia serpentina and in its pharmaceutical formulations. -- Abstract: In the present work a polyaniline film was successfully deposited by electropolymerization on single walled carbon nanotube paste electrode. The electrode was characterized using cyclic voltammetry, electrochemical impedance spectroscopy, chronocoulometry and scanning electron microscopy. The modified electrode showed electrocatalytic behaviour towards the anodic oxidation of reserpine. The adsorptive stripping voltammetric behaviour of reserpine at polyaniline film modified single walled carbon nanotube paste electrode (modified-SWCNTPE) was investigated and validated in pharmaceuticals and biological fluids by cyclic voltammetry (CV) and adsorptive stripping differential pulse voltammetry (AdSDPV) in 0.02 M phosphate buffer in the pH range of 2.5–8.5. Cyclic voltammetry has shown that the oxidation process is irreversible over the pH range studied and exhibited an adsorption-controlled behaviour. Further, the overall electrode process is mainly diffusion controlled with adsorption effects. The proposed more sensitive AdSDPV method allow quantitation over the range 0.085 μg mL −1 to 0.87 μg mL −1 with the detection limit of 0.407 ng mL −1 and has been successfully used to determine reserpine in bark of Rauwolfia serpentina and in its pharmaceutical formulations

  19. Fabrication of graphene foam supported carbon nanotube/polyaniline hybrids for high-performance supercapacitor applications

    International Nuclear Information System (INIS)

    Yang, Hongxia; Wang, Nan; Xu, Qun; Chen, Zhimin; Ren, Yumei; Razal, Joselito M; Chen, Jun

    2014-01-01

    A large-scale, high-powered energy storage system is crucial for addressing the energy problem. The development of high-performance materials is a key issue in realizing the grid-scale applications of energy-storage devices. In this work, we describe a simple and scalable method for fabricating hybrids (graphene-pyrrole/carbon nanotube-polyaniline (GPCP)) using graphene foam as the supporting template. Graphene-pyrrole (G-Py) aerogels are prepared via a green hydrothermal route from two-dimensional materials such as graphene sheets, while a carbon nanotube/polyaniline (CNT/PANI) composite dispersion is obtained via the in situ polymerization method. The functional nanohybrid materials of GPCP can be assembled by simply dipping the prepared G-py aerogels into the CNT/PANI dispersion. The morphology of the obtained GPCP is investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed that the CNT/PANI was uniformly deposited onto the surfaces of the graphene. The as-synthesized GPCP maintains its original three-dimensional hierarchical porous architecture, which favors the diffusion of the electrolyte ions into the inner region of the active materials. Such hybrid materials exhibit significant specific capacitance of up to 350 F g −1 , making them promising in large-scale energy-storage device applications. (paper)

  20. Negative to positive magnetoresistance transition in functionalization of carbon nanotube and polyaniline composite

    Science.gov (United States)

    Prasad Maity, Krishna; Tanty, Narendra; Patra, Ananya; Prasad, V.

    2018-03-01

    Electrical resistivity and magnetoresistance(MR) in polyaniline(PANI) with carbon nanotube(CNT) and functionalized carbon nanotube(fCNT) composites have been studied for different weight percentages down to the temperature 4.2 K and up to magnetic field 5 T. Resistivity increases significantly in composite at low temperature due to functionalization of CNT compared to only CNT. Interestingly a transition from negative to positive magnetoresistance has been observed when the filler is changed from pure CNT to functionalized CNT after a certain percentage (10wt%) as the effect of more disorder in fCNT/PANI composite. This result depicts that the MR has strong dependency on disorder in the composite system. The transition of MR has been explained on the basis of polaron-bipolaron model. The long range Coulomb interaction between two polarons screened by disorder in the composite of fCNT/PANI, increases the effective on-site Coulomb repulsion energy to form bipolaron which leads to change the sign of MR from negative to positive.

  1. Secondary doping in polyaniline layers coated on multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Zhou Yi

    2015-01-01

    Full Text Available HC1 doped coaxial polyaniline/multiwalled carbon nanotubes (MWCNTs nanocomposites were first prepared by in–situ chemical polymerization of aniline monomers in the presence of MWCNTs with less structural defects. P-toluene sulfonic acid (TSA and 5-sulfosalicylic acid dihydrate (SSA redoped PANI/MWCNT nanocomposites were achieved after the as-prepared nanocomposites were treated by ammonia respectively. The redoped nanocomposites were characterized by field emission scanning electron microscopy, transmission electron microscopy, fourier transform infrared spectroscopy, Raman, X–ray diffraction, thermogravimetric analysis and cyclic voltammetry, respectively. The results indicated that the thermal stability and electrochemical behaviour of TSA doped PANI/MWCNT nanocomposites were better than that of SSA doped PANI/MWCNT nanocomposites.

  2. Green Synthesis and Characterization of Carbon Nanotubes/Polyaniline Nanocomposites

    Directory of Open Access Journals (Sweden)

    Van Hoa Nguyen

    2015-01-01

    Full Text Available Carbon nanotubes/polyaniline (CNT/PANI nanocomposites were synthesized by the interfacial polymerization of aniline in the presence of CNTs using two green solvents, water and an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4], as the two phases. The formation and incorporation of PANI on the surface of the CNTs were confirmed by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy ultraviolet-visible spectroscopy, and X-ray photoelectron spectroscopy. The analyses showed that the surface of the CNTs was coated with different morphologies of thin PANI layers depending on whether a HCl or HNO3 solution was used. The thermal stability of the composites was much better than that of the bare CNTs and pure PANI. The as-prepared composites were also used to modify the nickel foam electrodes for characterization of the electrochemical properties.

  3. Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon nanotube ternary composite film

    International Nuclear Information System (INIS)

    Lu Xiangjun; Dou Hui; Yang Sudong; Hao Liang; Zhang Luojiang; Shen Laifa; Zhang Fang; Zhang Xiaogang

    2011-01-01

    Graphical abstract: A hierarchical film with coaxial polyaniline/carbon nanotube (PANI/CNT) nanocables uniformly sandwiched between graphene (GN) sheets was prepared by filtration of the complex dispersion of graphite oxide (GO) and PANI/CNT. Highlights: → A film composed of GN sheets, PANI and CNTs was fabricated. → The coaxial PANI/CNT nanocables uniformly sandwiched between the GN sheets. → The unique structure facilitates contact between electrolyte and electrode materials. → Each component provides unique function to achieve superior electrochemical properties. - Abstract: A film composed of graphene (GN) sheets, polyaniline (PANI) and carbon nanotubes (CNTs) has been fabricated by reducing a graphite oxide (GO)/PANI/CNT precursor prepared by flow-directed assembly from a complex dispersion of GO and PANI/CNT, followed by reoxidation and redoping of the reduced PANI in the composite to restore the conducting PANI structure. Scanning electron microscope images indicate that the ternary composite film is a layered structure with coaxial PANI/CNT nanocables uniformly sandwiched between the GN sheets. Such novel hierarchical structure with high electrical conductivity perfectly facilitates contact between electrolyte ions and PANI for faradaic energy storage and efficiently utilizes the double-layer capacitance at the electrode-electrolyte interfaces. The specific capacitance of the GN/PANI/CNT estimated by galvanostatic charge/discharge measurement is 569 F g -1 (or 188 F cm -3 for volumetric capacitance) at a current density of 0.1 A g -1 . In addition, the GN/PANI/CNT exhibits good rate capability (60% capacity retention at 10 A g -1 ) and superior cycling stability (4% fade after 5000 continuous charge/discharge cycles).

  4. Polyaniline/carbon nanotube/CdS quantum dot composites with enhanced optical and electrical properties

    Science.gov (United States)

    Goswami, Mrinmoy; Ghosh, Ranajit; Maruyama, Takahiro; Meikap, Ajit Kumar

    2016-02-01

    A new kind of polyaniline/carbon nanotube/CdS quantum dot composites have been developed via in-situ polymerization of aniline monomer in the presence of dispersed CdS quantum dots (size: 2.7-4.8 nm) and multi-walled carbon nanotubes (CNT), which exhibits enhanced optical and electrical properties. The existences of 1st order, 2nd order, and 3rd order longitudinal optical phonon modes, strongly indicate the high quality of synthesized CdS quantum dots. The occurrence of red shift of free exciton energy in photoluminescence is due to size dependent quantum confinement effect of CdS. The conductivity of the composites (for example PANI/CNT/CdS (2 wt.% CdS)) is increased by about 7 of magnitude compared to that of pure PANI indicating a charge transfer between CNT and polymer via CdS quantum dots. This advanced material has a great potential for high-performance of electro-optical applications.

  5. Exploring aligned-carbon-nanotubes@polyaniline arrays on household Al as supercapacitors.

    Science.gov (United States)

    Huang, Fan; Lou, Fengliu; Chen, De

    2012-05-01

    Herein, we demonstrate a new approach towards the construction of supercapacitors consisting of carbon nanotubes (CNTs) and conducting polymers (ECPs) with high specific power, high specific energy, and stable cycling performance through a 3D design of a thin film of polyaniline (PANI) on an aligned small carbon nanotube (ACNT) array on household Al foils. The thin-film strategy is used to fully exploit the specific capacitance of PANI, and obtain regular pores, strong interaction between PANI and CNTs, and reduced electrical resistance for the electrodes. A facile process is developed to fabricate a highly flexible supercapacitor using this binder-free composite on household Al foil as the current collector. It exhibits high specific energy of 18.9 Wh kg(-1) , high maximum specific power of 11.3 kW kg(-1) of the active material in an aqueous electrolyte at 1.0 A g(-1) , and excellent rate performance and cycling stability. A high specific energy of 72.4 Wh kg(-1) , a high maximum specific power of 24.9 kW kg(-1) , and a good cycling performance of the active material are obtained in an organic electrolyte. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Polyaniline/Carbon nanotube Electrochromic Films: Electrochemical Polymerization and characterization

    Science.gov (United States)

    Li, Xiao-Xia; Zhao, Liang; Ma, De-Yue; Zeng, Yu-Run

    2018-02-01

    Polyaniline/Carbon nanotube (PANI/CNT) composite films doped with dodecyl-benzene sulfonic acid were synthesized by cyclic voltammetry on an ITO-coated glass substrate. FTIR, XRD and electrochemical analyzer were used to characterize the micro-morphology, chemical structure, crystallinity and electrochromic behavior of the films, respectively. The effect of CNT content on the properties of the films was investigated. Results show that the introducing CNTs make aniline polymerize easier than before. Within a range, the conductivity and crystallinity of PANI/CNT composites improves with CNT content increasing. The electrochromic device made from the PAN/CNT film with a CNT content of 2.5wt% presents a reflectance contrast of 38.8%, a mean response time of 2.3s and a coloration efficiency of 386.4cm2/C at 540nm. The PAN/CNT film shows better electrochromic behaviors due to some interaction between CNTs and the PANI backbones than PANI film.

  7. Modification of conductive polyaniline with carbon nanomaterials

    Science.gov (United States)

    Sedaghat, Sajjad; Alavijeh, Mahdi Soleimani

    2014-08-01

    The synthesis of polyaniline/single-wall nanotube, polyaniline/multi-wall nanotube and polyaniline/single-wall nanotube/graphen nanosheets nanocomposites by in situ polymerization are reported in this study. The substrates were treated with a mixture of concentrated sulfuric acid and concentrated nitric acid before usage to functionalize with carboxylic and hydroxyl groups. Aniline monomers are adsorbed and polymerized on the surface of these fillers. Structural analysis using scanning electron microscopy showed that nanomaterials dispersed into polymer matrix and made tubular structures with diameters several tens to hundreds nanometers depending on the polyaniline content. These nanocomposites can be used for production of excellent electrode materials applications in high-performance supercapacitors.

  8. Portable cholesterol detection with polyaniline-carbon nanotube film based interdigitated electrodes

    International Nuclear Information System (INIS)

    Nguyen, Le Huy; Nguyen, Ngoc Thinh; Nguyen, Hai Binh; Tran, Dai Lam; Nguyen, Tuan Dung

    2012-01-01

    Polyaniline-carboxylic multiwalled carbon nanotubes composite film (PANi-MWCNT) has been polymerized on the surface of interdigitated platinum electrode (fabricated by MEMS technology) which was compatibly connected to Autolab interface via universal serial bus (USB). An amperometric biosensor based on covalent immobilization of cholesterol oxidase (ChOx) on PANi–MWCNT film with potassium ferricyanide (FeCN) as the redox mediator was developed. The mediator helps to shuttle the electrons between the immobilized ChOx and the PANi-MWCNT electrode, therefore operating at a low potential of −0.3 V compared to the saturated calomel electrode (SCE). This potential precludes the interfering compounds from oxidization. The bio-electrode exhibits good linearity from 0.02 to 1.2 mM cholesterol concentration with a correlation coefficient of 0.9985

  9. Polyaniline-stabilized electromagnetic wave absorption composites of reduced graphene oxide on magnetic carbon nanotube film

    Science.gov (United States)

    Li, Jinsong; Duan, Yan; Lu, Weibang; Chou, Tsu-Wei

    2018-04-01

    A multi-layered composite with exceptionally high electromagnetic wave-absorbing capacity and performance stability was fabricated via the facile electrophoresis of a reduced graphene oxide network on carbon nanotube (CNT)-Fe3O4-polyaniline (PANI) film. Minimum reflection loss (RL) of -53.2 dB and absorbing bandwidth of 5.87 GHz (graphene-based absorbers. In particular, comparing to the original composites, the minimum RL and bandwidth (< -10 dB) maintains 82.5% and 99.7%, respectively, after 20 h charge/discharge cycling, demonstrating high environmental suitability.

  10. Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors

    KAUST Repository

    Chen, Wei

    2013-01-01

    A remarkable energy density of 84 W h kg(cell) -1 and a power density of 182 kW kg(cell) -1 have been achieved for full-cell pseudocapacitors using conducting polymer nanotubes (polyaniline) as electrode materials and ionic liquid as electrolytes. The polyaniline nanotubes were synthesized by a one-step in situ chemical polymerization process utilizing MnO2 nanotubes as sacrificial templates. The polyaniline-nanotube pseudocapacitors exhibit much better electrochemical performance than the polyaniline-nanofiber pseudocapacitors in both acidic aqueous and ionic liquid electrolytes. Importantly, the incorporation of ionic liquid with polyaniline-nanotubes has drastically improved the energy storage capacity of the PAni-nanotube pseudocapacitors by a factor of ∼5 times compared to that of the PAni-nanotube pseudocapacitors in the acidic aqueous electrolyte. Furthermore, even after 10000 cycles, the PAni-nanotube pseudocapacitors in the ionic liquid electrolyte maintain sufficient high energy density and can light LEDs for several minutes, with only 30 s quick charge. © 2013 The Royal Society of Chemistry.

  11. Synthesis and characterization of conducting polyaniline 5-sulfosalicylate nanotubes

    International Nuclear Information System (INIS)

    Janosevic, Aleksandra; Ciric-Marjanovic, Gordana; Marjanovic, Budimir; Holler, Petr; Trchova, Miroslava; Stejskal, Jaroslav

    2008-01-01

    Conducting polyaniline 5-sulfosalicylate nanotubes and nanorods were synthesized by the template-free oxidative polymerization of aniline in aqueous solution of 5-sulfosalicylic acid, using ammonium peroxydisulfate as an oxidant. The effect of the molar ratio of 5-sulfosalicylic acid to aniline on the molecular structure, molecular weight distribution, morphology, and conductivity of polyaniline 5-sulfosalicylate was investigated. The nanotubes, which have a typical outer diameter of 100-250 nm, with an inner diameter of 10-60 nm, and a length extending from 0.4 to 1.5 μm, and the nanorods, with a diameter of 80-110 nm and a length of 0.5-0.7 μm, were observed by scanning and transmission electron microscopies. The presence of branched structures and phenazine units besides the ordinary polyaniline structural features was revealed by infrared and Raman spectroscopies. The stacking of low-molecular-weight substituted phenazines appears to play a major role in the formation of polyaniline nanorods. The precipitation-dissolution of oligoaniline templates as a key element in the formation of polyaniline nanotubes is proposed to explain the crucial influence of the initial pH of the reaction mixture and its decrease during the course of polymerization

  12. Synthesis and characterization of conducting polyaniline 5-sulfosalicylate nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Janosevic, Aleksandra; Ciric-Marjanovic, Gordana [Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11001 Belgrade (Serbia); Marjanovic, Budimir [Centrohem, Vuka Karadzica bb, 22300 Stara Pazova (Serbia); Holler, Petr; Trchova, Miroslava; Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic)], E-mail: gordana@ffh.bg.ac.yu

    2008-04-02

    Conducting polyaniline 5-sulfosalicylate nanotubes and nanorods were synthesized by the template-free oxidative polymerization of aniline in aqueous solution of 5-sulfosalicylic acid, using ammonium peroxydisulfate as an oxidant. The effect of the molar ratio of 5-sulfosalicylic acid to aniline on the molecular structure, molecular weight distribution, morphology, and conductivity of polyaniline 5-sulfosalicylate was investigated. The nanotubes, which have a typical outer diameter of 100-250 nm, with an inner diameter of 10-60 nm, and a length extending from 0.4 to 1.5 {mu}m, and the nanorods, with a diameter of 80-110 nm and a length of 0.5-0.7 {mu}m, were observed by scanning and transmission electron microscopies. The presence of branched structures and phenazine units besides the ordinary polyaniline structural features was revealed by infrared and Raman spectroscopies. The stacking of low-molecular-weight substituted phenazines appears to play a major role in the formation of polyaniline nanorods. The precipitation-dissolution of oligoaniline templates as a key element in the formation of polyaniline nanotubes is proposed to explain the crucial influence of the initial pH of the reaction mixture and its decrease during the course of polymerization.

  13. The effect of carbon nanofillers on the performance of electromechanical polyaniline-based composite actuators

    International Nuclear Information System (INIS)

    García-Gallegos, J C; Martín-Gullón, I; Conesa, J A; Vega-Cantú, Y I; Rodríguez-Macías, F J

    2016-01-01

    Different types of crystalline carbon nanomaterials were used to reinforce polyaniline for use in electromechanical bilayer bending actuators. The objective is to analyze how the different graphitic structures of the nanocarbons affect and improve the in situ polymerized polyaniline composites and their subsequent actuator behavior. The nanocarbons investigated were multiwalled carbon nanotubes, nitrogen-doped carbon nanotubes, helical-ribbon carbon nanofibers and graphene oxide, each one presenting different shape and structural characteristics. Films of nanocarbon-PAni composite were tested in a liquid electrolyte cell system. Experimental design was used to select the type of nanocarbon filler and composite loadings, and yielded a good balance of electromechanical properties. Raman spectroscopy suggests good interaction between PAni and the nanocarbon fillers. Electron microscopy showed that graphene oxide dispersed the best, followed by multiwall carbon nanotubes, while nitrogen-doped nanotube composites showed dispersion problems and thus poor performance. Multiwall carbon nanotube composite actuators showed the best performance based on the combination of bending angle, bending velocity and maximum working cycles, while graphene oxide attained similarly good performance due to its best dispersion. This parallel testing of a broad set of nanocarbon fillers on PAni-composite actuators is unprecedented to the best of our knowledge and shows that the type and properties of the carbon nanomaterial are critical to the performance of electromechanical devices with other conditions remaining equal. (paper)

  14. Synthesis of polyaniline nanotubes through UV light catalytic method

    Directory of Open Access Journals (Sweden)

    Chuanyu Sun

    2015-03-01

    Full Text Available In this study, nitrocellulose (NC fiber blanket prepared by electrostatic spinning method has been used as a template, and copper nitrate (Cu(NO32 as an oxidant to synthesise polyaniline nanotubes doped with heteropolyacid (H4SiW12O40, SiW12 using UV light catalytic method. Infrared spectroscopy (IR, X-ray powder diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM technologies were applied to characterize the prepared samples of polyaniline nanotubes. The results show that the external diameter of the tube is about 200 nm, and the internal diameter about 170 nm. We also give a reasonable speculation and explanation about the formation mechanism of the nanotubes.

  15. Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application

    International Nuclear Information System (INIS)

    Mujawar, Sarfraj H.; Ambade, Swapnil B.; Battumur, T.; Ambade, Rohan B.; Lee, Soo-Hyoung

    2011-01-01

    Highlights: → Polyaniline (PANI)-Titanium nanotube template (TNT) composite for supercapacitors. → The mechanism of the controlled growth of hollow open ended PANI nanotubes using a TNT template is studied. → A rare effort to electropolymerise PANI on TNTs resulting into an appreciable capacitance of 740 F g -1 . - Abstract: Vertically aligned polyaniline (PANI) nanotubes have great potential application in supercapacitor electrode material. In this paper we have investigated facile growth of PANI nanotubes on a titanium nanotube template (TNT) using electrochemical polymerization. The morphology of PANI nanostructures grown over TNT is strongly influenced by the scan rate in the electrochemical polymerization. The growth morphology of PANI nanotubes has been carefully analyzed by field emission scanning electron microscopy. The detailed growth mechanism of PANI nanotubes has been put forward. Specific capacitance value of 740 F g -1 was obtained for PANI nanotube structures (measured at charge-discharge rate of 3 A g -1 ).

  16. Performance evaluation of photovoltaic cells using functionalized carbon nanotube and polyaniline film

    International Nuclear Information System (INIS)

    Kavita, S; Mohan, B; Babu, J Sarat Chandra

    2015-01-01

    The use of polyaniline (PANI) and carbon nanotubes (CNTs) as photovoltaic materials has been presented in this paper. The promising properties of PANI and CNTs have encouraged utilizing them in photovoltaic devices and studying their performance. The photovoltaic performance of PANI has been studied with and without CNTs. We found that there is a considerable increase in the short circuit current density from 3.49 to 8.86 mA cm"−"2 with the use of CNTs in the device and also an increase in power conversion efficiency. The incorporation of CNTs film had led to an efficient transport of photo-generated holes to the anode and suppressed the recombination of free charges generated, thus increasing the efficiency of the device. The performance of the device shows that the PANI and CNTs can be effectively utilized as photovoltaic materials in a photovoltaic cell. (paper)

  17. Polyaniline-coated halloysite nanotubes via in-situ chemical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Long [State Key Laboratory of Applied Organic Chemistry and Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Wang Tingmei [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liu Peng [State Key Laboratory of Applied Organic Chemistry and Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)], E-mail: pliu@lzu.edu.cn

    2008-12-30

    Polyaniline coated halloysite nanotubes (PANI/HNTs) were prepared by the in-situ soapless emulsion polymerization of the anilinium chloride adsorbed halloysite nanotubes (HNTs), obtained by the dispersion of HNTs in acidic aqueous solution of aniline with magnetic stirring and ultrasonic irradiation, by using ammonium persulfate (APS) as oxidant. The effect of the acidities of the polymerizing media on the crystal structure of the nanotubes was investigated with X-ray diffraction (XRD) technique. The surface conducting coatings of the hybrids were characterized with X-ray photoelectron spectroscopy (XPS). The morphological analyses showed that the polyaniline coated halloysite nanotubes via the in-situ chemical oxidation polymerization with ultrasonic irradiation had the better well-defined structures, by the transmission electron microscopy (TEM). The conductivities of the PANI/HNTs hybrids increased with the increasing of the amounts of HCl dopant added in the emulsion polymerization.

  18. Polyaniline-coated halloysite nanotubes via in-situ chemical polymerization

    International Nuclear Information System (INIS)

    Zhang Long; Wang Tingmei; Liu Peng

    2008-01-01

    Polyaniline coated halloysite nanotubes (PANI/HNTs) were prepared by the in-situ soapless emulsion polymerization of the anilinium chloride adsorbed halloysite nanotubes (HNTs), obtained by the dispersion of HNTs in acidic aqueous solution of aniline with magnetic stirring and ultrasonic irradiation, by using ammonium persulfate (APS) as oxidant. The effect of the acidities of the polymerizing media on the crystal structure of the nanotubes was investigated with X-ray diffraction (XRD) technique. The surface conducting coatings of the hybrids were characterized with X-ray photoelectron spectroscopy (XPS). The morphological analyses showed that the polyaniline coated halloysite nanotubes via the in-situ chemical oxidation polymerization with ultrasonic irradiation had the better well-defined structures, by the transmission electron microscopy (TEM). The conductivities of the PANI/HNTs hybrids increased with the increasing of the amounts of HCl dopant added in the emulsion polymerization.

  19. Carbon-polyaniline nanocomposites as supercapacitor materials

    Science.gov (United States)

    Sathish Kumar, M.; Yamini Yasoda, K.; Batabyal, Sudip Kumar; Kothurkar, Nikhil K.

    2018-04-01

    Polyaniline-based nanocomposites containing carbon nanotubes (CNT), reduced graphene oxide (rGO) and mixture of CNTs and rGO were synthesized. UV-visible spectroscopy and FT-IR spectroscopy confirmed the presence of polyaniline (PANi) and carbon nanomaterials. Scanning electron microscopy revealed that the neat PANi had a granular morphology, which can lead to increased electrical resistance to high interfacial resistance between domains of PANi. Cyclic voltammetry of PANi, PANi/CNT, PANi/rGO and PANi/CNT/rGO showed that in general, specific capacitance reduces with increasing scan rate within the range (10–100 mV s‑1). Also the specific capacitance values at any given scan rate within the above range, for PANi, PANi/CNT, PANi/rGO and PANi/CNT/rGO were found to be in increasing order. The specific capacitance of the PANi/CNT/rGO nanocomposite as measured by galvanostatic charge-discharge measurements, was found to be 312.5 F g‑1. The introduction of the carbon nanomaterials (CNTs, rGO) in PANi in general leads to improved specific capacitance, while the addition of CNTs and rGO together leads to synergistic improvement in the specific capacitance, owing to a combination of factors.

  20. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jun; Wei, Tong; Fan, Zhuangjun; Zhang, Milin; Shen, Xiande [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Qian, Weizhong; Wei, Fei [Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2010-05-01

    Graphene nanosheet/carbon nanotube/polyaniline (GNS/CNT/PANI) composite is synthesized via in situ polymerization. GNS/CNT/PANI composite exhibits the specific capacitance of 1035 F g{sup -1} (1 mV s{sup -1}) in 6 M of KOH, which is a little lower than GNS/PANI composite (1046 F g{sup -1}), but much higher than pure PANI (115 F g{sup -1}) and CNT/PANI composite (780 F g{sup -1}). Though a small amount of CNTs (1 wt.%) is added into GNS, the cycle stability of GNS/CNT/PANI composite is greatly improved due to the maintenance of highly conductive path as well as mechanical strength of the electrode during doping/dedoping processes. After 1000 cycles, the capacitance decreases only 6% of initial capacitance compared to 52% and 67% for GNS/PANI and CNT/PANI composites. (author)

  1. Nanobiocomposite platform based on polyaniline-iron oxide-carbon nanotubes for bacterial detection.

    Science.gov (United States)

    Singh, Renu; Verma, Rachna; Sumana, G; Srivastava, Avanish Kumar; Sood, Seema; Gupta, Rajinder K; Malhotra, B D

    2012-08-01

    The nanocomposite based on polyaniline (PANI)-iron oxide nanoparticles (nFe(3)O(4)) and multi walled carbon-nanotubes (CNT) has been fabricated onto indium tin oxide (ITO) coated glass plate via facile electrochemical synthesis of polyaniline in presence of nFe(3)O(4) (~20 nm) and CNT (20-80 nm in diameter). The results of transmission electron microscopic studies show evidence of coating of PANI and nFe(3)O(4) onto the CNT. The PANI-nFe(3)O(4)-CNT/ITO nanoelectrode has been characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy studies. The biotinylated nucleic acid probe sequence consisting of 20 bases has been immobilized onto PANI-nFe(3)O(4)-CNT/ITO nanoelectrode using biotin-avidin coupling. It is shown that the PANI-nFe(3)O(4)-CNT platform based biosensor can be used to specifically detect bacteria (N. gonorrhoeae) at minute concentration as low as (1×10(-19) M) indicating high sensitivity within 45 s of hybridization time at 298 K by differential pulse voltammetry using methylene blue as electroactive indicator. This bacterial sensor has also been tested with 4 positive and 4 negative PCR amplicons of gonorrhoea affected patient samples. The results of these studies have implications towards the fabrication of a handheld device for Neisseria gonorrhoeae detection that may perhaps result in a decrease in the human immunodeficiency virus infections. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Structural, thermal and electrical characterizations of multiwalled carbon nanotubes and polyaniline composite

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kamal, E-mail: singhkamal204@gmail.com; Garg, Leena; Singh, Jaspal [Department of Applied Sciences, Chandigarh University, Gharuan, Mohali (India); Kumar, Sanjeev [Applied Sciences Department, PEC University of Technology, Chandigarh (India); Sharma, Amit L. [Central Scientific Instrumentation Organization, Sector 30, Chandigarh (India)

    2016-05-06

    The undoped and doped composite of MWNTs (Multiwalled Carbon Nanotubes) with PANI (/Polyaniline) was prepared by chemical oxidative polymerization. The MWNTs/PANI composites have been characterized by using various techniques like Thermogravometric Analysis (TGA), Fourier transform infrared (FT-IR) spectrometer and Field emission scanning electron microscope (FE-SEM) and conductivity measurement by using two probe method. TGA results has shown that thermal stability followed the pattern undoped MWNTs/PANI composite < doped MWNTs/PANI composite. FE-SEM micrographs demonstrated the morphological changes on the surface of MWNTs as a result of composite formation. Fourier transformed infrared (FT-IR) spectra ascertained the formation of the composite. Study of electrical characteristics demonstrated that the doped MWNTs/PANI composite (1.2 × 10{sup 1} Scm{sup −1}) have better conductivity than the undoped MWNTs/PANI composite (10{sup −4} Scm{sup −1}). These CNTs based polymeric composites are of great importance in developing new nano-scale devices for future chemical, mechanical and electronic applications.

  3. Multi-wall carbon nanotubes with nitrogen-containing carbon coating

    Czech Academy of Sciences Publication Activity Database

    Tomšík, Elena; Morávková, Zuzana; Stejskal, Jaroslav; Trchová, Miroslava; Šálek, Petr; Kovářová, Jana; Zemek, Josef; Cieslar, M.; Prokeš, J.

    2013-01-01

    Roč. 67, č. 8 (2013), s. 1054-1065 ISSN 0366-6352 R&D Projects: GA ČR GPP108/11/P763; GA ČR GAP205/12/0911; GA ČR GA202/09/0428 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : polyaniline coating * carbon ization * multi-wall carbon nanotubes Subject RIV: CD - Macromolecular Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 1.193, year: 2013

  4. Patterned polyaniline encapsulated in titania nanotubes for electrochromism.

    Science.gov (United States)

    Lv, Haiming; Wang, Yi; Pan, Lei; Zhang, Leipeng; Zhang, Hangchuan; Shang, Lei; Qu, Huiying; Li, Na; Zhao, Jiupeng; Li, Yao

    2018-02-21

    In this article, we report the preparation of a TiO 2 nanotube array (TNA) film used as a transparent electrochromic material and a TNA/polyaniline patterned hybrid electrochromic film utilized as an information display material. The TNA film was fabricated by an anodizing process, and a surface patterned TNA with extreme wettability contrast (hydrophilic/hydrophobic) on a TNA surface through self-assembly (SAM) and photocatalytic lithography is fabricated. Then the TNA/polyaniline hybrid film was prepared by electrodeposition of aniline in an aqueous solution. Finally, the electrochromic properties of the TNA film and the TNA/polyaniline hybrid film were investigated. Compared with neat TNA film and polyaniline (PANI) films, the hybrid film shows a much higher optical contrast in the near infrared range. The TNA/polyaniline hybrid film shows higher coloration efficiencies of 24.4 cm 2 C -1 at a wavelength of 700 nm and 17.1 cm 2 C -1 at a wavelength of 1050 nm compared to the TNA coloration efficiency. The color switching time (20.9 s or 22.9 s) of TNA/polyaniline is faster than TNA.

  5. Synthesis of Fe nanoparticles on polyaniline covered carbon nanotubes for oxygen reduction reaction

    Science.gov (United States)

    Hu, Tian-Hang; Yin, Zhong-Shu; Guo, Jian-Wei; Wang, Cheng

    2014-12-01

    Fe nanoparticles immobilized on polyaniline-covered carbon nanotube (CNT) surfaces (Fe NPs-PANI/CNT) are prepared by reducing FeCl3 in the mixing solution of aniline and CNT. Significantly, the structure of such composites can be effectively optimized by pretreating FeCl3 with sodium citrate (CA). In the absence of CNTs, we found these two routes have large differences in reduction behaviors and different PANI states with varied conductivities. Therefore, the self-assembly mechanism in the preparation is proposed and the controlled self-assembly manner in the pretreating route is disclosed. Under acid condition, both catalysts demonstrate high oxygen reduction reaction (ORR) activity with four-electron pathway, and high electrochemical durability, revealing a promising application in the proton exchange membrane fuel cells. However, the high Tafel slopes relating to the surface red-ox couple and porous conductivity are still the main obstacles to improve their ORR dynamic, and more efforts on these aspects are needed to drive non-noble catalyst application in future.

  6. Gas sensors for ammonia detection based on polyaniline-coated multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    He Lifang; Jia Yong; Meng Fanli; Li Minqiang; Liu Jinhuai

    2009-01-01

    Polyaniline-coated multi-wall carbon nanotubes (PANI-coated MWNTs) were prepared by in situ polymerization method. Field emission scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis were used to characterize the as-prepared PANI-coated MWNTs. Obtained results indicated that PANI was uniformly coated on MWNTs, and the thickness of the coatings can be controlled by changing the weight ratios of aniline monomer and MWNTs in the polymerization process. Sensors were fabricated by spin-coating onto pre-patterned electrodes, and ammonia gas sensing properties of the as-prepared PANI-coated MWNTs were studied. The results showed a good response and reproducibility towards ammonia at room temperature. In addition, PANI-coated MWNTs exhibited a linear response to ammonia in the range of 0.2-15 ppm. The effects of the thickness of PANI coatings on the gas sensing properties were also investigated in detail. The results suggest a potential application of PANI-coated MWNTs in gas sensor for detecting ammonia.

  7. High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes

    Science.gov (United States)

    Wu, Guan; Tan, Pengfeng; Wang, Dongxing; Li, Zhe; Peng, Lu; Hu, Ying; Wang, Caifeng; Zhu, Wei; Chen, Su; Chen, Wei

    2017-03-01

    Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g-1, which is 6 times higher than disordered CNTs in HClO4 electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g-1), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g-1) and high energy density (98.1 Wh kg-1) in EMIBF4 organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation.

  8. High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes.

    Science.gov (United States)

    Wu, Guan; Tan, Pengfeng; Wang, Dongxing; Li, Zhe; Peng, Lu; Hu, Ying; Wang, Caifeng; Zhu, Wei; Chen, Su; Chen, Wei

    2017-03-08

    Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g -1 , which is 6 times higher than disordered CNTs in HClO 4 electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g -1 ), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g -1 ) and high energy density (98.1 Wh kg -1 ) in EMIBF 4 organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation.

  9. Amperometric biosensor based on carbon nanotubes coated with polyaniline/dendrimer-encapsulated Pt nanoparticles for glucose detection

    International Nuclear Information System (INIS)

    Xu Lihuan; Zhu Yihua; Yang Xiaoling; Li Chunzhong

    2009-01-01

    A novel amperometric glucose biosensor based on the nanocomposites of multi-wall carbon nanotubes (CNT) coated with polyaniline (PANI) and dendrimer-encapsulated Pt nanoparticles (Pt-DENs) is prepared. CNT coated with protonated PANI is in situ synthesized and Pt-DENs is absorbed on PANI/CNT composite surface by self-assembly method. Then Glucose oxidase (GOx) is crosslink-immobilizated onto Pt-DENs/PANI/CNT composite film. The results show that the fabricated GOx/Pt-DENs/PANI/CNT electrode exhibits excellent response performance to glucose, such as low detection limit (0.5 μM), wide linear range (1 μM-12 mM), short response time (about 5 s), high sensitivity (42.0 μA mM -1 cm -2 ) and stability (83% remains after 3 weeks).

  10. Multiwall Carbon Nanotube Coated with Conducting Polyaniline Nanocomposites for Quasi-Solid-State Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaul Karim

    2013-01-01

    Full Text Available Multiwalled carbon nanotube (MWNT coated with conducting polyaniline (PAni nanocomposites has been enforced as for quasi-solid-state electrolyte layer in the dye-sensitized solar cells (DSSCs, and the incorporation of MWNT-PAni nanoparticles on the cell performance has been examined. The MWNT-PAni nanoparticles exploited as the extended electron transfer materials, which can reduce charge diffusion length and serve simultaneously as catalyst for the electrochemical reduction of I3-. An ionic liquid of 1-methyl-3-propyl-imidazolium iodide (PMII together with the hybrid MWNT-PAni nanocomposites was placed between the dye-sensitized porous TiO2 and the Pt counter electrode without adding iodine and achieved a moderately higher cell efficiency (3.15%, as compared to that containing bare PMII (0.26%.

  11. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films

    Science.gov (United States)

    Ge, Jun; Cheng, Guanghui; Chen, Liwei

    2011-08-01

    Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm-2 and 59 wt% PANI gives a specific capacitance of 55.0 F g-1 at a current density of 2.6 A g-1, showing its possibility for transparent and flexible energy storage.

  12. Electrorheology of polyaniline, carbonized polyaniline, and their core-shell composites

    Czech Academy of Sciences Publication Activity Database

    Sedlacik, M.; Pavlinek, V.; Mrlik, M.; Morávková, Zuzana; Hajná, Milena; Trchová, Miroslava; Stejskal, Jaroslav

    2013-01-01

    Roč. 101, 15 June (2013), s. 90-92 ISSN 0167-577X R&D Projects: GA ČR GA202/09/1626 Institutional support: RVO:61389013 Keywords : polyaniline * carbonization * carbonized polyaniline Subject RIV: BK - Fluid Dynamics Impact factor: 2.269, year: 2013

  13. Polyaniline/multi-walled carbon nanotubes composite with core-shell structures as a cathode material for rechargeable lithium-polymer cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pan [School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209 (China); Han, Jia-Jun, E-mail: hanjiajunhitweihai@163.com [School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209 (China); Jiang, Li-Feng [Dalian Chemical Institute of Chinese Academy of Sciences, Dalian 116011 (China); Li, Zhao-Yu; Cheng, Jin-Ning [School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209 (China)

    2017-04-01

    Highlights: • The polyaniline multi-walled carbon nanotubes composite with core-shell structures was synthetized via in situ chemical oxidative polymerization, and the materials were characterized by physical and chemical methods. • The PANI/WMCNTs was synthetized via in situ chemical oxidative polymerization with core-shell structures. • The WMCNTs highly enhanced the conductivity of composites. • The comopsites were more conducive to the intercalation and deintercalation of anions and cations. • The much better performance as the cathode for lithium-ion cells was acquired for the composites. • The composites are low cost and eco-friendly which have a good prospect in future. - Abstract: The aniline was polymerized onto functionalized multi-walled carbon nanotubes in order to obtain a cathode material with core-shell structures for lithium batteries. The structure and morphology of the samples were investigated by Fourier transform infrared spectroscopy analysis, scanning electron microscope, transmission electron microscope and X-ray diffraction. The electrochemical properties of the composite were characterized by the cyclic voltammetry, the charge/discharge property, coulombic efficiency, and ac impedance spectroscopy in detail. At a constant current density of 0.2 C, the first specific discharge capacity of the reduced and oxidized PANI/WMCNTs were 181.8 mAh/g and 135.1 mAh/g separately, and the capacity retention rates were corresponding to 76.75% and 86.04% for 100 cycles with 99% coulombic efficiency. It was confirmed that the CNTs obviously enhanced the conductivity and electrochemical performance of polyaniline, and compared with the pure PANI, the reduced composite possessed a quite good performance for the cathode of lithium batteries.

  14. Preparation of supported electrocatalyst comprising multiwalled carbon nanotubes

    Science.gov (United States)

    Wu, Gang; Zelenay, Piotr

    2013-08-27

    A process for preparing a durable non-precious metal oxygen reduction electrocatalyst involves heat treatment of a ball-milled mixture of polyaniline and multiwalled carbon nanotubes in the presence of a Fe species. The catalyst is more durable than catalysts that use carbon black supports. Performance degradation was minimal or absent after 500 hours of operation at constant cell voltage of 0.40 V.

  15. Coherent polyaniline/graphene oxides/multi-walled carbon nanotubes ternary composites for asymmetric supercapacitors

    International Nuclear Information System (INIS)

    Hao, Ming; Chen, Yi; Xiong, Weilai; Zhang, Liu; Wu, Liyang; Fu, Yang; Mei, Tao; Wang, Jianying; Li, Jinhua; Wang, Xianbao

    2016-01-01

    A coherent polyaniline (PANI)/graphene oxides (GOs)/multi-walled carbon nanotubes (MWCNTs) composite was prepared by in-situ solution polymerization as a positive electrode of supercapacitors. The orderly growth of PANI nano-dots on GOs led to the formation of the nano-ravines that can enhance ions diffusion efficiency. MWCNTs surrounded by PANI connected all components, and thus the conductivity with the increasing electron transfer rate was improved. The results showed that the electrode exhibited the outstanding electrochemical performances with the specific capacitance up to 696 F g −1 at 20 mV s −1 . The KOH-activated GOs/MWCNTs were used as a negative electrode to assemble an asymmetric supercapacitor (ASC). The ASC possessed an extended working potential (1.6 V), a good rate capability (58% capacitance retention even after the current density being increased by 10 times), an excellent cycling stability (89% capacitance retention after 3000 cycles), and a decent average energy and power density (69 W h/kg and 6.4 kW/kg).

  16. Bifacial dye-sensitized solar cells from covalent-bonded polyaniline-multiwalled carbon nanotube complex counter electrodes

    Science.gov (United States)

    Zhang, Huihui; He, Benlin; Tang, Qunwei; Yu, Liangmin

    2015-02-01

    Exploration of cost-effective counter electrodes (CEs) and enhancement of power conversion efficiency have been two persistent objectives for dye-sensitized solar cells (DSSCs). In the current work, polyaniline-multiwalled carbon nanotube (PANi-MWCNT) complexes are synthesized by a reflux method and employed as CE materials for bifacial DSSCs. Owing to the high optical transparency of PANi-MWCNT complex CE, the incident light from rear side can compensate for the incident light from TiO2 anode. The charge-transfer ability and electrochemical behaviors demonstrate the potential utilization of PANi-MWCNT complex CEs in robust bifacial DSSCs. The electrochemical properties as well as photovoltaic performances are optimized by adjusting MWCNT dosages. A maximum power conversion efficiency of 9.24% is recorded from the bifacial DSSC employing PANi-8 wt‰ MWCNT complex CE for both irradiation, which is better than 8.08% from pure PANi CE.

  17. Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinay; Miura, Norio [Art, Science and Technology Center for Cooperative Research, Environment and Energy, KASTEC, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan)

    2006-06-19

    Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites were prepared by in situ potentiostatic deposition of PANI onto SWCNTs at the potential of 0.75V versus SCE, with the aim to investigate the influence of microstructure on the specific capacitance of PANI/SWCNT composites. It was found that the specific capacitance of the PANI/SWCNT composites is strongly influenced by their microstructure, which is correlated to the wt.% of the PANI deposited onto the SWCNTs. The optimum condition, corresponding to the highest specific capacitance, 463Fg{sup -1} (at 10mAcm{sup -2}), was obtained for 73wt.% PANI deposited onto SWCNTs. The specific capacitance of the PANI/SWCNT composite electrode was highly stable, with a capacitive decrease of 5% during the first 500 cycles and just 1% during the next 1000 cycles, indicative of the excellent cyclic stability of the composite for supercapacitor applications. (author)

  18. Facile preparation of multifunctional carbon nanotube/magnetite/polyaniline nanocomposite offering a strong option for efficient solid-phase microextraction coupled with GC-MS for the analysis of phenolic compounds.

    Science.gov (United States)

    Tafazoli, Zahra; Azar, Parviz Aberoomand; Tehrani, Mohammad Saber; Husain, Syed Waqif

    2018-04-20

    The aim of this study the synthesis of a highly efficient organic-inorganic nanocomposite. In this research, the carbon nanotube/magnetite/polyaniline nanocomposite was successfully prepared through a facile route. Monodisperse magnetite nanospheres were prepared through the coprecipitation route, and polyaniline nanolayer as a modified shell with a high surface area was synthesized by an in situ growth route and characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy. The prepared nanocomposite was immobilized on a stainless-steel wire for the fabrication of the solid-phase microextraction fiber. The combination of headspace solid-phase microextraction using carbon nanotube/magnetite/polyaniline nanocomposite fiber with gas chromatography and mass spectrometry can achieve a low limit of detection and can be applied to determine phenolic compounds in water samples. The effects of the extraction and desorption parameters including extraction temperature and time, ionic strength, stirring rate, pH, and desorption temperature and time have been studied. Under the optimum conditions, the dynamic linear range was 0.01-500 ng mL -1 and the limits of detection of phenol, 4-chlorophenol, 2,6-dichlorophenol, and 2,4,6-trichlorophenol were the lowest (0.008 ng mL -1 ) for three times. The coefficient of determination of all calibration curves was more than 0.990. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Facile Fabrication of Uniform Polyaniline Nanotubes with Tubular Aluminosilicates as Templates

    OpenAIRE

    Zhang, Long; Liu, Peng

    2008-01-01

    AbstractThe uniform polyaniline (PANI) nanotubes, with inner diameter, outer diameter, and tubular thickness of 40, 60, and 10 nm, respectively, were prepared successfully by using natural tubular aluminosilicates as templates. The halloysite nanotubes were coated with PANI via the in situ chemical oxidation polymerization. Then the templates were etched with HCl/HF solution. The PANI nanotubes were characterized using FTIR, X-ray diffraction, and transmission electron microscopy. The conduct...

  20. Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density

    Science.gov (United States)

    Cheng, Qian; Tang, Jie; Shinya, Norio; Qin, Lu-Chang

    2013-11-01

    Graphene and single-walled carbon nanotube (CNT) composites are explored as the electrodes for supercapacitors by coating polyaniline (PANI) nano-cones onto the graphene/CNT composite to obtain graphene/CNT-PANI composite electrode. The graphene/CNT-PANI electrode is assembled with a graphene/CNT electrode into an asymmetric pseudocapacitor and a highest energy density of 188 Wh kg-1 and maximum power density of 200 kW kg-1 are achieved. The structure and morphology of the graphene/CNT composite and the PANI nano-cone coatings are characterized by both scanning electron microscopy and transmission electron microscopy. The excellent performance of the assembled supercapacitors is also discussed and it is attributed to (i) effective utilization of the large surface area of the three-dimensional network structure of graphene-based composite, (ii) the presence of CNT in the composite preventing graphene from re-stacking, and (ii) uniform and vertically aligned PANI coating on graphene offering increased electrical conductivity.

  1. 3 D Network-Structured Crumpled Graphene/Carbon Nanotube/Polyaniline Composites for Supercapacitors.

    Science.gov (United States)

    Jo, Eun H; Jang, Hee D; Chang, Hankwon; Kim, Sun K; Choi, Ji-Hyuk; Lee, Chong M

    2017-05-22

    Crumpled graphene (CGR) is considered a promising supercapacitor material to achieve high power and energy density because it could overcome the disadvantages of 2 D GR sheets such as aggregation during the electrode fabrication process, reduction of the available surface area, and limitation of the electron and ion transport. Even though CGR shows good results, carbon materials are limited in terms of their capacitance performance. Here, we report highly enhanced supercapacitor materials by fabricating a 3 D composite containing CGR, carbon nanotubes (CNTs), and polyaniline (PANI). The CNTs increased the basal spacing and bridged the defects for electron transfer between the GR sheets in CGR. PANI can enhance the rate of conduction of electrons and offer high pseudocapacitance originating from its redox reactions. The synergistic effect of the CNTs and PANI may also result in a higher electrochemical capacitance and better stability than each individual component as electrode materials for supercapacitors in a two-electrode system. More importantly, the performance of the supercapacitors can be further enhanced by employing 2 D GR as the binder for the composite electrodes, resulting in specific capacitance of 456 F g -1 , rate capability of 89 %, and cyclic stability of 97 % after 1000 cycles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Facile Fabrication of Uniform Polyaniline Nanotubes with Tubular Aluminosilicates as Templates

    Science.gov (United States)

    Zhang, Long; Liu, Peng

    2008-08-01

    The uniform polyaniline (PANI) nanotubes, with inner diameter, outer diameter, and tubular thickness of 40, 60, and 10 nm, respectively, were prepared successfully by using natural tubular aluminosilicates as templates. The halloysite nanotubes were coated with PANI via the in situ chemical oxidation polymerization. Then the templates were etched with HCl/HF solution. The PANI nanotubes were characterized using FTIR, X-ray diffraction, and transmission electron microscopy. The conductivity of the PANI nanotubes was found to be 1.752 × 10-5 (Ω·cm)-1.

  3. Facile Fabrication of Uniform Polyaniline Nanotubes with Tubular Aluminosilicates as Templates

    Directory of Open Access Journals (Sweden)

    Zhang Long

    2008-01-01

    Full Text Available AbstractThe uniform polyaniline (PANI nanotubes, with inner diameter, outer diameter, and tubular thickness of 40, 60, and 10 nm, respectively, were prepared successfully by using natural tubular aluminosilicates as templates. The halloysite nanotubes were coated with PANI via the in situ chemical oxidation polymerization. Then the templates were etched with HCl/HF solution. The PANI nanotubes were characterized using FTIR, X-ray diffraction, and transmission electron microscopy. The conductivity of the PANI nanotubes was found to be 1.752 × 10−5(Ω·cm−1.

  4. The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Trchová, Miroslava; Konyushenko, Elena; Stejskal, Jaroslav; Kovářová, Jana; Ciric-Marjanovic, G.

    2009-01-01

    Roč. 94, č. 6 (2009), s. 929-938 ISSN 0141-3910 R&D Projects: GA ČR GA203/08/0686; GA AV ČR IAA400500905 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbon nanotubes * carbonization * FTIR spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.154, year: 2009

  5. p-toluene sulfonic acid doped polyaniline carbon nanotube composites: synthesis via different routes and modified properties

    Directory of Open Access Journals (Sweden)

    ASHOK K. SHARMA

    2013-04-01

    Full Text Available Composites of polyaniline and carbon nanotube (CNT were prepared by in-situ chemical polymerization method using various aniline concentrations in the initial polymerization solution with p-toluene sulfonic acid (PTS as secondary dopant and mechanical mixing of the PANI and CNT using different weight ratios of PANI and CNTs. The structural characterizations of the composites were done by Fourier transform infrared (FTIR and Ultra violet visible spectroscopy (UV-Visible. Scanning electron microscopy (SEM was used to characterize the surface morphology of the composites. It was found that the composites prepared by in-situ chemical polymerization had smoother surface morphology in comparison to the composites obtained by mechanical mixing. The capacitive studies reveal that the in-situ composite has synergistic effect and the specific capacitance of the composite calculated from cyclic voltammogram (CV was 385.1 F/g. Thermal studies indicate that the composites are stable as compared to PANI alone showing that the CNT contributes towards thermal stability in the PANI-CNT composites.

  6. Low temperature synthesis of polyaniline-crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity.

    Science.gov (United States)

    Li, Cuiping; Wang, Jie; Guo, Hong; Ding, Shujiang

    2015-11-15

    A series of one-dimensional polyaniline-crystalline TiO2-halloysite composite nanotubes with different mass ratio of polyaniline to TiO2 are facilely prepared by employing the low-temperature synthesis of crystalline TiO2 on halloysite nanotubes. The halloysite nanotubes can adsorb TiO2/polyaniline precursors and induce TiO2 nanocrystals/polyaniline to grow on the support in situ simultaneously. By simply adjusting the acidity of reaction system, PANI-crystalline TiO2-HA composite nanotubes composed of anatase, a mixed phase TiO2 and different PANI redox state are obtained. The XRD and UV-vis results show that the surface polyaniline sensitization has no effect on the crystalline structure of halloysite and TiO2 and the light response of TiO2 is extended to visible-light regions. Photocatalysis test results reveal the photocatalytic activity will be affected by the pH value and the volume ratio of ANI to TTIP. The highest photocatalytic activity is achieved with the composite photocatalysts prepared at pH 0.5 and 1% volume ratio of ANI and TTIP owing to the sensitizing effect of polyaniline and the charge transfer from the photoexcited PANI sensitizer to TiO2. Moreover, the PANI-TiO2-HA composite nanotubes synthesized by one-step at pH 0.5 with 1% volume ratio of ANI to TTIP exhibit higher visible light photocatalytic activity than those synthesized by the two-step. Heterogeneous PANI-TiO2-HA composite nanotubes prepared at pH 0.5 exhibit a higher degradation activity than that prepared at pH 1.5. The redoped experiment proves that the PANI redox state plays the main contribution to the enhanced visible light catalytic degradation efficiency of PANI-TiO2-HA prepared at pH 0.5. Furthermore, the heterogeneous PANI-crystalline TiO2-HA nanotubes have good photocatalytic stability and can be reused four times with only gradual loss of activity under visible light irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Synthesis and Characterization of Self-assembled polyaniline nanotubes/silica nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Ciric-Marjanovic, G.; Dragičevic, L.; Milojevic, M.; Mojovic, M.; Mentus, S.; Dojčinovic, B.; Marjanovic, B.; Stejskal, Jaroslav

    2009-01-01

    Roč. 113, č. 20 (2009), s. 7116-7127 ISSN 1520-6106 R&D Projects: GA AV ČR IAA400500905 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * conducting polymer * nanotubes Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.471, year: 2009

  8. Polyaniline/partially exfoliated multi-walled carbon nanotubes based nanocomposites for supercapacitors

    International Nuclear Information System (INIS)

    Potphode, Darshna D.; Sivaraman, P.; Mishra, Sarada P.; Patri, Manoranjan

    2015-01-01

    In the present study, polyaniline (PANI)/partially exfoliated multi-walled carbon nanotubes (Px-MWCNT) nanocomposites were investigated for supercapacitor application. Nanocomposites with varying weight/weight ratio of PANI and Px-MWCNT were prepared by in-situ polymerization of aniline over Px-MWCNT. Transmission and scanning electron microscopic analysis showed that the MWCNT was partial unzipped along the length of tubes. The morphology of PANI/Px-MWCNT nanocomposites exhibited wrapping of PANI over Px-MWCNT. Symmetric supercapacitors containing PANI/Px-MWCNT nanocomposites as the electrode material were fabricated. The electrochemical characterization of the nanocomposites was carried by two electrode method (unit cell configuration). Cyclic voltammetric analysis showed a synergistic increase in specific capacitance of the nanocomposites. Charge-discharge cycle study indicated that nanocomposites have greater charge-discharge rate capability than pure PANI. The observed result is attributed to the shorter diffusion length of ions in the nanocomposites as compared to that of pure PANI. The electrochemical impedance spectra of supercapacitors were resolved into real and losscapacitances. The loss capacitance indicated that the time constant of the nanocomposites decreases with increase in the Px-MWCNT content. The supercapacitors showed enhanced stability during continuous charge-discharge cycling as the PX-MWCNT content in the nanocomposites increased. PANI-50 and PANI-25 nanocomposites based supercapacitors exhibited 91% and 93% capacitive retention after 2000 charge-discharge cycle while pure PANI showed only 67% capacitance retention for the same number of cycles

  9. Microbial electrolysis cells with polyaniline/multi-walled carbon nanotube-modified biocathodes

    International Nuclear Information System (INIS)

    Chen, Yingwen; Xu, Yuan; Chen, Liuliu; Li, Peiwen; Zhu, Shemin; Shen, Shubao

    2015-01-01

    In this paper, we modified biocathodes with PANI (Polyaniline)/MWCNT (Multi-Walled Carbon Nanotube) composites to improve hydrogen production in single-chamber, membrane-free biocathode MECs. The results showed that the hydrogen production rates increased with an increase in applied voltage. At an applied voltage of 0.9 V, the modified biocathode MECs achieved a hydrogen production rate of 0.67m 3 m −3 d −1 , current density of 205 Am −3 , COD of 86.8%, coulombic efficiency of 72%, cathodic hydrogen recovery of 42%, and energy efficiency of 81% with respect to the electrical power input. LSV (Linear Sweep Voltammetry) scans, SEM (Scanning Electron Microscopy) images and DGGE (Denaturing Gradient Gel Electrophoresis) demonstrated that hydrogen production is catalyzed by the special biofilm attached on a modified biocathode, and the microorganism species and quantity present were significantly different between the modified biocathode and the non-modified biocathode. In general, the performance of MECs with modified biocathodes was improved in the presence of a higher current density and hydrogen generation rate. - Highlights: • Different PANI/MWCNT composites were prepared and used to modify biocathode in MECs. • The performance of MECs was improved by the modification. • 75% wt PANI/MWCNT modified biocathode showed the better capacity on hydrogen generation. • LVS, SEM, DGGE were determined to figure out the effect of modification on MECs. • PANI/MWCNT modified biocathode in MECs was first studied to push MECs technology forward

  10. Thin and flexible all-solid supercapacitor prepared from novel single wall carbon nanotubes/polyaniline thin films obtained in liquid-liquid interfaces

    Science.gov (United States)

    de Souza, Victor Hugo Rodrigues; Oliveira, Marcela Mohallem; Zarbin, Aldo José Gorgatti

    2014-08-01

    The present work describes for the first time the synthesis and characterization of single wall carbon nanotubes/polyaniline (SWNTs/PAni) nanocomposite thin films in a liquid-liquid interface, as well as the subsequent construction of a flexible all-solid supercapacitor. Different SWNTs/PAni nanocomposites were prepared by varying the ratio of SWNT to aniline, and the samples were characterized by scanning and transmission electron microscopy, Raman and UV-Vis spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The pseudo-capacitive behavior of the nanocomposites was evaluated by charge/discharge galvanostatic measurements. The presence of the SWNTs affected the electronic and vibrational properties of the polyaniline and also improved the pseudo-capacitive behavior of the conducting polymer. A very thin and flexible all-solid device was manufactured using two electrodes (polyethylene terephthalate-PET covered with the SWNT/PAni nanocomposite separated by a H2SO4-PVA gel electrolyte). The pseudo-capacitive behavior was characterized by a volumetric specific capacitance of approximately 76.7 F cm-3, even under mechanical deformation, indicating that this nanocomposite has considerable potential for application in new-generation energy storage devices.

  11. Amperometric sensor for detection of bisphenol A using a pencil graphite electrode modified with polyaniline nanorods and multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Poorahong, S.; Thammakhet, C.; Numnuam, A.; Kanatharana, P.; Thavarungkul, P.; Limbut, W.

