WorldWideScience

Sample records for carbon-cluster mass calibration

  1. Carbon-cluster mass calibration at SHIPTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Ankur

    2007-12-10

    fusion-evaporation reaction {sup 92}Mo({sup 58}Ni,xpyn) at SHIP (Separator for Heavy Ion reaction Products) at GSI. Among the measured nuclei {sup 147}Ho has the lowest half life (5.8 s). A relative mass uncertainty of 5 x 10{sup -8} was obtained from the mass measurements using carbon clusters as calibrants. (orig.)

  2. Carbon-cluster mass calibration at SHIPTRAP

    International Nuclear Information System (INIS)

    A carbon-cluster ion source has been installed and tested at SHIPTRAP, the Penning-trap mass spectrometer for precision mass measurements of heavy elements at GSI (Darmstadt, Germany). Carbon-cluster ions 12Cn+, 5 ≤ n ≤ 23, were produced by laser-induced desorption and ionization from a carbon sample. They were tested for the first time as reference ions in an on-line mass measurement of the radionuclides 144Dy, 146Dy and 147Ho. In addition, carbon clusters of various sizes were used for an investigation of the systematic uncertainty of SHIPTRAP covering a mass range from 84 u to 240 u. The mass-dependent uncertainty was found to be negligible for the case of (m - m(ref)) -8 was revealed. (authors)

  3. A carbon cluster ion source for mass calibration at TRIGA-TRAP

    International Nuclear Information System (INIS)

    TRIGA-TRAP is a high-precision penning trap mass spectrometer installed at the research reactor TRIGA Mainz in order to determine the masses of short-lived fission products and - in addition to that - also the masses of actinide elements ranging from uranium up to californium. In order to determine precisely the masses of the nuclides of interest, the superconducting magnet providing the strong magnetic field for the Penning trap has to be calibrated by measuring the cyclotron frequency of an ion with well-known mass, which is, if possible, an isobaric nuclide of the ion of interest. Therefore, the best possible choice for mass calibration is to use carbon clusters as mass references, as demonstrated at the ISOLTRAP facility at ISOLDE/CERN. A laser ablation ion source for the production of carbon clusters has been developed using a frequency-doubled Nd:YAG laser. The design, current status, and results of the production of carbon cluster ions, using C60 and Sigradure registered samples, as well as other ions are presented

  4. Accuracy studies with carbon clusters at the Penning trap mass spectrometer TRIGA-TRAP

    Science.gov (United States)

    Ketelaer, J.; Beyer, T.; Blaum, K.; Block, M.; Eberhardt, K.; Eibach, M.; Herfurth, F.; Smorra, C.; Nagy, Sz.

    2010-05-01

    Extensive cross-reference measurements of well-known frequency ratios using various sizes of carbon cluster ions 12Cn + (10≤n≤23) were performed to determine the effects limiting the accuracy of mass measurements at the Penning-trap facility TRIGA-TRAP. Two major contributions to the uncertainty of a mass measurement have been identified. Fluctuations of the magnetic field cause an uncertainty in the frequency ratio due to the required calibration by a reference ion of uf(νref)/νref = 6(2) × 10-11/min × Δt. A mass-dependent systematic shift of the frequency ratio of epsilonm(r)/r = -2.2(2) × 10-9 × (m-mref)/u has been found as well. Finally, the nuclide 197Au was used as a cross-check since its mass is already known with an uncertainty of 0.6 keV.

  5. The Turn Over of the Odd-even Pattern in Mass Spectra of Carbon Cluster Anions

    Institute of Scientific and Technical Information of China (English)

    NI Guoquan; LIU Bingchen; ZHAI Huajin

    2000-01-01

    @@ Although investigations by many authorsd on the properties of carbon cluster anions by mass spectrometry and photoelectron spectroscopy last more than a decade[1~3], a general conclusion concerning the various features of the carbon clusters generated most commonly in laser vaporization/molecular beam sources has not yet been reached. In this Letter we report that the turn-over of the odd-even patter in relative abundance in the mass spectra of carbon clusters and the "manipulation" of the pattern can be realized in a controlled way by altering the vaporizing laser intensity, the backing pressure and the conductance of carries gas.

  6. Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions

    Directory of Open Access Journals (Sweden)

    J. C. Corbin

    2013-10-01

    Full Text Available We discuss the major mass spectral features of different types of refractory carbonaceous particles, ionized after laser vapourization with an Aerodyne High-Resolution Soot-Particle Aerosol Mass Spectrometer (SP-AMS. The SP-AMS was operated with a switchable 1064 nm laser and a 600 °C thermal vapourizer, yielding respective measurements of the refractory and non-refractory particle components. Six samples were investigated, all of which were composed primarily of refractory material: fuel-rich and fuel-lean propane/air diffusion-flame combustion particles; graphite-spark-generated particles; a commercial Fullerene-enriched Soot; Regal Black, a commercial carbon black; and nascent aircraft-turbine combustion particles. All samples exhibited a spectrum of carbon-cluster ions Cxn+ in their refractory mass spectrum. Smaller clusters (xxn+ distribution. For Fullerene Soot, fuel-rich-flame particles and spark-generated particles, significant Cxn+ clusters at x≫6 were present, with significant contributions from multiply-charged ions (n>1. In all six cases, the ions C1+ and C3+ contributed over 60% to the total C1x+ intensity. Furthermore, the ratio of these major ions C1+/C3+ could be used to predict whether significant Cxn+ signals with x>5 were present. When such signals were present, C1+/C3+ was close to 1. When absent, C1+/C3+ was Significant refractory oxygenated ions such as CO+ and CO2+ were also observed for all samples. We discuss these signals in detail for Regal Black, and describe their formation via decomposition of oxygenated moieties incorporated into the refractory carbon structure. These species may be of importance in atmospheric processes such as water uptake, aging and heterogeneous chemistry.

  7. Two Types of Mass Abundance Distributions for Anionic Carbon Clusters Investigated by Laser Vaporization and Pulsed Molecular Beam Techniques

    Institute of Scientific and Technical Information of China (English)

    ZHAI Hua-Jin; LIU Bing-Chen; NI Guo-Quan; XUZhi-Zhan

    2000-01-01

    Two types of mass spectra for anionic carbon clusters Cn- have been revealed using laser vaporization and pulsed molecular beam techniques. The less structured mass spectrum characteristic of the magic-numbers at n = 5, 8,11, 15, and 17 is established at the early stage of the cluster formation process, namely, in the laser vaporization process. The more structured one is featured for a regular odd-even alternation and the magic numbers at n =10, 12, 16, 18, 22, and 28, and has been developed only after extensive clustering and qnenching processes, where low-energy electron attachment plays a vital role. Transition between these two types of mass spectra can be realized by controlling either the strength of the pulsed gas flow or the synchronism between the gas flow and the laser vaporization.

  8. Multidetector calibration for mass spectrometers

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency's Safeguards Analytical Laboratory has performed calibration experiments to measure the different efficiencies among multi-Faraday detectors for a Finnigan-MAT 261 mass spectrometer. Two types of calibration experiments were performed: (1) peak-shift experiments and (2) peak-jump experiments. For peak-shift experiments, the ion intensities were measured for all isotopes of an element in different Faraday detectors. Repeated measurements were made by shifting the isotopes to various Faraday detectors. Two different peak-shifting schemes were used to measure plutonium (UK Pu5/92138) samples. For peak-jump experiments, ion intensities were measured in a reference Faraday detector for a single isotope and compared with those measured in the other Faraday detectors. Repeated measurements were made by switching back-and-forth between the reference Faraday detector and a selected Faraday detector. This switching procedure is repeated for all Faraday detectors. Peak-jump experiments were performed with replicate measurements of 239Pu, 187Re, and 238U. Detector efficiency factors were estimated for both peak-jump and peak-shift experiments using a flexible calibration model to statistically analyze both types of multidetector calibration experiments. Calculated detector efficiency factors were shown to depend on both the material analyzed and the experimental conditions. A single detector efficiency factor is not recommended for each detector that would be used to correct routine sample analyses. An alternative three-run peak-shift sample analysis should be considered. A statistical analysis of the data from this peak-shift experiment can adjust the isotopic ratio estimates for detector differences due to each sample analysis

  9. An Effective Method of Producing Small Neutral Carbon Clusters

    Institute of Scientific and Technical Information of China (English)

    XIA Zhu-Hong; CHEN Cheng-Chu; HSU Yen-Chu

    2007-01-01

    An effective method of producing small neutral carbon clusters Cn (n = 1-6) is described. The small carbon clusters (positive or negative charge or neutral) are formed by plasma which are produced by a high power 532nm pulse laser ablating the surface of the metal Mn rod to react with small hydrocarbons supplied by a pulse valve, then the neutral carbon clusters are extracted and photo-ionized by another laser (266nm or 355nm) in the ionization region of a linear time-of-flight mass spectrometer. The distributions of the initial neutral carbon clusters are analysed with the ionic species appeared in mass spectra. It is observed that the yield of small carbon clusters with the present method is about 10 times than that of the traditional widely used technology of laser vaporization of graphite.

  10. Statistical design of mass spectrometry calibration procedures

    International Nuclear Information System (INIS)

    The main objective of this task was to agree on calibration procedures to estimate the system parameters (i.e., dead-time correction, ion-counting conversion efficiency, and detector efficiency factors) for SAL's new Finnigan MAT-262 mass spectrometer. SAL will use this mass spectrometer in a clean-laboratory which was opened in December 1995 to measure uranium and plutonium isotopes on environmental samples. The Finnigan MAT-262 mass spectrometer has a multi-detector system with seven Faraday cup detectors and one ion- counter for the measurement of very small signals (e.g. 10-17 Ampere range). ORNL has made preliminary estimates of the system parameters based on SAL's experimental data measured in late 1994 when the Finnigan instrument was relatively new. SAL generated additional data in 1995 to verify the calibration procedures for estimating the dead-time correction factor, the ion-counting conversion factor and the Faraday cup detector efficiency factors. The system parameters estimated on the present data will have to be reestablished when the Finnigan MAT-262 is moved-to the new clean- laboratory. Different methods will be used to analyzed environmental samples than the current measurement methods being used. For example, the environmental samples will be electroplated on a single filament rather than using the current two filament system. An outline of the calibration standard operating procedure (SOP) is included

  11. A portable, automated, inexpensive mass and balance calibration system

    International Nuclear Information System (INIS)

    Reliable mass measurements are essential for a nuclear production facility or process control laboratory. DOE Order 5630.2 requires that traceable standards be used to calibrate and monitor equipment used for nuclear material measurements. To ensure the reliability of mass measurements and to comply with DOE traceability requirements, a portable, automated mass and balance calibration system is used at the Savannah River Plant. Automation is achieved using an EPSON HX-20 notebook computer, which can be operated via RS232C interfacing to electronic balances or function with manual data entry if computer interfacing is not feasible. This economical, comprehensive, user-friendly system has three main functions in a mass measurement control program (MMCP): balance certification, calibration of mass standards, and daily measurement of traceable standards. The balance certification program tests for accuracy, precision, sensitivity, linearity, and cornerloading versus specific requirements. The mass calibration program allows rapid calibration of inexpensive mass standards traceable to certified Class S standards. This MMCP permits daily measurement of traceable standards to monitor the reliability of balances during routine use. The automated system verifies balance calibration, stores results for future use, and provides a printed control chart of the stored data. Another feature of the system permits three different weighing routines that accommodate their need for varying degrees of reliability in routine weighing operations

  12. Advanced Mass Calibration and Visualization for FT-ICR Mass Spectrometry Imaging

    OpenAIRE

    Smith, Donald F.; Kharchenko, Andriy; Konijnenburg, Marco; Klinkert, Ivo; Pasa-Tolic, Ljiljana; Ron M A Heeren

    2013-01-01

    Mass spectrometry imaging by Fourier transform ion cyclotron resonance yields hundreds of unique peaks, many of which cannot be resolved by lower performance mass spectrometers. The high mass accuracy and high mass resolving power allow confident identification of small molecules and lipids directly from biological tissue sections. Here, calibration strategies for Fourier transform ion cyclotron resonance mass spectrometry imaging were investigated. Sub parts-per-million mass accuracy is demo...

  13. Top Quark Mass Calibration for Monte Carlo Event Generators

    CERN Document Server

    Butenschoen, Mathias; Hoang, Andre H; Mateu, Vicent; Preisser, Moritz; Stewart, Iain W

    2016-01-01

    The most precise top quark mass measurements use kinematic reconstruction methods, determining the top mass parameter of a Monte Carlo event generator, $m_t^{\\rm MC}$. Due to hadronization and parton shower dynamics, relating $m_t^{\\rm MC}$ to a field theory mass is difficult. We present a calibration procedure to determine this relation using hadron level QCD predictions for observables with kinematic mass sensitivity. Fitting $e^+e^-$ 2-Jettiness calculations at NLL/NNLL order to Pythia 8.205, $m_t^{\\rm MC}$ differs from the pole mass by $900$/$600$ MeV, and agrees with the MSR mass within uncertainties, $m_t^{\\rm MC}\\simeq m_{t,1\\,{\\rm GeV}}^{\\rm MSR}$.

  14. Calibrating the Planck Cluster Mass Scale with CLASH

    CERN Document Server

    Penna-Lima, M; Rozo, E; Melin, J -B; Merten, J; Evrard, A E; Postman, M; Rykoff, E

    2016-01-01

    We determine the mass scale of Planck galaxy clusters using gravitational lensing mass measurements from the Cluster Lensing And Supernova survey with Hubble (CLASH). We compare the lensing masses to the Planck Sunyaev-Zeldovich (SZ) mass proxy for 21 clusters in common, employing a Bayesian analysis to simultaneously fit an idealized CLASH selection function and the distribution between the measured observables and true cluster mass. We use a tiered analysis strategy to explicitly demonstrate the importance of priors on weak lensing mass accuracy. In the case of an assumed constant bias, $b_{SZ}$, between true cluster mass, $M_{500}$, and the Planck mass proxy, $M_{PL}$, our analysis constrains $1- b_{SZ} = 0.73 \\pm 0.10$ when moderate priors on weak lensing accuracy are used. Our analyses explicitly accounts for possible selection bias effects in this calibration sourced by the CLASH selection function. Our constraint on the cluster mass scale is consistent with recent results from the Weighing the Giants p...

  15. Ionization Thresholds of Small Carbon Clusters: Tunable VUVExperiments and Theory

    Energy Technology Data Exchange (ETDEWEB)

    Belau, Leonid; Wheeler, Steven E.; Ticknor, Brian W.; Ahmed,Musahid; Leone, Stephen R.; Allen, Wesley D.; Schaefer III, Henry F.; Duncan, Michael A.

    2007-07-31

    Small carbon clusters (Cn, n = 2-15) are produced in amolecular beam by pulsed laser vaporization and studied with vacuumultraviolet (VUV) photoionization mass spectrometry. The required VUVradiation in the 8-12 eV range is provided by the Advanced Light Source(ALS) at the Lawrence Berkeley National Laboratory. Mass spectra atvarious ionization energies reveal the qualitative relative abundances ofthe neutral carbon clusters produced. By far the most abundant species isC3. Using the tunability of the ALS, ionization threshold spectra arerecorded for the clusters up to 15 atoms in size. The ionizationthresholds are compared to those measured previously with charge-transferbracketing methods. To interpret the ionization thresholds for differentcluster sizes, new ab initio calculations are carried out on the clustersfor n = 4-10. Geometric structures are optimized at the CCSD(T) levelwith cc-pVTZ (or cc-pVDZ) basis sets, and focal point extrapolations areapplied to both neutral and cation species to determine adiabatic andvertical ionization potentials. The comparison of computed and measuredionization potentials makes it possible to investigate the isomericstructures of the neutral clusters produced in this experiment. Themeasurements are inconclusive for the n = 4-6 species because ofunquenched excited electronic states. However, the data provide evidencefor the prominence of linear structures for the n = 7, 9, 11, 13 speciesand the presence of cyclic C10.

  16. Advanced Mass Calibration and Visualization for FT-ICR Mass Spectrometry Imaging

    CERN Document Server

    Smith, Donald F; Konijnenburg, Marco; Klinkert, Ivo; Pasa-Tolic, Ljiljana; Heeren, Ron M A

    2013-01-01

    Mass spectrometry imaging by Fourier transform ion cyclotron resonance yields hundreds of unique peaks, many of which cannot be resolved by lower performance mass spectrometers. The high mass accuracy and high mass resolving power allow confident identification of small molecules and lipids directly from biological tissue sections. Here, calibration strategies for Fourier transform ion cyclotron resonance mass spectrometry imaging were investigated. Sub parts-per-million mass accuracy is demonstrated over an entire tissue section. Ion abundance fluctuations are corrected for by addition of total and relative ion abundances for a root-mean-square error of 0.158 ppm on 16,764 peaks. A new approach for visualization of Fourier transform ion cyclotron resonance mass spectrometry imaging data at high resolution is presented. The Mosaic Data-cube provides a flexible means to visualize the entire mass range at a mass spectral bin width of 0.001 Dalton. The high resolution Mosaic Data-cube resolves spectral features ...

  17. Calibration of evolutionary diagnostics in high-mass star formation

    CERN Document Server

    Molinari, Sergio; Elia, Davide; Cesaroni, Riccardo; Testi, Leonardo; Robitaille, Thomas

    2016-01-01

    The evolutionary classification of massive clumps that are candidate progenitors of high-mass young stars and clusters relies on a variety of independent diagnostics based on observables from the near-infrared to the radio. A promising evolutionary indicator for massive and dense cluster-progenitor clumps is the L/M ratio between the bolometric luminosity and the mass of the clumps. With the aim of providing a quantitative calibration for this indicator we used SEPIA/APEX to obtain CH3C2H(12-11) observations, that is an excellent thermometer molecule probing densities > 10^5 cm^-3 , toward 51 dense clumps with M>1000 solar masses, and uniformly spanning -2 10 we detect all the clumps, with a gas temperature rising with Log(L/M), marking the appearance of a qualitatively different heating source within the clumps; such values are found towards clumps with UCHII counterparts, suggesting that the quantitative difference in T - L/M behaviour above L/M >10 is due to the first appearance of ZAMS stars in the clump...

  18. Reactions of carbon cluster ions stored in an RF trap

    International Nuclear Information System (INIS)

    Reactions of carbon cluster ions with O2 were studied by using an RF ion trap in which cluster ions of specific size produced by laser ablation could be stored selectively. Reaction rate constants for positive and negative carbon cluster ions were estimated. In the case of the positive cluster ions, these were consistent with the previous experimental results using FTMS. Negative carbon cluster ions C-n (n=4-8) were much less reactive than positive cluster ions. The CnO- products were seen only in n=4 and 6. (orig.)

  19. Standard practice for alternate actinide calibration for inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This practice provides guidance for an alternate linear calibration for the determination of selected actinide isotopes in appropriately prepared aqueous solutions by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). This alternate calibration is mass bias adjusted using thorium-232 (232Th) and uranium-238 (238U) standards. One of the benefits of this standard practice is the ability to calibrate for the analysis of highly radioactive actinides using calibration standards at much lower specific activities. Environmental laboratories may find this standard practice useful if facilities are not available to handle the highly radioactive standards of the individual actinides of interest. 1.2 The instrument response for a series of determinations of known concentration of 232Th and 238U defines the mass versus response relationship. For each standard concentration, the slope of the line defined by 232Th and 238U is used to derive linear calibration curves for each mass of interest using interference equ...

  20. Mass flow-rate control unit to calibrate hot-wire sensors

    Energy Technology Data Exchange (ETDEWEB)

    Durst, F.; Uensal, B. [FMP Technology GmbH, Erlangen (Germany); Haddad, K. [FMP Technology GmbH, Erlangen (Germany); Friedrich-Alexander-Universitaet Erlangen-Nuernberg, LSTM-Erlangen, Institute of Fluid Mechanics, Erlangen (Germany); Al-Salaymeh, A.; Eid, Shadi [University of Jordan, Mechanical Engineering Department, Faculty of Engineering and Technology, Amman (Jordan)

    2008-02-15

    Hot-wire anemometry is a measuring technique that is widely employed in fluid mechanics research to study the velocity fields of gas flows. It is general practice to calibrate hot-wire sensors against velocity. Calibrations are usually carried out under atmospheric pressure conditions and these suggest that the wire is sensitive to the instantaneous local volume flow rate. It is pointed out, however, that hot wires are sensitive to the instantaneous local mass flow rate and, of course, also to the gas heat conductivity. To calibrate hot wires with respect to mass flow rates per unit area, i.e., with respect to ({rho}U), requires special calibration test rigs. Such a device is described and its application is summarized within the ({rho}U) range 0.1-25 kg/m{sup 2} s. Calibrations are shown to yield the same hot-wire response curves for density variations in the range 1-7 kg/m{sup 3}. The application of the calibrated wires to measure pulsating mass flows is demonstrated, and suggestions are made for carrying out extensive calibrations to yield the ({rho}U) wire response as a basis for advanced fluid mechanics research on ({rho}U) data in density-varying flows. (orig.)

  1. Calibration of matrix-assisted laser desorption/ionization time-of-flight peptide mass fingerprinting spectra

    DEFF Research Database (Denmark)

    Hjernø, Karin; Højrup, Peter

    2007-01-01

    This chapter describes a number of aspects important for calibration of matrix-assisted laser desorption/ionization time-of-flight spectra prior to peptide mass fingerprinting searches. Both multipoint internal calibration and mass defect-based calibration is illustrated. The chapter describes how...

  2. Richness-mass relation self-calibration for galaxy clusters

    CERN Document Server

    Andreon, S

    2012-01-01

    This work attains a threefold objective: first, we derived the richness-mass scaling in the local Universe from data of 53 clusters with individual measurements of mass. We found a 0.46+-0.12 slope and a 0.25+-0.03 dex scatter measuring richness with a previously developed method. Second, we showed on a real sample of 250 0.06mass scaling to forecast the capabilities of future wide-field-area surveys of galaxy clusters to constrain cosmological parameters. We computed the uncertainty and the covariance matrix of the (evolving) richness-mass scaling of a PanStarrs 1+Euclid-like survey accounting for a large suite of sources of errors. We find that the richness-mass scaling parameters, which are the input ingredients of cosmological forecasts using cluster counts, can b...

  3. Calibration of the Top-Quark Monte Carlo Mass

    Science.gov (United States)

    Kieseler, Jan; Lipka, Katerina; Moch, Sven-Olaf

    2016-04-01

    We present a method to establish, experimentally, the relation between the top-quark mass mtMC as implemented in Monte Carlo generators and the Lagrangian mass parameter mt in a theoretically well-defined renormalization scheme. We propose a simultaneous fit of mtMC and an observable sensitive to mt, which does not rely on any prior assumptions about the relation between mt and mtMC. The measured observable is independent of mtMC and can be used subsequently for a determination of mt. The analysis strategy is illustrated with examples for the extraction of mt from inclusive and differential cross sections for hadroproduction of top quarks.

  4. Reconciling Planck cluster counts and cosmology? Chandra/XMM instrumental calibration and hydrostatic mass bias

    OpenAIRE

    Israel, H.; Schellenberger, G.; Nevalainen, J.; Massey, R; Reiprich, T. H.

    2014-01-01

    The mass of galaxy clusters can be inferred from the temperature of their X-ray emitting gas, $T_{\\mathrm{X}}$. Their masses may be underestimated if it is assumed that the gas is in hydrostatic equilibrium, by an amount $b^{\\mathrm{hyd}}\\sim(20\\pm10)$ % suggested by simulations. We have previously found consistency between a sample of observed \\textit{Chandra} X-ray masses and independent weak lensing measurements. Unfortunately, uncertainties in the instrumental calibration of {\\em Chandra}...

  5. Induced Dual-Nanospray: A Novel Internal Calibration Method for Convenient and Accurate Mass Measurement

    Science.gov (United States)

    Li, Yafeng; Zhang, Ning; Zhou, Yueming; Wang, Jianing; Zhang, Yiming; Wang, Jiyun; Xiong, Caiqiao; Chen, Suming; Nie, Zongxiu

    2013-09-01

    Accurate mass information is of great importance in the determination of unknown compounds. An effective and easy-to-control internal mass calibration method will dramatically benefit accurate mass measurement. Here we reported a simple induced dual-nanospray internal calibration device which has the following three advantages: (1) the two sprayers are in the same alternating current field; thus both reference ions and sample ions can be simultaneously generated and recorded. (2) It is very simple and can be easily assembled. Just two metal tubes, two nanosprayers, and an alternating current power supply are included. (3) With the low-flow-rate character and the versatility of nanoESI, this calibration method is capable of calibrating various samples, even untreated complex samples such as urine and other biological samples with small sample volumes. The calibration errors are around 1 ppm in positive ion mode and 3 ppm in negative ion mode with good repeatability. This new internal calibration method opens up new possibilities in the determination of unknown compounds, and it has great potential for the broad applications in biological and chemical analysis.

  6. Calibration of the top-quark Monte-Carlo mass

    Energy Technology Data Exchange (ETDEWEB)

    Kieseler, Jan; Lipka, Katerina [DESY Hamburg (Germany); Moch, Sven-Olaf [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2015-11-15

    We present a method to establish experimentally the relation between the top-quark mass m{sup MC}{sub t} as implemented in Monte-Carlo generators and the Lagrangian mass parameter m{sub t} in a theoretically well-defined renormalization scheme. We propose a simultaneous fit of m{sup MC}{sub t} and an observable sensitive to m{sub t}, which does not rely on any prior assumptions about the relation between m{sub t} and m{sup MC}{sub t}. The measured observable is independent of m{sup MC}{sub t} and can be used subsequently for a determination of m{sub t}. The analysis strategy is illustrated with examples for the extraction of m{sub t} from inclusive and differential cross sections for hadro-production of top-quarks.

  7. Calibration of the Top-Quark Monte-Carlo Mass

    CERN Document Server

    Kieseler, Jan; Moch, Sven-Olaf

    2015-01-01

    We present a method to establish experimentally the relation between the top-quark mass $m_t^{MC}$ as implemented in Monte-Carlo generators and the Lagrangian mass parameter $m_t$ in a theoretically well-defined renormalization scheme. We propose a simultaneous fit of $m_t^{MC}$ and an observable sensitive to $m_t$, which does not rely on any prior assumptions about the relation between $m_t$ and $m_t^{MC}$. The measured observable is independent of $m_t^{MC}$ and can be used subsequently for a determination of $m_t$. The analysis strategy is illustrated with examples for the extraction of $m_t$ from inclusive and differential cross sections for hadro-production of top-quarks.

  8. Calibration of the top-quark Monte-Carlo mass

    International Nuclear Information System (INIS)

    We present a method to establish experimentally the relation between the top-quark mass mMCt as implemented in Monte-Carlo generators and the Lagrangian mass parameter mt in a theoretically well-defined renormalization scheme. We propose a simultaneous fit of mMCt and an observable sensitive to mt, which does not rely on any prior assumptions about the relation between mt and mMCt. The measured observable is independent of mMCt and can be used subsequently for a determination of mt. The analysis strategy is illustrated with examples for the extraction of mt from inclusive and differential cross sections for hadro-production of top-quarks.

  9. Calibration of mass spectrometric measurements of gas phase reactions on steel surfaces

    International Nuclear Information System (INIS)

    The sampling of the surface-near gas composition using a mass spectrometer (MS-Probe) is a valuable tool within a hot dip process simulator. Since reference samples with well characterized surface coverage are usually not available, steel samples can deliver quantifiable amounts of the process relevant species H2O, CO and H2 using the decarburization reaction with water vapor. Such “artificial calibration samples” (ACS) can be used for the calibration of the MS-Probe measurements. The carbon release rate, which is governed by the diffusion law, was determined by GDOES, since the diffusion coefficients of carbon in steel samples are usually not known. The measured carbon concentration profiles in the ACS after the thermal treatment confirmed the validity of the diffusion model described in this paper. The carbon bulk concentration > 100 ppm is sufficient for the use of a steel material as ACS. The experimental results reported in this paper reveal, that with the MS-Probe the LOQ of less than one monolayer of iron oxide can be achieved. - Highlights: • Gas to surface reactions at steel sheets is monitored with a mass spectrometer on-line. • The experimental data are calibrated in absolute terms as oxide mass densities. • Standard steel samples can be used for the calibration procedure. • Additional GDOES analysis of the carbon depletion in the calibration samples was carried out. • Limits of quantitation below one monolayer of oxide surface coverage were achieved

  10. PAS-cal: a Generic Recombinant Peptide Calibration Standard for Mass Spectrometry

    OpenAIRE

    Breibeck, Joscha; Serafin, Adam; Reichert, Andreas; Maier, Stefan; Küster, Bernhard; Skerra, Arne

    2014-01-01

    We describe the design, preparation, and mass-spectrometric characterization of a new recombinant peptide calibration standard with uniform biophysical and ionization characteristics for mass spectrometry. “PAS-cal” is an artificial polypeptide concatamer of peptide cassettes with varying lengths, each composed of the three small, chemically stable amino acids Pro, Ala, and Ser, which are interspersed by Arg residues to allow site-specific cleavage with trypsin. PAS-cal is expressed at high y...

  11. Reconciling Planck cluster counts and cosmology: Chandra/XMM instrumental calibration and hydrostatic mass bias

    CERN Document Server

    Israel, Holger; Nevalainen, Jukka; Massey, Richard; Reiprich, Thomas

    2014-01-01

    The temperature of X-ray emitting gas $T_X$ is often used to infer the total mass of galaxy clusters (under the assumption of hydrostatic equilibrium). Unfortunately, XMM-Newton and Chandra observatories measure inconsistent temperatures for the same gas, due to uncertain instrumental calibration. We translate the relative bias in $T_X$ measurements of Schellenberger et al. (2014) into a bias on inferred mass for a sample of clusters with homogeneous weak lensing (WL) masses, to simultaneously examine the hydrostatic bias and instrument calibration. Israel et al. (2014) found consistent WL and Chandra hydrostatic X-ray masses for a sample of clusters at $z$~0.5 and masses of a few $10^{14}$ $M_{\\odot}$. We find their XMM-Newton masses to be lower by $b^{xcal}=15$-$20$ % than their Chandra masses. At the massive end ($>5\\cdot 10^{14}$ $M_{\\odot}$), the XMM-Newton masses are ~35% lower than the WL masses. Assuming that the true hydrostatic bias is 20 %, as indicated by simulations, our results for the massive e...

  12. Energy Calibration of the BaBar EMC Using the Pi0 Invariant Mass Method

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, David J.; /Manchester U.

    2007-04-06

    The BaBar electromagnetic calorimeter energy calibration method was compared with the local and global peak iteration procedures, of Crystal Barrel and CLEO-II. An investigation was made of the possibility of {Upsilon}(4S) background reduction which could lead to increased statistics over a shorter time interval, for efficient calibration runs. The BaBar software package was used with unreconstructed data to study the energy response of the calorimeter, by utilizing the {pi}{sup 0} mass constraint on pairs of photon clusters.

  13. Hydrophilic carbon clusters as therapeutic, high capacity antioxidants

    OpenAIRE

    Samuel, Errol L. G.; Duong, MyLinh T.; Bitner, Brittany R.; Marcano, Daniela C.; James M. Tour; Kent, Thomas A

    2014-01-01

    Oxidative stress reflects an excessive accumulation of reactive oxygen species (ROS) and is a hallmark of several acute and chronic human pathologies. While many antioxidants have been investigated, the majority have demonstrated poor efficacy in clinical trials. Here, we discuss limitations of current antioxidants and describe a new class of nanoparticle antioxidants, poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs). PEG-HCCs show high capacity to annihilate ROS su...

  14. Calibration of the Quadrupole Mass Spectrometer of the Sample Analysis at Mars Instrument Suite

    Science.gov (United States)

    Mahaffy, P. R.; Trainer, M. G.; Eigenbrode, J. L.; Franz, H. B.; Stern, J. C.; Harpold, D.; Conrad, P. G.; Raaen, E.; Lyness, E.

    2011-01-01

    The SAM suite of instruments on the "Curiosity" Rover of the Mars Science Laboratory (MSL) is designed to provide chemical and isotopic analysis of organic and inorganic volatiles for both atmospheric and solid samples. The mission of the MSL investigations is to advance beyond the successful search for aqueous transformation in surface environments at Mars toward a quantitative assessment of habitability and preservation through a series of chemical and geological measurements. The SAM suite was delivered in December 2010 (Figure 1) to the Jet Propulsion Laboratory for integration into the Curiosity Rover. We previously outlined the range of SAM solid and gas calibrations implemented or planned and here we discuss a specific set of calibration experiments to establish the response of the SAM Quadrupole Mass Spectrometer (QMS) to the four most abundant gases in the Martian atmosphere CO2, N2, Ar, and O2, A full SAM instrument description and calibration report is presently in preparation.

  15. Using inductively coupled plasma-mass spectrometry for calibration transfer between environmental CRMs.

    Science.gov (United States)

    Turk, G C; Yu, L L; Salit, M L; Guthrie, W F

    2001-06-01

    Multielement analyses of environmental reference materials have been performed using existing certified reference materials (CRMs) as calibration standards for inductively coupled plasma-mass spectrometry. The analyses have been performed using a high-performance methodology that results in comparison measurement uncertainties that are significantly less than the uncertainties of the certified values of the calibration CRM. Consequently, the determined values have uncertainties that are very nearly equivalent to the uncertainties of the calibration CRM. Several uses of this calibration transfer are proposed, including, re-certification measurements of replacement CRMs, establishing traceability of one CRM to another, and demonstrating the equivalence of two CRMs. RM 8704, a river sediment, was analyzed using SRM 2704, Buffalo River Sediment, as the calibration standard. SRM 1632c, Trace Elements in Bituminous Coal, which is a replacement for SRM 1632b, was analyzed using SRM 1632b as the standard. SRM 1635, Trace Elements in Subbituminous Coal, was also analyzed using SRM 1632b as the standard. PMID:11451248

  16. Mass Spectrometric Calibration of Controlled Fluoroform Leak Rate Devices Technique and Uncertainty Analysis

    CERN Document Server

    Balsley, S D; Laduca, C A

    2003-01-01

    Controlled leak rate devices of fluoroform on the order of 10 sup - sup 8 atm centre dot cc sec sup - sup 1 at 25 C are used to calibrate QC-1 War Reserve neutron tube exhaust stations for leak detection sensitivity. Close-out calibration of these tritium-contaminated devices is provided by the Gas Dynamics and Mass Spectrometry Laboratory, Organization 14406, which is a tritium analytical facility. The mass spectrometric technique used for the measurement is discussed, as is the first principals calculation (pressure, volume, temperature and time). The uncertainty of the measurement is largely driven by contributing factors in the determination of P, V and T. The expanded uncertainty of the leak rate measurement is shown to be 4.42%, with a coverage factor of 3 (k=3).

  17. STACKED WEAK LENSING MASS CALIBRATION: ESTIMATORS, SYSTEMATICS, AND IMPACT ON COSMOLOGICAL PARAMETER CONSTRAINTS

    International Nuclear Information System (INIS)

    When extracting the weak lensing shear signal, one may employ either locally normalized or globally normalized shear estimators. The former is the standard approach when estimating cluster masses, while the latter is the more common method among peak finding efforts. While both approaches have identical signal-to-noise in the weak lensing limit, it is possible that higher order corrections or systematic considerations make one estimator preferable over the other. In this paper, we consider the efficacy of both estimators within the context of stacked weak lensing mass estimation in the Dark Energy Survey (DES). We find that the two estimators have nearly identical statistical precision, even after including higher order corrections, but that these corrections must be incorporated into the analysis to avoid observationally relevant biases in the recovered masses. We also demonstrate that finite bin-width effects may be significant if not properly accounted for, and that the two estimators exhibit different systematics, particularly with respect to contamination of the source catalog by foreground galaxies. Thus, the two estimators may be employed as a systematic cross-check of each other. Stacked weak lensing in the DES should allow for the mean mass of galaxy clusters to be calibrated to ∼2% precision (statistical only), which can improve the figure of merit of the DES cluster abundance experiment by a factor of ∼3 relative to the self-calibration expectation. A companion paper investigates how the two types of estimators considered here impact weak lensing peak finding efforts.

  18. The important role of evolution in the Planck $Y_{SZ}$-mass calibration

    CERN Document Server

    Andreon, S

    2014-01-01

    In light of the tension between cosmological parameters from Planck cosmic microwave background and galaxy clusters, we revised the Planck analysis of the $Y_{SZ}$-mass calibration allowing for evolution to be determined by the data instead than imposed as external constraint. Our analysis uses the very same data used by the Planck team in order to emphasize that differences in the results comes from differences in the analysis assumptions. The evolution derived from the Planck sample of 71 calibrating clusters with $0.05mass relation turns out to be $1.50\\pm0.07$, shallower by $4.8\\sigma$ than the value derived assuming self-similar evolution, effectively a mass-dependent bias. The non self-similar evolution of $Y_{SZ}$ has to be accounted for in analyses aimed to establish biases of Planck masses because degenerate with it.

  19. The important role of evolution in the Planck YSZ-mass calibration

    Science.gov (United States)

    Andreon, S.

    2014-10-01

    In light of the tension between cosmological parameters from Planck cosmic microwave background and galaxy clusters, we revised the Planck analysis of the YSZ-mass calibration to allow evolution to be determined by the data instead of being imposed as an external constraint. Our analysis uses the very same data and Malmquist bias corrections as used by the Planck team in order to emphasize that differences in the results come from differences in the assumptions. The evolution derived from 71 calibrating clusters, with 0.05 < z < 0.45, is proportional to E2.5 ± 0.4(z), so inconsistent with the self-similar evolution (E2/3) assumed by previous analyses. When allowing for evolution, the slope of YSZ-mass relation turns out to be 1.51 ± 0.07, which is shallower by 4.8σ than the value derived when assuming self-similar evolution, introducing a mass-dependent bias. The non-self-similar evolution of YSZ has to be accounted for in analyses aimed to establish the biases of Planck masses.

  20. Stacked Weak Lensing Mass Calibration: Estimators, Systematics, and Impact on Cosmological Parameter Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Rozo, Eduardo; /U. Chicago /Chicago U., KICP; Wu, Hao-Yi; /KIPAC, Menlo Park; Schmidt, Fabian; /Caltech

    2011-11-04

    When extracting the weak lensing shear signal, one may employ either locally normalized or globally normalized shear estimators. The former is the standard approach when estimating cluster masses, while the latter is the more common method among peak finding efforts. While both approaches have identical signal-to-noise in the weak lensing limit, it is possible that higher order corrections or systematic considerations make one estimator preferable over the other. In this paper, we consider the efficacy of both estimators within the context of stacked weak lensing mass estimation in the Dark Energy Survey (DES). We find that the two estimators have nearly identical statistical precision, even after including higher order corrections, but that these corrections must be incorporated into the analysis to avoid observationally relevant biases in the recovered masses. We also demonstrate that finite bin-width effects may be significant if not properly accounted for, and that the two estimators exhibit different systematics, particularly with respect to contamination of the source catalog by foreground galaxies. Thus, the two estimators may be employed as a systematic cross-check of each other. Stacked weak lensing in the DES should allow for the mean mass of galaxy clusters to be calibrated to {approx}2% precision (statistical only), which can improve the figure of merit of the DES cluster abundance experiment by a factor of {approx}3 relative to the self-calibration expectation. A companion paper investigates how the two types of estimators considered here impact weak lensing peak finding efforts.

  1. Calibration of a surface mass balance model for global-scale applications

    Directory of Open Access Journals (Sweden)

    R. H. Giesen

    2012-12-01

    Full Text Available Global applications of surface mass balance models have large uncertainties, as a result of poor climate input data and limited availability of mass balance measurements. This study addresses several possible consequences of these limitations for the modelled mass balance. This is done by applying a simple surface mass balance model that only requires air temperature and precipitation as input data, to glaciers in different regions. In contrast to other models used in global applications, this model separately calculates the contributions of net solar radiation and the temperature-dependent fluxes to the energy balance. We derive a relation for these temperature-dependent fluxes using automatic weather station (AWS measurements from glaciers in different climates. With local, hourly input data, the model is well able to simulate the observed seasonal variations in the surface energy and mass balance at the AWS sites. Replacing the hourly local data by monthly gridded climate data removes summer snowfall and winter melt events and, hence, influences the modelled mass balance most on locations with a small seasonal temperature cycle. Modelled winter mass balance profiles are fitted to observations on 82 glaciers in different regions to determine representative values for the multiplication factor and vertical gradient of precipitation. For 75 of the 82 glaciers, the precipitation provided by the climate dataset has to be multiplied with a factor above unity; the median factor is 2.5. The vertical precipitation gradient ranges from negative to positive values, with more positive values for maritime glaciers and a median value of 1.5 mm a−1 m−1. With calibrated precipitation, the modelled annual mass balance gradient closely resembles the observations on the 82 glaciers, the absolute values are matched by adjusting either the incoming solar radiation, the temperature-dependent flux or the air temperature. The mass balance

  2. Calibration of a surface mass balance model for global-scale applications

    Science.gov (United States)

    Giesen, R. H.; Oerlemans, J.

    2012-12-01

    Global applications of surface mass balance models have large uncertainties, as a result of poor climate input data and limited availability of mass balance measurements. This study addresses several possible consequences of these limitations for the modelled mass balance. This is done by applying a simple surface mass balance model that only requires air temperature and precipitation as input data, to glaciers in different regions. In contrast to other models used in global applications, this model separately calculates the contributions of net solar radiation and the temperature-dependent fluxes to the energy balance. We derive a relation for these temperature-dependent fluxes using automatic weather station (AWS) measurements from glaciers in different climates. With local, hourly input data, the model is well able to simulate the observed seasonal variations in the surface energy and mass balance at the AWS sites. Replacing the hourly local data by monthly gridded climate data removes summer snowfall and winter melt events and, hence, influences the modelled mass balance most on locations with a small seasonal temperature cycle. Modelled winter mass balance profiles are fitted to observations on 82 glaciers in different regions to determine representative values for the multiplication factor and vertical gradient of precipitation. For 75 of the 82 glaciers, the precipitation provided by the climate dataset has to be multiplied with a factor above unity; the median factor is 2.5. The vertical precipitation gradient ranges from negative to positive values, with more positive values for maritime glaciers and a median value of 1.5 mm a-1 m-1. With calibrated precipitation, the modelled annual mass balance gradient closely resembles the observations on the 82 glaciers, the absolute values are matched by adjusting either the incoming solar radiation, the temperature-dependent flux or the air temperature. The mass balance sensitivity to changes in temperature is

  3. Calibration and intercomparison of acetic acid measurements using proton transfer reaction mass spectrometry (PTR-MS)

    Science.gov (United States)

    Haase, K.B.; Keene, W.C.; Pszenny, A.A.P.; Mayne, H.R.; Talbot, R.W.; Sive, B.C.

