WorldWideScience

Sample records for carbonaceous materials halogen

  1. Terminology of carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, G.N.; Nagornyi, V.G.; Ostrovskii, V.S.

    1986-07-01

    The need is discussed to standardize definition of carbonaceous material. Terms related to carbonaceous materials and their products are selected and analyzed. Diagramatic representation is given of relationships between carbonaceous materials. Carbon has two forms of structure, cubic and hexagonal, characterized by sp/sup 3/-hybrid groups of atoms forming spatial system of tetrahedral bonds. Hexagonal form of carbon is represented by natural materials such as graphite, shungite, anthracite and a number of artificial materials obtained during thermal treatment of organic substances at temperatures above carbonization temperature. 4 references.

  2. Distilling solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Ainscow, J.W.H.

    1928-11-19

    Carbonaceous materials such as coal or oil shale are distilled by being passed in a continuous stream through a retort heated externally and at temperatures increasing from the inlet to the outlet end, the distillates being taken off through openings in the retort wall.

  3. Distillation of carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Ainscow, J.W.H.

    1936-10-03

    To recover hydrocarbon products by distillation of carbonaceous material in a plurality of horizontal zones maintained at different temperatures, a retort has a plurality of superimposed (3) retort chambers, the uppermost being in communication at one end with a hopper and at the other end through coupled junction not shown with one end of the next lower chamber, whose opposite end communicates with lowermost chamber, the other end of which has a sealed discharge passage, tank, and conveyor not shown. Each retort chamber has stirring and conveying means consisting of helical blades (2) attached to radial arms on shaft mounted in water cooled bearings and driven through suitably mounted sprocket wheels and chains not shown. Each retort chamber has a gas dome, with pyrometer tube, and off-take connected to a common main opening into a dust eliminator which in turn connects with a plurality of vertical condensation towers of known construction, maintained at different temperatures by means of steam from a superheater not shown situated in one retort chamber. The retort heating gases pass from the furnace via zig-zag, (three) baffles under and around each retort chamber to a flue not shown.

  4. Screening of organic halogens and identification of chlorinated benzoic acids in carbonaceous meteorites.

    Science.gov (United States)

    Schöler, Heinz F; Nkusi, Gerard; Niedan, Volker W; Müller, German; Spitthoff, Bianca

    2005-09-01

    The occurrence of halogenated organic compounds measured as a sum parameter and the evidence of chlorinated benzoic acids in four carbonaceous meteorites (Cold Bokkeveld, Murray, Murchison and Orgueil) from four independent fall events is reported. After AOX (Adsorbable organic halogen) and EOX (Extractable organic halogen) screening to quantify organically bound halogens, chlorinated organic compounds were analyzed by gas chromatography. AOX concentrations varying from 124 to 209 microg Cl/g d.w. were observed in carbonaceous meteorites. Ion chromatographic analysis of the distribution of organically bound halogens performed on the Cold Bokkeveld meteorite revealed that chlorinated and brominated organic compounds were extractable, up to 70%, whereas only trace amounts of organofluorines could be extracted. Chlorinated benzoic acids have been identified in carbonaceous meteorite extracts. Their presence and concentrations raise the question concerning the origin of halogenated, especially chlorinated, organic compounds in primitive planetary matter.

  5. The use of halogen carriers and buffers in the spectrographic determination of boron in carbonaceous materials and their combustion products; Empleo de agentes halogenantes y reguladores en la determinacion espectrografica de Boro en carbones y productos derivados

    Energy Technology Data Exchange (ETDEWEB)

    Rucandio, M. I.; Martin, M.; Roca, M.

    1992-07-01

    For the determination of boron in carbonaceous materials (high purity graphite, coals and their processed products, such as ashes and slags from thermoelectric power plants) by atomic emission spectroscopy with direct current are excitation and photographic recording, the behaviour of the analyte in the presence of halide compounds or spectrochemical buffers has been studied. Among the halides, cupric fluoride at a low concentration (2%) becomes very suitable for the graphite analysis, and at a higher concentration (25 %) for coals, being necessary in this case to carry out a dilution of samples with graphite. Strontium carbonate as a spectrochemical buffer allows to analyse satisfactorily coals and their combustion products. (Author) 13 refs.

  6. Mechanism for electrochemical hydrogen insertion in carbonaceous materials

    Science.gov (United States)

    Qu, Deyang

    The mechanism for safe and reversible storage of hydrogen in porous carbonaceous materials by electrochemical decomposition of water in alkaline electrolyte is proposed. Atomic H was found to be inserted into the microdomains of defective graphene layers. Hydrogen storage capacity increases with increasing interlayer distance between carbon sheets. Hydrogen insertion in carbonaceous materials occurs at ambient conditions. Static potential acts as an electrochemical valve which can retain the hydrogen in the carbon structure, thus preventing leakage during storage.

  7. Hydrogen Absorbing Material in Carbonaceous-Metal Hydride

    Directory of Open Access Journals (Sweden)

    Farid Mulana

    2006-06-01

    Full Text Available One of the most promising materials for storing hydrogen in solid state would be included in metal-carbon composites. In order to obtain nanocrystalline metal particles encapsulated by crystalline or amorphous carbon, mechanosynthesis of zirconium-carbonaceous composites and alkali metal-carbonaceous composites was performed. For zirconium-carbonaceous composites, only zirconium-carbon black composite absorbed more hydrogen than expected for a mere mixture with the same composition. The higher hydrogen capacity on the zirconium-carbon black composite would be due to some specific sites on the carbonaceous material created during the milling. Another effect of the composite formation was stabilization of zirconium, that is, the composites did not ignite in air. On alkali metal-carbonaceous composites, carbon black has superior effect in composite formation compared with graphite in which some cooperative effect was only detected on alkali metal-carbon black composite. The effect of the carbonaceous composite formation was resistance to air and anti-sticking characteristics to balls and the wall of the vial during the ball milling.

  8. In situ remediation of contaminated sediments using carbonaceous materials

    NARCIS (Netherlands)

    Rakowska, M.I.; Kupryianchyk, D.; Harmsen, J.; Grotenhuis, J.T.C.; Koelmans, A.A.

    2012-01-01

    Carbonaceous materials (CM), such as activated carbons or biochars, have been shown to significantly reduce porewater concentrations and risks by binding hydrophobic organic compounds (HOCs) present in aquatic sediments. In the present study, the authors review the current state-of-the-art use of CM

  9. The kinetic parameters of carbonaceous materials activated with potassium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Z.; Han, B.X.

    2000-07-01

    On the basis of microspore formation in carbonaceous materials, the activation energy for the potassium hydroxide activation of Chinese petroleum coke and coal has been deduced theoretically as dB(O)/dt = A exp(-E(a)) is an element of/RT), where is an element of is the formation energy for the metastable solid formed at the activation temperature. The kinetic parameters (frequency factor, A, and apparent activation energy, E(a) were calculated from this equation as being 5.319 mg/(g min), 36.51 kJ/mol and 6.64 mg/(g min), 49.46 kJ/mol, respectively, for the two carbonaceous materials studied.

  10. Surface analysis of nanostructured carbonaceous materials

    Science.gov (United States)

    Wepasnick, Kevin Andrew

    The characterization of surfaces is central to understanding its interaction with other materials. Current ground-breaking research in interfacial science is focusing on surfaces which have a nanoscopic-size to their structuring. In particular, carbon nanotubes (CNTs) have been explored extensively. However, to utilize these materials in commercial and scientific applications, the surfaces are often modified to tailor specific properties, such as dispersion, sorption, and reactivity. The focus of this thesis is to apply surface analytical techniques to explore the chemical and structural characteristics of modified nanostructured surfaces. Specifically studied are the covalent surface modifications of CNTs by strategies that involve the direct incorporation of specific elements into the graphene sidewalls by commonly used wet chemical oxidants. These resulting CNTs are then evaluated in terms of their change in surface chemistry and structure. X-ray photoelectron spectroscopy (XPS) was used to characterize the surface oxidation, while chemical derivatization techniques in conjunction with XPS afforded the concentration of carboxyl, carbonyl, and hydroxyl groups on the CNT surface. Transmission electron microscopy (TEM) was able to provide detailed structural information on the modified CNT, including the extent of sidewall damage. Results indicate that the distribution of oxygen-containing functional groups was insensitive to the reaction conditions, but was dependent upon the identity of the oxidant. These trends in functional group concentration were then applied to determining environmental properties, specifically divalent metal cation sorption. Consistently, the increases in COOH functional groups result in an increase in sorption capacity of divalent metal cations, such as Zn2+ and Cd2+. Furthermore, the interactions of size-selected metal and metal-oxide nanoclusters with graphite surfaces were studied by atomic force microscopy (AFM), scanning tunneling

  11. Biomass-derived carbonaceous materials as components in wood briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Stengl, S.; Koch, C.; Stadlbauer, E.A.; Scheer, J. [Univ. of Applied Sciences, THM Campus Giessen, Giessen (Germany); Weber, B. [Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM), Coyoacan (Mexico); Strohal, U.; Fey, J. [Strohal Anlagenbau, Staufenberg (Germany)

    2012-11-01

    The present paper describes a briquette composed of a substantial amount of wooden biomass and up to 35% of carbonaceous materials derived from biogenic residues. The cellulosic component may be a mixture of any wooden residue. Suitable substrates for the carbonaceous fraction are vegetation wastes from land management or agriculture. Depending on physical and chemical nature of the substrate, Hydrothermal Carbonisation (HTC) or Low Temperature Conversion (LTC) may be used to produce the carbonaceous part of the briquette. HTC turns wet biomass at temperatures around 200 deg C in an autoclave into lignite whereas LTC treatment at 400 deg C and atmospheric pressure produces black coal. This is manifested by a molar ratio of 0.1 {<=} H/C (LTC) {<=} 0.7; 0.05{<=} O/C (LTC) {<=} 0.4 and 0.7 < H/C (HTC) <1.5 ; 0.2< O/C (HTC) < 0.5. Solid state {sup 13}C-NMR confirms these findings showing a strong absorption band for sp{sup 2}-hybridized carbon atoms at chemical shifts of 100 ppm und 165 ppm for LTC biochar. Depending on the substrate, HTC gives rise to an increase in the specific calorific value (MJ/kg) by a factor of {Psi} {approx} 1.2 - 1.4; LTC by 1.5 - 1.8. In addition ash melting points are significantly increased; in case of wheat straw by about 200 deg C. Compacted products may have a cylindrical or rectangular profile.

  12. The structural evolution of carbonaceous material during metamorphism : a geothermometer

    Science.gov (United States)

    Beyssac, O.; Goffe, B.; Brunet, F.; Bollinger, L.; Avouac, J.; Rouzaud, J.

    2003-12-01

    With increasing metamorphic temperature, the organic matter present in sedimentary rocks is progressively transformed into graphite (graphitization). The degree of organization of this carbonaceous material (CM) as characterized by Raman spectroscopy (RSCM), can be used as a geothermometer which yields the maximum temperature reached during the metamorphic cycle (Beyssac et al., 2002). We used this RSCM geothermometer to map the maximum metamorphic temperatures through the Lesser Himalaya (LH) in Nepal. This study provides a large dataset (80 samples) to estimate uncertainty of this method and to ascertain its reliability by comparison with conventional petrological investigations. We show that the RSCM geothermometer might be used to detect inter-samples temperature variations as small as 10° C or so, but absolute temperatures are only loosely determined to +/- 50° C due to the uncertainty on the calibration. This successful application of the RSCM geothermometer confirms that, at the timescale of regional metamorphism (several My), the transformation of CM is mainly controlled by temperature. However, laboratory investigations suggest that, in addition to temperature, pressure should also play a role (Beyssac et al. 2003). As a matter of fact, high degree of organizations encountered in natural CM cannot be reproduced in laboratory without pressure, even at temperatures as high as 3000° C. In addition to the data acquired on natural CM, we will discuss laboratory experiments performed up to 8 GPa which show that (1) a few kbar of hydrostatic pressure are required to initiate microtextural and subsequent structural transformations within CM and (2) the overall effect of increasing pressure is to speed up graphitization process. Beyssac, O., Goffe, B., Chopin, C., and Rouzaud, J.N., 2002, Raman spectra of carbonaceous material in metasediments: a new geothermometer. Journal of Metamorphic Geology, 20, 859-871. Beyssac, O., Brunet, F., Petitet, J.P., Goffe, B

  13. Delivery of Dark Material to Vesta via Carbonaceous Chondritic Impacts

    CERN Document Server

    Reddy, Vishnu; O'Brien, David P; Nathues, Andreas; Cloutis, Edward A; Durda, Daniel D; Bottke, William F; Bhatt, Megha U; Nesvorny, David; Buczkowski, Debra; Scully, Jennifer E C; Palmer, Elizabeth M; Sierks, Holger; Mann, Paul J; Becker, Kris J; Beck, Andrew W; Mittlefehldt, David; Li, Jian-Yang; Gaskell, Robert; Russell, Christopher T; Gaffey, Michael J; McSween, Harry Y; McCord, Thomas B; Combe, Jean-Philippe; Blewett, David

    2012-01-01

    NASA's Dawn spacecraft observations of asteroid (4) Vesta reveal a surface with the highest albedo and color variation of any asteroid we have observed so far. Terrains rich in low albedo dark material (DM) have been identified using Dawn Framing Camera (FC) 0.75 {\\mu}m filter images in several geologic settings: associated with impact craters (in the ejecta blanket material and/or on the crater walls and rims); as flow-like deposits or rays commonly associated with topographic highs; and as dark spots (likely secondary impacts) nearby impact craters. This DM could be a relic of ancient volcanic activity or exogenic in origin. We report that the majority of the spectra of DM are similar to carbonaceous chondrite meteorites mixed with materials indigenous to Vesta. Using high-resolution seven color images we compared DM color properties (albedo, band depth) with laboratory measurements of possible analog materials. Band depth and albedo of DM are identical to those of carbonaceous chondrite xenolith-rich howar...

  14. Recent Development of Carbonaceous Materials for Lithium–Sulphur Batteries

    Directory of Open Access Journals (Sweden)

    Xingxing Gu

    2016-11-01

    Full Text Available The effects of climate change are just beginning to be felt, and as such, society must work towards strategies of reducing humanity’s impact on the environment. Due to the fact that energy production is one of the primary contributors to greenhouse gas emissions, it is obvious that more environmentally friendly sources of power are required. Technologies such as solar and wind power are constantly being improved through research; however, as these technologies are often sporadic in their power generation, efforts must be made to establish ways to store this sustainable energy when conditions for generation are not ideal. Battery storage is one possible supplement to these renewable energy technologies; however, as current Li-ion technology is reaching its theoretical capacity, new battery technology must be investigated. Lithium–sulphur (Li–S batteries are receiving much attention as a potential replacement for Li-ion batteries due to their superior capacity, and also their abundant and environmentally benign active materials. In the spirit of environmental harm minimization, efforts have been made to use sustainable carbonaceous materials for applications as carbon–sulphur (C–S composite cathodes, carbon interlayers, and carbon-modified separators. This work reports on the various applications of carbonaceous materials applied to Li–S batteries, and provides perspectives for the future development of Li–S batteries with the aim of preparing a high energy density, environmentally friendly, and sustainable sulphur-based cathode with long cycle life.

  15. Proton catalysis with active carbons and partially pyrolyzed carbonaceous materials

    Institute of Scientific and Technical Information of China (English)

    V. V. Strelko; S. S. Stavitskaya; Yu. I. Gorlov

    2014-01-01

    The development of environmentally friendly solid acid catalysts is a priority task. Highly oxidized activated carbon and their ion-substituted (saline) forms are effective proton transfer catalysts in esterification, hydrolysis, and dehydration, and thus are promising candidates as solid acid cata-lysts. Computations by the ab initio method indicated the cause for the enchanced acidity of the carboxylic groups attached to the surface of highly oxidized carbon. The synthesis of phosphorilated carbon was considered, and the proton transfer reactions catalyzed by them in recent studies were analyzed. The development of an amorphous carbon acid catalyst comprising polycyclic carbonaceous (graphene) sheets with-SO3H,-COOH and phenolic type OH-groups was carried out. These new catalysts were synthesized by partial pyrolysis and subsequent sulfonation of carbohydrates, polymers, and other organic compounds. Their high catalytic activities in proton transfere reactions including the processing of bio-based raw materials was demonsrated.

  16. On thermodynamics of methane+carbonaceous materials adsorption

    KAUST Repository

    Rahman, Kazi Afzalur

    2012-01-01

    This study presents the theoretical frameworks for the thermodynamic quantities namely the heat of adsorption, specific heat capacity, entropy, and enthalpy for the adsorption of methane onto various carbonaceous materials. The proposed theoretical frameworks are developed from the rigor of thermodynamic property surfaces of a single component adsorbate-adsorbent system and by incorporating the micropore filling theory approach, where the effect of adsorbed phase volume is considered. The abovementioned thermodynamic properties are quantitatively evaluated from the experimental uptake data for methane adsorption onto activated carbons such as Maxsorb III at temperatures ranging from 120 to 350 K and pressures up to 25 bar. Employing the proposed thermodynamic approaches, this paper shows the thermodynamic maps of the charge and discharge processes of adsorbed natural gas (ANG) storage system for understanding the behaviors of natural gas in ANG vessel. © 2011 Elsevier Ltd. All rights reserved.

  17. High and rapid alkali cation storage in ultramicroporous carbonaceous materials

    Science.gov (United States)

    Yun, Young Soo; Lee, Seulbee; Kim, Na Rae; Kang, Minjee; Leal, Cecilia; Park, Kyu-Young; Kang, Kisuk; Jin, Hyoung-Joon

    2016-05-01

    To achieve better supercapacitor performance, efforts have focused on increasing the specific surface area of electrode materials to obtain higher energy and power density. The control of pores in these materials is one of the most effective ways to increase the surface area. However, when the size of pores decreases to a sub-nanometer regime, it becomes difficult to apply the conventional parallel-plate capacitor model because the charge separation distance (d-value) of the electrical double layer has a similar length scale. In this study, ultramicroporous carbonaceous materials (UCMs) containing sub-nanometer-scale pores are fabricated using a simple in situ carbonization/activation of cellulose-based compounds containing potassium. The results show that alkali cations act as charge carriers in the ultramicropores (<0.7 nm), and these materials can deliver high capacitances of ∼300 F g-1 at 0.5 A g-1 and 130 F g-1, even at a high current rate of 65 A g-1 in an aqueous medium. In addition, the UCM-based symmetric supercapacitors are stable over 10,000 cycles and have a high energy and power densities of 8.4 Wh kg-1 and 15,000 W kg-1, respectively. This study provides a better understanding of the effects of ultramicropores in alkali cation storage.

  18. Functional Group Compositions of Carbonaceous Materials of Hayabusa-Returned Samples

    Science.gov (United States)

    Yabuta, H.; Uesugi, M.; Naraoka, H.; Ito, M.; Kilcoyne, D.; Sandford, S. A.; Kitajima, F.; Mita, H.; Takano, Y.; Yada, T.; Karouji, Y.; Ishibashi, Y.; Okada, T.; Abe, M.

    2014-09-01

    We have analyzed the functional group compositions of the carbonaceous materials of Hayabusa-returned samples by STXM-XANES, in order to identify whether the materials are terrestrial or extraterrestrial.

  19. Primordial Molecular Cloud Material in Metal-Rich Carbonaceous Chondrites

    Science.gov (United States)

    Taylor, G. J.

    2016-03-01

    The menagerie of objects that make up our Solar System reflects the composition of the huge molecular cloud in which the Sun formed, a late addition of short-lived isotopes from an exploding supernova or stellar winds from a neighboring massive star, heating and/or alteration by water in growing planetesimals that modified and segregated the primordial components, and mixing throughout the Solar System. Outer Solar System objects, such as comets, have always been cold, hence minimizing the changes experienced by more processed objects. They are thought to preserve information about the molecular cloud. Elishevah Van Kooten (Natural History Museum of Denmark and the University of Copenhagen) and co-authors in Denmark and at the University of Hawai'i, measured the isotopic compositions of magnesium and chromium in metal-rich carbonaceous chondrites. They found that the meteorites preserve an isotopic signature of primordial molecular cloud materials, providing a potentially detailed record of the molecular cloud's composition and of materials that formed in the outer Solar System.

  20. Analyses and characterization of fossil carbonaceous materials for silicon production

    Energy Technology Data Exchange (ETDEWEB)

    Myrvaagnes, Viktor

    2008-01-15

    Production of high silicon alloys is carried out in submerged arc furnaces by reduction of silicon bearing oxides (typically quartz) with carbon materials. Carbonaceous materials like coal, coke, charcoal and woodchips are commonly used as reduction materials in the process. Primarily based on historical prices of charcoal compared to fossil reduction materials, the Norwegian Ferroalloy Industry has mostly been using coal and coke (char) as the source of carbon. From a process point of view, the most important role of the carbonaceous material is to react with SiO gas to produce SiC. The ability of the reduction materials to react with SiO gas can be measured and the value is recognized as the reactivity of the carbon source. Reactivity is one of the most important parameters in the smelting process and is commonly acknowledged to strongly affect both productivity and specific energy consumption. The main objectives of this work has been to establish methods to characterize the material properties of fossil carbonaceous reduction materials used in the silicon process and to evaluated how these properties affect the reactivity towards SiO gas. In order to accomplish these objectives, three run of mine (ROM) single seam coals which are particularly well suited for ferroalloy production were selected. Two Carboniferous coals from USA (Blue Gem) and Poland (Staszic) with similar rank, but significantly different composition as well as a Permian coal from Australia (Peak Downs) have been characterized by chemical- and petrographical methods. Blue Gem is a homogeneous coal, low in mineral inclusions and macerals of the inertinite group and determined to have a random vitrinite reflectance of 0.71 %. Staszic has a similar reflectance of vitrinite (0.72 %), but is determined to be a very inhomogeneous coal with both inertinite macerals and minerals embedded in the vitrinite matrix. Peak Downs has a random reflectance of vitrinite of 1.32 % and is hence the coal sample of

  1. Analyses and characterization of fossil carbonaceous materials for silicon production

    Energy Technology Data Exchange (ETDEWEB)

    Myrvaagnes, Viktor

    2008-01-15

    Production of high silicon alloys is carried out in submerged arc furnaces by reduction of silicon bearing oxides (typically quartz) with carbon materials. Carbonaceous materials like coal, coke, charcoal and woodchips are commonly used as reduction materials in the process. Primarily based on historical prices of charcoal compared to fossil reduction materials, the Norwegian Ferroalloy Industry has mostly been using coal and coke (char) as the source of carbon. From a process point of view, the most important role of the carbonaceous material is to react with SiO gas to produce SiC. The ability of the reduction materials to react with SiO gas can be measured and the value is recognized as the reactivity of the carbon source. Reactivity is one of the most important parameters in the smelting process and is commonly acknowledged to strongly affect both productivity and specific energy consumption. The main objectives of this work has been to establish methods to characterize the material properties of fossil carbonaceous reduction materials used in the silicon process and to evaluated how these properties affect the reactivity towards SiO gas. In order to accomplish these objectives, three run of mine (ROM) single seam coals which are particularly well suited for ferroalloy production were selected. Two Carboniferous coals from USA (Blue Gem) and Poland (Staszic) with similar rank, but significantly different composition as well as a Permian coal from Australia (Peak Downs) have been characterized by chemical- and petrographical methods. Blue Gem is a homogeneous coal, low in mineral inclusions and macerals of the inertinite group and determined to have a random vitrinite reflectance of 0.71 %. Staszic has a similar reflectance of vitrinite (0.72 %), but is determined to be a very inhomogeneous coal with both inertinite macerals and minerals embedded in the vitrinite matrix. Peak Downs has a random reflectance of vitrinite of 1.32 % and is hence the coal sample of

  2. Preparation and characterization of a new carbonaceous material for electrochemical systems

    Directory of Open Access Journals (Sweden)

    ZI JI LIN

    2010-02-01

    Full Text Available A new carbonaceous material was successfully prepared by the py-rolysis of scrap tire rubber at 600 °C under a nitrogen atmosphere. The physical characteristics of the prepared carbonaceous material were studied by scanning electron microscopy (SEM, X-ray powder diffraction (XRD and X-ray photoelectron spectroscopy (XPS. It was proved that the carbonaceous material had a disordered structure and spherical morphology with an average particle size about 100 nm. The prepared carbonaceous material was also used as electrodes in electrochemical systems to examine its electrochemical performances. It was demonstrated that it delivered a lithium insertion capacity of 658 mA h g-1 during the first cycle with a coulombic efficiency of 68 %. Cyclic voltammograms test results showed that a redox reaction occurred during the cycles. The chemical diffusion coefficient based on the impedance diagram was about 10-10 cm2 s-1. The pyrolytic carbonaceous material derived from scrap tire rubber is therefore considered to be a potential anode material in lithium secondary batteries or capacitors. Furthermore, it is advantageous for environmental protection.

  3. Carbon dioxide capture on amine-rich carbonaceous materials derived from glucose.

    Science.gov (United States)

    Zhao, Li; Bacsik, Zoltan; Hedin, Niklas; Wei, Wei; Sun, Yuhan; Antonietti, Markus; Titirici, Maria-Magdalena

    2010-07-19

    The synthesis of carbonaceous materials with a high surface density of amino functions for CO(2) sorption and sequestration is reported. The amino-rich carbonaceous materials are characterized by elemental analysis, N(2) sorption, scanning and transmission electron microscopy, zeta potential, TGA and FTIR measurements. A detailed discussion on the use of these materials in CO(2) capture is provided. The materials show significant sorption capabilities for CO(2) (4.3 mmol g(-1)at -20 degrees C and 1 bar). Furthermore, they show a high apparent selectivity for CO(2) over N(2) at both low and high temperatures.

  4. Preparation of a Sulfonated Carbonaceous Material from Lignosulfonate and Its Usefulness as an Esterification Catalyst

    Directory of Open Access Journals (Sweden)

    Duckhee Lee

    2013-07-01

    Full Text Available Sulfonated carbonaceous material useful as a solid acid catalyst was prepared from lignosulfonate, a waste of the paper-making industry sulfite pulping process, and characterized by 13C-NMR, FT-IR, TGA, SEM and elemental analysis, etc. The sulfonic acid group density and total density of all acid groups in the sulfonated carbonaceous material was determined by titration to be 1.24 mmol/g and 5.90 mmol/g, respectively. Its catalytic activity in the esterification of cyclohexanecarboxylic acid with anhydrous ethanol was shown to be comparable to that of the ionic exchange resin Amberlyst-15, when they were used in the same amount. In the meantime, the sulfonic acid group was found to be leached out by 26%–29% after it was exposed to hot water (95 °C for 5 h. The catalytic usefulness of the prepared carbonaceous material was investigated by performing esterifications.

  5. Dark material on Vesta from the infall of carbonaceous volatile-rich material.

    Science.gov (United States)

    McCord, T B; Li, J-Y; Combe, J-P; McSween, H Y; Jaumann, R; Reddy, V; Tosi, F; Williams, D A; Blewett, D T; Turrini, D; Palomba, E; Pieters, C M; De Sanctis, M C; Ammannito, E; Capria, M T; Le Corre, L; Longobardo, A; Nathues, A; Mittlefehldt, D W; Schröder, S E; Hiesinger, H; Beck, A W; Capaccioni, F; Carsenty, U; Keller, H U; Denevi, B W; Sunshine, J M; Raymond, C A; Russell, C T

    2012-11-01

    Localized dark and bright materials, often with extremely different albedos, were recently found on Vesta's surface. The range of albedos is among the largest observed on Solar System rocky bodies. These dark materials, often associated with craters, appear in ejecta and crater walls, and their pyroxene absorption strengths are correlated with material brightness. It was tentatively suggested that the dark material on Vesta could be either exogenic, from carbon-rich, low-velocity impactors, or endogenic, from freshly exposed mafic material or impact melt, created or exposed by impacts. Here we report Vesta spectra and images and use them to derive and interpret the properties of the 'pure' dark and bright materials. We argue that the dark material is mainly from infall of hydrated carbonaceous material (like that found in a major class of meteorites and some comet surfaces), whereas the bright material is the uncontaminated indigenous Vesta basaltic soil. Dark material from low-albedo impactors is diffused over time through the Vestan regolith by impact mixing, creating broader, diffuse darker regions and finally Vesta's background surface material. This is consistent with howardite-eucrite-diogenite meteorites coming from Vesta.

  6. Combined method for simultaneously dewatering and reconstituting finely divided carbonaceous material

    Science.gov (United States)

    Wen, Wu-Wey; Deurbrouck, Albert W.

    1990-01-01

    A finely-divided carbonaceous material is dewatered and reconstituted in a combined process by adding a binding agent directly into slurry of finely divided material and dewatering the material to form a cake or consolidated piece which can be hardened by drying at ambient or elevated temperatures. Alternatively, the binder often in the form of a crusting agent is sprayed onto the surface of a moist cake prior to curing.

  7. Micro Raman spectroscopy of carbonaceous material in microfossils and meteorites: improving a method for life detection.

    Science.gov (United States)

    Bower, D M; Steele, A; Fries, M D; Kater, L

    2013-01-01

    The identification of biosignatures in Earth's ancient rock record and detection of extraplanetary life is one of the primary goals in astrobiology. Intrinsic to this goal is the improvement of analytical techniques and protocols used to identify an unambiguous signal of life. Micro Raman spectroscopy is a nondestructive method that allows for in situ identification of a wide range of minerals and compounds. The use of D (∼1350 cm(-1)) and G (∼1580 cm(-1)) band parameters to infer the biogenicity of carbonaceous materials in fossils has become a commonly used analytical tool, but carbonaceous compounds from different sources often share the same spectroscopic characteristics. Microfossil studies do not always take into consideration a nonbiological source for the carbon in their samples and therefore still rely on morphology as the primary mode of identification. Comprehensive studies that consider all carbon sources are typically done on metasediments, coals, or meteorites, and the results are not clearly applicable to microfossil identification. In this study, microfossils from a suite of sedimentary rock samples of various ages were analyzed with micro Raman spectroscopy to investigate the nature and provenance of carbonaceous material. To further constrain D- and G-band carbon characteristics, micro Raman analyses were also performed on well-characterized meteorite samples as abiological controls. The results appear to show a correlation of precursor carbonaceous material with D-band parameters and thermal history with G-band parameters. This systematic study lays the groundwork for improving the use of the G- and D-band trends as useful indicators of the origin of carbon in microfossils. Before unambiguous biosignatures can be established, further work characterizing the carbonaceous material in microfossils of different ages, thermal histories, and host rock compositions is needed.

  8. Anomalous Lithium Adsorption Propensity of Monolayer Carbonaceous Materials: A Density Functional Study

    Indian Academy of Sciences (India)

    SWATI PANIGRAHI; DEIVASIGAMANI UMADEVI; G NARAHARI SASTRY

    2016-10-01

    Interaction between lithium and carbonaceous materials has gained a lot of importance in lithium battery industry as an important source of energy and storage. The size, dimension, curvature and chirality of the carbonaceous materials are found to be very important factors in controlling the sequential binding oflithium. The propensity of lithium binding to the monolayer carbonaceous materials has been studied using Density functional theory (DFT). Structural and energetical parameters of the complexes have been analyzed through interaction energy, sequential energy, Mulliken population analysis and spin density distribution. Spindensity of odd Li doped systems reveals the preferences for addition of further lithium atoms on the surface. Upon analyzing the interaction energy in armchair carbon nanotubes (A-CNTs) and zigzag carbon nanotubes (Z-CNTs), it has been observed that external and internal surfaces of CNTs have contrasting binding preferences for sequential addition of Li atoms. Internal surface is found to be more feasible site for lithium adsorption than the external surface. This current study provides fundamental understanding of the mechanism of lithium adsorption in lithium battery.

  9. Low extraction recovery of fullerene from carbonaceous geological materials spiked with C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Jehlicka, J.; Frank, O.; Hamplova, V.; Pokorna, Z.; Juha, L.; Bohacek, Z.; Weishauptova, Z. [Charles University, Prague (Czech Republic). Inst. for Geochemical Mineral & Mineral Resources

    2005-08-01

    Soxhlet extraction, sonication, and ultracritical extraction were tested with respect to their capacity to extract fullerenes from natural carbonaceous materials. Toluene solutions with various contents of synthetic C{sub 60} were added to powdered graphite, shungite, bituminous coal, and quartz, with final C{sub 60} concentration 0.1-100 ppm. The C{sub 60}-doped materials were leached in three kinds of extraction apparatus. High-performance liquid chromatography (HPLC) was used to analyse the fullerene content in the obtained toluene extracts. Surprisingly low yields of the C{sub 60} extraction (most of them well below 5%) were determined for all the carbonaceous matrices and all the extraction techniques employed in the fullerene isolation. This finding has serious consequences for better understanding of the reported fullerene occurrence in the geological environment, because a greatly limited extraction yield can be responsible for some negative results of fullerene analyses in various geological samples. Both fullerene stability in solvents and fullerene interaction with the surfaces of geological carbonaceous matrices are discussed to explain the obtained results.

  10. Enhanced Removal of Lead by Chemically and Biologically Treated Carbonaceous Materials

    Directory of Open Access Journals (Sweden)

    Mohamed E. Mahmoud

    2012-01-01

    Full Text Available Hybrid sorbents and biosorbents were synthesized via chemical and biological treatment of active carbon by simple and direct redox reaction followed by surface loading of baker’s yeast. Surface functionality and morphology of chemically and biologically modified sorbents and biosorbents were studied by Fourier Transform Infrared analysis and scanning electron microscope imaging. Hybrid carbonaceous sorbents and biosorbents were characterized by excellent efficiency and superiority toward lead(II sorption compared to blank active carbon providing a maximum sorption capacity of lead(II ion as 500 μmol g−1. Sorption processes of lead(II by these hybrid materials were investigated under the influence of several controlling parameters such as pH, contact time, mass of sorbent and biosorbent, lead(II concentration, and foreign ions. Lead(II sorption mechanisms were found to obey the Langmuir and BET isotherm models. The potential applications of chemically and biologically modified-active carbonaceous materials for removal and extraction of lead from real water matrices were also studied via a double-stage microcolumn technique. The results of this study were found to denote to superior recovery values of lead (95.0–99.0±3.0–5.0% by various carbonaceous-modified-bakers yeast biosorbents.

  11. Halogenation of microcapsule walls

    Science.gov (United States)

    Davis, T. R.; Schaab, C. K.; Scott, J. C.

    1972-01-01

    Procedure for halogenation of confining walls of both gelatin and gelatin-phenolic resin capsules is similar to that used for microencapsulation. Ten percent halogen content renders capsule wall nonburning; any higher content enhances flame-retardant properties of selected internal phase material. Halogenation decreases permeability of wall material to encapsulated materials.

  12. EPR and magnetism of the nanostructured natural carbonaceous material shungite

    Science.gov (United States)

    Augustyniak-Jabłokow, Maria Aldona; Yablokov, Yurii V.; Andrzejewski, Bartłomiej; Kempiński, Wojciech; Łoś, Szymon; Tadyszak, Krzysztof; Yablokov, Mikhail Y.; Zhikharev, Valentin A.

    2010-04-01

    The X-band EPR and magnetic susceptibility in the temperature range 4.2-300 K study of the shungite-I, natural nanostructured material from the deposit of Shunga are reported. Obtained results allow us to assign the EPR signal to conduction electrons, estimate their number, N P, and evaluate the Pauli paramagnetism contribution to shungite susceptibility. A small occupation (~5%) of the localized nonbonding π states in the zigzag edges of the open-ended graphene-like layers and/or on σ ( sp 2+ x ) orbitals in the curved parts of the shungite globules has been also revealed. The observed temperature dependence of the EPR linewidth can be explained by the earlier considered interaction of conduction π electrons with local phonon modes associated with the vibration of peripheral carbon atoms of the open zigzag-type edges and with peripheral carbon atoms cross-linking different nanostructures. The relaxation time T 2 and diffusion time T D are found to have comparable values (2.84 × 10-8 and 1.73 × 10-8 s at 5.2 K, respectively), and similar dependence on temperature. The magnetic measurements have revealed the suppression of orbital diamagnetism due to small amount of large enough fragments of the graphene layers.

  13. Method and apparatus for conversion of carbonaceous materials to liquid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Kenneth W.; Namazian, Mehdi; Kelly, John T.

    2015-12-01

    Embodiments of the invention relates to conversion of hydrocarbon material including but not limited to coal and biomass to a synthetic liquid transportation fuel. The invention includes the integration of a non-catalytic first reaction scheme, which converts carbonaceous materials into a solid product that includes char and ash and a gaseous product; a non-catalytic second reaction scheme, which converts a portion of the gaseous product from the first reaction scheme to light olefins and liquid byproducts; a traditional gas-cleanup operations; and the third reaction scheme to combine the olefins from the second reaction scheme to produce a targeted fuel like liquid transportation fuels.

  14. Nitrogen-Doped Carbonaceous Materials for Removal of Phenol from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Magdalena Hofman

    2012-01-01

    Full Text Available Carbonaceous material (brown coal modified by pyrolysis, activation, and enrichment in nitrogen, with two different factor reagents, have been used as adsorbent of phenol from liquid phase. Changes in the phenol content in the test solutions were monitored after subsequent intervals of adsorption with selected adsorbents prepared from organic materials. Significant effect of nitrogen present in the adsorbent material on its adsorption capacity was noted. Sorption capacity of these selected materials was found to depend on the time of use, their surface area, and pore distribution. A conformation to the most well-known adsorption isotherm models, Langmuir, and Freundlich ones, confirms the formation of mono- and heterolayer solute (phenol coverage on the surface of the adsorbent applied herein. The materials proposed as adsorbents of the aqueous solution contaminants were proved effective, which means that the waste materials considered are promising activated carbon precursors for liquid phase adsorbents for the environmental protection.

  15. Sorption of indigo carmine by a Fe-zeolitic tuff and carbonaceous material from pyrolyzed sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Segura, E. [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Paseo Colon y Tollocan s/n., C.P. 50000 Toluca (Mexico); Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Col. Escandon, Delegacion Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico); Solache-Rios, M., E-mail: marcos.solache@inin.gob.mx [Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Col. Escandon, Delegacion Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico); Colin-Cruz, A. [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Paseo Colon y Tollocan s/n., C.P. 50000 Toluca (Mexico)

    2009-10-30

    Indigo carmine removal from aqueous solution has been evaluated using Fe-zeolitic tuff and carbonaceous material from pyrolyzed sewage sludge treated with HCl (CM). The adsorbents were characterized by scanning electron microscopy, BET surface area and X-ray diffraction. Sorption kinetics and isotherms were determined and the adsorption behaviors analyzed. Kinetic pseudo-second order and Langmuir-Freundlich models were successfully applied to the experimental results obtained with the Fe-zeolitic material, while kinetic first order and Langmuir-Freundlich models were applied to the results from the carbonaceous materials. This indicates mechanisms of chemisorption and physic sorption, respectively, on the heterogeneous materials. The results indicate that the carbonaceous material from the pyrolysis of sewage sludge (sorption capacity 92.83 mg/g) is a better adsorbent of indigo carmine than the zeolitic material (sorption capacity 32.83 mg/g).

  16. Layer-by-Layer Assembly of Halogen-Free Polymeric Materials on Nylon/Cotton Blend for Flame Retardant Applications

    Science.gov (United States)

    2015-07-01

    OF HALOGEN-FREE POLYMERIC MATERIALS ON NYLON/COTTON BLEND FOR FLAME RETARDANT APPLICATIONS by Mahesh Narkhede Sammaiah Thota Ravi Mosurkal...Information Security Program Regulation, Chapter IX. For Unclassified/Limited Distribution Documents: Destroy by any method that prevents disclosure ...BY-LAYER ASSEMBLY OF HALOGEN-FREE POLYMERIC MATERIALS ON NYLON/COTTON BLEND FOR FLAME RETARDANT APPLICATIONS 5a. CONTRACT NUMBER W911NF-11-D-0001

  17. CO2 Separation and Capture Properties of Porous Carbonaceous Materials from Leather Residues

    Directory of Open Access Journals (Sweden)

    Ana Arenillas

    2013-10-01

    Full Text Available Carbonaceous porous materials derived from leather skin residues have been found to have excellent CO2 adsorption properties, with interestingly high gas selectivities for CO2 (α > 200 at a gas composition of 15% CO2/85% N2, 273K, 1 bar and capacities (>2 mmol·g−1 at 273 K. Both CO2 isotherms and the high heat of adsorption pointed to the presence of strong binding sites for CO2 which may be correlated with both: N content in the leather residues and ultrasmall pore sizes.

  18. A new star(ch is born: Starbons as biomass-derived mesoporous carbonaceous materials

    Directory of Open Access Journals (Sweden)

    P.S. Shuttleworth

    2012-06-01

    Full Text Available Porous carbon materials are present in a wide rangeof technologically important applications, includingseparation science, heterogeneous catalyst supports,water purification filters, stationary phase materials,as well as the developing future areas of energygeneration and storage applications. Hard templateroutes to ordered mesoporous carbons are wellestablished, but whilst offering different mesoscopictextural phases, the surface of the material is difficultto chemically post-modify and processing is energy,resource and step intensive. The production of carbonmaterials from biomass (i.e. sugars orpolysaccharides is a relatively new but rapidlyexpanding research area. In this manuscript, wedescribe the preparation, properties and applicationsof a novel family of polysaccharide-derivedmesoporous carbonaceous materials derived fromrenewable resources (namely polysaccharidesdenoted as Starbons®.

  19. Blackening of fault gouge by comminution and pyrolysis of carbonaceous materials during earthquake slip

    Science.gov (United States)

    Kaneki, S.; Hirono, T.

    2015-12-01

    Fault gouges often exhibit various colors (white-pink-green-brown-gray-black), and particularly those developed in sedimentary rocks show gray to black. However, the physicochemical process for the color transition accompanied with seismic slip has not yet been fully understood. On the other hand, determination of the peak temperature during slip is crucial to identify the faulting mechanism during an earthquake, so that various temperature proxies have been proposed. For example, 1) magnetite formation at high temperature of ≥400 °C, 2) anomalies in the concentrations of fluid-mobile trace elements (Sr, Cs, Rb, and Li) and in the Sr isotope ratios, indicating presence of high-temperature fluid of ≥350 °C, 3) dehydroxylation of clay minerals, 4) thermal decomposition of carbonate minerals, and 5) thermal maturation of carbonaceous material examined by vitrinite reflectance measurement and by infrared and Raman spectroscopies. However, these proxies required high-level analyses in laboratory, so easy method to detect the record of high temperature preliminarily on field would be expected. In this study, we reproduced the blackening of synthetic fault sample by using high-velocity friction apparatus, thermogravimetric, and milling machine, and evaluated the color transition and organic chemical property of the samples by using UV-visible/NIR spectrophotometer and pyrolysis-gas chromatography-mass spectrometry. We discuss the process of the blackening taking comminution and pyrolysis of carbonaceous materials into consideration.

  20. Ultrastructural Heterogeneity of Carbonaceous Material in Ancient Cherts: Investigating Biosignature Origin and Preservation.

    Science.gov (United States)

    Qu, Yuangao; Engdahl, Anders; Zhu, Shixing; Vajda, Vivi; McLoughlin, Nicola

    2015-10-01

    Opaline silica deposits on Mars may be good target sites where organic biosignatures could be preserved. Potential analogues on Earth are provided by ancient cherts containing carbonaceous material (CM) permineralized by silica. In this study, we investigated the ultrastructure and chemical characteristics of CM in the Rhynie chert (c. 410 Ma, UK), Bitter Springs Formation (c. 820 Ma, Australia), and Wumishan Formation (c. 1485 Ma, China). Raman spectroscopy indicates that the CM has experienced advanced diagenesis or low-grade metamorphism at peak metamorphic temperatures of 150-350°C. Raman mapping and micro-Fourier transform infrared (micro-FTIR) spectroscopy were used to document subcellular-scale variation in the CM of fossilized plants, fungi, prokaryotes, and carbonaceous stromatolites. In the Rhynie chert, ultrastructural variation in the CM was found within individual fossils, while in coccoidal and filamentous microfossils of the Bitter Springs and formless CM of the Wumishan stromatolites ultrastructural variation was found between, not within, different microfossils. This heterogeneity cannot be explained by secondary geological processes but supports diverse carbonaceous precursors that experienced differential graphitization. Micro-FTIR analysis found that CM with lower structural order contains more straight carbon chains (has a lower R3/2 branching index) and that the structural order of eukaryotic CM is more heterogeneous than prokaryotic CM. This study demonstrates how Raman spectroscopy combined with micro-FTIR can be used to investigate the origin and preservation of silica-permineralized organics. This approach has good capability for furthering our understanding of CM preserved in Precambrian cherts, and potential biosignatures in siliceous deposits on Mars.

  1. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites

    Science.gov (United States)

    Van Kooten, Elishevah M. M. E.; Wielandt, Daniel; Schiller, Martin; Nagashima, Kazuhide; Thomen, Aurélien; Olsen, Mia B.; Nordlund, Åke; Krot, Alexander N.; Bizzarro, Martin

    2016-01-01

    The short-lived 26Al radionuclide is thought to have been admixed into the initially 26Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent 54Cr and 26Mg*, the decay product of 26Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling 26Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived 26Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a 26Mg*-depleted and 54Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived 26Al. The 26Mg* and 54Cr compositions of bulk metal-rich chondrites require significant amounts (25–50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants. PMID:26858438

  2. Comparison of Ablation Predictions for Carbonaceous Materials Using CEA and JANAF-Based Species Thermodynamics

    Science.gov (United States)

    Milos, Frank S.

    2011-01-01

    In most previous work at NASA Ames Research Center, ablation predictions for carbonaceous materials were obtained using a species thermodynamics database developed by Aerotherm Corporation. This database is derived mostly from the JANAF thermochemical tables. However, the CEA thermodynamics database, also used by NASA, is considered more up to date. In this work, the FIAT code was modified to use CEA-based curve fits for species thermodynamics, then analyses using both the JANAF and CEA thermodynamics were performed for carbon and carbon phenolic materials over a range of test conditions. The ablation predictions are comparable at lower heat fluxes where the dominant mechanism is carbon oxidation. However, the predictions begin to diverge in the sublimation regime, with the CEA model predicting lower recession. The disagreement is more significant for carbon phenolic than for carbon, and this difference is attributed to hydrocarbon species that may contribute to the ablation rate.

  3. Sorption of hydrophobic organic compounds to a diverse suite of carbonaceous materials with emphasis on biochar.

    Science.gov (United States)

    Kupryianchyk, Darya; Hale, Sarah; Zimmerman, Andrew R; Harvey, Omar; Rutherford, David; Abiven, Samuel; Knicker, Heike; Schmidt, Hans-Peter; Rumpel, Cornelia; Cornelissen, Gerard

    2016-02-01

    Carbonaceous materials like biochars are increasingly recognized as effective sorbent materials for sequestering organic pollutants. Here, we study sorption behavior of two common hydrophobic organic contaminants 2,2',5,5'-tetrachlorobiphenyl (CB52) and phenanthrene (PHE), on biochars and other carbonaceous materials (CM) produced at a wide range of conditions and temperatures from various feedstocks. The primary aim was to establish structure-reactivity relationships responsible for the observed variation in CM and biochar sorption characteristics. CM were characterized for their elemental composition, surface area, pore size distribution, aromaticity and thermal stability. Freundlich sorption coefficients for CB52 and PHE (i.e. LogK(F,CB52) and K(F,PHE), respectively) to CM showed a variation of two to three orders of magnitude, with LogK(F,CB52) ranging from 5.12 ± 0.38 to 8.01 ± 0.18 and LogK(F,PHE) from 5.18 ± 0.09 to 7.42 ± 1.09. The highest LogK(F) values were observed for the activated CM, however, non-activated biochars produced at high temperatures (>700 °C) sorbed almost as strongly (within 0.2-0.5 Log units) as the activated ones. Sorption coefficients significantly increased with pyrolysis temperature, CM surface area and pore volume, aromaticity, and thermal stability, and decreased with H/C, O/C, (O + N)/C content. The results of our study contribute to the understanding of processes underlying HOC sorption to CM and explore the potential of CM as engineered sorbents for environmental applications.

  4. Recalcitrant Carbonaceous Material: A Source of Electron Donors for Anaerobic Microbial Metabolisms in the Subsurface?

    Science.gov (United States)

    Nixon, S. L.; Montgomery, W.; Sephton, M. A.; Cockell, C. S.

    2014-12-01

    More than 90% of organic material on Earth resides in sedimentary rocks in the form of kerogens; fossilized organic matter formed through selective preservation of high molecular weight biopolymers under anoxic conditions. Despite its prevalence in the subsurface, the extent to which this material supports microbial metabolisms is unknown. Whilst aerobic microorganisms are known to derive energy from kerogens within shales, utilization in anaerobic microbial metabolisms that proliferate in the terrestrial subsurface, such as microbial iron reduction, has yet to be demonstrated. Data are presented from microbial growth experiments in which kerogens and shales were supplied as the sole electron donor source for microbial iron reduction by an enrichment culture. Four well-characterized kerogens samples (representative of Types I-IV, classified by starting material), and two shale samples, were assessed. Organic analysis was carried out to investigate major compound classes present in each starting material. Parallel experiments were conducted to test inhibition of microbial iron reduction in the presence of each material when the culture was supplied with a full redox couple. The results demonstrate that iron-reducing microorganisms in this culture were unable to use kerogens and shales as a source of electron donors for energy acquisition, despite the presence of compound classes known to support this metabolism. Furthermore, the presence of these materials was found to inhibit microbial iron reduction to varying degrees, with some samples leading to complete inhibition. These results suggest that recalcitrant carbonaceous material in the terrestrial subsurface is not available for microbial iron reduction and similar metabolisms, such as sulphate-reduction. Further research is needed to investigate the inhibition exerted by these materials, and to assess whether these findings apply to other microbial consortia. These results may have significant implications for

  5. Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, T.; Marquez, F.; Rodriguez-Morasol, J.; Rodriguez, J.J. [University of Malaga, Malaga (Spain). Dept. of Chemical Engineering

    2001-09-21

    A simple equation based on proximate analysis (volatile matter and fixed carbon contents) is presented which allows calculation of the higher heating value of lignocellulosics as well as the charcoals resulting form their carbonization. The equation has been tested with different lignocellulosic wastes and chars obtained from carbonization at different temperatures. Deviations from the experimental heating values fall in most cases below 2%. A comparison is presented with some other equations from the literature based on proximate, ultimate and chemical analysis data. As a general conclusion the equation proposed in this paper leads to comparable and in many cases more accurate predictions of heating values and has the advantage of being applicable to a wide range of carbonaceous materials, requiring only a simple rapid and cheap proximate analysis of the samples. 14 refs., 5 tabs.

  6. Removal of fluoride ions from water by adsorption onto carbonaceous materials produced from coffee grounds.

    Science.gov (United States)

    Ogata, Fumihiko; Tominaga, Hisato; Yabutani, Hitoshi; Kawasaki, Naohito

    2011-01-01

    Carbonaceous material for the removal of fluoride ions from water was prepared from coffee grounds (CGs) by calcination and subsequent HCl treatment. The characteristics of the CGs, including the surface area, mean pore diameter, pore volume, and surface functional groups were determined, and the morphological characteristics were evaluated using scanning electron microscopy. The adsorption isotherms, saturated amount of fluoride ions adsorbed, and the effect of contact time and temperature on the adsorption of fluoride ions were investigated for a sample of tap water. The specific surface area of CG calcined at 600° (CG600) was larger than that of CGs calcined at 400, 800, and 1000°. Phenolic, lactonic, and carboxyl groups were detected on the CG600 surface. The adsorption capacity of the carbonized CGs for fluoride was ranked in the order CG400 water.

  7. Method of treating oils derived by thermal treatment of solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Culbertson, W.J.; Nevens, T.D.; Schnackenberg, W.D.

    1966-08-09

    A method for treating a heavy fraction separated under substantially non-cracking conditions from a crude oil derived by thermal treatment of solid carbonaceous material in order to produce a heavy fraction and a light fraction consists of heat treating the separated heavy fraction at a temperature above about 600$F. This temperature is below the point of incipient thermal decomposition of the heavy fraction. The heat treatment takes place for a period of time which is inversely proportional to the temperature to produce a product which, when combined with at least part of a light fraction, results in an oil having a pour point lower than that of the original crude oil. The heat treatment produces substantially no non-condensible hydrocarbons and substantially no elemental carbon. (21 claims)

  8. Heterogeneous Distribution of Carbonaceous Material in Murchison Matrix: In Situ Observations Using Energy Filtered Transmission Electron Microscopy

    Science.gov (United States)

    Brearley, Adrian J.

    2002-01-01

    Energy filtered TEM (Transmission Electron Microscopy) has been used to study the location of carbonaceous material in situ in Murchison matrix. Carbon occurs frequently as narrow rims around sulfide grains, but is rare in regions of matrix that are dominated by phyllosilicates. Additional information is contained in the original extended abstract.

  9. Modelling decreased food chain accumulation of HOCs due to strong sorption to carbonaceous materials and metabolic transformation

    NARCIS (Netherlands)

    Moermond, C.T.A.; Traas, T.P.; Roessink, I.; Veltman, K.; Hendriks, A.J.; Koelmans, A.A.

    2007-01-01

    The predictive power of bioaccumulation models may be limited when they do not account for strong sorption of organic contaminants to carbonaceous materials (CM) such as black carbon, and when they do not include metabolic transformation. We tested a food web accumulation model, including sorption t

  10. Study of Carbonaceous Material in cherts from Barberton Greenstone Belt and the Astrobiological Implications.

    Science.gov (United States)

    Rull, F.; Venegas, G.; Montero, O.; Medina, J.

    2012-04-01

    Carbonaceous matter is present in chert deposits of Barberton Greenstone Belt (BGB), South Africa. This is a famous place in the world for its Archean geology, wich represents around 3.5 billion years of earth's history. Therefore this area provides us the opportunity to study and understand an important part history of our planet, and also allow to compare with the geological history of other planets in our solar system [1]. Raman micro-spectroscopy has proved to be a very important and non-destructive powerful tool for distinguish micro-sized particles of C-polymorphs, as it is very sensitive to the nature of carbon bonding [2]. The connection between the Raman characterization of these carbonaceous phases with ancient biogenic activity it's of special interest. Cherts of BGB have been interpreted as precipitates or diagenetic replacements of preexisting sedimentary and pyroclastic deposits in a silica saturated Archean ocean [3]. Several layered Samples of cherts from BGB utility for the present study were collected during the expedition carried out in August 2010 sponsored by CNES and ESA. A detailed Raman spectral analysis of carbon C-C vibrations has been performed in the first (1200-1800 cm-1) and second (2500-3200 cm-1) order regions [4]. The results show important changes in the G-D bands in the layered structure of chert. Additionally a UPLC-ESI-QTOF-MS was carried out trying to introduce new insight in the Raman interpretation of the bands and in the possible assignments to particular molecular groups which could be related with biotic or abiotic origin of the carbonaceous material. Among the tentative compounds obtained from UPLC-ESI-QTOF-MS study it is worth to mention hydroxy-lycopene and the hydroxyl derivative of β-carotene (i.e. β-cryptoxanthin), which are carotenoids produced by cyanobacteria. These results are consistent with the presence of 22-Hopanol and Tetrahymanol, which are characteristic hopanoids of photosynthetic cyanobacteria and have

  11. Compositional insights and valorization pathways for carbonaceous material deposited during bio-oil thermal treatment.

    Science.gov (United States)

    Ochoa, Aitor; Aramburu, Borja; Ibáñez, María; Valle, Beatriz; Bilbao, Javier; Gayubo, Ana G; Castaño, Pedro

    2014-09-01

    This work analyses the composition, morphology, and thermal behavior of the carbonaceous materials deposited during the thermal treatment of bio-oil (thermal pyrolytic lignin-TPL). The bio-oil was obtained by flash pyrolysis of lignocellulosic biomass (pine sawdust), and the TPLs were obtained in the 400-700 °C range. The TPLs were characterized by performing elemental analysis; (13)C NMR, Raman, FTIR, and X-ray photoelectron spectroscopy; SEM; and temperature-programmed oxidation analyzed by differential thermogravimetry and differential scanning calorimetry. The results are compared to a commercial lignin (CL). The TPLs have lower oxygen and hydrogen contents and a greater aromaticity and structural order than the CL material. Based on these features, different valorization routes are proposed: the TPL obtained at 500 °C is suitable for use as a fuel, and the TPL obtained at 700 °C has a suitable morphology and composition for use as an adsorbent or catalyst support.

  12. Blackening of fault gouge by comminution and pyrolysis of carbonaceous materials during earthquake slip

    Science.gov (United States)

    Kaneki, Shunya; Hirono, Tetsuro

    2016-05-01

    Black fault gouges sometimes develop, mainly in sedimentary rocks, but the cause of the color transformation is not well understood. Here we demonstrated the blackening of synthetic mixtures of montmorillonite and bituminous coal and of montmorillonite and magnetite in milling, heating, and friction experiments. Mixed samples with a higher volume fraction of coal or magnetite before the experiments showed lower L* values (lightness index; lower values indicate darker blacks), because coal and magnetite are intrinsically black. The milling and heating experiments showed that the L* values of mixed samples of montmorillonite and coal drastically decreased with longer milling times and higher temperatures. The L* values of mixed samples of montmorillonite and magnetite also decreased with longer milling times, but no notable change was observed in the samples after the heating experiments. Because comminution by milling induces granulation of the constituent materials, blackening of the experimental samples was primarily caused by dispersal through the sample of fine black particles such as coal and magnetite, but it could be strengthened by adsorption onto host particles of organic gases produced by pyrolysis of carbonaceous material at high temperature. The friction experiment with mixed samples of montmorillonite and coal produced the remarkably low L* values. Friction induces both comminution and heating of samples, so the blackening could be greater than after either milling or heating alone. Therefore, relatively black fault gouges, compared with the surrounding host rocks, might have experienced comminution and heating, probably related to earthquake slip. Thus, black coloration could be one of the important information on fieldwork.

  13. Potential explosion hazard of carbonaceous nanoparticles: Explosion parameters of selected materials.

    Science.gov (United States)

    Turkevich, Leonid A; Dastidar, Ashok G; Hachmeister, Zachary; Lim, Michael

    2015-09-15

    Following a previous explosion screening study, we have conducted concentration and ignition energy scans on several carbonaceous nanopowders: fullerene, SWCNT, carbon black, MWCNT, graphene, CNF, and graphite. We have measured minimum explosive concentration (MEC), minimum ignition energy (MIE), and minimum ignition temperature (MITcloud) for these materials. The nanocarbons exhibit MEC ~10(1)-10(2) g/m(3), comparable to the MEC for coals and for fine particle carbon blacks and graphites. The nanocarbons are confirmed mainly to be in the St-1 explosion class, with fullerene, at K(St) ~200 bar-m/s, borderline St-1/St-2. We estimate MIE ~ 10(2)-10(3) J, an order of magnitude higher than the MIE for coals but an order of magnitude lower than the MIE for fine particle graphites. While the explosion severity of the nanocarbons is comparable to that of the coals, their explosion susceptibility (ease of ignition) is significantly less (i.e., the nanocarbons have higher MIEs than do the coals); by contrast, the nanocarbons exhibit similar explosion severity to the graphites but enhanced explosion susceptibility (i.e., the nanocarbons have lower MIEs than do the graphites). MIT(cloud) > 550 °C, comparable to that of the coals and carbon blacks.

  14. Polycyclic aromatic hydrocarbons in surface sediments of the East China Sea and their relationship with carbonaceous materials.

    Science.gov (United States)

    Hung, Chin-Chang; Gong, Gwo-Ching; Ko, Fung-Chi; Lee, Hung-Jen; Chen, Hung-Yu; Wu, Jian-Ming; Hsu, Min-Lan; Peng, Sen-Chueh; Nan, Fan-Hua; Santschi, Peter H

    2011-01-01

    This study measured concentrations of polycyclic aromatic hydrocarbons (PAHs) in surface sediments in the East China Sea (ECS) to investigate possible sources and fate of PAHs. Total concentration of PAHs in the sediments of the ECS ranged from 22 to 244 ng g(-1), with the highest levels in the coastal area and outer shelf. The observed PAH results showed elevated levels in both inner and outer shelf areas, a finding that is different from predictions by an ocean circulation model, suggesting that terrestrial sources are important for PAH contaminations in the ECS, while sediment resuspension, tidal changes and lateral transport may be important in affecting the distribution of PAHs in the outer shelf. The distribution of PAHs in the surface sediments of the ECS is similar to the distribution of carbonaceous materials (e.g., particulate organic carbon and black carbon), suggesting that carbonaceous materials may strongly affect the distribution of PAHs.

  15. Fundamental and exploratory studies of catalytic steam gasification of carbonaceous materials. Final report, fiscal years 1985--1994

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.; Somorjai, G.A. [Lawrence Berkeley Lab., CA (United States). Center for Advanced Materials

    1994-03-01

    The major purpose of this project was to find catalysts which will permit steam gasification of carbonaceous material at reasonable rates and at lower temperatures than currently practiced. Rapid catalyst deactivation must be avoided. An understanding of the catalytic mechanism is necessary to provide leads towards this aim. This report describes the gasification of graphite studies and the gasification of coals, chars, and petroleum cokes.

  16. Sorption interactions of biochars and pyrogenic carbonaceous materials with anionic contaminants

    Science.gov (United States)

    Fristak, Vladimir; Moreno-Jimenez, Eduardo; Micháleková-Richveisová, Barbora; Schmidt, Hans-Peter; Bucheli, Thomas; Soja, Gerhard

    2016-04-01

    Biochar as a highly porous and carbon-rich material with a large surface area is a new player in the system of environmental remediation techniques. A wide range of valuable sorption properties of this carbonaceous pyrolysis product provides new options to solve contaminant problems in soil and water and thus may reduce the number of contaminated sites. The sorption capacity of agricultural wastes and wood processing-derived biochars has been found to be excellent due to high surface area, pore volume, and surface functional groups. However, sorption interactions and separation of xenobiotics from waste water, soil solutions or polluted surface water is very often affected by the concentration of contaminant, contact time, effects of competitive substances and mainly by the chemical form of the respective contaminant. The negative surface charge of biochar-based sorption materials supports significant sorption in particular for cationic forms of pollutants. On the other hand many environmentally critical substances occur in anionic forms (e.g. As, P, Mo, Tc). Therefore their retention and immobilization by biochar is frequently considered as problematic or limited. Besides, details about the mechanism of biochar interactions with anionic compounds and the options for surface modification are largely unexplored. This contribution presents a comparative study about production and characterization of unmodified, chemically pre-treated and post-treated biochars with respect to sorption processes of model anionic compounds (PO43-, AsO43-). The obtained results confirmed the crucial role of altering biochar properties (pH) and of surface modification for improving biochar sorption efficiency for anionic contaminants.

  17. Production of carbonaceous material from avocado peel for its application as alternative adsorbent for dyes removal

    Institute of Scientific and Technical Information of China (English)

    Carolyn Palma; Lucia Lloret; Antonio Puen; Maira Tobar; Elsa Contreras

    2016-01-01

    Adsorption processes have received special attention for contaminants removal thanks to their capability to gen-erate effluents with high quality as well as their simple design. In the current work, the agro-waste residue avo-cado peel is proposed to be used as alternative to conventional activated carbons whose use is sometimes restricted to high costs, upgraded by their exhausting after long term operations. The carbonization procedure was optimized and analyzed through factorial design and response surface methodology by evaluating temper-ature (400–900 °C) and time (30–90 min) effects:optimal conditions were found at 900 °C and 65 min, gener-ating an adsorbent with 87.52 m2·g−1 of BET surface area, a mesopore volume of 74%and a zero point charge at 8.6. The feasibility of the carbonaceous material was proved for the removal of a variety of dyes by investigating substrate (10–50 mg·L−1) and solid (0.5–20 g·L−1) concentration effects and statistical significance:complete removal of Naphthol Blue Black and Reactive Black 5 was reached under optimal conditions (10 mg·L−1 and 20 g·L−1 of dye and solid, respectively), while Basic Blue 41 was eliminated by using 13.4 g·L−1 of the adsorbent. Overal , dyes removal by adsorption on carbonized avocado peel is presented as a promising technology due to the low cost and easy availability of the precursor, as well as the straightforward generation, the satisfactory char-acteristics and the proved adsorption capacity of the adsorbent.

  18. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    the determination of the sorption/desorption enthalpies which gives insight into the sorbent-sorbate interactions. In order to attain sorption/desorption equilibrium, all the samples were pulverized to shorten the laboratory experimental time. The sorbate losses were carefully monitored and considered in the isotherm calculation. Additionally, release of native phenanthrene was also investigated at different temperatures and compared with the freshly spiked samples to investigate the aging effect. The batch results show that for all individual temperature steps sorption and desorption isotherms coincide. Furthermore, the solubility-normalized sorption/desorption isotherms at different temperatures collapse to unique overall isotherms. Leaching of native phenanthrene occurred at much lower concentrations but was well predicted by extrapolation of the spiked equilibrium sorption isotherms. The absolute values of sorption/desorption isosteric heats ({delta}H) determined are in a range of 19 - 35 kJ mol{sup -1}, which is higher than the heat of aqueous solution of subcooled phenanthrene but much less than the heat of condensation of solid phenanthrene from water. No significant difference of the enthalpies between sorption and desorption was observed. Furthermore, the desorption enthalpy of the native phenanthrene was not significantly higher than expected from the sorption experiments with spiked samples. Sorption and desorption kinetics were monitored in on-line column experiments with stepwise increases of temperature. An intraparticle diffusion model was used to simulate the desorption profile in order to get the apparent diffusion coefficients of phenanthrene from the carbonaceous materials. Desorption activation energies were calculated by Arrhenius relationship based on the high-resolution measurement of concentration increases at each temperature step. The activation energies determined range from 58 - 71 kJ mol{sup -1}. No significant trend of increasing

  19. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    the determination of the sorption/desorption enthalpies which gives insight into the sorbent-sorbate interactions. In order to attain sorption/desorption equilibrium, all the samples were pulverized to shorten the laboratory experimental time. The sorbate losses were carefully monitored and considered in the isotherm calculation. Additionally, release of native phenanthrene was also investigated at different temperatures and compared with the freshly spiked samples to investigate the aging effect. The batch results show that for all individual temperature steps sorption and desorption isotherms coincide. Furthermore, the solubility-normalized sorption/desorption isotherms at different temperatures collapse to unique overall isotherms. Leaching of native phenanthrene occurred at much lower concentrations but was well predicted by extrapolation of the spiked equilibrium sorption isotherms. The absolute values of sorption/desorption isosteric heats ({delta}H) determined are in a range of 19 - 35 kJ mol{sup -1}, which is higher than the heat of aqueous solution of subcooled phenanthrene but much less than the heat of condensation of solid phenanthrene from water. No significant difference of the enthalpies between sorption and desorption was observed. Furthermore, the desorption enthalpy of the native phenanthrene was not significantly higher than expected from the sorption experiments with spiked samples. Sorption and desorption kinetics were monitored in on-line column experiments with stepwise increases of temperature. An intraparticle diffusion model was used to simulate the desorption profile in order to get the apparent diffusion coefficients of phenanthrene from the carbonaceous materials. Desorption activation energies were calculated by Arrhenius relationship based on the high-resolution measurement of concentration increases at each temperature step. The activation energies determined range from 58 - 71 kJ mol{sup -1}. No significant trend of increasing

  20. In Situ Observation of Carbonaceous Material in the Matrices of CV and CM Carbonaceous Chondrites: Preliminary Results from Energy Filtered Transmission Electron Microscopy

    Science.gov (United States)

    Brearley, A. J.; Abreu, N. M.

    2001-01-01

    Energy filtered transmission electron microscopy shows that organic matter can be detected in situ in the matrices of carbonaceous chondrites at a spatial resolution of at least 1 nm. In CM chondrites, carbon is often associated with sulfide particles. Additional information is contained in the original extended abstract.

  1. Characterization and performance of carbonaceous materials obtained from exhausted sludges for the anaerobic biodecolorization of the azo dye Acid Orange II

    Energy Technology Data Exchange (ETDEWEB)

    Athalathil, S.; Stüber, F.; Bengoa, C.; Font, J. [Departament d’Enginyeria Quimica, ETSEQ, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalunya (Spain); Fortuny, A. [Departament d’Enginyeria Quimica, EPSEVG, Universitat Politecnica de Catalunya, Av. Victor Balaguer s/n, 08800 Vilanova i la Geltru, Catalunya (Spain); Fabregat, A., E-mail: azael.fabregat@urv.cat [Departament d’Enginyeria Quimica, ETSEQ, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalunya (Spain)

    2014-02-01

    Graphical abstract: - Highlights: • Carbonaceous materials were prepared from exhausted sludge materials. • High surface area and good physicochemical properties were achieved. • Utilization of waste sludge materials and mixed anaerobic cultures were used in a continuous anaerobic UPBR system (upflow packed bed biological reactor). • Effective treatment of dye contaminated wastewater in a cheapest and environmental friendly method was demonstrated. - Abstract: This work presents the preliminary study of new carbonaceous materials (CMs) obtained from exhausted sludge, their use in the heterogeneous anaerobic process of biodecolorization of azo dyes and the comparison of their performance with one commercial active carbon. The preparation of carbonaceous materials was conducted through chemical activation and carbonization. Chemical activation was carried out through impregnation of sludge-exhausted materials with ZnCl{sub 2} and the activation by means of carbonization at different temperatures (400, 600 and 800 °C). Their physicochemical and surface characteristics were also investigated. Sludge based carbonaceous (SBC) materials SBC400, SBC600 and SBC800 present values of 13.0, 111.3 and 202.0 m{sup 2}/g of surface area. Biodecolorization levels of 76% were achieved for SBC600 and 86% for SBC800 at space time (τ) of 1.0 min, similar to that obtained with commercial activated carbons in the continuous anaerobic up-flow packed bed reactor (UPBR). The experimental data fit well to the first order kinetic model and equilibrium data are well represented by the Langmuir isotherm model. Carbonaceous materials show high level of biodecolorization even at very short space times. Results indicate that carbonaceous materials prepared from sludge-exhausted materials have outstanding textural properties and significant degradation capacity for treating textile effluents.

  2. Testing for fullerenes in geologic materials: Oklo carbonaceous substances, Karelian shungites, Sudbury Black Tuff

    Science.gov (United States)

    Mossman, David; Eigendorf, Guenter; Tokaryk, Dennis; Gauthier-Lafaye, François; Guckert, Kristal D.; Melezhik, Victor; Farrow, Catharine E. G.

    2003-03-01

    Fullerenes have been reported from diverse geologic environments since their discovery in shungite from Karelian Russia. Our investigation is prompted by the presence of onionskin-like structures in some carbonaceous substances associated with the fossil nuclear fission reactors of Oklo, Gabon. The same series of extractions and the same instrumental techniques, laser desorption ionization and high-resolution mass spectroscopy (electron-impact mass spectroscopy), were employed to test for fullerenes in samples from three different localities: two sites containing putative fullerenes (Sudbury Basin and Russian Karelia) and one new location (Oklo, Gabon). We confirm the presence of fullerenes (C60 and C70) in the Black Tuff of the Onaping Formation impact breccia in the Sudbury Basin, but we find no evidence of fullerenes in shungite samples from various locations in Russian Karelia. Analysis of carbonaceous substances associated with the natural nuclear fission reactors of Oklo yields no definitive signals for fullerenes. If fullerenes were produced during sustained nuclear fission at Oklo, then they are present below the detection limit (˜100 fmol), or they have destabilized since formation. Contrary to some expectations, geologic occurrences of fullerenes are not commonplace.

  3. Biological potential of extraterrestrial materials. 2. Microbial and plant responses to nutrients in the Murchison carbonaceous meteorite

    Science.gov (United States)

    Mautner, M. N.; Conner, A. J.; Killham, K.; Deamer, D. W.

    1997-01-01

    Meteoritic materials are investigated as potential early planetary nutrients. Aqueous extracts of the Murchison C2 carbonaceous meteorite are utilized as a sole carbon source by microorganisms, as demonstrated by the genetically modified Pseudomonas fluorescence equipped with the lux gene. Nutrient effects are observed also with the soil microorganisms Nocardia asteroides and Arthrobacter pascens that reach populations up to 5 x 10(7) CFU/ml in meteorite extracts, similar to populations in terrestrial soil extracts. Plant tissue cultures of Asparagus officinalis and Solanum tuberosum (potato) exhibit enhanced pigmentation and some enhanced growth when meteorite extracts are added to partial nutrient media, but inhibited growth when added to full nutrient solution. The meteorite extracts lead to large increases in S, Ca, Mg, and Fe plant tissue contents as shown by X-ray fluorescence, while P, K, and Cl contents show mixed effects. In both microbiological and plant tissue experiments, the nutrient and inhibitory effects appear to be best balanced for growth at about 1:20 (extracted solid : H2O) ratios. The results suggest that solutions in cavities in meteorites can provide efficient concentrated biogenic and early nutrient environments, including high phosphate levels, which may be the limiting nutrient. The results also suggest that carbonaceous asteroid resources can sustain soil microbial activity and provide essential macronutrients for future space-based ecosystems.

  4. Microbial Contamination of Allende and Murchison Carbonaceous Chondrites; Developing a Protocol for Life Detection in Extraterrestrial Materials Using Biotechnology

    Science.gov (United States)

    Steele, A.; Whitby, C.; Griffin, C.; Toporski, J. K. W.; Westall, F.; Saunders, J. R.; McKay, D. S.