    2012-01-01

    We report on a simple and highly sensitive amperometric method for the determination of bisphenol A (BPA) using pencil graphite electrodes modified with polyaniline nanorods and multiwalled carbon nanotubes. The modified electrodes display enhanced electroactivity for the oxidation of BPA compared to the unmodified pencil graphite electrode. Under optimized conditions, the sensor has a linear response to BPA in the 1. 0 and 400 μM concentration range, with a limit of detection of 10 nM (at S/N = 3). The modified electrode also has a remarkably stable response, and up to 95 injections are possible with a relative standard deviation of 4. 2% at 100 μM of BPA. Recoveries range from 86 to 102% for boiling water spiked with BPA from four brands of baby bottles. (author)

  12. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors

    Science.gov (United States)

    Liu, Mingkai; Miao, Yue-E.; Zhang, Chao; Tjiu, Weng Weei; Yang, Zhibin; Peng, Huisheng; Liu, Tianxi

    2013-07-01

    A three dimensional (3D) polyaniline (PANI)-graphene nanoribbon (GNR)-carbon nanotube (CNT) composite, PANI-GNR-CNT, has been prepared via in situ polymerization of an aniline monomer on the surface of a GNR-CNT hybrid. Here, the 3D GNR-CNT hybrid has been conveniently prepared by partially unzipping the pristine multi-walled CNTs, while the residual CNTs act as ``bridges'' connecting different GNRs. The morphology and structure of the resulting hybrid materials have been characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffraction (XRD). Electrochemical tests reveal that the hierarchical PANI-GNR-CNT composite based on the two-electrode cell possesses much higher specific capacitance (890 F g-1) than the GNR-CNT hybrid (195 F g-1) and neat PANI (283 F g-1) at a discharge current density of 0.5 A g-1. At the same time, the PANI-GNR-CNT composite displays good cycling stability with a retention ratio of 89% after 1000 cycles, suggesting that this novel PANI-GNR-CNT composite is a promising candidate for energy storage applications.

  13. Enhanced electrochemical performance of sandwich-structured polyaniline-wrapped silicon oxide/carbon nanotubes for lithium-ion batteries

    Science.gov (United States)

    Liu, Hui; Zou, Yongjin; Huang, Liyan; Yin, Hao; Xi, Chengqiao; Chen, Xin; Shentu, Hongwei; Li, Chao; Zhang, Jingjing; Lv, ChunJu; Fan, Meiqiang

    2018-06-01

    Sandwich-structured carbon nanotubes, silicon oxide, and polyaniline (hereafter denoted as CNTs/SiOx/PANI) were prepared by combining a sol-gel method, magnesiothermic reduction at 250 °C, and chemical oxidative polymerization. The CNTs, SiOx and PANI in the composite was 16 wt%, 51 wt% and 33 wt%, respectively. The CNTs/SiOx/PANI electrodes exhibited excellent cycle and high-rate performance as anodes in Li-ion batteries, including charge/discharge capacities of 1156/1178 mAh g-1 after 60 cycles at 0.2 A g-1 current density and 728/725 mAh g-1 at 8 A g-1 current density. The improvement was due to the synergy between CNTs and PANI. The SiOx scattered on the CNTs core and coated by PANI improved its conductivity and accommodated the volume change during repeated lithiation/delithiation cycles. This simple synthesis provided a scalable route for the large-scale production of CNTs/SiOx/PANI nanostructures, with various applications such as in Li-ion batteries.

  14. Oriented Polyaniline Nanowire Arrays Grown on Dendrimer (PAMAM) Functionalized Multiwalled Carbon Nanotubes as Supercapacitor Electrode Materials.

    Science.gov (United States)

    Jin, Lin; Jiang, Yu; Zhang, Mengjie; Li, Honglong; Xiao, Linghan; Li, Ming; Ao, Yuhui

    2018-04-19

    At present, PANI/MWNT composites have been paid more attention as promising electrode materials in supercapacitors. Yet some shortcomings still limit the widely application of PANI/MWNT electrolytes. In this work, in order to improve capacitance ability and long-term stability of electrode, a multi-amino dendrimer (PAMAM) had been covalently linked onto multi-walled carbon nanotubes (MWNT) as a bridge to facilitating covalent graft of polyaniline (PANI), affording P-MWNT/PANI electrode composites for supercapacitor. Surprisingly, ordered arrays of PANI nanowires on MWNT (setaria-like morphology) had been observed by scanning electron microscopy (SEM). Electrochemical properties of P-MWNT/PANI electrode had been characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge technique. The specific capacitance and long cycle life of P-MWNT-PANI electrode material were both much higher than MWNT/PANI. These interesting results indicate that multi-amino dendrimer, PAMAM, covalently linked on MWNT provides more reaction sites for in-situ polymerization of ordered PANI, which could efficiently shorten the ion diffusion length in electrolytes and lead to making fully use of conducting materials.

  15. In-vitro bioactivity and electrochemical behavior of polyaniline encapsulated titania nanotube arrays for biomedical applications

    Science.gov (United States)

    Agilan, P.; Rajendran, N.

    2018-05-01

    Titania nanotube arrays (TNTA) have attracted increasing attention due to their outstanding properties and potential applications in biomedical field. Fabrication of titania nanotubes on titanium surface enhances the biocompatibility. Polyaniline (PANI) is one of the best conducting polymers with remarkable corrosion resistance and reasonable biocompatibility. In this work, the corrosion resistance and biocompatibility of polyaniline encapsulated TiO2 nanotubes for orthopaedic applications were investigated. The vertically oriented, highly ordered TiO2 nanotubes were fabricated on titanium by electrochemical anodization process using fluoride containing electrolytes. The anodization parameters viz., voltage, pH, time and electrolyte concentration were optimized to get orderly arranged TNTA. Further, the conducting polymer PANI was encapsulated on TNTA by electropolymerization process to enhance the corrosion resistance. The nanostructure of the fabricated TNTA and polyaniline encapsulated titania nanotube arrays (PANI-TNTA) were investigated by HR SEM analysis. The formed phases and functional groups were find using XRD, ATR-FTIR. The hydrophilic surface of TNTA and PANI-TNTA was identified by water contact angle studies. The corrosion behavior of specimens was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies. In-vitro immersion studies were carried out in simulated body fluid solution (Hanks' solution) to evaluate the bioactivity of the TNTA and PANI-TNTA. The surface morphological studies revealed the formation of PANI on the TNTA surface. Formation of hydroxyapatite (HAp) on the surfaces of TNTA and PANI-TNTA enhanced the bioactivity and corrosion resistance.

  16. Carbon dioxide sensing with sulfonated polyaniline

    NARCIS (Netherlands)

    Doan, D.C.T.; Ramaneti, R.; Baggerman, J.; Bent, van der J.; Marcelis, A.T.M.; Tong, H.D.; Rijn, van C.J.M.

    2012-01-01

    The use of polyaniline and especially sulfonated polyaniline (SPAN) is explored for sensing carbon dioxide (CO2) at room temperature. Frequency-dependent AC measurements were carried out to detect changes in impedance of the polymer, drop casted on interdigitated electrodes, when exposed to CO2 gas.

  17. A new method synthesis polyaniline/multi-walled carbon nanotube composites for supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pan, J.; Wei, X.; Zhou, S.P. [Shandong Univ. of Technology, Zibo (China). School of Chemical Engineering

    2010-07-01

    A series of polyaniline multi-walled nanotube (PANIMWNT) composite films were prepared using an in situ polymerization technique. Scanning electron microscopy (SEM) was used to characterize the morphology and microstructure of the samples. Cyclic voltammetry (CV), impedance spectroscopy, and galvanostatic charge/discharge analyses were used to determine the electrochemical properties of the PANIMWNT films in a 3-electrode system. The electrochemical performance of PANI, PANIMWNT, and MWNT film performances was then compared. Results of the study showed that the PANI electrodes showed a much higher capacitance than the MWNT and PANIMWNT electrodes. Both the PANI and PANIMWNT nanocomposites showed good electrochemical capacitance. The improved performance of the electrodes was attributed to the presence of sodium hypochlorite (NaClO). 5 refs.

  18. Facile Synthesis of Polyaniline Nanotubes with Square Capillary Using Urea as Template

    Directory of Open Access Journals (Sweden)

    Shuhua Pang

    2017-10-01

    Full Text Available Polyaniline nanotubes were successfully synthesized by a facile in situ chemical oxidative polymerization method using urea as soft template. When the urea/aniline molar ratio is 3:1, the as-prepared nanotubular polyaniline (PANI-3 shows regular and uniform square capillaries, which provides a high electrode/electrolyte contact, easy ion diffusion and enhanced electroactive regions during the electrochemical process, leading to weak internal resistance and improved electrochemical performance. The PANI-3 sample exhibits a high specific capacitance of 405 F/g at current density of 0.2 A/g, and PANI only has a specific capacitance of 263 F/g. At current density of 1 A/g, the capacitance of PANI-3 is still 263 F/g (64.9% of the capacitance at 0.2 A/g. Such a PANI-3 nanotube, with regular and uniform capillary, is a promising electrode material for high-performance supercapacitors.

  19. Protein Detection with Potentiometric Aptasensors: A Comparative Study between Polyaniline and Single-Walled Carbon Nanotubes Transducers

    Directory of Open Access Journals (Sweden)

    Ali Düzgün

    2013-01-01

    Full Text Available A comparison study on the performance characteristics and surface characterization of two different solid-contact selective potentiometric thrombin aptasensors, one exploiting a network of single-walled carbon nanotubes (SWCNTs and the other the polyaniline (PANI, both acting as a transducing element, is described in this work. The molecular properties of both SWCNT and PANI surfaces have been modified by covalently linking thrombin binding aptamers as biorecognition elements. The two aptasensors are compared and characterized through potentiometry and electrochemical impedance spectroscopy (EIS based on the voltammetric response of multiply charged transition metal cations (such as hexaammineruthenium, [Ru(NH36]3+ bound electrostatically to the DNA probes. The surface densities of aptamers were accurately determined by the integration of the peak for the reduction of [Ru(NH36]3+ to [Ru(NH36]2+. The differences and the similarities, as well as the transduction mechanism, are also discussed. The sensitivity is calculated as 2.97 mV/decade and 8.03 mV/decade for the PANI and SWCNTs aptasensors, respectively. These results are in accordance with the higher surface density of the aptamers in the SWCNT potentiometric sensor.

  20. Coaxial conducting polymer nanotubes: polypyrrole nanotubes coated with polyaniline or poly(p-phenylenediamine) and products of their carbonisation

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Sapurina, Irina; Trchová, Miroslava; Šeděnková, Ivana; Kovářová, Jana; Kopecká, J.; Prokeš, J.

    2015-01-01

    Roč. 69, č. 10 (2015), s. 1341-1349 ISSN 0366-6352 R&D Projects: GA MŠk(CZ) LH14199; GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : polyaniline * poly(p-phenylenediamine) * polypyrrole nanotubes Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.326, year: 2015

  1. Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids

    International Nuclear Information System (INIS)

    Zhang Zhiming; Wei Zhixiang; Zhang Lijuan; Wan Meixiang

    2005-01-01

    Polyaniline (PANI) nanotubes (130-250 nm in average diameter) doped with α-naphthalene sulfonic acid (α-NSA), β-naphthalene sulfonic acid (β-NSA) and 1,5-naphthalene disulfonic acid were synthesized via a self-assembly process. It was found that the formation yield, morphology (hollow or solid), size, crystalline and electrical properties of the nanostructures are affected by the position and number of -SO 3 H groups attached to the naphthalene ring of NSA as well as the synthesis conditions. Moreover, these nanotubes aggregate to form a dendritic morphology when the polymerization is performed at a static state. The micelles composed of dopant or dopant/anilinium cations might act in a template-like fashion in forming self-assembled PANI nanotubes, which was further confirmed by X-ray diffraction measurements, while the aggregated morphology of the nanotubes might result from polymer chain interactions including π-π interactions, hydrogen and ionic bonds

  2. Flexible Transparent Films Based on Nanocomposite Networks of Polyaniline and Carbon Nanotubes for High-Performance Gas Sensing.

    Science.gov (United States)

    Wan, Pengbo; Wen, Xuemei; Sun, Chaozheng; Chandran, Bevita K; Zhang, Han; Sun, Xiaoming; Chen, Xiaodong

    2015-10-28

    A flexible, transparent, chemical gas sensor is assembled from a transparent conducting film of carbon nanotube (CNT) networks that are coated with hierarchically nanostructured polyaniline (PANI) nanorods. The nanocomposite film is synthesized by in-situ, chemical oxidative polymerization of aniline in a functional multiwalled CNT (FMWCNT) suspension and is simultaneously deposited onto a flexible polyethylene terephthalate (PET) substrate. An as-prepared flexible transparent chemical gas sensor exhibits excellent transparency of 85.0% at 550 nm using the PANI/FMWCNT nanocomposite film prepared over a reaction time of 8 h. The sensor also shows good flexibility, without any obvious decrease in performance after 500 bending/extending cycles, demonstrating high-performance, portable gas sensing at room temperature. This superior performance could be attributed to the improved electron transport and collection due to the CNTs, resulting in reliable and efficient sensing, as well as the high surface-to-volume ratio of the hierarchically nanostructured composites. The excellent transparency, improved sensing performance, and superior flexibility of the device, may enable the integration of this simple, low-cost, gas sensor into handheld flexible transparent electronic circuitry and optoelectronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Enhanced host–guest electrochemical recognition of herbicide MCPA using a b-cyclodextrin carbon nanotube sensor

    OpenAIRE

    Rahemi, V.; Vandamme, J.J.; Garrido, J.M.P.J.; Borges, F.; Brett, C.M.A.; Garrido, E.M.P.J.

    2012-01-01

    An electrochemical sensor for the determination of the chlorophenoxy herbicide MCPA has been developed, based on a combination of multi-walled carbon nanotubes with incorporated b-cyclodextrin and a polyaniline film modified glassy carbon electrode. The proposed molecular host–guest recogni-tion based sensor has a high electrochemical sensitivity for the determination of MCPA. The electrochemical behaviour of MCPA at the chemically modified electrode was investigated in detail by cyclic volta...

  4. Improved electrochemical performance of hierarchical porous carbon/polyaniline composites

    International Nuclear Information System (INIS)

    Hu Juan; Wang Huanlei; Huang Xiao

    2012-01-01

    Highlights: ► Polyaniline-coated hierarchical porous carbon (HPC) composites have been synthesized by in situ polymerization. ► The HPC/polyaniline composite has significantly better electrochemical capacitance performance than pure HPC and polyaniline. ► The amount of polyaniline loading has a significant effect on the composites’ electrochemical performances. - Abstract: Polyaniline (PANI)-coated hierarchical porous carbon (HPC) composites (HPC/PANI) for use as supercapacitor electrodes were prepared by in situ chemical oxidation polymerization at 273 K of an aniline solution containing well-dispersed HPC particles. After polymerization, a thin layer of PANI was coated on the surface of the HPC particles, which was confirmed by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM) and scanning electron microscopy (SEM). Compared to pure PANI and HPC, the electrochemical capacitance performance of the composites was significantly improved. The highest specific capacitance of the composites obtained is 478 F g −1 at 1 mV s −1 , which is more than twice as that of pure PANI and three times as that of pure HPC. Because of the influence from the hierarchical pore structure of the carbon material, the calculated specific capacitance of PANI in the composite (pseudocapacitance contribution from PANI) is almost one magnitude higher than that of pure PANI.

  5. One-dimensional carbon nanotube@barium titanate@polyaniline multiheterostructures for microwave absorbing application

    Science.gov (United States)

    Ni, Qing-Qing; Zhu, Yao-Feng; Yu, Lu-Jun; Fu, Ya-Qin

    2015-04-01

    Multiple-phase nanocomposites filled with carbon nanotubes (CNTs) have been developed for their significant potential in microwave attenuation. The introduction of other phases onto the CNTs to achieve CNT-based heterostructures has been proposed to obtain absorbing materials with enhanced microwave absorption properties and broadband frequency due to their different loss mechanisms. The existence of polyaniline (PANI) as a coating with controllable electrical conductivity can lead to well-matched impedance. In this work, a one-dimensional CNT@BaTiO3@PANI heterostructure composite was fabricated. The fabrication processes involved coating of an acid-modified CNT with BaTiO3 (CNT@BaTiO3) through a sol-gel technique followed by combustion and the formation of CNT@BaTiO3@PANI nanohybrids by in situ polymerization of an aniline monomer in the presence of CNT@BaTiO3, using ammonium persulfate as an oxidant and HCl as a dopant. The as-synthesized CNT@BaTiO3@PANI composites with heterostructures were confirmed by various morphological and structural characterization techniques, as well as conductivity and microwave absorption properties. The measured electromagnetic parameters showed that the CNT@BaTiO3@PANI composites exhibited excellent microwave absorption properties. The minimum reflection loss of the CNT@BaTiO3@PANI composites with 20 wt % loadings in paraffin wax reached -28.9 dB (approximately 99.87% absorption) at 10.7 GHz with a thickness of 3 mm, and a frequency bandwidth less than -20 dB was achieved from 10 to 15 GHz. This work demonstrated that the CNT@BaTiO3@PANI heterostructure composite can be potentially useful in electromagnetic stealth materials, sensors, and electronic devices.

  6. Kinetics and isotherm studies of methylene blue adsorption onto polyaniline nanotubes base/silica composite

    Czech Academy of Sciences Publication Activity Database

    Ayad, M. M.; Abu El-Nasr, A.; Stejskal, Jaroslav

    2012-01-01

    Roč. 18, č. 6 (2012), s. 1964-1969 ISSN 1226-086X R&D Projects: GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline nanotubes * silica * composite Subject RIV: BK - Fluid Dynamics Impact factor: 2.145, year: 2012

  7. An efficient route towards the covalent functionalization of single walled carbon nanotubes

    International Nuclear Information System (INIS)

    Kakade, Bhalchandra A.; Pillai, Vijayamohanan K.

    2008-01-01

    A simple and efficient method of chemical functionalization of both single and multiwalled carbon nanotubes has been discussed to give enhanced water solubility by rapidly and efficiently generating an appreciable amount of hydrophilic functional groups using microwave radiation. Surface functionalization containing more than 30 wt% of oxygen has been achieved, resulting into solubility of 2-5 mg/mL. Further covalent functionalization of such soluble SWNTs provides a remarkable degree of aniline functionalization through amidation, where the formation of polyaniline has been avoided. Functionalization of SWNTs is confirmed by techniques like electron microscopy, Fourier transform infrared spectroscopy, thermogravimetry, Raman spectroscopy, cyclic voltammetry and impedance spectroscopy. Electrochemical analysis suggests an enhanced double layer capacitance (∼110 F/g) of nanotubes after microwave treatment. Aniline functionalization of SWNTs shows possible variations on the nanotube topography with concomitant formation of a dynamic polymer layer on the nanotube surface

  8. Polyaniline–multi-wall-carbon nanotube nanocomposites as a dopamine sensor

    Directory of Open Access Journals (Sweden)

    REZA EMAMALI SABZI

    2010-04-01

    Full Text Available A composite of polyaniline with multi-wall-carbon nanotubes (PANi/ /MWCNTs was synthesized by an in situ chemical oxidative polymerization method. The PANi nanoparticles were synthesized chemically using aniline as the monomer and ammonium peroxydisulfate as the oxidant. The nanocomposites were prepared as a carbon paste using functionalized MWCNTs and PANi nanoparticles. The PANi–MWCNTs were characterized physically using scanning electron microscopy (SEM and the electrochemical behavior of the composites in acidic solution (HCl was investigated using cyclic voltammetry. The PANi/MWCNT composite electrode was used for studying dopamine (DA as an electroactive material. The cyclic voltammetric results indicated that multi-wall carbon nanotubes (MWCNTs significantly enhanced the electrocatalytic activity in favor of the oxidation of DA. The kinetics of the catalytic reaction was investigated using the chronoamperometry technique whereby the average va¬lue of the diffusion coefficient (D and the catalytic rate constant (k for DA were determined to be (7.98±0.8×10-7 cm2 s-1 and (8.33±0.072×104 dm3 mol-1 s-1, respectively.

  9. Functional materials based on carbon nanotubes: Carbon nanotube actuators and noncovalent carbon nanotube modification

    Science.gov (United States)

    Fifield, Leonard S.

    Carbon nanotubes have attractive inherent properties that encourage the development of new functional materials and devices based on them. The use of single wall carbon nanotubes as electromechanical actuators takes advantage of the high mechanical strength, surface area and electrical conductivity intrinsic to these molecules. The work presented here investigates the mechanisms that have been discovered for actuation of carbon nanotube paper: electrostatic, quantum chemical charge injection, pneumatic and viscoelastic. A home-built apparatus for the measurement of actuation strain is developed and utilized in the investigation. An optical fiber switch, the first demonstrated macro-scale device based on the actuation of carbon nanotubes, is described and its performance evaluated. Also presented here is a new general process designed to modify the surface of carbon nanotubes in a non-covalent, non-destructive way. This method can be used to impart new functionalities to carbon nanotube samples for a variety of applications including sensing, solar energy conversion and chemical separation. The process described involves the achievement of large degrees of graphitic surface coverage with polycyclic aromatic hydrocarbons through the use of supercritical fluids. These molecules are bifunctional agents that anchor a desired chemical group to the aromatic surface of the carbon nanotubes without adversely disrupting the conjugated backbone that gives rise the attractive electronic and physical properties of the nanotubes. Both the nanotube functionalization work and the actuator work presented here emphasize how an understanding and control of nanoscale structure and phenomena can be of vital importance in achieving desired performance for active materials. Opportunities for new devices with improved function over current state-of-the-art can be envisioned and anticipated based on this understanding and control.

  10. Facile and template-free method toward chemical synthesis of polyaniline film/nanotube structures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei [Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh Pennsylvania 15261; Zhu, Yisi [Materials Science Division, Argonne National Lab, Lemont Illinois 60439; Torres, Jorge [Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh Pennsylvania 15261; Lee, Seung Hee [Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-786 Korea; Yun, Minhee [Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh Pennsylvania 15261

    2017-09-05

    A facile and template-free method is reported to synthesize a new thin film structure: polyaniline (PANI) film/nanotubes (F/N) structure. The PANI F/N is a 100-nm thick PANI film embedded with PANI nanotubes. This well-controlled method requires no surfactant or organic acid as well as relatively low concentration of reagents. Synthesis condition studies reveal that aniline oligomers with certain structures are responsible for guiding the growth of the nanotubes. Electrical characterization also indicates that the PANI F/N possesses similar field-effect transistor characteristics to bare PANI film. With its 20% increased surface-area-to-volume (S/V) ratio contributed by surface embedded nanotubes and the excellent p-type semiconducting characteristic, PANI F/N shows clear superiority compared with bare PANI film. Such advantages guarantee the PANI F/N a promising future toward the development of ultra-high sensitivity and low-cost biosensors.

  11. One-step preparation of silver–polyaniline nanotube composite for non-enzymatic hydrogen peroxide detection

    Energy Technology Data Exchange (ETDEWEB)

    Lorestani, Farnaz, E-mail: Farnaz.lorestani@siswa.um.edu.my; Shahnavaz, Zohreh; Nia, Pooria Moozarm; Alias, Y.; Manan, Ninie S.A., E-mail: niniemanan@um.edu.my

    2015-08-30

    Graphical abstract: - Highlights: • Silver nanoparticle-decorated polyaniline nanotube composites (AgNPs–PANINTs) have been fabricated through a one step modified method without adding any extra acids, template and surface modifier. • The sensor showed excellent selectivity, reproducibility, and stability properties. • The AgNPs–PANINTs composite that prepared with silver ammonia solution (Ag(NH{sub 3}){sub 2}OH) exhibits better electrochemical performance than the AgNPs–PANINTs composite that was prepared with silver nitrite (AgNO{sub 3}) due to smaller size and higher surface area of silver nanoparticle (AgNPs) in the composite. • The electrocatalytic activity for the reduction was strongly affected by the concentration of silver ammonia solution in the nanocomposites, with the best electrocatalytic activity observed for the composite of 6:1 volume ratios of PANI to Ag(NH{sub 3}){sub 2}OH (0.04 M). - Abstract: A modified glassy carbon electrode with silver nanoparticles–polyaniline nanotubes (AgNPs–PANINTs) composite is used as a non-enzymatic nanobiosensor for detecting hydrogen peroxide (H{sub 2}O{sub 2}). The electrocatalytic activity for the reduction was strongly affected by the concentration of silver ammonia solution in the nanocomposites, with the best electrocatalytic activity observed for the composite of 6:1 volume ratios of PANI to Ag(NH{sub 3}){sub 2}OH (0.04 M). Field emission scanning electron microscope images and their size distribution diagrams indicated that using the silver ammonia complex instead of silver nitrate caused uniform distribution of nanometer-sized silver nanoparticles with a narrow size distribution in the composite. The corresponding calibration curve for the current response showed a linear detection range of 0.1–90 mM (R{sup 2} = 0.9986), while the limit of detection was estimated to be 0.2 μM at the signal to noise ratio of 3.

  12. Functionalization and modification of carbon nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Diachkova, Tatyana P.; Tkachev, Alexey G.; Orlova, Nataliya V.; Orlov, Andrej Yu. [Tambov State Technical University, Tambov (Russian Federation)

    2013-07-01

    Some regularities of covalent functionalization multiwalled carbon nanotubes (MWCNTs) by oxygen- containing groups were studied. The resulting materials were characterized by electron microscopy, thermogravimetric analysis, FTIR and Raman spectroscopy. The dependence of the degree of functionalization of MWCNTs from the process conditions was stated. The advantages of the gas phase to the liquid phase oxidation were shown. The effect of pristine and functionalized MWCNTs on the properties of composites with polysulfone was studied. Pristine and functionalized MWCNTs were modified with polyaniline. The effect of the method and degree of pre-functionalization of carbon nanotubes on the regularities of the oxidative polymerization of aniline and the properties of the obtained materials was shown. Key words: multiwalled carbon nanotubes, functionalization, modification, oxidation, composites, polyaniline.

  13. Molecular imprinted polymer functionalized carbon nanotube sensors for detection of saccharides

    Science.gov (United States)

    Badhulika, Sushmee; Mulchandani, Ashok

    2015-08-01

    In this work, we report the synthesis and fabrication of an enzyme-free sugar sensor based on molecularly imprinted polymer (MIP) on the surface of single walled carbon nanotubes (SWNTs). Electropolymerization of 3-aminophenylboronic acid (3-APBA) in the presence of 10 M d-fructose and fluoride at neutral pH conditions resulted in the formation of a self-doped, molecularly imprinted conducting polymer (MICP) via the formation of a stable anionic boronic ester complex between poly(aniline boronic acid) and d-fructose. Template removal generated binding sites on the polymer matrix that were complementary to d-fructose both in structure, i.e., shape, size, and positioning of functional groups, thus enabling sensing of d-fructose with enhanced affinity and specificity over non-MIP based sensors. Using carbon nanotubes along with MICPs helped to develop an efficient electrochemical sensor by enhancing analyte recognition and signal generation. These sensors could be regenerated and used multiple times unlike conventional affinity based biosensors which suffer from physical and chemical stability.

  14. Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors

    Science.gov (United States)

    Liu, Haiyan; Song, Huaihe; Chen, Xiaohong; Zhang, Su; Zhou, Jisheng; Ma, Zhaokun

    2015-07-01

    A kind of nitrogen- and oxygen-containing activated carbon nanotubes (ACNTs) has been prepared by carbonization and activation of polyaniline nanotubes obtained by rapidly mixed reaction. The ACNTs show oxygen content of 15.7% and nitrogen content of 2.97% (atomic ratio). The ACNTs perform high capacitance and good rate capability (327 F g-1 at the current density of 10 A g-1) when used as the electrode materials for supercapacitors. Hydrogen reduction has been further used to investigate the effects of surface functional groups on the electrochemical performance. The changes for both structural component and electrochemical performance reveal that the quinone oxygen, pyridinic nitrogen, and pyrrolic nitrogen of carbon have the most obvious influence on the capacitive property because of their pseudocapacitive contributions.

  15. A Nonoxidative Electrochemical Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine: A Review

    Directory of Open Access Journals (Sweden)

    Rishi R. Parajuli

    2008-12-01

    Full Text Available Most of the current techniques for in vivo detection of dopamine exploit the ease of oxidation of this compound. The major problem during the detection is the presence of a high concentration of ascorbic acid that is oxidized at nearly the same potential as dopamine on bare electrodes. Furthermore, the oxidation product of dopamine reacts with ascorbic acid present in samples and regenerates dopamine again, which severely limits the accuracy of the detection. Meanwhile, the product could also form a melanin-like insulating film on the electrode surface, which decreases the sensitivity of the electrode. Various surface modifications on the electrode, new materials for making the electrodes, and new electrochemical techniques have been exploited to solve these problems. Recently we developed a new electrochemical detection method that did not rely on direct oxidation of dopamine on electrodes, which may naturally solve these problems. This approach takes advantage of the high performance of our newly developed poly(anilineboronic acid/carbon nanotube composite and the excellent permselectivity of the ion-exchange polymer Nafion. The high affinity binding of dopamine to the boronic acid groups of the polymer affects the electrochemical properties of the polyaniline backbone, which act as the basis for the transduction mechanism of this non-oxidative dopamine sensor. The unique reduction capability and high conductivity of single-stranded DNA functionalized single-walled carbon nanotubes greatly improved the electrochemical activity of the polymer in a physiologically-relevant buffer, and the large surface area of the carbon nanotubes increased the density of the boronic acid receptors. The high sensitivity and selectivity of the sensor show excellent promise toward molecular diagnosis of Parkinson's disease. In this review, we will focus on the discussion of this novel detection approach, the new interferences in this detection approach, and how to

  16. Functional polyaniline/multiwalled carbon nanotube composite as an efficient adsorbent material for removing pharmaceuticals from aqueous media.

    Science.gov (United States)

    Dutra, Flávia Viana Avelar; Pires, Bruna Carneiro; Nascimento, Tienne Aparecida; Borges, Keyller Bastos

    2018-09-01

    The composite polyaniline/multiwalled carbon nanotube (PAni/MWCNT, 1:0.1 w/w) was developed with the intention of binding the adsorbent properties of two materials and using it to adsorb pharmaceuticals from aqueous media. PAni/MWCNT was characterized by scanning electron microscopy, thermogravimetry, infrared spectroscopy, pH at the point of zero charge, and the effect on the surface wettability of the material. As proof of concept, adsorption studies were carried out using meloxicam (MLX) as the pharmaceutical and it was evaluated as a function of pH, temperature, ionic strength, contact time and variation in concentration. Kinetics and isothermal models were applied to evaluate the mechanism of the adsorption process. The best MLX adsorption result was at pH 2 with 6 min of contact with PAni/MWCNT. The kinetics models that fitted the experimental data were pseudo-second order and Elovich and the kinetics model was the dual-site Langmuir-Freundlich. Both models suggest that the adsorption occurs by the chemical nature of the surface and in the pores of the energetically heterogeneous composite. The PAni/MWCNT presented an adsorption capacity of 221.2 mg g -1 , a very good value when compared with the literature and can be used to remove pharmaceuticals from aqueous environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Doping effect of polyaniline/MWCNT composites on capacitance and cyclic stability of supercapacitors.

    Science.gov (United States)

    Karthikeyan, G; Sahoo, S; Nayak, G C; Das, C K

    2012-03-01

    Polyaniline doped by Zn2+ ions was synthesized as nanocomposites with multiwalled carbon nanotubes (MWCNT) by in-situ oxidative polymerization and investigated as electrode material for supercapacitors. The uniform coating of polyaniline on MWCNT was characterized by field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). The effect of Zn2+ ions on nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy. The electrochemical performances were investigated by cyclic voltammetry (CV), constant current charging/discharging cyclic test (CC) and electrochemical impedance spectroscopy (EIS) using a three-electrode system. The doped polyaniline composites show higher specific capacitance and better cyclic stability.

  18. Performance evaluation of carbon nanotube enhanced membranes for SWRO pretreatment application

    KAUST Repository

    Lee, Jieun

    2016-04-25

    Multi-wall carbon nanotube (MWCNT) membrane was tested for SWRO pretreatment. The MWCNT membrane itself showed a superior permeate flux (321.3 LMH/bar), which was 4-times as polyethersulfone ultrafiltration (PES-UF) membrane. Reduction of dissolved organic matter improved to 66% with fewer amounts of powder activated carbon (PAC) (0.5 g/L) in MWCNT membrane filtration maintaining a high permeate flux of 600 LMH/bar. It was due to the increased porosity (84.5%) and hydrophilicity (52.9°) by incorporating MWCNT/polyaniline into PES membrane. Ionic strength affected organic removal in seawater filtration by altering electrostatic interaction between organic matter and surface charge of the positively charged MWCNT membrane.

  19. Free-standing 3D polyaniline-CNT/Ni-fiber hybrid electrodes for high-performance supercapacitors

    Science.gov (United States)

    Li, Yuan; Fang, Yuzhu; Liu, Hong; Wu, Xiaoming; Lu, Yong

    2012-04-01

    Free-standing 3D macroscopic polyaniline (PANi)-carbon nanotube (CNT)-nickel fiber hybrids have been developed, and they deliver high specific capacitance (725 F g-1 at 0.5 A g-1) and high energy density at high rates (~22 W h kg-1 at 2000 W kg-1, based on total electrode mass) with good cyclability.Free-standing 3D macroscopic polyaniline (PANi)-carbon nanotube (CNT)-nickel fiber hybrids have been developed, and they deliver high specific capacitance (725 F g-1 at 0.5 A g-1) and high energy density at high rates (~22 W h kg-1 at 2000 W kg-1, based on total electrode mass) with good cyclability. Electronic supplementary information (ESI) available: Experimental details on preparation, characterization, and electrochemical testing; Fig. S1-S8, Schemes S1 and S2. See DOI: 10.1039/c2nr30252g

  20. Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications.

    Science.gov (United States)

    Hyder, Md Nasim; Lee, Seung Woo; Cebeci, Fevzi Ç; Schmidt, Daniel J; Shao-Horn, Yang; Hammond, Paula T

    2011-11-22

    Thin film electrodes of polyaniline (PANi) nanofibers and functionalized multiwall carbon nanotubes (MWNTs) are created by layer-by-layer (LbL) assembly for microbatteries or -electrochemical capacitors. Highly stable cationic PANi nanofibers, synthesized from the rapid aqueous phase polymerization of aniline, are assembled with carboxylic acid functionalized MWNT into LbL films. The pH-dependent surface charge of PANi nanofibers and MWNTs allows the system to behave like weak polyelectrolytes with controllable LbL film thickness and morphology by varying the number of bilayers. The LbL-PANi/MWNT films consist of a nanoscale interpenetrating network structure with well developed nanopores that yield excellent electrochemical performance for energy storage applications. These LbL-PANi/MWNT films in lithium cell can store high volumetric capacitance (~238 ± 32 F/cm(3)) and high volumetric capacity (~210 mAh/cm(3)). In addition, rate-dependent galvanostatic tests show LbL-PANi/MWNT films can deliver both high power and high energy density (~220 Wh/L(electrode) at ~100 kW/L(electrode)) and could be promising positive electrode materials for thin film microbatteries or electrochemical capacitors. © 2011 American Chemical Society

  1. Fabrication of polyaniline/graphene/titania nanotube arrays nanocomposite and their application in supercapacitors

    International Nuclear Information System (INIS)

    Huang, Hua; Gan, Mengyu; Ma, Li; Yu, Lei; Hu, Haifeng; Yang, Fangfang; Li, Yanjun; Ge, Chengqiang

    2015-01-01

    Highlights: • The PANI/graphene/TiO 2 nanotube arrays were fabricated firstly. • The composite shows a high specific capacitance and superior rate capability. • A high capacity retention rate of 91% after 1000 cycles can be achieved. • The composite possesses a novel three-dimensional (3D) highly ordered nanostructure. • TiO 2 NTs enhance the adhesion between PANI and substrate. - Abstract: Polyaniline/graphene/titania nanotube arrays (PGTNs) nanocomposite as a supercapacitor electrode is fabricated by in-situ polymerization for the first time. Herein, the PGTNs possesses a novel three-dimensional (3D) highly ordered hybrid nanostructure consisting of coaxial polyaniline (PANI)/TiO 2 nanotube arrays and graphene coated with PANI on the surface of TiO 2 in some degree. The synthesized three-dimensional PGTNs is characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Raman spectroscopy, and its electrochemical performance is measured by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge. The maximum specific capacitance of PGTNs is as high as 933 F g −1 at current density of 0.75 A g −1 and the specific capacitance retains 91% of the initial after constant charge–discharge 1000 cycles. The improved electrochemical performance is due to the 3D nanostructure, which effectively prevents the mechanical deformation during the fast charge/discharge process and favors the diffusion of the electrolyte ions into the inner region of active materials. The composite electrode material is very promising for the next generation of high-performance electrochemical supercapacitors

  2. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  3. Carbon nanotube composite materials

    Science.gov (United States)

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  4. Fabrication of polyaniline/graphene/titania nanotube arrays nanocomposite and their application in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hua; Gan, Mengyu; Ma, Li, E-mail: mlsys607@126.com; Yu, Lei; Hu, Haifeng; Yang, Fangfang; Li, Yanjun; Ge, Chengqiang

    2015-05-05

    Highlights: • The PANI/graphene/TiO{sub 2} nanotube arrays were fabricated firstly. • The composite shows a high specific capacitance and superior rate capability. • A high capacity retention rate of 91% after 1000 cycles can be achieved. • The composite possesses a novel three-dimensional (3D) highly ordered nanostructure. • TiO{sub 2} NTs enhance the adhesion between PANI and substrate. - Abstract: Polyaniline/graphene/titania nanotube arrays (PGTNs) nanocomposite as a supercapacitor electrode is fabricated by in-situ polymerization for the first time. Herein, the PGTNs possesses a novel three-dimensional (3D) highly ordered hybrid nanostructure consisting of coaxial polyaniline (PANI)/TiO{sub 2} nanotube arrays and graphene coated with PANI on the surface of TiO{sub 2} in some degree. The synthesized three-dimensional PGTNs is characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Raman spectroscopy, and its electrochemical performance is measured by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge. The maximum specific capacitance of PGTNs is as high as 933 F g{sup −1} at current density of 0.75 A g{sup −1} and the specific capacitance retains 91% of the initial after constant charge–discharge 1000 cycles. The improved electrochemical performance is due to the 3D nanostructure, which effectively prevents the mechanical deformation during the fast charge/discharge process and favors the diffusion of the electrolyte ions into the inner region of active materials. The composite electrode material is very promising for the next generation of high-performance electrochemical supercapacitors.

  5. Electron diffraction from carbon nanotubes

    International Nuclear Information System (INIS)

    Qin, L-C

    2006-01-01

    The properties of a carbon nanotube are dependent on its atomic structure. The atomic structure of a carbon nanotube can be defined by specifying its chiral indices (u, v), that specify its perimeter vector (chiral vector), with which the diameter and helicity are also determined. The fine electron beam available in a modern transmission electron microscope (TEM) offers a unique probe to reveal the atomic structure of individual nanotubes. This review covers two aspects related to the use of the electron probe in the TEM for the study of carbon nanotubes: (a) to understand the electron diffraction phenomena for inter-pretation of the electron diffraction patterns of carbon nanotubes and (b) to obtain the chiral indices (u, v), of the carbon nanotubes from the electron diffraction patterns. For a nanotube of a given structure, the electron scattering amplitude from the carbon nanotube is first described analytically in closed form using the helical diffraction theory. From a known structure as given by the chiral indices (u, v), its electron diffraction pattern can be calculated and understood. The reverse problem, i.e. assignment of the chiral indices from an electron diffraction pattern of a carbon nanotube, is approached from the relationship between the electron scattering intensity distribution and the chiral indices (u, v). We show that electron diffraction patterns can provide an accurate and unambiguous assignment of the chiral indices of carbon nanotubes. The chiral indices (u, v) can be read indiscriminately with a high accuracy from the intensity distribution on the principal layer lines in an electron diffraction pattern. The symmetry properties of electron diffraction from carbon nanotubes and the electron diffraction from deformed carbon nanotubes are also discussed in detail. It is shown that 2mm symmetry is always preserved for single-walled carbon nanotubes, but it can break down for multiwalled carbon nanotubes under some special circumstances

  6. A composite of polyelectrolyte-grafted multi-walled carbon nanotubes and in situ polymerized polyaniline for the detection of low concentration triethylamine vapor

    International Nuclear Information System (INIS)

    Li Yang; Wang Huicai; Cao Xiehong; Yuan Minyong; Yang Mujie

    2008-01-01

    Multi-walled carbon nanotubes (MWNTs) grafted with sodium polystyrenesulfonate (NaPSS) were deposited on an interdigitated gold electrode decorated with a layer of positively charged poly(diallyldimethylammonium chloride) by a self-assembly method. Then polyaniline (PANI) was in situ polymerized on the surface of the MWNTs to prepare a composite. The structure and morphology of the composite were investigated by Raman spectroscopy and scanning electron microscopy. The electrical responses of the composite to triethylamine vapor of low concentrations were measured at room temperature. It was found that the composite exhibited a linear response to the vapor in the range of 0.5-8 ppm with the highest sensitivity of ∼80%, which is much higher than that of MWNTs and PANI separately, and an obvious synergetic effect was observed. In addition, the detection limit was as low as the ppb level, and reversible and relatively fast responses (t 90% ∼200 s and ∼10 min for sensing and recovery, respectively) were observed. The sensing characteristics are highly related to the gas responses of PANI, and a sensing mechanism considering the interaction of MWNTs and PANI was proposed

  7. Sensitive stripping voltammetric determination of Cd(II) and Pb(II) by a Bi/multi-walled carbon nanotube-emeraldine base polyaniline-Nafion composite modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Zhao, Guo; Yin, Yuan; Wang, Hui; Liu, Gang; Wang, Zhiqiang

    2016-01-01

    Highlights: • A MWCNT-EBP-NA composite film modified GCE was fabricated and characterized. • The GCE modified with the MWCNT-EBP-NA composite film exhibited excellent performance in the analysis of Cd(II) and Pb(II) by SWASV. • The Cd(II) and Pb(II) detection limits of the developed electrode were approximately 0.06 μg/L and 0.08 μg/L, respectively. • Bi/MWCNT-EBP-NA/GCE was successfully used to determine metal ions in soil samples. - Abstract: In this study, a multi-walled carbon nanotube (MWCNT)-emeraldine base polyaniline (EBP)-Nafion (NA) composite modified glassy carbon electrode (MWCNT-EBP-NA/GCE) was prepared and used for the sensitive detection of trace Pb(II) and Cd(II), with a detection limit of 0.06 μg/L for Cd(II) and 0.08 μg/L for Pb(II) (S/N = 3), by square wave anodic stripping voltammetry (SWASV). A bismuth film was prepared through the in situ plating of bismuth on the MWCNT-EBP-NA/GCE. The morphologies and electrochemical properties of the modified electrode were characterized by SWASV, scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The parameters affecting the stripping current response were investigated and optimized. The formed MWCNTs in the composite film enlarged the specific surface area of the electrode and significantly promoted electron transferring, and the formed polyaniline (PANI) enhanced the ion-exchange capacity and prevented the macromolecules in real samples from absorbing onto the surface of the electrode. The presence of NA effectively increased the stability and adhesion of the composite film, enhanced the cation-exchange capacity and improved the ability to preconcentrate metal ions. Under the optimized conditions, a linear range of 1.0 to 50.0 μg/L was achieved for both metal ions, with a detection limit of 0.06 μg/L for Cd(II) and 0.08 μg/L for Pb(II) (S/N = 3), offering good repeatability. Finally, the Bi/MWCNT-EBP-NA/GCE was used for the

  8. Purification of carbon nanotubes via selective heating

    Science.gov (United States)

    Rogers, John A.; Wilson, William L.; Jin, Sung Hun; Dunham, Simon N.; Xie, Xu; Islam, Ahmad; Du, Frank; Huang, Yonggang; Song, Jizhou

    2017-11-21

    The present invention provides methods for purifying a layer of carbon nanotubes comprising providing a precursor layer of substantially aligned carbon nanotubes supported by a substrate, wherein the precursor layer comprises a mixture of first carbon nanotubes and second carbon nanotubes; selectively heating the first carbon nanotubes; and separating the first carbon nanotubes from the second carbon nanotubes, thereby generating a purified layer of carbon nanotubes. Devices benefiting from enhanced electrical properties enabled by the purified layer of carbon nanotubes are also described.

  9. Stretchable Active Matrix Temperature Sensor Array of Polyaniline Nanofibers for Electronic Skin.

    Science.gov (United States)

    Hong, Soo Yeong; Lee, Yong Hui; Park, Heun; Jin, Sang Woo; Jeong, Yu Ra; Yun, Junyeong; You, Ilhwan; Zi, Goangseup; Ha, Jeong Sook

    2016-02-03

    A stretchable polyaniline nanofiber temperature sensor array with an active matrix consisting of single-walled carbon nanotube thin-film transistors is demonstrated. The integrated temperature sensor array gives mechanical stability under biaxial stretching of 30%, and the resultant spatial temperature mapping does not show any mechanical or electrical degradation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Recent development of carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Yamabe, Tokio [Div. of Molecular Engineering, Kyoto Univ. (Japan); [Inst. for Fundamental Chemistry, Kyoto (Japan)

    1995-03-15

    Recent developments of carbon nanotubes are reviewed. Analytical solutions for the electronic structure of carbon nanotube on the basis of thight-binding approximation are presented and interpreted using the concepts of crystal orbital. The electronic properties of actual carbon nanotubes are presented. The electronic structures of carbon nanotubes in the presence of magnetic fiels are also summerized. (orig.)

  11. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors

    Science.gov (United States)

    Xie, Keyu; Li, Jie; Lai, Yanqing; Zhang, Zhi'an; Liu, Yexiang; Zhang, Guoge; Huang, Haitao

    2011-05-01

    Conducting polymer with 1D nanostructure exhibits excellent electrochemical performances but a poor cyclability that limits its use in supercapacitors. In this work, a novel composite electrode made of polyaniline nanowire-titania nanotube array was synthesized via a simple and inexpensive electrochemical route by electropolymerizing aniline onto an anodized titania nanotube array. The specific capacitance was as high as 732 F g-1 at 1 A g-1, which remained at 543 F g-1 when the current density was increased by 20 times. 74% of the maximum energy density (36.6 Wh kg-1) was maintained even at a high power density of 6000 W kg-1. An excellent long cycle life of the electrode was observed with a retention of ~86% of the initial specific capacitance after 2000 cycles. The good electrochemical performance was attributed to the unique microstructure of the electrode with disordered PANI nanowire arrays encapsulated inside the TiO2 nanotubes, providing high surface area, fast diffusion path for ions and long-term cycle stability. Such a nanocomposite electrode is attractive for supercapacitor applications.

  12. In situ electropolymerization of polyaniline/cobalt sulfide decorated carbon nanotube composite catalyst toward triiodide reduction in dye-sensitized solar cells

    Science.gov (United States)

    Xiao, Yaoming; Wang, Wei-Yan; Chou, Shu-Wei; Lin, Tsung-Wu; Lin, Jeng-Yu

    2014-11-01

    In this study, we report a composite film composed of the cobalt sulfide (CoS1.097) nanoclusters/multi-wall carbon nanotube nanocomposites (MWCNT@CoS1.097) embedded polyaniline (PANI) film (denoted as PANI/MWCNT@CoS1.097) by an in situ electropolymerization onto a fluorinated tin oxide (FTO) glass substrate as a counter electrode (CE) for Pt-free dye-sensitized solar cells (DSCs) for the first time. The extensive cyclic voltammograms (CVs) and electrochemical impedance measurements show the PANI/MWCNT@CoS1.097 CE with an enhanced electrocatalytic activity for I3- reduction compared to PANI and MWCNT@CoS1.097 CEs. Moreover, the peak current densities of the PANI/MWCNT@CoS1.097 CE show no sign of degradation after consecutive 200 CV tests, suggesting its great chemical and electrochemical stability. Furthermore, the DSC based on the in situ electropolymerized PANI/MWCNT@CoS1.097 CE achieves an improved photovoltaic conversion efficiency of 7.02%, which is higher than those of the DSCs with PANI CE (6.06%) and with MWCNT@CoS1.097 CE (5.54%), and is even comparable to that of the DSC using the Pt CE (7.16%). Therefore, the PANI/MWCNT@CoS1.097 CE can be regarded as a promising alternative CE for Pt-free DSCs.

  13. Carbon nanotube junctions and devices

    NARCIS (Netherlands)

    Postma, H.W.Ch.

    2001-01-01

    In this thesis Postma presents transport experiments performed on individual single-wall carbon nanotubes. Carbon nanotubes are molecules entirely made of carbon atoms. The electronic properties are determined by the exact symmetry of the nanotube lattice, resulting in either metallic or

  14. Synthesis and electrochemical performance of multi-walled carbon nanotube/polyaniline/MnO{sub 2} ternary coaxial nanostructures for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiang [School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, Anhui 230009 (China); School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China); Liu, Jianhua; Zou, Jianhua; Chunder, Anindarupa; Zhai, Lei [NanoScience Technology Center and Department of Chemistry, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826 (United States); Chen, Yiqing [School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China)

    2011-01-01

    Multi-walled carbon nanotube (MWCNT)/polyaniline (PANI)/MnO{sub 2} (MPM) ternary coaxial structures are fabricated as supercapacitor electrodes via a simple wet chemical method. The electrostatic interaction between negative poly(4-styrenesulfonic acid) (PSS) molecules and positive Mn{sup 2+} ions causes the generation of MnO{sub 2} nanostructures on MWCNT surfaces while the introduction of PANI layers with appropriate thickness on MWCNT surfaces facilitates the formation of MWCNT/PANI/MnO{sub 2} ternary coaxial structures. The thickness of PANI coatings is controlled by tuning the aniline/MWCNT ratio. The effect of PANI thickness on the subsequent MnO{sub 2} nanoflakes attachment onto MWCNTs, and the MPM structures is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and field-emission scanning electron microscopy (FESEM). The results suggest that appropriate thickness of PANI layers is important for building MPM ternary coaxial structures without the agglomeration of MnO{sub 2} nanoflakes. The MPM ternary coaxial structures provide large interaction area between the MnO{sub 2} nanoflakes and electrolyte, and improve the electrochemical utilization of the hydrous MnO{sub 2}, and decrease the contact resistance between MnO{sub 2} and PANI layer coated MWCNTs, leading to intriguing electrochemical properties for the applications in supercapacitors such as a specific capacitance of 330 Fg{sup -1} and good cycle stability. (author)

  15. Twin carbons: The carbonization of cellulose or carbonized cellulose coated with a conducting polymer, polyaniline

    Czech Academy of Sciences Publication Activity Database

    Bober, Patrycja; Kovářová, Jana; Pfleger, Jiří; Stejskal, Jaroslav; Trchová, Miroslava; Novák, I.; Berek, D.

    2016-01-01

    Roč. 109, November (2016), s. 836-842 ISSN 0008-6223 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : cellulose * carbon * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.337, year: 2016

  16. Investigation of the Parameters affecting CO2 —assisted Polyaniline Polymerization

    Directory of Open Access Journals (Sweden)

    Noby H.

    2016-01-01

    Full Text Available Specific Polyaniline (PANI morphologies such as nanotubes and nanofiber are required for enhancing its performance in the various applications. CO2 —assisted Polyaniline polymerization is a method recently used to produce these anticipated morphologies. In this study, polyaniline nanotube was prepared successfully in the presence of compressed CO2 utilizing Aniline as a monomer and Ammonium peroxydisulfate (APS as an oxidizing agent. The effect of both reaction temperature and the oxidizing agent feed rate on the morphology and surface area of the produced PANI was investigated. The synthesized PANI was examined by FT-IR, XRD, and BET surface area analysis. Furthermore, SEM was carried out to figure out the morphology of the prepared PANI. It was indicated that Polyaniline nanotubes PANNTs size and homogeneity were affected by the reaction temperature. The averages of the outer and inner diameters of the PANNTs at 25 °C, 45 °C, 65 °C were found to be about (120, 60 nm, (140, 65 nm, and (175, 75 nm respectively. Also, the produced surface area was slightly augmented with the increase of the temperature. In addition, it was observed that increasing the feeding rate of the APS was associated with the reduction of the size and the surface area of the produced PANI nanotubes.

  17. Carbon Nanotubes and Modern Nanoagriculture

    KAUST Repository

    Serag, Maged F.

    2015-01-27

    Since their discovery, carbon nanotubes have been prominent members of the nanomaterial family. Owing to their extraordinary physical, chemical, and mechanical properties, carbon nanotubes have been proven to be a useful tool in the field of plant science. They were frequently perceived to bring about valuable biotechnological and agricultural applications that still remain beyond experimental realization. An increasing number of studies have demonstrated the ability of carbon nanotubes to traverse different plant cell barriers. These studies, also, assessed the toxicity and environmental impacts of these nanomaterials. The knowledge provided by these studies is of practical and fundamental importance for diverse applications including intracellular labeling and imaging, genetic transformation, and for enhancing our knowledge of plant cell biology. Although different types of nanoparticles have been found to activate physiological processes in plants, carbon nanotubes received particular interest. Following addition to germination medium, carbon nanotubes enhanced root growth and elongation of some plants such as onion, cucumber and rye-grass. They, also, modulated the expression of some genes that are essential for cell division and plant development. In addition, multi-walled carbon nanotubes were evidenced to penetrate thick seed coats, stimulate germination, and to enhance growth of young tomato seedlings. Multi-walled carbon nanotubes can penetrate deeply into the root system and further distribute into the leaves and the fruits. In recent studies, carbon nanotubes were reported to be chemically entrapped into the structure of plant tracheary elements. This should activate studies in the fields of plant defense and wood engineering. Although, all of these effects on plant physiology and plant developmental biology have not been fully understood, the valuable findings promises more research activity in the near future toward complete scientific understanding of

  18. Conducting polymers, buckminsterfullerenes, and carbon nanotubes: optoelectronic materials based on architectural diversity of the π-conjugated structure

    International Nuclear Information System (INIS)

    Dai, L.

    2001-01-01

    Recent discovery of superconductivity in self assembled poly(3-hexylthiophene) two-dimensional conjugated sheets indicates the possible applications of plastics even in superconducting optoelectronic devices. Just as the discovery of C 60 has created an entirely new branch of carbon chemistry, the subsequent discovery of carbon nanotubes by lijima in 1991 opened up a new era in material science and nanotechnology. These elongated nanotubes consist of carbon hexagons arranged in a concentric manner with both ends normally capped by fullerene-like structures containing pentagons. Having a conjugated all-carbon structure with unusual molecular symmetries, fullerenes and carbon nanotubes also show interesting electronic, photonic, magnetic and mechanical properties, attractive for various applications, including optical limiters, photovoltaic cells and field emitting displays. For most of the above applications, it is highly desirable to prepare ordered/micropatterned conducting polymers, fullerenes, and carbon nanotubes. Although the microfabrication of conducting polymers has been an active research area for some years, it is a very recent development for fullerenes and carbon nanotubes. Recently, we doped polyaniline (PANI) with a hydrogensulfated fullerenol derivative containing multiple -OSO 3 H groups (i.e. C 60 (OH) 6 (OSO 3 H) 6 ) to produce three-dimensional PANI conductors with a room-temperature conductivity of up to 100 S cm -1 . This value of conductivity is about six orders of magnitude higher than the typical value for C 60 doped conducting polymers. Later, in collaboration with Wan's group at the Chinese Academy of Sciences, we have also synthesized PANI nanotubes via a self assembled C 60 (OH) 6 (OSO 3 H) 6 supramolecular template using (NH 4 ) 2 S 2 O 8 as an oxidant. These results, together with the more recent discovery of a hollow sphere, self assembled by the potassium salt of pentaphenyl fullerene (Ph 5 C 60 K) in water, clearly indicate that

  19. All carbon nanotubes are not created equal

    International Nuclear Information System (INIS)

    Geohegan, David B.; Puretzky, Alexander A.; Rouleau, Christopher M.

    2010-01-01

    This chapter presents the various factors that enter into consideration when choosing the source of carbon nanotubes for a specific application. Carbon nanotubes are giant molecules made of pure carbon. They have captured the imagination of the scientific community by the unique structure that provides superior physical, chemical, and electrical properties. However, a surprisingly wide disparity exists between the intrinsic properties determined under ideal conditions and the properties that carbon nanotubes exhibit in real world situations. The lack of uniformity in carbon nanotube properties is likely to be the main obstacle holding back the development of carbon nanotube applications. This tutorial addresses the nonuniformity of carbon nanotube properties from the synthesis standpoint. This synthesis-related nonuniformity is on top of the intrinsic chirality distribution that gives the ∼1:2 ratio of metallic to semiconducting nanotubes. From the standpoint of carbon bonding chemistry the variation in the quality and reproducibility of carbon nanotube materials is not unexpected. It is an intrinsic feature that is related to the metastability of carbon structures. The extent to which this effect is manifested in carbon nanotube formation is governed by the type and the kinetics of the carbon nanotube synthesis reaction. Addressing this variation is critical if nanotubes are to live up to the potential already demonstrated by their phenomenal physical properties.

  20. Method for producing carbon nanotubes

    Science.gov (United States)

    Phillips, Jonathan [Santa Fe, NM; Perry, William L [Jemez Springs, NM; Chen, Chun-Ku [Albuquerque, NM

    2006-02-14

    Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.

  1. Functionalized carbon nanotubes containing isocyanate groups

    International Nuclear Information System (INIS)

    Zhao Chungui; Ji Lijun; Liu Huiju; Hu Guangjun; Zhang Shimin; Yang Mingshu; Yang Zhenzhong

    2004-01-01

    Functionalized carbon nanotubes containing isocyanate groups can extend the nanotube chemistry, and may promote their many potential applications such as in polymer composites and coatings. This paper describes a facile method to prepare functionalized carbon nanotubes containing highly reactive isocyanate groups on its surface via the reaction between toluene 2,4-diisocyanate and carboxylated carbon nanotubes. Fourier-transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed that reactive isocyanate groups were covalently attached to carbon nanotubes. The content of isocyanate groups were determined by chemical titration and thermogravimetric analysis (TGA)

  2. Continuous carbon nanotube reinforced composites.

    Science.gov (United States)

    Ci, L; Suhr, J; Pushparaj, V; Zhang, X; Ajayan, P M

    2008-09-01

    Carbon nanotubes are considered short fibers, and polymer composites with nanotube fillers are always analogues of random, short fiber composites. The real structural carbon fiber composites, on the other hand, always contain carbon fiber reinforcements where fibers run continuously through the composite matrix. With the recent optimization in aligned nanotube growth, samples of nanotubes in macroscopic lengths have become available, and this allows the creation of composites that are similar to the continuous fiber composites with individual nanotubes running continuously through the composite body. This allows the proper utilization of the extreme high modulus and strength predicted for nanotubes in structural composites. Here, we fabricate such continuous nanotube polymer composites with continuous nanotube reinforcements and report that under compressive loadings, the nanotube composites can generate more than an order of magnitude improvement in the longitudinal modulus (up to 3,300%) as well as damping capability (up to 2,100%). It is also observed that composites with a random distribution of nanotubes of same length and similar filler fraction provide three times less effective reinforcement in composites.

  3. Facile Synthesis of Polyaniline Nanotubes Using Self-Assembly Method Based on the Hydrogen Bonding: Mechanism and Application in Gas Sensing

    Directory of Open Access Journals (Sweden)

    Changqing Yin

    2017-10-01

    Full Text Available Based on hydrogen bonding, the highly uniform polyaniline (PANI nanotubes were synthesized by self-assembly method using citric acid (CA as the dopant and the structure-directing agent by optimizing the molar ratio of CA to aniline monomer (Ani. Synthesis conditions like reaction temperature and mechanical stirring were considered to explore the effects of hydrogen bonding on the morphologies. The effects of CA on the final morphology of the products were also investigated. The as-synthesized CA doped polyaniline (PANI nanomaterials were further deposited on the plate electrodes for the test of gas sensing performance to ammonia (NH3. The sensitivity to various concentrations of NH3, the repeatability, and the stability of the sensors were also tested and analyzed. As a result, it was found that the PANI nanomaterial synthesized at the CA/Ani molar ratio of 0.5 has highly uniform tubular morphology and shows the best sensing performance to NH3. It makes the PANI nanotubes a promising material for high performance gas sensing to NH3.