    2012-01-01

    Acetic acid is one of the most abundant organic acids in the ambient atmosphere, with maximum mixing ratios reaching into the tens of parts per billion by volume (ppbv) range. The identities and associated magnitudes of the major sources and sinks for acetic acid are poorly characterized, due in part to the limitation in available measurement techniques. This paper demonstrates that Proton Transfer Reaction Mass Spectrometry (PTR-MS) can reliably quantify acetic acid vapor in ambient air. Three different PTR-MS configurations were calibrated at low ppbv mixing ratios using permeation tubes, which yielded calibration factors between 7.0 and 10.9 normalized counts per second per ppbv (ncps ppbv−1) at a drift tube field strength of 132 townsend (Td). Detection limits ranged from 0.06 to 0.32 ppbv with dwell times of 5 s. These calibration factors showed negligible humidity dependence. Using the experimentally determined calibration factors, PTR-MS measurements of acetic acid during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) campaign were validated against results obtained using Mist Chambers coupled with Ion Chromatography (MC/IC). An orthogonal least squares linear regression of paired data yielded a slope of 1.14 ± 0.06 (2σ), an intercept of 0.049 ± 20 (2σ) ppbv, and an R2 of 0.78. The median mixing ratio of acetic acid on Appledore Island, ME during the ICARTT campaign was 0.530 ± 0.025 ppbv with a minimum of 0.075 ± 0.004 ppbv, and a maximum of 3.555 ± 0.171 ppbv.

  4. Calibration of double focusing Glow Discharge Mass Spectrometry instruments with pin-shaped synthetic standards

    International Nuclear Information System (INIS)

    Calibration of two commercially available glow discharge double focusing mass spectrometers, the VG 9000 and Element GD, is described using synthetic pin standards pressed from solution doped copper and zinc matrices. A special pressing die was developed for this purpose and optimal results were obtained with the highest possible pressures, i.e., 95 kN·cm−2. This calibration approach permits the determination of trace element mass fractions down to μg·kg−1 with small uncertainties and additionally provides traceability of the GD-MS results in the most direct manner to the SI (International System of Units). Results were validated by concurrent measurements of a number of compact copper and zinc certified reference materials. The impact of the sample pin cross-section (circular or square) was investigated with the use of a new pin-sample holder system for the Element GD. The pin-sample holder was designed by the manufacturer for pin-samples having circular cross-section; however, samples with square pin cross-section were also shown to provide acceptable results. Relative Sensitivity Factors for some 50 analytes in copper (VG 9000, Element GD) and zinc matrices (VG 9000) are presented. The field of applicability of GD-MS may be considerably extended via analysis of pin geometry samples based on their ease of preparation, especially with respect to the accuracy and traceability of the results and the enhanced number of analytes which can be reliably calibrated using such samples. - Highlights: ► GD-MS instruments were calibrated with synthetic pin standards of copper and zinc. ► This provides accurate determination of trace element mass fractions down to ppb. ► Measurement results obtain small uncertainties and are traceable to the SI. ► The standard preparation pressure of ≥ 95 kN·cm−2 is needed for accurate results. ► New/more accurate RSFs for some 50 analytes in each matrix were determined.

  5. Evaluation of Collision Cross Section Calibrants for Structural Analysis of Lipids by Traveling Wave Ion Mobility-Mass Spectrometry.

    Science.gov (United States)

    Hines, Kelly M; May, Jody C; McLean, John A; Xu, Libin

    2016-07-19

    Collision cross section (CCS) measurement of lipids using traveling wave ion mobility-mass spectrometry (TWIM-MS) is of high interest to the lipidomics field. However, currently available calibrants for CCS measurement using TWIM are predominantly peptides that display quite different physical properties and gas-phase conformations from lipids, which could lead to large CCS calibration errors for lipids. Here we report the direct CCS measurement of a series of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) in nitrogen using a drift tube ion mobility (DTIM) instrument and an evaluation of the accuracy and reproducibility of PCs and PEs as CCS calibrants for phospholipids against different classes of calibrants, including polyalanine (PolyAla), tetraalkylammonium salts (TAA), and hexakis(fluoroalkoxy)phosphazines (HFAP), in both positive and negative modes in TWIM-MS analysis. We demonstrate that structurally mismatched calibrants lead to larger errors in calibrated CCS values while the structurally matched calibrants, PCs and PEs, gave highly accurate and reproducible CCS values at different traveling wave parameters. Using the lipid calibrants, the majority of the CCS values of several classes of phospholipids measured by TWIM are within 2% error of the CCS values measured by DTIM. The development of phospholipid CCS calibrants will enable high-accuracy structural studies of lipids and add an additional level of validation in the assignment of identifications in untargeted lipidomics experiments. PMID:27321977

  6. Calibration of Dissolved Noble Gas Mass Spectrometric Measurements by an Air-Water Equilibration System

    Science.gov (United States)

    Hillegonds, Darren; Matsumoto, Takuya; Jaklitsch, Manfred; Han, Liang-Feng; Klaus, Philipp; Wassenaar, Leonard; Aggarwal, Pradeep

    2013-04-01

    Precise measurements by mass spectrometry of dissolved noble gases (He, Ar, Ne, Kr, Xe) in water samples require careful calibration against laboratory standards with known concentrations. Currently, air pipettes are used for day-to-day calibrations, making estimation of overall analytical uncertainties for dissolved noble gas measurements in water difficult. Air equilibrated water (AEW) is often used as a matrix-equivalent laboratory standard for dissolved gases in groundwater, because of the well-known and constant fractions of noble gases in the atmosphere. AEW standards, however, are only useful if the temperature and pressure of the gas-water equilibrium can be controlled and measured precisely (i.e., to better than 0.5%); contamination and partial sample degassing must also be prevented during sampling. Here we present the details of a new custom air-water equilibration system which consists of an insulated 600 liter tank filled with deionized water, held isothermally at a precise target temperature (water in the tank are monitored continually, as are atmospheric pressure and air temperature in the laboratory. Different noble gas concentration standards can be reliably produced by accurately controlling the water temperature of the equilibration system. Equilibration characteristics and reproducibility of this system for production of copper tubes containing known amounts of noble gases will be presented.

  7. Calibration of mass spectrometric measurements of gas phase reactions on steel surfaces

    Science.gov (United States)

    Falk, H.; Falk, M.; Wuttke, T.

    2015-03-01

    The sampling of the surface-near gas composition using a mass spectrometer (MS-Probe) is a valuable tool within a hot dip process simulator. Since reference samples with well characterized surface coverage are usually not available, steel samples can deliver quantifiable amounts of the process relevant species H2O, CO and H2 using the decarburization reaction with water vapor. Such "artificial calibration samples" (ACS) can be used for the calibration of the MS-Probe measurements. The carbon release rate, which is governed by the diffusion law, was determined by GDOES, since the diffusion coefficients of carbon in steel samples are usually not known. The measured carbon concentration profiles in the ACS after the thermal treatment confirmed the validity of the diffusion model described in this paper. The carbon bulk concentration > 100 ppm is sufficient for the use of a steel material as ACS. The experimental results reported in this paper reveal, that with the MS-Probe the LOQ of less than one monolayer of iron oxide can be achieved.

  8. Measurements of particle masses of inorganic salt particles for calibration of cloud condensation nuclei counters

    Directory of Open Access Journals (Sweden)

    M. Kuwata

    2009-02-01

    Full Text Available We measured the mobility equivalent critical dry diameter for CCN activation (dcme and the particle mass of size-selected (NH42SO4 and NaCl particles to calibrate a CCN counter (CCNC precisely. The CCNC was operated downstream of a differential mobility analyzer (DMA for the measurement of dcme. The particle mass was measured using an aerosol particle mass analyzer (APM operated downstream of the DMA. The measurement of particle mass was conducted for 50–150-nm particles. Effective densities (ρeff of (NH42SO4 particles were 1.67–1.75 g cm−3, which correspond to the dynamic shape factors (χ of 1.01–1.04. This shows that (NH42SO4 particles are not completely spherical. In the case of NaCl particles, ρeff was 1.75–1.99 g cm−3 and χ was 1.05–1.14, demonstrating that their particle shape was non-spherical. Using these experimental data, the volume equivalent critical dry diameter (dcve was calculated, and it was used as an input parameter for calculations of critical supersaturation (S. Several thermodynamics models were used for the calculation of water activity. When the Pitzer model was employed for the calculations, the critical S calculated for (NH42SO4 and NaCl agreed to well within the uncertainty of 2% (relative. This result demonstrates that the use of the Pitzer model for the calibration of CCNCs gives the most probable value of S.

  9. Electron propagator calculations on linear and branched carbon cluster dianions

    Energy Technology Data Exchange (ETDEWEB)

    Zakrzewski, V.G.; Ortiz, J.V. [Univ. of New Mexico, Albuquerque, NM (United States)

    1994-12-31

    Electron propagator calculations have been performed on linear carbon cluster dianions from C{sub 7}{sup 2-} to C{sub 10}{sup 2-} and on branched C{sub 7}{sup 2-}, C{sub 9}{sup 2-} and C{sub 11}{sup 2-} structures which have a central, tricoordinate carbon bound to three branches with alternating long and short bonds. The more stable, branched isomer of C{sub 7}{sup 2-} has a positive vertical ionization energy, but the linear form does not. While linear C{sub 10}{sup 2-} is stable with respect to electron loss, it is not possible to decide from these calculations whether linear C{sub 8}{sup 2-} and C{sub 9}{sup 2-} have the same property. There is evidence that better calculations would obtain bound C{sub 8}{sup 2-} and C{sub 9}{sup 2-} species. All branched dianions have positive, vertical ionization energies. Feynman-Dyson amplitudes for dianion ionization energies display delocalized {pi} bonding, with the two terminal carbons of the longest branches making the largest contributions.

  10. Calibration of microbolometer infrared cameras for measuring volcanic ash mass loading

    Science.gov (United States)

    Carroll, Russell C.

    Small spacecraft with thermal infrared (TIR) imaging capabilities are needed to detect dangerous levels of volcanic ash that can severely damage jet aircraft engines and must be avoided. Grounding aircraft after a volcanic eruption may cost the airlines millions of dollars per day, while accurate knowledge of volcanic ash density might allow for safely routing aircraft around dangerous levels of volcanic ash. There are currently limited numbers of satellites with TIR imaging capabilities so the elapsed time between revisits can be large, and these instruments can only resolve total mass loading along the line-of-sight. Multiple small satellites could allow for decreased revisit times as well as multiple viewing angles to reveal the three-dimensional structure of the ash cloud through stereoscopic techniques. This paper presents the design and laboratory evaluation of a TIR imaging system that is designed to fit within the resource constraints of a multi-unit CubeSat to detect volcanic ash mass loading. The laboratory prototype of this TIR imaging system uses a commercial off-the shelf (COTS) camera with an uncooled microbolometer sensor, two narrowband filters, a black body source and a custom filter wheel. The infrared imaging system detects the difference in attenuation of volcanic ash at 11 mum and 12 mum by measuring the brightness temperature at each band. The brightness temperature difference method is used to measure the column mass loading. Multi-aspect images and stereoscopic techniques are needed to estimate the mass density from the mass loading, which is the measured mass per unit area. Laboratory measurements are used to characterize the noise level and thermal stability of the sensor. A calibration technique is developed to compensate for sensor temperature drift. The detection threshold of volcanic ash density of this TIR imaging system is found to be from 0.35 mg/m3 to 26 mg/m3 for ash clouds that have thickness of 1 km, while ash cloud densities

  11. CoMaLit-V. Mass forecasting with proxies. Method and application to weak lensing calibrated samples

    CERN Document Server

    Sereno, Mauro

    2016-01-01

    Mass measurements of astronomical objects are most wanted but still elusive. We need them to trace the formation and evolution of cosmic structure but we can get direct measurements only for a minority. This lack can be circumvented with a proxy and a scaling relation. The twofold goal of estimating the unbiased relation and finding the right proxy value to plug in can be hampered by systematics, selection effects, Eddington/Malmquist biases and time evolution. We present a Bayesian hierarchical method which deals with these issues. Masses to be predicted are treated as missing data in the regression and are estimated together with the scaling parameters. The calibration subsample with measured masses does not need to be representative of the full sample. We apply the method to forecast weak lensing calibrated masses of the Planck, redMaPPer and MCXC clusters. Planck masses are biased low with respect to weak lensing calibrated masses, with a bias more pronounced for high redshift clusters. MCXC masses are un...

  12. Precise calibration of LIGO test mass actuators using photon radiation pressure

    CERN Document Server

    Goetz, E; Erickson, S; Savage, R L; González, G; Kawabe, K; Landry, M; Marka, S; O'Reilly, B; Riles, K; Sigg, D; Willems, P

    2009-01-01

    Precise calibration of kilometer-scale interferometric gravitational wave detectors is crucial for source localization and waveform reconstruction. A technique that uses the radiation pressure of a power-modulated auxiliary laser to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a so-called photon calibrator, has been demonstrated previously and has recently been implemented on the LIGO detectors. In this article, we discuss the inherent precision and accuracy of the LIGO photon calibrators and several improvements that have been developed to reduce the estimated voice coil actuator calibration uncertainties to less than 2 percent (1-sigma). These improvements include accounting for rotation-induced apparent length variations caused by interferometer and photon calibrator beam centering offsets, absolute laser power measurement using temperature-controlled InGaAs photodetectors mounted on integrating spheres and calibrated by NIST, minimizing errors induced by localized elastic defor...

  13. Tuned resonant mass or inerter-based absorbers: unified calibration with quasi-dynamic flexibility and inertia correction

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    2016-01-01

    A common format is developed for a mass and an inerter-based resonant vibration absorber device, operating on the absolute motion and the relative motion at the location of the device, respectively. When using a resonant absorber a specific mode is targeted, but in the calibration of the device i...

  14. Jet calibration and top quark mass measurement in the semi-leptonic channel in the ATLAS experiment

    International Nuclear Information System (INIS)

    The main goal of this thesis is to provide a measurement as accurate as possible of the top quark mass in the semi-leptonic decay channel. This experimental measurement is made thanks to the ATLAS detector near LHC, a proton-proton collider. The main interests for this precision measurement are the physics constraints to the theoretical models of fundamental constituents. Besides, the top quark mass is a parameter allowing to have more information on the vacuum stability at the Planck scale within the Standard Model. Jet energy calibration is crucial to this measurement. The impact of real data taking conditions on this calibration and on jet performance is detailed. The top quark mass measurement using 2011 data collected at an energy in the center-of-mass of 7 TeV is presented. It is using a tri dimensional template analysis method. The measured top quark mass is: m(top) = 172.01 ± 0.92 (stat) ± 1.17 (syst) GeV. The 2012 data collected at an energy in the center-of-mass of 8 TeV are also analysed, and a preliminary result for the top quark mass is provided: m(top) = 172.82 ± 0.39 (stat) ± 1.12 (syst) GeV, the combination of both measurements being the most accurate result of this thesis: m(top) = 172.64 ± 0.37 (stat) ± 1.10 (syst) GeV. (author)

  15. Studies for a top quark mass measurement and development of a jet energy calibration with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Jantsch, Andreas

    2012-06-11

    In this thesis, the development of a new jet energy calibration method as well as studies for a top quark mass measurement with the ATLAS detector are presented. The new calibration method considers jet shape variables in order to improve the linearity and resolution of the jet energy response. Promising results are shown for jet events from Monte Carlo simulation as well as from first {radical}(s)=900 GeV proton-proton collision data of the Large Hadron Collider. In addition, Monte Carlo studies for a top quark mass measurement in the lepton plus jets decay channel of top quark pair events are performed. Several top quark reconstruction methods are investigated in pseudo-experiments which are equivalent to an integrated luminosity of L=200 pb{sup -1} at {radical}(s)=10 TeV. Assuming a generated top quark mass of m{sub t}{sup gen}=172.5 GeV, the most promising result is achieved with the Max-p{sub T} reconstruction method which returns a top quark mass of m{sup Max-p{sub Tt,el-channel}}=170.4{+-}2.2 vertical stroke {sub stat.}{+-} 8.8 vertical stroke {sub syst.} GeV in the electron plus jets decay channel including a bias correction of +5.2 GeV for the central top quark mass value.

  16. Studies for a top quark mass measurement and development of a jet energy calibration with the ATLAS detector

    International Nuclear Information System (INIS)

    In this thesis, the development of a new jet energy calibration method as well as studies for a top quark mass measurement with the ATLAS detector are presented. The new calibration method considers jet shape variables in order to improve the linearity and resolution of the jet energy response. Promising results are shown for jet events from Monte Carlo simulation as well as from first √(s)=900 GeV proton-proton collision data of the Large Hadron Collider. In addition, Monte Carlo studies for a top quark mass measurement in the lepton plus jets decay channel of top quark pair events are performed. Several top quark reconstruction methods are investigated in pseudo-experiments which are equivalent to an integrated luminosity of L=200 pb-1 at √(s)=10 TeV. Assuming a generated top quark mass of mtgen=172.5 GeV, the most promising result is achieved with the Max-pT reconstruction method which returns a top quark mass of mMax-pTt,el-channel=170.4±2.2 vertical stroke stat.± 8.8 vertical stroke syst. GeV in the electron plus jets decay channel including a bias correction of +5.2 GeV for the central top quark mass value.

  17. High precision time calibration of the Permo-Triassic boundary mass extinction by U-Pb geochronology

    Science.gov (United States)

    Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Schaltegger, Urs

    2014-05-01

    U-Pb dating using Chemical Abrasion, Isotope Dilution Thermal Ionization Mass Spectrometry (CA-ID-TIMS) is the analytical method of choice for geochronologists, who are seeking highest temporal resolution and a high degree of accuracy for single grains of zircon. The use of double-isotope tracer solutions, cross-calibrated and assessed in different EARTHTIME labs, coinciding with the reassessment of the uranium decay constants and further improvements in ion counting technology led to unprecedented precision better than 0.1% for single grain, and 0.05% for population ages, respectively. These analytical innovations now allow calibrating magmatic and biological timescales at resolution adequate for both groups of processes. To construct a revised and high resolution calibrated time scale for the Permian-Triassic boundary (PTB) we use (i) high-precision U-Pb zircon age determinations of a unique succession of volcanic ash beds interbedded with shallow to deep water fossiliferous sediments in the Nanpanjiang Basin (South China) combined with (ii) accurate quantitative biochronology based on ammonoids and conodonts and (iii) carbon isotope excursions across the PTB. Using these alignments allows (i) positioning the PTB in different depositional environments and (ii) solving age/stratigraphic contradictions generated by the index, water depth-controlled conodont Hindeodus parvus, whose diachronous first occurrences are arbitrarily used for placing the base of the Triassic. This new age framework provides the basis for a combined calibration of chemostratigraphic records with high-resolution biochronozones of the Late Permian and Early Triassic. Besides the general improvement of the radio-isotopic calibration of the PTB at the ±100 ka level, this will also lead to a better understanding of cause and effect relations involved in this mass extinction.

  18. Large carbon cluster thin film gauges for measuring aerodynamic heat transfer rates in hypersonic shock tunnels

    International Nuclear Information System (INIS)

    Different types of Large Carbon Cluster (LCC) layers are synthesized by a single-step pyrolysis technique at various ratios of precursor mixture. The aim is to develop a fast responsive and stable thermal gauge based on a LCC layer which has relatively good electrical conduction in order to use it in the hypersonic flow field. The thermoelectric property of the LCC layer has been studied. It is found that these carbon clusters are sensitive to temperature changes. Therefore suitable thermal gauges were developed for blunt cone bodies and were tested in hypersonic shock tunnels at a flow Mach number of 6.8 to measure aerodynamic heating. The LCC layer of this thermal gauge encounters high shear forces and a hostile environment for test duration in the range of a millisecond. The results are favorable to use large carbon clusters as a better sensor than a conventional platinum thin film gauge in view of fast responsiveness and stability. (paper)

  19. Thermal motion of carbon clusters and production of carbon nanotubes by gravity-free arc discharge

    International Nuclear Information System (INIS)

    Thermal and diffusion properties of hot gas around a dc arc discharge under a gravity-free condition are investigated using a jet plane in order to improve the arc production of carbon clusters. Spherically symmetric temperature distribution of He gas around the arc plasma and monotonic slow expansion of the high-temperature region are observed. By means of the passive-type Mie scattering method, random slow diffusion of carbon clusters around the arc plasma is clearly observed under the gravity-free condition. This indicates that carbon clusters including single-walled carbon nanotubes are synthesized around the arc plasma where the He temperature is higher than 1000 K. It is confirmed that large bundles of fatter single-walled carbon nanotubes are produced under the gravity-free condition

  20. Calibration of Nu-Instruments Noblesse multicollector mass spectrometers for argon isotopic measurements using a newly developed reference gas

    Science.gov (United States)

    Coble, M.A.; Grove, M.; Calvert, A.T.

    2011-01-01

    The greatest challenge limiting 40Ar/39Ar multicollection measurements is the availability of appropriate standard gasses to intercalibrate detectors. In particular, use of zoom lens ion-optics to steer and focus ion beams into a fixed detector array (i.e., Nu Instruments Noblesse) makes intercalibration of multiple detectors challenging because different ion-optic tuning conditions are required for optimal peak shape and sensitivity at different mass stations. We have found that detector efficiency and mass discrimination are affected by changes in ion-optic tuning parameters. Reliance upon an atmospheric Ar standard to calibrate the Noblesse is problematic because there is no straightforward way to relate atmospheric 40Ar and 36Ar to measurements of 40Ar and 39Ar if they are measured on separate detectors. After exploring alternative calibration approaches, we have concluded that calibration of the Noblesse is best performed using exactly the same source, detector, and ion-optic tuning settings as those used in routine 40Ar/39Ar analysis. To accomplish this, we have developed synthetic reference gasses containing 40Ar, 39Ar and 38Ar produced by mixing gasses derived from neutron-irradiated sanidine with an enriched 38Ar spike. We present a new method for calibrating the Noblesse based on use of both atmospheric Ar and the synthetic reference gasses. By combining atmospheric Ar and synthetic reference gas in different ways, we can directly measure 40Ar/39Ar, 38Ar/39Ar, and 36Ar/39Ar correction factors over ratios that vary from 0.5 to 460. These correction factors are reproducible to better than ??0.5??? (2?? standard error) over intervals spanning ~24h but can vary systematically by ~4% over 2weeks of continuous use when electron multiplier settings are held constant. Monitoring this variation requires daily calibration of the instrument. Application of the calibration method to 40Ar/39Ar multicollection measurements of widely used sanidine reference materials

  1. The Luminosity and Mass Functions of Low-Mass Stars in the Galactic Disk: I. The Calibration Region

    CERN Document Server

    Covey, Kevin R; Bochanski, John J; West, Andrew A; Reid, I Neill; Golimowski, David A; Davenport, James R A; Henry, Todd; Uomoto, Alan

    2008-01-01

    We present measurements of the luminosity and mass functions of low-mass stars constructed from a catalog of matched Sloan Digital Sky Survey (SDSS) and 2 Micron All Sky Survey (2MASS) detections. This photometric catalog contains more than 25,000 matched SDSS and 2MASS point sources spanning ~30 square degrees on the sky. We have obtained follow-up spectroscopy, complete to J=16, of more than 500 low mass dwarf candidates within a 1 square degree sub-sample, and thousands of additional dwarf candidates in the remaining 29 square degrees. This spectroscopic sample verifies that the photometric sample is complete, uncontaminated, and unbiased at the 99% level globally, and at the 95% level in each color range. We use this sample to derive the luminosity and mass functions of low-mass stars over nearly a decade in mass (0.7 M_sun > M_* > 0.1 M_sun). We find that the logarithmically binned mass function is best fit with an M_c=0.29 log-normal distribution, with a 90% confidence interval of M_c=0.20--0.50. These ...

  2. Modular calibrant sets for the structural analysis of nucleic acids by ion mobility spectrometry mass spectrometry.

    Science.gov (United States)

    Lippens, Jennifer L; Ranganathan, Srivathsan V; D'Esposito, Rebecca J; Fabris, Daniele

    2016-06-20

    This study explored the use of modular nucleic acid (NA) standards to generate calibration curves capable of translating primary ion mobility readouts into corresponding collision cross section (CCS) data. Putative calibrants consisted of single- (ss) and double-stranded (ds) oligo-deoxynucleotides reaching up to ∼40 kDa in size (i.e., 64 bp) and ∼5700 Å(2) in CCS. To ensure self-consistency among reference CCS values, computational data obtained in house were preferred to any experimental or computational data from disparate sources. Such values were obtained by molecular dynamics (MD) simulations and either the exact hard sphere scattering (EHSS) or the projection superposition approximation (PSA) methods, and then plotted against the corresponding experimental values to generate separate calibration curves. Their performance was evaluated on the basis of their correlation coefficients and ability to provide values that matched the CCS of selected test samples mimicking typical unknowns. The results indicated that the predictive power benefited from the exclusion of higher charged species that were more susceptible to the destabilizing effects of Coulombic repulsion. The results revealed discrepancies between EHSS and PSA data that were ascribable to the different approximations used to describe the ion mobility process. Within the boundaries defined by these approximations and the challenges of modeling NA structure in a solvent-free environment, the calibrant sets enabled the experimental determination of CCS with excellent reproducibility (precision) and error (accuracy), which will support the analysis of progressively larger NA samples of biological significance. PMID:27152369

  3. LoCuSS: Calibrating Mass-Observables Scaling Relations for Cluster Cosmology with Subaru Weak Lensing Observations

    CERN Document Server

    Okabe, Nobuhiro; Finoguenov, Alexis; Takada, Masahiro; Smith, Graham P; Umetsu, Keiichi; Futamase, Toshifumi

    2010-01-01

    (Abridged) We present a joint weak-lensing/X-ray study of galaxy cluster mass-observable scaling relations, motivated by the critical importance of accurate calibration of mass proxies for future X-ray missions, including eROSITA. We use a sample of 12 clusters at z\\simeq0.2 that we have observed with Subaru and XMM-Newton to construct relationships between the weak-lensing mass (M), and three X-ray observables: gas temperature (T), gas mass (Mgas), and quasi-integrated gas pressure (Yx) at overdensities of \\Delta=2500, 1000, and 500 with respect to the critical density. We find that Mgas at \\Delta\\le1000 appears to be the most promising mass proxy of the three, because it has the lowest intrinsic scatter in mass at fixed observable: \\sigma _lnM\\simeq0.1, independent of cluster dynamical state. The scatter in mass at fixed T and Yx is a factor of \\sim2-3 larger than at fixed Mgas, which are indicative of the structural segregation that we find in the M-T and M-Yx relationships. Undisturbed clusters are found ...

  4. The transition mass-loss rate: Calibrating the role of line-driven winds in massive star evolution

    CERN Document Server

    Vink, Jorick S

    2012-01-01

    A debate has arisen regarding the importance of stationary versus eruptive mass loss for massive star evolution. The reason is that stellar winds have been found to be clumped, which results in the reduction of unclumped empirical mass-loss rates. Most stellar evolution models employ theoretical mass-loss rates which are already reduced by a moderate factor of ~2-3 compared to non-corrected empirical rates. A key question is whether these reduced rates are of the correct order of magnitude, or if they should be reduced even further, which would mean that the alternative of eruptive mass loss becomes necessary. Here we introduce the transition mass-loss rate (dM/dt)_trans between O and Wolf-Rayet (WR) stars. Its novelty is that it is model independent. All that is required is postulating the spectroscopic transition point in a given data-set, and determining the stellar luminosity, which is far less model dependent than the mass-loss rate. The transition mass-loss rate is subsequently used to calibrate stellar...

  5. Discovery of an M4 Spectroscopic Binary in Upper Scorpius: A Calibration Point for Young Low-Mass Evolutionary Models

    CERN Document Server

    Reiners, A; Reiners, Ansgar; Mohanty, Gibor Basri & Subhanjoy

    2005-01-01

    We report the discovery of a new low-mass spectroscopic (SB2) stellar binary system in the star-forming region of Upper Scorpius. This object, UScoCTIO5, was discovered by Ardila (2000), who assigned it a spectral class of M4. A KeckI HIRES spectrum revealed it to be double-lined, and we then carried out a program at several observatories to determine its orbit. The orbital period is 34 days, and the eccentricity is nearly 0.3. The importance of such a discovery is that it can be used to help calibrate evolutionary models at low masses and young ages. This is one of the outstanding problems in the study of formation mechanisms and initial mass functions at low masses. The orbit allows us to place a lower limit of 0.64 +- 0.02 M_sol on the total system mass. The components appear to be of almost equal mass. We are able to show that this mass is significantly higher than predicted by evolutionary models for an object of this luminosity and age, in agreement with other recent results. More precise determination ...

  6. Mass Calibration and Cosmological Analysis of the SPT-SZ Galaxy Cluster Sample Using Velocity Dispersion $\\sigma_v$ and X-ray $Y_\\textrm{X}$ Measurements

    CERN Document Server

    Bocquet, S; Mohr, J J; Aird, K A; Ashby, M L N; Bautz, M; Bayliss, M; Bazin, G; Benson, B A; Bleem, L E; Brodwin, M; Carlstrom, J E; Chang, C L; Chiu, I; Cho, H M; Clocchiatti, A; Crawford, T M; Crites, A T; Desai, S; de Haan, T; Dietrich, J P; Dobbs, M A; Foley, R J; Forman, W R; Gangkofner, D; George, E M; Gladders, M D; Gonzalez, A H; Halverson, N W; Hennig, C; Hlavacek-Larrondo, J; Holder, G P; Holzapfel, W L; Hrubes, J D; Jones, C; Keisler, R; Knox, L; Lee, A T; Leitch, E M; Liu, J; Lueker, M; Luong-Van, D; Marrone, D P; McDonald, M; McMahon, J J; Meyer, S S; Mocanu, L; Murray, S S; Padin, S; Pryke, C; Reichardt, C L; Rest, A; Ruel, J; Ruhl, J E; Saliwanchik, B R; Sayre, J T; Schaffer, K K; Shirokoff, E; Spieler, H G; Stalder, B; Stanford, S A; Staniszewski, Z; Stark, A A; Story, K; Stubbs, C W; Vanderlinde, K; Vieira, J D; Vikhlinin, A; Williamson, R; Zahn, O; Zenteno, A

    2014-01-01

    We present a velocity dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg2 of the survey along with 63 velocity dispersion ($\\sigma_v$) and 16 X-ray Yx measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. The calibrations using $\\sigma_v$ and Yx are consistent at the $0.6\\sigma$ level, with the $\\sigma_v$ calibration preferring ~16% higher masses. We use the full cluster dataset to measure $\\sigma_8(\\Omega_ m/0.27)^{0.3}=0.809\\pm0.036$. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming the sum of the neutrino masses is $\\sum m_\

  7. Calibration of a surface mass balance model for global-scale applications

    OpenAIRE

    R. H. Giesen; Oerlemans, J.

    2012-01-01

    Global applications of surface mass balance models have large uncertainties, as a result of poor climate input data and limited availability of mass balance measurements. This study addresses several possible consequences of these limitations for the modelled mass balance. This is done by applying a simple surface mass balance model that only requires air temperature and precipitation as input data, to glaciers in different regions. In contrast to other models used in global applications, thi...

  8. Calibration of a surface mass balance model for global-scale applications

    NARCIS (Netherlands)

    Giesen, R. H.; Oerlemans, J.

    2012-01-01

    Global applications of surface mass balance models have large uncertainties, as a result of poor climate input data and limited availability of mass balance measurements. This study addresses several possible consequences of these limitations for the modelled mass balance. This is done by applying a

  9. A solvothermal method for synthesizing monolayer protected amorphous calcium carbonate clusters.

    Science.gov (United States)

    Sun, Shengtong; Gebauer, Denis; Cölfen, Helmut

    2016-05-19

    A solvothermal method was developed for synthesizing organic monolayer protected amorphous calcium carbonate clusters using 10,12-pentacosadiynoic acid as ligand, ethanol as solvent and NaHCO3 decomposition as CO2 source, which can be extended to synthesize other monolayer protected mineral clusters. PMID:27161807

  10. HIFLUGCS: X-ray luminosity -- dynamical mass relation and its implications for mass calibrations with the SPIDERS and 4MOST surveys

    CERN Document Server

    Zhang, Yu-Ying; Schneider, Peter; Clerc, Nicolas; Merloni, Andrea; Schwope, Axel; Borm, Katharina; Andernach, Heinz; Caretta, César A; Wu, Xiang-Ping

    2016-01-01

    We present the X-ray luminosity (L) versus dynamical mass (M) relation for 63 nearby clusters in the HIFLUGCS. The luminosity measurements are obtained based on ~1.3 Ms of clean XMM data and ROSAT pointed observations. The masses are estimated using optical spectroscopic redshifts of 13647 cluster galaxies in total. Given sufficient numbers of member galaxies in computing the dynamical masses, the L-M relations agree between the disturbed and undisturbed clusters. The cool-core clusters still dominate the scatter in the L-M relation even when a core corrected X-ray luminosity is used, which indicates that the scatter mainly reflects the structure formation history of the clusters. As shown by the clusters with a small number of redshifts, the dynamical masses can be underestimated leading to a biased scaling relation. To investigate the potential of spectroscopic surveys to follow up high-redshift galaxy clusters/groups observed in X-ray surveys for the identifications and mass calibrations, we carried out Mo...

  11. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique

    Science.gov (United States)

    Wilson, S.A.; Ridley, W.I.; Koenig, A.E.

    2002-01-01

    The requirements of standard materials for LA-ICP-MS analysis have been difficult to meet for the determination of trace elements in sulfides. We describe a method for the production of synthetic sulfides by precipitation from solution. The method is detailed by the production of approximately 200 g of a material, PS-1, with a suite of chalcophilic trace elements in an Fe-Zn-Cu-S matrix. Preliminary composition data, together with an evaluation of the homogeneity for individual elements, suggests that this type of material meets the requirements for a sulfide calibration standard that allows for quantitative analysis. Contamination of the standard with Na suggests that H2S gas may prove a better sulfur source for future experiments. We recommend that calibration data be collected in whatever mode is closest to that employed for the analysis of the unknown material, because of variable fractionation effects as a function of analytical mode. For instance, if individual spot analyses are attempted on unknown sample, then a raster of several individual spot analyses, not a continuous scan, should be collected and averaged for the standard. Hg and Au are exceptions to the above and calibration data should always be collected in a scanning mode. Au is more heterogeneously distributed than other trace metals and large-area scans are required to provide an average value for calibration purposes. We emphasize that the values given in Table 1 are preliminary values. Further chemical characterization of this standard, through a round-robin analysis program, will allow the USGS to provide both certified and recommended values for individual elements. The USGS has developed PS-1 as a potential new LA-ICP-MS standard for use by the analytical community, and requests for this material should be addressed to S. Wilson. However, it is stressed that an important aspect of the method described here is the flexibility for individual investigators to produce sulfides with a wide range

  12. Assembly of calibrated standard solutions of peptides and phosphopeptides using elemental mass spectrometry

    International Nuclear Information System (INIS)

    Full text: Absolute quantifications in analytical proteomics require the addition of measured amounts of internal standards, preferably of isotopically labelled analogs. A new method for the production of absolutely quantified standard solutions of (labeled or nonlabeled) phosphopeptides is introduced, based on capLC-ICPMS and detection of 31P. Quantification of the 31P signal of phosphopeptides is achieved relative to an internal standard (bis-nitrophenylphosphate). Development and control of the quantitative LC-MS method is presented. In addition, it is demonstrated that the method can be extended to the production of calibrated standard solutions of unmodified peptides. (author)

  13. Measuring the extent of convective cores in low-mass stars using Kepler data: towards a calibration of core overshooting

    DEFF Research Database (Denmark)

    Deheuvels, S.; Brandão, I.; Silva Aguirre, V.; Ballot, J.; Michel, E.; Cunha, M. S.; Lebreton, Y.; Appourchaux, T.

    2016-01-01

    selected targets, we are able to unambiguously detect convective cores in eight stars and we obtain seismic measurements of the extent of the mixed core in these targets with a good agreement between the CESAM2k and MESA codes. By performing optimizations using the Levenberg-Marquardt algorithm, we then...... mass-limit for having a convective core. We first test and validate a seismic diagnostic that was proposed to probe in a model-dependent way the extent of convective cores using the so-called $r_{010}$ ratios, which are built with $l=0$ and $l=1$ modes. We apply this procedure to 24 low-mass stars...... obtain estimates of the amount of extra-mixing beyond the core that is required in CESAM2k to reproduce seismic observations for these eight stars and we show that this can be used to propose a calibration of this quantity. This calibration depends on the prescription chosen for the extra-mixing, but we...

  14. Measuring the extent of convective cores in low-mass stars using Kepler data: toward a calibration of core overshooting

    Science.gov (United States)

    Deheuvels, S.; Brandão, I.; Silva Aguirre, V.; Ballot, J.; Michel, E.; Cunha, M. S.; Lebreton, Y.; Appourchaux, T.

    2016-04-01

    Context. Our poor understanding of the boundaries of convective cores generates large uncertainties on the extent of these cores and thus on stellar ages. The detection and precise characterization of solar-like oscillations in hundreds of main-sequence stars by CoRoT and Kepler has given the opportunity to revisit this problem. Aims: Our aim is to use asteroseismology to consistently measure the extent of convective cores in a sample of main-sequence stars whose masses lie around the mass limit for having a convective core. Methods: We first tested and validated a seismic diagnostic that was proposed to probe the extent of convective cores in a model-dependent way using the so-called r010 ratios, which are built with l = 0 and l = 1 modes. We applied this procedure to 24 low-mass stars chosen among Kepler targets to optimize the efficiency of this diagnostic. For this purpose, we computed grids of stellar models with both the Cesam2k and mesa evolution codes, where the extensions of convective cores were modeled either by an instantaneous mixing or as a diffusion process. Results: We found that 10 stars in our sample are in fact subgiants. Among the other targets, were able to unambiguously detect convective cores in eight stars, and we obtained seismic measurements of the extent of the mixed core in these targets with a good agreement between the Cesam2k and mesa codes. By performing optimizations using the Levenberg-Marquardt algorithm, we then obtained estimates of the amount of extra mixing beyond the core that is required in Cesam2k to reproduce seismic observations for these eight stars, and we showed that this can be used to propose a calibration of this quantity. This calibration depends on the prescription chosen for the extra mixing, but we found that it should also be valid for the code mesa, provided the same prescription is used. Conclusions: This study constitutes a first step toward calibrating the extension of convective cores in low-mass stars

  15. Top pairs production and effects of new physics. Jet calibration with W into jet-jet process. Top mass measurement

    International Nuclear Information System (INIS)

    Since it was discovered in 1995 at Fermilab, the top quark is the subject of a great attention. It completes the third quark generation of the standard model of particle physics, and the measurement of its properties constrains strongly this model. It is also a preferential way to probe new physics expected around 1 TeV. This thesis, performed using the Atlas detector at LHC, describes the methods implemented in order to measure precisely the top quark mass in the lepton + jets channel. Several analysis ways are presented in function of the performances of the detector, especially its capacity to identify the b jets. The precise measurement of the top quark mass needs a deep understanding of the jet energy scale. This thesis suggests a strategy to calibrate the light jets using the constraint on the W boson mass, and shows that a precision of 1 GeV2/c2 on the top mass measurement is achievable. An evaluation of the discovery potential of tt-bar resonances, foreseen by models beyond the standard model is also carried out. (author)

  16. Pseudopotential Density-Functional Calculations for Structures of Small Carbon Clusters CN (N = 2~8)

    Institute of Scientific and Technical Information of China (English)

    BAI Yu-Lin; CHEN Xiang-Rong; YANG Xiang-Dong; LU Peng-Fei

    2004-01-01

    We introduce a first-principles density-functional theory, i.e. the finite-difference pseudopotential densityfunctional theory in real space and the Langevin molecular dynamics annealing technique, to the descriptions of structures and some properties of small carbon clusters (CN, N = 2 ~ 8). It is shown that the odd-numbered clusters have linear structures and most of the even-numbered clusters prefer cyclic structures.

  17. Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters

    OpenAIRE

    Samuel, Errol L. G.; Marcano, Daniela C.; Berka, Vladimir; Bitner, Brittany R.; Wu, Gang; Potter, Austin; Fabian, Roderic H.; Pautler, Robia G; Kent, Thomas A; Tsai, Ah-Lim; James M. Tour

    2015-01-01

    Mechanistic studies of nontoxic hydrophilic carbon cluster nanoparticles show that they are able to accomplish the direct conversion of superoxide to dioxygen and hydrogen peroxide. This is accomplished faster than in most single-active-site enzymes, and it is precisely what dioxygen-deficient tissue needs in the face of injury where reactive oxygen species, particularly superoxide, overwhelm the natural enzymes required to remove superoxide. We confirm here that the hydrophilic carbon cluste...

  18. What is the ground-state structure of intermediate-sized carbon clusters?

    OpenAIRE

    Yu, Ming; Chaudhuri, Indira; Leahy, C.; Jayanthi, C. S.; Wu, S Y

    2008-01-01

    A comprehensive study on the relative structural stability of various nanostructures of carbon clusters (including fullerenes, cages, onions, icosahedral clusters, bucky-diamond clusters, spherically bulk terminated clusters, and clusters with faceted termination) in the range of d < 5 nm has been carried out using a semi-empirical method based on a self-consistent and environment-dependent/linear combination of atomic orbital (SCED-LCAO) Hamiltonian. It was found that among these nanostructu...