    2001-01-01

    The arguments used to refute the McKay et al., (1996) hypothesis of possible Martian life in ALH84001 failed to use contamination of the meteorite as a source. This has worrying implications for our ability to detect terrestrial microbiota in meteorites and therefore any potential extraterrestrial biosignatures in both meteorites and possible returned samples. We report on imaging and microbial culturing of both Allende and Murchison carbonaceous chondrites and on the use of molecular biology techniques on a sample of Allende. Contaminating fungi and bacteria were observed (in the case of Murchison) and cultured from both meteorites. DNA was successfully extracted and subsequent PCR showed the presence of both bacterial and fungal DNA although no Archaea were detected. These results show that it is possible to use molecular biological techniques on very small quantities (300 mg) of extraterrestrial material.

  5. Impact of carbonaceous materials in soil on the transport of soil-bound PAHs during rainfall-runoff events.

    Science.gov (United States)

    Luo, Xiaolin; Zheng, Yi; Wu, Bin; Lin, Zhongrong; Han, Feng; Zhang, Wei; Wang, Xuejun

    2013-11-01

    Polycyclic Aromatic Hydrocarbons (PAHs) transported from contaminated soils by surface runoff pose significant risk for aquatic ecosystems. Based on a rainfall-runoff simulation experiment, this study investigated the impact of carbonaceous materials (CMs) in soil, identified by organic petrology analysis, on the transport of soil-bound PAHs under rainfall conditions. The hypothesis that composition of soil organic matter significantly impacts the enrichment and transport of PAHs was proved. CMs in soil, varying significantly in content, mobility and adsorption capacity, act differently on the transport of PAHs. Anthropogenic CMs like black carbon (BC) largely control the transport, as PAHs may be preferentially attached to them. Eventually, this study led to a rethink of the traditional enrichment theory. An important implication is that CMs in soil have to be explicitly considered to appropriately model the nonpoint source pollution of PAHs (possibly other hydrophobic chemicals as well) and assess its environmental risk.

  6. Removal of blue indigo and cadmium present in aqueous solutions using a modified zeolitic material and an activated carbonaceous material; Remocion de azul indigo y cadmio presentes en soluciones acuosas empleando un material zeolitico modificado y un material carbonoso activado

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez S, E. E.

    2011-07-01

    In the last years the use of water has been increased substantially, it has been also altered its quality as a result of human activities such as mining, industrial activities and others. Water pollution caused by dyes and heavy metals has adverse effects on the environment, since both pollutants are very persisten even after conventional treatments. Denim blue and cadmium are not biodegradable. There is a growing interest in finding new, efficient and low cost alternative materials to remove such pollutants from the aqueous medium. The purpose of this work was to evaluate a modified zeolitic tuff and an activated carbonaceous material obtained from the pyrolysis of sewage sludge for the removal of denim blue and cadmium. The zeolitic material was modified with Na{sup +} and Fe{sup 3+} solutions to improve its sorption properties for the removal of cadmium and denim blue, respectively. Carbonaceous material was treated with 10% HCl solution to remove ashes. Both materials were characterized by scanning electron microscopy and elemental analysis (EDS), specific surface areas (Bet), thermogravimetric analysis, infrared spectroscopy and X-ray diffraction. Simultaneously, the denim blue dye was characterized by infrared spectroscopy and its pKa value was determined, these data allowed the determination of its chemical properties and its acid-base behavior in solution. In the content of this work the term indigo blue was changed by denim blue, as it corresponds to the commercial name of the dye. To assess the sorption capacity of sorbents, the sorption kinetics and sorption isotherms in batch system were determined; the results were fitted to mathematical models such as the pseudo-first order, pseudo second order and second order to describe the sorption kinetics and the Langmuir, Freundlich and Langmuir-Freundlich isotherms to describe sorption processes. The results show that the most efficient material to remove denim blue from aqueous solutions is the carbonaceous

  7. Carbonaceous material production from vegetable residue and their use in the removal of textile dyes present in wastewater

    Science.gov (United States)

    Peláez-Cid, A. A.; Tlalpa-Galán, M. A.; Herrera-González, A. M.

    2013-06-01

    This paper presents the adsorption results of acid, basic, direct, vat, and reactive-type dyes on carbonaceous adsorbent materials prepared starting off vegetable residue such as Opuntia ficus indica and Casimiroa edulis fruit wastes. The adsorbents prepared from Opuntia ficus indica waste were designated: TunaAsh, CarTunaT, and CarTunaQ. The materials obtained from Casimiroa edulis waste were named: CenZAP, CarZAPT, and CarZAPQ. TunaAsh and CenZAP consist of ashes obtained at 550 °C CarTunaT and CarZAPT consist of the materials carbonized at 400 °C lastly, CarTunaQ and CarZAPQ consist of chemically activated carbons using H3PO4 at 400 °C. Only the chemically activated materials were washed with distilled water until a neutral pH was obtained after their carbonization. All materials were ground and sieved to obtain a particle size ranging from 0.25 to 0.84 mm. The static adsorption results showed that both ashes and chemically activated carbon are more efficient at dye removal for both vegetable residues. For TunaAsh and CarTunaQ, removal rates of up to 100% in the cases of basic, acid, and direct dyes were achieved. Regarding wastewater containing reactive dyes, the efficiency ranged from 60 to 100%. For vat effluents, it ranged from 42 to 52%. In the case of CenZAP and CarZAPQ, it was possible to treat reactive effluents with rates ranging between 63 and 91%. Regarding vat effluents, it ranged from 57 to 68%. The process of characterization for all materials was done using scanning electron microscopy and infrared spectroscopy.

  8. Influence of coal-tar sealcoat and other carbonaceous materials on polycyclic aromatic hydrocarbon loading in an urban watershed

    Science.gov (United States)

    Yang, Y.; Van Metre, P.C.; Mahler, B.J.; Wilson, J.T.; Ligouis, B.; Razzaque, M.; Schaeffer, D.J.; Werth, C.J.

    2010-01-01

    Carbonaceous material (CM) particles are the principal vectors transporting polycyclic aromatic hydrocarbons (PAHs) into urban waters via runoff; however, characteristics of CM particles in urban watersheds and their relative contributions to PAH contamination remain unclear. Our objectives were to identify the sources and distribution of CM particles in an urban watershed and to determine the types of CMs that were the dominant sources of PAHs in the lake and stream sediments. Samples of soils, parking lot and street dust, and streambed and lake sediment were collected from the Lake Como watershed in Fort Worth, Texas. Characteristics of CM particles determined by organic petrography and a significant correlation between PAH concentrations and organic carbon in coal tar, asphalt, and soot indicate that these three CM particle types are the major sources and carriers of PAHs in the watershed. Estimates of the distribution of PAHs in CM particles indicate that coal-tar pitch, usedinsomepavementsealcoats, isadominant source of PAHs in the watershed, and contributes as much as 99% of the PAHs in sealed parking lot dust, 92% in unsealed parking lot dust, 88% in commercial area soil, 71% in streambed sediment, and 84% in surficial lake sediment. ?? 2010 American Chemical Society.

  9. Influence of coal-tar sealcoat and other carbonaceous materials on polycyclic aromatic hydrocarbon loading in an urban watershed.

    Science.gov (United States)

    Yang, Yaning; Van Metre, Peter C; Mahler, Barbara J; Wilson, Jennifer T; Ligouis, Bertrand; Razzaque, M D Muhit; Schaeffer, David J; Werth, Charles J

    2010-02-15

    Carbonaceous material (CM) particles are the principal vectors transporting polycyclic aromatic hydrocarbons (PAHs) into urban waters via runoff; however, characteristics of CM particles in urban watersheds and their relative contributions to PAH contamination remain unclear. Our objectives were to identify the sources and distribution of CM particles in an urban watershed and to determine the types of CMs that were the dominant sources of PAHs in the lake and stream sediments. Samples of soils, parking lot and street dust, and streambed and lake sediment were collected from the Lake Como watershed in Fort Worth, Texas. Characteristics of CM particles determined by organic petrography and a significant correlation between PAH concentrations and organic carbon in coal tar, asphalt, and soot indicate that these three CM particle types are the major sources and carriers of PAHs in the watershed. Estimates of the distribution of PAHs in CM particles indicate that coal-tar pitch, used in some pavement sealcoats, is a dominant source of PAHs in the watershed, and contributes as much as 99% of the PAHs in sealed parking lot dust, 92% in unsealed parking lot dust, 88% in commercial area soil, 71% in streambed sediment, and 84% in surficial lake sediment.

  10. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites

    DEFF Research Database (Denmark)

    van Kooten, Elishevah M. M. E.; Wielandt, Daniel Kim Peel; Schiller, Martin

    2016-01-01

    )Mg*-depleted and (54)Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived (26)Al. The (26)Mg* and (54)Cr compositions of bulk metal-rich chondrites require significant amounts (25...... product of (26)Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling (26)Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last...

  11. Cytotoxicity of halogenated graphenes

    Science.gov (United States)

    Teo, Wei Zhe; Khim Chng, Elaine Lay; Sofer, Zdeněk; Pumera, Martin

    2013-12-01

    Graphene and its family of derivatives possess unique and remarkable physicochemical properties which make them valuable materials for applications in many areas like electronics, energy storage and biomedicine. In response to the possibility of its large-scale manufacturing as commercial products in the future, an investigation was conducted to determine the cytotoxicity of one particular family of graphene derivatives, the halogenated graphenes, for the first time. Halogenated graphenes were prepared through thermal exfoliation of graphite oxide in gaseous chlorine, bromine or iodine atmospheres to yield chlorine- (TRGO-Cl), bromine- (TRGO-Br) and iodine-doped graphene (TRGO-I) respectively. 24 h exposure of human lung carcinoma epithelial cells (A549) to the three halogenated graphenes and subsequent cell viability assessments using methylthiazolyldiphenyl-tetrazolium bromide (MTT) and water-soluble tetrazolium salt (WST-8) assays revealed that all the halogenated graphenes examined are rather cytotoxic at the concentrations tested (3.125 μg mL-1 to 200 μg mL-1) and the effects are dose-dependent, with TRGO-Cl reducing the cell viability to as low as 25.7% at the maximum concentration of 200 μg mL-1. Their levels of cytotoxicity can be arranged in the order of TRGO-Cl > TRGO-Br > TRGO-I, and it is suggested that the amount of halogen present in the graphene material is the determining factor for the observed trend. Control experiments were carried out to test for possible nanomaterial-induced interference as a consequence of reaction between the halogenated graphenes and the viability markers (MTT/WST-8 reagent) or binding of the formazan products under cell-free conditions. The data obtained eliminate the probability of significant influence by these interferents as the change in the normalized percentage of formazan formed is relatively small and thorough washings were performed prior to the viability assessments to reduce the amount of halogenated

  12. Origin of Dark Material on VESTA from DAWN FC Data: Remnant Carbonaceous Chondrite Impators

    Science.gov (United States)

    Reddy, V.; LeCorre, L.; Nathues, A.; Mittlefehldt, David W.; Cloutis, E. A.; OBrien, D. P.; Durda, D. D.; Bottke, W. F.; Buczkowski, D.; Scully, J. E. C.; Palmer, E. M.; Sierks, H.; Mann, P. J.; Becker, K. J.; Beck, A. W.; Li, Y-Y.; Gaskell, R.; Russell, C. T.; Gaffey, M. J.; McSween, H. Y.; McCord, T. B.; Combe, J.-P.; Blewett, D.

    2012-01-01

    NASA's Dawn spacecraft entered orbit around asteroid (4) Vesta in July 2011 for a yearlong mapping orbit. The surface of Vesta as imaged by the Dawn Framing Camera (FC) revealed a surface that is unlike any asteroid we have visited so far with a spacecraft. Albedo and color variations on Vesta are the most diverse in the asteroid belt with a majority of these linked to distinct compositional units on the asteroid s surface. FC discovered dark material on Vesta. These low albedo surface features were first observed during Rotational Characterization 3 phase at a resolution of approx. 487 m/pixel. Here we explore the composition and possible meteoritical analogs for the dark material on Vesta.

  13. Determination of Platinum Metals in Carbonaceous Mineral Raw Materials by Stripping Voltammetry

    OpenAIRE

    Kolpakova, Nina Alexandrovna; Oskina, Yuliya Aleksandrovna; Dyachenko, Elena Nikolaevna; Pshenichkin, Anatoliy Yakovlevich

    2015-01-01

    The paper considers the possibility of determining platinum metals in mineral raw materials by stripping voltammetry on a graphite electrode modified by metals. Stripping voltammetry method is characterized by low determination limit, wide intervals of determined content and high sensitivity. As a result of the research the conditions for the determination of gold, platinum and palladium by stripping voltammetry have been selected. The comparison of the results of gold, palladium and platinum...

  14. Role of carbonaceous materials in polymer matrix composites for friction applications

    Science.gov (United States)

    Lapping, Preston

    The purpose of this research was to study the friction performance characteristics of a Copper, Antimony, and sulfide free environmentally automotive friction material using different allotropes of graphite as a replacement. Model brake friction materials were created and tested on a full scale brake dynamometer using the Society of Automotive Engineers J2430 test and Brake Effectiveness Evaluation Procedure. The dynamometer testing revealed the graphite replacement to have higher average effectiveness values when compared to the baseline friction material currently in production. The model samples generally had higher wear rates but some were comparable to the baseline and would be acceptable in real world applications. Some of the model samples displayed stable characteristics under varying load and linear braking velocity conditions, ultimately passing the criteria required. The model samples (RD18670A/B/C/D/E/F/G) displayed average effectiveness values of 0.425, 0.435, 0.4125, 0.425, 0.475, failed test, and 0.35 respectively, which is on average a substantial gain over the baseline effectiveness value average of 0.3125. Sample RD18670F proved to be the most promising replacement for the baseline 1999 Ford Crown Victoria friction lining. This is due to a higher average effectiveness value of 0.5, during both the high speed and low speed testing, than the baseline friction lining material of 0.325. Also, RD18670F displayed comparable wear rates to the baseline test, with 0.384mm lost inboard and 0.650 lost outboard, representing a difference of only 0.074mm and 0.2mm respectively from the baseline.

  15. Factors affecting the removal of ammonia from air on carbonaceous materials: Investigation of reactive adsorption mechanism

    Science.gov (United States)

    Petit, Camille

    Air pollution related to the release of industrial toxic gases, represents one of the main concerns of our modern world owing to its detrimental effect on the environment. To tackle this growing issue, efficient ways to reduce/control the release of pollutants are required. Adsorption of gases on porous materials appears as a potential solution. However, the physisorption of small molecules of gases such as ammonia is limited at ambient conditions. For their removal, adsorbents providing strong adsorption forces must be used/developed. In this study, new carbon-based materials are prepared and tested for ammonia adsorption at ambient conditions. Characterization of the adsorbents' texture and surface chemistry is performed before and after exposure to ammonia to identify the features responsible for high adsorption capacity and for controlling the mechanisms of retention. The characterization techniques include: nitrogen adsorption, thermal analysis, potentiometric titration, FT-IR spectroscopy, X-ray diffraction, Energy Dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and Electron Microscopy. The results obtained indicate that ammonia removal is governed by the adsorbent's surface chemistry. On the contrary, porosity (and thus physisorption) plays a secondary role in this process, unless strong dispersive forces are provided by the adsorbent. The surface chemistry features responsible for the enhanced ammonia adsorption include the presence of oxygen-(carboxyl, hydroxyl, epoxy) and sulfur- (sulfonic) containing groups. Metallic species improve the breakthrough capacity as well as they lead to the formation of Lewis acid-base interactions, hydrogen-bonding or complexation. In addition to the latter three mechanisms, ammonia is retained on the adsorbent surface via Bronsted acid-base interactions or via specific reactions with the adsorbent's functionalities leading to the incorporation of ammonia into the adsorbent's matrix. Another mechanism

  16. Organic compound alteration during hypervelocity collection of carbonaceous materials in aerogel

    Science.gov (United States)

    Spencer, M. K.; Clemett, S. J.; Sandford, S. A.; McKay, D. S.; Zare, R. N.

    2009-03-01

    The NASA Stardust mission brought to Earth micron-size particles from the coma of comet 81P/Wild 2 using aerogel, a porous silica material, as the capture medium. A major challenge in understanding the organic inventory of the returned comet dust is identifying, unambiguously, which organic molecules are indigenous to the cometary particles, which are produced from carbon contamination in the Stardust aerogel, and which are cometary organics that have been modified by heating during the particle capture process. Here it is shown that 1) alteration of cometary organic molecules along impact tracks in aerogel is highly dependent on the original particle morphology, and 2) organic molecules on test-shot terminal particles are mostly preserved. These conclusions are based on two-step laser mass spectrometry (L2MS) examinations of test shots with organic-laden particles (both tracks in aerogel and the terminal particles themselves).

  17. Local structure and paramagnetic properties of the nanostructured carbonaceous material shungite

    Science.gov (United States)

    Krasnovyd, Serhii Volodymyrovich; Konchits, Andriy Andriyovich; Shanina, Bela Dmytrivna; Valakh, Mykhaylo Yakovych; Yanchuk, Igor Bogdanovich; Yukhymchuk, Volodymyr Olexsandrovych; Yefanov, Andriy Volodymyrovich; Skoryk, Mykola Andriyovich

    2015-02-01

    Using a scanning electron microscopy, elemental analysis, electron paramagnetic resonance, and Raman scattering methods, two types of the shungite materials (Sh-II from Zazhogino deposit and shungite from a commercial filter (ShF)), with different carbon content and porosity, are studied in this work. It was established by scanning electron microscopy data that the structure of the shungite samples is formed by a micron-size agglomeration of carbon and silicon dioxide clusters. It is found from the Raman data that carbon fraction is formed from sp2-hybridized clusters, size of which increases from 9 up to 12 nm after annealing of the samples. High conductivity of shungite is found to belong to the carbon nanoclusters of different sizes. Big clusters give the conduction electron spin resonance signal with a Dysonian line shape with variable g-factor and line width.

  18. Paramagnetic resonance of Shungite - a natural nano-structured carbonaceous material

    Science.gov (United States)

    Yablokov, M. Yu.; Augustyniak-Jabł, M. A.

    Shungites Sh-III and Sh-IV (?50% and 20% of carbon) have been studied by X-band EPR method in the range 4.2-293 K. The week signal of Dyson shape (a /b = 2.25-2.40) observed from a bulk sample of Sh-III has been observed to transform into an intensive Lorentzian line (?B = 1.99 mT, g = 2.0020) after sample grinding. The number of EPR responsible spins (2 × 1019 g-1) and the depth of penetration ? (?60 µm) have been estimated. The shape of the signals (Dysonian or Lorentzian) is independent of T . ?B and the g values decrease below 80 K to 1.15 mT and 2.0012. The signal intensity is independent of T down to 150 K. Isolated complexes of C60(C70)-n with K+(Na+) have been found in Sh-IV. Analysis of the EPR spectra has been made taking into consideration the properties of the conductive materials such as metals and graphite.

  19. 无卤阻燃电缆料的研究现状%Research Status of Halogen-free Flame Retardant Cable Material

    Institute of Scientific and Technical Information of China (English)

    关健; 虞鑫海

    2014-01-01

    主要从氢氧化物阻燃体系、磷系阻燃体系、膨胀型阻燃体系、有机硅阻燃体系、硼系阻燃体系和纳米阻燃体系等方面综述了无卤阻燃电缆料的研究与应用现状,并展望了电缆料无卤阻燃技术的发展方向。%The recent research and application status of halogen-free flame retardant cable material were reviewed from hydroxide flame retardant system, phosphorus flame retardant system, intumescent flame re-tardant system, silicone flame retardant system, boron flame retardant system and nano flame retardant system. The development direction of halogen-free flame retardant cable material was proposed.

  20. Screening for halogenated flame retardants in European consumer products, building materials and wastes.

    Science.gov (United States)

    Vojta, Šimon; Bečanová, Jitka; Melymuk, Lisa; Komprdová, Klára; Kohoutek, Jiří; Kukučka, Petr; Klánová, Jana

    2017-02-01

    To fulfill national and international fire safety standards, flame retardants (FRs) are being added to a wide range of consumer products and building materials consisting of flammable materials like plastic, wood and textiles. While the FR composition of some products and materials has been identified in recent years, the limited global coverage of the data and the large diversity in consumer products necessitates more information for an overall picture of the FR composition in common products/materials. To address this issue, 137 individual samples of various consumer products, building materials and wastes were collected. To identify and characterize potential sources of FRs in indoor environment, all samples were analyzed for content of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDDs) and novel flame retardants (NFRs). The most frequently detected were HBCDDs (85%), with the highest median concentration of Σ4HBCDDs of 300 mg kg(-1) in polystyrenes. The highest median concentration of Σ10PBDEs was found in recycled plastic materials, reaching 4 mg kg(-1). The lowest concentrations were observed for NFRs, where the median of Σ12NFRs reached 0.4 mg kg(-1) in the group of electrical & electronic equipment wastes. This suggests that for consumer products and building materials that are currently in-use, legacy compounds still contribute to the overall burden of FRs. Additionally, contrasting patterns of FR composition in recycled and virgin plastics, revealed using principle component analysis (PCA), suggest that legacy flame retardants are reentering the market through recycled products, perpetuating the potential for emissions to indoor environments and thus for human exposure.

  1. Different effects of surface heterogeneous atoms of porous and non-porous carbonaceous materials on adsorption of 1,1,2,2-tetrachloroethane in aqueous environment.

    Science.gov (United States)

    Chen, Weifeng; Ni, Jinzhi

    2017-05-01

    The surface heterogeneous atoms of carbonaceous materials (CMs) play an important role in adsorption of organic pollutants. However, little is known about the surface heterogeneous atoms of CMs might generate different effect on adsorption of hydrophobic organic compounds by porous carbonaceous materials - activated carbons (ACs) and non-porous carbonaceous materials (NPCMs). In this study, we observed that the surface oxygen and nitrogen atoms could decrease the adsorption affinity of both ACs and NPCMs for 1,1,2,2-tetrachloroethane (TeCA), but the degree of decreasing effects were very different. The increasing content of surface oxygen and nitrogen ([O + N]) caused a sharper decrease in adsorption affinity of ACs (slope of lg (kd/SA) vs [O + N]: -0.098∼-0.16) than that of NPCMs (slope of lg (kd/SA) vs [O + N]: -0.025∼-0.059) for TeCA. It was due to the water cluster formed by the surface hydrophilic atoms that could block the micropores and generate massive invalid adsorption sites in the micropores of ACs, while the water cluster only occupied the surface adsorption sites of NPCMs. Furthermore, with the increasing concentration of dissolved TeCA, the effect of surface area on adsorption affinity of NPCMs for TeCA kept constant while the effect of [O + N] decreased due to the competitive adsorption between water molecule and TeCA on the surface of NPCMs, meanwhile, both the effects of micropore volume and [O + N] on adsorption affinity of ACs for TeCA were decreased due to the mechanism of micropore volume filling. These findings are valuable for providing a deep insight into the adsorption mechanisms of CMs for TeCA.

  2. Influence of halogen irradiance on short- and long-term wear resistance of resin-based composite materials.

    LENUS (Irish Health Repository)

    Bhamra, Gurcharn S

    2009-02-01

    The Oregon Health Science University (OHSU) four-chamber oral wear simulator was used to examine the impact of halogen irradiance on the short- and long-term wear behavior of four-methacrylate resin-based composites (RBCs). The hypothesis proposed was that exacerbated wear would occur following the long-term wear of RBCs irradiated under non-optimized irradiance conditions.

  3. Application of sludge-based carbonaceous materials in a hybrid water treatment process based on adsorption and catalytic wet air oxidation.

    Science.gov (United States)

    Julcour Lebigue, Carine; Andriantsiferana, Caroline; N'Guessan Krou; Ayral, Catherine; Mohamed, Elham; Wilhelm, Anne-Marie; Delmas, Henri; Le Coq, Laurence; Gerente, Claire; Smith, Karl M; Pullket, Suangusa; Fowler, Geoffrey D; Graham, Nigel J D

    2010-12-01

    This paper describes a preliminary evaluation of the performance of carbonaceous materials prepared from sewage sludges (SBCMs) in a hybrid water treatment process based on adsorption and catalytic wet air oxidation; phenol was used as the model pollutant. Three different sewage sludges were treated by either carbonisation or steam activation, and the physico-chemical properties of the resultant carbonaceous materials (e.g. hardness, BET surface area, ash and elemental content, surface chemistry) were evaluated and compared with a commercial reference activated carbon (PICA F22). The adsorption capacity for phenol of the SBCMs was greater than suggested by their BET surface area, but less than F22; a steam activated, dewatered raw sludge (SA_DRAW) had the greatest adsorption capacity of the SBCMs in the investigated range of concentrations (oxidation tests, the SBCMs demonstrated catalytic behaviour arising from their substrate adsorptivity and metal content. Recycling of SA_DRAW in successive oxidations led to significant structural attrition and a hardened SA_DRAW was evaluated, but found to be unsatisfactory during the oxidation step. In a combined adsorption-oxidation sequence, both the PICA carbon and a selected SBCM showed deterioration in phenol adsorption after oxidative regeneration, but a steady state performance was reached after 2 or 3 cycles.

  4. Informative document halogenated hydrocarbon-containing waste

    NARCIS (Netherlands)

    Verhagen H

    1992-01-01

    This "Informative document halogenated hydrocarbon-containing waste" forms part of a series of "Informative documents waste materials". These documents are conducted by RIVM on the instructions of the Directorate General for the Environment, Waste Materials Directorate, in behal

  5. Thermodynamic Property Surfaces for Adsorption of R507A, R134a, and n -Butane on Pitch-Based Carbonaceous Porous Materials

    KAUST Repository

    Chakraborty, Anutosh

    2010-10-01

    The thermodynamic property surfaces of R507A, R134a, and n-butane on pitch-based carbonaceous porous material (Maxsorb III) are developed from rigorous classical thermodynamics and experimentally measured adsorption isotherm data. These property fields enable us to compute the entropy, enthalpy, internal energy, and heat of adsorption as a function of pressure, temperature, and the amount of adsorbate. The entropy and enthalpy maps are necessary for the analysis of adsorption cooling cycle and gas storage. We have shown here that it is possible to plot an adsorption cooling cycle on the temperature-entropy (T-s) and enthalpy-uptake (h-x) maps. Copyright © Taylor and Francis Group, LLC 2010.

  6. Comparative study of adsorptive role of carbonaceous materials in removal of UV-active impurities of paclitaxel extracts

    Directory of Open Access Journals (Sweden)

    Jaber Nasiri

    2015-12-01

    Full Text Available Graphite oxide (GO and reduced graphene oxide (rGO nanosheets were synthesized with a low-cost manufacturing method. The morphology and structures of the synthesized samples were studied using X-ray diffraction (XRD, atomic force microscopy (AFM, Fourier-transform infrared (FTIR and Raman spectroscopy. The efficiencies of GO and rGO as novel candidate adsorbents in the pre-purification of paclitaxel were compared and contrasted with those of commercial graphite (Gt, graphene (G and multi-wall carbon nanotube (MWCNT. According to UV–vis and HPLC analyses, rGO was evaluated as the best absorbent for the removal of impurities in pre-purification of paclitaxel from plant cell cultures. In contrast, the GO had the poorest proficiency for paclitaxel pre-purification in comparison with the other carbonaceous adsorbents. This is attributed to the existence of many localized defects in the π-structure of GO that is related to weakness of π–π stacking interactions between crude extract impurities and GO.

  7. Comparative study of adsorptive role of carbonaceous materials in removal of UV-active impurities of paclitaxel extracts

    Institute of Scientific and Technical Information of China (English)

    Jaber Nasiri; Elaheh Motamedi; Mohammad Reza Naghavi

    2015-01-01

    Graphite oxide (GO) and reduced graphene oxide (rGO) nanosheets were synthesized with a low-cost manufacturing method. The morphology and structures of the synthesized samples were studied using X-ray diffraction (XRD), atomic force microscopy (AFM), Fourier-transform infrared (FTIR) and Raman spectroscopy. The efficiencies of GO and rGO as novel candidate adsorbents in the pre-purification of paclitaxel were compared and contrasted with those of commercial graphite (Gt), graphene (G) and multi-wall carbon nanotube (MWCNT). According to UV–vis and HPLC analyses, rGO was evaluated as the best absorbent for the removal of impurities in pre-purification of paclitaxel from plant cell cultures. In contrast, the GO had the poorest proficiency for paclitaxel pre-purification in comparison with the other carbonaceous adsorbents. This is attributed to the existence of many localized defects in the π-structure of GO that is related to weakness ofπ–πstacking interactions between crude extract impurities and GO.

  8. Reduction Kinetics of MnO from High-Carbon Ferromanganese Slags by Carbonaceous Materials in Ar and CO Atmospheres

    Science.gov (United States)

    Safarian, J.; Tranell, G.; Kolbeinsen, L.; Tangstad, M.; Gaal, S.; Kaczorowski, J.

    2008-10-01

    The kinetics of MnO reduction from synthetic and industrial high-carbon ferromanganese slags were investigated using a sessile drop technique at 1600 °C. The effects of the reductant type, ambient atmosphere, and slag composition on the MnO reduction were illuminated. Six different types of carbonaceous reductants were used as substrates for small slag droplets, which were reacted in a CO or Ar atmosphere, with the reaction studied in situ. The cross sections of the reacted slag-carbon samples were subsequently studied by electron-probe microanalysis (EPMA), to find the extent of the MnO reduction as a function of the reaction time. It was found that the rate of the MnO reduction is affected by both the type of reductant and the ambient atmosphere. It was observed that the MnO reduction rate from synthetic slag by cokes produced from single coals is lower than that from industrial cokes. Reduction rates obtained when charcoal was used as the reductant were higher than when coke was used, while the CO atmosphere yielded a faster initial MnO reduction than did the Ar atmosphere. It was found that the faster reduction rates in the CO atmosphere are related to the MnO reduction by CO gas. A newly developed kinetic method was applied, to calculate the rate constants for the MnO reduction by carbon and CO that considered the reaction interfaces. It was indicated that the rate of the MnO reduction by CO is less than that by carbon; however, the contribution of these reductants to slag reduction is very dependent on their contact with the slag.

  9. A Continued Study of Polymeric Materials for Protection Against Chemical and Biological Contaminants and Halogen Oxidants for Immobilization in Protective Materials and Coatings

    Science.gov (United States)

    2013-03-01

    Precursor Silane and Polymeric Siloxane .................... 8 Figure 6. Preparation from a Precursor of a Water -soluble N-Halamine Copolymer...halogenated hydantoinyl polystyrene beads quickly disinfect potable water . The new beads are less expensive to prepare than an earlier version prepared by...funtionalizing polystyrene, but equally effective in gravity-feed water filters. As mild oxidizing agents, they can also be used to detoxify water

  10. Sewage-sludge-derived carbonaceous materials for catalytic wet hydrogen peroxide oxidation of m-cresol in batch and continuous reactors.

    Science.gov (United States)

    Yu, Yang; Wei, Huangzhao; Yu, Li; Wang, Wei; Zhao, Ying; Gu, Bin; Sun, Chenglin

    2016-01-01

    In this study, four sewage-sludge-derived carbonaceous materials (SWs) were evaluated for their catalytic wet hydrogen peroxide oxidation (CWPO) performance of m-cresol in batch reactor and continuous reactor, respectively. The SWs were produced by carbonization (SW); carbonization with the addition of CaO (CaO-SW); HNO3 pretreatment (HNO3-SW) and steam activation (Activated-SW). The properties of SW catalysts were assessed by thermogravimetric analysis, Brunauer-Emmett-Teller, Fourier Transform Infrared Spectroscopy, X-ray Fluorescence, Scanning electron microscopy, energy dispersive X-ray analysis and zeta potential. The results showed that SW treated by HNO3 (HNO3-SW) had a high conversion of m-cresol in batch reactor and continuous reactor, respectively. Under the conditions of batch reaction (Cm-cresol = 100 mg L(-1), CH2O2 = 15.7 mmol L(-1), initial pH=7.0, 0.5 g L(-1) catalyst, 80°C, 180 min adsorption and 210 min oxidation), the conversion of m-cresol reached 100% and total organic carbon removal was 67.1%. It had a high catalytic activity and stability on the treatment of m-cresol in CWPO for more than 1100 h. Furthermore, a possible reaction mechanism for the oxidation of m-cresol to 2-methyl-p-benzoquinone by CWPO was proposed.

  11. Unit with Fluidized Bed for Gas-Vapor Activation of Different Carbonaceous Materials for Various Purposes: Design, Computation, Implementation

    Science.gov (United States)

    Strativnov, Eugene

    2017-02-01

    We propose the technology of obtaining the promising material with wide specter of application-activated nanostructured carbon. In terms of technical indicators, it will stand next to the materials produced by complex regulations with the use of costly chemical operations. It can be used for the following needs: as a sorbent for hemosorption and enterosorption, for creation of the newest source of electric current (lithium and zinc air batteries, supercapacitors), and for processes of short-cycle adsorption gas separation.

  12. Unit with Fluidized Bed for Gas-Vapor Activation of Different Carbonaceous Materials for Various Purposes: Design, Computation, Implementation.

    Science.gov (United States)

    Strativnov, Eugene

    2017-12-01

    We propose the technology of obtaining the promising material with wide specter of application-activated nanostructured carbon. In terms of technical indicators, it will stand next to the materials produced by complex regulations with the use of costly chemical operations. It can be used for the following needs: as a sorbent for hemosorption and enterosorption, for creation of the newest source of electric current (lithium and zinc air batteries, supercapacitors), and for processes of short-cycle adsorption gas separation.In this study, the author gives recommendations concerning the design of the apparatus with fluidized bed and examples of calculation of specific devices. The whole given information can be used as guidelines for the design of energy effective aggregates. Calculation and design of the reactor were carried out using modern software complexes (ANSYS and SolidWorks).

  13. A single-source precursor route to anisotropic halogen-doped zinc oxide particles as a promising candidate for new transparent conducting oxide materials

    Directory of Open Access Journals (Sweden)

    Daniela Lehr

    2015-11-01

    Full Text Available Numerous applications in optoelectronics require electrically conducting materials with high optical transparency over the entire visible light range. A solid solution of indium oxide and substantial amounts of tin oxide for electronic doping (ITO is currently the most prominent example for the class of so-called TCOs (transparent conducting oxides. Due to the limited, natural occurrence of indium and its steadily increasing price, it is highly desired to identify materials alternatives containing highly abundant chemical elements. The doping of other metal oxides (e.g., zinc oxide, ZnO is a promising approach, but two problems can be identified. Phase separation might occur at the required high concentration of the doping element, and for successful electronic modification it is mandatory that the introduced heteroelement occupies a defined position in the lattice of the host material. In the case of ZnO, most attention has been attributed so far to n-doping via substitution of Zn2+ by other metals (e.g., Al3+. Here, we present first steps towards n-doped ZnO-based TCO materials via substitution in the anion lattice (O2− versus halogenides. A special approach is presented, using novel single-source precursors containing a potential excerpt of the target lattice 'HalZn·Zn3O3' preorganized on the molecular scale (Hal = I, Br, Cl. We report about the synthesis of the precursors, their transformation into halogene-containing ZnO materials, and finally structural, optical and electronic properties are investigated using a combination of techniques including FT-Raman, low-T photoluminescence, impedance and THz spectroscopies.

  14. Contribution of carbonaceous material to cloud condensation nuclei concentrations in European background (Mt. Sonnblick) and urban (Vienna) aerosols

    Science.gov (United States)

    Hitzenberger, R.; Berner, A.; Giebl, H.; Kromp, R.; Larson, S. M.; Rouc, A.; Koch, A.; Marischka, S.; Puxbaum, H.

    During four intensive measurement campaigns (two on Mt. Sonnblick, European background aerosol, and two in Vienna, urban aerosol), cloud condensation nuclei (CCN) were measured at supersaturations of 0.5%. Impactor measurements of the mass size distribution in the size range 0.1-10 μm were performed and later analyzed for Cl -, NO -3, SO 2-4, Na +, NH +4, K +, Ca 2+ and Mg 2+ by ion chromatography, for total carbon (TC) using a combustion method, and for black carbon (BC) by an optical method (integrating sphere). Organic carbon (OC) was defined as the difference between TC (minus carbonate carbon) and BC. At all sites, the mass fraction of BC in the submicron aerosol was comparable (4-5%). CCN concentrations on Mt. Sonnblick were found to be 10-30% of those measured in Vienna, although high Mt. Sonnblick concentrations were comparable to low Vienna concentrations (around 800 cm -3). The contribution of organic material was estimated from the mass concentrations of the chemical species sampled on the impactor stage with the lowest cut point (0.1-0.215 μm aerodynamic equivalent diameter). On Mt. Sonnblick, TC material contributed 11% to the total mass in fall 1995, and 67% in summer 1996, while the OC fraction was 6 and 61%. The combined electrolytes and mineral material contributed 18 and 16% in fall and summer. During the Vienna spring campaign, the contributions of OC and electrolytes to the total mass concentration in this size range were 48 and 36%, respectively.

  15. Chemical Bonding and Structural Information of Black CarbonReference Materials and Individual Carbonaceous AtmosphericAerosols

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Rebecca J.; Tivanski, Alexei V.; Marten, Bryan D.; Gilles, Mary K.

    2007-04-25

    The carbon-to-oxygen ratios and graphitic nature of a rangeof black carbon standard reference materials (BC SRMs), high molecularmass humic-like substances (HULIS) and atmospheric particles are examinedusing scanning transmission X-ray microscopy (STXM) coupled with nearedge X-ray absorption fine structure (NEXAFS) spectroscopy. UsingSTXM/NEXAFS, individual particles with diameter>100 nm are studied,thus the diversity of atmospheric particles collected during a variety offield missions is assessed. Applying a semi-quantitative peak fittingmethod to the NEXAFS spectra enables a comparison of BC SRMs and HULIS toparticles originating from anthropogenic combustion and biomass burns,thus allowing determination of the suitability of these materials forrepresenting atmospheric particles. Anthropogenic combustion and biomassburn particles can be distinguished from one another using both chemicalbonding and structural ordering information. While anthropogeniccombustion particles are characterized by a high proportion ofaromatic-C, the presence of benzoquinone and are highly structurallyordered, biomass burn particles exhibit lower structural ordering, asmaller proportion of aromatic-C and contain a much higher proportion ofoxygenated functional groups.

  16. Raman spectra of carbonaceous materials in a fault zone in the Longmenshan thrust belt, China; comparisons with those of sedimentary and metamorphic rocks

    Science.gov (United States)

    Kouketsu, Yui; Shimizu, Ichiko; Wang, Yu; Yao, Lu; Ma, Shengli; Shimamoto, Toshihiko

    2017-03-01

    We analyzed micro-Raman spectra of carbonaceous materials (CM) in natural and experimentally deformed fault rocks from Longmenshan fault zone that caused the 2008 Wenchuan earthquake, to characterize degree of disordering of CM in a fault zone. Raman spectral parameters for 12 samples from a fault zone in Shenxigou, Sichuan, China, all show low-grade structures with no graphite. Low crystallinity and δ13C values (-24‰ to -25‰) suggest that CM in fault zone originated from host rocks (Late Triassic Xujiahe Formation). Full width at half maximum values of main spectral bands (D1 and D2), and relative intensities of two subbands (D3 and D4) of CM were variable with sample locations. However, Raman parameters of measured fault rocks fall on established trends of graphitization in sedimentary and metamorphic rocks. An empirical geothermometer gives temperatures of 160-230 °C for fault rocks in Shenxigou, and these temperatures were lower for highly sheared gouge than those for less deformed fault breccia at inner parts of the fault zone. The lower temperature and less crystallinity of CM in gouge might have been caused by the mechanical destruction of CM by severe shearing deformation, or may be due to mixing of host rocks on the footwall. CM in gouge deformed in high-velocity experiments exhibits slight changes towards graphitization characterized by reduction of D3 and D4 intensities. Thus low crystallinity of CM in natural gouge cannot be explained by our experimental results. Graphite formation during seismic fault motion is extremely local or did not occur in the study area, and the CM crystallinity from shallow to deep fault zones may be predicted as a first approximation from the graphitization trend in sedimentary and metamorphic rocks. If that case, graphite may lower the friction of shear zones at temperatures above 300 °C, deeper than the lower part of seismogenic zone.

  17. Marine mammal blubber reference and control materials for use in the determination of halogenated organic compounds and fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Kucklick, John R.; Pugh, Rebecca S.; Becker, Paul R. [Hollings Marine Laboratory, National Institute of Standards and Technology (NIST), Charleston, SC (United States); Schantz, Michele M.; Porter, Barbara J.; Poster, Dianne L.; Leigh, Stefan; Wise, Stephen A. [NIST, Analytical Chemistry Division, Gaithersburg, MD (United States); Rowles, Teri K. [National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Silver Spring, MD (United States)

    2010-05-15

    The National Institute of Standards and Technology (NIST) has a diverse collection of control materials derived from marine mammal blubber, fat, and serum. Standard Reference Material (SRM) 1945 Organics in Whale Blubber was recertified for polychlorinated biphenyl (PCB) congeners, organochlorine pesticides, and polybrominated diphenyl ether (PBDE) congeners. SRM 1945 has also been assigned mass fraction values for compounds not frequently determined in marine samples including toxaphene congeners, coplanar PCBs, and methoxylated PBDE congeners which are natural products. NIST also has assigned mass fraction values, as a result of interlaboratory comparison exercises, for PCB congeners, organochlorine pesticides, PBDE congeners, and fatty acids in six homogenate materials produced from marine mammal blubber or serum. The materials are available from NIST upon request; however, the supply is very limited for some of the materials. The materials include those obtained from pilot whale blubber (Homogenates III and IV), Blainville's beaked whale blubber (Homogenate VII), polar bear fat (Homogenate VI), and California sea lion serum (Marine Mammal Control Material-1 Serum) and blubber (Homogenate V). (orig.)

  18. Halogens in the atmosphere

    Science.gov (United States)

    Cicerone, R. J.

    1981-01-01

    Atmospheric halogen measurement data are presented for: (1) inorganic and organic gaseous compounds of chlorine, fluorine, bromine and iodine; and (2) chloride, fluoride, bromide and iodine in particulate form and in precipitation. The roles that these data and other, unavailable data play in the determination of the global cycles of the halogens are discussed. It is found that the speciation of the halogen gases in the troposphere is uncertain, with the only inorganic species detected by species-specific methods being HC1 and SF6. It is shown that heterogeneous reactions, both gas-to-particle and particle-to-gas processes, precipitation removal, and sea-salt aerosol generation and fractionation processes, need quantitative investigation to allow progress in estimating halogen sources and sinks. Where practical, quantitative comparisons are made between measured and predicted concentrations.

  19. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Sundin, Peter; Wesén, Clas

    1997-01-01

    Halogenated fatty acids are the major contributors to organohalogen compounds in lipids of marine mammals, fish, and bivalves. For the initial characterization of these recently noticed compounds, a determination of the halogen concentration has usually been combined with some lipid isolation...... and separation method. This review covers separation by solid phase chromatography, gel permeation chromatography, and liquid-liquid extraction, followed by halogen determination. All studies performed according to this outline have indicated that the major organohalogen compounds are chlorinated fatty acids...... bound in different lipids. For the detection and identification of individual, halogenated fatty acid methyl esters (FAMEs) liberated from the lipids, gas chromatography (GC) has been employed together with detection methods such as electron capture detection, electrolytic conductivity detection (ELCD...

  20. Scientific conferences: A big hello to halogen bonding

    Science.gov (United States)

    Erdelyi, Mate

    2014-09-01

    Halogen bonding connects a wide range of subjects -- from materials science to structural biology, from computation to crystal engineering, and from synthesis to spectroscopy. The 1st International Symposium on Halogen Bonding explored the state of the art in this fast-growing field of research.

  1. Carbonaceous materials for adsorptive refrigerators

    Science.gov (United States)

    Buczek, B.; Wolak, E.

    2012-06-01

    Carbon monoliths prepared from hard coal precursors were obtained. The porous structure of the monoliths was evaluated on the basis of nitrogen adsorption — desorption equilibrium data. The investigated monoliths have a well-developed microporous structure with significant specific surface area (S BET ). Equilibrium studies of methanol vapour adsorption were used to characterize the methanol adsorptive capacity that was determined using a volumetric method. The heat of wetting by methanol was determined in order to estimate the energetic effects of the adsorption process. The results of the investigations show that all monoliths exhibit high adsorption capacity and high heat of wetting with methanol.

  2. Occurrence of halogenated alkaloids.

    Science.gov (United States)

    Gribble, Gordon W

    2012-01-01

    Once considered to be isolation artifacts or chemical "mistakes" of nature, the number of naturally occurring organohalogen compounds has grown from a dozen in 1954 to >5000 today. Of these, at least 25% are halogenated alkaloids. This is not surprising since nitrogen-containing pyrroles, indoles, carbolines, tryptamines, tyrosines, and tyramines are excellent platforms for biohalogenation, particularly in the marine environment where both chloride and bromide are plentiful for biooxidation and subsequent incorporation into these electron-rich substrates. This review presents the occurrence of all halogenated alkaloids, with the exception of marine bromotyrosines where coverage begins where it left off in volume 61 of The Alkaloids. Whereas the biological activity of these extraordinary compounds is briefly cited for some examples, a future volume of The Alkaloids will present full coverage of this topic and will also include selected syntheses of halogenated alkaloids. Natural organohalogens of all types, especially marine and terrestrial halogenated alkaloids, comprise a rapidly expanding class of natural products, in many cases expressing powerful biological activity. This enormous proliferation has several origins: (1) a revitalization of natural product research in a search for new drugs, (2) improved compound characterization methods (multidimensional NMR, high-resolution mass spectrometry), (3) specific enzyme-based and other biological assays, (4) sophisticated collection methods (SCUBA and remote submersibles for deep ocean marine collections), (5) new separation and purification techniques (HPLC and countercurrent separation), (6) a greater appreciation of traditional folk medicine and ethobotany, and (7) marine bacteria and fungi as novel sources of natural products. Halogenated alkaloids are truly omnipresent in the environment. Indeed, one compound, Q1 (234), is ubiquitous in the marine food web and is found in the Inuit from their diet of whale

  3. Halogenated solvent remediation

    Science.gov (United States)

    Sorenson, Kent S.

    2004-08-31

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. A preferred method includes adding a composition to the ground water wherein the composition is an electron donor for microbe-mediated reductive dehalogenation of the halogenated solvents and enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative compositions effective in these methods include surfactants such as C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof. Especially preferred compositions for use in these methods include lactic acid, salts of lactic acid, such as sodium lactate, lactate esters, and mixtures thereof. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the composition.

  4. Organic compounds in carbonaceous meteorites.

    Science.gov (United States)

    Sephton, Mark A

    2002-06-01

    The carbonaceous chondrite meteorites are fragments of asteroids that have remained relatively unprocessed since the formation of the solar system 4.6 billion years ago. These carbon-rich objects contain a variety of extraterrestrial organic molecules that constitute a record of chemical evolution prior to the origin of life. Compound classes include aliphatic hydrocarbons, aromatic hydrocarbons, amino acids, carboxylic acids, sulfonic acids, phosphonic acids, alcohols, aldehydes, ketones, sugars, amines, amides, nitrogen heterocycles, sulfur heterocycles and a relatively abundant high molecular weight macromolecular material. Structural and stable isotopic characteristics suggest that a number of environments may have contributed to the organic inventory, including interstellar space, the solar nebula and the asteroidal meteorite parent body. This review covers work published between 1950 and the present day and cites 193 references.

  5. Extraterrestrial Nucleobases in Carbonaceous Chondrites

    Science.gov (United States)

    Martins, Z.; Botta, O.; Fogel, M.; Sephton, M.; Glavin, D.; Watson, J.; Dworkin, J.; Schwartz, A.; Ehrenfreund, P.

    . Our stable carbon isotope measurements clearly demonstrate that the nucleobases in the Murchison meteorite are indigenous to the meteorite, and clearly differ from the values determined for the terrestrial nucleobases measured in the soil collected at the impact site. These results support the hypothesis that nucleobases were exogenously delivered to the early Earth, and may have been important for the prebiotic chemistry on our young planet. With regard to the detection of traces of life on other planets such as Mars it is essential to characterize organic materials that have been exogenously delivered to the early planets. The analysis of the composition and isotopic fractionation of extraterrestrial material using complementary techniques can provide crucial insights into the formation of our Solar System, extraterrestrial delivery processes and subsequent addition and incorporation into the carbonaceous material available on the young planets. Ultimately, these parameters form an essential reference point for interpreting biosignatures that may be left in the ancient rock record on a planetary body. References: [1] Hayatsu R. et al. 1975. Geochimica et Cosmochimica Acta 39: 471- 488. [2] Folsome C. E. et al. 1971. Nature 232: 108-109. [3] Stoks P. G. & Schwartz A. W. 1979. Nature 282: 709-710. [4] Stoks P.G. & Schwartz A. W. 1981. Geochimica et Cosmochimica Acta 45: 563-569. [5] Shimoyama A. et al. 1990. Geochemical Journal 24: 343-348. [6] Martins Z. et al. 2004. Meteoritics & Planetary Science 39: A5145. 2

  6. Halogenation of cobalt dicarbollide

    Science.gov (United States)

    Hurlburt, Paul K.; Abney, Kent D.; Kinkead, Scott A.

    1997-01-01

    A method for selectively adding chlorine, bromine, or iodine to cobalt dicarbollide anions by means of electrophilic substitution reactions. Halogens are added only to the B10 and B10' positions of the anion. The process involves use of hypohalous acid or N-halosuccinimide or gaseous chlorine in the presence of iron.

  7. Halogen Chemistry on Catalytic Surfaces.

    Science.gov (United States)

    Moser, Maximilian; Pérez-Ramírez, Javier

    2016-01-01

    Halogens are key building blocks for the manufacture of high-value products such as chemicals, plastics, and pharmaceuticals. The catalytic oxidation of HCl and HBr is an attractive route to recover chlorine and bromine in order to ensure the sustainability of the production processes. Very few materials withstand the high corrosiveness and the strong exothermicity of the reactions and among them RuO2 and CeO2-based catalysts have been successfully applied in HCl oxidation. The search for efficient systems for HBr oxidation was initiated by extrapolating the results of HCl oxidation based on the chemical similarity of these reactions. Interestingly, despite its inactivity in HCl oxidation, TiO2 was found to be an outstanding HBr oxidation catalyst, which highlighted that the latter reaction is more complex than previously assumed. Herein, we discuss the results of recent comparative studies of HCl and HBr oxidation on both rutile-type (RuO2, IrO2, and TiO2) and ceria-based catalysts using a combination of advanced experimental and theoretical methods to provide deeper molecular-level understanding of the reactions. This knowledge aids the design of the next-generation catalysts for halogen recycling.

  8. 垃圾中含碳有机物厌氧降解过程的独立性探讨%Independence of Anaerobic Biodegradation of Carbonaceous Organic Materials

    Institute of Scientific and Technical Information of China (English)

    孙晓杰; 王敦球; 王洪涛; 陆文静; 张玲; 陆美菊; 吴安杰; 项振宇; 黄亮

    2011-01-01

    Independence of anaerobic biodegradation of carbonaceous organic material is of importance. It can provide theoretical basis for the simulation and prediction of the gasification characteristics and stabilization process. According to the research of the predecessor, this paper analyses the independence of anaerobic biodegradation of carbonaceous organic material. There might be catabolite repression in pure culture for bacteria, but not absolutely. During the landfill of the refuse, mutant resistant to the repressor may occur because micro-bial ecosystem is complex. The further study will go on for determining the independence of anaerobic biodegradation of carbonaceous organic material.%混合垃圾中单物质纤维素、淀粉、脂肪和蛋白质降解的独立性与否可为模拟和预测填埋场任意时刻的产气特性和稳定化进程提供依据.本文对单物质降解的独立性进行了探讨,已有的试验研究结果表明,在厌氧填埋环境下,单物质的厌氧产气量具有可叠加性,即各种单物质的降解是独立的.但是根据葡萄糖效应,在单一菌种纯培养试验中,会出现分解代谢物的阻遏作用,即难降解有机物的分解转化会受到易降解有机物的抑制.在垃圾填埋过程中,由于微生物生态系统复杂,可能会在具体环境中产生一些特殊的抗分解代谢物阻遏作用的微生物.如要从理论上确定填埋垃圾中有机物厌氧降解过程的独立性问题,需要设计专门的微生物学和酶学试验作进一步研究.

  9. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Wesén, Clas; Sundin, Peter

    1997-01-01

    Chlorinated fatty acids have been found to be major contributors to organohalogen compounds in fish, bivalves, jellyfish, and lobster, and they have been indicated to contribute considerably to organohalogens in marine mammals. Brominated fatty acids have been found in marine sponges. Also......, chlorinated lipids have been found in meat exposed to hypochlorite disinfected water, and in chlorine-treated flour and in products made from such flour. Following exposure to chlorine bleached pulp mill effluents, aquatic organisms may have elevated concentrations of chlorinated fatty acids in their lipids....... However, a natural production of halogenated fatty acids is also possible. In this paper we summarize the present knowledge of the occurrence of halogenated fatty acids in lipids and suggested ways of their formation. In Part II (Trends Anal. Chem. 16 (1997) 274) we deal with methods...

  10. Raman spectroscopy of selected carbonaceous samples

    Energy Technology Data Exchange (ETDEWEB)

    Kwiecinska, Barbara [University of Science and Technology-AGH, Faculty of Geology, Geophysics and Environmental Protection, Krakow (Poland); Suarez-Ruiz, Isabel [Instituto Nacional del Carbon, (INCAR-CSIC), Oviedo (Spain); Paluszkiewicz, Czeslawa [University of Science and Technology-AGH, Faculty of Materials Science and Technology, Krakow (Poland); Rodriques, Sandra [Universidade do Porto, Faculdade de Ciencias, Dept. de Geologia (Portugal)

    2010-12-01

    This paper presents the results of Raman spectra measured on carbonaceous materials ranging from greenschist facies to granulite-facies graphite (Anchimetamorphism and Epimetamorphism zones). Raman spectroscopy has come to be regarded as a more appropriate tool than X-ray diffraction for study of highly ordered carbon materials, including chondritic matter, soot, polycyclic aromatic hydrocarbons and evolved coal samples. This work demonstrates the usefulness of the Raman spectroscopy analysis in determining internal crystallographic structure (disordered lattice, heterogeneity). Moreover, this methodology permits the detection of differences within the meta-anthracite rank, semi-graphite and graphite stages for the samples included in this study. In the first order Raman spectra, the bands located near to c.a. 1350 cm{sup -1} (defects and disorder mode A{sub 1g}) and 1580 cm{sup -1} (in plane E{sub 2g} zone - centre mode) contribute to the characterization and determination of the degree of structural evolution and graphitization of the carbonaceous samples. The data from Raman spectroscopy were compared with parameters obtained by means of structural, chemical and optical microscopic analysis carried out on the same carbonaceous samples. The results revealed some positive and significant relationships, although the use of reflectance as a parameter for following the increase in structural order in natural graphitized samples was subject to limitations. (author)

  11. Halogen Chemistry in the CMAQ Model

    Science.gov (United States)

    Halogens (iodine and bromine) emitted from oceans alter atmospheric chemistry and influence atmospheric ozone mixing ratio. We previously incorporated a representation of detailed halogen chemistry and emissions of organic and inorganic halogen species into the hemispheric Commun...

  12. Microfossils in Carbonaceous Meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2009-01-01

    Microfossils of large filamentous trichomic prokaryotes have been detected during in-situ investigations of carbonaceous meteorites. This research has been carried out using the Field Emission Scanning Electron Microscope (FESEM) to examine freshly fractured interior surfaces of the meteorites. The images obtained reveal that many of these remains are embedded in the meteorite rock matrix. Energy Dispersive X-Ray Spectroscopy (EDS) studies establish that the filamentous microstructures have elemental compositions consistent with the meteorite matrix, but are often encased within carbon-rich electron transparent sheath-like structures infilled with magnesium sulfate. This is consistent with the taphonomic modes of fossilization of cyanobacteria and sulphur bacteria, since the life habits and processes of these microorganisms frequently result in distinctive chemical biosignatures associated with the properties of their cell-walls, trichomes, and the extracellular polymeric substances (EPS) of the sheath. In this paper the evidence for biogenicity presented includes detailed morphological and morphometric data consistent with known characteristics of uniseriate and multiseriate cyanobacteria. Evidence for indigeneity includes the embedded nature of the fossils and elemental compositions inconsistent with modern biocontaminants.

  13. Carbonaceous particles in the atmosphere: A historical perspective to the Fifth International Conference on Carbonaceous Particles in the Atmosphere

    Science.gov (United States)

    Penner, Joyce E.; Novakov, T.

    1996-08-01

    Carbonaceous aerosol species together with sulfates, other water-soluble inorganic compounds, and mineral particles play an important role in a variety of environmental effects. Carbonaceous particles contribute to the extinction of visible light by both scattering and absorption, thus influencing visibility degradation and radiative transfer through the atmosphere. These particles may serve as sites for condensation of water vapor and organic compounds. Components of carbonaceous material may contribute to atmospheric chemical processes because of their chemical and catalytic properties. Many of the original results in this field of research were first presented at the International Conferences on Carbonaceous Particles in the Atmosphere held in Berkeley (1978 and 1987) and in Linz and Vienna, Austria (1983 and 1991, respectively). At the fifth conference, August 23-26, 1994, at Lawrence Berkeley Laboratory, 85 papers were presented. This volume contains papers accepted for publication after peer review. In this introduction we attempt to provide an overview of research on carbonaceous particles from the 1950s to mid-1970s, which provided the backdrop for the first conference. We follow this by outlining research accomplishments and evolution of emphasis (as evidenced by the material presented at these conferences) and by summarizing the present state of this field of research.

  14. Carbonaceous Dye-Sensitized Solar Cell Photoelectrodes.

    Science.gov (United States)

    Batmunkh, Munkhbayar; Biggs, Mark J; Shapter, Joseph G

    2015-03-01

    High photovoltaic efficiency is one of the most important keys to the commercialization of dye sensitized solar cells (DSSCs) in the quickly growing renewable electricity generation market. The heart of the DSSC system is a wide bandgap semiconductor based photoelectrode film that helps to adsorb dye molecules and transport the injected electrons away into the electrical circuit. However, charge recombination, poor light harvesting efficiency and slow electron transport of the nanocrystalline oxide photoelectrode film are major issues in the DSSC's performance. Recently, semiconducting composites based on carbonaceous materials (carbon nanoparticles, carbon nanotubes (CNTs), and graphene) have been shown to be promising materials for the photoelectrode of DSSCs due to their fascinating properties and low cost. After a brief introduction to development of nanocrystalline oxide based films, this Review outlines advancements that have been achieved in the application of carbonaceous-based materials in the photoelectrode of DSSCs and how these advancements have improved performance. In addition, several of the unsolved issues in this research area are discussed and some important future directions are also highlighted.

  15. Radical and Atom Transfer Halogenation (RATH): A Facile Route for Chemical and Polymer Functionalization.

    Science.gov (United States)

    Han, Yi-Jen; Lin, Chia-Yu; Liang, Mong; Liu, Ying-Ling

    2016-05-01

    This work demonstrates a new halogenation reaction through sequential radical and halogen transfer reactions, named as "radical and atom transfer halogenation" (RATH). Both benzoxazine compounds and poly(2,6-dimethyl-1,4-phenylene oxide) have been demonstrated as active species for RATH. Consequently, the halogenated compound becomes an active initiator of atom transfer radical polymerization. Combination of RATH and sequential ATRP provides an convenient and effective approach to prepare reactive and crosslinkable polymers. The RATH reaction opens a new window both to chemical synthesis and molecular design and preparation of polymeric materials.

  16. The Halogen Occultation Experiment

    Science.gov (United States)

    Russell, James M., III; Gordley, Larry L.; Park, Jae H.; Drayson, S. R.; Hesketh, W. D.; Cicerone, Ralph J.; Tuck, Adrian F.; Frederick, John E.; Harries, John E.; Crutzen, Paul J.

    1993-01-01

    The Halogen Occultation Experiment (HALOE) uses solar occultation to measure vertical profiles of O3, HCl, HF, CH4, H2O, NO, NO2, aerosol extinction, and temperature versus pressure with an instantaneous vertical field of view of 1.6 km at the earth limb. Latitudinal coverage is from 80 deg S to 80 deg N over the course of 1 year and includes extensive observations of the Antarctic region during spring. The altitude range of the measurements extends from about 15 km to about 60-130 km, depending on channel. Experiment operations have been essentially flawless, and all performance criteria either meet or exceed specifications. Internal data consistency checks, comparisons with correlative measurements, and qualitative comparisons with 1985 atmospheric trace molecule spectroscopy (ATMOS) results are in good agreement. Examples of pressure versus latitude cross sections and a global orthographic projection for the September 21 to October 15, 1992, period show the utility of CH4, HF, and H2O as tracers, the occurrence of dehydration in the Antarctic lower stratosphere, the presence of the water vapor hygropause in the tropics, evidence of Antarctic air in the tropics, the influence of Hadley tropical upwelling, and the first global distribution of HCl, HF, and NO throughout the stratosphere. Nitric oxide measurements extend through the lower thermosphere.

  17. 无卤阻燃聚合物抑烟的研究进展%Research progress on smoke suppression of halogen free flame retardant polymer materials

    Institute of Scientific and Technical Information of China (English)

    贺春江; 张国文; 潘会鹏; 张宪清; 党佳; 陈传志

    2016-01-01

    综述了近10年来国内外关于无卤阻燃聚合物抑烟的研究进展。主要阐述了聚烯烃、环氧树脂、乙烯-乙酸乙烯共聚物、聚酯、聚氨酯及橡胶等聚合物在抑烟研究方面的最新进展。着重论述了膨胀阻燃剂、金属氢氧化物阻燃剂、实验室合成的新型抑烟剂、膨胀阻燃剂与金属氢氧化物协效阻燃体系,蒙脱土与膨胀阻燃剂协效阻燃体系,金属氧化物与膨胀阻燃剂协效阻燃体系等各组分用量及配比对聚合物烟密度的影响规律,并对它们的抑烟机理进行了讨论。结合目前研究中存在的问题,对无卤阻燃聚合物的抑烟研究方向进行了展望。%This paper reviews the research progress in the last10years on smoke suppression of halogen free flame retardant polymer which include polyolefin, epoxy resin, ethylene-vinyl acetate copolymer, polyester, polyurethane and rubber. The impact of component and ratio of the intumescent flame retardant, metal hydroxide, newly synthesized smoke suppression agents, synergistic system of intumescent flame retardant and metal hydroxide, synergistic system of montmorillonite and intumescent flame retardant, and synergistic system of metal oxide and intumescent flame retardant on the smoke density of these polymer systems are discussed along with the mechanism of smoke suppression. The future development of this technique is forecasted by reference to the issues within.

  18. Effects of carbonaceous materials on anti-sintering ability and slag penetration resistance of magnesia based dry vibrating materials for tundish%碳质材料对中间包镁质干式料抗烧结性和抗渣渗透性的影响

    Institute of Scientific and Technical Information of China (English)

    王林; 李志坚; 周清德; 吴锋; 亓华涛; 唐建平

    2014-01-01

    To solve the problems of over-sintering and poor slag penetration resistance during application, four carbonaceous materials (3%,in mass,the same hereinafter)were added separately into the magne-sia based dry vibrating materials which were prepared with sintered magnesia crushed aggregates as main starting material,adding 5% solid phenol resin as low temperature binder and 1% natron as medium temperature binder.The four carbonaceous materials were metallurgical coke powders,used electrodes, crushed petrol coke,and flake graphite,respectively.The results show that each of the four materials can improve the anti-sintering ability and slag penetration resistance of magnesia based dry vibrating materials for tundish,and the effect of 3% used electrodes is the best.%为解决中间包用镁质干式料在使用过程中的烧结严重和抗渣渗透性能差的问题,以烧结镁砂碎料为主料,5%(w)固体酚醛树脂为低温结合剂,1%(w)泡碱为中温结合剂,研究按w(C)≈3%分别加入冶金焦粉、废电极、碎石油焦或鳞片石墨四种碳质材料对镁质干式料性能的影响。结果表明:向镁质干式料中加入四种碳质材料的任一种,均能显著提高其抗烧结性能和抗渣渗透性,其中加入3%(w)废电极的最好。

  19. Structural perspective on enzymatic halogenation.

    Science.gov (United States)

    Blasiak, Leah C; Drennan, Catherine L

    2009-01-20

    Simple halogen substituents frequently afford key structural features that account for the potency and selectivity of natural products, including antibiotics and hormones. For example, when a single chlorine atom on the antibiotic vancomycin is replaced by hydrogen, the resulting antibacterial activity decreases by up to 70% ( Harris , C. M. ; Kannan , R. ; Kopecka , H. ; Harris , T. M. J. Am. Chem. Soc. 1985 , 107 , 6652 - 6658 ). This Account analyzes how structure underlies mechanism in halogenases, the molecular machines designed by nature to incorporate halogens into diverse substrates. Traditional synthetic methods of integrating halogens into complex molecules are often complicated by a lack of specificity and regioselectivity. Nature, however, has developed a variety of elegant mechanisms for halogenating specific substrates with both regio- and stereoselectivity. An improved understanding of the biological routes toward halogenation could lead to the development of novel synthetic methods for the creation of new compounds with enhanced functions. Already, researchers have co-opted a fluorinase from the microorganism Streptomyces cattleya to produce (18)F-labeled molecules for use in positron emission tomography (PET) ( Deng , H. ; Cobb , S. L. ; Gee , A. D. ; Lockhart , A. ; Martarello , L. ; McGlinchey , R. P. ; O'Hagan , D. ; Onega , M. Chem. Commun. 2006 , 652 - 654 ). Therefore, the discovery and characterization of naturally occurring enzymatic halogenation mechanisms has become an active area of research. The catalogue of known halogenating enzymes has expanded from the familiar haloperoxidases to include oxygen-dependent enzymes and fluorinases. Recently, the discovery of a nucleophilic halogenase that catalyzes chlorinations has expanded the repertoire of biological halogenation chemistry ( Dong , C. ; Huang , F. ; Deng , H. ; Schaffrath , C. ; Spencer , J. B. ; O'Hagan , D. ; Naismith , J. H. Nature 2004 , 427 , 561 - 565 ). Structural

  20. Microporous-mesoporous carbons for energy storage synthesized by activation of carbonaceous material by zinc chloride, potassium hydroxide or mixture of them

    Science.gov (United States)

    Härmas, M.; Thomberg, T.; Kurig, H.; Romann, T.; Jänes, A.; Lust, E.

    2016-09-01

    Various electrochemical methods have been applied to establish the electrochemical characteristics of the electrical double layer capacitor (EDLC) consisting of the 1 M triethylmethylammonium tetrafluoroborate solution in acetonitrile and activated carbon based electrodes. Activated microporous carbon materials used for the preparation of electrodes have been synthesized from the hydrothermal carbonization product (HTC) prepared via hydrothermal carbonization process of D-(+)-glucose solution in H2O, followed by activation with ZnCl2, KOH or their mixture. Highest porosity and Brunauer-Emmett-Teller specific surface area (SBET = 2150 m2 g-1), micropore surface area (Smicro = 2140 m2 g-1) and total pore volume (Vtot = 1.01 cm3 g-1) have been achieved for HTC activated using KOH with a mass ratio of 1:4 at 700 °C. The correlations between SBET, Smicro, Vtot and electrochemical characteristics have been studied to investigate the reasons for strong dependence of electrochemical characteristics on the synthesis conditions of carbon materials studied. Wide region of ideal polarizability (ΔV ≤ 3.0 V), very short characteristic relaxation time (0.66 s), and high specific series capacitance (134 F g-1) have been calculated for the mentioned activated carbon material, demonstrating that this system can be used for completing the EDLC with high energy- and power densities.

  1. Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces.

    Science.gov (United States)

    Liu, Jing; Cheney, Marcos A; Wu, Fan; Li, Meng

    2011-02-15

    A systematic theoretical study using density functional theory is performed to provide molecular-level understanding of the effects of chemical functional groups on mercury adsorption on carbonaceous surfaces. The zigzag and armchair edges were used in modeling the carbonaceous surfaces to simulate different adsorption sites. The edge atoms on the upper side of the models are unsaturated to simulate active sites. All calculations (optimizations, energies, and frequencies) were made at B3PW91 density functional theory level, using RCEP60VDZ basis set for mercury and 6-31G(d) pople basis set for other atoms. The results indicate that the embedding of halogen atom can increase the activity of its neighboring site which in turn increases the adsorption capacity of the carbonaceous surface for Hg(0). The adsorption belongs to chemisorptions, which is in good agreement with the experimental results. For the effects of oxygen functional groups, lactone, carbonyl and semiquinone favor Hg(0) adsorption because they increase the neighboring site's activity for mercury adsorption. On the contrary, phenol and carboxyl functional groups show a physisorption of Hg(0), and reduce Hg capture. This result can explain the seemingly conflicting experimental results reported in the literature concerning the influence of oxygen functional groups on mercury adsorption on carbonaceous surface.

  2. Carbonaceous Matter in Growing Nanoparticles

    Science.gov (United States)

    Johnston, M. V.; Stangl, C. M.; Horan, A. J.

    2015-12-01

    Atmospheric nanoparticles constitute the greatest portion of ambient aerosol loading by number. A major source of atmospheric nanoparticles is new particle formation (NPF), a gas to particle conversion process whereby clusters nucleate from gas phase precursors to form clusters on the order of one or a few nanometers and then grow rapidly to climatically relevant sizes. A substantial fraction of cloud condensation nuclei (CCN) are thought to arise from NPF. In order to better predict the frequency, growth rates, and climatic impacts of NPF, knowledge of the chemical mechanisms by which nucleated nanoparticles grow is needed. The two main contributors to particle growth are (neutralized) sulfate and carbonaceous matter. Particle growth by sulfuric acid condensation is generally well understood, though uncertainty remains about the extent of base neutralization and the relative roles of ammonia and amines. Much less is known about carbonaceous matter, and field measurements suggest that nitrogen-containing species are important. In this presentation, recent work by our group will be described that uses a combination of ambient measurements, laboratory experiments and computational work to study carbonaceous matter in growing nanoparticles. These studies span a range of particle sizes from the initial adsorption of molecules onto a nanometer-size ammonium bisulfate seed cluster to reactions in particles that are large enough to support condensed-phase chemistry.

  3. 40 CFR 721.8675 - Halogenated pyridines.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated pyridines. 721.8675... Substances § 721.8675 Halogenated pyridines. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated pyridine (PMN P-83-1163)...

  4. Fine tuning of graphene properties by modification with aryl halogens

    Science.gov (United States)

    Bouša, D.; Pumera, M.; Sedmidubský, D.; Šturala, J.; Luxa, J.; Mazánek, V.; Sofer, Z.

    2016-01-01

    Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties.Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06295k

  5. Principles and applications of halogen bonding in medicinal chemistry and chemical biology.

    Science.gov (United States)

    Wilcken, Rainer; Zimmermann, Markus O; Lange, Andreas; Joerger, Andreas C; Boeckler, Frank M

    2013-02-28

    Halogen bonding has been known in material science for decades, but until recently, halogen bonds in protein-ligand interactions were largely the result of serendipitous discovery rather than rational design. In this Perspective, we provide insights into the phenomenon of halogen bonding, with special focus on its role in drug discovery. We summarize the theoretical background defining its strength and directionality, provide a systematic analysis of its occurrence and interaction geometries in protein-ligand complexes, and give recent examples where halogen bonding has been successfully harnessed for lead identification and optimization. In light of these data, we discuss the potential and limitations of exploiting halogen bonds for molecular recognition and rational drug design.

  6. Modeling orbital gamma-ray spectroscopy experiments at carbonaceous asteroids

    Science.gov (United States)

    Lim, Lucy F.; Starr, Richard D.; Evans, Larry G.; Parsons, Ann M.; Zolensky, Michael E.; Boynton, William V.

    2017-01-01

    To evaluate the feasibility of measuring differences in bulk composition among carbonaceous meteorite parent bodies from an asteroid or comet orbiter, we present the results of a performance simulation of an orbital gamma-ray spectroscopy (GRS) experiment in a Dawn-like orbit around spherical model asteroids with a range of carbonaceous compositions. The orbital altitude was held equal to the asteroid radius for 4.5 months. Both the asteroid gamma-ray spectrum and the spacecraft background flux were calculated using the MCNPX Monte-Carlo code. GRS is sensitive to depths below the optical surface (to ≈20-50 cm depth depending on material density). This technique can therefore measure underlying compositions beneath a sulfur-depleted (e.g., Nittler et al.) or desiccated surface layer. We find that 3σ uncertainties of under 1 wt% are achievable for H, C, O, Si, S, Fe, and Cl for five carbonaceous meteorite compositions using the heritage Mars Odyssey GRS design in a spacecraft-deck-mounted configuration at the Odyssey end-of-mission energy resolution, FWHM = 5.7 keV at 1332 keV. The calculated compositional uncertainties are smaller than the compositional differences between carbonaceous chondrite subclasses.

  7. Halogen Bonding in Organic Synthesis and Organocatalysis.

    Science.gov (United States)

    Bulfield, David; Huber, Stefan M

    2016-10-01

    Halogen bonding is a noncovalent interaction similar to hydrogen bonding, which is based on electrophilic halogen substituents. Hydrogen-bonding-based organocatalysis is a well-established strategy which has found numerous applications in recent years. In light of this, halogen bonding has recently been introduced as a key interaction for the design of activators or organocatalysts that is complementary to hydrogen bonding. This Concept features a discussion on the history and electronic origin of halogen bonding, summarizes all relevant examples of its application in organocatalysis, and provides an overview on the use of cationic or polyfluorinated halogen-bond donors in halide abstraction reactions or in the activation of neutral organic substrates.