  4. EDITORIAL: Focus on Carbon Nanotubes

    Science.gov (United States)

    2003-09-01

    The study of carbon nanotubes, since their discovery by Iijima in 1991, has become a full research field with significant contributions from all areas of research in solid-state and molecular physics and also from chemistry. This Focus Issue in New Journal of Physics reflects this active research, and presents articles detailing significant advances in the production of carbon nanotubes, the study of their mechanical and vibrational properties, electronic properties and optical transitions, and electrical and transport properties. Fundamental research, both theoretical and experimental, represents part of this progress. The potential applications of nanotubes will rely on the progress made in understanding their fundamental physics and chemistry, as presented here. We believe this Focus Issue will be an excellent guide for both beginners and experts in the research field of carbon nanotubes. It has been a great pleasure to edit the many excellent contributions from Europe, Japan, and the US, as well from a number of other countries, and to witness the remarkable effort put into the manuscripts by the contributors. We thank all the authors and referees involved in the process. In particular, we would like to express our gratitude to Alexander Bradshaw, who invited us put together this Focus Issue, and to Tim Smith and the New Journal of Physics staff for their extremely efficient handling of the manuscripts. Focus on Carbon Nanotubes Contents Transport theory of carbon nanotube Y junctions R Egger, B Trauzettel, S Chen and F Siano The tubular conical helix of graphitic boron nitride F F Xu, Y Bando and D Golberg Formation pathways for single-wall carbon nanotube multiterminal junctions Inna Ponomareva, Leonid A Chernozatonskii, Antonis N Andriotis and Madhu Menon Synthesis and manipulation of carbon nanotubes J W Seo, E Couteau, P Umek, K Hernadi, P Marcoux, B Lukic, Cs Mikó, M Milas, R Gaál and L Forró Transitional behaviour in the transformation from active end

  5. Theoretical study on the combined systems of peanut-shaped carbon nanotubes encapsulated in single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Wang, Guo; Huang, Yuanhe

    2012-01-01

    Highlights: ► The combined systems of peanut-shaped carbon nanotubes encapsulated in single-walled carbon nanotubes are investigated. ► The band structures and related electronic properties are calculated by using crystal orbital method. ► The carrier mobility and mean free path are evaluated under the deformation potential theory. -- Abstract: The combined systems of peanut-shaped carbon nanotubes encapsulated in both semiconducting and metallic single-walled carbon nanotubes are investigated by using self-consistent field crystal orbital method based on the density functional theory. The investigation indicates that the interaction between the two constituents is mainly contributed by the π orbitals. The encapsulation does not change the semiconducting or metallic nature of the single-walled carbon nanotubes, but significantly changes the band dispersion and decreases the frontier band width of the metallic one. The carrier mobility and mean free path of the metallic single-walled carbon nanotube increase greatly after the encapsulation. The calculated mobilities have the order of 10 3 cm 2 V −1 s −1 for both of the semiconducting and metallic double-walled carbon nanotubes.

  6. Mechanical properties of carbon nanotubes

    Science.gov (United States)

    Salvetat, J.-P.; Bonard, J.-M.; Thomson, N. H.; Kulik, A. J.; Forró, L.; Benoit, W.; Zuppiroli, L.

    A variety of outstanding experimental results on the elucidation of the elastic properties of carbon nanotubes are fast appearing. These are based mainly on the techniques of high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM) to determine the Young's moduli of single-wall nanotube bundles and multi-walled nanotubes, prepared by a number of methods. These results are confirming the theoretical predictions that carbon nanotubes have high strength plus extraordinary flexibility and resilience. As well as summarising the most notable achievements of theory and experiment in the last few years, this paper explains the properties of nanotubes in the wider context of materials science and highlights the contribution of our research group in this rapidly expanding field. A deeper understanding of the relationship between the structural order of the nanotubes and their mechanical properties will be necessary for the development of carbon-nanotube-based composites. Our research to date illustrates a qualitative relationship between the Young's modulus of a nanotube and the amount of disorder in the atomic structure of the walls. Other exciting results indicate that composites will benefit from the exceptional mechanical properties of carbon nanotubes, but that the major outstanding problem of load transfer efficiency must be overcome before suitable engineering materials can be produced.

  7. Structural transformations of carbon chains inside nanotubes

    International Nuclear Information System (INIS)

    Warner, Jamie H.; Ruemmeli, Mark H.; Bachmatiuk, Alicja; Buechner, Bernd

    2010-01-01

    In situ aberration-corrected high-resolution transmission electron microscopy is used to examine the structural transformations of carbon chains that occur in the interior region of carbon nanotubes. We find electron-beam irradiation leads to the formation of two-dimensional carbon structures that are freely mobile inside the nanotube. The inner diameter of the nanotube influences the structural transformations of the carbon chains. As the diameter of the nanotube increases, electron-beam irradiation leads to curling of the chains and eventually the formation of closed looped structures. The closed looped structures evolve into spherical fullerenelike structures that exhibit translational motion inside the nanotubes and also coalesce to form larger nanotube structures. These results demonstrate the use of carbon nanotubes as test tubes for growing small carbon nanotubes within the interior by using only electron-beam irradiation at 80 kV.

  8. Method for nano-pumping using carbon nanotubes

    Science.gov (United States)

    Insepov, Zeke [Darien, IL; Hassanein, Ahmed [Bolingbrook, IL

    2009-12-15

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  9. 160 MeV Ni12+ ion irradiation effects on the dielectric properties of polyaniline nanotubes

    International Nuclear Information System (INIS)

    Hazarika, J.; Nath, Chandrani; Kumar, A.

    2012-01-01

    We report on the dielectric properties and a.c. conductivity studies of CSA doped polyaniline nanotubes. Nanotubes of 47–100 nm diameter, were synthesized by the self-assembly method and irradiated using Ni 12+ ions of 160 MeV energy with fluences of 1 × 10 10 , 5 × 10 10 , 1 × 10 11 and 3 × 10 11 ions/cm 2 . X-ray diffraction studies reveal an increase in the degree of crystallinity and consequently, the extent of order of the nanotubes with increasing fluence, but show a lower degree of crystallinity at higher fluence. The decrease in d-spacing for the (100) reflections with fluence is ascribed to the decrease in the tilt angle of the aligned polymer chains. A significant change was seen after irradiation in dielectric and electrical properties which may be correlated with the increased carrier concentration and structural modifications in the polymer films. The surface conductivity of films increases with increasing fluence, which also decreases at higher fluence. The a.c. conduction mechanism for the nanotubes could be explained in terms of correlated barrier hopping model. The existence of polarons as the major charge carriers in the present nanotube system was confirmed by the low values of polaron binding energy, found to decrease with fluence. The hopping distance increases with fluence indicating that the hopping probability increases with fluence.

  10. Carbon nanotubes for biological and biomedical applications

    International Nuclear Information System (INIS)

    Yang Wenrong; Thordarson, Pall; Gooding, J Justin; Ringer, Simon P; Braet, Filip

    2007-01-01

    Ever since the discovery of carbon nanotubes, researchers have been exploring their potential in biological and biomedical applications. The recent expansion and availability of chemical modification and bio-functionalization methods have made it possible to generate a new class of bioactive carbon nanotubes which are conjugated with proteins, carbohydrates, or nucleic acids. The modification of a carbon nanotube on a molecular level using biological molecules is essentially an example of the 'bottom-up' fabrication principle of bionanotechnology. The availability of these biomodified carbon nanotube constructs opens up an entire new and exciting research direction in the field of chemical biology, finally aiming to target and to alter the cell's behaviour at the subcellular or molecular level. This review covers the latest advances of bio-functionalized carbon nanotubes with an emphasis on the development of functional biological nano-interfaces. Topics that are discussed herewith include methods for biomodification of carbon nanotubes, the development of hybrid systems of carbon nanotubes and biomolecules for bioelectronics, and carbon nanotubes as transporters for a specific delivery of peptides and/or genetic material to cells. All of these current research topics aim at translating these biotechnology modified nanotubes into potential novel therapeutic approaches. (topical review)

  11. Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    Science.gov (United States)

    Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.

    2012-01-01

    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.

  12. A hydrogel-mediated scalable strategy toward core-shell polyaniline/poly(acrylic acid)-modified carbon nanotube hybrids as efficient electrodes for supercapacitor applications

    Science.gov (United States)

    Liu, Qingqing; Bai, Zhengyu; Fan, Jingbiao; Sun, Zhipeng; Mi, Hongyu; Zhang, Qing; Qiu, Jieshan

    2018-04-01

    Structural failure of polyaniline (PANI) stemmed from repeated swelling-shrinkage during Faradic process represents an imminent issue hindering the real application of this material for advanced energy storage. Herein, we explore a clean and facile hydrogel-mediated layer-by-layer strategy to conformally coat a layer of oriented PANI nanofibers on multi-walled carbon nanotubes (MWCNTs) where a layer of UV-polymerized poly(acrylic acid) (PAA) hydrogel is first formed in between as electrodes for supercapacitors. Such an intriguing core-shell tri-component structure perfectly alleviates the drawbacks of PANI as well as combines the advantages of MWCNTs. Especially, the hydrogel used increases the adhesion between PANI and MWCNTs, buffers the structural variation of PANI during cycling, and provide extra driving force accelerating electrolyte penetration throughout active materials. Therefore, the well-intergrown hybrids (PANI/P-MWCNT) display high electrochemical performance as compared to PANI and PANI/MWCNT, i.e., an improved capacitance of 612.5 F g-1 at 0.5 A g-1, and excellent cycling behavior of 81.5% capacitance retention at 5 A g-1 over 1500 cycles. Also, the maximum energy density of the PANI/P-MWCNT based symmetric configuration reaches 8.2 Wh kg-1. Significantly, such a hydrogel-bridged design concept may find the important application for the synthesis of competitive candidates for energy storage.

  13. 1/f noise in carbon nanotubes

    International Nuclear Information System (INIS)

    Collins, Philip G.; Fuhrer, M. S.; Zettl, A.

    2000-01-01

    The electrical noise characteristics of single-walled carbon nanotubes have been investigated. For all three cases of individual isolated nanotubes, thin films of interconnected nanotubes, and bulk nanotube mats, anomalously large bias-dependent 1/f noise is found. The noise magnitude greatly exceeds that commonly observed in metal films, carbon resistors, or even carbon fibers with comparable resistances. A single empirical expression describes the noise for all nanotube samples, suggesting a common noise-generating mechanism proportional only to the number of nanotubes in the conductor. We consider likely sources of the fluctuations, and consequences for electronic applications of nanotubes if the excessive noise cannot be suppressed. (c) 2000 American Institute of Physics

  14. The carbonization of colloidal polyaniline nanoparticles to nitrogen-containing carbon analogues

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Trchová, Miroslava; Hromádková, Jiřina; Kovářová, Jana; Kalendová, A.

    2010-01-01

    Roč. 59, č. 7 (2010), s. 875-878 ISSN 0959-8103 R&D Projects: GA AV ČR IAA400500905; GA AV ČR KAN200520704; GA ČR GA203/08/0686; GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * colloids * carbonization Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.056, year: 2010

  15. A high-performance carbon derived from polyaniline for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jun [Harbin Engineering University, Harbin (China). Key Laboratory of Superlight Materials and Surface Technology; College of Automation, Harbin Engineering University, Harbin (China); Wei, Tong; Fan, Zhuangjun; Li, Tianyou [Harbin Engineering University, Harbin (China). Key Laboratory of Superlight Materials and Surface Technology; Qiao, Wenming [Harbin Engineering University, Harbin (China). Coll. of Material Science and Chemical Engineering; Zhang, Lijun; Zhao, Qiankun [College of Automation, Harbin Engineering University, Harbin (China)

    2010-10-15

    Activated carbon derived from rod-shaped polyaniline (the diameter of 170 nm) was synthesized by carbonization and subsequent activation with KOH. The obtained activated carbon exhibits a high specific capacitance (455 F g{sup -1}) and remarkable rate capability due to its high specific surface area (1976 m{sup 2}g{sup -1}), narrow pore size distribution (< 3 nm) as well as short diffusion length. It is indicated that the promising synthetic method used in this work can pave the way for designing new carbon based materials from different polymers for high-performance energy applications. (author)

  16. Vertically aligned multiwalled carbon nanotubes as electronic interconnects

    Science.gov (United States)

    Gopee, Vimal Chandra

    The drive for miniaturisation of electronic circuits provides new materials challenges for the electronics industry. Indeed, the continued downscaling of transistor dimensions, described by Moore’s Law, has led to a race to find suitable replacements for current interconnect materials to replace copper. Carbon nanotubes have been studied as a suitable replacement for copper due to its superior electrical, thermal and mechanical properties. One of the advantages of using carbon nanotubes is their high current carrying capacity which has been demonstrated to be three orders of magnitude greater than that of copper. Most approaches in the implementation of carbon nanotubes have so far focused on the growth in vias which limits their application. In this work, a process is described for the transfer of carbon nanotubes to substrates allowing their use for more varied applications. Arrays of vertically aligned multiwalled carbon nanotubes were synthesised by photo-thermal chemical vapour deposition with high growth rates. Raman spectroscopy was used to show that the synthesised carbon nanotubes were of high quality. The carbon nanotubes were exposed to an oxygen plasma and the nature of the functional groups present was determined using X-ray photoelectron spectroscopy. Functional groups, such as carboxyl, carbonyl and hydroxyl groups, were found to be present on the surface of the multiwalled carbon nanotubes after the functionalisation process. The multiwalled carbon nanotubes were metallised after the functionalisation process using magnetron sputtering. Two materials, solder and sintered silver, were chosen to bind carbon nanotubes to substrates so as to enable their transfer and also to make electrical contact. The wettability of solder to carbon nanotubes was investigated and it was demonstrated that both functionalisation and metallisation were required in order for solder to bond with the carbon nanotubes. Similarly, functionalisation followed by metallisation

  17. Effective Adsorption/Reduction of Cr(VI) Oxyanion by Halloysite@Polyaniline Hybrid Nanotubes.

    Science.gov (United States)

    Zhou, Tianzhu; Li, Cuiping; Jin, Huiling; Lian, Yangyang; Han, Wenmei

    2017-02-22

    Halloysite@polyaniline (HA@PANI) hybrid nanotubes are synthesized by the in situ chemical polymerization of aniline on halloysite clay nanotubes. By facilely tuning the dopant acid, pH, and apparent weight proportion for aniline (ANI) and halloysite (HA) nanotubes in the synthesis process, PANI with tuned oxidation state, doping extent, and content are in situ growing on halloysite nanotubes. The reaction system's acidity is tuned by dopant acid, such as HCl, H 2 SO 4 , HNO 3 , and H 3 PO 4 . The adsorption result shows the fabricated HA@PANI hybrid nanotubes can effectively adsorb Cr(VI) oxyanion and the adsorption ability changes according to the dopant acid, pH, and apparent weight proportion for ANI and HA in the synthesis process. Among them, the HA@PANI fabricated with HCl as dopant acid tuning the pH at 0.5 and 204% apparent weight proportion for ANI and HA (HP/0.5/204%-HCl) shows the highest adsorption capacity. The adsorption capacity is in accordance well with the doping extent of PANI in HA@PANI. Furthermore, when HP/0.5/204%-HCl is redoped with HNO 3 , H 2 SO 4 , and H 3 PO 4 , the adsorption capacity declines, implying the dopant acid in the process of redoping exhibits a marked effect on Cr(VI) oxyanion adsorption for the HA@PANI hybrid nanotubes. HP/0.5/204%-HCl and HP/0.5/204%-H 3 PO 4 have demonstrated good regenerability with an above 80% removal ratio after four cycles. Moreover, the HA@PANI adsorbent has better sedimentation ability than that of pure PANI. The adsorption behavior is in good agreement with Langmuir and pseudo second-order equations, indicating the adsorption of HA@PANI for Cr(VI) oxyanion is chemical adsorption. FT-IR and XPS of HA@PANI after Cr(VI) oxyanion adsorption indicate that the doped amine/imine groups (-NH + /═N + - groups) are the main adsorption sites for the removal of Cr(VI) oxyanion by electrostatic adsorption and reduction of the adsorbed Cr (VI) oxyanion to Cr(III) simultaneously.

  18. Vertically aligned carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi; Zhao, Chao; Wang, Qingxiao; Zhang, Qiang; Wang, Zhihong; Zhang, Xixiang; Abutaha, Anas I.; Alshareef, Husam N.

    2012-01-01

    Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been developed using pure semiconducting carbon nanotubes. The source and drain were vertically stacked, separated by a dielectric, and the carbon nanotubes were placed

  19. A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors

    Directory of Open Access Journals (Sweden)

    Waris Obitayo

    2012-01-01

    Full Text Available The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.

  20. Structural properties of water around uncharged and charged carbon nanotubes

    International Nuclear Information System (INIS)

    Dezfoli, Amir Reza Ansari; Mehrabian, Mozaffar Ali; Rafsanjani, Hassan Hashemipour

    2013-01-01

    Studying the structural properties of water molecules around the carbon nanotubes is very important in a wide variety of carbon nanotubes applications. We studied the number of hydrogen bonds, oxygen and hydrogen density distributions, and water orientation around carbon nanotubes. The water density distribution for all carbon nanotubes was observed to have the same feature. In water-carbon nanotubes interface, a high-density region of water molecules exists around carbon nanotubes. The results reveal that the water orientation around carbon nanotubes is roughly dependent on carbon nanotubes surface charge. The water molecules in close distances to carbon nanotubes were found to make an HOH plane nearly perpendicular to the water-carbon nanotubes interface for carbon nanotubes with negative surface charge. For uncharged carbon nanotubes and carbon nanotubes with positive surface charge, the HOH plane was in tangential orientation with water-carbon nanotubes interface. There was also a significant reduction in hydrogen bond of water region around carbon nanotubes as compared with hydrogen bond in bulk water. This reduction was very obvious for carbon nanotubes with positive surface charge. In addition, the calculation of dynamic properties of water molecules in water-CNT interface revealed that there is a direct relation between the number of Hbonds and self-diffusion coefficient of water molecules

  1. Low-frequency plasmons in metallic carbon nanotubes

    International Nuclear Information System (INIS)

    Lin, M.F.; Chuu, D.S.; Shung, K.W.

    1997-01-01

    A metallic carbon nanotube could exhibit a low-frequency plasmon, while a semiconducting carbon nanotube or a graphite layer could not. This plasmon is due to the free carriers in the linear subbands intersecting at the Fermi level. The low-frequency plasmon, which corresponds to the vanishing transferred angular momentum, belongs to an acoustic plasmon. For a smaller metallic nanotube, it could exist at larger transferred momenta, and its frequency is higher. Such a plasmon behaves as that in a one-dimensional electron gas (EGS). However, it is very different from the π plasmons in all carbon nanotubes. Intertube Coulomb interactions in a metallic multishell nanotube and a metallic nanotube bundle have been included. They have a strong effect on the low-frequency plasmon. The intertube coupling among coaxial nanotubes markedly modifies the acoustic plasmons in separate metallic nanotubes. When metallic carbon nanotubes are packed in the bundle form, the low-frequency plasmon would change into an optical plasmon, and behave like that in a three-dimensional EGS. Experimental measurements could be used to distinguish metallic and semiconducting carbon nanotubes. copyright 1997 The American Physical Society

  2. Conformational changes of fibrinogen in dispersed carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Park SJ

    2012-08-01

    Full Text Available Sung Jean Park,1 Dongwoo Khang21College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, South Korea; 2School of Nano and Advanced Materials Science Engineering and Center for PRC and RIGET, Gyeongsang National University, Jinju, South KoreaAbstract: The conformational changes of plasma protein structures in response to carbon nanotubes are critical for determining the nanotoxicity and blood coagulation effects of carbon nanotubes. In this study, we identified that the functional intensity of carboxyl groups on carbon nanotubes, which correspond to the water dispersity or hydrophilicity of carbon nanotubes, can induce conformational changes in the fibrinogen domains. Also, elevation of carbon nanotube density can alter the secondary structures (ie, helices and beta sheets of fibrinogen. Furthermore, fibrinogen that had been in contact with the nanoparticle material demonstrated a different pattern of heat denaturation compared with free fibrinogen as a result of a variation in hydrophilicity and concentration of carbon nanotubes. Considering the importance of interactions between carbon nanotubes and plasma proteins in the drug delivery system, this study elucidated the correlation between nanoscale physiochemical material properties of carbon nanotubes and associated structural changes in fibrinogen.Keywords: carbon nanotubes, fibrinogen, nanotoxicity, conformational change, denaturation

  3. Preparation, electrochemical characterization and charge-discharge of reticulated vitreous carbon/polyaniline composite electrodes

    International Nuclear Information System (INIS)

    Dalmolin, Carla; Biaggio, Sonia R.; Rocha-Filho, Romeu C.; Bocchi, Nerilso

    2009-01-01

    Polyaniline was electrodeposited onto reticulated vitreous carbon - RVC - in order to obtain a tridimensional composite electrode. Three variations of these electrodes were analysed: a small-anion-doped polyaniline (RVC/Pani), a polyanion-doped polyaniline (RVC/PaniPSS) and a bi-layer type formed by an inner layer of the first electrode and an outer layer of the second one (RVC/Pani/PaniPSS). These composites were characterized by cyclic voltammetry, scanning electronic microscopy and electrochemical impedance spectroscopy. Photomicrographies, voltammetric profiles and impedance data pointed to different morphological and electrochemical characteristics for polyaniline doped with small or large anions, and a mixed behavior for the bi-layer electrodes. Charge-discharge tests for these tridimensional (3D) electrodes, employed as the cathode in lithium batteries, indicated better performance for the RVC/Pani electrode. These RVC composites presented higher specific capacities when compared with those obtained for Pani deposited onto bidimensional substrates.

  4. Thermal conductivity and thermal rectification in unzipped carbon nanotubes

    International Nuclear Information System (INIS)

    Ni Xiaoxi; Li Baowen; Zhang Gang

    2011-01-01

    We study the thermal transport in completely unzipped carbon nanotubes, which are called graphene nanoribbons, partially unzipped carbon nanotubes, which can be seen as carbon-nanotube-graphene-nanoribbon junctions, and carbon nanotubes by using molecular dynamics simulations. It is found that the thermal conductivity of a graphene nanoribbon is much less than that of its perfect carbon nanotube counterparts because of the localized phonon modes at the boundary. A partially unzipped carbon nanotube has the lowest thermal conductivity due to additional localized modes at the junction region. More strikingly, a significant thermal rectification effect is observed in both partially unzipped armchair and zigzag carbon nanotubes. Our results suggest that carbon-nanotube-graphene-nanoribbon junctions can be used in thermal energy control.

  5. Polyaniline-deposited porous carbon electrode for supercapacitor

    International Nuclear Information System (INIS)

    Chen, W.-C.; Wen, T.-C.; Teng, H.

    2003-01-01

    Electrodes for supercapacitors were fabricated by depositing polyaniline (PANI) on high surface area carbons. The chemical composition of the PANI-deposited carbon electrode was determined by X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical properties of electrodes. An equivalent circuit was proposed to successfully fit the EIS data, and the significant contribution of pseudocapacitance from PANI was thus identified. A comparative analysis on the electrochemical properties of bare-carbon electrodes was also conducted under similar conditions. The performance of the capacitors equipped with the resulting electrodes in 1 M H 2 SO 4 was evaluated by constant current charge-discharge cycling within a potential range from 0 to 0.6 V. The PANI-deposited electrode exhibits high specific capacitance of 180 F/g, in comparison with a value of 92 F/g for the bare-carbon electrode

  6. Carbon Micronymphaea: Graphene on Vertically Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Jong Won Choi

    2013-01-01

    Full Text Available This paper describes the morphology of carbon nanomaterials such as carbon nanotube (CNT, graphene, and their hybrid structure under various operating conditions during a one-step synthesis via plasma-enhanced chemical vapor deposition (PECVD. We focus on the synthetic aspects of carbon hybrid material composed of heteroepitaxially grown graphene on top of a vertical array of carbon nanotubes, called carbon micronymphaea. We characterize the structural features of this unique nanocomposite by uses of electron microscopy and micro-Raman spectroscopy. We observe carbon nanofibers, poorly aligned and well-aligned vertical arrays of CNT sequentially as the growth temperature increases, while we always discover the carbon hybrids, called carbon micronymphaea, at specific cooling rate of 15°C/s, which is optimal for the carbon precipitation from the Ni nanoparticles in this study. We expect one-pot synthesized graphene-on-nanotube hybrid structure poses great potential for applications that demand ultrahigh surface-to-volume ratios with intact graphitic nature and directional electronic and thermal transports.

  7. Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations

    Czech Academy of Sciences Publication Activity Database

    Deshpande, P. P.; Vathare, S. S.; Vagge, S. T.; Tomšík, Elena; Stejskal, Jaroslav

    2013-01-01

    Roč. 67, č. 8 (2013), s. 1072-1078 ISSN 0366-6352 R&D Projects: GA ČR GA202/09/1626 Institutional support: RVO:61389013 Keywords : corrosion * polyaniline * conducting polymer Subject RIV: JI - Composite Materials Impact factor: 1.193, year: 2013

  8. Review on properties, dispersion and toxicology of carbon nanotubes

    International Nuclear Information System (INIS)

    Saeed, K.

    2010-01-01

    Carbon nanotubes (CNTs) have the most intensely studied nano structures because of their unique properties. There are two types of carbon nanotubes CNTs, single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs), prepared by chemical-vapour deposition (CVD), plasma enhanced chemical-vapour deposition, thermal chemical vapour deposition, Vapour phase growth, Arc discharge and Lasser ablation. Both single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) possess high mechanical and electrical conductivity, ultra-light weight, high aspect ratio and have excellent chemical and thermal stabilities. They also possess semi- and metallic-conductive properties depending upon their chirality. This review focuses on progress toward functionalization (not only dispersed nano tube but also dramatically improve their solubility), preparation and purification, composites and the toxicity of the carbon nanotubes (CNTs). The functional groups attached to carbon nanotubes (CNTs) should react with polymers and improve the mechanical properties of the nano composites. Carbon nanotubes (CNTs) has significant application in pharmaceutical field such as drug delivery and nano medicine, but the available literature also suggests that carbon nanotubes (CNTs) may have unusual toxicity and have more adverse effects than the same mass of nano size carbon and quartz. (author)

  9. A pyrroloquinolinequinone-dependent glucose dehydrogenase (PQQ-GDH)-electrode with direct electron transfer based on polyaniline modified carbon nanotubes for biofuel cell application

    International Nuclear Information System (INIS)

    Schubart, Ivo W.; Göbel, Gero; Lisdat, Fred

    2012-01-01

    Graphical abstract: - Abstract: In this study we present a pyrroloquinolinequinone-dependent glucose dehydrogenase [(PQQ)-GDH] electrode with direct electron transfer between the enzyme and electrode. Soluble pyrroloquinolinequinone-dependent glucose dehydrogenase from Acinetobacter calcoaceticus is covalently bound to an electropolymerized polyaniline copolymer film on a multi-walled carbon nanotube (MWCNT)-modified gold electrode. The pulsed electropolymerization of 2-methoxyaniline-5-sulfonic acid (MASA) and m-aminobenzoic acid (ABA) is optimized with respect to the efficiency of the bioelectrocatalytic conversion of glucose. The glucose oxidation starts at −0.1 V vs. Ag/AgCl and current densities up to 500 μA/cm 2 at low potential of +0.1 V vs. Ag/AgCl can be achieved. The electrode shows a glucose sensitivity in the range from 0.1 mM to 5 mM at a potential of +0.1 V vs. Ag/Ag/Cl. The dynamic range is extended to 100 mM at +0.4 V vs. Ag/AgCl. The electron transfer mechanism is studied and buffer effects are investigated. The developed enzyme electrode is examined for bioenergetic application by assembling of a membrane-less biofuel cell. For the cathode a bilirubin oxidase (BOD) based MWCNT-modified gold electrode with direct electron transfer (DET) is used. The biofuel cell exhibits a cell potential of 680 ± 20 mV and a maximum power density of up to 65 μW/cm 2 at 350 mV vs. Ag/AgCl.

  10. Graphene-carbon nanotube hybrid materials and use as electrodes

    Science.gov (United States)

    Tour, James M.; Zhu, Yu; Li, Lei; Yan, Zheng; Lin, Jian

    2016-09-27

    Provided are methods of making graphene-carbon nanotube hybrid materials. Such methods generally include: (1) associating a graphene film with a substrate; (2) applying a catalyst and a carbon source to the graphene film; and (3) growing carbon nanotubes on the graphene film. The grown carbon nanotubes become covalently linked to the graphene film through carbon-carbon bonds that are located at one or more junctions between the carbon nanotubes and the graphene film. In addition, the grown carbon nanotubes are in ohmic contact with the graphene film through the carbon-carbon bonds at the one or more junctions. The one or more junctions may include seven-membered carbon rings. Also provided are the formed graphene-carbon nanotube hybrid materials.

  11. Oxidative stability of polyaniline

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Exnerová, Milena; Morávková, Zuzana; Trchová, Miroslava; Hromádková, Jiřina; Prokeš, J.

    2012-01-01

    Roč. 97, č. 6 (2012), s. 1026-1033 ISSN 0141-3910 R&D Projects: GA ČR GA202/09/1626; GA ČR GAP205/12/0911 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : polyaniline * nanotubes * oxidation stability Subject RIV: BK - Fluid Dynamics Impact factor: 2.770, year: 2012

  12. Ag-catalysed cutting of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    La Torre, A; Rance, G A; Miners, S A; Lucas, C Herreros; Smith, E F; Giménez-López, M C; Khlobystov, A N; Fay, M W; Brown, P D; Zoberbier, T; Kaiser, U

    2016-01-01

    In this work, the cutting of carbon nanotubes is investigated using silver nanoparticles deposited on arc discharge multi-walled carbon nanotubes. The composite is subsequently heated in air to fabricate shortened multi-walled nanotubes. Complementary transmission electron microscopy and spectroscopy techniques shed light on the cutting mechanism. The nanotube cutting is catalysed by the fundamental mechanism based on the coordination of the silver atoms to the π-bonds of carbon nanotubes. As a result of the metal coordination, the strength of the carbon–carbon bond is reduced, promoting the oxidation of carbon at lower temperature when heated in air, or lowering the activation energy required for the removal of carbon atoms by electron beam irradiation, assuring in both cases the cutting of the nanotubes. (paper)

  13. Process for derivatizing carbon nanotubes with diazonium species

    Science.gov (United States)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications and sensor devices. The methods of derivatization include electrochemical induced reactions thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes ##STR00001##.

  14. Nitrotyrosine adsorption on carbon nanotube: a density functional theory study

    Science.gov (United States)

    Majidi, R.; Karami, A. R.

    2014-05-01

    We have studied the effect of nitrotyrosine on electronic properties of different single-wall carbon nanotubes by density functional theory. Optimal adsorption configurations of nitrotyrosine adsorbed on carbon nanotube have been determined by calculation of adsorption energy. Adsorption energies indicate that nitrotyrosine is chemisorbed on carbon nanotubes. It is found that the nitrotyrosine adsorption modifies the electronic properties of the semiconducting carbon nanotubes significantly and these nanotubes become n-type semiconductors, while the effect of nitrotyrosine on metallic carbon nanotubes is not considerable and these nanotubes remain metallic. Results clarify sensitivity of carbon nanotubes to nitrotyrosine adsorption and suggest the possibility of using carbon nanotubes as biosensor for nitrotyrosine detection.

  15. Functionalization of carbon nanotubes with silver clusters

    International Nuclear Information System (INIS)

    Cveticanin, Jelena; Krkljes, Aleksandra; Kacarevic-Popovic, Zorica; Mitric, Miodrag; Rakocevic, Zlatko; Trpkov, Djordje; Neskovic, Olivera

    2010-01-01

    In this paper, an advanced method of one-step functionalization of single and multi walled carbon nanotubes (SWCNTs and MWCNTs) using γ-irradiation was described. Two synthesis procedures, related with different reduction species, were employed. For the first time, poly(vinyl alcohol) PVA is successfully utilized as a source to reduce silver (Ag) metal ions without having any additional reducing agents to obtain Ag nanoparticles on CNTs. The decoration of carbon nanotubes with Ag nanoparticles takes place through anchoring of (PVA) on nanotube's surface. Optical properties of as-prepared samples and mechanism responsible for the functionalization of carbon nanotubes were investigated using UV-vis and FTIR spectroscopy, respectively. Decorated carbon nanotubes were visualized using microscopic techniques: transmission electron microscopy and scanning tunneling microscopy. Also, the presence of Ag on the nanotubes was confirmed using energy dispersive X-ray spectroscopy. This simple and effective method of making a carbon nanotube type of composites is of interest not only for an application in various areas of technology and biology, but for investigation of the potential of radiation technology for nanoengineering of materials.

  16. Review of carbon nanotube nanoelectronics and macroelectronics

    International Nuclear Information System (INIS)

    Che, Yuchi; Chen, Haitian; Gui, Hui; Liu, Jia; Liu, Bilu; Zhou, Chongwu

    2014-01-01

    Carbon nanotubes have the potential to spur future development in electronics due to their unequalled electrical properties. In this article, we present a review on carbon nanotube-based circuits in terms of their electrical performance in two major directions: nanoelectronics and macroelectronics. In the nanoelectronics direction, we direct our discussion to the performance of aligned carbon nanotubes for digital circuits and circuits designed for radio-frequency applications. In the macroelectronics direction, we focus our attention on the performance of thin films of carbon nanotube random networks in digital circuits, display applications, and printed electronics. In the last part, we discuss the existing challenges and future directions of nanotube-based nano- and microelectronics. (invited review)

  17. Carbon nanotubes significance in Darcy-Forchheimer flow

    Science.gov (United States)

    Hayat, Tasawar; Rafique, Kiran; Muhammad, Taseer; Alsaedi, Ahmed; Ayub, Muhammad

    2018-03-01

    The present article examines Darcy-Forchheimer flow of water-based carbon nanotubes. Flow is induced due to a curved stretchable surface. Heat transfer mechanism is analyzed in presence of convective heating process. Xue model of nanofluid is employed to study the characteristics of both single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). Results for both single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are achieved and compared. Appropriate transformations correspond to strong nonlinear ordinary differential system. Optimal homotopy analysis method (OHAM) is used for the solution development of the resulting system. The contributions of different sundry variables on the velocity and temperature are studied. Further the skin friction coefficient and local Nusselt number are analyzed graphically for both SWCNTs and MWCNTs cases.

  18. Cohesive zone model of carbon nanotube-coated carbon fiber/polyester composites

    International Nuclear Information System (INIS)

    Agnihotri, Prabhat Kamal; Kar, Kamal K; Basu, Sumit

    2012-01-01

    It has been previously reported that the average properties of carbon nanotube-coated carbon fiber/polyester multiscale composites critically depend on the length and density of nanotubes on the fiber surface. In this paper the effect of nanotube length and density on the interfacial properties of the carbon nanotube-coated carbon fiber–polymer interface has been studied using shear lag and a cohesive zone model. The latter model incorporates frictional sliding after complete debonding between the fiber and matrix and has been developed to quantify the effect of nanotube coating on various interfacial characterizing parameters. Our numerical results indicate that fibers with an optimal coverage and length of nanotubes significantly increase the interfacial strength and friction between the fiber and polymer. However, they also embrittle the interface compared with bare fibers. (paper)

  19. Carbon nanotube based stationary phases for microchip chromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kutter, Jörg Peter

    2012-01-01

    already been demonstrated in more classical formats, for improved separation performance in gas and liquid chromatography, and for unique applications in solid phase extraction. Carbon nanotubes are now also entering the field of microfluidics, where there is a large potential to be able to provide......The objective of this article is to provide an overview and critical evaluation of the use of carbon nanotubes and related carbon-based nanomaterials for microchip chromatography. The unique properties of carbon nanotubes, such as a very high surface area and intriguing adsorptive behaviour, have...... integrated, tailor-made nanotube columns by means of catalytic growth of the nanotubes inside the fluidic channels. An evaluation of the different implementations of carbon nanotubes and related carbon-based nanomaterials for microfluidic chromatography devices is given in terms of separation performance...

  20. Template-free electrochemical nanofabrication of polyaniline nanobrush and hybrid polyaniline with carbon nanohorns for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wei Di; Andrew, Piers; Ryhaenen, Tapani [Nokia Research Centre Cambridge, Broers Building, 21 J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Wang, Haolan; Hiralal, Pritesh; Amaratunga, Gehan A J [Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Hayashi, Yasuhiko, E-mail: di.wei@nokia.com, E-mail: gaja1@cam.ac.uk [Department of Materials Science, Nagoya Institute of Technology, Nagoya 466-8555 (Japan)

    2010-10-29

    Polyaniline (PANI) nanobrushes were synthesized by template-free electrochemical galvanostatic methods. When the same method was applied to the carbon nanohorn (CNH) solution containing aniline monomers, a hybrid nanostructure containing PANI and CNHs was enabled after electropolymerization. This is the first report on the template-free method to make PANI nanobrushes and homogeneous hybrid soft matter (PANI) with carbon nanoparticles. Raman spectroscopy was used to analyze the interaction between CNH and PANI. Electrochemical nanofabrication offers simplicity and good control when used to make electronic devices. Both of these materials were applied in supercapacitors and an improvement capacitive current by using the hybrid material was observed.

  1. Template-free electrochemical nanofabrication of polyaniline nanobrush and hybrid polyaniline with carbon nanohorns for supercapacitors

    Science.gov (United States)

    Wei, Di; Wang, Haolan; Hiralal, Pritesh; Andrew, Piers; Ryhänen, Tapani; Hayashi, Yasuhiko; Amaratunga, Gehan A. J.

    2010-10-01

    Polyaniline (PANI) nanobrushes were synthesized by template-free electrochemical galvanostatic methods. When the same method was applied to the carbon nanohorn (CNH) solution containing aniline monomers, a hybrid nanostructure containing PANI and CNHs was enabled after electropolymerization. This is the first report on the template-free method to make PANI nanobrushes and homogeneous hybrid soft matter (PANI) with carbon nanoparticles. Raman spectroscopy was used to analyze the interaction between CNH and PANI. Electrochemical nanofabrication offers simplicity and good control when used to make electronic devices. Both of these materials were applied in supercapacitors and an improvement capacitive current by using the hybrid material was observed.

  2. Synthesis of carbon nanotubes and nanotube forests on copper catalyst

    International Nuclear Information System (INIS)

    Kruszka, Bartosz; Terzyk, Artur P; Wiśniewski, Marek; Gauden, Piotr A; Szybowicz, Mirosław

    2014-01-01

    The growth of carbon nanotubes on bulk copper is studied. We show for the first time, that super growth chemical vapor deposition method can be successfully applied for preparation of nanotubes on copper catalyst, and the presence of hydrogen is necessary. Next, different methods of copper surface activation are studied, to improve catalyst efficiency. Among them, applied for the first time for copper catalyst in nanotubes synthesis, sulfuric acid activation is the most promising. Among tested samples the surface modified for 10 min is the most active, causing the growth of vertically aligned carbon nanotube forests. Obtained results have potential importance in application of nanotubes and copper in electronic chips and nanodevices. (paper)

  3. 160 MeV Ni{sup 12+} ion irradiation effects on the dielectric properties of polyaniline nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, J.; Nath, Chandrani [Materials Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam (India); Kumar, A., E-mail: ask@tezu.ernet.in [Materials Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam (India)

    2012-10-01

    We report on the dielectric properties and a.c. conductivity studies of CSA doped polyaniline nanotubes. Nanotubes of 47-100 nm diameter, were synthesized by the self-assembly method and irradiated using Ni{sup 12+} ions of 160 MeV energy with fluences of 1 Multiplication-Sign 10{sup 10}, 5 Multiplication-Sign 10{sup 10}, 1 Multiplication-Sign 10{sup 11} and 3 Multiplication-Sign 10{sup 11} ions/cm{sup 2}. X-ray diffraction studies reveal an increase in the degree of crystallinity and consequently, the extent of order of the nanotubes with increasing fluence, but show a lower degree of crystallinity at higher fluence. The decrease in d-spacing for the (100) reflections with fluence is ascribed to the decrease in the tilt angle of the aligned polymer chains. A significant change was seen after irradiation in dielectric and electrical properties which may be correlated with the increased carrier concentration and structural modifications in the polymer films. The surface conductivity of films increases with increasing fluence, which also decreases at higher fluence. The a.c. conduction mechanism for the nanotubes could be explained in terms of correlated barrier hopping model. The existence of polarons as the major charge carriers in the present nanotube system was confirmed by the low values of polaron binding energy, found to decrease with fluence. The hopping distance increases with fluence indicating that the hopping probability increases with fluence.

  4. Chemical reactions confined within carbon nanotubes.

    Science.gov (United States)

    Miners, Scott A; Rance, Graham A; Khlobystov, Andrei N

    2016-08-22

    In this critical review, we survey the wide range of chemical reactions that have been confined within carbon nanotubes, particularly emphasising how the pairwise interactions between the catalysts, reactants, transition states and products of a particular molecular transformation with the host nanotube can be used to control the yields and distributions of products of chemical reactions. We demonstrate that nanoscale confinement within carbon nanotubes enables the control of catalyst activity, morphology and stability, influences the local concentration of reactants and products thus affecting equilibria, rates and selectivity, pre-arranges the reactants for desired reactions and alters the relative stability of isomeric products. We critically evaluate the relative advantages and disadvantages of the confinement of chemical reactions inside carbon nanotubes from a chemical perspective and describe how further developments in the controlled synthesis of carbon nanotubes and the incorporation of multifunctionality are essential for the development of this ever-expanding field, ultimately leading to the effective control of the pathways of chemical reactions through the rational design of multi-functional carbon nanoreactors.

  5. Facile fabrication of self-assembled polyaniline nanotubes doped with D-tartaric acid for high-performance supercapacitors

    Science.gov (United States)

    Mu, Jingjing; Ma, Guofu; Peng, Hui; Li, Jiajia; Sun, Kanjun; Lei, Ziqiang

    2013-11-01

    Polyaniline (PANI) nanotubes with outstanding electrochemical properties have been successfully synthesized via a simple chemical template-free method in the presence of D-tartaric acid (D-TA) as the dopant, and ammonium persulfate ((NH4)2S2O8) as the oxidant. The morphologies and structures of PANI-(D-TA) with different [D-TA]/[aniline] molar ratios are characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) and X-ray diffraction (XRD). To assess the electrochemical properties of PANI-(D-TA) materials, cyclic voltammetry (CV) and galvanostatic charging-discharging measurements are performed. The PANI-(D-TA) nanotubes electrode, with [D-TA]/[aniline] molar ratio of 1:1, exhibits larger specific capacitance (as high as 625 F g-1 at 1 A g-1) and higher capacitance retention (77% of its initial capacitance after 500 cycles) in 1 M H2SO4 aqueous solution. The remarkable electrochemical characteristics of PANI-(D-TA) are mainly attributed to their unique nanotubular structures, which provide a high electrode/electrolyte contact area and short ions diffusion path. These novel PANI-(D-TA) nanotubes will be promising electrode materials for high-performance supercapacitors.

  6. Synthesis and Characterization Carbon Nanotubes Doped Carbon Aerogels

    Science.gov (United States)

    Xu, Yuelong; Yan, Meifang; Liu, Zhenfa

    2017-12-01

    Polycondensation of phloroglucinol, resorcinol and formaldehyde with carbon nanotube (CNT) as the additives, using sodium carbonate as the catalyst, leads to the formation of CNT - doped carbon aerogels. The structure of carbon aerogels (CAs) with carbon nanotubes (CNTs) were characterized by X-ray diffraction and scanning electron microscopy. The specific surface area, pore size distribution and pore volume were measured by surface area analyzer. The results show that when the optimum doping dosage is 5%, the specific surface area of CNT - doped carbon aerogel is up to 665 m2 g-1 and exhibit plentiful mesoporous.

  7. Dielectrophoretic assembly of carbon nanotube devices

    DEFF Research Database (Denmark)

    Dimaki, Maria

    The purpose of this project has been to assemble single-walled carbon nanotubes on electrodes at the tip of a biocompatible cantilever and use these for chemical species sensing in air and liquid, for example in order to measure the local activity from ion channels in the cell membrane....... The electrical resistance of carbon nanotubes has been shown to be extremely sensitive to gas molecules. Dielectrophoresis is a method capable of quickly attracting nanotubes on microelectrodes by using an electric field, thus enabling nanotube integration in microsystems. Dielectrophoresis offers also....... A model for the dielectrophoretic assembly of carbon nanotubes on microelectrodes was developed and several simulations were conducted using values from the available literature for the various key parameters. The model can give qualitative results regarding the parameters dominating the dielectrophoretic...

  8. Probing Photosensitization by Functionalized Carbon Nanotubes

    Science.gov (United States)

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  9. Dispersions of Carbon nanotubes in Polymer Matrices

    Science.gov (United States)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2010-01-01

    Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.

  10. Synthesis of carbon nanotubes bridging metal electrodes

    International Nuclear Information System (INIS)

    Kotlar, M.; Vojs, M.; Marton, M.; Vesel, M.; Redhammer, R.

    2012-01-01

    In our work we demonstrate growth of carbon nanotubes that can conductively bridge the metal electrodes. The role of different catalysts was examined. Interdigitated metal electrodes are made from copper and we are using bimetal Al/Ni as catalyst for growth of carbon nanotubes. We are using this catalyst composition for growth of the single-walled carbon nanotube network. (authors)

  11. Catalytic growth of carbon nanotubes with large inner diameters

    Directory of Open Access Journals (Sweden)

    WEI REN ZHONG

    2005-02-01

    Full Text Available Carbon nanotubes (2.4 g/g catalyst, with large inner diameters were successfully synthesized through pyrolysis of methane on a Ni–Cu–Al catalyst by adding sodium carbonate into the carbon nanotubes growth system. The inner diameter of the carbon nanotubes prepared by this method is about 20–60 nm, while their outer diameter is about 40–80 nm. Transmission electron microscopy and X-ray diffraction were employed to investigate the morphology and microstructures of the carbon nanotubes. The analyses showed that these carbon nanotubes have large inner diameters and good graphitization. The addition of sodium carbonate into the reaction system brings about a slight decrease in the methane conversion and the yield of carbon. The experimental results showed that sodium carbonate is a mildly toxic material which influenced the catalytic activity of the Ni–Cu–Al catalyst and resulted in the formation of carbon nanotubes with large inner diameters. The growth mechanism of the carbon nanotubes with large inner diameters is discussed in this paper.

  12. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.

    2008-01-01

    an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From......In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  13. Carbon nanotube: the inside story.

    Science.gov (United States)

    Ando, Yoshinori

    2010-06-01

    Carbon nanotubes (CNTs) were serendipitously discovered as a byproduct of fullerenes by direct current (DC) arc discharge; and today this is the most-wanted material in the nanotechnology research. In this brief review, I begin with the history of the discovery of CNTs and focus on CNTs produced by arc discharge in hydrogen atmosphere, which is little explored outside my laboratory. DC arc discharge evaporation of pure graphite rod in pure hydrogen gas results in multi-walled carbon nanotubes (MWCNTs) of high crystallinity in the cathode deposit. As-grown MWCNTs have very narrow inner diameter. Raman spectra of these MWCNTs show high-intensity G-band, unusual high-frequency radial breathing mode at 570 cm(-1), and a new characteristic peak near 1850 cm(-1). Exciting carbon nanowires (CNWs), consisting of a linear carbon chain in the center of MWCNTs are also produced. Arc evaporation of graphite rod containing metal catalysts results in single-wall carbon nanotubes (SWCNTs) in the whole chamber like macroscopic webs. Two kinds of arc method have been developed to produce SWCNTs: Arc plasma jet (APJ) and Ferrum-Hydrogen (FH) arc methods. Some new purification methods for as-produced SWCNTs are reviewed. Finally, double-walled carbon nanotubes (DWCNTs) are also described.

  14. Selective Functionalization of Carbon Nanotubes: Part II

    Science.gov (United States)

    Meyyappan, Meyya; Khare, Bishun

    2010-01-01

    An alternative method of low-temperature plasma functionalization of carbon nanotubes provides for the simultaneous attachment of molecular groups of multiple (typically two or three) different species or different mixtures of species to carbon nanotubes at different locations within the same apparatus. This method is based on similar principles, and involves the use of mostly the same basic apparatus, as those of the methods described in "Low-Temperature Plasma Functionalization of Carbon Nanotubes" (ARC-14661-1), NASA Tech Briefs, Vol. 28, No. 5 (May 2004), page 45. The figure schematically depicts the basic apparatus used in the aforementioned method, with emphasis on features that distinguish the present alternative method from the other. In this method, one exploits the fact that the composition of the deposition plasma changes as the plasma flows from its source in the precursor chamber toward the nanotubes in the target chamber. As a result, carbon nanotubes mounted in the target chamber at different flow distances (d1, d2, d3 . . .) from the precursor chamber become functionalized with different species or different mixtures of species. In one series of experiments to demonstrate this method, N2 was used as the precursor gas. After the functionalization process, the carbon nanotubes from three different positions in the target chamber were examined by Fourier-transform infrared spectroscopy to identify the molecular groups that had become attached. On carbon nanotubes from d1 = 1 cm, the attached molecular groups were found to be predominantly C-N and C=N. On carbon nanotubes from d2 = 2.5 cm, the attached molecular groups were found to be predominantly C-(NH)2 and/or C=NH2. (The H2 was believed to originate as residual hydrogen present in the nanotubes.) On carbon nanotubes from d3 = 7 cm no functionalization could be detected - perhaps, it was conjectured, because this distance is downstream of the plasma source, all of the free ions and free radicals of

  15. Geckolike high shear strength by carbon nanotube fiber adhesives

    Science.gov (United States)

    Maeno, Y.; Nakayama, Y.

    2009-01-01

    Carbon nanotube adhesives can adhere strongly to surfaces as a gecko does. The number of carbon nanotube layers is an important determinant of the contact area for adhesion. Balancing the catalyst ratio and buffer layer used for chemical vapor deposition processing controls the number of carbon nanotube layers and their distribution. The features of carbon nanotubes determine the shear strength of adhesion. Carbon nanotubes with a broad distribution of layers exhibit enhanced shear strength with equivalent adhesive capability to that of a natural Tokay Gecko (Gekko gecko)

  16. Carbon nanotubes and methods of making carbon nanotubes

    KAUST Repository

    Basset, Jean-Marie; Zhou, Lu; Saih, Youssef

    2017-01-01

    Embodiments of the present disclosure provide for methods that can be used to produce carbon nanotubes (hereinafter CNT) having an inner diameter about 5-55 nm, methods of tuning the inner diameter of CNTs (e.g., by adjusting reaction pressure

  17. Methods for producing reinforced carbon nanotubes

    Science.gov (United States)

    Ren, Zhifen [Newton, MA; Wen, Jian Guo [Newton, MA; Lao, Jing Y [Chestnut Hill, MA; Li, Wenzhi [Brookline, MA

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  18. Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors

    International Nuclear Information System (INIS)

    Liu, Huan; Xu, Bin; Jia, Mengqiu; Zhang, Mei; Cao, Bin; Zhao, Xiaonan; Wang, Yu

    2015-01-01

    Highlights: • The composites of polyaniline nanofiber and large mesoporous carbon were prepared for supercapacitors. • The large mesoporous carbons were simply prepared by nano-CaCO 3 template method. • The composites exhibit high capacitance and good rate capability and cycle stability. - Abstract: A composite of polyaniline nanofiber/large mesoporous carbon (PANI-F/LMC) hybrid was prepared by an in situ chemical oxidative polymerization of aniline monomer with nano-CaCO 3 templated LMC as host matrix for supercapacitors. The morphology, composition and electronic structure of the composites (PANI-F/LMC) together with pure PANI nanofibers and the LMC were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the PANI nanofibers were incorporated into the large mesochannels of LMC with interpenetrating framework formed. Such unique structure endows the PANI-F/LMC composite with a high capacitance of 473 F g −1 at a current load of 0.1 A g −1 with good rate performance and cycling stability, suggesting its potential application in the electrode material for supercapacitors

  19. Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huan; Xu, Bin; Jia, Mengqiu, E-mail: jiamq@mail.buct.edu.cn; Zhang, Mei; Cao, Bin; Zhao, Xiaonan; Wang, Yu

    2015-03-30

    Highlights: • The composites of polyaniline nanofiber and large mesoporous carbon were prepared for supercapacitors. • The large mesoporous carbons were simply prepared by nano-CaCO{sub 3} template method. • The composites exhibit high capacitance and good rate capability and cycle stability. - Abstract: A composite of polyaniline nanofiber/large mesoporous carbon (PANI-F/LMC) hybrid was prepared by an in situ chemical oxidative polymerization of aniline monomer with nano-CaCO{sub 3} templated LMC as host matrix for supercapacitors. The morphology, composition and electronic structure of the composites (PANI-F/LMC) together with pure PANI nanofibers and the LMC were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the PANI nanofibers were incorporated into the large mesochannels of LMC with interpenetrating framework formed. Such unique structure endows the PANI-F/LMC composite with a high capacitance of 473 F g{sup −1} at a current load of 0.1 A g{sup −1} with good rate performance and cycling stability, suggesting its potential application in the electrode material for supercapacitors.

  20. Controlled synthesis of 2D Au nanostructure assembly with the assistance of sulfonated polyaniline nanotubes

    International Nuclear Information System (INIS)

    Yuan Junhua; Wang Zhijuan; Zhang Qixian; Han, Dongxue; Zhang Yuanjian; Shen Yanfei; Niu Li

    2006-01-01

    A wet chemical approach is used successfully to produce nanostructured Au material by the reduction of sulfonated polyaniline (SPANI) nanotubes. The Au nanostructures obtained are composed of single crystal Au nanoplates, which are aggregated layer-by-layer into stacks or edge-on-face into clusters at various conditions. The Au nanoplate diameter and thickness can be conveniently controlled in the range of 100 nm to 2 μm and 10 to 30 nm, respectively, with no accompanying single Au nanoparticles being observed. The formation of the Au nanostructures was controlled by the degradation of SPANI. The gradually and slowly released segments of SPANI served as the reductant during the growth of the 2D Au nanostructures

  1. Lithium storage properties of multiwall carbon nanotubes prepared by CVD

    International Nuclear Information System (INIS)

    Ahn, J.-O.; Andong National University,; Wang, G.X.; Liu, H.K.; Dou, S.X.

    2003-01-01

    Full text: Multiwall carbon nanotubes (MWCNTs) were synthesised by chemical vapour deposition (CVD) method using acetylene gas. The XRD pattern of as prepared carbon nanotubes showed that the d 002 value is 3.44 Angstroms. The morphology and microstructure of carbon nanotubes were characterized by HRTEM. Most of carbon nanotubes are entangled together to form bundles or ropes. The diameter of the carbon nanotubes is in the range of 10 ∼ 20 nm. There is a small amount of amorphous carbon particles presented in the sample. However, the yield of carbon nanotubes is more than 95%. Electrochemical properties of carbon nanotubes were characterised via a variety of electrochemical testing techniques. The result of CV test showed that the Li insertion potential is quite low, which is very close to O V versus Li + /Li reference electrode, whereas the potential for Li de-intercalation is in the range of 0.2-0.4 V. There exists a slight voltage hysteresis between Li intercalation and Li de-intercalation, which is similar to the other carbonaceous materials. The intensity of redox peaks of carbon nanotubes decrease with scanning cycle, indicating that the reversible Li insertion capacity gradually decreases. The carbon nanotubes electrode demonstrated a reversible lithium storage capacity of 340 mAh/g with good cyclability at moderate current density. Further improvement of Li storage capacity is possible by opening the end of carbon nanotubes to allow lithium insertion into inner graphene sheet of carbon nanotubes. The kinetic properties of lithium insertion in carbon nanotube electrodes were characterised by a.c. impedance measurements. It was found that the lithium diffusion coefficient d Li decreases with an increase of Li ion concentration in carbon nanotube host

  2. Carbon Nanotube-Based Synthetic Gecko Tapes

    Science.gov (United States)

    Dhinojwala, Ali

    2008-03-01

    Wall-climbing geckos have unique ability to attach to different surfaces without the use of any viscoelastic glues. On coming in contact with any surface, the micron-size gecko foot-hairs deform, enabling molecular contact over large areas, thus translating weak van der Waals (vdW) interactions into enormous shear forces. We will present our recent results on the development of synthetic gecko tape using aligned carbon nanotubes to mimic the keratin hairs found on gecko feet. The patterned carbon nanotube-based gecko tape can support a shear stress (36 N/cm^2) nearly four times higher than the gecko foot and sticks to a variety of surfaces, including Teflon. Both the micron-size setae (replicated by nanotube bundles) and nanometer-size spatulas (individual nanotubes) are necessary to achieve macroscopic shear adhesion and to translate the weak vdW interactions into high shear forces. The carbon nanotube based tape offers an excellent synthetic option as a dry conductive reversible adhesive in microelectronics, robotics and space applications. The mechanism behind these large shear forces and self-cleaning properties of these carbon nanotube based synthetic gecko tapes will be discussed. This work was performed in collaboration with graduate students Liehui Ge, and Sunny Sethi, and collaborators from RPI; Lijie Ci and Professor Pulickel Ajayan.

  3. Polymerization initated at sidewalls of carbon nanotubes

    Science.gov (United States)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  4. Thermodynamics on Soluble Carbon Nanotubes: How Do DNA Molecules Replace Surfactants on Carbon Nanotubes?

    Science.gov (United States)

    Kato, Yuichi; Inoue, Ayaka; Niidome, Yasuro; Nakashima, Naotoshi

    2012-01-01

    Here we represent thermodynamics on soluble carbon nanotubes that enables deep understanding the interactions between single-walled carbon nanotubes (SWNTs) and molecules. We selected sodium cholate and single-stranded cytosine oligo-DNAs (dCn (n = 4, 5, 6, 7, 8, 10, 15, and 20)), both of which are typical SWNT solubilizers, and successfully determined thermodynamic properties (ΔG, ΔH and ΔS values) for the exchange reactions of sodium cholate on four different chiralities of SWNTs ((n,m) = (6,5), (7,5), (10,2), and (8,6)) for the DNAs. Typical results contain i) the dC5 exhibited an exothermic exchange, whereas the dC6, 8, 10, 15, and 20 materials exhibited endothermic exchanges, and ii) the energetics of the dC4 and dC7 exchanges depended on the associated chiral indices and could be endothermic or exothermic. The presented method is general and is applicable to any molecule that interacts with nanotubes. The study opens a way for science of carbon nanotube thermodynamics. PMID:23066502

  5. Thermal Dissipation Efficiency in a Micro-Processor Using Carbon Nanotubes Based Composite

    Science.gov (United States)

    Thang, Bui Hung; Van Quang, Cao; Nghia, Van Trong; Hong, Phan Ngoc; Van Chuc, Nguyen; Tam, Ngo Thi Thanh; Quang, Le Dinh; Khang, Dao Duc; Khoi, Phan Hong; Minh, Phan Ngoc

    2009-09-01

    Modern electronic and optoelectronic devices such as μ-processor, light emitting diode, semiconductor laser issued a challenge in the thermal dissipation problem. Finding an effective way for thermal dissipation therefore becomes a very important issue. It is known that carbon nanotubes (CNTs) is one of the most valuable materials with high thermal conductivity (2000 W/m.K compared to thermal conductivity of Ag 419 W/m.K). This suggested an approach in applying the CNTs as an essential component for thermal dissipation media to improve the performance of computer processor and other high power electronic devices. In this work multi walled carbon nanotubes (MWCNTs) based composites were utilized as the thermal dissipation media in a micro processor of a personal computer. The MWCNTs of different concentrations were added into polyaniline, commercial silicon thermal paste and commercial silver thermal paste by mechanical methods. A personal computer with configuration: Intel Pentium IV 3.066 GHz, 512 MB of RAM and Windows XP Service Pack 2 Operating System was employed. The thermal dissipation efficiency of the system was evaluated by directly measure the temperature of the μ-processor during the operation of the computer in different CPU speeds. The measured results showed that the CNTs based composite could reduce the temperature of the u-processor more than 5° C, and the time for increasing the temperature of the μ-processor was three times longer than that when using commercial thermal paste.