  19. Fragmentation of neutral carbon clusters formed by high velocity atomic collision

    International Nuclear Information System (INIS)

    The aim of this work is to understand the fragmentation of small neutral carbon clusters formed by high velocity atomic collision on atomic gas. In this experiment, the main way of deexcitation of neutral clusters formed by electron capture with ionic species is the fragmentation. To measure the channels of fragmentation, a new detection tool based on shape analysis of current pulse delivered by semiconductor detectors has been developed. For the first time, all branching ratios of neutral carbon clusters are measured in an unambiguous way for clusters size up to 10 atoms. The measurements have been compared to a statistical model in microcanonical ensemble (Microcanonical Metropolis Monte Carlo). In this model, various structural properties of carbon clusters are required. These data have been calculated with Density Functional Theory (DFT-B3LYP) to find the geometries of the clusters and then with Coupled Clusters (CCSD(T)) formalism to obtain dissociation energies and other quantities needed to compute fragmentation calculations. The experimental branching ratios have been compared to the fragmentation model which has allowed to find an energy distribution deposited in the collision. Finally, specific cluster effect has been found namely a large population of excited states. This behaviour is completely different of the atomic carbon case for which the electron capture in the ground states predominates. (author)

  20. An attempt to calibrate core overshooting using the seismic properties of low-mass stars

    Directory of Open Access Journals (Sweden)

    Deheuvels S.

    2015-01-01

    Full Text Available The sizes of stellar convective cores remain uncertain because of our poor understanding of the interface between convective and radiative zones. The very high precision of the seismic data provided by the CoRoT and Kepler space missions offers a great opportunity to search for the signature of convective cores in main-sequence stars. We here validate the seismic diagnostic based on the r010 ratios, which has been proposed to probe the size of convective cores, and we use it on a sample of 24 specially chosen Kepler targets. We thus constrain the extension of the core in 14 targets and find a tendency of the core extension to increase with stellar mass in this mass range. These results will be presented in more detail in a paper in preparation.

  1. Calibration of the Top-Quark Monte Carlo Mass.

    Science.gov (United States)

    Kieseler, Jan; Lipka, Katerina; Moch, Sven-Olaf

    2016-04-22

    We present a method to establish, experimentally, the relation between the top-quark mass m_{t}^{MC} as implemented in Monte Carlo generators and the Lagrangian mass parameter m_{t} in a theoretically well-defined renormalization scheme. We propose a simultaneous fit of m_{t}^{MC} and an observable sensitive to m_{t}, which does not rely on any prior assumptions about the relation between m_{t} and m_{t}^{MC}. The measured observable is independent of m_{t}^{MC} and can be used subsequently for a determination of m_{t}. The analysis strategy is illustrated with examples for the extraction of m_{t} from inclusive and differential cross sections for hadroproduction of top quarks. PMID:27152794

  2. Quantitative sampling and analysis of trace elements in ambient air: impactor characterization and Synchrotron-XRF mass calibration

    Directory of Open Access Journals (Sweden)

    A. Richard

    2010-06-01

    Full Text Available Identification of trace elements in ambient air can add substantial information to pollution source apportionment studies, although they do not contribute significantly to emissions in terms of mass. A method for quantitative size and time-resolved trace element evaluation in ambient aerosols with a rotating drum impactor and synchrotron radiation based X-ray fluorescence is presented. The impactor collection efficiency curves and size segregation characteristics were investigated in an experiment with oil and salt particles. Cutoff diameters were determined through the ratio of size distributions measured with two particles sizers. Furthermore, an external calibration technique to empirically link fluorescence intensities to ambient concentrations was developed. Solutions of elemental standards were applied with an ink-jet printer on thin films and area concentrations were subsequently evaluated with external wet chemical methods. These customized and reusable reference standards enable quantification of different data sets analyzed under varying experimental conditions.

  3. Quantitative sampling and analysis of trace elements in atmospheric aerosols: impactor characterization and Synchrotron-XRF mass calibration

    Directory of Open Access Journals (Sweden)

    A. Richard

    2010-10-01

    Full Text Available Identification of trace elements in ambient air can add substantial information to pollution source apportionment studies, although they do not contribute significantly to emissions in terms of mass. A method for quantitative size and time-resolved trace element evaluation in ambient aerosols with a rotating drum impactor and synchrotron radiation based X-ray fluorescence is presented. The impactor collection efficiency curves and size segregation characteristics were investigated in an experiment with oil and salt particles. Cutoff diameters were determined through the ratio of size distributions measured with two particle sizers. Furthermore, an external calibration technique to empirically link fluorescence intensities to ambient concentrations was developed. Solutions of elemental standards were applied with an ink-jet printer on thin films and area concentrations were subsequently evaluated with external wet chemical methods. These customized and reusable reference standards enable quantification of different data sets analyzed under varying experimental conditions.

  4. Improved calibration of mass stopping power in low density tissue for a proton pencil beam algorithm

    International Nuclear Information System (INIS)

    Dose distributions for proton therapy treatments are almost exclusively calculated using pencil beam algorithms. An essential input to these algorithms is the patient model, derived from x-ray computed tomography (CT), which is used to estimate proton stopping power along the pencil beam paths. This study highlights a potential inaccuracy in the mapping between mass density and proton stopping power used by a clinical pencil beam algorithm in materials less dense than water. It proposes an alternative physically-motivated function (the mass average, or MA, formula) for use in this region. Comparisons are made between dose-depth curves calculated by the pencil beam method and those calculated by the Monte Carlo particle transport code MCNPX in a one-dimensional lung model. Proton range differences of up to 3% are observed between the methods, reduced to  <1% when using the MA function. The impact of these range errors on clinical dose distributions is demonstrated using treatment plans for a non-small cell lung cancer patient. The change in stopping power calculation methodology results in relatively minor differences in dose when plans use three fields, but differences are observed at the 2%–2 mm level when a single field uniform dose technique is adopted. It is therefore suggested that the MA formula is adopted by users of the pencil beam algorithm for optimal dose calculation in lung, and that a similar approach is considered when beams traverse other low density regions such as the paranasal sinuses and mastoid process. (paper)

  5. Improved calibration of mass stopping power in low density tissue for a proton pencil beam algorithm

    Science.gov (United States)

    Warren, Daniel R.; Partridge, Mike; Hill, Mark A.; Peach, Ken

    2015-06-01

    Dose distributions for proton therapy treatments are almost exclusively calculated using pencil beam algorithms. An essential input to these algorithms is the patient model, derived from x-ray computed tomography (CT), which is used to estimate proton stopping power along the pencil beam paths. This study highlights a potential inaccuracy in the mapping between mass density and proton stopping power used by a clinical pencil beam algorithm in materials less dense than water. It proposes an alternative physically-motivated function (the mass average, or MA, formula) for use in this region. Comparisons are made between dose-depth curves calculated by the pencil beam method and those calculated by the Monte Carlo particle transport code MCNPX in a one-dimensional lung model. Proton range differences of up to 3% are observed between the methods, reduced to  impact of these range errors on clinical dose distributions is demonstrated using treatment plans for a non-small cell lung cancer patient. The change in stopping power calculation methodology results in relatively minor differences in dose when plans use three fields, but differences are observed at the 2%-2 mm level when a single field uniform dose technique is adopted. It is therefore suggested that the MA formula is adopted by users of the pencil beam algorithm for optimal dose calculation in lung, and that a similar approach is considered when beams traverse other low density regions such as the paranasal sinuses and mastoid process.

  6. Calibration of centre-of-mass energies at LEP1 for precise measurements of Z properties

    CERN Document Server

    Assmann, R W; Billen, R; Blondel, A; Bravin, Enrico; Bright-Thomas, P G; Camporesi, T; Dehning, Bernd; Drees, A; Duckeck, G; Gascon, J; Geitz, M A; Goddard, B; Hawkes, C M; Henrichsen, K N; Hildreth, M D; Hofmann, A; Jacobsen, R; Koratzinos, M; Lamont, M; Lançon, E; Lucotte, A; Mnich, J; Mugnai, G; Peschardt, E; Placidi, Massimo; Puzo, P; Quast, G; Renton, P B; Rolandi, Luigi; Wachsmuth, H W; Wells, P S; Wenninger, J; Wilkinson, G R; Wyatt, T R; Yamartino, J M; Yip, K

    1999-01-01

    The determination of the centre-of-mass energies from the LEP1 data for 1993, 1994 and 1995 is presented. Accurate knowledge of these energies is crucial in the measurement of the Z resonance param eters. The improved understanding of the LEP energy behaviour accumulated during the 1995 energy scan is detailed, while the 1993 and 1994 measurements are revised. For 1993 these supersede the pr eviously published values. Additional instrumentation has allowed the detection of an unexpectedly large energy rise during physics fills. This new effect is accommodated in the modelling of the beam-energy in 1995 and propagated to the 1993 and 1994 energies. New results are reported on the magnet temperature behaviour which constitutes one of the major corrections to the average LEP ene rgy. The 1995 energy scan took place in conditions very different from the previous years. In particular the interaction-point specific corrections to the centre-of-mass energy in 1995 are more complicated than previously: these arise fr...

  7. LoCuSS: Weak-lensing mass calibration of galaxy clusters

    CERN Document Server

    Okabe, Nobuhiro

    2015-01-01

    We present weak-lensing mass measurements of 50 X-ray luminous galaxy clusters at $0.15\\le z\\le0.3$, based on high quality observations with Suprime-Cam mounted on the 8.2-m Subaru telescope. We pay close attention to possible systematic biases, aiming to control them at the $\\lt4$ per cent level. The dominant source of systematic bias in weak-lensing measurements of the mass of individual galaxy clusters is contamination of background galaxy catalogues by faint cluster and foreground galaxies. We extend our conservative method for selecting background galaxies with $(V-i')$ colours redder than the red sequence of cluster members to use a colour-cut that depends on cluster-centric radius. This allows us to define background galaxy samples that suffer $\\le1$ per cent contamination, and comprise $13$ galaxies per square arcminute. Thanks to the purity of our background galaxy catalogue, the largest systematic in our measurement is a shape measurement bias of $3$ per cent, that we measure using custom-made simul...

  8. Diphoton lineshape of the BEH boson using the ATLAS detector at the LHC calibration, mass, width and interferences

    CERN Document Server

    AUTHOR|(SzGeCERN)709331

    Since the data collected during the first run of the LHC by the ATLAS and CMS collaborations allowed for the discovery of the BEH boson, a huge effort has been done toward the detailed studies of its properties. This thesis is particularly oriented toward the understanding of the BEH boson lineshape in its diphoton decay channel, using the data collected by the ATLAS detector in 2011 and 2012. The electromagnetic calibration of the ATLAS detector is described in details, and the precise measurement of the BEH boson mass it allowed for, at $m_h = 125.98 \\pm 0.50$ GeV, is summarized. A first upper limit on the BEH boson decay width, that gave a limit at $\\Gamma_h < 5.3$ GeV at 95% C.L., is presented in details). The last part of this thesis presents a study of quantum interferences between signal and background processes in the $gg \\rightarrow \\gamma\\gamma$ channel, which are expected to distord the diphoton lineshape and create a shift of the measured BEH boson mass, that is estimated to be of 35 MeV, which...

  9. Calibration of laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for the quantitative analysis of solid samples

    Energy Technology Data Exchange (ETDEWEB)

    Leach, J.

    1999-02-12

    Inductively coupled plasma mass spectrometry (ICP-MS) has become the method of choice for elemental and isotopic analysis. Several factors contribute to its success. Modern instruments are capable of routine analysis at part per trillion levels with relative detection limits in part per quadrillion levels. Sensitivities in these instruments can be as high as 200 million counts per second per part per million with linear dynamic ranges up to eight orders of magnitude. With standards for only a few elements, rapid semiquantitative analysis of over 70 elements in an individual sample can be performed. Less than 20 years after its inception ICP-MS has shown to be applicable to several areas of science. These include geochemistry, the nuclear industry, environmental chemistry, clinical chemistry, the semiconductor industry, and forensic chemistry. In this introduction, the general attributes of ICP-MS will be discussed in terms of instrumentation and sample introduction. The advantages and disadvantages of current systems are presented. A detailed description of one method of sample introduction, laser ablation, is given. The paper also gives conclusions and suggestions for future work. Chapter 2, Quantitative analysis of solids by laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for calibration, has been removed for separate processing.

  10. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    Directory of Open Access Journals (Sweden)

    M. R. Canagaratna

    2014-07-01

    Full Text Available Elemental compositions of organic aerosol (OA particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C, hydrogen-to-carbon (H : C, organic mass-to-organic carbon (OM : OC, and carbon oxidation state (OSC for a vastly expanded laboratory dataset of multifunctional oxidized OA standards. For the expanded standard dataset, the "Aiken-Explicit" method (Aiken et al., 2008, which uses experimentally measured ion intensities at all ions to determine elemental ratios, reproduces known molecular O : C and H : C ratio values within 20% (average absolute value of relative errors and 12% respectively. The more commonly used "Aiken-Ambient" method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions, reproduces O : C and H : C of multifunctional oxidized species within 28% and 14% of known values. These values are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and H2O+ produced from many oxidized species. Combined AMS-vacuum ultraviolet (VUV ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C. Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method reduces the systematic biases and reproduces O : C (H : C ratios of individual oxidized standards within 28% (13

  11. Desorption mass spectrometry: Revisiting the in-situ calibration technique for mixed group-V alloy MBE growth of ~3.3 μm diode lasers

    Science.gov (United States)

    Kaspi, Ron; Lu, Chunte; Yang, Chi; Newell, Timothy C.; Luong, Sanh

    2015-09-01

    We apply the desorption mass spectrometry (DMS) technique and analyze the desorbed Sb species in-situ during MBE growth of mixed As/Sb heterostructures. We demonstrate how DMS is useful in pre-growth calibration of the V/III ratio, the group-III ratio, as well as the Sb-content in quaternary or quinary mixed As/Sb alloys. We also apply DMS to the digital alloy growth method. For demonstration purposes, we start with an un-calibrated MBE system, use the DMS technique to calibrate all of the previously undetermined MBE parameters and grow a ~3.3 μm diode laser heterostructure in only one attempt. The results demonstrate that the DMS technique will allow the MBE to quickly converge toward a set of acceptable growth parameters without the need for ex-situ calibration of alloy composition.

  12. Absolute Magnitude Calibration for Red Giants based on the Colour-Magnitude Diagrams of Galactic Clusters. III-Calibration with 2MASS

    CERN Document Server

    Karaali, S; Gokce, E Yaz

    2012-01-01

    We present two absolute magnitude calibrations, $M_{J}$ and $M_{K_s}$, for red giants with the colour magnitude diagrams of five Galactic clusters with different metallicities i.e. M92, M13, M71, M67, and NGC 6791. The combination of the absolute magnitudes of the red giant sequences with the corresponding metallicities provides calibration for absolute magnitude estimation for red giants for a given colour. The calibrations for $M_{J}$ and $M_{K_s}$ are defined in the colour intervals $1.3\\leq(V-J)_{0}\\leq2.8$ and $1.75 \\leq (V-K_{s})_{0}\\leq 3.80$ mag, respectively, and they cover the metallicity interval $-2.15 \\leq \\lbrack Fe/H \\rbrack \\leq +0.37$ dex. The absolute magnitude residuals obtained by the application of the procedure to another set of Galactic clusters lie in the intervals $-0.08= 0.137$ and $\\sigma_{M_J}=0.080$, and $=0.109$ and $\\sigma_{M_{K_{s}}}=0.123$ mag. The derived relations are applicable to stars older than 4 Gyr, the age of the youngest calibrating cluster.

  13. Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei

    DEFF Research Database (Denmark)

    Onken, Christopher A.; Ferrarese, Laura; Merritt, David;

    2004-01-01

    We calibrate reverberation-based black hole masses in active galactic nuclei (AGNs) by using the correlation between black hole mass, M, and bulge/spheroid stellar velocity dispersion, sigma. We use new measurements of sigma for 6 AGNs and published velocity dispersions for 10 others......, in conjunction with improved reverberation mapping results, to determine the scaling factor required to bring reverberation-based black hole masses into agreement with the quiescent galaxy M-sigma relationship. The scatter in the AGN black hole masses is found to be less than a factor of 3. The current...

  14. Calibrating convective-core overshooting with eclipsing binary systems. The case of low-mass main-sequence stars

    CERN Document Server

    Valle, G; Moroni, P G Prada; Degl'Innocenti, S

    2016-01-01

    In a robust statistical way, we quantify the uncertainty that affects the calibration of the overshooting efficiency parameter $\\beta$ that is owing to the uncertainty on the observational data in double-lined eclipsing binary systems. We also quantify the bias that is caused by the lack of constraints on the initial helium content and on the efficiencies of the superadiabatic convection and microscopic diffusion. We adopted a modified grid-based SCEPtER pipeline using as observational constraints the effective temperatures, [Fe/H], masses, and radii of the two stars. In a reference scenario of mild overshooting $\\beta = 0.2$ for the synthetic data, we found both large statistical uncertainties and biases on the estimated $\\beta$. For the first 80% of the MS evolution, $\\beta$ is biased and practically unconstrained in the whole explored range [0.0; 0.4]. In the last 5% of the MS the bias vanishes and the $1 \\sigma$ error is about 0.05. For synthetic data computed with $\\beta = 0.0$, the estimated $\\beta$ is ...

  15. Galactic model parameters of cataclysmic variables: Results from a new absolute magnitude calibration with 2MASS and WISE

    CERN Document Server

    Ozdonmez, A; Bilir, S

    2014-01-01

    In order to determine the spatial distribution, Galactic model parameters and luminosity function of cataclysmic variables (CVs), a $J$-band magnitude limited sample of 263 CVs has been established using a newly constructed period-luminosity-colours (PLCs) relation which includes $J$, $K_{s}$ and $W1$-band magnitudes in 2MASS and WISE photometries, and the orbital periods of the systems. This CV sample is assumed to be homogeneous regarding to distances as the new PLCs relation is calibrated with new or re-measured trigonometric parallaxes. Our analysis shows that the scaleheight of CVs is increasing towards shorter periods, although selection effects for the periods shorter than 2.25 h dramatically decrease the scaleheight: the scaleheight of the systems increases from 192 pc to 326 pc as the orbital period decreases from 12 to 2.25h. The $z$-distribution of all CVs in the sample is well fitted by an exponential function with a scaleheight of 213$^{+11}_{-10}$ pc. However, we suggest that the scaleheight of ...

  16. Carbon-cluster formation from polymers caused by MeV-ion impacts and keV-cluster-ion impacts

    Science.gov (United States)

    Diehnelt, C. W.; van Stipdonk, M. J.; Schweikert, E. A.

    1999-06-01

    It has been observed that under MeV-ion bombardment of a polymer, such as polycarbonate (PC) or polyvinylidene fluoride (PVDF), large quantities of carbon clusters (C-n and CnH-) are generated. However, when PC or PVDF is bombarded with keV atomic ions, very few carbon-cluster ions are produced. This different behavior was attributed to the different sputtering/desorption mechanisms for keV- and MeV-ion impacts. Low-energy keV ions deposit their energy into a solid through nuclear stopping, while MeV ions deposit their energy mainly through electronic stopping. The formation of carbon clusters is thought to be facilitated by the high-temperatures and high-energy densities produced in the region nearest the point of MeV-ion impact, the infratrack region. We have observed extensive carbon-cluster formation from PC and PVDF under keV-cluster-ion bombardment. Despite the vastly different velocities of the high- and low-energy projectiles, identical carbon-cluster trends are produced from MeV 252Cf fission fragments and 20-keV C+60 projectile impacts on the same target. This leads us to the conclusion that a polyatomic ion impact, which deposits its kinetic energy near the surface, may create a region of high-temperature and high-energy density that is similar to the infratrack of a MeV-ion impact.

  17. Residual gas analyzer calibration

    Science.gov (United States)

    Lilienkamp, R. H.

    1972-01-01

    A technique which employs known gas mixtures to calibrate the residual gas analyzer (RGA) is described. The mass spectra from the RGA are recorded for each gas mixture. This mass spectra data and the mixture composition data each form a matrix. From the two matrices the calibration matrix may be computed. The matrix mathematics requires the number of calibration gas mixtures be equal to or greater than the number of gases included in the calibration. This technique was evaluated using a mathematical model of an RGA to generate the mass spectra. This model included shot noise errors in the mass spectra. Errors in the gas concentrations were also included in the valuation. The effects of these errors was studied by varying their magnitudes and comparing the resulting calibrations. Several methods of evaluating an actual calibration are presented. The effects of the number of gases in then, the composition of the calibration mixture, and the number of mixtures used are discussed.

  18. High precision and high accuracy isotopic measurement of uranium using lead and thorium calibration solutions by inductively coupled plasma-multiple collector-mass spectrometry

    International Nuclear Information System (INIS)

    A novel method for the high accuracy and high precision measurement of uranium isotopic composition by Inductively Coupled Plasma-Multiple Collector-Mass Spectrometry is discussed. Uranium isotopic samples are spiked with either thorium or lead for use as internal calibration reference materials. This method eliminates the necessity to periodically measure uranium standards to correct for changing mass bias when samples are measured over long time periods. This technique has generated among the highest levels of analytical precision on both the major and minor isotopes of uranium. Sample throughput has also been demonstrated to exceed Thermal Ionization Mass Spectrometry by a factor of four to five

  19. Linearization of calibration curves by aerosol carrier effect of CCl4 vapor in electrothermal vaporization inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Carbon tetrachloride vapor as gaseous phase modifier in a graphite furnace electrothermal vaporizer (GFETV) converts heavy volatile analyte forms to volatile and medium volatile chlorides and produces aerosol carrier effect, the latter being a less generally recognized benefit. However, the possible increase of polyatomic interferences in inductively coupled plasma mass spectrometry (GFETV-ICP-MS) by chlorine and carbon containing species due to CCl4 vapor introduction has been discouraging with the use of low resolution, quadrupole type MS equipment. Being aware of this possible handicap, it was aimed at to investigate the feasibility of the use of this halogenating agent in ICP-MS with regard of possible hazards to the instrument, and also to explore the advantages under these specific conditions. With sample gas flow (inner gas flow) rate not higher than 900 ml min-1 Ar in the torch and 3 ml min-1 CCl4 vapor flow rate in the furnace, the long-term stability of the instrument was ensured and the following benefits by the halocarbon were observed. The non-linearity error (defined in the text) of the calibration curves (signal versus mass functions) with matrix-free solution standards was 30-70% without, and 1-5% with CCl4 vapor introduction, respectively, at 1 ng mass of Cu, Fe, Mn and Pb analytes. The sensitivity for these elements increased by 2-4-fold with chlorination, while the relative standard deviation (RSD) was essentially the same (2-5%) for the two cases in comparison. A vaporization temperature of 2650 deg. C was required for Cr in Ar atmosphere, while 2200 deg. C was sufficient in Ar + CCl4 atmosphere to attain complete vaporization. Improvements in linear response and sensitivity were the highest for this least volatile element. The pyrolytic graphite layer inside the graphite tube was protected by the halocarbon, and tube life time was further increased by using traces of hydrocarbon vapor in the external sheath gas of the graphite furnace. Details

  20. The photoelectronic behaviors of MoO3-loaded ZrO2/carbon cluster nanocomposite materials

    Science.gov (United States)

    Matsui, H.; Ishiko, A.; Karuppuchamy, S.; Hassan, M. A.; Yoshihara, M.

    2012-03-01

    A novel nano-sized ZrO2/carbon cluster composite materials (Ic's) were successfully obtained by the calcination of ZrCl4/starch complexes I's under an argon atmosphere. Pt- and/or MoO3-loaded ZrO2/carbon clusters composite materials were also prepared by doping Pt and/or MoO3 particles on the surface of Ic's. The surface characterization of the composite materials was carried out using transmission electron microscopy (TEM). The TEM observation of the materials showed the presence of particles with the diameters of a few nanometers, possibly Pt particles, and of 50-100 nm, possibly MoO3 particles, in the matrix. Pt- and/or MoO3-loaded ZrO2/carbon cluster composite materials show the efficient photocatalytic activity under visible light irradiation.

  1. Galactic model parameters of cataclysmic variables: Results from a new absolute magnitude calibration with 2MASS and WISE

    Science.gov (United States)

    Özdönmez, A.; Ak, T.; Bilir, S.

    2015-01-01

    In order to determine the spatial distribution, Galactic model parameters and luminosity function of cataclysmic variables (CVs), a J-band magnitude limited sample of 263 CVs has been established using a newly constructed period-luminosity-colours (PLCs) relation which includes J,Ks and W1-band magnitudes in 2MASS and WISE photometries, and the orbital periods of the systems. This CV sample is assumed to be homogeneous regarding to distances as the new PLCs relation is calibrated with new or re-measured trigonometric parallaxes. Our analysis shows that the scaleheight of CVs is increasing towards shorter periods, although selection effects for the periods shorter than 2.25 h dramatically decrease the scaleheight: the scaleheight of the systems increases from 192 pc to 326 pc as the orbital period decreases from 12 to 2.25 h. The z-distribution of all CVs in the sample is well fitted by an exponential function with a scaleheight of 213-10+11 pc. However, we suggest that the scaleheight of CVs in the Solar vicinity should be ∼300 pc and that the scaleheights derived using the sech2 function should be also considered in the population synthesis models. The space density of CVs in the Solar vicinity is found 5.58(1.35)×10-6 pc-3 which is in the range of previously derived space densities and not in agreement with the predictions of the population models. The analysis based on the comparisons of the luminosity function of white dwarfs with the luminosity function of CVs in this study show that the best fits are obtained by dividing the luminosity functions of white dwarfs by a factor of 350-450.

  2. Calibration of a mass spectrometer for the direct measurement of water concentration and its application to the study of sooting flames

    International Nuclear Information System (INIS)

    An accurate calibration is essential for the quantitative measurement of species concentrations in fuel-rich hydrocarbon flames when using a mass spectrometer (MS). In sooting flames, the mole balances of the atomic components of the gas phase species cannot be made because there are carbon deposits and soot. A procedure in which binary gas mixtures containing Ar are introduced by a two-stage pressure-reduction system into a vacuum chamber for the MS analysis is described, which allowed the calibration of the H2O response coefficient. This was calibrated using H2O-vapor-saturated air that was saturated at different temperatures to give mixtures with known partial pressures of H2O and N2. The measured response coefficients of H2, CH4, C2H2, CO, N2, O2, CO2 and H2O with respect to Ar were obtained as 7.56, 0.76, 1.18, 0.69, 0.71, 0.60, 0.83 and 0.68, respectively. Species concentrations in sooting flames containing H2O were studied using the calibrated matrix equation of the response coefficients. The MS measurement uncertainty was less than ±6% where this uncertainty does not include errors due to fractionation changes, which may occur for measurements made under conditions that are different from those used in the calibration. The procedure is useful for the quantitative study of combustion processes containing water. (paper)

  3. Preparation of graphene on Cu foils by ion implantation with negative carbon clusters

    International Nuclear Information System (INIS)

    We report on few-layer graphene synthesized on Cu foils by ion implantation using negative carbon cluster ions, followed by annealing at 950 °C in vacuum. Raman spectroscopy reveals IG/I2D values varying from 1.55 to 2.38 depending on energy and dose of the cluster ions, indicating formation of multilayer graphene. The measurements show that the samples with more graphene layers have fewer defects. This is interpreted by graphene growth seeded by the first layers formed via outward diffusion of C from the Cu foil, though nonlinear damage and smoothing effects also play a role. Cluster ion implantation overcomes the solubility limit of carbon in Cu, providing a technique for multilayer graphene synthesis. (paper)

  4. Theoretical study of the nucleation/growth process of carbon clusters under pressure.

    Science.gov (United States)

    Pineau, N; Soulard, L; Los, J H; Fasolino, A

    2008-07-14

    We used molecular dynamics and the empirical potential for carbon LCBOPII to simulate the nucleation/growth process of carbon clusters both in vacuum and under pressure. In vacuum, our results show that the growth process is homogeneous and yields mainly sp(2) structures such as fullerenes. We used an argon gas and Lennard-Jones potentials to mimic the high pressures and temperatures reached during the detonation of carbon-rich explosives. We found that these extreme thermodynamic conditions do not affect substantially the topologies of the clusters formed in the process. However, our estimation of the growth rates under pressure are in much better agreement with the values estimated experimentally than our vacuum simulations. The formation of sp(3) carbon was negligible both in vacuum and under pressure which suggests that larger simulation times and cluster sizes are needed to allow the nucleation of nanodiamonds. PMID:18624553

  5. Gas chromatography-mass spectrometry of ethyl palmitate calibration and resolution with ethyl oleate as biomarker ethanol sub acute in urine application study

    Science.gov (United States)

    Suaniti, Ni Made; Manurung, Manuntun

    2016-03-01

    Gas Chromatography-Mass Spectrometry is used to separate two and more compounds and identify fragment ion specific of biomarker ethanol such as palmitic acid ethyl ester (PAEE), as one of the fatty acid ethyl esters as early detection through conyugated reaction. This study aims to calibrate ethyl palmitate and develop analysis with oleate acid. This methode can be used analysis ethanol and its chemistry biomarker in ethanol sub-acute consumption as analytical forensic toxicology. The result show that ethanol level in urine rats Wistar were 9.21 and decreased 6.59 ppm after 48 hours consumption. Calibration curve of ethyl palmitate was y = 0.2035 x + 1.0465 and R2 = 0.9886. Resolution between ethyl palmitate and oleate were >1.5 as good separation with fragment ion specific was 88 and the retention time was 18 minutes.

  6. Characterization and calibration of extremity dosimeters for beta radiation field in terms of mass and metallurgic individual equivalent dose

    International Nuclear Information System (INIS)

    Two extremity personal dosimeters were 'type tested' and calibrated to measure the personal dose equivalent, Hp(d), at 0.07 mm depth, at beta particle fields from a 90 Sr+90 Y radiation source. One dosimeter is a graphite mixed Ca SO4:Dy thermoluminescent (TL) detector in the Harshaw/Bicron Ext-Rad ring; the other is a LiF:Mg, Ti TL detector in a Velcro ring. The 'Type tests' were carried out to verify the detection limit, linearity, and angular dependence of both dosimeters. The calibrated dosimeters were used to evaluate the personal dose equivalent of operators who deal with 90 Sr + 90 Y ophthalmic and dermatological applicators at a beta therapy service. Results suggest that the Ca SO4:Dy dosimeter is more reliable and adequate for measurements at beta radiation fields than the LiF:Mg,Ti dosimeter which subestimates the values of Hp (0.07). (author)

  7. CALIBRATING THE CORRELATION BETWEEN BLACK HOLE MASS AND X-RAY VARIABILITY AMPLITUDE: X-RAY ONLY BLACK HOLE MASS ESTIMATES FOR ACTIVE GALACTIC NUCLEI AND ULTRA-LUMINOUS X-RAY SOURCES

    International Nuclear Information System (INIS)

    A calibration is made for the correlation between the X-ray Variability Amplitude (XVA) and black hole (BH) mass. The correlation for 21 reverberation-mapped Active Galactic Nuclei (AGNs) appears very tight, with an intrinsic dispersion of 0.20 dex. The intrinsic dispersion of 0.27 dex can be obtained if BH masses are estimated from the stellar velocity dispersions. We further test the uncertainties of mass estimates from XVAs for objects that have been observed multiple times with good enough data quality. The results show that the XVAs derived from multiple observations change by a factor of 3. This means that BH mass uncertainty from a single observation is slightly worse than either reverberation-mapping or stellar velocity dispersion measurements; however, BH mass estimates with X-ray data only can be more accurate if the mean XVA value from more observations is used. With this calibrated relation, the BH mass and accretion rate may be determined for a large sample of AGNs with the planned International X-ray Observatory mission. Proper interpretation of the first AGN X-ray quasi-periodic oscillation (QPO), seen in the Seyfert galaxy RE J1034+396, depends on its BH mass, which is not currently known very well. Applying this relation, the BH mass of RE J1034+396 is found to be 4+3-2 x 106 Msun. The high end of the mass range follows the relationship between the 2f0 frequencies of high-frequency QPO and the BH masses derived from the Galactic X-ray binaries. We also calculate the high-frequency constant C = 2.37 Msun Hz-1 from 21 reverberation-mapped AGNs. As suggested by Gierlinski et al., MBH = C/CM, where CM is the high-frequency variability derived from XVA. Given the similar shape of power-law dominated X-ray spectra in ultra-luminous X-ray sources (ULXs) and AGNs, this can be applied to BH mass estimates of ULXs. We discuss the observed QPO frequencies and BH mass estimates in the ULXs M82 X-1 and NGC 5408 X-1 and favor ULXs as intermediate mass BH systems.

  8. Determination of mass attenuation coefficient by numerical absorption calibration with Monte-Carlo simulations at 59.54 keV

    Science.gov (United States)

    Degrelle, D.; Mavon, C.; Groetz, J.-E.

    2016-04-01

    This study presents a numerical method in order to determine the mass attenuation coefficient of a sample with an unknown chemical composition at low energy. It is compared with two experimental methods: a graphic method and a transmission method. The method proposes to realise a numerical absorption calibration curve to process experimental results. Demineralised water with known mass attenuation coefficient (0.2066cm2g-1 at 59.54 keV) is chosen to confirm the method. 0.1964 ± 0.0350cm2g-1 is the average value determined by the numerical method, that is to say less than 5% relative deviation compared to more than 47% for the experimental methods.

  9. Mass segregation and fractal substructure in young massive clusters: (I) the McLuster code and method calibration

    CERN Document Server

    Kuepper, A H W; Kroupa, P; Baumgardt, H

    2011-01-01

    By analysing models of the young massive cluster R136 in 30 Doradus, set-up using the herewith introduced and publicly made available code McLuster, we investigate and compare different methods for detecting and quantifying mass segregation and substructure in non-seeing limited N-body data. For this purpose we generate star cluster models with different degrees of mass segregation and fractal substructure and analyse them. We quantify mass segregation by measuring, from the projected 2d model data, the mass function slope in radial annuli, by looking for colour gradients in radial colour profiles, by measuring Allison's Lambda parameter, and by determining the local stellar surface density around each star. We find that these methods for quantifying mass segregation often produce ambiguous results. Most reliable for detecting mass segregation is the mass function slope method, whereas the colour gradient method is the least practical in an R136-like configuration. The other two methods are more sensitive to ...

  10. Effects of functional group modification on the thermal properties of nano-carbon clusters

    International Nuclear Information System (INIS)

    In this paper, the thermal properties including thermal stability, thermal decomposition activation energy and the thermal enthalpy of nano-carbon clusters (NCCs, including fullerene[60](C60, with a diameter of 0.71 nm), multi-walled carbon nanotubes(MWCNTs, with a diameter of 10–30 nm and a length of 1–2 µm), single-walled carbon nanotubes (SWCNTs, with a diameter of ∼2 nm and a length of 5–15 µm), ligands of NCC-based terpyridine (NCC-tpy), and NCC-based ruthenium complexes (NCC-tpyRuCl3) were systematically studied by method of simultaneous thermogravimetric and differential thermal analysis. The results show that the modification of NCCs with terpyridine leads to a decrease in the thermal stability and in the thermal decomposition activation energy (the thermal decomposition activation energy decreased from 174.4 for C60, 144.9 for MWCNTs and 161.2 kJ/mol for SWCNTs to 166.2 for C60-tpy, 119.7 for MWCNT-tpy and 85.0 kJ/mol for SWCNT-tpy). But the modification of NCCs with terpyridine results in an increase in the enthalpy change of NCC thermal decomposition reaction. The introduction of the metal ions through complexation further decreases the thermal stability and the thermal decomposition activation energy of NCC-tpyRuCl3 due to the catalytic oxidation of Ru(III) ions (the activation energy decreases to 124.1 for C60-tpyRuCl3, 106.4 for MWCNT-tpyRuCl3 and 41.2 kJ/mol for SWCNT-tpyRuCl3). The introduction of the metal ions also leads to a decrease in the enthalpy change of the thermal decomposition reaction

  11. Weak-lensing mass calibration of the Atacama Cosmology Telescope equatorial Sunyaev-Zeldovich cluster sample with the Canada-France-Hawaii telescope stripe 82 survey

    Science.gov (United States)

    Battaglia, N.; Leauthaud, A.; Miyatake, H.; Hasselfield, M.; Gralla, M. B.; Allison, R.; Bond, J. R.; Calabrese, E.; Crichton, D.; Devlin, M. J.; Dunkley, J.; Dünner, R.; Erben, T.; Ferrara, S.; Halpern, M.; Hilton, M.; Hill, J. C.; Hincks, A. D.; Hložek, R.; Huffenberger, K. M.; Hughes, J. P.; Kneib, J. P.; Kosowsky, A.; Makler, M.; Marriage, T. A.; Menanteau, F.; Miller, L.; Moodley, K.; Moraes, B.; Niemack, M. D.; Page, L.; Shan, H.; Sehgal, N.; Sherwin, B. D.; Sievers, J. L.; Sifón, C.; Spergel, D. N.; Staggs, S. T.; Taylor, J. E.; Thornton, R.; van Waerbeke, L.; Wollack, E. J.

    2016-08-01

    Mass calibration uncertainty is the largest systematic effect for using clusters of galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters selected through their high signal-to-noise thermal Sunyaev-Zeldovich (tSZ) signal measured with the Atacama Cosmology Telescope (ACT). For a sample of 9 ACT clusters with a tSZ signal-to-noise greater than five the average weak lensing mass is (4.8±0.8) ×1014 Msolar, consistent with the tSZ mass estimate of (4.70±1.0) ×1014 Msolar which assumes a universal pressure profile for the cluster gas. Our results are consistent with previous weak-lensing measurements of tSZ-detected clusters from the Planck satellite. When comparing our results, we estimate the Eddington bias correction for the sample intersection of Planck and weak-lensing clusters which was previously excluded.

  12. Weak-Lensing Mass Calibration of the Atacama Cosmology Telescope Equatorial Sunyaev-Zeldovich Cluster Sample with the Canada-France-Hawaii Telescope Stripe 82 Survey

    CERN Document Server

    Battaglia, N; Miyatake, H; Hasselfield, M; Gralla, M B; Allison, R; Bond, J R; Calabrese, E; Crichton, D; Devlin, M J; Dunkley, J; Dünner, R; Erben, T; Ferrara, S; Halpern, M; Hilton, M; Hill, J C; Hincks, A D; Hložek, R; Huffenberger, K M; Hughes, J P; Kneib, J P; Kosowsky, A; Makler, M; Marriage, T A; Menanteau, F; Miller, L; Moodley, K; Moraes, B; Niemack, M D; Page, L; Shan, H; Sehgal, N; Sherwin, B D; Sievers, J L; Sifón, C; Spergel, D N; Staggs, S T; Taylor, J; Thornton, R; van Waerbeke, L; Wollack, E J

    2015-01-01

    Mass calibration uncertainty is the largest systematic effect for using clusters of galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters selected through their high signal-to-noise thermal Sunyaev-Zeldovich (tSZ) signal measured with the Atacama Cosmology Telescope (ACT). The average weak lensing mass is $\\left(4.8\\pm0.8\\right)\\,\\times10^{14}\\,\\mathrm{M}_\\odot$, consistent with the tSZ mass estimate of $\\left(4.70\\pm1.0\\right)\\,\\times10^{14}\\,\\mathrm{M}_\\odot$ which assumes a universal pressure profile for the cluster gas. Our results are consistent with previous weak-lensing measurements of tSZ-detected clusters from the Planck satellite. When comparing our results, we estimate the Eddington bias correction for the sample intersection of Planck and weak-lensing clusters which was previously neglected.

  13. Multi-element quantification of ancient/historic glasses by laser ablation inductively coupled plasma mass spectrometry using sum normalization calibration

    International Nuclear Information System (INIS)

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for quantitative analysis of ancient/historic glasses is subject to calibration issues which have been addressed in this work. Since ancient/historic glasses have widely ranging matrix compositions, a complementary analysis by an alternative method is generally employed to determine at least one major element which can be used as an internal standard. We demonstrate that such a complementary analysis is unnecessary using a so-called sum normalization calibration technique (mathematically formulated) by simultaneous measurement of 54 elements and normalizing them to 100% [w/w] based on their corresponding oxide concentrations. The crux of this approach is that by assuming a random internal standard concentration of a particular major oxide, e.g. SiO2, the normalization algorithm varies the internal standard concentration until the cumulated concentrations of all 54 elemental oxides reach 100% [w/w]. The fact that 54 elements are measured simultaneously predetermines the laser ablation mode to rastering. Nine glass standards, some replicating historic compositions, were used for calibration. The linearity of the calibration graphs (forced through the origin) represented by the relative standard deviations in the slope were between 0.1 and 6.6% using SiO2 as an internal standard. This allows high-accuracy determination of elemental oxides as confirmed by good agreement between found and reported values for major and minor elemental oxides in some synthetic glasses with typical medieval composition (European Science Foundation 151 and 158). Also for trace elemental concentrations of lanthanides in a reference glass (P and H Developments Ltd. DLH7, a base glass composition with nominally 75 μg g-1 elements added) accurate data were obtained. Interferences from polyatomic species and doubly charged species on the masses of trace elements are possible, depending on the base composition of the glass

  14. Effects of functional group modification on the thermal properties of nano-carbon clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhenyi, E-mail: zywu@xmu.edu.cn [Xiamen University, Department of Chemistry and College of Chemistry and Chemical Engineering (China); Cai, Xueying [Xiamen University, Xiamen Zhongshan Hospital (China); Yang, Zhiquan [South China University of Technology, School of Environment and Energy, Guangzhou Higher Education Mega Centre (China)

    2015-08-15

    In this paper, the thermal properties including thermal stability, thermal decomposition activation energy and the thermal enthalpy of nano-carbon clusters (NCCs, including fullerene[60](C{sub 60}, with a diameter of 0.71 nm), multi-walled carbon nanotubes(MWCNTs, with a diameter of 10–30 nm and a length of 1–2 µm), single-walled carbon nanotubes (SWCNTs, with a diameter of ∼2 nm and a length of 5–15 µm), ligands of NCC-based terpyridine (NCC-tpy), and NCC-based ruthenium complexes (NCC-tpyRuCl{sub 3}) were systematically studied by method of simultaneous thermogravimetric and differential thermal analysis. The results show that the modification of NCCs with terpyridine leads to a decrease in the thermal stability and in the thermal decomposition activation energy (the thermal decomposition activation energy decreased from 174.4 for C{sub 60}, 144.9 for MWCNTs and 161.2 kJ/mol for SWCNTs to 166.2 for C{sub 60}-tpy, 119.7 for MWCNT-tpy and 85.0 kJ/mol for SWCNT-tpy). But the modification of NCCs with terpyridine results in an increase in the enthalpy change of NCC thermal decomposition reaction. The introduction of the metal ions through complexation further decreases the thermal stability and the thermal decomposition activation energy of NCC-tpyRuCl{sub 3} due to the catalytic oxidation of Ru(III) ions (the activation energy decreases to 124.1 for C{sub 60}-tpyRuCl{sub 3}, 106.4 for MWCNT-tpyRuCl{sub 3} and 41.2 kJ/mol for SWCNT-tpyRuCl{sub 3}). The introduction of the metal ions also leads to a decrease in the enthalpy change of the thermal decomposition reaction.