  8. Discussion on Coal-base Carbonaceous Material and Activated Carbon Preparation and Properties%煤基碳质反应剂与活性炭的制备和性能

    Institute of Scientific and Technical Information of China (English)

    李晋萍

    2013-01-01

    利用先锋褐煤为原料制备碳质反应剂,采用湿法工艺脱硫除铁,解决了木炭来源对生态所造成的破坏。控制一定的酸度、浓度和液固比,利用水蒸汽活化法制备标准的活性炭。在使用了特制的添加剂后,随着活化温度的升高,各种添加剂成分具有一定的协同作用,使活化时间延长,符合产品质量的要求,提高活化温度使所需活性炭的强度。通过脱硫除杂后工业实验表明,利用活性炭的吸附性或者催化性,能够将其运用于广泛的工业领域,是今后发展特异用途很重要一点。充分利用和开发活性炭的用途,具有重要的社会、经济以及环保效益。%The use of Xianfeng brown coal as raw material to prepare carbonaceous material by wet process of FGD, iron, solves the charcoal sources caused damage to the ecology. Control of acidity, concentration and ratio of liquid to solid, using steam method for preparation of activated carbon standard. In the use of special additives, along with the activation temperature, various additive components has a synergistic effect, so the activation time, meet the requirement of product quality, improve the activation temperature so that the required activated carbon intensity. Through the desulfurization after impurity removal from industrial experiments, the use of activated carbon adsorption or catalysis, can be applied to a wide range of industries, is the future development of specific use is very important. Make full use of and develop the use of activated carbon, has important social, economic and environmental benefits.

  9. Bacterial Paleontology and Studies of Carbonaceous Chondrites

    Science.gov (United States)

    Gerasimenko, L. M.; Hoover, Richard B.; Rozanov, Alexei Y.; Zhegallo, E. A.; Zhmur, S. I.

    1999-01-01

    The study of the fossilization processes of modern cyanobacteria provides insights needed to recognize bacterial microfossils. The fossilization of cyanobacteria is discussed and images of recent and fossil bacteria and cyanobacteria from the Early Proterozoic to Neogene carbonaceous rocks (kerites, shungites, and black shales) and phosphorites are provided. These are compared with biomorphic microstructures and possible microfossils encountered in-situ in carbonaceous meteorites.

  10. Organic matter in carbonaceous meteorites: past, present and future research.

    Science.gov (United States)

    Sephton, Mark A

    2005-12-15

    Carbonaceous meteorites are fragments of ancient asteroids that have remained relatively unprocessed since the formation of the Solar System. These carbon-rich objects provide a record of prebiotic chemical evolution and a window on the early Solar System. Many compound classes are present reflecting a rich organic chemical environment during the formation of the planets. Recent theories suggest that similar extraterrestrial organic mixtures may have acted as the starting materials for life on Earth.

  11. 含再生材料的PC/PET无卤阻燃合金加工稳定性%Processing Stability of Recycled Materials PC/PET Alloy Containing Halogen-Free Flame Retardant

    Institute of Scientific and Technical Information of China (English)

    高磊; 李强; 李文强; 罗明华

    2016-01-01

    通过对再生聚对苯二甲酸乙二酯(PET–R)的多次挤出,研究了扩链对PET–R稳定性的影响。同时,也通过多次挤出和多次注塑的Regrind实验,研究了丙烯腈–苯乙烯塑料接枝甲基丙烯酸缩水甘油酯(AS-g-GMA)加入后再生聚碳酸酯(PC)/PET体系的相容性和稳定性,以及熔体流动速率和冲击强度的变化。通过11个月内的生产数据反映出,经过扩链和稳定化处理后的含再生材料的PC/PET无卤阻燃合金具有很好的加工稳定性。%The influence of chain extending on the stability of recycled polyethylene terephthalate (PET–R) was studied by multi-extrusion experiment. Meanwhile the changes of compatibility, stability, melt flow rate and impact strength of recycled polycarbonate (PC–R)/PET–R alloy after adding acrylonitrile-styrene grafted glycidyl methacrylate (AS-g-GMA) was discussed through multi-extrusion and multi-injection Regrind experiments. The production data of eleven months indicates that after the process of chain extending and stabilizing, the halogen-free flame retardant PC/PET alloy containing recycled materials has better stabilization.

  12. Synthesis of Soluble Halogenated Polyphenylenes. Mechanism for the Coupling Halogenated Lithiobenzenes

    Science.gov (United States)

    1993-11-22

    the halogen content in these polymers was lowered using larger amounts of tert- butyllithium. TGA analysis (N2 , 20C/rmin) of I1 showed a 10% weight...iodide for every three aryl rings. DSC analysis (N2 , 20°C/min) for 1 8 showed no transitions on either the first or second heating scans to 230"C. TGA ... analysis (N2. 20C/rmin) showed a 10% weight loss at 3220C and char yields of 46% at 900"C. Visual analysis of the charred material did indicate that

  13. Structure and properties of carbonaceous adsorbents obtained from furanformolites

    Energy Technology Data Exchange (ETDEWEB)

    Pokonova, Y.B.; Oleinik, M.S.; Proskuryakov, V.A.

    1982-12-10

    We have shown previously (1) that a new copolycondensate based on petroleum residues -- fuaranformolite -- is a valuable carbon-containing raw material by the use of which carbonaceous adsorbents have been obtained. The latter can be used as catalysts and catalyst supports and also for the fine purification and separation of gases. The present paper is devoted to the study of the porous structure and sorption characteristics of the adsorbents obtained. High-strength carbonaceous adsorbents obtained from new copolymers of asphaltite -- fuaranformolites may, depending on the degree of burn-off, be used for the adsorption of poorly sorbed gases, of vapors of organic solvents, and of substances from solution. By varying the composition of the copolymer it is possible to direct the formation of the porous structure of the adsorbents in a desired manner.

  14. Organic Chemistry of Carbonaceous Meteorites

    Science.gov (United States)

    Cronin, John R.

    2001-01-01

    Chiral and carbon-isotopic analyses of isovaline have been carried out on numerous samples of the Murchison and one sample of the Murray carbonaceous chondrite. The isovaline was found to be heterogeneous with regard to enantiomeric excess (ee) both between samples and within a single Murchison sample. L-Excesses ranging from 0 to 15% were observed. The isovaline delta(sup 13) C was found to be about +18%. No evidence was obtained suggesting terrestrial contamination in the more abundant L-enantiomer. A correlation was observed between isovaline (also alpha - aminoisobutyric acid) concentration and PCP content of five CM chondrites. It is suggested that isovaline, along with other meteoritic a-methyl amino acids with ee, are of presolar origin. The possible formation of ee in extraterrestrial amino acids by exposure to circularly polarized light or by magnetochiral photochemistry is discussed. Key words: Murchison meteorite, Murray meteorite, amino acids, isovaline, chirality, carbon isotopes, PCP.

  15. Distinct Distribution of Purines in CM and CR Carbonaceous Chondrites

    Science.gov (United States)

    Callahan, Michael P.; Stern, Jennifer C.; Glavin, Daniel P.; Smith, Karen E.; Martin, Mildred G.; Dworkin, Jason P.

    2010-01-01

    Carbonaceous meteorites contain a diverse suite of organic molecules and delivered pre biotic organic compounds, including purines and pyrimidines, to the early Earth (and other planetary bodies), seeding it with the ingredients likely required for the first genetic material. We have investigated the distribution of nucleobases in six different CM and CR type carbonaceous chondrites, including fivc Antarctic meteorites never before analyzed for nucleobases. We employed a traditional formic acid extraction protocol and a recently developed solid phase extraction method to isolate nucleobases. We analyzed these extracts by high performance liquid chromatography with UV absorbance detection and tandem mass spectrometry (HPLC-UV -MS/MS) targeting the five canonical RNAIDNA bases and hypoxanthine and xanthine. We detected parts-per-billion levels of nucleobases in both CM and CR meteorites. The relative abundances of the purines found in Antarctic CM and CR meteorites were clearly distinct from each other suggesting that these compounds are not terrestrial contaminants. One likely source of these purines is formation by HCN oligomerization (with other small molecules) during aqueous alteration inside the meteorite parent body. The detection of the purines adenine (A), guanine (0), hypoxanthine (HX), and xanthine (X) in carbonaceous meteorites indicates that these compounds should have been available on the early Earth prior to the origin of the first genetic material.

  16. Development of Super Toughened Halogen-free Flame Retardant PA6 Riot Suit Special Material%超韧无卤阻燃尼龙6防暴服专用料的研制

    Institute of Scientific and Technical Information of China (English)

    刘志; 马璐; 宋航

    2015-01-01

    Super toughened halogen-free flame retardant nylon(PA) 6 flame was prepared by adding different components using twin-screw extrusion process. The effects of different viscosity nylon 6,toughening agents,flame retardants and processing technology on the material properties were studied. The results show that the material can obtain optimum impact resistance and processability by mixxing middle viscosity PA6 with low viscosity PA6;the toughening effect is the best when adding 15 parts POE-g-MAH;red phosphorus masterbatch of small size and high phosphorus content has good flame retardancy and less impact on the mechanical properties of the system;Mg(OH)2 has a good synergistic effect of flame and smoke,and the optimal content is three parts;appropriate screw combination can improve flame stability of the system.%采用双螺杆挤出加工工艺,通过添加不同组分制得超韧无卤阻燃尼龙(PA)6材料,比较了不同黏度PA6、增韧剂、阻燃剂及加工工艺对材料性能的影响。结果表明,中黏搭配低黏PA6材料可获得最佳的冲击性能和加工性能;在添加15份马来酸酐接枝乙烯–辛烯共聚物增韧剂时增韧效果最好;小粒径、高含量(红磷)红磷母粒的阻燃效果较好且对体系的力学性能影响较小;Mg(OH)2具有很好的协效阻燃和消烟作用,在添加量为3份时效果最佳;适当的螺杆组合可提高体系的阻燃稳定性。

  17. Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites

    Science.gov (United States)

    Budde, Gerrit; Burkhardt, Christoph; Brennecka, Gregory A.; Fischer-Gödde, Mario; Kruijer, Thomas S.; Kleine, Thorsten

    2016-11-01

    Nucleosynthetic isotope anomalies are powerful tracers to determine the provenance of meteorites and their components, and to identify genetic links between these materials. Here we show that chondrules and matrix separated from the Allende CV3 chondrite have complementary nucleosynthetic Mo isotope anomalies. These anomalies result from the enrichment of a presolar carrier enriched in s-process Mo into the matrix, and the corresponding depletion of this carrier in the chondrules. This carrier most likely is a metal and so the uneven distribution of presolar material probably results from metal-silicate fractionation during chondrule formation. The Mo isotope anomalies correlate with those reported for W isotopes on the same samples in an earlier study, suggesting that the isotope variations for both Mo and W are caused by the heterogeneous distribution of the same carrier. The isotopic complementary of chondrules and matrix indicates that both components are genetically linked and formed together from one common reservoir of solar nebula dust. As such, the isotopic data require that most chondrules formed in the solar nebula and are not a product of protoplanetary impacts. Allende chondrules and matrix together with bulk carbonaceous chondrites and some iron meteorites (groups IID, IIIF, and IVB) show uniform excesses in 92Mo, 95Mo, and 97Mo that result from the addition of supernova material to the solar nebula region in which these carbonaceous meteorites formed. Non-carbonaceous meteorites (enstatite and ordinary chondrites as well as most iron meteorites) do not contain this material, demonstrating that two distinct Mo isotope reservoirs co-existed in the early solar nebula that remained spatially separated for several million years. This separation was most likely achieved through the formation of the gas giants, which cleared the disk between the inner and outer solar system regions parental to the non-carbonaceous and carbonaceous meteorites. The Mo isotope

  18. Understanding the Organo-Carbonate Associations in Carbonaceous Chondrites with the Use of Micro-Raman Analysis

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.

    2015-01-01

    Carbonates can potentially provide sites for organic materials to accrue and develop into complex macromolecules. This study examines the organics associated with carbonates in carbonaceous chondrites using micron-Raman imaging.

  19. Modeling Orbital Gamma-Ray Spectroscopy Experiments at Carbonaceous Asteroids

    CERN Document Server

    Lim, Lucy F; Evans, Larry G; Parsons, Ann M; Zolensky, Michael E; Boynton, William V

    2016-01-01

    To evaluate the feasibility of measuring differences in bulk composition among carbonaceous meteorite parent bodies from an asteroid or comet orbiter, we present the results of a performance simulation of an orbital gamma-ray spectroscopy ("GRS") experiment in a Dawn-like orbit around spherical model asteroids with a range of carbonaceous compositions. The orbital altitude was held equal to the asteroid radius for 4.5 months. Both the asteroid gamma-ray spectrum and the spacecraft background flux were calculated using the MCNPX Monte-Carlo code. GRS is sensitive to depths below the optical surface (to ~20--50 cm depth depending on material density). This technique can therefore measure underlying compositions beneath a sulfur-depleted (e.g., Nittler et al. 2001) or desiccated surface layer. We find that 3\\sigma\\ uncertainties of under 1 wt% are achievable for H, C, O, Si, S, Fe, and Cl for five carbonaceous meteorite compositions using the heritage Mars Odyssey GRS design in a spacecraft- deck-mounted configu...

  20. Indigenous Carbonaceous Matter in the Nakhla Mars Meteorite

    Science.gov (United States)

    Clemett, S. J.; Thomas-Keprta, K. L.; Rahman, Z.; Le, L.; Wentworth, S. J.; Gibson, E. K.; McKay, D. S.

    2016-01-01

    Detailed microanalysis of the Martian meteorite Nakhla has shown there are morphologically distinct carbonaceous features spatially associated with low-T aqueous alteration phases including salts and id-dingsite. A comprehensive suite of analytical instrumentation including optical microscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, focused ion beam (FIB) microscopy, transmission electron microscopy (TEM), two-step laser mass spectrometry (mu-L(sup 2)MS), laser mu-Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and nanoscale secondary ion mass spectrometry (NanoSIMS) are being used to characterize the carbonaceous matter and host mineralogy. The search for carbonaceous matter on Mars has proved challenging. Viking Landers failed to unambiguously detect simple organics at either of the two landing sites although the Martian surface is estimated to have acquired at least 10(exp15) kg of C as a consequence of meteoritic accretion over the last several Ga. The dearth of organics at the Martian surface has been attributed to various oxidative processes including UV photolysis and peroxide activity. Consequently, investigations of Martian organics need to be focused on the sub-surface regolith where such surface processes are either severely attenuated or absent. Fortuitously since Martian meteorites are derived from buried regolith materials they provide a unique opportunity to study Martian organic geochemistry.

  1. Carbonaceous aerosols in Norwegian urban areas

    Directory of Open Access Journals (Sweden)

    K. E. Yttri

    2009-03-01

    Full Text Available Little is known regarding levels and source strength of carbonaceous aerosols in Scandinavia. In the present study, ambient aerosol (PM10 and PM2.5 concentrations of elemental carbon (EC, organic carbon (OC, water-insoluble organic carbon (WINSOC, and water-soluble organic carbon (WSOC are reported for a curbside site, an urban background site, and a suburban site in Norway in order to investigate their spatial and seasonal variations. Aerosol filter samples were collected using tandem filter sampling to correct for the positive sampling artefact introduced by volatile and semivolatile OC. Analyses were performed using the thermal optical transmission (TOT instrument from Sunset Lab Inc., which corrects for charring during analysis. Finally, we estimated the relative contribution of OC from wood burning based on the samples content of levoglucosan.

    Levels of EC varied by more than one order of magnitude between sites, likely due to the higher impact of vehicular traffic at the curbside and the urban background sites. In winter, the level of particulate organic carbon (OCp at the suburban site was equal to (for PM10 or even higher (for PM2.5 than the levels observed at the curbside and the urban background sites. This finding was attributed to the impact of residential wood burning at the suburban site in winter, which was confirmed by a high mean concentration of levoglucosan (407 ng m−3. This finding indicates that exposure to primary combustion derived OCp could be equally high in residential areas as in a city center. It is demonstrated that OCp from wood burning (OCwood accounted for almost all OCp at the suburban site in winter, allowing a new estimate of the ratio TCp/levoglucosan for both PM10 and PM2.5. Particulate carbonaceous material (PCM

  2. Stereoselective Halogenation in Natural Product Synthesis.

    Science.gov (United States)

    Chung, Won-jin; Vanderwal, Christopher D

    2016-03-24

    At last count, nearly 5000 halogenated natural products have been discovered. In approximately half of these compounds, the carbon atom to which the halogen is bound is sp(3) -hybridized; therefore, there are an enormous number of natural products for which stereocontrolled halogenation must be a critical component of any synthesis strategy. In this Review, we critically discuss the methods and strategies used for stereoselective introduction of halogen atoms in the context of natural product synthesis. Using the successes of the past, we also attempt to identify gaps in our synthesis technology that would aid the synthesis of halogenated natural products, as well as existing methods that have not yet seen application in complex molecule synthesis. The chemistry described herein demonstrates yet again how natural products continue to provide the inspiration for critical advances in chemical synthesis.

  3. Halogen versus halide electronic structure

    Institute of Scientific and Technical Information of China (English)

    Willem-Jan; van; Zeist; F.Matthias; Bickelhaupt

    2010-01-01

    Halide anions X-are known to show a decreasing proton affinity(PA),as X descends in the periodic table along series F,Cl,Br and I.But it is also well-known that,along this series,the halogen atom X becomes less electronegative(or more electropositive).This corresponds to an increasing energy of the valence np atomic orbital(AO) which,somewhat contradictorily,suggests that the electron donor capability and thus the PA of the halides should increase along the series F,Cl,Br,I.To reconcile these contradictory observations,we have carried out a detailed theoretical analysis of the electronic structure and bonding capability of the halide anions X-as well as the halogen radicals X-,using the molecular orbital(MO) models contained in Kohn-Sham density functional theory(DFT,at SAOP/TZ2P as well as OLYP/TZ2P levels) and ab initio theory(at the HF/TZ2P level).We also resolve an apparent intrinsic contradiction in Hartree-Fock theory between orbital-energy and PA trends.The results of our analyses are of direct relevance for understanding elementary organic reactions such as nucleophilic substitution(SN2) and base-induced elimination(E2) reactions.

  4. Artifact free denuder method for sampling of carbonaceous aerosols

    Science.gov (United States)

    Mikuška, P.; Vecera, Z.; Broškovicová, A.

    2003-04-01

    Over the past decade, a growing attention has been focused on the carbonaceous aerosols. Although they may account for 30--60% of the total fine aerosol mass, their concentration and formation mechanisms are not well understood, particularly in comparison with major fine particle inorganic species. The deficiency in knowledge of carbonaceous aerosols results from their complexity and because of problems associated with their collection. Conventional sampling techniques of the carbonaceous aerosols, which utilize filters/backup adsorbents suffer from sampling artefacts. Positive artifacts are mainly due to adsorption of gas-phase organic compounds by the filter material or by the already collected particles, whereas negative artifacts arise from the volatilisation of already collected organic compounds from the filter. Furthermore, in the course of the sampling, the composition of the collected organic compounds may be modified by oxidants (O_3, NO_2, PAN, peroxides) that are present in the air passing through the sampler. It is clear that new, artifact free, method for sampling of carbonaceous aerosols is needed. A combination of a diffusion denuder and a filter in series is very promising in this respect. The denuder is expected to collect gaseous oxidants and gas-phase organic compounds from sample air stream prior to collection of aerosol particles on filters, and eliminate thus both positive and negative sampling artifacts for carbonaceous aerosols. This combination is subject of the presentation. Several designs of diffusion denuders (cylindrical, annular, parallel plate, multi-channel) in combination with various types of wall coatings (dry, liquid) were examined. Special attention was given to preservation of the long-term collection efficiency. Different adsorbents (activated charcoal, molecular sieve, porous polymers) and sorbents coated with various chemical reagents (KI, Na_2SO_3, MnO_2, ascorbic acid) or chromatographic stationary phases (silicon oils

  5. Halogen bond: a long overlooked interaction.

    Science.gov (United States)

    Cavallo, Gabriella; Metrangolo, Pierangelo; Pilati, Tullio; Resnati, Giuseppe; Terraneo, Giancarlo

    2015-01-01

    Because of their high electronegativity, halogen atoms are typically considered, in most of their derivatives, as sites of high electron density and it is commonly accepted that they can form attractive interactions by functioning as the electron donor site (nucleophilic site). This is the case when they work as hydrogen bond acceptor sites. However, the electron density in covalently bound halogens is anisotropically distributed. There is a region of higher electron density, accounting for the ability of halogens to function as electron donor sites in attractive interactions, and a region of lower electron density where the electrostatic potential is frequently positive (mainly in the heavier halogens). This latter region is responsible for the ability of halogen atoms to function as the electron-acceptor site (electrophilic site) in attractive interactions formed with a variety of lone pair-possessing atoms, anions, and π-systems. This ability is quite general and is shown by a wide diversity of halogenated compounds (e.g., organohalogen derivatives and dihalogens). According to the definition proposed by the International Union of Pure and Applied Chemistry, any attractive interactions wherein the halogen atom is the electrophile is named halogen bond (XB). In this chapter, it is discussed how the practice and the concept of XB developed and a brief history of the interaction is presented. Papers (either from the primary or secondary literature) which have reported major experimental findings in the field or which have given important theoretical contributions for the development of the concept are recollected in order to trace how a unifying and comprehensive categorization emerged encompassing all interactions wherein halogen atoms function as the electrophilic site.

  6. Does fluorine participate in halogen bonding?

    Science.gov (United States)

    Eskandari, Kiamars; Lesani, Mina

    2015-03-16

    When R is sufficiently electron withdrawing, the fluorine in the R-F molecules could interact with electron donors (e.g., ammonia) and form a noncovalent bond (F⋅⋅⋅N). Although these interactions are usually categorized as halogen bonding, our studies show that there are fundamental differences between these interactions and halogen bonds. Although the anisotropic distribution of electronic charge around a halogen is responsible for halogen bond formations, the electronic charge around the fluorine in these molecules is spherical. According to source function analysis, F is the sink of electron density at the F⋅⋅⋅N BCP, whereas other halogens are the source. In contrast to halogen bonds, the F⋅⋅⋅N interactions cannot be regarded as lump-hole interactions; there is no hole in the valence shell charge concentration (VSCC) of fluorine. Although the quadruple moment of Cl and Br is mainly responsible for the existence of σ-holes, it is negligibly small in the fluorine. Here, the atomic dipole moment of F plays a stabilizing role in the formation of F⋅⋅⋅N bonds. Interacting quantum atoms (IQA) analysis indicates that the interaction between halogen and nitrogen in the halogen bonds is attractive, whereas it is repulsive in the F⋅⋅⋅N interactions. Virial-based atomic energies show that the fluorine, in contrast to Cl and Br, stabilize upon complex formation. According to these differences, it seems that the F⋅⋅⋅N interactions should be referred to as "fluorine bond" instead of halogen bond.

  7. Carbonaceous Components in the Comet Halley Dust

    Science.gov (United States)

    Fomenkova, M. N.; Chang, S.; Mukhin, L. M.

    1994-01-01

    Cometary grains containing large amounts of carbon and/or organic matter (CHON) were discovered by in situ measurements of comet Halley dust composition during VEGA and GIOTTO flyby missions. In this paper, we report the classification of these cometary, grains by means of cluster analysis, discuss the resulting compositional groups, and compare them with substances observed or hypothesized in meteorites, interplanetary dust particles, and the interstellar medium. Grains dominated by carbon and/or organic matter (CHON grains) represent approx. 22% of the total population of measured cometary dust particles. They, usually contain a minor abundance of rock-forming elements as well. Grains having organic material are relatively more abundant in the vicinity of the nucleus than in the outer regions of the coma, which suggests decomposition of the organics in the coma environment. The majority of comet Halley organic particles are multicomponent mixtures of carbon phases and organic compounds. Possibly, the cometary CHON grains may be related to kerogen material of an interstellar origin in carbonaceous meteorites. Pure carbon grains, hydrocarbons and polymers of cyanopolyynes, and multi-carbon monoxides are present in cometary dust as compositionally simple and distinctive components among a variety of others. There is no clear evidence of significant presence of pure formaldehyde or HCN polymers in Halley dust particles. The diversity of types of cometary organic compounds is consistent with the inter-stellar dust model of comets and probably reflects differences in composition of precursor dust. Preservation of this heterogeneity among submicron particles suggest the gentle formation of cometary, nucleus by aggregation of interstellar dust in the protosolar nebula without complete mixing or chemical homogenization at the submicron level.

  8. The carbonaceous concrete based on sawdust

    Directory of Open Access Journals (Sweden)

    BELOUSOVA Elena Sergeevna

    2015-06-01

    Full Text Available Today there are many requirements for strength, ecology and economy of produced concretes. The authors of the paper study attenuation of electromagnetic radiation of carbonaceous powders in the concrete composition. Carbon black was selected as a carbon powder for addition in concrete composition. Carbon black is a nanomaterial with disoriented structure of particles (average size is about 50 nm. The composition of the carbon black contains at least 90 wt.% amorphous carbon, more than 5 wt. % chemisorbed oxygen and about 4 wt.% of impurities. Materials with the addition of carbon black have electrical conductivity due to the high content of carbon. These materials are able to absorb electromagnetic radiation. For cement composition with addition of carbon black (more than 30 wt. % and water transmission coefficient of electromagnetic radiation is about –10 dB, for cement composition with 20 wt. % of carbon black the reflection coefficient is –8 dB in the frequency range 8–12 GHz. The concretes with a saturated aqueous solution of calcium chloride and 10% of carbon black possess minimal reflection coefficient (–14... –8 dB. Electromagnetic radiation shielding of concrete with the addition of sawdust was investigated. The concrete with sawdust (40 wt. % impregnated with an aqueous solution with carbon black has the reflection coefficient less than –8 dB and transmission coefficient –40 dB in the frequency range 8–12 GHz. These concretes can be used for creation of a shielded room with the technical equipment for information processing to prevent data leakage through the compromising emanations and crosstalk.

  9. 40Ar/39Ar Ages of Carbonaceous Xenoliths in 2 HED Meteorites

    Science.gov (United States)

    Turrin, B.; Lindsay, F. N.; Park, J.; Herzog, G. F.; Delaney, J. S.; Swisher, C. C., III; Johnson, J.; Zolensky, M.

    2016-01-01

    The generally young K/Ar and 40Ar/39Ar ages of CM chondrites made us wonder whether carbonaceous xenoliths (CMX) entombed in Howardite–Eucrite–Diogenite (HED) meteorites might retain more radiogenic 40Ar than do ‘free-range’ CM-chondrites. To find out, we selected two HED breccias with carbonaceous inclusions in order to compare the 40Ar/39Ar release patterns and ages of the inclusions with those of nearby HED material. Carbonaceous inclusions (CMXs) in two HED meteorites lost a greater fraction of radiogenic 40Ar than did surrounding host material, but a smaller fraction of it than did free-range CM-chondrites such as Murchison or more heavily altered ones. Importantly, however, the siting of the CMXs in HED matrix did not prevent the 40Ar loss of about 40 percent of the radiogenic 40Ar, even from phases that degas at high laboratory temperatures. We infer that carbonaceous asteroids with perihelia of 1 astronomical unit probably experience losses of at least this size. The usefulness of 40Ar/39Ar dating for samples returned from C-type asteroids may hinge, therefore, on identifying and analyzing separately small quantities of the most retentive phases of carbonaceous chondrites.

  10. 卤键弱作用浅谈%Brief discussion on halogen bonding weak interaction

    Institute of Scientific and Technical Information of China (English)

    王亚琴; 邵群

    2015-01-01

    Halogen bonding, a noncovalent, int ermolecular weak interaction analogues to hydrogen bonding, exists between σ antibonding orbital of halogen atoms and atoms with lone-pair electron and πelectron system, which exerts unique effect in the field of desigh of functional materials and biomedicine. In this paper, the interaction essence of halogen bonding was simply introduced, the developing history of halogen bonding was elaborated and the basic character of halogen bonding was depicted, looking forward to much more comprehension toward halogen bonding.%卤键是与氢键相似的一种分子间非共价作用,存在于卤原子的σ反键轨道与具有孤电子对的原子或π电子体系之间,在功能材料与生物药物设计方面发挥了独特作用。介绍卤键的作用本质,阐述卤键发展简史,并描述卤键的基本特征。

  11. Preparation and Characterization of Single-handed Helical Carbonaceous Nanoifbers using 1,4-Phenylene Bridged Polybissilsesquioxanes

    Institute of Scientific and Technical Information of China (English)

    XIAO Zeli; GUO Yongmin; LI Baozong; LI Yi

    2016-01-01

    Single-handed helical carbonaceous materials attracted much attention for varieties of potential applications. Herein, single-handed helical 1, 4-phenylene bridged polybissilsesquioxane nanoifbers were prepared through a supramolecular templating approach using a pair of enantiomers. After carbonization at 700℃ for 2.0 h and removal of silica using HF aqueous solution, single-handed helical carbonaceous nanoifbers were obtained. The obtained samples were characterized using the ifeld-emission scanning electron microscopy, transmission electron microscopy, N2 sorptions, X-ray diffraction, Raman spectroscopy and diffuse relfectance circular dichroism (DRCD). The Raman spectrum indicated that the carbon was amorphous. The DRCD spectra indicated that the carbonaceous nanoifbers exhibited optical activity. The surface area of the left-handed helical carbonaceous nanoifbers was 907 m2/g. Such material has potential applications as chirality sensor and supercapacitor electrode.

  12. The micro-distribution of carbonaceous matter in the Murchison meteorite as investigated by Raman imaging

    Science.gov (United States)

    Amri, Chahrazade El; Maurel, Marie-Christine; Sagon, Gérard; Baron, Marie-Hélène

    2005-07-01

    The carbonaceous Murchison chondrite is one of the most studied meteorites. It is considered to be an astrobiology standard for detection of extraterrestrial organic matter. Considerable work has been done to resolve the elemental composition of this meteorite. Raman spectroscopy is a very suitable technique for non-destructive rapid in situ analyses to establish the spatial distribution of carbonaceous matter. This report demonstrates that Raman cartography at a resolution of 1 μm 2 can be performed. Two-dimensional distribution of graphitised carbon, amorphous carbonaceous matter and minerals were obtained on 100 μm 2 maps. Maps of the surface of native stones and of a powdered sample are compared. Graphitic and amorphous carbonaceous domains are found to be highly overlapping in all tested areas at the surface of the meteorite and in its interior as well. Pyroxene, olivine and iron oxide grains are embedded into this mixed carbonaceous material. The results show that every mineral grain with a size of less than a few μm 2 is encased in a thin carbonaceous matrix, which accounts for only 2.5 wt.%. This interstitial matter sticks together isolated mineral crystallites or concretions, including only very few individualized graphitised grains. Grinding separates the mineral particles but most of them retain their carbonaceous coating. This Raman study complements recent findings deduced from other spatial analyses performed by microprobe laser-desorption laser-ionisation mass spectrometry (μL 2MS), transmission electron microscopy (TEM) and scanning transmission X-ray microscopy (STXM).

  13. Very Low Grade Metamorphic Temperatures of the Upper Paleozoic Strata in Northern Daxing’anling Area,NE China:Evidence from Raman Spectrum Studies of Carbonaceous Materials%大兴安岭北部上古生界极低级变质温度来自碳质物拉曼光谱的证据

    Institute of Scientific and Technical Information of China (English)

    胡大千; 王岩泉; 沙茜; 王春光; 陈旭; 马瑞

    2015-01-01

    Using the Renishaw System-1000 laser Raman spectrometer,authors have studied the laser Raman spectrum characteristics of the carbonaceous materials in pelitic rocks outcropped in northern Daxing ’anling area and its indication to the metamorphic temperature.The relationship between the various parameters of the Raman spectrum and the vitrinite reflectance (Ro) of the carbonaceous materials is also discussed.The study shows that the carbonaceous material of Upper Paleozoic pelitic rock has not the Raman spectrum absorption peak of graphite,revealing its metamorphic grade below the low-greenschist facies.Using Raman spectroscopy constructed and proposed by Barker et al.(1 986)and by Rahl et al.(2005),the metamorphic temperature of Upper Paleozoic pelitic rock in the studied area is estimated at 270℃ to 320℃,indicating the Paleozoic strata of the area have merely undergone very low grade metamorphism and metamorphic grade belongs to anchizone.Based on the relationship between the laser Raman spectrometer of carbonaceous materials and the vitrinite reflectance (Ro)proposed by Wang Y,et al.(2002),the Rovalues (maturity of organic materials)of pelitic rocks are estimated to be from 3.03% to 4.23%,consistent with the measured values,showing that the evolution of organic matter of the area is at the over-mature stage,and the pelitic rocks in the area are capable to be generate the hydrocarbon generation and part of the them may have the potential for oil and gas resources.%使用 Renishaw System 1000型激光拉曼光谱仪,研究了大兴安岭北部上古生界泥质岩石碳质物的拉曼光谱特征及其对形成温度的表征,探讨了拉曼光谱参数与镜质体反射率(Ro)的关系。研究表明:研究区上古生界泥质岩石碳质物不具有石墨的拉曼光谱谱带吸收峰,揭示了地层的变质程度未达到低绿片岩相。利用此次经过完善建立的拉曼光谱地质温度计,对大兴安岭北部上古生界泥质岩石变质

  14. Microporous carbonaceous adsorbents for CO2 separation via selective adsorption

    KAUST Repository

    Zhao, Yunfeng

    2015-01-01

    Selective adsorption of CO2 has important implications for many energy and environment-related processes, which require the separation of CO2 from other gases (e.g. N2 and CH4) with high uptakes and selectivity. The development of high-performance adsorbents is one of the most promising solutions to the success of these processes. The present review is focused on the state-of-the-art of carbon-based (carbonaceous) adsorbents, covering microporous inorganic carbons and microporous organic polymers, with emphasis on the correlation between their textural and compositional properties and their CO2 adsorption/separation performance. Special attention is given to the most recently developed materials that were not covered in previous reviews. We summarize various effective strategies (N-doping, surface functionalization, extra-framework ions, molecular design, and pore size engineering) for enhancing the CO2 adsorption capacity and selectivity of carbonaceous adsorbents. Our discussion focuses on CO2/N2 separation and CO2/CH4 separation, while including an introduction to the methods and criteria used for evaluating the performance of the adsorbents. Critical issues and challenges regarding the development of high-performance adsorbents as well as some overlooked facts and misconceptions are also discussed, with the aim of providing important insights into the design of novel carbonaceous porous materials for various selective adsorption based applications. This journal is © The Royal Society of Chemistry.

  15. Organic halogens in spruce forest throughfall

    DEFF Research Database (Denmark)

    Öberg, G.; Johansen, C.; Grøn, C.

    1998-01-01

    . No relationship between the position of the collectors and the forest edge or dominating wind-direction was found, suggesting that dry deposition was not a major source. The concentration of organic halogens was related to that of organic carbon and decreased from the tree-trunk and outwards. In addition......Deposition of dissolved organic halogens by throughfall was determined in a small spruce forest site in Denmark (56 degrees 28'N, 8 degrees 24'E). The mean annual deposition of dissolved organic halogens was 377 g ha(-1)yr(-1), and larger than the general deposition by precipitation......, the concentrations were higher during the growing season than during the dormant season. This indicates that the major part of the organic carbon and organic halogens in spruce forest throughfall originates from canopy leachates or other internal sources. (C) 1998 Elsevier Science Ltd....

  16. Cross-reactivity of Halogenated Platinum Salts

    Science.gov (United States)

    Halogenated platinum (Pt) salts are well-known respiratory sensitizers associated with the development of asthma. People may be exposed to a variety of platinum compounds in different contexts (e.g. occupationally, automobile exhaust). Published reports suggest that sensitizati...

  17. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani Jr.; Theresa M. Bomstad

    2002-06-01

    Western Research Institute (WRI) initiated exploratory work towards the development of new field screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of carbon-halogen bonds. Commercially available heated diode and corona discharge leak detectors were procured and evaluated for halogenated VOC response. The units were modified to provide a digital readout of signal related to VOC concentration. Sensor response was evaluated with carbon tetrachloride and tetrachloroethylene (perchloroethylene, PCE), which represent halogenated VOCs with and without double bonds. The response characteristics were determined for the VOCs directly in headspace in Tedlar bag containers. Quantitation limits in air were estimated. Potential interferences from volatile hydrocarbons, such as toluene and heptane, were evaluated. The effect of humidity was studied also. The performance of the new devices was evaluated in the laboratory by spiking soil samples and monitoring headspace for halogenated VOCs. A draft concept of the steps for a new analytical method was outlined. The results of the first year effort show that both devices show potential utility for future analytical method development work towards the goal of developing a portable test kit for screening halogenated VOCs in the field.

  18. Latest generation of halogen-containing pesticides.

    Science.gov (United States)

    Jeschke, Peter

    2017-02-01

    Agriculture is confronted with enormous challenges, from production of enough high-quality food to water use, environmental impacts and issues combined with a continually growing world population. Modern agricultural chemistry has to support farmers by providing innovative agrichemicals, used in applied agriculture. In this context, the introduction of halogen atoms into an active ingredient is still an important tool to modulate the properties of new crop protection compounds. Since 2010, around 96% of the launched products (herbicides, fungicides, insecticides/acaricides and nematicides) contain halogen atoms. The launched nematicides contain the largest number of halogen atoms, followed by insecticides/acaricides, herbicides and fungicides. In this context, fungicides and herbicides contain in most cases fluorine atoms, whereas nematicides and insecticides contain in most cases 'mixed' halogen atoms, for example chlorine and fluorine. This review gives an overview of the latest generation of halogen-containing pesticides launched over the past 6 years and describes current halogen-containing development candidates. © 2017 Society of Chemical Industry.

  19. The Oxygen Isotope Composition of Dark Inclusions in HEDs, Ordinary and Carbonaceous Chondrites

    Science.gov (United States)

    Greenwood, R. C.; Zolensky, M. E.; Buchanan, P. C.; Franchi, I. A.

    2015-01-01

    Dark inclusions (DIs) are lithic fragments that form a volumetrically small, but important, component in carbonaceous chondrites. Carbonaceous clasts similar to DIs are also found in some ordinary chondrites and HEDs. DIs are of particular interest because they provide a record of nebular and planetary processes distinct from that of their host meteorite. DIs may be representative of the material that delivered water and other volatiles to early Earth as a late veneer. Here we focus on the oxygen isotopic composition of DIs in a variety of settings with the aim of understanding their formational history and relationship to the enclosing host meteorite.

  20. Technology for radiation efficiency measurement of high-power halogen tungsten lamp used in calibration of high-energy laser energy meter.

    Science.gov (United States)

    Wei, Ji Feng; Hu, Xiao Yang; Sun, Li Qun; Zhang, Kai; Chang, Yan

    2015-03-20

    The calibration method using a high-power halogen tungsten lamp as a calibration source has many advantages such as strong equivalence and high power, so it is very fit for the calibration of high-energy laser energy meters. However, high-power halogen tungsten lamps after power-off still reserve much residual energy and continually radiate energy, which is difficult to be measured. Two measuring systems were found to solve the problems. One system is composed of an integrating sphere and two optical spectrometers, which can accurately characterize the radiative spectra and power-time variation of the halogen tungsten lamp. This measuring system was then calibrated using a normal halogen tungsten lamp made of the same material as the high-power halogen tungsten lamp. In this way, the radiation efficiency of the halogen tungsten lamp after power-off can be quantitatively measured. In the other measuring system, a wide-spectrum power meter was installed far away from the halogen tungsten lamp; thus, the lamp can be regarded as a point light source. The radiation efficiency of residual energy from the halogen tungsten lamp was computed on the basis of geometrical relations. The results show that the halogen tungsten lamp's radiation efficiency was improved with power-on time but did not change under constant power-on time/energy. All the tested halogen tungsten lamps reached 89.3% of radiation efficiency at 50 s after power-on. After power-off, the residual energy in the halogen tungsten lamp gradually dropped to less than 10% of the initial radiation power, and the radiation efficiency changed with time. The final total radiation energy was decided by the halogen tungsten lamp's radiation efficiency, the radiation efficiency of residual energy, and the total power consumption. The measuring uncertainty of total radiation energy was 2.4% (here, the confidence factor is two).

  1. Treatment System for Removing Halogenated Compounds from Contaminated Sources

    Science.gov (United States)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Yestrebsky, Cherie L. (Inventor)

    2015-01-01

    A treatment system and a method for removal of at least one halogenated compound, such as PCBs, found in contaminated systems are provided. The treatment system includes a polymer blanket for receiving at least one non-polar solvent. The halogenated compound permeates into or through a wall of the polymer blanket where it is solubilized with at least one non-polar solvent received by said polymer blanket forming a halogenated solvent mixture. This treatment system and method provides for the in situ removal of halogenated compounds from the contaminated system. In one embodiment, the halogenated solvent mixture is subjected to subsequent processes which destroy and/or degrade the halogenated compound.

  2. A QTAIM exploration of the competition between hydrogen and halogen bonding in halogenated 1-methyluracil: Water systems

    Science.gov (United States)

    Huan, Guo; Xu, Tianlv; Momen, Roya; Wang, Lingling; Ping, Yang; Kirk, Steven R.; Jenkins, Samantha; van Mourik, Tanja

    2016-10-01

    Using QTAIM we show that the hydrogen bonding complexes of 5-halogenated-1-methyluracil (XmU; X = F, Cl, Br, I or At) with a water molecule were always stronger than the corresponding halogen bonds. The strength of the hydrogen bond decreased with increasing halogen size. The hydrogen bonds displayed an admixture of covalent character but all the halogen bonds were purely electrostatic in nature. An F---O halogen bond was found and was facilitated by an intermediate F---H bonding interaction. The metallicity ξ(rb) of the C = O bonds neighboring the hydrogen bonds and of the C-X bonds contiguous with the halogen bonds was explored.

  3. Evaluation of Halogenated Coumarins for Antimosquito Properties

    Directory of Open Access Journals (Sweden)

    Venugopala K. Narayanaswamy

    2014-01-01

    Full Text Available Mosquitoes are the major vectors of parasites and pathogens affecting humans and domestic animals. The widespread development of insecticide resistance and negative environmental effects of most synthetic compounds support an interest in finding and developing alternative products against mosquitoes. Natural coumarins and synthetic coumarin analogues are known for their several pharmacological properties, including being insecticidal. In the present study halogenated coumarins (3-mono/dibromo acetyl, 6-halogenated coumarin analogues were screened for larvicidal, adulticidal, and repellent properties against Anopheles arabiensis, a zoophilic mosquito that is one of the dominant vectors of malaria in Africa. Five compounds exerted 100% larval mortality within 24 h of exposure. All coumarins and halogenated coumarins reversibly knocked down adult mosquitoes but did not kill them after 24 h of exposure. Repellent properties could not be evidenced. Five compounds were considered potential larvicidal agents for further research and development, while adulticidal activity was considered only mild to moderate.

  4. Aerosol-Assisted Self-Assembly of Reticulated N-Doped Carbonaceous Submicron Spheres for Effective Removal of Hexavalent Chromium.

    Science.gov (United States)

    He, Jiawei; Long, Yuan; Wang, Yiyan; Wei, Chaoliang; Zhan, Jingjing

    2016-07-01

    This Research Article described a facile one-step method to prepare reticulated N-doped carbonaceous submicron spheres. Through a simple aerosol-assisted technology, glucosamine sulfate used as a carbon source was aerosolized and carbonized to functionalized carbonaceous submicron spheres. The electrostatic attraction between protonated amino groups and sulfate in the aerosol droplets induced a self-assembly and led to the formation of reticular structure, avoiding the use of templates. Compared to bare carbonaceous materials produced from glucose, reticulated N-doped carbonaceous spheres exhibit higher efficiency in the removal of Cr(VI), where the doping of element nitrogen led to electrostatic attraction between protonated nitrogen and chromium ions, and reticulated structure created relatively higher surface area and pore volume, facilitating materials to contact with Cr(VI) ions. XPS characterization proved these novel N-doped carbonaceous materials could effectively transform Cr(VI) to less toxic Cr(III) because of the surface reducing groups. For the practical application, several factors including the initial pH, materials dosage and recycle numbers on the removal performance were studied.

  5. Superfluorinated Ionic Liquid Crystals Based on Supramolecular, Halogen-Bonded Anions.

    Science.gov (United States)

    Cavallo, Gabriella; Terraneo, Giancarlo; Monfredini, Alessandro; Saccone, Marco; Priimagi, Arri; Pilati, Tullio; Resnati, Giuseppe; Metrangolo, Pierangelo; Bruce, Duncan W

    2016-05-17

    Unconventional ionic liquid crystals in which the liquid crystallinity is enabled by halogen-bonded supramolecular anions [Cn F2 n+1 -I⋅⋅⋅I⋅⋅⋅I-Cn F2 n+1 ](-) are reported. The material system is unique in many ways, demonstrating for the first time 1) ionic, halogen-bonded liquid crystals, and 2) imidazolium-based ionic liquid crystals in which the occurrence of liquid crystallinity is not driven by the alkyl chains of the cation.

  6. Correlating Precisely Defined Primary Structure with Crystalline Properties in Halogen Containing Polyolefins

    Science.gov (United States)

    Boz, Emine; Alamo, Rufina G.; Wagener, Kenneth B.

    Polyethylene (PE) and poly(vinyl chloride) (PVC) are among the most important polymers produced in industry, although other halogen-containing derivatives of PE, such as poly(tetrafluorethylene) (PTFE) have also found wides pread use. A related class of polymers is the ethylene-co-vinyl-halide family. Such copolymers are expected to show distinct properties relative to their better known industrial analogues. For example, much interest has focused on ethylene vinyl chloride (EVC) polymers based on their potential for improved thermal stability relative to PVC. Various techniques have been used to synthesize these ethylene vinyl halide (EVH) copolymers and the simplest approach is halogenation of PE, which results in an irregular distribution of halogens along the polymer backbone and poorly defined materials.

  7. 碳质材料对磷酸铁锂正极材料物理和电化学性能的影响%Effects of carbonaceous materials on the physical and electrochemical performance of a LiFePO4 cathode for lithium-ion batteries

    Institute of Scientific and Technical Information of China (English)

    康飞宇; 马俊; 李宝华

    2011-01-01

    通过综述碳质材料对磷酸铁锂(LiFePO4)电极材料物理和电化学性能的影响,评述了碳质材料在不同LiFePO4/C复合电极材料中的作用及其优缺点.指出:炭膜的原位包覆和模板炭的引入,限制了LiFePO4晶粒的生长,进而提高了电极材料的电导率;而导电炭和石墨烯的引入,则是直接提高了电极材料的电导率;有机结合这两种碳质材料的复合方式将会极大改善电极材料的电化学性能.但是,为了提高电极材料的体积能量密度及其振实密度,应该最大限度地降低碳质材料在LiFePO4/C复合电极材料中的含量.%The effects of carbonaceous materials on the physical and electrochemical performance of LiFePO4/C hybrids are reviewed. The major role, advantages and disadvantages of carbon-based materials in LiFePO4/carbon hybrids are discussed. The introduction of an in situ grown carbon coating would be beneficial to limiting the LiFePO4 particle growth and increasing the electric conductivity. The structure and precursors of the in situ grown carbons have a great infiuence in the rate performance of the hybrids, which can be related to an improved electron and ion transfer rate. Deposition of LiFePO4 into a carbonaceous matrix such as a templated membrane can increase the contact area between the active materials and the electrolyte, which favors a fast ion transport. The addition of conductive carbon and graphene would only effectively increase the electrical conductivity. In order to achieve an excellent electrochemical performance of LiFePO4 , it is necessary to take advantage of and to combine these approaches to optimize electron and ion transfer rates. Also, it is most important to minimize the carbon content in LiFePO4/carbon hybrids to increase volumetric energy density and tap density when practical applications in electric vehicles are targeted.

  8. Nuclear magnetic biosignatures in the carbonaceous matter of ancient cherts: comparison with carbonaceous meteorites.

    Science.gov (United States)

    Gourier, Didier; Delpoux, Olivier; Binet, Laurent; Vezin, Hervé

    2013-10-01

    The search for organic biosignatures is motivated by the hope of understanding the conditions of emergence of life on Earth and the perspective of finding traces of extinct life in martian sediments. Paramagnetic radicals, which exist naturally in amorphous carbonaceous matter fossilized in Precambrian cherts, were used as local structural probes and studied by electron paramagnetic resonance (EPR) spectroscopy. The nuclear magnetic resonance transitions of elements inside and around these radicals were detected by monitoring the nuclear modulations of electron spin echo in pulsed EPR. We found that the carbonaceous matter of fossilized microorganisms with age up to 3.5 billion years gives specific nuclear magnetic signatures of hydrogen (¹H), carbon (¹³C), and phosphorus (³¹P) nuclei. We observed that these potential biosignatures of extinct life are found neither in the carbonaceous matter of carbonaceous meteorites (4.56 billion years), the most ancient objects of the Solar System, nor in any carbonaceous matter resulting from carbonization of organic and bioorganic precursors. These results indicate that these nuclear signatures are sensitive to thermal episodes and can be used for Archean cherts with metamorphism not higher than the greenschist facies.

  9. 40 CFR 721.535 - Halogenated alkane (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated alkane (generic). 721.535... Substances § 721.535 Halogenated alkane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated alkane (PMN P-01-433) is...

  10. 40 CFR 721.536 - Halogenated phenyl alkane.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated phenyl alkane. 721.536... Substances § 721.536 Halogenated phenyl alkane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated phenyl alkane (PMN P-89-867)...

  11. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated benzyl ester acrylate... Specific Chemical Substances § 721.329 Halogenated benzyl ester acrylate (generic). (a) Chemical substance... halogenated benzyl ester acrylate (PMN P-90-1527) is subject to reporting under this section for...

  12. 40 CFR 721.8700 - Halogenated alkyl pyridine.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated alkyl pyridine. 721.8700... Substances § 721.8700 Halogenated alkyl pyridine. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated alkyl pyridine (PMN P-83-237)...

  13. Rational design of organic semiconductors for texture control and self-patterning on halogenated surfaces

    KAUST Repository

    Ward, Jeremy W.

    2014-05-15

    Understanding the interactions at interfaces between the materials constituting consecutive layers within organic thin-film transistors (OTFTs) is vital for optimizing charge injection and transport, tuning thin-film microstructure, and designing new materials. Here, the influence of the interactions at the interface between a halogenated organic semiconductor (OSC) thin film and a halogenated self-assembled monolayer on the formation of the crystalline texture directly affecting the performance of OTFTs is explored. By correlating the results from microbeam grazing incidence wide angle X-ray scattering (μGIWAXS) measurements of structure and texture with OTFT characteristics, two or more interaction paths between the terminating atoms of the semiconductor and the halogenated surface are found to be vital to templating a highly ordered morphology in the first layer. These interactions are effective when the separating distance is lower than 2.5 dw, where dw represents the van der Waals distance. The ability to modulate charge carrier transport by several orders of magnitude by promoting "edge-on" versus "face-on" molecular orientation and crystallographic textures in OSCs is demonstrated. It is found that the "edge-on" self-assembly of molecules forms uniform, (001) lamellar-textured crystallites which promote high charge carrier mobility, and that charge transport suffers as the fraction of the "face-on" oriented crystallites increases. The role of interfacial halogenation in mediating texture formation and the self-patterning of organic semiconductor films, as well as the resulting effects on charge transport in organic thin-film transistors, are explored. The presence of two or more anchoring sites between a halogenated semiconductor and a halogenated self-assembled monolayer, closer than about twice the corresponding van der Waals distance, alter the microstructure and improve electrical properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Retention of Halogens in Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.

    2010-05-01

    In spite of their potential roles as melting rate accelerators and foam breakers, halogens are generally viewed as troublesome components for glass processing. Of five halogens, F, Cl, Br, I, and At, all but At may occur in nuclear waste. A nuclear waste feed may contain up to 10 g of F, 4 g of Cl, and ≤100 mg of Br and I per kg of glass. The main concern is halogen volatility, producing hazardous fumes and particulates, and the radioactive iodine 129 isotope of 1.7x10^7-year half life. Because F and Cl are soluble in oxide glasses and tend to precipitate on cooling, they can be retained in the waste glass in the form of dissolved constituents or as dispersed crystalline inclusions. This report compiles known halogen-retention data in both high-level waste (HLW) and low-activity waste (LAW) glasses. Because of its radioactivity, the main focus is on I. Available data on F and Cl were compiled for comparison. Though Br is present in nuclear wastes, it is usually ignored; no data on Br retention were found.

  15. Skin Sensitizing Potency of Halogenated Platinum Salts.

    Science.gov (United States)

    The relationship between occupational exposure to halogenated platinum (Pt) salts and Pt-specific allergic sensitization is well-established. Although human case reports and clinical studies demonstrate that Pt salts are potent skin sensitizers, no studies have been published tha...

  16. Halogen Bonding in (Z-2-Iodocinnamaldehyde

    Directory of Open Access Journals (Sweden)

    Miriam Rossi

    2013-07-01

    Full Text Available Based on the bulkiness of the iodine atom, a non-planar conformation was expected for the title compound. Instead, its molecular structure is planar, as experimentally determined using single crystal X-ray diffraction, and confirmed theoretically by DFT calculations on the single molecule and the halogen pair paired molecules, therefore ruling out crystal packing forces as a principal factor leading to planarity. Indeed, planarity is ascribed to the carbonyl double bond, as when this bond is saturated on forming the related alcohol derivative, the molecule loses planarity. The X-ray molecular structure shows an intermolecular separation between the iodine and the oxygen of the carbonyl shorter than the corresponding van der Waals distance suggesting a weak halogen bond interaction. DFT minimization of this 2-molecule arrangement shows the iodine--oxygen distance much shorter than that observed in the crystal interaction and confirming its stronger halogen bond nature. A trend between increasing I•••O(carbonyl separation and decreasing C-I•••O(carbonyl angle is demonstrated, further confirming the existence of a halogen bond.

  17. On the directionality of halogen bonding.

    Science.gov (United States)

    Huber, Stefan M; Scanlon, Joseph D; Jimenez-Izal, Elisa; Ugalde, Jesus M; Infante, Ivan

    2013-07-07

    The origin of the high directionality of halogen bonding was investigated quantum chemically by a detailed comparison of typical adducts in two different orientations: linear (most stable) and perpendicular. Energy decomposition analyses revealed that the synergy between charge-transfer interactions and Pauli repulsion are the driving forces for the directionality, while electrostatic contributions are more favourable in the less-stable, perpendicular orientation.

  18. Complete reaction mechanisms of mercury oxidation on halogenated activated carbon.

    Science.gov (United States)

    Rungnim, Chompoonut; Promarak, Vinich; Hannongbua, Supa; Kungwan, Nawee; Namuangruk, Supawadee

    2016-06-05

    The reaction mechanisms of mercury (Hg) adsorption and oxidation on halogenated activated carbon (AC) have been completely studied for the first time using density functional theory (DFT) method. Two different halogenated AC models, namely X-AC and X-AC-X (X=Cl, Br, I), were adopted. The results revealed that HgX is found to be stable-state on the AC edge since its further desorption from the AC as HgX, or further oxidation to HgX2, are energetically unfavorable. Remarkably, the halide type does not significantly affect the Hg adsorption energy but it strongly affects the activation energy barrier of HgX formation, which obviously increases in the order HgIBr-AC>Cl-AC. Thus, the study of the complete reaction mechanism is essential because the adsorption energy can not be used as a guideline for the rational material design in the halide impregnated AC systems. The activation energy is an important descriptor for the predictions of sorbent reactivity to the Hg oxidation process.

  19. Retention of Halogenated Solutes on Stationary Phases Containing Heavy Atoms

    Directory of Open Access Journals (Sweden)

    Toshio Miwa

    2013-05-01

    Full Text Available To examine the effects of weak intermolecular interactions on solid-phase extraction (SPE and chromatographic separation, we synthesized some novel stationary phases with a heavy atom effect layer by immobilizing halogenated aromatic rings and hydroxyl groups onto the surface of a hydrophilic base polymer. Using SPE cartridges packed with the functionalized materials, we found that the heavy atom stationary phases could selectively retain halophenols in organic solvents, such as 1-propanol which blocks the hydrogen bonding, or acetonitrile which blocks the p-p interaction. The extraction efficiency of the materials toward the halophenols depended on the dipole moments of phenoxy groups present as functional groups. On the other hand, the extraction efficiency of solutes toward the functional group depended on their molar refractions, i.e., induced dipole moments. The retention of the solutes to the stationary phase ultimately depended on not only strong intermolecular interactions, but also the effects of weak interactions such as the dispersion force.

  20. Chiral Biomarkers and Microfossils in Carbonaceous Meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2010-01-01

    Homochirality of the biomolecules (D-sugars of DNA and RNA and L-amino acids of proteins) is a fundamental property of all life on Earth. Abiotic mechanisms yield racemic mixtures (D/L=1) of chiral molecules and after the death of an organism, the enantiopure chiral biomolecules slowly racemize. Several independent investigators have now established that the amino acids present in CI1 and CM2 carbonaceous meteorites have a moderate to strong excess of the L-enantiomer. Stable isotope data have established that these amino acids are both indigenous and extraterrestrial. Carbonaceous meteorites also contain many other strong chemical biomarkers including purines and pyrimidines (nitrogen heterocycles of nucleic acids); pristine and phytane (components of the chlorophyll pigment) and morphological biomarkers (microfossils of filamentous cyanobacteria). Energy dispersive X-ray Spectroscopy (EDS) analysis reveals that nitrogen is below the detectability level in most of the meteorite filaments as well as in Cambrian Trilobites and filaments of 2.7 Gya Archaean cyanobacteria from Karelia. The deficiency of nitrogen in the filaments and the total absence of sugars, of twelve of the life-critical protein amino acids, and two of the nucleobases of DNA and RNA provide clear and convincing evidence that these filaments are not modern biological contaminants. This paper reviews the chiral, chemical biomarkers morphological biomarkers and microfossils in carbonaceous meteorites. This paper reviews chiral and morphological biomarkers and discusses the missing nitrogen, sugars, protein amino acids, and nucleobases as ?bio-discriminators? that exclude modern biological contaminants as a possible explanation for the permineralized cyanobacterial filaments found in the meteorites.

  1. Acritarchs in carbonaceous meteorites and terrestrial rocks

    Science.gov (United States)

    Rozanov, Alexei Y.; Hoover, Richard B.

    2013-10-01

    Acritarchs are a group of organic-walled, acid-resistant microfossils of uncertain or unknown origin. Some are thought to represent the cysts or resting stages of unicellular protists (possibly dinoflagellates), chrysophytes (green algae) or other planktonic eukaryotic algae. Acritarchs are found throughout the geologic column extending back as far at 3.2 Ga. The presence of large sphaeromorphs in the Archaean provides evidence that the eukaryotic lineage extends much farther back in time than previously thought possible. Acritarchs are abundant in the Paleoproterozoic shales (1.9-1.6 Ga) of the former Soviet Union and they have been extensively used for the investigation of Proterozoic and Paleozoic biostratigraphy and paleoenvironmental parameters. Scanning Electron Microscope studies have revealed the fossilized remains of organic-walled microfossils of unknown origin and exhibiting characteristics of acritarchs in a variety of carbonaceous meteorites. In many cases, these remains are black or brown in color and have Carbon/Oxygen ratios suggesting they have been diagenetically converted into kerogen. It is not feasible that the fossilized remains of organicwalled microfossils such as acritarchs represent biological contaminant that invaded and became embedded in the rock matrix of carbonaceous meteorites within the short time periods of their residence on Earth. Consequently, these groups of microfossils are considered to provide an additional line for the existence of indigenous extraterrestrial microbial remains in meteorites. This paper presents a brief review of acritarchs in terrestrial rocks and provides images of a number of similar morphotypes of uncertain origin found in freshly fractured samples of carbonaceous meteorites.

  2. Fossil Diatoms in a New Carbonaceous Meteorite

    Science.gov (United States)

    Wickramasinghe, N. C.; Wallis, J.; Wallis, D. H.; Samaranayake, Anil

    2013-01-01

    We report the discovery for the first time of diatom frustules in a carbonaceous meteorite that fell in the North Central Province of Sri Lanka on 29 December 2012. Contamination is excluded by the circumstance that the elemental abundances within the structures match closely with those of the surrounding matrix. There is also evidence of structures morphologically similar to red rain cells that may have contributed to the episode of red rain that followed within days of the meteorite fall. The new data on "fossil" diatoms provide strong evidence to support the theory of cometary panspermia.

  3. Chemical analysis of organic molecules in carbonaceous meteorites

    NARCIS (Netherlands)

    Torrao Pinto Martins, Zita Carla

    2007-01-01

    Meteorites are extraterrestrial objects that survive the passage through the Earth’s atmosphere and impact the Earth's surface. They can be divided into several classes, the carbonaceous chondrites being one of them. Carbonaceous chondrites are the oldest and best preserved meteorites and contain a

  4. Shipboard measurements of concentrations and properties of carbonaceous aerosols during ACE-2

    OpenAIRE

    2011-01-01

    Mass concentrations of total, organic and black carbon were derived by analyzing the supermicron and submicron aerosol fractions of shipboard collected samples in the easternAtlantic Ocean as part of the second Aerosol Characterization Experiment (ACE-2). These analyses were complemented by experiments intended to estimate the water-soluble fraction of the submicron carbonaceous material. Our results can be summarized as follows. Depending on the sample, between 35% and 80% of total aerosol c...

  5. Giant dendritic carbonaceous particles in Soweto aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Wentzel, M.; Annegarn, H.J.; Helas, G.; Weinbruch, S.; Balogh, A.G.; Sithole, J.S. [Max Planck Institute of Chemistry, Mainz (Germany). Biogeochemistry Dept.

    1999-03-01

    Gravimetric analyses of aerosol filter samples from Soweto, southwest of Johannesburg, have revealed an anomalous mass-size distribution. Instead of the coal fire generated aerosol forming sub-micron aerosols as expected, most of the mass of the winter smoke is in particles greater than 3{mu}m aerodynamic diameter. A high-resolution scanning electron microscope was used to examine coarse and fine-mode aerosol fractions from two contrasting sites in the conurbation. Unanticipated giant carbonaceous conglomerates (10-100 {mu}m diameter), which comprise the bulk of the aerosol mass on the filters examined, were found. The outer shape of the conglomerates tends towards spherical, rather than the branched, chain-like structures of high-temperature soot. Internal structure varies from highly dendritic with 20-nm-wide branches, through a coarser sponge-like structure to an almost solid `melted toffee` irregular surface. Possible modes of formation of these conglomerates are discussed in terms of condensation aerosols conglomeration, and subsequent partial melting or solvent condensation. The occurrence of the giant carbonaceous conglomerates as a general feature of the Soweto winter atmosphere explains the anomalous size-mass distribution results from bulk filter analyses.

  6. Evidence of Microfossils in Carbonaceous Chondrites

    Science.gov (United States)

    Hoover, Richard B.; Rozanov, Alexei Y.; Zhmur, S. I.; Gorlenko, V. M.

    1998-01-01

    Investigations have been carried out on freshly broken, internal surfaces of the Murchison, Efremovka and Orgueil carbonaceous chondrites using Scanning Electron Microscopes (SEM) in Russia and the Environmental Scanning Electron Microscope (ESEM) in the United States. These independent studies on different samples of the meteorites have resulted in the detection of numerous spherical and ellipsoidal bodies (some with spikes) similar to the forms of uncertain biogenicity that were designated "organized elements" by prior researchers. We have also encountered numerous complex biomorphic microstructures in these carbonaceous chondrites. Many of these complex bodies exhibit diverse characteristics reminiscent of microfossils of cyanobacteria such as we have investigated in ancient phosphorites and high carbon rocks (e.g. oil shales). Energy Dispersive Spectroscopy (EDS) analysis and 2D elemental maps shows enhanced carbon content in the bodies superimposed upon the elemental distributions characteristic of the chondritic matrix. The size, distribution, composition, and indications of cell walls, reproductive and life cycle developmental stages of these bodies are strongly suggestive of biology' These bodies appear to be mineralized and embedded within the meteorite matrix, and can not be attributed to recent surface contamination effects. Consequently, we have interpreted these in-situ microstructures to represent the lithified remains of prokaryotes and filamentous cyanobacteria. We also detected in Orgueil microstructures morphologically similar to fibrous kerite crystals. We present images of many biomorphic microstructures and possible microfossils found in the Murchison, Efremovka, and Orgueil chondrites and compare these forms with known microfossils from the Cambrian phosphate-rich rocks (phosphorites) of Khubsugul, Northern Mongolia.

  7. Halogen bonding origin properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hobza, Pavel [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague (Czech Republic); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 77146 Olomouc (Czech Republic)

    2015-12-31

    σ-hole bonding represents an unusual and novel type of noncovalent interactions in which atom with σ- hole interacts with Lewis base such as an electronegative atom (oxygen, nitrogen, …) or aromatic systems. This bonding is of electrostatic nature since the σ-hole bears a positive charge. Dispersion energy forms equally important energy term what is due to the fact that two heavy atoms (e.g. halogen and oxygen) having high polarizability lie close together (the respective distance is typically shorter than the sum of van der Waals radii). Among different types of σ-hole bondings the halogen bonding is by far the most known but chalcogen and pnictogen bondings are important as well.

  8. Multi-wavelength characterization of carbonaceous aerosol

    Science.gov (United States)

    Massabò, Dario; Caponi, Lorenzo; Chiara Bove, Maria; Piazzalunga, Andrea; Valli, Gianluigi; Vecchi, Roberta; Prati, Paolo

    2014-05-01

    Carbonaceous aerosol is a major component of the urban PM. It mainly consists of organic carbon (OC) and elemental carbon (EC) although a minor fraction of carbonate carbon could be also present. Elemental carbon is mainly found in the finer PM fractions (PM2.5 and PM1) and it is strongly light absorbing. When determined by optical methods, it is usually called black carbon (BC). The two quantities, EC and BC, even if both related to the refractory components of carbonaceous aerosols, do not exactly define the same PM component (Bond and Bergstrom, 2006; and references therein). Moreover, another fraction of light-absorbing carbon exists which is not black and it is generally called brown carbon (Andreae and Gelencsér, 2006). We introduce a simple, fully automatic, multi-wavelength and non-destructive optical system, actually a Multi-Wavelength Absorbance Analyzer, MWAA, to measure off-line the light absorption in Particulate Matter (PM) collected on filters and hence to derive the black and brown carbon content in the PM This gives the opportunity to measure in the same sample the concentration of total PM by gravimetric analysis, black and brown carbon, metals by, for instance, X Ray Fluorescence, and finally ions by Ion Chromatography. Up to 16 samples can be analyzed in sequence and in an automatic and controlled way within a few hours. The filter absorbance measured by MWAA was successfully validated both against a MAAP, Multi Angle Absorption Photometer (Petzold and Schönlinner, 2004), and the polar photometer of the University of Milan. The measurement of sample absorbance at three wavelengths gives the possibility to apportion different sources of carbonaceous PM, for instance fossil fuels and wood combustion. This can be done following the so called "aethalometer method" (Sandradewi et al., 2008;) but with some significant upgrades that will be discussed together the results of field campaigns in rural and urban sites. Andreae, M.O, and Gelencsér, A

  9. Computational Tools To Model Halogen Bonds in Medicinal Chemistry.

    Science.gov (United States)

    Ford, Melissa Coates; Ho, P Shing

    2016-03-10

    The use of halogens in therapeutics dates back to the earliest days of medicine when seaweed was used as a source of iodine to treat goiters. The incorporation of halogens to improve the potency of drugs is now fairly standard in medicinal chemistry. In the past decade, halogens have been recognized as direct participants in defining the affinity of inhibitors through a noncovalent interaction called the halogen bond or X-bond. Incorporating X-bonding into structure-based drug design requires computational models for the anisotropic distribution of charge and the nonspherical shape of halogens, which lead to their highly directional geometries and stabilizing energies. We review here current successes and challenges in developing computational methods to introduce X-bonding into lead compound discovery and optimization during drug development. This fast-growing field will push further development of more accurate and efficient computational tools to accelerate the exploitation of halogens in medicinal chemistry.

  10. Polydiphenylamine/Zeolite Y composites and electrical conductivity responses toward halogenated hydrocarbons

    Directory of Open Access Journals (Sweden)

    Tharaporn Permpool

    2013-01-01

    Full Text Available Composites of polydiphenylamine (D-PDPA and zeolite Y with H+ as the cation (Y_H+ have been fabricated to be used as a sensing material towards non-halogenated and halogenated solvents (hexane, dichloromethane, 1, 2-dichloroethane, chloroform. These composites are toxic towards human and environment and are widely used as solvents in various industries. Polydiphenylamine, zeolite Y, and their composites are characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, particle size analysis, surface area, and pore size analysis. The effects of the Si/Al ratio, zeolite content, and vapor concentrations are investigated. The electrical conductivity sensitivity of the composites towards the solvents is higher than the pristine D-PDPA by ~1 order of magnitude. The composites can discriminate a non-halogenated solvent from halogenated solvents. They possess maximum electrical conductivity sensitivity values towards dichloromethane, but the composites do not respond to hexane. Generally, the sensitivity of the composites increases with increasing zeolite content and vapor concentration. The interactions between the composites and the vapors are investigated by FT-IR spectroscopy and UV-Vis spectroscopy. A mechanism for the interaction between the composites and the solvents is proposed.

  11. Analyzing the Chemical and Spectral Effects of Pulsed Laser Irradiation to Simulate Space Weathering of a Carbonaceous Chondrite

    Science.gov (United States)

    Thompson, M. S.; Keller, L. P.; Christoffersen, R.; Loeffler, M. J.; Morris, R. V.; Graff, T. G.; Rahman, Z.

    2017-01-01

    Space weathering processes alter the chemical composition, microstructure, and spectral characteristics of material on the surfaces of airless bodies. The mechanisms driving space weathering include solar wind irradiation and the melting, vaporization and recondensation effects associated with micrometeorite impacts e.g., [1]. While much work has been done to understand space weathering of lunar and ordinary chondritic materials, the effects of these processes on hydrated carbonaceous chondrites is poorly understood. Analysis of space weathering of carbonaceous materials will be critical for understanding the nature of samples returned by upcoming missions targeting primitive, organic-rich bodies (e.g., OSIRIS-REx and Hayabusa 2). Recent experiments have shown the spectral properties of carbonaceous materials and associated minerals are altered by simulated weathering events e.g., [2-5]. However, the resulting type of alteration i.e., reddening vs. bluing of the reflectance spectrum, is not consistent across all experiments [2-5]. In addition, the microstructural and crystal chemical effects of many of these experiments have not been well characterized, making it difficult to attribute spectral changes to specific mineralogical or chemical changes in the samples. Here we report results of a pulsed laser irradiation experiment on a chip of the Murchison CM2 carbonaceous chondrite to simulate micrometeorite impact processing.

  12. Cloud albedo increase from carbonaceous aerosol

    Directory of Open Access Journals (Sweden)

    W. R. Leaitch

    2010-08-01

    Full Text Available Airborne measurements from two consecutive days, analysed with the aid of an aerosol-adiabatic cloud parcel model, are used to study the effect of carbonaceous aerosol particles on the reflectivity of sunlight by water clouds. The measurements, including aerosol chemistry, aerosol microphysics, cloud microphysics, cloud gust velocities and cloud light extinction, were made below, in and above stratocumulus over the northwest Atlantic Ocean. On the first day, the history of the below-cloud fine particle aerosol was marine and the fine particle sulphate and organic carbon mass concentrations measured at cloud base were 2.4 μg m−3 and 0.9 μg m−3 respectively. On the second day, the below-cloud aerosol was continentally influenced and the fine particle sulphate and organic carbon mass concentrations were 2.3 μg m−3 and 2.6 μg m−3 respectively. Over the range 0.06–0.8 μm diameter, the shapes of the below-cloud size distributions were similar on both days and the number concentrations were approximately a factor of two higher on the second day. The cloud droplet number concentrations (CDNC on the second day were approximately three times higher than the CDNC measured on the first day. Using the parcel model to separate the influence of the differences in gust velocities, we estimate from the vertically integrated cloud light scattering measurements a 6% increase in the cloud albedo principally due to the increase in the carbonaceous components on the second day. Assuming no additional absorption by this aerosol, a 6% albedo increase translates to a local daytime radiative cooling of ∼12 W m−2. This result provides observational evidence that the role of anthropogenic carbonaceous components in the cloud albedo effect can be much larger than that of anthropogenic sulphate, as some global simulations have indicated.