  6. Carbon Nanotube Templated Microfabrication of Porous Silicon-Carbon Materials

    Science.gov (United States)

    Song, Jun; Jensen, David; Dadson, Andrew; Vail, Michael; Linford, Matthew; Vanfleet, Richard; Davis, Robert

    2010-10-01

    Carbon nanotube templated microfabrication (CNT-M) of porous materials is demonstrated. Partial chemical infiltration of three dimensional carbon nanotube structures with silicon resulted in a mechanically robust material, precisely structured from the 10 nm scale to the 100 micron scale. Nanoscale dimensions are determined by the diameter and spacing of the resulting silicon/carbon nanotubes while the microscale dimensions are controlled by lithographic patterning of the CNT growth catalyst. We demonstrate the utility of this hierarchical structuring approach by using CNT-M to fabricate thin layer chromatography (TLC) separations media with precise microscale channels for fluid flow control and nanoscale porosity for high analyte capacity.

  7. Amorphous molecular junctions produced by ion irradiation on carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Zhenxia; Yu Liping; Zhang Wei; Ding Yinfeng; Li Yulan; Han Jiaguang; Zhu Zhiyuan; Xu Hongjie; He Guowei; Chen Yi; Hu Gang

    2004-01-01

    Experiments and molecular dynamics have demonstrated that electron irradiation could create molecular junctions between crossed single-wall carbon nanotubes. Recently molecular dynamics computation predicted that ion irradiation could also join single-walled carbon nanotubes. Employing carbon ion irradiation on multi-walled carbon nanotubes, we find that these nanotubes evolve into amorphous carbon nanowires, more importantly, during the process of which various molecular junctions of amorphous nanowires are formed by welding from crossed carbon nanotubes. It demonstrates that ion-beam irradiation could be an effective way not only for the welding of nanotubes but also for the formation of nanowire junctions

  8. Morphology-dependent enhancement of the pseudocapacitance of template-guided tunable polyaniline nanostructures

    KAUST Repository

    Chen, Wei

    2013-07-25

    Polyaniline is one of the most investigated conducting polymers as supercapacitor material for energy storage applications. The preparation of nanostructured polyaniline with well-controlled morphology is crucial to obtaining good supercapacitor performance. We present here a facile chemical process to produce polyaniline nanostructures with three different morphologies (i.e., nanofibers, nanospheres, and nanotubes) by utilizing the corresponding tunable morphology of MnO2 reactive templates. A growth mechanism is proposed to explain the evolution of polyaniline morphology based on the reactive templates. The morphology-induced improvement in the electrochemical performance of polyaniline pseudocapacitors is as large as 51% due to the much enhanced surface area and the porous nature of the template-guided polyaniline nanostructures. In addition, and for the first time, a redox-active electrolyte is applied to the polyaniline pseudocapacitors to achieve significant enhancement of pseudocapacitance. Compared to the conventional electrolyte, the enhancement of pseudocapacitance in the redox-active electrolyte is 49%-78%, depending on the specific polyaniline morphology, reaching the highest reported capacitance of 896 F/g for polyaniline full cells so far. © 2013 American Chemical Society.

  9. Morphology-dependent enhancement of the pseudocapacitance of template-guided tunable polyaniline nanostructures

    KAUST Repository

    Chen, Wei; Baby, Rakhi Raghavan; Alshareef, Husam N.

    2013-01-01

    Polyaniline is one of the most investigated conducting polymers as supercapacitor material for energy storage applications. The preparation of nanostructured polyaniline with well-controlled morphology is crucial to obtaining good supercapacitor performance. We present here a facile chemical process to produce polyaniline nanostructures with three different morphologies (i.e., nanofibers, nanospheres, and nanotubes) by utilizing the corresponding tunable morphology of MnO2 reactive templates. A growth mechanism is proposed to explain the evolution of polyaniline morphology based on the reactive templates. The morphology-induced improvement in the electrochemical performance of polyaniline pseudocapacitors is as large as 51% due to the much enhanced surface area and the porous nature of the template-guided polyaniline nanostructures. In addition, and for the first time, a redox-active electrolyte is applied to the polyaniline pseudocapacitors to achieve significant enhancement of pseudocapacitance. Compared to the conventional electrolyte, the enhancement of pseudocapacitance in the redox-active electrolyte is 49%-78%, depending on the specific polyaniline morphology, reaching the highest reported capacitance of 896 F/g for polyaniline full cells so far. © 2013 American Chemical Society.

  10. Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors

    International Nuclear Information System (INIS)

    Lawal, Abdulazeez T.

    2016-01-01

    Graphical abstract: Carbon nanotubes. - Highlights: • This review discusses synthesis and applications of carbon nanotubes sensors. • The review summarizes contributions of carbon nanotube to electrochemical biosensor. • Good electrical conductivity makes carbon nanotubes a good material for biosensors. • Carbon nanotubes promotes electron transfer that aids biosensing of biomolecules. - Abstract: This review summarizes the most recent contributions in the fabrication of carbon nanotubes-based electrochemical biosensors in recent years. It discusses the synthesis and application of carbon nanotubes to the assembly of carbon nanotube-based electrochemical sensors, its analytical performance and future expectations. An increasing number of reviews and publications involving carbon nanotubes sensors have been reported ever since the first design of carbon nanotube electrochemical biosensors. The large surface area and good electrical conductivity of carbon nanotubes allow them to act as “electron wire” between the redox center of an enzyme or protein and an electrode's surface, which make them very excellent material for the design of electrochemical biosensors. Carbon nanotubes promote the different rapid electron transfers that facilitate accurate and selective detection of cytochrome-c, β-nicotinamide adenine dinucleotide, hemoglobin and biomolecules, such as glucose, cholesterol, ascorbic acid, uric acid, dopamine pesticides, metals ions and hydrogen peroxide.

  11. Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Abdulazeez T., E-mail: abdul.lawal@yahoo.com

    2016-01-15

    Graphical abstract: Carbon nanotubes. - Highlights: • This review discusses synthesis and applications of carbon nanotubes sensors. • The review summarizes contributions of carbon nanotube to electrochemical biosensor. • Good electrical conductivity makes carbon nanotubes a good material for biosensors. • Carbon nanotubes promotes electron transfer that aids biosensing of biomolecules. - Abstract: This review summarizes the most recent contributions in the fabrication of carbon nanotubes-based electrochemical biosensors in recent years. It discusses the synthesis and application of carbon nanotubes to the assembly of carbon nanotube-based electrochemical sensors, its analytical performance and future expectations. An increasing number of reviews and publications involving carbon nanotubes sensors have been reported ever since the first design of carbon nanotube electrochemical biosensors. The large surface area and good electrical conductivity of carbon nanotubes allow them to act as “electron wire” between the redox center of an enzyme or protein and an electrode's surface, which make them very excellent material for the design of electrochemical biosensors. Carbon nanotubes promote the different rapid electron transfers that facilitate accurate and selective detection of cytochrome-c, β-nicotinamide adenine dinucleotide, hemoglobin and biomolecules, such as glucose, cholesterol, ascorbic acid, uric acid, dopamine pesticides, metals ions and hydrogen peroxide.

  12. Metal-doped single-walled carbon nanotubes and production thereof

    Science.gov (United States)

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  13. Adhered Supported Carbon Nanotubes

    International Nuclear Information System (INIS)

    Johnson, Dale F.; Craft, Benjamin J.; Jaffe, Stephen M.

    2001-01-01

    Carbon nanotubes (NTs) in excess of 200 μm long are grown by catalytic pyrolysis of hydrocarbon vapors. The nanotubes grow continuously without the typical extinction due to catalyst encapsulation. A woven metal mesh supports the nanotubes creating a metal supported nanotube (MSNT) structure. The 140 μm wide mesh openings are completely filled by 70 nm diameter multiwalled nanotubes (MWNTs). The MWNTs are straight, uniform and highly crystalline. Their wall thickness is about 10 nm (30 graphite layers). The adherent NTs are not removed from the support in a Scotch tape pull test. A 12.5 cm 2 capacitor made from two MSNT structures immersed in 1 M KCl has a capacitance of 0.35 F and an equivalent series resistance of 0.18 Ω. Water flows through the MSNT at a flow velocity of 1 cm/min with a pressure drop of 15 inches of water. With the support removed, the MWNTs naturally form a carbon nanocomposite (CNC) paper with a specific area of 80 m 2 /gm, a bulk density of 0.21 g/cm 3 , an open pore fraction of 0.81, and a resistivity of 0.16 Ω-cm

  14. Selective functionalization of carbon nanotubes

    Science.gov (United States)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  15. Carbon nanotubes for coherent spintronics

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Churchill, H O H; Herring, P K

    2010-01-01

    Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual......, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications....

  16. Thermogravimetric Analysis of Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Arepalli, Sivram; Nikolaev, Pavel; Gorelik, Olga

    2010-01-01

    An improved protocol for thermogravimetric analysis (TGA) of samples of single-wall carbon nanotube (SWCNT) material has been developed to increase the degree of consistency among results so that meaningful comparisons can be made among different samples. This improved TGA protocol is suitable for incorporation into the protocol for characterization of carbon nanotube material. In most cases, TGA of carbon nanotube materials is performed in gas mixtures that contain oxygen at various concentrations. The improved protocol is summarized.

  17. C{sub 60} fullerene decoration of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Demin, V. A., E-mail: victordemin88@gmail.com [Russian Academy of Sciences, Emanuel Institute of Biochemical Physics (Russian Federation); Blank, V. D.; Karaeva, A. R.; Kulnitskiy, B. A.; Mordkovich, V. Z. [Technological Institute for Superhard and Novel Carbon Materials (Russian Federation); Parkhomenko, Yu. N. [National University of Science and Technology MISiS (Russian Federation); Perezhogin, I. A.; Popov, M. Yu. [Technological Institute for Superhard and Novel Carbon Materials (Russian Federation); Skryleva, E. A. [National University of Science and Technology MISiS (Russian Federation); Urvanov, S. A. [Technological Institute for Superhard and Novel Carbon Materials (Russian Federation); Chernozatonskii, L. A. [Russian Academy of Sciences, Emanuel Institute of Biochemical Physics (Russian Federation)

    2016-12-15

    A new fully carbon nanocomposite material is synthesized by the immersion of carbon nanotubes in a fullerene solution in carbon disulfide. The presence of a dense layer of fullerene molecules on the outer nanotube surface is demonstrated by TEM and XPS. Fullerenes are redistributed on the nanotube surface during a long-term action of an electron beam, which points to the existence of a molecular bond between a nanotube and fullerenes. Theoretical calculations show that the formation of a fullerene shell begins with the attachment of one C{sub 60} molecule to a defect on the nanotube surface.

  18. Synthesis and characterization of carbon nanotubes

    Science.gov (United States)

    Ritschel, Manfred; Bartsch, Karl; Leonhardt, Albrecht; Graff, Andreas; Täschner, Christine; Fink, Jörg

    2001-11-01

    The catalytic chemical vapor deposition (CCVD) is a very promising process with respect to large scale production of different kinds of carbon nanostructures. By modifying the deposition temperature, the catalyst material and the hydrocarbon nanofibers with herringbone structure, multi-walled nanotubes with tubular structure and single-walled nanotubes were deposited. Furthermore, layers of aligned multi-walled nanotubes could be obtained on oxidized silicon substrates coated with thin sputtered metal layers (Co, permalloy) as well as onto WC-Co hardmetals by using the microwave assisted plasma CVD process (MWCVD). The obtained carbon modifications were characterized by scanning (SEM) and transmission (TEM) electron microscopy. The hydrogen storage capability of the nanofibers and nanotubes and the electron field emission of the nanotube layers was investigated.

  19. Quantum transport in carbon nanotubes

    DEFF Research Database (Denmark)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries, enabled by sophisticated fabrication, have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin...... blockade. This can be exploited to read out spin and valley qubits, and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly...... and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the two...

  20. Immobilization of redox mediators on functionalized carbon nanotube

    Indian Academy of Sciences (India)

    Chemical functionalization of single-walled carbon nanotubes with redox mediators, namely, toluidine blue and thionin have been carried out and the performance of graphite electrode modified with functionalized carbon nanotubes is described. Mechanical immobilization of functionalized single-walled nanotube (SWNT) ...

  1. Enhanced microwave absorption properties of Ni-doped ordered mesoporous carbon/polyaniline nanocomposites

    International Nuclear Information System (INIS)

    Wang, Liuding; Wu, Hongjing; Shen, Zhongyuan; Guo, Shaoli; Wang, Yiming

    2012-01-01

    Highlights: ► OMC-Ni/PANI nanocomposites were prepared by in situ polymerization method. ► The effective absorption bandwidth was 4.7 GHz for OMC-Ni0.15/PANI. ► OMC-Ni/PANI showed excellent microwave absorption with respect to OMC-Ni. ► This effect could be mainly attributed to the improvement of impendence matching. - Abstract: We propose and demonstrate a new scheme to improve microwave absorption property through polyaniline (PANI)-functionalized Ni-doped ordered mesoporous carbon (OMC) by in situ polymerization method. The polymer-functionalized nanocomposites, embedding polyaniline within ordered mesoporous carbon, exhibit strong and broadband microwave absorption due to its better dielectric loss characteristic. OMC-Ni0.15/PANI exhibits an effective absorption bandwidth (i.e., reflection loss (RL) ≤ −10 dB) of 4.7 GHz and an absorption peak of −51 dB at 9.0 GHz. The absorption peak intensity and position can be tuned by controlling the thickness of the coating.

  2. Direct integration of carbon nanotubes in Si microstructures

    International Nuclear Information System (INIS)

    Aasmundtveit, Knut E; Ta, Bao Q; Halvorsen, Einar; Hoivik, Nils; Lin, Liwei

    2012-01-01

    In this paper we present a low-cost, room-temperature process for integrating carbon nanotubes on Si microsystems. The process uses localized resistive heating by controlling current through suspended microbridges, to provide local temperatures high enough for CVD growth of carbon nanotubes. Locally grown carbon nanotubes make electrical connections through guidance by electric fields, thus eventually making circuits. The process is scalable to a wafer level batch process. Furthermore, it is controlled electrically, thus enabling automated control. Direct integration of carbon nanotubes in microstructures has great promise for nano-functional devices, such as ultrasensitive chemical sensors. Initial measurements demonstrate the Si–carbon nanotube–Si circuit's potential as a NH 3 sensor. (paper)

  3. Black silicon maskless templates for carbon nanotube forests

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Schmidt, Michael Stenbæk; Boisen, Anja

    2013-01-01

    allows maskless definition of carbon nanotube forests with control of their density, nanotube diameter and height. Four nanograss reactive ion etching recipes are investigated and their wafer-to-wafer repeatability, wafer uniformity, and density control is discussed. Evaluation of carbon nanotube forests...

  4. Microporous carbon derived from polyaniline base as anode material for lithium ion secondary battery

    International Nuclear Information System (INIS)

    Xiang, Xiaoxia; Liu, Enhui; Huang, Zhengzheng; Shen, Haijie; Tian, Yingying; Xiao, Chengyi; Yang, Jingjing; Mao, Zhaohui

    2011-01-01

    Highlights: → Nitrogen-containing microporous carbon was prepared from polyaniline base by K 2 CO 3 activation, and used as anode material for lithium ion secondary battery. → K 2 CO 3 activation promotes the formation of amorphous and microporous structure. → High nitrogen content, and large surface area with micropores lead to strong intercalation between carbon and lithium ion, and thus improve the lithium storage capacity. -- Abstract: Microporous carbon with large surface area was prepared from polyaniline base using K 2 CO 3 as an activating agent. The physicochemical properties of the carbon were characterized by scanning electron microscope, X-ray diffraction, Brunauer-Emmett-Teller, elemental analyses and X-ray photoelectron spectroscopy measurement. The electrochemical properties of the microporous carbon as anode material in lithium ion secondary battery were evaluated. The first discharge capacity of the microporous carbon was 1108 mAh g -1 , whose first charge capacity was 624 mAh g -1 , with a coulombic efficiency of 56.3%. After 20 cycling tests, the microporous carbon retains a reversible capacity of 603 mAh g -1 at a current density of 100 mA g -1 . These results clearly demonstrated the potential role of microporous carbon as anode for high capacity lithium ion secondary battery.

  5. Nanotube bundle oscillators: Carbon and boron nitride nanostructures

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M.

    2009-01-01

    In this paper, we investigate the oscillation of a fullerene that is moving within the centre of a bundle of nanotubes. In particular, certain fullerene-nanotube bundle oscillators, namely C 60 -carbon nanotube bundle, C 60 -boron nitride nanotube bundle, B 36 N 36 -carbon nanotube bundle and B 36 N 36 -boron nitride nanotube bundle are studied using the Lennard-Jones potential and the continuum approach which assumes a uniform distribution of atoms on the surface of each molecule. We address issues regarding the maximal suction energies of the fullerenes which lead to the generation of the maximum oscillation frequency. Since bundles are also found to comprise double-walled nanotubes, this paper also examines the oscillation of a fullerene inside a double-walled nanotube bundle. Our results show that the frequencies obtained for the oscillation within double-walled nanotube bundles are slightly higher compared to those of single-walled nanotube bundle oscillators. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures.

  6. Carbon nanotubes from synthesis to in vivo biomedical applications.

    Science.gov (United States)

    Sajid, Muhammad Imran; Jamshaid, Usama; Jamshaid, Talha; Zafar, Nadiah; Fessi, H; Elaissari, Abdelhamid

    2016-03-30

    Owing to their unique and interesting properties, extensive research round the globe has been carried out on carbon nanotubes and carbon nanotubes based systems to investigate their practical usefulness in biomedical applications. The results from these studies demonstrate a great promise in their use in targeted drug delivery systems, diagnostic techniques and in bio-analytical applications. Although, carbon nanotubes possess quite interesting properties, which make them potential candidates in the biomedical science, but they also have some inherent properties which arise great concern regarding their biosafety. In this comprehensive review, we have discussed different aspects of carbon nanotubes and carbon nanotube based systems related to biomedical applications. In the beginning, a short historical account of these tiny yet powerful particles is given followed by discussion regarding their types, properties, methods of synthesis, large scale production method, purification techniques and characterization aspects of carbon nanotubes. In the second part of the review, the functionalization of carbon nanotubes is reviewed in detail, which is not only important to make them biocompatible and stable in biological systems but also render them a great property of loading various biomolecules, diagnostic and therapeutic moieties resulting in diversified applications. In the final part of the review, emphasis is given on the pharmacokinetic aspects of carbon nanotubes including administration routes, absorption mechanisms, distribution and elimination of carbon nanotubes based systems. Lastly, a comprehensive account about the potential biomedical applications has been given followed by insights into the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Four- and eight-membered rings carbon nanotubes: A new class of carbon nanomaterials

    Directory of Open Access Journals (Sweden)

    Fangfang Li

    2018-06-01

    Full Text Available A new class of carbon nanomaterials composed of alternating four- and eight-membered rings is studied by density functional theory (DFT, including single-walled carbon nanotubes (SWCNTs double-walled carbon nanotubes (DWCNTs and triple-walled CNTs (TWCNTs. The analysis of geometrical structure shows that carbon atoms’ hybridization in novel carbon tubular clusters (CTCs and the corresponding carbon nanotubes (CNTs are both sp2 hybridization; The thermal properties exhibit the high stability of these new CTCs. The results of energy band and density of state (DOS indicate that the electronic properties of CNTs are independent of their diameter, number of walls and chirality, exhibit obvious metal properties. Keywords: Four- and eight-membered rings, Carbon nanotubes, Stability, Electronic properties

  8. Carbon nanotube fiber spun from wetted ribbon

    Science.gov (United States)

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  9. Preparation and characterization of titanate nanotubes/carbon composites

    International Nuclear Information System (INIS)

    Wang Xiaodong; Pan Hui; Xue Xiaoxiao; Qian Junjie; Yu Laigui; Yang Jianjun; Zhang Zhijun

    2011-01-01

    Highlights: → Titanate nanotubes/carbon composites were synthesized from TiO 2 -carbon composites. → The carbon shell of TiO 2 particles obstructed the reaction between TiO 2 and NaOH. → TEM, XRD, and Raman spectra reveal the formation processes of the TNT/CCs. - Abstract: Titanate nanotubes/carbon composites(TNT/CCs) were synthesized by allowing carbon-coated TiO 2 (CCT) powder to react with a dense aqueous solution of NaOH at 120 deg. C for a proper period of time. As-prepared CCT and TNT/CCs were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectrometry. The processes for formation of titanate nanotubes/carbon composites were discussed. It was found that the TiO 2 particles in TiO 2 -carbon composite were enwrapped by a fine layer of carbon with a thickness of about 4 nm. This carbon layer functioned to inhibit the transformation from anatase TiO 2 to orthorhombic titanate. As a result, the anatase TiO 2 in CCT was incompletely transformed into orthorhombic titanate nanotubes upon 24 h of reaction in the dense and hot NaOH solution. When the carbon layers were gradually peeled off along with the formation of more orthorhombic titanate nanotubes at extended reaction durations (e.g., 72 h), anatase TiO 2 particles in CCT were completely transformed into orthorhombic titanate nanotubes, yielding TNT/CCs whose morphology was highly dependent on the reaction time and temperature.

  10. Ballistic resistance capacity of carbon nanotubes

    International Nuclear Information System (INIS)

    Mylvaganam, Kausala; Zhang, L C

    2007-01-01

    Carbon nanotubes have high strength, light weight and excellent energy absorption capacity and therefore have great potential applications in making antiballistic materials. By examining the ballistic impact and bouncing-back processes on carbon nanotubes, this investigation shows that nanotubes with large radii withstand higher bullet speeds and the ballistic resistance is the highest when the bullet hits the centre of the CNT; the ballistic resistance of CNTs will remain the same on subsequent bullet strikes if the impact is after a small time interval

  11. Carbon Nanotubes and Chronic Granulomatous Disease

    Directory of Open Access Journals (Sweden)

    Barbara P. Barna

    2014-06-01

    Full Text Available Use of nanomaterials in manufactured consumer products is a rapidly expanding industry and potential toxicities are just beginning to be explored. Combustion-generated multiwall carbon nanotubes (MWCNT or nanoparticles are ubiquitous in non-manufacturing environments and detectable in vapors from diesel fuel, methane, propane, and natural gas. In experimental animal models, carbon nanotubes have been shown to induce granulomas or other inflammatory changes. Evidence suggesting potential involvement of carbon nanomaterials in human granulomatous disease, has been gathered from analyses of dusts generated in the World Trade Center disaster combined with epidemiological data showing a subsequent increase in granulomatous disease of first responders. In this review we will discuss evidence for similarities in the pathophysiology of carbon nanotube-induced pulmonary disease in experimental animals with that of the human granulomatous disease, sarcoidosis.

  12. Electrophoretic deposition and field emission properties of patterned carbon nanotubes

    International Nuclear Information System (INIS)

    Zhao Haifeng; Song Hang; Li Zhiming; Yuan Guang; Jin Yixin

    2005-01-01

    Patterned carbon nanotubes on silicon substrates were obtained using electrophoretic method. The carbon nanotubes migrated towards the patterned silicon electrode in the electrophoresis suspension under the applied voltage. The carbon nanotubes arrays adhered well on the silicon substrates. The surface images of carbon nanotubes were observed by scanning electron microscopy. The field emission properties of the patterned carbon nanotubes were tested in a diode structure under a vacuum pressure below 5 x 10 -4 Pa. The measured emission area was about 1.0 mm 2 . The emission current density up to 30 mA/cm 2 at an electric field of 8 V/μm has been obtained. The deposition of patterned carbon nanotubes by electrophoresis is an alternative method to prepare field emission arrays

  13. Oscillation of nested fullerenes (carbon onions) in carbon nanotubes

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M.

    2008-01-01

    Nested spherical fullerenes, which are sometimes referred to as carbon onions, of I h symmetries which have N(n) carbon atoms in the nth shell given by N(n) = 60n 2 are studied in this paper. The continuum approximation together with the Lennard-Jones potential is utilized to determine the resultant potential energy. High frequency nanoscale oscillators or gigahertz oscillators created from fullerenes and both single- and multi-walled carbon nanotubes have attracted much attention for a number of proposed applications, such as ultra-fast optical filters and ultra-sensitive nano-antennae that might impact on the development of computing and signalling nano-devices. Further, it is only at the nanoscale where such gigahertz frequencies can be achieved. This paper focuses on the interaction of nested fullerenes and the mechanics of such molecules oscillating in carbon nanotubes. Here we investigate such issues as the acceptance condition for nested fullerenes into carbon nanotubes, the total force and energy of the nested fullerenes, and the velocity and gigahertz frequency of the oscillating molecule. In particular, optimum nanotube radii are determined for which nested fullerenes oscillate at maximum velocity and frequency, which will be of considerable benefit for the design of future nano-oscillating devices

  14. Glucose oxidase immobilization onto carbon nanotube networking

    International Nuclear Information System (INIS)

    Karachevtsev, V.A.; Glamazda, A.Yu.; Zarudnev, E.S.; Karachevtsev, M.V.; Leontiev, V.S.; Linnik, A.S.; Plokhotnichenko, A.M.; Stepanian, S.G.; Lytvyn, O.S.

    2012-01-01

    The efficient immobilization of GOX onto a carbon nanotube network through the molecular interface formed by PSE is carried out. This conclusion is based on the analysis of AFM images of the network with the adsorbed enzyme, whose globules locate mainly along a nanotube. The band corresponding to the high-frequency component of the G mode in the RR spectrum of the nanotube with adsorbed PSE is downshifted by 0.7 cm -1 relative to this band in the spectrum of pristine nanotubes. The analysis of the intensities of bands assigned to the RBM of nanotubes with adsorbed PSE in comparison with the spectrum of pristine SWNTs revealed the intensity transformation, which can be explained by a change of the resonance condition with variation of the laser energy. Thus, we concluded that PSE molecules create nanohybrids with SWNTs, which ensures the further enzyme immobilization. As the RR spectrum of an SWNT:PSE:GOX film does not essentially differ from SWNT:PSE ones, this indicates that the molecular interface (PSE) isolates the enzyme from nanotubes strongly enough. Our studies on the conductive properties of a single walled carbon nanotube network sprayed onto a quartz substrate from a solution of nanotubes in dichlorobenzene demonstrated that the I(U) dependence has nonlinear character. Most likely, the nonlinearity is related to Schottky barriers, which originate on the contact between nanotubes and the gold electrode, as well as between nanotubes with different conductivities. The deposition of bioorganic compounds (PSE and GOX) on the carbon nanotube network is accompanied by a decrease of their conductivity. Most probably, such a decrease is caused by adsorbed PSE molecules, which induce the appearance of scattering centers for charge carriers on the nanotube surface. The following GOX adsorption has practically no effect on the conductivity of the nanotube network that evidences the reliable isolation of the nanotube surface from the enzyme by means of the molecular

  15. Carbon nanotube/carbon nanotube composite AFM probes prepared using ion flux molding

    Science.gov (United States)

    Chesmore, Grace; Roque, Carrollyn; Barber, Richard

    The performance of carbon nanotube-carbon nanotube composite (CNT/CNT composite) atomic force microscopy (AFM) probes is compared to that of conventional Si probes in AFM tapping mode. The ion flux molding (IFM) process, aiming an ion beam at the CNT probe, aligns the tip to a desired angle. The result is a relatively rigid tip that is oriented to offset the cantilever angle. Scans using these probes reveal an improvement in image accuracy over conventional tips, while allowing higher aspect ratio imaging of 3D surface features. Furthermore, the lifetimes of CNT-CNT composite tips are observed to be longer than both conventional tips and those claimed for other CNT technologies. Novel applications include the imaging of embiid silk. Supported by the Clare Boothe Luce Research Scholars Award and Carbon Design Innovations.

  16. Non-damaging and scalable carbon nanotube synthesis on carbon fibres

    OpenAIRE

    De Luca, H; Anthony, DB; Qian, H; Greenhalgh, E; Bismarck, A; Shaffer, M

    2016-01-01

    The growth of carbon nanotubes (CNTs) on carbon fibres (CFs) to produce a hierarchical fibre with two differing reinforcement length scales, in this instance nanometre and micrometre respectively, is considered a route to improve current state-of-the-art fibre reinforced composites [1]. The scalable production of carbon nanotube-grafted-carbon fibres (CNT-g-CFs) has been limited due to high temperatures, the use of flammable gases and the requirement of inert conditions for CNT synthesis, whi...

  17. Carbon nanotube network-silicon oxide non-volatile switches.

    Science.gov (United States)

    Liao, Albert D; Araujo, Paulo T; Xu, Runjie; Dresselhaus, Mildred S

    2014-12-08

    The integration of carbon nanotubes with silicon is important for their incorporation into next-generation nano-electronics. Here we demonstrate a non-volatile switch that utilizes carbon nanotube networks to electrically contact a conductive nanocrystal silicon filament in silicon dioxide. We form this device by biasing a nanotube network until it physically breaks in vacuum, creating the conductive silicon filament connected across a small nano-gap. From Raman spectroscopy, we observe coalescence of nanotubes during breakdown, which stabilizes the system to form very small gaps in the network~15 nm. We report that carbon nanotubes themselves are involved in switching the device to a high resistive state. Calculations reveal that this switching event occurs at ~600 °C, the temperature associated with the oxidation of nanotubes. Therefore, we propose that, in switching to a resistive state, the nanotube oxidizes by extracting oxygen from the substrate.

  18. Electrospun fibrous electrodes with tunable microstructure made of polyaniline/multi-walled carbon nanotube suspension for all-solid-state supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Junsheng; Su, Shijie; Fang, Xu [Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116023 (China); Wang, Dazhi, E-mail: d.wang@dlut.edu.cn [Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116023 (China); Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116023 (China); Xu, Shuangchao [Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116023 (China)

    2016-09-15

    Highlights: • Electrospun PANI/MWCNT fibrous electrodes for supercapacitor were prepared. • Microstructure of electrodes is tunable by changing the electrospin parameters. • Fiber-diameter dependence of the electrode performance was observed. • High performance and good stability of electrospun electrodes were obtained. - Abstract: Electrospinning technique was used to prepare high performance fibrous electrodes with tunable microstructure for all-solid-state electrochemical supercapacitor. Symmetrically sandwiched supercapacitors consisting of flexible electrospun polyaniline (PANI)/multi-walled carbon nanotube (MWCNT) electrodes and polyvinyl alcohol (PVA)/sulfuric acid (H{sub 2}SO{sub 4}) gel electrolyte were assembled. Tunable microstructure of the fibrous electrode was obtained by changing the electrospinning parameters including the collector–needle distance (CND) and the suspension flow rate (SFR). Results show that, higher CND combining with lower SFR can result in a smaller average diameter of the electrospun fibers and hence improve the electrode performance. When the CND changes from 80 to 140 mm, the average fiber diameter will decrease from 2.89 to 1.21 μm, and the specific surface area of the electrode can increase from 57 to 83 m{sup 2}·g{sup −1}. The corresponding specific capacitance of the electrospun electrode will therefore increase from 129.5 to 180 F·g{sup −1}, leading to a synchronous improvement of the energy density of the supercapacitor from 18 to 25 Wh·kg{sup −1}. On the other hand, the supercapacitors using fibrous electrodes in this work also show good rate capability and cycling stability. Using the electrode with an average fiber diameter of 1.21 μm, the specific capacitances can maintain 131 F·g{sup −1} at a current density of 4 A·g{sup −1}, which is 73% of the specific capacitance of the same sample at a current density of 0.5 A·g{sup −1}. And the specific capacitance of the electrode can retain 89

  19. Effect of different oxidants on polyaniline/single walled carbon nanotubes composites synthesized via ultrasonically initiated in-situ chemical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Gull, Nafisa, E-mail: gullchemist@gmail.com [Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 (Pakistan); Khan, Shahzad Maqsood, E-mail: shahzadkhan81@hotmail.com [Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 (Pakistan); Islam, Atif; Zia, Saba; Shafiq, Muhammad; Sabir, Aneela; Munawar, Muhammad Azeem [Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 (Pakistan); Butt, Muhammad Taqi Zahid [College of Engineering and Emerging Technologies, University of the Punjab, Lahore, 54590 (Pakistan); Jamil, Tahir [Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 (Pakistan)

    2016-04-01

    This study is aimed at investigating the effect of different oxidants on properties of polyaniline/single walled carbon nanotubes (PANI/SWCNT) composites and scrutinizing a suitable oxidant to improve the properties of composites. PANI/SWCNT composites were fabricated via ultrasonically initiated in-situ chemical polymerization technique using four different oxidants; hydrogen peroxide (H{sub 2}O{sub 2}), ammonium peroxidisulphate ((NH{sub 4}){sub 2}S{sub 2}O{sub 8}), potassium dichromate (K{sub 2}Cr{sub 2}O{sub 7}) and potassium iodate (KIO{sub 3}). Percent yield (97%), molecular weight (45532 g mol{sup −1}) and electrical conductivity (0.835 S cm{sup −1}) were found maximum for composite prepared in the presence of H{sub 2}O{sub 2}. Structural confirmation of PANI and charge transfer complex formation between PANI and SWCNT were confirmed by fourier transform infrared spectroscopy, UV–visible spectroscopy and X-ray diffraction spectroscopy. Thermogravimetric analysis verified that the PANI/SWCNT composite synthesized using H{sub 2}O{sub 2} had maximum thermal stability with least thermal degradation (∼28%). Minimal thermal transitions of the composite were also observed for same composite by differential scanning calorimetry. Scanning electron microscopic images of PANI/SWCNT composites revealed that SWCNT were properly dispersed in PANI matrix when H{sub 2}O{sub 2} was used. Above results provide the valuable suggestion that; H{sub 2}O{sub 2} is a promising oxidant to enhance structural, thermal, electrical and microscopic properties of composites. - Highlights: • Ultrasonically initiated in-situ chemical polymerization protocol was devised for synthesis of PANI/SWCNT composites. • SEM micrographs of PANI/SWCNT-1 showed uniform dispersed structure. • Better thermal stability and conductivity was evidenced for H{sub 2}O{sub 2} based PANI/SWCNT composite. • π–π interaction between PANI and SWCNT is confirmed by FTIR and UV

  20. Electrospun fibrous electrodes with tunable microstructure made of polyaniline/multi-walled carbon nanotube suspension for all-solid-state supercapacitors

    International Nuclear Information System (INIS)

    Liang, Junsheng; Su, Shijie; Fang, Xu; Wang, Dazhi; Xu, Shuangchao

    2016-01-01

    Highlights: • Electrospun PANI/MWCNT fibrous electrodes for supercapacitor were prepared. • Microstructure of electrodes is tunable by changing the electrospin parameters. • Fiber-diameter dependence of the electrode performance was observed. • High performance and good stability of electrospun electrodes were obtained. - Abstract: Electrospinning technique was used to prepare high performance fibrous electrodes with tunable microstructure for all-solid-state electrochemical supercapacitor. Symmetrically sandwiched supercapacitors consisting of flexible electrospun polyaniline (PANI)/multi-walled carbon nanotube (MWCNT) electrodes and polyvinyl alcohol (PVA)/sulfuric acid (H_2SO_4) gel electrolyte were assembled. Tunable microstructure of the fibrous electrode was obtained by changing the electrospinning parameters including the collector–needle distance (CND) and the suspension flow rate (SFR). Results show that, higher CND combining with lower SFR can result in a smaller average diameter of the electrospun fibers and hence improve the electrode performance. When the CND changes from 80 to 140 mm, the average fiber diameter will decrease from 2.89 to 1.21 μm, and the specific surface area of the electrode can increase from 57 to 83 m"2·g"−"1. The corresponding specific capacitance of the electrospun electrode will therefore increase from 129.5 to 180 F·g"−"1, leading to a synchronous improvement of the energy density of the supercapacitor from 18 to 25 Wh·kg"−"1. On the other hand, the supercapacitors using fibrous electrodes in this work also show good rate capability and cycling stability. Using the electrode with an average fiber diameter of 1.21 μm, the specific capacitances can maintain 131 F·g"−"1 at a current density of 4 A·g"−"1, which is 73% of the specific capacitance of the same sample at a current density of 0.5 A·g"−"1. And the specific capacitance of the electrode can retain 89% after 1500 charge/discharge cycles.

  1. Carbon nanotube filters

    Science.gov (United States)

    Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M.

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (~25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  2. Oxidation of Carbon Nanotubes in an Ionizing Environment.

    Science.gov (United States)

    Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert

    2016-02-10

    In this work, we present systematic studies on how an illuminating electron beam which ionizes molecular gas species can influence the mechanism of carbon nanotube oxidation in an environmental transmission electron microscope (ETEM). We found that preferential attack of the nanotube tips is much more prevalent than for oxidation in a molecular gas environment. We establish the cumulative electron doses required to damage carbon nanotubes from 80 keV electron beam irradiation in gas versus in high vacuum. Our results provide guidelines for the electron doses required to study carbon nanotubes within or without a gas environment, to determine or ameliorate the influence of the imaging electron beam. This work has important implications for in situ studies as well as for the oxidation of carbon nanotubes in an ionizing environment such as that occurring during field emission.

  3. Electrophoretic deposition of carbon nanotubes on a carbon fiber surface with different index graphitization

    International Nuclear Information System (INIS)

    Almeida, E.C.; Baldan, M.R.; Ferreira, N.G.; Edwards, E.R.

    2009-01-01

    Full text: The purpose of this work is to examine the electrophoretic deposition of carbon nanotubes powder on carbon fibers, produced at different heat treatments temperatures. Besides, a systematic study of the effects of graphitization index from substrate on the structure and morphology of CNTs has been available. Carbon fibers were produced from polyacrylonitrile at three different heat treatments temperatures, 1000, 1500 and 2000 deg C. The carbon fibers microstructure or its graphitization index may be controlled by the heat treatments temperatures. The electrophoretic deposition of carbon nanotubes was obtained with the powder of carbon nanotubes dispersed in water by ultrasonication to obtain dispersions of 0.05 mg/mL. The carbon fibers were immersed in the nanotube dispersion, and a positive potential of 10 V/cm was applied. Morphology and microstructure of carbon nanotubes on carbon fibers were obtained by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. (author)

  4. New Insight into Carbon Nanotube Electronic Structure Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Jiang, Deen [ORNL

    2009-01-01

    The fundamental role of aryl diazonium salts for post synthesis selectivity of carbon nanotubes is investigated using extensive electronic structure calculations. The resulting understanding for diazonium salt based selective separation of conducting and semiconducting carbon nanotubes shows how the primary contributions come from the interplay between the intrinsic electronic structure of the carbon nanotubes and that of the anion of the salt. We demonstrate how the electronic transport properties change upon the formation of charge transfer complexes and upon their conversion into covalently attached functional groups. Our results are found to correlate well with experiments and provide for the first time an atomistic description for diazonium salt based chemical separation of carbon nanotubes

  5. Hydrogen storage in carbon nanotubes.

    Science.gov (United States)

    Hirscher, M; Becher, M

    2003-01-01

    The article gives a comprehensive overview of hydrogen storage in carbon nanostructures, including experimental results and theoretical calculations. Soon after the discovery of carbon nanotubes in 1991, different research groups succeeded in filling carbon nanotubes with some elements, and, therefore, the question arose of filling carbon nanotubes with hydrogen by possibly using new effects such as nano-capillarity. Subsequently, very promising experiments claiming high hydrogen storage capacities in different carbon nanostructures initiated enormous research activity. Hydrogen storage capacities have been reported that exceed the benchmark for automotive application of 6.5 wt% set by the U.S. Department of Energy. However, the experimental data obtained with different methods for various carbon nanostructures show an extreme scatter. Classical calculations based on physisorption of hydrogen molecules could not explain the high storage capacities measured at ambient temperature, and, assuming chemisorption of hydrogen atoms, hydrogen release requires temperatures too high for technical applications. Up to now, only a few calculations and experiments indicate the possibility of an intermediate binding energy. Recently, serious doubt has arisen in relation to several key experiments, causing considerable controversy. Furthermore, high hydrogen storage capacities measured for carbon nanofibers did not survive cross-checking in different laboratories. Therefore, in light of today's knowledge, it is becoming less likely that at moderate pressures around room temperature carbon nanostructures can store the amount of hydrogen required for automotive applications.

  6. Studies on preparation and properties of the multi-walled carbon nanotubes (MWNTs)/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Deng Huayang; Cao Qi; Wang Xianyou; Chen Quanqi; Kuang Hao; Wang Xiaofeng

    2011-01-01

    Highlights: → We use the modified MWNTs as fillers fabricated epoxy nanocomposites. → The mechanical, thermal and dielectric properties of nanocomposites are measured. → The nanocomposites exhibited better mechanical and dielectric properties. - Abstract: The MWNTs were coated with polyaniline (PANI) by in situ chemical oxidation polymerization method. FTIR spectroscopy, scanning electron microscope (SEM) and X-ray diffraction (XRD) indicated that the MWNTs were coated with PANI. The MWNTs/epoxy nanocomposites were fabricated by using the solution blending method. Differential scanning calorimetry (DSC), tensile testing, HP 4294A impedance analyzer and SEM were used to investigate the properties of the nanocomposites. The results showed that the modified carbon nanotubes were well dispersed in the polymer matrix. The nanocomposites have enhancements in mechanical, thermal and dielectric properties compare with the neat epoxy resin. The nanocomposites were proven to be a good polymer dielectric material.

  7. Doping of three-dimensional porous carbon nanotube-graphene-ionic liquid composite into polyaniline for the headspace solid-phase microextraction and gas chromatography determination of alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lulu; Wu, Mian; Feng, Yingying; Zhao, Faqiong; Zeng, Baizhao, E-mail: bzzeng@whu.edu.cn

    2016-12-15

    In this work, ionic liquid (IL, i.e. 1-hydroxyethyl-3-methylimidazolium tetrafluoroborate), carboxyl multiwall carbon nanotubes (MWCNTs) and reduced graphene oxide (rGO) were used to prepare three-dimensional porous material (MWCNTs-rGO-IL) by one-step self-assembly, then it was co-electrodeposited with polyaniline (PANI) on stainless steel wires by cyclic voltammetry. The resulting coating (PANI-MWCNTs-rGO-IL) was characterized by using FT-IR and scanning electron microscopy etc, and it showed porous structure and had high thermal stability. Furthermore, it was found to be very suitable for the headspace solid-phase microextraction of alcohols (i.e. octanol, nonanol, geraniol, decanol, undecanol and dodecanol). By coupling with gas chromatography, wide linear ranges and low limits of detection (i.e. 2.2–28.3 ng L{sup −1}) were obtained for the alcohols. The coating also presented good repeatability and reproducibility; the relative standard deviations for intra-fiber and fiber-to-fiber were less than 5.6% (n = 5) and 7.0% (n = 5) respectively. In addition, the proposed method was successfully applied to the determination of alcohols in tea drinks, and the recoveries for standards added were 85.6–114%. - Highlights: • A three-dimensional porous material (MWCNTs-rGO-IL) was synthesized by self-assembly. • A new PANI-MWCNTs-rGO-IL composite coating was prepared by electrochemical method. • It presented high thermal stability and extraction selectivity for alcohols.

  8. Doping of three-dimensional porous carbon nanotube-graphene-ionic liquid composite into polyaniline for the headspace solid-phase microextraction and gas chromatography determination of alcohols

    International Nuclear Information System (INIS)

    Li, Lulu; Wu, Mian; Feng, Yingying; Zhao, Faqiong; Zeng, Baizhao

    2016-01-01

    In this work, ionic liquid (IL, i.e. 1-hydroxyethyl-3-methylimidazolium tetrafluoroborate), carboxyl multiwall carbon nanotubes (MWCNTs) and reduced graphene oxide (rGO) were used to prepare three-dimensional porous material (MWCNTs-rGO-IL) by one-step self-assembly, then it was co-electrodeposited with polyaniline (PANI) on stainless steel wires by cyclic voltammetry. The resulting coating (PANI-MWCNTs-rGO-IL) was characterized by using FT-IR and scanning electron microscopy etc, and it showed porous structure and had high thermal stability. Furthermore, it was found to be very suitable for the headspace solid-phase microextraction of alcohols (i.e. octanol, nonanol, geraniol, decanol, undecanol and dodecanol). By coupling with gas chromatography, wide linear ranges and low limits of detection (i.e. 2.2–28.3 ng L"−"1) were obtained for the alcohols. The coating also presented good repeatability and reproducibility; the relative standard deviations for intra-fiber and fiber-to-fiber were less than 5.6% (n = 5) and 7.0% (n = 5) respectively. In addition, the proposed method was successfully applied to the determination of alcohols in tea drinks, and the recoveries for standards added were 85.6–114%. - Highlights: • A three-dimensional porous material (MWCNTs-rGO-IL) was synthesized by self-assembly. • A new PANI-MWCNTs-rGO-IL composite coating was prepared by electrochemical method. • It presented high thermal stability and extraction selectivity for alcohols.

  9. Mechanochemical treatment of amorphous carbon from brown sphagnum moss for the preparation of carbon nanotubes

    International Nuclear Information System (INIS)

    Onishchenko, D.V.

    2013-01-01

    Under consideration is the mechanism of multiwalled nanotubes formation during mechanical activation of amorphous carbon synthesized by pyrolysis of sphagnum moss. The formation of nanotubes has been shown to take place in the array of carbon particles. A complex study of the sorption characteristics of carbon nanotubes has been carried out. The dependence of the sorption capacity of carbon nanotubes on their storage time, as well as the effect of the process parameters of nanotubes formation on their ability for oxidative modification, is represented. (authors)

  10. Intrinsic Chirality Origination in Carbon Nanotubes.

    Science.gov (United States)

    Pierce, Neal; Chen, Gugang; P Rajukumar, Lakshmy; Chou, Nam Hawn; Koh, Ai Leen; Sinclair, Robert; Maruyama, Shigeo; Terrones, Mauricio; Harutyunyan, Avetik R

    2017-10-24

    Elucidating the origin of carbon nanotube chirality is key for realizing their untapped potential. Currently, prevalent theories suggest that catalyst structure originates chirality via an epitaxial relationship. Here we studied chirality abundances of carbon nanotubes grown on floating liquid Ga droplets, which excludes the influence of catalyst features, and compared them with abundances grown on solid Ru nanoparticles. Results of growth on liquid droplets bolsters the intrinsic preference of carbon nuclei toward certain chiralities. Specifically, the abundance of the (11,1)/χ = 4.31° tube can reach up to 95% relative to (9,4)/χ = 17.48°, although they have exactly the same diameter, (9.156 Å). However, the comparative abundances for the pair, (19,3)/χ = 7.2° and (17,6)/χ = 14.5°, with bigger diameter, (16.405 Å), fluctuate depending on synthesis temperature. The abundances of the same pairs of tubes grown on floating solid polyhedral Ru nanoparticles show completely different trends. Analysis of abundances in relation to nucleation probability, represented by a product of the Zeldovich factor and the deviation interval of a growing nuclei from equilibrium critical size, explain the findings. We suggest that the chirality in the nanotube in general is a result of interplay between intrinsic preference of carbon cluster and induction by catalyst structure. This finding can help to build the comprehensive theory of nanotube growth and offers a prospect for chirality-preferential synthesis of carbon nanotubes by the exploitation of liquid catalyst droplets.

  11. Carbon nanotubes and methods of making carbon nanotubes

    KAUST Repository

    Basset, Jean-Marie

    2017-04-27

    Embodiments of the present disclosure provide for methods that can be used to produce carbon nanotubes (hereinafter CNT) having an inner diameter about 5-55 nm, methods of tuning the inner diameter of CNTs (e.g., by adjusting reaction pressure), CNTs having an inner diameter of greater than 20 nm or more, and the like.

  12. Magnetoelectronic properties of chiral carbon nanotubes and tori

    International Nuclear Information System (INIS)

    Shyu, F L; Tsai, C C; Lee, C H; Lin, M F

    2006-01-01

    Magnetoelectronic properties of chiral carbon nanotubes and toroids are studied for any magnetic field. They are sensitive to the changes in the magnitude and the direction of the magnetic field, as well as the chirality. The important differences between chiral and achiral carbon nanotubes include band symmetry, band curvature, band crossing, band-edge state, state degeneracy, band spacing, energy gap, and semiconductor-metal transition. Carbon tori also exhibit the strong chirality dependence on the field modulation of discrete states. Chiral carbon tori might differ from chiral carbon nanotubes in energy-gap modulation, density of states, and state degeneracy

  13. Continuous Growth of Vertically Aligned Carbon Nanotubes Forests

    OpenAIRE

    Guzman de Villoria, Roberto; Wardle, Brian L.

    2011-01-01

    Vertically aligned carbon nanotubes are one of the most promising materials due their numerous applications in flexible electronic devices, biosensors and multifunctional aircraft materials, among others. However, the costly production of aligned carbon nanotubes, generally in a batch process, prevents their commercial use. For the first time, a controlled process to grow aligned carbon nanotubes in a continuous manner is presented. Uniform growth is achieved using 2D and 3D substrates. A sig...

  14. Polyaniline prepared in ethylene glycol or glycerol

    Czech Academy of Sciences Publication Activity Database

    Konyushenko, Elena; Reynaud, S.; Pellerin, V.; Trchová, Miroslava; Stejskal, Jaroslav; Sapurina, I.

    2011-01-01

    Roč. 52, č. 9 (2011), s. 1900-1907 ISSN 0032-3861 R&D Projects: GA AV ČR IAA400500905; GA ČR GA203/08/0686 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymer * polyaniline * nanotubes Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.438, year: 2011

  15. Functionalization of vertically aligned carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Eloise Van Hooijdonk

    2013-02-01

    Full Text Available This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs. The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs.

  16. Functionalization of vertically aligned carbon nanotubes.

    Science.gov (United States)

    Van Hooijdonk, Eloise; Bittencourt, Carla; Snyders, Rony; Colomer, Jean-François

    2013-01-01

    This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs). The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers) to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs.

  17. Characteristics of polyaniline electrosynthesized in propylene carbonate medium in the presence of di- and trichloroacetic acids

    Directory of Open Access Journals (Sweden)

    Venancio Everaldo C.

    2001-01-01

    Full Text Available In the present work the characterization of polyaniline electrosynthesized in propylene carbonate medium in the presence of di- and trichloroacetic acids was performed using different techniques. The electrochemical response by cyclic voltammetry showed redox processes due to the formation of polaron and bipolaron and polymer degradation. The characterization by infrared and UV-visible spectroscopies indicated that the polymers are in the emeraldine salt form with perchlorate anions incorporated. The films produced with both acids in propylene carbonate media presented a compact morphology as observed by scanning electron microscopy. By testing the polyaniline film produced in selected conditions in a lithium battery environment it was found that it presents a high coulombic efficiency, promising for battery applications.

  18. Fracture of vacancy-defected carbon nanotubes and their embedded nanocomposites

    International Nuclear Information System (INIS)

    Xiao Shaoping; Hou Wenyi

    2006-01-01

    In this paper, we investigate effects of vacancy defects on fracture of carbon nanotubes and carbon nanotube/aluminum composites. Our studies show that even a one-atom vacancy defect can dramatically reduce the failure stresses and strains of carbon nanotubes. Consequently, nanocomposites, in which vacancy-defected nanotubes are embedded, exhibit different characteristics from those in which pristine nanotubes are embedded. It has been found that defected nanotubes with a small volume fraction cannot reinforce but instead weaken nanocomposite materials. Although a large volume fraction of defected nanotubes can slightly increase the failure stresses of nanocomposites, the failure strains of nanocomposites are always decreased

  19. Electrical conductivity of metal–carbon nanotube structures

    Indian Academy of Sciences (India)

    The electrical properties of asymmetric metal–carbon nanotube (CNT) structures have been studied using density functional theory and non-equilibrium Green's function method with Atomistix tool kit. The models with asymmetric metal contacts and carbon nanotube bear resemblance to experimental set-ups. The study ...

  20. Modifying the electronic and optical properties of carbon nanotubes

    Science.gov (United States)

    Kinder, Jesse M.

    The intrinsic electronic and optical properties of carbon nanotubes make them promising candidates for circuit elements and LEDs in nanoscale devices. However, applied fields and interactions with the environment can modify these intrinsic properties. This dissertation is a theoretical study of perturbations to an ideal carbon nanotube. It illustrates how transport and optical properties of carbon nanotubes can be adversely affected or intentionally modified by the local environment. The dissertation is divided into three parts. Part I analyzes the effect of a transverse electric field on the single-electron energy spectrum of semiconducting carbon nanotubes. Part II analyzes the effect of the local environment on selection rules and decay pathways relevant to dark excitons. Part III is a series of 26 appendices. Two different models for a transverse electric field are introduced in Part I. The first is a uniform field perpendicular to the nanotube axis. This model suggests the field has little effect on the band gap until it exceeds a critical value that can be tuned with strain or a magnetic field. The second model is a transverse field localized to a small region along the nanotube axis. The field creates a pair of exponentially localized bound states but has no effect on the band gap for particle transport. Part II explores the physics of dark excitons in carbon nanotubes. Two model calculations illustrate the effect of the local environment on allowed optical transitions and nonradiative recombination pathways. The first model illustrates the role of inversion symmetry in the optical spectrum. Broken inversion symmetry may explain low-lying peaks in the exciton spectrum of boron nitride nanotubes and localized photoemission around impurities and interfaces in carbon nanotubes. The second model in Part II suggests that free charge carriers can mediate an efficient nonradiative decay process for dark excitons in carbon nanotubes. The appendices in Part III

  1. Aligned carbon nanotubes. Physics, concepts, fabrication and devices

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng; Lan, Yucheng [Boston College, Chestnut Hill, MA (United States). Dept. of Physics; Wang, Yang [South China Normal Univ. Guangzhou (China). Inst. for Advanced Materials

    2013-07-01

    This book gives a survey of the physics and fabrication of carbon nanotubes and their applications in optics, electronics, chemistry and biotechnology. It focuses on the structural characterization of various carbon nanotubes, fabrication of vertically or parallel aligned carbon nanotubes on substrates or in composites, physical properties for their alignment, and applications of aligned carbon nanotubes in field emission, optical antennas, light transmission, solar cells, chemical devices, bio-devices, and many others. Major fabrication methods are illustrated in detail, particularly the most widely used PECVD growth technique on which various device integration schemes are based, followed by applications such as electrical interconnects, nanodiodes, optical antennas, and nanocoax solar cells, whereas current limitations and challenges are also be discussed to lay the foundation for future developments.

  2. Electrostatic sensing and electrochemistry with single carbon nanotubes

    NARCIS (Netherlands)

    Heller, I.

    2009-01-01

    This thesis describes the experimental study of devices based on single carbon nanotubes in the context of (bio)sensing in aqueous solutions. Carbon nanotubes are cylindrical molecules of sp2- carbon, about one nanometer in diameter and typically several micrometers long, which have semiconducting

  3. Electrostrictive deformations in small carbon clusters, hydrocarbon molecules, and carbon nanotubes

    International Nuclear Information System (INIS)

    Cabria, I.; Lopez, M. J.; Alonso, J. A.; Amovilli, C.; March, N. H.

    2006-01-01

    The electrostrictive response of small carbon clusters, hydrocarbon molecules, and carbon nanotubes is investigated using the density functional theory. For ringlike carbon clusters, one can get insight on the deformations induced by an electric field from a simple two-dimensional model in which the positive charge of the carbon ions is smeared out in a circular homogeneous line of charge and the electronic density is calculated for a constant applied electric field within a two-dimensional Thomas-Fermi method. According to the Hellmann-Feynman theorem, this model predicts, for fields of about 1 V/A ring , only a small elongation of the ring clusters in the direction of the electric field. Full three-dimensional density functional calculations with an external electric field show similar small deformations in the ring carbon clusters compared to the simple model. The saturated benzene and phenanthrene hydrocarbon molecules do not experience any deformation, even under the action of relatively intense (1 V/A ring ) electric fields. In contrast, finite carbon nanotubes experience larger elongations (∼2.9%) induced by relatively weak (0.1 V/A ring ) applied electric fields. Both C-C bond length elongation and the deformation of the honeycomb structure contribute equally to the nanotube elongation. The effect of the electric field in hydrogen terminated nanotubes is reduced with respect to the nanotubes with dangling bonds in the edges

  4. Preparation of carbon nanotubes from vacuum pyrolysis of polycarbosilane

    International Nuclear Information System (INIS)

    Jou, S.; Hsu, C.K.

    2004-01-01

    Carbon nanotubes (CNTs) were synthesized by vacuum pyrolysis of two types of polycarbosilane (PCS) with iron nano-particles between 800 and 1100 deg. C. Straight nanotubes were obtained from low molecular weight (990 g/mol) PCS whereas curled nanotubes were derived from medium molecular weight (1290 g/mol) PCS. Diameters of these straight and curled nanotubes were between 5 and 20 nm. The mechansim of condensed phase growth of carbon nanotubes was discussed. Electron emission capability of these carbon nanotubes increased with their pyrolyzing temperature. The electric fields required to emit a current density of 10 -2 A/cm 2 from the straight nanotubes being pyrolyzed at 800, 900, 1000, and 1100 deg. C were 1.17, 0.73, 0.67, and 0.33 V/μm, respectively

  5. Properties of single-walled carbon nanotube-based aerogels as a function of nanotube loading

    International Nuclear Information System (INIS)

    Worsley, Marcus A.; Pauzauskie, Peter J.; Kucheyev, Sergei O.; Zaug, Joseph M.; Hamza, Alex V.; Satcher, Joe H.; Baumann, Theodore F.

    2009-01-01

    Here, we present the synthesis and characterization of low-density single-walled carbon nanotube-based aerogels (SWNT-CA). Aerogels with varying nanotube loading (0-55 wt.%) and density (20-350 mg cm -3 ) were fabricated and characterized by four-probe method, electron microscopy, Raman spectroscopy and nitrogen porosimetry. Several properties of the SWNT-CAs were highly dependent upon nanotube loading. At nanotube loadings of 55 wt.%, shrinkage of the aerogel monoliths during carbonization and drying was almost completely eliminated. Electrical conductivities are improved by an order of magnitude for the SWNT-CA (55 wt.% nanotubes) compared to those of foams without nanotubes. Surface areas as high as 184 m 2 g -1 were achieved for SWNT-CAs with greater than 20 wt.% nanotube loading.