  15. Fabrication of SO/sub 2/preparation system and calibration of PINSTECH sulfur standard for /sup 34/S/sup 32/S mass spectrometric analysis

    International Nuclear Information System (INIS)

    This report describes the fabrication and standardization of operation procedures of a SO/sub 2/ preparation system used for the extraction of sulfur dioxide gas from sulfur minerals (aqueous sulfate, elemental sulfur, and sulfides) for sulfur isotope ratio measurements on a gas source mass spectrometer for hydrological, geological and environmental applications. SO/sub 2/ preparation procedure as described by Fumitaka Yanagisawa and Hitoshi Sakai (1983) is adopted with some modifications. A chemically pure BaSO/sub 4/ powder is chosen as PINSTECH Sulfur Standard PSS-I for routine laboratory /sup 34/S analysis. PSS-1 is calibrated against the International Atomic Energy Agency (IAEA) standard Cannon Diablo Troilite (CDT) using the NBS-127 sulfur standard Sigma /sup 34/S values of PSS-1 as analyzed at PINSTECH and Institute fur Hydorlogie, Munich are found to be 14.58 +-0.07 % CDT (n=6) and 14.59+-0.15% CDT (n=2) respectively. NBS-127 is BaSO/sub 4/ powder from the National Bureau of Standards, USA and has been calibrated against CDT. Interlaboratory comparison of various standards is also documented. Using this system, the reproducibility of sulfur isotope ratio measurements is better than +-0.2 % (n=10). (author)

  16. Quantitative sampling and analysis of trace elements in ambient air: impactor characterization and Synchrotron-XRF mass calibration

    OpenAIRE

    A. Richard; N. Bukowiecki; Lienemann, P.; Furger, M.; Weideli, B.; Fierz, M.; Minguillón, M. C.; Figi, R.; Flechsig, U.; Appel, K.; Prévôt, A. S H; U. Baltensperger

    2010-01-01

    Identification of trace elements in ambient air can add substantial information to pollution source apportionment studies, although they do not contribute significantly to emissions in terms of mass. A method for quantitative size and time-resolved trace element evaluation in ambient aerosols with a rotating drum impactor and synchrotron radiation based X-ray fluorescence is presented. The impactor collection efficiency curves and size segregation characteristics were investigated in a...

  17. Measuring the extent of convective cores in low-mass stars using Kepler data: towards a calibration of core overshooting

    CERN Document Server

    Deheuvels, S; Aguirre, V Silva; Ballot, J; Michel, E; Cunha, M S; Lebreton, Y; Appourchaux, T

    2016-01-01

    Our poor understanding of the boundaries of convective cores generates large uncertainties on the extent of these cores and thus on stellar ages. Our aim is to use asteroseismology to consistently measure the extent of convective cores in a sample of main-sequence stars whose masses lie around the mass-limit for having a convective core. We first test and validate a seismic diagnostic that was proposed to probe in a model-dependent way the extent of convective cores using the so-called $r_{010}$ ratios, which are built with $l=0$ and $l=1$ modes. We apply this procedure to 24 low-mass stars chosen among Kepler targets to optimize the efficiency of this diagnostic. For this purpose, we compute grids of stellar models with both the CESAM2k and MESA evolution codes, where the extensions of convective cores are modeled either by an instantaneous mixing or as a diffusion process. Among the selected targets, we are able to unambiguously detect convective cores in eight stars and we obtain seismic measurements of th...

  18. The end-Cretaceous in the southwestern Tethys (Elles, Tunisia): orbital calibration of paleoenvironmental events before the mass extinction

    Science.gov (United States)

    Thibault, Nicolas; Galbrun, Bruno; Gardin, Silvia; Minoletti, Fabrice; Le Callonnec, Laurence

    2016-04-01

    An integrated study of magnetic mass susceptibility (MS), bulk stable isotopes and calcareous nannofossil paleoecological changes is undertaken on the late Maastrichtian of the Elles section, Tunisia, spanning the last ca. 1 Myr of the Cretaceous. A cyclostratigraphic analysis reveals the presence of Milankovitch frequencies and is used for proposal of two distinct orbital age models and to provide ages of important stratigraphic horizons, relative to the age of the Cretaceous-Paleogene boundary (K-PgB). Principal component analysis (PCA) performed on the nannofossil assemblage reveal two main factors, PCA1, mostly representing fluctuations of D. rotatorius, P. stoveri, Lithraphidites spp., Retecapsa spp., Staurolithites spp., Micula spp., and PCA2, mostly representing fluctuations of A. regularis, C. ehrenbergii, Micula spp., Rhagodiscus spp., W. barnesiae and Zeugrhabdotus spp. Variations in PCA1 and PCA2 match changes in bulk δ13C and δ18O, respectively, and suggest changes in surface-water fertility and temperatures and associated stress. The variations in abundances of high-latitude taxa and the warm-water species Micula murus and in bulk δ18O delineate fast changes in sea-surface paleotemperatures. As in many other sites, an end-Maastrichtian greenhouse warming is highlighted, followed by a short cooling and an additional warm pulse in the last 30 kyr of the Maastrichtian which has rarely been documented so far. Orbital tuning of the delineated climatic events is proposed following the two different age models. Calcareous nannofossil assemblages highlight a decrease in surface-water nutriency, but their species richness remains high through the latest Maastrichtian, indicating, in Tunisia, a weak impact of Deccan volcanism on calcareous nannoplankton diversity before the mass extinction.

  19. Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks.

    Science.gov (United States)

    Valletta, Elisa; Kučera, Lukáš; Prokeš, Lubomír; Amato, Filippo; Pivetta, Tiziana; Hampl, Aleš; Havel, Josef; Vaňhara, Petr

    2016-01-01

    Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general. PMID:26821236

  20. Joint test rig for testing and calibrating of different methods of two-phase mass flow measurement

    International Nuclear Information System (INIS)

    The accuracy of the different measuring methods will be dependent on the flow regime. Therefore, it is necessary to have a method to identify the flow pattern. Two methods will be used: an optical technique (sapphire windows and high speed photography) and an impedance probe. The test rig is designed for the generation of a steady-state steam-water-flow with a quality between 1 and 0 and a maximum pressure of 160 ata. Depending on the quality, the mass flow will reach a maximum level of 10 to 20 t/h. The test section has a total length of 8 m and consists of exchangeable tube sections. The tube diameters are 2.50 and 80 mm. The most components like valves, pipes, fittings and the components of the control and measuring-system are delivered. The mounting of the control and measuring-system has been started, the mounting of the pipes has been nearly finished. To develop the electronic equipment for the impedance probe and to compare the two methods of flow regime identification a water-air loop had been build up. Experiments have shown that the signal of the impedance probe is excellent suited also in flow regimes in which the visualization technique gives results which are difficult to interprete. (orig.)

  1. Joint test rig for tests and calibration of different methods of two-phase mass flow measurement

    International Nuclear Information System (INIS)

    Two groups of measuring methods have been extensively tested. The first group is sponsored by the BMFT: - Two pairs of free field turbine meters and drag discs together with a 2 beam densitometer (RS 109, Euratom Ispra). - Temperature noise signal correlation (RS 135, IKT-Technische Universitaet Berlin). - Radiotracer technique (PNS 4214, RS 146, KfK-LIT). - Dragbody (RS 147, Battelle Frankfurt). All these measuring systems (exept RS 147) were tested simultaneously in the horizontal test section (50 mm diameter) at steady-state steam-water flow. Mass flow rate and quality have been varied at pressures of 10, 25, 50, 75 and 100 bars. About 110 different test points (incl. single phase points) were performed. The second group of techniques was sponsored by the US NRC and developed by the INEL (Idaho) to be utilized in the LOFT- and Semiscale-experiments. The instrumentation, drag disc, turbine, γ-densitometer, is similar in principle for both LOFT and Semiscale, however, the mechanical design of some transducers is significantly different. The data reduction techniques are essentially the same. The experiments included both steady-state air-water and steam-water flow. Approximately 240 test points were performed. (orig.)

  2. Formation and properties of astrophysical carbonaceous dust. I: ab-initio calculations of the configuration and binding energies of small carbon clusters

    CERN Document Server

    Mauney, Christopher; Lazzati, Davide

    2014-01-01

    The binding energies of n < 100 carbon clusters are calculated using the ab-initio density functional theory code Quantum Espresso. Carbon cluster geometries are determined using several levels of classical techniques and further refined using density functional theory. The resulting energies are used to compute the work of cluster formation and the nucleation rate in a saturated, hydrogen-poor carbon gas. Compared to classical calculations that adopt the capillary approximation, we find that nucleation of carbon clusters is enhanced at low temperatures and depressed at high temperatures. This difference is ascribed to the different behavior of the critical cluster size. We find that the critical cluster size is at n = 27 or n = 8 for a broad range of temperatures and saturations, instead of being a smooth function of such parameters. The results of our calculations can be used to follow carbonaceous cluster/grain formation, stability, and growth in hydrogen poor environments, such as the inner layers of c...

  3. Top pairs production and effects of new physics. Jet calibration with W into jet-jet process. Top mass measurement; Production de paires de Top et effet de Nouvelle Physique. Calibration des jets avec le processus Wen en jet-jet. Mesure de la masse du Top

    Energy Technology Data Exchange (ETDEWEB)

    Cogneras, E

    2007-06-15

    Since it was discovered in 1995 at Fermilab, the top quark is the subject of a great attention. It completes the third quark generation of the standard model of particle physics, and the measurement of its properties constrains strongly this model. It is also a preferential way to probe new physics expected around 1 TeV. This thesis, performed using the Atlas detector at LHC, describes the methods implemented in order to measure precisely the top quark mass in the lepton + jets channel. Several analysis ways are presented in function of the performances of the detector, especially its capacity to identify the b jets. The precise measurement of the top quark mass needs a deep understanding of the jet energy scale. This thesis suggests a strategy to calibrate the light jets using the constraint on the W boson mass, and shows that a precision of 1 GeV{sup 2}/c{sup 2} on the top mass measurement is achievable. An evaluation of the discovery potential of tt-bar resonances, foreseen by models beyond the standard model is also carried out. (author)

  4. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration...... uncertainty was verified from independent measurements of the same sample by demonstrating statistical control of analytical results and the absence of bias. The proposed method takes into account uncertainties of the measurement, as well as of the amount of calibrant. It is applicable to all types of...

  5. High-Precision Mass Measurements of Exotic Nuclei with the Triple-Trap Mass Spectrometer Isoltrap

    CERN Multimedia

    Blaum, K; Zuber, K T; Stanja, J

    2002-01-01

    The masses of close to 200 short-lived nuclides have already been measured with the mass spectrometer ISOLTRAP with a relative precision between 1$\\times$10$^{-7}$ and 1$\\times$10^{-8}$. The installatin of a radio-frequency quadrupole trap increased the overall efficiency by two orders of magnitude which is at present about 1%. In a recent upgrade, we installed a carbon cluster laser ion source, which will allow us to use carbon clusters as mass references for absolute mass measurements. Due to these improvements and the high reliability of ISOLTRAP we are now able to perform accurate high-precision mass measurements all over the nuclear chart. We propose therefore mass measurements on light, medium and heavy nuclides on both sides of the valley of stability in the coming four years. ISOLTRAP is presently the only instrument capable of the high precision required for many of the proposed studies.

  6. The development of a method for the determination of trace elements in fuel alcohol by electrothermal vaporization-inductively coupled plasma mass spectrometry using external calibration

    International Nuclear Information System (INIS)

    A method for the determination of Ag, As, Cd, Cu, Co, Fe, Mn, Ni, Pb, Sn and Tl in fuel alcohol by electrothermal vaporization inductively coupled plasma mass spectrometry is proposed. The determinations were carried out by external calibration against ethanolic solutions, without a chemical modifier, employing the following pyrolysis and vaporization temperatures: 400 deg. C and 2300 deg. C for the more volatile analytes and 1000 deg. C and 2500 deg. C for the less volatile analytes. The determination of As, Cd, Pb, Sn and Tl was additionally carried out using Pd as modifier at 800 deg. C pyrolysis and 2400 deg. C vaporization temperatures. The temperatures were optimized through pyrolysis and vaporization curves. Seven common fuel ethanol, one fuel ethanol with additive and one anhydrous fuel ethanol sample have been analyzed. The measured concentrations were at the μg L-1 level or lower. Since there is no certified reference material for fuel ethanol, the accuracy of the method was checked by the recovery test, with recoveries from 75% to 124%. The limits of detection (LODs), in μg L-1, and the relative standard deviations for 5 replicates were, for the elements in the conditions without modifier: Ag: 0.015 and 9.1%, Co: 0.002 and 10%, Cu: 0.22 and 6.6%, Fe: 0.72 and 4.3%, Mn: 0.025 and 12%, Ni: 0.026 and 9.3%, and for the elements with Pd: As: 0.02 and 2.9%, Cd: 0.07 and 25%, Pb: 0.02 and 3.1%, Sn: 0.010 and 6.0%, Tl: 0.0008 and 2.5%. Electrothermal vaporization avoids the loading of the plasma with organics, allowing the analysis of fuel ethanol by ICP-MS with good accuracy and reasonable precision

  7. Set-up and calibration of an outdoor nozzle-type rainfall simulator for soil erosion studies at the Masse experimental station (central Italy)

    Science.gov (United States)

    Vergni, Lorenzo; Todisco, Francesca

    2016-04-01

    This contribution describes the technical characteristics and the preliminary calibration of a rainfall simulator recently installed by the Department of Agricultural, Food and Environmental Sciences (Perugia University) at the Masse experimental station located 20 km south of Perugia, in the region of Umbria (central Italy). The site includes some USLE plots of different length λ = 11 and 22 m and width w = 2, 4 and 8 m, oriented parallel to a 16 % slope and kept free of vegetation by frequent ploughing. Since 2008, the station enabled to collect data from more than 80 erosive events, that were mainly used to investigate the relationship between rainfall characteristics and soil loss. The relevant soil loss variability that characterizes erosive storm events with similar overall characteristics (duration and/or depth) can be explained by the different rainfall profile of erosive storms and by the different antecedent soil aggregate stability. To analyse in more detail these aspects, recently, the Masse experimental station has been equipped with a semi-portable rainfall simulator placed over two micro-plots of 1x1 m each, having the same topographic and pedologic conditions of the adjacent USLE plots. The rainfall simulator consists of four full-cone spray nozzles for each micro-plot, placed at the angles of a 0.18-m square, centred over the plot at a height of 2.7 m above the ground. The operating pressure is regulated by pressure regulating valves and checked by pressure gauges mounted in correspondence of each nozzle. An electronic control unit regulates the start and stop of the inlet solenoid valves. A range of rainfall intensities can be achieved, by activating different combinations of nozzles (15 different intensities) also during the same simulation trial. The particular design of the plots allows to collect separately the runoff volume deriving from the plots and the water volume fallen outside of the plot. In this way it is possible to derive, by

  8. Calibration de l'echelle d'energie des jets et mesure de la masse du quark top dans le canal semi-leptonique dans l'experience ATLAS

    CERN Document Server

    Balli, Fabrice

    The main goal of this thesis is to provide a measurement as accurate as possible of the top quark mass in the semi-leptonic decay channel. This experimental measurement is made thanks to the ATLAS detector near LHC, a proton-proton collider. The main interests for this precison measurement are the physics constraints to the theoretical models of fundamental constituents. Besides, the top quark mass is a parameter allowing to have more information on the vacuum stability at the Planck scale within the Standard Model. Jet energy calibration is crucial to this measurement. The impact of real data taking conditions on this calibration and on jet performance is detailed. The top quark mass measurement using 2011 data collected at an energy in the center-of-mass of 7 TeV is presented. It is using a tridimensional template analysis method. The measured top quark mass is: mtop = 172.01 ± 0.92 (stat) ± 1.17 (syst) GeV. The 2012 data collected at an energy in the center-of-mass of 8 TeV are also analysed, and a preli...

  9. In Situ Determination of Trace Elements in Fish Otoliths by Laser Ablation Double Focusing Sector Field Inductively Coupled Plasma Mass Spectrometry Using a Solution Standard Addition Calibration Method

    Science.gov (United States)

    Chen, Z.; Jones, C. M.

    2002-05-01

    Microchemistry of fish otoliths (fish ear bones) is a very useful tool for monitoring aquatic environments and fish migration. However, determination of the elemental composition in fish otolith by ICP-MS has been limited to either analysis of dissolved sample solution or measurement of limited number of trace elements by laser ablation (LA)- ICP-MS due to low sensitivity, lack of available calibration standards, and complexity of polyatomic molecular interference. In this study, a method was developed for in situ determination of trace elements in fish otoliths by laser ablation double focusing sector field ultra high sensitivity Finnigan Element 2 ICP-MS using a solution standard addition calibration method. Due to the lack of matrix-match solid calibration standards, sixteen trace elements (Na, Mg, P, Cr, Mn, Fe, Ni, Cu, Rb, Sr, Y, Cd, La, Ba, Pb and U) were determined using a solution standard calibration with Ca as an internal standard. Flexibility, easy preparation and stable signals are the advantages of using solution calibration standards. In order to resolve polyatomic molecular interferences, medium resolution (M/delta M > 4000) was used for some elements (Na, Mg, P, Cr, Mn, Fe, Ni, and Cu). Both external calibration and standard addition quantification strategies are compared and discussed. Precision, accuracy, and limits of detection are presented.

  10. UV spectra of iron-doped carbon clusters FeC_n n = 3-6

    CERN Document Server

    Steglich, Mathias; Johnson, Anatoly; Maier, John P

    2015-01-01

    Electronic transitions of jet-cooled FeC$_n$ clusters ($n = 3 - 6$) were measured between 230 and 300 nm by a mass-resolved 1+1 resonant two-photon ionization technique. Rotational profiles were simulated based on previous calculations of ground state geometries and compared to experimental observations. Reasonable agreement is found for the planar fan-like structure of FeC$_3$. The FeC$_4$ data indicate a shorter distance between the Fe atom and the bent C$_4$ unit of the fan. The transitions are suggested to be $^{3}$A$_{2} \\leftarrow ^{3}$B$_{1}$ for FeC$_3$ and $^{5}$A$_{1} \\leftarrow ^{5}$A$_{1}$ for FeC$_4$. In contrast to the predicted C$_{\\infty \\text{v}}$ geometry, non-linear FeC$_5$ is apparently observed. Line width broadening prevents analysis of the FeC$_6$ spectrum.

  11. New method for calibration of sun photometers

    Institute of Scientific and Technical Information of China (English)

    H.H.Asadov; I.G.Chobanzadeh

    2009-01-01

    A new method for calibration of sun photometers based on Bouguer-Beer law is proposed.The developed basic equation of calibration makes it possible to formulate the derivative methods of calibration on the basis of photometric measurements upon optical air masses,the ratio of which is an integer number.

  12. Enhanced water window x-ray emission from in situ formed carbon clusters irradiated by intense ultra-short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, U.; Rao, B. S.; Arora, V.; Upadhyay, A.; Singhal, H.; Naik, P. A.; Chakera, J. A.; Mukherjee, C.; Gupta, P. D. [Raja Ramanna Centre for Advanced Technology, Indore, 452 013 Madhya Pradesh (India)

    2013-07-29

    Enhanced water window x-ray emission (23–44 Å) from carbon clusters, formed in situ using a pre-pulse, irradiated by intense (I > 10{sup 17} W/cm{sup 2}) ultra-short laser pulse, is demonstrated. An order of magnitude x-ray enhancement over planar graphite target is observed in carbon clusters, formed by a sub-ns pre-pulse, interacting with intense main pulse after a delay. The effect of the delay and the duration of the main pulse is studied for optimizing the x-ray emission in the water window region. This x-ray source has added advantages of being an efficient, high repetition rate, and low debris x-ray source.

  13. Tin-carbon clusters and the onset of microscopic level immiscibility: Experimental and computational study

    Science.gov (United States)

    Bernstein, J.; Landau, A.; Zemel, E.; Kolodney, E.

    2015-09-01

    We report the experimental observation and computational analysis of the binary tin-carbon gas phase species. These novel ionic compounds are generated by impact of C60 - anions on a clean tin target at some kiloelectronvolts kinetic energies. Positive SnmCn+ (m = 1-12, 1 ≤ n ≤ 8) ions were detected mass spectrometrically following ejection from the surface. Impact induced shattering of the C60 - ion followed by sub-surface penetration of the resulting atomic carbon flux forces efficient mixing between target and projectile atoms even though the two elements (Sn/C) are completely immiscible in the bulk. This approach of C60 - ion beam induced synthesis can be considered as an effective way for producing novel metal-carbon species of the so-called non-carbide forming elements, thus exploring the possible onset of molecular level miscibility in these systems. Sn2C2+ was found to be the most abundant carbide cluster ion. Its instantaneous formation kinetics and its measured kinetic energy distribution while exiting the surface demonstrate a single impact formation/emission event (on the sub-ps time scale). Optimal geometries were calculated for both neutral and positively charged species using Born-Oppenheimer molecular dynamics for identifying global minima, followed by density functional theory (DFT) structure optimization and energy calculations at the coupled cluster singles, doubles and perturbative triples [CCSD(T)] level. The calculated structures reflect two distinct binding tendencies. The carbon rich species exhibit polyynic/cummulenic nature (tin end capped carbon chains) while the more stoichiometrically balanced species have larger contributions of metal-metal bonding, sometimes resulting in distinct tin and carbon moieties attached to each other (segregated structures). The Sn2Cn (n = 3-8) and Sn2Cn+ (n = 2-8) are polyynic/cummulenic while all neutral SnmCn structures (m = 3-4) could be described as small tin clusters (dimer, trimer, and tetramer

  14. Singly- and doubly-negative carbon clusters in sputtering: Energy spectra, abundance distributions and unimolecular fragmentation

    International Nuclear Information System (INIS)

    The emission of singly- and doubly-charged negative cluster ions in sputtering of graphite by 14.5 keV Cs+ ion bombardment was investigated by mass spectrometry. Specifically, for anionic Cn- (n≤23) and CsCn- (n≤11) and dianionic Cn2- (n≤39) species the emission-energy spectra were recorded and their abundance distributions as a function of cluster size n were determined. The energy spectra provided evidence for cluster decomposition in the ion accelerating region of the spectrometer corresponding to a time scale from some 10-10 s to several 10-8 s. The abundance of these fragment ions are similar to those of the parent ions in terms of the dependence on the size n and their absolute magnitudes converge with increasing cluster size. Due to energetic ejection events, the clusters are sputtered with high internal energies; they cool by unimolecular decomposition. The most probable fragmentation process for Cn- appears to be by evaporation of a neutral C2 molecule. For these decay reactions, the fragmentation-time distributions were derived from the appropriate parts of the energy spectra; they were found to scale exponentially with time. From these data the average lifetimes τ for these unimolecular decompositions were determined. For Cn- the lifetimes slightly increase with n: τ ∼ 8 x 10-9 s at n=6 to τ ∼ 5 x 10-8 s at n=25. Similar values are found for CsCn-, whereas for the dianionic clusters Cn2- they are shorter, τ ∼ (5-7) x 10-9 s for n=12-18. Estimates of internal energies, Eint, of sputtered Cn- clusters were derived from these lifetimes, employing statistical theories of unimolecular decomposition. Values of Eint increase with cluster size n for 5≤n≤25, whereas the average internal energy per constituent atom, Eint/n amounts to ∼1 eV in that range

  15. Photo-electronic behavior of Cu{sub 2}O- and/or CeO{sub 2}-loaded TiO{sub 2}/carbon cluster nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, H.; Saitou, Y. [Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Karuppuchamy, S., E-mail: chamy@life.kyutech.ac.jp [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Kitakyushu, Fukuoka 808-0196 (Japan); Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Hassan, M.A. [Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Yoshihara, M. [Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2012-10-15

    Graphical abstract: Nano-sized TiO{sub 2}/carbon clusters composite materials (I{sub c}'s) have been successfully prepared for the first time by the calcination of TiO(OCOCH{sub 3}CHCOCH{sub 3}){sub 2}/starch complexes (I's) in air. The visible light induced photocatalytic activity of nano-sized TiO{sub 2}/carbon clusters composite materials was observed. Highlights: Black-Right-Pointing-Pointer Nano-sized TiO{sub 2}/carbon cluster composite materials have been synthesized. Black-Right-Pointing-Pointer The surface of the composite was modified with Cu{sub 2}O, CeO{sub 2} and Pt particles. Black-Right-Pointing-Pointer The composite shows the photo-catalytic activity under visible light irradiation. - Abstract: Nano-sized TiO{sub 2}/carbon cluster composite materials have been successfully prepared for the first time by calcination of TiO(OCOCH{sub 3}CHCOCH{sub 3}){sub 2}/starch complexes in air. The surface of composite materials was modified with nano-sized Cu{sub 2}O and CeO{sub 2} particles, followed by the subsequent modification of Pt particles. The composition of the synthesized composite materials was determined using inductively coupled plasma spectroscopy, elemental analysis and surface characterization by transmission electron microscopy. The reduction reaction of methylene blue with the calcined materials under the visible light irradiation has also been examined. The composite material reduced the methylene blue under the irradiation of visible light ({lambda} > 460 nm). The metal oxide-loaded composite materials could also decompose an aqueous silver nitrate solution by visible light irradiation and give O{sub 2} and Ag.

  16. Systematic Uncertainties in the Spectroscopic Measurements of Neutron-Star Masses and Radii from Thermonuclear X-ray Bursts. III. Absolute Flux Calibration

    OpenAIRE

    Guver, Tolga; Ozel, Feryal; Marshall, Herman; Psaltis, Dimitrios; Guainazzi, Matteo; Diaz-Trigo, Maria

    2015-01-01

    Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826-238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE/PCA as well as by XMM-Newton EPIC-pn and RXTE/PCA, we quantify the degree of uncertainty in the flux calibration by assessing the...

  17. Camera calibration

    OpenAIRE

    Andrade-Cetto, J.

    2001-01-01

    This report is a tutorial on pattern based camera calibration for computer vision. The methods presented here allow for the computation of the intrinsic and extrinsic parameters of a camera. These methods are widely available in the literature, and they are only summarized here as an easy and comprehensive reference for researchers at the Institute and their collaborators.

  18. Fragmentation of neutral carbon clusters formed by high velocity atomic collision; Fragmentation d'agregats de carbone neutres formes par collision atomique a haute vitesse

    Energy Technology Data Exchange (ETDEWEB)

    Martinet, G

    2004-05-01

    The aim of this work is to understand the fragmentation of small neutral carbon clusters formed by high velocity atomic collision on atomic gas. In this experiment, the main way of deexcitation of neutral clusters formed by electron capture with ionic species is the fragmentation. To measure the channels of fragmentation, a new detection tool based on shape analysis of current pulse delivered by semiconductor detectors has been developed. For the first time, all branching ratios of neutral carbon clusters are measured in an unambiguous way for clusters size up to 10 atoms. The measurements have been compared to a statistical model in microcanonical ensemble (Microcanonical Metropolis Monte Carlo). In this model, various structural properties of carbon clusters are required. These data have been calculated with Density Functional Theory (DFT-B3LYP) to find the geometries of the clusters and then with Coupled Clusters (CCSD(T)) formalism to obtain dissociation energies and other quantities needed to compute fragmentation calculations. The experimental branching ratios have been compared to the fragmentation model which has allowed to find an energy distribution deposited in the collision. Finally, specific cluster effect has been found namely a large population of excited states. This behaviour is completely different of the atomic carbon case for which the electron capture in the ground states predominates. (author)

  19. A micro-fluidic sub-microliter sample introduction system for direct analysis of Chinese rice wine by inductively coupled plasma mass spectrometry using external aqueous calibration

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Heyong [Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310027 (China); College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036 (China); Liu, Jinhua [College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036 (China); Xu, Zigang [Institute of Analytical and Applied Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310027 (China); Yin, Xuefeng, E-mail: yinxf@zju.edu.cn [Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310027 (China); College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036 (China)

    2012-07-15

    A microfluidic sub-microliter sample introducing system was developed for direct analysis of Chinese rice wine by inductively coupled plasma mass spectrometry (ICP-MS). It consisted of a microfluidic chip integrating variable-volume sampling channels (0.1-0.8 {mu}L), an eight-way multi-functional valve used in flow injection analysis (FIA), a syringe pump and a peristaltic pump of the Ar ICP-MS instrument. Three solutions, i.e., 15, 40 and 100 g L{sup -1} glucose in 20% ethanol were used to simulate Chinese rice wine of the dry type, the semidry type and the semisweet type, each. The effects of their volume introduced into ICP-MS on the plasma stability and ICP-MS intensities were studied. The experimental results showed that neither alteration of plasma stability nor carbon deposition was observed when the sampling volume of 20% ethanol containing 100 g L{sup -1} glucose was downscaled to 0.8 {mu}L. Further reducing the sampling volume to 0.4 {mu}L, no significant difference between the intensities of multi-element standard prepared in three simulated Chinese rice wine matrices and those in aqueous solution was observed. It indicated no negative effect of Chinese rice wine matrix on the ICP-MS intensities. A sampling volume of 0.4 {mu}L was considered to be a good compromise between sensitivity and matrix effect. The flow rate of the carrier was chosen as 20 {mu}L min{sup -1} for obtaining peaks with the highest peak height within the shortest time. Based on these observations, a microflow injection ({mu}FI) method for the direct determination of cadmium and lead in Chinese rice wine by ICP-MS using an external aqueous calibration was developed. The sample throughput was 45 h{sup -1} with the detection limit of 19.8 and 10.4 ng L{sup -1} for Cd and Pb, respectively. The contents of Cd and Pb in 10 Chinese rice wine samples were measured. The results agreed well with those determined by ICP-MS with the conventional sampling system after microwave assisted digestion

  20. A micro-fluidic sub-microliter sample introduction system for direct analysis of Chinese rice wine by inductively coupled plasma mass spectrometry using external aqueous calibration

    International Nuclear Information System (INIS)

    A microfluidic sub-microliter sample introducing system was developed for direct analysis of Chinese rice wine by inductively coupled plasma mass spectrometry (ICP-MS). It consisted of a microfluidic chip integrating variable-volume sampling channels (0.1–0.8 μL), an eight-way multi-functional valve used in flow injection analysis (FIA), a syringe pump and a peristaltic pump of the Ar ICP-MS instrument. Three solutions, i.e., 15, 40 and 100 g L−1 glucose in 20% ethanol were used to simulate Chinese rice wine of the dry type, the semidry type and the semisweet type, each. The effects of their volume introduced into ICP-MS on the plasma stability and ICP-MS intensities were studied. The experimental results showed that neither alteration of plasma stability nor carbon deposition was observed when the sampling volume of 20% ethanol containing 100 g L−1 glucose was downscaled to 0.8 μL. Further reducing the sampling volume to 0.4 μL, no significant difference between the intensities of multi-element standard prepared in three simulated Chinese rice wine matrices and those in aqueous solution was observed. It indicated no negative effect of Chinese rice wine matrix on the ICP-MS intensities. A sampling volume of 0.4 μL was considered to be a good compromise between sensitivity and matrix effect. The flow rate of the carrier was chosen as 20 μL min−1 for obtaining peaks with the highest peak height within the shortest time. Based on these observations, a microflow injection (μFI) method for the direct determination of cadmium and lead in Chinese rice wine by ICP-MS using an external aqueous calibration was developed. The sample throughput was 45 h−1 with the detection limit of 19.8 and 10.4 ng L−1 for Cd and Pb, respectively. The contents of Cd and Pb in 10 Chinese rice wine samples were measured. The results agreed well with those determined by ICP-MS with the conventional sampling system after microwave assisted digestion. The recoveries of three

  1. Use of density functional theory method to calculate structures of neutral carbon clusters Cn (3 ≤ n ≤ 24) and study their variability of structural forms

    International Nuclear Information System (INIS)

    In this work, we present modifications to the well-known basin hopping (BH) optimization algorithm [D. J. Wales and J. P. Doye, J. Phys. Chem. A 101, 5111 (1997)] by incorporating in it the unique and specific nature of interactions among valence electrons and ions in carbon atoms through calculating the cluster’s total energy by the density functional tight-binding (DFTB) theory, using it to find the lowest energy structures of carbon clusters and, from these optimized atomic and electronic structures, studying their varied forms of topological transitions, which include a linear chain, a monocyclic to a polycyclic ring, and a fullerene/cage-like geometry. In this modified BH (MBH) algorithm, we define a spatial volume within which the cluster’s lowest energy structure is to be searched, and introduce in addition a cut-and-splice genetic operator to increase the searching performance of the energy minimum than the original BH technique. The present MBH/DFTB algorithm is, therefore, characteristically distinguishable from the original BH technique commonly applied to nonmetallic and metallic clusters, technically more thorough and natural in describing the intricate couplings between valence electrons and ions in a carbon cluster, and thus theoretically sound in putting these two charged components on an equal footing. The proposed modified minimization algorithm should be more appropriate, accurate, and precise in the description of a carbon cluster. We evaluate the present algorithm, its energy-minimum searching in particular, by its optimization robustness. Specifically, we first check the MBH/DFTB technique for two representative carbon clusters of larger size, i.e., C60 and C72 against the popular cut-and-splice approach [D. M. Deaven and K. M. Ho, Phys. Rev. Lett. 75, 288 (1995)] that normally is combined with the genetic algorithm method for finding the cluster’s energy minimum, before employing it to investigate carbon clusters in the size range C3-C

  2. Systematic Uncertainties in the Spectroscopic Measurements of Neutron-Star Masses and Radii from Thermonuclear X-ray Bursts. III. Absolute Flux Calibration

    CERN Document Server

    Guver, Tolga; Marshall, Herman; Psaltis, Dimitrios; Guainazzi, Matteo; Diaz-Trigo, Maria

    2015-01-01

    Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826-238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE/PCA as well as by XMM-Newton EPIC-pn and RXTE/PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. We find that the RXTE/PCA and the Chandra gratings measurements agree with each other within their formal uncertainties, increasing our confidence in these flux measurements. In contrast, XMM-Newton EPIC-pn measures 14.0$\\pm$0.3% less flux than the RXTE/PCA. This is consistent with the previously reported discrepancy with the flux measurements of EPIC-pn, compared to EPIC-MOS1, MOS2 and ACIS-S detectors. We also address the calibration uncertainty in the RXTE/PCA int...

  3. N-O versus N-N bond activation in reaction of N2O with carbon cluster ions: Experimental and ab initio studies of the effects of geometric and electronic structure

    Science.gov (United States)

    Resat, Marianne Sowa; Smolanoff, Jason N.; Goldman, Ilyse B.; Anderson, Scott L.

    1994-06-01

    We report a combined experimental and theoretical study of the reaction of small carbon cluster cations with N2O aimed at understanding the reaction mechanism and how it is affected by the electronic and geometric structure of the C+n reactants. Cross sections for reaction of C+n (n=3-12) with N2O were measured over a collision energy range from 0.1-10 eV, using a guided ion beam tandem mass spectrometer. Ab initio calculations were used to examine the structure and energetics of reactant and product species. Small clusters, which are linear, react with no activation barrier, resulting in either oxide or nitride formation. The branching between oxide and nitride channels shows a strong even-odd alternation, with even clusters preferentially forming nitrides. This appears to be correlated with an even/odd alternation in the ionization potential of the CnN. The larger, monocyclic C+n have activation barriers for reaction, and a completely different product distribution. Secondary reactions of the primary oxide and nitride products were studied at high N2O pressures. Products containing two O or two N atoms are not observed, but it is possible to add one of each. Possible reaction mechanisms are discussed and supported by thermochemistry derived from spin restricted ab initio calculations.

  4. Calibration Binaries

    Science.gov (United States)

    Drummond, J.

    2011-09-01

    Two Excel Spreadsheet files are offered to help calibrate telescope or camera image scale and orientation with binary stars for any time. One is a personally selected list of fixed position binaries and binaries with well-determined orbits, and the other contains all binaries with published orbits. Both are derived from the web site of the Washington Double Star Library. The spreadsheets give the position angle and separation of the binaries for any entered time by taking advantage of Excel's built in iteration function to solve Kepler's transcendental equation.

  5. ALTEA calibration

    Science.gov (United States)

    Zaconte, V.; Altea Team

    The ALTEA project is aimed at studying the possible functional damages to the Central Nervous System (CNS) due to particle radiation in space environment. The project is an international and multi-disciplinary collaboration. The ALTEA facility is an helmet-shaped device that will study concurrently the passage of cosmic radiation through the brain, the functional status of the visual system and the electrophysiological dynamics of the cortical activity. The basic instrumentation is composed by six active particle telescopes, one ElectroEncephaloGraph (EEG), a visual stimulator and a pushbutton. The telescopes are able to detect the passage of each particle measuring its energy, trajectory and released energy into the brain and identifying nuclear species. The EEG and the Visual Stimulator are able to measure the functional status of the visual system, the cortical electrophysiological activity, and to look for a correlation between incident particles, brain activity and Light Flash perceptions. These basic instruments can be used separately or in any combination, permitting several different experiments. ALTEA is scheduled to fly in the International Space Station (ISS) in November, 15th 2004. In this paper the calibration of the Flight Model of the silicon telescopes (Silicon Detector Units - SDUs) will be shown. These measures have been taken at the GSI heavy ion accelerator in Darmstadt. First calibration has been taken out in November 2003 on the SDU-FM1 using C nuclei at different energies: 100, 150, 400 and 600 Mev/n. We performed a complete beam scan of the SDU-FM1 to check functionality and homogeneity of all strips of silicon detector planes, for each beam energy we collected data to achieve good statistics and finally we put two different thickness of Aluminium and Plexiglas in front of the detector in order to study fragmentations. This test has been carried out with a Test Equipment to simulate the Digital Acquisition Unit (DAU). We are scheduled to

  6. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  7. Mass calibration of galaxy clusters at redshift 0.1-1.0 using weak lensing in the Sloan Digital Sky Survey Stripe 82 co-add

    Science.gov (United States)

    Wiesner, Matthew P.; Lin, Huan; Soares-Santos, Marcelle

    2015-09-01

    We present galaxy cluster mass-richness relations found in the Sloan Digital Sky Survey Stripe 82 co-add using clusters found using a Voronoi tessellation cluster finder. These relations were found using stacked weak lensing shear observed in a large sample of galaxy clusters. These mass-richness relations are presented for four redshift bins, 0.1 BCG, halo miscentering, photometric redshift uncertainty and foreground galaxy contamination. We present mass-richness relations using richness measure NVT with each of these effects considered separately as well as considered altogether. We also examine redshift evolution of the mass-richness relation. As a result, we present measurements of the mass coefficient (M200|20) and the power-law slope (α) for power-law fits to the mass and richness values in each of the redshift bins. We find values of the mass coefficient of 8.49 ± 0.526, 14.1 ± 1.78, 30.2 ± 8.74 and 9.23 ± 0.525 × 1013 h-1 M⊙ for each of the four redshift bins, respectively. We find values of the power-law slope of 0.905 ± 0.0585, 0.948 ± 0.100, 1.33 ± 0.260 and 0.883 ± 0.0500, respectively.

  8. The calibration system for the GERDA experiment

    International Nuclear Information System (INIS)

    The GERDA experiment uses the neutrinoless double beta decay to probe three fundamental questions in neutrino physics - Are they Dirac or Majorana particles? What is their absolute mass? What is the mass hierarchy of the three generations? In my talk I present the calibration system for the Ge semiconductor diodes enriched in Ge-76. The system is used to set the energy scale and calibrate the pulse shapes which will be used to further reject background events. The lowest possible background is crucial for the whole experiment and therefore the calibration system must not interfere with the data acquisition phase while at the same time operate efficiently during the calibration runs.

  9. Trinocular Calibration Method Based on Binocular Calibration

    OpenAIRE

    CAO Dan-Dan; Luo, Chun; GAO Shu-Yuan; Wang, Yun; Li, Wen-Bin; XU Zhen-Ying

    2012-01-01

    In order to solve the self-occlusion problem in plane-based multi-camera calibration system and expand the measurement range, a tri-camera vision system based on binocular calibration is proposed. The three cameras are grouped into two pairs, while the public camera is taken as the reference to build the global coordinate. By calibration of the measured absolute distance and the true absolute distance, global calibration is realized. The MRE (mean relative error) of the global calibration of ...

  10. Reference masses for precision mass spectrometry design and implementation of a Pierce geometry to the cluster Ion source at ISOLTRAP

    CERN Document Server

    Lommen, Jonathan

    At the mass spectrometer ISOLTRAP carbon clusters ($^{12}$Cn, 1$\\leqslant$n$\\leqslant$25) are provided as reference masses, which are of particular importance in higher mass ranges (m $\\geqslant$ 200u). In this mass range the measurlment uncertainty is increasingly dominated by the difference of the reference mass and the mass of the ion of interest. Using carbon clusters instead of the common $^{133}$Cs ions, this difference decreases. The carbon clusters are produced in a laser ion source which has been improved in the frame of this thesis. The fluctuations of the count rate have been investigated as a function of the laser energy. Furthermore, the energy density at the target has been increased by implementation of a telescope into the laser beam line, which leads to a more narrow energy distribution of the ions. Through the exact adjustment of timing and length of a pulsed cavity an energy range with constant count rate could be selected. In order to provide ideal starting conditions during and after the ...

  11. A New 2MASS/2df Selected Sample of Pairs of Galaxies and Calibration of Merging Rate in the Local Universe

    Institute of Scientific and Technical Information of China (English)

    孙艳春; 徐聪; 何香涛

    2003-01-01

    We present a new sample of 37 close major-merger galaxy pairs, selected from the 2-degree field redshift survey of the two-micron all-sky survey (2MASS) galaxies. The selection criteria for our near-infrared pairs are more closely related to galaxy mass (a very important parameter in galaxy evolution models) than those for optical selected samples. Our sample benefits enormously from the high homogeneity and accuracy of the 2MASS database, and false matchings are minimized by the essentially three-dimensional selection procedure. Taking into account the biases, we find that 1.96 (±0.4)% of galaxies are in close major-merger pairs. This indicates a local merging rate of 1.0%, in good agreement with the results in recent studies of optical selected pairs in the local universe. The results derived with our sample have high confidence.