  13. Microfossils of Cyanobacteria in Carbonaceous Meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2007-01-01

    During the past decade, Environmental and Field Emission Scanning Electron Microscopes have been used at the NASA/Marshall Space Flight Center to investigate freshly fractured interior surfaces of a large number of different types of meteorites. Large, complex, microfossils with clearly recognizable biological affinities have been found embedded in several carbonaceous meteorites. Similar forms were notably absent in all stony and nickel-iron meteorites investigated. The forms encountered are consistent in size and morphology with morphotypes of known genera of Cyanobacteria and microorganisms that are typically encountered in associated benthic prokaryotic mats. Even though many coccoidal and isodiametric filamentous cyanobacteria have a strong morphological convergence with some other spherical and filamentous bacteria and algae, many genera of heteropolar cyanobacteria have distinctive apical and basal regions and cellular differentiation that makes it possible to unambiguously recognize the forms based entirely upon cellular dimensions, filament size and distinctive morphological characteristics. For almost two centuries, these morphological characteristics have historically provided the basis for the systematics and taxonomy of cyanobacteria. This paper presents ESEM and FESEM images of embedded filaments and thick mats found in-situ in the Murchison CM2 and Orgueil cn carbonaceous meteorites. Comparative images are also provided for known genera and species of cyanobacteria and other microbial extremophiles. Energy Dispersive X-ray Spectroscopy (EDS) studies indicate that the meteorite filaments typically exhibit dramatic chemical differentiation with distinctive difference between the possible microfossil and the meteorite matrix in the immediate proximity. Chemical differentiation is also observed within these microstructures with many of the permineralized filaments enveloped within electron transparent carbonaceous sheaths. Elemental distributions of

  14. Metal-dusting resistance of uncoated and coated iron and nickel base materials against metal-dusting in heat treatment furnaces with carbonaceous atmospheres; Bestaendigkeit von unbeschichteten und beschichteten Eisen- und Nickelbasiswerkstoffen gegenueber Metal-Dusting in Aufkohlanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Kleingries, Mirko; Ackermann, Helen; Lucka, Klaus [OWI Oel-Waerme-Institut GmbH, Aachen (Germany); Hoja, Timo; Mehner, Andeas; Zoch, Hans-Werner [IWT, Stiftung Institut fuer Werkstofftechnik, Bremen (Germany); Altena, Herwig [AICHELIN Ges.m.b.H, Moedling (Austria)

    2010-03-15

    Metal-Dusting is a well-known corrosion problem that occurs in carburizing atmospheres in industrial thermal processing plants. In literature almost no quantitative data on the metal dusting resistance of typical alloys employed in industrial furnaces are available. Therefore, a series of experiments with uncoated and sol gel ZrO{sub 2} coated high temperature materials was conducted in order to quantify their metal dusting behaviour under conditions close to those in case hardening furnaces. The experimental results show a strong influence of the surface conditions on the alloys resistance and a noticeable enhancement of the resistance by sol gel coatings. (orig.)

  15. Electrical conductivity of carbonaceous chondrites and electric heating of meteorite parent bodies

    Science.gov (United States)

    Duba, AL

    1987-01-01

    Electromagnetic heating of rock-forming materials most probably was an important process in the early history of the solar system. Electrical conductivity experiments of representative materials such as carbonaceous chondrites are necessary to obtain data for use in electromagnetic heating models. With the assumption that carbon was present at grain boundaries in the material that comprised the meteorite parent bodies, the electrical heating of such bodies was calculated as a function of body size and solar distance using the T-Tauri model of Sonett and Herbert (1977). The results are discussed.

  16. Ion Irradiation Experiments on the Murchison CM2 Carbonaceous Chondrite: Simulating Space Weathering of Primitive Asteroids

    Science.gov (United States)

    Keller, L. P.; Christoffersen, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Remote sensing observations show that space weathering processes affect all airless bodies in the Solar System to some degree. Sample analyses and lab experiments provide insights into the chemical, spectroscopic and mineralogic effects of space weathering and aid in the interpretation of remote- sensing data. For example, analyses of particles returned from the S-type asteroid Itokawa by the Hayabusa mission revealed that space-weathering on that body was dominated by interactions with the solar wind acting on LL ordinary chondrite-like materials [1, 2]. Understanding and predicting how the surface regoliths of primitive carbonaceous asteroids respond to space weathering processes is important for future sample return missions (Hayabusa 2 and OSIRIS-REx) that are targeting objects of this type. Here, we report the results of our preliminary ion irradiation experiments on a hydrated carbonaceous chondrite with emphasis on microstructural and infrared spectral changes.

  17. Carbonaceous chondrites and the origin of life

    Science.gov (United States)

    Hartman, Hyman; Sweeney, Michael A.; Kropp, Michael A.; Lewis, John S.

    1993-01-01

    Organic matter in carbonaceous chondrites can be separated into three fractions. The first component, the fraction that is insoluble in chloroform and methanol, has a part which is of interstellar origin. The other two fractions (chloroform-soluble hydrocarbons and methanol-soluble polar organics) are hypothesized to have been synthesized on a planetoid body. We propose that the polar organics, i.e., amino acids, were synthesized close to its surface by the radiolysis of hydrocarbons and ammonium carbonate in a liquid water environment. Some hydrocarbons may have been synthesized by a Fischer-Tropsch mechanism in the interior of the body. Ferrous ion acted as a protection against back reactions. The simultaneous synthesis of iron-rich clays with the polar organics may be indicative of events related to the origin of life on Earth.

  18. Organic analysis of the Antarctic carbonaceous chondrites

    Science.gov (United States)

    Kotra, R. K.; Shimoyama, A.; Ponnamperuma, C.; Hare, P. E.; Yanai, K.

    1981-01-01

    Thus far, organic analysis of carbonaceous chondrites has proven the only fruitful means of examining complex organic matter of extraterrestrial origin. The present paper presents the results of organic analysis of two Antarctic meteorites, Allan Hills (77306) and Yamato (74662), which may be considered free from terrestrial contamination. Ion-exchange chromatography, gas chromatography and mass spectrometery of meteorite samples reveal the presence in Yamato of 15 and in Allan Hills of 20 protein and nonprotein amino acids, the most abundant of which are glycine and alanine. Abundances of the D and L enantiomers of each amino acid are also found to be nearly equal. Data thus indicate an abiotic extraterrestrial origin for the matter, and confirm a lack of terrestrial contamination.

  19. Methods of ultimate carbonaceous BOD determination

    Science.gov (United States)

    Stamer, J.K.; McKenzie, S.W.; Cherry, R.N.

    1979-01-01

    Studies were conducted to provide an accurate and practical technique for determining the concentration of ultimate carbonaceous biochemical oxygen demand and the rate at which this demand is exerted. The three methods evaluated were carbon derived, nitrification adjusted, and nitrification inhibited. The studies indicate that comparable concentrations and reaction rates can be determined from either non-nitrified samples using no chemical nitrifying inhibitor, or from partially nitrified samples using the chemical inhibitors, 1-allyl-2 thiourea or nitrapyrin, and that the combined use of time-series analysis and Lee's graphical method provide a reliable and accurate technique for determining ultimate biochemical oxygen demand concentration and reaction rate in 5 to 7 days.

  20. Halogen bonds in crystal engineering: like hydrogen bonds yet different.

    Science.gov (United States)

    Mukherjee, Arijit; Tothadi, Srinu; Desiraju, Gautam R

    2014-08-19

    The halogen bond is an attractive interaction in which an electrophilic halogen atom approaches a negatively polarized species. Short halogen atom contacts in crystals have been known for around 50 years. Such contacts are found in two varieties: type I, which is symmetrical, and type II, which is bent. Both are influenced by geometric and chemical considerations. Our research group has been using halogen atom interactions as design elements in crystal engineering, for nearly 30 years. These interactions include halogen···halogen interactions (X···X) and halogen···heteroatom interactions (X···B). Many X···X and almost all X···B contacts can be classified as halogen bonds. In this Account, we illustrate examples of crystal engineering where one can build up from previous knowledge with a focus that is provided by the modern definition of the halogen bond. We also comment on the similarities and differences between halogen bonds and hydrogen bonds. These interactions are similar because the protagonist atoms-halogen and hydrogen-are both electrophilic in nature. The interactions are distinctive because the size of a halogen atom is of consequence when compared with the atomic sizes of, for example, C, N, and O, unlike that of a hydrogen atom. Conclusions may be drawn pertaining to the nature of X···X interactions from the Cambridge Structural Database (CSD). There is a clear geometric and chemical distinction between type I and type II, with only type II being halogen bonds. Cl/Br isostructurality is explained based on a geometric model. In parallel, experimental studies on 3,4-dichlorophenol and its congeners shed light on the nature of halogen···halogen interactions and reveal the chemical difference between Cl and Br. Variable temperature studies also show differences between type I and type II contacts. In terms of crystal design, halogen bonds offer a unique opportunity in the strength, atom size and interaction gradation; this may be

  1. Halogenated MOF-5 variants show new configuration, tunable band gaps and enhanced optical response in the visible and near infrared.

    Science.gov (United States)

    Yang, Li-Ming; Fang, Guo-Yong; Ma, Jing; Pushpa, Raghani; Ganz, Eric

    2016-11-30

    Inspired by recent experimental fabrication of mono-halogenated versions of Metal-Organic Framework MOF-5 (i.e., X-MOF-5, X = F to I) and some experimentally known fully halogenated MOF compounds, we systematically studied frameworks incorporating full halogenation of the BDC linkers of the prototypical Iso-Reticular Metal-Organic Framework (IRMOF) series, exemplified by MOF-5. Using quantum chemistry calculations, we find that halogenation leads to a 90° rotation of the aryl group, which is mainly ascribed to overcrowding between halogen atoms and the carboxyl and benzene ring and strong repulsion among in-plane atoms/groups. The 90° configuration decreases the repulsion, and maximizes the stabilization energy, and is therefore more stable than 0° configuration. We find that the band gap can be tuned from 4.1 to 1.5 eV as we go from F, Cl, Br, to I. This extends the optical response of these experimentally accessible materials through the visible and infrared region. We have also considered a broader range of new materials that substitute various metals for Zn. Totally, 70 materials were systematically examined computationally including (M4O)(BDC-Z4)3 (M = Zn, Cd, Be, Mg, Ca, Sr, Ba; Z = H, F, Cl, Br, I). For the full range of materials, we calculate band gaps of 4.2 to 1.0 eV, corresponding to a threshold of absorption of 290-1240 nm. Four selected materials were tested for stability using short 5 ps molecular dynamics simulations up to 600 K. The new materials with the smallest band gaps could potentially be used in near-infrared (NIR) light-emitting devices. Other properties, e.g., bulk moduli, formation energy, chemical bonding, and optical properties, were also investigated. The present results may provide new materials for use as novel photocatalysts, photoactive materials for photovoltaic cells, or functional devices in nanoelectronics and optoelectronics.

  2. Mercury and halogens in coal: Chapter 2

    Science.gov (United States)

    Kolker, Allan; Quick, Jeffrey C.; Granite, Evan J.; Pennline, Henry W.; Senior, Constance L.

    2014-01-01

    Apart from mercury itself, coal rank and halogen content are among the most important factors inherent in coal that determine the proportion of mercury captured by conventional controls during coal combustion. This chapter reviews how mercury in coal occurs, gives available concentration data for mercury in U.S. and international commercial coals, and provides an overview of the natural variation in halogens that influence mercury capture. Three databases, the U.S. Geological Survey coal quality (USGS COALQUAL) database for in-ground coals, and the 1999 and 2010 U.S. Environmental Protection Agency (EPA) Information Collection Request (ICR) databases for coals delivered to power stations, provide extensive results for mercury and other parameters that are compared in this chapter. In addition to the United States, detailed characterization of mercury is available on a nationwide basis for China, whose mean values in recent compilations are very similar to the United States in-ground mean of 0.17 ppm mercury. Available data for the next five largest producers (India, Australia, South Africa, the Russian Federation, and Indonesia) are more limited and with the possible exceptions of Australia and the Russian Federation, do not allow nationwide means for mercury in coal to be calculated. Chlorine in coal varies as a function of rank and correspondingly, depth of burial. As discussed elsewhere in this volume, on a proportional basis, bromine is more effective than chlorine in promoting mercury oxidation in flue gas and capture by conventional controls. The ratio of bromine to chlorine in coal is indicative of the proportion of halogens present in formation waters within a coal basin. This ratio is relatively constant except in coals that have interacted with deep-basin brines that have reached halite saturation, enriching residual fluids in bromine. Results presented here help optimize mercury capture by conventional controls and provide a starting point for

  3. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

    2003-07-01

    Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward

  4. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    Science.gov (United States)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  5. Photoresponsive liquid crystals based on halogen bonding of azopyridines.

    Science.gov (United States)

    Chen, Yinjie; Yu, Haifeng; Zhang, Lanying; Yang, Huai; Lu, Yunfeng

    2014-09-04

    A series of photoresponsive halogen-bonded liquid crystals (LCs) were successfully constructed using molecular halogen and azopyridine compounds, which show interesting properties of photoinduced phase transition upon UV irradiation. In addition, bromine-bonded LCs were first obtained with high mesophase stability.

  6. 40 CFR 721.8750 - Halogenated substituted pyridine.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated substituted pyridine. 721... Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses... pyridine (PMN P-86-838) is subject to reporting under this section for the significant new uses...

  7. Bacterial morphologies in carbonaceous meteorites and comet dust

    Science.gov (United States)

    Wickramasinghe, Chandra; Wallis, Max K.; Gibson, Carl H.; Wallis, Jamie; Al-Mufti, Shirwan; Miyake, Nori

    2010-09-01

    Three decades ago the first convincing evidence of microbial fossils in carbonaceous chondrites was discovered and reported by Hans Dieter Pflug and his collaborators. In addition to morphology, other data, notably laser mass spectroscopy, confirmed the identification of such structures as putative bacterial fossils. Balloon-borne cryosampling of the stratosphere enables recovery of fragile cometary dust aggregates with their structure and carbonaceous matter largely intact. SEM studies of texture and morphology of particles in the Cardiff collection, together with EDX identifications, show two main types of putative bio-fossils - firstly organic-walled hollow spheres around 10μm across, secondly siliceous diatom skeletons similar to those found in carbonaceous chondrites and terrestrial sedimentary rocks and termed 'acritarchs'. Since carbonaceous chondrites (particularly Type 1 chondrites) are thought to be extinct comets the data reviewed in this article provide strong support for theories of cometary panspermia.

  8. A new CH carbonaceous chondrite from Acfer, Algeria

    OpenAIRE

    Moggi-Cecchi, V.; Salvadori, A; Pratesi, G.; Franchi, Ian; Greenwood, Richard

    2006-01-01

    A single stone weighing 1456 g was found in November 2002 in the Acfer area, Algeria. Oxygen isotope, chondrules-matrix ratio as well as other petrographic features point to a classification as CH carbonaceous chondrite.

  9. TESTING OF CARBONACEOUS ADSORBENTS FOR REMOVAL OF POLLUTANTS FROM WATER

    Directory of Open Access Journals (Sweden)

    RAISA NASTAS

    2012-03-01

    Full Text Available Testing of carbonaceous adsorbents for removal of pollutants from water. Relevant direction for improving of quality of potable water is application of active carbons at various stages of water treatments. This work includes complex research dealing with testing of a broad spectrum of carbonaceous adsorbents for removal of hydrogen sulfide and nitrite ions from water. The role of the surface functional groups of carbonaceous adsorbents, their acid-basic properties, and the influence of the type of impregnated heteroatom (N, O, or metals (Fe, Cu, Ni, on removal of hydrogen sulfide species and nitrite ions have been researched. The efficiency of the catalyst obtained from peach stones by impregnation with Cu2+ ions of oxidized active carbon was established, being recommended for practical purposes to remove the hydrogen sulfide species from the sulfurous ground waters. Comparative analysis of carbonaceous adsorbents reveals the importance of surface chemistry for oxidation of nitrite ions.

  10. Bacterial morphologies in carbonaceous meteorites and comet dust

    CERN Document Server

    Wickramasinghe, N Chandra; Gibson, Carl H; Wallis, Jamie; Al-Mufti, Shirwan; Miyake, Nori

    2010-01-01

    Three decades ago the first convincing evidence of microbial fossils in carbonaceous chondrites was discovered and reported by Hans Dieter Pflug and his collaborators. In addition to morphology, other data, notably laser mass spectroscopy, confirmed the identification of such structures as putative bacterial fossils. Balloon-borne cryosampling of the stratosphere enables recovery of fragile cometary dust aggregates with their structure and carbonaceous matter largely intact. Scanning electron microscope studies of texture and morphology of particles in the Cardiff collection, together with Energy Dispersive X-ray identifications, show two main types of putative bio-fossils - firstly organic-walled hollow spheres around 10 microns across, secondly siliceous diatom skeletons similar to those found in carbonaceous chondrites and terrestrial sedimentary rocks and termed "acritarchs". Since carbonaceous chondrites (particularly Type 1 chondrites) are thought to be extinct comets the data reviewed in this article p...

  11. Life cycle assessment of hydrogen production by methane decomposition using carbonaceous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, J.; Moreno, J. [Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Galvez, J.L.; Martinez, G. [National Institute of Aerospace Technology (INTA), Renewable Energies Area Crtra, Ajalvir Km 4, 28850 Torrejon de Ardoz, Madrid (Spain); Serrano, D.P. [Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); IMDEA Energia, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2010-02-15

    Methane decomposition to yield hydrogen and carbon (CH{sub 4} <-> 2H{sub 2} + C) is one of the cleanest alternatives, free of CO{sub 2} emissions, for producing hydrogen from fossil fuels. This reaction can be catalyzed by metals, although they suffer a fast deactivation process, or by carbonaceous materials, which present the advantage of producing the catalyst from the carbon obtained in the reaction. In this work, the environmental performance of methane decomposition catalyzed by carbonaceous catalysts has been evaluated through Life Cycle Assessment tools, comparing it to other decomposition processes and steam methane reforming coupled to carbon capture systems. The results obtained showed that the decomposition using the autogenerated carbonaceous as catalyst is the best option when reaction conversions higher than 65% are attained. These were confirmed by 2015 and 2030 forecastings. Moreover, its environmental performance is highly increased when the produced carbon is used in other commercial applications. Thus, for a methane conversion of 70%, the application of 50% of the produced carbon would lead to a virtually zero-emissions process. (author)

  12. CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-05-27

    Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

  13. Bacterial morphologies in carbonaceous meteorites and comet dust

    OpenAIRE

    2010-01-01

    Three decades ago the first convincing evidence of microbial fossils in carbonaceous chondrites was discovered and reported by Hans Dieter Pflug and his collaborators. In addition to morphology, other data, notably laser mass spectroscopy, confirmed the identification of such structures as putative bacterial fossils. Balloon-borne cryosampling of the stratosphere enables recovery of fragile cometary dust aggregates with their structure and carbonaceous matter largely intact. Scanning electron...

  14. Characterization Of Carbonaceous Particles Along A North South Transect Of The Atlantic Ocean

    Science.gov (United States)

    Herckes, P.; Cox, J.; Lohmann, R.; Nizzetto, L.

    2006-12-01

    In recent years an increasing number of studies have investigated carbonaceous aerosols in urban and remote locations. However, little data on carbonaceous particles in remote marine environments exists, particularly on individual organic species concentrations including so-called molecular marker species. These markers can provide valuable insights into the sources of carbonaceous material, when stable during atmospheric transport. We will present results on organic aerosol characterization performed on samples collected along a North/South Transect from Bremerhaven (Germany) to Capetown (South Africa) aboard the Polarstern research vessel. Total Suspended Particulate matter (TSP) filter samples were analyzed for total carbon as well as carbon isotope ratios. Individual organic species (including n-alkanes, n-alkanoic acids, polyaromatic hydrocarbons, hopanes, steranes, dicarboxylic acids, and levoglucosan) were quantified in discrete (12h) and pooled (24-72h) samples, following solvent extraction and analysis by gas chromatography coupled to mass spectrometry (GC/MS). Preliminary results indicate relatively low concentrations of organic matter during most of the research cruise ( <1ug/m3) with higher concentrations in less pristine areas, mostly along Europe. Carbon isotope ratios were variable (-20 < delta13C < -27) and consistent with a change from C3 to C4 vegetation, suggesting an important biomass contribution to the observed particulate matter concentrations. These observations will be discussed with a focus on our observations of molecular marker concentrations. Although marker species were generally close to the detection limit, some markers were clearly detectable during high carbon events and are indicative of the sources of the carbonaceous particles.

  15. Investigation of organo-carbonate associations in carbonaceous chondrites by Raman spectroscopy

    Science.gov (United States)

    Chan, Queenie H. S.; Zolensky, Michael E.; Bodnar, Robert J.; Farley, Charles; Cheung, Jacob C. H.

    2017-03-01

    Carbonates record information regarding the timing, nature and conditions of the fluids circulating through asteroid parent bodies during aqueous alteration events. Determining carbonate abundances and their relationships with organic matter improves our understanding of the genesis of major carbonaceous components in chondritic materials. In this study, five CM2 carbonaceous chondrites (CM2.2 Nogoya, CM2.3 Jbilet Winselwan, CM2.5 Murchison, CM2 Santa Cruz, and CM2TII Wisconsin Range 91600) were studied with Raman spectroscopy. Carbonates were identified in these meteorite samples by the distinctive Raman band in the ∼1100 cm-1 region, representing the symmetric stretching vibration mode (ν1) of the (CO3)2- anion. Carbonates identified in the meteorite samples are all calcite, with the exception of a single dolomite grain in Nogoya. The v1 positions of the CM calcites are 2-3 cm-1 higher than in pure calcite, which suggests that they contain significant impurity cations. Typical graphitic first-order D and G bands were identified in the meteorite matrix as well as in ∼25% of the analyzed carbonate grains. From the Raman results, we postulate that the carbonates might not have formed under equilibrium conditions from a single fluid. The first generation of carbonate is interpreted to have formed from highly oxidized fluids that led to the oxidation of organic matter (OM) and produced carbonates that are OM-barren. The second generation of carbonate was formed from a more evolved aqueous fluid with the presence of OM. The Raman parameters of the organics in carbonates clearly deviate from the matrix OM which suggests that the carbonate organics contain very different carbonaceous components that are distinct from the typical amorphous OM of the CM matrix. The occurrence of different generations of carbonate in close proximity may be partly responsible for the wide range in estimated ages of carbonates in carbonaceous chondrites reported in previous studies.

  16. [Near infrared light irradiator using halogen lamp].

    Science.gov (United States)

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer.

  17. Distinct Purine Distribution in Carbonaceous Chondrites

    Science.gov (United States)

    Callahan, Michael P.; Smith, Karen E.; Cleaves, Henderson J.; Ruzicka, Josef; Stern, Jennifer C.; Glavin, Daniel P.; House, Christopher H.; Dworkin, Jason P.

    2011-01-01

    Carbonaceous chondrite meteorites are known to contain a diverse suite of organic compounds, many of which are essential components of biochemistry. Amino acids, which are the monomers of proteins, have been extensively studied in such meteorites (e.g. Botta and Bada 2002; Pizzarello et aI., 2006). The origin of amino acids in meteorites has been firmly established as extraterrestrial based on their detection typically as racemic mixtures of amino acids, the presence of many non-protein amino acids, and non-terrestrial values for compound-specific deuterium, carbon, and nitrogen isotopic measurements. In contrast to amino acids, nucleobases in meteorites have been far less studied. Nucleobases are substituted one-ring (pyrimidine) or two-ring (purine) nitrogen heterocyclic compounds and serve as the information carriers of nucleic acids and in numerous coenzymes. All of the purines (adenine, guanine, hypoxanthine, and xanthine) and pyrimidines (uracil) previously reported in meteorites are biologically common and could be interpreted as the result of terrestrial contamination (e.g. van del' Velden and Schwartz, 1974.) Unlike other meteoritic organics, there have been no observations of stochastic molecular diversity of purines and pyrimidines in meteorites, which has been a criterion for establishing extraterrestrial origin. Maltins et al. (2008) performed compound-specific stable carbon isotope measurements for uracil and xanthine in the Murchison meteorite. They assigned a non-terrestrial origin for these nucleobases; however, the possibility that interfering indigenous molecules (e.g. carboxylic acids) contributed to the 13C-enriched isotope values for these nucleobases cannot be completely ruled out. Thus, the origin of these meteoritic nucleobases has never been established unequivocally. Here we report on our investigation of extracts of II different carbonaceous chondrites covering various petrographic types (Cl, CM, and CR) and degrees of aqueous alteration

  18. Hydrogen bond and halogen bond inside the carbon nanotube

    Science.gov (United States)

    Wang, Weizhou; Wang, Donglai; Zhang, Yu; Ji, Baoming; Tian, Anmin

    2011-02-01

    The hydrogen bond and halogen bond inside the open-ended single-walled carbon nanotubes have been investigated theoretically employing the newly developed density functional M06 with the suitable basis set and the natural bond orbital analysis. Comparing with the hydrogen or halogen bond in the gas phase, we find that the strength of the hydrogen or halogen bond inside the carbon nanotube will become weaker if there is a larger intramolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom donor to the antibonding orbital of the X-H or X-Hal bond involved in the formation of the hydrogen or halogen bond and will become stronger if there is a larger intermolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom acceptor to the antibonding orbital of the X-H or X-Hal bond. According to the analysis of the molecular electrostatic potential of the carbon nanotube, the driving force for the electron-density transfer is found to be the negative electric field formed in the carbon nanotube inner phase. Our results also show that the X-H bond involved in the formation of the hydrogen bond and the X-Hal bond involved in the formation of the halogen bond are all elongated when encapsulating the hydrogen bond and halogen bond within the carbon nanotube, so the carbon nanotube confinement may change the blue-shifting hydrogen bond and the blue-shifting halogen bond into the red-shifting hydrogen bond and the red-shifting halogen bond. The possibility to replace the all electron nanotube-confined calculation by the simple polarizable continuum model is also evaluated.

  19. Carbonaceous aerosols at urban influenced sites in Norway

    Directory of Open Access Journals (Sweden)

    K. E. Yttri

    2008-11-01

    Full Text Available Little is known regarding levels and source strength of carbonaceous aerosols in Scandinavia. In the present study, ambient aerosol (PM10 and PM2.5 concentrations of elemental carbon (EC, organic carbon (OC, water-insoluble organic carbon (WINSOC, and water-soluble organic carbon (WSOC are reported for a curbside site, an urban background site, and a suburban site in Norway in order to investigate their spatial and seasonal variations. Aerosol filter samples were collected using tandem filter sampling to correct for the positive sampling artefact introduced by semi volatile OC. Analyses were performed using the thermal optical transmission (TOT instrument from Sunset Lab Inc., which corrects for charring during analysis. Finally, we estimated the relative contribution of OC from wood burning based on the samples content of levoglucosan.

    Levels of EC varied by more than one order of magnitude between sites, likely due to the higher impact of vehicular traffic at the curbside and the urban background sites. In winter, the level of particulate organic carbon (OCp at the suburban site was equal to (for PM10 or even higher (for PM2.5 than the levels observed at the curbside and the urban background sites. This finding was attributed to the impact of residential wood burning at the suburban site in winter, which was confirmed by a high mean concentration of levoglucosan (407 ng m−3. This finding indicates that exposure to primary combustion derived OCp could be equally high in residential areas as in a city center. It is demonstrated that OCp from wood burning (OCwood accounted for almost all OCp at the suburban site in winter, allowing a new estimate of the ratio TCp/levoglucosan for both PM10 and PM2.5. Particulate carbonaceous material (PCM = Organic matter + Elemental matter accounted for 46–83

  20. Carbonaceous preservation of Cambrian hexactinellid sponge spicules.

    Science.gov (United States)

    Harvey, Thomas H P

    2010-12-23

    Early fossil sponges offer a direct window onto the evolutionary emergence of animals, but insights are limited by the paucity of characters preserved in the conventional fossil record. Here, a new preservational mode for sponge spicules is reported from the lower Cambrian Forteau Formation (Newfoundland, Canada), prompting a re-examination of proposed homologies and sponge inter-relationships. The spicules occur as wholly carbonaceous films, and are interpreted as the remains of robust organic spicule sheaths. Comparable sheaths are restricted among living taxa to calcarean sponges, although the symmetries of the fossil spicules are characteristic of hexactinellid sponges. A similar extinct character combination has been documented in the Burgess Shale fossil Eiffelia. Interpreting the shared characters as homologous implies complex patterns of spicule evolution, but an alternative interpretation as convergent autapomorphies is more parsimonious. In light of the mutually exclusive distributions of these same characters among the crown groups, this result suggests that sponges exhibited an early episode of disparity expansion followed by comparatively constrained evolution, a pattern shared with many other metazoans but obscured by the conventional fossil record of sponges.

  1. Determination of halogens and sulfur in high-purity polyimide by IC after digestion by MIC.

    Science.gov (United States)

    Krzyzaniak, Sindy R; Santos, Rafael F; Dalla Nora, Flavia M; Cruz, Sandra M; Flores, Erico M M; Mello, Paola A

    2016-09-01

    In this work, a method for sample preparation of high-purity polyimide was proposed for halogens and sulfur determination by ion chromatography (IC) with conductivity detection and, alternatively, by inductively coupled plasma mass spectrometry (ICP-MS). A relatively high polyimide mass (600mg) was completely digested by microwave-induced combustion (MIC) using 20bar of O2 and 50mmolL(-1) NH4OH as absorbing solution. These conditions allowed final solutions with low carbon content (IC and ICP-MS. The accuracy was evaluated using a certified reference material of polymer for Cl, Br and S and spike recovery experiments for all analytes. No statistical difference (t-test, 95% of confidence level) was observed between the results obtained for Cl, Br and S by IC after MIC and the certified values. In addition, spike recoveries obtained for F, Cl, Br, I and S ranged from 94% to 101%. The proposed method was suitable for polyimide decomposition for further determination of halogens and sulfur by IC and by ICP-MS (Br and I only). Taking into account the lack of methods and the difficulty of bringing this material into solution, MIC can be considered as a suitable alternative for the decomposition of polyimide for routine quality control of halogens and sulfur using IC or ICP-MS.

  2. Investigation of nanocrystalline structure in selected carbonaceous materials

    Institute of Scientific and Technical Information of China (English)

    Manoj B

    2014-01-01

    The structural parameters of nine Indian coals were determined by X-ray diffraction (XRD) and Raman spectroscopy. The study revealed that the coals contain crystalline carbon of turbostratic structure with amorphous carbon. The stacking height (Lc) and interlayer spacing (d002) of the crystallite structure of the coals ranged from 1.986 to 2.373 nm and from 0.334 to 0.340 nm, respectively. The degree of graphitization was calculated to range from 42%to 99%, thereby confirming the ordering of the carbon layers with the increase in coal rank. An exponential correlation was observed among the aromaticity (fa), the lateral size (La), and the rank (I20/I26), suggesting that the coal crys-tallites are nanocrystalline in nature. A very strong correlation was observed between the structural parameters (fa, d002, Lc, the H/C ratio, and I20/I26), the volatile matter content, and the elemental carbon content, indicating the structures of coals are controlled by the degree of contact metamorphism. The Raman spectra exhibited two prominent bands:the graphitic band (G) and the first-order characteristic defect band (D). The deconvolution resulted in five peaks:G, D1, D2, D3, and D4. The intense D1 band, which appeared at~1350 cm-1, corresponds to a lat-tice vibration mode with A1g symmetry. The D2 mode, which appeared at~1610 cm-1, arises from the structural disorder as a shoulder on the G band.

  3. Ordered mixed-layer structures in the Mighei carbonaceous chondrite matrix

    Science.gov (United States)

    Mackinnon, I. D. R.

    1982-01-01

    High resolution transmission electron microscopy of the Mighei carbonaceous chondrite matrix has revealed the presence of a new mixed layer structure material. This mixed-layer material consists of an ordered arrangement of serpentine-type (S) and brucite-type (B) layers in the sequence SBBSBB. Electron diffraction and imaging techniques show that the basal periodicity is approximately 17 A. Discrete crystals of SBB-type material are typically curved, of small size (less than 1 micron) and show structural variations similar to the serpentine group minerals. Mixed-layer material also occurs in association with planar serpentine. Characteristics of SBB-type material are not consistent with known terrestrial mixed-layer clay minerals. Evidence for formation by a condensation event or by subsequent alteration of pre-existing material is not yet apparent.

  4. Carbonaceous species in atmospheric aerosols from the Krakow area (Malopolska District: carbonaceous species dry deposition analysis

    Directory of Open Access Journals (Sweden)

    Szramowiat Katarzyna

    2016-01-01

    Full Text Available Organic and elemental carbon content in PM10 was studied at three sites in Malopolska District representing the city centre (Krakow, rural/residential (Bialka and residential/industrial environments (Krakow. The PM10 samples were collected during the winter time study. The highest concentrations of carbonaceous species were observed in Skawina (36.9 μg·m-3 of OC and 9.6 μg·m-3 of EC. The lowest OC and EC concentrations were reported in Krakow (15.2 μg·m-3 and 3.9 μg·m-3, respectively. The highest concentration of carbonaceous species and the highest wind velocities in Skawina influenced the highest values of the dry deposition fluxes. Correlations between OC, EC and chemical constituents and meteorological parameters suggest that a Krakow was influenced by local emission sources and temperature inversion occurrence; b Bialka was under the influence of local emission sources and long-range transport of particles; c Skawina was impacted by local emission sources.

  5. Halogenated DOPA in a Marine Adhesive Protein.

    Science.gov (United States)

    Sun, Cheng Jun; Srivastava, Aasheesh; Reifert, Jack R; Waite, J Herbert

    2009-02-01

    The sandcastle worm Phragmatopoma californica, a marine polychaete, constructs a tube-like shelter by cementing together sand grains using a glue secreted from the building organ in its thorax. The glue is a mixture of post-translationally modified proteins, notably the cement proteins Pc-1 and Pc-2 with the amino acid, 3,4-dihydroxyphenyl-L-alanine (DOPA). Significant amounts of a halogenated derivative of DOPA were isolated from the worm cement following partial acid hydrolysis and capture of catecholic amino acids by phenylboronate affinity chromatography. Analysis by tandem mass spectrometry and (1)H NMR indicates the DOPA derivative to be 2-chloro-4, 5-dihydroxyphenyl-L-alanine. The potential roles of 2-chloro-DOPA in chemical defense and underwater adhesion are considered.

  6. Halogenated coumarin derivatives as novel seed protectants.

    Science.gov (United States)

    Brooker, N; Windorski, J; Bluml, E

    2008-01-01

    Development of new and improved antifungal compounds that are target-specific is backed by a strong Federal, public and commercial mandate. Many plant-derived chemicals have proven fungicidal properties, including the coumarins (1,2-Benzopyrone) found in a variety of plants such as clover, sweet woodruff and grasses. Preliminary research has shown the coumarins to be a highly active group of molecules with a wide range of antimicrobial activity against both fungi and bacteria. It is believed that these cyclic compounds behave as natural pesticidal defence molecules for plants and they represent a starting point for the exploration of new derivative compounds possessing a range of improved antifungal activity. Within this study, derivatives of coumarin that were modified with halogenated side groups were screened for their antifungal activity against a range of soil-borne plant pathogenic fungi. Fungi included in this in vitro screen included Macrophomina phaseolina (charcoal rot), Phytophthora spp. (damping off and seedling rot), Rhizoctonia spp. (damping off and root rot) and Pythium spp. (seedling blight), four phylogenetically diverse and economically important plant pathogens. Studies indicate that these halogenated coumarin derivatives work very effectively in vitro to inhibit fungal growth and some coumarin derivatives have higher antifungal activity and stability as compared to the original coumarin compound alone. The highly active coumarin derivatives are brominated, iodinated and chlorinated compounds and results suggest that besides being highly active, very small amounts can be used to achieve LD100 rates. In addition to the in vitro fungal inhibition assays, results of polymer seed coating compatibility and phytotoxicity testing using these compounds as seed treatments will also be reported. These results support additional research in this area of natural pesticide development.

  7. Persistence, bioaccumulation, and toxicity of halogen-free flame retardants.

    Science.gov (United States)

    Waaijers, Susanne L; Kong, Deguo; Hendriks, Hester S; de Wit, Cynthia A; Cousins, Ian T; Westerink, Remco H S; Leonards, Pim E G; Kraak, Michiel H S; Admiraal, Wim; de Voogt, Pim; Parsons, John R

    2013-01-01

    Polymers are synthetic organic materials having a high carbon and hydrogen content, which make them readily combustible. Polymers have many indoor uses and their flammability makes them a fire hazard. Therefore, flame retardants (FRs) are incorporated into these materials as a safety measure. Brominated flame retardants (BFRs), which accounted for about 21% of the total world market of FRs, have several unintended negative effects on the environment and human health. Hence, there is growing interest in finding appropriate alternative halogen-free flame retardants (HFFRs). Many of these HFFRs are marketed already, although their environ- mental behavior and toxicological properties are often only known to a limited extent, and their potential impact on the environment cannot yet be properly assessed. Therefore, we undertook this review to make an inventory of the available data that exists (up to September 2011) on the physical-chemical properties, pro- duction volumes, persistence, bioaccumulation, and toxicity (PBT) of a selection of HFFRs that are potential replacements for BFRs in polymers. Large data gaps were identified for the physical-chemical and the PBT properties of the reviewed HFFRs. Because these HFFRs are currently on the market, there is an urgent need to fill these data gaps. Enhanced transparency of methodology and data are needed to reevaluate certain test results that appear contradictory, and, if this does not provide new insights, further research should be performed. TPP has been studied quite extensively and it is clearly persistent, bioaccumulative, and toxic. So far, RDP and BDP have demonstrated low to high ecotoxicity and persistence. The compounds ATH and ZB exerted high toxicity to some species and ALPI appeared to be persistent and has low to moderate reported ecotoxicity. DOPO and MPP may be persistent, but this view is based merely on one or two studies, clearly indicating a lack of information. Many degradation studies have been

  8. CARBONACEOUS MATTER PRECURSORS AND METAMORPHIC CONDITIONS IN THERMALLY PROCESSED CHONDRITES

    Science.gov (United States)

    Quirico, E.; Montagnac, G.; Rouzaud, J.; Bonal, L.; Bourot-Denise, M.; Duber, S.; Reynard, B.

    2009-12-01

    Unravelling the origin of carbonaceous matter in pristine chondrites requires the understanding of the effect of post-accretion processes. In chondrites of petrologic type 3, thermal metamorphism modified to various extents the composition and structure of carbonaceous matter. Interestingly, this process controls the degree of structural order of carbonaceous matter, and clues on the thermal history of the parent body may be recovered from the physico-chemical study of carbonaceous matter. Following this framework, geothermometers based on Raman spectrometry of carbonaceous matter and covering a wide range of temperatures (100-650 °C) have been developed over recent years, both on terrestrial rocks and chondrites. While Raman data have been largely interpreted in terms of temperature, they are also the fingerprint of certain metamorphic conditions, especially in the low temperature range relevant to poorly ordered carbonaceous matter. This study investigates the Raman spectra of two series of chondritic carbonaceous matter and coal samples formed from different precursors and under different metamorphic conditions. The Raman spectra of Polyaromatic Carbonaceous Matter (PCM) from 42 chondrites and 27 coal samples, measured with visible (514 nm) and ultra-violet (244 nm) excitation wavelengths, are analyzed. The Raman spectra of low rank coals and chondrites of petrologic types 1 and 2, which contain the more disordered PCM, reflect the distinct carbon structures of their precursors. The 514 nm Raman spectra of high rank coals and chondrites of petrologic type 3 exhibit continuous and systematic spectral differences reflecting different carbon structures present during the metamorphism event. They result from differences in the chemical structures of the precursors concerning for instance the reticulation of polyaromatic units or an abundance of ether functional groups, or possibly from a lack of carbonization processes to efficiently expel oxygen heteroatoms, due

  9. Physical and Chemical Characterization of Carbonaceous Aerosols in Korea

    Science.gov (United States)

    Choung, S.; Jin, J. S.; Hwang, G. S.; Jang, K. S.; Han, W. S.; OH, J.; Kwon, Y.

    2014-12-01

    Atmospheric aerosols have been recently paid attention more in environmental research due to their negative effects on air quality, public health, and climate change. The aerosols contain approximately >20-50% carbonaceous components such as organic carbon (OC) and black carbon (BC) (or elemental carbon [EC]) derived from organic compounds, biomass burning, and incomplete combustion of fossil fuels. The physical, chemical, and biological properties of atmospheric aerosols are strongly dependent on the carbonaceous components. In particular, the BC could significantly affect the regional air quality in the northeastern Asia, because China is one of the foremost BC emission country in the world. Previous studies have mainly focused on the quantification and source identification for carbonaceous aerosols. However, understanding of physical and chemical properties for the carbonaceous aerosols related to environmental contamination and toxicity was still incomplete due to analytical difficulties. This study is addressed to evaluate the contribution of carbonaceous aerosols to air pollution through the surface, mass spectroscopic, and electron microscopic analyses, and determination of chemical composition and structure using the air particulate matter (PM2.5 and >PM2.5) samples.

  10. Molecular Engineering of Non-Halogenated Solution-Processable Bithiazole based Electron Transport Polymeric Semiconductors

    KAUST Repository

    Fu, Boyi

    2015-04-01

    The electron deficiency and trans planar conformation of bithiazole is potentially beneficial for the electron transport performance of organic semiconductors. However, the incorporation of bithiazole into polymers through a facile synthetic strategy remains a challenge. Herein, 2,2’-bithiazole was synthesized in one step and copolymerized with dithienyldiketopyrrolopyrrole to afford poly(dithienyldiketopyrrolopyrrole-bithiazole), PDBTz. PDBTz exhibited electron mobility reaching 0.3 cm2V-1s-1 in organic field-effect transistor (OFET) configuration; this contrasts with a recently discussed isoelectronic conjugated polymer comprising an electron rich bithiophene and dithienyldiketopyrrolopyrrole, which displays merely hole transport characteristics. This inversion of charge carrier transport characteristics confirms the significant potential for bithiazole in the development of electron transport semiconducting materials. Branched 5-decylheptacyl side chains were incorporated into PDBTz to enhance polymer solubility, particularly in non-halogenated, more environmentally compatible solvents. PDBTz cast from a range of non-halogenated solvents exhibited film morphologies and field-effect electron mobility similar to those cast from halogenated solvents.

  11. Evaluation of wear rate of dental composites polymerized by halogen or LED light curing units

    Directory of Open Access Journals (Sweden)

    Alaghehmand H.

    2006-08-01

    Full Text Available Background and Aim: Sufficient polymerization is a critical factor to obtain optimum physical properties and clinical efficacy of resin restorations. The aim of this study was to evaluate wear rates of composite resins polymerized by two different systems Light Emitting Diodes (LED to and Halogen lamps. Materials and Methods: In this laboratory study, 20 specimens of A3 Tetric Ceram composite were placed in brass molds of 2*10*10 mm dimensions and cured for 40 seconds with 1 mm distance from surface. 10 specimens were cured with LED and the other 10 were cured with Halogen unit. A device with the ability to apply force was developed in order to test the wear of composites. After storage in distilled water for 10 days, the specimens were placed in the wear testing machine. A chrome cobalt stylus with 1.12 mm diameter was applied against the specimens surfaces with a load of 2 kg. The weight of each samples before and after 5000, 10000, 20000, 40000, 80000 and 120000 cycles was measured using an electronic balance with precision of 10-4 grams. Data were analyzed using t test and paired t test. P0.05. Conclusion: Based on the results of this study, LED and halogen light curing units resulted in a similar wear rate in composite resin restorations.

  12. The chemistry of halogens on diamond: effects on growth and electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, W.L.; Pan, L.S.; Brown, L.A. [Sandia National Labs., Livermore, CA (United States)] [and others

    1997-02-01

    Diamond growth using halogenated precursors was studied in several diamond growth reactors. In a conventionao plasma reactor, diamond growth using the following gas mixtures was studied: CF{sub 4}/H{sub 2}, CH{sub 4}/H{sub 2}, CH{sub 3}F/H{sub 2}, and CH{sub 3}CL/H{sub 2}. Both the diamond growth measurements demonstrated ineffective transport of halogen radicals to the diamond surface during the growth process. In order to transport radical halogen species to the diamond surface during growth, a flow-tube reactor was constructed which minimized gas phase reactions. Also, the flow-tube reactor enabled pulsed gs transport to the diamond surface by fast-acting valves. Molecular beam mass spectroscopy was used to find condition which resulted in atomic hydrogen and/or atomic fluorine transport to the growing diamond surface. Although such conditions were found, they required very low pressures (0.5 Torr and below); these low pressures produce radical fluxes which are too low to sustain a reasonable diamond growth rate. The sequential reactor at Stanford was modified to add a halogen-growth step to the conventinoal atomic hydrogen/atomic carbon diamond growth cycle. Since the atomic fluorine, hydrogen and carbon environments are independent in the sequential reactor, the effect of fluorine on diamond growth could be studied independently of gas phase reactions. Although the diamond growth rate was increased by the use of fluorine, the film quality was seen to deteriorate as well as the substrate surface. Moreover, materials incompatibilities with fluorine significantly limited the use of fluorine in this reactor. A diamond growth model incorporating both gas phase and surface reactions was developed for the halocarbon system concurrent with the film growth efforts. In this report, we review the results of the growth experiments, the modeling, and additional experiments done to understand fluorine with diamond surfaces.

  13. UARS Halogen Occultation Experiment (HALOE) Level 2 V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The HALOE home page on the WWW is http://haloe.gats-inc.com/home/index.php The Halogen Occultation Experiment (HALOE) on NASA's Upper Atmosphere Research Satellite...

  14. Halogen Bonding Promotes Higher Dye-Sensitized Solar Cell Photovoltages.

    Science.gov (United States)

    Simon, Sarah J C; Parlane, Fraser G L; Swords, Wesley B; Kellett, Cameron W; Du, Chuan; Lam, Brian; Dean, Rebecca K; Hu, Ke; Meyer, Gerald J; Berlinguette, Curtis P

    2016-08-24

    We report here an enhancement in photovoltage for dye-sensitized solar cells (DSSCs) where halogen-bonding interactions exist between a nucleophilic electrolyte species (I(-)) and a photo-oxidized dye immobilized on a TiO2 surface. The triarylamine-based dyes under investigation showed larger rate constants for dye regeneration (kreg) by the nucleophilic electrolyte species when heavier halogen substituents were positioned on the dye. The open-circuit voltages (VOC) tracked these kreg values. This analysis of a homologous series of dyes that differ only in the identity of two halogen substituents provides compelling evidence that the DSSC photovoltage is sensitive to kreg. This study also provides the first direct evidence that halogen-bonding interactions between the dye and the electrolyte can bolster DSSC performance.

  15. Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites

    Science.gov (United States)

    Goodman, M.M.; Faraj, B.

    1999-07-06

    Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.

  16. Laboratory Studies Of Circumstellar Carbonaceous Grain Formation

    Science.gov (United States)

    Contreras, Cesar; Sciamma-O'Brien, Ella; Salama, Farid

    2014-06-01

    The study of the formation processes of dust is essential to understand the budget of extraterrestrial organic molecules. Although dust with all its components plays an important role in the evolution of interstellar (IS) chemistry and in the formation of organic molecules, little is known on the formation processes of carbonaceous dust. We report the progress that was recently achieved in this domain using NASA Ames’ COSmIC facility (Contreras & Salama 2013, ApJS, 208, 6). PAHs are important chemical building blocks of IS dust. They are detected in IDPs and in meteoritic samples. Additionally, observational, laboratory, and theoretical studies have shown that PAHs are an important, ubiquitous component of the ISM. The formation of PAHs from smaller molecules has not been extensively studied. Therefore, we have performed laboratory experiments to study the dynamic processes of carbon grain formation, starting from the smallest hydrocarbon molecules into the formation of larger PAH and further into nanograins. Studies of IS dust analogs formed from a variety of PAH and hydrocarbon precursors as well as species that include the atoms O, N, and S, have recently been performed in our laboratory using the COSmIC facility to provide conditions that simulate IS and circumstellar environments. The species formed in the COSmiC chamber through a pulsed discharge nozzle plasma source are detected and characterized with a cavity ringdown spectrometer coupled to a time-of-flight mass spectrometer, thus providing both spectroscopic and ion mass information in-situ. Analysis of solid soot particles was also conducted using scanning electron microscopy at the UCSC/NASA Ames’ MACS facility. The SEM analysis of the deposition of soot from methane and acetylene precursors seeded in argon plasmas provide examples on the types of nanoparticles and micrograins that are produced in these gas mixtures under our experimental conditions. From these measurements, we derive information on

  17. Halogen Bonding: An AIM Analysis of the Weak Interactions

    Institute of Scientific and Technical Information of China (English)

    ZOU, Jian-Wei; LU, Yun-Xiang; YU, Qing-Sen; ZHANG, Hua-Xin; JIANG, Yong-Jun

    2006-01-01

    A series of complexes formed between halogen-containing molecules and ammonia have been investigated by means of the atoms in molecules (AIM) approach to gain a deeper insight into halogen bonding. The existence of the halogen bond critical points (XBCP) and the values of the electron density (ρb) and Laplacian of electron density (▽2pb) at the XBCP reveal the closed-shell interactions in these complexes. Integrated atomic properties such as charge, energy, polarization moment, volume of the halogen bond donor atoms, and the corresponding changes (△) upon complexation have been calculated. The present calculations have demonstrated that the halogen bond represents different AIM properties as compared to the well-documented hydrogen bond. Both the electron density and the Laplacian of electron density at the XBCP have been shown to correlate well with the interaction energy, which indicates that the topological parameters at the XBCP can be treated as a good measure of the halogen bond strength.In addition, an excellent linear relationship between the interatomic distance d(X…N) and the logarithm of ρb has been established.

  18. Halogen chemistry reduces tropospheric O3 radiative forcing

    Science.gov (United States)

    Sherwen, Tomás; Evans, Mat J.; Carpenter, Lucy J.; Schmidt, Johan A.; Mickley, Loretta J.

    2017-01-01

    Tropospheric ozone (O3) is a global warming gas, but the lack of a firm observational record since the preindustrial period means that estimates of its radiative forcing (RFTO3) rely on model calculations. Recent observational evidence shows that halogens are pervasive in the troposphere and need to be represented in chemistry-transport models for an accurate simulation of present-day O3. Using the GEOS-Chem model we show that tropospheric halogen chemistry is likely more active in the present day than in the preindustrial. This is due to increased oceanic iodine emissions driven by increased surface O3, higher anthropogenic emissions of bromo-carbons, and an increased flux of bromine from the stratosphere. We calculate preindustrial to present-day increases in the tropospheric O3 burden of 113 Tg without halogens but only 90 Tg with, leading to a reduction in RFTO3 from 0.43 to 0.35 Wm-2. We attribute ˜ 50 % of this reduction to increased bromine flux from the stratosphere, ˜ 35 % to the ocean-atmosphere iodine feedback, and ˜ 15 % to increased tropospheric sources of anthropogenic halogens. This reduction of tropospheric O3 radiative forcing due to halogens (0.087 Wm-2) is greater than that from the radiative forcing of stratospheric O3 (˜ 0.05 Wm-2). Estimates of RFTO3 that fail to consider halogen chemistry are likely overestimates (˜ 25 %).

  19. Organic Matter from Comet 81p/Wild 2, IDPS and Carbonaceous Meteorites; Similarities and Differences

    Energy Technology Data Exchange (ETDEWEB)

    Wirick, S.; Flynn, G; Keller, L; Nakamura Messenger, K; Peltzer, C; Jacobsen, C; Sandford, S; Zolensky, M

    2009-01-01

    During preliminary examination of 81P/Wild 2 particles collected by the NASA Stardust spacecraft, we analyzed seven, sulfur embedded and ultramicrotomed particles extracted from five different tracks. Sections were analyzed using a scanning transmission X-ray microscope (SXTM) and carbon X-ray absorption near edge structure (XANES) spectra were collected. We compared the carbon XANES spectra of these Wild 2 samples with a database of spectra on thirty-four interplanetary dust particles (IDPs) and with several meteorites. Two of the particles analyzed are iron sulfides and there is evidence that an aliphatic compound associated with these particles can survive high temperatures. An iron sulfide from an IDP demonstrates the same phenomenon. Another, mostly carbon free containing particle radiation damaged, something we have not observed in any IDPs we have analyzed or any indigenous organic matter from the carbonaceous meteorites, Tagish Lake, Orgueil, Bells and Murchison. The carbonaceous material associated with this particle showed no mass loss during the initial analysis but chemically changed over a period of two months. The carbon XANES spectra of the other four particles varied more than spectra from IDPs and indigenous organic matter from meteorites. Comparison of the carbon XANES spectra from these particles with 1. the carbon XANES spectra from thirty-four IDPs (<15 micron in size) and 2. the carbon XANES spectra from carbonaceous material from the Tagish Lake, Orgueil, Bells, and Murchison meteorites show that 81P/Wild 2 carbon XANES spectra are more similar to IDP carbon XANES spectra then to the carbon XANES spectra of meteorites.

  20. Control of Oxygen Concentration by Using a Carbonaceous Substance

    Directory of Open Access Journals (Sweden)

    Mohanad Jadan

    2005-01-01

    Full Text Available The control of oxygen concentration in gas flow may be used in chemical industry, heat power engineering, ecology, automobile construction and other industrial branches. This control is realized over a broad range of oxygen concentrations. The control of the oxygen concentration is based on passing of gas flow through a measuring cavity of radio spectrometer and measurement of a magnetic resonance signal. A change in the magnetic resonance signal of a dispersed carbonaceous substance, placed into the cavity, indicates to the changes in oxygen concentrations. The dispersed anthracite and thermal treatment cellulose substance in the oxygen-free medium are proposed to use as a carbonaceous substance.

  1. Crystallography of Magnetite Plaquettes and their Significance as Asymmetric Catalysts for the Synthesis of Chiral Organics in Carbonaceous Chondrites

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.

    2015-01-01

    We have previously observed the magnetite plaquettes in carbonaceous chondrites using scanning electron microscope (SEM) imaging, examined the crystal orientation of the polished surfaces of magnetite plaquettes in CI Orgueil using electron backscattered diffraction (EBSD) analysis, and concluded that these magnetite plaquettes are likely naturally asymmetric materials. In this study, we expanded our EBSD observation to other magnetite plaquettes in Orgueil, and further examined the internal structure of these remarkable crystals with the use of X-ray computed microtomography.

  2. Acid/base bifunctional carbonaceous nanomaterial with large surface area: Preparation, characterization, and adsorption properties for cationic and anionic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kai; Ma, Chun–Fang; Ling, Yuan; Li, Meng [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Gao, Qiang, E-mail: gaoqiang@cug.edu.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Luo, Wen–Jun, E-mail: heartnohome@yahoo.com.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China)

    2015-07-15

    Nanostructured carbonaceous materials are extremely important in the nano field, yet developing simple, mild, and “green” methods that can make such materials possess large surface area and rich functional groups on their surfaces still remains a considerable challenge. Herein, a one-pot and environment-friendly method, i.e., thermal treatment (180 °C; 18 h) of water mixed with glucose and chitosan (CTS), has been proposed. The resultant carbonaceous nanomaterials were characterized by field emitting scanning electron microscope, N{sub 2} adsorption/desorption, Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, and zeta-potential analysis. It was found that, in contrast to the conventional hydrothermally carbonized product from pure glucose, with low surface area (9.3 m{sup 2} g{sup −1}) and pore volume (0.016 cm{sup 3} g{sup −1}), the CTS-added carbonaceous products showed satisfactory textural parameters (surface area and pore volume up to 254 m{sup 2} g{sup −1} and 0.701 cm{sup 3} g{sup −1}, respectively). Moreover, it was also interestingly found that these CTS-added carbonaceous products possessed both acidic (–COOH) and basic (–NH{sub 2}) groups on their surfaces. Taking the advantages of large surface area and –COOH/–NH{sub 2} bifunctional surface, the carbonaceous nanomaterials exhibited excellent performance for adsorptions of cationic compound (i.e., methylene blue) at pH 10 and anionic compound (i.e., acid red 18) at pH 2, respectively. This work not only provides a simple and green route to prepare acid/base bifunctional carbonaceous nanomaterials with large surface area but also well demonstrates their potential for application in adsorption. - Highlights: • A simple and green method was proposed to prepare carbon nanomaterials. • The carbon product showed acid/base bifunctional surface with large surface area. • The carbon material could efficiently adsorb both cationic and anionic compounds.

  3. Production of carbonaceous adsorbents from agricultural by-products and novolac resin under a continuous countercurrent flow type pyrolysis operation.

    Science.gov (United States)

    Ioannou, Z; Simitzis, J

    2013-02-01

    Carbonaceous adsorbents based on novolac resin (N) and olive stone biomass (B) in a proportion of 20/80 and 40/60 w./w. N/O were produced. The specimens were cured (c) and pyrolyzed/carbonized (C) up to 1000 °C under a continuous countercurrent flow type pyrolysis operation (N20B-cC, N40B-cC). Commercial activated carbon (AC) was used for comparison reasons. Methylene blue adsorption from its aqueous solutions onto the adsorbents and kinetic analysis were investigated. The specific surface area of adsorbents and the gross calorific values (GCV) of cured materials were determined. The results show that N40B-cC presents lower weight loss and shrinkage but higher methylene blue adsorption than N20B-cC. Pseudo-second order mechanism describes better methylene blue adsorption onto all adsorbents. The specific surface area of carbonaceous and the gross calorific values of cured materials follow the order: AC>N20B-cC>N40B-cC and N100-c>N40B-c>N20B-c>B respectively. Olive stone biomass may constitute a suitable precursor for the production of carbonaceous materials.

  4. Synthesis and characterization of lead-free tin silver nanosolders and their application to halogen free nanosolder pastes

    Science.gov (United States)

    Wernicki, Evan

    Solder paste is a key material used in attaching electronic components to printed circuit boards (PCBs). Commonly used lead-based solders, such as eutectic Sn/37Pb, are currently being replaced by lead-free alloy materials due to health and environmental concerns associated with lead. Many solder pastes, both lead-containing and lead-free, contain halogens which act as activators to remove surface oxide and enhance surface wetting, posing further environmental concern from the halogen species. Difficulties in obtaining reliable joints can occur since lead-free solder material candidates have higher melting temperatures (30-50 °C) than that of lead-based solders. Differences in material properties between the numerous materials used in assembly and packaging processes can lead to component damage during manufacturing. Furthermore, designs that include more electrical interconnects in smaller areas give rise for the need for new materials to allow this trend to continue. A surfactant-assisted chemical reduction method was used to synthesize Sn/Ag alloy nanoparticles with a target composition range of 3.5-5 wt% Ag that served as the lead-free solder material within a nanosolder paste. Structure and size characterization via SEM and TEM showed Sn-Ag nanosolders size average approximately 19 nm. Differential scanning calorimetry (DSC) measurements of the nanosolder samples containing 4.5 wt% Ag showed an endothermic peak at 222.5 °C and an onset of 219.2 °C, indicating up to 17.5 °C melting temperature depression when compared to the bulk liquidus value of 240 °C. Composition of the nanosolder material was confirmed using energy dispersive x-ray spectroscopy (EDS) and structures formed were analyzed via x-ray diffraction (XRD). Both halogen-free and halogen-containing flux materials were combined with the nanosolder material, respectively, with varying preparation parameters to form a design of experiments (DoE) for nanosolder paste preparation. Solder pastes

  5. Negative Halogen Ions for Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Grisham, L.R.; Kwan, J.W.; Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Westenskow, G.

    2006-01-01

    Over the past quarter century, advances in hydrogen negative ion sources have extended the usable range of hydrogen isotope neutral beams to energies suitable for large magnetically confined fusion devices. Recently, drawing upon this experience, negative halogen ions have been proposed as an alternative to positive ions for heavy ion fusion drivers in inertial confinement fusion, because electron accumulation would be prevented in negative ion beams, and if desired, the beams could be photo-detached to neutrals. This paper reports the results of an experiment comparing the current density and beam emittance of Cl+ and Cl- extracted from substantially ion-ion plasmas with that of Ar+ extracted from an ordinary electron-ion plasma, all using the same source, extractor, and emittance scanner. At similar discharge conditions, the Cl- current was typically 85 – 90% of the positive chlorine current, with an e-/ Cl- ratio as low as seven without grid magnets. The Cl- was as much as 76% of the Ar+ current from a discharge with the same RF drive. The minimum normalized beam emittance and inferred ion temperatures of Cl+, Cl-, and Ar+ were all similar, so the current density and optical quality of Cl- appear as suitable for heavy ion fusion driver applications as a positive noble gas ion of similar mass. Since F, I, and Br should all behave similarly in an ion source, they should also be suitable as driver beams.

  6. Fossils of Cyanobacteria in CI1 Carbonaceous Meteorites: Implications to Life on Comets, Europa and Enceladus

    Science.gov (United States)

    Hoover, Richard B.

    2011-10-01

    Environmental (ESEM) and Field Emission Scanning Electron Microscopy (FESEM) investigations of the internal surfaces of the CI1 Carbonaceous Meteorites have yielded images of large complex filaments. The filaments have been observed to be embedded in freshly fractured internal surfaces of the stones. They exhibit recognizable features (e.g., the size and size ranges of the internal cells and their location and arrangement within sheaths) that are diagnostic of known genera and species of filamentous trichomic cyanobacteria and other trichomic prokaryotes (such as filamentous sulfur bacteria). ESEM and FESEM studies of living and fossil cyanobacteria show features similar to the filaments found in the meteorites -- uniseriate and multiseriate, branched or unbranched, isodiametric or tapered, polarized or unpolarized filaments with trichomes encased within thin or thick external sheaths. Some of the filaments found in the CI1 meteorites also exhibit specialized cells and structures used by cyanobacteria for reproduction (baeocytes, akinetes and hormogonia), nitrogen fixation (basal, intercalary or apical heterocysts), attachment (pili or fimbriae) or indicative of oscillatoria type locomotion (escaped or coiling hormogonia and flattened and coiled empty sheaths). Energy dispersive X-ray Spectroscopy (EDS) studies indicate that the Orgueil meteorite filaments are typically carbon-rich sheaths infilled with magnesium sulfate and other minerals characteristic of the CI1 carbonaceous meteorites. However, the size, structure, detailed morphological characteristics and chemical compositions of the meteorite filaments are not consistent with known species of abiotic minerals. The nitrogen content of the meteorite filaments are almost always below the detection limit of the EDS detector. EDS analysis of living and dead biological materials (e.g., filamentous cyanobacteria; bacteria, mummy and mammoth hair and tissues, and fossils of cyanobacteria, trilobites and insects in

  7. Nature and origin of the resistant carbonaceous polymorphs involved the fossilization of biogenic soil-aggregates

    Science.gov (United States)

    Courty, M.-A.

    2012-04-01

    The rare occurrence of organic-rich surface horizons in soil archives is widely accepted to resulting from their rapid degradation. We intend here to further elucidate how pedogenic signatures that initially formed at the soil surface could resist over long timescales to burial processes. We focus on the structural evolution of the biogenic soil aggregates that is controlled by the complex interaction of bioturbation, root colonization, microbial decomposition, chemical weathering and physical processes. The nature and origin of carbonaceous components that could possibly contribute to the long term preservation of biogenic soil-aggregates is particularly examined. The study is based on the comparison of pedogenic aggregated microfacies from present-day situations and the ones encountered in soil archives from contrasting edaphic conditions: Arctic Holocene soils from Spitsbergen, hyper-arid soils from the Moche valley (Peru), Holocene semi-arid Mediterranean soils from Northern Syria, late Pleistocene paleosols from lake Mungo (South Wales Australia) and late Pleistocene paleosols from the Ardeche valley (France). The assemblage and composition of biogenic soil-aggregated horizons has been characterized under the binocular microscope and in thin sections. The basic components have been separated by water sieving. A typology of carbonaceous polymorphs and associated composite materials has been established under the binocular. They have been characterized by SEM-EDS, Raman spectrometry, X-ray diffraction and TEM. The comparative study shows that all the biogenic soil-aggregates from the soil archives contain a high amount of similar exotic components that contrast from the parent materials by their fresh aspect and their hydrophobic properties. This exotic assemblage comprises various types of aliphatic carbonaceous polymorphs (filaments, agglutinates, spherules) and aromatic ones (vitrous char, graphite), carbon cenospheres, fine grained sandstones and rock clasts

  8. Catalytic mechanisms, basic roles, and biotechnological and environmental significance of halogenating enzymes

    Institute of Scientific and Technical Information of China (English)

    Xianping Chen; Karl-Heinz van Pée

    2008-01-01

    The understanding of enzymatic incorporation of halogen atoms into organic molecules has increased during the last few years. Two novel types of halogenating enzymes, flavindependent halogenases and α-ketoglutarate-dependent halogenases, are now known to play a significant role in enzyme-catalyzed halogenation. The recent advances on the halogenating enzymes RebH, SyrB2, and CytC3 have suggested some new mechanisms for enzymatic halogenations. This review concentrates on the occurrence, catalytic mechanisms, and biotechnological applications of the halogenating enzymes that are currently known.

  9. [Investigation of Carbonaceous Airborne Particles by Scanning Proton Microprobe].

    Science.gov (United States)

    Bao, Liang-man; Liu, Jiang-feng; Lei, Qian-tao; Li, Xiao-lin; Zhang, Gui-lin; Li, Yan

    2016-01-15

    Carbonaceous particles are an important component of the atmospheric aerosol particles and important for global climate change, air quality and human health. The PM₁₀ single particles from two environmental monitor locations and seven pollution emission sources were analyzed using scanning proton microprobe (SPM) techniques. The concentration of carbon in individual particles was quantitatively determined by proton non-Rutherford elastic backscattering spectrometry (EBS). The results of this investigation showed that carbonaceous particles were dominant in the pollution sources of coal and oil combustions, diesel busexhaust and automobile exhaust, while inorganic particles were dominant in the sources of steel industry, cement dust and soil dust. Carbonaceous matter was enriched in particles from the city center, while mineral matter was the main component of airborne particles in the industrial area. Elemental mapping of single aerosol particles yielded important information on the chemical reactions of aerosol particles. The micro-PIXE (particle induced X-ray emission) maps of S, Ca and Fe of individual carbonaceous particles showed that sulfuration reaction occurred between SO₂and mineral particles, which increased the sulfur content of particles.

  10. A new CO carbonaceous chondrite from Acfer, Algeria

    OpenAIRE

    Salvadori, A; Moggi-Cecchi, V.; Pratesi, G.; I. Franchi; Greenwood, R.

    2006-01-01

    Many small fragments, totally weighing 118 g were found in the Acfer area by an Italian dealer. Chondrules size and types (predominance of granular olivine type), occurrence of twinned clinoenstatite and absence of plagioclase suggested a classification as CO carbonaceous chondrite.

  11. A new CK carbonaceous chondrite from Hammada Al Hamra, Libya

    OpenAIRE

    Pratesi, G.; Salvadori, A; Moggi-Cecchi, V.; I. Franchi; Greenwood, R.

    2006-01-01

    A single stone weighing 198 g was found in 2001 in the Hammada al Hamra region of Libya. Petrographic features (mean chondrules dimensions, coarse grained matrix and presence of AOIs and CAIs) point to a classification as CK carbonaceous chondrite. \\ud

  12. Surfactant-assisted liquefaction of particulate carbonaceous substances

    Science.gov (United States)

    Hsu, G. C. (Inventor)

    1978-01-01

    A slurry of carbonaceous particles such as coal containing an oil soluble polar substituted oleophilic surfactant, suitably an amine substituted long chain hydrocarbon, is liquefied at high temperature and high hydrogen presence. The pressure of surfactant results in an increase in yield and the conversion product contains a higher proportion of light and heavy oils and less asphaltene than products from other liquefaction processes.

  13. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Science.gov (United States)

    2010-07-01

    ... alcohol, halogenated alkane, substituted epoxide, and amino compound (generic). 721.10145 Section 721... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane,...

  14. In vitro and in vivo studies of the effects of halogenated histidine analogs on Plasmodium falciparum.

    OpenAIRE

    Panton, L J; Rossan, R N; Escajadillo, A; Matsumoto, Y; Lee, A.T.; Labroo, V M; Kirk, K L; Cohen, L. A.; Aikawa, M.; Howard, R J

    1988-01-01

    The effects of four halogenated analogs of histidine on in vitro growth of Plasmodium falciparum malaria parasites were monitored by measurement of the incorporation of 3H-labeled amino acids into parasite proteins and by light and electron microscopy. The uptake of [3H]isoleucine was reduced to 50% of the control value by addition of 70 microM 2-fluoro-L-histidine (2-F-HIS) or 420 microM 2-iodo-L-histidine (2-I-HIS). [3H]histidine uptake into acid-insoluble material was affected equally by t...

  15. The Climate Effects Of Seasonally Varying Tropical Carbonaceous Aerosols

    Science.gov (United States)

    Jeong, G.; Wang, C.

    2008-12-01

    Biomass-burning emitted carbonaceous aerosols (BBCA) in the tropical region play an important role in the earth's radiation budget and hydrological cycle by absorbing and scattering sunlight and by acting as condensation nuclei for clouds. Due to the characteristics of their sources, the appearance of BBCA and thus their radiative forcing has a very strong seasonality. The climate effects of this type of seasonal aerosol forcing are not fully understood. In this study, the climate impact of strong periodic emissions of BBCA has been examined by using a three-dimensional interactive aerosol-climate system model developed based on the Community Atmospheric Model (CAM3) of NCAR. The aerosol module of this model describes size and mixing-state dependent physiochemical and radiative processes of seven aerosol modes using a two-moment scheme, including major anthropogenic aerosol constituents of sulfate, BC, and OC as well as their mixtures. The biomass burning emissions of carbonaceous aerosols were prepared based on the Global Emissions Inventory Activity (GEIA) monthly biomass burning black carbon data (http://www.geiacenter.org). The climate effect of seasonality of tropical carbonaceous aerosol forcing is derived by comparing modeled results of two 60-year integrations (driven by a slab ocean model) respectively using the constant and seasonal emissions of carbonaceous aerosols. We will discuss the difference in the BBCA-climate interaction caused by the seasonality of biomass-burning carbonaceous emissions, and the changes in the source and sink of aerosols as well as the transformation of their radiative and hygroscopic properties due to the seasonal emissions.

  16. The mechanism of halogen liberation in the polar troposphere

    Directory of Open Access Journals (Sweden)

    E. Lehrer

    2004-06-01

    Full Text Available Sudden depletions of tropospheric ozone during spring were reported from the Arctic and also from Antarctic coastal sites. Field studies showed that those depletion events are caused by reactive halogen species, especially bromine compounds. However the source and seasonal variation of reactive halogen species is still not completely understood. There are several indications that the halogen mobilisation from the sea ice surface of the polar oceans may be the most important source for the necessary halogens. Here we present a 1-D model study aimed at determining the primary source of reactive halogens. The model includes gas phase and heterogeneous bromine and chlorine chemistry as well as vertical transport between the surface and the top of the boundary layer. The autocatalytic Br release by photochemical processes (bromine explosion and subsequent rapid bromine catalysed ozone depletion is well reproduced in the model and the major source of reactive bromine appears to be the sea ice surface. The sea salt aerosol alone is not sufficient to yield the high levels of reactive bromine in the gas phase necessary for fast ozone depletion. However, the aerosol efficiently 'recycles' less reactive bromine species (e.g. HBr and feeds them back into the ozone destruction cycle. Isolation of the boundary layer air from the free troposphere by a strong temperature inversion was found to be critical for boundary layer ozone depletion to happen. The combination of strong surface inversions and presence of sunlight occurs only during polar spring.

  17. Thermochemical properties and phase behavior of halogenated polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Fu, Jinxia; Suuberg, Eric M

    2012-03-01

    Knowledge of vapor pressure of organic pollutants is essential in predicting their fate and transport in the environment. In the present study, the vapor pressures of 12 halogenated polycyclic aromatic compounds (PACs), 9-chlorofluorene, 2,7-dichlorofluorene, 2-bromofluorene, 9-bromofluorene, 2,7-dibromofluorene, 2-bromoanthracene, 9-chlorophenanthrene, 9-bromophenanthrene, 9,10-dibromophenanthrene, 1-chloropyrene, 7-bromobenz[a]anthracene, and 6,12-dibromochrysene, were measured using the Knudsen effusion method over the temperature range of 301 to 464 K. Enthalpies and entropies of sublimation of these compounds were determined via application of the Clausius-Clapeyron equation. The data were also compared with earlier published literature values to study the influence of halogen substitution on vapor pressure of PACs. As expected, the halogen substitution decreases vapor pressure compared with parent compounds but does not necessarily increase the enthalpy of sublimation. Furthermore, the decrease of vapor pressure also depends on the substitution position and the substituted halogen, and the di-substitution of chlorine and/or bromine decreases the vapor pressure compared with single halogen-substituted polycyclic aromatic hydrocarbons. In addition, the enthalpy of fusion and melting temperature of these 12 PACs were determined using differential scanning calorimetry and melting point analysis.

  18. Thermal history of type 3 chondrites from the Antarctic meteorite collection determined by Raman spectroscopy of their polyaromatic carbonaceous matter

    Science.gov (United States)

    Bonal, Lydie; Quirico, Eric; Flandinet, Laurène; Montagnac, Gilles

    2016-09-01

    This paper is focused on the characterization of the thermal history of 151 CV, CO and unequilibrated ordinary chondrites (UOCs) from the NASA Antarctic meteorite collection, using an approach based on the structure of the included polyaromatic carbonaceous matter determined by Raman spectroscopy. 114 out of these 151 chondrites provided Raman spectra of carbonaceous matter and allowing to assign a petrologic type, which mostly reflects the peak temperature experienced by the rock on the parent body. A thorough review of literature shows however that it is not possible to deduce a peak temperature because accurate calibration is not available. Twenty-three new weakly metamorphosed chondrites have been identified: MIL 07671 (CV3.1); DOM 08006 (CO3.0); DOM 03238, MIL 05024, MIL 05104, MIL 07193 (CO3.1); TIL 82408, LAR 06279 (LL3.05-3.1); EET 90628 (L3.0); GRO 06054, QUE 97008 (L3.05), ALHA 77176, EET 90066, LAR 04380, MET 96515, MIL 05050 (L3.1); ALHA 78133, EET 87735, EET 90909, LEW 87208, PRE 95401 (L3.05-3.1); MCY 05218 (H3.05-3.1) and MET 00506 (H3.1). This study confirms that the width of the D band (FWHMD) and the ratio of the peak intensity of the D and G bands (ID/IG) are the most adapted tracers of the extent of thermal metamorphism in type 3 chondrites. It also unambiguously shows, thanks to the large number of samples, that the width of the G band (FWHMG) does not correlate with the maturity of polyaromatic carbonaceous matter. This parameter is nevertheless very valuable because it shows that Raman spectra of CV chondrites preserve memory of either the metamorphic conditions (possibly oxidation controlled by aqueous alteration) or the nature of the organic precursor. Oxidation memory is our preferred interpretation, however an extensive petrologic characterization of this CV series is required to get firm conclusions. Pre-graphitic carbonaceous matter is reported in seven chondrites and is even the only carbonaceous material detected in the chondrites

  19. Biodegradation of Trihalomethanes and Other Halogenated Aliphatic Compounds

    Science.gov (United States)

    Smith, G. B.