  6. Thermophoretic Motion of Water Nanodroplets confined inside Carbon Nanotubes

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Koumoutsakos, Petros

    2009-01-01

    We study the thermophoretic motion of water nanodroplets confined inside carbon nanotubes using molecular dynamics simulations. We find that the nanodroplets move in the direction opposite the imposed thermal gradient with a terminal velocity that is linearly proportional to the gradient....... The translational motion is associated with a solid body rotation of the water nanodroplet coinciding with the helical symmetry of the carbon nanotube. The thermal diffusion displays a weak dependence on the wetting of the water-carbon nanotube interface. We introduce the use of the Moment Scaling Spectrum (MSS......) in order to determine the characteristics of the motion of the nanoparticles inside the carbon nanotube. The MSS indicates that affinity of the nanodroplet with the walls of the carbon nanotubes is important for the isothermal diffusion, and hence for the Soret coefficient of the system....

  7. Reactor scale modeling of multi-walled carbon nanotube growth

    International Nuclear Information System (INIS)

    Lombardo, Jeffrey J.; Chiu, Wilson K.S.

    2011-01-01

    As the mechanisms of carbon nanotube (CNT) growth becomes known, it becomes important to understand how to implement this knowledge into reactor scale models to optimize CNT growth. In past work, we have reported fundamental mechanisms and competing deposition regimes that dictate single wall carbon nanotube growth. In this study, we will further explore the growth of carbon nanotubes with multiple walls. A tube flow chemical vapor deposition reactor is simulated using the commercial software package COMSOL, and considered the growth of single- and multi-walled carbon nanotubes. It was found that the limiting reaction processes for multi-walled carbon nanotubes change at different temperatures than the single walled carbon nanotubes and it was shown that the reactions directly governing CNT growth are a limiting process over certain parameters. This work shows that the optimum conditions for CNT growth are dependent on temperature, chemical concentration, and the number of nanotube walls. Optimal reactor conditions have been identified as defined by (1) a critical inlet methane concentration that results in hydrogen abstraction limited versus hydrocarbon adsorption limited reaction kinetic regime, and (2) activation energy of reaction for a given reactor temperature and inlet methane concentration. Successful optimization of a CNT growth processes requires taking all of those variables into account.

  8. The Mossbauer spectra of carbon nanotubes synthesize using ferrite catalyst

    International Nuclear Information System (INIS)

    Zhang Haiyan; Lin Jiapeng; Peng Zuxiong; Zeng Guoxun; Pang Jinshan; Chen Yiming

    2009-01-01

    The ferrite powder with honeycombed structure obtained by chemical combustion was used as catalyst to synthesize multi-walled carbon nanotubes by chemical vapor deposition. The magnetic components and characters of the the carbon nanotubes synthesized were investigated by X-ray diffraction (XRD), Mossbauer spectra and vibrating-sample magnetometer (VSM). The ferric components of the carbon nanotubes samples can be identified by Mossbauer spectra. The Mossbauer spectra of carbon nanotubes sample after purification contains two ferromagnetic sextet components corresponding to α-Fe species and Fe 3 C (cementite) species. While the Mossbauer spectra of the carbon nanotubes sample before purification contains three ferromagnetic sextet components corresponding to α-Fe species, Fe 3 C species and γ-Fe 2 O 3 . The saturation magnetization intensity Ms of carbon nanotubes sample after purification is decreased from 46.61 to 2.94 emu/g, but the coercive force increasd and reached 328Oe.

  9. Fluorescently labeled bionanotransporters of nucleic acid based on carbon nanotubes

    International Nuclear Information System (INIS)

    Novopashina, D.S.; Apartsin, E.K.; Venyaminova, A.G.

    2012-01-01

    We propose an approach to the design of a new type of hybrids of oligonucleotides with fluorescein-functionalized single-walled carbon nanotubes. The approach is based on stacking interactions of functionalized nanotubes with pyrene residues in conjugates of oligonucleotides. The amino- and fluorescein-modified single walled carbon nanotubes are obtained, and their physico-chemical properties are investigated. The effect of the functionalization type of carbon nanotubes on the efficacy of the sorption of pyrene conjugates of oligonucleotides was examined. The proposed noncovalent hybrids of fluorescein-labeled carbon nanotubes with oligonucleotides may be used for the intracellular transport of functional nucleic acids.

  10. Microstructural investigations of zirconium oxide—on core–shell structure of carbon nanotubes

    International Nuclear Information System (INIS)

    Pal, Kaushik; Kang, Dong Jin; Kim, Jin Kuk

    2011-01-01

    Single-walled carbon nanotubes and multi-walled carbon nanotubes/ZrO 2 nanocomposites were obtained by isothermal hydrolyzing and chemical precipitation method for both the carbon nanotubes. The coating was taken place by dispersion of both the carbon nanotubes in ZrOCl 2 ·8H 2 O aqueous solution. However, a highly conformal and uniform monoclinic zirconia coating was deposited on multi-walled carbon nanotubes rather than single-walled carbon nanotubes by this new and simple method. Also, it has been observed that the thickness of the individual carbon nanotube after zirconia coating was increased by isothermal hydrolyzing process rather than traditional chemical precipitation method and it has been confirmed by high-resolution transmission electron microscopy study.

  11. Selective growth of carbon nanotube on silicon substrates

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiao-ping; H. ABE; T. SHIMIZU; A. ANDO; H. TOKUMOT; ZHU Shen-ming; ZHOU Hao-shen

    2006-01-01

    The carbon nanotube (CNT) growth of iron oxide-deposited trench-patterns and the locally-ordered CNT arrays on silicon substrate were achieved by simple thermal chemical vapor deposition(STCVD) of ethanol vapor. The CNTs were uniformly synthesized with good selectivity on trench-patterned silicon substrates. This fabrication process is compatible with currently used semiconductor-processing technologies,and the carbon-nanotube fabrication process can be widely applied for the development of electronic devices using carbon-nanotube field emitters as cold cathodes and can revolutionize the area of field-emitting electronic devices. The site-selective growth of CNT from an iron oxide nanoparticle catalyst patterned were also achieved by drying-mediated self-assembly technique. The present method offers a simple and cost-effective method to grow carbon nanotubes with self-assembled patterns.

  12. A doped activated carbon prepared from polyaniline for high performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Limin; Liu, Enhui; Li, Jian; Yang, Yanjing; Shen, Haijie; Huang, Zhengzheng; Xiang, Xiaoxia; Li, Wen [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China)

    2010-03-01

    A novel doped activated carbon has been prepared from H{sub 2}SO{sub 4}-doped polyaniline which is prepared by the oxypolymerization of aniline. The morphology, surface chemical composition and surface area of the carbon have been investigated by scanning electron microscope, X-ray photoelectron spectroscopy and Brunaner-Emmett-Teller measurement, respectively. Electrochemical properties of the doped activated carbon have been studied by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6 mol l{sup -1} KOH. The specific capacitance of the carbon is as high as 235 F g{sup -1}, the specific capacitance hardly decreases at a high current density 11 A g{sup -1} after 10,000 cycles, which indicates that the carbon possesses excellent cycle durability and may be a promising candidate for supercapacitors. (author)

  13. Carbon nanotubes in neuroregeneration and repair.

    Science.gov (United States)

    Fabbro, Alessandra; Prato, Maurizio; Ballerini, Laura

    2013-12-01

    In the last decade, we have experienced an increasing interest and an improved understanding of the application of nanotechnology to the nervous system. The aim of such studies is that of developing future strategies for tissue repair to promote functional recovery after brain damage. In this framework, carbon nanotube based technologies are emerging as particularly innovative tools due to the outstanding physical properties of these nanomaterials together with their recently documented ability to interface neuronal circuits, synapses and membranes. This review will discuss the state of the art in carbon nanotube technology applied to the development of devices able to drive nerve tissue repair; we will highlight the most exciting findings addressing the impact of carbon nanotubes in nerve tissue engineering, focusing in particular on neuronal differentiation, growth and network reconstruction. © 2013.

  14. Layered growth of aligned carbon nanotube arrays by pyrolysis

    International Nuclear Information System (INIS)

    Zhang Hongrui; Liang Erjun; Ding Pei; Chao Mingju

    2003-01-01

    Based on the study of reaction temperature and duration of the growth of aligned carbon nanotube arrays, layered aligned multi-wall carbon nanotube (MWNT) films grown directly around a reaction quartz tube in an Ar/H 2 atmosphere by pyrolysis of ferrocene in xylene in a suitable reaction furnace with the help of cobalt powder. The scanning electron microscope and transmission electron microscope images indicated that the obtained arrays were composed of many separated layers with MWNTs. The reaction temperature significantly influenced the alignment of the MWNTs, and an appropriate reaction temperature range for growth was 800-900 deg. C. The diameter of the carbon nanotube increased from 46 to 75 nm with the growth temperature. Besides temperature, the reaction duration influenced the length of the well-aligned carbon nanotubes. There was no significant relation between the growth time and the diameter of the carbon nanotubes in the array

  15. Carbon Nanotube Based Molecular Electronics

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1998-01-01

    Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.

  16. Carbon Nanotubes as Optical Sensors in Biomedicine.

    Science.gov (United States)

    Farrera, Consol; Torres Andón, Fernando; Feliu, Neus

    2017-11-28

    Single-walled carbon nanotubes (SWCNTs) have become potential candidates for a wide range of medical applications including sensing, imaging, and drug delivery. Their photophysical properties (i.e., the capacity to emit in the near-infrared), excellent photostability, and fluorescence, which is highly sensitive to the local environment, make SWCNTs promising optical probes in biomedicine. In this Perspective, we discuss the existing strategies for and challenges of using carbon nanotubes for medical diagnosis based on intracellular sensing as well as discuss also their biocompatibility and degradability. Finally, we highlight the potential improvements of this nanotechnology and future directions in the field of carbon nanotubes for biomedical applications.

  17. Four- and eight-membered rings carbon nanotubes: A new class of carbon nanomaterials

    Science.gov (United States)

    Li, Fangfang; Lu, Junzhe; Zhu, Hengjiang; Lin, Xiang

    2018-06-01

    A new class of carbon nanomaterials composed of alternating four- and eight-membered rings is studied by density functional theory (DFT), including single-walled carbon nanotubes (SWCNTs) double-walled carbon nanotubes (DWCNTs) and triple-walled CNTs (TWCNTs). The analysis of geometrical structure shows that carbon atoms' hybridization in novel carbon tubular clusters (CTCs) and the corresponding carbon nanotubes (CNTs) are both sp2 hybridization; The thermal properties exhibit the high stability of these new CTCs. The results of energy band and density of state (DOS) indicate that the electronic properties of CNTs are independent of their diameter, number of walls and chirality, exhibit obvious metal properties.

  18. Carbon nanotube conditioning: ab initio simulations of the effect of defects and doping on the electronic properties of carbon nanotube systems.

    Science.gov (United States)

    Soto, Matias; Barrera, Enrique

    Using carbon nanotubes for electrical conduction applications at the macroscale has proven to be a difficult task, mainly, due to defects and impurities present, and lack of uniform electronic properties in synthesized carbon nanotube bundles. Some researchers have suggested that growing only metallic armchair nanotubes and arranging them with an ideal contact length could lead to the ultimate electrical conductivity; however, such recipe presents too high of a cost to pay. A different route and the topic of this work is to learn to manage the defects, impurities, and the electronic properties of carbon nanotubes present, so that the electrical conduction of a bundle or even wire may be enhanced. We used density functional theory calculations to study the effect of defects and doping on the electronic structure of metallic, semi-metal and semiconducting carbon nanotubes in order to gain a clear picture of their properties. Additionally, using dopants to increase the conductance across a junction between two carbon nanotubes was studied for different configurations. Finally, interaction potentials obtained via first-principles calculations were generalized by developing mathematical models for the purpose of running simulations at a larger length scale using molecular dynamics. Partial funding was received from CONACyT Scholarship 314419.

  19. Carbon Nanotube Conditioning: Ab Initio Simulations of the Effect of Interwall Interaction, Defects And Doping on the Electronic Properties of Carbon Nanotubes

    Science.gov (United States)

    Castillo, Matias Soto

    Using carbon nanotubes for electrical conduction applications at the macroscale has been shown to be a difficult task for some time now, mainly, due to defects and impurities present, and lack of uniform electronic properties in synthesized carbon nanotube bundles. Some researchers have suggested that growing only metallic armchair nanotubes and arranging them with an ideal contact length could lead to the ultimate electrical conductivity; however, such recipe presents too high of a cost to pay. A different route is to learn to manage the defects, impurities, and the electronic properties of carbon nanotubes present in bundles grown by current state-of-the-art reactors, so that the electrical conduction of a bundle or even wire may be enhanced. In our work, we have used first-principles density functional theory calculations to study the effect of interwall interaction, defects and doping on the electronic structure of metallic, semi-metal and semiconducting single- and double-walled carbon nanotubes in order to gain a clear picture of their properties. The electronic band gap for a range of zigzag single-walled carbon nanotubes with chiral indices (5,0) - (30,0) was obtained. Their properties were used as a stepping stone in the study of the interwall interaction in double-walled carbon nanotubes, from which it was found that the electronic band gap depends on the type of inner and outer tubes, average diameter, and interwall distance. The effect of vacancy defects was also studied for a range of single-walled carbon nanotubes. It was found that the electronic band gap is reduced for the entire range of zigzag carbon nanotubes, even at vacancy defects concentrations of less than 1%. Finally, interaction potentials obtained via first-principles calculations were generalized by developing mathematical models for the purpose of running simulations at a larger length scale using molecular dynamics of the adsorption doping of diatomic iodine. An ideal adsorption site

  20. Interaction of multiwalled carbon nanotube produces structural ...

    African Journals Online (AJOL)

    Abstract. Multiwalled carbon nanotube (MWCNT) has been found to produce structural changes in Calf Thymus-DNA (CT-DNA). The interaction or binding of the multi-walled carbon nanotubes (MWCNT) was investigated in order to discover if it brings about any significant changes of the DNA double helix using CD spectra ...

  1. Local gate control in carbon nanotube quantum devices

    Science.gov (United States)

    Biercuk, Michael Jordan

    This thesis presents transport measurements of carbon nanotube electronic devices operated in the quantum regime. Nanotubes are contacted by source and drain electrodes, and multiple lithographically-patterned electrostatic gates are aligned to each device. Transport measurements of device conductance or current as a function of local gate voltages reveal that local gates couple primarily to the proximal section of the nanotube, hence providing spatially localized control over carrier density along the nanotube length. Further, using several different techniques we are able to produce local depletion regions along the length of a tube. This phenomenon is explored in detail for different contact metals to the nanotube. We utilize local gating techniques to study multiple quantum dots in carbon nanotubes produced both by naturally occurring defects, and by the controlled application of voltages to depletion gates. We study double quantum dots in detail, where transport measurements reveal honeycomb charge stability diagrams. We extract values of energy-level spacings, capacitances, and interaction energies for this system, and demonstrate independent control over all relevant tunneling rates. We report rf-reflectometry measurements of gate-defined carbon nanotube quantum dots with integrated charge sensors. Aluminum rf-SETs are electrostatically coupled to carbon nanotube devices and detect single electron charging phenomena in the Coulomb blockade regime. Simultaneous correlated measurements of single electron charging are made using reflected rf power from the nanotube itself and from the rf-SET on microsecond time scales. We map charge stability diagrams for the nanotube quantum dot via charge sensing, observing Coulomb charging diamonds beyond the first order. Conductance measurements of carbon nanotubes containing gated local depletion regions exhibit plateaus as a function of gate voltage, spaced by approximately 1e2/h, the quantum of conductance for a single

  2. An improved amperometric L-lactate biosensor based on covalent immobilization of microbial lactate oxidase onto carboxylated multiwalled carbon nanotubes/copper nanoparticles/polyaniline modified pencil graphite electrode.

    Science.gov (United States)

    Dagar, Kusum; Pundir, C S

    2017-01-01

    An improved amperometric l-lactate biosensor was constructed based on covalent immobilization of lactate oxidase (LOx) from Pediococcus species onto carboxylated multiwalled carbon nanotubes (cMWCNT)/copper nanoparticles (CuNPs)/polyaniline (PANI) hybrid film electrodeposited on the surface of a pencil graphite electrode (PGE). The enzyme electrode was characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS), while CuNPs synthesized by chemical reduction method, were characterized by transmission electron microscopy (TEM), UV spectrascopy and X-ray diffraction (XRD). The biosensor showed maximum response within 5s at pH 8.0 in 0.05M sodium phosphate buffer and 37°C, when operated at 20mVs -1 . The biosensor had a detection limit of 0.25μM with a wide working range between 1μM-2500μM. The biosensor was employed for measurement of l-lactic acid level in plasma of apparently healthy and diseased persons. Analytical recovery of added lactic acid in plasma was 95.5%. Within- and between-batch coefficients of variations were 6.24% and 4.19% respectively. There was a good correlation (R 2 =0.97) between plasma lactate values as measured by standard enzymatic spectrophotometric method and the present biosensor. The working enzyme electrode was used 180 times over a period of 140 days, when stored at 4°C. Copyright © 2016. Published by Elsevier Inc.

  3. Freestanding bucky paper with high strength from multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Li, Zhonglai; Xu, Ju; O'Byrne, Justin P.; Chen, Lan; Wang, Kaixue; Morris, Michael A.; Holmes, Justin D.

    2012-01-01

    Bucky papers have been investigated by some research groups, however, due to different qualities of carbon nanotubes used, various results of strength and electronic properties were reported in the literatures. In this article, the effects of carbon nanotubes synthesized over different catalysts on the qualities of bucky papers were systemically investigated. Multi-wall carbon nanotubes were synthesized over a series of MgO supported catalysts with different weight ratios of Mo and Co. As the ratios of Mo/Co in the catalysts were increased from 0 to 3, the yields of carbon nanotubes were enhanced from 7 wt% to 400 wt%. However, the yield enhancement of carbon nanotubes was achieved at the expense of higher proportion of structural defects within carbon nanotubes, which has been proved by Raman spectroscopy and thermogravimetry analysis. It was demonstrated that the tensile strength of bucky paper composed of numerous MCNTs bundles strongly depends on the structure of carbon nanotubes used. By optimizing reaction conditions, a bucky paper with high strain up to 15.36 MPa and electrical conductivity of 61.17 S cm −1 was obtained by Supercritical Fluid (SCF) drying technique. -- Highlights: ► Multi-wall carbon nanotube bucky paper. ► Structural defects of carbon nanotubes. ► CoMo catalyst. ► Tensile strength of bucky paper.

  4. Application of carbon nanotubes flexible strain sensor in smart textiles

    Directory of Open Access Journals (Sweden)

    Qiong CHENG

    2017-10-01

    Full Text Available Smart textiles have not only the necessary functions of daily wear, but also the intelligence. The focus of the current textile materials research is the selection of flexible material. For flexible materials, carbon material is one of the ideal materials for preparing flexible strain gauges. The application of flexible strain sensor prepared by carbon nanotubes as a flexible material in smart textiles is the research content. The research status of carbon nanotubes flexible strain sensor is introduced from the aspects of the structure, properties and application. The characteristics and functions of flexible strain gages prepared with carbon nanotube fibers and carbon nanotube films as flexible materials are discussed in terms of selection, preparation method, performance test and application. At the same time, the advantages and disadvantages of the flexible strain sensor of carbon nanotubes are reviewed from the aspects of preparation difficulty, production cost and practical application effect. High sensitivity with high strain will be a key research direction for carbon nanotube flexible strain sensors.

  5. Rotational actuator of motor based on carbon nanotubes

    Science.gov (United States)

    Zettl, Alexander K.; Fennimore, Adam M.; Yuzvinsky, Thomas D.

    2008-11-18

    A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.

  6. Filled carbon nanotubes in biomedical imaging and drug delivery.

    Science.gov (United States)

    Martincic, Markus; Tobias, Gerard

    2015-04-01

    Carbon nanotubes have been advocated as promising candidates in the biomedical field in the areas of diagnosis and therapy. In terms of drug delivery, the use of carbon nanotubes can overcome some limitations of 'free' drugs by improving the formulation of poorly water-soluble drugs, allowing targeted delivery and even enabling the co-delivery of two or more drugs for combination therapy. Two different approaches are currently being explored for the delivery of diagnostic and therapeutic agents by carbon nanotubes, namely attachment of the payload to the external sidewalls or encapsulation into the inner cavities. Although less explored, the latter confers additional stability to the chosen diagnostic or therapeutic agents, and leaves the backbone structure of the nanotubes available for its functionalization with dispersing and targeting moieties. Several drug delivery systems and diagnostic agents have been developed in the last years employing the inner tubular cavities of carbon nanotubes. The research discussed in this review focuses on the use of carbon nanotubes that contain in their interior drug molecules and diagnosis-related compounds. The approaches employed for the development of such nanoscale vehicles along with targeting and releasing strategies are discussed. The encapsulation of both biomedical contrast agents and drugs inside carbon nanotubes is further expanding the possibilities to allow an early diagnosis and treatment of diseases.

  7. Synthesis of nano-carbon (nanotubes, nanofibres, graphene ...

    Indian Academy of Sciences (India)

    In the present study, we report the synthesis of carbon nanotubes (CNTs) using a new natural precursor: castor oil. The CNTs were synthesized by spray pyrolysis of castor oil–ferrocene solution at 850°C under an Ar atmosphere. We also report the synthesis of carbon nitrogen (C–N) nanotubes using castor ...

  8. Process for derivatizing carbon nanotubes with diazonium species and compositions thereof

    Science.gov (United States)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2011-01-01

    Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.

  9. Spontaneous and controlled-diameter synthesis of single-walled and few-walled carbon nanotubes

    Science.gov (United States)

    Inoue, Shuhei; Lojindarat, Supanat; Kawamoto, Takahiro; Matsumura, Yukihiko; Charinpanitkul, Tawatchai

    2018-05-01

    In this study, we explored the spontaneous and controlled-diameter growth of carbon nanotubes. We evaluated the effects of catalyst density, reduction time, and a number of catalyst coating on the substrate (for multi-walled carbon nanotubes) on the diameter of single-walled carbon nanotubes and the number of layers in few-walled carbon nanotubes. Increasing the catalyst density and reduction time increased the diameters of the carbon nanotubes, with the average diameter increasing from 1.05 nm to 1.86 nm for single-walled carbon nanotubes. Finally, we succeeded in synthesizing a significant double-walled carbon nanotube population of 24%.

  10. Bulk Cutting of Carbon Nanotubes Using Electron Beam Irradiation

    Science.gov (United States)

    Ziegler, Kirk J. (Inventor); Rauwald, Urs (Inventor); Hauge, Robert H. (Inventor); Schmidt, Howard K. (Inventor); Smalley, Richard E. (Inventor); Kittrell, W. Carter (Inventor); Gu, Zhenning (Inventor)

    2013-01-01

    According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm.

  11. Photoresponse of hybrids made of carbon nanotubes and CdTe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zebli, Bernd; Vieyra, Hugo A.; Kotthaus, Joerg P. [Department fuer Physik and Center for NanoScience (CeNS), Ludwig-Maximilians-Universitaet Muenchen, Geschwister-Scholl-Platz 1, 80539 Munich (Germany); Carmeli, Itai [Department of Chemistry and Biochemistry, Tel-Aviv University, Tel-Aviv 69978 (Israel); Hartschuh, Achim [Department fuer Chemie, Physikalische Chemie, Butenandtstr. 5-13 E, 81377 Munich (Germany); Holleitner, Alexander W. [Walter-Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany)

    2008-07-01

    We observe that the photoresponse of single-walled carbon nanotubes can be adjusted by the absorption characteristics of colloidal CdTe nanocrystals, which are bound to the side-walls of the carbon nanotubes via molecular recognition. To this end, the hybrid systems are characterized using charge transport measurements under resonant optical excitation of the carbon nanotubes and nanocrystals, respectively. We investigate the photoresponse of both ensembles of hybrid systems and single carbon-nanotube-nanocrystal-hybrids. The data suggest a bolometrically induced increase of the current in the carbon nanotubes, which is due to photon absorption in the nanocrystals.

  12. Release characteristics of selected carbon nanotube polymer composites

    Science.gov (United States)

    Multi-walled carbon nanotubes (MWCNTs) are commonly used in polymer formulations to improve strength, conductivity, and other attributes. A developing concern is the potential for carbon nanotube polymer nanocomposites to release nanoparticles into the environment as the polymer ...

  13. Etching processes of transparent carbon nanotube thin films using laser technologies

    International Nuclear Information System (INIS)

    Lin, H.K.; Lin, R.C.; Li, C.H.

    2010-01-01

    Carbon nanotubes (CNTs) have potential as a transparent conductive material with good mechanical and electrical properties. However, carbon nanotube thin film deposition and etching processes are very difficult to pattern the electrode. In this study, transparent CNT film with a binder is coated on a PET flexible substrate. The transmittance and sheet resistance of carbon nanotube film are 84% and 1000 Ω/□, respectively. The etching process of carbon nanotube film on flexible substrates was investigated using 355 nm and 1064 nm laser sources. Experimental results show that carbon nanotube film can be ablated using laser technology. With the 355 nm UV laser, the minimum etched line width was 20 μm with a low amount of recast material of the ablated sections. The optimal conditions of laser ablation were determined for carbon nanotube film.

  14. Advanced ceramics reinforced with carbon nanotubes for ballistic application

    International Nuclear Information System (INIS)

    Couto, Carlos Alberto de Oliveira; Passador, Fabio Roberto

    2016-01-01

    Full text: The carbon nanotubes have excellent mechanical properties, the elastic modulus is around 1TPa, next to the diamond and the mechanical strength is 10 to 100 times higher than steel, moreover they are self-lubricating, which facilitates the ceramic composites compression process. The insertion of carbon nanotubes tends to improve the fracture toughness of ceramic composites, but is necessary to obtain a good dispersion in the ceramic matrix. The objective of this work is to develop a tough and tenacious ceramics for ballistic application, using structural ceramics of alumina and tetragonal zirconia and evaluate the influence of the addition of carbon nanotubes (multilayer) on the mechanical properties of the composite. The carbon nanotubes were functionalized with carboxylic groups by nitric acid oxidation reaction. To ensure a homogeneous distribution of the carbon nanotubes in the matrix of alumina/zirconia, surfactants were used: sodium dodecyl sulphate + gum arabic in the amount of 50% by mass of carbon nanotubes. Ceramic powders were prepared with pure alumina and alumina + 20% by mass of tetragonal zirconia/yttria, with and without addition of carbon nanotubes at concentrations of 0.1 and 0.5% by mass. The samples were uniaxially and isostatically pressed at 300 MPa and sintered in a conventional oven at 1500 °C for two hours and a heating rate of 5 °C/min, aimed at commercial application. The morphology of ceramic powders were characterized by SEM and XRD. The mechanical properties of the sintered samples were evaluated by flexural bending at three points, Vickers microhardness and fracture toughness by single edge-notched beam (SENB). The use of carbon nanotubes in the ceramic composite caused a decrease in hardness and an increase in fracture toughness, with great potential for ballistic applications. (author)

  15. Advanced ceramics reinforced with carbon nanotubes for ballistic application

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Carlos Alberto de Oliveira; Passador, Fabio Roberto, E-mail: carlos.couto.sjc@gmail.com [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: The carbon nanotubes have excellent mechanical properties, the elastic modulus is around 1TPa, next to the diamond and the mechanical strength is 10 to 100 times higher than steel, moreover they are self-lubricating, which facilitates the ceramic composites compression process. The insertion of carbon nanotubes tends to improve the fracture toughness of ceramic composites, but is necessary to obtain a good dispersion in the ceramic matrix. The objective of this work is to develop a tough and tenacious ceramics for ballistic application, using structural ceramics of alumina and tetragonal zirconia and evaluate the influence of the addition of carbon nanotubes (multilayer) on the mechanical properties of the composite. The carbon nanotubes were functionalized with carboxylic groups by nitric acid oxidation reaction. To ensure a homogeneous distribution of the carbon nanotubes in the matrix of alumina/zirconia, surfactants were used: sodium dodecyl sulphate + gum arabic in the amount of 50% by mass of carbon nanotubes. Ceramic powders were prepared with pure alumina and alumina + 20% by mass of tetragonal zirconia/yttria, with and without addition of carbon nanotubes at concentrations of 0.1 and 0.5% by mass. The samples were uniaxially and isostatically pressed at 300 MPa and sintered in a conventional oven at 1500 °C for two hours and a heating rate of 5 °C/min, aimed at commercial application. The morphology of ceramic powders were characterized by SEM and XRD. The mechanical properties of the sintered samples were evaluated by flexural bending at three points, Vickers microhardness and fracture toughness by single edge-notched beam (SENB). The use of carbon nanotubes in the ceramic composite caused a decrease in hardness and an increase in fracture toughness, with great potential for ballistic applications. (author)

  16. Preparation and electrocatalytic property of WC/carbon nanotube composite

    International Nuclear Information System (INIS)

    Li Guohua; Ma Chunan; Tang Junyan; Sheng Jiangfeng

    2007-01-01

    Tungsten carbide/carbon nanotube composite was prepared by surface decoration and in situ reduction-carbonization. The samples were characterized by XRD, SEM, EDS, TEM, HRTEM and BET, respectively. The XRD results show that the sample is composed of carbon nanotube, tungsten carbide and tungsten oxide. The EDS results show that the distribution of tungsten oxide is consistent with that of tungsten carbide. SEM, TEM and HRTEM results show that the tungsten carbide nanoparticle with irregular granule grows on the outside surface of carbon nanotube homogenously. The electrocatalytic activity of the sample for p-nitrophenol reduction was tested by a powder microelectrode in a basic solution. The results show that the electrocatalytic activity of the sample is higher than that of granular tungsten carbide, hollow globe tungsten carbide with mesoporosity and carbon nanotube purified. The improvement of the electrocatalytic activity of the sample can be attributed to its components and composite structure. These results indicate that tungsten carbide/carbon nanotube composite is one of the effective ways to improve the electrocatalytic activity of tungsten carbide

  17. Carbon nanotubes for thermal interface materials in microelectronic packaging

    Science.gov (United States)

    Lin, Wei

    As the integration scale of transistors/devices in a chip/system keeps increasing, effective cooling has become more and more important in microelectronics. To address the thermal dissipation issue, one important solution is to develop thermal interface materials with higher performance. Carbon nanotubes, given their high intrinsic thermal and mechanical properties, and their high thermal and chemical stabilities, have received extensive attention from both academia and industry as a candidate for high-performance thermal interface materials. The thesis is devoted to addressing some challenges related to the potential application of carbon nanotubes as thermal interface materials in microelectronics. These challenges include: 1) controlled synthesis of vertically aligned carbon nanotubes on various bulk substrates via chemical vapor deposition and the fundamental understanding involved; 2) development of a scalable annealing process to improve the intrinsic properties of synthesized carbon nanotubes; 3) development of a state-of-art assembling process to effectively implement high-quality vertically aligned carbon nanotubes into a flip-chip assembly; 4) a reliable thermal measurement of intrinsic thermal transport property of vertically aligned carbon nanotube films; 5) improvement of interfacial thermal transport between carbon nanotubes and other materials. The major achievements are summarized. 1. Based on the fundamental understanding of catalytic chemical vapor deposition processes and the growth mechanism of carbon nanotube, fast synthesis of high-quality vertically aligned carbon nanotubes on various bulk substrates (e.g., copper, quartz, silicon, aluminum oxide, etc.) has been successfully achieved. The synthesis of vertically aligned carbon nanotubes on the bulk copper substrate by the thermal chemical vapor deposition process has set a world record. In order to functionalize the synthesized carbon nanotubes while maintaining their good vertical alignment

  18. Fabrication of Carbon Nanotube/SiO2and Carbon Nanotube/SiO2/Ag Nanoparticles Hybrids by Using Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Li Haiqing

    2009-01-01

    Full Text Available Abstract Based on plasma-treated single wall carbon nanotubes (SWCNTs, SWCNT/SiO2and thiol groups-functionalized SWCNT/SiO2hybrids have been fabricated through a sol–gel process. By means of thiol groups, Ag nanoparticles have been in situ synthesized and bonded onto the SiO2shell of SWCNT/SiO2in the absence of external reducing agent, resulting in the stable carbon nanotube/SiO2/Ag nanoparticles hybrids. This strategy provides a facile, low–cost, and green methodology for the creation of carbon nanotube/inorganic oxides-metal nanoparticles hybrids.

  19. A Carbon Nanotube Cable for a Space Elevator

    Science.gov (United States)

    Bochnícek, Zdenek

    2013-01-01

    In this paper the mechanical properties of carbon nanotubes are discussed in connection with the possibility to use them for the construction of a space elevator. From the fundamental information about the structure of a carbon nanotube and the chemical bond between carbon atoms, Young's modulus and the ultimate tensile strength are…

  20. Aligned Carbon Nanotubes Array by DC Glow Plasma Etching for Supercapacitor

    Directory of Open Access Journals (Sweden)

    Yongfeng Luo

    2013-01-01

    Full Text Available To open the end of carbon nanotubes and make these ends connect with functional carboxyl group, aligned carbon nanotubes (CNTs arrays was etched by DC glow oxygen-argon plasma. With these open-ended carbon nanotubes array as electrode materials to build supercapacitor, we found that the capacity (32.2 F/g increased significantly than that of pure carbon nanotubes (6.7 F/g.

  1. New approach to synthesis of carbon nanotubes

    International Nuclear Information System (INIS)

    Ha, Jong Keun; Choi, Kyo Hong; Cho, Kwon Koo; Kim, Ki Won; Nam, Tae Hyun; Ahn, Hyo Jun; Ahn, Jou Hyun; Cho, Gyu Bong

    2007-01-01

    Carbon nanotubes (CNTs) have been synthesized through chemical vapor deposition in argon gas atmosphere using Fe-2.5%Mo alloyed nanoparticles as a catalyst and H 2 /CH 4 gas mixture as a reaction gas. Fe-2.5 wt.%Mo alloyed nanoparticles with average diameter of 7, 20, 45 and 85 nm are prepared by the chemical vapor condensation process using the pyrolysis of iron pentacarbonyl (Fe(CO) 5 ) and molybdenum hexacarbonyl (Mo(CO) 6 ). The morphologies of the CNTs are controlled by adjusting the nanoparticle size, reaction gas ratio and reaction temperature. With decreasing nanoparticle size under the same experimental conditions, the degree of crystalline perfection increases gradually and the morphologies of the carbon nanotubes vary from multi wall carbon nanotubes to single wall carbon nanotubes. Also, the ratio of reaction gas has an effect on the morphology and the degree of crystallinity of CNTs. In this work, it is suggested that morphology, diameter and degree of crystallinity of CNTs could be controlled by adjusting the reaction gas ratio, reaction temperature and catalyst size

  2. Synthesis of Carbon Nanotube (CNT Composite Membranes

    Directory of Open Access Journals (Sweden)

    Dusan Losic

    2010-12-01

    Full Text Available Carbon nanotubes are attractive approach for designing of new membranes for advanced molecular separation because of their unique transport properties and ability to mimic biological protein channels. In this work the synthetic approach for fabrication of carbon nanotubes (CNTs composite membranes is presented. The method is based on growth of multi walled carbon nanotubes (MWCNT using chemical vapour deposition (CVD on the template of nanoporous alumina (PA membranes. The influence of experimental conditions including carbon precursor, temperature, deposition time, and PA template on CNT growth process and quality of fabricated membranes was investigated. The synthesis of CNT/PA composites with controllable nanotube dimensions such as diameters (30–150 nm, and thickness (5–100 µm, was demonstrated. The chemical composition and morphological characteristics of fabricated CNT/PA composite membranes were investigated by various characterisation techniques including scanning electron microscopy (SEM, energy-dispersive x-ray spectroscopy (EDXS, high resolution transmission electron microscopy (HRTEM and x-ray diffraction (XRD. Transport properties of prepared membranes were explored by diffusion of dye (Rose Bengal used as model of hydrophilic transport molecule.

  3. Carbon nanotube stationary phases for microchip electrochromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Bøggild, Peter; Kutter, Jörg Peter

    , microfluidic devices with microfabricated carbon nanotube columns for electrochromatographic separations will be presented. The electrically conductive carbon nanotube layer has been patterned into hexoganol micropillars in order to support electroosmotic flow without forming gas bubbles from electrolysis......The use of nanomaterials in separation science has increased rapidly in the last decade. The reason for this is to take advantage of the unique properties of these materials, such as a very high surface-to-volume ratio and favourable sorbent behaviour. Carbon nanostructures, such as carbon...

  4. Nitrogen doped carbon nanotubes : synthesis, characterization and catalysis

    NARCIS (Netherlands)

    van Dommele, S.

    2008-01-01

    Nitrogen containing Carbon Nanotubes (NCNT) have altered physical- and chemical properties with respect to polarity, conductivity and reactivity as compared to conventional carbon nanotubes (CNT) and have potential for use in electronic applications or catalysis. In this thesis the incorporation of

  5. Very short functionalized carbon nanotubes for membrane applications

    NARCIS (Netherlands)

    Fonseca, A.; Reijerkerk, Sander; Potreck, Jens; Nijmeijer, Dorothea C.; Mekhalif, Z.; Delhalle, J.

    2010-01-01

    The cutting and functionalization of carbon nanotubes is described, applying a single-step ball-mill based process. Very short carbon nanotubes bearing primary amine functions were produced, characterized and incorporated in polymeric membranes. The gas separation performance of the composite

  6. Vertically aligned carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi

    2012-10-01

    Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been developed using pure semiconducting carbon nanotubes. The source and drain were vertically stacked, separated by a dielectric, and the carbon nanotubes were placed on the sidewall of the stack to bridge the source and drain. Both the effective gate dielectric and gate electrode were normal to the substrate surface. The channel length is determined by the dielectric thickness between source and drain electrodes, making it easier to fabricate sub-micrometer transistors without using time-consuming electron beam lithography. The transistor area is much smaller than the planar CNTFET due to the vertical arrangement of source and drain and the reduced channel area. © 2012 Elsevier Ltd. All rights reserved.

  7. Magnetic properties of carbon nanotubes with and without catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lipert, Kamil; Ritschel, Manfred; Leonhardt, Albrecht; Krupskaya, Yulia; Buechner, Bernd; Klingeler, Ruediger, E-mail: k.lipert@ifw-dresden.d [Leibniz Institute for Solid State and Materials Research (IFW) Dresden (Germany)

    2010-01-01

    In this paper we report on the magnetic properties of single- and multiwalled carbon nanotubes synthesized using different chemical vapour deposition methods and with variety of catalyst materials (ferromagnetic Fe, FeCo and diamagnetic Re). Different methods yield carbon nanotubes with different morphologies and different quantity of residual catalyst material. Catalyst particles are usually encapsulated in the nanotubes and influence the magnetic respond of the samples. Varying ferromagnetic properties depending on the shape, size and type of catalyst are discussed in detail. The data are compared with M(H) characteristics of carbon nanotubes without catalysts and with nonmagnetic rhenium, as a reference.

  8. Alignment enhanced photoconductivity in single wall carbon nanotube films

    International Nuclear Information System (INIS)

    Liu Ye; Lu Shaoxin; Panchapakesan, Balaji

    2009-01-01

    In this paper we report, for the first time, the alignment enhanced photoconductivity of single wall carbon nanotube films upon laser illumination. The photoconductivity exhibited an increase, decrease or even 'negative' values when the laser spot was on different positions between contact electrodes, showing a 'position' dependent photoconductivity of partially aligned films of carbon nanotubes. Photon induced charge carrier generation in single wall carbon nanotubes and subsequent charge separation across the metal-carbon nanotube contacts is believed to cause the photoconductivity changes. A net photovoltage of ∼4 mV and a photocurrent of ∼10 μA were produced under the laser intensity of ∼273 mW with a quantum efficiency of ∼7.8% in vacuum. The photocurrent was observed to be in the direction of nanotube alignment. Finally, there was a strong dependence of the polarization of the incident light on the photocurrent and the orientation of the films influenced the dynamics of the rise and fall of the photocurrent. All of these phenomena clearly have significance in the area of design and fabrication of solar cells, micro-opto-mechanical systems and photodetectors based on carbon nanotubes.

  9. Method for synthesizing carbon nanotubes

    Science.gov (United States)

    Fan, Hongyou

    2012-09-04

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  10. Thermodynamic model for growth mechanisms of multiwall carbon nanotubes

    Science.gov (United States)

    Kaatz, F. H.; Siegal, M. P.; Overmyer, D. L.; Provencio, P. P.; Tallant, D. R.

    2006-12-01

    Multiwall carbon nanotubes are grown via thermal chemical vapor deposition between temperatures of 630 and 830°C using acetylene in nitrogen as the carbon source. This process is modeled using classical thermodynamics to explain the total carbon deposition as a function of time and temperature. An activation energy of 1.60eV is inferred for nanotube growth after considering the carbon solubility term. Scanning electron microscopy shows growth with diameters increasing linearly with time. Transmission electron microscopy and Raman spectroscopy show multiwall nanotubes surrounded by a glassy-carbon sheath, which grows with increasing wall thickness as growth temperatures and times rise.

  11. The in vitro biomineralization and cytocompatibility of polydopamine coated carbon nanotubes

    International Nuclear Information System (INIS)

    Yan Penghua; Wang Jinqing; Wang Lin; Liu Bin; Lei Ziqiang; Yang Shengrong

    2011-01-01

    In this work, polydopamine coated carbon nanotubes were firstly prepared by a simple and feasible route. Then, for comparison, the in vitro bioactivity and cytocompatibility of the carbon nanotubes and the polydopamine coated carbon nanotubes were assessed by immersion study in simulated body fluids and 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide test using osteoblast cells (MC3T3-E1), respectively. As a result, it has been demonstrated that the introduction of polydopamine coating can greatly enhance the bioactivity and promote cell proliferation of the carbon nanotubes. The improvement of bioactive behavior is attributed to the good combination of catecholamines structure of the polydopamine and the structural advantages of carbon nanotubes as a framework material. It is anticipated that the polydopamine coated carbon nanotubes would find potential applications in bone tissue engineering and other biomedical areas.

  12. The in vitro biomineralization and cytocompatibility of polydopamine coated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yan Penghua [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Lanzhou 730000 (China); Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Jinqing, E-mail: jqwang@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Lanzhou 730000 (China); Wang Lin; Liu Bin [School of Stomatology, Lanzhou University, Lanzhou 730000 (China); Lei Ziqiang [Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Yang Shengrong, E-mail: sryang@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Lanzhou 730000 (China); Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2011-03-15

    In this work, polydopamine coated carbon nanotubes were firstly prepared by a simple and feasible route. Then, for comparison, the in vitro bioactivity and cytocompatibility of the carbon nanotubes and the polydopamine coated carbon nanotubes were assessed by immersion study in simulated body fluids and 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide test using osteoblast cells (MC3T3-E1), respectively. As a result, it has been demonstrated that the introduction of polydopamine coating can greatly enhance the bioactivity and promote cell proliferation of the carbon nanotubes. The improvement of bioactive behavior is attributed to the good combination of catecholamines structure of the polydopamine and the structural advantages of carbon nanotubes as a framework material. It is anticipated that the polydopamine coated carbon nanotubes would find potential applications in bone tissue engineering and other biomedical areas.

  13. Thin polyaniline and polyaniline/carbon nanocomposite films for gas sensing

    Czech Academy of Sciences Publication Activity Database

    Lobotka, P.; Kunzo, P.; Kováčová, E.; Vávra, I.; Križanová, O.; Smatko, V.; Stejskal, Jaroslav; Konyushenko, Elena; Omastová, M.; Špitálský, Z.; Mičušík, M.; Krupa, I.

    2011-01-01

    Roč. 519, č. 12 (2011), s. 4123-4127 ISSN 0040-6090 Institutional research plan: CEZ:AV0Z40500505 Keywords : gas sensor * polyaniline thin film * nanocomposite Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.890, year: 2011

  14. Energy transfer from natural photosynthetic complexes to single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wiwatowski, Kamil [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Dużyńska, Anna; Świniarski, Michał [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Szalkowski, Marcin [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Zdrojek, Mariusz; Judek, Jarosław [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Mackowski, Sebastian, E-mail: mackowski@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Wroclaw Research Center EIT+, Stablowicka 147, Wroclaw (Poland); Kaminska, Izabela [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland)

    2016-02-15

    Combination of fluorescence imaging and spectroscopy results indicates that single-walled carbon nanotubes are extremely efficient quenchers of fluorescence emission associated with chlorophylls embedded in a natural photosynthetic complex, peridinin-chlorophyll-protein. When deposited on a network of the carbon nanotubes forming a thin film, the emission of the photosynthetic complexes diminishes almost completely. This strong reduction of fluorescence intensity is accompanied with dramatic shortening of the fluorescence lifetime. Concluding, such thin films of carbon nanotubes can be extremely efficient energy acceptors in structures involving biologically functional complexes. - Highlights: • Fluorescence imaging of carbon nanotube - based hybrid structure. • Observation of efficient energy transfer from chlorophylls to carbon nanotubes.

  15. Multifunctional Poly(2,5-benzimidazole)/Carbon Nanotube Composite Films

    Science.gov (United States)

    2010-01-01

    Multifunctional Poly(2,5- benzimidazole )/Carbon Nanotube Composite Films JI-YE KANG,1 SOO-MI EO,1 IN-YUP JEON,1 YEONG SUK CHOI,2 LOON-SENG TAN,3 JONG...molecular-weight poly(2,5- benzimidazole ) (ABPBI). ABPBI/carbon nanotube (CNT) compo- sites were prepared via in situ polymerization of the AB-monomer in the...polymerization; multiwalled carbon nanotube (MWCNT); nano- composites; poly(2,5- benzimidazole ); (ABPBI); polycondensa- tion; poly(phosphoric acid); single-walled

  16. Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity Using Human Keratinocyte Cells

    Science.gov (United States)

    Shvedova, Anna A.; Castranova, Vincent; Kisin, Elena R.; Schwegler-Berry, Diane; Murray, Ashley R.; Gandelsman, Vadim Z.; Maynard, Andrew; Baron, Paul

    2003-01-01

    Carbon nanotubes are new members of carbon allotropes similar to fullerenes and graphite. Because of their unique electrical, mechanical, and thermal properties, carbon nanotubes are important for novel applications in the electronics, aerospace, and computer industries. Exposure to graphite and carbon materials has been associated with increased incidence of skin diseases, such as carbon fiber dermatitis, hyperkeratosis, and naevi. We investigated adverse effects of single-wall carbon nanotubes (SWCNT) using a cell culture of immortalized human epidermal keratinocytes (HaCaT). After 18 h of exposure of HaCaT to SWCNT, oxidative stress and cellular toxicity were indicated by formation of free radicals, accumulation of peroxidative products, antioxidant depletion, and loss of cell viability. Exposure to SWCNT also resulted in ultrastructural and morphological changes in cultured skin cells. These data indicate that dermal exposure to unrefined SWCNT may lead to dermal toxicity due to accelerated oxidative stress in the skin of exposed workers.

  17. Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Vikkisk, Merilin; Kruusenberg, Ivar; Joost, Urmas; Shulga, Eugene; Tammeveski, Kaido

    2013-01-01

    Highlights: ► Pyrolysis in the presence of urea was used for nitrogen doping of carbon nanotubes. ► N-doped carbon nanotubes were used as catalysts for the oxygen reduction reaction. ► N-doped carbon material showed a high catalytic activity for ORR in alkaline media. ► N-containing CNT material is an attractive cathode catalyst for alkaline membrane fuel cells. - Abstract: The electrochemical reduction of oxygen was studied on nitrogen-doped multi-walled carbon nanotube (NCNT) modified glassy carbon (GC) electrodes employing the rotating disk electrode (RDE) method. Nitrogen doping was achieved by simple pyrolysis of the carbon nanotube material in the presence of urea. The surface morphology and composition of the NCNT samples were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed a rather uniform distribution of NCNTs on the GC electrode substrate. The XPS analysis showed a successful doping of carbon nanotubes with nitrogen species. The RDE results revealed that in alkaline solution the N-doped nanotube materials showed a remarkable electrocatalytic activity towards oxygen reduction. At low overpotentials the reduction of oxygen followed a two-electron pathway on undoped carbon nanotube modified GC electrodes, whereas on NCNT/GC electrodes a four-electron pathway of O 2 reduction predominated. The results obtained are significant for the development of nitrogen-doped carbon-based cathodes for alkaline membrane fuel cells.

  18. Carbon nanotube based pressure sensor for flexible electronics

    International Nuclear Information System (INIS)

    So, Hye-Mi; Sim, Jin Woo; Kwon, Jinhyeong; Yun, Jongju; Baik, Seunghyun; Chang, Won Seok

    2013-01-01

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate

  19. Carbon nanotube based pressure sensor for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    So, Hye-Mi [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of); Sim, Jin Woo [Advanced Nano Technology Ltd., Seoul 132-710 (Korea, Republic of); Kwon, Jinhyeong [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Yun, Jongju; Baik, Seunghyun [SKKU Advanced Institute of Nanotechnology (SAINT), Department of Energy Science and School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Chang, Won Seok, E-mail: paul@kimm.re.kr [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of)

    2013-12-15

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate.

  20. Influence of surface chemistry on inkjet printed carbon nanotube films

    International Nuclear Information System (INIS)

    Hopkins, Alan R.; Straw, David C.; Spurrell, Kathryn C.

    2011-01-01

    Carbon nanotube ink chemistry and the proper formulation are crucial for direct-write printing of nanotubes. Moreover, the correct surface chemistry of the self-assembled monolayers that assist the direct deposition of carbon nanotubes onto the substrate is equally important to preserve orientation of the printed carbon nanotubes. We report that the successful formulation of two single walled carbon nanotube (SWNT) inks yields a consistent, homogenous printing pattern possessing the requisite viscosities needed for flow through the microcapillary nozzles of the inkjet printer with fairly modest drying times. The addition of an aqueous sodium silicate allows for a reliable method for forming a uniform carbon nanotube network deposited directly onto unfunctionalized surfaces such as glass or quartz via inkjet deposition. Furthermore, this sodium silicate ingredient helps preserve applied orientation to the printed SWNT solution. Sheet resistivity of this carbon nanotube ink formula printed on quartz decreases as a function of passes and is independent of the substrate. SWNTs were successfully patterned on Au. This amine-based surface chemistry dramatically helps improve the isolation stabilization of the printed SWNTs as seen in the atomic force microscopy (AFM) image. Lastly, using our optimized SWNT ink formula and waveform parameters in the Fuji materials printer, we are able to directly write/print SWNTs into 2D patterns. Dried ink pattern expose and help orient roped carbon nanotubes that are suspended in ordered arrays across the cracks.

  1. Electrical conductivity of metal–carbon nanotube structures: Effect of ...

    Indian Academy of Sciences (India)

    Administrator

    The electrical properties of asymmetric metal–carbon nanotube (CNT) structures have been studied using ... The models with asymmetric metal contacts and carbon nanotube bear resemblance to experimental ... ordinary mechanical strength.

  2. Simulation of the Band Structure of Graphene and Carbon Nanotube

    International Nuclear Information System (INIS)

    Mina, Aziz N; Awadallah, Attia A; Ahmed, Riham R; Phillips, Adel H

    2012-01-01

    Simulation technique has been performed to simulate the band structure of both graphene and carbon nanotube. Accordingly, the dispersion relations for graphene and carbon nanotube are deduced analytically, using the tight binding model and LCAO scheme. The results from the simulation of the dispersion relation of both graphene and carbon nanotube were found to be consistent with those in the literature which indicates the correctness of the process of simulation technique. The present research is very important for tailoring graphene and carbon nanotube with specific band structure, in order to satisfy the required electronic properties of them.

  3. Photodetector based on carbon nanotubes

    Science.gov (United States)

    Pavlov, A.; Kitsyuk, E.; Ryazanov, R.; Timoshenkov, V.; Adamov, Y.

    2015-09-01

    Photodetector based on carbon nanotubes (CNT) was investigated. Sensors were done on quartz and silicon susbtrate. Samples of photodetectors sensors were produced by planar technology. This technology included deposition of first metal layer (Al), lithography for pads formation, etching, and formation of local catalyst area by inverse lithography. Vertically-aligned multi-wall carbon nanotubes were directly synthesized on substrate by PECVD method. I-V analysis and spectrum sensitivity of photodetector were investigated for 0.4 μm - 1.2 μm wavelength. Resistivity of CNT layers over temperature was detected in the range of -20°C to 100°C.

  4. Liquid crystalline order of carbon nanotubes

    Science.gov (United States)

    Georgiev, Georgi; Ahlawat, Aditya; Mulkern, Brian; Doyle, Robert; Mongeau, Jennifer; Ogilvie, Alex

    2007-03-01

    Topological defects formed during phase transitions in liquid crystals provide a direct proof of the standard Cosmological model and are direct links to the Early Universe. On the other hand in Nanotechnology, carbon nanotubes can be manipulated and oriented directly by changing the liquid crystalline state of the nanotubes, in combination with organic liquid crystals. Currently there are no nano-assemblers, which makes the liquid crystal state of the nanotubes, one of the few ways of controlling them. We show the design of a fast and efficient polarized light ellipsometric system (a new modification of previous optical systems) that can provide fast quantitative real time measurements in two dimensions of the formation of topological defects in liquid crystals during phase transitions in lab settings. Our aim is to provide fundamental information about the formation of optically anisotropic structures in liquid crystals and the orientation of carbon nanotubes in electric field.

  5. Electronic Transport Parameter of Carbon Nanotube Metal-Semiconductor On-Tube Heterojunction

    Directory of Open Access Journals (Sweden)

    Sukirno

    2009-03-01

    Full Text Available Carbon Nanotubes research is one of the top five hot research topics in physics since 2006 because of its unique properties and functionalities, which leads to wide-range applications. One of the most interesting potential applications is in term of nanoelectronic device. It has been modeled carbon nanotubes heterojunction, which was built from two different carbon nanotubes, that one is metallic and the other one is semiconducting. There are two different carbon nanotubes metal-semiconductor heterojunction. The first one is built from CNT(10,10 as metallic carbon nanotube and CNT (17,0 as semiconductor carbon nanotube. The other one is built from CNT (5,5 as metallic carbon nanotube and CNT (8,0. All of the semiconducting carbon nanotubes are assumed to be a pyridine-like N-doped. Those two heterojunctions are different in term of their structural shape and diameter. It has been calculated their charge distribution and potential profile, which would be useful for the simulation of their electronic transport properties. The calculations are performed by using self-consistent method to solve Non-Homogeneous Poisson’s Equation with aid of Universal Density of States calculation method for Carbon Nanotubes. The calculations are done by varying the doping fraction of the semiconductor carbon nanotubes The electron tunneling transmission coefficient, for low energy region, also has been calculated by using Wentzel-Kramer-Brillouin (WKB approximation. From the calculation results, it is obtained that the charge distribution as well as the potential profile of this device is doping fraction dependent. It is also inferred that the WKB method is fail to be used to calculate whole of the electron tunneling coefficient in this system. It is expected that further calculation for electron tunneling coefficient in higher energy region as well as current-voltage characteristic of this system will become an interesting issue for this carbon nanotube based

  6. Carbon nano-tubes - what risks, what prevention?

    International Nuclear Information System (INIS)

    Ricaud, Myriam; Lafon, Dominique; Roos, Frederique

    2007-01-01

    Carbon nano-tubes are arousing considerable interest in both the research world and industry because of their exceptional intrinsic properties and dimensional characteristics. Health risks of nano-tubes have been little studied, although the general public is already aware of their existence on account of their numerous promising applications. Existing, sometimes extremely brief, publications only reveal insufficient data for assessing risks sustained due to carbon nano-tube exposure. Yet, the great interest aroused by these new chemicals would indicate strongly that the number of exposed workers will increase over the coming years. It therefore appears essential to review not only the characteristics and applications of carbon nano-tubes, but also the prevention means to be implemented during their handling. We recommend application of the principle of precaution and measures to keep the exposure level as low as possible until the significance of occupational exposure and the corresponding human health risks are better known and have been assessed. (authors)

  7. Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth

    Science.gov (United States)

    Hu, Hui; Ni, Yingchun; Montana, Vedrana; Haddon, Robert C.; Parpura, Vladimir

    2009-01-01

    We report the use of chemically modified carbon nanotubes as a substrate for cultured neurons. The morphological features of neurons that directly reflect their potential capability in synaptic transmission are characterized. The chemical properties of carbon nanotubes are systematically varied by attaching different functional groups that confer known characteristics to the substrate. By manipulating the charge carried by functionalized carbon nanotubes we are able to control the outgrowth and branching pattern of neuronal processes. PMID:21394241

  8. EB treatment of carbon nanotube-reinforced polymer composites

    International Nuclear Information System (INIS)

    Szebenyi, G.; Romhany, G.; Czvikovszky, T.; Vajna, B.

    2011-01-01

    Complete text of publication follows. A small amount - less than 0.5% - carbon nanotube reinforcement may improve significantly the mechanical properties of epoxy based composite materials. The basic technical problem is on one side the dispersion of the nanotubes into the viscous matrix resin. Namely the fine, powder-like - less than 100 nanometer diameter - nanotubes are prone to form aggregates. On the other side, the good connection between the nanofiber and matrix, - which is determining the success of the reinforcement, - requires some efficient adhesion promoting treatment. After an elaborate masterbatch mixing technology we applied Electron Beam treatment of epoxy-matrix polymer composites containing carbon nanotubes in presence of vinylester resins. The Raman spectra of vinylester-epoxy mixtures treated by an 8 MeV EB showed the advantage of the electron treatment. Even in the case of partially immiscible epoxy and vinylester resins, the anchorage of carbon nanotubes reflects improvement if a reasonable 25 kGy EB dose is applied. Atomic Force Microscopy as well as mechanical tests on flexural and impact properties confirm the benefits of EB treatment. Simultaneous application of multiwall carbon nanotubes and 'conventional' carbon fibers as reinforcement in vinylester modified epoxies results in new types of hybrid nanocomposites as engineering materials. The bending- and interlaminar properties of such hybrid systems showed the beneficial effect of the EB treatment. Acknowledgement: This work has been supported by the New Hungary Development Plan (Project ID: TAMOP-4.2.1/B-09/1/KMR-2010-0002).

  9. More About Arc-Welding Process for Making Carbon Nanotubes

    Science.gov (United States)

    Benavides, Jeanette M.; Leidecker, Henning

    2005-01-01

    High-quality batches of carbon nanotubes are produced at relatively low cost in a modified atmospheric-pressure electric-arc welding process that does not include the use of metal catalysts. What would normally be a welding rod and a weldment are replaced by an amorphous carbon anode rod and a wider, hollow graphite cathode rod. Both electrodes are water-cooled. The cathode is immersed in ice water to about 0.5 cm from the surface. The system is shielded from air by flowing helium during arcing. As the anode is consumed during arcing at 20 to 25 A, it is lowered to maintain it at an approximately constant distance above the cathode. The process causes carbon nanotubes to form on the lowest 5 cm of the anode. The arcing process is continued until the anode has been lowered to a specified height. The nanotube-containing material is then harvested. The additional information contained in the instant report consists mostly of illustrations of carbon nanotubes and a schematic diagram of the arc-welding setup, as modified for the production of carbon nanotubes.