  12. Mass Calibration of Galaxy Clusters at Redshift 0.1-1.0 using Weak Lensing in the Sloan Digital Sky Survey Stripe 82 Co-add

    CERN Document Server

    Wiesner, Matthew P; Soares-Santos, Marcelle

    2015-01-01

    We present mass-richness relations found in the Sloan Digital Sky Survey Stripe 82 co-add. These relations were found using stacked weak lensing shear observed in a large sample of galaxy clusters. These mass-richness relations are presented for four redshift bins, $0.1 < z \\leq 0.4$, $0.4 < z \\leq 0.7$, $0.7 < z \\leq 1.0$ and $0.1 < z \\leq 1.0$. We describe the sample of galaxy clusters and explain how these clusters were found using a Voronoi Tessellation cluster finder. We fit an NFW profile to the stacked weak lensing shear signal in redshift and richness bins in order to measure virial mass $(M_{200})$. We describe several effects that can bias weak lensing measurements, including photometric redshift bias, the effect of the central BCG, halo miscentering, photometric redshift uncertainty and foreground galaxy contamination. We present mass-richness relations using richness measure $N_{VT}$ with each of these effects considered separately as well as considered altogether. We present values fo...

  13. Mercury Continuous Emmission Monitor Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

    2009-03-12

    Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass

  14. Calibration of a drag disc turbine transducer and a gamma beam densitometer to measure the mass flow rate in separated horizontal two-phase flow

    International Nuclear Information System (INIS)

    The accurate measurement of two-phase mass flow rate is very important in experiments, such as the LOFT experiment, which investigate the hypothetical Loss-of-Coolant Accident (LOCA). This paper analyzes experiments designed to determine the behavior of a LOFT free field drag disc turbine transducer (DTT) and a LOFT-type three-beam gamma densitometer in a steady state, horizontal high pressure steam-water flow. The experiments were conducted in a mass flow and void fraction range where a variety of separated flow regimes existed which strongly influenced the performance of the DTT. It is shown that the accuracy of the instruments is mainly a function of the void fraction

  15. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina

    2016-05-02

    This poster presents the development, implementation, and operation of the Broadband Outdoor Radiometer Calibrations (BORCAL) Longwave (LW) system at the Southern Great Plains Radiometric Calibration Facility for the calibration of pyrgeometers that provide traceability to the World Infrared Standard Group.

  16. Entry tank calibration in TOR pilot plant

    International Nuclear Information System (INIS)

    The objective of this communication is the description of calibration measurements used for determining the uranium and plutonium mass entry in the fast neutron fuel reprocessing pilot plant (TOR) of Marcoule

  17. A 233U/236U/242Pu/244Pu spike for isotopic and isotope dilution analysis by mass spectrometry with internal calibration

    International Nuclear Information System (INIS)

    The Khlopin Radium Institute prepared on behalf of the IAEA a synthetic mixture of 233U, 236U, 242Pu and 244Pu isotopes. The isotopic composition and elemental concentration of uranium and plutonium were certified on the basis of analyses done by four laboratories of the IAEA Network, using mass spectrometry with internal standardization. The certified values for 233U/236U ratio and the 236U chemical concentration have a coefficient of variation of 0.05%. The latter is fixed by the uncertainty in the 235U/238U ratio of NBS500 used as internal standard. The coefficients of variation of the 244Pu/242Pu ratio and the 242Pu chemical concentration are respectively 0.10% and 0.16% and limited by the uncertainty in the 240Pu/239Pu ratio of NBS947. This four isotope mixture was used as an internal standard as well as a spike, to analyze 30 batches of LWR spent fuel solutions. The repeatability of the mass spectrometric measurements have a coefficient of variation of 0.025% for the uranium concentration, and of 0.039% for the plutonium concentration. The spiking and treatment errors had a coefficient of variation of 0.048%. (author). Refs, figs and tabs

  18. Nonadditivity of convoy- and secondary-electron yields in the forward-electron emission from thin carbon foils under irradiation of fast carbon-cluster ions

    Science.gov (United States)

    Tomita, S.; Yoda, S.; Uchiyama, R.; Ishii, S.; Sasa, K.; Kaneko, T.; Kudo, H.

    2006-06-01

    We have measured energy spectra of secondary electrons produced by fast-carbon-cluster Cn+ (n=1-4) bombardment of thin carbon foils (3.2, 7.3, 11.9, and 20.3μg/cm2 ). For clusters of identical velocity, the convoy-electron yield is enhanced with increasing cluster size n , while the yield of secondary electrons is reduced. The yield of convoy electrons normalized to the number of injected atoms increases proportionally with cluster size n . This proportionality suggests that there is only a weak vicinage effect on the number of primary electrons scattered by the projectile. The vicinage effect observed in low-energy secondary electrons must therefore arise from either transport or transmission through the surface.

  19. First principle study of magnetic and electronic properties of single X (X = Al, Si) atom added to small carbon clusters (C n X, n = 2-10)

    Science.gov (United States)

    Afshar, M.; Hoseini, S. S.; Sargolzaei, M.

    2016-07-01

    In this paper, the magnetic and electronic properties of single aluminum and silicon atom added to small carbon clusters (C n X; X = Al, Si; n = 2-10) are studied in the framework of generalized-gradient approximation using density functional theory. The calculations were performed for linear, two dimensional and three dimensional clusters based on full-potential local-orbital (FPLO) method. The total energies, HOMO-LUMO energy gap and total magnetic moments of the most stable structures are presented in this work. The calculations show that C n Si clusters have more stability compared to C n Al clusters. In addition, our magnetic calculations were shown that the C n Al isomers are magnetic objects whereas C n Si clusters are nonmagnetic objects.

  20. Formation and Properties of Astrophysical Carbonaceous Dust. I. Ab-initio Calculations of the Configuration and Binding Energies of Small Carbon Clusters

    Science.gov (United States)

    Mauney, Christopher; Buongiorno Nardelli, Marco; Lazzati, Davide

    2015-02-01

    The binding energies of n work of cluster formation and the nucleation rate in a saturated, hydrogen-poor carbon gas. Compared to classical calculations that adopt the capillary approximation, we find that nucleation of carbon clusters is enhanced at low temperatures and depressed at high temperatures. This difference is ascribed to the different behavior of the critical cluster size. We find that the critical cluster size is at n = 27 or n = 8 for a broad range of temperatures and saturations, instead of being a smooth function of such parameters. The results of our calculations can be used to follow carbonaceous cluster/grain formation, stability, and growth in hydrogen-poor environments, such as the inner layers of core-collapse supernovae and supernova remnants.

  1. Electromagnetic Calorimeter Calibration with $\\pi^{0}$

    CERN Multimedia

    Puig Navarro, A

    2009-01-01

    Several methods can be used in order to achieve precise calibration of the LHCb Electromagnetic Calorimeter (ECAL) once reasonable cell equalization has been reached. At low transverse energy, the standard calibration procedure is an iterative method based on the fit of the $\\gamma\\gamma$ invariant mass distribution for each cell of the decay $\\pi^{0}\\to\\gamma\\gamma$ with resolved photons. A new technique for generating the combinatorial background of such decays directly from data has been developed. Knowledge of the background could allow an alternative calibration method based on a event by event fit of the same $\\gamma\\gamma$ invariant mass distribution where contributions from groups of cells are considered in a single fit. The background generation procedure and this possible new calibration method are presented in this poster, in addition to an overview of the LHCb Calorimetry system and ECAL calibration techniques.

  2. Combination of GC/FID/Mass spectrometry fingerprints and multivariate calibration techniques for recognition of antimicrobial constituents of Myrtus communis L. essential oil.

    Science.gov (United States)

    Ebrahimabadi, Ebrahim H; Ghoreishi, Sayed Mehdi; Masoum, Saeed; Ebrahimabadi, Abdolrasoul H

    2016-01-01

    Myrtus communis L. is an aromatic evergreen shrub and its essential oil possesses known powerful antimicrobial activity. However, the contribution of each component of the plant essential oil in observed antimicrobial ability is unclear. In this study, chemical components of the essential oil samples of the plant were identified qualitatively and quantitatively using GC/FID/Mass spectrometry system, antimicrobial activity of these samples against three microbial strains were evaluated and, these two set of data were correlated using chemometrics methods. Three chemometric methods including principal component regression (PCR), partial least squares (PLS) and orthogonal projections to latent structures (OPLS) were applied for the study. These methods showed similar results, but, OPLS was selected as preferred method due to its predictive and interpretational ability, facility, repeatability and low time-consuming. The results showed that α-pinene, 1,8 cineole, β-pinene and limonene are the highest contributors in antimicrobial properties of M. communis essential oil. Other researches have reported high antimicrobial activities for the plant essential oils rich in these compounds confirming our findings. PMID:26625337

  3. The Fundamental Plane at z=1.27 First Calibration of the Mass Scale of Red Galaxies at Redshifts z>1

    CERN Document Server

    Van Dokkum, P G; Dokkum, Pieter G. van

    2003-01-01

    We present results on the Fundamental Plane (FP) of early-type galaxies in the cluster RDCS J0848+4453 at z=1.27. Internal velocity dispersions of three K-selected early-type galaxies are determined from deep Keck spectra. Structural parameters are determined from HST NICMOS images. The galaxies show substantial offsets from the FP of the nearby Coma cluster, as expected from passive evolution of their stellar populations. The offsets from the FP can be expressed as offsets in M/L ratio. The M/L ratios of the two most massive galaxies are consistent with an extrapolation of results obtained at z=0.02-0.83. The evolution of early-type galaxies with masses >10^11 M_sun is well described by ln M/L(B) = (-1.06 +- 0.09) z, corresponding to passive evolution of -1.50 +- 0.13 mag at z=1.3. Ignoring selection effects, the best fitting stellar formation redshift is z*=2.6, corresponding to a luminosity weighted age at the epoch of observation of ~2 Gyr. The M/L ratios of these two galaxies are also in excellent agreem...

  4. Development of a multi-variate calibration approach for quantitative analysis of oxidation resistant Mo-Si-B coatings using laser ablation inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Cakara, Anja; Bonta, Maximilian; Riedl, Helmut; Mayrhofer, Paul H.; Limbeck, Andreas

    2016-06-01

    Nowadays, for the production of oxidation protection coatings in ultrahigh temperature environments, alloys of Mo-Si-B are employed. The properties of the material, mainly the oxidation resistance, are strongly influenced by the Si to B ratio; thus reliable analytical methods are needed to assure exact determination of the material composition for the respective applications. For analysis of such coatings, laser ablation inductively coupled mass spectrometry (LA-ICP-MS) has been reported as a versatile method with no specific requirements on the nature of the sample. However, matrix effects represent the main limitation of laser-based solid sampling techniques and usually the use of matrix-matched standards for quantitative analysis is required. In this work, LA-ICP-MS analysis of samples with known composition and varying Mo, Si and B content was carried out. Between known analyte concentrations and derived LA-ICP-MS signal intensities no linear correlation could be found. In order to allow quantitative analysis independent of matrix effects, a multiple linear regression model was developed. Besides the three target analytes also the signals of possible argides (40Ar36Ar and 98Mo40Ar) as well as detected impurities of the Mo-Si-B coatings (108Pd) were considered. Applicability of the model to unknown samples was confirmed using external validation. Relative deviations from the values determined using conventional liquid analysis after sample digestion between 5 and 10% for the main components Mo and Si were observed.

  5. Calibration of a stopping power model for silicon based on analysis of neutron depth profiling and secondary ion mass spectrometry measurements

    International Nuclear Information System (INIS)

    We measure the boron concentration versus depth profile within a silicon sample with four delta-doped planes by secondary ion mass spectrometry. In a neutron depth profiling (NDP) experiment, we illuminate the sample with a neutron beam. Nuclear reactions between the boron nuclei and neutrons produce alpha particles. Based on the measured boron concentration profile and models for the stopping power of the silicon sample, energy straggling, multiple scattering, and the observed energy resolution of the alpha particle detector, we predict the observed energy spectrum of the detected alpha particles. We predict the stopping power of silicon using the stopping and range of ions in matter code SRIM-2000. The predicted locations of the NDP energy peaks are consistently at lower energies than the locations of the observed peaks. This discrepancy is consistent with the claim that SRIM-2000 overestimates the actual stopping power of silicon. Empirically, we estimate a stopping power reduction factor to be 5.06%±1.06%. When we reduce the SRIM-2000 prediction by this factor, we get good agreement between the observed and predicted NDP measurements

  6. Trinocular Calibration Method Based on Binocular Calibration

    Directory of Open Access Journals (Sweden)

    CAO Dan-Dan

    2012-10-01

    Full Text Available In order to solve the self-occlusion problem in plane-based multi-camera calibration system and expand the measurement range, a tri-camera vision system based on binocular calibration is proposed. The three cameras are grouped into two pairs, while the public camera is taken as the reference to build the global coordinate. By calibration of the measured absolute distance and the true absolute distance, global calibration is realized. The MRE (mean relative error of the global calibration of the two camera pairs in the experiments can be as low as 0.277% and 0.328% respectively. Experiment results show that this method is feasible, simple and effective, and has high precision.

  7. Mass spectrometric immunoassay

    Science.gov (United States)

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2007-12-04

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  8. Automated Camera Calibration

    Science.gov (United States)

    Chen, Siqi; Cheng, Yang; Willson, Reg

    2006-01-01

    Automated Camera Calibration (ACAL) is a computer program that automates the generation of calibration data for camera models used in machine vision systems. Machine vision camera models describe the mapping between points in three-dimensional (3D) space in front of the camera and the corresponding points in two-dimensional (2D) space in the camera s image. Calibrating a camera model requires a set of calibration data containing known 3D-to-2D point correspondences for the given camera system. Generating calibration data typically involves taking images of a calibration target where the 3D locations of the target s fiducial marks are known, and then measuring the 2D locations of the fiducial marks in the images. ACAL automates the analysis of calibration target images and greatly speeds the overall calibration process.

  9. ORNL calibrations facility

    International Nuclear Information System (INIS)

    The ORNL Calibrations Facility is operated by the Instrumentation Group of the Industrial Safety and Applied Health Physics Division. Its primary purpose is to maintain radiation calibration standards for calibration of ORNL health physics instruments and personnel dosimeters. This report includes a discussion of the radioactive sources and ancillary equipment in use and a step-by-step procedure for calibration of those survey instruments and personnel dosimeters in routine use at ORNL

  10. Analytical multicollimator camera calibration

    Science.gov (United States)

    Tayman, W.P.

    1978-01-01

    Calibration with the U.S. Geological survey multicollimator determines the calibrated focal length, the point of symmetry, the radial distortion referred to the point of symmetry, and the asymmetric characteristiecs of the camera lens. For this project, two cameras were calibrated, a Zeiss RMK A 15/23 and a Wild RC 8. Four test exposures were made with each camera. Results are tabulated for each exposure and averaged for each set. Copies of the standard USGS calibration reports are included. ?? 1978.

  11. Spiral reader calibration

    International Nuclear Information System (INIS)

    The method to calibrate the spiral reader (SR) is presented. A brief description of the main procedures of the calibration program SCALP, adapted for the IHEP equipment and purposes, is described. The precision characteristics of the IHEP SR have been analysed on the results, presented in the form of diagrams. There is a calibration manual for the user

  12. Calibration methods for rotating shadowband irradiometers and evaluation of calibration duration

    Directory of Open Access Journals (Sweden)

    W. Jessen

    2015-10-01

    Full Text Available Resource assessment for Concentrated Solar Power (CSP needs accurate Direct Normal Irradiance (DNI measurements. An option for such measurement campaigns are Rotating Shadowband Irradiometers (RSIs with a thorough calibration. Calibration of RSIs and Si-sensors in general is complex because of the inhomogeneous spectral response of such sensors and incorporates the use of several correction functions. A calibration for a given atmospheric condition and air mass might not work well for a different condition. This paper covers procedures and requirements for two calibration methods for the calibration of Rotating Shadowband Irradiometers. The necessary duration of acquisition of test measurements is examined in regard to the site specific conditions at Plataforma Solar de Almeria (PSA in Spain. Data sets of several long-term calibration periods from PSA are used to evaluate the deviation of results from calibrations with varying duration from the long-term result. The findings show that seasonal changes of environmental conditions are causing small but noticeable fluctuation of calibration results. Certain periods (i.e. November to January and April to May show a higher likelihood of particularly adverse calibration results. These effects can partially be compensated by increasing the inclusions of measurements from outside these periods. Consequently, the duration of calibrations at PSA can now be selected depending on the time of the year in which measurements are commenced.

  13. Calibration methods for rotating shadowband irradiometers and evaluation of calibration duration

    Science.gov (United States)

    Jessen, W.; Wilbert, S.; Nouri, B.; Geuder, N.; Fritz, H.

    2015-10-01

    Resource assessment for Concentrated Solar Power (CSP) needs accurate Direct Normal Irradiance (DNI) measurements. An option for such measurement campaigns are Rotating Shadowband Irradiometers (RSIs) with a thorough calibration. Calibration of RSIs and Si-sensors in general is complex because of the inhomogeneous spectral response of such sensors and incorporates the use of several correction functions. A calibration for a given atmospheric condition and air mass might not work well for a different condition. This paper covers procedures and requirements for two calibration methods for the calibration of Rotating Shadowband Irradiometers. The necessary duration of acquisition of test measurements is examined in regard to the site specific conditions at Plataforma Solar de Almeria (PSA) in Spain. Data sets of several long-term calibration periods from PSA are used to evaluate the deviation of results from calibrations with varying duration from the long-term result. The findings show that seasonal changes of environmental conditions are causing small but noticeable fluctuation of calibration results. Certain periods (i.e. November to January and April to May) show a higher likelihood of particularly adverse calibration results. These effects can partially be compensated by increasing the inclusions of measurements from outside these periods. Consequently, the duration of calibrations at PSA can now be selected depending on the time of the year in which measurements are commenced.

  14. RF impedance measurement calibration

    International Nuclear Information System (INIS)

    The intent of this note is not to explain all of the available calibration methods in detail. Instead, we will focus on the calibration methods of interest for RF impedance coupling measurements and attempt to explain: (1). The standards and measurements necessary for the various calibration techniques. (2). The advantages and disadvantages of each technique. (3). The mathematical manipulations that need to be applied to the measured standards and devices. (4). An outline of the steps needed for writing a calibration routine that operated from a remote computer. For further details of the various techniques presented in this note, the reader should consult the references

  15. The COS Calibration Pipeline

    Science.gov (United States)

    Hodge, Philip E.; Keyes, C.; Kaiser, M.

    2007-12-01

    The COS calibration pipeline (CALCOS) includes three main components: basic calibration, wavelength calibration, and spectral extraction. Calibration of modes using the far ultraviolet (FUV) and near ultraviolet (NUV) detectors share a common structure, although the individual reference files differ and there are some additional steps for the FUV channel. The pipeline is designed to calibrate data acquired in either ACCUM or time-tag mode. The basic calibration includes pulse-height filtering and geometric correction for FUV, and flat-field, deadtime, and Doppler correction for both detectors. Wavelength calibration can be done either by using separate lamp exposures or by taking several short lamp exposures concurrently with a science exposure. For time-tag data, the latter mode ("tagflash") will allow better correction of potential drift of the spectrum on the detector. One-dimensional spectra will be extracted and saved in a FITS binary table. Separate columns will be used for the flux-calibrated spectrum, error estimate, and the associated wavelengths. CALCOS is written in Python, with some functions in C. It is similar in style to other HST pipeline code in that it uses an association table to specify which files to be included, and the calibration steps to be performed and the reference files to use are specified by header keywords. Currently, in conjunction with the Instrument Definition Team (led by J. Green), the ground-based reference files are being refined, delivered, and tested with the pipeline.

  16. Energy calibration via correlation

    Science.gov (United States)

    Maier, Daniel; Limousin, Olivier

    2016-03-01

    The main task of an energy calibration is to find a relation between pulse-height values and the corresponding energies. Doing this for each pulse-height channel individually requires an elaborated input spectrum with an excellent counting statistics and a sophisticated data analysis. This work presents an easy to handle energy calibration process which can operate reliably on calibration measurements with low counting statistics. The method uses a parameter based model for the energy calibration and concludes on the optimal parameters of the model by finding the best correlation between the measured pulse-height spectrum and multiple synthetic pulse-height spectra which are constructed with different sets of calibration parameters. A CdTe-based semiconductor detector and the line emissions of an 241Am source were used to test the performance of the correlation method in terms of systematic calibration errors for different counting statistics. Up to energies of 60 keV systematic errors were measured to be less than ~ 0.1 keV. Energy calibration via correlation can be applied to any kind of calibration spectra and shows a robust behavior at low counting statistics. It enables a fast and accurate calibration that can be used to monitor the spectroscopic properties of a detector system in near realtime.

  17. 40 CFR 1065.790 - Mass standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Mass standards. 1065.790 Section 1065... ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.790 Mass standards. (a) PM balance calibration weights. Use PM balance calibration weights...

  18. Use of density functional theory method to calculate structures of neutral carbon clusters C{sub n} (3 ≤ n ≤ 24) and study their variability of structural forms

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T. W.; Lai, S. K., E-mail: sklai@coll.phy.ncu.edu.tw [Complex Liquids Laboratory, Department of Physics, National Central University, Chungli 320, Taiwan (China)

    2015-02-28

    In this work, we present modifications to the well-known basin hopping (BH) optimization algorithm [D. J. Wales and J. P. Doye, J. Phys. Chem. A 101, 5111 (1997)] by incorporating in it the unique and specific nature of interactions among valence electrons and ions in carbon atoms through calculating the cluster’s total energy by the density functional tight-binding (DFTB) theory, using it to find the lowest energy structures of carbon clusters and, from these optimized atomic and electronic structures, studying their varied forms of topological transitions, which include a linear chain, a monocyclic to a polycyclic ring, and a fullerene/cage-like geometry. In this modified BH (MBH) algorithm, we define a spatial volume within which the cluster’s lowest energy structure is to be searched, and introduce in addition a cut-and-splice genetic operator to increase the searching performance of the energy minimum than the original BH technique. The present MBH/DFTB algorithm is, therefore, characteristically distinguishable from the original BH technique commonly applied to nonmetallic and metallic clusters, technically more thorough and natural in describing the intricate couplings between valence electrons and ions in a carbon cluster, and thus theoretically sound in putting these two charged components on an equal footing. The proposed modified minimization algorithm should be more appropriate, accurate, and precise in the description of a carbon cluster. We evaluate the present algorithm, its energy-minimum searching in particular, by its optimization robustness. Specifically, we first check the MBH/DFTB technique for two representative carbon clusters of larger size, i.e., C{sub 60} and C{sub 72} against the popular cut-and-splice approach [D. M. Deaven and K. M. Ho, Phys. Rev. Lett. 75, 288 (1995)] that normally is combined with the genetic algorithm method for finding the cluster’s energy minimum, before employing it to investigate carbon clusters in the size

  19. A method of calibrating wind velocity sensors with a modified gas flow calibrator

    Science.gov (United States)

    Stump, H. P.

    1978-01-01

    A procedure was described for calibrating air velocity sensors in the exhaust flow of a gas flow calibrator. The average velocity in the test section located at the calibrator exhaust was verified from the mass flow rate accurately measured by the calibrator's precision sonic nozzles. Air at elevated pressures flowed through a series of screens, diameter changes, and flow straighteners, resulting in a smooth flow through the open test section. The modified system generated air velocities of 2 to 90 meters per second with an uncertainty of about two percent for speeds below 15 meters per second and four percent for the higher speeds. Wind tunnel data correlated well with that taken in the flow calibrator.

  20. Photogrammetric camera calibration

    Science.gov (United States)

    Tayman, W.P.; Ziemann, H.

    1984-01-01

    Section 2 (Calibration) of the document "Recommended Procedures for Calibrating Photogrammetric Cameras and Related Optical Tests" from the International Archives of Photogrammetry, Vol. XIII, Part 4, is reviewed in the light of recent practical work, and suggestions for changes are made. These suggestions are intended as a basis for a further discussion. ?? 1984.

  1. Investigation of Calibrating Force Transducer Using Sinusoidal Force

    International Nuclear Information System (INIS)

    Sinusoidal force calibration method was studied several years before at Physikalisch-Technische Bundesanstalt (PTB). A similar dynamic force calibration system is developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses electro-dynamic shakers to generate dynamic force in the range from 1 N to 20 kN, and heterodyne laser interferometers are used for acceleration measurement. The force transducer to be calibrated is mounted on the shaker, and a mass block is screwed on the top of force transducer, the sinusoidal forces realized by accelerated load masses are traceable to acceleration and mass according to the force definition. The methods of determining Spatial-dependent acceleration on mass block and measuring the end mass of force transducer in dynamic force calibration are discussed in this paper.

  2. Sandia WIPP calibration traceability

    Energy Technology Data Exchange (ETDEWEB)

    Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  3. The GERDA calibration system

    International Nuclear Information System (INIS)

    A system with three identical custom made units is used for the energy calibration of the GERDA Ge diodes. To perform a calibration the 228Th sources are lowered from the parking positions at the top of the cryostat. Their positions are measured by two independent modules. One, the incremental encoder, counts the holes in the perforated steel band holding the sources, the other measures the drive shaft's angular position even if not powered. The system can be controlled remotely by a Labview program. The calibration data is analyzed by an iterative calibration algorithm determining the calibration functions for different energy reconstruction algorithms and the resolution of several peaks in the 228Th spectrum is determined. A Monte Carlo simulation using the GERDA simulation software MAGE has been performed to determine the background induced by the sources in the parking positions.

  4. Sandia WIPP calibration traceability

    International Nuclear Information System (INIS)

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities

  5. Calibrated griz magnitudes of Tycho stars: All-sky photometric calibration using bright stars

    OpenAIRE

    Ofek, E.O.

    2008-01-01

    Photometric calibration to ~5% level is frequently needed at arbitrary celestial location. However, existing all-sky astronomical catalogs do not reach this accuracy, and time consuming photometric calibration procedures are required. I fitted the Hipparcos B-T and V-T magnitudes, along with the 2MASS J, H, and K magnitudes of Tycho-2-catalog stars with stellar spectral templates. From the best-fit spectral template derived for each star, I calculated its synthetic SDSS griz magnitudes and co...

  6. Recent exploits of the ISOLTRAP mass spectrometer

    International Nuclear Information System (INIS)

    Highlights: • Update on ISOLTRAP. • Reference carbon clusters for heavy species. • Ion-beam yield analysis with MR-TOF MS. Q -- Abstract: The Penning-trap mass spectrometer ISOLTRAP, located at the isotope-separator facility ISOLDE (CERN), is presented in its current form taking into account technical developments since 2007. Three areas of developments are presented. The reference ion sources have been modified to guarantee a sufficient supply of reference ions for mass measurements and systematic studies. Different excitation schemes have been investigated for manipulation of the ion motion in the Penning trap, to enhance either the purification or measurement process. A multi-reflection time-of-flight mass separator has been implemented and can now be routinely used for purification and as a versatile tool for beam analysis

  7. Remote calibration of ionization chambers for radioactivity calibration

    International Nuclear Information System (INIS)

    A new calibration technique, referred to as e-trace, has been developed by the National Institute of Advanced Industrial Science and Technology (AIST). The e-trace technique enables rapid remote calibration of measurement equipment and requires minimal resources. We calibrated radioisotope calibrators of the Japan Radioisotope Association (JRIA) and the Nishina Memorial Cyclotron Center (NMCC) remotely and confirmed that remote calibration provided results that are consistent with the results obtained by existing methods within the limits of uncertainty. Accordingly, e-trace has been approved as the standard calibration method at AIST. We intend to apply remote calibration to radioisotope calibrators in hospitals and isotope facilities. (author)

  8. Calibrations of photomultiplier tubes

    International Nuclear Information System (INIS)

    The experimental methods for calibration photomultiplier tubes used in the multichannel fast-pulse-detection system of Thomson scattering measurements for nuclear fusion devices is reported. The most important parameters of the photomultiplier tubes to be calibrated include: linearity of output electric signals to input light signals, response time of pulsed light, spectral response, absolute responsibility, and sensitivity as a function of the chain voltage. The calibrations of all these parameters are carried out by using EMI 9558 B and RCA 7265 photomultiplier tubes respectively. The experimental methods presented in the paper are common to those quantitative measurements that require phomultiplier tubes as detectors

  9. Equipment for dosemeter calibration

    International Nuclear Information System (INIS)

    The device is used for precise calibration of dosimetric instrumentation, such as used at nuclear facilities. The high precision of the calibration procedure is primarily due to the fact that one single and steady radiation source is used. The accurate alignment of the source and the absence of shielding materials in the beam axis make for high homogeneity of the beam and reproducibility of the measurement; this is also contributed to by the horizontal displacement of the optical bench, which ensures a constant temperature field and the possibility of adjusting the radiation source at a sufficient distance from the instrument to be calibrated. (Z.S.). 3 figs

  10. Lidar Calibration Centre

    Science.gov (United States)

    Pappalardo, Gelsomina; Freudenthaler, Volker; Nicolae, Doina; Mona, Lucia; Belegante, Livio; D'Amico, Giuseppe

    2016-06-01

    This paper presents the newly established Lidar Calibration Centre, a distributed infrastructure in Europe, whose goal is to offer services for complete characterization and calibration of lidars and ceilometers. Mobile reference lidars, laboratories for testing and characterization of optics and electronics, facilities for inspection and debugging of instruments, as well as for training in good practices are open to users from the scientific community, operational services and private sector. The Lidar Calibration Centre offers support for trans-national access through the EC HORIZON2020 project ACTRIS-2.

  11. Calorimeter energy calibration using the energy conservation law

    Indian Academy of Sciences (India)

    Vasily L Morgunov

    2007-12-01

    A new calorimeter energy calibration method was developed for the proposed ILC detectors. The method uses the center-of-mass energy of the accelerator as the reference. It has been shown that using the energy conservation law it is possible to make ECAL and HCAL cross calibration to reach a good energy resolution for the simple calorimeter energy sum.

  12. PERSONALISED BODY COUNTER CALIBRATION USING ANTHROPOMETRIC PARAMETERS.

    Science.gov (United States)

    Pölz, S; Breustedt, B

    2016-09-01

    Current calibration methods for body counting offer personalisation for lung counting predominantly with respect to ratios of body mass and height. Chest wall thickness is used as an intermediate parameter. This work revises and extends these methods using a series of computational phantoms derived from medical imaging data in combination with radiation transport simulation and statistical analysis. As an example, the method is applied to the calibration of the In Vivo Measurement Laboratory (IVM) at Karlsruhe Institute of Technology (KIT) comprising four high-purity germanium detectors in two partial body measurement set-ups. The Monte Carlo N-Particle (MCNP) transport code and the Extended Cardiac-Torso (XCAT) phantom series have been used. Analysis of the computed sample data consisting of 18 anthropometric parameters and calibration factors generated from 26 photon sources for each of the 30 phantoms reveals the significance of those parameters required for producing an accurate estimate of the calibration function. Body circumferences related to the source location perform best in the example, while parameters related to body mass show comparable but lower performances, and those related to body height and other lengths exhibit low performances. In conclusion, it is possible to give more accurate estimates of calibration factors using this proposed approach including estimates of uncertainties related to interindividual anatomical variation of the target population. PMID:26396263

  13. SPOTS Calibration Example

    Directory of Open Access Journals (Sweden)

    Patterson E.

    2010-06-01

    Full Text Available The results are presented using the procedure outlined by the Standardisation Project for Optical Techniques of Strain measurement to calibrate a digital image correlation system. The process involves comparing the experimental data obtained with the optical measurement system to the theoretical values for a specially designed specimen. The standard states the criteria which must be met in order to achieve successful calibration, in addition to quantifying the measurement uncertainty in the system. The system was evaluated at three different displacement load levels, generating strain ranges from 289 µstrain to 2110 µstrain. At the 289 µstrain range, the calibration uncertainty was found to be 14.1 µstrain, and at the 2110 µstrain range it was found to be 28.9 µstrain. This calibration procedure was performed without painting a speckle pattern on the surface of the metal. Instead, the specimen surface was prepared using different grades of grit paper to produce the desired texture.

  14. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina; Webb, Craig

    2016-05-02

    This presentation provides a high-level overview of the progress on the Broadband Outdoor Radiometer Calibrations for all shortwave and longwave radiometers that are deployed by the Atmospheric Radiation Measurement program.

  15. Air Data Calibration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  16. Approximation Behooves Calibration

    DEFF Research Database (Denmark)

    da Silva Ribeiro, André Manuel; Poulsen, Rolf

    2013-01-01

    Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009.......Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009....

  17. Scanner calibration revisited

    Directory of Open Access Journals (Sweden)

    Pozhitkov Alexander E

    2010-07-01

    Full Text Available Abstract Background Calibration of a microarray scanner is critical for accurate interpretation of microarray results. Shi et al. (BMC Bioinformatics, 2005, 6, Art. No. S11 Suppl. 2. reported usage of a Full Moon BioSystems slide for calibration. Inspired by the Shi et al. work, we have calibrated microarray scanners in our previous research. We were puzzled however, that most of the signal intensities from a biological sample fell below the sensitivity threshold level determined by the calibration slide. This conundrum led us to re-investigate the quality of calibration provided by the Full Moon BioSystems slide as well as the accuracy of the analysis performed by Shi et al. Methods Signal intensities were recorded on three different microarray scanners at various photomultiplier gain levels using the same calibration slide from Full Moon BioSystems. Data analysis was conducted on raw signal intensities without normalization or transformation of any kind. Weighted least-squares method was used to fit the data. Results We found that initial analysis performed by Shi et al. did not take into account autofluorescence of the Full Moon BioSystems slide, which led to a grossly distorted microarray scanner response. Our analysis revealed that a power-law function, which is explicitly accounting for the slide autofluorescence, perfectly described a relationship between signal intensities and fluorophore quantities. Conclusions Microarray scanners respond in a much less distorted fashion than was reported by Shi et al. Full Moon BioSystems calibration slides are inadequate for performing calibration. We recommend against using these slides.

  18. Calibrating nacelle lidars

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, M.

    2013-01-15

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work. (Author)

  19. Energy calibration via correlation

    CERN Document Server

    Maier, Daniel

    2015-01-01

    The main task of an energy calibration is to find a relation between pulse-height values and the corresponding energies. Doing this for each pulse-height channel individually requires an elaborated input spectrum with an excellent counting statistics and a sophisticated data analysis. This work presents an easy to handle energy calibration process which can operate reliably on calibration measurements with low counting statistics. The method uses a parameter based model for the energy calibration and concludes on the optimal parameters of the model by finding the best correlation between the measured pulse-height spectrum and multiple synthetic pulse-height spectra which are constructed with different sets of calibration parameters. A CdTe-based semiconductor detector and the line emissions of an 241 Am source were used to test the performance of the correlation method in terms of systematic calibration errors for different counting statistics. Up to energies of 60 keV systematic errors were measured to be le...

  20. HENC performance evaluation and plutonium calibration

    International Nuclear Information System (INIS)

    The authors have designed a high-efficiency neutron counter (HENC) to increase the plutonium content in 200-L waste drums. The counter uses totals neutron counting, coincidence counting, and multiplicity counting to determine the plutonium mass. The HENC was developed as part of a Cooperative Research and Development Agreement between the Department of Energy and Canberra Industries. This report presents the results of the detector modifications, the performance tests, the add-a-source calibration, and the plutonium calibration at Los Alamos National Laboratory (TA-35) in 1996

  1. Variable Acceleration Force Calibration System (VACS)

    Science.gov (United States)

    Rhew, Ray D.; Parker, Peter A.; Johnson, Thomas H.; Landman, Drew

    2014-01-01

    Conventionally, force balances have been calibrated manually, using a complex system of free hanging precision weights, bell cranks, and/or other mechanical components. Conventional methods may provide sufficient accuracy in some instances, but are often quite complex and labor-intensive, requiring three to four man-weeks to complete each full calibration. To ensure accuracy, gravity-based loading is typically utilized. However, this often causes difficulty when applying loads in three simultaneous, orthogonal axes. A complex system of levers, cranks, and cables must be used, introducing increased sources of systematic error, and significantly increasing the time and labor intensity required to complete the calibration. One aspect of the VACS is a method wherein the mass utilized for calibration is held constant, and the acceleration is changed to thereby generate relatively large forces with relatively small test masses. Multiple forces can be applied to a force balance without changing the test mass, and dynamic forces can be applied by rotation or oscillating acceleration. If rotational motion is utilized, a mass is rigidly attached to a force balance, and the mass is exposed to a rotational field. A large force can be applied by utilizing a large rotational velocity. A centrifuge or rotating table can be used to create the rotational field, and fixtures can be utilized to position the force balance. The acceleration may also be linear. For example, a table that moves linearly and accelerates in a sinusoidal manner may also be utilized. The test mass does not have to move in a path that is parallel to the ground, and no re-leveling is therefore required. Balance deflection corrections may be applied passively by monitoring the orientation of the force balance with a three-axis accelerometer package. Deflections are measured during each test run, and adjustments with respect to the true applied load can be made during the post-processing stage. This paper will

  2. HAWC Timing Calibration

    CERN Document Server

    Huentemeyer, Petra; Dingus, Brenda

    2009-01-01

    The High-Altitude Water Cherenkov (HAWC) Experiment is a second-generation highsensitivity gamma-ray and cosmic-ray detector that builds on the experience and technology of the Milagro observatory. Like Milagro, HAWC utilizes the water Cherenkov technique to measure extensive air showers. Instead of a pond filled with water (as in Milagro) an array of closely packed water tanks is used. The event direction will be reconstructed using the times when the PMTs in each tank are triggered. Therefore, the timing calibration will be crucial for reaching an angular resolution as low as 0.25 degrees.We propose to use a laser calibration system, patterned after the calibration system in Milagro. Like Milagro, the HAWC optical calibration system will use ~1 ns laser light pulses. Unlike Milagro, the PMTs are optically isolated and require their own optical fiber calibration. For HAWC the laser light pulses will be directed through a series of optical fan-outs and fibers to illuminate the PMTs in approximately one half o...

  3. Calibration Under Uncertainty.

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton; Trucano, Timothy Guy

    2005-03-01

    This report is a white paper summarizing the literature and different approaches to the problem of calibrating computer model parameters in the face of model uncertainty. Model calibration is often formulated as finding the parameters that minimize the squared difference between the model-computed data (the predicted data) and the actual experimental data. This approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is considered the %22true%22 deterministic representation of reality. While this approach does have utility, it is far from an accurate mathematical treatment of the true model calibration problem in which both the computed data and experimental data have error bars. This year, we examined methods to perform calibration accounting for the error in both the computer model and the data, as well as improving our understanding of its meaning for model predictability. We call this approach Calibration under Uncertainty (CUU). This talk presents our current thinking on CUU. We outline some current approaches in the literature, and discuss the Bayesian approach to CUU in detail.

  4. GTC Photometric Calibration

    Science.gov (United States)

    di Cesare, M. A.; Hammersley, P. L.; Rodriguez Espinosa, J. M.

    2006-06-01

    We are currently developing the calibration programme for GTC using techniques similar to the ones use for the space telescope calibration (Hammersley et al. 1998, A&AS, 128, 207; Cohen et al. 1999, AJ, 117, 1864). We are planning to produce a catalogue with calibration stars which are suitable for a 10-m telescope. These sources will be not variable, non binary and do not have infrared excesses if they are to be used in the infrared. The GTC science instruments require photometric calibration between 0.35 and 2.5 microns. The instruments are: OSIRIS (Optical System for Imaging low Resolution Integrated Spectroscopy), ELMER and EMIR (Espectrógrafo Multiobjeto Infrarrojo) and the Acquisition and Guiding boxes (Di Césare, Hammersley, & Rodriguez Espinosa 2005, RevMexAA Ser. Conf., 24, 231). The catalogue will consist of 30 star fields distributed in all of North Hemisphere. We will use fields containing sources over the range 12 to 22 magnitude, and spanning a wide range of spectral types (A to M) for the visible and near infrared. In the poster we will show the method used for selecting these fields and we will present the analysis of the data on the first calibration fields observed.

  5. Calibrating nacelle lidars

    DEFF Research Database (Denmark)

    Courtney, Michael

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report...... accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a...... inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work....

  6. TARGETLESS CAMERA CALIBRATION

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2012-09-01

    Full Text Available In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed methodology.

  7. The MINOS calibration detector

    International Nuclear Information System (INIS)

    This paper describes the MINOS calibration detector (CalDet) and the procedure used to calibrate it. The CalDet, a scaled-down but functionally equivalent model of the MINOS Far and Near detectors, was exposed to test beams in the CERN PS East Area during 2001-2003 to establish the response of the MINOS calorimeters to hadrons, electrons and muons in the range 0.2-10GeV/c. The CalDet measurements are used to fix the energy scale and constrain Monte Carlo simulations of MINOS

  8. Individual dosimetry and calibration

    International Nuclear Information System (INIS)

    In 1995 both the Individual Dosimetry and Calibration Sections worked under the condition of a status quo and concentrated fully on the routine part of their work. Nevertheless, the machine for printing the bar code which will be glued onto the film holder and hence identify the people when entering into high radiation areas was put into operation and most of the holders were equipped with the new identification. As far as the Calibration Section is concerned the project of the new source control system that is realized by the Technical Support Section was somewhat accelerated

  9. 脉冲熔融-飞行时间质谱法分析痕量气体成分的校准方法研究%Research on the calibration method of pulse heating and time-of-flight mass spectrometric determination of trace gases

    Institute of Scientific and Technical Information of China (English)

    杨植岗; 王学华; 胡少成; 徐井然; 吴振宁; 沈学静; 王蓬

    2012-01-01

    Standard gas calibration equipment for the simultaneous determination of O, N, H and Ar was built by combining the gas circuit of pulse heating and time-of-flight mass spectrometer gas analyzer with the six-port injection valve which was normally used in chromatogram. Two processes of purging of quantitative tube and injecting of standard gas can be converted smoothly. Using the equipment, calibration curves of low content O, N, H and Ar were established, and the stability was tested. Samples were analyzed by these calibration curves, and the results matched with the certified values. From the results, it was showed that the problem of Ar reference materials in ultra low content range can be solved by this equipment, and Ar can be analyzed quantitatively. The established calibrating curve by standard gas calibration setup can be used for metal materials analyzing, and good linearization of the calibrating curve can be got.%本文采用色谱用六通阀,结合脉冲熔融-飞行时间质谱元素分析仪的气路流程,自制了应用于氧、氮、氢、氩联测的标气校准装置.实现了定量管冲洗和标气注入两个过程的灵活控制.通过该校准装置,建立了金属材料中的低含量氧、氮、氢和氩工作曲线,验证了校准装置分析的稳定性.采用建立的工作曲线对实际样品进行了分析,结果与认定值一致.标气校准装置的使用弥补了超低含量范围段标准样品缺乏的不足,解决了测氩用标准样品缺失的难题.实验结果表明,应用标气校准装置建立的工作曲线,线性良好,可用于金属材料实际样品的分析.