    1996-01-01

    The biological dehalogenation of common water pollutants such as trichloromethane (chloroform) and other halogenated aliphatic compounds was the subject of this project. Samples from diverse water environments such as from groundwater contaminated with halogenated compounds and wastewaters from regional treatment plants were studied to identify conditions that favor certain dehalogenation reactions over others. Gene probe analyses of DNA extracted from the dichlormethane-degrading wastewater indicated the presence of the gene coding for dichloromethane dehalogenase, indicating the genetic basis for the dechlorination activity observed. These studies indicate that methanogenic bacteria are the organisms responsible for the chloroform dechlorination. Dechlorination of a common chlorofluorocarbon (CFC-11) was identified in samples taken from a regional aquifer contaminated with halogenated aliphatic compounds.

  20. Carbonaceous thin film coating with Fe-N4 site for enhancement of dioxovanadium ion reduction

    Science.gov (United States)

    Maruyama, Jun; Hasegawa, Takahiro; Iwasaki, Satoshi; Fukuhara, Tomoko; Orikasa, Yuki; Uchimoto, Yoshiharu

    2016-08-01

    It has been found that carbonaceous materials containing a transition metal coordinated by 4 nitrogens in the square-planar configuration (metal-N4 site) on the surface possessed a catalytic activity for various electrochemical reactions related to energy conversion and storage; i.e., oxygen reduction, hydrogen evolution, and quite recently, the electrode reactions in vanadium redox flow batteries (VRFB). The catalyst for the VRFB positive electrode discharge reaction, i.e., the dioxovanadium ion reduction, was formed by coating the surface of cup-stack carbon nanotubes with a carbonaceous thin film with the Fe-N4 site generated by the sublimation, deposition, and pyrolysis of iron phthalocyanine. In this study, the influence of the physical properties of the catalyst on the electrochemical reactions was investigated to optimize the coating. With an increase in the coating, the specific surface area increased, whereas the pore size decreased. The surface Fe concentration was increased in spite of the Fe aggregation inside the carbon matrix. The catalytic activity enhancement was achieved due to the increase in the specific surface area and the surface Fe concentration, but was lowered due to the decrease in the pore size, which was disadvantageous for the penetration of the electrolyte and the mass transfer.

  1. The application of thermal methods for determining chemical composition of carbonaceous aerosols: a review.

    Science.gov (United States)

    Chow, Judith C; Yu, Jian Zhen; Watson, John G; Ho, Steven Sai Hang; Bohannan, Theresa L; Hays, Michael D; Fung, Kochy K

    2007-09-01

    Thermal methods of various forms have been used to quantify carbonaceous materials. Thermal/optical carbon analysis provides measurements of organic and elemental carbon concentrations as well as fractions evolving at specific temperatures in ambient and source aerosols. Detection of thermally desorbed organic compounds with thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) identifies and quantifies over 100 individual organic compounds in particulate matter (PM) samples. The resulting mass spectra contain information that is consistent among, but different between, source emissions even in the absence of association with specific organic compounds. TD-GC/MS is a demonstrated alternative to solvent extraction for many organic compounds and can be applied to samples from existing networks. It is amenable to field-deployable instruments capable of measuring organic aerosol composition in near real-time. In this review, thermal stability of organic compounds is related to chemical structures, providing a basis for understanding thermochemical properties of carbonaceous aerosols. Recent advances in thermal methods applied to determine aerosol chemical compositions are summarized and their potential for uncovering aerosol chemistry are evaluated. Current limitations and future research needs of the thermal methods are included.

  2. A hypothesis on the origin of C-type asteroids and carbonaceous chondrites

    CERN Document Server

    Busarev, V V

    2012-01-01

    A hypothesis based on observational and theoretical results on the origin of C-type asteroids and carbonaceous chondrites is proposed. Asteroids of C-type and close BGF-types could form from hydrated silicate-organic matter accumulated in the cores of water-differentiated (due to 26Al and other short-lived isotopes decay) bodies existed in the growth zones of Jupiter. Gravitational scattering of such bodies by Jupiter at its final stage of formation to the main asteroid belt might have led to fragmentation and re-accretion of their primitive materials on the surfaces of many asteroids and/or asteroid parent bodies. The hypothesis makes clear a row of long-standing puzzling facts, the main of which are as follows. The low-albedo and carbonaceous-chondritic surface properties of (1) Ceres contradict to its probable differentiated structure and icy crust (e. g., Thomas et al., 2005, Nature 437: 224-226; Castillo-Rogez et al., 2010, Icarus 205, 443-459), but it could be explained by the process of primitive matte...

  3. Impact Record of a Asteroid Regolith Recorded in a Carbonaceous Chrondrite

    Science.gov (United States)

    Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Komatsu, Mutsumi; Chan, Queenie H. S.; Le, Loan; Kring, David; Cato, Michael; Fagan, Amy L.; Gross, Juliane; Tanaka, Ayuna; Takegawa, Daichi; Hoshikawa, Takuya; Yoshida, Tomoaki; Sawa, Naoya

    2017-01-01

    C-class asteroids frequently exhibit reflectance spectra consistent with thermally metamor-phosed carbonaceous chondrites [1], or a mixture of phyllosilicate-rich material along with regions where they are absent [2]. One particularly important example appears to be asteroid 162173 Ryugu, the target of the Hayabusa 2 mission [1], although most spectra of Ryugu are featureless, suggesting a heterogeneous regolith [3]. Here we explore an alternative cause of dehydration of regolith of C-class asteroids - impact shock melting. Impact shock melting has been proposed to ex-plain some mineralogical characteristics of CB chondrites [4], but has rarely been considered a major process for hydrous carbonaceous chondrites [5]. Jbilet Winselwan (JW) is a very fresh CM breccia from Morocco, with intriguing characteristics. While some lithologies are typical of CM2s (Figure 1, top), other clasts show evidence of brief, though significant impact brecciation and heating. The first evidence for this came from preliminary petrographic and stable isotope studies [6,7]. We contend that highly-brecciated, partially-shocked, and dehydrated lithologies like those in JW dominate C-class asteroid regolith.

  4. Halogen radicals contribute to photooxidation in coastal and estuarine waters

    Science.gov (United States)

    Parker, Kimberly M.; Mitch, William A.

    2016-05-01

    Although halogen radicals are recognized to form as products of hydroxyl radical (•OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM (3DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater •OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark •OH generation by gamma radiolysis demonstrates that halogen radical production via •OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl- and Br- by 3DOM*, an •OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters.

  5. Behavior of halogens during the degassing of felsic magmas

    Science.gov (United States)

    Balcone-Boissard, H.; Villemant, B.; Boudon, G.

    2010-09-01

    Residual concentrations of halogens (F, Cl, Br, I) and H2O in glass (matrix glass and melt inclusions) have been determined in a series of volcanic clasts (pumice and lava-dome fragments) of plinian, vulcanian and lava dome-forming eruptions. Felsic magmas from calc-alkaline, trachytic and phonolitic systems have been investigated: Montagne Pelée and Soufrière Hills of Montserrat (Lesser Antilles), Santa Maria-Santiaguito (Guatemala), Fogo (Azores) and Vesuvius (Italy). The behavior of halogens during shallow H2O degassing primarily depends on their incompatible character and their partitioning between melt and exsolved H2O vapor. However, variations in pre-eruptive conditions, degassing kinetics, and syn-eruptive melt crystallization induce large variations in the efficiency of halogen extraction. In all systems studied, Cl, Br and I are not fractionated from each other by differentiation or by degassing processes. Cl/Br/I ratios in melt remain almost constant from the magma reservoir to the surface. The ratios measured in erupted clasts are thus characteristic of pre-eruptive magma compositions and may be used to trace deep magmatic processes. F behaves as an incompatible element and, unlike the other halogens, is never significantly extracted by degassing. Cl, Br and I are efficiently extracted from melts at high pressure by H2O-rich fluids exsolved from magmas or during slow effusive magma degassing, but not during rapid explosive degassing. Because H2O and halogen mobility depends on their speciation, which strongly varies with pressure in both silicate melts and exsolved fluids, we suggest that the rapid pressure decrease during highly explosive eruptions prevents complete equilibrium between the diverse species of the volatiles and consequently limits their degassing. Conversely, degassing in effusive eruptions is an equilibrium process and leads to significant halogen output in volcanic plumes.

  6. Fe and O EELS Studies of Ion Irradiated Murchison CM2 Carbonaceous Chondrite Matrix

    Science.gov (United States)

    Keller, L. P.; Christofferson, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Introduction: The physical and chemical response of hydrated carbonaceous chondrite materials to space weathering processes is poorly understood. Improving this understanding is a key part of establishing how regoliths on primitive carbonaceous asteroids respond to space weathering processes, knowledge that supports future sample return missions (Hayabusa 2 and OSIRISREx) that are targeting objects of this type. We previously reported on He+ irradiation of Murchison matrix and showed that the irradiation resulted in amorphization of the matrix phyllosilicates, loss of OH, and surface vesiculation. Here, we report electron energy-loss spectroscopy (EELS) measurements of the irradiated material with emphasis on the Fe and O speciation. Sample and Methods: A polished thin section of the Murchison CM2 carbonaceous chondrite was irradiated with 4 kilovolts He(+) (normal incidence) to a total dose of 1 x 10(exp 18) He(+) per square centimeter. We extracted thin sections from both irradiated and unirradiated regions in matrix using focused ion beam (FIB) techniques with electron beam deposition for the protective carbon strap to minimize surface damage artifacts from the FIB milling. The FIB sections were analyzed using a JEOL 2500SE scanning and transmission electron microscope (STEM) equipped with a Gatan Tridiem imaging filter. EELS spectra were collected from 50 nanometer diameter regions with an energy resolution of 0.7 electronvolts FWHM at the zero loss. EELS spectra were collected at low electron doses to minimize possible artifacts from electron-beam irradiation damage. Results and Discussion: Fe L (sub 2,3) EELS spectra from matrix phyllosilicates in CM chondrites show mixed Fe(2+)/Fe(3+) oxidation states with Fe(3+)/Sigma Fe approximately 0.5. Fe L(sub 2,3) spectra from the irradiated/ amorphized matrix phyllosilicates show higher Fe(2+)/Fe(3+) ratios compared to spectra obtained from pristine material at depths beyond the implantation/amorphization layer. We

  7. Petrologic Locations of Nanodiamonds in Carbonaceous Chondrite Meteorites

    Science.gov (United States)

    Garvie, Laurence

    Nanodiamonds (NDs), with dimensions near two nanometers, are widespread accessory minerals in primitive meteorites. They have been studied extensively in concentrates made from acid-insoluble residues, but surprisingly little is known about their petrologic settings in the meteorites because they have not been studied in situ. Information about such settings is fundamental for determining how they formed and were incorporated into the meteorites. The primary goal of the planned research is to determine and compare the petrologic settings of NDs within matrix of different types of carbonaceous chondrites, with the long-term aim of providing new insights regarding the origin of NDs. This research will also provide new data on the structure and major and trace element compositions of individual NDs and regions within them. Transmission electron microscopes (TEMs) provide uniquely powerful information regarding chemical, bonding, and structural data on the scale needed to solve this problem, assuming the NDs can be located within the host matrix. We have developed methods of observing NDs in situ within the fine-grained matrix of primitive meteorites and will use various TEMs to accomplish that goal for several meteorites. High- resolution imaging and electron energy-loss spectroscopy (EELS) will permit determination of both structural and chemical information about the NDs and their adjacent minerals. By the middle of the proposed grant period, two state-of-the-art, aberration-corrected TEMs will have been installed at ASU and will be used to locate heavy elements such as Xe, Te, and Pd within the NDs. These TEMs permit the imaging of individual atoms of heavy elements with annular dark-field (ADF) imaging, and these atoms can be identified using EELS. The result of these new types of measurements will provide information about whether such elements, which have been used to determine whether NDs formed in supernovae, occur within the interiors or on the surfaces of

  8. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  9. The origin of carbonaceous matter in pre-3.0 Ga greenstone terrains: A review and new evidence from the 3.42 Ga Buck Reef Chert

    Science.gov (United States)

    Tice, Michael M.; Lowe, Donald R.

    2006-06-01

    The geological record of carbonaceous matter from at least 3.5 Ga to the end of the Precambrian is fundamentally continuous in terms of carbonaceous matter structure, composition, environments of deposition/preservation, and abundance in host rocks. No abiotic processes are currently known to be capable of producing continuity in all four of these properties. Although this broad view of the geological record does not prove that life had arisen by 3.5 Ga, the end of the early Archean, it suggests a working hypothesis: most if not all carbonaceous matter present in rocks older than 3.0 Ga was produced by living organisms. This hypothesis must be tested by studies of specific early geological units designed to explore the form, distribution, and origin of enclosed carbonaceous matter. The carbonaceous, environmentally diverse 3416 Ma Buck Reef Chert (BRC) of the Barberton greenstone belt, South Africa, provides an opportunity for such a study. Upward facies progressions in the BRC reflect deposition in environments ranging from shallow marine evaporitic brine ponds to a storm- and wave-active shelf to a deep, low-energy basinal setting below storm wave base. Abundances and ratios of Al 2O 3, Zr, TiO 2, and Cr track inputs of various types of volcaniclastic and terrigenous clastic materials. In particular, Zr/Al 2O 3 and Zr serve as proxies for concentration of windblown dust and, indirectly, as proxies for sedimentation rate. Cu, Zn, Ni, and FeO were concentrated in the most slowly deposited transitional and basinal sediments, inconsistent with a hydrothermal setting but consistent with a normal marine setting. The distribution of microfacies defined by associations and layering of clastic, ferruginous, and carbonaceous grains correlates with facies transitions. Fine carbonaceous laminations, which occur only in shallow platform settings, represent photosynthetic microbial mats. These were ripped up and the debris widely redistributed in shallow and deep water by

  10. Nanostructured intermetallic FeSn2-carbonaceous composites as highly stable anode for Na-ion batteries

    Science.gov (United States)

    Edison, Eldho; Satish, Rohit; Ling, Wong Chui; Bucher, Nicolas; Aravindan, Vanchiappan; Madhavi, Srinivasan

    2017-03-01

    The commercialization of Na-ion batteries demands the development of technologically feasible and economically viable electrodes, in particular anodes. Herein, we report the facile synthesis of nanostructured FeSn2 by a hydrothermal route and the formulation of composites with different carbonaceous materials like Super P, graphite, and graphene via high-throughput ball-milling. The influence of the carbonaceous matrix on the electrochemical performance of the alloy anode is investigated in half-cell assembly. Amongst, FeSn2-Graphite composite exhibits excellent cycling stability with a reversible capacity of 333 mAh g-1 obtained after 100 cycles at a specific current of 100 mA g-1. The composite also displayed a good rate performance even at high current rates of 1 A g-1 which is a desirable feature for high power applications such as hybrid electric vehicles. The outstanding electrochemical performance of the composite anodes is ascribed to the effective encapsulation of the alloy particles in the carbonaceous matrix, which sustains the volume change and facilitates excellent Na-storage capability.

  11. Synthesis of Two-dimensional Microporous Carbonaceous Polymer Nanosheets and Their Application as High-performance CO2 Capture Sorbent.

    Science.gov (United States)

    Zhang, Miao; Liu, Lin; He, Teng; Wu, Guotao; Chen, Ping

    2016-06-21

    The synthesis of two-dimensional (2D) polymer nanosheets with a well-defined microporous structure remains challenging in materials science. Here, a new kind of 2D microporous carbonaceous polymer nanosheets was synthesized through polymerization of a very low concentration of 1,4-dicyanobenzene in molten zinc chloride at 400-500 °C. This type of nanosheets has a thickness in the range of 3-20 nm, well-defined microporosity, a high surface area (∼537 m(2)  g(-1) ), and a large micropore volume (∼0.45 cm(3)  g(-1) ). The microporous carbonaceous polymer nanosheets exhibit superior CO2 sorption capability (8.14 wt % at 298 K and 1 bar) and a relatively high CO2 selectivity toward N2 (25.6). Starting from different aromatic nitrile monomers, a variety of 2D carbonaceous polymer nanosheets can be obtained showing a certain universality of the ionothermal method reported herein.

  12. Halogen and Cl isotopic systematics in Martian phosphates: Implications for the Cl cycle and surface halogen reservoirs on Mars

    Science.gov (United States)

    Bellucci, J. J.; Whitehouse, M. J.; John, T.; Nemchin, A. A.; Snape, J. F.; Bland, P. A.; Benedix, G. K.

    2017-01-01

    The Cl isotopic compositions and halogen (Cl, F, Br, and I) abundances in phosphates from eight Martian meteorites, spanning most rock types and ages currently available, have been measured in situ by Secondary Ion Mass Spectrometry (SIMS). Likewise, the distribution of halogens has been documented by x-ray mapping. Halogen concentrations range over several orders of magnitude up to some of the largest concentrations yet measured in Martian samples or on the Martian surface, and the inter-element ratios are highly variable. Similarly, Cl isotope compositions exhibit a larger range than all pristine terrestrial igneous rocks. Phosphates in ancient (>4 Ga) meteorites (orthopyroxenite ALH 84001 and breccia NWA 7533) have positive δ37Cl anomalies (+1.1 to + 2.5 ‰). These samples also exhibit explicit whole rock and grain scale evidence for hydrothermal or aqueous activity. In contrast, the phosphates in the younger basaltic Shergottite meteorites (<600 Ma) have negative δ37Cl anomalies (-0.2 to - 5.6 ‰). Phosphates with the largest negative δ37Cl anomalies display zonation in which the rims of the grains are enriched in all halogens and have significantly more negative δ37Cl anomalies suggestive of interaction with the surface of Mars during the latest stages of basalt crystallization. The phosphates with no textural, major element, or halogen enrichment evidence for mixing with this surface reservoir have an average δ37Cl of - 0.6 ‰, supporting a similar initial Cl isotope composition for Mars, the Earth, and the Moon. Oxidation and reduction of chlorine are the only processes known to strongly fractionate Cl isotopes, both positively and negatively, and perchlorate has been detected in weight percent concentrations on the Martian surface. The age range and obvious mixing history of the phosphates studied here suggest perchlorate formation and halogen cycling via brines, which have been documented on the Martian surface, has been active throughout Martian

  13. Solution phase synthesis of halogenated graphene and the electrocatalytic activity for oxygen reduction reaction

    Institute of Scientific and Technical Information of China (English)

    Kuang-Hsu Wu; Da-Wei Wang; Qingcong Zeng; Yang Li; Ian R. Gentle

    2014-01-01

    Metal-free carbon electrocatalyts for the oxygen reduction reaction (ORR) are attractive for their high activity and economic advantages. However, the origin of the activity has never been clearly elucidated in a systematic manner. Halogen group elements are good candidates for elucidating the effect, although it has been a difficult task due to safety issues. In this report, we demonstrate the synthesis of Cl-, Br-and I-doped reduced graphene oxide through two solution phase syntheses. We have evaluated the effectiveness of doping and performed electrochemical measurements of the ORR activity on these halogenated graphene materials. Our results suggest that the high electroneg-ativity of the dopant is not the key factor for high ORR activity;both Br-and I-doped graphene pro-moted ORR more efficiently than Cl-doped graphene. Furthermore, an unexpected sulfur-doping in acidic conditions suggests that a high level of sulfide can degrade the ORR activity of the graphene material.

  14. Processes for liquefying carbonaceous feedstocks and related compositions

    Energy Technology Data Exchange (ETDEWEB)

    MacDonnell, Frederick M.; Dennis, Brian H.; Billo, Richard E.; Priest, John W.

    2017-02-28

    Methods for the conversion of lignites, subbituminous coals and other carbonaceous feedstocks into synthetic oils, including oils with properties similar to light weight sweet crude oil using a solvent derived from hydrogenating oil produced by pyrolyzing lignite are set forth herein. Such methods may be conducted, for example, under mild operating conditions with a low cost stoichiometric co-reagent and/or a disposable conversion agent.

  15. Comets, carbonaceous meteorites, and the origin of the biosphere

    OpenAIRE

    2006-01-01

    International audience; The Biosphere is considered to represent the Earth's crust, atmosphere, oceans, and ice caps and the living organisms that survive within this habitat. This paper considers the significance of comets and carbonaceous meteorites to the origin and evolution of the Biosphere and presents new Field Emission Scanning Electron Microscope (FESEM) images of indigenous microfossils in the Orgueil and Murchison meteorites. The discovery of microbial extremophiles in deep crustal...

  16. Temperatures of aqueous alteration on carbonaceous chondrite parent bodies

    OpenAIRE

    Guo, W; Perronnet, M.; Zolensky, M.E.; Eiler, J. M.

    2007-01-01

    Aqueous alteration of primitive meteorites is among the earliest and the most widespread geological processes in the solar system. A better understanding of these processes would help us constrain the early evolution condition of the solar system and test models of thermal and chemical evolution of planetesimals. In this study, we extended our previous work on CM chondrites by further applying carbonate clumped isotope thermometry to other types of carbonaceous chondrites (G...

  17. Yamato-82042: An unusual carbonaceous chondrite with CM affinities

    OpenAIRE

    Grady,Monica M./Graham,A.L./Barber,D.J./Aylmer,D./Kurat,G./Ntaflos,T./Ott,U./Palme,H./Spettel,B.

    1987-01-01

    The Yamato-82042 carbonaceous chondrite has been the subject of a consortium study, designed to determine its properties and hence attempt a more precise classification of the meteorite. Major and minor elemental abundance and oxygen isotope data indicate that the specimen is a CM chondrite, but on textural and petrologic grounds the meteorite is more akin to CI stones. It is possible that Y-82042 is the first CM1 chondrite recognized.

  18. Kirishites—high-carbonaceous hairlike fibers associated with volkhovites

    Science.gov (United States)

    Skublov, G. T.; Marin, Yu. B.; Skublov, S. G.; Vasil'Ev, E. V.; Gembitskaya, I. M.; Nechaeva, E. S.; Tarasenko, Yu. N.

    2009-12-01

    Kirishites are highly carbonaceous hairlike fibers 30-100 μm in thickness and 3-30 mm long, which jut out as bunches on the surface of cinder and shungite fragments associated with volkhovites (Holocene tectitelike glasses corresponding to the rocks of kimberlite-lamproite-carbonatite series in composition). Kirishite fibers are zonal. Their inner (axial) zone is composed of high-nitrogen proteinlike compounds, whereas the outer zone is essentially carbonaceous, with a high content of organoelemental complexes (Si, Fe) and numerous micrometer-sized anomalies of major, volatile, trace, and ore elements. Longitudinal zoning is established in aposhungite kirishites: the consecutive change of maximum concentrations—K, Na, Cl, C, Mn → C, S, V, Ni, Cu, Zn → S, N, Ba, Te, Pb, Bi, Nd—is traced from the roots of fibers to their ends. It is suggested that as volkhovites were forming, fragments of cinder and shungite underwent partial melting. The highly carbonaceous compounds released due decompression and explosion were squeezed out from fragments and solidified as fibers during fall of fragments on the Earth’s surface.

  19. Influence of saponins on the biodegradation of halogenated phenols.

    Science.gov (United States)

    Kaczorek, Ewa; Smułek, Wojciech; Zdarta, Agata; Sawczuk, Agata; Zgoła-Grześkowiak, Agnieszka

    2016-09-01

    Biotransformation of aromatic compounds is a challenge due to their low aqueous solubility and sorptive losses. The main obstacle in this process is binding of organic pollutants to the microbial cell surface. To overcome these, we applied saponins from plant extract to the microbial culture, to increase pollutants solubility and enhance diffusive massive transfer. This study investigated the efficiency of Quillaja saponaria and Sapindus mukorossi saponins-rich extracts on biodegradation of halogenated phenols by Raoultella planticola WS2 and Pseudomonas sp. OS2, as an effect of cell surface modification of tested strains. Both strains display changes in inner membrane permeability and cell surface hydrophobicity in the presence of saponins during the process of halogenated phenols biotransformation. This allows them to more efficient pollutants removal from the environment. However, only in case of the Pseudomonas sp. OS2 the addition of surfactants to the culture improved effectiveness of bromo-, chloro- and fluorophenols biodegradation. Also introduction of surfactant allowed higher biodegradability of halogenated phenols and can shorten the process. Therefore this suggests that usage of plant saponins can indicate more successful halogenated phenols biodegradation for selected strains.

  20. Alkali and Halogen Chemistry in Volcanic Gases on Io

    CERN Document Server

    Schaefer, L

    2004-01-01

    We use chemical equilibrium calculations to model the speciation of alkalis and halogens in volcanic gases emitted on Io. The calculations cover wide temperature (500-2000 K) and pressure (10^-6 to 10^+1 bars) ranges, which overlap the nominal conditions at Pele (T = 1760 K, P = 0.01 bars). About 230 compounds of 11 elements (O, S, Li, Na, K, Rb, Cs, F, Cl, Br, I) are considered. We predict the major alkali and halogen species in a Pele-like volcanic gas and the major alklai and halogen condensates. We also model disequilibrium chemistry of the alkalis and halogens in the volcanic plume. Based on this work and our prior modeling for Na, K, and Cl in a volcanic plume, we predict the major loss processes for the alkali halide gases are photolysis and/or condensation onto grains. On the basis of elemental abundances and photochemical lifetimes, we recommend searching for gaseous KCl, NaF, LiF, LiCl, RbF, RbCl, CsF, and CsCl around volcanic vents during eruptions. Based on abundance considerations and observation...

  1. Ozone-biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection by-products.

    Science.gov (United States)

    Chu, Wenhai; Gao, Naiyun; Yin, Daqiang; Deng, Yang; Templeton, Michael R

    2012-03-01

    Pilot-scale tests were performed to reduce the formation of several nitrogenous and carbonaceous disinfection by-products (DBPs) with an integrated ozone and biological activated carbon (O(3)-BAC) treatment process following conventional water treatment processes (coagulation-sedimentation-filtration). Relative to the conventional processes alone, O(3)-BAC significantly improved the removal of turbidity, dissolved organic carbon, UV(254), NH(4)(+) and dissolved organic nitrogen from 98-99%, 58-72%, 31-53%, 16-93% and 35-74%, respectively, and enhanced the removal efficiency of the precursors for the measured DBPs. The conventional process was almost ineffective in removing the precursors of trichloronitromethane (TCNM) and dichloroacetamide (DCAcAm). Ozonation could not substantially reduce the formation of DCAcAm, and actually increased the formation potential of TCNM; it chemically altered the molecular structures of the precursors and increased the biodegradability of N-containing organic compounds. Consequently, the subsequent BAC filtration substantially reduced the formation of the both TCNM and DCAcAm, thus highlighting a synergistic effect of O(3) and BAC. Additionally, O(3)-BAC was effective at controlling the formation of the total organic halogen, which can be considered as an indicator of the formation of unidentified DBPs.

  2. The Role of Global Emission Inventory of Carbonaceous Emissions

    Science.gov (United States)

    Fatima, H.; Sharma, O. P.; Updhyaya, H.

    2010-12-01

    Aerosols - liquid or solid particles suspended in the air - are important constituents of the global atmosphere. They have a direct effect on climate by scattering and/or absorbing solar radiation modifying the radiative balance of the atmosphere and indirect effect by acting as condensation nuclei, their increase in number concentration may give rise to increased number of cloud condensation nuclei, which might increase the droplet concentration with relatively smaller size droplets for fixed liquid water content, making clouds more reflective (Twomey, 1977). Recent measurements show that atmospheric black carbon (BC) and organic carbon (OC) aerosol particles frequently contribute significantly to the total aerosol mass (Novakov et al. 1997). BC is emitted as primary particles from incomplete combustion process, such as fossil fuel and biomass burning, and therefore much atmospheric BC is of anthropogenic origin. OC is emitted as both primary particles and by secondary production from gaseous compounds via condensation or gas phase oxidation of hydrocarbons. Primary organic aerosols come from both anthropogenic sources (fossil fuel and biomass burning) and from natural sources (such as debris, pollen, spores, and algae). Carbonaceous aerosols make up a large but highly variable fraction of the atmospheric aerosol. Black carbon aerosols absorb the solar radiation and induce positive forcing whereas organic matter aerosols reflect solar radiation and produce negative forcing. Various emission inventories have been developed for carbonaceous aerosols. Detailed emission inventories for both BC and OC have been developed (e.g., Penner et al., 1993; Cooke and Wilson, 1996; Liousse et al., 1996; Cooke et al., 1999, Bond et al. 2004) that consider both fossil fuel and biomass components. The inventories of biomass- burning BC and OC particles are more difficult to constrain than fossil fuel emissions, owing to the paucity of data. In the present study we have compared the

  3. Nanostructural Materials for Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Bronislaw Buczek

    2011-01-01

    Full Text Available The aim of this study was to assess of carbonaceous monoliths used for adsorption cooling systems. The carbonaceous monoliths prepared from coal precursors are obtained. The porous structure of monoliths was evaluated on the basis of nitrogen adsorption-desorption data. The investigated monoliths have significantly developed microporous structure. The large specific area of carbonaceous monoliths (about 2000 m2/g and volume of micropores are observed. Methanol adsorption isotherms and heat of wetting using methanol was determined. Results show that monoliths materials are high adsorption capacity of methanol and heat of wetting, which can improve of heat exchange and efficiency in processes of refrigeration and air conditioning.

  4. In situ observation of D-rich carbonaceous globules embedded in NWA 801 CR2 chondrite

    Science.gov (United States)

    Hashiguchi, Minako; Kobayashi, Sachio; Yurimoto, Hisayoshi

    2013-12-01

    Eighty-five D-rich carbonaceous particles were identified in the matrix of the NWA 801 CR2 chondrite using isotope microscopy. The occurrence of 67 D-rich carbonaceous particles was characterized using secondary electron microscopy combined with X-ray elemental mapping. The close association of H and C, and D-enrichment suggests that the D-rich carbonaceous particles correspond to organic matter. The D-rich organic particles were scattered ubiquitously throughout the matrix at a concentration of approximately 660 ppm. The morphology of the D-rich carbonaceous particles is globular up to about 1 μm in diameter and is classified into four types: ring globules, round globules, irregular-shaped globules, and globule aggregates. The ring globules are ring-shaped organic matter containing silicate and/or oxide, with or without a void in the center. This is the first report of silicate and oxide grains surrounded by D-rich organic matter. The globule aggregates are composed of several D-rich organic globules mixed with silicates. Morphology of ring globules is very similar to core-mantle grain produced in the molecular cloud or in the outer solar nebula inferring by astronomy, suggesting that the organic globules have formed by UV photolysis in the ice mantle. Silicates or oxides attached to D-rich organic globules are the first observation among chondrites so far and may be unique nature of CR2 chondrites. The hydrogen isotopic compositions of the ring globules, round globules, irregular-shaped globules, and globule aggregates are δD = 3000-4800, 2900-8100, 2700-11,000, and 2500-11,000‰, respectively. Variations of D/H ratio of these organic globules seemed to be attributed to variations of D/H ratio of the organic radicals or differences of content of the D-rich organic radicals. There are no significant differences in the hydrogen isotopic compositions among the four types of D-rich carbonaceous matter. The D-enrichments suggest that these organic globules have

  5. Did the Siberian Traps eruptions emit enough halogens to have an impact on ozone geochemistry?

    Science.gov (United States)

    Sibik, Svetlana; Edmonds, Marie; Villemant, Benoit; Thierry, Pauline; Polozov, Alexander

    2015-04-01

    The Siberian Traps Large Igneous Province is thought to have formed over 1 Ma at the end of the Permian, synchronous with the largest mass extinction in Earth's history. There remains much controversy as to the exact mechanism of the mass extinction, but all hypotheses revolve around the emission of volatiles in various forms. The research to date has tended to focus on sulfur and carbon rather than halogen degassing, despite this being probably critical in terms of environmental impact as they might have been played a crucial role in ozone layer depletion and therefore promote mass extinction. Current study aims to look at the behaviour of chlorine, bromine, iodine and fluorine to evaluate the halogen budget contribution from heterogeneous mantle source and from evaporates, which dominate in the south (Cambrian evaporites) and north (Devonian evaporites) of Siberian platform. For this study we use basaltic sills and lava flows emplaced in the area with no volatile-rich sediments south-east from Norilsk (Dyupkin lake and Lower Tunguska river regions) and a sill intruded into evaporates in Nepa location in the south of the platform, originally aimed at prospecting for potassium salts. Borehole samples of basalts intruded into evaporites might have been penetrated by salts and anhydrite. In order to eliminate this effect and ensure that we analyse halogen contents in pure basalts prior to any further analysis the samples were specifically treated so that penetrated material was removed as leachates. Whole rock fine powders of basalts were analysed for halogens, major and trace elements. The solutions obtained by basalt pyrohydrolysis extraction, leachates of basaltic powders and dissolved evaporites were analysed by ion chromatography for chlorine and fluorine and by ICP-MS for bromine and iodine. Basalts intruded into evaporites demonstrate predicted pronounced chlorine, bromine and iodine enrichments associated with salt assimilation. The results show that bromine

  6. The identification of group II inclusions in carbonaceous chondrites by electron probe microanalysis of perovskite

    Science.gov (United States)

    Kornacki, A. S.; Wood, J. A.

    1985-01-01

    The technique developed by Kornacki (1984) for identifying group II Ca/Al-rich inclusions in carbonaceous chondrites by electron-microprobe analysis of the ZrO2 or Y2O3 content of their perovskite component is demonstrated using material from 20 Allende inclusions. The results are presented in tables and graphs and compared with findings obtained by other procedures. Group II inclusions are found to have perovskites generally containing less than 0.10 wt pct ZrO2 and/or Y2O3 (average of several grains), while those of groups I, III, V, and VI have more than 0.25 wt pct ZrO2. Analysis of data on eight Allende Ca/Al-rich inclusions shows that 75 percent of the fine-grained inclusions belong to group II. The implications of these findings for fractionation processes in the primitive solar nebula are indicated.

  7. Radar-enabled recovery of the Sutter's Mill meteorite, a carbonaceous chondrite regolith breccia.

    Science.gov (United States)

    Jenniskens, Peter; Fries, Marc D; Yin, Qing-Zhu; Zolensky, Michael; Krot, Alexander N; Sandford, Scott A; Sears, Derek; Beauford, Robert; Ebel, Denton S; Friedrich, Jon M; Nagashima, Kazuhide; Wimpenny, Josh; Yamakawa, Akane; Nishiizumi, Kunihiko; Hamajima, Yasunori; Caffee, Marc W; Welten, Kees C; Laubenstein, Matthias; Davis, Andrew M; Simon, Steven B; Heck, Philipp R; Young, Edward D; Kohl, Issaku E; Thiemens, Mark H; Nunn, Morgan H; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Cahill, Thomas A; Lawton, Jonathan A; Barnes, David; Steele, Andrew; Rochette, Pierre; Verosub, Kenneth L; Gattacceca, Jérôme; Cooper, George; Glavin, Daniel P; Burton, Aaron S; Dworkin, Jason P; Elsila, Jamie E; Pizzarello, Sandra; Ogliore, Ryan; Schmitt-Kopplin, Phillipe; Harir, Mourad; Hertkorn, Norbert; Verchovsky, Alexander; Grady, Monica; Nagao, Keisuke; Okazaki, Ryuji; Takechi, Hiroyuki; Hiroi, Takahiro; Smith, Ken; Silber, Elizabeth A; Brown, Peter G; Albers, Jim; Klotz, Doug; Hankey, Mike; Matson, Robert; Fries, Jeffrey A; Walker, Richard J; Puchtel, Igor; Lee, Cin-Ty A; Erdman, Monica E; Eppich, Gary R; Roeske, Sarah; Gabelica, Zelimir; Lerche, Michael; Nuevo, Michel; Girten, Beverly; Worden, Simon P

    2012-12-21

    Doppler weather radar imaging enabled the rapid recovery of the Sutter's Mill meteorite after a rare 4-kiloton of TNT-equivalent asteroid impact over the foothills of the Sierra Nevada in northern California. The recovered meteorites survived a record high-speed entry of 28.6 kilometers per second from an orbit close to that of Jupiter-family comets (Tisserand's parameter = 2.8 ± 0.3). Sutter's Mill is a regolith breccia composed of CM (Mighei)-type carbonaceous chondrite and highly reduced xenolithic materials. It exhibits considerable diversity of mineralogy, petrography, and isotope and organic chemistry, resulting from a complex formation history of the parent body surface. That diversity is quickly masked by alteration once in the terrestrial environment but will need to be considered when samples returned by missions to C-class asteroids are interpreted.

  8. Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles.

    Science.gov (United States)

    China, Swarup; Mazzoleni, Claudio; Gorkowski, Kyle; Aiken, Allison C; Dubey, Manvendra K

    2013-01-01

    Biomass burning is one of the largest sources of carbonaceous aerosols in the atmosphere, significantly affecting earth's radiation budget and climate. Tar balls, abundant in biomass burning smoke, absorb sunlight and have highly variable optical properties, typically not accounted for in climate models. Here we analyse single biomass burning particles from the Las Conchas fire (New Mexico, 2011) using electron microscopy. We show that the relative abundance of tar balls (80%) is 10 times greater than soot particles (8%). We also report two distinct types of tar balls; one less oxidized than the other. Furthermore, the mixing of soot particles with other material affects their optical, chemical and physical properties. We quantify the morphology of soot particles and classify them into four categories: ~50% are embedded (heavily coated), ~34% are partly coated, ~12% have inclusions and~4% are bare. Inclusion of these observations should improve climate model performances.

  9. Radar-Enabled Recovery of the Sutters Mill Meteorite, a Carbonaceous Chondrite Regolith Breccia

    Science.gov (United States)

    Jenniskens, Petrus M.; Fries, Marc D.; Yin, Qing-Zhu; Zolensky, Michael E.; Krot, Alexander N.; Sandford, Scott A.; Sears, Derek; Beauford, Robert; Ebel, Denton S.; Friedrich, Jon M.; Nagashima, Kazuhide; Wimpenny, Josh; Yamakawa, Akane; Nishiizumi, Kunihiko; Hamajima, Yasunori; Caffee, Marc W.; Welten, Kees C.; Laubenstein, Matthias; Davis, Andrew M.; Simon, Steven B.; Heck, Phillipp R.; Young, Edward D.; Kohl, Issaku E.; Thiemens, Mark H.; Nunn, Morgan H.; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Cahill, Thomas A.; Lawton, Jonathan A.; Barnes, David; Steele, Andrew; Rochette, Pierre; Verosub, Kenneth L.; Gattacceca, Jerome

    2012-01-01

    Doppler weather radar imaging enabled the rapid recovery of the Sutter's Mill meteorite after a rare 4-kiloton of TNT-equivalent asteroid impact over the foothills of the Sierra Nevada in northern California. The recovered meteorites survived a record high-speed entry of 28.6 kilometers per second from an orbit close to that of Jupiter-family comets (Tisserand's parameter = 2.8 +/- 0.3). Sutter's Mill is a regolith breccia composed of CM (Mighei)-type carbonaceous chondrite and highly reduced xenolithic materials. It exhibits considerable diversity of mineralogy, petrography, and isotope and organic chemistry, resulting from a complex formation history of the parent body surface. That diversity is quickly masked by alteration once in the terrestrial environment but will need to be considered when samples returned by missions to C-class asteroids are interpreted.

  10. Silicon carbide sintered body manufactured from silicon carbide powder containing boron, silicon and carbonaceous additive

    Science.gov (United States)

    Tanaka, Hidehiko

    1987-01-01

    A silicon carbide powder of a 5-micron grain size is mixed with 0.15 to 0.60 wt% mixture of a boron compound, i.e., boric acid, boron carbide (B4C), silicon boride (SiB4 or SiB6), aluminum boride, etc., and an aluminum compound, i.e., aluminum, aluminum oxide, aluminum hydroxide, aluminum carbide, etc., or aluminum boride (AlB2) alone, in such a proportion that the boron/aluminum atomic ratio in the sintered body becomes 0.05 to 0.25 wt% and 0.05 to 0.40 wt%, respectively, together with a carbonaceous additive to supply enough carbon to convert oxygen accompanying raw materials and additives into carbon monoxide.

  11. In situ biological resources: Soluble nutrients and electrolytes in carbonaceous asteroids/meteorites. Implications for astroecology and human space populations

    Science.gov (United States)

    Mautner, Michael N.

    2014-12-01

    Ecosystems in space will need in-situ bioavailable nutrients. The measured nutrients in meteorites allow experiment-based estimates of nutrients in asteroids, and of the biomass and populations that can be derived from these in situ bioresources. In this respect, we found that carbonaceous chondrite meteorites can support microorganisms and plant cultures, suggesting that similar asteroid materials are also biologically fertile. The sustainable biomass and populations are determined by the available resource materials, their yields of nutrients and biomass, the biomass needed to support human populations, the duration of the ecosystem, and wastage. The bioavailable C, N, and electrolytes in carbonaceous chondrite meteorites vary as CM2>CR2>CV3>CO3>CK4>CK5 in correlation with petrologic type, including aqueous alteration. Their average bioavailable C, N, K and P can yield 2.4, 3.5, 2.5, and 0.08 g biomass/kg resource material, respectively, showing phosphorus as the limiting nutrient. On this basis, soluble nutrients in a 100 km radius, 1019 kg resource asteroid can sustain an ecosystem of 108 kg biomass and a human population of 10,000 for >109 years, and its total nutrient contents can sustain a population of one million, by replacing a wastage of 1% of the biomass per year. Overall, the total nutrient contents of the 1022 kg carbonaceous asteroids can yield a biomass of 1020 kg that supports a steady-state human population of one billion during the habitable future of the Solar System, contributing a time-integrated biomass of 1022 kg-years. These astroecology estimates use experimental data on nutrients in asteroids/meteorites to quantify the sustainable biomass and human populations in this and similar solar systems.

  12. Application of Scanning-Imaging X-Ray Microscopy to Fluid Inclusion Candidates in Carbonates of Carbonaceous Chondrites

    Science.gov (United States)

    Tsuchiyama, Akira; Nakano, Tsukasa; Miyake, Akira; Akihisa, Takeuchi; Uesugi, Kentaro; Suzuki, Yoshio; Kitayama, Akira; Matsuno, Junya; Zolensky, Michael E.

    2016-01-01

    In order to search for such fluid inclusions in carbonaceous chondrites, a nondestructive technique using x-ray micro-absorption tomography combined with FIB sampling was developed and applied to a carbonaceous chondrite. They found fluid inclusion candidates in calcite grains, which were formed by aqueous alteration. However, they could not determine whether they are really aqueous fluids or merely voids. Phase and absorption contrast images can be simultaneously obtained in 3D by using scanning-imaging x-ray microscopy (SIXM). In refractive index, n=1-sigma+i(beta), in the real part, 1-sigma is the refractive index with decrement, sigma, which is nearly proportional to the density, and the imaginary part, beta, is the extinction coefficient, which is related to the liner attenuation coefficient, mu. Many phases, including water and organic materials as well as minerals, can be identified by SIXM, and this technique has potential availability for Hayabusa-2 sample analysis too. In this study, we examined quantitative performance of d and m values and the spatial resolution in SIXM by using standard materials, and applied this technique to carbonaceous chondrite samples. We used POM ([CH2O]n), silicon, quartz, forsterite, corundum, magnetite and nickel as standard materials for examining the sigma and mu values. A fluid inclusion in terrestrial quartz and bi-valve shell (Atrina vexillum), which are composed of calcite and organic layers with different thickness, were also used for examining the spatial resolution. The Ivuna (CI) and Sutter's Mill (CM) meteorites were used as carbonaceous chondrite samples. Rod- or cube-shaped samples 20-30 micron in size were extracted by using FIB from cross-sectional surfaces of the standard materials or polished thin sections of the chondrites, which was previously observed with SEM. Then, the sample was attached to a thin W-needle and imaged by SIXM system at beamline BL47XU, SPring-8, Japan. The slice thickness was 109.3 nm

  13. Source apportionment of carbonaceous aerosol in southern Sweden

    Directory of Open Access Journals (Sweden)

    J. Genberg

    2011-05-01

    Full Text Available A one-year study was performed at the Vavihill background station in southern Sweden to estimate the anthropogenic contribution to the carbonaceous aerosol. Weekly samples of the particulate matter PM10 were collected on quartz filters, and the amounts of organic carbon, elemental carbon, radiocarbon (14C and levoglucosan were measured. This approach enabled source apportionment of the total carbon in the PM10 fraction using the concentration ratios of the sources. The sources considered in this study were emissions from the combustion of fossil fuels and biomass, as well as biogenic sources. During the summer, the carbonaceous aerosol mass was dominated by compounds of biogenic origin (82 %, which are associated with biogenic primary and secondary organic aerosols. During the winter months, biomass combustion (38 % and fossil fuel combustion (33 % were the main contributors to the carbonaceous aerosol. Elemental carbon concentrations in winter were about twice as large as during summer, and can be attributed to biomass combustion, probably from domestic wood burning. The contribution of fossil fuels to elemental carbon was stable throughout the year, although the fossil contribution to organic carbon increased during the winter. Thus, the organic aerosol originated mainly from natural sources during the summer and from anthropogenic sources during the winter. The result of this source apportionment was compared with results from the EMEP model. The model and measurements were generally consistent for total atmospheric organic carbon, however, the contribution of the sources varied substantially. E.g. the biomass burning contributions of OC were underestimated by the model by a factor of 8.2 compared to the measurements.

  14. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    Directory of Open Access Journals (Sweden)

    J.-J. Cao

    2012-07-01

    Full Text Available An intensive investigation of carbonaceous PM2.5 and TSP from Pudong (China was conducted as part of the MIRAGE-Shanghai Experiment in 2009. Data for organic and elemental carbon (OC and EC, organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs, and stable C isotopes OC (δ13COC and EC (δ13CEC were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA; high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = −24.5 ± 0.8‰ and δ13CEC = −25.1 ± 0.6‰ indicated that fossil fuels were the most important source for carbonaceous PM2.5, with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%: other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  15. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    Directory of Open Access Journals (Sweden)

    J.-J. Cao

    2013-01-01

    Full Text Available An intensive investigation of carbonaceous PM2.5 and TSP (total suspended particles from Pudong (China was conducted as part of the MIRAGE-Shanghai (Megacities Impact on Regional and Global Environment experiment in 2009. Data for organic and elemental carbon (OC and EC, organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs, and stable carbon isotopes OC (δ13COC and EC (δ13CEC were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA; high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = −24.5 ± 0.8‰ and δ13CEC = −25.1 ± 0.6‰ indicated that fossil fuels were the most important source for carbonaceous PM2.5 (particulate matter less than 2.5 micrometers in diameter, with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%; other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  16. Characterization of airborne particles during production of carbonaceous nanomaterials.

    Science.gov (United States)

    Yeganeh, Behnoush; Kull, Christy M; Hull, Matthew S; Marr, Linsey C

    2008-06-15

    Despite the rapid growth in nanotechnology, very little is known about the unintended health or environmental effects of manufactured nanomaterials. The development of nanotechnology risk assessments and regulations requires quantitative information on the potential for exposure to nanomaterials. The objective of this research isto characterize airborne particle concentrations during the production of carbonaceous nanomaterials, such as fullerenes and carbon nanotubes, in a commercial nanotechnology facility. We measured fine particle mass concentrations (PM2.5), submicrometer size distributions, and photoionization potential, an indicator of the particles' carbonaceous content, at three locations inside the facility: inside the fume hood where nanomaterials were produced, just outside the fume hood, and in the background. The measurements were not selective for engineered nanomaterials and may have included both engineered nanomaterials and naturally occurring or incidental particles. Average PM2.5 and particle number concentrations were not significantly different inside the facility versus outdoors. However, large, short-term increases in PM2.5 and particle number concentrations were associated with physical handling of nanomaterials and other production activities. In many cases, an increase in the number of sub-100 nm particles accounted for the majority of the increase in total number concentrations. Photoionization results indicate that the particles suspended during nanomaterial handling inside the fume hood were carbonaceous and therefore likely to include engineered nanoparticles, whereas those suspended by other production activities taking place outside the fume hood were not. Based on the measurements in this study, the engineering controls at the facility appear to be effective at limiting exposure to nanomaterials.

  17. Comets, carbonaceous meteorites, and the origin of the biosphere

    Directory of Open Access Journals (Sweden)

    r. b. Hoover

    2006-01-01

    Full Text Available The Biosphere is considered to represent the Earth's crust, atmosphere, oceans, and ice caps and the living organisms that survive within this habitat. This paper considers the significance of comets and carbonaceous meteorites to the origin and evolution of the Biosphere and presents new Field Emission Scanning Electron Microscope (FESEM images of indigenous microfossils in the Orgueil and Murchison meteorites. The discovery of microbial extremophiles in deep crustal rocks, hydrothermal vents and ancient ice has established that the biosphere is far more extensive than previously recognized. Chemical and molecular biomarkers and microfossils in Archaean rocks indicate that life appeared very early on the primitive Earth and the origin of the biosphere is closely linked with the emergence of life. The role of comets, carbonaceous meteorites, interstellar dust and asteroids in the delivery of water, organics and prebiotic chemicals to Earth during the Hadean (4.5–3.8 Ga period of heavy bombardment has become more widely recognized. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1 have established that comets contain complex organic chemicals; that water is the predominant volatile; and that high temperatures (~400 K can be reached on the black (albedo~0.03 nuclei when near perihelion. The microscopic dust particles in the Tempel 1 ejecta are similar in size to the particulates of the Orgueil meteorite and evidence is mounting that comets may represent the parent bodies of the CI meteorites. Impact craters and pinnacles on comet Wild 2 suggest a thick crust. Episodic outbursts and jets of Halley, Borrelly, Wild 2 and Tempel 1 near perihelion indicate that localized regimes of liquid water may periodically exist beneath the thick crust of many comets. This increases the possibility that microbial life might survive in comets and therefore the

  18. Sugar-Related Organic Compounds in Carbonaceous Meteorites

    Science.gov (United States)

    Cooper, G.; Kimmich, N.; Belisle, W.; Sarinana, J.; Brabham, K.; Garrel, L.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Sugars and related polyols are critical components of all organisms and may have been necessary for the origin of life. To date, this class of organic compounds had not been definitively identified in meteorites. This study was undertaken to determine if polyols were present in the early Solar System as constituents of carbonaceous meteorites. Results of analyses of the Murchison and Murray meteorites indicate that formaldehyde and sugar chemistry may be responsible for the presence of a variety of polyols. We conclude that polyols were present on the early Earth through delivery by asteroids and possibly comets.

  19. ‘Indicator’ carbonaceous phyllite/graphitic schist in the Archean Kundarkocha gold deposit, Singhbhum orogenic belt, eastern India: Implications for gold mineralization vis-a-vis organic matter

    Indian Academy of Sciences (India)

    P R Sahoo; A S Venkatesh

    2014-10-01

    Carbonaceous rocks in the form of graphitic schist and carbonaceous phyllite are the major host rocks of the gold mineralization in Kundarkocha gold deposit of the Precambrian Singhbhum orogenic belt in eastern India. The detection of organic carbon, essentially in the carbonaceous phyllite and graphitized schist within the Precambrian terrain, is noted from this deposit. A very close relationship exists between gold mineralization and ubiquitous carbonaceous rocks containing organic carbon that seems to play a vital role in the deposition of gold in a Precambrian terrain in India and important metallogenetic implications for such type of deposits elsewhere. However, the role played by organic matter in a Precambrian gold deposit is debatable and the mechanism of precipitation of gold and other metals by organic carbon has been reported elsewhere. Fourier transform infrared spectroscopy (FTIR) results and total organic carbon (TOC) values suggest that at least part of the organic material acted as a possible source for the reduction that played a significant role in the precipitation of gold. Lithological, electron probe analysis (EPMA), fluid inclusions associated with gold mineralization, Total Carbon (TC), TOC and FTIR results suggest that the gold mineralization is spatially and genetically associated with graphitic schist, carbonaceous phyllite/shale that are constituted of immature organic carbon or kerogen. Nano-scale gold inclusions along with free milling gold are associated with sulfide mineral phases present within the carbonaceous host rocks as well as in mineralized quartz-carbonate veins. Deposition of gold could have been facilitated due to the organic redox reactions and the graphitic schist and carbonaceous phyllite zone may be considered as the indicator zone.

  20. Radiochemical photon activation analysis of Halogens in meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Oura, Yasuji; Latif, S.A.; Setoguchi, Mina; Nakamoto, Tomoshi; Ebihara, Mitsuru; Nakahara, Hiromichi [Tokyo Metropolitan Univ. (Japan). Faculty of Science; Ohtsuki, Tsutomu

    1999-12-01

    Halogens (F, Cl, Br and I) in meteorites and rocks are determined by a radiochemical photon activation analysis (RPAA) and compared with that of NPAA. We tried to determine all halogen elements at one time by one irradiation with 20 or 30 MeV maximum energy (E{sub 0}) by controlling irradiation for 2 or 6 hours with cooling. Average current is about 110 {mu}A. After irradiation, the sample was separated by radiochemical analysis. Allende meteorite, JR-I and d-41-7 were analyzed. The value of F, Cl and Br showed good reproducibility and agreed with the value in the reference. However, I showed small value. It may indicate volatilizing of I. (S.Y.)

  1. Polarographic behaviour of pesticides with carbon-halogen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Jehring, H.; La Chevallerie-Haaf, U. de; Meyer, A.; Henze, G.

    1989-01-01

    The dp-polarographic behaviour of different pesticides with carbon-halogen bonds was investigated in dimethylsulfoxide and methanol-water as solvents; the peak-potentials are demonstrated graphically. From peak-height the pesticides are detectable up to 100 ng.ml/sup -1/. The investigations are of interest for the development of multistage-combined procedures by h.p.l.c. with amperometric detection.

  2. In vitro and in vivo studies of the effects of halogenated histidine analogs on Plasmodium falciparum.

    Science.gov (United States)

    Panton, L J; Rossan, R N; Escajadillo, A; Matsumoto, Y; Lee, A T; Labroo, V M; Kirk, K L; Cohen, L A; Aikawa, M; Howard, R J

    1988-11-01

    The effects of four halogenated analogs of histidine on in vitro growth of Plasmodium falciparum malaria parasites were monitored by measurement of the incorporation of 3H-labeled amino acids into parasite proteins and by light and electron microscopy. The uptake of [3H]isoleucine was reduced to 50% of the control value by addition of 70 microM 2-fluoro-L-histidine (2-F-HIS) or 420 microM 2-iodo-L-histidine (2-I-HIS). [3H]histidine uptake into acid-insoluble material was affected equally by these two compounds, 50% inhibition resulting at 200 microM concentration. Morphological analysis of parasite development proved a sensitive assay, since development of mature trophozoites was inhibited 50% by 25 microM 2-F-HIS or 100 2-I-HIS. Electron microscopy studies suggested different mechanisms of action of 2-F-HIS and 2-I-HIS on P. falciparum. 2-F-HIS produced a decrease in knob number at the erythrocyte surface and accumulation of electron-dense material under the parasite membrane. 2-I-HIS had no obvious effect on knobs or electron-dense material but affected parasite morphology. Surprisingly, 2-chloro-L-histidine and 2-bromo-L-histidine did not inhibit P. falciparum in vitro, even though their halogen atom substituents are intermediate in size between F and I atoms. 2-F-HIS and 2-I-HIS were tested in vivo against P. falciparum in owl monkeys (Aotus sp.) but were ineffective at doses that were nontoxic.

  3. Polycyclic aromatic hydrocarbons (PAHs) in Antarctic Martian meteorites, carbonaceous chondrites, and polar ice

    Energy Technology Data Exchange (ETDEWEB)

    Becker, L. [Univ. of California, San Diego, La Jolla, CA (United States)]|[National Aeronautics and Space Administration, Moffett Field, CA (United States); Glavin, D.P.; Bada, J.L. [Univ. of California, San Diego, La Jolla, CA (United States)

    1997-01-01

    Recent analyses of the carbonate globules present in the Martian meteorite ALH84001 have detected polycyclic aromatic hydrocarbons (PAHs) at the ppm level. The distribution of PAHs observed in ALH84001 was interpreted as being inconsistent with a terrestrial origin and were claimed to be indigenous to the meteorite, perhaps derived from an ancient martian biota. We have examined PAHs in the Antarctic shergottite EETA79001, which is also considered to be from Mars, as well as several Antarctic carbonaceous chondrites. We have found that many of the same PAHs detected in the ALH84001 carbonate globules are present in Antarctic carbonaceous chondrites and in both the matrix and carbonate (druse) component of EETA79001. We also investigated PAHs in polar ice and found that carbonate is an effective scavenger of PAHs in ice meltwater. Moreover, the distribution of PAHs in the carbonate extract of Antarctic Allan Hills ice is remarkably similar to that found in both EETA79001 and ALH84001. The reported presence of L-amino acids of apparent terrestrial origin in the EETA79001 druse material suggests that this meteorite is contaminated with terrestrial organics probably derived from Antarctic ice meltwater that had percolated through the meteorite. Our data suggests that the PAHs observed in both ALH84001 and EETA79001 are derived from either the exogenous delivery of organics to Mars or extraterrestrial and terrestrial PAHs present in the ice meltwater or, more likely, from a mixture of these sources. It would appear that PAHs are not useful biomarkers in the search for extinct or extant life on Mars. 33 refs., 3 figs., 1 tab.

  4. Transepidermal water loss during halogen spotlight phototherapy in preterm infants.

    Science.gov (United States)

    Grünhagen, Dirk J; de Boer, Mark G J; de Beaufort, Arnout Jan; Walther, Frans J

    2002-03-01

    Among preterm infants there is a relationship between skin blood flow and transepidermal water loss (TEWL). The aim of this study was to assess whether halogen spotlight phototherapy without significant heat stress increases TEWL and affects maintenance fluid requirements in preterm infants. TEWL was measured noninvasively before the start and after 1 h of halogen spotlight phototherapy in a group of preterm infants, nursed in double-walled incubators with moderately high relative humidity. Relative humidity and ambient temperature in the incubator were tightly controlled. Mean +/- SD birth weight of the 18 infants was 1412 +/- 256 g, gestational age 30.6 +/- 1.6 wk, and age at measurement 5 +/- 3 d. Nine infants received ventilatory assistance. Relative humidity was 40-80% (mean 52%). Average TEWL increased from 13.6 to 16.5 g/m(2)/h during phototherapy. These data show that TEWL increases by approximately 20% during phototherapy despite constant skin temperature and relative humidity. Maintenance fluids of preterm infants should be increased by 0.35 mL/kg/h during exposure to halogen spotlight phototherapy.

  5. AMMONIA IN THE EARLY SOLAR SYSTEM: AN ACCOUNT FROM CARBONACEOUS METEORITES

    Energy Technology Data Exchange (ETDEWEB)

    Pizzarello, S. [Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604 (United States); Williams, L. B., E-mail: pizzar@asu.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States)

    2012-04-20

    This study presents a survey of abundance distribution and isotopic composition of the ammonia found incorporated in the kerogen-like insoluble material of selected carbonaceous chondrite meteorites; the ammonia was released upon hydrothermal treatment at 300 Degree-Sign C and 100 MPa. With the exception of Allende, a metamorphosed and highly altered stone, all the insoluble organic materials (IOM) of the meteorites analyzed released significant amounts of ammonia, which varied from over 4 {mu}g mg{sup -1} for the Orgueil IOM to 0.5 {mu}g mg{sup -1} for that of Tagish Lake; the IOM of the pristine Antarctica find GRA95229 remains the most rich in freeable ammonia with 10 {mu}g mg{sup -1}. While the amounts of IOM bound ammonia do not appear to vary between meteorites with a recognizable trend, a possible consequence of long terrestrial exposure of some of the stones, we found that the {delta}{sup 15}N composition of the ammonia-carrying materials is clearly distinctive of meteorite types and may reflect a preservation of the original {sup 15}N distribution of pre- and proto-solar materials.

  6. A new extraction process of carbonaceous refractory gold concentrate

    Institute of Scientific and Technical Information of China (English)

    MENG Yu-qun

    2005-01-01

    A new hydrometallurgical process for a carbonaceous refractory gold concentrate at ambient temperature and pressure was presented, including grinding-leaching, intensified alkaline leaching(IAL), thiosulfate leaching and cementation by zinc powder. The experimental results show that the grinding-leaching and intensified alkaline leaching process result in the selective oxidation of arsenopyrite and pyrite. The oxidation ratio of As is 96.6%, and 46.7 % for S. The total consumption of NaOH in alkaline leaching is only 28 % of that theoretically calculated under the conditions of full oxidization for the same amount of arsenopyrite and pyrite transforming into arsenates and sulfates, and 83. 6 % of gold is synchro-dissoluted by thiosulfate self-generated during pretreatment. Since the carbonaceous matter in concentrate possesses a strong capability of preg robbing, the cyanidation process is not suitable for the extraction of gold after pretreatment. However, the gold leaching rate by thiosulfate leaching for 24 h is increased to 91.7% from 0 - 3.2% by ultra-fine grinding without the pretreatment. The recovery of gold by zinc cementation gets to 99.6 %. Due to the thiosulfate self-generated during alkaline leaching, the reagent addition in thiosulfate leaching afterwards is lower than the normal one.

  7. Uncertainties in Carbonaceous Aerosol Emissions, Scavenging Parameterizations, and Optical Properties

    Science.gov (United States)

    Koch, D.; Bond, T.; Kinne, S.; Klimont, Z.; Sun, H.; van Aardenne, J.; van der Werf, G.

    2006-12-01

    Estimates of human influence on climate are especially hindered by poor constraint on the amount of anthropogenic carbonaceous aerosol absorption in the atmosphere. Coordination of observation and model analyses attempt to constrain particle absorption amount, however these are limited by uncertainties in aerosol emission estimates, model scavenging parameterization, aerosol size assumption, contributions from organic aerosol absorption, air concentration observational techniques and by sparsity of data coverage. We perform multiple simulations using GISS modelE and six present-day emission estimates for black carbon (BC) and organic carbon (OC) (Bond et al 2004 middle and upper estimates, IIASA, EDGAR, GFED v1 and v2); for one of these emissions we apply 4 different BC/OC scavenging parameterizations. The resulting concentrations will be compared with a new compilation of observed BC/OC concentrations. We then use these model concentrations, together with effective radius assumptions and estimates of OC absorption to calculate a range of carbonaceous aerosol absorption. We constrain the wavelength-dependent model τ- absorption with AERONET sun-photometer observations. We will discuss regions, seasons and emission sectors with greatest uncertainty, including those where observational constraint is lacking. We calculate the range of model radiative forcing from our simulations and discuss the degree to which it is constrained by observations.

  8. Ethanol and other oxygenateds from low grade carbonaceous resources

    Energy Technology Data Exchange (ETDEWEB)

    Joo, O.S.; Jung, K.D.; Han, S.H. [Korea Institute of Science and Technology, Seoul (Korea, Democratic People`s Republic of)] [and others

    1995-12-31

    Anhydrous ethanol and other oxygenates of C2 up can be produced quite competitively from low grade carbonaceous resources in high yield via gasification, methanol synthesis, carbonylation of methanol an hydrogenation consecutively. Gas phase carbonylation of methanol to form methyl acetate is the key step for the whole process. Methyl acetate can be produced very selectively in one step gas phase reaction on a fixed bed column reactor with GHSV over 5,000. The consecutive hydrogenation of methyl or ethyl acetate produce anhydrous ethanol in high purity. It is also attempted to co-produce methanol and DME in IGCC, in which low grade carbonaceous resources are used as energy sources, and the surplus power and pre-power gas can be stored in liquid form of methanol and DME during base load time. Further integration of C2 up oxygenate production with IGCC can improve its economics. The attempt of above extensive technology integration can generate significant industrial profitability as well as reduce the environmental complication related with massive energy consumption.

  9. Spectrographic determination of traces of halogens; Dosage de traces d'halogenes par la methode spectrographique

    Energy Technology Data Exchange (ETDEWEB)

    Melamed, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    Hollow cathode source is employed for determining traces of halogens (fluorine - chlorine) in the uranium oxide U{sub 3}O{sub 8} qualitatively, detection of at least 40 ppm of fluorine, as alkali fluoride and 125 ppm of chlorine, is possible. (author) [French] Un tube a decharge a cathode creuse a ete utilise pour la determination spectrographique des halogenes (fluor - chlore) presentes a l'etat de traces dans un oxyde d'uranium U{sub 3}O{sub 8}. On a pu deceler qualitativement des teneurs de 40 ppm de fluor sous forme de fluorures alcalins. En ce qui concerne le chlore, la plus faible teneur decelee a ete de 125 ppm. (auteur)

  10. Halogen content in Lesser Antilles arc volcanic rocks : exploring subduction recycling

    Science.gov (United States)

    Thierry, Pauline; Villemant, Benoit; Caron, Benoit

    2016-04-01

    Halogens (F, Cl, Br and I) are strongly reactive volatile elements which can be used as tracers of igneous processes, through mantle melting, magma differentiation and degassing or crustal material recycling into mantle at subduction zones. Cl, Br and I are higly incompatible during partial melting or fractional cristallization and strongly depleted in melts by H2O degassing, which means that no Cl-Br-I fractionation is expected through magmatic differenciation [current thesis]. Thus, Cl/Br/I ratios in lavas reflect the halogen content of their mantle sources. Whereas these ratios seemed quite constant (e.g. Cl/Br =300 as seawater), recent works suggest significant variations in arc volcanism [1,2]. In this work we provide high-precision halogen measurements in volcanic rocks from the recent activity of the Lesser Antilles arc (Montserrat, Martinique, Guadeloupe, Dominique). Halogen contents of powdered samples were determined through extraction in solution by pyrohydrolysis and analysed by Ion Chromatography for F and Cl and high performance ICP-MS (Agilent 8800 Tripe Quad) for Cl, Br and I [3,4]. We show that lavas - and mantle sources - display significant vraiations in Cl/Br/I ratios along the Lesser Antilles arc. These variations are compared with Pb, Nd and Sr isotopes and fluid-mobile elements (Ba, U, Sr, Pb etc.) compositions which vary along the arc from a nothern ordinary arc compositions to a southern 'crustal-like' composition [5,6]. These characteristics are attributed to subducted sediments recycling into the mantle wedge, whose contribution vary along the arc from north to south [7,8]. The proportion of added sediments is also related to the distance to the trench as sediment melting and slab dehydration may occur depending on the slab depth [9]. Further Cl-Br-I in situ measurements by LA-ICP-MS in Lesser Antilles arc lavas melt inclusions will be performed, in order to provide better constraints on the deep halogen recycling cycle from crust to

  11. Reactive Halogens in the Marine Boundary Layer (RHaMBLe: the tropical North Atlantic experiments

    Directory of Open Access Journals (Sweden)

    J. D. Lee

    2009-10-01

    slightly elevated dust concentrations consistent with the trajectories passing over the African continent. The CVAO is shown to be broadly representative of the wider North Atlantic marine boundary layer; measurements of NO, O3 and black carbon from the ship are consistent with a clean Northern Hemisphere marine background. Aerosol composition measurements do not indicate elevated organic material associated with clean marine air. Closer to the African coast, black carbon and NO levels start to increase, indicating greater anthropogenic influence. Lower ozone in this region is possibly associated with the increased levels of measured halocarbons, associated with the nutrient rich waters of the Mauritanian upwelling. Bromide and chloride deficits in coarse mode aerosol at both the CVAO and on D319 and the continuous abundance of inorganic gaseous halogen species at CVAO indicate significant reactive cycling of halogens.

    Aircraft measurements of O3 and CO show that surface measurements are representative of the entire boundary layer in the vicinity both in diurnal variability and absolute levels. Above the inversion layer similar diurnal behaviour in O3 and CO is observed at lower mixing ratios in the air that had originated from south of Cape Verde, possibly from within the ITCZ. ECMWF calculations on two days indicate very different boundary layer depths and aircraft flights over the ship replicate this, giving confidence in the calculated boundary layer depth.

  12. A New Method of Absorption-Phase Nanotomography for 3D Observation of Mineral-Organic-Water Textiles and its Application to Pristine Carbonaceous Chondrites

    Science.gov (United States)

    Tsuchiyama, A.; Nakato, A.; Matsuno, J.; Sugimoto, M.; Uesugi, K.; Takeuchi, A.; Nakano, T.; Vaccaro, E.; Russel, S.; Nakamura-Messenger, K.; Burton, A. S.; Messenger, S.; Miyake, A.; Takigawa, A.; Takayama, A.

    2017-01-01

    Pristine carbonaceous chondrites contain fine-grained matrix, which is composed largely of amorphous silicates, sub-micron silicate and sulfide crystals, and organic materials. They are regarded as primitive dust in the early Solar System that have suffered minimal alteration in their parent bodies. The matrix generally has different lithologies; some of them are unaltered but some are more or less aqueously altered. Their textures have been examined in 2D usually by FE-SEM/EDS, TEM/EDS, nano-SIMS and micro-XRD. Observation of their complex fine textures, such as spatial relation between different lithologies in 3D, is important for understanding aggregation and alteration processes. Synchrotron radiation (SR)-based X-ray tomography reveals 3D structures nondestructively with high spatial resolution of approximately greater than 100 nm. We have developed a new technique using absorption contrasts called "dual-energy tomography" (DET) to obtain 3D distribution of minerals at SPring-8, SR facility in Japan, and applied successfully to Itokawa particles. Phase and absorption contrast images can be simultaneously obtained in 3D by using "scanning-imaging x-ray microscopy" (SIXM) at SPring-8, which can discriminate between void, water and organic materials. We applied this technique combined with FIB micro-sampling to carbonaceous chondrites to search for primitive liquid water. In this study, we combined the DET and SIXM to obtain three dimensional submicron-scale association between minerals, organic materials and water and applied this to pristine carbonaceous chondrites.

  13. Non-conventional gas phase remediation of volatile halogenated compounds by dehydrated bacteria

    OpenAIRE

    Erable, Benjamin; Goubet, Isabelle; Seltana, Amira; Maugard, Thierry

    2009-01-01

    Traditional biological removal processes are limited by the low solubility of halogenated compounds in aqueous media. A new technology appears very suitable for the remediation of these volatile organic compounds (VOCs). Solid/gas bio-catalysis applied in VOC remediation can transform halogenated compounds directly in the gas phase using dehydrated cells as a bio-catalyst. The hydrolysis of volatile halogenated substrates into the corresponding alcohol was studied in a solid/gas bio...

  14. Ultrasonication assisted preparation of carbonaceous nanoparticles modified polyurethane foam with good conductivity and high oil absorption properties

    Science.gov (United States)

    Shi, Hengchong; Shi, Dean; Yin, Ligang; Yang, Zhihua; Luan, Shifang; Gao, Jiefeng; Zha, Junwei; Yin, Jinghua; Li, Robert K. Y.

    2014-10-01

    In this work, we report a facile, low cost and time-saving method for the fabrication of compressible, electrically conductive, oil absorptive, cost-effective and flexible polyurethane (PU) foam through ultrasonication induced carbonaceous nanoparticles (CNP) onto flexible PU foam (CNP-PU foam). SEM images showed that the CNP could be firmly anchored onto the PU foam, and made the PU foam surface much rougher. Zero-dimensional carbonaceous nanoparticles were easier to anchor onto the PU foam surface than one-dimensional nanoparticles (e.g., carbon nanotube) or two-dimensional nanoparticles (e.g., graphene oxide). The CNP-PU foam exhibited excellent elasticity and high mechanical durability even when it was subjected to 500 cyclic compression. The CNP-PU foam had excellent absorption of organic solvents up to 121 times the weight of the initial PU foam. In addition, the electrical conductivity of PU foams was considerably increased with the anchoring of CNP onto the matrix. In addition, compression experiments confirmed that the electrical conductivity of CNP-PU foams changed with their compression ratios, thus exhibiting excellent pressure sensitivity. The as-prepared materials have significant potential as oil absorbents, elastic conductors, flexible electrodes, pressure sensors, etc.In this work, we report a facile, low cost and time-saving method for the fabrication of compressible, electrically conductive, oil absorptive, cost-effective and flexible polyurethane (PU) foam through ultrasonication induced carbonaceous nanoparticles (CNP) onto flexible PU foam (CNP-PU foam). SEM images showed that the CNP could be firmly anchored onto the PU foam, and made the PU foam surface much rougher. Zero-dimensional carbonaceous nanoparticles were easier to anchor onto the PU foam surface than one-dimensional nanoparticles (e.g., carbon nanotube) or two-dimensional nanoparticles (e.g., graphene oxide). The CNP-PU foam exhibited excellent elasticity and high mechanical

  15. The Eocene Rusayl Formation, Oman, carbonaceous rocks in calcareous shelf sediments: Environment of deposition, alteration and hydrocarbon potential

    Energy Technology Data Exchange (ETDEWEB)

    Dill, H.G.; Wehner, H.; Kus, J. [Federal Institute for Geosciences and Natural Resources, P.O. Box 510163, D-30631 Hannover (Germany); Botz, R. [University Kiel, Geological-Paleontological Department, Olshausenstrasse 40-60, D-24118 Kiel (Germany); Berner, Z.; Stueben, D. [Technical University Karlsruhe, Institute for Mineralogy and Geochemistry, Fritz-Haber-Weg 2, D-76131 Karlsruhe (Germany); Al-Sayigh, A. [Sultan Qaboos University, Geological Dept. PO Box 36, Al-Khod (Oman)

    2007-10-01

    incursions make up a greater deal of the sedimentary record than mangrove swamps. Terra rossa paleosols mark the end of accumulation of organic material (OM) and herald supratidal conditions at the passage of Rusayl Formation into the overlying Seeb Formation. In the subtidal-supratidal cycles of lithofacies unit VIII the terra rossa horizons are thining upwards and become gradually substituted for by deep-water middle ramp sediments of lithofacies unit IX. Framboidal pyrite, (ferroan) dolomite with very little siderite are indicative of an early diagenetic alteration stage I under rather moderate temperatures of formation. During a subsequent stage II, an increase in the temperature of alteration was partly induced by burial and a high heat flow from the underlying Semail Ophiolite. Type-III kerogen originating from higher plants and, in addition, some marine biota gave rise to the generation of small amounts of soluble organic matter during this stage of diagenesis. The average reflectance of humic particles marks the beginning of the oil window and the production index reveals the existence of free hydrocarbons. Further uplift of the Eocene strata and oxidation during stage IIII caused veins of satin spar to form from organic sulfur and pyrite in the carbonaceous material. Lowering of the pH value of the pore fluid led to the precipitation of jarosite and a set of hydrated aluminum sulfates dependant upon the cations present in the wall rocks. AMD minerals (= acid mine drainage) are not very widespread in this carbonaceous series intercalated among calcareous rocks owing to the buffering effect of carbonate minerals. These carbonate-hosted carbonaceous rocks are below an economic level as far as the mining of coal is concerned, but deserves particular attention as source rocks for hydrocarbons in the Middle East, provided a higher stage of maturity is reached. (author)

  16. The Effect of Aqueous Alteration in Antarctic Carbonaceous Chondrites from Comparative ICP-MS Bulk Chemistry

    Science.gov (United States)

    Alonso-Azcarate, J.; Trigo-Rodriguez, J. M.; Moyano-Cambero, C. E.; Zolensky, M.