  10. Moessbauer Study of Iron-Containing Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Marco, J. F.; Gancedo, J. R. [CSIC, Instituto de Quimica-Fisica ' Rocasolano' (Spain); Hernando, A.; Crespo, P.; Prados, C.; Gonzalez, J. M. [Instituto de Magnetismo Aplicado (Spain); Grobert, N.; Terrones, M.; Walton, D. R. M.; Kroto, H. W. [University of Sussex, Fullerene Science Centre, School of Chemistry, Physics and Environmental Science (United Kingdom)

    2002-03-15

    {sup 57}Fe transmission Moessbauer at temperatures between 18 and 298 K and magnetic measurements have been used to characterize Fe-filled carbon nanotubes which were prepared by pyrolisis of Ferrocene + C{sub 60} at atmospheric pressure under an Ar atmosphere at 1050{sup o}C. The Moessbauer data have shown that the Fe phases encapsulated within the carbon nanotubes are {alpha}-Fe, Fe{sub 3}C and {gamma}-Fe. The magnetic results are compatible with the Moessbauer data. Taken together the results allow us to propose a simple picture of the distribution of iron phases within the carbon nanotubes which would consist of an {alpha}-Fe core surrounded by an {gamma}-Fe shell, finally covered by an Fe{sub 3}C layer.

  11. Multi-walled carbon nanotubes integrated in microcantilevers for application of tensile strain

    DEFF Research Database (Denmark)

    Dohn, Søren; Kjelstrup-Hansen, Jakob; Madsen, D.N.

    2005-01-01

    variations in the response. Using a simple resistor model we estimate the expected conductance-strain response for a multi-walled carbon nanotube, and compare to our results on multi-walled carbon nanotubes as well as measurements by others on single-walled carbon nanotubes. Integration of nanotubes...

  12. Towards self-assembled devices, a carbon nanotube approach

    OpenAIRE

    Del Rio Castillo, Antonio Esau

    2012-01-01

    2010/2011 In the last decade the nanostructured carbon materials, especially single walled carbon nanotubes (SWNTs), had emerged as probable substitutes for Silicon in the next generation of electronic devices. This is due to their unique physic and chemical properties. Likewise, scientists all around the world have made a huge effort to introduce carbon materials into the market. Despite this effort, commercial application for carbon nanotubes in electronic devices has not yet been achiev...

  13. Fabrication of mesoporous and high specific surface area lanthanum carbide-carbon nanotube composites

    International Nuclear Information System (INIS)

    Biasetto, L.; Carturan, S.; Maggioni, G.; Zanonato, P.; Bernardo, P. Di; Colombo, P.; Andrighetto, A.; Prete, G.

    2009-01-01

    Mesoporous lanthanum carbide-carbon nanotube composites were produced by means of carbothermal reaction of lanthanum oxide, graphite and multi-walled carbon nanotube mixtures under high vacuum. Residual gas analysis revealed the higher reactivity of lanthanum oxide towards carbon nanotubes compared to graphite. After sintering, the composites revealed a specific surface area increasing with the amount of carbon nanotubes introduced. The meso-porosity of carbon nanotubes was maintained after thermal treatment.

  14. Carbon nanotubes enhanced the lead toxicity on the freshwater fish

    International Nuclear Information System (INIS)

    Martinez, D S T; Alves, O L; Barbieri, E

    2013-01-01

    Carbon nanotubes are promising nanostructures for many applications in materials industry and biotechnology. However, it is mandatory to evaluate their toxicity and environmental implications. We evaluated nitric acid treated multiwalled carbon nanotubes (HNO 3 -MWCNT) toxicity in Nile tilapia (Oreochromis niloticus) and also the lead (Pb) toxicity modulation after the nanotube interaction. Industrial grade multiwalled carbon nanotubes [Ctube 100, CNT Co. Ltd] were treated with 9M HNO 3 for 12h at 150°C to generate oxygenated groups on the nanotube surface, to improve water dispersion and heavy metal interaction. The HNO 3 -treated multiwalled carbon nanotubes were physico-chemically characterized by several techniques [e.g. TEM, FE-SEM, TGA, ζ-potential and Raman spectroscopy]. HNO 3 -MWCNT did not show toxicity on Nile tilapia when the concentration ranged from 0.1 to 3.0 mg/L, and the maximum exposure time was 96h. After 24, 48, 72 and 96h the LC50 values of Pb were 1.65, 1.32, 1.10 and 0.99 mg/L, respectively. To evaluate the Pb-nanotube interaction influence on the ecotoxicity, we submitted the Nile tilapia to different concentrations of Pb mixed with a non-toxic concentration of HNO 3 -MWCNT (1.0 mg/L). After 24, 48, 72, 96 h the LC50 values of Pb plus nanotubes were: 0.32, 0.25, 0.20, 0.18 mg/L, respectively. These values showed a synergistic effect after Pb-nanotube interaction since Pb toxicity increased over five times. X-ray energy dispersive spectroscopy (EDS) was used to confirm lead adsorption on the carbon nanotube oxidized surface. The exposure of Nile tilapia to Pb plus HNO 3 -MWCNT caused both oxygen consumption and ammonium excretion decrease, when compared to the control. Finally, our results show that carbon nanotubes interact with classical pollutants drawing attention to the environmental implications.

  15. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery.

    Science.gov (United States)

    Singh, Rahul Pratap; Sharma, Gunjan; Sonali; Singh, Sanjay; Bharti, Shreekant; Pandey, Bajarangprasad L; Koch, Biplob; Muthu, Madaswamy S

    2017-08-01

    The aim of this work was to formulate chitosan-folate conjugated multi-walled carbon nanotubes for the lung cancer targeted delivery of docetaxel. The chitosan-folate conjugate was synthesized and the conjugation was confirmed by Fourier transform infrared spectroscopy. The multi-walled carbon nanotubes were characterized for their particle size, polydispersity, zeta potential, surface morphology, drug encapsulation efficiency and in vitro release study. The in vitro cellular uptake, cytotoxicity, and cell cycle analysis of the docetaxel/coumarin-6 loaded multi-walled carbon nanotubes were carried out to compare the effectiveness of the formulations. The biocompatibility and safety of chitosan-folate conjugated multi-walled carbon nanotubes was analyzed by lung histopathology in comparison with marketed docetaxel formulation (Docel™) and acylated multi-walled carbon nanotubes. The cellular internalization study shown that the chitosan-folate conjugated multi-walled carbon nanotubes could be easily internalized into the lung cancer cells through a folate receptor-mediated endocytic pathway. The IC 50 values exhibited that chitosan-folate conjugated multi-walled carbon nanotubes could be 89-fold more effective than Docel™ in human lung cancer cells (A549 cells). Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Carbon nanotubes for interconnects process, design and applications

    CERN Document Server

    Dijon, Jean; Maffucci, Antonio

    2017-01-01

    This book provides a single-source reference on the use of carbon nanotubes (CNTs) as interconnect material for horizontal, on-chip and 3D interconnects. The authors demonstrate the uses of bundles of CNTs, as innovative conducting material to fabricate interconnect through-silicon vias (TSVs), in order to improve the performance, reliability and integration of 3D integrated circuits (ICs). This book will be first to provide a coherent overview of exploiting carbon nanotubes for 3D interconnects covering aspects from processing, modeling, simulation, characterization and applications. Coverage also includes a thorough presentation of the application of CNTs as horizontal on-chip interconnects which can potentially revolutionize the nanoelectronics industry. This book is a must-read for anyone interested in the state-of-the-art on exploiting carbon nanotubes for interconnects for both 2D and 3D integrated circuits. Provides a single-source reference on carbon nanotubes for interconnect applications; Includes c...

  17. Tuning the Slide-Roll Motion Mode of Carbon Nanotubes via Hydroxyl Groups

    Science.gov (United States)

    Li, Rui; Wang, Shiwei; Peng, Qing

    2018-05-01

    Controlling the motion of carbon nanotubes is critical in manipulating nanodevices, including nanorobots. Herein, we investigate the motion behavior of SWCNT (10,10) on Si substrate utilizing molecular dynamics simulations. We show that hydroxyl groups have sensitive effect on the carbon nanotube's motion mode. When the hydroxyl groups' ratio on carbon nanotube and silicon substrate surfaces is larger than 10 and 20%, respectively, the motion of carbon nanotube transforms from sliding to rolling. When the hydroxyl groups' ratio is smaller, the slide or roll mode can be controlled by the speed of carbon nanotube, which is ultimately determined by the competition between the interface potential energy and kinetic energy. The change of motion mode holds true for different carbon nanotubes with hydroxyl groups. The chirality has little effect on the motion behavior, as opposed to the diameter, attributed to the hydroxyl groups' ratio. Our study suggests a new route to control the motion behavior of carbon nanotube via hydroxyl groups.

  18. Carbon nanotube temperature and pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Ilia N.; Geohegan, David B.

    2017-09-12

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  19. Carbon nanotube temperature and pressure sensors

    Science.gov (United States)

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  20. Increased field-emission site density from regrown carbon nanotube films

    International Nuclear Information System (INIS)

    Wang, Y.Y.; Gupta, S.; Liang, M.; Nemanich, R.J.

    2005-01-01

    Electron field-emission properties of as-grown, etched, and regrown carbon nanotube thin films were investigated. The aligned carbon nanotube films were deposited by the microwave plasma-assisted chemical vapor deposition technique. The surface of the as-grown film contained a carbon nanotube mat of amorphous carbon and entangled nanotubes with some tubes protruding from the surface. Hydrogen plasma etching resulted in the removal of the surface layer, and regrowth on the etched surface displayed the formation of a new carbon nanotube mat. The emission site density and the current-voltage dependence of the field emission from all of the samples were analyzed. The results showed that the as-grown sample had a few strong emission spots and a relatively high emission current density (∼20 μA/cm 2 at 1 V/μm), while the regrown sample exhibited a significantly increased emission site density

  1. Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinay; Miura, Norio [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan)

    2006-12-01

    PANI/SWCNT composites were prepared by electrochemical polymerisation of polyaniline onto SWCNTs and their capacitive performance was evaluated by means of cyclic voltammetry and charge-discharge cycling in 1M H{sub 2}SO{sub 4} electrolyte. The PANI/SWCNT composites single electrode showed much higher specific capacitance, specific energy and specific power than pure PANI and SWCNTs. The highest specific capacitance, specific power and specific energy values of 485F/g, 228Wh/kg and 2250W/kg were observed for 73wt.% PANI deposited onto SWCNTs. PANI/SWCNT composites also showed long cyclic stability. Based upon the variations in the surface morphologies and specific capacitance of the composite, a mechanism is proposed to explain enhancement in the capacitive characteristics. The PANI/SWCNT composites have demonstrated the potential as excellent electrode materials for application in high performance supercapacitors. (author)

  2. Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol.

    Science.gov (United States)

    Zhang, Jinying; Wang, Rui; Zhu, Xi; Pan, Aifei; Han, Chenxiao; Li, Xin; Dan Zhao; Ma, Chuansheng; Wang, Wenjun; Su, Haibin; Niu, Chunming

    2017-09-25

    Pseudo-topotactic conversion of carbon nanotubes into one-dimensional carbon nanowires is a challenging but feasible path to obtain desired diameters and morphologies. Here, a previously predicted but experimentally unobserved carbon allotrope, T-carbon, has been produced from pseudo-topotactic conversion of a multi-walled carbon nanotube suspension in methanol by picosecond pulsed-laser irradiation. The as-grown T-carbon nanowires have the same diameter distribution as pristine carbon nanotubes, and have been characterized by high-resolution transmission electron microscopy, fast Fourier transform, electron energy loss, ultraviolet-visible, and photoluminescence spectroscopies to possess a diamond-like lattice, where each carbon is replaced by a carbon tetrahedron, and a lattice constant of 7.80 Å. The change in entropy from carbon nanotubes to T-carbon reveals the phase transformation to be first order in nature. The computed electronic band structures and projected density of states are in good agreement with the optical absorption and photoluminescence spectra of the T-carbon nanowires.T-carbon is a previously predicted but so far unobserved allotrope of carbon, with a crystal structure similar to diamond, but with each atomic lattice position replaced by a carbon tetrahedron. Here, the authors produce T-carbon nanowires via laser-irradiating a suspension of carbon nanotubes in methanol.

  3. Catalyst deposition for the preparation of carbon nanotubes

    DEFF Research Database (Denmark)

    2013-01-01

    patterned surface is configured to ensure that no more than a single island of catalyst is formed on each plateau, so that a sub sequent growth of carbon nanotubes from the deposited islands result in that no more than a single carbon nanotube is grown from each plateau....

  4. Nanotubes on Display: How Carbon Nanotubes Can Be Integrated into Electronic Displays

    KAUST Repository

    Opatkiewicz, Justin; LeMieux, Melburne C.; Bao, Zhenan

    2010-01-01

    Random networks of single-walled carbon nanotubes show promise for use in the field of flexible electronics. Nanotube networks have been difficult to utilize because of the mixture of electronic types synthesized when grown. A variety of separation

  5. Logic circuits based on individual semiconducting and metallic carbon-nanotube devices

    International Nuclear Information System (INIS)

    Ryu, Hyeyeon; Kaelblein, Daniel; Ante, Frederik; Zschieschang, Ute; Kern, Klaus; Klauk, Hagen; Weitz, R Thomas; Schmidt, Oliver G

    2010-01-01

    Nanoscale transistors employing an individual semiconducting carbon nanotube as the channel hold great potential for logic circuits with large integration densities that can be manufactured on glass or plastic substrates. Carbon nanotubes are usually produced as a mixture of semiconducting and metallic nanotubes. Since only semiconducting nanotubes yield transistors, the metallic nanotubes are typically not utilized. However, integrated circuits often require not only transistors, but also resistive load devices. Here we show that many of the metallic carbon nanotubes that are deposited on the substrate along with the semiconducting nanotubes can be conveniently utilized as load resistors with favorable characteristics for the design of integrated circuits. We also demonstrate the fabrication of arrays of transistors and resistors, each based on an individual semiconducting or metallic carbon nanotube, and their integration on glass substrates into logic circuits with switching frequencies of up to 500 kHz using a custom-designed metal interconnect layer.

  6. Bolometric-Effect-Based Wavelength-Selective Photodetectors Using Sorted Single Chirality Carbon Nanotubes

    Science.gov (United States)

    Zhang, Suoming; Cai, Le; Wang, Tongyu; Shi, Rongmei; Miao, Jinshui; Wei, Li; Chen, Yuan; Sepúlveda, Nelson; Wang, Chuan

    2015-01-01

    This paper exploits the chirality-dependent optical properties of single-wall carbon nanotubes for applications in wavelength-selective photodetectors. We demonstrate that thin-film transistors made with networks of carbon nanotubes work effectively as light sensors under laser illumination. Such photoresponse was attributed to photothermal effect instead of photogenerated carriers and the conclusion is further supported by temperature measurements. Additionally, by using different types of carbon nanotubes, including a single chirality (9,8) nanotube, the devices exhibit wavelength-selective response, which coincides well with the absorption spectra of the corresponding carbon nanotubes. This is one of the first reports of controllable and wavelength-selective bolometric photoresponse in macroscale assemblies of chirality-sorted carbon nanotubes. The results presented here provide a viable route for achieving bolometric-effect-based photodetectors with programmable response spanning from visible to near-infrared by using carbon nanotubes with pre-selected chiralities. PMID:26643777

  7. Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis

    Czech Academy of Sciences Publication Activity Database

    Sapurina, I.; Stejskal, Jaroslav

    2009-01-01

    Roč. 63, č. 5 (2009), s. 579-585 ISSN 0366-6352 R&D Projects: GA MŠk ME 847 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymer * polyaniline * proton conductivity Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.791, year: 2009

  8. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  9. Carbon Nanotube Paper-Based Electroanalytical Devices

    Directory of Open Access Journals (Sweden)

    Youngmi Koo

    2016-04-01

    Full Text Available Here, we report on carbon nanotube paper-based electroanalytical devices. A highly aligned-carbon nanotube (HA-CNT array, grown using chemical vapor deposition (CVD, was processed to form bi-layered paper with an integrated cellulose-based Origami-chip as the electroanalytical device. We used an inverse-ordered fabrication method from a thick carbon nanotube (CNT sheet to a thin CNT sheet. A 200-layered HA-CNT sheet and a 100-layered HA-CNT sheet are explored as a working electrode. The device was fabricated using the following methods: (1 cellulose-based paper was patterned using a wax printer, (2 electrical connection was made using a silver ink-based circuit printer, and (3 three electrodes were stacked on a 2D Origami cell. Electrochemical behavior was evaluated using electrochemical impedance spectroscopy (EIS and cyclic voltammetry (CV. We believe that this platform could attract a great deal of interest for use in various chemical and biomedical applications.

  10. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  11. Mechanical characterization of epoxy composite with multiscale reinforcements: Carbon nanotubes and short carbon fibers

    International Nuclear Information System (INIS)

    Rahmanian, S.; Suraya, A.R.; Shazed, M.A.; Zahari, R.; Zainudin, E.S.

    2014-01-01

    Highlights: • Multiscale composite was prepared by incorporation of carbon nanotubes and fibers. • Carbon nanotubes were also grown on short carbon fibers to enhance stress transfer. • Significant improvements were achieved in mechanical properties of composites. • Synergic effect of carbon nanotubes and fibers was demonstrated. - Abstract: Carbon nanotubes (CNT) and short carbon fibers were incorporated into an epoxy matrix to fabricate a high performance multiscale composite. To improve the stress transfer between epoxy and carbon fibers, CNT were also grown on fibers through chemical vapor deposition (CVD) method to produce CNT grown short carbon fibers (CSCF). Mechanical characterization of composites was performed to investigate the synergy effects of CNT and CSCF in the epoxy matrix. The multiscale composites revealed significant improvement in elastic and storage modulus, strength as well as impact resistance in comparison to CNT–epoxy or CSCF–epoxy composites. An optimum content of CNT was found which provided the maximum stiffness and strength. The synergic reinforcing effects of combined fillers were analyzed on the fracture surface of composites through optical and scanning electron microscopy (SEM)

  12. Carbon nanotubes: properties, synthesis, purification, and medical applications

    Science.gov (United States)

    2014-01-01

    Current discoveries of different forms of carbon nanostructures have motivated research on their applications in various fields. They hold promise for applications in medicine, gene, and drug delivery areas. Many different production methods for carbon nanotubes (CNTs) have been introduced; functionalization, filling, doping, and chemical modification have been achieved, and characterization, separation, and manipulation of individual CNTs are now possible. Parameters such as structure, surface area, surface charge, size distribution, surface chemistry, and agglomeration state as well as purity of the samples have considerable impact on the reactivity of carbon nanotubes. Otherwise, the strength and flexibility of carbon nanotubes make them of potential use in controlling other nanoscale structures, which suggests they will have a significant role in nanotechnology engineering. PMID:25170330

  13. Carbon nanotubes: properties, synthesis, purification, and medical applications

    Science.gov (United States)

    Eatemadi, Ali; Daraee, Hadis; Karimkhanloo, Hamzeh; Kouhi, Mohammad; Zarghami, Nosratollah; Akbarzadeh, Abolfazl; Abasi, Mozhgan; Hanifehpour, Younes; Joo, Sang Woo

    2014-08-01

    Current discoveries of different forms of carbon nanostructures have motivated research on their applications in various fields. They hold promise for applications in medicine, gene, and drug delivery areas. Many different production methods for carbon nanotubes (CNTs) have been introduced; functionalization, filling, doping, and chemical modification have been achieved, and characterization, separation, and manipulation of individual CNTs are now possible. Parameters such as structure, surface area, surface charge, size distribution, surface chemistry, and agglomeration state as well as purity of the samples have considerable impact on the reactivity of carbon nanotubes. Otherwise, the strength and flexibility of carbon nanotubes make them of potential use in controlling other nanoscale structures, which suggests they will have a significant role in nanotechnology engineering.

  14. Carbon nanotube-based black coatings

    Science.gov (United States)

    Lehman, J.; Yung, C.; Tomlin, N.; Conklin, D.; Stephens, M.

    2018-03-01

    Coatings comprising carbon nanotubes are very black, that is, characterized by uniformly low reflectance over a broad range of wavelengths from the visible to far infrared. Arguably, there is no other material that is comparable. This is attributable to the intrinsic properties of graphitic material as well as the morphology (density, thickness, disorder, and tube size). We briefly describe a history of other coatings such as nickel phosphorous, gold black, and carbon-based paints and the comparable structural morphology that we associate with very black coatings. The need for black coatings is persistent for a variety of applications ranging from baffles and traps to blackbodies and thermal detectors. Applications for space-based instruments are of interest and we present a review of space qualification and the results of outgassing measurements. Questions of nanoparticle safety depend on the nanotube size and aspect ratio as well as the nature and route of exposure. We describe the growth of carbon nanotube forests along with the catalyst requirements and temperature limitations. We also describe coatings derived from carbon nanotubes and applied like paint. Building the measurement apparatus and determining the optical properties of something having negligible reflectance are challenging and we summarize the methods and means for such measurements. There exists information in the literature for effective media approximations to model the dielectric function of vertically aligned arrays. We summarize this along with the refractive index of graphite from the literature that is necessary for modeling the optical properties. In our experience, the scientific questions can be overshadowed by practical matters, so we provide an appendix of recipes for making as-grown and sprayed coatings along with an example of reflectance measurements.

  15. Applications of Carbon Nanotubes in Biotechnology and Biomedicine

    Science.gov (United States)

    Bekyarova, Elena; Ni, Yingchun; Malarkey, Erik B.; Montana, Vedrana; McWilliams, Jared L.; Haddon, Robert C.; Parpura, Vladimir

    2009-01-01

    Due to their electrical, chemical, mechanical and thermal properties, carbon nanotubes are one of the most promising materials for the electronics, computer and aerospace industries. Here, we discuss their properties in the context of future applications in biotechnology and biomedicine. The purification and chemical modification of carbon nanotubes with organic, polymeric and biological molecules are discussed. Additionally we review their uses in biosensors, assembly of structures and devices, scanning probe microscopy and as substrates for neuronal growth. We note that additional toxicity studies of carbon nanotubes are necessary so that exposure guidelines and safety regulations can be established in a timely manner. PMID:19763242

  16. Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy

    Science.gov (United States)

    Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John

    We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.

  17. Electroluminescence from single-wall carbon nanotube network transistors.

    Science.gov (United States)

    Adam, E; Aguirre, C M; Marty, L; St-Antoine, B C; Meunier, F; Desjardins, P; Ménard, D; Martel, R

    2008-08-01

    The electroluminescence (EL) properties from single-wall carbon nanotube network field-effect transistors (NNFETs) and small bundle carbon nanotube field effect transistors (CNFETs) are studied using spectroscopy and imaging in the near-infrared (NIR). At room temperature, NNFETs produce broad (approximately 180 meV) and structured NIR spectra, while they are narrower (approximately 80 meV) for CNFETs. EL emission from NNFETs is located in the vicinity of the minority carrier injecting contact (drain) and the spectrum of the emission is red shifted with respect to the corresponding absorption spectrum. A phenomenological model based on a Fermi-Dirac distribution of carriers in the nanotube network reproduces the spectral features observed. This work supports bipolar (electron-hole) current recombination as the main mechanism of emission and highlights the drastic influence of carrier distribution on the optoelectronic properties of carbon nanotube films.

  18. How fast does water flow in carbon nanotubes?

    DEFF Research Database (Denmark)

    Kannam, Sridhar; Todd, Billy; Hansen, Jesper Schmidt

    2013-01-01

    The purpose of this paper is threefold. First, we review the existing literature on flow rates of water in carbon nanotubes. Data for the slip length which characterizes the flow rate are scattered over 5 orders of magnitude for nanotubes of diameter 0.81–10 nm. Second, we precisely compute...... the slip length using equilibrium molecular dynamics (EMD) simulations, from which the interfacial friction between water and carbon nanotubes can be found, and also via external field driven non-equilibrium molecular dynamics simulations (NEMD). We discuss some of the issues in simulation studies which...... and reliably extrapolate the results for the slip length to values of the field corresponding to experimentally accessible pressure gradients. Finally, we comment on several issues concerning water flow rates in carbon nanotubes which may lead to some future research directions in this area....

  19. Carbon Nanotubes: Molecular Electronic Components

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1997-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale molecular electronic networks. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal graphene sheet, more complex joints require other mechanisms. In this work we explore structural characteristics of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme. The study of pi-electron local densities of states (LDOS) of these junctions reveal many interesting features, most prominent among them being the defect-induced states in the gap.

  20. CMOS Integrated Carbon Nanotube Sensor

    International Nuclear Information System (INIS)

    Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A.; Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S.; Buffa, F. A.

    2009-01-01

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  1. Carbon nanotubes : their synthesis and integration into nanofabricated structures

    NARCIS (Netherlands)

    Druzhinina, Tamara

    2011-01-01

    The field of nanotechnology has experienced constantly increasing interest over the past decades both from industry and academy. Commonly used nanomaterials include: nanoparticles, nanowires, quantum dots, fullerenes, and carbon nanotubes. Carbon nanotubes, in particular, are promising building

  2. Helium Adsorption on Carbon Nanotube Bundles with Different Diameters:. Molecular Dynamics Simulation

    Science.gov (United States)

    Majidi, R.; Karami, A. R.

    2013-05-01

    We have used molecular dynamics simulation to study helium adsorption capacity of carbon nanotube bundles with different diameters. Homogeneous carbon nanotube bundles of (8,8), (9,9), (10,10), (11,11), and (12,12) single walled carbon nanotubes have been considered. The results indicate that the exohedral adsorption coverage does not depend on the diameter of carbon nanotubes, while the endohedral adsorption coverage is increased by increasing the diameter.

  3. Homogeneous CdTe quantum dots-carbon nanotubes heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Kayo Oliveira [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Bettini, Jefferson [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, CEP 13083-970, Campinas, SP (Brazil); Ferrari, Jefferson Luis [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.br [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil)

    2015-01-15

    The development of homogeneous CdTe quantum dots-carbon nanotubes heterostructures based on electrostatic interactions has been investigated. We report a simple and reproducible non-covalent functionalization route that can be accomplished at room temperature, to prepare colloidal composites consisting of CdTe nanocrystals deposited onto multi-walled carbon nanotubes (MWCNTs) functionalized with a thin layer of polyelectrolytes by layer-by-layer technique. Specifically, physical adsorption of polyelectrolytes such as poly (4-styrene sulfonate) and poly (diallyldimethylammonium chloride) was used to deagglomerate and disperse MWCNTs, onto which we deposited CdTe quantum dots coated with mercaptopropionic acid (MPA), as surface ligand, via electrostatic interactions. Confirmation of the CdTe quantum dots/carbon nanotubes heterostructures was done by transmission and scanning electron microscopies (TEM and SEM), dynamic-light scattering (DLS) together with absorption, emission, Raman and infrared spectroscopies (UV–vis, PL, Raman and FT-IR). Almost complete quenching of the PL band of the CdTe quantum dots was observed after adsorption on the MWCNTs, presumably through efficient energy transfer process from photoexcited CdTe to MWCNTs. - Highlights: • Highly homogeneous CdTe-carbon nanotubes heterostructures were prepared. • Simple and reproducible non-covalent functionalization route. • CdTe nanocrystals homogeneously deposited onto multi-walled carbon nanotubes. • Efficient energy transfer process from photoexcited CdTe to MWCNTs.

  4. Fabrication of carbon nanotube/epoxy nanocomposite and characterization of its mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mubin, Muhammad Shamsul Huda

    2007-02-15

    In this study, carbon nanotube polymer nanocomposites have been fabricated incorporating single walled carbon nantubes (SWNTs) or multiwalled carbon nanotubes (MWNTs) in a thermosetting polymer matrix, epoxy resin. Nanoindentation measurements showed that elastic modulus of epoxy polymer matrix has changed from 3.5 GPa to 4.0 GPa (∼ 15 % increase) only for 0.005 wt% single walled carbon nanotubes loading. The hardness of the single walled carbon nanotube incorporated epoxy nanocomposites remained nearly unchanged for 0.005 wt % nanotube loading. Multiwalled carbon nanotube incorporated epoxy nanocomposites showed deterioration of both the hardness, from 0.2 GPa to 0.08 GPa (∼factor 2.5), and elastic modulus, from 3.5 GPa to 2.1 GPa (∼ factor 1.6), for 0.02 wt % nanotube loading. Homogeneity study using continuous stiffness measurement (CSM) mode of indentation techniques revealed the lack in homogeneity of the fabricated nancomposite may be responsible for deteriorating mechanical properties. High resolution scanning electronic microscopic (SEM) images taken from cross section of carbon nanotubes incorporated epoxy nanocomposites showed several poorly attached thin layers of nanocomposites staked on each other which may be another cause of property deterioration.

  5. Fabrication of carbon nanotube/epoxy nanocomposite and characterization of its mechanical properties

    International Nuclear Information System (INIS)

    Mubin, Muhammad Shamsul Huda

    2007-02-01

    In this study, carbon nanotube polymer nanocomposites have been fabricated incorporating single walled carbon nantubes (SWNTs) or multiwalled carbon nanotubes (MWNTs) in a thermosetting polymer matrix, epoxy resin. Nanoindentation measurements showed that elastic modulus of epoxy polymer matrix has changed from 3.5 GPa to 4.0 GPa (∼ 15 % increase) only for 0.005 wt% single walled carbon nanotubes loading. The hardness of the single walled carbon nanotube incorporated epoxy nanocomposites remained nearly unchanged for 0.005 wt % nanotube loading. Multiwalled carbon nanotube incorporated epoxy nanocomposites showed deterioration of both the hardness, from 0.2 GPa to 0.08 GPa (∼factor 2.5), and elastic modulus, from 3.5 GPa to 2.1 GPa (∼ factor 1.6), for 0.02 wt % nanotube loading. Homogeneity study using continuous stiffness measurement (CSM) mode of indentation techniques revealed the lack in homogeneity of the fabricated nancomposite may be responsible for deteriorating mechanical properties. High resolution scanning electronic microscopic (SEM) images taken from cross section of carbon nanotubes incorporated epoxy nanocomposites showed several poorly attached thin layers of nanocomposites staked on each other which may be another cause of property deterioration

  6. Nonlinear buckling analyses of a small-radius carbon nanotube

    International Nuclear Information System (INIS)

    Liu, Ning; Li, Min; Jia, Jiao; Wang, Yong-Gang

    2014-01-01

    Carbon nanotube (CNT) was first discovered by Sumio Iijima. It has aroused extensive attentions of scholars from all over the world. Over the past two decades, we have acquired a lot of methods to synthesize carbon nanotubes and learn their many incredible mechanical properties such as experimental methods, theoretical analyses, and computer simulations. However, the studies of experiments need lots of financial, material, and labor resources. The calculations will become difficult and time-consuming, and the calculations may be even beyond the realm of possibility when the scale of simulations is large, as for computer simulations. Therefore, it is necessary for us to explore a reasonable continuum model, which can be applied into nano-scale. This paper attempts to develop a mathematical model of a small-radius carbon nanotube based on continuum theory. An Isotropic circular cross-section, Timoshenko beam model is used as a simplified mechanical model for the small-radius carbon nanotube. Theoretical part is mainly based on modified couple stress theory to obtain the numerical solutions of buckling deformation. Meanwhile, the buckling behavior of the small radius carbon nanotube is simulated by Molecular Dynamics method. By comparing with the numerical results based on modified couple stress theory, the dependence of the small-radius carbon nanotube mechanical behaviors on its elasticity constants, small-size effect, geometric nonlinearity, and shear effect is further studied, and an estimation of the small-scale parameter of a CNT (5, 5) is obtained

  7. Nonlinear buckling analyses of a small-radius carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ning, E-mail: liuxiao@ase.buaa.edu.cn; Li, Min; Jia, Jiao [School of Aeronautic Science and Engineering, Beihang University, Beijing 100091 (China); Wang, Yong-Gang [Department of Applied Mechanics, China Agricultural University, Beijing 100083 (China)

    2014-04-21

    Carbon nanotube (CNT) was first discovered by Sumio Iijima. It has aroused extensive attentions of scholars from all over the world. Over the past two decades, we have acquired a lot of methods to synthesize carbon nanotubes and learn their many incredible mechanical properties such as experimental methods, theoretical analyses, and computer simulations. However, the studies of experiments need lots of financial, material, and labor resources. The calculations will become difficult and time-consuming, and the calculations may be even beyond the realm of possibility when the scale of simulations is large, as for computer simulations. Therefore, it is necessary for us to explore a reasonable continuum model, which can be applied into nano-scale. This paper attempts to develop a mathematical model of a small-radius carbon nanotube based on continuum theory. An Isotropic circular cross-section, Timoshenko beam model is used as a simplified mechanical model for the small-radius carbon nanotube. Theoretical part is mainly based on modified couple stress theory to obtain the numerical solutions of buckling deformation. Meanwhile, the buckling behavior of the small radius carbon nanotube is simulated by Molecular Dynamics method. By comparing with the numerical results based on modified couple stress theory, the dependence of the small-radius carbon nanotube mechanical behaviors on its elasticity constants, small-size effect, geometric nonlinearity, and shear effect is further studied, and an estimation of the small-scale parameter of a CNT (5, 5) is obtained.

  8. Multiscale Modeling with Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A

    2006-02-21

    Technologically important nanomaterials come in all shapes and sizes. They can range from small molecules to complex composites and mixtures. Depending upon the spatial dimensions of the system and properties under investigation computer modeling of such materials can range from equilibrium and nonequilibrium Quantum Mechanics, to force-field-based Molecular Mechanics and kinetic Monte Carlo, to Mesoscale simulation of evolving morphology, to Finite-Element computation of physical properties. This brief review illustrates some of the above modeling techniques through a number of recent applications with carbon nanotubes: nano electromechanical sensors (NEMS), chemical sensors, metal-nanotube contacts, and polymer-nanotube composites.

  9. Fabrication and characterization of reaction bonded silicon carbide/carbon nanotube composites

    International Nuclear Information System (INIS)

    Thostenson, Erik T; Karandikar, Prashant G; Chou, T.-W.

    2005-01-01

    Carbon nanotubes have generated considerable excitement in the scientific and engineering communities because of their exceptional mechanical and physical properties observed at the nanoscale. Carbon nanotubes possess exceptionally high stiffness and strength combined with high electrical and thermal conductivities. These novel material properties have stimulated considerable research in the development of nanotube-reinforced composites (Thostenson et al 2001 Compos. Sci. Technol. 61 1899, Thostenson et al 2005 Compos. Sci. Technol. 65 491). In this research, novel reaction bonded silicon carbide nanocomposites were fabricated using melt infiltration of silicon. A series of multi-walled carbon nanotube-reinforced ceramic matrix composites (NT-CMCs) were fabricated and the structure and properties were characterized. Here we show that carbon nanotubes are present in the as-fabricated NT-CMCs after reaction bonding at temperatures above 1400 deg. C. Characterization results reveal that a very small volume content of carbon nanotubes, as low as 0.3 volume %, results in a 75% reduction in electrical resistivity of the ceramic composites. A 96% decrease in electrical resistivity was observed for the ceramics with the highest nanotube volume fraction of 2.1%

  10. Electrochemical Capacitors Based on Aligned Carbon Nanotubes Directly Synthesized on Tantalum Substrates

    International Nuclear Information System (INIS)

    Kim, Byung Woo; Chung, Hae Geun; Kim, Woong; Min, Byoung Koun; Kim, Hong Gon

    2010-01-01

    We demonstrate that vertically aligned carbon nanotubes can be synthesized directly on tantalum substrate via waterassisted chemical vapor deposition and evaluate their properties as electrochemical capacitors. The mean diameter of the carbon nanotubes was 7.1 ± 1.5 nm, and 70% of them had double walls. The intensity ratio of G-band to D-band in Raman spectra was as high as 5, indicating good quality of the carbon nanotubes. Owing to the alignment and low equivalent series resistance, the carbon nanotube based supercapacitors showed good rate performance. Rectangular shape of cyclic voltammogram was maintained even at the scan rate of > 1 V/s in 1 M sulfuric acid aqueous solution. Specific capacitance was well-retained (∼94%) even when the discharging current density dramatically increased up to 145 A/g. Consequently, specific power as high as 60 kW/kg was obtained from as-grown carbon nanotubes in aqueous solution. Maximum specific energy of ∼20 Wh/kg was obtained when carbon nanotubes were electrochemically oxidized and operated in organic solution. Demonstration of direct synthesis of carbon nanotubes on tantalum current collectors and their applications as supercapacitors could be an invaluable basis for fabrication of high performance carbon nanotube supercapacitors

  11. Graphene nanoribbons production from flat carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Melo, W. S.; Guerini, S.; Diniz, E. M., E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, São Luís - MA 65080-805 (Brazil)

    2015-11-14

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons.

  12. Graphene nanoribbons production from flat carbon nanotubes

    International Nuclear Information System (INIS)

    Melo, W. S.; Guerini, S.; Diniz, E. M.

    2015-01-01

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons

  13. Structure of Carbon Nanotube-dendrimer composite

    OpenAIRE

    Vasumathi, V.; Pramanik, Debabrata; Sood, A. K.; Maiti, Prabal K

    2012-01-01

    Using all atomistic molecular dynamics (MD) simulations we report the microscopic picture of the nanotube-dendrimer complex for PAMAM dendrimer of generation 2 to 4 and carbon nanotube of chirality (6,5). We find compact wrapping conformations of dendrimer onto the nanotube surface for all the three generations of PAMAM dendrimer. The degree of wrapping is more for non-protonated dendrimer compared to the protonated dendrimer. For comparison we also study the interaction of another dendrimer,...

  14. Metallic conductivity transition of carbon nanotube yarns coated with silver particles

    International Nuclear Information System (INIS)

    Zhang, Daohong; Zhang, Yunhe; Miao, Menghe

    2014-01-01

    Dry spun carbon nanotube yarns made from vertically aligned multiwalled carbon nanotube forests possess high mechanical strength and behave like semiconductors with electrical conductivity of the order of 4 × 10 4 S m −1 . Coating a submicron-thick film of silver particle-filled polymer on the surface increased the electrical conductivity of the carbon nanotube yarn by 60-fold without significantly sacrificing its mechanical strength. The transitional characteristics of the silver-coated carbon nanotube yarn were investigated by varying the take-up ratio of the silver coating. A step change in conductivity was observed when the silver content in the coated yarn was between 7 and 10 wt% as a result of the formation of connected silver particle networks on the carbon nanotube yarn surface. (papers)

  15. Investigation of the structure of multiwall carbon nanotubes in polymer matrix

    International Nuclear Information System (INIS)

    Major, A Adamne; Belina, K

    2013-01-01

    In the last ten years carbon nanotube composites are in the focus of the researchers. Concentration series were prepared using carbon nanotube containing master blend by IDMX mixer. In the experiments polypropylene, polycarbonate and ABS polymers were used as matrix materials. The prepared materials were characterised by scanning electron microscopy. The carbon nanotubes can be seen on the fractured surfaces. We did not find any sign of agglomerates in the materials. The nanocomposites were investigated by LP-FTIR method. The specimens were irradiated with 1 W for 1 minute by CO 2 laser. The polymer matrix was burnt or charred by the CO 2 laser; the structure of the carbon nanotubes in the matrix was studied. The carbon nanotubes create a physical network in the polymers we used

  16. Discovery of carbon nanotubes. Sara ni carbon nanotube e

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, S

    1994-01-20

    This paper describes the following matters on carbon nanotubes (CNt): CNt is discovered in carbon deposits generated in the tip of a negative electrode during DC arc discharge between carbon electrodes. CNt has a construction in which cylinders made of normally several layers are superposed, based on cylindrical crystals in a single layer with six-member rings of carbon atoms laid out. Spiral arrangement of carbon six-member rings has been discovered in the single-layered crystals. Five-member rings exist in a location where the CNt tip is closed, and seven-member rings in a location where the CNt presents a saddle-like curve, without exceptions. It is introduced theoretically that the electronic structure of the single-layered CNt depends on the cylinder diameter and spiral pitch. Replacing part of the carbon negative electrode with iron, and vaporizing iron and carbon simultaneously through arc discharge can result in a single-layered CNt with a diameter of 1 nm. Heating the CNt deposited with metallic lead in an oxygen atmosphere can form CNt containing lead compounds. 19 refs., 9 figs.

  17. Fabrication of Carbon Nanotube Polymer Actuator Using Nanofiber Sheet

    Science.gov (United States)

    Kato, Hayato; Shimizu, Akikazu; Sato, Taiga; Kushida, Masahito

    2017-11-01

    Carbon nanotube polymer actuators were developed using composite nanofiber sheets fabricated by multi-walled carbon nanotubes(MWCNTs) and poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). Nanofiber sheets were fabricated by electrospinning method. The effect of flow rate and polymer concentration on nanofiber formation were verified for optimum condition for fabricating nanofiber sheets. We examined the properties of MWCNT/PVDF-HFP nanofiber sheets, as follows. Electrical conductivity and mechanical strength increased as the MWCNT weight ratio increased. We fabricated carbon nanotube polymer actuators using MWCNT/PVDF-HFP nanofiber sheets and succeeded in operating of our actuators.

  18. Correlation and dimensional effects of trions in carbon nanotubes

    DEFF Research Database (Denmark)

    Rønnow, Troels Frimodt; Pedersen, Thomas Garm; Cornean, Horia

    2010-01-01

    We study the binding energies of singlet trions, i.e., charged excitons, in carbon nanotubes. The problem is modeled, through the effective-mass model, as a three-particle complex on the surface of a cylinder, which we investigate using both one- and two-dimensional expansions of the wave function...... are used to compute physical binding energies for a wide selection of carbon nanotubes. In addition, the dependence on dielectric screening is examined. Our findings indicate that trions are detectable at room temperature in carbon nanotubes with radius below 8 Å....

  19. Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO2 Composite Textiles.

    Science.gov (United States)

    Wang, Jinjie; Dong, Liubing; Xu, Chengjun; Ren, Danyang; Ma, Xinpei; Kang, Feiyu

    2018-04-04

    Polymorphous supercapacitors were constructed from flexible three-dimensional carbon network/polyaniline (PANI)/MnO 2 composite textile electrodes. The flexible textile electrodes were fabricated through a layer-by-layer construction strategy: PANI, carbon nanotubes (CNTs), and MnO 2 were deposited on activated carbon fiber cloth (ACFC) in turn through an electropolymerization process, "dipping and drying" method, and in situ chemical reaction, respectively. In the fabricated ACFC/PANI/CNTs/MnO 2 textile electrodes, the ACFC/CNT hybrid framework serves as a porous and electrically conductive 3D network for the rapid transmission of electrons and electrolyte ions, where ACFC, PANI, and MnO 2 are high-performance supercapacitor electrode materials. In the electrolyte of H 2 SO 4 solution, the textile electrode-based symmetric supercapacitor delivers superior areal capacitance, energy density, and power density of 4615 mF cm -2 (for single electrode), 157 μW h cm -2 , and 10372 μW cm -2 , respectively, whereas asymmetric supercapacitor assembled with the prepared composite textile as the positive electrode and ACFC as the negative electrode exhibits an improved energy density of 413 μW h cm -2 and a power density of 16120 μW cm -2 . On the basis of the ACFC/PANI/CNTs/MnO 2 textile electrodes, symmetric and asymmetric solid-state textile supercapacitors with a PVA/H 2 SO 4 gel electrolyte were also produced. These solid-state textile supercapacitors exhibit good electrochemical performance and high flexibility. Furthermore, flexible solid-state fiber-like supercapacitors were prepared with fiber bundle electrodes dismantled from the above composite textiles. Overall, this work makes a meaningful exploration of the versatile applications of textile electrodes to produce polymorphous supercapacitors.

  20. Potential Super-Toughness Behavior of Chiral (10,5) Carbon Nanotubes

    National Research Council Canada - National Science Library

    Welch, C. R; Haskins, R. W; Majure, D. L; Ebeling, R. M; Marsh, C. P; Bednar, A. J; Maier, R. S; Barker, B. C; Wu, David T; Simeon, T. M

    2006-01-01

    ...) carbon nanotube using Tight-Binding Molecular Dynamics. The (5,5) carbon nanotubes exhibited extraordinary tensile strengths and brittle failures in agreement with the findings of other researchers...

  1. Synthesis of PbI(2) single-layered inorganic nanotubes encapsulated within carbon nanotubes.

    Science.gov (United States)

    Cabana, Laura; Ballesteros, Belén; Batista, Eudar; Magén, César; Arenal, Raúl; Oró-Solé, Judith; Rurali, Riccardo; Tobias, Gerard

    2014-04-02

    The template assisted growth of single-layered inorganic nanotubes is reported. Single-crystalline lead iodide single-layered nanotubes have been prepared using the inner cavities of carbon nanotubes as hosting templates. The diameter of the resulting inorganic nanotubes is merely dependent on the diameter of the host. This facile method is highly versatile opening up new horizons in the preparation of single-layered nanostructures. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite

    International Nuclear Information System (INIS)

    An, Feng; Lu, Chunxiang; Li, Yonghong; Guo, Jinhai; Lu, Xiaoxuan; Lu, Huibin; He, Shuqing; Yang, Yu

    2012-01-01

    Highlights: → CNTs were uniformly grown onto the carbon fibers. → No obvious mechanical properties of carbon fiber were observed after CNT growth. → The IFSS of multiscale epoxy composite was measured by single fiber pull-out tests. → Observing fractography of composite, the fracture modes of CNTs were discussed. -- Abstract: The multiscale carbon nanotube-hybridized carbon fiber was prepared by a newly developed aerosol-assisted chemical vapour deposition. Scanning electron microscopy and transmission electron microscope were carried out to characterize this multiscale material. Compared with the original carbon fibers, the fabrication of this hybrid fiber resulted in an almost threefold increase of BET surface area to reach 2.22 m 2 /g. Meanwhile, there was a slight degradation of fiber tensile strength within 10%, while the fiber modulus was not significantly affected. The interfacial shearing strength of a carbon fiber-reinforced polymer composite with carbon nanotube-hybridized carbon fiber and an epoxy matrix was determined from the single fiber pull-out tests of microdroplet composite. Due to an efficient increase of load transfer at the fiber/matrix interfaces, the interracial shear strength of composite reinforced by carbon nanotube-hybridized carbon fiber is almost 94% higher than that of one reinforced by the original carbon fiber. Based on the fractured morphologies of the composites, the interfacial reinforcing mechanisms were discussed through proposing different types of carbon nanotube fracture modes along with fiber pulling out from epoxy composites.

  3. A thermodynamic model for growth mechanisms of multiwall carbon nanotubes.

    Energy Technology Data Exchange (ETDEWEB)

    Kaatz, Forrest H.; Overmyer, Donald L.; Siegal, Michael P.

    2006-02-01

    Multiwall carbon nanotubes are grown via thermal chemical vapor deposition between temperatures of 630 and 830 C using acetylene in nitrogen as the carbon source. This process is modeled using classical thermodynamics to explain the total carbon deposition as a function of time and temperature. An activation energy of 1.60 eV is inferred for nanotube growth after considering the carbon solubility term. Scanning electron microscopy shows growth with diameters increasing linearly with time. Transmission electron microscopy and Raman spectroscopy show multiwall nanotubes surrounded by a glassy-carbon sheath, which grows with increasing wall thickness as growth temperatures and times rise.

  4. Computational Design of a Carbon Nanotube Fluorofullerene Biosensor

    Directory of Open Access Journals (Sweden)

    Shin-Ho Chung

    2012-10-01

    Full Text Available Carbon nanotubes offer exciting opportunities for devising highly-sensitive detectors of specific molecules in biology and the environment. Detection limits as low as 10−11 M have already been achieved using nanotube-based sensors. We propose the design of a biosensor comprised of functionalized carbon nanotube pores embedded in a silicon-nitride or other membrane, fluorofullerene-Fragment antigen-binding (Fab fragment conjugates, and polymer beads with complementary Fab fragments. We show by using molecular and stochastic dynamics that conduction through the (9, 9 exohydrogenated carbon nanotubes is 20 times larger than through the Ion Channel Switch ICSTM biosensor, and fluorofullerenes block the nanotube entrance with a dissociation constant as low as 37 pM. Under normal operating conditions and in the absence of analyte, fluorofullerenes block the nanotube pores and the polymer beads float around in the reservoir. When analyte is injected into the reservoir the Fab fragments attached to the fluorofullerene and polymer bead crosslink to the analyte. The drag of the much larger polymer bead then acts to pull the fluorofullerene from the nanotube entrance, thereby allowing the flow of monovalent cations across the membrane. Assuming a tight seal is formed between the two reservoirs, such a biosensor would be able to detect one channel opening and thus one molecule of analyte making it a highly sensitive detection design.

  5. Carbon nanotubes as anti-bacterial agents.

    Science.gov (United States)

    Mocan, Teodora; Matea, Cristian T; Pop, Teodora; Mosteanu, Ofelia; Buzoianu, Anca Dana; Suciu, Soimita; Puia, Cosmin; Zdrehus, Claudiu; Iancu, Cornel; Mocan, Lucian

    2017-10-01

    Multidrug-resistant bacterial infections that have evolved via natural selection have increased alarmingly at a global level. Thus, there is a strong need for the development of novel antibiotics for the treatment of these infections. Functionalized carbon nanotubes through their unique properties hold great promise in the fight against multidrug-resistant bacterial infections. This new family of nanovectors for therapeutic delivery proved to be innovative and efficient for the transport and cellular translocation of therapeutic molecules. The current review examines the latest progress in the antibacterial activity of carbon nanotubes and their composites.

  6. Super-bridges suspended over carbon nanotube cables

    Science.gov (United States)

    Carpinteri, Alberto; Pugno, Nicola M.

    2008-11-01

    In this paper the new concept of 'super-bridges', i.e. kilometre-long bridges suspended over carbon nanotube cables, is introduced. The analysis shows that the use of realistic (thus defective) carbon nanotube bundles as suspension cables can enlarge the current limit main span by a factor of ~3. Too large compliance and dynamic self-excited resonances could be avoided by additional strands, rendering the super-bridge anchored as a spider's cobweb. As an example, we have computed the limit main spans of the current existing 19 suspended-deck bridges longer than 1 km assuming them to have substituted their cables with carbon nanotube bundles (thus maintaining the same geometry, with the exception of the length) finding spans of up to ~6.3 km. We thus suggest that the design of the Messina bridge in Italy, which would require a main span of ~3.3 km, could benefit from the use of carbon nanotube bundles. We believe that their use represents a feasible and economically convenient solution. The plausibility of these affirmations is confirmed by a statistical analysis of the existing 100 longest suspended bridges, which follow a Zipf's law with an exponent of 1.1615: we have found a Moore-like (i.e. exponential) law, in which the doubling of the capacity (here the main span) per year is substituted by the factor 1.0138. Such a law predicts that the realization of the Messina bridge using conventional materials will only occur around the middle of the present century, whereas it could be expected in the near future if carbon nanotube bundles were used. A simple cost analysis concludes the paper.

  7. Super-bridges suspended over carbon nanotube cables

    International Nuclear Information System (INIS)

    Carpinteri, Alberto; Pugno, Nicola M

    2008-01-01

    In this paper the new concept of 'super-bridges', i.e. kilometre-long bridges suspended over carbon nanotube cables, is introduced. The analysis shows that the use of realistic (thus defective) carbon nanotube bundles as suspension cables can enlarge the current limit main span by a factor of ∼3. Too large compliance and dynamic self-excited resonances could be avoided by additional strands, rendering the super-bridge anchored as a spider's cobweb. As an example, we have computed the limit main spans of the current existing 19 suspended-deck bridges longer than 1 km assuming them to have substituted their cables with carbon nanotube bundles (thus maintaining the same geometry, with the exception of the length) finding spans of up to ∼6.3 km. We thus suggest that the design of the Messina bridge in Italy, which would require a main span of ∼3.3 km, could benefit from the use of carbon nanotube bundles. We believe that their use represents a feasible and economically convenient solution. The plausibility of these affirmations is confirmed by a statistical analysis of the existing 100 longest suspended bridges, which follow a Zipf's law with an exponent of 1.1615: we have found a Moore-like (i.e. exponential) law, in which the doubling of the capacity (here the main span) per year is substituted by the factor 1.0138. Such a law predicts that the realization of the Messina bridge using conventional materials will only occur around the middle of the present century, whereas it could be expected in the near future if carbon nanotube bundles were used. A simple cost analysis concludes the paper.

  8. Carbon nanotubes: from nano test tube to nano-reactor.

    Science.gov (United States)

    Khlobystov, Andrei N

    2011-12-27

    Confinement of molecules and atoms inside carbon nanotubes provides a powerful strategy for studying structures and chemical properties of individual molecules at the nanoscale. In this issue of ACS Nano, Allen et al. explore the nanotube as a template leading to the formation of unusual supramolecular and covalent structures. The potential of carbon nanotubes as reactors for synthesis on the nano- and macroscales is discussed in light of recent studies.

  9. A biosensor for hydrogen peroxide detection based on electronic properties of carbon nanotubes

    Science.gov (United States)

    Majidi, Roya

    2013-01-01

    Density functional theory has been used to study the effect of hydrogen peroxide on the electronic properties of single walled carbon nanotubes. The metallic and semiconducting carbon nanotubes have been considered in the presence of different number of hydrogen peroxide. The results indicate that hydrogen peroxide has no significant effect on the metallic nanotube and these nanotubes remain to be metallic. In contrast, the electronic properties of the semiconducting nanotubes are so sensitive to hydrogen peroxide. The energy band gap of these nanotubes is decreased by increasing the number of hydrogen peroxide. The electronic sensivity of the carbon nanotubes to hydrogen peroxide opens new insights into developing biosensors based on the single walled carbon nanotubes.

  10. Determination the Hydrogen Stored in Carbon Nanotubes by NO Titration Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel method was established to determine the H2-storage capacity in carbon nanotubes. According to 2NO+2H2 (or 4H) = N2+2H2O reaction, the H2-storage capacity in carbon nanotubes could be calculated. The H2-storage capacity in carbon nanotubes is at least 2.89 wt%.

  11. Nanocomposite fibers and film containing polyolefin and surface-modified carbon nanotubes

    Science.gov (United States)

    Chu,Benjamin; Hsiao, Benjamin S.

    2010-01-26

    Methods for modifying carbon nanotubes with organic compounds are disclosed. The modified carbon nanotubes have enhanced compatibility with polyolefins. Nanocomposites of the organo-modified carbon nanotubes and polyolefins can be used to produce both fibers and films having enhanced mechanical and electrical properties, especially the elongation-to-break ratio and the toughness of the fibers and/or films.

  12. Optical Characterization and Applications of Single Walled Carbon Nanotubes

    Science.gov (United States)

    Strano, Michael S.

    2005-03-01

    Recent advances in the dispersion and separation of single walled carbon nanotubes have led to new methods of optical characterization and some novel applications. We find that Raman spectroscopy can be used to probe the aggregation state of single-walled carbon nanotubes in solution or as solids with a range of varying morphologies. Carbon nanotubes experience an orthogonal electronic dispersion when in electrical contact that broadens (from 40 meV to roughly 80 meV) and shifts the interband transition to lower energy (by 60 meV). We show that the magnitude of this shift is dependent on the extent of bundle organization and the inter-nanotube contact area. In the Raman spectrum, aggregation shifts the effective excitation profile and causes peaks to increase or decrease, depending on where the transition lies, relative to the excitation wavelength. The findings are particularly relevant for evaluating nanotube separation processes, where relative peak changes in the Raman spectrum can be confused for selective enrichment. We have also used gel electrophoresis and column chromatography conducted on individually dispersed, ultrasonicated single-walled carbon nanotubes to yield simultaneous separation by tube length and diameter. Electroelution after electrophoresis is shown to produce highly resolved fractions of nanotubes with average lengths between 92 and 435 nm. Separation by diameter is concomitant with length fractionation, and nanotubes that have been cut shortest also possess the greatest relative enrichments of large-diameter species. The relative quantum yield decreases nonlinearly as the nanotube length becomes shorter. These findings enable new applications of nanotubes as sensors and biomarkers. Particularly, molecular detection using near infrared (n-IR) light between 0.9 and 1.3 eV has important biomedical applications because of greater tissue penetration and reduced auto-fluorescent background in thick tissue or whole blood media. Carbon nanotubes

  13. Decorating Mg/Fe oxide nanotubes with nitrogen-doped carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yong, E-mail: caoyangel@126.com [Institute of Environment and Municipal Engineering, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Jiao Qingze, E-mail: jiaoqz@bit.edu.cn [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Zhao Yun [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Dong Yingchao [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland)

    2011-09-22

    Graphical abstract: Highlights: > Mg/Fe oxide nanotubes arrayed parallel to each other were prepared by an AAO template method. > The Mg/Fe oxide nanotubes decorated with CN{sub x} were realized by CVD of ethylenediamine on the outer surface of oxide nanotubes. > The magnetic properties of Mg/Fe oxide nanotubes were highly improved after being decorated. - Abstract: Mg/Fe oxide nanotubes decorated with nitrogen-doped carbon nanotubes (CN{sub x}) were fabricated by catalytic chemical vapor deposition of ethylenediamine on the outer surface of oxide nanotubes. Mg/Fe oxide nanotubes were prepared using a 3:1 molar precursor solution of Mg(NO{sub 3}){sub 2} and Fe(NO{sub 3}){sub 3} and anodic aluminum oxide as the substrate. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometer (VSM). The XRD pattern shows that the oxide nanotubes are made up of MgO and Fe{sub 2}O{sub 3}. TEM and SEM observations indicate the oxide nanotubes are arrayed roughly parallel to each other, and the outer surface of oxide nanotubes are decorated with CN{sub x}. XPS results show the nitrogen-doped level in CN{sub x} is about 7.3 at.%. Magnetic measurements with VSM demonstrate the saturated magnetization, remanence and coercivity of oxide nanotubes are obvious improved after being decorated with CN{sub x}.

  14. Comparison of the atmospheric- and reduced-pressure HS-SPME strategies for analysis of residual solvents in commercial antibiotics using a steel fiber coated with a multiwalled carbon nanotube/polyaniline nanocomposite.

    Science.gov (United States)

    Ghiasvand, Ali Reza; Nouriasl, Kolsoum; Yazdankhah, Fatemeh

    2018-01-01

    A low-cost, sensitive and reliable reduced-pressure headspace solid-phase microextraction (HS-SPME) setup was developed and evaluated for direct extraction of residual solvents in commercial antibiotics, followed by determination by gas chromatography with flame ionization detection (GC-FID). A stainless steel narrow wire was made porous and adhesive by platinization by a modified electrophoretic deposition method and coated with a polyaniline/multiwalled carbon nanotube nanocomposite. All experimental variables affecting the extraction efficiency were investigated for both atmospheric-pressure and reduced-pressure conditions. Comparison of the optimal experimental conditions and the results demonstrated that the reduced-pressure strategy leads to a remarkable increase in the extraction efficiency and reduction of the extraction time and temperature (10 min, 25 °Ϲ vs 20 min, 40 °Ϲ). Additionally, the reduced-pressure strategy showed better analytical performances compared with those obtained by the conventional HS-SPME-GC-FID method. Limit of detections, linear dynamic ranges, and relative standard deviations of the reduced-pressure HS-SPME procedure for benzene, toluene, ethylbenzene, and xylene (BTEX) in injectable solid drugs were obtained over the ranges of 20-100 pg g -1 , 0.02-40 μg g -1 , and 2.8-10.2%, respectively. The procedure developed was successful for the analysis of BTEX in commercial containers of penicillin, ampicillin, ceftriaxone, and cefazolin. Graphical abstract Schematic representation of the developed RP-HS-SPME setup.