  10. Computerized Techniques for Calibrating Pressure Balances

    Science.gov (United States)

    Simpson, D. I.

    1994-01-01

    Pressure balances are generally calibrated by the cross-floating technique, where the forces acting on two similar devices in hydrostatic equilibrium are compared. It is a skilled and time-consuming process which has not previously lent itself to significant automation; computers have mostly been used only to calculate results after measurements have been taken. The objective of the present work was to develop real-time computerized measurement techniques to ease the calibration task, which would fully integrate into a single package with versatile software for calculating and displaying results. The calibration process is now conducted by studying graphical computer displays which derive their inputs from differential-pressure transducers and capacitance or optical displacement sensors. The mass imbalance between oil-operated pressure balances is calculated by interpolating between changes in piston rate-of-fall. Differential-pressure transducers are used to estimate mass imbalances between gas-operated balances, and a quick in situ method for determining their sensitivity has been developed. The new techniques have been successfully applied to a variety of pressure balance designs and substantial reductions in calibration times have been achieved. Reduced levels of scatter have revealed small systematic differences between gauge and absolute modes of operation.

  11. Calibration of farmer dosemeters

    International Nuclear Information System (INIS)

    The Farmer Dosemeters of Atomic Energy Medical Centre (AEMC) Jamshoro were calibrated in the Secondary Standard Dosimetry Laboratory (SSDL) at PINSTECH, using the NPL Secondary Standard Therapy level X-ray exposure meter. The results are presented in this report. (authors)

  12. Calibration Of Oxygen Monitors

    Science.gov (United States)

    Zalenski, M. A.; Rowe, E. L.; Mcphee, J. R.

    1988-01-01

    Readings corrected for temperature, pressure, and humidity of air. Program for handheld computer developed to ensure accuracy of oxygen monitors in National Transonic Facility, where liquid nitrogen stored. Calibration values, determined daily, based on entries of data on barometric pressure, temperature, and relative humidity. Output provided directly in millivolts.

  13. Commodity-Free Calibration

    Science.gov (United States)

    2008-01-01

    Commodity-free calibration is a reaction rate calibration technique that does not require the addition of any commodities. This technique is a specific form of the reaction rate technique, where all of the necessary reactants, other than the sample being analyzed, are either inherent in the analyzing system or specifically added or provided to the system for a reason other than calibration. After introduction, the component of interest is exposed to other reactants or flow paths already present in the system. The instrument detector records one of the following to determine the rate of reaction: the increase in the response of the reaction product, a decrease in the signal of the analyte response, or a decrease in the signal from the inherent reactant. With this data, the initial concentration of the analyte is calculated. This type of system can analyze and calibrate simultaneously, reduce the risk of false positives and exposure to toxic vapors, and improve accuracy. Moreover, having an excess of the reactant already present in the system eliminates the need to add commodities, which further reduces cost, logistic problems, and potential contamination. Also, the calculations involved can be simplified by comparison to those of the reaction rate technique. We conducted tests with hypergols as an initial investigation into the feasiblility of the technique.

  14. Calibration bench of flowmeters

    International Nuclear Information System (INIS)

    This equipment is devoted to the comparison of signals from two turbines installed in the Cabri experimental loop. The signal is compared to the standard turbine. The characteristics and the performance of the calibration bench are presented. (A.L.B.)

  15. Measurement System & Calibration report

    DEFF Research Database (Denmark)

    Vesth, Allan; Kock, Carsten Weber

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this report...

  16. Calibration with Absolute Shrinkage

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Madsen, Henrik; Thyregod, Poul

    2001-01-01

    In this paper, penalized regression using the L-1 norm on the estimated parameters is proposed for chemometric je calibration. The algorithm is of the lasso type, introduced by Tibshirani in 1996 as a linear regression method with bound on the absolute length of the parameters, but a modification...

  17. Calibration issues for MUSE

    Science.gov (United States)

    Kelz, Andreas; Roth, Martin; Bauer, Svend; Gerssen, Joris; Hahn, Thomas; Weilbacher, Peter; Laux, Uwe; Loupias, Magali; Kosmalski, Johan; McDermid, Richard; Bacon, Roland

    2008-07-01

    The Multi-Unit Spectroscopic Explorer (MUSE) is an integral-field spectrograph for the VLT for the next decade. Using an innovative field-splitting and slicing design, combined with an assembly of 24 spectrographs, MUSE will provide some 90,000 spectra in one exposure, which cover a simultaneous spectral range from 465 to 930nm. The design and manufacture of the Calibration Unit, the alignment tests of the Spectrograph and Detector sub-systems, and the development of the Data Reduction Software for MUSE are work-packages under the responsibility of the AIP, who is a partner in a European-wide consortium of 6 institutes and ESO, that is led by the Centre de Recherche Astronomique de Lyon. MUSE will be operated and therefore has to be calibrated in a variety of modes, which include seeing-limited and AO-assisted operations, providing a wide and narrow-field-of-view. MUSE aims to obtain unprecedented ultra-deep 3D-spectroscopic exposures, involving integration times of the order of 80 hours at the VLT. To achieve the corresponding science goals, instrumental stability, accurate calibration and adequate data reduction tools are needed. The paper describes the status at PDR of the AIP related work-packages, in particular with respect to the spatial, spectral, image quality, and geometrical calibration and related data reduction aspects.

  18. Entropic calibration revisited

    Energy Technology Data Exchange (ETDEWEB)

    Brody, Dorje C. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)]. E-mail: d.brody@imperial.ac.uk; Buckley, Ian R.C. [Centre for Quantitative Finance, Imperial College, London SW7 2AZ (United Kingdom); Constantinou, Irene C. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom); Meister, Bernhard K. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)

    2005-04-11

    The entropic calibration of the risk-neutral density function is effective in recovering the strike dependence of options, but encounters difficulties in determining the relevant greeks. By use of put-call reversal we apply the entropic method to the time reversed economy, which allows us to obtain the spot price dependence of options and the relevant greeks.

  19. Physiotherapy ultrasound calibrations

    International Nuclear Information System (INIS)

    Calibration of physiotherapy ultrasound equipment has long been a problem. Numerous surveys around the world over the past 20 years have all found that only a low percentage of the units tested had an output within 30% of that indicatd. In New Zealand, a survey carried out by the NRL in 1985 found that only 24% had an output, at the maximum setting, within + or - 20% of that indicated. The present performance Standard for new equipment (NZS 3200.2.5:1992) requires that the measured output should not deviate from that indicated by more than + or - 30 %. This may be tightened to + or - 20% in the next few years. Any calibration is only as good as the calibration equipment. Some force balances can be tested with small weights to simulate the force exerted by an ultrasound beam, but with others this is not possible. For such balances, testing may only be feasible with a calibrated source which could be used like a transfer standard. (author). 4 refs., 3 figs

  20. NVLAP calibration laboratory program

    Energy Technology Data Exchange (ETDEWEB)

    Cigler, J.L.

    1993-12-31

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST).

  1. LOFAR Facet Calibration

    Science.gov (United States)

    van Weeren, R. J.; Williams, W. L.; Hardcastle, M. J.; Shimwell, T. W.; Rafferty, D. A.; Sabater, J.; Heald, G.; Sridhar, S. S.; Dijkema, T. J.; Brunetti, G.; Brüggen, M.; Andrade-Santos, F.; Ogrean, G. A.; Röttgering, H. J. A.; Dawson, W. A.; Forman, W. R.; de Gasperin, F.; Jones, C.; Miley, G. K.; Rudnick, L.; Sarazin, C. L.; Bonafede, A.; Best, P. N.; Bîrzan, L.; Cassano, R.; Chyży, K. T.; Croston, J. H.; Ensslin, T.; Ferrari, C.; Hoeft, M.; Horellou, C.; Jarvis, M. J.; Kraft, R. P.; Mevius, M.; Intema, H. T.; Murray, S. S.; Orrú, E.; Pizzo, R.; Simionescu, A.; Stroe, A.; van der Tol, S.; White, G. J.

    2016-03-01

    LOFAR, the Low-Frequency Array, is a powerful new radio telescope operating between 10 and 240 MHz. LOFAR allows detailed sensitive high-resolution studies of the low-frequency radio sky. At the same time LOFAR also provides excellent short baseline coverage to map diffuse extended emission. However, producing high-quality deep images is challenging due to the presence of direction-dependent calibration errors, caused by imperfect knowledge of the station beam shapes and the ionosphere. Furthermore, the large data volume and presence of station clock errors present additional difficulties. In this paper we present a new calibration scheme, which we name facet calibration, to obtain deep high-resolution LOFAR High Band Antenna images using the Dutch part of the array. This scheme solves and corrects the direction-dependent errors in a number of facets that cover the observed field of view. Facet calibration provides close to thermal noise limited images for a typical 8 hr observing run at ∼ 5\\prime\\prime resolution, meeting the specifications of the LOFAR Tier-1 northern survey.

  2. Radiation monitor calibration technique

    International Nuclear Information System (INIS)

    Reference radiations in the Secondary Standard Dosimetry Laboratory, OAEP have been improved and modified by employing lead attenuators. To identify low-level exposure rate, shadow-cone method has been applied. The secondary standard dosemeter has been used periodically to check the constancy of reference radiations to assure the calibration of dosemeters and dose-ratemeters used for radiation protection

  3. LOFAR facet calibration

    CERN Document Server

    van Weeren, R J; Hardcastle, M J; Shimwell, T W; Rafferty, D A; Sabater, J; Heald, G; Sridhar, S S; Dijkema, T J; Brunetti, G; Brüggen, M; Andrade-Santos, F; Ogrean, G A; Röttgering, H J A; Dawson, W A; Forman, W R; de Gasperin, F; Jones, C; Miley, G K; Rudnick, L; Sarazin, C L; Bonafede, A; Best, P N; Bîrzan, L; Cassano, R; Chyży, K T; Croston, J H; Ensslin, T; Ferrari, C; Hoeft, M; Horellou, C; Jarvis, M J; Kraft, R P; Mevius, M; Intema, H T; Murray, S S; Orrú, E; Pizzo, R; Simionescu, A; Stroe, A; van der Tol, S; White, G J

    2016-01-01

    LOFAR, the Low-Frequency Array, is a powerful new radio telescope operating between 10 and 240 MHz. LOFAR allows detailed sensitive high-resolution studies of the low-frequency radio sky. At the same time LOFAR also provides excellent short baseline coverage to map diffuse extended emission. However, producing high-quality deep images is challenging due to the presence of direction dependent calibration errors, caused by imperfect knowledge of the station beam shapes and the ionosphere. Furthermore, the large data volume and presence of station clock errors present additional difficulties. In this paper we present a new calibration scheme, which we name facet calibration, to obtain deep high-resolution LOFAR High Band Antenna images using the Dutch part of the array. This scheme solves and corrects the direction dependent errors in a number of facets that cover the observed field of view. Facet calibration provides close to thermal noise limited images for a typical 8 hr observing run at $\\sim$ 5arcsec resolu...

  4. Pseudo Linear Gyro Calibration

    Science.gov (United States)

    Harman, Richard; Bar-Itzhack, Itzhack Y.

    2003-01-01

    Previous high fidelity onboard attitude algorithms estimated only the spacecraft attitude and gyro bias. The desire to promote spacecraft and ground autonomy and improvements in onboard computing power has spurred development of more sophisticated calibration algorithms. Namely, there is a desire to provide for sensor calibration through calibration parameter estimation onboard the spacecraft as well as autonomous estimation on the ground. Gyro calibration is a particularly challenging area of research. There are a variety of gyro devices available for any prospective mission ranging from inexpensive low fidelity gyros with potentially unstable scale factors to much more expensive extremely stable high fidelity units. Much research has been devoted to designing dedicated estimators such as particular Extended Kalman Filter (EKF) algorithms or Square Root Information Filters. This paper builds upon previous attitude, rate, and specialized gyro parameter estimation work performed with Pseudo Linear Kalman Filter (PSELIKA). The PSELIKA advantage is the use of the standard linear Kalman Filter algorithm. A PSELIKA algorithm for an orthogonal gyro set which includes estimates of attitude, rate, gyro misalignments, gyro scale factors, and gyro bias is developed and tested using simulated and flight data. The measurements PSELIKA uses include gyro and quaternion tracker data.

  5. Pleiades Absolute Calibration : Inflight Calibration Sites and Methodology

    Science.gov (United States)

    Lachérade, S.; Fourest, S.; Gamet, P.; Lebègue, L.

    2012-07-01

    In-flight calibration of space sensors once in orbit is a decisive step to be able to fulfil the mission objectives. This article presents the methods of the in-flight absolute calibration processed during the commissioning phase. Four In-flight calibration methods are used: absolute calibration, cross-calibration with reference sensors such as PARASOL or MERIS, multi-temporal monitoring and inter-bands calibration. These algorithms are based on acquisitions over natural targets such as African deserts, Antarctic sites, La Crau (Automatic calibration station) and Oceans (Calibration over molecular scattering) or also new extra-terrestrial sites such as the Moon and selected stars. After an overview of the instrument and a description of the calibration sites, it is pointed out how each method is able to address one or several aspects of the calibration. We focus on how these methods complete each other in their operational use, and how they help building a coherent set of information that addresses all aspects of in-orbit calibration. Finally, we present the perspectives that the high level of agility of PLEIADES offers for the improvement of its calibration and a better characterization of the calibration sites.

  6. Calibrated Properties Model

    International Nuclear Information System (INIS)

    The purpose of this Model Report is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Office of Repository Development (ORD). The UZ contains the unsaturated rock layers overlying the repository and host unit, which constitute a natural barrier to flow, and the unsaturated rock layers below the repository which constitute a natural barrier to flow and transport. This work followed, and was planned in, ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.10.8 [under Work Package (WP) AUZM06, Climate Infiltration and Flow], and Section I-1-1 [in Attachment I, Model Validation Plans]). In Section 4.2, four acceptance criteria (ACs) are identified for acceptance of this Model Report; only one of these (Section 4.2.1.3.6.3, AC 3) was identified in the TWP (BSC 2002 [160819], Table 3-1). These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, and drift-scale and mountain-scale coupled-process models from the UZ Flow, Transport and Coupled Processes Department in the Natural Systems Subproject of the Performance Assessment (PA) Project. The Calibrated Properties Model output will also be used by the Engineered Barrier System Department in the Engineering Systems Subproject. The Calibrated Properties Model provides input through the UZ Model and other process models of natural and engineered systems to the Total System Performance Assessment (TSPA) models, in accord with the PA Strategy and Scope in the PA Project of the Bechtel SAIC Company, LLC (BSC). The UZ process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions. UZ flow is a TSPA model component

  7. Field calibration of cup anemometers

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Mortensen, Niels Gylling; Hansen, Jens Carsten;

    2007-01-01

    A field calibration method and results are described along with the experience gained with the method. The cup anemometers to be calibrated are mounted in a row on a 10-m high rig and calibrated in the free wind against a reference cup anemometer. The method has been reported [1] to improve the...... statistical bias on the data relative to calibrations carried out in a wind tunnel. The methodology is sufficiently accurate for calibration of cup anemometers used for wind resource assessments and provides a simple, reliable and cost-effective solution to cup anemometer calibration, especially suited for...

  8. Mercury Calibration System

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Joseph Rovani; Mark Sanderson; Ryan Boysen; William Schuster

    2009-03-11

    U.S. Environmental Protection Agency (EPA) Performance Specification 12 in the Clean Air Mercury Rule (CAMR) states that a mercury CEM must be calibrated with National Institute for Standards and Technology (NIST)-traceable standards. In early 2009, a NIST traceable standard for elemental mercury CEM calibration still does not exist. Despite the vacature of CAMR by a Federal appeals court in early 2008, a NIST traceable standard is still needed for whatever regulation is implemented in the future. Thermo Fisher is a major vendor providing complete integrated mercury continuous emissions monitoring (CEM) systems to the industry. WRI is participating with EPA, EPRI, NIST, and Thermo Fisher towards the development of the criteria that will be used in the traceability protocols to be issued by EPA. An initial draft of an elemental mercury calibration traceability protocol was distributed for comment to the participating research groups and vendors on a limited basis in early May 2007. In August 2007, EPA issued an interim traceability protocol for elemental mercury calibrators. Various working drafts of the new interim traceability protocols were distributed in late 2008 and early 2009 to participants in the Mercury Standards Working Committee project. The protocols include sections on qualification and certification. The qualification section describes in general terms tests that must be conducted by the calibrator vendors to demonstrate that their calibration equipment meets the minimum requirements to be established by EPA for use in CAMR monitoring. Variables to be examined include linearity, ambient temperature, back pressure, ambient pressure, line voltage, and effects of shipping. None of the procedures were described in detail in the draft interim documents; however they describe what EPA would like to eventually develop. WRI is providing the data and results to EPA for use in developing revised experimental procedures and realistic acceptance criteria based on

  9. Streak camera time calibration procedures

    Science.gov (United States)

    Long, J.; Jackson, I.

    1978-01-01

    Time calibration procedures for streak cameras utilizing a modulated laser beam are described. The time calibration determines a writing rate accuracy of 0.15% with a rotating mirror camera and 0.3% with an image converter camera.

  10. The Calibration Reference Data System

    Science.gov (United States)

    Greenfield, P.; Miller, T.

    2016-07-01

    We describe a software architecture and implementation for using rules to determine which calibration files are appropriate for calibrating a given observation. This new system, the Calibration Reference Data System (CRDS), replaces what had been previously used for the Hubble Space Telescope (HST) calibration pipelines, the Calibration Database System (CDBS). CRDS will be used for the James Webb Space Telescope (JWST) calibration pipelines, and is currently being used for HST calibration pipelines. CRDS can be easily generalized for use in similar applications that need a rules-based system for selecting the appropriate item for a given dataset; we give some examples of such generalizations that will likely be used for JWST. The core functionality of the Calibration Reference Data System is available under an Open Source license. CRDS is briefly contrasted with a sampling of other similar systems used at other observatories.

  11. Quantitative WD-XRF calibration for small ceramic samples and their source material

    OpenAIRE

    De Vleeschouwer, François; Renson, Virginie; Claeys, Philippe; Nys, Karin; Bindler, Richard

    2011-01-01

    International audience A wavelength-dispersive X-ray fluorescence (WD-XRF) calibration is developed for small powdered samples (300mg) with the purpose of analyzing ceramic artifacts that might be available only in limited quantity. This is compared to a conventional calibration using a larger sample mass (2g). The comparison of elemental intensities obtained in both calibrations shows that the decrease in analyzed sample mass results in a linear decrease in measured intensity for the anal...

  12. An empirical calibration for 4He quantification in minerals and rocks by laser fusion and noble gas mass spectrometry using Cerro de Mercado (Durango, Mexico) fluorapatite as a standard

    International Nuclear Information System (INIS)

    An empirical calibration with a natural mineral standard (fluorapatite from Cerro de Mercado, Mexico) is proposed as a method to determine the 4He concentration of mineral and rock samples. The procedure is based on the fusion of several aliquots of the fluorapatite standard with a well-spaced weight distribution in order to obtain a good correlation in coordinates of 4He peak height versus fluorapatite weight. The weight is then converted to moles using the accepted mineral age (31.4 Ma) and appropriate formula. Experimental peak height of 4He for the unknown samples are converted to moles with the regression determined for fluorapatite. The procedure is fast and inexpensive, and both precision and accuracy are always below 10% and usually about 3-5%

  13. Optical tweezers absolute calibration

    CERN Document Server

    Dutra, R S; Neto, P A Maia; Nussenzveig, H M

    2014-01-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past fifteen years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spo...

  14. Astrid-2 SSC ASUMagnetic Calibration

    DEFF Research Database (Denmark)

    Primdahl, Fritz

    1997-01-01

    Report of the inter calibration between the starcamera and the fluxgate magnetometer onboard the ASTRID-2 satellite. This calibration was performed in the night between the 15. and 16. May 1997 at the Lovö magnetic observatory.......Report of the inter calibration between the starcamera and the fluxgate magnetometer onboard the ASTRID-2 satellite. This calibration was performed in the night between the 15. and 16. May 1997 at the Lovö magnetic observatory....

  15. Optical Calibration of SNO+

    Science.gov (United States)

    Maneira, J.; Peeters, S.; Sinclair, J.

    2015-04-01

    SNO is being upgraded to SNO+, which has as its main goal the search for neutrinoless double-beta decay. The upgrade is defined by filling with a novel scintillator mixture containing 130Te. With a lower energy threshold than SNO, SNO+ will be sensitive to other exciting new physics. Here we are describing new optical calibration system that meets new, more stringent radiopurity requirements has been developed.

  16. Camera Calibration Using Silhouettes

    OpenAIRE

    Boyer, Edmond

    2005-01-01

    This report addresses the problem of estimating camera parameters from images where object silhouettes only are known. Several modeling applications make use of silhouettes, and while calibration methods are well known when considering points or lines matched along image sequences, the problem appears to be more difficult when considering silhouettes. However, such primitives encode also information on camera parameters by the fact that their associated viewing cones should present a common i...

  17. Program Calibrates Strain Gauges

    Science.gov (United States)

    Okazaki, Gary D.

    1991-01-01

    Program dramatically reduces personnel and time requirements for acceptance tests of hardware. Data-acquisition system reads output from Wheatstone full-bridge strain-gauge circuit and calculates strain by use of shunt calibration technique. Program nearly instantaneously tabulates and plots strain data against load-cell outputs. Modified to acquire strain data for other specimens wherever full-bridge strain-gauge circuits used. Written in HP BASIC.

  18. Calibration specimens for microscopy

    Czech Academy of Sciences Publication Activity Database

    Kolařík, Vladimír; Matějka, Milan; Matějka, František; Krátký, Stanislav; Urbánek, Michal; Horáček, Miroslav; Král, Stanislav; Bok, Jan

    Ostrava: TANGER Ltd, 2012, s. 713-716. ISBN 978-80-87294-32-1. [NANOCON 2012. International Conference /4./. Brno (CZ), 23.10.2012-25.10.2012] R&D Projects: GA MŠk ED0017/01/01; GA TA ČR TE01020233; GA MPO FR-TI1/576 Institutional support: RVO:68081731 Keywords : E-beam technology * calibration specimen * scanning electron microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  19. Calibrating bacterial evolution

    OpenAIRE

    Ochman, Howard; Elwyn, Susannah; Moran, Nancy A

    1999-01-01

    Attempts to calibrate bacterial evolution have relied on the assumption that rates of molecular sequence divergence in bacteria are similar to those of higher eukaryotes, or to those of the few bacterial taxa for which ancestors can be reliably dated from ecological or geological evidence. Despite similarities in the substitution rates estimated for some lineages, comparisons of the relative rates of evolution at different classes of nucleotide sites indicate no basis for their universal appl...

  20. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  1. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    The two tasks of the Dosimetry and Calibration Section at CERN are the Individual Dosimetry Service which assures the personal monitoring of about 5000 persons potentially exposed to ionizing radiation at CERN, and the Calibration Laboratory which verifies all the instruments and monitors. This equipment is used by the sections of the RP Group for assuring radiation protection around CERN's accelerators, and by the Environmental Section of TISTE. In addition, nearly 250 electronic and 300 quartz fibre dosimeters, employed in operational dosimetry, are calibrated at least once a year. The Individual Dosimetry Service uses an extended database (INDOS) which contains information about all the individual doses ever received at CERN. For most of 1997 it was operated without the support of a database administrator as the technician who had assured this work retired. The Software Support Section of TIS-TE took over the technical responsibility of the database, but in view of the many other tasks of this Section and the lack of personnel, only a few interventions for solving immediate problems were possible

  2. Calibrated Properties Model

    International Nuclear Information System (INIS)

    The purpose of this model report is to document the calibrated properties model that provides calibrated property sets for unsaturated zone (UZ) flow and transport process models (UZ models). The calibration of the property sets is performed through inverse modeling. This work followed, and was planned in, ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Sections 1.2.6 and 2.1.1.6). Direct inputs to this model report were derived from the following upstream analysis and model reports: ''Analysis of Hydrologic Properties Data'' (BSC 2004 [DIRS 170038]); ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2004 [DIRS 169855]); ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]); ''Geologic Framework Model'' (GFM2000) (BSC 2004 [DIRS 170029]). Additionally, this model report incorporates errata of the previous version and closure of the Key Technical Issue agreement TSPAI 3.26 (Section 6.2.2 and Appendix B), and it is revised for improved transparency

  3. Retinal vascular calibres are significantly associated with cardiovascular risk factors

    DEFF Research Database (Denmark)

    von Hanno, T.; Bertelsen, G.; Sjølie, Anne K.;

    2014-01-01

    . Association between retinal vessel calibre and the cardiovascular risk factors was assessed by multivariable linear and logistic regression analyses. Results: Retinal arteriolar calibre was independently associated with age, blood pressure, HbA1c and smoking in women and men, and with HDL cholesterol in men......Purpose: To describe the association between retinal vascular calibres and cardiovascular risk factors. Methods: Population-based cross-sectional study including 6353 participants of the TromsO Eye Study in Norway aged 38-87years. Retinal arteriolar calibre (central retinal artery equivalent) and...... retinal venular calibre (central retinal vein equivalent) were measured computer-assisted on retinal photographs. Data on blood pressure, body mass index (BMI), high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol, glycosylated haemoglobin (HbA1c) and smoking were collected...

  4. A detector interferometric calibration experiment for high precision astrometry

    CERN Document Server

    Crouzier, A; Henault, F; Leger, A; Cara, C; LeDuigou, J M; Preis, O; Kern, P; Delboulbe, A; Martin, G; Feautrier, P; Stadler, E; Lafrasse, S; Rochat, S; Ketchazo, C; Donati, M; Doumayrou, E; Lagage, P O; Shao, M; Goullioud, R; Nemati, B; Zhai, C; Behar, E; Potin, S; Saint-Pe, M; Dupont, J

    2016-01-01

    Context: Exoplanet science has made staggering progress in the last two decades, due to the relentless exploration of new detection methods and refinement of existing ones. Yet astrometry offers a unique and untapped potential of discovery of habitable-zone low-mass planets around all the solar-like stars of the solar neighborhood. To fulfill this goal, astrometry must be paired with high precision calibration of the detector. Aims: We present a way to calibrate a detector for high accuracy astrometry. An experimental testbed combining an astrometric simulator and an interferometric calibration system is used to validate both the hardware needed for the calibration and the signal processing methods. The objective is an accuracy of 5e-6 pixel on the location of a Nyquist sampled polychromatic point spread function. Methods: The interferometric calibration system produced modulated Young fringes on the detector. The Young fringes were parametrized as products of time and space dependent functions, based on vari...

  5. Calibration effects on orbit determination

    Science.gov (United States)

    Madrid, G. A.; Winn, F. B.; Zielenbach, J. W.; Yip, K. B.

    1974-01-01

    The effects of charged particle and tropospheric calibrations on the orbit determination (OD) process are analyzed. The calibration process consisted of correcting the Doppler observables for the media effects. Calibrated and uncalibrated Doppler data sets were used to obtain OD results for past missions as well as Mariner Mars 1971. Comparisons of these Doppler reductions show the significance of the calibrations. For the MM'71 mission, the media calibrations proved themselves effective in diminishing the overall B-plane error and reducing the Doppler residual signatures.

  6. Mammography calibration: Factor or fit?

    International Nuclear Information System (INIS)

    Dose measurements in mammography x-ray have become more important and a basic path in quality assurance programmes. It is recognized by the international guidelines that it is necessary to have calibration services offered for mammography beams in order to help the improvement of the clinical diagnosis. Major efforts have been made by several laboratories in order to establish an appropriate and traceable calibration infrastructure and to provide the basis for a quality control programme in mammography. The indication of a dosimeter, whose reference point is positioned at the point of test, is compared with the conventional true value of the quantity to be measured. The calibration coefficient is then the ratio of the conventional true value to the indicated. The Primary Standard Dosimetry Laboratory - PSDL or the Secondary Standard Dosimetry Laboratory - SSDL provides the calibration coefficient of the dosimeters in reference to the Half Value Layers - HVL implemented in their laboratories. The dosimetry calibration data is enough when the user has the same system as the laboratory where the ionization chamber has been calibrated. However, there are other calibration systems that have different calibration qualities implemented using different combinations of anode and filter and, therefore, there is no direct relation with the calibration coefficient. How to deal with this? There are two different ways to obtain calibration coefficients when the user's implemented qualities are different from the calibration laboratory's qualities. The first is the interpolation of each calibration coefficient stated in the certificate. The second is the fit of all calibration coefficients, separately for non-attenuated and attenuated beam qualities, to obtain a function by which the calibration coefficients can be determined at each beam quality. The second one includes the statistical fluctuation. The dosimetry calibration data must fit an analytical form, as for example a

  7. Calibrating Gyrochronology using Kepler Asteroseismic targets

    CERN Document Server

    Angus, Ruth; Foreman-Mackey, Daniel; McQuillan, Amy

    2015-01-01

    Among the available methods for dating stars, gyrochronology is a powerful one because it requires knowledge of only the star's mass and rotation period. Gyrochronology relations have previously been calibrated using young clusters, with the Sun providing the only age dependence, and are therefore poorly calibrated at late ages. We used rotation period measurements of 310 Kepler stars with asteroseismic ages, 50 stars from the Hyades and Coma Berenices clusters and 6 field stars (including the Sun) with precise age measurements to calibrate the gyrochronology relation, whilst fully accounting for measurement uncertainties in all observable quantities. We calibrated a relation of the form $P=A^n\\times(B-V-c)^b$, where $P$ is rotation period in days, $A$ is age in Myr, $B$ and $V$ are magnitudes and $a$, $b$ and $n$ are the free parameters of our model. We found $a = 0.40^{+0.3}_{-0.05}$, $b = 0.31^{+0.05}_{-0.02}$ and $n = 0.55^{+0.02}_{-0.09}$. Markov Chain Monte Carlo methods were used to explore the posteri...

  8. A variable acceleration calibration system

    Science.gov (United States)

    Johnson, Thomas H.

    2011-12-01

    A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.

  9. Automatic force balance calibration system

    Science.gov (United States)

    Ferris, Alice T.

    1995-05-01

    A system for automatically calibrating force balances is provided. The invention uses a reference balance aligned with the balance being calibrated to provide superior accuracy while minimizing the time required to complete the calibration. The reference balance and the test balance are rigidly attached together with closely aligned moment centers. Loads placed on the system equally effect each balance, and the differences in the readings of the two balances can be used to generate the calibration matrix for the test balance. Since the accuracy of the test calibration is determined by the accuracy of the reference balance and current technology allows for reference balances to be calibrated to within +/-0.05% the entire system has an accuracy of +/-0.2%. The entire apparatus is relatively small and can be mounted on a movable base for easy transport between test locations. The system can also accept a wide variety of reference balances, thus allowing calibration under diverse load and size requirements.

  10. Structured light camera calibration

    Science.gov (United States)

    Garbat, P.; Skarbek, W.; Tomaszewski, M.

    2013-03-01

    Structured light camera which is being designed with the joined effort of Institute of Radioelectronics and Institute of Optoelectronics (both being large units of the Warsaw University of Technology within the Faculty of Electronics and Information Technology) combines various hardware and software contemporary technologies. In hardware it is integration of a high speed stripe projector and a stripe camera together with a standard high definition video camera. In software it is supported by sophisticated calibration techniques which enable development of advanced application such as real time 3D viewer of moving objects with the free viewpoint or 3D modeller for still objects.

  11. Smart Calibration of Excavators

    DEFF Research Database (Denmark)

    Bro, Marie; Døring, Kasper; Ellekilde, Lars-Peter; Hansen, Mikael Sonne; Markvorsen, Steen; Spence, David; Stolpe, Mathias; Sølvason, Dorthe

    2005-01-01

    Excavators dig holes. But where is the bucket? The purpose of this report is to treat four different problems concerning calibrations of position indicators for excavators in operation at concrete construction sites. All four problems are related to the question of how to determine the precise...... geographic and/or site-relative position of a given excavator and its bucket. However, our presentations and solutions to the problems can, nevertheless, be read and studied in any order and independently of each other. This also implies and induces a gentle warning to the reader: The {\\em{notation}} need...

  12. Use of Radiometrically Calibrated Flat-Plate Calibrators in Calibration of Radiation Thermometers

    Science.gov (United States)

    Cárdenas-García, D.; Méndez-Lango, E.

    2015-08-01

    Most commonly used, low-temperature, infrared thermometers have large fields of view sizes that make them difficult to be calibrated with narrow aperture blackbodies. Flat-plate calibrators with large emitting surfaces have been proposed for calibrating these infrared thermometers. Because the emissivity of the flat plate is not unity, its radiance temperature is wavelength dependent. For calibration, the wavelength pass band of the device under test should match that of the reference infrared thermometer. If the device under test and reference radiometer have different pass bands, then it is possible to calculate the corresponding correction if the emissivity of the flat plate is known. For example, a correction of at is required when calibrating a infrared thermometer with a "" radiometrically calibrated flat-plate calibrator. A method is described for using a radiometrically calibrated flat-plate calibrator that covers both cases of match and mismatch working wavelength ranges of a reference infrared thermometer and infrared thermometers to be calibrated with the flat-plate calibrator. Also, an application example is included in this paper.

  13. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    The Dosimetry and Calibration Section fulfils two tasks within CERN's Radiation Protection Group: the Individual Dosimetry Service monitors more than 5000 persons potentially exposed to ionizing radiation on the CERN sites, and the Calibration Laboratory verifies throughout the year, at regular intervals, over 1000 instruments, monitors, and electronic dosimeters used by RP Group. The establishment of a Quality Assurance System for the Individual Dosimetry Service, a requirement of the new Swiss Ordinance for personal dosimetry, put a considerable workload on the section. Together with an external consultant it was decided to identify and then describe the different 'processes' of the routine work performed in the dosimetry service. The resulting Quality Manual was submitted to the Federal Office for Public Health in Bern in autumn. The CERN Individual Dosimetry Service will eventually be officially endorsed after a successful technical test in March 1999. On the technical side, the introduction of an automatic development machine for gamma films was very successful. It processes the dosimetric films without an operator being present, and its built-in regeneration mechanism keeps the concentration of the processing chemicals at a constant level

  14. Camera Calibration: a USU Implementation

    OpenAIRE

    Ma, Lili; Chen, YangQuan; Moore, Kevin L.

    2003-01-01

    The task of camera calibration is to estimate the intrinsic and extrinsic parameters of a camera model. Though there are some restricted techniques to infer the 3-D information about the scene from uncalibrated cameras, effective camera calibration procedures will open up the possibility of using a wide range of existing algorithms for 3-D reconstruction and recognition. The applications of camera calibration include vision-based metrology, robust visual platooning and visual docking of mobil...

  15. Calibration procedure for zenith plummets

    Directory of Open Access Journals (Sweden)

    Jelena GUČEVIĆ

    2013-09-01

    Full Text Available Zenith plummets are used mainly in applied geodesy, in civil engineering surveying, for materialization of the local vertical. The error of the vertical deflection of the instrument is directly transferred to the error of the observing construction. That is why a proper calibration procedure for the zenithlot is required. Metrological laboratory of the Faculty of Civil Engineering in Belgrade developed such calibration procedure. Here we present a mathematical model of the calibration and some selected results.

  16. Calibration procedure for zenith plummets

    OpenAIRE

    Jelena GUČEVIĆ; Delčev, Siniša; Vukan OGRIZOVIĆ

    2013-01-01

    Zenith plummets are used mainly in applied geodesy, in civil engineering surveying, for materialization of the local vertical. The error of the vertical deflection of the instrument is directly transferred to the error of the observing construction. That is why a proper calibration procedure for the zenithlot is required. Metrological laboratory of the Faculty of Civil Engineering in Belgrade developed such calibration procedure. Here we present a mathematical model of the calibration and som...

  17. Radiological Calibration and Standards Facility

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL maintains a state-of-the-art Radiological Calibration and Standards Laboratory on the Hanford Site at Richland, Washington. Laboratory staff provide expertise...

  18. Calibration Techniques for VERITAS

    CERN Document Server

    Hanna, David

    2007-01-01

    VERITAS is an array of four identical telescopes designed for detecting and measuring astrophysical gamma rays with energies in excess of 100 GeV. Each telescope uses a 12 m diameter reflector to collect Cherenkov light from air showers initiated by incident gamma rays and direct it onto a `camera' comprising 499 photomultiplier tubes read out by flash ADCs. We describe here calibration methods used for determining the values of the parameters which are necessary for converting the digitized PMT pulses to gamma-ray energies and directions. Use of laser pulses to determine and monitor PMT gains is discussed, as are measurements of the absolute throughput of the telescopes using muon rings.

  19. TOD to TTP calibration

    Science.gov (United States)

    Bijl, Piet; Reynolds, Joseph P.; Vos, Wouter K.; Hogervorst, Maarten A.; Fanning, Jonathan D.

    2011-05-01

    The TTP (Targeting Task Performance) metric, developed at NVESD, is the current standard US Army model to predict EO/IR Target Acquisition performance. This model however does not have a corresponding lab or field test to empirically assess the performance of a camera system. The TOD (Triangle Orientation Discrimination) method, developed at TNO in The Netherlands, provides such a measurement. In this study, we make a direct comparison between TOD performance for a range of sensors and the extensive historical US observer performance database built to develop and calibrate the TTP metric. The US perception data were collected doing an identification task by military personnel on a standard 12 target, 12 aspect tactical vehicle image set that was processed through simulated sensors for which the most fundamental sensor parameters such as blur, sampling, spatial and temporal noise were varied. In the present study, we measured TOD sensor performance using exactly the same sensors processing a set of TOD triangle test patterns. The study shows that good overall agreement is obtained when the ratio between target characteristic size and TOD test pattern size at threshold equals 6.3. Note that this number is purely based on empirical data without any intermediate modeling. The calibration of the TOD to the TTP is highly beneficial to the sensor modeling and testing community for a variety of reasons. These include: i) a connection between requirement specification and acceptance testing, and ii) a very efficient method to quickly validate or extend the TTP range prediction model to new systems and tasks.

  20. Sulfur mass loading of the atmosphere from volcanic eruptions: Calibration of the ice core record on basis of sulfate aerosol deposition in polar regions from the 1982 El Chichon eruption

    Science.gov (United States)

    Sigurdsson, Haraldur; Laj, Paolo

    1990-01-01

    Major volcanic eruptions disperse large quantities of sulfur compound throughout the Earth's atmosphere. The sulfuric acid aerosols resulting from such eruptions are scavenged by snow within the polar regions and appear in polar ice cores as elevated acidity layers. Glacio-chemical studies of ice cores can, thus, provide a record of past volcanism, as well as the means for understanding the fate of volcanic sulfur in the atmosphere. The primary objectives of this project are to study the chemistry and physical properties of volcanic fallout in a Greenland Ice Core in order to evaluate the impact of the volcanic gases on the atmospheric chemistry and the total atmospheric mass of volcanic aerosols emitted by major volcanic eruptions. We propose to compare the ice core record to other atmospheric records performed during the last 10 years to investigate transport and deposition of volcanic materials.

  1. Self Calibrating Interferometric Sensor

    DEFF Research Database (Denmark)

    Sørensen, Henrik Schiøtt

    This thesis deals with the development of an optical sensor based on micro interferometric backscatter detection (MIBD). A price effective, highly sensitive and ready for mass production platform is the goal of this project. The thesis covers three areas. The first part of the thesis deals...... mask. The fabricated micro structures have been electroplated for later injection molding, showing the potential of the MIBD sensor to be mass produced with high reproducibility and sensitivity. In part three MIBD experiments on vital biological systems are described. Label–free binding studies of bio...

  2. Calibration of the CREAM-I calorimeter

    CERN Document Server

    Yoon, Y S; Bagliesi, M G; Bigongiari, G; Ganel, O; Han, J H; Jeon, J A; Kim, K C; Lee, M H; Lutz, L; Maestro, P; Malinin, A; Marrocchesi, P S; Nam, S; Park, I H; Park, N H; Seo, E S; Sina, R; Wu, J; Yang, J; Zei, R; Zinn, S Y

    2010-01-01

    The Cosmic Ray Energetics And Mass (CREAM) calorimeter is designed to measure the spectra of cosmic-ray particles over the energy range from ~10^11 eV to ~10^15 eV. Its first flight as part of the CREAM-I balloon-borne payload in Antarctica during the 2004/05 season resulted in a recordbreaking 42 days of exposure. Calorimeter calibration using various beam test data will be discussed in an attempt to assess the uncertainties of the energy measurements.

  3. Photometric Calibration of Consumer Video Cameras

    Science.gov (United States)

    Suggs, Robert; Swift, Wesley, Jr.