    2014-01-01

    Terrestrial ages of Antarctic carbonaceous chondrites (CC) indicate that these meteorites have been preserved in or on ice for, at least, tens of thousands of years. Due to the porous structure of these chondrites formed by the aggregation of silicate-rich chondrules, refractory inclusions, metal grains, and fine-grained matrix materials, the effect of pervasive terrestrial water is relevant. Our community defends that pristine CC matrices are representing samples of scarcely processed protoplanetary disk materials as they contain stellar grains, but they might also trace parent body processes. It is important to study the effects of terrestrial aqueous alteration in promoting bulk chemistry changes, and creating distinctive alteration minerals. Particularly because it is thought that aqueous alteration has particularly played a key role in some CC groups in modifying primordial bulk chemistry, and homogenizing the isotopic content of fine-grained matrix materials. Fortunately, the mineralogy produced by parent-body and terrestrial aqueous alteration processes is distinctive. With the goal to learn more about terrestrial alteration in Antarctica we are obtaining reflectance spectra of CCs, but also performing ICP-MS bulk chemistry of the different CC groups. A direct comparison with the mean bulk elemental composition of recovered falls might inform us on the effects of terrestrial alteration in finds. With such a goal, in the current work we have analyzed some members representative of CO and CM chondrite groups.

  17. Mineralized Remains of Morphotypes of Filamentous Cyanobacteria in Carbonaceous Meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2005-01-01

    ) investigations of freshly fractured interior surfaces of carbonaceous meteorites, terrestrial rocks, and recent microbial extremophiles and filamentous cyanobacteria. These studies have resulted in the detection in a several carbonaceous meteorites of the mineralized remains of a wide variety of complex filamentous trichomic microorganisms. These embedded forms are consistent in size and microstructure with well-preserved morphotypes of mat- forming filamentous trichomic cyanobacteria and the degraded remains of microfibrils of cyanobacterial sheaths. We present the results of comparative imaging studies and EDAX elemental analyses of recent cyanobacteria (e.g. Calothrix, Oscillatoria, and Lyngbya) that are similar in size, morphology and microstructure to morphotypes found embedded in meteorites. EDAX elemental studies reveal that forms found in carbonaceous meteorites often have highly carbonized sheaths in close association with permineralized filaments, trichomes and microbial cells. Ratios of critical bioelements (C:O, C:N, C:P, and C:S) reveal dramatic differences between microfossils in Earth rocks and meteorites and in filaments, trichomes, hormogonia, and cells of recent cyanobacteria.

  18. The effect of mineral fillers on the rheological, mechanical and thermal properties of halogen-free flame-retardant polypropylene/expandable graphite compounds

    Science.gov (United States)

    Mattausch, Hannelore; Laske, Stephan; Hohenwarter, Dieter; Holzer, Clemens

    2015-05-01

    In many polyolefin applications, such as electrical cables or automotive applications, the fire protection is a very important task. Unfortunately flame-retardant polymeric materials are often halogenated and form toxic substances in case of fire, which explains the general requirement to reduce the halogen content to zero. Non-halogenated, state-of-the-art flame retardants must be incorporated into the polymer in very high grades (> 40 wt%) leading to massive decrease in mechanical properties and/or processability. In this research work halogen-free flame-retardant polypropylene (PP) /expandable graphite (EG) were filled with minerals fillers such as layered silicates (MMT), magnesium hydroxide (MgOH), zeolite (Z) and expanded perlite (EP) in order to enhance the flame-retardant effect. The rheological, mechanical and thermal properties of these materials were investigated to gain more fundamental knowledge about synergistic combinations of flame-retardants and other additives. The rheological properties were characterized with a rotational rheometer with plate-plate setup. The EG/EP/PP compound exhibited the highest increase in viscosity (˜ 37 %). As representative value for the mechanical properties the Young's modulus was chosen. The final Young's modulus values of the twofold systems gained higher values than the single ones. Thermo gravimetric analysis (TGA) was utilized to investigate the material with respect to volatile substances and combustion behavior. All materials decomposed in one-step degradation. The EG filled compounds showed a significant increase in sample weight due to the expansion of EG. The combustion behavior of these materials was characterized by cone calorimeter tests. Especially combinations of expandable graphite with mineral fillers exhibit a reduction of the peak heat release rate during cone calorimeter measurements of up to 87% compared to pure PP.

  19. Impact of nucleation of carbonaceous clusters on structural, electrical and optical properties of Cr+-implanted PMMA

    Science.gov (United States)

    Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Naab, Fabian; Toader, Ovidiu; Mahmood, Arshad; Aziz, Uzma

    2016-09-01

    Specimens of polymethylmethacrylate (PMMA) have been implanted with 400 keV Cr+ ions at different ion fluences ranging from 5 × 1013 to 5 × 1015 ions/cm2. The possible chemical reactions involved in the nucleation of conjugated carbonaceous clusters in implanted PMMA are discussed. Furthermore, impact of formation of carbonaceous clusters on structural, optical, electrical and morphological properties of implanted PMMA has been examined. The structural modifications in implanted PMMA are observed by Raman spectroscopy. The variation in optical band gap and Urbach energy is measured using UV-visible spectroscopic analysis. The effects of Cr+ ion implantation on electrical and morphological properties are investigated by four-probe apparatus and atomic force microscopy, respectively. The Raman spectroscopic analysis confirmed the formation of carbonaceous clusters with the transformation of implanted layer of PMMA into amorphous carbon. Simultaneously, the optical band gap of implanted PMMA has reduced from 3.13 to 0.85 eV. The increase in Urbach energy favors the decline in band gap together with the structural modification in implanted PMMA. As a result of Cr+ ion implantation, the electrical conductivity of PMMA has improved from 2.14 ± 0.06 × 10-10 S/cm (pristine) to 7.20 ± 0.36 × 10-6 S/cm. The AFM images revealed a decrease in surface roughness with an increment in ion fluence up to 5 × 1014 ions/cm2. The modification in the electrical, optical and structural properties makes the PMMA a promising candidate for its future utilization, as a semiconducting and optically active material, in various fields like plastic electronics and optoelectronic devices.

  20. Spatial Gradients in Halogen Oxides Across the North Slope of Alaska Indicate That Halogen Activated Airmasses are Spatially Large

    Science.gov (United States)

    Simpson, W. R.; Hoenninger, G. S.; Platt, U.

    2005-12-01

    Reactive halogens are important oxidizers in the polar atmosphere during springtime. They deplete tropospheric ozone, oxidize hydrocarbons, and oxidize gas-phase mercury, causing it to deposit to the snow pack. We want to understand the mechanism by which halides in on snow/ice crystals and/or in aerosol particles are converted to reactive halogen species. This understanding can assist in prediction of mercury deposition and how that deposition depends on environmental variables like sea-ice extent and temperature. This mechanistic knowledge is particularly important in the context of a changing Arctic system. To study halogen activation, we are working in the Studies of the Northern Alaskan Coastal System (SNACS) project and here show results from 2005 including the LEADX experiment. A number of studies have implicated leads (cracks in the sea ice) as a source of halogen activation, but it is unclear if halogens are directly activated on ice surfaces at the lead (e.g. frost flowers) or if the lead is less directly involved. To address the role of leads in halogen activation, we measured bromine monoxide (BrO) using Multiple Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) at Barrow and Atqasuk, Alaska over a four-month period. The locations of these sites, either on the coast near a recurring lead in the case of Barrow, or 100km inland in the case of Atqasuk provides an ability to measure spatial gradients on the 100km length scale. In addition, the Barrow instrument was the first implementation of fully automated two dimensional MAX-DOAS where both elevation and azimuth were scanned. Because the MAX-DOAS method typically detects path-averaged BrO amounts between the instrument and a range of approximately 10km, differences in BrO between viewing azimuths allows us to determine short-length scale BrO gradients. From the 2-D MAX-DOAS observations at Barrow, we find that there are very small if any spatial gradients on the 10km length scale. From the

  1. How do halogen bonds (S-O⋯I, N-O⋯I and C-O⋯I) and halogen-halogen contacts (C-I⋯I-C, C-F⋯F-C) subsist in crystal structures? A quantum chemical insight.

    Science.gov (United States)

    Pandiyan, B Vijaya; Deepa, P; Kolandaivel, P

    2017-01-01

    Thirteen X-ray crystal structures containing various non-covalent interactions such as halogen bonds, halogen-halogen contacts and hydrogen bonds (I⋯N, I⋯F, I⋯I, F⋯F, I⋯H and F⋯H) were considered and investigated using the DFT-D3 method (B97D/def2-QZVP). The interaction energies were calculated at MO62X/def2-QZVP and MP2/aug-cc-pvDZ level of theories. The higher interaction and dispersion energies (2nd crystal) of -9.58 kcal mol(-1) and -7.10 kcal mol(-1) observed for 1,4-di-iodotetrafluorobenzene bis [bis (2-phenylethyl) sulfoxide] structure indicates the most stable geometrical arrangement in the crystal packing. The electrostatic potential values calculated for all crystal structures have a positive σ-hole, which aids understanding of the nature of σ-hole bonds. The significance of the existence of halogen bonds in crystal packing environments was authenticated by replacing iodine atoms by bromine and chlorine atoms. Nucleus independent chemical shift analysis reported on the resonance contribution to the interaction energies of halogen bonds and halogen-halogen contacts. Hirshfeld surface analysis and topological analysis (atoms in molecules) were carried out to analyze the occurrence and strength of all non-covalent interactions. These analyses revealed that halogen bond interactions were more dominant than hydrogen bonding interactions in these crystal structures. Graphical Abstract Molecluar structure of 1,4-Di-iodotetrafluorobenzene bis(thianthrene 5-oxide) moelcule and its corresponding molecular electrostatic potential map for the view of σ-hole.

  2. Comparing Amino Acid Abundances and Distributions Across Carbonaceous Chondrite Groups

    Science.gov (United States)

    Burton, Aaron S.; Callahan, Michael P.; Glavin, Daniel P.; Elsila, Jamie E.; Dworkin, Jason P.

    2012-01-01

    Meteorites are grouped according to bulk properties such as chemical composition and mineralogy. These parameters can vary significantly among the different carbonaceous chondrite groups (CI, CM, CO, CR, CH, CB, CV and CK). We have determined the amino acid abundances of more than 30 primary amino acids in meteorites from each of the eight groups, revealing several interesting trends. There are noticeable differences in the structural diversity and overall abundances of amino acids between meteorites from the different chondrite groups. Because meteorites may have been an important source of amino acids to the prebiotic Earth and these organic compounds are essential for life as we know it, the observed variations of these molecules may have been important for the origins of life.

  3. Petrogenesis of opaque assemblages in the Ningqiang carbonaceous chondrite

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; HUA Xin; HSU WeiBiao

    2007-01-01

    Numerous round to oblate opaque assemblages (OAs) are found in chondrules and matrix of the Ningqiang carbonaceous chondrite. They are mainly composed of Ni-rich metal, magnetite, Fe,Ni-sulfides, with minor amounts of phosphate, phosphoran-olivine, pyroxene and trace amounts of nano-sized platinum-group metal alloys. The mineralogy of Ningqiang OAs is very similar to that of OAs previously reported in Ca, Al-rich inclusions of CV chondrites. Being a rare mineral phase in nature,phosphoran-olivine is thought to form by nonequilibrium reactions between P-bearing molten metal and olivine crystals during rapid cooling. Its occurrence in Ningqiang OAs indicates that the precursor of OAs was locally produced during chondrule formation, rather than directly condensed from the solar nebula as previously thought. The petrographic and mineralogical characteristics of Ningqiang OAs reveal that OAs formed by low temperature alterations of pre-existing homogeneous alloys within chondrules on a planetary body.

  4. Petrogenesis of opaque assemblages in the Ningqiang carbonaceous chondrite

    Institute of Scientific and Technical Information of China (English)

    HSU; WeiBiao

    2007-01-01

    Numerous round to oblate opaque assemblages (OAs) are found in chondrules and matrix of the Ningqiang carbonaceous chondrite. They are mainly composed of Ni-rich metal,magnetite,Fe,Ni-sulfides,with minor amounts of phosphate,phosphoran-olivine,pyroxene and trace amounts of nano-sized platinum-group metal alloys. The mineralogy of Ningqiang OAs is very similar to that of OAs previously reported in Ca,Al-rich inclusions of CV chondrites. Being a rare mineral phase in nature,phosphoran-olivine is thought to form by nonequilibrium reactions between P-bearing molten metal and olivine crystals during rapid cooling. Its occurrence in Ningqiang OAs indicates that the precursor of OAs was locally produced during chondrule formation,rather than directly condensed from the solar nebula as previously thought. The petrographic and mineralogical characteristics of Ningqiang OAs reveal that OAs formed by low temperature alterations of pre-existing homogeneous alloys within chondrules on a planetary body.

  5. The physiological and ecological roles of volatile halogen production by marine diatoms

    Science.gov (United States)

    Hughes, Claire; Sun, Shuo

    2015-04-01

    Sea-to-air halogen flux is known to have a major impact on catalytic ozone cycling and aerosol formation in the troposphere. The biological production of volatile organic (e.g. bromoform, diiodomethane) and reactive inorganic halogens (e.g. molecular iodine) is believed to play an important role in mediating halogen emissions from the marine environment. Marine diatoms in particular are known to produce the organic and inorganic volatile halogens at high rates in pelagic waters and sea-ice systems. The climate-induced changes in diatom communities that have already been observed and are expected to occur throughout the world's oceans as warming progresses are likely to alter sea-to-air halogen flux. However, we currently have insufficient understanding of the physiological and ecological functions of volatile halogen production to develop modelling tools that can predict the nature and magnitude of the impact. The results of a series of laboratory studies aimed at establishing the physiological and ecological role of volatile halogen production in two marine polar diatoms (Thalassiosira antarctica and Porosira glacialis) will be described in this presentation. We will focus on our work investigating how the activity of the haloperoxidases, a group of enzymes known to be involved in halogenation reactions in marine organisms, is altered by environmental conditions. This will involve exploring the antioxidative defence role proposed for marine haloperoxidases by showing specifically how halogenating activity varies with photosynthetic rate and changes in the ambient light conditions in the two model marine diatoms. We will also present results from our experiments designed to investigate how volatile halogen production is impacted by and influences diatom-bacterial interactions. We will discuss how improved mechanistic understanding like this could pave the way for future volatile halogen-ecosystem model development.

  6. Iron Coordination and Halogen-Bonding Assisted Iodosylbenzene Activation

    DEFF Research Database (Denmark)

    Wegeberg, Christina; Poulsen de Sousa, David; McKenzie, Christine

    catalytic mixtures using soluble terminal oxygen transfer agents. Isolation of a reactive iron-terminal oxidant adduct, an unique Fe(III)-OIPh complex, is facilitated by strong stabilizing supramolecular halogen-bonding. L3-edge XANES suggests +1.6 for the average oxidation state for the iodine atom3...... in the iron(III)-coordinated PhIO. This represents a reduction of iodine relative to the original “hypervalent” (+3) PhIO. The equivalent of electron density must be removed from the {(tpena)Fe(III)O} moiety, however Mössbauer spectroscopy shows that the iron atom is not high valent....

  7. Preliminary assessment of halogenated alkanes as vapor-phase tracers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael C.; Moore, Joseph N.; Hirtz, Paul

    1991-01-01

    New tracers are needed to evaluate the efficiency of injection strategies in vapor-dominated environments. One group of compounds that seems to meet the requirements for vapor-phase tracing are the halogenated alkanes (HCFCs). HCFCs are generally nontoxic, and extrapolation of tabulated thermodynamic data indicate that they will be thermally stable and nonreactive in a geothermal environment. The solubilities and stabilities of these compounds, which form several homologous series, vary according to the substituent ratios of fluorine, chlorine, and hydrogen. Laboratory and field tests that will further define the suitability of HCFCs as vapor-phase tracers are under way.

  8. New halogenated agents: should I change my practice?

    Science.gov (United States)

    Feiss, P

    2000-05-01

    Sevoflurane and Desflurane are relatively new halogenated agents which make induction and control of depth of anaesthesia easier, recovery rapid and of good quality and they have less side-effects and toxicity. In children sevoflurane could replace halothane because it provides smooth and rapid induction with less cardiovascular depression and arrhythmias. Desflurane is not used because of its pungent odour. In adults sevoflurane could be preferred to desflurane because it allows rapid induction and laryngeal mask insertion or tracheal intubation without myorelaxants, a similar time of recovery, no clinical evidence for renal and hepatic toxicity, no more costs for anaesthesia for a lower MAC.

  9. Molecular dynamics of halogenated graphene - hexagonal boron nitride nanoribbons

    Science.gov (United States)

    Nemnes, G. A.; Visan, Camelia; Anghel, D. V.; Manolescu, A.

    2016-08-01

    The hybrid graphene - hexagonal boron nitride (G-hBN) systems offer new routes in the design of nanoscale electronic devices. Using ab initio density functional theory calculations we investigate the dynamics of zig-zag nanoribbons a few interatomic distances wide. Several structures are analyzed, namely pristine graphene, hBN and G-hBN systems. By passivating the nanoribbon edges with hydrogen and different halogen atoms, one may tune the electronic and mechanical properties, like the band gap energies and the natural frequencies of vibration.

  10. Assessment of the Halogen Content of Brazilian Inhalable Particulate Matter (PM10) Using High Resolution Molecular Absorption Spectrometry and Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry, with Direct Solid Sample Analysis.

    Science.gov (United States)

    de Gois, Jefferson S; Almeida, Tarcisio S; Alves, Jeferson C; Araujo, Rennan G O; Borges, Daniel L G

    2016-03-15

    Halogens in the atmosphere play an important role in climate change and also represent a potential health hazard. However, quantification of halogens is not a trivial task, and methods that require minimum sample preparation are interesting alternatives. Hence, the aim of this work was to evaluate the feasibility of direct solid sample analysis using high-resolution continuum source molecular absorption spectrometry (HR-CS MAS) for F determination and electrothermal vaporization-inductively coupled plasma mass spectrometry (ETV-ICP-MS) for simultaneous Cl, Br, and I determination in airborne inhalable particulate matter (PM10) collected in the metropolitan area of Aracaju, Sergipe, Brazil. Analysis using HR-CS MAS was accomplished by monitoring the CaF molecule, which was generated at high temperatures in the graphite furnace after the addition of Ca. Analysis using ETV-ICP-MS was carried out using Ca as chemical modifier/aerosol carrier in order to avoid losses of Cl, Br, and I during the pyrolysis step, with concomitant use of Pd as a permanent modifier. The direct analysis approach resulted in LODs that were proven adequate for halogen determination in PM10, using either standard addition calibration or calibration against a certified reference material. The method allowed the quantification of the halogens in 14 PM10 samples collected in a northeastern coastal city in Brazil. The results demonstrated variations of halogen content according to meteorological conditions, particularly related to rainfall, humidity, and sunlight irradiation.

  11. Pyrolysis of carbonaceous particles and properties of Carbonaceous-g-Poly (acrylic acid-co-acrylamide superabsorbent polymer for agricultural applications

    Directory of Open Access Journals (Sweden)

    Ghazali S.

    2016-01-01

    Full Text Available Utilisation of fertilizer and water are very important in determining the production of agriculture nowadays. The excessive use of fertilizer in plantation somehow could leads to environmental pollution. The present study reported a synthesis of controlled release water retention (CRWR fertilizer coating with superabsorbent polymer (SAPs. Superabsorbent polymer (SAPs are polymers that have ability to absorb and retain large amounts of water relative to their own mass. The presence of coating layer of SAPs on fertilizer granules was believed could reduce excessive used of fertilizer by controlling their dissolution rates and also reduce the environmental pollution. In this study, the effect on the addition of carbonaceous filler in SAPs on the water absorbency was also be compared with control SAPs (without carbonaceous particles. In this study, the carbonaceous filler were obtained from pyrolysis process of empty fruit bunch (EFB biomass. The synthesized of SAPs and carbonaceous-SAPs were carried out via solution polymerization technique by using monomer of poly(acrylic acid (AA, acrylamide (AM, cross linker, methylene bisacrylamide (MBA and initiator, ammonium peroxodisulfate (APS that partially neutralized with sodium hydroxide (NaOH. The CRWR fertilizer was later be prepared by coated the fertilizer granule with SAPs and carbonaceous-SAPs. The water absorbency, morphology and the bonding formation of both CRWR fertilizer were investigated by using tea-beg method, Scanning Electron Microscopy (SEM and Fourier Transform Infrared Spectrophotometer (FTIR, respectively. Moreover, the water retention studies was conducted in order to investigate the efficiency of CRWR coated with SAP and carbonaceous-SAP in retaining the water content in different soil (organic and top soil. Based on the results, the CRWR fertilizer that was coated with carbonaceous-SAP had higher water absorbency value than the CRWR fertilizer without carbonaceous-SAP. Meanwhile

  12. Thermal analytical investigation of biopolymers and humic- and carbonaceous-based soil and sediment organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Lu Zhang; Eugene J. LeBoeuf; Baoshan Xing [Vanderbilt University, Nashville, TN (United States). Department of Civil and Environmental Engineering

    2007-07-15

    Improved understanding of the physical, chemical, and thermodynamic properties of soil and sediment organic matter (SOM) is crucial in elucidating sorption mechanisms of hydrophobic organic compounds (HOCs) in soils and sediments. In this study, several thermoanalytical techniques, including thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), temperature-modulated differential scanning calorimetry (TMDSC), and thermal mechanical analysis (TMA) were applied to 13 different organic materials (three woods, two humic acids, three kerogens, and five black carbons) representing a spectrum of diagenetic and/or thermal histories. Samples included Pocahontas No. 3 bituminous coal. Second-order thermal transition temperatures (T{sub t}) were identified in most materials, where the highest observed T{sub t} values (typically characterized as glass transition temperatures (T{sub g})) were shown to closely relate to chemical characteristics of the organic samples as influenced by diagenetic or thermal alteration. Results further suggest a positive correlation between glass transition temperature and a defined diagenetic/thermal index, where humic-based SOM (e.g., humic and fulvic acids) possess lower transition temperatures than more 'mature' carbonaceous-based SOM (i.e., kerogens and black carbons). The observed higher thermal transition temperature of aliphatic-rich Green River shale kerogen (about 120{sup o}C) relative to that of aromatic-rich humic acids suggests that a sole correlation of aromaticity to thermal transition temperature may be inappropriate. 55 refs., 2 figs., 1 tab.

  13. Toxicity of gaseous halogenated organic compounds. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The bibliography contains citations concerning the toxicology of halogenated hydrocarbons and their health effects. Topics cover halogenated gases used as industrial chemicals, fire extinguishers, anesthetics, solvents, pesticides, and aerosol propellants. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Anaerobic microbial transformation of halogenated aromatics and fate prediction using electron density modeling.

    Science.gov (United States)

    Cooper, Myriel; Wagner, Anke; Wondrousch, Dominik; Sonntag, Frank; Sonnabend, Andrei; Brehm, Martin; Schüürmann, Gerrit; Adrian, Lorenz

    2015-05-19

    Halogenated homo- and heterocyclic aromatics including disinfectants, pesticides and pharmaceuticals raise concern as persistent and toxic contaminants with often unknown fate. Remediation strategies and natural attenuation in anaerobic environments often build on microbial reductive dehalogenation. Here we describe the transformation of halogenated anilines, benzonitriles, phenols, methoxylated, or hydroxylated benzoic acids, pyridines, thiophenes, furoic acids, and benzenes by Dehalococcoides mccartyi strain CBDB1 and environmental fate modeling of the dehalogenation pathways. The compounds were chosen based on structural considerations to investigate the influence of functional groups present in a multitude of commercially used halogenated aromatics. Experimentally obtained growth yields were 0.1 to 5 × 10(14) cells mol(-1) of halogen released (corresponding to 0.3-15.3 g protein mol(-1) halogen), and specific enzyme activities ranged from 4.5 to 87.4 nkat mg(-1) protein. Chlorinated electron-poor pyridines were not dechlorinated in contrast to electron-rich thiophenes. Three different partial charge models demonstrated that the regioselective removal of halogens is governed by the least negative partial charge of the halogen. Microbial reaction pathways combined with computational chemistry and pertinent literature findings on Co(I) chemistry suggest that halide expulsion during reductive dehalogenation is initiated through single electron transfer from B12Co(I) to the apical halogen site.

  15. Halogen free benzoxazine based curable compositions for high T.sub.g applications

    Energy Technology Data Exchange (ETDEWEB)

    Tietze, Roger; Nguyen, Yen-Loan

    2016-08-16

    A method for forming a halogen-free curable composition containing a benzoxazine monomer, at least one epoxy resin, a catalyst, a toughening agent and a solvent. The halogen-free curable composition is especially suited for use in automobile and aerospace applications since the composition, upon curing, produces a composite having a high glass transition temperature.

  16. Investigation of non-halogenated solvent mixtures for high throughput fabrication of polymerfullerene solar cells

    NARCIS (Netherlands)

    Schmidt-Hansberg, B.; Sanyal, M.; Grossiord, N.; Galagan, Y.O.; Baunach, M.; Klein, M.F.G.; Colsmann, A.; Scharfer, P.; Lemmer, U.; Dosch, H.; Michels, J.J; Barrena, E.; Schabel, W.

    2012-01-01

    The rapidly increasing power conversion efficiencies of organic solar cells are an important prerequisite towards low cost photovoltaic fabricated in high throughput. In this work we suggest indane as a non-halogenated replacement for the commonly used halogenated solvent o-dichlorobenzene. Indane w

  17. The effects of halogen and light-emitting diode light curing on the depth of cure and surface microhardness of composite resins

    Directory of Open Access Journals (Sweden)

    Batu Can Yaman

    2011-01-01

    Full Text Available Aim : Light-emitting diode light curing units (LED LCUs have become more popular than halogen LCUs in routine dental restorative treatment. The aim of the study was to compare the effects of two conventional halogen (Hilux Plus and VIP and two LED (Elipar FreeLight 2 and Smart Lite light curing units on the depth of cure and the microhardness of various esthetic restorative materials. Materials and Methods : The curing depth and microhardness of a compomer (Dyract Extra, a resin-modified glass ionomer (Vitremer, a packable composite (Sculpt It, an ormocer (Admira, a hybrid composite (Tetric Ceram, two microhybrid composites (Miris and Clearfil Photo Posterior and, a nanofil composite (Filtek Supreme were determined using a scraping method and a hardness tester. A total of 320 samples were prepared using the eight different materials (n = 10 samples for each subgroup. The scraping test was based on ISO 4049:2000. Vicker′s microhardness testing was carried out using hardness tester (Zwick 3212. Data were analyzed using one-way analysis of variance (ANOVA, Bonferroni and the Kolmogorov-Smirnov tests. Results : Best microhardness results were obtained with the LED light curing units and Tetric EvoCeram and Filtek Supreme achieved the highest hardness values. The nanofil composite, Filtek Supreme, showed the best curing depth results in all the tested light curing systems. Conclusions : The LEDs were found to be more successful than the halogen units with respect to both curing depth and microhardness properties.

  18. Recycling of typical supercapacitor materials.

    Science.gov (United States)

    Vermisoglou, Eleni C; Giannouri, Maria; Todorova, Nadia; Giannakopoulou, Tatiana; Lekakou, Constantina; Trapalis, Christos

    2016-04-01

    A simple, facile and low-cost method for recycling of supercapacitor materials is proposed. This process aims to recover some fundamental components of a used supercapacitor, namely the electrolyte salt tetraethyl ammonium tetrafluoroborate (TEABF4) dissolved in an aprotic organic solvent such as acetonitrile (ACN), the carbonaceous material (activated charcoal, carbon nanotubes) purified, the current collector (aluminium foil) and the separator (paper) for further utilization. The method includes mechanical shredding of the supercapacitor in order to reduce its size, and separation of aluminium foil and paper from the carbonaceous resources containing TEABF4 by sieving. The extraction of TEABF4 from the carbonaceous material was based on its solubility in water and subsequent separation through filtering and distillation. A cyclic voltammetry curve of the recycled carbonaceous material revealed supercapacitor behaviour allowing a potential reutilization. Furthermore, as BF4(-) stemming from TEABF4 can be slowly hydrolysed in an aqueous environment, thus releasing F(-) anions, which are hazardous, we went on to their gradual trapping with calcium acetate and conversion to non-hazardous CaF2.

  19. Composition of carbonaceous smoke particles from prescribed burning of a Canadian boreal forest: 1. Organic aerosol characterization by gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Mazurek, M.A.; Laterza, C.; Newman, L.; Daum, P. [Brookhaven National Lab., Upton, NY (United States); Cofer, W.R. III; Levine, J.S. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center; Winstead, E.L. [Science Applications International Corporation, Hampton, VA (United States)

    1995-06-01

    In this study we examine the molecular organic constituents (C8 to C40 lipid compounds) collected as smoke particles from a Canadian boreal forest prescribed burn. Of special interest are (1) the molecular identity of polar organic aerosols, and (2) the amount of polar organic matter relative to the total mass of aerosol particulate carbon. Organic extracts of smoke aerosol particles show complex distributions of the lipid compounds when analyzed by capillary gas chromatography/mass spectrometry. The molecular constituents present as smoke aerosol are grouped into non-polar (hydrocarbons) and polar {minus}2 oxygen atoms) subtractions. The dominant chemical species found in the boreal forest smoke aerosol are unaltered resin compounds (C20 terpenes) which are abundant in unburned conifer wood, plus thermally altered wood lignins and other polar aromatic hydrocarbons. Our results show that smoke aerosols contain molecular tracers which are related to the biofuel consumed. These smoke tracers can be related structurally back to the consumed softwood and hardwood vegetation. In addition, combustion of boreal forest materials produces smoke aerosol particles that are both oxygen-rich and chemically complex, yielding a carbonaceous aerosol matrix that is enriched in polar substances. As a consequence, emissions of carbonaceous smoke particles from large-scale combustion of boreal forest land may have a disproportionate effect on regional atmospheric chemistry and on cloud microphysical processes.

  20. 40 CFR Appendix III to Part 268 - List of Halogenated Organic Compounds Regulated Under § 268.32

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false List of Halogenated Organic Compounds... Part 268—List of Halogenated Organic Compounds Regulated Under § 268.32 In determining the... defined the HOCs that must be included in a calculation as any compounds having a carbon-halogen...

  1. Novel Halogenated Pyrazine-Based Chalcones as Potential Antimicrobial Drugs

    Directory of Open Access Journals (Sweden)

    Marta Kucerova-Chlupacova

    2016-10-01

    Full Text Available Chalcones, i.e., compounds with the chemical pattern of 1,3-diphenylprop-2-en-1-ones, exert a wide range of bio-activities, e.g., antioxidant, anti-inflammatory, anticancer, anti-infective etc. Our research group has been focused on pyrazine analogues of chalcones; several series have been synthesized and tested in vitro on antifungal and antimycobacterial activity. The highest potency was exhibited by derivatives with electron withdrawing groups (EWG in positions 2 and 4 of the ring B. As halogens also have electron withdrawing properties, novel halogenated derivatives were prepared by Claisen-Schmidt condensation. All compounds were submitted for evaluation of their antifungal and antibacterial activity, including their antimycobacterial effect. In the antifungal assay against eight strains of selected fungi, growth inhibition of Candida glabrata and Trichophyton interdigitale (formerly T. mentagrophytes was shown by non-alkylated derivatives with 2-bromo or 2-chloro substitution. In the panel of selected bacteria, 2-chloro derivatives showed the highest inhibitory effect on Staphylococcus sp. In addition, all products were also screened for their antimycobacterial activity against Mycobacterium tuberculosis H37RV My 331/88, M. kansasii My 235/80, M. avium 152/80 and M. smegmatis CCM 4622. Some of the examined compounds, inhibited growth of M. kansasii and M. smegmatis with minimum inhibitory concentrations (MICs comparable with those of isoniazid.

  2. A comparative evaluation of the shear bond strength of five different orthodontic bonding agents polymerized using halogen and light-emitting diode curing lights: An in vitro investigation

    Directory of Open Access Journals (Sweden)

    Sujoy Banerjee

    2011-01-01

    Full Text Available Purpose: With the introduction of photosensitive (light-activated restorative materials in orthodontics, various methods have been suggested to enhance the polymerization of the materials used, including use of more powerful light curing devices. Bond strength is an important property and determines the amount of force delivered and the treatment duration. Many light-cured bonding materials have become popular but it is the need of the hour to determine the bonding agent that is the most efficient and has the desired bond strength. Aim: To evaluate and compare the shear bond strengths of five different orthodontic light cure bonding materials cured with traditional halogen light and low-intensity light-emitting diode (LED light curing unit. Materials and Methods: 100 human maxillary premolar teeth, extracted for orthodontic purpose, were used to prepare the samples. 100 maxillary stainless steel bicuspid brackets of 0.018 slot of Roth prescription, manufactured by D-tech Company, were bonded to the prepared tooth surfaces of the mounted samples using five different orthodontic bracket bonding light-cured materials, namely, Enlight, Fuji Ortho LC (resin-modified glass ionomer cement, Orthobond LC, Relybond, and Transbond XT. The bond strength was tested on an Instron Universal testing machine (model no. 5582. Results: In Group 1 (halogen group, Enlight showed the highest shear bond strength (16.4 MPa and Fuji Ortho LC showed the least bond strength (6.59 MPa (P value 0.000. In Group 2 (LED group, Transbond showed the highest mean shear bond strength (14.6 MPa and Orthobond LC showed the least mean shear bond strength (6.27 MPa (P value 0.000. There was no statistically significant difference in the shear bond strength values of all samples cured using either halogen (mean 11.49 MPa or LED (mean 11.20 MPa, as the P value was 0.713. Conclusion: Polymerization with both halogen and LED resulted in shear bond strength values which were above the

  3. Aqueous processing of organic compounds in carbonaceous asteroids

    Science.gov (United States)

    Trigo-Rodríguez, Josep Maria; Rimola, Albert; Martins, Zita

    2015-04-01

    There is growing evidence pointing towards a prebiotic synthesis of complex organic species in water-rich undifferentiated bodies. For instance, clays have been found to be associated with complex organic compounds (Pearson et al. 2002; Garvie & Buseck 2007; Arteaga et al. 2010), whereas theoretical calculations have studied the interaction between the organic species and surface minerals (Rimola et al., 2013) as well as surface-induced reactions (Rimola at al. 2007). Now, we are using more detailed analytical techniques to study the possible processing of organic molecules associated with the mild aqueous alteration in CR, CM and CI chondrites. To learn more about these processes we are studying carbonaceous chondrites at Ultra High-Resolution Transmission Electron Microscopy (UHR-TEM). We are particularly interested in the relationship between organics and clay minerals in carbonaceous chondrites (CCs) matrixes (Trigo-Rodríguez et al. 2014, 2015).We want to address two goals: i) identifying the chemical steps in which the organic molecules could have increased their complexity (i.e., surface interaction and catalysis); and ii) studying if the organic matter present in CCs experienced significant processing concomitant to the formation of clays and other minerals at the time in which these planetary bodies experienced aqueous alteration. Here, these two points are preliminarily explored combing experimental results with theoretical calculations based on accurate quantum mechanical methods. References Arteaga O, Canillas A, Crusats J, El-Hachemi Z, Jellison GE, Llorca J, Ribó JM (2010) Chiral biases in solids by effect of shear gradients: a speculation on the deterministic origin of biological homochirality. Orig Life Evol Biosph 40:27-40. Garvie LAJ, Buseck PR (2007) Prebiotic carbon in clays from Orgueil and Ivuna (CI) and Tagish lake (C2 ungrouped) meteorites. Meteorit Planet Sci 42:2111-2117. Pearson VK, Sephton MA, Kearsley AT, Bland AP, Franchi IA, Gilmour

  4. Explosion Production of Fullerenes from Carbonaceous Bullet in Vacuum Using Rail Gun

    Science.gov (United States)

    Mieno, Tetsu; Yamori, Akira

    2006-04-01

    A carbonaceous bullet is accelerated using a rail gun in vacuum and collides with a metal or carbon target at a speed of approximately 6 km/s, at which the bullet explodes and the high-temperature reaction of carbon particles takes place. As a result, C60 and higher fullerenes are produced. Using a carbonaceous bullet containing metal-oxide powder, endohedral metallofullerenes are also produced by this method.

  5. Comets, Carbonaceous Meteorites, and the Origin of the Biosphere

    Science.gov (United States)

    Hoover, Richard B.

    2005-01-01

    The biosphere comprises the Earth s crust, atmosphere, oceans, and ice caps and the living organisms that survive within this habitat. The discoveries of barophilic chemolithoautotrophic thermophiles living deep within the crust and in deep-sea hydrothermal vents, and psychrophiles in permafrost and deep within the Antarctic Ice Sheet indicate the Earth s biosphere is far more extensive than previously recognized. Molecular biomarkers and Bacterial Paleontology provide evidence that life appeared very early on the primitive Earth and the origin of the biosphere is closely linked with the emergence of life. The role of comets, meteorites, and interstellar dust in the delivery of water, organics and prebiotic chemicals has long been recognized. Deuterium enrichment of seawater and comets indicates that comets delivered oceans to the early Earth. Furthermore, the similarity of the D/H ratios and the chemical compositions of CI carbonaceous meteorites and comets indicate that the CI meteorites may be remnants of cometary nuclei with most volatiles removed. Comets, meteorites, and interstellar dust also contain complex organic chemicals, amino acids, macromolecules, and kerogen-like biopolymers and may have played a crucial role in the delivery of complex organics and prebiotic chemicals during the Hadean (4.5-3.8 Gyr) period of heavy bombardment. The existence of indigenous microfossils of morphotypes of cyanobacteria in the CI and CM carbonaceous meteorites suggests that the paradigm that life originated endogenously in the primitive oceans of early Earth may require re-consideration. Recent data on the hot (300-400 K) black crust on comet P/Halley and Stardust images of P/Wild 2 showing depressions, tall cliffs, and pinnacles, indicate the presence of thick, durable, dark crusts on comets. If cavities within the ice and crust sustain vapor pressures in excess of 10 millibar, then localized pools of liquid water and brines could exist within the comet. Since life

  6. Carbonaceous aerosol tracers in ice-cores record multi-decadal climate oscillations.

    Science.gov (United States)

    Seki, Osamu; Kawamura, Kimitaka; Bendle, James A P; Izawa, Yusuke; Suzuki, Ikuko; Shiraiwa, Takayuki; Fujii, Yoshiyuki

    2015-09-28

    Carbonaceous aerosols influence the climate via direct and indirect effects on radiative balance. However, the factors controlling the emissions, transport and role of carbonaceous aerosols in the climate system are highly uncertain. Here we investigate organic tracers in ice cores from Greenland and Kamchatka and find that, throughout the period covered by the records (1550 to 2000 CE), the concentrations and composition of biomass burning-, soil bacterial- and plant wax- tracers correspond to Arctic and regional temperatures as well as the warm season Arctic Oscillation (AO) over multi-decadal time-scales. Specifically, order of magnitude decreases (increases) in abundances of ice-core organic tracers, likely representing significant decreases (increases) in the atmospheric loading of carbonaceous aerosols, occur during colder (warmer) phases in the high latitudinal Northern Hemisphere. This raises questions about causality and possible carbonaceous aerosol feedback mechanisms. Our work opens new avenues for ice core research. Translating concentrations of organic tracers (μg/kg-ice or TOC) from ice-cores, into estimates of the atmospheric loading of carbonaceous aerosols (μg/m(3)) combined with new model constraints on the strength and sign of climate forcing by carbonaceous aerosols should be a priority for future research.

  7. A mechanistic examination of redox cycling activity in carbonaceous particulate matter

    Science.gov (United States)

    McWhinney, Robert David

    Mechanistic aspects of carbonaceous aerosol toxicity were examined with respect to the ability of particles to catalyse reactive oxygen species-generating redox cycling reactions. To investigate the role of secondary organic material, we examined two systems. In the first, two-stroke engine exhaust particles were found to increase their ability to catalyse redox cycling in the presence of a reducing agent, dithiothreitol (DTT), when the exhaust was exposed to ozone. This occurred through deposition of redox-active secondary organic aerosol (SOA) onto the particle that was ten times more redox active per microgram than the primary engine particle. In the second system, naphthalene SOA formed highly redox active particles. Activity was strongly correlated to the amount of the 1,4- and 1,2-naphthoquinone measured in the particle phase. However, these species and the newly quantified naphthalene oxidation product 5-hydroxy-1,4-naphthoquinone accounted for only 30% of the observed DTT decay from the particles. Gas-particle partitioning coefficients suggest 1,4- and 1,2- naphthoquinone are not strong contributors to ambient particle redox activity at 25 °C. However, a large number of redox active species are unidentified. Some of these may be highly oxidised products of sufficiently low vapour pressure to be atmospherically relevant. DTT activity of diesel particles was found to be high per unit mass. The activity was found to be associated with the insoluble fraction as filtration of the particles nearly eliminated DTT decay. Neither methanol nor dichloromethane extracts of diesel particles exhibited redox activity, indicating that the redox active species are associated with the black carbon portion of the particles. Examination of particle concentration techniques found that use of water condensation to grow and concentrate particles introduced a large organic artefact to the particles. Experiments with concentrated inorganic particles suggest that the source of this

  8. Synthesis, characterization, and CO2 capture study of micro-nano carbonaceous composites.

    Science.gov (United States)

    Kong, Yuxia; Jin, Lei; Qiu, Jun

    2013-10-01

    The micro-nano carbonaceous composite activated carbon fiber/carbon nanotube (ACF/CNTs) was obtained by chemical vapor deposition technology with CNTs growth on the substrate ACF, and the composite was further modified by branched polyethyleneimine (PEI). The morphological features of the as-grown ACF/CNTs and PEI-modified samples were analyzed by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and thermal gravimetric analysis respectively. Physical properties of the samples were recorded by conducting N2 adsorption/desorption at 77K. CO2 capture tests indicated that both the presence of CNTs and PEI increased the CO2 adsorption capacity, due to the unique hollow tubular structure of CNTs and poly amino groups of PEI. The CO2 adsorption capacities of ACF/CNTs and ACF/CNTs-PEI were tested to be 66.2 mg/g and 98.8 mg/g, respectively at 30°C, which were much higher than that of unmodified ACF (42.4 mg/g). Increasing adsorption temperature up to 60°C further promoted the CO2 adsorption capacity of ACF/CNTs-PEI (121.2 mg/g) due to the maximum equilibrium adsorption between the chemical and physical adsorption at this temperature. Cyclic CO2 adsorption tests via thermal desorption proved that ACF/CNTs-PEI had a good regenerability of 96.2%, suggesting this material is a promising CO2 adsorbent for practical applications.

  9. Measurement of carbonaceous aerosol with different sampling configurations and frequencies

    Directory of Open Access Journals (Sweden)

    Y. Cheng

    2015-03-01

    Full Text Available Carbonaceous aerosol in Beijing, China was measured with different sampling configurations (denuded vs. un-denuded and frequencies (24 vs. 48 h averaged. Our results suggest that the negative sampling artifact of a bare quartz filter could be remarkably enhanced due to the uptake of water vapor by the filter medium, indicating that the positive sampling artifact tends to be underestimated under high humidity conditions. It was also observed that the analytical artifact (i.e., the underestimation of elemental carbon by the operationally defined value of the thermal-optical method was more apparent for the low frequency samples such that their elemental carbon (EC concentrations were about 15% lower than the reference values measured by the high-frequency, denuded filters. Moreover, EC results of the low frequency samples were found to exhibit a stronger dependence on the charring correction method. In addition, optical attenuation (ATN of EC was retrieved from the carbon analyzer, and the low frequency samples were shown to be more significantly biased by the shadowing effect.

  10. Carbonaceous species emitted from handheld two-stroke engines

    Science.gov (United States)

    Volckens, John; Olson, David A.; Hays, Michael D.

    Small, handheld two-stroke engines used for lawn and garden work (e.g., string trimmers, leaf blowers, etc.) can emit a variety of potentially toxic carbonaceous air pollutants. Yet, the emissions effluents from these machines go largely uncharacterized, constraining the proper development of human exposure estimates, emissions inventories, and climate and air quality models. This study samples and evaluates chemical pollutant emissions from the dynamometer testing of six small, handheld spark-ignition engines—model years 1998-2002. Four oil-gas blends were tested in each engine in duplicate. Emissions of carbon dioxide, carbon monoxide, and gas-phase hydrocarbons were predominant, and the PM emitted was organic matter primarily. An ANOVA model determined that engine type and control tier contributed significantly to emissions variations across all identified compound classes; whereas fuel blend was an insignificant variable accounting for engines were generally intermediate in magnitude compared with other gasoline-powered engines, numerous compounds traditionally viewed as motor vehicle markers are also present in small engine emissions in similar relative proportions. Given that small, handheld two-stroke engines used for lawn and garden work account for 5-10% of total US emissions of CO, CO 2, NO x, HC, and PM 2.5, source apportionment models and human exposure studies need to consider the effect of these small engines on ambient concentrations in air polluted environments.

  11. Relationship between indoor and outdoor carbonaceous particulates in roadside households

    Energy Technology Data Exchange (ETDEWEB)

    Funasaka, K.; Miyazaki, T.; Tsuruho, K. [Osaka City Institute of Public Health and Environmental Sciences (Japan); Tamura, K. [The National Institute for Minamata Disease, Kumamoto (Japan); Mizuno, T. [Mie University (Japan). Dept. of Chemistry for Materials; Kuroda, K. [Osaka City University Medical School (Japan). Dept. of Preventive Medicine and Environmental Health

    2000-07-01

    Concentrations of particulate matter (PM) and carbonaceous particulates in indoor and outdoor air at roadside private households were measured in Osaka, Japan. The particulate samples were collected on filters using a portable AND sampler capable of separating particles into three different size ranges: over 10 {mu}m, 2-10 {mu}m (coarse) and below 2 {mu}m (fine) in aerodynamic diameter. The filters were weighed and then analyzed for elemental carbon (EC) and organic carbon (OC) by thermal oxidation using a CHN CORDER. The results showed that indoor fine PM concentration is considerably affected by fine EC and the fine EC in indoor air is significantly correlated to that in outdoor air, r = 0.86 (n = 30, p < 0.001). A simple estimation from EC content ratio in diesel exhaust particles indicated that about 30% of indoor particulates of less than 10 {mu}m (PM10) were contributed from diesel exhaust. Additionally, the size characteristics of outdoor PM at roadside and background sites were examined using Andersen Cascade Impactors. (author)

  12. CARES: Carbonaceous Aerosol and Radiative Effects Study Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-07-12

    The CARES field campaign is motivated by the scientific issues described in the CARES Science Plan. The primary objectives of this field campaign are to investigate the evolution and aging of carbonaceous aerosols and their climate-affecting properties in the urban plume of Sacramento, California, a mid-size, mid-latitude city that is located upwind of a biogenic volatile organic compound (VOC) emission region. Our basic observational strategy is to make comprehensive gas, aerosol, and meteorological measurements upwind, within, and downwind of the urban area with the DOE G-1 aircraft and at strategically located ground sites so as to study the evolution of urban aerosols as they age and mix with biogenic SOA precursors. The NASA B-200 aircraft, equipped with the High Spectral Resolution Lidar (HSRL), digital camera, and the Research Scanning Polarimeter (RSP), will be flown in coordination with the G-1 to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties, and to provide the vertical context for the G-1 and ground in situ measurements.

  13. Halogens and their role in polar boundary-layer ozone depletion

    Directory of Open Access Journals (Sweden)

    W. R. Simpson

    2007-03-01

    Full Text Available During springtime in the polar regions, unique photochemistry converts inert halide salts ions (e.g. Br into reactive halogen species (e.g. Br atoms and BrO that deplete ozone in the boundary layer to near zero levels. Since their discovery in the late 1980s, research on ozone depletion events (ODEs has made great advances; however many key processes remain poorly understood. In this article we review the history, chemistry, dependence on environmental conditions, and impacts of ODEs. This research has shown the central role of bromine photochemistry, but how salts are transported from the ocean and are oxidized to become reactive halogen species in the air is still not fully understood. Halogens other than bromine (chlorine and iodine are also activated through incompletely understood mechanisms that are probably coupled to bromine chemistry. The main consequence of halogen activation is chemical destruction of ozone, which removes the primary precursor of atmospheric oxidation, and generation of reactive halogen atoms/oxides that become the primary oxidizing species. The different reactivity of halogens as compared to OH and ozone has broad impacts on atmospheric chemistry, including near complete removal and deposition of mercury, alteration of oxidation fates for organic gases, and export of bromine into the free troposphere. Recent changes in the climate of the Arctic and state of the Arctic sea ice cover are likely to have strong effects on halogen activation and ODEs; however, more research is needed to make meaningful predictions of these changes.

  14. A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil.

    Science.gov (United States)

    Weigold, Pascal; El-Hadidi, Mohamed; Ruecker, Alexander; Huson, Daniel H; Scholten, Thomas; Jochmann, Maik; Kappler, Andreas; Behrens, Sebastian

    2016-06-29

    In soils halogens (fluorine, chlorine, bromine, iodine) are cycled through the transformation of inorganic halides into organohalogen compounds and vice versa. There is evidence that these reactions are microbially driven but the key enzymes and groups of microorganisms involved are largely unknown. Our aim was to uncover the diversity, abundance and distribution of genes encoding for halogenating and dehalogenating enzymes in a German forest soil by shotgun metagenomic sequencing. Metagenomic libraries of three soil horizons revealed the presence of genera known to be involved in halogenation and dehalogenation processes such as Bradyrhizobium or Pseudomonas. We detected a so far unknown diversity of genes encoding for (de)halogenating enzymes in the soil metagenome including specific and unspecific halogenases as well as metabolic and cometabolic dehalogenases. Genes for non-heme, no-metal chloroperoxidases and haloalkane dehalogenases were the most abundant halogenase and dehalogenase genes, respectively. The high diversity and abundance of (de)halogenating enzymes suggests a strong microbial contribution to natural halogen cycling. This was also confirmed in microcosm experiments in which we quantified the biotic formation of chloroform and bromoform. Knowledge on microorganisms and genes that catalyze (de)halogenation reactions is critical because they are highly relevant to industrial biotechnologies and bioremediation applications.

  15. Influence of Halogen Substituents on the Catalytic Oxidation of 2,4,6-Halogenated Phenols by Fe(III-Tetrakis(p-hydroxyphenyl porphyrins and Potassium Monopersulfate

    Directory of Open Access Journals (Sweden)

    Seiya Nagao

    2011-12-01

    Full Text Available The influence of halogen substituents on the catalytic oxidation of 2,4,6-trihalogenated phenols (TrXPs by iron(III-porphyrin/KHSO5 catalytic systems was investigated. Iron(III-5,10,15,20-tetrakis(p-hydroxyphenylporphyrin (FeTHP and its supported variants were employed, where the supported catalysts were synthesized by introducing FeTHP into hydroquinone-derived humic acids via formaldehyde poly-condensation. F (TrFP, Cl (TrCP, Br (TrBP and I (TrIP were examined as halogen substituents for TrXPs. Although the supported catalysts significantly enhanced the degradation and dehalogenation of TrFP and TrCP, the oxidation of TrBP and TrIP was not enhanced, compared to the FeTHP catalytic system. These results indicate that the degree of oxidation of TrXPs is strongly dependent on the types of halogen substituent. The order of dehalogenation levels for halogen substituents in TrXPs was F > Cl > Br > I, consistent with their order of electronegativity. The electronegativity of a halogen substituent affects the nucleophilicity of the carbon to which it is attached. The levels of oxidation products in the reaction mixtures were analyzed by GC/MS after extraction with n-hexane. The most abundant dimer product from TrFP via 2,6-difluoroquinone is consistent with a scenario where TrXP, with a more electronegative halogen substituent, is readily oxidized, while less electronegative halogen substituents are oxidized less readily by iron(III-porphyrin/KHSO5 catalytic systems.

  16. Evaluating the potential for halogen bonding in ketosteroid isomerase’s oxyanion hole using unnatural amino acid mutagenesis

    Science.gov (United States)

    Kraut, Daniel A; Churchil, Michael J; Dawson, Phillip E

    2009-01-01

    There has recently been an increasing interest in controlling macromolecular conformations and interactions through halogen bonding. Halogen bonds are favorable electrostatic interactions between polarized, electropositive chlorine, bromine or iodine atoms and electronegative atoms such as oxygen or nitrogen. These interactions have been likened to hydrogen bonds both in terms of their favored acceptor molecules, their geometries, and their energetics. We asked whether a halogen bond could replace a hydrogen bond in the oxyanion hole of ketosteroid isomerase, using semi-synthetic enzyme containing para-halogenated phenylalanine derivatives to replace the tyrosine hydrogen bond donor. Formation of a halogen bond to the oxyanion in the transition state would be expected to rescue the effects of mutation to phenylalanine, but all of the halogenated enzymes were comparable in activity to the phenylalanine mutant. We conclude that, at least in this active site, a halogen bond cannot functionally replace a hydrogen bond. PMID:19260691

  17. Vertical ionization energies of halogen anions in solution

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the constrained equilibrium state theory,the nonequilibrium solvation energy is derived in the framework of the continuum model.The formula for spectral shift and vertical ionization energy are deduced for a single sphere cavity with the point charge assumption.The new model is adopted to investigate the vertical ionization for halogen atomic and molecular anions X(X = Cl,Br,I,Cl2,Br2,I2) in aqueous solution.According to the calculation using the CCSD-t/aug-cc-pVQZ method in vacuum,our final estimated vertical ionization energies in solution are very close to the experimental observations,while the traditional nonequilibrium solvation theory overestimates these vertical ionization energies.

  18. Fluorescence cell imaging and manipulation using conventional halogen lamp microscopy.

    Directory of Open Access Journals (Sweden)

    Kazuo Yamagata

    Full Text Available Technologies for vitally labeling cells with fluorescent dyes have advanced remarkably. However, to excite fluorescent dyes currently requires powerful illumination, which can cause phototoxic damage to the cells and increases the cost of microscopy. We have developed a filter system to excite fluorescent dyes using a conventional transmission microscope equipped with a halogen lamp. This method allows us to observe previously invisible cell organelles, such as the metaphase spindle of oocytes, without causing phototoxicity. Cells remain healthy even after intensive manipulation under fluorescence observation, such as during bovine, porcine and mouse somatic cell cloning using nuclear transfer. This method does not require expensive epifluorescence equipment and so could help to reduce the science gap between developed and developing countries.

  19. The Brenner Moor - A saline bog as a source for halogenated and non-halogenated volatile compounds

    Science.gov (United States)

    Krause, T.; Studenroth, S.; Furchner, M.; Hoffman, A.; Lippe, S.; Kotte, K.; Schöler, H. F.

    2012-04-01

    The Brenner Moor is a small bog in the catchment area of the river Trave located in Schleswig-Holstein, North Germany, between Baltic and North Sea. The bog is fed by several saline springs with chloride concentrations up to 15 g/L. The high chloride concentrations and the high organic content of the peat make the Brenner Moor an ideal source for the abiotic formation of volatile organic halogenated compounds (VOX). VOX play an important role in the photochemical processes of the lower atmosphere and information on the atmospheric input from saline soils like the Brenner Moor will help to understand the global fluxes of VOX. Soil samples were taken in spring 2011 from several locations and depths in the vicinity of the Brenner Moor. The samples were freeze-dried, ground and incubated in water emphasising an abiotic character for the formation of volatile organic compounds. 1,2-dichloroethane and trichloromethane are the main halogenated compounds emitted from soils of the Brenner Moor. The abiotic formation of trichloromethane as well as other trihalomethanes has been part of intensive studies. A well known source is the decarboxylation of trichloroacetic acid and trichloroacetyl-containing compounds to trichloromethane [1]. Huber et al. discovered another pathway in which catechol, as a model compound for organic substances, is oxidised under Fenton-like conditions with iron(III), hydrogen peroxide and halides to form trihalomethanes [2]. Besides the halogenated compounds, the formation of sulphur compounds such as dimethyl sulfide and dimethyl disulfide and several furan derivatives could be detected which also have an impact on atmospheric chemistry, especially particle formation of clouds. Furan, methylfuran and dimethylfuran are compounds that can be obtained under Fenton-like oxidation from catechol, methyl- and dimethylcatechol and are known to be produced in natural soils [3]. A novel class of furan derivatives that are formed under abiotic conditions from

  20. Construction of Tungsten Halogen, Pulsed LED, and Combined Tungsten Halogen-LED Solar Simulators for Solar Cell I-V Characterization and Electrical Parameters Determination

    Directory of Open Access Journals (Sweden)

    Anon Namin

    2012-01-01

    Full Text Available I-V characterization of solar cells is generally done under natural sunlight or solar simulators operating in either a continuous mode or a pulse mode. Simulators are classified on three features of irradiance, namely, spectral match with respect to air mass 1.5, spatial uniformity, and temporal stability. Commercial solar simulators use Xenon lamps and halogen lamps, whereas LED-based solar simulators are being developed. In this work, we build and test seven simulators for solar cell characterization, namely, one tungsten halogen simulator, four monochromatic (red, green, blue, and white LED simulators, one multicolor LED simulator, and one tungsten halogen-blue LED simulator. The seven simulators provide testing at nonstandard test condition. High irradiance from simulators is obtained by employing elevated supply voltage to tungsten halogen lamps and high pulsing voltages to LEDs. This new approach leads to higher irradiance not previously obtained from tungsten halogen lamps and LEDs. From I-V curves, electrical parameters of solar cell are made and corrected based on methods recommended in the IEC 60891 Standards. Corrected values obtained from non-STC measurements are in good agreement with those obtained from Class AAA solar simulator.

  1. Magnesium and 54Cr isotope compositions of carbonaceous chondrite chondrules – Insights into early disk processes

    DEFF Research Database (Denmark)

    Olsen, Mia Bjørg Stolberg; Wielandt, Daniel Kim Peel; Schiller, Martin

    2016-01-01

    typically observed for bulk carbonaceous chondrites. Collectively, these observations suggest that the CV chondrules formed from precursors that originated in various regions of the protoplanetary disk and were then transported to the accretion region of the CV parent asteroid whereas CR chondrule...... establishes that these objects formed from a thermally unprocessed and 26Al-poor source reservoir distinct from most inner Solar System asteroids and planetary bodies, possibly located beyond the orbits of the gas giants. In contrast, a large fraction of the CV chondrules plot on the inner Solar System...... correlation line, indicating that these objects predominantly formed from thermally-processed, 26Al-bearing precursor material akin to that of inner Solar System solids, asteroids and planets....

  2. Cytotoxic Responses and Potential Respiratory Health Effects of Carbon and Carbonaceous Nanoparticulates in the Paso del Norte Airshed Environment

    Directory of Open Access Journals (Sweden)

    K. M. Garza

    2008-03-01

    Full Text Available We have utilized a range of manufactured or commercial nanoparticulate materials, including surrogate carbon nano-PM along with combustion-generated carbonaceous (soot nano-PM characteristic of environmental nano-PM (both indoor and outdoor to investigate and compare their cytotoxic response in vitro with an immortalized human epithelial (lung model cell line (A549. These have included nano-Ag, Al2O3, TiO2, Fe2O3, ZrO2, Si3N4, chrysotile asbestos, BC, 2 types of MWCNT-aggregate PM (MWCNT-R and MWCNT-N, and high-volume glass fiber collected soots: candle, wood, diesel (truck, tire, and 3-types of natural gas kitchen burner-generated soots: yellow (fuel-rich flame, low-flow blue flame, and normal flow blue flame soot PM. These carbonaceous nano-PM species can be found in either the indoor and outdoor environments or microenvironments. Two-day and two-week in-vitro cultures of A549 showed cell death (or decreased cell viability for all nanoparticulate materials, but especially significant for all but the TiO2 and candle, wood, and diesel PM. The natural gas kitchen burner combustion PM cell death response was characteristic of BC and MWCNT PM. There was no correlation with total PAH content of the soot PM. Cytokine release (IL-6, IL-8 was detected for the Ag, Fe2 O3, asbestos, BC and the MWCNT PM. Reactive oxygen species (ROS production was also detected for Ag, Fe2 O3, ZrO2, asbestos, BC, and the MWCNT aggregate PM, as well as the natural gas kitchen burner combustion PM. TEM, FESEM, and optical microscopy examination of these nanomaterials illustrate the wide range in PM morphologies and crystallinities as well as cell morphologies. Taken together, these results illustrate proinflammatory and related respiratory health issues in relation to environmental nanoparticulates.

  3. Dating recent lake sediments using spheroidal carbonaceous particle (SCP)

    Institute of Scientific and Technical Information of China (English)

    WU Yanhong; WANG Sumin; XIA Weilan; LIU Jian

    2005-01-01

    Dating lake sediment using sedimentary event is the supplement and calibration to traditional dating by radionuclide such as 210Pb and 137Cs. Based on the change of spheroidal carbonaceous particle (SCP) concentration, the age sequence of lake sediments can be deduced. It is one of the dating methods using sedimentary event. SCP is formed from combustion of fossil fuel at high temperature up to 1750℃ and at a rate of heating of approaching 104 ℃/s. It can be dispersed to several hundred kilometers away from its source and deposited with precipitation or dryly deposited, and kept in sediments. Compared with Cs or Pb, there is no evidence for SCP that it decays in lake sediments and is un-removable once stored except by physical disturbance because it is mainly composed of element carbon. Handy method to extract, identify and calculate has been developed. Although fossil fuel has been used early in China, combustion at high temperature started later since emergence of electricity generation. The productivity of SCP is positively related with the generated thermal power, which is reflected as the SCP concentration in lake sediments increases with the increase of generated thermal power. Therefore, reliable sediment markers from the start of the SCP record and the remarkable variation can be used for dating purpose. In China, electricity industry started from the 1950s, and rapid increase of generated power took place since 1978. Based on these time markers, SCP time sequences of lake sediment cores LH and LL-4 from Longgan Lake, the middle reach of the Yangtze River, have been established, which is comparable with the results from 137Cs and 210Pb, and has eliminated the errors of dating using 137Cs and 210Pb.

  4. Characterization of Organic Materials in the Xenolithic Clasts in Sharps (H3.4) Meteorite Using Microraman Spectroscopy

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Kebukawa, Y.

    2015-01-01

    Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade [1-3]. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using µ-Raman spectroscopy.

  5. Characterization of Organic Materials in the Xenolithic Clasts in Sharps (H3.4) Meteorite Using Micro-Raman Spectroscopy

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Kebukawa, Y.

    2015-01-01

    Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using micro-Raman spectroscopy.

  6. A Comparison of the Shear Bond Strength of Orthodontic Brackets Bonded With Light-Emitting Diode and Halogen Light-Curing Units

    Directory of Open Access Journals (Sweden)

    SM. Abtahi

    2006-09-01

    Full Text Available Statement of the problem: Various methods such as light emitting diode (LED have been used to enhance the polymerization of resin-based orthodontic adhesives. There is a lack of information on the advantages and disadvantages of different light curing systems.Purpose: The aim of this study was to compare the effect of LED and halogen light curing systems on the shear bond strength of orthodontic brackets.Materials and Methods: Forty extracted human premolars were etched with 37% phosphoric acid and cleansed with water spray and air dried. The sealant was applied on the tooth surface and the brackets were bonded using Transbond adhesive (3M Unitek,Monrovia, Calif. Adhesives were cured for 40 and 20 seconds with halogen (Blue Light, APOZA, Taiwan and LED (Blue dent, Smart, Yugoslavia light-curing systems,respectively. Specimens were thermocycled 2500 times (from 5 to 55 °C and the shear bond strength of the adhesive system was evaluated with an Universal testing machine (Zwick GmbH, Ulm, Germany at a crosshead speed of 1 mm/min until the bracketswere detached from the tooth. Adhesive remnant index (ARI scores were determined after bracket failure. The data were submitted to statistical analysis, using Mann-Whitney analysis and t-test.Results: No significant difference was found in bond strength between the LED and halogen groups (P=0.12. A significant difference was not observed in the adhesive remnant index scores between the two groups (P=0.97.Conclusion: Within the limitations of this in vitro study, the shear bond strength of resin-based orthodontic adhesives cured with a LED was statistically equivalent to those cured with a conventional halogen-based unit. LED light-curing units can be suggested for the polymerization of orthodontic bonding adhesives.

  7. Changes in patterns of persistent halogenated compounds through a pelagic food web in the Baltic Sea

    DEFF Research Database (Denmark)

    Stephansen, Diana Agnete; Svendsen, Tore Christian; Vorkamp, Katrin

    2012-01-01

    The concentrations and patterns of persistent halogenated compounds (PHCs), including polychlorinated biphenyls (PCBs), DDT, hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB) and polybrominated diphenyl ethers (PBDEs) were examined in a pelagic food web from the southern Baltic Sea consisting...

  8. Development of Non-Halogen Flame Retardant Optical Fiber and Optical Fiber Cord

    Institute of Scientific and Technical Information of China (English)

    Kazunori; Tanaka; Kaoru; Okuno; Tomoyuki; Hattori; Kiyoaki; Moriuchi; Hiroshi; Hayami; Wataru; Katsurashima; Yoshikyo; Tamekuni

    2003-01-01

    A non-halogen highly flame-retardant 0.9mm optical fiber and 2.0mm simplex optical cord, which are harmonized with the ecosystem, have been developed. The characteristics of them are presented in this paper.

  9. Ultraviolet radiation and blue-light emissions from spotlights incorporating tungsten halogen lamps

    CERN Document Server

    MacKinlay, Alistair F; Whillock, M J

    1989-01-01

    This report summarises measurements of the ultraviolet radiation and blue-light emissions from eleven 'desk-top' tungsten halogen (quartz) lamps and one 'floor-standing' tungsten halogen (quartz) lamp available in the UK. Values of occupational hazard weighted and erythemally weighted ultraviolet radiation irradiance and measurements and relevant calculations of blue-light hazards are presented. It is concluded that the safety design of some desk-top tungsten halogen lamps is inadequate to prevent unnecessary exposure of the skin to potentially harmful ultraviolet radiation. It is recommended that all tungsten halogen lamps should have sufficient filtration to reduce their ultraviolet emissions to an acceptably low level. As long as the comfort aversion responses of the eye are respected, direct viewing of the lamps examined should not constitute a retinal hazard.

  10. Highly Regioselective Halogenation of Pyridine N-Oxide: Practical Access to 2-Halo-Substituted Pyridines.

    Science.gov (United States)

    Chen, Ying; Huang, Jinkun; Hwang, Tsang-Lin; Chen, Maosheng J; Tedrow, Jason S; Farrell, Robert P; Bio, Matthew M; Cui, Sheng

    2015-06-19

    A highly efficient and regioselective halogenation reaction of unsymmetrical pyridine N-oxide under mild conditions is described. The methodology provides a practical access to various 2-halo-substituted pyridines, which are pharmaceutically important intermediates.

  11. Mineralogical, Spectral, and Compositional Changes During Heating of Hydrous Carbonaceous Chondrites

    Science.gov (United States)

    Nakamura, T.; Matsuoka, M.; Yamashita, S.; Sato, Y.; Mogi, K.; Enokido, Y.; Nakata, A.; Okumura, S.; Furukawa, Y.; Zolensky, M.

    2017-01-01

    Hydrous carbonaceous chondrites experienced hydration and subsequent dehydration by heating, which resulted in a variety of mineralogical and spectral features [e. g., 1-6]. The degree of heating is classified according to heating stage (HS) II to IV based on mineralogy of phyllosilicates [2], because they change, with elevating temperature, to poorly crystal-line phases and subsequently to aggregates of small secondary anhydrous silicates of mainly olivine. Heating of hydrous carbonaceous chondrites also causes spectral changes and volatile loss [3-6]. Experimental heating of Murchison CM chondrite showed flattening of whole visible-near infrared spectra, especially weakening of the 3µm band strength [1, 4, 7]. In order to understand mineralogical, spectral, and compositional changes during heating of hydrous carbonaceous chondrites, we have carried out systematic investigation of mineralogy, reflectance spectra, and volatile composition of hydrated and dehydrated carbonaceous chondrites as well as experimentally-heated hydrous carbonaceous chondrites. In addition, we investigated reflectance spectra of tochilinite that is a major phase of CM chondrites and has a low dehydration temperature (250degC).

  12. Halogenated cytisine derivatives as agonists at human neuronal nicotinic acetylcholine receptor subtypes.

    Science.gov (United States)

    Slater, Y E; Houlihan, L M; Maskell, P D; Exley, R; Bermúdez, I; Lukas, R J; Valdivia, A C; Cassels, B K

    2003-03-01

    Cytisine (cy) is a potent and competitive partial agonist at alpha4 subunit-containing nicotinic acetylcholine (nACh) receptors while at homomeric alpha7-nACh receptors it behaves as a full agonist with a relatively lower potency. In the present study, we assessed the effects of bromination or iodination of the pyridone ring of cy and N-methylcytisine (N-Me-cy) on the effects of these compounds on recombinant human (h) alpha7, halpha4beta2 and halpha4beta4 nACh receptors expressed in clonal cell lines and Xenopus oocytes. Halogenation at C(3) of cy or N-Me-cy usually brings about a marked increase in both affinity and efficacy at halpha7, halpha4beta2 and halpha4beta4 nACh, the extent of which depends on whether the halogen is bromine or iodine, and upon receptor subtype. The effects of halogenation at C(5) are strongly influenced by the specific halogen substituent so that bromination causes a decrease in both affinity and efficacy while iodination decreases affinity but its effects on efficacy range from a decrease (halpha7, halpha4beta4 nACh receptors) to a marked increase (halpha4beta2 nACh receptors). Based on these findings, which differ from those showing that neither the affinity nor efficacy of nicotine, 3-(2-azetidinylmethoxy)-pyridine or epibatidine are greatly affected by halogenation, dehalogenation or halogen exchange at equivalent positions, we suggest that cy, N-Me-cy and their halo-isosteres bind to neuronal nACh receptors in a different orientation allowing the halogen atom to interact with a hydrophobic halogen-accepting region within the predominantly hydrophobic agonist-binding pocket of the receptors.

  13. Advances in Metal-Catalyzed Cross-Coupling Reactions of Halogenated Quinazolinones and Their Quinazoline Derivatives

    Directory of Open Access Journals (Sweden)

    Malose Jack Mphahlele

    2014-10-01

    Full Text Available Halogenated quinazolinones and quinazolines are versatile synthetic intermediates for the metal-catalyzed carbon–carbon bond formation reactions such as the Kumada, Stille, Negishi, Sonogashira, Suzuki-Miyaura and Heck cross-coupling reactions or carbon-heteroatom bond formation via the Buchwald-Hartwig cross-coupling to yield novel polysubstituted derivatives. This review presents an overview of the application of these methods on halogenated quinazolin-4-ones and their quinazolines to generate novel polysubstituted derivatives.

  14. A 19F NMR study of C-I....pi- halogen bonding

    DEFF Research Database (Denmark)

    Hauchecorne, Dieter; vand er Veken, Benjamin J.; Herrebout, Wouter A.;

    2011-01-01

    The formation of halogen bonded complexes between toluene-d8 and the perfluoroiodopropanes 1-C3F7I and 2-C3F7I has been investigated using 19F NMR spectroscopy. For both Lewis acids, evidence was found for the formation of a C–I⋯π halogen bonded complex. The complex formed is a 1:1 type. Using sp...

  15. Halogen behaviours during andesitic magma degassing: from magma chamber to volcanic plume

    Science.gov (United States)

    Balcone-Boissard, H.; Villemant, B.; Boudon, G.; Michel, A.