  15. Viscoelastic properties of electrorheological suspensions of core-shell (carbon/polyaniline) particles in silicone oil

    Czech Academy of Sciences Publication Activity Database

    Sedlačík, M.; Almajdalawi, S.; Mrlík, M.; Pavlínek, V.; Saha, P.; Stejskal, Jaroslav

    2013-01-01

    Roč. 412, č. 1 (2013), 012006_1-012006_8 ISSN 1742-6588. [International Conference on Electrorheological Fluids and Magnetorheological Suspensions /13./ - ERMR2012. Ankara, 02.07.2012-06.07.2012] R&D Projects: GA ČR GA202/09/1626 Institutional support: RVO:61389013 Keywords : polyaniline * carbonization * electrorheology Subject RIV: BK - Fluid Dynamics

  16. Single walled carbon nanotube network—Tetrahedral amorphous carbon composite film

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Ajai, E-mail: ajai.iyer@aalto.fi; Liu, Xuwen; Koskinen, Jari [Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, POB 16200, 00076 Espoo (Finland); Kaskela, Antti; Kauppinen, Esko I. [NanoMaterials Group, Department of Applied Physics, School of Science, Aalto University, POB 15100, 00076 Espoo (Finland); Johansson, Leena-Sisko [Department of Forest Products Technology, School of Chemical Technology, Aalto University, POB 16400, 00076 Espoo (Finland)

    2015-06-14

    Single walled carbon nanotube network (SWCNTN) was coated by tetrahedral amorphous carbon (ta-C) using a pulsed Filtered Cathodic Vacuum Arc system to form a SWCNTN—ta-C composite film. The effects of SWCNTN areal coverage density and ta-C coating thickness on the composite film properties were investigated. X-Ray photoelectron spectroscopy measurements prove the presence of high quality sp{sup 3} bonded ta-C coating on the SWCNTN. Raman spectroscopy suggests that the single wall carbon nanotubes (SWCNTs) forming the network survived encapsulation in the ta-C coating. Nano-mechanical testing suggests that the ta-C coated SWCNTN has superior wear performance compared to uncoated SWCNTN.

  17. Carbon Nanotubes Hybrid Hydrogels in Drug Delivery: A Perspective Review

    Science.gov (United States)

    Hampel, Silke; Spizzirri, Umile Gianfranco; Parisi, Ortensia Ilaria; Picci, Nevio; Iemma, Francesca

    2014-01-01

    The use of biologics, polymers, silicon materials, carbon materials, and metals has been proposed for the preparation of innovative drug delivery devices. One of the most promising materials in this field are the carbon-nanotubes composites and hybrid materials coupling the advantages of polymers (biocompatibility and biodegradability) with those of carbon nanotubes (cellular uptake, stability, electromagnatic, and magnetic behavior). The applicability of polymer-carbon nanotubes composites in drug delivery, with particular attention to the controlled release by composites hydrogel, is being extensively investigated in the present review. PMID:24587993

  18. Funcionalização de nanotubos de Carbono Functionalization of carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Antônio Gomes de Souza Filho

    2007-01-01

    Full Text Available Carbon nanotubes are very stable systems having considerable chemical inertness due to the strong covalent bonds of the carbon atoms on the nanotube surface. Many applications of carbon nanotubes require their chemical modification in order to tune/control their physico-chemical properties. One way of achieving this control is carrying out functionalization processes where atoms and molecules interact (covalent or non-covalent with the nanotubes. We review some of the progress that has been made in chemical functionalization of carbon nanotubes. Emphasis is given to chemical strategies, the most used techniques, and applications.

  19. Reinforcement of single-walled carbon nanotube bundles by intertube bridging

    Science.gov (United States)

    Kis, A.; Csányi, G.; Salvetat, J.-P.; Lee, Thien-Nga; Couteau, E.; Kulik, A. J.; Benoit, W.; Brugger, J.; Forró, L.

    2004-03-01

    During their production, single-walled carbon nanotubes form bundles. Owing to the weak van der Waals interaction that holds them together in the bundle, the tubes can easily slide on each other, resulting in a shear modulus comparable to that of graphite. This low shear modulus is also a major obstacle in the fabrication of macroscopic fibres composed of carbon nanotubes. Here, we have introduced stable links between neighbouring carbon nanotubes within bundles, using moderate electron-beam irradiation inside a transmission electron microscope. Concurrent measurements of the mechanical properties using an atomic force microscope show a 30-fold increase of the bending modulus, due to the formation of stable crosslinks that effectively eliminate sliding between the nanotubes. Crosslinks were modelled using first-principles calculations, showing that interstitial carbon atoms formed during irradiation in addition to carboxyl groups, can independently lead to bridge formation between neighbouring nanotubes.

  20. Single-walled carbon nanotube-induced mitotic disruption⋆

    OpenAIRE

    Sargent, L.M.; Hubbs, A.F.; Young, S.-H.; Kashon, M.L.; Dinu, C.Z.; Salisbury, J.L.; Benkovic, S.A.; Lowry, D.T.; Murray, A.R.; Kisin, E.R.; Siegrist, K.J.; Battelli, L.; Mastovich, J.; Sturgeon, J.L.; Bunker, K.L.

    2011-01-01

    Carbon nanotubes were among the earliest products of nanotechnology and have many potential applications in medicine, electronics, and manufacturing. The low density, small size, and biological persistence of carbon nanotubes create challenges for exposure control and monitoring and make respiratory exposures to workers likely. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to 24, 48 and 96 μg/cm2 single-walled c...

  1. Induction heating process of ferromagnetic filled carbon nanotubes based on 3-D model

    Science.gov (United States)

    Wiak, Sławomir; Firych-Nowacka, Anna; Smółka, Krzysztof; Pietrzak, Łukasz; Kołaciński, Zbigniew; Szymański, Łukasz

    2017-12-01

    Since their discovery by Iijima in 1991 [1], carbon nanotubes have sparked unwavering interest among researchers all over the world. This is due to the unique properties of carbon nanotubes (CNTs). Carbon nanotubes have excellent mechanical and electrical properties with high chemical and thermal stability. In addition, carbon nanotubes have a very large surface area and are hollow inside. This gives a very broad spectrum of nanotube applications, such as in combination with polymers as polymer composites in the automotive, aerospace or textile industries. At present, many methods of nanotube synthesis are known [2, 3, 4, 5, 6]. It is also possible to use carbon nanotubes in biomedical applications [7, 8, 9, 10, 11, 12, 13, 14], including the destruction of cancer cells using iron-filled carbon nanotubes in the hyperthermia process. Computer modelling results of Fe-CNTs induction heating process are presented in the paper. As an object used for computer model creation, Fe-CNTs were synthesized by the authors using CCVD technique.

  2. Center for Applications of Single-Walled Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Resasco, Daniel E

    2008-02-21

    This report describes the activities conducted under a Congressional Direction project whose goal was to develop applications for Single-walled carbon nanotubes, under the Carbon Nanotube Technology Center (CANTEC), a multi-investigator program that capitalizes on OU’s advantageous position of having available high quality carbon nanotubes. During the first phase of CANTEC, 11 faculty members and their students from the College of Engineering developed applications for carbon nanotubes by applying their expertise in a number of areas: Catalysis, Reaction Engineering, Nanotube synthesis, Surfactants, Colloid Chemistry, Polymer Chemistry, Spectroscopy, Tissue Engineering, Biosensors, Biochemical Engineering, Cell Biology, Thermal Transport, Composite Materials, Protein synthesis and purification, Molecular Modeling, Computational Simulations. In particular, during this phase, the different research groups involved in CANTEC made advances in the tailoring of Single-Walled Carbon Nanotubes (SWNT) of controlled diameter and chirality by Modifying Reaction Conditions and the Nature of the catalyst; developed kinetic models that quantitatively describe the SWNT growth, created vertically oriented forests of SWNT by varying the density of metal nanoparticles catalyst particles, and developed novel nanostructured SWNT towers that exhibit superhydrophobic behavior. They also developed molecular simulations of the growth of Metal Nanoparticles on the surface of SWNT, which may have applications in the field of fuell cells. In the area of biomedical applications, CANTEC researchers fabricated SWNT Biosensors by a novel electrostatic layer-by-layer (LBL) deposition method, which may have an impact in the control of diabetes. They also functionalized SWNT with proteins that retained the protein’s biological activity and also retained the near-infrared light absorbance, which finds applications in the treatment of cancer.

  3. Raman spectra of filled carbon nanotubes

    International Nuclear Information System (INIS)

    Bose, S.M.; Behera, S.N.; Sarangi, S.N.; Entel, P.

    2004-01-01

    The Raman spectra of a metallic carbon nanotube filled with atoms or molecules have been investigated theoretically. It is found that there will be a three way splitting of the main Raman lines due to the interaction of the nanotube phonon with the collective excitations (plasmons) of the conduction electrons of the nanotube as well as its coupling with the phonon of the filling material. The positions and relative strengths of these Raman peaks depend on the strength of the electron-phonon interaction, phonon frequency of the filling atom and the strength of interaction of the nanotube phonon and the phonon of the filling atoms. Careful experimental studies of the Raman spectra of filled nanotubes should show these three peaks. It is also shown that in a semiconducting nanotube the Raman line will split into two and should be observed experimentally

  4. Torsional carbon nanotube artificial muscles.

    Science.gov (United States)

    Foroughi, Javad; Spinks, Geoffrey M; Wallace, Gordon G; Oh, Jiyoung; Kozlov, Mikhail E; Fang, Shaoli; Mirfakhrai, Tissaphern; Madden, John D W; Shin, Min Kyoon; Kim, Seon Jeong; Baughman, Ray H

    2011-10-28

    Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000° rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.

  5. High frequency electromechanical memory cells based on telescoping carbon nanotubes.

    Science.gov (United States)

    Popov, A M; Lozovik, Y E; Kulish, A S; Bichoutskaia, E

    2010-07-01

    A new method to increase the operational frequency of electromechanical memory cells based on the telescoping motion of multi-walled carbon nanotubes through the selection of the form of the switching voltage pulse is proposed. The relative motion of the walls of carbon nanotubes can be controlled through the shape of the interwall interaction energy surface. This allows the use of the memory cells in nonvolatile or volatile regime, depending on the structure of carbon nanotube. Simulations based on ab initio and semi-empirical calculations of the interwall interaction energies are used to estimate the switching voltage and the operational frequency of volatile cells with the electrodes made of carbon nanotubes. The lifetime of nonvolatile memory cells is also predicted.

  6. Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: a mechanistic study and application in high-performance electrochemical supercapacitor electrode

    International Nuclear Information System (INIS)

    Wu, Wenling; Pan, Duo; Li, Yanfeng; Zhao, Guanghui; Jing, Lingyun; Chen, Suli

    2015-01-01

    At present, the in situ synthesis of polyaniline (PANI) nanotubes via self-assembly of organic dopant acid is a particularly charming task in supercapacitors. Herein, we report the formation of uniform PANI nanotubes doped with malic acid (MA) and other organic acids, such as propionic acid (PA), succinic acid (SA), tartaric acid (TA) and citric acid (CA), which simultaneously acts as a dopant acid as well as a structure-directing agent. The morphology, structure and thermal stability of PANI nanotubes were characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectra, Ultraviolet-visible spectra (UV–vis), X-ray diffraction (XRD), thermogravimetric analysis (TGA). Meanwhile, the electrochemical performance of the fabricated electrodes was evaluated by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS). Furthermore, the PANI-MA and PANI-CA nanotubes, with [aniline]/[acid] molar ratio of 4:1, possessed highest specific capacitance of 658 F/g and 617 F/g at the current density of 0.1 A/g in 1.0 M H 2 SO 4 electrolyte due to their unique nanotubular structures. It makes PANI nanotubes a promising electrode material for high performance supercapacitors

  7. Carbon nanotube functionalized with dodecylamine for the effective dispersion in solvents

    International Nuclear Information System (INIS)

    Ferreira, Filipe Vargas; Francisco, Wesley; Menezes, Beatriz Rossi Canuto de; Cividanes, Luciana De Simone; Coutinho, Aparecido dos Reis; Thim, Gilmar Patrocínio

    2015-01-01

    Highlights: • The functionalized carbon nanotubes exhibit the formation of a shell structure with nanotubes in the center. • Graphitic structures (sp 2 ) reduce simultaneously with the change of textures on the surface of carbon nanotubes. • The nonpolar chain of dodecylamine improves the carbon nanotube interaction with the nonpolar solvent. - Abstract: In this work, it was performed a dispersion study of carbon nanotubes (CNTs) functionalized with carboxylic and alkane groups in various solvents. CNT was functionalized using H 2 SO 4 /HNO 3 and subsequently functionalized by dodecylamine (DDA). Fourier transform infrared, X-ray photoelectron spectroscopy, thermogravimetric analysis and transmission electron microscopy were used to characterize the CNTs at each step of the surface modification. The dispersion state of CNTs in the solvents was evaluated by Optical microscopy and visual observations. The evaluation of the solvent influence itself was also made. Results confirmed the presence of oxygen-containing and alkane groups on CNTs surfaces. The dispersion stability was strongly dependent on the solvent and carbon nanotubes surface interactions, which can vary with the chemical nature of the solvent. The study of the surface modifications and the degree of carbon nanotubes dispersion is relevant to enhance the full understanding of its applications.

  8. Multifunctional carbon nanotubes with nanoparticles embedded in their walls

    International Nuclear Information System (INIS)

    Mattia, D; Korneva, G; Sabur, A; Friedman, G; Gogotsi, Y

    2007-01-01

    Controlled amounts of nanoparticles ranging in size and composition were embedded in the walls of carbon nanotubes during a template-assisted chemical vapour deposition (CVD) process. The encapsulation of gold nanoparticles enabled surface enhanced Raman spectroscopy (SERS) detection of glycine inside the cavity of the nanotubes. Iron oxide particles are partially reduced to metallic iron during the CVD process giving the nanotubes ferromagnetic behaviour. At high nanoparticle concentrations, particle agglomerates can form. These agglomerates or larger particles, which are only partially embedded in the walls of the nanotubes, are covered by additional carbon layers inside the hollow cavity of the tube producing hillocks inside the nanotubes, with sizes comparable to the bore of the tube

  9. NMR study of local diamagnetic properties of carbon structures with multiwalled nanotubes

    International Nuclear Information System (INIS)

    Nikolaev, E.G.; Omel'yanovsky, O.E.; Prudkovsky, V.S.; Sadakov, A.V.; Tsebro, V.I.

    2009-01-01

    The reasons for the high diamagnetic susceptibility of carbon columns, which are covered with a nanotube mesh, from the interior part of cathode deposits have been studied by means of NMR. A comparative study is made of the 13 C NMR spectra and the magnetic susceptibility of carbon columns before and after ultrasonic processing as well as of finely dispersed material, obtained as a result of such processing, enriched with multilayer nanotubes. The strong diamagnetism of the carbon columns is apparently associated with a quite dense conglomerate of graphite particles, nanotubes, and multilayer polyhedral particles present in their core and not with the surface mesh of multilayer nanotubes. To make a more accurate determination of the character of the anisotropy of the magnetic susceptibility of multilayer carbon nanotubes, the form of the 13 C NMR spectra of samples enriched with multilayer nanotubes, where the nanotubes are either not oriented or only partially oriented, is analyzed. It is shown that the diamagnetic susceptibility of multilayer carbon nanotubes is highest when the magnetic field is oriented perpendicular to their axis

  10. Patterned growth of carbon nanotubes obtained by high density plasma chemical vapor deposition

    Science.gov (United States)

    Mousinho, A. P.; Mansano, R. D.

    2015-03-01

    Patterned growth of carbon nanotubes by chemical vapor deposition represents an assembly approach to place and orient nanotubes at a stage as early as when they are synthesized. In this work, the carbon nanotubes were obtained at room temperature by High Density Plasmas Chemical Vapor Deposition (HDPCVD) system. This CVD system uses a new concept of plasma generation, where a planar coil coupled to an RF system for plasma generation was used with an electrostatic shield for plasma densification. In this mode, high density plasmas are obtained. We also report the patterned growth of carbon nanotubes on full 4-in Si wafers, using pure methane plasmas and iron as precursor material (seed). Photolithography processes were used to pattern the regions on the silicon wafers. The carbon nanotubes were characterized by micro-Raman spectroscopy, the spectra showed very single-walled carbon nanotubes axial vibration modes around 1590 cm-1 and radial breathing modes (RBM) around 120-400 cm-1, confirming that high quality of the carbon nanotubes obtained in this work. The carbon nanotubes were analyzed by atomic force microscopy and scanning electron microscopy too. The results showed that is possible obtain high-aligned carbon nanotubes with patterned growth on a silicon wafer with high reproducibility and control.

  11. Quantum conductance of carbon nanotube peapods

    International Nuclear Information System (INIS)

    Yoon, Young-Gui; Mazzoni, Mario S.C.; Louie, Steven G.

    2003-01-01

    We present a first-principles study of the quantum conductance of hybrid nanotube systems consisting of single-walled carbon nanotubes (SWCNTs) encapsulating either an isolated single C60 molecule or a chain of C60 molecules (nanotube peapods). The calculations show a rather weak bonding interaction between the fullerenes and the SWCNTs. The conductance of a (10,10) SWCNT with a single C60 molecule is virtually unaffected at the Fermi level, but exhibits quantized resonant reductions at the molecular levels. The nanotube peapod arrangement gives rise to high density of states for the fullerene highest occupied molecular orbital and lowest unoccupied molecular orbital bands

  12. Graphene and Carbon Nanotubes Synergistically Improved the Thermal Conductivity of Phenolic Resin

    OpenAIRE

    Wang Han

    2017-01-01

    People discover the synergistic effect of graphene and carbon nanotubes on heat conduction in graphene carbon nanotubes / epoxy resin hybrid composites. In this article we added them into the phenolic resin and test the thermal conductivity. We found the thermal conductivity was increased by 6.5% in the phenolic resin by adding 0.45wt% graphene and 0.15wt% single wall carbon nanotubes (maintain the mass ratio 3:1). So if graphene and carbon nanotubes are added in proportion, thermal conductiv...

  13. Effects of doped copper on electrochemical performance of the raw carbon nanotubes anode

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhanhong; Simard, Benoit [SIMS, National Research Council, 100 Sussex Dr., Ottawa, ON (Canada); Li, Zaifeng [ICPET, National Research Council, 1200 Montreal Road, Ottawa, ON (Canada); Wu, Haoqing [Department of Chemistry, Fudan University, Shanghai 200433 (China)

    2003-07-01

    The raw carbon nanotubes pre-doped with copper are used as anode materials for lithium ion batteries. Constant current discharge and charge tests using the raw carbon nanotubes pre-doped with copper as Li{sup +} storage compounds show lower specific capacities than that of the acid-oxidized carbon nanotubes. The acids play an important role; H{sub 2}SO{sub 4} and HNO{sub 3} can easily permeate through the graphene sheets, then they will make the defects or pores in the graphene sheets, and this reaction can make the expansion of the graphite. Meanwhile, Cu{sup 2+} will diffuse into the pores and onto the outer surfaces of the carbon nanotubes. Cu{sup 2+} can be easily turned into Cu at high temperature in the presence of the carbon nanomaterial. So parts of the pores and the surfaces of the carbon nanotubes will be filled with the Cu atom. Once the space positions of the nanotubes were occupied, lithium cannot intercalate into the pores and onto the outer surface of the carbon nanotubes, thus the doped carbon nanotubes will have a low specific capacity.

  14. Single wall carbon nanotube supports for portable direct methanol fuel cells.

    Science.gov (United States)

    Girishkumar, G; Hall, Timothy D; Vinodgopal, K; Kamat, Prashant V

    2006-01-12

    Single-wall and multiwall carbon nanotubes are employed as carbon supports in direct methanol fuel cells (DMFC). The morphology and electrochemical activity of single-wall and multiwall carbon nanotubes obtained from different sources have been examined to probe the influence of carbon support on the overall performance of DMFC. The improved activity of the Pt-Ru catalyst dispersed on carbon nanotubes toward methanol oxidation is reflected as a shift in the onset potential and a lower charge transfer resistance at the electrode/electrolyte interface. The evaluation of carbon supports in a passive air breathing DMFC indicates that the observed power density depends on the nature and source of carbon nanostructures. The intrinsic property of the nanotubes, dispersion of the electrocatalyst and the electrochemically active surface area collectively influence the performance of the membrane electrode assembly (MEA). As compared to the commercial carbon black support, single wall carbon nanotubes when employed as the support for anchoring the electrocatalyst particles in the anode and cathode sides of MEA exhibited a approximately 30% enhancement in the power density of a single stack DMFC operating at 70 degrees C.

  15. Carbon nanotubes grown on bulk materials and methods for fabrication

    Science.gov (United States)

    Menchhofer, Paul A [Clinton, TN; Montgomery, Frederick C [Oak Ridge, TN; Baker, Frederick S [Oak Ridge, TN

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  16. High energy (MeV) ion-irradiated π-conjugated polyaniline: Transition from insulating state to carbonized conducting state

    International Nuclear Information System (INIS)

    Park, S.K.; Lee, S.Y.; Lee, C.S.; Kim, H.M.; Joo, J.; Beag, Y.W.; Koh, S.K.

    2004-01-01

    High energy (MeV) C 2+ , F 2+ , and Cl 2+ ions were irradiated onto π-conjugated polyaniline emeraldine base (PAN-EB) samples. The energy of an ion beam was controlled to a range of 3-4.5 MeV, with the ion dosage varying from 1x10 12 to 1x10 16 ions/cm 2 . The highest dc conductivity (σ dc ) at room temperature was measured to be ∼60 S/cm for 4.5 MeV Cl 2+ ion-irradiated PAN-EB samples with a dose of 1x10 16 ions/cm 2 . We observed the transition of high energy ion-irradiated PAN-EB samples from insulating state to conducting state as a function of ion dosage based on σ dc and its temperature dependence. The characteristic peaks of the Raman spectrum of the PAN-EB samples were reduced, while the D-peak (disordered peak) and the G peak (graphitic peak) appeared as the ion dose increased. From the analysis of the D and G peaks of the Raman spectra of the systems compared to multiwalled carbon nanotubes, ion-irradiated graphites, and annealed carbon films, the number of the clusters of hexagon rings with conducting sp 2 -bonded carbons increased with ion dosage. We also observed the increase in the size of the nanocrystalline graphitic domain of the systems with increasing ion dosage. The intensity of normalized electron paramagnelic resonance signal also increased in correlation with ion dose. The results of this study demonstrate that π-conjugated pristine PAN-EB systems changed from insulating state to carbonized conducting state through high energy ion irradiation with high ion dosage

  17. Deposition of metallic nanoparticles on carbon nanotubes via a fast evaporation process

    International Nuclear Information System (INIS)

    Ren Guoqiang; Xing Yangchuan

    2006-01-01

    A new technique was developed for the deposition of colloidal metal nanoparticles on carbon nanotubes. It involves fast evaporation of a suspension containing sonochemically functionalized carbon nanotubes and colloidal nanoparticles. It was demonstrated that metallic nanoparticles with different sizes and concentrations can be deposited on the carbon nanotubes with only a few agglomerates. The technique does not seem to be limited by what the nanoparticles are, and therefore would be applicable to the deposition of other nanoparticles on carbon nanotubes. PtPd and CoPt 3 alloy nanoparticles were used to demonstrate the deposition process. It was found that the surfactants used to disperse the nanoparticles can hinder the nanoparticle deposition. When the nanoparticles were washed with ethanol, they could be well deposited on the carbon nanotubes. The obtained carbon nanotube supported metal nanoparticles were characterized by transmission electron microscopy, energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and cyclic voltammetry

  18. Carbon nanotube and graphene nanoribbon interconnects

    CERN Document Server

    Das, Debaprasad

    2014-01-01

    "The book, Caron Nanotube and Graphene Nanoribbon Interconnects, authored by Drs. Debapraad Das and Hafizur Rahaman serves as a good source of material on CNT and GNR interconnects for readers who wish to get into this area and also for practicing engineers who would like to be updated in advances of this field."-Prof. Ashok Srivastava, Louisiana State University, Baton Rouge, USA"Mathematical analysis included in each and every chapter is the main strength of the materials. ... The book is very precise and useful for those who are working in this area. ... highly focused, very compact, and easy to apply. ... This book depicts a detailed analysis and modelling of carbon nanotube and graphene nanoribbon interconnects. The book also covers the electrical circuit modelling of carbon nanotubes and graphene nanoribbons."-Prof. Chandan Kumar Sarkar, Jadavpur University, Kolkata, India.

  19. Preparation and mechanical properties of carbon nanotube-silicon nitride nano-ceramic matrix composites

    Science.gov (United States)

    Tian, C. Y.; Jiang, H.

    2018-01-01

    Carbon nanotube-silicon nitride nano-ceramic matrix composites were fabricated by hot-pressing nano-sized Si3N4 powders and carbon nanotubes. The effect of CNTs on the mechanical properties of silicon nitride was researched. The phase compositions and the microstructure characteristics of the samples as well as the distribution of carbon nanotube in the silicon nitride ceramic were analyzed by X-ray diffraction and scanning electron microscope. The results show that the microstructure of composites consists mainly of α-Si3N4, β-Si3N4, Si2N2O and carbon natubes. The addition of proper amount of carbon nanotubes can improve the fracture toughness and the flexural strength, and the optimal amount of carbon nanotube are both 3wt.%. However the Vickers hardness values decrease with the increase of carbon nanotubes content.

  20. Carbon nanotubes polymerization induced by self-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Cassio Stein [Faculdade de Fisica, Pontificia Univ. Catolica do Rio Grande do Sul (PUCRS), Porto Alegre (Brazil)

    2008-07-01

    Full text: We discuss our recent results on the formation of cross-links between neighboring carbon nanotubes within a bundle. Classical molecular dynamics was used to follow the evolution of the system when it is bombarded by low-energy carbon atoms. We show that it is possible to polymerize carbon nanotubes through irradiation and discuss the most common types of defects produced. Cross-links are created mainly in the direction perpendicular to the surface, and for higher energies, defects are created deeper in the rope. The final defects geometries may provide a realistic input to electronic density first principle calculations. (author)

  1. Carbon nanotubes polymerization induced by self-irradiation

    International Nuclear Information System (INIS)

    Moura, Cassio Stein

    2008-01-01

    Full text: We discuss our recent results on the formation of cross-links between neighboring carbon nanotubes within a bundle. Classical molecular dynamics was used to follow the evolution of the system when it is bombarded by low-energy carbon atoms. We show that it is possible to polymerize carbon nanotubes through irradiation and discuss the most common types of defects produced. Cross-links are created mainly in the direction perpendicular to the surface, and for higher energies, defects are created deeper in the rope. The final defects geometries may provide a realistic input to electronic density first principle calculations. (author)

  2. (PC12) cell lines to oxidized multi-walled carbon nanotubes

    African Journals Online (AJOL)

    EB

    Methods: The pristine multi-walled carbon nanotubes (p-MWCNTs) were ... characterize the MWCNTs. ..... South Africa and NRF Focus Area, Nanotechnology ... of carbon nanotubes in drug delivery. Current. Opinion in Chemical Biology, 2005 ...

  3. Noise characteristics of single-walled carbon nanotube network transistors

    International Nuclear Information System (INIS)

    Kim, Un Jeong; Kim, Kang Hyun; Kim, Kyu Tae; Min, Yo-Sep; Park, Wanjun

    2008-01-01

    The noise characteristics of randomly networked single-walled carbon nanotubes grown directly by plasma enhanced chemical vapor deposition (PECVD) are studied with field effect transistors (FETs). Due to the geometrical complexity of nanotube networks in the channel area and the large number of tube-tube/tube-metal junctions, the inverse frequency, 1/f, dependence of the noise shows a similar level to that of a single single-walled carbon nanotube transistor. Detailed analysis is performed with the parameters of number of mobile carriers and mobility in the different environment. This shows that the change in the number of mobile carriers resulting in the mobility change due to adsorption and desorption of gas molecules (mostly oxygen molecules) to the tube surface is a key factor in the 1/f noise level for carbon nanotube network transistors

  4. Topological phase diagram of superconducting carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Milz, Lars; Marganska-Lyzniak, Magdalena; Grifoni, Milena [Institut I - Theoretische Physik Universitaet Regensburg (Germany)

    2016-07-01

    The topological superconducting phase diagram of superconducting carbon nanotubes is discussed. Under the assumption of a short-ranged pairing potential, there are two spin-singlet states: an s-wave and an exotic p + ip-wave that are possible because of the special structure of the honeycomb lattice. The consequences for the possible presence of Majorana edge states in carbon nanotubes are addressed. In particular, regions in the magnetic field-chemical potential plane possibly hosting localized Majorana modes are discussed.

  5. Structural and electronic properties of carbon nanotubes under hydrostatic pressures

    International Nuclear Information System (INIS)

    Zhang Ying; Cao Juexian; Yang Wei

    2008-01-01

    We studied the structural and electronic properties of carbon nanotubes under hydrostatic pressures based on molecular dynamics simulations and first principles band structure calculations. It is found that carbon nanotubes experience a hard-to-soft transition as external pressure increases. The bulk modulus of soft phase is two orders of magnitude smaller than that of hard phase. The band structure calculations show that band gap of (10, 0) nanotube increases with the increase of pressure at low pressures. Above a critical pressure (5.70GPa), band gap of (10, 0) nanotube drops rapidly and becomes zero at 6.62GPa. Moreover, the calculated charge density shows that a large pressure can induce an sp 2 -to-sp 3 bonding transition, which is confirmed by recent experiments on deformed carbon nanotubes

  6. Electrochemical supercapacitors from conducting polyaniline-graphene platforms.

    Science.gov (United States)

    Ashok Kumar, Nanjundan; Baek, Jong-Beom

    2014-06-18

    Energy storage devices such as electrochemical supercapacitors, with high power and energy densities are required to address the colossal energy requirements against the backdrop of global warming and the looming energy crisis. Nanocarbon, particularly two-dimensional graphene and graphene-based conducting polymer composites are promising electrode materials for such energy storage devices. Owing to their environmental stability, the low cost of polymers with high electroactivity and pseudocapacitance, such composite hybrids are expected to have wide implications in next generation clean and efficient energy systems. In this feature article, an overview of current research and important advances over the past four years on the development of conducting polyaniline (PANI)-graphene based composite electrodes for electrochemical supercapacitors are highlighted. Particular emphasis is made on the design, fabrication and assembly of nanostructured electrode architectures comprising PANI and graphene along with metal oxides/hydroxides and carbon nanotubes. Comments on the challenges and perspectives towards rational design and synthesis of graphene-based conducting polymer composites for energy storage are discussed.

  7. Detection of gas atoms with carbon nanotubes

    Science.gov (United States)

    Arash, B.; Wang, Q.

    2013-01-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  8. Conformational analysis and electronic structure of chiral carbon and carbon nitride nanotubes

    Directory of Open Access Journals (Sweden)

    Cristiano Geraldo de Faria

    2011-12-01

    Full Text Available Geometry and electronic structure of chiral carbon and carbon nitride (CNx nanotubes were investigated through quantum chemical methods. Finite nanotubes with diameters ranging from 5 to 10 Å and containing up to 500 atoms were considered. CNx structures were built through random substitution of carbon atoms by nitrogen. The molecules were fully optimized by semi-empirical quantum chemical method (PM3. Our results show that the energy associated with nitrogen incorporation depends strongly upon the tube helicity and diameter. The doping of nanotubes with nitrogen contributes to reduce the stress caused by the small diameter of the studied systems. Density of States (DOS results for pure carbon and CNx nanostructures, obtained through DFT and Hartree-Fock calculations, were analyzed. The introduction of nitrogen in the tube produce states in the gap region which characterizes the metallic behavior, as expected for these systems after N-doping.

  9. Investigation on single carbon atom transporting through the single-walled carbon nanotube by MD simulation

    International Nuclear Information System (INIS)

    Ding Yinfeng; Zhang Zhibin; Ke Xuezhi; Zhu Zhiyuan; Zhu Dezhang; Wang Zhenxia; Xu Hongjie

    2005-01-01

    The single carbon atom transporting through the single-walled carbon nanotube has been studied by molecular-dynamics (MD) simulation. We got different trajectories of the carbon atom by changing the input parameters. The simulation results indicate that the single carbon atom with low energy can transport through the carbon nanotube under some input conditions and result in different trajectories being straight line or 'rosette' or circular. (authors)

  10. Carbon-Nanotube-Based Thermoelectric Materials and Devices

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, Jeffrey L. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden CO 80401-3305 USA; Ferguson, Andrew J. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden CO 80401-3305 USA; Cho, Chungyeon [Department of Mechanical Engineering, Texas A& M University, College Station TX 77843-3003 USA; Grunlan, Jaime C. [Department of Mechanical Engineering, Texas A& M University, College Station TX 77843-3003 USA

    2018-01-22

    Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g-1) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting.

  11. Quantum size effect and thermal stability of carbon-nanotube-based quantum dot

    International Nuclear Information System (INIS)

    Huang, N.Y.; Peng, J.; Liang, S.D.; Li, Z.B.; Xu, N.S.

    2004-01-01

    Full text: Based on semi-experience quantum chemical calculation, we have investigated the quantum size effect and thermal stability of open-end carbon nanotube (5, 5) quantum dots of 20 to 400 atoms. It was found that there is a gap in the energy band of all carbon nanotube (5, 5) quantum dots although a (5, 5) carbon nanotube is metallic. The energy gap of quantum dots is much dependent of the number of atoms in a dot, as a result of the quantization rules imposed by the finite scales in both radial and axial directions of a carbon nanotube quantum dot. Also, the heat of formation of carbon nanotube quantum dots is dependent of the size of a quantum dot. (author)

  12. Self-grafting carbon nanotubes on polymers for stretchable electronics

    Science.gov (United States)

    Morales, Piero; Moyanova, Slavianka; Pavone, Luigi; Fazi, Laura; Mirabile Gattia, Daniele; Rapone, Bruno; Gaglione, Anderson; Senesi, Roberto

    2018-06-01

    Elementary bidimensional circuitry made of single-wall carbon-nanotube-based conductors, self-grafted on different polymer films, is accomplished in an attempt to develop a simple technology for flexible and stretchable electronic devices. Unlike in other studies of polymer-carbon nanotube composites, no chemical functionalization of single-wall carbon nanotubes is necessary for stable grafting onto several polymeric surfaces, suggesting viable and cheap fabrication technologies for stretchable microdevices. Electrical characterization of both unstretched and strongly stretched conductors is provided, while an insight on the mechanisms of strong adhesion to the polymer is obtained by scanning electron microscopy of the surface composite. As a first example of technological application, the electrical functionality of a carbon-nanotube-based 6-sensor (electrode) grid was demonstrated by recording of subdural electrocorticograms in freely moving rats over approximately three months. The results are very promising and may serve as a basis for future work targeting clinical applications.

  13. AFM imaging of functionalized carbon nanotubes on biological membranes

    International Nuclear Information System (INIS)

    Lamprecht, C; Danzberger, J; Rangl, M; Gruber, H J; Hinterdorfer, P; Kienberger, F; Ebner, A; Liashkovich, I; Neves, V; Heister, E; Coley, H M; McFadden, J; Flahaut, E

    2009-01-01

    Multifunctional carbon nanotubes are promising for biomedical applications as their nano-size, together with their physical stability, gives access into the cell and various cellular compartments including the nucleus. However, the direct and label-free detection of carbon nanotube uptake into cells is a challenging task. The atomic force microscope (AFM) is capable of resolving details of cellular surfaces at the nanometer scale and thus allows following of the docking of carbon nanotubes to biological membranes. Here we present topographical AFM images of non-covalently functionalized single walled (SWNT) and double walled carbon nanotubes (DWNT) immobilized on different biological membranes, such as plasma membranes and nuclear envelopes, as well as on a monolayer of avidin molecules. We were able to visualize DWNT on the nuclear membrane while at the same time resolving individual nuclear pore complexes. Furthermore, we succeeded in localizing individual SWNT at the border of incubated cells and in identifying bundles of DWNT on cell surfaces by AFM imaging.

  14. Illuminating the future of silicon photonics: optical coupling of carbon nanotubes to microrings

    International Nuclear Information System (INIS)

    Kato, Y K

    2015-01-01

    Advances in carbon nanotube material quality and processing techniques have led to an increased interest in nanotube photonics. In particular, emission in the telecommunication wavelengths makes nanotubes compatible with silicon photonics. Noury et al (2014 Nanotechnology 25 215201) have reported on carbon nanotube photoluminescence coupled to silicon microring resonators, underscoring the advantage of combining carbon nanotube emitters with silicon photonics. Their results open up the possibility of using nanotubes in other waveguide-based devices, taking advantage of well-established technologies. (viewpoint)

  15. Detonation nanodiamond and onion-like-carbon-embedded polyaniline for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Igor; Bucknall, David G.; Yushin, Gleb [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2010-11-23

    The detonation nanodiamond is a versatile low-cost nanomaterial with tunable properties and surface chemistry. In this work, it is shown how the application of nanodiamond (ND) can greatly increase the performance of electrochemically active polymers, such as polyaniline (PANI). Symmetric supercapacitors containing PANI-ND nanocomposite electrodes with 3-28 wt% ND show dramatically improved cycle stability and higher capacitance retention at fast sweep rate than pure PANI electrodes. Contrary to other PANI-carbon nanocomposites, specific capacitance of the selected PANI electrodes with embedded ND increases after 10 000 galvanostatic cycles and reaches 640 F g{sup -1}, when measured in a symmetric two-electrode configuration with 1 M H{sub 2}SO{sub 4} electrolyte. The demonstrated specific capacitance is 3-4 times higher than that of the activated carbons and more than 15 times higher than that of ND and onion-like carbon (OLC). (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Improvements in Production of Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Balzano, Leandro; Resasco, Daniel E.

    2009-01-01

    A continuing program of research and development has been directed toward improvement of a prior batch process in which single-walled carbon nanotubes are formed by catalytic disproportionation of carbon monoxide in a fluidized-bed reactor. The overall effect of the improvements has been to make progress toward converting the process from a batch mode to a continuous mode and to scaling of production to larger quantities. Efforts have also been made to optimize associated purification and dispersion post processes to make them effective at large scales and to investigate means of incorporating the purified products into composite materials. The ultimate purpose of the program is to enable the production of high-quality single-walled carbon nanotubes in quantities large enough and at costs low enough to foster the further development of practical applications. The fluidized bed used in this process contains mixed-metal catalyst particles. The choice of the catalyst and the operating conditions is such that the yield of single-walled carbon nanotubes, relative to all forms of carbon (including carbon fibers, multi-walled carbon nanotubes, and graphite) produced in the disproportionation reaction is more than 90 weight percent. After the reaction, the nanotubes are dispersed in various solvents in preparation for end use, which typically involves blending into a plastic, ceramic, or other matrix to form a composite material. Notwithstanding the batch nature of the unmodified prior fluidized-bed process, the fluidized-bed reactor operates in a continuous mode during the process. The operation is almost entirely automated, utilizing mass flow controllers, a control computer running software specific to the process, and other equipment. Moreover, an important inherent advantage of fluidized- bed reactors in general is that solid particles can be added to and removed from fluidized beds during operation. For these reasons, the process and equipment were amenable to

  17. Carbon nanotubes as heat dissipaters in microelectronics

    DEFF Research Database (Denmark)

    Pérez Paz, Alejandro; García-Lastra, Juan María; Markussen, Troels

    2013-01-01

    We review our recent modelling work of carbon nanotubes as potential candidates for heat dissipation in microelectronics cooling. In the first part, we analyze the impact of nanotube defects on their thermal transport properties. In the second part, we investigate the loss of thermal properties...... of nanotubes in presence of an interface with various substances, including air and water. Comparison with previous works is established whenever is possible....

  18. Progress Toward Sequestering Carbon Nanotubes in PmPV

    Science.gov (United States)

    Bley, Richard A.

    2009-01-01

    Sequestration of single-walled carbon nanotubes (SWNTs) in molecules of poly(m-phenylenevinylene-co-2,5-diocty-loxy-p-phenylenevinylene) [PmPV] is a candidate means of promoting dissolution of single-walled carbon nanotubes (SWNTs) into epoxies for making strong, lightweight epoxy-matrix/carbon-fiber composite materials. Bare SWNTs cannot be incorporated because they are not soluble in epoxies. In the present approach, one exploits the tendency of PmPV molecules to wrap themselves around SWNTs without chemically bonding to them.

  19. Hall Measurements on Carbon Nanotube Paper Modified With Electroless Deposited Platinum

    Directory of Open Access Journals (Sweden)

    Iwuoha Emmanuel

    2009-01-01

    Full Text Available Abstract Carbon nanotube paper, sometimes referred to as bucky paper, is a random arrangement of carbon nanotubes meshed into a single robust structure, which can be manipulated with relative ease. Multi-walled carbon nanotubes were used to make the nanotube paper, and were subsequently modified with platinum using an electroless deposition method based on substrate enhanced electroless deposition. This involves the use of a sacrificial metal substrate that undergoes electro-dissolution while the platinum metal deposits out of solution onto the nanotube paper via a galvanic displacement reaction. The samples were characterized using SEM/EDS, and Hall-effect measurements. The SEM/EDS analysis clearly revealed deposits of platinum (Pt distributed over the nanotube paper surface, and the qualitative elemental analysis revealed co-deposition of other elements from the metal substrates used. When stainless steel was used as sacrificial metal a large degree of Pt contamination with various other metals was observed. Whereas when pure sacrificial metals were used bimetallic Pt clusters resulted. The co-deposition of a bimetallic system upon carbon nanotubes was a function of the metal type and the time of exposure. Hall-effect measurements revealed some interesting fluctuations in sheet carrier density and the dominant carrier switched from N- to P-type when Pt was deposited onto the nanotube paper. Perspectives on the use of the nanotube paper as a replacement to traditional carbon cloth in water electrolysis systems are also discussed.

  20. Carbon nanotubes : from molecular to macroscopic sensors

    NARCIS (Netherlands)

    Wood, J.R.; Zhao, Qing; Frogley, M.D.; Meurs, E.R.; Prins, A.D.; Peijs, A.A.J.M.; Dunstan, D.J.; Wagner, H.D.

    2000-01-01

    The components that contribute to Raman spectral shifts of single-wall carbon nanotubes (SWNT’s) embedded in polymer systems have been identified. The temperature dependence of the Raman shift can be separated into the temperature dependence of the nanotubes, the cohesive energy density of the

  1. Respiratory toxicity of multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Muller, Julie; Huaux, Francois; Moreau, Nicolas; Misson, Pierre; Heilier, Jean-Francois; Delos, Monique; Arras, Mohammed; Fonseca, Antonio; Nagy, Janos B.; Lison, Dominique

    2005-01-01

    Carbon nanotubes focus the attention of many scientists because of their huge potential of industrial applications, but there is a paucity of information on the toxicological properties of this material. The aim of this experimental study was to characterize the biological reactivity of purified multi-wall carbon nanotubes in the rat lung and in vitro. Multi-wall carbon nanotubes (CNT) or ground CNT were administered intratracheally (0.5, 2 or 5 mg) to Sprague-Dawley rats and we estimated lung persistence, inflammation and fibrosis biochemically and histologically. CNT and ground CNT were still present in the lung after 60 days (80% and 40% of the lowest dose) and both induced inflammatory and fibrotic reactions. At 2 months, pulmonary lesions induced by CNT were characterized by the formation of collagen-rich granulomas protruding in the bronchial lumen, in association with alveolitis in the surrounding tissues. These lesions were caused by the accumulation of large CNT agglomerates in the airways. Ground CNT were better dispersed in the lung parenchyma and also induced inflammatory and fibrotic responses. Both CNT and ground CNT stimulated the production of TNF-α in the lung of treated animals. In vitro, ground CNT induced the overproduction of TNF-α by macrophages. These results suggest that carbon nanotubes are potentially toxic to humans and that strict industrial hygiene measures should to be taken to limit exposure during their manipulation

  2. Atomic Structure and Energy Distribution of Collapsed Carbon Nanotubes of Different Chiralities

    Directory of Open Access Journals (Sweden)

    Julia A. Baimova

    2015-01-01

    Full Text Available For carbon nanotubes of sufficiently large diameter at sufficiently low temperature, due to the action of the van der Waals forces, the ground state is a bilayer graphene with closed edges, the so-called collapsed configuration. Molecular dynamics simulation of collapsed carbon nanotubes is performed. The effect of length, diameter, and chirality of the nanotubes on their properties is investigated. It is shown that collapsed nanotubes after relaxation have rippled structure which is strongly dependent on the nanotube chirality. The structural properties are studied by calculating the radial distribution function and energy distribution along various regions in the collapsed carbon nanotubes.

  3. On the elastic properties of carbon nanotube-based composites: modelling and characterization

    CERN Document Server

    Thostenson, E T

    2003-01-01

    The exceptional mechanical and physical properties observed for carbon nanotubes has stimulated the development of nanotube-based composite materials, but critical challenges exist before we can exploit these extraordinary nanoscale properties in a macroscopic composite. At the nanoscale, the structure of the carbon nanotube strongly influences the overall properties of the composite. The focus of this research is to develop a fundamental understanding of the structure/size influence of carbon nanotubes on the elastic properties of nanotube-based composites. Towards this end, the nanoscale structure and elastic properties of a model composite system of aligned multi-walled carbon nanotubes embedded in a polystyrene matrix were characterized, and a micromechanical approach for modelling of short fibre composites was modified to account for the structure of the nanotube reinforcement to predict the elastic modulus of the nanocomposite as a function of the constituent properties, reinforcement geometry and nanot...

  4. Using a cut-paste method to prepare a carbon nanotube fur electrode

    International Nuclear Information System (INIS)

    Zhang, H; Cao, G P; Yang, Y S

    2007-01-01

    We describe and realize an aligned carbon nanotube array based 'carbon nanotube fur (CNTF)' electrode. We removed an 800 μm long aligned carbon nanotube array from the silica substrate, and then pasted the array on a nickel foam current collector to obtain a CNTF electrode. CNTF's characteristics and electrochemical properties were studied systemically in this paper. The cut-paste method is simple, and does not damage the microstructure of the aligned carbon nanotube array. The CNTF electrode obtained a specific capacitance of 14.1 F g -1 and excellent rate capability

  5. Giant electrical power factor in single-walled chiral carbon nanotube

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Mensah, N.G.; Nkrumah, G.

    2001-10-01

    Using the semiclassical approach we studied the thermoelectrical properties of single-walled chiral carbon nanotubes (SWNTs). We predict a giant electrical power factor and hence proposed the use of carbon nanotubes as thermoelements for refrigeration. (author)

  6. Dispersability of Carbon Nanotubes in Biopolymer-Based Fluids

    Directory of Open Access Journals (Sweden)

    Franco Tardani

    2015-01-01

    Full Text Available In this review the dispersability of carbon nanotubes in aqueous solutions containing proteins, or nucleic acids, is discussed. Data reported previously are complemented by unpublished ones. In the mentioned nanotube-based systems several different phases are observed, depending on the type and concentration of biopolymer, as well as the amount of dispersed nanotubes. The phase behavior depends on how much biopolymers are adsorbing, and, naturally, on the molecular details of the adsorbents. Proper modulation of nanotube/biopolymer interactions helps switching between repulsive and attractive regimes. Dispersion or phase separation take place, respectively, and the formation of liquid crystalline phases or gels may prevail with respect to dispersions. We report on systems containing ss-DNA- and lysozyme-stabilized nanotubes, representative of different organization modes. In the former case, ss-DNA rolls around CNTs and ensures complete coverage. Conversely, proteins randomly and non-cooperatively adsorb onto nanotubes. The two functionalization mechanisms are significantly different. A fine-tuning of temperature, added polymer, pH, and/or ionic strength conditions induces the formation of a given supra-molecular organization mode. The biopolymer physico-chemical properties are relevant to induce the formation of different phases made of carbon nanotubes.

  7. Control of carbon nanotube growth using cobalt nanoparticles as catalyst

    International Nuclear Information System (INIS)

    Huh, Yoon; Green, Malcolm L.H.; Kim, Young Heon; Lee, Jeong Yong; Lee, Cheol Jin

    2005-01-01

    We have controllably grown carbon nanotubes using uniformly distributed cobalt nanoparticles as catalyst. Cobalt nanoparticles with a uniform size were synthesized by chemical reaction and colloidal solutions including the cobalt nanoparticles were prepared. The cobalt nanoparticles were uniformly distributed on silicon substrates by a spin-coating method. Carbon nanotubes with a uniform diameter were synthesized on the cobalt nanoparticles by thermal chemical vapor deposition of acetylene gas. The density and vertical alignment of carbon nanotubes could be controlled by adjusting the density of cobalt (Co) nanoparticles

  8. Controlled Deposition and Alignment of Carbon Nanotubes

    Science.gov (United States)

    Smits, Jan M. (Inventor); Wincheski, Russell A. (Inventor); Patry, JoAnne L. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor)

    2012-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  9. Electrical Characteristics of Carbon Nanotubes by Plasma and Microwave Surface Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sangjin; Lee, Soonbo; Boo, Jinhyo [Sungkyunkwan Univ., Suwon (Korea, Republic of); Shrestha, Shankar Prasad [Tribhuvan Univ., Kathmandu (Nepal)

    2014-03-15

    The plasma and microwave surface treatments of carbon nanotubes that loaded on plastic substrates were carried out with expecting a change of carbon nanotube dispersion by increasing treatment time. The microwave treatment process was undergone by commercial microwave oven (800 W). The electrical property was measured by hall measurement and resistance was increased by increasing O{sub 2} flow rate of plasma, suggesting an improvement of carbon nanotube dispersion and a possibility of controlling the resistances of carbon nanotubes by plasma surface treatment. The resistance was increased in both polyethylene terephthalate and polyimide substrates by increasing O{sub 2} flow rate. Resistance changes only slightly with different O{sub 2} flow treatment in measure rho for all polyimide samples. Sheet resistance is lowest in polyimide substrate not due to high carbon nanotube loading but due to tendency to remain in elongated structure. O{sub 2} or N{sub 2} plasma treatments on both polyethylene terephthalate and polyimide substrates lead to increase in sheet resistance.

  10. Chemically immobilised carbon nanotubes on silicon: Stable surfaces for aqueous electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Flavel, Benjamin S., E-mail: ben.flavel@flinders.edu.a [Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); School of Chemistry, Physics and Earth Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5001 (Australia); Garrett, David J.; Lehr, Joshua [Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, Private Bag 4800, Christchurch 8140 (New Zealand); Shapter, Joseph G. [School of Chemistry, Physics and Earth Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5001 (Australia); Downard, Alison J., E-mail: alison.downard@canterbury.ac.n [Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, Private Bag 4800, Christchurch 8140 (New Zealand)

    2010-04-30

    Diazonium ion chemistry has been used to electrochemically graft aminophenyl layers onto p-type silicon (1 0 0) substrates. A condensation reaction was used to immobilise single-walled carbon nanotubes with high carboxylic acid functionality directly to this layer. Electrochemical monitoring of the aminophenyl groups confirmed the formation of an amide linkage between the single-walled carbon nanotubes and the aminophenyl layer. The carbon nanotube electrode showed high stability and good electrochemical performance in aqueous solution. At moderate scan rates the Ru(NH{sub 3}){sub 6}{sup +3/+2} couple exhibited quasi-reversible electron transfer kinetics with a standard heterogenous rate constant of 1.2 x 10{sup -3} cm s{sup -1} at the covalently-linked carbon nanotube surface. The electrode thus combines the advantages of a silicon substrate for easy integration into sophisticated electrical and electronic devices, carbon nanotubes for desirable electrochemical properties, and stability in aqueous medium for future applications in environmental sensing.

  11. Electrical Characteristics of Carbon Nanotubes by Plasma and Microwave Surface Treatments

    International Nuclear Information System (INIS)

    Cho, Sangjin; Lee, Soonbo; Boo, Jinhyo; Shrestha, Shankar Prasad

    2014-01-01

    The plasma and microwave surface treatments of carbon nanotubes that loaded on plastic substrates were carried out with expecting a change of carbon nanotube dispersion by increasing treatment time. The microwave treatment process was undergone by commercial microwave oven (800 W). The electrical property was measured by hall measurement and resistance was increased by increasing O 2 flow rate of plasma, suggesting an improvement of carbon nanotube dispersion and a possibility of controlling the resistances of carbon nanotubes by plasma surface treatment. The resistance was increased in both polyethylene terephthalate and polyimide substrates by increasing O 2 flow rate. Resistance changes only slightly with different O 2 flow treatment in measure rho for all polyimide samples. Sheet resistance is lowest in polyimide substrate not due to high carbon nanotube loading but due to tendency to remain in elongated structure. O 2 or N 2 plasma treatments on both polyethylene terephthalate and polyimide substrates lead to increase in sheet resistance

  12. Chemically immobilised carbon nanotubes on silicon: Stable surfaces for aqueous electrochemistry

    International Nuclear Information System (INIS)

    Flavel, Benjamin S.; Garrett, David J.; Lehr, Joshua; Shapter, Joseph G.; Downard, Alison J.

    2010-01-01

    Diazonium ion chemistry has been used to electrochemically graft aminophenyl layers onto p-type silicon (1 0 0) substrates. A condensation reaction was used to immobilise single-walled carbon nanotubes with high carboxylic acid functionality directly to this layer. Electrochemical monitoring of the aminophenyl groups confirmed the formation of an amide linkage between the single-walled carbon nanotubes and the aminophenyl layer. The carbon nanotube electrode showed high stability and good electrochemical performance in aqueous solution. At moderate scan rates the Ru(NH 3 ) 6 +3/+2 couple exhibited quasi-reversible electron transfer kinetics with a standard heterogenous rate constant of 1.2 x 10 -3 cm s -1 at the covalently-linked carbon nanotube surface. The electrode thus combines the advantages of a silicon substrate for easy integration into sophisticated electrical and electronic devices, carbon nanotubes for desirable electrochemical properties, and stability in aqueous medium for future applications in environmental sensing.

  13. Confinement in single walled carbon nanotubes investigated by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Battie, Y.; Jamon, D.; Lauret, J.S.; Gu, Q.; Gicquel-Guézo, M.; En Naciri, A.; Loiseau, A.

    2014-01-01

    Thick films of single walled carbon nanotubes (SWCNTs) with different diameter and chirality distributions are characterized by combining transmission electron microscopy and spectroscopic ellipsometry. The dependence of the dielectric function with the increase of the SWCNT diameter occurs with a drastic redshift of the S 11 , S 22 and M 11 transition energies. The transfer integral parameter γ 0 of SWCNT is also evaluated and analyzed. We demonstrate that parts of the optical properties of SWCNTs are attributed to a one dimensional confinement effect. - Highlights: • Ellipsometric measurements are performed on carbon nanotube thick films. • The complex dielectric functions of conventional carbon nanotubes are given. • Confinement effects explain the variations of dielectric function of nanotubes

  14. Investigation of the formation of Fe-filled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Reuther, H [Forschungszentrum Dresden-Rossendorf, PO Box 510119, D-01314 Dresden (Germany); Mueller, C; Leonhardt, A; Kutz, M C, E-mail: reuther@fzd.d [Leibniz-Institute of Solid State and Materials Research Dresden, PO Box 270116, D-01171 Dresden (Germany)

    2010-03-01

    The formation of Fe-filled carbon nanotubes by thermal decomposition of ferrocene combined with a Fe-catalyst-nanostructuring on an oxidized Si substrate is investigated in the temperature range of 1015 - 1200 K. The optimal growth conditions for aligned and homogeneous carbon nanotubes are found at 1103 K. Moessbauer spectroscopy (both in transmission geometry and CEMS) was used to analyze and quantify the different formed Fe-phases. In general, {alpha}-Fe, {gamma}-Fe and Fe{sub 3}C are found to form within the carbon nanotubes. Depending on the growth conditions their fractions vary strongly. Moreover, an alignment of the {alpha}-Fe in the tubes could be detected.

  15. Carbon Nanotube Fiber Pretreatments for Electrodeposition of Copper

    OpenAIRE

    Hannula, Pyry-Mikko; Junnila, Minttu; Janas, Dawid; Aromaa, Jari; Forsén, Olof; Lundström, Mari

    2018-01-01

    There is increasing interest towards developing carbon nanotube-copper (CNT-Cu) composites due to potentially improved properties. Carbon nanotube macroscopic materials typically exhibit high resistivity, low electrochemical reactivity, and the presence of impurities, which impede its use as a substrate for electrochemical deposition of metals. In this research, different CNT fiber pretreatment methods, such as heat treatment, immersion in Watts bath, anodization, and exposure to boric acid (...

  16. Pulmonary Toxicity of Carbon Nanotubes: Ethical Implications and Human Risk Assessment

    Science.gov (United States)

    James, John T.

    2006-01-01

    Presentation viewgraphs review the health considerations of working with and manufacturing Carbon Nanotubes. The inherent toxicity of Single Walled Carbon Nanotubes (SWNT) are reviewed, and how the preparation of the SWNTs are reviewed. The experimental protocol that was used is reviewed, and the results in lungs of rodents are shown. The presentation ends with posing the ethical questions in reference to the manufacture and use of carbon nanotubes.

  17. Proposal of Carbon Nanotube Inductors

    National Research Council Canada - National Science Library

    Tsubaki, K; Nakajima, Y; Hanajiri, T; Yamaguchi, H

    2006-01-01

    The inductors made of carbon Nanotube (CNT) have been proposed. Though the fabrication of the proposed inductor is still challenging and has many problems, merits of the proposed inductor are following...

  18. Tuning the conductance of carbon nanotubes with encapsulated molecules

    International Nuclear Information System (INIS)

    Meunier, Vincent; Sumpter, Bobby G

    2007-01-01

    It was recently shown that a molecule encapsulated inside a carbon nanotube can be used to devise a novel type of non-volatile memory element. At the heart of the mechanism for storing and reading information is the new concept of a molecular gate where the molecule acts as a passive gate that hinders the flow of electrons for a given position relative to the nanotube host. By systematically exploring the effects of encapsulation of an acceptor molecule in a series of carbon nanotubes, we show that the reliability of the memory mechanism is very sensitive to the interaction between the nanotube host and the molecule guest

  19. Water self-diffusion through narrow oxygenated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Striolo, Alberto [School of Chemical Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2007-11-28

    The hydrophobic interior of carbon nanotubes, which is reminiscent of ion channels in cellular membranes, has inspired scientific research directed towards the production of, for example, membranes for water desalination, drug-delivery devices, and nanosyringes. To develop these technologies it is crucial to understand and predict the equilibrium and transport properties of confined water. We present here a series of molecular dynamics simulation results conducted to understand the extent to which the presence of a few oxygenated active sites, modeled as carbonyls, affects the transport properties of confined water. The model for the carbon nanotube is not intended to be realistic. Its only purpose is to allow us to understand the effect of a few oxygenated sites on the transport properties of water confined in a narrow cylindrical pore, which is otherwise hydrophobic. At low hydration levels we found little, if any, water diffusion. The diffusion, which appears to be of the Fickian type for sufficiently large hydration levels, becomes faster as the number of confined water molecules increases, reaches a maximum, and slows as water fills the carbon nanotubes. We explain our findings on the basis of two collective motion mechanisms observed from the analysis of sequences of simulation snapshots. We term the two mechanisms 'cluster-breakage' and 'cluster-libration' mechanisms. We observe that the cluster-breakage mechanism produces longer displacements for the confined water molecules than the cluster-libration one, but deactivates as water fills the carbon nanotube. From a practical point of view, our results are particularly important for two reasons: (1) at low hydration levels the presence of only eight carbonyl groups can prevent the diffusion of water through (8, 8) carbon nanotubes; and (2) the extremely fast self-diffusion coefficients observed for water within narrow carbon nanotubes are significantly decreased in the presence of only a

  20. Water self-diffusion through narrow oxygenated carbon nanotubes

    International Nuclear Information System (INIS)

    Striolo, Alberto

    2007-01-01

    The hydrophobic interior of carbon nanotubes, which is reminiscent of ion channels in cellular membranes, has inspired scientific research directed towards the production of, for example, membranes for water desalination, drug-delivery devices, and nanosyringes. To develop these technologies it is crucial to understand and predict the equilibrium and transport properties of confined water. We present here a series of molecular dynamics simulation results conducted to understand the extent to which the presence of a few oxygenated active sites, modeled as carbonyls, affects the transport properties of confined water. The model for the carbon nanotube is not intended to be realistic. Its only purpose is to allow us to understand the effect of a few oxygenated sites on the transport properties of water confined in a narrow cylindrical pore, which is otherwise hydrophobic. At low hydration levels we found little, if any, water diffusion. The diffusion, which appears to be of the Fickian type for sufficiently large hydration levels, becomes faster as the number of confined water molecules increases, reaches a maximum, and slows as water fills the carbon nanotubes. We explain our findings on the basis of two collective motion mechanisms observed from the analysis of sequences of simulation snapshots. We term the two mechanisms 'cluster-breakage' and 'cluster-libration' mechanisms. We observe that the cluster-breakage mechanism produces longer displacements for the confined water molecules than the cluster-libration one, but deactivates as water fills the carbon nanotube. From a practical point of view, our results are particularly important for two reasons: (1) at low hydration levels the presence of only eight carbonyl groups can prevent the diffusion of water through (8, 8) carbon nanotubes; and (2) the extremely fast self-diffusion coefficients observed for water within narrow carbon nanotubes are significantly decreased in the presence of only a few oxygenated active

  1. Facile Synthesis of Highly Aligned Multiwalled Carbon Nanotubes from Polymer Precursors

    Directory of Open Access Journals (Sweden)

    Catherine Y. Han

    2009-01-01

    Full Text Available We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20 nm pore membranes. The synthesized carbon nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors.