    2007-01-01

    Equipment and techniques have been developed to implement a method of photometric calibration of consumer video cameras for imaging of objects that are sufficiently narrow or sufficiently distant to be optically equivalent to point or line sources. Heretofore, it has been difficult to calibrate consumer video cameras, especially in cases of image saturation, because they exhibit nonlinear responses with dynamic ranges much smaller than those of scientific-grade video cameras. The present method not only takes this difficulty in stride but also makes it possible to extend effective dynamic ranges to several powers of ten beyond saturation levels. The method will likely be primarily useful in astronomical photometry. There are also potential commercial applications in medical and industrial imaging of point or line sources in the presence of saturation.This development was prompted by the need to measure brightnesses of debris in amateur video images of the breakup of the Space Shuttle Columbia. The purpose of these measurements is to use the brightness values to estimate relative masses of debris objects. In most of the images, the brightness of the main body of Columbia was found to exceed the dynamic ranges of the cameras. A similar problem arose a few years ago in the analysis of video images of Leonid meteors. The present method is a refined version of the calibration method developed to solve the Leonid calibration problem. In this method, one performs an endto- end calibration of the entire imaging system, including not only the imaging optics and imaging photodetector array but also analog tape recording and playback equipment (if used) and any frame grabber or other analog-to-digital converter (if used). To automatically incorporate the effects of nonlinearity and any other distortions into the calibration, the calibration images are processed in precisely the same manner as are the images of meteors, space-shuttle debris, or other objects that one seeks to

  4. Calibration of Correlation Radiometers Using Pseudo-Random Noise Signals

    Directory of Open Access Journals (Sweden)

    Sebastián Pantoja

    2009-08-01

    Full Text Available The calibration of correlation radiometers, and particularly aperture synthesis interferometric radiometers, is a critical issue to ensure their performance. Current calibration techniques are based on the measurement of the cross-correlation of receivers’ outputs when injecting noise from a common noise source requiring a very stable distribution network. For large interferometric radiometers this centralized noise injection approach is very complex from the point of view of mass, volume and phase/amplitude equalization. Distributed noise injection techniques have been proposed as a feasible alternative, but are unable to correct for the so-called “baseline errors” associated with the particular pair of receivers forming the baseline. In this work it is proposed the use of centralized Pseudo-Random Noise (PRN signals to calibrate correlation radiometers. PRNs are sequences of symbols with a long repetition period that have a flat spectrum over a bandwidth which is determined by the symbol rate. Since their spectrum resembles that of thermal noise, they can be used to calibrate correlation radiometers. At the same time, since these sequences are deterministic, new calibration schemes can be envisaged, such as the correlation of each receiver’s output with a baseband local replica of the PRN sequence, as well as new distribution schemes of calibration signals. This work analyzes the general requirements and performance of using PRN sequences for the calibration of microwave correlation radiometers, and particularizes the study to a potential implementation in a large aperture synthesis radiometer using an optical distribution network.

  5. Traceable dynamic calibration of force transducers by primary means

    Science.gov (United States)

    Vlajic, Nicholas; Chijioke, Ako

    2016-08-01

    We describe an apparatus for traceable, dynamic calibration of force transducers using harmonic excitation, and report calibration measurements of force transducers using this apparatus. In this system, the force applied to the transducer is produced by the acceleration of an attached mass, and is determined according to Newton’s second law, F  =  ma. The acceleration is measured by primary means, using laser interferometry. The capabilities of this system are demonstrated by performing dynamic calibrations of two shear-web-type force transducers up to a frequency of 2 kHz, with an expanded uncertainty below 1.2%. We give an account of all significant sources of uncertainty, including a detailed consideration of the effects of dynamic tilting (rocking), which is a leading source of uncertainty in such harmonic force calibration systems.

  6. Tectonic calibrations in molecular dating

    Institute of Scientific and Technical Information of China (English)

    Ullasa KODANDARAMAIAH

    2011-01-01

    Molecular dating techniques require the use of calibrations, which are usually fossil or geological vicariance-based.Fossil calibrations have been criticised because they result only in minimum age estimates. Based on a historical biogeographic perspective, Ⅰ suggest that vicariance-based calibrations are more dangerous. Almost all analytical methods in historical biogeography are strongly biased towards inferring vicariance, hence vicariance identified through such methods is unreliable. Other studies, especially of groups found on Gondwanan fragments, have simply assumed vicariance. Although it was previously believed that vicariance was the predominant mode of speciation, mounting evidence now indicates that speciation by dispersal is common, dominating vicariance in several groups. Moreover, the possibility of speciation having occurred before the said geological event cannot be precluded. Thus, geological calibrations can under- or overestimate times, whereas fossil calibrations always result in minimum estimates. Another major drawback of vicariant calibrations is the problem of circular reasoning when the resulting estimates are used to infer ages of biogeographic events. Ⅰ argue that fossil-based dating is a superior alternative to vicariance, primarily because the strongest assumption in the latter, that speciation was caused by the said geological process, is more often than not the most tenuous. When authors prefer to use a combination of fossil and vicariant calibrations, one suggestion is to report results both with and without inclusion of the geological constraints. Relying solely on vicariant calibrations should be strictly avoided.

  7. Field calibration of cup anemometers

    DEFF Research Database (Denmark)

    Kristensen, L.; Jensen, G.; Hansen, A.;

    2001-01-01

    An outdoor calibration facility for cup anemometers, where the signals from 10 anemometers of which at least one is a reference can be can be recorded simultaneously, has been established. The results are discussed with special emphasis on the statisticalsignificance of the calibration expressions...

  8. Fractal dimension of scattering equivalent section of aerosol and its calibration mechanism

    Institute of Scientific and Technical Information of China (English)

    Fang Gu; Jiahong Zhang; Yulin Chen

    2009-01-01

    The correct calibration of coefficients in the inversion model for aerosol mass concentration is the precondition of obtaining highly precise results.The concept of the fractal dimension of scattering equivalent section is presented,and the calibration mechanism of the fractal dimension is discussed.Based on the calibration mechanism,the stability of the fractal dimension is analyzed.Theoretical analysis and experimental results indicate that the fractal dimension obtained by the intersection point calibration method is stable,while that calibrated by the Gauss-Newton method is instable,which only describes the shape characteristic of a small sample.The study of the calibration mechanism for the fractal dimension markedly enhances the present model for aerosol mass concentration.

  9. Accurate flexural spring constant calibration of colloid probe cantilevers using scanning laser Doppler vibrometry

    Science.gov (United States)

    Gates, Richard S.; Osborn, William A.; Shaw, Gordon A.

    2015-06-01

    Calibration of the flexural spring constant for atomic force microscope (AFM) colloid probe cantilevers provides significant challenges. The presence of a large attached spherical added mass complicates many of the more common calibration techniques such as reference cantilever, Sader, and added mass. Even the most promising option, AFM thermal calibration, can encounter difficulties during the optical lever sensitivity measurement due to strong adhesion and friction between the sphere and a surface. This may cause buckling of the end of the cantilever and hysteresis in the approach-retract curves resulting in increased uncertainty in the calibration. Most recently, a laser Doppler vibrometry thermal method has been used to accurately calibrate the normal spring constant of a wide variety of tipped and tipless commercial cantilevers. This paper describes a variant of the technique, scanning laser Doppler vibrometry, optimized for colloid probe cantilevers and capable of spring constant calibration uncertainties near ±1%.

  10. Liquid Krypton Calorimeter Calibration Software

    CERN Document Server

    Hughes, Christina Lindsay

    2013-01-01

    Calibration of the liquid krypton calorimeter (LKr) of the NA62 experiment is managed by a set of standalone programs, or an online calibration driver. These programs are similar to those used by NA48, but have been updated to utilize classes and translated to C++ while maintaining a common functionality. A set of classes developed to handle communication with hardware was used to develop the three standalone programs as well as the main driver program for online calibration between bursts. The main calibration driver has been designed to respond to run control commands and receive burst data, both transmitted via DIM. In order to facilitate the process of reading in calibration parameters, a serializable class has been introduced, allowing the replacement of standard text files with XML configuration files.

  11. The Advanced LIGO Photon Calibrators

    CERN Document Server

    Karki, S; Kandhasamy, S; Abbott, B P; Abbott, T D; Anders, E H; Berliner, J; Betzwieser, J; Daveloza, H P; Cahillane, C; Canete, L; Conley, C; Gleason, J R; Goetz, E; Kissel, J S; Izumi, K; Mendell, G; Quetschke, V; Rodruck, M; Sachdev, S; Sadecki, T; Schwinberg, P B; Sottile, A; Wade, M; Weinstein, A J; West, M; Savage, R L

    2016-01-01

    The two interferometers of the Laser Interferometry Gravitaional-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the observation of these events, and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as Photon Calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO Photon Calibrators that are currently providing fiducial displacements on the order of $10^{-18}$ m/$\\sqrt{\\textrm{Hz}}$ with accuracy and precision of better ...

  12. Antenna Calibration and Measurement Equipment

    Science.gov (United States)

    Rochblatt, David J.; Cortes, Manuel Vazquez

    2012-01-01

    A document describes the Antenna Calibration & Measurement Equipment (ACME) system that will provide the Deep Space Network (DSN) with instrumentation enabling a trained RF engineer at each complex to perform antenna calibration measurements and to generate antenna calibration data. This data includes continuous-scan auto-bore-based data acquisition with all-sky data gathering in support of 4th order pointing model generation requirements. Other data includes antenna subreflector focus, system noise temperature and tipping curves, antenna efficiency, reports system linearity, and instrument calibration. The ACME system design is based on the on-the-fly (OTF) mapping technique and architecture. ACME has contributed to the improved RF performance of the DSN by approximately a factor of two. It improved the pointing performances of the DSN antennas and productivity of its personnel and calibration engineers.

  13. TIME CALIBRATED OSCILLOSCOPE SWEEP CIRCUIT

    Science.gov (United States)

    Smith, V.L.; Carstensen, H.K.

    1959-11-24

    An improved time calibrated sweep circuit is presented, which extends the range of usefulness of conventional oscilloscopes as utilized for time calibrated display applications in accordance with U. S. Patent No. 2,832,002. Principal novelty resides in the provision of a pair of separate signal paths, each of which is phase and amplitude adjustable, to connect a high-frequency calibration oscillator to the output of a sawtooth generator also connected to the respective horizontal deflection plates of an oscilloscope cathode ray tube. The amplitude and phase of the calibration oscillator signals in the two signal paths are adjusted to balance out feedthrough currents capacitively coupled at high frequencies of the calibration oscillator from each horizontal deflection plate to the vertical plates of the cathode ray tube.

  14. Requirements for gamma radiation survey meter calibration

    International Nuclear Information System (INIS)

    This guide describes the minimum requirements for calibrating a portable analog gamma radiation survey meter by means of a beam calibrator, with a known calibration source. If an alternative method of calibration is to be used the licensee should make a written request to the Atomic Energy Control Board that describes the calibration method to be used, and request the Board's permission to use that method in place of the requirements contained in this guide. This guide explains: the responsibility for survey meter calibration if licensees calibrate their own survey meters, use the services of a Canadian calibration agency, and use the services of a non-Canadian calibration agency; the requirements for survey meter calibration and the supporting documentation; the requirements for record-keeping; and, a calibration certificate, a calibration sticker, and a notification of failure to calibrate form, with examples

  15. Jet Mass Reconstruction with the ATLAS Detector in Run 2

    CERN Document Server

    Jansky, Roland; The ATLAS collaboration

    2016-01-01

    The details of the ATLAS jet mass reconstruction and calibration are presented. In particular, the jet mass scale is calibrated using Monte Carlo simulation for large-radius groomed jets. Corresponding uncertainties are presented. An alternative jet mass definition that incorporates tracking information called the track-assisted jet mass is introduced and its performance is compared to the traditional calorimeter-only jet mass definition. An outlook on future improvments is also given.

  16. Self Calibrating Interferometric Sensor

    OpenAIRE

    Sørensen, Henrik Schiøtt; Larsen, Niels Bent

    2006-01-01

    This thesis deals with the development of an optical sensor based on micro interferometric backscatter detection (MIBD). A price effective, highly sensitive and ready for mass production platform is the goal of this project. The thesis covers three areas. The first part of the thesis deals with theoretical models for describing the optical phenomena utilized in this technique. A model based on ray–tracing has been developed and shown to be a valuable tool for describing certain features in th...

  17. Confinement Vessel Assay System: Calibration and Certification Report

    Energy Technology Data Exchange (ETDEWEB)

    Frame, Katherine C. [Los Alamos National Laboratory; Bourne, Mark M. [Los Alamos National Laboratory; Crooks, William J. [Los Alamos National Laboratory; Evans, Louise [Los Alamos National Laboratory; Gomez, Cipriano [Retired CMR-OPS: OPERATIONS; Mayo, Douglas R. [Los Alamos National Laboratory; Miko, David K. [Los Alamos National Laboratory; Salazar, William R. [Los Alamos National Laboratory; Stange, Sy [Los Alamos National Laboratory; Vigil, Georgiana M. [Los Alamos National Laboratory

    2012-07-17

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of SNM in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le} 100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The system was calibrated in three different mass regions (low, medium, and high) to cover the entire plutonium mass range that will be assayed. The low mass calibration and medium mass calibration were verified for material positioned in the center of an empty vessel. The systematic uncertainty due to position bias was estimated using an MCNPX model to simulate the response of the system to material localized at various points along the inner surface of the vessel. The background component due to cosmic ray spallation was determined by performing measurements of an empty vessel and comparing to measurements in the same location with no vessel present. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements of CVs before and after cleanout.

  18. OPTEC: A Cubesat for Solar Cell Calibration

    Science.gov (United States)

    Landis, Geoffrey; Hepp, Aloysius; Arutyunov, Dennis; White, Kelsey; Witsberger, Paul

    2014-01-01

    A new type of small spacecraft, the cubesat, has introduced a new concept for extremely small, low-cost missions into space. Cubesats are designed to be launched as secondary payloads on other missions, and are made up of unit elements (U) of size 10 cm by 10 cm by 10 cm, with a nominal mass of no more than 1.33 kg per U. We have designed a cubesat, OPTEC (Orbital Photovoltaic Testbed Cubesat) as a low-cost testbed to demonstrate, calibrate, and test solar cell technologies in space. Size of the cubesat is 2U (10x10x20cm, and the mass 2.66 kg. The cubesat deploys from the International Space Station into Low Earth Orbit at an altitude of about 420 km. Up to two 4x8cm test solar panels can be flown, with full I-V curves and temperature measurements taken.

  19. Astrid-2 EMMA Magnetic Calibration

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter; Risbo, Torben;

    1998-01-01

    magnetometer readings in each position were related to the field magnitudes from the Observatory, and a least squares fit for the 9 magnetometer calibration parameters was performed (3 offsets, 3 scale values and 3 inter-axes angles). After corrections for the magnetometer digital-to-analogue converters...... fit calibration parameters. Owing to time shortage, we did not evaluate the temperature coefficients of the flight sensor calibration parameters. However, this was done for an identical flight spare magnetometer sensor at the magnetic coil facility belonging to the Technical University of Braunschweig...

  20. The calibration of radioprotection hardware

    International Nuclear Information System (INIS)

    After having recalled recent recommendations on dose limits on the basis of two radioprotection values (the equivalent and the efficient dose), this document indicates some characteristics of these values, and discusses how they are applied for individual monitoring and for area or ambient monitoring. It presents conventions aimed at simplifying radiation fields. Then, the author gives a precise overview of some general aspects concerning calibration operations: legal requirements, radioprotection hardware controls, calibration loop organisation (calibration definition, general physical values, reference radiation, conversion factors, and metrology), comparison between operational values and the protection value (irradiation geometries, conversion factors with respect to the geometries, comparison between efficient dose and operational values). He finally describes the calibration procedures: dosemeter location, energy response, angular response, flow rate response, uncertainties

  1. On chromatic and geometrical calibration

    DEFF Research Database (Denmark)

    Folm-Hansen, Jørgen

    1999-01-01

    The main subject of the present thesis is different methods for the geometrical and chromatic calibration of cameras in various environments. For the monochromatic issues of the calibration we present the acquisition of monochrome images, the classic monochrome aberrations and the various sources...... of non-uniformity of the illumination of the image plane. Only the image deforming aberrations and the non-uniformity of illumination are included in the calibration models. The topics of the pinhole camera model and the extension to the Direct Linear Transform (DLT) are described. It is shown how...... the correct interpolation method is described. For the chromatic issues of calibration we present the acquisition of colour and multi-spectral images, the chromatic aberrations and the various lens/camera based non-uniformities of the illumination of the image plane. It is described how the...

  2. Calibration of "Babyline" RP instruments

    CERN Document Server

    2015-01-01

      If you have old RP instrumentation of the “Babyline” type, as shown in the photo, please contact the Radiation Protection Group (Joffrey Germa, 73171) to have the instrument checked and calibrated. Thank you. Radiation Protection Group

  3. Two-Step Camera Calibration Method Developed for Micro UAV'S

    Science.gov (United States)

    Gašparović, M.; Gajski, D.

    2016-06-01

    The development of unmanned aerial vehicles (UAVs) and continuous price reduction of unmanned systems attracted us to this research. Professional measuring systems are dozens of times more expensive and often heavier than "amateur", non-metric UAVs. For this reason, we tested the DJI Phantom 2 Vision Plus UAV. Phantom's smaller mass and velocity can develop less kinetic energy in relation to the professional measurement platforms, which makes it potentially less dangerous for use in populated areas. In this research, we wanted to investigate the ability of such non-metric UAV and find the procedures under which this kind of UAV may be used for the photogrammetric survey. It is important to emphasize that UAV is equipped with an ultra wide-angle camera with 14MP sensor. Calibration of such cameras is a complex process. In the research, a new two-step process is presented and developed, and the results are compared with standard one-step camera calibration procedure. Two-step process involves initially removed distortion on all images, and then uses these images in the phototriangulation with self-calibration. The paper presents statistical indicators which proved that the proposed two-step process is better and more accurate procedure for calibrating those types of cameras than standard one-step calibration. Also, we suggest two-step calibration process as the standard for ultra-wideangle cameras for unmanned aircraft.

  4. Rotary mode system initial instrument calibration

    Energy Technology Data Exchange (ETDEWEB)

    Johns, B.R.

    1994-10-01

    The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files.

  5. Rotary mode system initial instrument calibration

    International Nuclear Information System (INIS)

    The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files

  6. Beam Imaging and Luminosity Calibration

    CERN Document Server

    AUTHOR|(CDS)2081126; Klute, Markus; Medlock, Catherine Aiko

    2016-01-01

    We discuss a method to reconstruct two-dimensional proton bunch densities using vertex distributions accumulated during LHC beam-beam scans. The x-y correlations in the beam shapes are studied and an alternative luminosity calibration technique is introduced. We demonstrate the method on simulated beam-beam scans and estimate the uncertainty on the luminosity calibration associated to the beam-shape reconstruction to be below 1%.

  7. CERI: Ionizing Radiation Calibration Centre

    International Nuclear Information System (INIS)

    The CERI has been granted by the National Bureau of Metrology (BNM) as an Ionizing Radiation Calibration Centre and as an Estimation and Qualification Centre for the ionizing radiation measurement devices. This article gives some information on the scope covered by the BNM's grant and on the various equipment on which the laboratory relies. It describes the calibration and estimation activities and mentions many kinds of services which are offered to the users mainly in the medical and industrial fields

  8. The Third VLBA Calibrator Survey

    OpenAIRE

    Petrov, L.; Kovalev, Y. Y.; Fomalont, E.; Gordon, D

    2004-01-01

    This paper presents the third extension to the Very Large Baseline Array (VLBA) Calibrator Survey, containing 360 new sources not previously observed with very long baseline interferometry (VLBI). The survey, based on three 24 hour VLBA observing sessions, fills the areas on the sky above declination -45 degrees where the calibrator density is less than one source within a 4 degrees radius disk at any given direction. The positions were derived from astrometric analysis of the group delays de...

  9. Pressures Detector Calibration and Measurement

    CERN Document Server

    Kumara, I Made Gita

    2016-01-01

    This is report of my first and second projects (of 3) in NA61. I did data taking and analysis in order to do calibration of pressure detectors and verified it. I analyzed the data by ROOT software using the C ++ programming language. The first part of my project was determination of calibration factor of pressure sensors. Based on that result, I examined the relation between pressure drop, gas flow rate of in paper filter and its diameter.

  10. FY07 Final Report for Calibration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Tanya L.; Broocks, Bryan T.; Cannon, Bret D.; Ho, Nicolas

    2007-12-01

    Remote infrared (IR) sensing provides a valuable method for detection and identification of materials associated with nuclear proliferation. Current challenges for remote sensors include minimizing the size, mass, and power requirements for cheaper, smaller, and more deployable instruments without affecting the measurement performance. One area that is often overlooked is sensor calibration design that is optimized to minimize the cost, size, weight, and power of the payload. Yet, an on-board calibration system is essential to account for changes in the detector response once the instrument has been removed from the laboratory. The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact quantum cascade (QC) laser-based calibration systems for infrared sensor systems in order to provide both a spectral and radiometric calibration while minimizing the impact on the instrument payload. In FY05, PNNL demonstrated a multi-level radiance scheme that provides six radiance levels for an enhanced linearity check compared to the currently accepted two-point scheme. PNNL began testing the repeatability of this scheme using a cryogenically cooled, single-mode quantum cascade laser (QCL). A cyclic variation in the power was observed that was attributed to the thermal cycling of the laser's dewar. In FY06, PNNL continued testing this scheme and installed an auxiliary liquid nitrogen reservoir to limit the thermal cycling effects. Although better repeatability was achieved over a longer time period, power fluctuations were still observed due to the thermal cycling. Due to the limitations with the cryogenic system, PNNL began testing Fabry-Perot QCLs that operate continuous-wave (cw) or quasi-cw at room temperature (RT) in FY06. PNNL demonstrated a multi-level scheme that provides five radiance levels in 105 seconds with excellent repeatability. We have continued testing this repeatability in FY07. A

  11. FY07 Final Report for Calibration Systems

    International Nuclear Information System (INIS)

    Remote infrared (IR) sensing provides a valuable method for detection and identification of materials associated with nuclear proliferation. Current challenges for remote sensors include minimizing the size, mass, and power requirements for cheaper, smaller, and more deployable instruments without affecting the measurement performance. One area that is often overlooked is sensor calibration design that is optimized to minimize the cost, size, weight, and power of the payload. Yet, an on-board calibration system is essential to account for changes in the detector response once the instrument has been removed from the laboratory. The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact quantum cascade (QC) laser-based calibration systems for infrared sensor systems in order to provide both a spectral and radiometric calibration while minimizing the impact on the instrument payload. In FY05, PNNL demonstrated a multi-level radiance scheme that provides six radiance levels for an enhanced linearity check compared to the currently accepted two-point scheme. PNNL began testing the repeatability of this scheme using a cryogenically cooled, single-mode quantum cascade laser (QCL). A cyclic variation in the power was observed that was attributed to the thermal cycling of the laser's dewar. In FY06, PNNL continued testing this scheme and installed an auxiliary liquid nitrogen reservoir to limit the thermal cycling effects. Although better repeatability was achieved over a longer time period, power fluctuations were still observed due to the thermal cycling. Due to the limitations with the cryogenic system, PNNL began testing Fabry-Perot QCLs that operate continuous-wave (cw) or quasi-cw at room temperature (RT) in FY06. PNNL demonstrated a multi-level scheme that provides five radiance levels in 105 seconds with excellent repeatability. We have continued testing this repeatability in FY07. A burn

  12. WFC3: UVIS Dark Calibration

    Science.gov (United States)

    Bourque, Matthew; Biretta, John A.; Anderson, Jay; Baggett, Sylvia M.; Gunning, Heather C.; MacKenty, John W.

    2014-06-01

    Wide Field Camera 3 (WFC3), a fourth-generation imaging instrument on board the Hubble Space Telescope (HST), has exhibited excellent performance since its installation during Servicing Mission 4 in May 2009. The UVIS detector, comprised of two e2v CCDs, is one of two channels available on WFC3 and is named for its ultraviolet and visible light sensitivity. We present the various procedures and results of the WFC3/UVIS dark calibration, which monitors the health and stability of the UVIS detector, provides characterization of hot pixels and dark current, and produces calibration files to be used as a correction for dark current in science images. We describe the long-term growth of hot pixels and the impacts that UVIS Charge Transfer Efficiency (CTE) losses, postflashing, and proximity to the readout amplifiers have on the population. We also discuss the evolution of the median dark current, which has been slowly increasing since the start of the mission and is currently ~6 e-/hr/pix, averaged across each chip. We outline the current algorithm for creating UVIS dark calibration files, which includes aggressive cosmic ray masking, image combination, and hot pixel flagging. Calibration products are available to the user community, typically 3-5 days after initial processing, through the Calibration Database System (CDBS). Finally, we discuss various improvements to the calibration and monitoring procedures. UVIS dark monitoring will continue throughout and beyond HST’s current proposal cycle.

  13. Calibrating Cluster Number Counts with CMB lensing

    CERN Document Server

    Louis, Thibaut

    2016-01-01

    CMB Stage-4 experiments will reduce the uncertainties on the gravitational lensing potential by an order of magnitude compared to current measurements, and will also produce a Sunyaev-Zel'dovich (SZ) cluster catalog containing $\\sim10^{5}$ objects, two orders of magnitudes higher than what is currently available. In this paper we propose to combine these two observables and show that it is possible to calibrate the masses of the full Stage-4 cluster catalog internally owing to the high signal to noise measurement of the CMB lensing convergence field. We find that a CMB Stage-4 experiment will constrain the hydrostatic bias parameter to sub-percent accuracy. We also show constraints on a non parametric $Y-M$ relationship which could be used to study its evolution with mass and redshift. Finally we present a joint likelihood for thermal SZ (tSZ) flux and mass measurements, and show that it could lead to a $\\sim5\\sigma$ detection of the lower limit on the sum of the neutrino masses in the normal hierarchy ($\\sum...

  14. Reaction of the C3(X1Σg+) carbon cluster with H2S(X1A1), hydrogen sulfide: Photon-induced formation of C3S, tricarbon sulfur

    International Nuclear Information System (INIS)

    In this paper we report on the neutral-neutral reaction of the C3 carbon cluster with H2S in solid inert argon at 12 K, conditions that mimic, in part, the surfaces of interstellar grains. In the first step of the reaction, a C3•H2S complex is formed via an almost barrierless entrance addition mechanism. This complex, stabilized by an estimated 7.45 kJ/mol (CCSD(T)/aug-cc-pVTZ//B3LYP/6-311++G(d,p) level), is formed by the interaction of a terminal carbon of C3 with a hydrogen in H2S. This con-covalent complex displays a band at 2044.1 cm−1 observed via Fourier transform infrared absorption spectroscopy. With the help of the MP2/aug-ccpVDZ level method, this band is assigned to the CC asymmetric vibration mode. When the complex is exposed to UV-visible photons (hν < 5.5 eV) the tricarbon sulfur C3S molecule is identified, based on the appearance of a characteristic CC stretching band at 2047.5 cm−1. Calculated ground-state potential energy surfaces also confirm the concomitant formation of molecular H2. This facile reaction pathway involves an attainable transition state of 174.4 kJ/mol. Conversely, competing lower-energy reaction pathways that would lead to the generation of H2C3S (propadienethione), or C2H2 (acetylene) and CS, involve much more complex, multi-stage pathways, and are not observed experimentally

  15. Evaluation of quality assurance calibration results based on repeated calibrations

    International Nuclear Information System (INIS)

    To ensure quality assurance of the calibration results, as indicated by the UNE-EN ISO / IEC 17025:2005 in paragraph 5.9, the laboratory has established procedures for quality control of its activity. Thus, the laboratory participates in both inter-laboratory intercomparison exercises, cycle through the entire range of radiation qualities reflected in the scope of its accreditation, such as intra-laboratory intercomparison exercises. In this case, repeat quarterly by two different operators both the calibration of an ionization chamber irradiation of a direct reading personal dosimeter.

  16. Automatic Calibration System for 20 kg Weights by Robot and Weight Magazine

    Science.gov (United States)

    Lee, Min-Soo; Kwak, Woon-Young

    This paper presents the method that can calibrate the weights (10 kg 20 kg) automatically by a 3-axis robot, three weight carrier magazines. So the operators do not need to take an effort to align weight on the pan of the balance manually during calibration procedure, and can calibrate the weights automatically during night. The weight calibration system consists of a 3-axis robot, a weight magazine, and operating software to avoid temperature and air flow effect from human. At first the calibration system moves weight on the magazine to the pan of balance. Second measures the mass of the weight, and then moves the weight to the original position on the magazine automatically. This automatic moving method not only avoids the introduction of excess uncertainty, but also improves productivity. Hereafter the similar system can be applied to the calibration of other range weights (1 mg 5 g).

  17. The KLOE Online Calibration System

    Institute of Scientific and Technical Information of China (English)

    E.Pasqualucci

    2001-01-01

    Based on all the features of the KLOE online software,the online calibration system performs current calibration quality checking in real time and starts automatically new calibration procedures when needed.Acalibration manager process controls the system,implementing the interface to the online system,receiving information from the run control and translating its state transitions to a separate state machine.It acts as a " calibration run controller"and performs failure recovery when requested by a set of process checkers.The core of the system is a multi-threaded OO histogram server that receives histogramming commands by remote processes and operates on local ROOT histograms.A client library and C,fortran and C++ application interface libraries allow the user to connect and define his own histogram or read histograms owned by others using an bool-like interface.Several calibration processes running in parallel in a destributed,multiplatform environment can fill the same histograms,allowing fast external information check.A monitor thread allow remote browsing for visual inspection,Pre-filtered data are read in nonprivileged spy mode from the data acquisition system via the Kloe Integrated Dataflow,privileged spy mode from the data acquisiton system via the Kole Integrated Dataflow.The main characteristics of the system are presented.

  18. Quantitative Analysis of Sulfide Minerals by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using Glass Reference Materials with Matrix Normalization Plus Sulfur Internal Standardization Calibration%玻璃标样结合硫内标归一定量技术在激光剥蚀-等离子体质谱分析硫化物矿物中的应用

    Institute of Scientific and Technical Information of China (English)

    袁继海; 詹秀春; 范晨子; 赵令浩; 孙冬阳; 贾泽荣; 胡明月; 蒯丽君

    2012-01-01

    A novel strategy for microanalysis of sulfides by laser ablation (LA)-ICP-MS was established. In this method, the relative sensitivity factor of Ca relative to S in anhydrite mineral reference material was taken as a transition bridge, by which the relative sensitivity factors of interesting elements in glass reference materials relative to Ca could be converted into relative sensitivity factors relative to S by the transition bridge, then the quantitative analysis of multi-elements in sulfide minerals by multi-glass reference materials with matrix normalization plus sulfur internal standardizationcalibration was carried out. 20 elements in the American polymetal sulfide mineral reference material MASS-1 were analyzed using this new method. The relative errors of major elements in MASS-1 were less than 10% ? And the results of trace elements with reference values were nearly within the uncertainty of the preliminary values. Multi-elements in 12 sulfide single minerals were analyzed by applying this new method. The relative errors of the greatest number of major elements were less than 10% , with which the results of most major elements were accurate than those obtained by MASS-1 as calibration standard with matrix normalization plus internal standardization or internal standard calibration. And the results to trace elements agreed well with the calibrated results by MASS-1 with matrix normalization plus internal standardization or internal standard calibration. This method overcomes the problem of non-matrix matched standards, enables to accurately determine the major composition of sulfur in sulfide minerals and suggests a new approach for analysis of sulfide minerals.%以硬石膏矿物标样中Ca相对于S的灵敏度因子为基准,将玻璃标样中主量和痕量元素相对于Ca的灵敏度因子转换成元素相对于S的灵敏度因子,建立了多玻璃标样结合硫内标归一定量技术分析硫化物单矿物多元素的新方法.利用本方法

  19. Testing the precision optical calibration module for PINGU

    International Nuclear Information System (INIS)

    The Precision IceCube Next Generation Upgrade (PINGU) is primarily designed to determine the neutrino mass hierarchy. This measurement requires an accurate calibration of the detector in order to reduce systematic uncertainties. The Precision Optical Calibration Modules (POCAM) will be placed in the detector as a well calibrated artificial light source in the ice. The POCAM will be enclosed in a glass sphere identical to those used for the detector modules. To construct and simulate a prototype of the POCAM, every component needs to be analyzed by their optical characteristics and by the behavior in temperatures down to -50 C. Therefore a highly shielded an isolated environment has to be build up. We report the status of the testing environment and the hardware selected.

  20. An indigenous cluster beam apparatus with a reflectron time-of-flight mass spectrometer

    Indian Academy of Sciences (India)

    G Raina; G U Kulkarni; R T Yadav; V S Ramamurthy; C N R Rao

    2000-04-01

    The design and fabrication of a Smalley-type cluster source in combination with a reflectron based time-of-flight (TOF) mass spectrometer are reported. The generation of clusters is based on supersonic jet expansion of the sampling plume. Sample cells for both liquid and solid targets developed for this purpose are described. Two pulsed Nd-YAG lasers are used in tandem, one (532 nm) for target vapourization and the other (355 nm) for cluster ionization. Methanol clusters of nuclearity up to 14 (mass 500 amu) were produced from liquid methanol as the test sample. The clusters were detected with a mass resolution of ~ 2500 in the R-TOF geometry. Carbon clusters up to a nuclearity of 28 were obtained using a polyimide target. The utility of the instrument is demonstrated by carrying out experiments to generate mixed clusters from alcohol mixtures.

  1. Facility for dosimetric instrument calibration

    International Nuclear Information System (INIS)

    A structure is designed consisting of a rotary support of containers with radiation sources and of a rotary plug mounted above the sources. A support post with a slide rest and arms rotating around the post longitudinal axis is mounted in the centre of the container support. THe arms support instruments to be calibrated. The colimation cone of the respective source is directed to the tensor of the instrument being calibrated. The slide rest is balanced using a counterpoise mounted in the support post. Sources are not removed from the containers in source change during measurement. The support can hold more containers and the slide rest can support more instruments to be calibrated than the existing configurations. (M.D.). 2 figs

  2. Radiation protection dosimetry and calibrations

    International Nuclear Information System (INIS)

    At the SCK-CEN different specialised services are delivered for a whole range of external and internal customers in the radiation protection area. For the expertise group of radiation protection dosimetry and calibrations, these services are organized in four different laboratories: dosimetry, anthropogammametry, nuclear calibrations and non-nuclear calibrations. The services are given by a dedicated technical staff who has experience in the handling of routine and specialised cases. The scientific research that is performed by the expertise group makes sure that state-of-the-art techniques are being used, and that constant improvements and developments are implemented. Quality Assurance is an important aspect for the different services, and accreditation according national and international standards is achieved for all laboratories

  3. Optimal calibration of nuclear instrumentation

    International Nuclear Information System (INIS)

    Accurate knowledge of core power level is essential for the safe and efficient operation of nuclear power plants. Ionization chambers located outside the reactor core have the necessary reliability and response time characteristics and have been used extensively to indicate power level. The calibration of the ion chamber, and associated nuclear instrumentation (NI), has traditionally been based on the thermal power in the secondary coolant system. The usual NI calibration procedure consists of establishing steady-state operating conditions, calorimetrically determining the power at the secondary side of the steam generator, and adjusting the NI output to correspond to the measured thermal power. This study addresses certain questions including; (a) what sampling rate should be employed, (b) how many measurements are required, and (c) how can additional power level related information such as primary coolant loop measurements and knowledge of plant dynamics be included in the calibration procedure

  4. The Third VLBA Calibrator Survey

    CERN Document Server

    Petrov, L A; Fomalont, E; Gordon, D

    2005-01-01

    This paper presents the third extension to the Very Large Baseline Array (VLBA) Calibrator Survey, containing 360 new sources not previously observed with very long baseline interferometry (VLBI). The survey, based on three 24 hour VLBA observing sessions, fills the areas on the sky above declination -45 deg where the calibrator density is less than one source within a 4 deg radius disk at any given direction. The positions were derived from astrometric analysis of the group delays determined at 2.3 and 8.4 GHz frequency bands using the Calc/Solve package. The VCS3 catalogue of source positions, plots of correlated flux density versus the length of projected baseline, contour plots and fits files of naturally weighted CLEAN images as well as calibrated visibility function files are available on the Web at http://gemini.gsfc.nasa.gov/vcs3

  5. Power calibrations for TRIGA reactors

    International Nuclear Information System (INIS)

    The purpose of this paper is to establish a framework for the calorimetric power calibration of TRIGA reactors so that reliable results can be obtained with a precision better than ± 5%. Careful application of the same procedures has produced power calibration results that have been reproducible to ± 1.5%. The procedures are equally applicable to the Mark I, Mark II and Mark III reactors as well as to reactors having much larger reactor tanks and to TRIGA reactors capable of forced cooling up to 3 MW in some cases and 15 MW in another case. In the case of forced cooled TRIGA reactors, the calorimetric power calibration is applicable in the natural convection mode for these reactors using exactly the same procedures as are discussed below for the smaller TRIGA reactors (< 2 MW)

  6. Performance standard for dose Calibrator

    CERN Document Server

    Darmawati, S

    2002-01-01

    Dose calibrator is an instrument used in hospitals to determine the activity of radionuclide for nuclear medicine purposes. International Electrotechnical Commission (IEC) has published IEC 1303:1994 standard that can be used as guidance to test the performance of the instrument. This paper briefly describes content of the document,as well as explains the assessment that had been carried out to test the instrument accuracy in Indonesia through intercomparison measurement.Its is suggested that hospitals acquire a medical physicist to perform the test for its dose calibrator. The need for performance standard in the form of Indonesia Standard is also touched.

  7. Standard practice for torque calibration of testing machines and devices

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice covers procedures and requirements for the calibration of torque for static and quasi-static torque capable testing machines or devices. These may, or may not, have torque indicating systems and include those devices used for the calibration of hand torque tools. Testing machines may be calibrated by one of the three following methods or combination thereof: 1.1.1 Use of standard weights and lever arms. 1.1.2 Use of elastic torque measuring devices. 1.1.3 Use of elastic force measuring devices and lever arms. 1.1.4 Any of the methods require a specific uncertainty of measurement and a traceability derived from national standards of mass and length. 1.2 The procedures of 1.1.1, 1.1.2, and 1.1.3 apply to the calibration of the torque-indicating systems associated with the testing machine, such as a scale, dial, marked or unmarked recorder chart, digital display, etc. In all cases the buyer/owner/user must designate the torque-indicating system(s) to be calibrated and included in the repor...

  8. Calibration of working standard ionization chambers and dose standardization

    International Nuclear Information System (INIS)

    Measurements were performed for the calibration of two working standard ionization chambers in the secondary standard dosimetry laboratory of Sudan. 600 cc cylindrical former type and 1800 cc cylindrical radical radiation protection level ionization chambers were calibrated against 1000 cc spherical reference standard ionization chamber. The chamber were calibrated at X-ray narrow spectrum series with beam energies ranged from (33-116 KeV) in addition to 1''3''7''Cs beam with 662 KeV energy. The chambers 0.6 cc and 0.3 cc therapy level ionization were used for dose standardization and beam output calibrations of cobalt-60 radiotherapy machine located at the National Cancer Institute, University of Gazira. Concerning beam output measurements for 6''0''Co radiotherapy machine, dosimetric measurements were performed in accordance with the relevant per IAEA dosimetry protocols TRS-277 and TRS-398. The kinetic energy released per unit mass in air (air kerma) were obtained by multiplying the corrected electrometer reading (nC/min) by the calibration factors (Gy/n C) of the chambers from given in the calibration certificate. The uncertainty of measurements of air kerma were calculated for the all ionization chambers (combined uncertainty) the calibration factors of these ionization chambers then were calculated by comparing the reading of air kerma of secondary standard ionization chambers to than from radical and farmer chambers. The result of calibration working standard ionization chambers showed different calibration factors ranged from 0.99 to 1.52 for different radiation energies and these differences were due to chambers response and specification. The absorbed dose to to water calculated for therapy ionization chamber using two code of practice TRS-277 and TRS-398 as beam output for 6''0''Co radiotherapy machine and it can be used as a reference for future beam output calibration in radiotherapy dosimetry. The measurement of absorbed dose to water showed that the

  9. CMR Shuffler System: Passive Mode Calibration and Certification Report

    Energy Technology Data Exchange (ETDEWEB)

    Frame, Katherine C. [Los Alamos National Laboratory; Gomez, Cipriano D. [Retired CMR-OPS: OPERATIONS; Salazar, William R. [Los Alamos National Laboratory; Mayo, Douglas R. [Los Alamos National Laboratory; Vigil, Georgiana M. [Los Alamos National Laboratory; Crooks, William J. [Los Alamos National Laboratory; Stange, Sy [Los Alamos National Laboratory

    2012-07-20

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. As debris is removed from the vessels, material will be placed in waste drums. Far-field gamma ray assay will be used to determine when a drum is nearing a {sup 239}Pu equivalent mass of less than 200 g. The drum will then be assayed using a waste drum shuffler operated in passive mode using a neutron coincidence counting method for accountability. This report focuses on the testing and calibration of the CMR waste drum shuffler in passive mode operation. Initial testing was performed to confirm previously accepted measurement parameters. The system was then calibrated using a set of weapons grade Pu (WGPu, {sup 239}Pu > 93%) oxide standards placed inside a 55 gallon drum. The calibration data ranges from Pu mass of 0.5 g to 188.9 g. The CMR waste drum shuffler has been tested and calibrated in passive mode in preparation for safeguards accountability measurements of waste drums containing material removed from CVs for the CVD project.

  10. Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II)

    Science.gov (United States)

    McLean, Noah M.; Condon, Daniel J.; Schoene, Blair; Bowring, Samuel A.

    2015-09-01

    A statistical approach to evaluating uncertainties in the calibration of multi-element isotopic tracers has been developed and applied to determining the isotopic composition of mixed U-Pb (202 Pb-205 Pb-233 U-235 U) tracers used for accurate isotope dilution U-Pb geochronology. Our experiment, part of the EARTHTIME initiative, directly links the tracer calibration to first-principles measurements of mass and purity that are all traceable to SI units, thereby quantifying the accuracy and precision of U-Pb dates in absolute time. The calibration incorporates new more accurate and precise purity measurements for a number of commonly used Pb and U reference materials, and requires inter-relating their isotopic compositions and uncertainties. Similar methods can be used for other isotope systems that utilize multiple isotopic standards for calibration purposes. We also detail the inter-calibration of three publicly available U-Pb gravimetric solutions, which can be used to bring the same first-principles traceability to in-house U-Pb tracers from other laboratories. Accounting for uncertainty correlations in the tracer isotope ratios yields a tracer calibration contribution to the relative uncertainty of a 206 Pb/238 U date that is only half of the relative uncertainty in the 235 U/205 Pb ratio of the tracer, which was historically used to approximate the tracer related uncertainty contribution to 206 Pb/238 U dates. The tracer uncertainty contribution to 206 Pb/238 U dates has in this way been reduced to <300 ppm when using the EARTHTIME and similarly calibrated tracers.