    2009-04-01

    Halogen (F, Cl, Br and I) behaviours during degassing of H2O-rich silicic magmas are investigated using volatile content analysis in glass (matrix glass and melt inclusions) of volcanic clasts (pumice and lava-dome fragments) in a series of plinian, vulcanian and lava dome-forming eruptions. Examples are taken from andesitic systems in subduction zones: Montagne Pelée and Soufrière Hills of Montserrat (Lesser Antilles) and Santa Maria-Santiaguito (Guatemala). Halogens behaviour during shallow degassing primarily depends on their incompatible character in melts and on H2O solubility. But variations in pre-eruptive conditions, degassing kinetics and syn-eruptive melt crystallisation, induce large variations in halogen extraction efficiency during H2O degassing, up to prevent halogen loss. In all studied systems, Cl, Br and I are not fractionated neither by differentiation nor by degassing processes: thus Cl/Br/I ratios remain well preserved in melts from reservoirs to eruption. These ratios measured in erupted clasts are characteristic of pre-eruptive magma compositions and may be used to trace deep magmatic processes. Moreover, during plinian eruptions, Cl, Br and I are extracted by H2O degassing but less efficiently than predicted by available experimental fluid-melt partition coefficients, by a factor as high as 5. F behaves as an incompatible element and, contrary to other halogens, is never significantly extracted by degassing. Degassing during lava dome-forming eruptions of andesitic magmas occurs mainly at equilibrium and is more efficient at extracting halogens and H2O than explosive degassing. The mobility of H2O and halogens depends on their speciation in both silicate melts and exsolved fluids which strongly varies with pressure. We suggest that the rapid pressure decrease during highly explosive eruptions prevents complete volatile speciation at equilibrium and consequently strongly limits halogen degassing.

  16. Analysis of Individual Carbonaceous Particles Emitted from the Las Conchas Wildfire, Los Alamos, NM, in June-July 2011

    Science.gov (United States)

    Mazzoleni, C.; China, S.; Gorkowski, K.; Flowers, B. A.; Aiken, A. C.; Dubey, M. K.

    2012-12-01

    Carbonaceous aerosol emitted from biomass burning contributes significantly to atmospheric aerosol loadings regionally and globally. The net direct radiative forcing of biomass burning aerosol can be positive and/or negative and this depends on its composition, morphology and mixing state. Biomass burning aerosols can also change the cloud properties as they can act as cloud condensation nuclei. In this study we investigated biomass burning particles emitted from the Las Conchas wildfire in northern New Mexico that started on June 26, 2011 and burned an area of 245 square miles. Aerosol samples were collected on nucleopore filters at the Los Alamos National Laboratory during the third week of the wildfire event. Individual particles (~4000) were investigated using field-emission scanning electron microscopy and energy dispersive X-ray spectroscopy (EDS) to distinguish different carbonaceous particles and their shape, size, elemental composition and mixing state. A thermo-denuder was used to remove compounds that are volatile at temperatures up to 200 C, leaving behind the black carbon and any compounds that did not volatize completely. Smoke particles consisted of a) tar balls, which are amorphous spherical carbonaceous organic aerosols; b) organic particles with inorganic inclusions, c) soot particles and (d) soot with various inclusions. Two distinct kinds of tar balls, "electronically" dark and bright, were found using the field-emission scanning electron microscopy and were characterized for ambient and denuded conditions to understand coating effects and aging. It was found that dark tar balls are generally larger in size than the bright ones. Additionally, the difference between the size of ambient-bright and the size of denuded-bright tar balls was larger than the difference between the size of ambient-dark and the size of denuded-dark tar balls. EDS analysis showed that 70% of the dark tar balls had higher (~60%) relative oxygen content than in the bright

  17. QSARS for Acute Toxicity of Halogenated Benzenes to Bacteria in Natural Waters

    Institute of Scientific and Technical Information of China (English)

    GUAN-GHUA LU; CHAO WANG; YU-MEI LI

    2006-01-01

    Objective To measure the acute toxicity of halogenated benzenes to bacteria in natural waters and to study quantitative relationships between the structure and activity of chemicals. Methods The concentration values causing 50% inhibition of bacteria growth (24h-IC50) were determined according to the bacterial growth inhibition test method. The energy of the lowest unoccupied molecular orbital and the net charge of carbon atom of 20 halogenated benzenes were calculated by the quantum chemical MOPAC program. Results The log1/IC50 values ranged from 4.79 for 2,4-dinitrochlorobenzene to 3.65 for chlorobenzene. A quantitative structure-activity relationship model was derived from the toxicity and structural parameters: log1/IC50 =-0.531(ELUMO)+1.693(Qc)+0.163(logP)+3.375. This equation was found to fit well (r2=0.860, s=0.106), and the average percentage error was only 1.98%. Conclusion Halogenated benzenes and alkyl halogenated benzenes are non-polar narcotics, and have hydrophobicity-dependent toxicity. The halogenated phenols and anilines exhibit a higher toxic potency than their hydrophobicity, whereas 2,4-dinitrochlorobenzene is electrophile with the halogen acting as the leaving group.

  18. Benchmarking DFT methods with small basis sets for the calculation of halogen-bond strengths.

    Science.gov (United States)

    Siiskonen, Antti; Priimagi, Arri

    2017-02-01

    In recent years, halogen bonding has become an important design tool in crystal engineering, supramolecular chemistry and biosciences. The fundamentals of halogen bonding have been studied extensively with high-accuracy computational methods. Due to its non-covalency, the use of triple-zeta (or larger) basis sets is often recommended when studying halogen bonding. However, in the large systems often encountered in supramolecular chemistry and biosciences, large basis sets can make the calculations far too slow. Therefore, small basis sets, which would combine high computational speed and high accuracy, are in great demand. This study focuses on comparing how well density functional theory (DFT) methods employing small, double-zeta basis sets can estimate halogen-bond strengths. Several methods with triple-zeta basis sets are included for comparison. Altogether, 46 DFT methods were tested using two data sets of 18 and 33 halogen-bonded complexes for which the complexation energies have been previously calculated with the high-accuracy CCSD(T)/CBS method. The DGDZVP basis set performed far better than other double-zeta basis sets, and it even outperformed the triple-zeta basis sets. Due to its small size, it is well-suited to studying halogen bonding in large systems.

  19. Materials

    Science.gov (United States)

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  20. Halogen bonds in some dihalogenated phenols: applications to crystal engineering.

    Science.gov (United States)

    Mukherjee, Arijit; Desiraju, Gautam R

    2014-01-01

    3,4-Dichlorophenol (1) crystallizes in the tetragonal space group I41/a with a short axis of 3.7926 (9) Å. The structure is unique in that both type I and type II Cl⋯Cl interactions are present, these contact types being distinguished by the angle ranges of the respective C-Cl⋯Cl angles. The present study shows that these two types of contacts are utterly different. The crystal structures of 4-bromo-3-chlorophenol (2) and 3-bromo-4-chlorophenol (3) have been determined. The crystal structure of (2) is isomorphous to that of (1) with the Br atom in the 4-position participating in a type II interaction. However, the monoclinic P21/c packing of compound (3) is different; while the structure still has O-H⋯O hydrogen bonds, the tetramer O-H⋯O synthon seen in (1) and (2) is not seen. Rather than a type I Br⋯Br interaction which would have been mandated if (3) were isomorphous to (1) and (2), Br forms a Br⋯O contact wherein its electrophilic character is clearly evident. Crystal structures of the related compounds 4-chloro-3-iodophenol (4) and 3,5-dibromophenol (5) were also determined. A computational survey of the structural landscape was undertaken for (1), (2) and (3), using a crystal structure prediction protocol in space groups P21/c and I41/a with the COMPASS26 force field. While both tetragonal and monoclinic structures are energetically reasonable for all compounds, the fact that (3) takes the latter structure indicates that Br prefers type II over type I contacts. In order to differentiate further between type I and type II halogen contacts, which being chemically distinct are expected to have different distance fall-off properties, a variable-temperature crystallography study was performed on compounds (1), (2) and (4). Length variations with temperature are greater for type II contacts compared with type I. The type II Br⋯Br interaction in (2) is stronger than the corresponding type II Cl⋯Cl interaction in (1), leading to elastic bending

  1. Halogen bonds in some dihalogenated phenols: applications to crystal engineering

    Directory of Open Access Journals (Sweden)

    Arijit Mukherjee

    2014-01-01

    Full Text Available 3,4-Dichlorophenol (1 crystallizes in the tetragonal space group I41/a with a short axis of 3.7926 (9 Å. The structure is unique in that both type I and type II Cl...Cl interactions are present, these contact types being distinguished by the angle ranges of the respective C—Cl...Cl angles. The present study shows that these two types of contacts are utterly different. The crystal structures of 4-bromo-3-chlorophenol (2 and 3-bromo-4-chlorophenol (3 have been determined. The crystal structure of (2 is isomorphous to that of (1 with the Br atom in the 4-position participating in a type II interaction. However, the monoclinic P21/c packing of compound (3 is different; while the structure still has O—H...O hydrogen bonds, the tetramer O—H...O synthon seen in (1 and (2 is not seen. Rather than a type I Br...Br interaction which would have been mandated if (3 were isomorphous to (1 and (2, Br forms a Br...O contact wherein its electrophilic character is clearly evident. Crystal structures of the related compounds 4-chloro-3-iodophenol (4 and 3,5-dibromophenol (5 were also determined. A computational survey of the structural landscape was undertaken for (1, (2 and (3, using a crystal structure prediction protocol in space groups P21/c and I41/a with the COMPASS26 force field. While both tetragonal and monoclinic structures are energetically reasonable for all compounds, the fact that (3 takes the latter structure indicates that Br prefers type II over type I contacts. In order to differentiate further between type I and type II halogen contacts, which being chemically distinct are expected to have different distance fall-off properties, a variable-temperature crystallography study was performed on compounds (1, (2 and (4. Length variations with temperature are greater for type II contacts compared with type I. The type II Br...Br interaction in (2 is stronger than the corresponding type II Cl...Cl interaction in (1, leading to elastic

  2. Genesis and organic geochemical characteristics of the carbonaceous rock stratabound gold deposits, South China

    Institute of Scientific and Technical Information of China (English)

    胡凯; 翟建平; 刘英俊; 王鹤年; 张景荣; 贾蓉芬

    2000-01-01

    The organic matter of three different chronological major carbonaceous rock gold-bearing formations of South China (Middle Proterozoic Shangqiaoshan group of northeastern Jiangxi, Lower Cambrian Shuikou group of northern Guangxi and Devonian Shetianqiao group of eastern Hunan) and related carbonaceous stratabound gold deposits such as Jinshan, Longshui and Shixia deposits, respectively, has been characterized by organic geochemical techniques. These organic geochemical results show that the average total organic carbon (TOC) content of the three chronological carbonaceous rock gold-bearing formations of South China ranges from 0.15% to 1.56%. The thermal maturity of the organic matter of host rocks in the three gold-bearing formations is high. The micro-component of the organic matter of the host rocks consists primarily of solid bitumen and graphite. The organic carbon and gold of the host rocks appear to syndeposit in situ during the formation of the gold-bearing formations. The organic carbon played

  3. On the Formation of Nanobubbles in Vycor Porous Glass during the Desorption of Halogenated Hydrocarbons

    Science.gov (United States)

    Mitropoulos, A. C.; Stefanopoulos, K. L.; Favvas, E. P.; Vansant, E.; Hankins, N. P.

    2015-06-01

    Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of ‘ink-bottle’ pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary.

  4. Destruction of halogen-containing pesticides by means of detonation combustion.

    Science.gov (United States)

    Biegańska, Jolanta

    2013-02-01

    Pesticides that contain a halogen functional group have been destructed by means of detonative combustion. The following compounds were examined: (1) atrazine-2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine-herbicide; (2) bromophos-O,4-bromo-2,5-dichlorophenyl O,O-dimethyl phosphorothioate-insecticide; (3) chloridazon-5-amino-4-chloro-2-phenylopyridazin-3(2H)-one-herbicide; (4) linuron-3-(3,4-dichlorophenyl)-1-metoxy-1-methylurea-herbicide; (5) metoxychlor-1,1,1-trichloro-2,2-bis(4-metoxyphenyl)ethane-insecticide and acaricide; and (6) trichlorfon-dimethyl 2,2,2-trichloro-1-hydroxyethylphosphonate-insecticide. Explosive material has been produced on the basis of ammonium nitrate, which served as an oxidizer while the pesticides were used as fuels. Composition of the explosive was adjusted in such a way as to respect thermodynamic parameters. Detonative decomposition of the mixtures has been carried out in shot-holes pre-drilled in soil. Efficiency of the pesticide decomposition has been examined with gas chromatography in order to determine pesticides residues in the environment. It was found that for some, the amount of pesticides in some compounds in the analyzed samples after decomposition was below the determination threshold of the applied method.

  5. Tunable magnetic states on the zigzag edges of hydrogenated and halogenated group-IV nanoribbons

    Science.gov (United States)

    Wang, Tzu-Cheng; Hsu, Chia-Hsiu; Huang, Zhi-Quan; Chuang, Feng-Chuan; Su, Wan-Sheng; Guo, Guang-Yu

    2016-12-01

    The magnetic and electronic properties of hydrogenated and halogenated group-IV zigzag nanoribbons (ZNRs) are investigated by first-principles density functional calculations. Fascinatingly, we find that all the ZNRs have magnetic edges with a rich variety of electronic and magnetic properties tunable by selecting the parent and passivating elements as well as controlling the magnetization direction and external strain. In particular, the electric property of the edge band structure can be tuned from the conducting to insulating with a band gap up to 0.7 eV. The last controllability would allow us to develop magnetic on-off nano-switches. Furthermore, ZNRs such as SiI, Ge, GeI and SnH, have fully spin-polarized metallic edge states and thus are promising materials for spintronics. The calculated magnetocrystalline anisotropy energy can be as large as ~9 meV/edge-site, being 2×103 time greater than that of bulk Ni and Fe (~5 μeV/atom), and thus has great potential for high density magneto-electric data-storage devices. Finally, the calculated exchange coupling strength and thus magnetic transition temperature increases as the applied strain goes from ‑5% to 5%. Our findings thus show that these ZNRs would have exciting applications in next-generation electronic and spintronic nano-devices.

  6. Analytical methods for the determination of halogens in bioanalytical sciences: a review.

    Science.gov (United States)

    Mello, Paola A; Barin, Juliano S; Duarte, Fabio A; Bizzi, Cezar A; Diehl, Liange O; Muller, Edson I; Flores, Erico M M

    2013-09-01

    Fluorine, chlorine, bromine, and iodine have been studied in biological samples and other related matrices owing to the need to understand the biochemical effects in living organisms. In this review, the works published in last 20 years are covered, and the main topics related to sample preparation methods and analytical techniques commonly used for fluorine, chlorine, bromine, and iodine determination in biological samples, food, drugs, and plants used as food or with medical applications are discussed. The commonest sample preparation methods, as extraction and decomposition using combustion and pyrohydrolysis, are reviewed, as well as spectrometric and electroanalytical techniques, spectrophotometry, total reflection X-ray fluorescence, neutron activation analysis, and separation systems using chromatography and electrophoresis. On this aspect, the main analytical challenges and drawbacks are highlighted. A discussion related to the availability of certified reference materials for evaluation of accuracy is also included, as well as a discussion of the official methods used as references for the determination of halogens in the samples covered in this review.

  7. Microfossils and biomolecules in carbonaceous meteorites: possibility of life in water-bearing asteroids and comets

    Science.gov (United States)

    Hoover, Richard B.

    2014-09-01

    It is well established that carbonaceous meteorites contain water, carbon, biogenic elements and a host of organic chemicals and biomolecules. Several independent lines of evidence indicate that the parent bodies of the CI1 and CM2 carbonaceous meteorites are most probably the C-type asteroids or cometary nuclei. Several of the protein amino acids detected in the meteorites exhibit chirality and have an excess of the L-enantiomer -- such as in the amino acids present in the proteins of all known life forms on Earth. Isotopic studies have established that the amino acids and nucleobases in the CI1 and CM2 carbonaceous meteorites are both indigenous and extraterrestrial. Optical and Scanning Electron Microscopy studies carried out by researchers during the past half century have revealed the presence of complex biogenic microstructures embedded in the rock-matrix of many of carbonaceous meteorites similar to extinct life-forms known as acritarchs and hystrichospheres. Carbonaceous meteorites also contain a wide variety of large filaments that exhibit the complex morphologies and correct size ranges of known genera and species of photosynthetic microorganisms such as cyanobacteria and diatoms. However, EDAX investigations have shown that these carbon-rich filaments typically have nitrogen content below the level of detection (hair and teeth of Pleistocene Mammoths. Hence, the absence of detectable nitrogen in the filaments provides direct evidence that they do not represent recent biological contaminants that invaded these meteorite stones after they were observed to fall to Earth. The spectral and fluorescence properties of pigments found in several species of terrestrial cyanobacteria which are similar to some microfossils found in carbonaceous meteorites may provide valuable clues to help search for evidence for biomolecules and life on the icy moons of Jupiter and Saturn, asteroids and comets.

  8. TEMPO-mediated oxidized winter melon-based carbonaceous aerogel as an ultralight 3D support for enhanced photodegradation of organic pollutants.

    Science.gov (United States)

    Miao, Miao; Wang, Gangling; Cao, Shaomei; Feng, Xin; Fang, Jianhui; Shi, Liyi

    2015-10-14

    Natural biomass based carbonaceous aerogels are becoming promising lightweight, biodegradable matrices to supersede traditional support materials in realizing future sustainable photochemistry and environmental protection. Herein, flower-like BiOBr loaded onto an ultralight TEMPO-mediated oxidized carbonaceous aerogel (BOB@OWMCA) support was successfully prepared using the edible winter melon as source material via a simple solvothermal method. The three-dimensional sponge-like OWMCA with surface functionalization displayed an ultralow density (17.7 mg cm(-3)) and large special surface area (30.6 m(2) g(-1)). The BiOBr was homogeneously anchored on the surface of the hierarchical porous OWMCA and the material exhibited synergetic properties of the BiOBr photocatalyst and OWMCA support to strengthen its photodegradation capacity. The results indicated that the as-prepared BOB@OWMCA composite demonstrated an outstanding adsorption and photodegradation capacity for organic pollutants (rhodamine B) under visible light irradiation. Of importance here, the BOB@OWMCA composite showed a prominent advantage for easy collection and separation from the aqueous system, making it a promising candidate as a robust visible light responsive photocatalyst for a range of applications.

  9. Optical-chemical relationships for carbonaceous aerosols observed at Jeju Island, Korea with a 3-laser photoacoustic spectrometer

    Directory of Open Access Journals (Sweden)

    B. A. Flowers

    2010-04-01

    Full Text Available Transport of aerosols in pollution plumes from the mainland Asian continent was observed in situ at Jeju, South Korea during the Cheju Asian Brown Cloud Plume-Asian Monsoon Experiment (CAPMEX field campaign throughout August and September 2008 using a 3-laser photoacoustic spectrometer. Transport of mixed sulfate, carbonaceous, and nitrate aerosols from various Asian pollution plumes to Jeju accounted for 76% of the deployment days, showing large variations in their measured chemical and optical properties. Our analysis of eight distinct episodes, spanning a wide range of chemical composition, optical properties, and source regions, reveals that at episodes with higher OC/SO2−4 and NO3/SO2−4 composition ratios exhibit lower single scatter albedo at shorter wavelengths (ω405; significantly lower [ω405meas = 0.79±0.06, ω405calc = 0.86±0.01] than predicted by an optical model that assumes constant complex index of refraction with wavelength (an optical model of soot. We attribute this discrepancy to enhanced absorption by organic material. Organic carbon absorption accounts for up to 50% of the measured aerosol absorption at 405 nm for the high OC/SO2−4 episode. Coatings of elemental carbon aerosol cores are hypothesized to increase absorption by factors up to 6 at visible wavelengths. Carbonaceous aerosol absorption can alter global radiative forcing estimates substantially, underscoring the need to understand and predict chemical composition effects on optical properties.

  10. Magnesium and 54Cr isotope compositions of carbonaceous chondrite chondrules – Insights into early disk processes

    Science.gov (United States)

    Olsen, Mia B.; Wielandt, Daniel; Schiller, Martin; Van Kooten, Elishevah M.M.E.; Bizzarro, Martin

    2016-01-01

    We report on the petrology, magnesium isotopes and mass-independent 54Cr/52Cr compositions (μ54Cr) of 42 chondrules from CV (Vigarano and NWA 3118) and CR (NWA 6043, NWA 801 and LAP 02342) chondrites. All sampled chondrules are classified as type IA or type IAB, have low 27Al/24Mg ratios (0.04–0.27) and display little or no evidence for secondary alteration processes. The CV and CR chondrules show variable 25Mg/24Mg and 26Mg/24Mg values corresponding to a range of mass-dependent fractionation of ~500 ppm (parts per million) per atomic mass unit. This mass-dependent Mg isotope fractionation is interpreted as reflecting Mg isotope heterogeneity of the chondrule precursors and not the result of secondary alteration or volatility-controlled processes during chondrule formation. The CV and CR chondrule populations studied here are characterized by systematic deficits in the mass-independent component of 26Mg (μ26Mg*) relative to the solar value defined by CI chondrites, which we interpret as reflecting formation from precursor material with a reduced initial abundance of 26Al compared to the canonical 26Al/27Al of ~5 × 10−5. Model initial 26Al/27Al values of CV and CR chondrules vary from (1.5 ± 4.0) × 10−6 to (2.2 ± 0.4) × 10−5. The CV chondrules display significant μ54Cr variability, defining a range of compositions that is comparable to that observed for inner Solar System primitive and differentiated meteorites. In contrast, CR chondrites are characterized by a narrower range of μ54Cr values restricted to compositions typically observed for bulk carbonaceous chondrites. Collectively, these observations suggest that the CV chondrules formed from precursors that originated in various regions of the protoplanetary disk and were then transported to the accretion region of the CV parent asteroid whereas CR chondrule predominantly formed from precursor with carbonaceous chondrite-like μ54Cr signatures. The observed μ54Cr variability in chondrules from

  11. Magnesium and 54Cr isotope compositions of carbonaceous chondrite chondrules - Insights into early disk processes

    Science.gov (United States)

    Olsen, Mia B.; Wielandt, Daniel; Schiller, Martin; Van Kooten, Elishevah M. M. E.; Bizzarro, Martin

    2016-10-01

    We report on the petrology, magnesium isotopes and mass-independent 54Cr/52Cr compositions (μ54Cr) of 42 chondrules from CV (Vigarano and NWA 3118) and CR (NWA 6043, NWA 801 and LAP 02342) chondrites. All sampled chondrules are classified as type IA or type IAB, have low 27Al/24Mg ratios (0.04-0.27) and display little or no evidence for secondary alteration processes. The CV and CR chondrules show variable 25Mg/24Mg and 26Mg/24Mg values corresponding to a range of mass-dependent fractionation of ∼500 ppm (parts per million) per atomic mass unit. This mass-dependent Mg isotope fractionation is interpreted as reflecting Mg isotope heterogeneity of the chondrule precursors and not the result of secondary alteration or volatility-controlled processes during chondrule formation. The CV and CR chondrule populations studied here are characterized by systematic deficits in the mass-independent component of 26Mg (μ26Mg∗) relative to the solar value defined by CI chondrites, which we interpret as reflecting formation from precursor material with a reduced initial abundance of 26Al compared to the canonical 26Al/27Al of ∼5 × 10-5. Model initial 26Al/27Al values of CV and CR chondrules vary from (1.5 ± 4.0) × 10-6 to (2.2 ± 0.4) × 10-5. The CV chondrules display significant μ54Cr variability, defining a range of compositions that is comparable to that observed for inner Solar System primitive and differentiated meteorites. In contrast, CR chondrites are characterized by a narrower range of μ54Cr values restricted to compositions typically observed for bulk carbonaceous chondrites. Collectively, these observations suggest that the CV chondrules formed from precursors that originated in various regions of the protoplanetary disk and were then transported to the accretion region of the CV parent asteroid whereas CR chondrule predominantly formed from precursor with carbonaceous chondrite-like μ54Cr signatures. The observed μ54Cr variability in chondrules from CV

  12. Hierarchically structured carbonaceous foams generation and their use as electrochemical energy storage devices

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Nicolas [Centre de Recherche Paul Pascal, Pessac (France); Institut des Sciences Moleculaires, Talence (France); Prabaharan, Savari R.S.; Morcrette, Mathieu [Laboratoire de Reactivite et de Chimie des Solides, Amiens (France); Pecastaing, Gilles [Laboratoire de Chimie des Polymeres Organiques, Pessac (France); Birot, Marc; Deleuze, Herve [Institut des Sciences Moleculaires, Talence (France); Backov, Renal [Centre de Recherche Paul Pascal, Pessac (France)

    2010-07-01

    Hierarchically structured carbonaceous foams with a high control over macro-meso-microporous structures have been synthesized, using silica as inorganic exotemplate and phenolic resin as carbon precursor. These monolithic foams have been thoroughly characterized over all length scales. The applications of this new series of macrocellular carbonaceous monoliths as negative electrodes for Lithium-ion batteries devices (stable capacity of 200 mAh.g{sup -1}, during 50 cycles) and electrochemical capacitors (specific capacitance of 30 F.g{sup -1} at a scan rate of 10 mV.s{sup -1}) have been checked and will be discussed. (orig.)

  13. Preparation of Cyclodextrin-Based Carbonaceous Catalyst and Its Application in the Esterification

    Institute of Scientific and Technical Information of China (English)

    SHAN Chun; QIAN Guangren

    2011-01-01

    A new carbonaceous catalyst with sulfonic acid group (-SO3H) was prepared by incomplete carbonization of β-cyclodextrin followed by sulfonation. The sulfonated amorphous carbon was characterized by IR, elemental analysis, DSC-TGA and PXRD, and the catalytic activity was investigated to be an efficient catalyst for the esterification reactions with maximum yield of 87%. The sulfonated carbonaceous catalyst was readily separated from the reaction solution and keeps approximately equal catalytic activity. The results confirm that the active centre is the hydrophilic sulfonic acid functional group in the esterification reactions.

  14. Halogen bonding: A new retention mechanism for the solid phase extraction of perfluorinated iodoalkanes

    Energy Technology Data Exchange (ETDEWEB)

    Yan Xiaoqing; Shen Qianjin; Zhao Xiaoran; Gao Haiyue; Pang Xue [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Jin Weijun, E-mail: wjjin@bnu.edu.cn [College of Chemistry, Beijing Normal University, Beijing 100875 (China)

    2012-11-13

    Highlights: Black-Right-Pointing-Pointer Halogen bonding (XB) is firstly utilised in solid phase extraction. Black-Right-Pointing-Pointer The perfluorinated iodine alkanes can be extracted by C-I Midline-Horizontal-Ellipsis Cl{sup -} halogen bonding. Black-Right-Pointing-Pointer The C-I Midline-Horizontal-Ellipsis Cl{sup -} halogen bond is well characterised by spectroscopy methods. Black-Right-Pointing-Pointer The analytes with strong halogen-bonding abilities can be selectively extracted. - Abstract: For the first time, halogen-bonding interaction is utilised in the solid phase extraction of perfluorinated iodoalkane (PFI). Nine PFIs, as model analytes, were tested, and analyses by UV, {sup 19}F NMR and Raman spectroscopies demonstrate that the PFIs are extracted by a strong anion exchange (SAX) sorbent from n-hexane due to the C-I Midline-Horizontal-Ellipsis Cl{sup -} halogen-bonding interactions. The results also show that the adsorptivities of SAX for the diiodoperfluoro-alkanes (diiodo-PFIs) were much stronger than those for the perfluoroalkyl iodides (monoiodo-PFIs). Specifically, the recoveries for 1,6-diiodoperfluorohexane and 1,8-diiodoperfluorooctane were higher than 80% when 100 mL of sample spiked with a 5 ng mL{sup -1} analyte mixture was extracted. Interestingly, SAX had no adsorption for hexafluorobenzene at all, which is known to be unable to form a halogen bond with Cl{sup -}. The analytical performance of the halogen bond-based SPE-GC-MS method for the diiodo-PFIs was also examined in soil samples. The sorbent SAX enabled the selective extraction of four diiodo-PFIs successfully from soil samples. The recoveries of the diiodo-PFIs extracted from 5 g soil sample at the 100 ng g{sup -1} spike level were in the range of 73.2-93.8% except 26.8% for 1,2-diiodoperfluoroethane. The limit of detection varied from 0.02 to 0.04 ng g{sup -1} in soil samples. Overall, this work reveals the great application potential of halogen bonding in the field of solid

  15. Terrestrial bitumen analogue of orgueil organic material demonstrates high sensitivity to usual HF-HCl treatment

    Science.gov (United States)

    Korochantsev, A. V.; Nikolaeva, O. V.

    1993-01-01

    The relationship between the chemical composition and the interlayer spacing (d002) of organic materials (OM's) is known for various terrestrial OM's. We improved this general trend by correlation with corresponding trend of natural solid bitumens (asphaltite-kerite-anthraxolite) up to graphite. Using the improved trend we identified bitumen analogs of carbonaceous chondrite OM's residued after HF-HCl treatment. Our laboratory experiment revealed that these analogs and, hence, structure and chemical composition of carbonaceous chondrite OM's are very sensitive to the HF-HCl treatment. So, usual extraction of OM from carbonaceous chondrites may change significantly structural and chemical composition of extracted OM.

  16. ALH85085: a unique volatile-poor carbonaceous chondrite with possible implications for nebular fractionation processes

    Science.gov (United States)

    Grossman, J.N.; Rubin, A.E.; MacPherson, G.J.

    1988-01-01

    Allan Hills 85085 is a unique chondrite with affinities to the Al Rais-Renazzo clan of carbonaceous chondrites. Its constituents are less than 50 ??m in mean size. Chondrules and microchondrules of all textures are present; nonporphyritic chondrules are unusually abundant. The mean compositions of porphyritic, nonporphyritic and barred olivine chondrules resemble those in ordinary chondrites except that they are depleted in volatile elements. Ca-, Al-rich inclusions are abundant and largely free of nebular alteration; they comprise types similar to those in CM and CO chondrites, as well as unique types. Calcium dialuminate occurs in several inclusions. Metal, silicate and sulfide compositions are close to those in CM-CO chondrites and Al Rais and Renazzo. C1-chondrite clasts and metal-rich "reduced" clasts are present, but opaque matrix is absent. Siderophile abundances in ALH85085 are extremely high (e.g., Fe Si = 1.7 ?? solar), and volatiles are depleted (e.g., Na Si = 0.25 ?? solar, S Si = 0.03 ?? solar). Nonvolatile lithophile abundances are similar to those in Al Rais, Renazzo, and CM and CO chondrites. ALH85085 agglomerated when temperatures in the nebula were near 1000 K, in the same region where Renazzo, Al Rais and the CI chondrites formed. Agglomeration of high-temperature material may thus be a mechanism by which the fractionation of refractory lithophiles occurred in the nebula. Chondrule formation must have occurred at high temperatures when clumps of precursors were small. After agglomeration, ALH85085 was annealed and lightly shocked. C1 and other clasts were subsequently incorporated during late-stage brecciation. ?? 1988.

  17. Carbonaceous Chondrite Meteorites: the Chronicle of a Potential Evolutionary Path between Stars and Life

    Science.gov (United States)

    Pizzarello, Sandra; Shock, Everett

    2017-01-01

    The biogenic elements, H, C, N, O, P and S, have a long cosmic history, whose evolution can still be observed in diverse locales of the known universe, from interstellar clouds of gas and dust, to pre-stellar cores, nebulas, protoplanetary discs, planets and planetesimals. The best analytical window into this cosmochemical evolution as it neared Earth has been provided so far by the small bodies of the Solar System, some of which were not significantly altered by the high gravitational pressures and temperatures that accompanied the formation of larger planets and may carry a pristine record of early nebular chemistry. Asteroids have delivered such records, as their fragments reach the Earth frequently and become available for laboratory analyses. The Carbonaceous Chondrite meteorites (CC) are a group of such fragments with the further distinction of containing abundant organic materials with structures as diverse as kerogen-like macromolecules and simpler compounds with identical counterparts in Earth's biosphere. All have revealed a lineage to cosmochemical synthetic regimes. Several CC show that asteroids underwent aqueous alteration of their minerals or rock metamorphism but may yet yield clues to the reactivity of organic compounds during parent-body processes, on asteroids as well as larger ocean worlds and planets. Whether the exogenous delivery by meteorites held an advantage in Earth's molecular evolution remains an open question as many others regarding the origins of life are. Nonetheless, the natural samples of meteorites allow exploring the physical and chemical processes that might have led to a selected chemical pool amenable to the onset of life.

  18. Sea ice dynamics influence halogen deposition to Svalbard

    Directory of Open Access Journals (Sweden)

    A. Spolaor

    2013-03-01

    Full Text Available Sea ice is an important parameter in the climate system and its changes impact upon the polar albedo and the atmospheric and oceanic circulation. Iodine (I and bromine (Br have been measured in a shallow ice core drilled at the summit of the Holtedahlfonna glacier (Northwest Spitsbergen, Svalbard. Changing I concentrations can be linked to the spring maximum sea ice extension. Bromine enrichment, indexed to the Br/Na sea water mass ratio, appears to be influenced by changes in the seasonal sea ice area. I is emitted from marine biota and so the retreat of spring sea ice coincides with enlargement of the open ocean surface which enhances marine primary production and consequent I emission. The observed Br enrichment can be explained by greater Br emissions during the Br explosion that have been observed to occur above first year sea ice during the early springtime. In this work we present the first comparison between halogens in surface snow and Arctic sea ice extension. Although further investigation is required to characterize potential depositional and post-depositional processes, these preliminary findings suggest that I and Br can be linked to variability in the spring maximum sea ice extension and seasonal sea ice surface area.

  19. Sea ice dynamics influence halogen deposition to Svalbard

    Directory of Open Access Journals (Sweden)

    A. Spolaor

    2013-10-01

    Full Text Available Sea ice is an important parameter in the climate system and its changes impact upon the polar albedo and atmospheric and oceanic circulation. Iodine (I and bromine (Br have been measured in a shallow firn core drilled at the summit of the Holtedahlfonna glacier (Northwest Spitsbergen, Svalbard. Changing I concentrations can be linked to the March–May maximum sea ice extension. Bromine enrichment, indexed to the Br / Na sea water mass ratio, appears to be influenced by changes in the seasonal sea ice area. I is emitted from marine biota and so the retreat of March–May sea ice coincides with enlargement of the open-ocean surface which enhances marine primary production and consequent I emission. The observed Br enrichment could be explained by greater Br emissions during the Br explosions that have been observed to occur mainly above first year sea ice during the early springtime. In this work we present the first comparison between halogens in surface snow and Arctic sea ice extension. Although further investigation is required to characterize potential depositional and post-depositional processes, these preliminary findings suggest that I and Br can be linked to variability in the spring maximum sea ice extension and seasonal sea ice surface area.

  20. Designer Metallic Acceptor-Containing Halogen Bonding: General Strategies.

    Science.gov (United States)

    Zhang, Xinxing; Bowen, Kit H

    2017-03-13

    Being electrostatic interactions in nature, hydrogen bonding (HB) and halogen bonding (XB) are considered to be two parallel worlds. In principle, all the applications that HB has could also be applied to XB. However, there has been no report on a metallic XB acceptor but metal anions have been observed to be good HB acceptors. This missing mosaic piece of XB is because common metal anions are reactive for XB donors. In view of this, we propose two strategies for designing metallic acceptor-containing XB using ab initio calculations. The first one is to utilize a metal cluster anion with a high electron detachment energy, such as the superatom, Al13- as the XB acceptor. The second strategy is to design a ligand passivated/protected metal core while it still can maintain the negative charge; several exotic clusters, such as PtH5-, PtZnH5- and PtMgH5-, are utilized as examples. Based on these two strategies, we anticipate that more metallic acceptor-containing XB will be discovered.

  1. Identification and quantification of the halogenated natural product BC-3

    Energy Technology Data Exchange (ETDEWEB)

    Melcher, J.; Olbrich, D.; Vetter, W. [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Lebensmittelchemie; Marsh, G. [Stockholm Univ. (Sweden). Dept. of Environmental Chemistry; Gaus, C.; Mueller, J.F. [National Research Centre for Environmental Toxicology, Coopers Plains (Australia)

    2004-09-15

    Halogenated natural products (HNPs) of marine origin are increasingly recognized as critical residues in foodstuff (e. g. fish) and environmental samples (e. g. marine mammals and birds). Some of these HNPs (Q1, MHC-1, BC-2, and HDBPs including BC-10) were detected in diverse fish and marine mammal samples at concentrations sometimes exceeding those of PCBs, DDT, and other anthropogenic pollutants. Recent studies with marine mammal samples from Australia led to the detection of six abundant HNPs (Q1, BC-1, BC-2, BC-3, BC-10, and BC-11). In the meantime, Q1 was identified as heptachloro-1{sup '}-methyl-1,2{sup '}-bipyrrole, BC-2 as 4,6-dibromo-2-(2{sup '},4{sup '}-dibromo)phenoxyanisole, BC- 10 as 1,1{sup '}-dimethyl-3,3{sup '},4,4{sup '}-tetrabromo-5,5{sup '}-dichloro-2,2{sup '}-bipyrrole, and BC-11 as 3,5-dibromo- 2-(3{sup '},5{sup '}-dibromo,2{sup '}-methoxy)phenoxyanisole. However the identity of BC-1 and BC-3 remained unclear. The goal of the present study was the identification of BC-3. The tetrabromo compound BC-3 has previously been detected in marine mammals from four continents. Furthermore, we attempted establishing quantitative concentrations in diverse marine biota samples.

  2. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth.

    Science.gov (United States)

    Yang, Bin; Keum, Jong; Ovchinnikova, Olga S; Belianinov, Alex; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2016-04-20

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films, a major unresolved question is the competition between multiple halide species (e.g., I(-), Cl(-), Br(-)) in the formation of the mixed-halide perovskite crystals. Whether Cl(-) ions are successfully incorporated into the perovskite crystal structure or, alternatively, where they are located is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br(-) or Cl(-) ions can promote crystal growth, yet reactive I(-) ions prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl(-) ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performing and cost-effective optoelectronic devices.

  3. Metal hydrides form halogen bonds: measurement of energetics of binding.

    Science.gov (United States)

    Smith, Dan A; Brammer, Lee; Hunter, Christopher A; Perutz, Robin N

    2014-01-29

    The formation of halogen bonds from iodopentafluorobenzene and 1-iodoperfluorohexane to a series of bis(η(5)-cyclopentadienyl)metal hydrides (Cp2TaH3, 1; Cp2MH2, M = Mo, 2, M = W, 3; Cp2ReH, 4; Cp2Ta(H)CO, 5; Cp = η(5)-cyclopentadienyl) is demonstrated by (1)H NMR spectroscopy. Interaction enthalpies and entropies for complex 1 with C6F5I and C6F13I are reported (ΔH° = -10.9 ± 0.4 and -11.8 ± 0.3 kJ/mol; ΔS° = -38 ± 2 and -34 ± 2 J/(mol·K), respectively) and found to be stronger than those for 1 with the hydrogen-bond donor indole (ΔH° = -7.3 ± 0.1 kJ/mol, ΔS° = -24 ± 1 J/(mol·K)). For the more reactive complexes 2-5, measurements are limited to determination of their low-temperature (212 K) association constants with C6F5I as 2.9 ± 0.2, 2.5 ± 0.1, <1.5, and 12.5 ± 0.3 M(-1), respectively.

  4. Gas chromatography mass spectrometry computer analysis of volatile halogenated hydrocarbons in man and his environment--A multimedia environmental study.

    Science.gov (United States)

    Barkley, J; Bunch, J; Bursey, J T; Castillo, N; Cooper, S D; Davis, J M; Erickson, M D; Harris, B S; Kirkpatrick, M; Michael, L C; Parks, S P; Pellizzari, E D; Ray, M; Smith, D; Tomer, K B; Wagner, R; Zweidinger, R A

    1980-04-01

    As part of a study to make a comparative analysis of selected halogenated compounds in man and the environmental media, a quantitative gas chromatography mass spectrometric analysis of the levels of the halogenated compounds found in the breath, blood and urine of an exposed population (Old Love Canal area, Niagara, New York) and their immediate environment (air and water) was undertaken. In addition, levels of halogenated hydrocarbons in air samples taken in the general Buffalo, Niagara Falls area were determined.

  5. ASCORBIC ACID TREATMENT TO REDUCE RESIDUAL HALOGEN-BASED OXIDANTS PRIOR TO THE DETERMINATION OF HALOGENATED DISINFECTION BYPRODUCTS IN POTABLE WATER

    Science.gov (United States)

    Treatment of potable water samples with ascorbic acid has been investigated as a means for reducing residual halogen-based oxidants (disinfectants)i.e., HOCl, Cl2, Brw and BrCl, prior to determination of EPA Method 551.1A and 551.1B analytes. These disinfection byproducts include...

  6. Source apportionment of carbonaceous aerosol in Sao Paulo using 13C and 14C measurements

    Science.gov (United States)

    Oyama, Beatriz; Andrade, Maria de Fatima; Holzinger, Rupert; Röckmann, Thomas; Meijer, Harro A. J.; Dusek, Ulrike

    2016-04-01

    The Metropolitan Area of Sao Paulo is affected by high aerosol concentrations, which contain a large fraction of organic material. Up to date, not much is known about the composition and origin of the organic aerosol in this city. We present the first source apportionment of the carbonaceous aerosol fraction in Sao Paulo, using stable (13C) and radioactive carbon isotopes (14C). 14C provides a clear-cut distinction between fossil sources, which contain no 14C, and contemporary sources such as biofuels, biomass burning, or biogenic sources, which contain a typical contemporary 14C/12C ratio. 13C can be used to distinguish C3 plants, such as maize and sugarcane, from C4 plants. This can help to identify a possible impact of sugarcane field burning in the rural areas of Sao Paulo State on the aerosol carbon in the city. In the first part of the study, we compare two tunnel studies: Tunnel 1 is frequented only by light duty vehicles, which run mainly on mixtures of gasoline with ethanol (gasohol, 25% ethanol and 85% gasoline) or hydrated ethanol (5% water and 95% ethanol). Tunnel 2 contains a significant fraction of heavy-duty diesel vehicles, and therefore the fraction of biofuels in the average fleet is lower. Comparison of 14C in organic and elemental carbon (OC and EC) shows that in both tunnels there is no significant contribution of biofuels to EC. Combusting ethanol-gasoline fuels in a vehicle engine does apparently not result in significant EC formation from ethanol. Biofuels contribute around 45% to OC in Tunnel 1 an only 20% in Tunnel 2, reflecting a strong impact of diesel vehicles in Tunnel 2. In the second part of the study we conduct a source apportionment of ambient aerosol carbon collected in a field study during winter (July-August) 2012. Ambient EC has two main sources, vehicular emissions and biomass burning. We estimate a contribution of vehicular sources to EC of roughly 90% during weekdays and 80% during weekends, using the 14C values measured in

  7. Accretion and Preservation of Organic Matter in Carbonaceous Chondrites as Revealed by NanoSIMS Imaging.

    Science.gov (United States)

    Remusat, L.; Guan, Y.; Eiler, J.

    2008-12-01

    Carbonaceous chondrites are the most primitive known meteorites. Their parent bodies accreted several discrete components of the early solar system: CAIs, other silicates, oxides, sulfides, ice, organics, and noble gases. Radioactive decay of short live radionucleides quickly heated these parent bodies and drove thermal metamorphism and aqueous alteration of their constituents. Despite this post-acretionary modification, at least some components of the organic matter in the carbaceous chondrites retained distinctive isotopic and molecular properties that may relate to their pre-acretionary origins in the protosolar nebula or in the molecular cloud that gave birth to it [1]. These processes that gave rise to early solar-system organic matter and the extent to which it was modified by parent body processes are still a matter of debate [2]. We have acquired NanoSIMS images of matrices of several CI, CM, CR and CV chondrites to document, in- situ, the distribution of organics and their textural and chemical relationships to co-existing inorganic components. Importantly, we performed these analyses on essentially unmodified fragments of matrix material pressed into indium, rather than on extracts, which have been the focus of most previous work on meteoritic organic matter. Specifically, we simultaneously collected H, D, 12C, 18O, 26CN, 28Si and 32S with a spatial resolution of 200 nm. Inorganic constituents of the imaged domains were determined by SEM imaging and EDS analysis. We identify two textural classes of organic constituents: diffuse organic matter and organic particles ~ 1 micron in diameter. The particles are common and do not exhibit any textural association with any inorganic matrix constituent. This distribution is consistent with previous observations by fluorescence optical microscopy [3]. These organic particles are likely primarily composed of insoluble organic matter (IOM) that grew prior to accretion as pure organic particules and was preserved in

  8. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  9. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, Paul [Boston College, Chestnut Hill, MA (United States)

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  10. New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks

    Science.gov (United States)

    Allen-King, Richelle M.; Grathwohl, Peter; Ball, William P.

    Heterogeneity in naturally occurring carbonaceous materials (CMs) causes sorbed hydrophobic organic compound (HOC) concentrations in soils, sediments, and rocks to occur as a combination of surface adsorption and phase partitioning, with the latter typically more linearly dependent on aqueous concentration. In this manuscript, we describe a model to simulate HOC sorption as the combined effect of adsorption to thermally altered CM and a more linear solvation-driven absorption into gel-like CM (organic matter). We describe different forms of thermally altered CM (such as soots, chars, coals, and kerogen), the manner in which these materials can serve as especially strong adsorbents, and the conditions under which they can control solid-aqueous distribution. Specific examples of model fits to soil, sediment and rock samples with identified thermally altered CM components provide a linkage between sorption components and sorbent material properties. Because both the adsorption and partition components are scalable by compound solubility, it may often be possible to estimate nonlinear isotherms for a wide range of chemicals based on comparatively few experimental measurements. Thermally altered CM is widespread in the environment and can serve as an important sorbent even when present in small quantities (especially at low concentrations of adsorbates). In this context, the sorption modeling refinements described in this work are expected to have wide applicability. Given that solid/water distribution is a central process affecting contaminant fate, such refined models are an essential element for better estimates of risk and improved remediation design.

  11. Carbonaceous Aerosols Emitted from Light-Duty Vehicles Operating on Gasoline and Ethanol Fuel Blends

    Science.gov (United States)

    This study examines the chemical properties of carbonaceous aerosols emitted from three light-duty gasoline vehicles (LDVs) operating on gasoline (e0) and ethanol-gasoline fuel blends (e10 and e85). Vehicle road load simulations were performed on a chassis dynamometer using the t...

  12. Genesis and organic geochemical characteristics of the carbonaceous rock stratabound gold deposits, South China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The organic matter of three different chronological major carbonaceous rock gold-bearing formations of South China (Middle Proterozoic Shangqiaoshan group of northeastern Jiangxi, Lower Cambrian Shuikou group of northern Guangxi and Devonian Shetianqiao group of eastern Hunan) and related carbonaceous stratabound gold deposits such as Jinshan, Longshui and Shixia deposits, respectively, has been characterized by organic geochemical techniques. These organic geochemical results show that the average total organic carbon (TOC) content of the three chronological carbonaceous rock gold-bearing formations of South China ranges from 0.15% to 1.56%. The thermal maturity of the organic matter of host rocks in the three gold-bearing formations is high. The micro-component of the organic matter of the host rocks consists primarily of solid bitumen and graphite. The organic carbon and gold of the host rocks appear to syndeposit in situ during the formation of the gold-bearing formations. The organic carbon played a certain role in controlling the geochemical environment of the gold-bearing formations. The metallogenetic mechanism of the carbonaceous rock stratabound gold deposits of South China is closely associated in genesis with the sedimentation, diagenesis and thermal evolution history of the organic matter of host rocks in the gold-bearing formations.

  13. R Raman Spectroscopy and Petrology of Antarctic CR Chondrites: Comparison with Other Carbonaceous Chondrites

    Science.gov (United States)

    Komatsu, M.; Fagan, T. J.; Yamaguchi, A.; Mikouchi, T.; Zolensky, M. E.; Yasutake, M.

    2015-01-01

    In Renazzo-like carbonaceous (CR) chondrites, abundant original Fe,Ni-metal is preserved in chrondules, but the matrix is characterized by fine-grained magnetite with phyllosilicate. This combination of reduced Fe in chrodrules with oxidized Fe and phyllosilicate in the matrix has been attributed to aqueous alteration of matrix at relatively low temperatures.

  14. Sources of excess urban carbonaceous aerosol in the Pearl River delta region, China

    Science.gov (United States)

    Carbonaceous aerosol is one of the important constituents of fine particulate matter (PM2.5) in Southern China, including the Pearl River Delta (PRD) region and Hong Kong (HK). During the study period (October and December of 2002, and March and June of 2003), the monthly average...

  15. Analysis of Halogen-Mercury Reactions in Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

    2010-01-01

    Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation

  16. Oceanic contributions from tropical upwelling systems to atmospheric halogens

    Science.gov (United States)

    Ziska, Franziska; Hepach, Helmke; Stemmler, Irene; Quack, Birgit; Atlas, Elliot; Fuhlbrügge, Steffen; Bracher, Astrid; Tegtmeier, Susann; Krüger, Kirstin

    2014-05-01

    Short lived halogenated substances (halocarbons) from the oceans contribute to atmospheric halogens, where they are involved in ozone depletion and aerosol formation. Oceanic regions that are characterized by high biological activity are often associated with increased halocarbon abundance of e.g. bromoform (CHBr3) and dibromomethane (CH2Br2), representing the main contributors to atmospheric organic bromine. Apart from biological production, photochemical pathways play an important role in the formation of methyl iodide (CH3I), the most abundant organoiodine in the marine atmosphere. Recently, the contribution of biogenic diiodomethane (CH2I2) and chloroiodomethane (CH2ClI) to atmospheric organic iodine has been estimated to be similarly significant as CH3I. In the tropics, rapid uplift of surface air can transport these short-lived compounds into the upper troposphere and into the stratosphere. Oceanic upwelling systems off Mauritania, Peru and in the equatorial Atlantic might therefore potentially contribute large amounts of halocarbons to the stratosphere. Concentrations and emissions of iodo- and bromocarbons from several SOPRAN campaigns in different tropical upwelling systems, the Mauritanian and the equatorial upwelling in the Atlantic, as well as the Peruvian upwelling in the Pacific, will be presented. Processes contributing to halocarbon occurrence in the water column, as well as biological and physical factors influencing their emission into the atmosphere are investigated (Fuhlbrügge, et al. 2013; Hepach et al., 2013). We will present the relative contribution of the upwelling systems to global air-sea fluxes from different modelling studies. The data based bottom-up emissions from Ziska et al. (2013) will be compared to model simulated halocarbons. The model is a global three-dimensional ocean general circulation model with an ecosystem model and halocarbon module embedded (MPIOM/HAMOCC). It resolves CH3I and CHBr3 production, degradation, and

  17. Non-conventional gas phase remediation of volatile halogenated compounds by dehydrated bacteria.

    Science.gov (United States)

    Erable, Benjamin; Goubet, Isabelle; Seltana, Amira; Maugard, Thierry

    2009-06-01

    Traditional biological removal processes are limited by the low solubility of halogenated compounds in aqueous media. A new technology appears very suitable for the remediation of these volatile organic compounds (VOCs). Solid/gas bio-catalysis applied in VOC remediation can transform halogenated compounds directly in the gas phase using dehydrated cells as a bio-catalyst. The hydrolysis of volatile halogenated substrates into the corresponding alcohol was studied in a solid/gas biofilter where lyophilised bacterial cultures were used as the catalyst. Four strains containing dehalogenase enzymes were tested for the hydrolysis of 1-chlorobutane. The highest removal yield was obtained using the dhaA-containing strains, the maximal reaction rate of 0.8 micromol min(-1)g(-1) being observed with Escherichia coli BL21(DE3)(dhaA). Various treatments such as cell disruption by lysozyme or alkaline gas addition in the bio-filter could stabilise the dehalogenase activity of the bacteria. A pre-treatment of the dehydrated bacterial cells by ammonia vapour improved the stability of the catalyst and a removal activity of 0.9 micromol min(-1)g(-1) was then obtained for 60h. Finally, the process was extended to a range of halogenated substrates including bromo- and chloro-substrates. It was shown that the removal capacity for long halogenated compounds (C(5)-C(6)) was greatly increased relative to traditional biological processes.

  18. Seaonal Sea Ice as a source of organo-halogens during Polar night

    Science.gov (United States)

    Abrahamsson, Katarina; Granfors, Anna; Ahnoff, Martin

    2016-04-01

    The release of bromine from snow and sea ice surfaces has mainly been attributed to the reaction of hypobromous acid with bromide at acidic conditions to form Br2. Little attention has been given to the role of volatile halogenated organic compounds (organo-halogens) in the formation of reactive halogen species in the atmosphere during bromine explosion events. The load of organo-halogens was studied during a winter expedition to the Weddell Sea in June to August 2013. These compounds are emitted from the different compartments of the cryosphere to the atmosphere where they are photolysed to BrO and IO, which are involved in the degradation of ozone. We will present results that show the importance of organo-halogens formed during polar winter. In newly formed ice, in contrast to summer sea ice, the concentration of organo-bromine was found at levels as high as nM. These high concentrations were reflected both in frost flowers and in the sea-snow interface. Moreover, air measurements revealed high loads of organo-bromine over the sea ice. The situation was similar for iodinated compounds. Interestingly, the precursers of IO, mainly diiodomethane, could be measured in sea ice and snow, most probably due to the low light levels.

  19. A QSRR Study on the Relative Retention Time of Halogenated Methyl-phenyl Ethers

    Institute of Scientific and Technical Information of China (English)

    XU Hui-Ying; YU Qing-Sen; ZOU Jian-Wei; WANG Yan-Hua; WANG Hong-Qing; CHEN Xue-Song

    2006-01-01

    Halogenated methyl-phenyl ethers (anisoles) are ubiquitous organic compounds in the environment. In the present study, geometrical optimization and electrostatic potential calculations have been performed for 42 halogenated anisoles at the HF/6-31 G* level. A number of statistically based parameters have been obtained. By multiple regression method, linear relationships between the gas-chromatographic relative retention time (RRT) and structural descriptors have been established for the training set of 32 halogenated anisoles. The result showed that the parameters derived from electrostatic potentials (ESPs) together with the molecular volume (Vmc) could be well used to express the quantitative structure-RRT relationships of halogenated anisoles. The best two-variable regression model gives a correlation coefficient of 0.980 and a standard deviation of 0.07, and the leave-one-out cross-validated correlation coefficient is 0.975. The goodness of the model has been further validated through exploring the predictive power for the testing set of 10 halogenated anisoles.

  20. Quantifying the effects of halogen bonding by haloaromatic donors on the acceptor pyrimidine.

    Science.gov (United States)

    Ellington, Thomas L; Reves, Peyton L; Simms, Briana L; Wilson, Jamey L; Watkins, Davita L; Tschumper, Gregory S; Hammer, Nathan I

    2017-02-28

    The effects of intermolecular interactions by a series of haloaromatic halogen bond donors on the normal modes and chemical shifts of the acceptor pyrimidine are investigated by Raman and NMR spectroscopies and electronic structure computations. Halogen bond interactions with pyrimidine's nitrogen atoms shift normal modes to higher energy and shift 1H and 13C NMR peaks upfield in adjacent nuclei. This perturbation of vibrational normal modes is reminiscent of the effects of hydrogen bonded networks of water, methanol, or silver on pyrimidine. The unexpected observation of vibrational red shifts and downfield 13C NMR shifts in some complexes suggests that other intermolecular forces such as pi-interactions are competing with halogen bonding. Natural bond orbital analyses indicate a wide range of charge transfer from pyrimidine to different haloaromatic donors is possible and computed halogen bond binding energies can be larger than a typical hydrogen bond. These results emphasize the importance in strategic selection of substituents and electron withdrawing groups in developing supramolecular structures based on halogen bonding.

  1. Halogens, OVOC and H2O Distributions over the Eastern Pacific Ocean during TORERO

    Science.gov (United States)

    Dix, B. K.; Apel, E. C.; Baidar, S.; Zondlo, M. A.; Volkamer, R.

    2013-12-01

    As part of the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field project 17 research flights were conducted with the NSF/NCAR GV aircraft over the Eastern Tropical Pacific Ocean (42S to 14N Lat.; 70W to 105W Long). Equipped with a combination of chemical in-situ sensors and remote sensing instruments, a broad spectrum of reactive halogen species, oxygenated hydrocarbons, and aerosols were measured over different ocean environments. Using optical remote sensing (airborne Multi Axis DOAS), we measured iodine monoxide (IO), bromine monoxide (BrO), glyoxal (CHOCHO) and water vapor among others. A newly developed parameterization method allowed us to directly convert the measured slant column densities into mixing ratios along the whole flight track. Atmospheric reactive halogen species and organic carbon are important, because they modify HOx radical abundances, influence the reactive chemistry and lifetime of climate active gases (e.g., ozone, methane, dimethyl sulfide), modify aerosol-cloud interactions and halogen radicals can also oxidize atmospheric mercury. Here we summarize and evaluate the spatial distribution of IO, BrO and glyoxal over the TORERO study area. For select case studies we present comparisons to halogen precursors and OVOCs measured in-situ by on-line mass spectrometry (trace organic gas analyzer). The correlation of remotely observed water vapor to in-situ measurements further allows us to conclude on the homogeneity of spatial scales covered by both remote and in-situ sensors.

  2. A DFT study of halogen atoms adsorbed on graphene layers

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Paulo V C; De Brito Mota, F; De Castilho, Caio M C [Grupo de Fisica de Superfcies e Materiais, Instituto de Fisica, Universidade Federal da Bahia, Campus Universitario da Federacao/Ondina, 40170-115 Salvador, Bahia (Brazil); Mascarenhas, Artur J S, E-mail: caio@ufba.br [Instituto Nacional de Ciencia e Tecnologia em Energia e Ambiente-INCT-E and A, Universidade Federal da Bahia, 40170-280 Salvador, Bahia (Brazil)

    2010-12-03

    In this work, ab initio density functional theory calculations were performed in order to study the structural and electronic properties of halogens (X = fluorine, chlorine, bromine or iodine) that were deposited on both sides of graphene single layers (X-graphene). The adsorption of these atoms on only one side of the layer with hydrogen atoms adsorbed on the other was also considered (H,X-graphene). The results indicate that the F-C bond in the F-graphene system causes an sp{sup 2} to sp{sup 3} transition of the carbon orbitals, and similar effects seem to occur in the H,X-graphene systems. For the other cases, two configurations are found: bonded (B) and non-bonded (NB). For the B configuration, the structural arrangement of the atoms was similar to F-graphene and H-graphene (graphane), although the electronic structures present some differences. In the NB configuration, the interaction between the adsorbed atoms and the graphene layer seems to be essentially of the van der Waals type. In these cases, the original shape of the graphene layer presents only small deviations from the pristine form and the adsorbed atoms reach equilibrium far from the sheet. The F-graphene structure has a direct bandgap of approximately 3.16 eV at the {Gamma} point, which is a value that is close to the value of 3.50 eV that was found for graphane. The Cl-graphene (B configuration), H,F-graphene and H,Cl-graphene systems have smaller bandgap values. All of the other systems present metallic behaviours. Energy calculations indicate the possible stability of these X-graphene layers, although some considerations about the possibility of spontaneous formation have to be taken into account.

  3. Environmental Factors Influencing Arctic Halogen Chemistry During Late Spring

    Science.gov (United States)

    Burd, J.; Nghiem, S. V.; Simpson, W. R.

    2015-12-01

    Reactive halogen radicals (e.g. Br, Cl atoms and their oxides, BrO, ClO) are important oxidizers in the troposphere that decrease atmospheric pollutants and deplete tropospheric ozone, affecting the abundance of other oxidizers such as the hydroxyl radical. During Arctic springtime, the heterogeneous chemical cycles (often called the "bromine explosion") produce high levels of bromine monoxide (BrO), through reactions on saline snow, ice, and/or aerosol surfaces. Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) measured BrO at Barrow, AK, from 2008-2009 and 2012-2015, as well at various locations above the frozen Arctic Ocean with O-Buoys in 2008 and 2011-2015. Observed BrO levels drop suddenly during late spring (May-June) and generally do not recover, which indicates the bromine explosion cycle can no longer produce significant amounts of BrO. We have established, through an objective algorithm, the local day of year of this drop in BrO as the "seasonal end." Additionally, in about half of the years, "recurrence" events were observed where BrO levels recover for at least a day. This study investigates the environmental factors influencing seasonal end and recurrence events including: temperature, relative humidity, precipitation and snowmelt. Analysis of BrO and air temperature revealed the temperature reaches 0°C within five days of the seasonal end event; however, temperatures drop below freezing during a recurrence event. In addition, there are periods where the temperature remains below freezing, but no recurrence event is observed. This BrO and temperature analysis indicates above-freezing air temperature prevents reactive bromine release; however, it is not the only environmental factor influencing this heterogeneous recycling. Further analysis of additional environmental influences on the bromine explosion cycle could help to better understand and model bromine chemistry in the Arctic.

  4. Global distribution of halogenated dimethyl bipyrroles in marine mammal blubber.

    Science.gov (United States)

    Tittlemier, S; Borrell, A; Duffe, J; Duignan, P J; Fair, P; Hall, A; Hoekstra, P; Kovacs, K M; Krahn, M M; Lebeuf, M; Lydersen, C; Muir, D; O'Hara, T; Olsson, M; Pranschke, J; Ross, P; Siebert, U; Stern, G; Tanabe, S; Norstrom, R

    2002-08-01

    Four halogenated dimethyl bipyrroles (HDBPs), hypothesized to be naturally produced, were quantitated in marine mammal blubber from a number of species obtained from various locations worldwide. HDBPs were found in samples from all locations studied. Concentrations of total HDBPs (SigmaHDBPs) ranged from 0.4 ng/g lipid weight in ringed seals (Phoca hispida) from the White Sea to 2,540 ng/g lipid weight in Dall's porpoise (Phocoenoides dalli) from the northwestern North Pacific Ocean. At their highest levels, SigmaHDBPs made up 11% of the total quantitated organohalogen body burden of adult male Dall's porpoises. In two beluga (Delphinapterus leucas) data subsets, it was found that males contained significantly higher concentrations of SigmaHDBPs than females. No significant effects of age or sex on SigmaHDBPs were observed in harbor seal (Phoca vitulina) and bowhead whale (Balaena mysticetus) data subsets. The geographical distribution of concentrations did not resemble that of the ubiquitous anthropogenic organohalogen, polychlorinated biphenyl congener CB-153. Higher concentrations of HDBPs and different patterns of congeners were observed in samples from Pacific as opposed to non-Pacific Ocean influenced environments. Concentrations of HDBPs in beluga from the Arctic and St. Lawrence River were similar. Their high abundance in north Pacific Ocean biota and widespread occurrence suggest that HDBPs undergo extensive transport from a source located primarily in the Pacific Ocean. Evidence from HDBP congener patterns indicates that both ocean currents and atmospheric transport likely play a role in the movement of HDBPs. These results imply that HDBPs and anthropogenic organohalogens have different sources and support the natural production hypothesis.

  5. Spectro-Microscopic Measurements of Carbonaceous Aerosol Aging in Central California

    Energy Technology Data Exchange (ETDEWEB)

    Moffet, Ryan C.; Rodel, Tobias; Kelly, Stephen T.; Yu, Xiao-Ying; Carroll, Gregory; Fast, Jerome D.; Zaveri, Rahul A.; Laskin, Alexander; Gilles, Mary K.

    2013-10-29

    Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of pollution accumulation event (June 27-29, 2010), when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX) and scanning transmission X-ray microscopy coupled with near edge X-ray absorption spectroscopy (STXM/NEXAFS) were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm diameter) increased with plume age as did the organic mass per particle. Comparison of the CARES spectro-microscopic data set with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that individual particles in Mexico City contained twice as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (30%) was larger than at the CARES urban site (10%) and the most aged samples from CARES contained less carbon-carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed results provided by these spectro-microscopic measurements

  6. Spectro-microscopic measurements of carbonaceous aerosol aging in Central California

    Directory of Open Access Journals (Sweden)

    R. C. Moffet

    2013-04-01

    Full Text Available Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES was designed to study carbonaceous aerosols in the natural environment of Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of pollution accumulation event (27–29 June 2010, when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX and scanning transmission X-ray microscopy coupled with near edge X-ray absorption spectroscopy (STXM/NEXAFS were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm diameter increased with plume age as did the organic mass per particle. Comparison of the CARES spectro-microscopic data set with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that individual particles in Mexico City contained twice as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (30% was larger than at the CARES urban site (10% and the most aged samples from CARES contained less carbon-carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed results provided by these spectro

  7. Spectro-microscopic measurements of carbonaceous aerosol aging in Central California

    Science.gov (United States)

    Moffet, R. C.; Rödel, T. C.; Kelly, S. T.; Yu, X. Y.; Carroll, G. T.; Fast, J.; Zaveri, R. A.; Laskin, A.; Gilles, M. K.

    2013-10-01

    Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of the Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of a pollution accumulation event (27-29 June 2010), when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer-controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX) and scanning transmission X-ray microscopy coupled with near-edge X-ray absorption spectroscopy (STXM/NEXAFS) were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm equivalent circular diameter) increased with plume age, as did the organic mass per particle. Comparison of the CARES spectro-microscopic dataset with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that fresh particles in Mexico City contained three times as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (ranging from 16.6 to 47.3%) was larger than at the CARES urban site (13.4-15.7%), and the most aged samples from CARES contained fewer carbon-carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed

  8. Physiochemical properties of carbonaceous aerosol from agricultural residue burning: Density, volatility, and hygroscopicity

    Science.gov (United States)

    Li, Chunlin; Hu, Yunjie; Chen, Jianmin; Ma, Zhen; Ye, Xingnan; Yang, Xin; Wang, Lin; Wang, Xinming; Mellouki, Abdelwahid

    2016-09-01

    Size-resolved effective density, mixing state, and hygroscopicity of smoke particles from five kinds of agricultural residues burning were characterized using an aerosol chamber system, including a volatility/hygroscopic tandem differential mobility analyzer (V/H-TDMA) combined with an aerosol particle mass analyzer (APM). To profile relationship between the thermodynamic properties and chemical compositions, smoke PM1.0 and PM2.5 were also measured for the water soluble inorganics, mineral elements, and carbonaceous materials like organic carbon (OC) and elemental carbon (EC). Smoke particle has a density of 1.1-1.4 g cm-3, and hygroscopicity parameter (κ) derived from hygroscopic growth factor (GF) of the particles ranges from 0.20 to 0.35. Size- and fuel type-dependence of density and κ are obvious. The integrated effective densities (ρ) and hygroscopicity parameters (κ) both scale with alkali species, which could be parameterized as a function of organic and inorganic mass fraction (forg &finorg) in smoke PM1.0 and PM2.5: ρ-1 =finorg ·ρinorg-1 +forg · ρorg-1 and κ =finorg ·κinorg +forg ·κorg . The extrapolated values of ρinorg and ρorg are 2.13 and 1.14 g cm-3 in smoke PM1.0, while the characteristic κ values of organic and inorganic components are about 0.087 and 0.734, which are similar to the bulk density and κ calculated from predefined chemical species and also consistent with those values observed in ambient air. Volatility of smoke particle was quantified as volume fraction remaining (VFR) and mass fraction remaining (MFR). The gradient temperature of V-TDMA was set to be consistent with the splitting temperature in the OC-EC measurement (OC1 and OC2 separated at 150 and 250 °C). Combing the thermogram data and chemical composition of smoke PM1.0, the densities of organic matter (OM1 and OM2 correspond to OC1 and OC2) are estimated as 0.61-0.90 and 0.86-1.13 g cm-3, and the ratios of OM1/OC1 and OM2/OC2 are 1.07 and 1.29 on average

  9. SYNTHESIS AND STUDY OF HALOGENATED BENZYLAMIDES OF SOME ISOCYCLIC AND HETEROCYCLIC ACIDS AS POTENTIAL ANTICONVULSANTS.

    Science.gov (United States)

    Strupińska, Marzanna; Rostafińska-Suchar, Grażyna; Pirianowicz-Chaber, Elżbieta; Grabczuk, Mateusz; Józwenko, Magdalena; Kowalczyk, Hubert; Szuba, Joanna; Wójcicka, Monika; Chen, Tracy; Mazurek, Aleksander P

    2015-01-01

    A series of potential anticonvulsants have been synthesized. There are eight fluorobenzylamides and three chlorobenzylamides of isocyclic or heterocyclic acids. Two not halogenated benzylamides were also synthesized to compare the effect of halogenation. The aim of the research performed was to evaluate whether halogenation of the mother structure is able to improve its anticonvulsant activity. The compounds were tested in Anticonvulsant Screening Project (ASP) of Antiepileptic Drug Development Program (ADDP) of NIH. Compound 1 showed MES ED50 = 80.32 mg/kg, PI = 3.16. Compound 7 showed CKM ED50 = 56.72 mg/kg. Compound 8 showed MES ED50 = 34.23 mg/kg and scPTZ ED50 > 300 mg/kg, PI = 8.53.Compound 13 showed 6Hz ED50 = 78.96, PI = 3.37. The results indicate that fluorination does not improve activity, whereas chlorination in our experiment even reduces it.

  10. Halogenated and isosteric cytisine derivatives with increased affinity and functional activity at nicotinic acetylcholine receptors.

    Science.gov (United States)

    Fitch, Richard W; Kaneko, Yumika; Klaperski, Paul; Daly, John W; Seitz, Gunther; Gündisch, Daniela

    2005-02-15

    A series of pyridone ring-modified derivatives of (7R,9S)-(-)-cytisine were evaluated for affinity and functional activity at neuromuscular alpha1beta1gammadelta, ganglionic alpha3beta4, and central neuronal alpha4beta2 subtypes of nicotinic receptors. Halogenation at the 3-position improved affinity and functional activity, while substitution at the 5-position led to modest decreases in both, and disubstitution led to near abolition of functional activities and could be correlated with the electron-withdrawing ability of the halogen. Subtype selectivities of the halogenated derivatives were altered relative to cytisine in a substitution-dependent manner. Caulophylline methiodide was less potent than cytisine, but retained significant activity. Thiocytisine was relatively weak in potency and efficacy, but was significantly selective for the alpha4beta2 subtype.

  11. Detection of halogenated flame retardants in polyurethane foam by particle induced X-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Maley, Adam M.; Falk, Kyle A.; Hoover, Luke; Earlywine, Elly B.; Seymour, Michael D. [Department of Chemistry, Hope College, 35 E. 12th Street, Holland, MI 49423 (United States); DeYoung, Paul A. [Department of Physics, Hope College, 27 Graves Place, Holland, MI 49423 (United States); Blum, Arlene [Green Science Policy Institute, Box 5455, Berkeley, CA 94705 (United States); Stapleton, Heather M. [Nicholas School of the Environment, Duke University, LSRC Box 90328, Durham, NC 27708 (United States); Peaslee, Graham F., E-mail: peaslee@hope.edu [Department of Chemistry, Hope College, 35 E. 12th Street, Holland, MI 49423 (United States)

    2015-09-01

    A novel application of particle-induced X-ray emission (PIXE) has been developed to detect the presence of chlorinated and brominated flame retardant chemicals in polyurethane foams. Traditional Gas Chromatography–Mass Spectrometry (GC–MS) methods for the detection and identification of halogenated flame retardants in foams require extensive sample preparation and data acquisition time. The elemental analysis of the halogens in polyurethane foam performed by PIXE offers the opportunity to identify the presence of halogenated flame retardants in a fraction of the time and sample preparation cost. Through comparative GC–MS and PIXE analysis of 215 foam samples, excellent agreement between the two methods was obtained. These results suggest that PIXE could be an ideal rapid screening method for the presence of chlorinated and brominated flame retardants in polyurethane foams.

  12. Halogen- and hydrogen-bonding catenanes for halide-anion recognition.

    Science.gov (United States)

    Gilday, Lydia C; Beer, Paul D

    2014-07-01

    Halogen-bonding (XB) interactions were exploited in the solution-phase assembly of anion-templated pseudorotaxanes between an isophthalamide-containing macrocycle and bromo- or iodo-functionalised pyridinium threading components. (1)H NMR spectroscopic titration investigations demonstrated that such XB interpenetrated assemblies are more stable than analogous hydrogen bonding (HB) pseudorotaxanes. The stability of the anion-templated halogen-bonded pseudorotaxane architectures was exploited in the preparation of new halogen-bonding interlocked catenane species through a Grubbs' ring-closing metathesis (RCM) clipping methodology. The catenanes' anion recognition properties in the competitive CDCl(3)/CD(3) OD 1:1 solvent mixture revealed selectivity for the heavier halides iodide and bromide over chloride and acetate.

  13. Induction of bacterial antibiotic resistance by mutagenic halogenated nitrogenous disinfection byproducts.

    Science.gov (United States)

    Lv, Lu; Yu, Xin; Xu, Qian; Ye, Chengsong

    2015-10-01

    Halogenated nitrogenous disinfection byproducts (N-DBPs) raise concerns regarding their mutagenicity and carcinogenicity threatening public health. However, environmental consequence of their mutagenicity has received less attention. In this study, the effect of halogenated N-DBPs on bacterial antibiotic resistance (BAR) was investigated. After exposure to bromoacetamide (BAcAm), trichloroacetonitrile (TCAN) or tribromonitromethane (TBNM), the resistance of Pseudomonas aeruginosa PAO1 to both individual and multiple antibiotics (ciprofloxacin, gentamicin, polymyxin B, rifampin, tetracycline, ciprofloxacin + gentamicin and ciprofloxacin + tetracycline) was increased, which was predominantly ascribed to the overexpression of efflux pumps. The mechanism of this effect was demonstrated to be mutagenesis through sequencing and analyzing antibiotic resistance genes. The same induction phenomena also appeared in Escherichia coli, suggesting this effect may be universal to waterborne pathogens. Therefore, more attention should be given to halogenated N-DBPs, as they could increase not only genotoxicological risks but also epidemiological risks of drinking water.