  2. Facile synthesis of highly aligned multiwalled carbon nanotubes from polymer precursors.

    Energy Technology Data Exchange (ETDEWEB)

    Han, C. Y.; Xiao, Z.-L.; Wang, H. H.; Lin, X.-M.; Trasobares, S.; Cook, R. E.; Richard J. Daley Coll.; Northern Illinois Univ.; Univ. de Cadiz

    2009-01-01

    We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO) membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20 nm pore membranes. The synthesized carbon nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors.

  3. Remote Joule heating by a carbon nanotube.

    Science.gov (United States)

    Baloch, Kamal H; Voskanian, Norvik; Bronsgeest, Merijntje; Cumings, John

    2012-04-08

    Minimizing Joule heating remains an important goal in the design of electronic devices. The prevailing model of Joule heating relies on a simple semiclassical picture in which electrons collide with the atoms of a conductor, generating heat locally and only in regions of non-zero current density, and this model has been supported by most experiments. Recently, however, it has been predicted that electric currents in graphene and carbon nanotubes can couple to the vibrational modes of a neighbouring material, heating it remotely. Here, we use in situ electron thermal microscopy to detect the remote Joule heating of a silicon nitride substrate by a single multiwalled carbon nanotube. At least 84% of the electrical power supplied to the nanotube is dissipated directly into the substrate, rather than in the nanotube itself. Although it has different physical origins, this phenomenon is reminiscent of induction heating or microwave dielectric heating. Such an ability to dissipate waste energy remotely could lead to improved thermal management in electronic devices.

  4. Thermodynamics and vibrational study of hydrogenated carbon nanotubes: A DFT study

    Science.gov (United States)

    Khalil, Rana M. Arif; Hussain, Fayyaz; Rana, Anwar Manzoor; Imran, Muhammad

    2018-02-01

    Thermodynamic stability of the hydrogenated carbon nanotubes has been explored in the chemisorption limit. Statistical physics and density functional theory calculations have been used to predict hydrogen release temperatures at standard pressure in zigzag and armchair carbon nanotubes. It is found that hydrogen release temperatures decrease with increase in diameters of hydrogenated zigzag carbon nanotubes (CNTs) but opposite trend is noted in armchair CNTs at standard pressure of 1 bar. The smaller diameter hydrogenated zigzag CNTs have large values of hydrogen release temperature due to the stability of Csbnd H bonds. The vibrational density of states for hydrogenated carbon nanotubes have been calculated to confirm the Csbnd H stretching mode caused by sp3 hybridization.

  5. Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass

    Energy Technology Data Exchange (ETDEWEB)

    Bush, P. Siegal, M.P.; Huang, Z.P.; Provencio, P.N.; Ren, Z.F.; Wang, J.H.; Xu, J.W.

    1998-11-10

    Free-standing aligned carbon nanotubes have previously been grown above 7000C on mesoporous silica embedded with iron nanoparticles. Here, carbon nanotubes aligned over areas up to several square centimeters were grown on nickel-coated glass below 666oC by plasma-enhanced hot filament chemical vapor deposition. Acetylene (C2H2) gas was used as the carbon source and ammonia (NH3) gas was used as a catalyst and dilution gas. Nanotubes with controllable diameters from 20 to 400 nanometers and lengths from 0.1 to 50 micrometers were obtained. Using this method, large panels of aligned carbon nanotubes can be made under conditions that are suitable for device fabrication.

  6. Robust forests of vertically aligned carbon nanotubes chemically assembled on carbon substrates.

    Science.gov (United States)

    Garrett, David J; Flavel, Benjamin S; Shapter, Joseph G; Baronian, Keith H R; Downard, Alison J

    2010-02-02

    Forests of vertically aligned carbon nanotubes (VACNTs) have been chemically assembled on carbon surfaces. The structures show excellent stability over a wide potential range and are resistant to degradation from sonication in acid, base, and organic solvent. Acid-treated single-walled carbon nanotubes (SWCNTs) were assembled on amine-terminated tether layers covalently attached to pyrolyzed photoresist films. Tether layers were electrografted to the carbon substrate by reduction of the p-aminobenzenediazonium cation and oxidation of ethylenediamine. The amine-modified surfaces were incubated with cut SWCNTs in the presence of N,N'-dicyclohexylcarbodiimide (DCC), giving forests of vertically aligned carbon nanotubes (VACNTs). The SWCNT assemblies were characterized by scanning electron microscopy, atomic force microscopy, and electrochemistry. Under conditions where the tether layers slow electron transfer between solution-based redox probes and the underlying electrode, the assembly of VACNTs on the tether layer dramatically increases the electron-transfer rate at the surface. The grafting procedure, and hence the preparation of VACNTs, is applicable to a wide range of materials including metals and semiconductors.

  7. Multi-walled carbon nano-tubes for energy storage and production applications

    International Nuclear Information System (INIS)

    Andrews, R.; Jacques, D.; Likpa, S.; Qian, D.; Rantell, T.; Anthony, J.

    2005-01-01

    Full text of publication follows: Since their discovery, carbon nano-tubes have been proposed as candidate materials for a broad range of applications, including high strength composites, molecular electronics, and energy storage. In many cases, nano-tubes have been proposed to replace traditional carbon materials, such as activated carbons in energy storage devices. In other cases, novel applications have been proposed, such as the use of carbon nano-tube arrays in photovoltaic devices. The use of multi-walled carbon nano-tubes in energy storage devices has generated great interest due to their high inherent conductivity, layered structure, and high surface area per volume compared to traditional graphitic materials. However as produced nano-tubes do not possess ideal properties, and exhibit only modest charge storage. We have explored the charge storage abilities of nano-tubes with varying morphologies (fullerenic versus stacked cones), nano-tubes containing N or B dopants, as well as various post-treatments of the nano-tubes. The use of nano-tubes in charge storage devices will be described, as well as modification of the nano-tube surfaces or morphology to improve this performance. The synthesis of nano-tubes with several differing hetero-atom dopants will also be described, as well as the effect of heat treatment on these structures. One of the most significant problems in organic photovoltaics is the typically low charge-carrier mobility in organic thin films which, coupled with short exciton diffusion lengths, means that photo-generated charge-carrier pairs are more likely to re-combine than reach an electrode to generate current. Two organic systems with high charge-carrier mobilities are carbon nano-tubes (here, MWNTs) and acene-based organic semiconductors. We believe that blended devices based on MWNTs and organic semiconductors could lead to the next class of efficient, flexible and inexpensive organic photovoltaic systems. We have developed methods to

  8. The mechanisms for filling carbon nanotubes with molten salts: carbon nanotubes as energy landscape filters

    International Nuclear Information System (INIS)

    Bishop, Clare L; Wilson, Mark

    2009-01-01

    The mechanisms for filling carbon nanotubes with molten salts are investigated using molecular dynamics computer simulation. Inorganic nanotubular structures, whose morphologies can be rationalized in terms of the folding, or the removal of sections from, planes of square nets are found to form. The formation mechanisms are found to follow a 'chain-by-chain' motif in which the structures build systematically from charge neutral M-X-M-Xc chains. The formation mechanisms are rationalized in terms of the ion-ion interactions (intra-chain and inter-chain terms). In addition, the mechanisms of filling are discussed in terms of a 'hopping' between basins on the underlying energy landscape. The role of the carbon nanotube as an energy landscape filter is discussed.

  9. Carbon nanotubes field-effect transistor for rapid detection of DHA

    International Nuclear Information System (INIS)

    Nguyen Thi Thuy; Nguyen Duc Chien; Mai Anh Tuan

    2012-01-01

    This paper presents the development of DNA sensor based on a network carbon nanotubes field effect transistor (CNTFETs) for Escherichia coli bacteria detection. The DNA sequences were immobilized on single-walled carbon nanotubes of transistor CNTFETs by using absorption. The hybridization of the DNA probe sequences and complementary DNA strands was detected by electrical conductance change from the electron doping by DNA hybridization directly on the carbon nanotubes leading to the change in the metal-CNTs barrier energy through the modulation of the electrode work function of carbon nanotubes field effect transistor. The results showed that the response time of DNA sensor was approximately 1 min and the sensitivity of DNA sensor was at 0.565 μA/nM; the detection limit of the sensor was about 1 pM of E. coli bacteria sample. (author)

  10. Study on the growth of aligned carbon nanotubes controlled by ion bombardment

    International Nuclear Information System (INIS)

    Wang Biben; Zhang Bing; Zheng Kun; Hao Wei; Wang Wanlu; Liao Kejun

    2004-01-01

    Aligned carbon nanotubes were prepared by plasma-enhanced hot filament chemical vapor deposition using CH 4 , H 2 and NH 3 as reaction gases. It was investigated how different negative bias affects the growth of aligned carbon nanotubes. The results indicate that the average diameter of the aligned carbon nanotubes is reduced and the average length of the aligned carbon nanotubes is increased with increasing negative bias. Because of the occurrence of glow discharge, a cathode sheath forms near the substrate surface, and a number of ions are produced in it, and a very strong electrical field builds up near the substrate surface. Under the effect of the field, the strong bombardment of ions on the substrate surface will influence the growth of aligned carbon nanotubes. Combined with related theories, authors have analyzed and discussed the ion bombardment effects on the growth of the aligned carbon nanotudes

  11. Control of Effluent Gases from Solid Waste Processing Using Carbon Nanotubes

    Science.gov (United States)

    Fisher, John; Cinke, Martin; Wignarajab, Kanapathipillai

    2005-01-01

    One of the major problems associated with solid waste processing technologies is the release of effluent gases and contaminants that are in gaseous formed from the processes. A number of other gases, in particular NO(x), SO2, NH3, Hydrocarbons (e.g. CH4) do present hazards to the crew in space habitats. Reduction of mass, power, volume and resupply can be achieved by using catalyst impregnated carbon nanotubes as compared to other catalytic systems. The development and characterization of an innovative approach for the control and elimination of gaseous toxins using single walled carbon nanotubes (SWNTs) promise superior performance over conventional approaches. This is due to the ability to direct the selective uptake of gaseous species based on their controllable pore size, high adsorptive capacity and the effectiveness of carbon nanotubes as catalyst supports for gaseous conversion. For example, SWNTs have high adsorptive capacity for NO and the adsorbed NO can be decomposed to N2 and O2 . Experimental results showing the decomposition of NO on metal impregnated carbon nanotubes is presented. Equivalent System Mass (ESM) comparisons are made of the existing TCCS systems with the carbon nanotube technology for removing NO(x). The potential for methane decomposition using carbon nanotubes catalysts is also discussed.

  12. Optical Study of Liquid Crystal Doped with Multiwalled Carbon Nanotube

    Science.gov (United States)

    Gharde, Rita A.; Thakare, Sangeeta Y.

    2014-11-01

    Liquid crystalline materials have been useful for display devices i.e watches, calculators, automobile dashboards, televisions, multi media projectors etc. as well as in electro tunable lasers, optical fibers and lenses. Carbon nanotube is chosen as the main experimental factor in this study as it has been observed that Carbon Nano Tube influence the existing properties of liquid crystal host and with the doping of CNT can enhance1 the properties of LC. The combination of carbon nanotube (CNT) and liquid crystal (LC) materials show considerable interest in the scientific community due to unique physical properties of CNT in liquid crystal. Dispersion of CNTs in LCs can provide us a cheap, simple, versatile and effective means of controlling nanotube orientation on macroscopic scale with no restrictions on nanotube type. LCs have the long range orientational order rendering them to be anisotropic phases. If CNTs can be well dispersed in LC matrix, they will align with their long axes along the LC director to minimize distortions of the LC director field and the free energy. In this paper, we doped liquid crystal (Cholesteryl Nonanoate) by a small amount of multiwall carbon nanotube 0.05% and 0.1% wt. We found that by adding carbon nanotube to liquid crystals the melting point of the mixture is decreased but TNI is increased. It has been also observed that with incereas in concentration of carbon nanotube into liquid crystal shows conciderable effect on LC. The prepared samples were characterized using various techniques to study structural, thermal and optical properties i.e PMS, FPSS, UV-Vis spectroscopy, FT-IR measurements, and DTA.

  13. Phonon assisted thermophoretic motion of gold nanoparticles inside carbon nanotubes

    DEFF Research Database (Denmark)

    Schoen, Philipp A.E.; Walther, Jens Honore; Poulikakos, Dimos

    2007-01-01

    The authors investigate the thermally driven mass transport of gold nanoparticles confined inside carbon nanotubes using molecular dynamics simulations. The observed thermophoretic motion of the gold nanoparticles correlates with the phonon dispersion exhibited by a standard carbon nanotube and...

  14. Solution-phase synthesis of chromium-functionalized single-walled carbon nanotubes

    KAUST Repository

    Kalinina, Irina V.; Al-Hadeethi, Yas Fadel; Bekyarova, Elena; Zhao, Chao; Wang, Qingxiao; Zhang, Xixiang; Al-Zahrani, Ali; Al-Agel, Faisal Abdulaziz M; Al-Marzouki, Fahad M.; Haddon, Robert C.

    2015-01-01

    The solution phase reactions of single-walled carbon nanotubes (SWNTs) with Cr(CO)6 and benzene-Cr(CO)3 can lead to the formation of small chromium clusters. The cluster size can be varied from less than 1 nm to about 4 nm by increasing the reaction time. TEM images suggest that the clusters are deposited predominantly on the exterior walls of the nanotubes. TGA analysis was used to obtain the Cr content and carbon to chromium ratio in the Cr-complexed SWNTs. It is suggested that the carbon nanotube benzenoid structure templates the condensation of chromium atoms and facilitates the loss of carbon monoxide leading to well defined metal clusters.

  15. Solution-phase synthesis of chromium-functionalized single-walled carbon nanotubes

    KAUST Repository

    Kalinina, Irina V.

    2015-03-01

    The solution phase reactions of single-walled carbon nanotubes (SWNTs) with Cr(CO)6 and benzene-Cr(CO)3 can lead to the formation of small chromium clusters. The cluster size can be varied from less than 1 nm to about 4 nm by increasing the reaction time. TEM images suggest that the clusters are deposited predominantly on the exterior walls of the nanotubes. TGA analysis was used to obtain the Cr content and carbon to chromium ratio in the Cr-complexed SWNTs. It is suggested that the carbon nanotube benzenoid structure templates the condensation of chromium atoms and facilitates the loss of carbon monoxide leading to well defined metal clusters.

  16. Defect complexes in carbon and boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-05-01

    Full Text Available The effect of defect complexes on the stability, structural and electronic properties of single-walled carbon nanotubes and boron nitride nanotubes is investigated using the ab initio pseudopotential density functional method implemented...

  17. Preparation and properties of in-situ growth of carbon nanotubes reinforced hydroxyapatite coating for carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shoujie, E-mail: jlliushoujie@126.com; Li, Hejun, E-mail: lihejun@nwpu.edu.cn; Su, Yangyang, E-mail: suyangyang@mail.nwpu.edu.cn; Guo, Qian, E-mail: 1729299905@163.com; Zhang, Leilei, E-mail: zhangleilei@nwpu.edu.cn

    2017-01-01

    Carbon nanotubes (CNTs) possess excellent mechanical properties for their role playing in reinforcement as imparting strength to brittle hydroxyapatite (HA) bioceramic coating. However, there are few reports relating to the in-situ grown carbon nanotubes reinforced hydroxyapatite (CNTs-HA) coating. Here we demonstrate the potential application in reinforcing biomaterials by an attempt to use in-situ grown of CNTs strengthen HA coating, using a combined method composited of injection chemical vapor deposition (ICVD) and pulsed electrodeposition. The microstructure, phases and chemical compositions of CNTs-HA coatings were characterized by various advanced methods. The scanning electron microscopy (SEM) images indicated that CNTs-HA coatings avoided the inhomogeneous dispersion of CNTs inside HA coating. The result show that the interfacial shear strength between CNTs-HA coating and the C/C composite matrix reaches to 12.86 ± 1.43 MPa. Potenitodynamic polarization and electrochemical impedance spectroscopy (EIS) studies show that the content of CNTs affects the corrosion resistance of CNTs-HA coating. Cell culturing and simulated body fluid test elicit the biocompatibility with living cells and bioactivity of CNTs-HA coatings, respectively. - Highlights: • A novel bioceramic composite coating of hydroxyapatite reinforced with in-situ grown carbon nanotubes was fabricated. • The doping of carbon nanotubes had almost no impact on the biocompatibility of hydroxyapatite coatings. • The doping of carbon nanotubes improved corrosion resistance of hydroxyapatite coatings in simulated human body solution.

  18. Shortened carbon nanotubes and their influence on the electrical properties of polymer nanocomposites

    NARCIS (Netherlands)

    Inam, F.; Reece, M.J.; Peijs, A.A.J.M.

    2012-01-01

    Multi-wall carbon nanotubes of medium length (mCNTs) were aggressively tip-ultrasonicated to produce shortened and damaged carbon nanotubes (xCNTs). High-resolution electron microscopic analysis was performed to measure the dimensions of carbon nanotubes (CNTs). Thermo-gravimetric analysis and Raman

  19. Femtosecond laser ablation of single-wall carbon nanotube-based material

    International Nuclear Information System (INIS)

    Danilov, Pavel A; Ionin, Andrey A; Kudryashov, Sergey I; Makarov, Sergey V; Mel’nik, Nikolay N; Rudenko, Andrey A; Yurovskikh, Vladislav I; Zayarny, Dmitry V; Lednev, Vasily N; Obraztsova, Elena D; Pershin, Sergey M; Bunkin, Alexey F

    2014-01-01

    Single- and multi-shot femtosecond laser surface ablation of a single-wall carbon nanotube-based substrate at 515- and 1030 nm wavelengths was studied by scanning electron microscopy and micro-Raman spectroscopy. The laser ablation proceeds in two ways: as the low-fluence mesoscopic shallow disintegration of the surface nanotube packing, preserving the individual integrity and the semiconducting character of the nanotubes or as the high-fluence deep material removal apparently triggered by the strong intrinsic or impurity-mediated ablation of the individual carbon nanotubes on the substrate surface. (letter)

  20. Ab initio study of F- and Cl-functionalized single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Pan, H; Feng, Y P; Lin, J Y

    2006-01-01

    First-principles calculations were carried out to study the functionalization of single wall carbon nanotubes by the chemical absorption of F and Cl atoms. Our results confirmed that the band gap of semiconductor zigzag carbon nanotubes is reduced on addition of F or Cl atoms on the walls of the nanotubes. For metallic armchair nanotubes, the doubly degenerate states crossing the Fermi level were separated by the introduction of F or Cl atoms. An additional energy level emerged near the Fermi level, due to coupling between the carbon nanotube and the F or Cl atom. For zigzag nanotubes, charge transfers of 0.27e from the tube to the Cl atom and of 0.41e to the F atom took place, while for armchair nanotubes, the charge transfers from the nanotube to Cl and F are 0.25 and 0.42e, respectively. The Cl-C and F-C bond lengths were found to be 2.09 and 1.49 A, respectively. The systems show semiconducting behaviour when charged with one electron per halogen atom, but remain metallic under hole injection, regardless of the chirality of the carbon nanotubes

  1. Carbon nanotube-chalcogenide composite

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Š.; Orava, J.; Kohoutek, T.; Wágner, T.; Frumar, M.; Zima, Vítězslav; Hara, T.; Matsui, Y.; Ueda, K.; Pumera, M.

    2010-01-01

    Roč. 183, č. 1 (2010), s. 144-149 ISSN 0022-4596 R&D Projects: GA ČR GA203/08/0208 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbon nanotubes * chalcogenide glasses * composites Subject RIV: CA - Inorganic Chemistry Impact factor: 2.261, year: 2010

  2. Carbon nanotubes on carbon fibers: Synthesis, structures and properties

    Science.gov (United States)

    Zhang, Qiuhong

    The interface between carbon fibers (CFs) and the resin matrix in traditional high performance composites is characterized by a large discontinuity in mechanical, electrical, and thermal properties which can cause inefficient energy transfer. Due to the exceptional properties of carbon nanotubes (CNTs), their growth at the surface of carbon fibers is a promising approach to controlling interfacial interactions and achieving the enhanced bulk properties. However, the reactive conditions used to grow carbon nanotubes also have the potential to introduce defects that can degrade the mechanical properties of the carbon fiber (CF) substrate. In this study, using thermal chemical vapor deposition (CVD) method, high density multi-wall carbon nanotubes have been successfully synthesized directly on PAN-based CF surface without significantly compromising tensile properties. The influence of CVD growth conditions on the single CF tensile properties and carbon nanotube (CNT) morphology was investigated. The experimental results revealed that under high temperature growth conditions, the tensile strength of CF was greatly decreased at the beginning of CNT growth process with the largest decrease observed for sized CFs. However, the tensile strength of unsized CFs with CNT was approximately the same as the initial CF at lower growth temperature. The interfacial shear strength of CNT coated CF (CNT/CF) in epoxy was studied by means of the single-fiber fragmentation test. Results of the test indicate an improvement in interfacial shear strength with the addition of a CNT coating. This improvement can most likely be attributed to an increase in the interphase yield strength as well as an improvement in interfacial adhesion due to the presence of the nanotubes. CNT/CF also offers promise as stress and strain sensors in CF reinforced composite materials. This study investigates fundamental mechanical and electrical properties of CNT/CF using nanoindentation method by designed

  3. Controllable synthesis of organic-inorganic hybrid MoOx/polyaniline nanowires and nanotubes.

    Science.gov (United States)

    Wang, Sinong; Gao, Qingsheng; Zhang, Yahong; Gao, Jing; Sun, Xuhui; Tang, Yi

    2011-02-01

    A novel chemical oxidative polymerization approach has been proposed for the controllable preparation of organic-inorganic hybrid MoO(x)/polyaniline (PANI) nanocomposites based on the nanowire precursor of Mo(3)O(10)(C(6)H(8)N)(2)·2H(2)O with sub-nanometer periodic structures. The nanotubes, nanowires, and rambutan-like nanoparticles of MoO(x)/PANI were successfully obtained through simply modulating the pH values to 2.5-3.5, ≈2.0 and ≈1.0, respectively. Through systematic physicochemical characterization, such as scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and so forth, the composition and structure of MoO(x)/PANI hybrid nanocomposites are well confirmed. It is found that the nanowire morphology of the precursor is the key to achieve the one-dimensional (1D) structures of final products. A new polymerization-dissolution mechanism is proposed to explain the formation of such products with different morphologies, in which the match between polymerization and dissolution processes of the precursor plays the important role. This approach will find a new way to controllably prepare various organic-inorganic hybrid 1D nanomaterials especially for polymer-hybrid nanostructures. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The effect of dry shear aligning of nanotube thin films on the photovoltaic performance of carbon nanotube-silicon solar cells.

    Science.gov (United States)

    Stolz, Benedikt W; Tune, Daniel D; Flavel, Benjamin S

    2016-01-01

    Recent results in the field of carbon nanotube-silicon solar cells have suggested that the best performance is obtained when the nanotube film provides good coverage of the silicon surface and when the nanotubes in the film are aligned parallel to the surface. The recently developed process of dry shear aligning - in which shear force is applied to the surface of carbon nanotube thin films in the dry state, has been shown to yield nanotube films that are very flat and in which the surface nanotubes are very well aligned in the direction of shear. It is thus reasonable to expect that nanotube films subjected to dry shear aligning should outperform otherwise identical films formed by other processes. In this work, the fabrication and characterisation of carbon nanotube-silicon solar cells using such films is reported, and the photovoltaic performance of devices produced with and without dry shear aligning is compared.

  5. Fabrication and characterization of nanocomposites reinforced by carbon nanotubes - (1) synthesis of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Hseuh Hsiangming; Tai Nyanhwa; Perng Tongping [Dept. of Material Science, National Tsing-Hwa Univ., TW (China); Chyou Sander [Taiwan Power Research Inst., Taiwan Power Co., Taipei (China)

    2003-07-01

    Multi-walled carbon nanotubes (MWCNTs) produced by floating catalyst method were used for reinforcing material in polymeric nanocomposites. Five different kinds of carbon sources (benzene, toluene, xylene, cyclo-hexane, n-hexane) were used as precursors in the thermal chemical vapor deposition process. The products were collected and examined by Raman, HRTEM, and FESEM. The differences in microstructure and morphologies among these products are analyzed and discussed. (orig.)

  6. Carbon-nanotube-based liquids: a new class of nanomaterials and their applications

    International Nuclear Information System (INIS)

    Phan, Ngoc Minh; Nguyen, Manh Hong; Phan, Hong Khoi; Bui, Hung Thang

    2014-01-01

    Carbon-nanotube-based liquids—a new class of nanomaterials—have shown many interesting properties and distinctive features offering unprecedented potential for many applications. This paper summarizes the recent progress on the study of the preparation, characterization and properties of carbon-nanotube-based liquids including so-called nanofluids, nanolubricants and different kinds of nanosolutions containing multi-walled carbon nanotubes/single-walled carbon nanotubes/graphene. A broad range of current and future applications of these nanomaterials in the fields of energy saving, power electronic and optoelectronic devices, biotechnology and agriculture are presented. The paper also identifies challenges and opportunities for future research. (paper)

  7. Enhancement of electrocatalytic properties of carbonized polyaniline nanoparticles upon a hydrothermal treatment in alkaline medium

    International Nuclear Information System (INIS)

    Gavrilov, Nemanja; Vujkovic, Milica; Pasti, Igor A.; Ciric-Marjanovic, Gordana; Mentus, Slavko V.

    2011-01-01

    Highlights: → Carbonized polyaniline nanoparticles were treated hydrothermally in 1 M KOH. → Hydrothermal treatment improved the electrocatalytic activity towards ORR. → Significant effect of catalyst loading was evidenced too. → At the loading 0.5 mg cm -2 the 4e - reaction path was achieved. - Abstract: The electrocatalytic activity of carbonized polyaniline nanostructures (Carb-nanoPANI) towards oxygen reduction reaction (ORR), estimated in 0.1 mol dm -3 KOH solution, was significantly improved upon a hydrothermal treatment in 1 mol dm -3 KOH solution. Namely, the onset of ORR was shifted by ∼70 mV to more positive potentials, and the number of electrons consumed per O 2 molecule was enhanced in comparison to the original material. The number of electrons involved in ORR depended on loading, and with a loading of 0.5 mg cm -2 , for the potentials lower than -0.5 V vs SCE, the number of electrons approached 4. For this material, high stability of electrochemical behavior and resistance to the poisoning by ethanol was evidenced by potentiodynamic cycling.

  8. Enhancement of electrocatalytic properties of carbonized polyaniline nanoparticles upon a hydrothermal treatment in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, Nemanja; Vujkovic, Milica; Pasti, Igor A.; Ciric-Marjanovic, Gordana [University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade (Serbia); Mentus, Slavko V., E-mail: slavko@ffh.bg.ac.rs [University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade (Serbia); Serbian Academy of Sciences and Arts, Knez Mihajlova 35, 11158 Belgrade (Serbia)

    2011-10-30

    Highlights: > Carbonized polyaniline nanoparticles were treated hydrothermally in 1 M KOH. > Hydrothermal treatment improved the electrocatalytic activity towards ORR. > Significant effect of catalyst loading was evidenced too. > At the loading 0.5 mg cm{sup -2} the 4e{sup -} reaction path was achieved. - Abstract: The electrocatalytic activity of carbonized polyaniline nanostructures (Carb-nanoPANI) towards oxygen reduction reaction (ORR), estimated in 0.1 mol dm{sup -3} KOH solution, was significantly improved upon a hydrothermal treatment in 1 mol dm{sup -3} KOH solution. Namely, the onset of ORR was shifted by {approx}70 mV to more positive potentials, and the number of electrons consumed per O{sub 2} molecule was enhanced in comparison to the original material. The number of electrons involved in ORR depended on loading, and with a loading of 0.5 mg cm{sup -2}, for the potentials lower than -0.5 V vs SCE, the number of electrons approached 4. For this material, high stability of electrochemical behavior and resistance to the poisoning by ethanol was evidenced by potentiodynamic cycling.

  9. Utilization Of Carbon Nanotubes In Electromagnetic Wave Detectors

    Directory of Open Access Journals (Sweden)

    Muhammad Hanis Zakariah

    2017-08-01

    Full Text Available Direct detection of hydrocarbon by an active source using electromagnetic (EM energy termed seabed logging (SBL has shown very promising results. However, currently available electromagnetic wave technology has a number of challenges include sensitivity and frequency matching. This paper presents development of the carbon nanotubes (CNTs as electromagnetic wave detector due to outstanding properties of carbon nanotubes. They are currently one of the desired materials for advanced technologies. Two types of detectors were developed in this work, carbon nanotube-based (D1 and without nanotube-based (D2 detectors. Various configuration and arrangement for each type of detector were investigated to determine the one with the highest detection measurement and stability of frequency stability of detection system. It was found that 20 turn-coils coil placed at its centre gives the maximum detection of induction voltage, 39.61 mV. However, the 20 turn- coils with CNTs which gives 36.50 mV is the preferred EM detectors due to the stability in frequency of the detection system.

  10. Thermal conductivity of carbon nanotube cross-bar structures

    International Nuclear Information System (INIS)

    Evans, William J; Keblinski, Pawel

    2010-01-01

    We use non-equilibrium molecular dynamics (NEMD) to compute the thermal conductivity (κ) of orthogonally ordered cross-bar structures of single-walled carbon nanotubes. Such structures exhibit extremely low thermal conductivity in the range of 0.02-0.07 W m -1 K -1 . These values are five orders of magnitude smaller than the axial thermal conductivity of individual carbon nanotubes, and are comparable to the thermal conductivity of still air.

  11. Vertically aligned carbon nanotubes for microelectrode arrays applications.

    Science.gov (United States)

    Castro Smirnov, J R; Jover, Eric; Amade, Roger; Gabriel, Gemma; Villa, Rosa; Bertran, Enric

    2012-09-01

    In this work a methodology to fabricate carbon nanotube based electrodes using plasma enhanced chemical vapour deposition has been explored and defined. The final integrated microelectrode based devices should present specific properties that make them suitable for microelectrode arrays applications. The methodology studied has been focused on the preparation of highly regular and dense vertically aligned carbon nanotube (VACNT) mat compatible with the standard lithography used for microelectrode arrays technology.

  12. Electrochemical properties of double wall carbon nanotube electrodes

    OpenAIRE

    Pumera, Martin

    2007-01-01

    AbstractElectrochemical properties of double wall carbon nanotubes (DWNT) were assessed and compared to their single wall (SWNT) counterparts. The double and single wall carbon nanotube materials were characterized by Raman spectroscopy, scanning and transmission electron microscopy and electrochemistry. The electrochemical behavior of DWNT film electrodes was characterized by using cyclic voltammetry of ferricyanide and NADH. It is shown that while both DWNT and SWNT were significantly funct...

  13. Carbon nanotube based photocathodes

    International Nuclear Information System (INIS)

    Hudanski, Ludovic; Minoux, Eric; Schnell, Jean-Philippe; Xavier, Stephane; Pribat, Didier; Legagneux, Pierre; Gangloff, Laurent; Teo, Kenneth B K; Robertson, John; Milne, William I

    2008-01-01

    This paper describes a novel photocathode which is an array of vertically aligned multi-walled carbon nanotubes (MWCNTs), each MWCNT being associated with one p-i-n photodiode. Unlike conventional photocathodes, the functions of photon-electron conversion and subsequent electron emission are physically separated. Photon-electron conversion is achieved with p-i-n photodiodes and the electron emission occurs from the MWCNTs. The current modulation is highly efficient as it uses an optically controlled reconfiguration of the electric field at the MWCNT locations. Such devices are compatible with high frequency and very large bandwidth operation and could lead to their application in compact, light and efficient microwave amplifiers for satellite telecommunication. To demonstrate this new photocathode concept, we have fabricated the first carbon nanotube based photocathode using silicon p-i-n photodiodes and MWCNT bunches. Using a green laser, this photocathode delivers 0.5 mA with an internal quantum efficiency of 10% and an I ON /I OFF ratio of 30

  14. The effect of different order of purification treatments on the purity of multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Xinlong [College of Materials Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North People Road, Shanghai 201620 (China); Department of Biological and Chemical Engineering, Guangxi University of Technology, 268 Donghuan Road, Liuzhou 545006 (China); Wei, Yizhe [College of Materials Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North People Road, Shanghai 201620 (China); Zou, Liming, E-mail: lmzou@dhu.edu.cn [College of Materials Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North People Road, Shanghai 201620 (China); Xu, Su [College of Materials Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North People Road, Shanghai 201620 (China)

    2013-07-01

    The multiwalled carbon nanotubes were purified with different order treatments of gas phase and liquid phase. Amorphous carbon and iron catalysts were removed and some oxygen-containing groups were attached to the surface of multiwalled carbon nanotubes after purification. The multiwalled carbon nanotubes were determined and characterized by thermogravimetric analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, Boehm's neutralizing titration method and weighing method. The morphology of multiwalled carbon nanotubes was verified using scanning electron microscopy and transmission electron microscopy. The results indicated amorphous carbon and iron catalysts were removed completely while the structure of multiwalled carbon nanotubes was slightly destructed by two treatment methods. Three principal oxygen-containing groups on the surface of multiwalled carbon nanotubes were carboxyl, lactone and phenolic hydroxyl in descending order of their concentrations. The method I including gas phase treatment firstly and then liquid phase treatment, is more effective to purify multiwalled carbon nanotubes and to protect the structure of multiwalled carbon nanotubes than method II including liquid phase treatment firstly and then gas phase treatment.

  15. Laser ablative synthesis of carbon nanotubes

    Science.gov (United States)

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2010-03-02

    An improved method for the production of single walled carbon nanotubes that utilizes an RF-induction heated side-pumped synthesis chamber for the production of such. Such a method, while capable of producing large volumes of carbon nanotubes, concurrently permits the use of a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization. The method of the present invention utilizes a free electron laser operating at high average and peak fluence to illuminate a rotating and translating graphite/catalyst target to obtain high yields of SWNTs without the use of a vacuum chamber.

  16. High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yu; Che, Yuchi; Zhou, Chongwu, E-mail: chongwuz@usc.edu [Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States); Seo, Jung-Woo T.; Hersam, Mark C. [Department of Materials Science and Engineering and Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States); Gui, Hui [Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 (United States)

    2016-06-06

    In this paper, we report the high-performance radio-frequency transistors based on the single-walled semiconducting carbon nanotubes with a refined average diameter of ∼1.6 nm. These diameter-separated carbon nanotube transistors show excellent transconductance of 55 μS/μm and desirable drain current saturation with an output resistance of ∼100 KΩ μm. An exceptional radio-frequency performance is also achieved with current gain and power gain cut-off frequencies of 23 GHz and 20 GHz (extrinsic) and 65 GHz and 35 GHz (intrinsic), respectively. These radio-frequency metrics are among the highest reported for the carbon nanotube thin-film transistors. This study provides demonstration of radio frequency transistors based on carbon nanotubes with tailored diameter distributions, which will guide the future application of carbon nanotubes in radio-frequency electronics.

  17. Reduction of short wavelength reflectance of multi-wall carbon nanotubes through ultraviolet laser irradiation

    Science.gov (United States)

    Stephens, Michelle S.; Simonds, Brian J.; Yung, Christopher S.; Conklin, Davis; Livigni, David J.; Oliva, Alberto Remesal; Lehman, John H.

    2018-05-01

    Multi-wall carbon nanotube coatings are used as broadband, low-reflectance absorbers for bolometric applications and for stray light control. They are also used as high emittance blackbody radiators. Irradiation of single wall carbon nanotubes with ultraviolet (UV) laser light has been shown to remove amorphous carbon debris, but there have been few investigations of the interaction of UV light with the more complex physics of multi-wall carbon nanotubes. We present measurements of reflectance and surface morphology before and after exposure of multi-wall carbon nanotube coatings to 248 nm UV laser light. We show that UV exposure reduces the reflectivity at wavelengths below 600 nm and present modeling of the thermal cycling the UV exposure causes at the surface of the carbon nanotubes. This effect can be used to flatten the spectral shape of the reflectivity curve of carbon nanotube absorber coatings used for broadband applications. Finally, we find that the effect of UV exposure depends on the nanotube growth process.

  18. Functionalized carbon nanotubes and nanofibers for biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun; Lin, Yuehe

    2008-07-30

    This review summarizes the recent advances of carbon nanotube (CNT) and carbon nanofiber (CNF)-based electrochemical biosensors with an emphasis on the applications of CNTs. Carbon nanotubes and carbon nanofibers have unique electric, electrocatalytic, and mechanical properties which make them efficient materials for the use in electrochemical biosensor development. In this article, the functionalization of CNTs for biosensors is simply discussed. The electrochemical biosensors based on CNT and their various applications, e.g., measurement of small biological molecules and environmental pollutants, detection of DNA, and immunosensing of disease biomarkers, are reviewed. Moreover, the development of carbon nanofiber-based electrochemical biosensors and their applications are outlined. Finally, some challenges are discussed in the conclusion.

  19. Apparatus for the laser ablative synthesis of carbon nanotubes

    Science.gov (United States)

    Smith, Michael W.; Jordan, Kevin

    2010-02-16

    An RF-induction heated side-pumped synthesis chamber for the production of carbon nanotubes. Such an apparatus, while capable of producing large volumes of carbon nanotubes, concurrently provides a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization.

  20. Fabrication and microwave shielding properties of free standing polyaniline-carbon fiber thin sheets

    International Nuclear Information System (INIS)

    Joon, Seema; Kumar, Rakesh; Singh, Avanish Pratap; Shukla, Rajni; Dhawan, S.K.

    2015-01-01

    Attempt has been made to synthesize polyaniline-carbon fiber (PANI-CF) composite via in-situ emulsion polymerization using β-naphthalene sulphonic acid (NSA) which acts as both surfactant as well as dopant. Free standing PANI-CF thin sheets are prepared which have electrical conductivity ∼1.02 S/cm with improved mechanical strength and thermal stability. The scanning electron microscopy is used to study the surface morphology of the composites. Structural characterization is done by using XRD. The dielectric attributes (ε* = ε′ − iε″) of PANI-CF sheets are calculated using experimental S parameters (S 11 , S 12 ) by Nicolson Ross Wier equations. It has been demonstrated that these sheets show maximum shielding effectiveness (SE) of 31.9 dB at 12.4 GHz frequency at a thickness of 1.5 mm. Free standing PANI-CF sheets so prepared have a potential for X-band microwave absorber application. - Highlights: • Free standing polyaniline-carbon fiber thin sheets fabricated for EMI shielding. • The mechanical strength of sheets improves with phenolic resin loading. • The dielectric parameters were calculated by Nicholson Ross Wier equations. • Sheets (1.5 mm thickness) demonstrate SE of 31.9 dB at 12.4 GHz frequency. • Sheets find potential application for X-band microwave absorption

  1. Carbon-Nanotube-Based Thermoelectric Materials and Devices.

    Science.gov (United States)

    Blackburn, Jeffrey L; Ferguson, Andrew J; Cho, Chungyeon; Grunlan, Jaime C

    2018-03-01

    Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g -1 ) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Preparation polystyrene/multiwalled carbon nanotubes nanocomposites by copolymerization of styrene and styryl-functionalized multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Jing, E-mail: huajing72@qust.edu.cn [Key Laboratory of Rubber-Plastics Ministry of Education, Qingdao University of Science and Technology, Qingdao (China); Wang, Zhongguang; Xu, Ling; Wang, Xin; Zhao, Jian; Li, Feifei [Key Laboratory of Rubber-Plastics Ministry of Education, Qingdao University of Science and Technology, Qingdao (China)

    2013-01-15

    Styryl-functionalized multiwalled carbon nanotubes (p-MWNTs) were prepared by esterification based on the carboxylate salt of carbon nanotubes and p-chloromethylstyrene in toluene. Then in situ radical copolymerization of p-MWNTs and styrene initiated by 2,2 Prime -azobis(isobutyronitrile) (AIBN) was applied to synthesize composites of styryl-functionalized multiwalled carbon nanotubes and polystyrene (PS) (p-MWNTs/PS). Characterizations carried out by FT-IR, {sup 1}H NMR, UV-vis show that styryl group covalently bond to the surface of MWNTs. The results of UV showed that the solutions of p-MWNTs/PS in chloroform have the hyperchromic effect. Transmission electron microscopy (TEM) images of p-MWNTs/PS composites and scanning electron microscopy (SEM) images of fracture surface of p-MWNTs/PS composites showed the functionalized nanotubes had a better dispersion than that of the unfunctionalized MWNTs in the matrix. The results of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) suggested that the thermal stability of p-MWNTs/PS composites improved in the presence of MWNTs. -- Highlights: Black-Right-Pointing-Pointer A facile and simple way to successfully prepare the polystyrene/MWNTs nanocomposites. Black-Right-Pointing-Pointer Characterizations show that styryl group covalently bond to the surface of MWNTs. Black-Right-Pointing-Pointer The solutions of p-MWNTs/PS in chloroform have the hyperchromic effect. Black-Right-Pointing-Pointer Thermal stability of p-tpas composites improved in the presence of MWNTs. Black-Right-Pointing-Pointer The performance of polymer prepared by this method have great potential for exploitation.

  3. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.

    Science.gov (United States)

    Jain, Astha; Homayoun, Aida; Bannister, Christopher W; Yum, Kyungsuk

    2015-03-01

    Single-walled carbon nanotubes that emit photostable near-infrared fluorescence have emerged as near-infrared optical biosensors for life sciences and biomedicine. Since the discovery of their near-infrared fluorescence, researchers have engineered single-walled carbon nanotubes to function as an optical biosensor that selectively modulates its fluorescence upon binding of target molecules. Here we review the recent advances in the single-walled carbon nanotube-based optical sensing technology for life sciences and biomedicine. We discuss the structure and optical properties of single-walled carbon nanotubes, the mechanisms for molecular recognition and signal transduction in single-walled carbon nanotube complexes, and the recent development of various single-walled carbon nanotube-based optical biosensors. We also discuss the opportunities and challenges to translate this emerging technology into biomedical research and clinical use, including the biological safety of single-walled carbon nanotubes. The advances in single-walled carbon nanotube-based near-infrared optical sensing technology open up a new avenue for in vitro and in vivo biosensing with high sensitivity and high spatial resolution, beneficial for many areas of life sciences and biomedicine. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. CMOS-based carbon nanotube pass-transistor logic integrated circuits

    Science.gov (United States)

    Ding, Li; Zhang, Zhiyong; Liang, Shibo; Pei, Tian; Wang, Sheng; Li, Yan; Zhou, Weiwei; Liu, Jie; Peng, Lian-Mao

    2012-01-01

    Field-effect transistors based on carbon nanotubes have been shown to be faster and less energy consuming than their silicon counterparts. However, ensuring these advantages are maintained for integrated circuits is a challenge. Here we demonstrate that a significant reduction in the use of field-effect transistors can be achieved by constructing carbon nanotube-based integrated circuits based on a pass-transistor logic configuration, rather than a complementary metal-oxide semiconductor configuration. Logic gates are constructed on individual carbon nanotubes via a doping-free approach and with a single power supply at voltages as low as 0.4 V. The pass-transistor logic configurarion provides a significant simplification of the carbon nanotube-based circuit design, a higher potential circuit speed and a significant reduction in power consumption. In particular, a full adder, which requires a total of 28 field-effect transistors to construct in the usual complementary metal-oxide semiconductor circuit, uses only three pairs of n- and p-field-effect transistors in the pass-transistor logic configuration. PMID:22334080

  5. The elastic buckling of super-graphene and super-square carbon nanotube networks

    International Nuclear Information System (INIS)

    Li Ying; Qiu Xinming; Yin Yajun; Yang Fan; Fan Qinshan

    2010-01-01

    The super-graphene (SG) and super-square (SS) carbon nanotube network are built by the straight single-walled carbon nanotubes and corresponding junctions. The elastic buckling behaviors of these carbon nanotube networks under different boundary conditions are explored through the molecular structural mechanics method. The following results are obtained: (a) The critical buckling forces of the SG and SS networks decrease as the side lengths or aspect ratios of the networks increase. The continuum plate theory could give good predictions to the buckling of the SS network but not the SG network with non-uniform buckling modes. (b) The carbon nanotube networks are more stable structures than the graphene structures with less carbon atoms.

  6. Thermal Analysis of Copper-Titanium-Multiwall Carbon Nanotube Composites.

    Science.gov (United States)

    Hamamda, Smail; Jari, Ahmed; Revo, S; Ivanenko, K; Jari, Youcef; Avramenko, T

    2017-12-01

    The aim of this research is the thermostructural study of Cu-Ti, Cu-Ti 1 vol% multiwall carbon nanotubes (MWCNTs) and Cu-Ti 3 vol% MWCNTs. Several investigation techniques were used to achieve this objective. Dilatometric data show that the coefficient of thermal expansion of the nanocomposite containing less multiwall carbon nanotubes is linear and small. The same nanocomposite exhibits regular heat transfer and weak mass exchange with the environment. Raman spectroscopy shows that the nanocomposite with more MWCNTs contains more defects. This implies that the carbon nanotubes have better dispersion in Cu-Ti 1 vol% MWCNTs. Infrared spectroscopy reveals that Cu-Ti 1 vol% MWCNTs has better crystallinity than Cu-Ti 3 vol% MWCNTs.

  7. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis.

    Science.gov (United States)

    Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew

    2017-02-23

    One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon-plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented.

  8. Bulk heterojunction organic photovoltaic based on polythiophene-polyelectrolyte carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Reyes, M. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico); Lopez-Sandoval, R. [Advanced Materials Department, IPICYT, Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi 78216 (Mexico); Liu, J.; Carroll, D.L. [Center for Nanotechnology and Molecular Materials, Wake Forest University, Winston-Salem, NC (United States)

    2007-09-22

    It is shown that carbon nanotubes can be used to enhance carrier mobility for efficient removal of the charges in thin film polymer-conjugated/fullerene photovoltaic devices. The fabricated photovoltaic devices consist of poly(3-octylthiophene) (P3OT) polymer blended with undoped multiwalled carbon nanotubes (MWNTs) and carbon nanotubes doped with nitrogen (CNx-MWNTs). Nanophase formation and dispersion problems associated with the use of carbon nanotubes in polymer devices were addressed through the generation of functional groups and electrostatic attaching of the polyelectrolyte poly(dimethyldiallylamine) chloride (PDDA) in both MWNTs and CNx-MWNT systems. The resultant nanophase was highly dispersed allowing for excellent bulk heterojunction formation. Our results indicate that CNx-MWNTs enhance the efficiency of P3OT solar cells in comparison with MWNTs. (author)

  9. Softening of the Radial Breathing Mode in Metallic Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Farhat, H. (ed.); Sasaki, K.; Kalbáč, Martin; Hofmann, M.; Saito, R.; Dresselhaus, M. S.; Kong, J.

    2009-01-01

    Roč. 102, č. 12 (2009), 126804-1-126804-4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z40400503 Keywords : metallic carbon nanotubes * radial breathing mode * single waled carbon nanotubes Subject RIV: CG - Electrochemistry Impact factor: 7.328, year: 2009

  10. Hybrid Carbon Fibers/Carbon Nanotubes Structures for Next Generation Polymeric Composites

    Directory of Open Access Journals (Sweden)

    M. Al-Haik

    2010-01-01

    Full Text Available Pitch-based carbon fibers are commonly used to produce polymeric carbon fiber structural composites. Several investigations have reported different methods for dispersing and subsequently aligning carbon nanotubes (CNTs as a filler to reinforce polymer matrix. The significant difficulty in dispersing CNTs suggested the controlled-growth of CNTs on surfaces where they are needed. Here we compare between two techniques for depositing the catalyst iron used toward growing CNTs on pitch-based carbon fiber surfaces. Electrochemical deposition of iron using pulse voltametry is compared to DC magnetron iron sputtering. Carbon nanostructures growth was performed using a thermal CVD system. Characterization for comparison between both techniques was compared via SEM, TEM, and Raman spectroscopy analysis. It is shown that while both techniques were successful to grow CNTs on the carbon fiber surfaces, iron sputtering technique was capable of producing more uniform distribution of iron catalyst and thus multiwall carbon nanotubes (MWCNTs compared to MWCNTs grown using the electrochemical deposition of iron.

  11. Physical removal of metallic carbon nanotubes from nanotube network devices using a thermal and fluidic process

    International Nuclear Information System (INIS)

    Ford, Alexandra C; Shaughnessy, Michael; Wong, Bryan M; Kane, Alexander A; Krafcik, Karen L; Léonard, François; Kuznetsov, Oleksandr V; Billups, W Edward; Hauge, Robert H

    2013-01-01

    Electronic and optoelectronic devices based on thin films of carbon nanotubes are currently limited by the presence of metallic nanotubes. Here we present a novel approach based on nanotube alkyl functionalization to physically remove the metallic nanotubes from such network devices. The process relies on preferential thermal desorption of the alkyls from the semiconducting nanotubes and the subsequent dissolution and selective removal of the metallic nanotubes in chloroform. The approach is versatile and is applied to devices post-fabrication. (paper)

  12. Decoration of Multi-walled Carbon Nanotubes by Metal ...

    African Journals Online (AJOL)

    NICO

    tures inside the nanotubes to increase the available surface for catalysis6 or in ... most common method to decorate CNTs by metal nanoparticles and metal oxides due .... 2.6 Characterization of Carbon Nanotubes, Metal Nano- particles and ...

  13. A glassy carbon electrode modified with a polyaniline doped with silicotungstic acid and carbon nanotubes for the sensitive amperometric determination of ascorbic acid

    International Nuclear Information System (INIS)

    Zhang, X.; Lai, G.; Zhang, H.; Yu, A.

    2013-01-01

    We report on an electrochemical sensor for the sensitive amperometric determination of ascorbic acid (AA). Aniline containing suspended silicotungstic acid and carbon nanotubes was electropolymerized on the surface of a glassy carbon electrode in a single step which provides a simple and controllable method and greatly improves the electrocatalytic oxidation of AA. The effects of scan rate, solution pH and working potential were studied. A linear relationship exists between the current measured and the concentration of AA in the range from 1 μM to 10 μM and 0.01 mM to 9 mM, with a limit of detection as low as 0.51 μM (S/N = 3). The sensor is selective, stable and satisfyingly reliable in real sample experiments. In our eyes, it has a large potential for practical applications. (author)

  14. Strain-modified RKKY interaction in carbon nanotubes

    DEFF Research Database (Denmark)

    Gorman, P. D.; Duffy, J. M.; Power, Stephen R.

    2015-01-01

    been shown that the interaction range depends on the conformation of the magnetic dopants in both graphene and nanotubes. Here we examine the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in carbon nanotubes in the presence of uniaxial strain for a range of different impurity configurations. We show......For low-dimensionalmetallic structures, such as nanotubes, the exchange coupling between localized magnetic dopants is predicted to decay slowly with separation. The long-range character of this interaction plays a significant role in determining the magnetic order of the system. It has previously...... that strain is capable of amplifying or attenuating the RKKY interaction, significantly increasing certain interaction ranges, and acting as a switch: effectively turning on or off the interaction. We argue that uniaxial strain can be employed to significantly manipulate magnetic interactions in carbon...

  15. Safety considerations for graphene: lessons learnt from carbon nanotubes.

    Science.gov (United States)

    Bussy, Cyrill; Ali-Boucetta, Hanene; Kostarelos, Kostas

    2013-03-19

    Many consider carbon nanomaterials the poster children of nanotechnology, attracting immense scientific interest from many disciplines and offering tremendous potential in a diverse range of applications due to their extraordinary properties. Graphene is the youngest in the family of carbon nanomaterials. Its isolation, description, and mass fabrication has followed that of fullerenes and carbon nanotubes. Graphene's development and its adoption by many industries will increase unintended or intentional human exposure, creating the need to determine its safety profile. In this Account, we compare the lessons learned from the development of carbon nanotubes with what is known about graphene, based on our own investigations and those of others. Despite both being carbon-based, nanotubes and graphene are two very distinct nanomaterials. We consider the key physicochemical characteristics (structure, surface, colloidal properties) for graphene and carbon nanotubes at three different physiological levels: cellular, tissue, and whole body. We summarize the evidence for health effects of both materials at all three levels. Overall, graphene and its derivatives are characterized by a lower aspect ratio, larger surface area, and better dispersibility in most solvents compared to carbon nanotubes. Dimensions, surface chemistry, and impurities are equally important for graphene and carbon nanotubes in determining both mechanistic (aggregation, cellular processes, biodistribution, and degradation kinetics) and toxicological outcomes. Colloidal dispersions of individual graphene sheets (or graphene oxide and other derivatives) can easily be engineered without metallic impurities, with high stability and less aggregation. Very importantly, graphene nanostructures are not fiber-shaped. These features theoretically offer significant advantages in terms of safety over inhomogeneous dispersions of fiber-shaped carbon nanotubes. However, studies that directly compare graphene with

  16. Carbon nanotube forests growth using catalysts from atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Bhardwaj, Sunil [Istituto Officina dei Materiali-CNR Laboratorio TASC, s.s. 14, km 163.4, I-34012 Trieste (Italy); Sincrotone Trieste S.C.p.A., s.s. 14, km 163.4, I-34149 Trieste (Italy); Cepek, Cinzia [Istituto Officina dei Materiali-CNR Laboratorio TASC, s.s. 14, km 163.4, I-34012 Trieste (Italy)

    2014-04-14

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  17. High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites

    Science.gov (United States)

    Wang, Yongguang; Tang, Shaochun; Vongehr, Sascha; Ali Syed, Junaid; Wang, Xiangyu; Meng, Xiangkang

    2016-01-01

    Improving the solubility of conductive polymers to facilitate processing usually decreases their conductivity, and they suffer from poor cycling stability due to swelling-shrinking during charging cycles. We circumvent these problems with a novel preparation method for nitrogen-doped graphene (NG) enhanced polyacrylic acid/polyaniline (NG-PAA/PANI) composites, ensuring excellent processibility for scalable production. The content of PANI is maximized under the constraint of still allowing defect-free coatings on filaments of carbon cloth (CC). The NG content is then adjusted to optimize specific capacitance. The optimal CC electrodes have 32 wt.% PANI and 1.3 wt.% NG, thus achieving a high capacitance of 521 F/g at 0.5 F/g. A symmetric supercapacitor made from 20 wt.% PANI CC electrodes has more than four times the capacitance (68 F/g at 1 A/g) of previously reported flexible capacitors based on PANI-carbon nanotube composites, and it retains the full capacitance under large bending angles. The capacitor exhibits high energy and power densities (5.8 Wh/kg at 1.1 kW/kg), a superior rate capability (still 81% of the 1 A/g capacitance at 10 A/g), and long-term electrochemical stability (83.2% retention after 2000 cycles). PMID:26883179

  18. Polymer cantilever platform for dielectrophoretic assembly of carbon nanotubes

    DEFF Research Database (Denmark)

    Johansson, Alicia; Calleja, M.; Dimaki, Maria

    2004-01-01

    A polymer cantilever platform for dielectrophoretic assembly of carbon nanotubes has been designed and realized. Multi-walled carbon nanotubes from aqueous solution have been assembled between two metal electrodes that are separated by 2 mu m and embedded in the polymer cantilever. The entire chip......, except for the metallic electrodes and wiring, was fabricated in the photoresist SU-8. SU-8 allows for an inexpensive, flexible and fast fabrication method, and the cantilever platform provides a hydrophobic surface that should be well suited for nanotube assembly. The device can be integrated in a micro...

  19. Adsorption of Emerging Ionizable Contaminants on Carbon Nanotubes: Advancements and Challenges

    Directory of Open Access Journals (Sweden)

    Xingmao Ma

    2016-05-01

    Full Text Available The superior adsorption capacity of carbon nanotubes has been well recognized and there is a wealth of information in the literature concerning the adsorption of unionized organic pollutants on carbon nanotubes. Recently, the adsorption of emerging environmental pollutants, most of which are ionizable, has attracted increasing attention due to the heightened concerns about the accumulation of these emerging contaminants in the environment. These recent studies suggest that the adsorption of emerging ionizable contaminants on carbon nanotubes exhibit different characteristics than unionized ones. For example, a new charge-assisted intermolecular force has been proposed for ionizable compounds because some adsorption phenomenon cannot be easily explained by the conventional force theory. The adsorption of ionizable compounds also displayed much stronger dependence on solution pH and ionic strength than unionized compounds. This article aims to present a brief review on the current understanding of the adsorption of emerging ionizable contaminants to carbon nanotubes and discuss further research needs required to advance the mechanistic understanding of the interactions between ionizable contaminants and carbon nanotubes.

  20. Adsorption of Emerging Ionizable Contaminants on Carbon Nanotubes: Advancements and Challenges.

    Science.gov (United States)

    Ma, Xingmao; Agarwal, Sarang

    2016-05-12

    The superior adsorption capacity of carbon nanotubes has been well recognized and there is a wealth of information in the literature concerning the adsorption of unionized organic pollutants on carbon nanotubes. Recently, the adsorption of emerging environmental pollutants, most of which are ionizable, has attracted increasing attention due to the heightened concerns about the accumulation of these emerging contaminants in the environment. These recent studies suggest that the adsorption of emerging ionizable contaminants on carbon nanotubes exhibit different characteristics than unionized ones. For example, a new charge-assisted intermolecular force has been proposed for ionizable compounds because some adsorption phenomenon cannot be easily explained by the conventional force theory. The adsorption of ionizable compounds also displayed much stronger dependence on solution pH and ionic strength than unionized compounds. This article aims to present a brief review on the current understanding of the adsorption of emerging ionizable contaminants to carbon nanotubes and discuss further research needs required to advance the mechanistic understanding of the interactions between ionizable contaminants and carbon nanotubes.