  14. Blue emitting halogen-phenoxy substituted 1,8-naphthalimides for potential organic light emitting diode applications

    Science.gov (United States)

    Ulla, Hidayath; Raveendra Kiran, M.; Garudachari, B.; Satyanarayan, M. N.; Umesh, G.; Isloor, A. M.

    2014-11-01

    In this paper, we report the synthesis and characterization of six 1,8-naphthalimides [4a-4c and 5a-5c] obtained by the substitution of electron donating halogen-phenoxy groups at the C-4 position. The derivatives were characterized using 1H NMR, 13C NMR, mass spectra, FT-IR, single crystal XRD; photo-physical, thermal, surface morphological and electrochemical properties were also investigated. The derivatives exhibit deep blue photoluminescence in the range 414-423 nm (in CHCl3) and 457-466 nm (in thin film state) on UV excitation with high Stokes' shifts and good chromaticity. The TGA and DSC analysis showed that the derivatives possess good thermal stability (271-284 °C) and melting points (138-201 °C). The HOMO and LUMO energy levels estimated by cyclic voltammetry are in the range 6.21-6.34 eV and 3.31-3.41 eV respectively corresponding to energy band gaps of 2.98-3.15 eV. These energy values are relatively higher than the commonly used electron transporting materials. The optical and electronic properties of the derivatives were tuned by the introduction of different electron donating halogen-phenoxy groups through C-4 position of the naphthalimide moiety. The emissive and electron-transporting properties of the naphthalimide derivative 4a were studied by fabricating a bi-layer and tri-layer devices. Further a phosphorescent device with 4a as electron transport layer (ETL) exhibited superior performance than the device without any ETL and was comparable with the device using standard Alq3 as ETL. These results indicate that the synthesized naphthalimide derivatives could play an important role in the development of OLEDs.

  15. Sources and formation mechanisms of carbonaceous aerosol at a regional background site in the Netherlands: insights from a year-long radiocarbon study

    Science.gov (United States)

    Dusek, Ulrike; Hitzenberger, Regina; Kasper-Giebl, Anne; Kistler, Magdalena; Meijer, Harro A. J.; Szidat, Sönke; Wacker, Lukas; Holzinger, Rupert; Röckmann, Thomas

    2017-03-01

    We measured the radioactive carbon isotope 14C (radiocarbon) in various fractions of the carbonaceous aerosol sampled between February 2011 and March 2012 at the Cesar Observatory in the Netherlands. Based on the radiocarbon content in total carbon (TC), organic carbon (OC), water-insoluble organic carbon (WIOC), and elemental carbon (EC), we estimated the contribution of major sources to the carbonaceous aerosol. The main source categories were fossil fuel combustion, biomass burning, and other contemporary carbon, which is mainly biogenic secondary organic aerosol material (SOA). A clear seasonal variation is seen in EC from biomass burning (ECbb), with lowest values in summer and highest values in winter, but ECbb is a minor fraction of EC in all seasons. WIOC from contemporary sources is highly correlated with ECbb, indicating that biomass burning is a dominant source of contemporary WIOC. This suggests that most biogenic SOA is water soluble and that water-insoluble carbon stems mainly from primary sources. Seasonal variations in other carbon fractions are less clear and hardly distinguishable from variations related to air mass history. Air masses originating from the ocean sector presumably contain little carbonaceous aerosol from outside the Netherlands, and during these conditions measured carbon concentrations reflect regional sources. In these situations absolute TC concentrations are usually rather low, around 1.5 µg m-3, and ECbb is always very low ( ˜ 0.05 µg m-3), even in winter, indicating that biomass burning is not a strong source of carbonaceous aerosol in the Netherlands. In continental air masses, which usually arrive from the east or south and have spent several days over land, TC concentrations are on average by a factor of 3.5 higher. ECbb increases more strongly than TC to 0.2 µg m-3. Fossil EC and fossil WIOC, which are indicative of primary emissions, show a more moderate increase by a factor of 2.5 on average. An interesting case is

  16. Characterization of carbonaceous matter in xenolithic clasts from the Sharps (H3.4) meteorite: Constraints on the origin and thermal processing

    Science.gov (United States)

    Kebukawa, Yoko; Zolensky, Michael E.; Chan, Queenie H. S.; Nagao, Keisuke; Kilcoyne, A. L. David; Bodnar, Robert J.; Farley, Charles; Rahman, Zia; Le, Loan; Cody, George D.

    2017-01-01

    with some material reported in carbonaceous chondrites, i.e., heavily enriched in the Q-gas component as well as HL-gas from presolar diamonds and Ne-E(H) from presolar SiC. These results indicate that the C-rich aggregates in the Sharps clasts formed under relatively high temperature conditions, up to 800 °C, and were subsequently mixed with lower temperature matrix, probably in a different parent body, before they were incorporated into the final Sharps lithology by collision.

  17. Stability and Characteristics of the Halogen Bonding Interaction in an Anion-Anion Complex: A Computational Chemistry Study.

    Science.gov (United States)

    Wang, Guimin; Chen, Zhaoqiang; Xu, Zhijian; Wang, Jinan; Yang, Yang; Cai, Tingting; Shi, Jiye; Zhu, Weiliang

    2016-02-04

    Halogen bonding is the noncovalent interaction between the positively charged σ-hole of organohalogens and nucleophiles. In reality, both the organohalogen and nucleophile could be deprotonated to form anions, which may lead to the vanishing of the σ-hole and possible repulsion between the two anions. However, our database survey in this study revealed that there are halogen bonding-like interactions between two anions. Quantum mechanics calculations with small model complexes composed of halobenzoates and propiolate indicated that the anion-anion halogen bonding is unstable in vacuum but attractive in solvents. Impressively, the QM optimized halogen bonding distance between the two anions is shorter than that in a neutral system, indicating a possibly stronger halogen bonding interaction, which is verified by the calculated binding energies. Furthermore, natural bond orbital and quantum theory of atoms in molecule analyses also suggested stronger anion-anion halogen bonding than that of the neutral one. Energy decomposition by symmetry adapted perturbation theory revealed that the strong binding might be attributed to large induction energy. The calculations on 4 protein-ligand complexes from PDB by the QM/MM method demonstrated that the anion-anion halogen bonding could contribute to the ligands' binding affinity up to ∼3 kcal/mol. Therefore, anion-anion halogen bonding is stable and applicable in reality.

  18. Unstable, metastable, or stable halogen bonding interaction involving negatively charged donors? A statistical and computational chemistry study.

    Science.gov (United States)

    Yang, Zhuo; Xu, Zhijian; Liu, Yingtao; Wang, Jinan; Shi, Jiye; Chen, Kaixian; Zhu, Weiliang

    2014-12-11

    The noncovalent halogen bonding could be attributed to the attraction between the positively charged σ-hole and a nucleophile. Quantum mechanics (QM) calculation indicated that the negatively charged organohalogens have no positively charged σ-hole on their molecular surface, leading to a postulation of repulsion between negatively charged organohalogens and nucleophiles in vacuum. However, PDB survey revealed that 24% of the ligands with halogen bonding geometry could be negatively charged. Moreover, 36% of ionizable drugs in CMC (Comprehensive Medicinal Chemistry) are possibly negatively charged at pH 7.0. QM energy scan showed that the negatively charged halogen bonding is probably metastable in vacuum. However, the QM calculated bonding energy turned negative in various solvents, suggesting that halogen bonding with negatively charged donors should be stable in reality. Indeed, QM/MM calculation on three crystal structures with negatively charged ligands revealed that the negatively charged halogen bonding was stable. Hence, we concluded that halogen bonding with negatively charged donors is unstable or metastable in vacuum but stable in protein environment, and possesses similar geometric and energetic characteristics as conventional halogen bonding. Therefore, negatively charged organohalogens are still effective halogen bonding donors for medicinal chemistry and other applications.

  19. The chemical composition of inorganic and carbonaceous materials in PM 2.5 in Nanjing, China

    Science.gov (United States)

    Yang, Hong; Yu, Jian Zhen; Ho, Steven Sai Hang; Xu, Jinhui; Wu, Wai-Shing; Wan, Chun Hong; Wang, Xiaodong; Wang, Xiaorong; Wang, Liansheng

    PM 2.5 samples were collected at an urban and a suburban site in Nanjing, China in 2001. They were analyzed for inorganic ions, elemental carbon, organic carbon (OC), water-soluble organic carbon (WSOC), and individual WSOC and nonpolar organic species. Sulfate and organic matter were the two most abundant constituents in these samples. Sulfate accounted for an average of 23% (urban site) and 30% (suburban site) of the identified aerosol mass. Organic matter accounted for an average of 37% (urban) and 28% (suburban) of the identified aerosol mass. WSOC was a significant portion of OC, accounting for about one-third of OC at the urban site and 45% of OC at the suburban site. The suburban-urban gradient in the WSOC/OC ratio also reflected that the aerosol OC was more aged at the suburban location. The correlations of WSOC with sulfate and nitrate suggest that the WSOC fraction was dominated by secondary organics. More than 30 individual WSOC species in the compound classes of organic anions, amino acids, aliphatic amines, and carbohydrates were quantified, accounting for approximately 8% of the WSOC on a carbon mass basis. In addition, 46 individual nonpolar organic compounds in the compound classes of n-alkanes, hopanes, and polycyclic aromatic hydrocarbons were quantified using an in-injection port thermal desorption technique. These nonpolar organic species accounted for less than 7% of the OC on a carbon mass basis. The quantification of individual compounds allowed the identification of major aerosol sources through principal component analysis. Coal combustion, vehicular emissions, secondary inorganic and organic aerosols, and road/sea salt were the major contributing sources to the identified PM 2.5 aerosol mass.

  20. The Effect of Liquid Aluminium on the Corrosion of Carbonaceous Materials

    Directory of Open Access Journals (Sweden)

    Pietrzyk S.

    2014-06-01

    Full Text Available Podczas wielu procesów wytapiania aluminium występują bezpośrednie kontakty ciekłego metalu i materiałów węglowych stanowiących wyłożenia wanien, pieców, tygli i kadzi itp. W rezultacie zachodzą procesy tworzenia węglika glinu na powierzchni między fazowej a następnie jego roztwarzania, które są uznawane jest za jeden z najważniejszych mechanizmów powodujących zużycie powierzchni i obniżenia żywotności urządzeń, zwłaszcza w procesie elektrolizy aluminium. Niniejsza praca miała na celu bliższe poznanie początkowych etapów tworzenia AI4C3 na powierzchni granicznej aluminium/węgiel. Zbadano trzy rodzaje materiałów węglowych: amorficzne, semigrafitowe i grafitowe, w obecności oraz przy braku stopionego kriolitu. Ponieważ jest bardzo trudno zbadać warstwę AI4C3 bezpośrednio (in situ, zastosowano dwie pośrednie techniki eksperymentalne: pomiar potencjału i rezystancji elektryczjnej. Stwierdzono, iż proces powstawania węglika glinu będzie zależeć od wielu zjawisk związanych z obecnością elektrolitu (interkalacja, penetracja i rozpuszczanie, jak również od struktury materiału węglowego a zwłaszcza od obecności fazy nieuporządkowanej.

  1. Circumstellar carbonaceous material associated with late-type dusty WC Wolf-Rayet stars

    NARCIS (Netherlands)

    Chiar, JE; Tielens, AGGM

    2001-01-01

    We have studied the 5-8.5 mum infrared spectra of the late-type Wolf-Rayet stars WR 118, WR 112, and WR 104, the WN star WR 147, the B5 hypergiant Cygnus OB2 No. 12, and the Galactic center luminous blue variable Pistol Star using the Short Wavelength Spectrometer on the Infrared Space Observatory.

  2. Hydrothermal carbonization of glucose in saline solution: sequestration of nutrients on carbonaceous materials

    Directory of Open Access Journals (Sweden)

    Jessica Nover

    2016-02-01

    Full Text Available In this study, feasibility of selected nutrient sequestration during hydrothermal carbonization (HTC was tested for three different HTC temperatures (180, 230, and 300 °C. To study the nutrient sequestration in solid from liquid solution, sugar and salt solutions were chosen as HTC feedstock. Glucose was used as carbohydrate source and various salts e.g., ammonium hydrophosphate, potassium chloride, potassium sulfate, and anhydrous ferric chloride were used as source of nitrogen and phosphorus, potassium, and iron, respectively. Solid hydrochar was extensively characterized by means of elemental, ICP-OES, SEM-EDX, surface area, pore volume and size, and ATR-FTIR to determine nutrients’ sequestration as well as hydrochar quality variation with HTC temperatures. The spherical mesoporous hydrochars produced during HTC have low surface area in the range of 1.0–3.5 m2 g−1. Hydrochar yield was increased about 10% with the increase of temperature from 180 °C to 300 °C. Nutrient sequestration was also increased with HTC temperature. In fact, around 71, 31, and 23 wt% nitrogen, iron, and phosphorus were sequestered at 300 °C, respectively. Potassium sequestration was very low throughout the HTC and maximum 5.2% was observed in solid during HTC.

  3. Raman spectroscopic study of phosphogypsum thermal reduction with the carbonaceous material.

    Science.gov (United States)

    Msila, Xolani; Barnard, Werner; Billing, Dave G

    2015-10-05

    Elemental sulphur (S) can be produced from hydrogen sulphide (H2S) in a PiPco or Iron process. In turn H2S can be stripped with carbon dioxide (CO2) from calcium sulphide (CaS) obtained from the thermal reduction of phosphogypsum with carbon. The reaction pathway for the thermal reduction of the phosphogypsum with graphite was studied using thermogravimetric analysis and in situ Raman spectroscopy. The dehydration of the phosphogypsum to anhydrite was completed at about 142 °C. The dehydration was followed by the formation of the intermediate compound at about 860 °C which is characterised by a mass loss of about 11%. The intermediate compound, identified using the in situ Raman spectroscopy to be a dehydrated orschallite-type compound (Ca3[SO4][SO3]2), converted to CaS at about 935 °C. The presence of the metal impurities in the phosphogypsum: Ni(2+)(4 mg kg(-1)); Co(2+)(2 mg kg(-1)); Mn(2+)(5 mg kg(-1)); Cu(2+)(14 mg kg(-1)); Fe(2+)(200 mg kg(-1)) and Mg(2+)(300 mg kg(-1)) showed no influence the onset temperature for the reduction reaction.

  4. Efficiency of light-emitting diode and halogen units in reducing residual monomers

    Science.gov (United States)

    de Assis Ribeiro Carvalho, Felipe; Almeida, Rhita C.; Almeida, Marco Antonio; Cevidanes, Lucia H. S.; Leite, Marcia C. Amorim M.

    2011-01-01

    Introduction In this in-vitro study, we aimed to compare the residual monomers in composites beneath brackets bonded to enamel, using a light-emitting diode (LED) or a halogen unit, and to compare the residual monomers in the central to the peripheral areas of the composite. Methods Twenty bovine teeth preserved in 0.1% thymol were used in this study. Ten teeth were used to standardize the thickness of the composite film, since different thicknesses would cause different absorbance of light. Brackets were bonded to 10 bovine incisors, with the halogen light (n = 5) and the LED (n = 5). The brackets were debonded, and the remaining composite on the enamel surface was sectioned in 2 regions: peripheral (0.8 mm) and central, resulting in 2 subgroups per group: central halogen (n = 5), peripheral halogen (n = 5), central LED (n = 5), and peripheral LED (n = 5). The spectrometric analysis in the infrared region was used to measure the free monomers with the attenuated total reflectance method. Results Normal distribution was tested by using the Kolmogorov-Smirnov test. Data were compared by 2-way analysis of variance (ANOVA) at P <0.05. The LED group showed fewer residual monomers than did the halogen group (P = 0.014). No differences were found among the regions (P = 0.354), and there were no interactions between light type and region (P = 0.368). Conclusions LED leaves less residual monomer than does the halogen light, even with half of the irradiation time; there were no differences between the central and peripheral regions, and no interaction between light type and region. PMID:21055603

  5. Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem

    Science.gov (United States)

    Sherwen, Tomás; Schmidt, Johan A.; Evans, Mat J.; Carpenter, Lucy J.; Großmann, Katja; Eastham, Sebastian D.; Jacob, Daniel J.; Dix, Barbara; Koenig, Theodore K.; Sinreich, Roman; Ortega, Ivan; Volkamer, Rainer; Saiz-Lopez, Alfonso; Prados-Roman, Cristina; Mahajan, Anoop S.; Ordóñez, Carlos

    2016-09-01

    We present a simulation of the global present-day composition of the troposphere which includes the chemistry of halogens (Cl, Br, I). Building on previous work within the GEOS-Chem model we include emissions of inorganic iodine from the oceans, anthropogenic and biogenic sources of halogenated gases, gas phase chemistry, and a parameterised approach to heterogeneous halogen chemistry. Consistent with Schmidt et al. (2016) we do not include sea-salt debromination. Observations of halogen radicals (BrO, IO) are sparse but the model has some skill in reproducing these. Modelled IO shows both high and low biases when compared to different datasets, but BrO concentrations appear to be modelled low. Comparisons to the very sparse observations dataset of reactive Cl species suggest the model represents a lower limit of the impacts of these species, likely due to underestimates in emissions and therefore burdens. Inclusion of Cl, Br, and I results in a general improvement in simulation of ozone (O3) concentrations, except in polar regions where the model now underestimates O3 concentrations. Halogen chemistry reduces the global tropospheric O3 burden by 18.6 %, with the O3 lifetime reducing from 26 to 22 days. Global mean OH concentrations of 1.28 × 106 molecules cm-3 are 8.2 % lower than in a simulation without halogens, leading to an increase in the CH4 lifetime (10.8 %) due to OH oxidation from 7.47 to 8.28 years. Oxidation of CH4 by Cl is small (˜ 2 %) but Cl oxidation of other VOCs (ethane, acetone, and propane) can be significant (˜ 15-27 %). Oxidation of VOCs by Br is smaller, representing 3.9 % of the loss of acetaldehyde and 0.9 % of the loss of formaldehyde.

  6. Thermodynamics parameters for binding of halogenated benzotriazole inhibitors of human protein kinase CK2α.

    Science.gov (United States)

    Winiewska, Maria; Kucińska, Katarzyna; Makowska, Małgorzata; Poznański, Jarosław; Shugar, David

    2015-10-01

    The interaction of human CK2α (hCK2α) with nine halogenated benzotriazoles, TBBt and its analogues representing all possible patterns of halogenation on the benzene ring of benzotriazole, was studied by biophysical methods. Thermal stability of protein-ligand complexes, monitored by calorimetric (DSC) and optical (DSF) methods, showed that the increase in the mid-point temperature for unfolding of protein-ligand complexes (i.e. potency of ligand binding to hCK2α) follow the inhibitory activities determined by biochemical assays. The dissociation constant for the ATP-hCK2α complex was estimated with the aid of microscale thermophoresis (MST) as 4.3±1.8 μM, and MST-derived dissociation constants determined for halogenated benzotriazoles, when converted according to known ATP concentrations, perfectly reconstruct IC50 values determined by the biochemical assays. Ligand-dependent quenching of tyrosine fluorescence, together with molecular modeling and DSC-derived heats of unfolding, support the hypothesis that halogenated benzotriazoles bind in at least two alternative orientations, and those that are efficient hCK2α inhibitors bind in the orientation which TBBt adopts in its complex with maize CK2α. DSC-derived apparent heat for ligand binding (ΔΔHbind) is driven by intermolecular electrostatic interactions between Lys68 and the triazole ring of the ligand, as indicated by a good correlation between ΔΔHbind and ligand pKa. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly (~40 kJ/mol), relative to possible intermolecular halogen/hydrogen bonding (less than 10 kJ/mol), in binding of halogenated benzotriazoles to the ATP-binding site of hCK2α. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.

  7. Investigations of the tropospheric halogen chemistry around Ross Island, Antarctica, during austral spring 2012

    Science.gov (United States)

    Zielcke, Johannes; Pöhler, Denis; Frieß, Udo; Hay, Tim; Kreher, Karin; Kalnajs, Lars; Platt, Ulrich

    2013-04-01

    A unique feature of the polar troposphere is the strong impact of halogen photochemistry, in which reactive halogen species (RHS) are responsible for ozone depletion as well as the oxidation of elemental mercury and dimethyl sulphide. The source, however, as well as release and recycling mechanisms of these halogen species are far from being completely understood, especially the role of chlorine and iodine compounds. Reactive chlorine, bromine and iodine compounds are thought to be released from sea salt particles or produced by the photolysis of halocarbons and I2 emitted by the ocean. Here we present observations of halogen oxides, ozone and nitrogen dioxide conducted for three months during austral spring 2012 on Ross Island, Antarctica. Measurements were performed with a suite of remote sensing instruments. An active long-path differential optical absorption spectroscopy (LP-DOAS) system was set up, measuring several species (BrO, O3, NO2, OBrO, IO, OIO, I2, ClO, OClO, CHOCHO, HCHO, HONO) continuously for the whole period, with two light paths over first year sea ice. In addition, a passive MAX-DOAS as well as a new Cavity-Enhanced (CE)-DOAS system were used for mobile halogen oxide measurements on a variety of locations around Ross Island (sea ice, shelf ice, snow, coastal, etc.), with top surface layer pH measurements performed at the different measurement sites. First results show highly variable ozone concentrations including partial Ozone Depletion Events (ODEs), as well as concentrations of BrO up to 16ppt and NO2 up to 15ppb. Suprisingly, a high variation of ozone was observed without significant amounts of BrO, indicating already depleted air masses transported to the measurement site and/or NOx chemistry inhibiting halogen radical reactions.

  8. The Influence of Carbonaceous Matrices and Electrocatalytic MnO2 Nanopowders on Lithium-Air Battery Performances

    Directory of Open Access Journals (Sweden)

    Alessandro Minguzzi

    2016-01-01

    Full Text Available Here, we report new gas diffusion electrodes (GDEs prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO2 nanoparticles are finely characterized in terms of structural (X-ray powder diffraction (XRPD, energy dispersive X-ray (EDX, morphological (SEM, high-angle annular dark field (HAADF-scanning transmission electron microscopy (STEM/TEM, surface (Brunauer Emmet Teller (BET-Barrett Joyner Halenda (BJH method and electrochemical properties. Two mesoporous carbons, showing diverse surface areas and pore volume distributions, have been employed. The GDE performances are evaluated by chronopotentiometric measurements to highlight the effects induced by the adopted materials. The best combination, hollow core mesoporous shell carbon (HCMSC with 1.0% Ag-doped hydrothermal MnO2 (M_hydro_1.0%Ag allows reaching very high specific capacity close to  1400 mAh·g−1. Considerably high charge retention through cycles is also observed, due to the presence of silver as a dopant for the electrocatalytic MnO2 nanoparticles.

  9. New Insecticidal Agents from Halogenation/Acylation of the Furyl-Ring of Fraxinellone

    Science.gov (United States)

    Guo, Yong; Yang, Ruige; Xu, Hui

    2016-10-01

    Introduction of the halogen atom or the acyl group at the C-ring of fraxinellone was investigated. Some unexpected halogenation products were obtained with the different chlorination/bromination reagents, and their possible reaction mechanisms were also proposed. Seven key steric structures of 2a’, 2b, 2b’, 2c’, 3a, 3b, and one isomer (5’α-Cl) of 2a were further confirmed by single-crystal X-ray diffraction. Especially compounds 2a, 2a’, 3a and 3c exhibited more potent insecticidal activity than toosendanin. Some structure-activity relationships of tested compounds were also described.

  10. Chlorine dioxide as phenol and H2S scavenger - formation of halogenated phenols and subsequent environmental risk

    Energy Technology Data Exchange (ETDEWEB)

    Melbye, Alf G.; Faksness, Liv-Guri; Knudsen, Boerre Leif

    2006-03-15

    Formation of halogenated phenols as side products from treatment of produced water with aqueous chlorine dioxide has been investigated. The literature describes formation of halogenated hydrocarbons in effluent treatment using chlorine, hypochlorite and chlorine dioxide. A new chlorine dioxide product, originally intended as a H2S scavenger in the oil and gas industry, has been tested both as a phenol scavenger and H2S-scavenger for produced water applications. The concern about the possible formation of halogenated by-products initiated laboratory testing of chlorine dioxide as phenol and H2S scavenger for produced water applications. The tests also included synthetic matrixes containing phenols, and the tests show that halogenated phenols, mainly brominated species, are found in produced water after treatment with chlorine dioxide. Due to potential environmental risk from halogenated organic contaminants, the use of chlorine dioxide as phenol and H2S scavenger is not recommended. (Author)

  11. 40 CFR 721.2140 - Carbo-poly-cycli-col azo-alkyl-aminoalkyl-carbo-mono-cyclic ester, halogen acid salt.

    Science.gov (United States)

    2010-07-01

    ...-aminoalkyl-carbo-mono-cyclic ester, halogen acid salt. 721.2140 Section 721.2140 Protection of Environment...-aminoalkyl-carbo-mono-cyclic ester, halogen acid salt. (a) Chemical substance and significant new uses...-mino-al-kyl-car-bo-mon-o-cyc-lic ester, halogen acid salt (PMN P-88-1682) is subject to reporting...

  12. Field Emission Electron Microprobe Analysis of Halogens in Apatite

    Science.gov (United States)

    Tacker, R. C.

    2011-12-01

    counts increase as expected from 10 to 20 kV, but the loss of chlorine is more strongly controlled by crystal orientation. With electron beam parallel to the c-axis, chlorine counts are very low, pointing to the chlorine loss during analysis. Hence fluorine and chlorine are fractionated during analysis as a complicated function of beam energies and crystal orientation. Routine analyses of halogens in apatite are unlikely to yield a quantitative analysis, and OH calculated by the difference in a normalized analysis is less likely to be meaningful. Further, the use of 15-20 kV secondary electron or backscatter electron imaging prior to analysis should be reconsidered. Stormer et al., 1993, Am. Min., 78, 641. Fialin and Chopin, 2006, Am. Min. 91, 503.

  13. Halogenated organic species over the tropical South American rainforest

    Directory of Open Access Journals (Sweden)

    S. Gebhardt

    2008-06-01

    Full Text Available Airborne measurements of the halogenated trace gases methyl chloride, methyl bromide and chloroform were conducted over the Atlantic Ocean and about 1000 km of pristine tropical rainforest in Suriname and French Guyana (3–6° N, 51–59° W in October 2005. In the boundary layer (0–1.4 km, maritime air masses, advected over the forest by southeasterly trade winds, were measured at various distances from the coast. Since the organohalogens presented here have relatively long atmospheric lifetimes (0.4–1.0 years in comparison to the advection times from the coast (1–2 days, emissions will accumulate in air traversing the rainforest. The distributions of methyl chloride, methyl bromide and chloroform were analyzed as a function of time the air spent over land and the respective relationship used to determine net fluxes from the rainforest for one week within the long dry season.

    Net fluxes from the rainforest ecosystem have been calculated for methyl chloride and chloroform as 9.5 (±3.8 2σ and 0.35 (±0.15 2σμg m-2 h−1, respectively. No significant flux was observed for methyl bromide within the limits of these measurements.

    The global budget of methyl chloride contains large uncertainties, in particular with regard to a possible source from tropical vegetation. Our measurements are used in a large-scale approach to determine the net flux from a tropical ecosystem to the planetary boundary layer. The obtained global net flux of 1.5 (±0.6 2σ Tg yr-1 for methyl chloride is at the lower end of current estimates for tropical vegetation sources, which helps to constrain the range of tropical sources and sinks (0.82 to 8.2 Tg yr-1 from tropical plants, 0.03 to 2.5 Tg yr-1 from senescent/dead leaves and a sink of 0.1 to 1.6 Tg yr-1 by soil uptake. Nevertheless, these results show that the contribution of the rainforest ecosystem is the major source in the

  14. Halogens in pore water of peat bogs – the role of peat decomposition and dissolved organic matter

    Directory of Open Access Journals (Sweden)

    H. Biester

    2006-01-01

    Full Text Available Halogens are strongly enriched in peat and peatlands and such they are one of their largest active terrestrial reservoir. The enrichment of halogens in peat is mainly attributed to the formation of organohalogens and climatically controlled humification processes. However, little is known about release of halogens from the peat substrate and the distribution of halogens in the peat pore water. In this study we have investigated the distribution of chlorine, bromine and iodine in pore water of three pristine peat bogs located in the Magellanic Moorlands, southern Chile. Peat pore waters were collected using a sipping technique, which allows in situ sampling down to a depth greater than 6m. Halogens and halogen species in pore water were determined by ion-chromatography (IC (chlorine and IC-ICP-MS (bromine and iodine. Results show that halogen concentrations in pore water are 15–30 times higher than in rainwater. Mean concentrations of chlorine, bromine and iodine in pore water were 7–15 mg l−1, 56–123 μg l−1, and 10–20 μg l−1, which correspond to mean proportions of 10–15%, 1–2.3% and 0.5–2.2% of total concentrations in peat, respectively. Organobromine and organoiodine were the predominant species in pore waters, whereas chlorine in pore water was mostly chloride. Advection and diffusion of halogens were found to be generally low and halogen concentrations appear to reflect release from the peat substrate. Release of bromine and iodine from peat depend on the degree of peat degradation, whereas this relationship is weak for chlorine. Relatively higher release of bromine and iodine was observed in less degraded peat sections, where the release of dissolved organic carbon (DOC was also the most intensive. It has been concluded that the release of halogenated dissolved organic matter (DOM is the predominant mechanism of iodine and bromine release from peat.

  15. Hard macrocellular silica Si(HIPE) foams templating micro/macroporous carbonaceous monoliths: applications as lithium ion battery negative electrodes and electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Nicolas [Universite de Bordeaux, Centre de Recherche Paul Pascal, UPR 8641-CNRS, Pessac (France); Universite de Bordeaux, Institut des Sciences Moleculaires CNRS-UMR, Talence (France); Prabaharan, Savari R.S. [Laboratoire de Reactivite et Chimie des Solides, UMR CNRS 6007 Universite de Picardie Jules Verne, Amiens (France); Faculty of Engineering and Computer Science, University of Nottingham, Malaysia Campus Jalan Broga, Semenyih, Selangor (Malaysia); Morcrette, Mathieu [Laboratoire de Reactivite et Chimie des Solides, UMR CNRS 6007 Universite de Picardie Jules Verne, Amiens (France); Sanchez, Clement [Laboratoire de Chimie de la Matiere Condensee de Paris, Universite Paris 06, Paris (France); Pecastaings, Gilles; Soum, Alain [Laboratoire de Chimie des Polymeres Organiques UMR 5629 CNRS, Universite Bordeaux-1, Pessac (France); Derre, Alain; Backov, Renal [Universite de Bordeaux, Centre de Recherche Paul Pascal, UPR 8641-CNRS, Pessac (France); Deleuze, Herve; Birot, Marc [Universite de Bordeaux, Institut des Sciences Moleculaires CNRS-UMR, Talence (France)

    2009-10-09

    By using Si(HIPEs) as hard, exotemplating matrices, interconnected macro-/microporous carbon monolith-type materials with a surface area of around 600 m{sup 2} g{sup -1} are synthesized and shaped. The carbonaceous foams exhibit a conductivity of 20 S cm{sup -1}, addressed with excellent mechanical properties (Young's modulus of 0.2 GPa and toughness of 13 J g{sup -1}, when the carbon core is optimized). The above-mentioned specificities, combined with the fact that the external shape and size can be easily designed on demand, are of primary importance for applications. The functionality of these carbonaceous monoliths is tested as both an electrochemical capacitor and a lithium ion negative electrode. The electrochemical capacitors' voltage-current profiles exhibit a non-ideal rectangular response, confirming the double-layer behavior of the carbon studied, while the charge-discharge current profile of the electric double-layer capacitor is directly proportional to the scan where the current response during charge and discharge exhibits high reversibility. When acting as a lithium ion negative electrode, after initial irreversibility, a good cyclability is obtained, associated with a stable capacity of 200 mA h g{sup -1} during the first 50 cycles at a reasonable current density (C/10). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  16. Construction of Tungsten Halogen, Pulsed LED, and Combined Tungsten Halogen-LED Solar Simulators for Solar Cell I-V Characterization and Electrical Parameters Determination

    OpenAIRE

    Anon Namin; Chaya Jivacate; Dhirayut Chenvidhya; Krissanapong Kirtikara; Jutturit Thongpron

    2012-01-01

    I-V characterization of solar cells is generally done under natural sunlight or solar simulators operating in either a continuous mode or a pulse mode. Simulators are classified on three features of irradiance, namely, spectral match with respect to air mass 1.5, spatial uniformity, and temporal stability. Commercial solar simulators use Xenon lamps and halogen lamps, whereas LED-based solar simulators are being developed. In this work, we build and test seven simulators for solar cell charac...

  17. Oxygen- and magnesium-isotope compositions of calcium-aluminum-rich inclusions from CR2 carbonaceous chondrites

    Science.gov (United States)

    Makide, Kentaro; Nagashima, Kazuhide; Krot, Alexander N.; Huss, Gary R.; Hutcheon, Ian D.; Bischoff, Addi

    2009-09-01

    We report both oxygen- and magnesium-isotope compositions measured in situ using a Cameca ims-1280 ion microprobe in 20 of 166 CAIs identified in 47 polished sections of 15 CR2 (Renazzo-type) carbonaceous chondrites. Two additional CAIs were measured for oxygen isotopes only. Most CR2 CAIs are mineralogically pristine; only few contain secondary phyllosilicates, sodalite, and carbonates - most likely products of aqueous alteration on the CR2 chondrite parent asteroid. Spinel, hibonite, grossite, anorthite, and melilite in 18 CAIs have 16O-rich (Δ 17O = -23.3 ± 1.9‰, 2 σ error) compositions and show no evidence for postcrystallization isotopic exchange commonly observed in CAIs from metamorphosed CV carbonaceous chondrites. The inferred initial 26Al/ 27Al ratios, ( 26Al/ 27Al) 0, in 15 of 16 16O-rich CAIs measured are consistent with the canonical value of (4.5-5) × 10 -5 and a short duration (oxygen- and magnesium-isotope compositions (˜11 and 23‰/amu, respectively), a deficit of 26Mg, and a relatively low ( 26Al/ 27Al) 0 = (2.0 ± 1.7) × 10 -5. This could be the first FUN ( Fractionation and Unidentified Nuclear effects) CAI found in CR2 chondrites. Because this inclusion is slightly 16O-depleted compared to most CR2 CAIs and has lower than the canonical ( 26Al/ 27Al) 0, it may have experienced multistage formation from precursors with nonsolar magnesium-isotope composition and recorded evolution of oxygen-isotope composition in the early solar nebula over 0.9+2.2-0.7 My. Eight of the 166 CR2 CAIs identified are associated with chondrule materials, indicating that they experienced late-stage, incomplete melting during chondrule formation. Three of these CAIs show large variations in oxygen-isotope compositions (Δ 17O ranges from -23.5‰ to -1.7‰), suggesting dilution by 16O-depleted chondrule material and possibly exchange with an 16O-poor (Δ 17O > -5‰) nebular gas. The low inferred ( 26Al/ 27Al) 0 ratios of these CAIs (2 My after crystallization

  18. Dust Infall Onto Phobos and Deimos Can Explain Their Carbonaceous Reflectance Signature, Perhaps Overlying a Mars-Impact-Origin Core: A Hypothesis

    Science.gov (United States)

    Fries, M.; Cintala, M.; Steele, A.; Welzenbach, L. C.

    2017-01-01

    Discussions of Phobos' and Deimos' (henceforth P&D) origin(s) include an unresolved conflict: dynamical studies which favor coalescence of the moons from a large impact on Mars [1,2], versus reflectance spectroscopy of the moons showing a carbonaceous composition that is not consistent with martian surface materials [3-5]. One way to reconcile this discrepancy is to consider the combined options of a Mars impact origin for Phobos and Deimos, followed by deposition of carbon-rich materials by interplanetary dust particle (IDP) infall. This is significant because, unlike asteroidal bodies, P&D experience a high IDP flux due to their location in Mars' gravity well. We present some relatively simple, initial calculations which indicate that accreted carbon may be sufficient to produce a surface with sufficient added carbon to account for P&D's reflectance spectra. If this is true, then a major objection to an impact origin for P&D is resolved.

  19. Review of Rate Constants and Exploration of Correlations of the Halogen Transfer Reaction of Tri-substituted Carbon-centered Radicals with Molecular Halogens

    Energy Technology Data Exchange (ETDEWEB)

    Poutsma, Marvin L [ORNL

    2012-01-01

    Rate constants for the reaction (R 3C + X2 R 3CX + X ; X = F, Cl, Br, and I) are reviewed. Because of curved Arrhenius plots and negative EX values, empirical structure-reactivity correlations are sought for log kX,298 rather than EX. The well-known poor correlation with measures of reaction enthalpy is demonstrated. The best quantitative predictor for R 3C is p, the sum of the Hammett p constants for the three substituents, R . Electronegative substituents with lone pairs, such as halogen or oxygen, thus appear to destabilize the formation of a polarized pre-reaction complex and/or TS ( +R---X---X -) by -inductive/field electron withdrawal while simultaneously stabilizing them by -resonance electron donation. The best quantitative predictor of the reactivity order of the halogens, I2 > Br2 >> Cl2 F2, is the polarizability of the halogen, (X-X). For the data set of 60 rate constants which span 6.5 orders of magnitude, a modestly successful correlation of log kX,298 is achieved with only two parameters, p and (X-X), with a mean unsigned deviation of 0.59 log units. How much of this residual variance is the result of inaccuracies in the data compared with over-simplification of the correlation approach remains to be seen.

  20. The formation and alteration of the Renazzo-like carbonaceous chondrites

    Science.gov (United States)

    Schrader, Devin Lee

    This study investigates the pre-accretionary formation conditions of individual minerals within chondrules and whole-rock parent asteroid processes from the Renazzo-like carbonaceous (CR) chondrites. It presents a comprehensive work on the whole-rock O-isotope composition, sulfide-bearing opaque minerals, and type-II chondrules within the CR chondrites. Whole-rock O-isotope composition and minerals present in type-II chondrules are found to be related to the degree of parent asteroid aqueous alteration. Primary minerals within chondrules, formed prior to accretion of the CR chondrite parent asteroid, are used to constrain both the environment and the conditions present during chondrule formation. Chondrule formation, as recorded by chondrules in the CR chondrites, took place under dust- and ice-rich conditions relative to solar values. Type-II (FeO-rich) chondrules contain FeO-poor fragments compositionally similar to type-I (FeO-poor) chondrules; the formation of type-II chondrules may have occurred after the formation of type-I chondrules. The dust and ice abundances present during type-II chondrule formation were higher than those of type-I chondrules, although both populations probably exchanged with the same 16O-poor gas reservoir. Both the oxygen fugacity (fo 2) and sulfur fugacity (fs2) appear to have increased from type-I to type-II chondrule formation, and between individual type-II chondrules. The increase in fo2 and fs2 may be due to the dissipation of H2 in the early Solar System. Gas-solid oxidation/sulfidation of Fe,Ni metal is recorded in both type-I and type-II chondrules. This corrosion occurred either during chondrule cooling after formation, or during chondrule reheating events, and suggests that S was present in the gas phase. After chondrule formation the CR chondrite parent asteroid accreted 16O-poor ice and experienced variable degrees of aqueous alteration, possibly due to heterogeneity in accreted ice or ammonia abundances and/or differing

  1. Magnetite as Possible Template for the Synthesis of Chiral Organics in Carbonaceous Chondrites

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.

    2014-01-01

    The main goal of the Japanese Aerospace Ex-ploration Agency (JAXA) Hayabusa-2 mission is to visit and return to Earth samples of a C-type asteroid (162173) 1999 JU3 in order to understand the origin and nature of organic materials in the Solar System. Life on Earth shows preference towards the set of organics with particular spatial arrangements, this 'selectivity' is a crucial criterion for life. With only rare exceptions, life 'determines' to use the left- (L-) form over the right- (D-) form of amino acids, resulting in a L-enantiomeric excess (ee). Recent studies have shown that L-ee is found within the alpha-methyl amino acids in meteorites [1, 2], which are amino acids with rare terrestrial occurrence, and thus point towards a plausible abiotic origin for ee. One of the proposed origins of chiral asymmetry of amino acids in meteorites is their formation with the presence of asymmetric catalysts [3]. The catalytic mineral grains acted as a surface at which nebular gases (CO, H2 and NH3) were allowed to condense and react through Fisher Tropsch type (FTT) syntheses to form the organics observed in meteorites [4]. Magnetite is shown to be an effective catalyst of the synthesis of amino acids that are commonly found in meteorites [5]. It has also taken the form as spiral magnetites (a.k.a. 'plaquettes'), which were found in various carbonaceous chondrites (CCs), including C2s Tagish Lake and Esseibi, CI Orgueil, and CR chondrites [e.g., 6, 7, 8]. In addition, L-ee for amino acids are common in the aqueously altered CCs, as opposed to the unaltered CCs [1]. It seems possible that the synthesis of amino acids with chiral preferences is correlated to the alteration process experienced by the asteroid parent body, and related to the configuration of spiral magnetite catalysts. Since C-type asteroids are considered to be enriched in organic matter, and the spectral data of 1999 JU3 indicates a certain de-gree of aqueous alteration [9], the Hayabusa-2 mission serves as

  2. Organic material from Phoebe to Iapetus

    Energy Technology Data Exchange (ETDEWEB)

    Strazzulla, G.

    1986-05-01

    It is demonstrated on the basis of experiments in which organic materials were ion-irradiated that the dust going to Iapetus from Phoebe can be organic, though Phoebe appears to be carbonaceous. Only the outer layers of Phoebe's crust would be carbonized by the cosmic protons, so that meteorite impacts on Phoebe would lead to the ejection of material from deeper layers which is of different color from that carbonized on the surface. 13 references.

  3. Performance of Halogen-Free Flame Retardant Cable and Extrusion Process%试析无卤低烟阻燃电缆性能与挤出工艺

    Institute of Scientific and Technical Information of China (English)

    王冬梅

    2013-01-01

    近年来,我国经济发展迅猛,电缆材料的阻燃技术也随之提高,无卤低烟阻燃将成为电缆行业主要的发展趋势。本文分析了无卤低烟阻燃电缆的结构与性能,阐述了这种电缆在生产过程中使用的挤制工艺。%In recent years, China's economy is rapidly developing, and the flame retardant technology of cable material is also increased. Halogen-free flame retardant will become the major trends in the cable industry. This paper analyzes the structure and property of the halogen-free flame retardant cable, and elaborates the extrusion process of the cable in the production process.

  4. Noble gas trapping and fractionation during synthesis of carbonaceous matter. [in meteorites

    Science.gov (United States)

    Frick, U.; Mack, R.; Chang, S.

    1979-01-01

    An investigation of noble gas entrapment during synthesis of carbonaceous, macromolecular, and kerogen-like substances is presented. High molecular weight organic matter synthesized in aqueous condensation reactions contained little gas, and the composition was consistent with fractionation due to noble gas solubility in water; however, propane soot produced during a modified Miller-Urey experiment in an aritificial gas mixture contained high concentrations of trapped noble gases that displayed strong elemental fractionation from their reservoirs. It is concluded that theses experiemnts show that processes exist for synthesis of carbonaceous carriers that result in high noble gas concentrations and strong elemental fractionation at temperatures well above those required by absorption to achieve similar effects.

  5. Petrology of Amoeboid Olivine Aggregates in Antarctic CR Chondrites: Comparison With Other Carbonaceous Chondrites

    Science.gov (United States)

    Komatsu, M.; Fagan, T. J.; Yamaguchi, A.; Mikouchi, T.; Zolensky, M. E.; Yasutake, M.

    2016-01-01

    Amoeboid olivine aggregates (AOAs) are important refractory components of carbonaceous chondrites and have been interpreted to represent solar nebular condensates that experienced high-temperature annealing, but largely escaped melting. In addition, because AOAs in primitive chondrites are composed of fine-grained minerals (forsterite, anorthite, spinel) that are easily modified during post crystallization alteration, the mineralogy of AOAs can be used as a sensitive indicator of metamorphic or alteration processes. AOAs in CR chondrites are particularly important because they show little evidence for secondary alteration. In addition, some CR AOAs contain Mn-enriched forsterite (aka low-iron, Mn-enriched or LIME olivine), which is an indicator of nebular formation conditions. Here we report preliminary results of the mineralogy and petrology of AOAs in Antarctic CR chondrites, and compare them to those in other carbonaceous chondrites.

  6. Formation of PAHs and Carbonaceous Solids in Gas-Phase Condensation Experiments

    CERN Document Server

    Jäger, C; Jansa, I Llamas; Henning, T; Huisken, F

    2009-01-01

    Carbonaceous grains represent a major component of cosmic dust. In order to understand their formation pathways, they have been prepared in the laboratory by gas-phase condensation reactions such as laser pyrolysis and laser ablation. Our studies demonstrate that the temperature in the condensation zone determines the formation pathway of carbonaceous particles. At temperatures lower than 1700 K, the condensation by-products are mainly polycyclic aromatic hydrocarbons (PAHs), that are also the precursors or building blocks for the condensing soot grains. The low-temperature condensates contain PAH mixtures that are mainly composed of volatile 3-5 ring systems. At condensation temperatures higher than 3500 K, fullerene-like carbon grains and fullerene compounds are formed. Fullerene fragments or complete fullerenes equip the nucleating particles. Fullerenes can be identified as soluble components. Consequently, condensation products in cool and hot astrophysical environments such as cool and hot AGB stars or W...

  7. Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites.

    Science.gov (United States)

    Cooper, George; Rios, Andro C

    2016-06-14

    Biological polymers such as nucleic acids and proteins are constructed of only one-the d or l-of the two possible nonsuperimposable mirror images (enantiomers) of selected organic compounds. However, before the advent of life, it is generally assumed that chemical reactions produced 50:50 (racemic) mixtures of enantiomers, as evidenced by common abiotic laboratory syntheses. Carbonaceous meteorites contain clues to prebiotic chemistry because they preserve a record of some of the Solar System's earliest (∼4.5 Gy) chemical and physical processes. In multiple carbonaceous meteorites, we show that both rare and common sugar monoacids (aldonic acids) contain significant excesses of the d enantiomer, whereas other (comparable) sugar acids and sugar alcohols are racemic. Although the proposed origins of such excesses are still tentative, the findings imply that meteoritic compounds and/or the processes that operated on meteoritic precursors may have played an ancient role in the enantiomer composition of life's carbohydrate-related biopolymers.

  8. [Degradation of halogenated compounds by haloalkane dehalogenase DadA from Alcanivorax dieselolei B-5 ].

    Science.gov (United States)

    Li, Anzhang; Shao, Zongze

    2014-09-04

    [OBJECTIVE] Alcanivorax dieselolei B-5 is an important oil-degrading bacterium. We studied its substrate range and degradation of halogenated compounds. [METHODS] Growth capability of B-5 was examined with different halogenated substrates as sole carbon source. A putative haloalkane dehalogenase (HLD) gene named dadA was found from the genome of strain B-5 and analyzed by sequence alignment, phylogenetic analysis and homologous modeling. After heterologous expression in Escherichia coli and purification, the activity of DadA towards 46 substrates was determined. [RESULTS] Strain B-5 was capable of utilizing various halogenated compounds (C3-C,8) as the sole carbon source. DadA had typical catalytic pentad residues of HLD-II subfamily, but it was independent from other members of this subfamily according to phylogenetic analysis. Activity assay showed that DadA has higher specificity and narrower substrate range than other characterized HLDs and it only showed activity toward 1,2,3-tribromopropane, 1,2-dibromo-3-chloropropane and 2,3-dichloroprop-1-ene among 46 tested substrates. [CONCLUSIONS] Strain B-5 and its HLD DadA can degrade halogenated aliphatic pollutants although.

  9. Protecting-group-free amination of halogenated nitrobenzaldehyde with palladium catalyst

    Institute of Scientific and Technical Information of China (English)

    Jing Cao; Jun Xiang Feng; Yong Xiang Wu; Ya Ya Tuo

    2010-01-01

    One-step method for the synthesis of secondary aliphatic amine substituted nitrobenzaldehyde was developed.In the presence of Pd catalyst,halogenated nitrobenzaldehyde could be smoothly coupled with secondary aliphatic amine to give the target product in hexamethylphosphamide (HMPT) media without the protection of aldehyde groups.

  10. New Route to Synthesize Surface Organometallic Complexes (SOMC): An Approach by Alkylating Halogenated Surface Organometallic Fragments

    KAUST Repository

    Hamieh, Ali Imad

    2017-02-01

    The aim of this thesis is to explore new simpler and efficient routes for the preparation of surface organometallic complexes (SOMC) for the transformation of small organic molecules to valuable products. The key element in this new route relies on surface alkylation of various halogenated surface coordination complexes or organometallic fragments (SOMF).

  11. 21 CFR 700.15 - Use of certain halogenated salicylanilides as ingredients in cosmetic products.

    Science.gov (United States)

    2010-04-01

    ... ingredients in cosmetic products. 700.15 Section 700.15 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.15 Use of certain halogenated salicylanilides as ingredients in cosmetic products....

  12. Tumour radiosensitization with the halogenated pyrimidines 5'-bromo-and 5'-iododeoxyuridine

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, A.H.; Cook, J.A.; Goffman, T. (National Cancer Inst., Bethesda, MD (United States)); Glatstein, E. (Texas Univ., Dallas, TX (United States). Southwestern Medical Center)

    1993-02-01

    The authors review studies of the use of iododeoxyuridine (IdUrd) and bromodeoxyuridine as radiosensitizers and attempt to correlate the clinical outcome for patients treated with radiation and IdUrd with the extent of halogenated pyrimidine cellular uptake and incorporation. (U.K.).

  13. Request for Correction 11001 Toxicological Review of Halogenated Platinum Salts and Platinum Compounds

    Science.gov (United States)

    Request for Correction by the International Platinum Group Metals Association seeking the correction of information disseminated in the draft EPA document Toxicological Review of Halogenated Platinum Salts and Platinum Compounds: In Support of Summary Information on the Integrated Risk Information System (IRIS).

  14. Synthesis of 4-Halogenated 3-Fluoro-6-methoxyquinolines: Key Building Blocks for the Synthesis of Antibiotics

    DEFF Research Database (Denmark)

    Flagstad, Thomas; Petersen, Mette Terp; Hinnerfeldt, Daniel Michael;

    2014-01-01

    A practical and scalable 4-step route is presented for the synthesis of 4-bromo-3-fluoro-6-methoxyoquinoline and 3-fluoro-4-iodo-6-methoxyoquinoline from readily available 2,4-dichloro-3-fluoroquinoline with an overall yield of 81-85%. Halogenated quinoline building blocks have found much use in ...

  15. Synthesis and photophysical properties of halogenated derivatives of (dibenzoylmethanato)boron difluoride

    Science.gov (United States)

    Kononevich, Yuriy N.; Surin, Nikolay M.; Sazhnikov, Viacheslav A.; Svidchenko, Evgeniya A.; Aristarkhov, Vladimir M.; Safonov, Andrei A.; Bagaturyants, Alexander A.; Alfimov, Mikhail V.; Muzafarov, Aziz M.

    2017-03-01

    A series of (dibenzoylmethanato)boron difluoride (BF2DBM) derivatives with a halogen atom in one of the phenyl rings at the para-position were synthesized and used to elucidate the effects of changing the attached halogen atom on the photophysical properties of BF2DBM. The room-temperature absorption and fluorescence maxima of fluoro-, chloro-, bromo- and iodo-substituted derivatives of BF2DBM in THF are red-shifted by about 2-10 nm relative to the corresponding peaks of the parent BF2DBM. The fluorescence quantum yields of the halogenated BF2DBMs (except the iodinated derivative) are larger than that of the unsubstituted BF2DBM. All the synthesized compounds are able to form fluorescent exciplexes with benzene and toluene (emission maxima at λem = 433 and 445 nm, respectively). The conformational structure and electronic spectral properties of halogenated BF2DBMs have been modeled by DFT/TDDFT calculations at the PBE0/SVP level of theory. The structure and fluorescence spectra of exciplexes were calculated using the CIS method with empirical dispersion correction.

  16. Rapid and reliable determination of the halogenating peroxidase activity in blood samples.

    Science.gov (United States)

    Flemmig, Jörg; Schwarz, Pauline; Bäcker, Ingo; Leichsenring, Anna; Lange, Franziska; Arnhold, Jürgen

    2014-12-15

    By combining easy and fast leukocyte enrichment with aminophenyl-fluorescein (APF) staining we developed a method to quickly and specifically address the halogenating activity of the immunological relevant blood heme peroxidases myeloperoxidase and eosinophil peroxidase, respectively. For leukocyte enrichment a two-fold hypotonic lysis procedure of the blood with Millipore water was chosen which represents a cheap, fast and reliable method to diminish the amount of erythrocytes in the samples. This procedure is shown to be suitable both to human and murine blood micro-samples, making it also applicable to small animal experiments with recurring blood sampling. As all types of leukocytes are kept in the sample during the preparation, they can be analysed separately after discrimination during the flow cytometry analysis. This also holds for all heme peroxidase-containing cells, namely neutrophils, eosinophils and monocytes. Moreover additional parameters (e.g. antibody staining) can be combined with the heme peroxidase activity determination to gain additional information about the different immune cell types. Based on previous results we applied APF for specifically addressing the halogenating activity of leukocyte peroxidases in blood samples. This dye is selectively oxidized by the MPO and EPO halogenation products hypochlorous and hypobromous acid. This approach may provide a suitable tool to gain more insights into the immune-physiological role of the halogenating activity of heme peroxidases.

  17. Stability, defect and electronic properties of graphane-like carbon-halogen compounds

    Institute of Scientific and Technical Information of China (English)

    Lu Di; Yang Yu-Rong; Xiao Yang; Zhang Xiao-Yu

    2011-01-01

    We perform first-principles total energy calculations to investigate the stabilities and the electronic structures of graphane-like structures of carbon-halogen compounds,where the hydrogen atoms in the graphane are substituted by halogen atoms.Three halogen elements,fluorine (F),chlorine (Cl) and bromine (Br),are considered,and the graphanelike structures are named as CF,CCl and CBr,respectively.It is found that for the single-atom adsorption,only the F adatom can be chemically adsorbed on the graphene.However,the stable graphane-like structures of CF,CCl and CBr can form due to the interaction between the halogen atoms.The carbon atoms in the stable CF,CCl and CBr compounds are in the sp3 hybridization,forming a hexagonal network similar to the graphane.The electronic band calculations show that CF and CCl are semiconductors with band gaps of 3.28 eV and 1.66 eV,respectively,while CBr is a metal.Moreover,the molecular dynamics simulation is employed to clarify the stabilities of CF and CCl.Those two compounds are stable at room temperature.A high temperature (≥ 1200 K) is needed to damage CF,while CCl is destroyed at 700 K.Furthermore,the effects of a vacancy on the structure and the electronic property of CF are discussed.

  18. Preparation of an Ester-Containing Grignard Reagent by Halogen-Metal Exchange

    Science.gov (United States)

    Snider, Barry B.

    2015-01-01

    In this experiment, students carry out a halogen-metal exchange reaction of methyl 2-iodobenzoate with isopropylmagnesium chloride in THF at 0°C to afford 2-carbomethoxyphenylmagnesium chloride, which is treated with "p"-methoxybenzaldehyde to give a lactone (phthalide) product. This reaction introduces students to the modern method of…

  19. Modified Toepler pump for small-scale halogen-deuterium exchange reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bindal, R.D.

    1987-04-06

    A modified version of the Toepler pump/microhydrogenator apparatus for the preparation of tritium labelled oestrogenic compounds using deuterium gas for halogen-tritium exchange, is described. The modifications allow the transferred gas to maintain atmospheric pressure during the course of the reaction and it allows small volumes of gas uptake to be followed. (U.K.).

  20. Free Radical Halogenation, Selectivity, and Thermodynamics: The Polanyi Principle and Hammond's Postulate

    Science.gov (United States)

    Scala, Alfred A.

    2004-01-01

    The underlying ideas of the Polanyi principle and Hammond's postulate in relation to the simple free halogenation reactions and their selectivity and thermodynamics is presented. The results indicate that the chlorine atom exhibits a slightly less selectivity in the liquid phase as compared to in the gas phase.

  1. Multiple formation mechanisms of ferrous olivine in CV carbonaceous chondrites during fluid-assisted metamorphism

    OpenAIRE

    Krot, Alexander N.; Petaev,Michail I.; Bland, Phil A.

    2004-01-01

    The CV carbonaceous chondrites experienced alteration that resulted in formation of secondary ferrous olivine (Fa40-100), salite-hedenbergite pyroxenes (Fs10-50Wo45-50), wollastonite, andradite, nepheline, sodalite, phyllosilicates, magnetite, Fe,Ni-sulfides and Ni-rich metal in their Ca,Al-rich inclusions, amoeboid olivine ag-gregates, chondrules, and matrices. It has previously been suggested that fibrous ferrous olivine in dark inclusions in CV chondrites formed by dehydration of phyllosil...

  2. State of the art on reactor designs for solar gasification of carbonaceous feedstock

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Tora, E.A.; Bruno, J.C.

    2013-01-01

    to produce high quality synthesis gas with a higher output per unit of feedstock and that allows for the chemical storage of solar energy in the form of a readily transportable fuel, among other advantages. The present paper describes the latest advances in solar thermochemical reactors for gasification...... of carbonaceous feedstocks. This work is categorized in this paper into patents and research/journal papers. © 2013 Elsevier Ltd....

  3. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, Jeffrey [Univ. of Arkansas, Little Rock, AR (United States)

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  4. Origin of fine carbonaceous particulate matter in the Western Mediterranean Basin: fossil versus modern sources

    Science.gov (United States)

    Cruz Minguillón, María.; Perron, Nolwenn; Querol, Xavier; Szidat, Sönke; Fahrni, Simon; Wacker, Lukas; Reche, Cristina; Cusack, Michael; Baltensperger, Urs; Prévôt, André S. H.

    2010-05-01

    The present work was carried out in the frame of the international field campaign DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). The objective of this campaign is to study the aerosol pollution episodes occurring at regional scale during winter and summer in the Western Mediterranean Basin. As part of this campaign, this work focuses on identifying the origin of fine carbonaceous aerosols. To this end, fine particulate matter (PM1) samples were collected during two different seasons (February-March and July 2009) at two sites: an urban site (Barcelona, NE Spain) and a rural European Supersite for Atmospheric Aerosol Research (Montseny, NE Spain). Subsequently, 14C analyses were carried out on these samples, both in the elemental carbon (EC) fraction and the organic carbon (OC) fraction, in order to distinguish between modern carbonaceous sources (biogenic emissions and biomass burning emissions) and fossil carbonaceous sources (mainly road traffic). Preliminary results from the winter period show that 40% of the OC at Barcelona has a fossil origin whereas at Montseny this percentage is 30%. These values can be considered as unexpected given the nature of the sites. Nevertheless, the absolute concentrations of fossil OC at Barcelona and Montseny differ by a factor of 2 (the first being higher), since the total OC at Montseny is lower than at Barcelona. Further evaluation of results and comparison with other measurements carried out during the campaign are required to better evaluate the origin of the fine carbonaceous matter in the Western Mediterranean Basin. Acknowledgements: Spanish Ministry of Education and Science, for a Postdoctoral Grant awarded to M.C. Minguillón in the frame of Programa Nacional de Movilidad de Recursos Humanos del Plan nacional de I-D+I 2008-2011. Spanish Ministry of Education and Science, for the Acción Complementaria DAURE CGL2007-30502-E/CLI.

  5. Fermentation, gasification and pyrolysis of carbonaceous residues towards usage in fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sequeira, C.A.C.; Santos, D.M.F. [Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001, Lisboa (Portugal); Brito, P.S.D.; Mota, A.F.; Carvalho, J.L.; Rodrigues, L.F.F.T.T.G. [Escola Superior de Tecnologia e Gestao de Portalegre, Apartado 148, 7300-901 Portalegre (Portugal); Barrio, D.B.; Justo, D.M. [Facultad de Ciencias, Universidad de Valladolid, c/Real de Burgos sin, 47011 Valladolid (Spain)

    2007-07-15

    In this paper, the technologies of fermentation, gasification and pyrolysis of carbonaceous residues for the production of biohydrogen and other gaseous, liquid or solid fuels, are analysed. The energetic, economic and environmental advantages of linking these energy areas with the fuel cell engines are stressed. In addition, the current status of fuel cell technologies, namely their historic trends, basic electrode mechanisms, cell types, market drivers and leading issues, are reviewed. (author)

  6. Swift heavy ion irradiation of interstellar dust analogues. Small carbonaceous species released by cosmic rays

    Science.gov (United States)

    Dartois, E.; Chabot, M.; Pino, T.; Béroff, K.; Godard, M.; Severin, D.; Bender, M.; Trautmann, C.

    2017-03-01

    Context. Interstellar dust grain particles are immersed in vacuum ultraviolet (VUV) and cosmic ray radiation environments influencing their physicochemical composition. Owing to the energetic ionizing interactions, carbonaceous dust particles release fragments that have direct impact on the gas phase chemistry. Aims: The exposure of carbonaceous dust analogues to cosmic rays is simulated in the laboratory by irradiating films of hydrogenated amorphous carbon interstellar analogues with energetic ions. New species formed and released into the gas phase are explored. Methods: Thin carbonaceous interstellar dust analogues were irradiated with gold (950 MeV), xenon (630 MeV), and carbon (43 MeV) ions at the GSI UNILAC accelerator. The evolution of the dust analogues is monitored in situ as a function of fluence at 40, 100, and 300 K. Effects on the solid phase are studied by means of infrared spectroscopy complemented by simultaneously recording mass spectrometry of species released into the gas phase. Results: Specific species produced and released under the ion beam are analyzed. Cross sections derived from ion-solid interaction processes are implemented in an astrophysical context.

  7. A Carbonaceous Membrane based on a Polymer of Intrinsic Microporosity (PIM-1) for Water Treatment

    Science.gov (United States)

    Kim, Hee Joong; Kim, Dong-Gyun; Lee, Kyuchul; Baek, Youngbin; Yoo, Youngjae; Kim, Yong Seok; Kim, Byoung Gak; Lee, Jong-Chan

    2016-10-01

    As insufficient access to clean water is expected to become worse in the near future, water purification is becoming increasingly important. Membrane filtration is the most promising technologies to produce clean water from contaminated water. Although there have been many studies to prepare highly water-permeable carbon-based membranes by utilizing frictionless water flow inside the carbonaceous pores, the carbon-based membranes still suffer from several issues, such as high cost and complicated fabrication as well as relatively low salt rejection. Here, we report for the first time the use of microporous carbonaceous membranes via controlled carbonization of polymer membranes with uniform microporosity for high-flux nanofiltration. Further enhancement of membrane performance is observed by O2 plasma treatment. The optimized membrane exhibits high water flux (13.30 LMH Bar‑1) and good MgSO4 rejection (77.38%) as well as antifouling properties. This study provides insight into the design of microporous carbonaceous membranes for water purification.

  8. Bulk Chemical Composition of the Ningqiang Carbonaceous Chondrite:An Issue of Classification

    Institute of Scientific and Technical Information of China (English)

    WANG Guiqin; LIN Yangting

    2007-01-01

    The Ningqiang meteorite is a fall carbonaceous chondrite, containing various Ca-, Al-rich inclusions that usually escaped from secondary events such as high-temperature heating and lowtemperature alteration. However, it has not yet been classified into any known chemical group. In order to address this issue, 41 elements of the bulk Ningqiang meteorite were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atom emission spectrometry (ICP-AES) in this study. The Allende (CV3) carbonaceous chondrite and the Jilin (H5)ordinary chondrite were also measured as references, and our analyses are consistent with the previous results. Rare earth and other refractory lithophile elements are depleted in Ningqiang relative to both Allende and mean CK chondrites. In addition, the REE pattern of Ningqiang is nearly flat, while that of Allende shows slight enrichment of LREE relative to HREE. Siderophile elements of Ningqiang are close to those of mean CK chondrites, but lower than those of Allende. Our new analyses indicate that Ningqiang cannot be classified into any known group of carbonaceous chondrites, consistent with previous reports.

  9. Comets: Cosmic connections with carbonaceous meteorites, interstellar molecules and the origin of life

    Science.gov (United States)

    Chang, S.

    1979-01-01

    The ions, radicals, and molecules observed in comets may be derived intact or by partial decomposition from parent compounds of the sort found either in the interstellar medium or in carbonaceous meteorites. The early loss of highly reducing primitive atmosphere and its replacement by a secondary atmosphere dominated by H2O, CO2, and N2, as depicted in current models of the earth's evolution, pose a dilemma for the origin of life: the synthesis of organic compounds necessary for life from components of the secondary atmosphere appears to be difficult, and plausible mechanisms have not been evaluated. Both comets and carbonaceous meteorites are implicated as sources for the earth's atmophilic and organogenic elements. A mass balance argument involving the estimated ratios of hydrogen to carbon in carbonaceous meteorites, comets, and the crust and upper mantle suggests that comets supplied the earth with a large fraction of its volatiles. The probability that comets contributed significantly to the earth's volatile inventory suggests a chemical evolutionary link between comets, prebiotic organic synthesis, and the origin of life.

  10. Carbonaceous matter deposition in the high glacial regions of the Tibetan Plateau

    Science.gov (United States)

    Li, Chaoliu; Chen, Pengfei; Kang, Shichang; Yan, Fangping; Li, Xiaofei; Qu, Bin; Sillanpää, Mika

    2016-09-01

    Carbonaceous matter at glacial region plays important role in river ecosystems fed by glacier and albedo reduction of glacier surface. However, currently, limited knowledge are available on the carbonaceous matter within the glacial region of the Tibetan Plateau (TP). In this study, the data from six snowpits in the glacial region across the TP were reported. The results showed that dissolved organic carbon (DOC) concentrations of snowpit samples of the TP were comparable to those of European Alps and the Arctic. The ratio of DOC to carbonaceous matter (40.25 ± 8.98%) was lower than that of Alpine glaciers, thus indicating greater particulate carbon content in the TP glacial region. In addition, the DOC was significantly correlated with insoluble particulate carbon (IPC), indicating that IPC and DOC likely came from the same sources. Spatially, the DOC concentration decreased from the north (0.42 ± 0.29 mg-C L-1) to the south TP (0.15 ± 0.06 mg-C L-1), which was consistent with variations in the distribution of dust storm on the TP. Principal component analysis of major ions and DOC showed that mineral dust contributed the major part of DOC, followed by biogenic sources such as agriculture and livestock. Finally, based on DOC concentrations and precipitation amounts at different periods, the mean annul flux of DOC in the glacial region of the TP was calculated to be 0.11 ± 0.05 g-C m-2 yr-1.

  11. Climate effects of seasonally varying Biomass Burning emitted Carbonaceous Aerosols (BBCA

    Directory of Open Access Journals (Sweden)

    G.-R. Jeong

    2010-09-01

    Full Text Available The climate impact of the seasonality of Biomass Burning emitted Carbonaceous Aerosols (BBCA is studied using an aerosol-climate model coupled with a slab ocean model in a set of 60-year long simulations, driven by BBCA emission data with and without seasonal variation, respectively. The model run with seasonally varying emission of BBCA leads to an increase in the external mixture of carbonaceous aerosols as well as in the internal mixture of organic carbon and sulfate but a decrease in the internal mixture of black carbon and sulfate relative to those in the run with constant annual BBCA emissions, as a result of different strengths of source/sink processes. The differences in atmospheric direct radiative forcing (DRF caused by BBCA seasonality are in phase with the differences in column concentrations of the external mixture of carbonaceous aerosols in space and time. In contrast, the differences in all-sky radiative forcing at the top of the atmosphere and at the earth's surface extend beyond the BBCA source regions due to climate feedback through cloud distribution and precipitation. The seasonality of biomass burning emissions uniquely affects the global distributions of convective clouds and precipitation, indicating that these emissions have an impact on atmospheric circulation. In addition, the climate response to the periodic climate forcing of BBCA is not limited to biomass burning seasons but dynamically extends into non-biomass burning seasons as well.

  12. AFM measurements of adhesive forces between carbonaceous particles and the substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianqi [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Peng, Wei, E-mail: pengwei@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Shen, Ke [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Educations, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2015-11-15

    Highlights: • Adhesive force of spherical carbonaceous particle MCMBs and HTR-10 graphite matrix debris were measured for the first time. • The measured equivalent works of adhesion were much smaller than the ideal values. • The shape factor and the particle morphology reduce the adhesive force. • The adhesion effect does not change directly with the asperity size. - Abstract: Graphite dust is carbonaceous particles generated during operation of High Temperature Gas-Cooled Reactors (HTR). Graphite dust resuspension is the key behavior associated with HTR source term analyses and environmental safety assessment. The adhesive force is the key factor that determines the resuspension rate. The present study used an atomic force microscope (AFM) to measure the adhesive force between a single carbonaceous particle and the substrate. The measurements were performed on mica, graphite IG110 and Inconel 800H. The prepared “probe cantilevers” were mesocarbon microbeads (MCMB), fuel element debris from HTR-10 and graphite NBG18. The equivalent work of adhesion was derived from the measured adhesive force and calculated based on substrate profile approximation and the JKR theoretical model. The measured work was smaller than the ideal work of adhesion, most likely due to the rough particle morphology and the rough substrate surface. Additionally, a shape factor imposes a constraint on the lateral deformation of the particles. Furthermore, surface roughness could reduce the adhesive force some depending on the particle size. Once the particle was too small to be trapped into a trough, the adhesive force would not be further reduced.

  13. Garnet-filled trails associated with carbonaceous matter mimicking microbial filaments in Archean basalt.

    Science.gov (United States)

    Lepot, K; Philippot, P; Benzerara, K; Wang, G-Y

    2009-09-01

    The study of the earliest traces of life on Earth can be complicated by abiotically formed biomorphs. We report here the finding of clustered micrometer-sized filaments of iron- and calcium-rich garnets associated with carbonaceous matter in an agate amygdale from a 2.7-billion-year-old basalt of the Maddina Formation, Western Australia. The distribution of carbonaceous matter and the mineral phases composing the filaments were analyzed using a combination of confocal laser scanning microscopy, laser-Raman micro-spectroscopy, focused ion beam sectioning and transmission electron microscopy. The results allow consideration of possible biogenic and abiotic processes that produced the filamentous structures. The filaments have a range of sizes, morphologies and distributions similar to those of certain modern iron-mineralized filamentous bacteria and some ancient filamentous structures interpreted as microfossils. They also share a high morphological similarity with tubular structures produced by microbial boring activity. However, the microstructures and the distribution of carbonaceous matter are more suggestive of an abiotic origin for the filaments. They are characteristic features of trails produced by the displacement of inclusions associated with local dissolution of their silica matrix. Organic compounds found in kerogen or bitumen inclusions may have contributed significantly to the dissolution of the quartz (or silica gel) matrix driving filamentous growth. Discriminating the products of such abiotic organic-mediated processes from filamentous microfossils or microbial borings is important to the interpretation of the scarce Precambrian fossil record and requires investigation down to the nanoscale.

  14. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes

    Science.gov (United States)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-01-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We also report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  15. A Carbonaceous Membrane based on a Polymer of Intrinsic Microporosity (PIM-1) for Water Treatment

    Science.gov (United States)

    Kim, Hee Joong; Kim, Dong-Gyun; Lee, Kyuchul; Baek, Youngbin; Yoo, Youngjae; Kim, Yong Seok; Kim, Byoung Gak; Lee, Jong-Chan

    2016-01-01

    As insufficient access to clean water is expected to become worse in the near future, water purification is becoming increasingly important. Membrane filtration is the most promising technologies to produce clean water from contaminated water. Although there have been many studies to prepare highly water-permeable carbon-based membranes by utilizing frictionless water flow inside the carbonaceous pores, the carbon-based membranes still suffer from several issues, such as high cost and complicated fabrication as well as relatively low salt rejection. Here, we report for the first time the use of microporous carbonaceous membranes via controlled carbonization of polymer membranes with uniform microporosity for high-flux nanofiltration. Further enhancement of membrane performance is observed by O2 plasma treatment. The optimized membrane exhibits high water flux (13.30 LMH Bar−1) and good MgSO4 rejection (77.38%) as well as antifouling properties. This study provides insight into the design of microporous carbonaceous membranes for water purification. PMID:27782212

  16. Extending Halogen-based Medicinal Chemistry to Proteins: IODO-INSULIN AS A CASE STUDY.

    Science.gov (United States)

    El Hage, Krystel; Pandyarajan, Vijay; Phillips, Nelson B; Smith, Brian J; Menting, John G; Whittaker, Jonathan; Lawrence, Michael C; Meuwly, Markus; Weiss, Michael A

    2016-12-30

    Insulin, a protein critical for metabolic homeostasis, provides a classical model for protein design with application to human health. Recent efforts to improve its pharmaceutical formulation demonstrated that iodination of a conserved tyrosine (Tyr(B26)) enhances key properties of a rapid-acting clinical analog. Moreover, the broad utility of halogens in medicinal chemistry has motivated the use of hybrid quantum- and molecular-mechanical methods to study proteins. Here, we (i) undertook quantitative atomistic simulations of 3-[iodo-Tyr(B26)]insulin to predict its structural features, and (ii) tested these predictions by X-ray crystallography. Usin