  11. Uniformity calibration for ICT image

    International Nuclear Information System (INIS)

    The uniformity of ICT image is impaired by beam hardening and the inconsistency of detector units responses. The beam hardening and the nonlinearity of the detector's output have been analyzed. The correction factors are determined experimentally by the detector's responses with different absorption length. The artifacts in the CT image of a symmetrical aluminium cylinder have been eliminated after calibration. (author)

  12. Measurement System and Calibration report

    DEFF Research Database (Denmark)

    Vesth, Allan; Kock, Carsten Weber

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...

  13. Measurement System and Calibration report

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Villanueva, Héctor

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this report...

  14. Scalar Calibration of Vector Magnetometers

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter; Primdahl, Fritz;

    2000-01-01

    The calibration parameters of a vector magnetometer are estimated only by the use of a scalar reference magnetometer. The method presented in this paper differs from those previously reported in its linearized parametrization. This allows the determination of three offsets or signals in the absence...

  15. Autonomous Attitude Sensor Calibration (ASCAL)

    Science.gov (United States)

    Peterson, Chariya; Rowe, John; Mueller, Karl; Ziyad, Nigel

    1998-01-01

    In this paper, an approach to increase the degree of autonomy of flight software is proposed. We describe an enhancement of the Attitude Determination and Control System by augmenting it with self-calibration capability. Conventional attitude estimation and control algorithms are combined with higher level decision making and machine learning algorithms in order to deal with the uncertainty and complexity of the problem.

  16. Reliability-Based Code Calibration

    DEFF Research Database (Denmark)

    Faber, M.H.; Sørensen, John Dalsgaard

    2003-01-01

    The present paper addresses fundamental concepts of reliability based code calibration. First basic principles of structural reliability theory are introduced and it is shown how the results of FORM based reliability analysis may be related to partial safety factors and characteristic values...

  17. Recommended Inorganic Chemicals for Calibration.

    Science.gov (United States)

    Moody, John R.; And Others

    1988-01-01

    All analytical techniques depend on the use of calibration chemicals to relate analyte concentration to instrumental parameters. Discusses the preparation of standard solutions and provides a critical evaluation of available materials. Lists elements by group and discusses the purity and uses of each. (MVL)

  18. Calibration of personnel dose meters

    International Nuclear Information System (INIS)

    Methods of calibrating both film and thermoluminescent dose meters (TLD) to photon and electron radiations are described. K fluorescent X-rays, heavily filtered X-ray beams, and isotope gamma rays are used at the Los Alamos calibration facility to measure the energy and angular response of radiation detectors over a photon energy range of 10 to 1000keV. Beam spectra, alignment, size and uniformity are discussed. The energy and angular response of dose meters to electrons is measured with beta-emitting isotopes varying in maximum energy from 770 to 2300keV. A free-air ionization chamber is the primary standard used in the measurement of photon radiation. Thimble-sized ionization chambers, calibrated to the free-air chamber, serve as secondary standards. Electron radiation is measured with an end-window ionization chamber having a 7mg/cm2 approximately tissue-equivalent plastic wall. Photon calibrations are performed with personnel dose meters in air, on a phantom, and in a phantom. If the personnel dose meter and secondary chamber are both in air, or both on or both in a phantom, the response of the LiF TLD chip, relative to the secondary chamber, is the same. However, the film dose meter shows a larger relative response on or in the phantom than in air. With beta sources, personnel dose meters are calibrated by exposing the dose meter either in air to a high-dose-rate 90Sr (90Y) source, or in contact with a low-dose-rate uranium source. The differences in personnel dose meter response observed between the two methods are discussed. The personnel dose meters are calibrated to determine penetrating doses by placing the secondary chamber 1cm deep in a phantom and the personnel dose meter on the surface, with a filter over the TLD to simulate 1cm depth. Non-penetrating dose calibrations are measured by placing both chamber and dose meter on the surface of the phantom. (author)

  19. Approaching a Physical Calibration of the AGB Phase

    Science.gov (United States)

    Marigo, Paola

    2015-08-01

    The widespread impact of Asymptotic Giant Branch (AGB) stars on the observed properties of galaxies is universally accepted. Despite their importance, severe uncertainties plague AGB models and propagate through to current population synthesis studies of galaxies, undermining the interpretation of a galaxy's basic properties (mass, age, chemical evolution, dust budget). The only reliable path forward is to apply a physically-sound calibration of AGB stellar models in which all main physical processes and their interplay are taken into account (e.g., mixing, mass loss, nucleosynthesis, pulsation, molecular chemistry, dust formation). In this context, I will review recent and ongoing efforts to calibrate the evolution of AGB stars, which combine an all-round theoretical approach anchored by stellar physics with exceptionally high quality data of resolved AGB stars in the Milky Way and nearby galaxies.

  20. Mathematical efficiency calibration in gamma spectroscopy

    CERN Document Server

    Kaminski, S; Wilhelm, C

    2003-01-01

    Mathematical efficiency calibration with the LabSOCS software was introduced for two detectors in the measurement laboratory of the Central Safety Department of Forschungszentrum Karlsruhe. In the present contribution, conventional efficiency calibration of gamma spectroscopy systems and mathematical efficiency calibration with LabSOCS are compared with respect to their performance, uncertainties, expenses, and results. It is reported about the experience gained, and the advantages and disadvantages of both methods of efficiency calibration are listed. The results allow the conclusion to be drawn that mathematical efficiency calibration is a real alternative to conventional efficiency calibration of gamma spectroscopy systems as obtained by measurements of mixed gamma ray standard sources.

  1. Sources of uncertainty in vicarious calibration: understanding calibration target reflectance

    OpenAIRE

    Anderson, K.; Milton, E. J.; Rollin, E.M.

    2003-01-01

    A field experiment investigated the hypothesis that the nadir reflectance of calibration surface substrates (asphalt and concrete) remains stable over a range of time-scales. Measurable differences in spectral reflectance factors were found over periods as short as 30 minutes. Multi-date reflectance measurements were compared using ANOVA and found to differ significantly (p = 0.001). Surface reflectance showed a relationship with the relative proportion of diffuse irradiance, over periods ...

  2. Extracting the MESA SR4000 calibrations

    Science.gov (United States)

    Charleston, Sean A.; Dorrington, Adrian A.; Streeter, Lee; Cree, Michael J.

    2015-05-01

    Time-of-flight range imaging cameras are capable of acquiring depth images of a scene. Some algorithms require these cameras to be run in `raw mode', where any calibrations from the off-the-shelf manufacturers are lost. The calibration of the MESA SR4000 is herein investigated, with an attempt to reconstruct the full calibration. Possession of the factory calibration enables calibrated data to be acquired and manipulated even in "raw mode." This work is motivated by the problem of motion correction, in which the calibration must be separated into component parts to be applied at different stages in the algorithm. There are also other applications, in which multiple frequencies are required, such as multipath interference correction. The other frequencies can be calibrated in a similar way, using the factory calibration as a base. A novel technique for capturing the calibration data is described; a retro-reflector is used on a moving platform, which acts as a point source at a distance, resulting in planar waves on the sensor. A number of calibrations are retrieved from the camera, and are then modelled and compared to the factory calibration. When comparing the factory calibration to both the "raw mode" data, and the calibration described herein, a root mean squared error improvement of 51:3mm was seen, with a standard deviation improvement of 34:9mm.

  3. Radiometric Calibration of Osmi Imagery Using Solar Calibration

    Science.gov (United States)

    Lee, Dong-Han; Kim, Yong-Seung

    2000-12-01

    OSMI (Ocean Scanning Multi-Spectral Imager) raw image data (Level 0) were acquired and radiometrically corrected. We have applied two methods, using solar & dark calibration data from OSMI sensor and comparing with the SeaWiFS data, to the radiometric correction of OSMI raw image data. First, we could get the values of the gain and the offset for each pixel and each band from comparing the solar & dark calibration data with the solar input radiance values, calculated from the transmittance, BRDF (Bidirectional Reflectance Distribution Function) and the solar incidence angle (¥â,¥è) of OSMI sensor. Applying this calibration data to OSMI raw image data, we got the two odd results, the lower value of the radiometric corrected image data than the expected value, and the Venetian Blind Effect in the radiometric corrected image data. Second, we could get the reasonable results from comparing OSMI raw image data with the SeaWiFS data, and get a new problem of OSMI sensor.

  4. Calibration and Validation of Measurement System

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Riemann, Sven; Knapp, Wilfried

    The report deals with the calibration of the measuring equipment on board the Wave Dragon, Nissum Bredning prototype.......The report deals with the calibration of the measuring equipment on board the Wave Dragon, Nissum Bredning prototype....

  5. Attitude Sensor and Gyro Calibration for Messenger

    Science.gov (United States)

    O'Shaughnessy, Daniel; Pittelkau, Mark E.

    2007-01-01

    The Redundant Inertial Measurement Unit Attitude Determination/Calibration (RADICAL(TM)) filter was used to estimate star tracker and gyro calibration parameters using MESSENGER telemetry data from three calibration events. We present an overview of the MESSENGER attitude sensors and their configuration is given, the calibration maneuvers are described, the results are compared with previous calibrations, and variations and trends in the estimated calibration parameters are examined. The warm restart and covariance bump features of the RADICAL(TM) filter were used to estimate calibration parameters from two disjoint telemetry streams. Results show that the calibration parameters converge faster with much less transient variation during convergence than when the filter is cold-started at the start of each telemetry stream.

  6. Automated Calibration of Dosimeters for Diagnostic Radiology

    International Nuclear Information System (INIS)

    Calibration of dosimeters for diagnostic radiology includes current and charge measurements, which are often repetitive. However, these measurements are usually done using modern electrometers, which are equipped with an RS-232 interface that enables instrument control from a computer. This paper presents an automated system aimed to the measurements for the calibration of dosimeters used in diagnostic radiology. A software application was developed, in order to achieve the acquisition of the electric charge readings, measured values of the monitor chamber, calculation of the calibration coefficient and issue of a calibration certificate. A primary data record file is filled and stored in the computer hard disk. The calibration method used was calibration by substitution. With this system, a better control over the calibration process is achieved and the need for human intervention is reduced. the automated system will be used in the calibration of dosimeters for diagnostic radiology at the Cuban Secondary Standard Dosimetry Laboratory of the Center for Radiation Protection and Hygiene. (Author)

  7. Automatic calibration system for pressure transducers

    Science.gov (United States)

    1968-01-01

    Fifty-channel automatic pressure transducer calibration system increases quantity and accuracy for test evaluation calibration. The pressure transducers are installed in an environmental tests chamber and manifolded to connect them to a pressure balance which is uniform.

  8. Quality control for dose calibrators

    International Nuclear Information System (INIS)

    Nuclear medicine laboratories are required to assay samples of radioactivity to be administered to patients. Almost universally, these assays are accomplished by use of a well ionization chamber isotope calibrator. The Instituto de Radioprotecao e Dosimetria (Institute for Radiological Protection and Dosimetry) of the Comissao Nacional de Energia Nuclear (National Commission for Nuclear Energy) is carrying out a National Quality Control Programme in Nuclear Medicine, supported by the International Atomic Energy Agency. The assessment of the current needs and practices of quality control in the entire country of Brazil includes Dose Calibrators and Scintillation Cameras, but this manual is restricted to the former. Quality Control Procedures for these Instruments are described in this document together with specific recommendations and assessment of its accuracy. (author)

  9. Spinning angle optical calibration apparatus

    Science.gov (United States)

    Beer, Stephen K.; Pratt, II, Harold R.

    1991-01-01

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.

  10. Mass analysis of cesium ion induced fragmentation of C/sub 60/

    International Nuclear Information System (INIS)

    Results of Cs ion induced C/sub 60/ fragmentation in source of negative ions by cesium sputtering (SNICS) from 5 MeV Tandem accelerator are presented. The mass analysis was performed from bending magnet. Mass spectra of C/sub 60/ fragments are compared with that of graphite under similar conditions. Yield of carbon clusters for both cases is plotted for Cs ion energy range of 2-5 keV. It is observed that heavier clusters appear in the case of C/sub 60/. Intensity of C/sub 2/ is much higher in comparison with other clusters for both C/sub 60/ and graphite due to difference in their bond energies. Prominence of C/sub 2/ yield confirms formation mechanism of C/sub 60/ by addition of C/sub 2/ route. (author)

  11. Sky camera geometric calibration using solar observations

    OpenAIRE

    Urquhart, B.; Kurtz, B; J. Kleissl

    2016-01-01

    A camera model and associated automated calibration procedure for stationary daytime sky imaging cameras is presented. The specific modeling and calibration needs are motivated by remotely deployed cameras used to forecast solar power production where cameras point skyward and use 180° fisheye lenses. Sun position in the sky and on the image plane provides a simple and automated approach to calibration; special equipment or calibration patterns are not required. Sun positio...

  12. Binary Classifier Calibration: Non-parametric approach

    OpenAIRE

    Naeini, Mahdi Pakdaman; Cooper, Gregory F.; Hauskrecht, Milos

    2014-01-01

    Accurate calibration of probabilistic predictive models learned is critical for many practical prediction and decision-making tasks. There are two main categories of methods for building calibrated classifiers. One approach is to develop methods for learning probabilistic models that are well-calibrated, ab initio. The other approach is to use some post-processing methods for transforming the output of a classifier to be well calibrated, as for example histogram binning, Platt scaling, and is...

  13. WCDMA User Equipment Output Power Calibration

    OpenAIRE

    Folkeson, Tea

    2003-01-01

    To save time in Flextronics high volume production, the time for test and calibration of mobile telephones need to be as short and accurate as possible. In the wideband code division multiple access (WCDMA) case, the output power calibration is the most critical calibration concerning accuracy. The aim with this thesis was to find a faster calibration method than the one that exists today and still retain accuracy. The Third Generation Partnership Project (3GPP) outlines the requirements of ...

  14. GREAT/SOFIA atmospheric calibration

    OpenAIRE

    Guan, Xin; Stutzki, Jürgen; Graf, Urs U.; Güsten, Rolf; Okada, Yoko; Torres, Miguel Angel Requena; Simon, Robert; Wiesemeyer, Helmut

    2012-01-01

    The GREAT observations need frequency-selective calibration across the passband for the residual atmospheric opacity at flight altitude. At these altitudes the atmospheric opacity has both narrow and broad spectral features. To determine the atmospheric transmission at high spectral resolution, GREAT compares the observed atmospheric emission with atmospheric model predictions, and therefore depends on the validity of the atmospheric models. We discusse the problems identified in this compari...

  15. Automated Camera Array Fine Calibration

    Science.gov (United States)

    Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang

    2008-01-01

    Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.

  16. Colour calibration for colour reproduction

    OpenAIRE

    Emmel, P.; R. D. Hersch

    2000-01-01

    Due to the proliferation of low-cost colour devices (digital colour cameras, scanners, printers etc.) during the last few years, colour calibration has become an important issue. Such devices should faithfully reproduce colour images, but experience shows they don't. Among the main reasons, we note the diversity of acquisition, display and printing technologies which makes standardization difficult. Each device has a different gamut, i.e. a different set of colours that it can acquire or repr...

  17. ASCAL: Autonomous Attitude Sensor Calibration

    Science.gov (United States)

    Peterson, Chariya; Rowe, John; Mueller, Karl; Ziyad, Nigel

    1999-01-01

    Abstract In this paper, an approach to increase the degree of autonomy of flight software is proposed. We describe an enhancement of the Attitude Determination and Control System by augmenting it with self-calibration capability. Conventional attitude estimation and control algorithms are combined with higher level decision making and machine learning algorithms in order to deal with the uncertainty and complexity of the problem.

  18. Calibrating thermal behavior of electronics

    Science.gov (United States)

    Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.

    2016-05-31

    A method includes determining a relationship between indirect thermal data for a processor and a measured temperature associated with the processor, during a calibration process, obtaining the indirect thermal data for the processor during actual operation of the processor, and determining an actual significant temperature associated with the processor during the actual operation using the indirect thermal data for the processor during actual operation of the processor and the relationship.

  19. PACS photometer calibration block analysis

    CERN Document Server

    Moór, A; Kiss, Cs; Balog, Z; Billot, N; Marton, G

    2013-01-01

    The absolute stability of the PACS bolometer response over the entire mission lifetime without applying any corrections is about 0.5% (standard deviation) or about 8% peak-to-peak. This fantastic stability allows us to calibrate all scientific measurements by a fixed and time-independent response file, without using any information from the PACS internal calibration sources. However, the analysis of calibration block observations revealed clear correlations of the internal source signals with the evaporator temperature and a signal drift during the first half hour after the cooler recycling. These effects are small, but can be seen in repeated measurements of standard stars. From our analysis we established corrections for both effects which push the stability of the PACS bolometer response to about 0.2% (stdev) or 2% in the blue, 3% in the green and 5% in the red channel (peak-to-peak). After both corrections we still see a correlation of the signals with PACS FPU temperatures, possibly caused by parasitic h...

  20. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  1. Model Calibration in Watershed Hydrology

    Science.gov (United States)

    Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh

    2009-01-01

    Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.

  2. Calibration of RB reactor power

    International Nuclear Information System (INIS)

    The first and only calibration of RB reactor power was done in 1962, and the obtained calibration ratio was used irrespective of the lattice pitch and core configuration. Since the RB reactor is being prepared for operation at higher power levels it was indispensable to reexamine the calibration ratio, estimate its dependence on the lattice pitch, critical level of heavy water and thickness of the side reflector. It was necessary to verify the reliability of control and dosimetry instruments, and establish neutron and gamma dose dependence on reactor power. Two series of experiments were done in June 1976. First series was devoted to tests of control and dosimetry instrumentation and measurements of radiation in the RB reactor building dependent on reactor power. Second series covered measurement of thermal and epithermal neuron fluxes in the reactor core and calculation of reactor power. Four different reactor cores were chosen for these experiments. Reactor pitches were 8, 8√2, and 16 cm with 40, 52 and 82 fuel channels containing 2% enriched fuel. Obtained results and analysis of these results are presented in this document with conclusions related to reactor safe operation

  3. A Numerical Simulator for Noise Calibration Studies

    OpenAIRE

    Racette, Paul; Clune, Tom; Wong, Mark; Walker, David; Coakley, Kevin; Splett, Jolene; Rivers, Derick; Leonard, Robert; Boone, Ed

    2012-01-01

    Frequent calibration using noise references is used to reduce the effects of time varying fluctuations that naturally occur within sensitive radiometer receivers. Over the years, calibration architectures and processing algorithms have become more sophisticated. Predicting the performance of a given calibration architecture often requires expensive prototyping of hardware; optimizing processing algorithms for nonstationary fluctuations is a challenge. Measurement uncertainty is a figure of me...

  4. 48 CFR 908.7113 - Calibration services.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Calibration services. 908... ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of Special Items 908.7113 Calibration services. Orders for calibration services may be placed with the National Institute of...

  5. MODIS Radiometric Calibration and Uncertainty Assessment

    Science.gov (United States)

    Xiong, Xiaoxiong; Chiang, Vincent; Sun, Junqiang; Wu, Aisheng

    2011-01-01

    Since launch, Terra and Aqua MODIS have collected more than II and 9 years of datasets for comprehensive studies of the Earth's land, ocean, and atmospheric properties. MODIS observations are made in 36 spectral bands: 20 reflective solar bands (RSB) and 16 thermal emissive bands (TEB). Compared to its heritage sensors, MODIS was developed with very stringent calibration and uncertainty requirements. As a result, MODIS was designed and built with a set of state of the art on-board calibrators (OBC), which allow key sensor performance parameters and on-orbit calibration coefficients to be monitored and updated if necessary. In terms of its calibration traceability, MODIS RSB calibration is reflectance based using an on-board solar diffuser (SD) and the TEB calibration is radiance based using an on-board blackbody (BB). In addition to on-orbit calibration coefficients derived from its OBC, calibration parameters determined from sensor pre-launch calibration and characterization are used in both the RSB and TEB calibration and retrieval algorithms. This paper provides a brief description of MODIS calibration methodologies and discusses details of its on-orbit calibration uncertainties. It assesses uncertainty contributions from individual components and differences between Terra and Aqua MODIS due to their design characteristics and on-orbit periormance. Also discussed in this paper is the use of MODIS LIB uncertainty index CUI) product.

  6. Net analyte signal calculation for multivariate calibration

    NARCIS (Netherlands)

    Ferre, J.; Faber, N.M.

    2003-01-01

    A unifying framework for calibration and prediction in multivariate calibration is shown based on the concept of the net analyte signal (NAS). From this perspective, the calibration step can be regarded as the calculation of a net sensitivity vector, whose length is the amount of net signal when the

  7. Calibration of a total body potassium monitor with an anthropomorphic phantom

    Science.gov (United States)

    Hansen, R. D.; Allen, B. J.

    1996-11-01

    An anthropomorphic phantom was used to calibrate a supine geometry sodium iodide total body potassium monitor. Correction factors accommodating variability in subject size were empirically determined. Measurements on 12 males of weight 45 - 96 kg, height 161 - 184 cm and 18 females of weight 48 - 89 kg, height 153 - 175 cm, showed that the calibration factor was significantly correlated (r = 0.88, p , indicating comparable accuracy to -based calibration procedures. Fat-free mass determined from the potassium measurements of 16 subjects correlated significantly with fat-free mass estimated from skinfold thickness (r = 0.98, p bioimpedance analysis (r = 0.98, p -based methods of calibrating total body potassium monitors.

  8. Calibration of a total body potassium monitor with an anthropomorphic phantom

    International Nuclear Information System (INIS)

    An anthropomorphic phantom was used to calibrate a supine geometry sodium iodide total body potassium monitor. Correction factors accommodating variability in subject size were empirically determined. Measurements on 12 males of weight 45-96 kg, height 161-184 cm and 18 females of weight 48-89 kg, height 153-175 cm, showed that the 40K calibration factor (F,countss-1(gofpotassium)-1 was significantly correlated (r=0.88, p0.5, indicating comparable accuracy to 42K-based calibration procedures. Fat-free mass determined from the potassium measurements of 16 subjects correlated significantly with fat-free mass estimated from skinfold thickness (r=0.98, p42K-based methods of calibrating total body potassium monitors. (author)

  9. Calibration of a total body potassium monitor with an anthropometric phantom

    International Nuclear Information System (INIS)

    Full text: An anthropomorphic phantom was used to calibrate a supine geometry sodium iodide total body potassium monitor. Correction factors accommodating variability in subject size were empirically determined. Measurements on 10 males of weight 59-96 kg, height 161-184 cm and 12 females of weight 58-89 kg, height 153-175 cm, showed that the 40K calibration factor [F counts s-1 (g of potassium)-1] was significantly correlated (r=0.82, p0.5, indicating comparable accuracy to 42K-based calibration procedures. Fat-free mass determined from the potassium measurements of 16 subjects correlated significantly with fat-free mass estimated from skinfold thickness (r=0.98, p42K-based methods of calibrating total body potassium monitors

  10. Neutrino masses

    CERN Document Server

    Buccella, F

    2004-01-01

    By requiring the lower limit for the lightest right-handed neutrino mass, obtained in the baryogenesis from leptogenesis scenario, and a Dirac neutrino mass matrix similar to the up-quark mass matrix we predict small values for the $\

  11. Calibration of nuclear medicine gamma counters

    International Nuclear Information System (INIS)

    In this paper the practical problem of nuclear medicine gamma counters calibration has been solved by using dose calibrators CRC-15R with standard error ±5%. The samples from technetium generators have been measured both by dose calibrators CRC-15R and gamma counter ICN Gamma 3.33 taking into account decay correction. Only the linear part of the curve has practical meaning. The advantage of this procedure satisfies the requirements from international standards: the calibration of sources used for medical exposure be traceable to a standard dosimetry laboratory and radiopharmaceuticals for nuclear medicine procedures be calibrated in terms of activity of the radiopharmaceutical to be administered. (author)

  12. Borexino calibrations: Hardware, Methods, and Results

    CERN Document Server

    Back, H; Benziger, J; Bick, D; Bonfini, G; Bravo, D; Avanzini, M Buizza; Caccianiga, B; Cadonati, L; Calaprice, F; Carraro, C; Cavalcante, P; Chavarria, A; D'Angelo, D; Davini, S; Derbin, A; Etenko, A; von Feilitzsch, F; Fernandes, G; Fomenko, K; Franco, D; Galbiati, C; Gazzana, S; Ghiano, C; Giammarchi, M; Goeger-Neff, M; Goretti, A; Grandi, L; Guardincerri, E; Hardy, S; Ianni, Aldo; Ianni, Andrea; Kayunov, A; Kidner, S; Kobychev, V; Korablev, D; Korga, G; Koshio, Y; Kryn, D; Laubenstein, M; Lewke, T; Litvinovich, E; Loer, B; Lombardi, F; Lombardi, P; Ludhova, L; Machulin, I; Manecki, S; Maneschg, W; Manuzio, G; Meindl, Q; Meroni, E; Miramonti, L; Misiaszek, M; Montanari, D; Mosteiro, P; Muratova, V; Oberauer, L; Obolensky, M; Ortica, F; Otis, K; Pallavicini, M; Papp, L; Perasso, L; Perasso, S; Pocar, A; Raghavan, R S; Ranucci, G; Razeto, A; Re, A; Romani, A; Rossi, N; Rountree, D; Sabelnikov, A; Saldanha, R; Salvo, C; Schonert, S; Simgen, H; Skorokhvatov, M; Smirnov, O; Sotnikov, A; Sukhotin, S; Suvorov, Y; Tartaglia, R; Testera, G; Vignaud, D; Vogelaar, R B; Winter, J; Wojcik, M; Wright, A; Wurm, M; Xu, J; Zaimidoroga, O; Zavatarelli, S; Zuzel, G

    2012-01-01

    Borexino was the first experiment to detect solar neutrinos in real-time in the sub-MeV region. In order to achieve high precision in the determination of neutrino rates, the detector design includes an internal and an external calibration system. This paper describes both calibration systems and the calibration campaigns that were carried out in the period between 2008 and 2011. We discuss some of the results and show that the calibration procedures preserved the radiopurity of the scintillator. The calibrations provided a detailed understanding of the detector response and led to a significant reduction of the systematic uncertainties in the Borexino measurements.

  13. Calibration of detector sensitivity in positron cameras

    International Nuclear Information System (INIS)

    An improved method for calibrating detector sensitivities in a positron camera has been developed. The calibration phantom is a cylinder of activity placed near the center of the camera and fully within the field of view. The calibration data is processed in such a manner that the following two important properties are achieved. The estimate of a detector sensitivity is unaffected by the sensitivities of the other detectors. The estimates are insensitive to displacements of the calibrating phantom from the camera center. Both of these properties produce a more accurate detector calibration

  14. ATLAS calorimeters energy calibration for jets

    International Nuclear Information System (INIS)

    The calibration of ATLAS barrel calorimeters (including pre shower system, electromagnetic Liquid Argon calorimeter and scintillating hadron tile calorimeter) was done by standard calibration and weighting technique approaches. The standard calibration gives the bad linearity for hadron non compensated calorimeter. The calibration with weighting technique, in comparison with standard calibration, restores linearity and improves energy resolution up to (σ/E)2 = (38.6%/√E)2 + (1.5%)2 for η 0.6. 6 refs., 4 figs., 1 tab

  15. Extrinsic Calibration of Camera Networks Using a Sphere

    Directory of Open Access Journals (Sweden)

    Junzhi Guan

    2015-08-01

    Full Text Available In this paper, we propose a novel extrinsic calibration method for camera networks using a sphere as the calibration object. First of all, we propose an easy and accurate method to estimate the 3D positions of the sphere center w.r.t. the local camera coordinate system. Then, we propose to use orthogonal procrustes analysis to pairwise estimate the initial camera relative extrinsic parameters based on the aforementioned estimation of 3D positions. Finally, an optimization routine is applied to jointly refine the extrinsic parameters for all cameras. Compared to existing sphere-based 3D position estimators which need to trace and analyse the outline of the sphere projection in the image, the proposed method requires only very simple image processing: estimating the area and the center of mass of the sphere projection. Our results demonstrate that we can get a more accurate estimate of the extrinsic parameters compared to other sphere-based methods. While existing state-of-the-art calibration methods use point like features and epipolar geometry, the proposed method uses the sphere-based 3D position estimate. This results in simpler computations and a more flexible and accurate calibration method. Experimental results show that the proposed approach is accurate, robust, flexible and easy to use.

  16. The Habitable-zone Planet Finder Calibration System

    CERN Document Server

    Halverson, Samuel; Ramsey, Lawrence; Terrien, Ryan; Roy, Arpita; Schwab, Christian; Bender, Chad; Hearty, Fred; Levi, Eric; Osterman, Steve; Ycas, Gabe; Diddams, Scott

    2014-01-01

    We present the design concept of the wavelength calibration system for the Habitable-zone Planet Finder instrument (HPF), a precision radial velocity (RV) spectrograph designed to detect terrestrial-mass planets around M-dwarfs. HPF is a stabilized, fiber-fed, R$\\sim$50,000 spectrograph operating in the near-infrared (NIR) z/Y/J bands from 0.84 to 1.3 microns. For HPF to achieve 1 m s$^{-1}$ or better measurement precision, a unique calibration system, stable to several times better precision, will be needed to accurately remove instrumental effects at an unprecedented level in the NIR. The primary wavelength calibration source is a laser frequency comb (LFC), currently in development at NIST Boulder, discussed separately in these proceedings. The LFC will be supplemented by a stabilized single-mode fiber Fabry-Perot interferometer reference source and Uranium-Neon lamp. The HPF calibration system will combine several other new technologies developed by the Penn State Optical-Infrared instrumentation group to...

  17. Development of Hydrocarbon Flow Calibration Facility as a National Standard

    Science.gov (United States)

    Shimada, Takashi; Doihara, Ryouji; Terao, Yoshiya; Takamoto, Masaki

    A new primary standard for hydrocarbon flow measurements has been constructed at National Metrology Institute of Japan (NMIJ). The facility was designed for the calibration of hydrocarbon flowmeters in the flow rate range between 3 and 300 m3/h. The expanded uncertainty is estimated to be 0.03 % for volumetric flow rate and 0.02 % for mass flow rate (coverage factor: k = 2). The primary standard is based on a static and gravimetric method with a flying start and finish. The facility consists of two test rigs using kerosene and light oil as working fluids. The test lines for the flowmeters are 50, 100 and 150 mm in diameter and three servo positive displacement meters are used as working standards. To verify the calibration performance, a Coriolis flowmeter, a turbine meter and a positive displacement flowmeter have been calibrated at both test rigs. Furthermore, an international comparison with SP, Swedish National Testing Research Institute, was carried out. A screw-type positive displacement flowmeter was selected as the transfer standard and was calibrated at NMIJ and SP. The result shows that the two national standards at the two institutes agree within the quoted expanded uncertainties.

  18. Calibration and validation of a model describing complete autotrophic nitrogen removal in a granular SBR system

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mutlu, Ayten Gizem; Gernaey, Krist;

    2013-01-01

    steady-state in the biofilm system. For oxygen mass transfer coefficient (kLa) estimation, long-term data, removal efficiencies, and the stoichiometry of the reactions were used. For the dynamic calibration a pragmatic model fitting approach was used - in this case an iterative Monte Carlo based...... screening of the parameter space proposed by Sin et al. (2008) - to find the best fit of the model to dynamic data. Finally, the calibrated model was validated with an independent data set. CONCLUSION: The presented calibration procedure is the first customized procedure for this type of system and is...

  19. Alignment of the Measurement Scale Mark during Immersion Hydrometer Calibration Using an Image Processing System

    Science.gov (United States)

    Peña-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio

    2013-01-01

    The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration. PMID:24284770

  20. Muon Energy Calibration of the MINOS Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, Paul S.

    2004-09-01

    MINOS is a long-baseline neutrino oscillation experiment designed to search for conclusive evidence of neutrino oscillations and to measure the oscillation parameters precisely. MINOS comprises two iron tracking calorimeters located at Fermilab and Soudan. The Calibration Detector at CERN is a third MINOS detector used as part of the detector response calibration programme. A correct energy calibration between these detectors is crucial for the accurate measurement of oscillation parameters. This thesis presents a calibration developed to produce a uniform response within a detector using cosmic muons. Reconstruction of tracks in cosmic ray data is discussed. This data is utilized to calculate calibration constants for each readout channel of the Calibration Detector. These constants have an average statistical error of 1.8%. The consistency of the constants is demonstrated both within a single run and between runs separated by a few days. Results are presented from applying the calibration to test beam particles measured by the Calibration Detector. The responses are calibrated to within 1.8% systematic error. The potential impact of the calibration on the measurement of oscillation parameters by MINOS is also investigated. Applying the calibration reduces the errors in the measured parameters by {approx} 10%, which is equivalent to increasing the amount of data by 20%.

  1. MODIS Instrument Operation and Calibration Improvements

    Science.gov (United States)

    Xiong, X.; Angal, A.; Madhavan, S.; Link, D.; Geng, X.; Wenny, B.; Wu, A.; Chen, H.; Salomonson, V.

    2014-01-01

    Terra and Aqua MODIS have successfully operated for over 14 and 12 years since their respective launches in 1999 and 2002. The MODIS on-orbit calibration is performed using a set of on-board calibrators, which include a solar diffuser for calibrating the reflective solar bands (RSB) and a blackbody for the thermal emissive bands (TEB). On-orbit changes in the sensor responses as well as key performance parameters are monitored using the measurements of these on-board calibrators. This paper provides an overview of MODIS on-orbit operation and calibration activities, and instrument long-term performance. It presents a brief summary of the calibration enhancements made in the latest MODIS data collection 6 (C6). Future improvements in the MODIS calibration and their potential applications to the S-NPP VIIRS are also discussed.

  2. Calibration of the Cherenkov Telescope Array

    CERN Document Server

    Gaug, Markus; Berge, David; Reyes, Raquel de los; Doro, Michele; Foerster, Andreas; Maccarone, Maria Concetta; Parsons, Dan; van Eldik, Christopher

    2015-01-01

    The construction of the Cherenkov Telescope Array is expected to start soon. We will present the baseline methods and their extensions currently foreseen to calibrate the observatory. These are bound to achieve the strong requirements on allowed systematic uncertainties for the reconstructed gamma-ray energy and flux scales, as well as on the pointing resolution, and on the overall duty cycle of the observatory. Onsite calibration activities are designed to include a robust and efficient calibration of the telescope cameras, and various methods and instruments to achieve calibration of the overall optical throughput of each telescope, leading to both inter-telescope calibration and an absolute calibration of the entire observatory. One important aspect of the onsite calibration is a correct understanding of the atmosphere above the telescopes, which constitutes the calorimeter of this detection technique. It is planned to be constantly monitored with state-of-the-art instruments to obtain a full molecular and...

  3. Multi-Axis Accelerometer Calibration System

    Science.gov (United States)

    Finley, Tom; Parker, Peter

    2010-01-01

    A low-cost, portable, and simplified system has been developed that is suitable for in-situ calibration and/or evaluation of multi-axis inertial measurement instruments. This system overcomes facility restrictions and maintains or improves the calibration quality for users of accelerometer-based instruments with applications in avionics, experimental wind tunnel research, and force balance calibration applications. The apparatus quickly and easily positions a multi-axis accelerometer system into a precisely known orientation suitable for in-situ quality checks and calibration. In addition, the system incorporates powerful and sophisticated statistical methods, known as response surface methodology and statistical quality control. These methods improve calibration quality, reduce calibration time, and allow for increased calibration frequency, which enables the monitoring of instrument stability over time.

  4. Laser Calibration of an Impact Disdrometer

    Science.gov (United States)

    Lane, John E.; Kasparis, Takis; Metzger, Philip T.; Jones, W. Linwood

    2014-01-01

    A practical approach to developing an operational low-cost disdrometer hinges on implementing an effective in situ adaptive calibration strategy. This calibration strategy lowers the cost of the device and provides a method to guarantee continued automatic calibration. In previous work, a collocated tipping bucket rain gauge was utilized to provide a calibration signal to the disdrometer's digital signal processing software. Rainfall rate is proportional to the 11/3 moment of the drop size distribution (a 7/2 moment can also be assumed, depending on the choice of terminal velocity relationship). In the previous case, the disdrometer calibration was characterized and weighted to the 11/3 moment of the drop size distribution (DSD). Optical extinction by rainfall is proportional to the 2nd moment of the DSD. Using visible laser light as a means to focus and generate an auxiliary calibration signal, the adaptive calibration processing is significantly improved.

  5. The Palomar Testbed Interferometer Calibrator Catalog

    CERN Document Server

    Van Belle, G T; Creech-Eakman, M J; Coyne, J; Boden, A F; Akeson, R L; Ciardi, D R; Rykoski, K M; Thompson, R R; Lane, B F

    2007-01-01

    The Palomar Testbed Interferometer (PTI) archive of observations between 1998 and 2005 is examined for objects appropriate for calibration of optical long-baseline interferometer observations - stars that are predictably point-like and single. Approximately 1,400 nights of data on 1,800 objects were examined for this investigation. We compare those observations to an intensively studied object that is a suitable calibrator, HD217014, and statistically compare each candidate calibrator to that object by computing both a Mahalanobis distance and a Principal Component Analysis. Our hypothesis is that the frequency distribution of visibility data associated with calibrator stars differs from non-calibrator stars such as binary stars. Spectroscopic binaries resolved by PTI, objects known to be unsuitable for calibrator use, are similarly tested to establish detection limits of this approach. From this investigation, we find more than 350 observed stars suitable for use as calibrators (with an additional $\\approx 1...

  6. Pulse-based internal calibration of polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Christensen, Erik Lintz

    Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops and devel...

  7. Protocols for calibrating multibeam sonar

    OpenAIRE

    Foote, Kenneth G.; Chu, Dezhang; Hammar, Terence R.; Baldwin, Kenneth C.; Mayer, Larry A.; Hufnagle, Lawrence C. jr.; Jech, J. Michael

    2005-01-01

    Development of protocols for calibrating multibeam sonar by means of the standard-target method is documented. Particular systems used in the development work included three that provide the water-column signals, namely the SIMRAD SM2000/90- and 200-kHz sonars and RESON SeaBat 8101 sonar, with operating frequency of 240 kHz. Two facilities were instrumented specifically for the work: a sea well at the Woods Hole Oceanographic Institution and a large, indoor freshwater tank at the University o...

  8. Calibration of TOB+ Thermometer's Cards

    CERN Document Server

    Banitt, Daniel

    2014-01-01

    Motivation - Under the new upgrade of the CMS detector the working temperature of the trackers had been reduced to -27 Celsius degrees. Though the thermal sensors themselves (Murata and Fenwal thermistors) are effective at these temperatures, the max1542 PLC (programmable logic controller) cards, interpreting the resistance of the thermal sensors into DC counts usable by the DCS (detector control system), are not designed for these temperatures in which the counts exceed their saturation and therefor had to be replaced. In my project I was in charge of handling the emplacement and calibration of the new PLC cards to the TOB (tracker outer barrel) control system.

  9. Scintillation camera brightness calibration apparatus

    International Nuclear Information System (INIS)

    Circuitry is described for calibrating the brightness of a cathode ray tube display and recording apparatus comprising: 1) intensity control means for adjusting the intensity of the cathode ray tube beam; 2) light sensitive means disposed to receive light emitted from the cathode ray tube and generating a first electrical signal having a magnitude dependent upon the intensity of the emitted light; 3) reference signal generating means for generating a second electrical signal of predetermined magnitude; and 4) electrical signal comparison means coupled to the light sensitive means and the reference signal generating means for comparing the magnitude of the first and second electrical signals. (author)

  10. Scalar Calibration of Vector Magnetometers

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter; Primdahl, Fritz; Petersen, Jan Raagaard; Nielsen, Otto V

    2000-01-01

    uniquely the parameters for a given data set. Therefore, a magnetometer may be characterized inexpensively in the Earth's magnetic-field environment. This procedure has been used successfully in the pre-flight calibration of the state-of-the-art magnetometers on board the magnetic mapping satellites Orsted...... of a magnetic field, three scale factors for normalization of the axes and three non-orthogonality angles which build up an orthogonal system intrinsically in the sensor. The advantage of this method compared with others lies in its linear least squares estimator, which finds independently and...

  11. Percutaneous transhepatic fine calibre cholangioscopy

    Energy Technology Data Exchange (ETDEWEB)

    Klose, K.J.; Thelen, M.; Schild, H.H.

    1988-07-01

    Percutaneous transhepatic fine calibre cholangioscopy is described. A specially developed transparent instrument is used, which makes it unnecessary to have a steerable endoscope; visualisation of the biliary tree is of diagnostic value for assessing biliary stenoses due to tumours (choice of biopsy site, extent of intraductal radiation therapy) and for the assessment of anastomoses between the biliary system and the gut (condition of the mucosa, stenoses). In the presence of percutaneous biliary drainage, the method has little utility. Extension of the method for treating intraductal stones may be possible if in future a useful lumen can be added to the fine endoscope.

  12. Axino mass

    CERN Document Server

    Kim, Jihn E

    2012-01-01

    I will talk on my recent works. Axino, related to the SUSY transformation of axion, can mix with Goldstino in principle. In this short talk, I would like to explain what is the axino mass and its plausible mass range. The axino mass is known to have a hierarchical mass structure depending on accidental symmetries. With only one axino, if G_A=0 where G=K+ 2ln|W|, we obtain axino mass= gravitino mass. For G_A nonzero, the axino mass depends on the details of the Kaehler potential. I also comment on the usefulness of a new parametrization of the CKM matrix.

  13. FCC-ee: Energy Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Koratzinos, M. [Univ. of Geneva (Switzerland); Blondel, A. [Univ. of Geneva (Switzerland); Gianfelice-Wendt, E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Zimmermann, F. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2015-06-02

    The FCC-ee aims to improve on electroweak precision measurements, with goals of 100 ke V on the Z mass and width, and a fraction of MeV on the W mass. Compared to LEP, this implies a much improved knowledge of the center-of-mass energy when operating at the Z peak and WW threshold. This can be achieved by making systematic use of resonant depolarization. A number of issues have been identified, due in particular to the long polarization times. However the smaller emittance and energy spread of FCC-ee with respect to LEP should help achieve a much improved performance.

  14. MODIS Solar Reflective Calibration Traceability

    Science.gov (United States)

    Xiong, Xiaoxiong; Butler, Jim

    2009-01-01

    Long-term climate data records often consist of observations made by multiple sensors. It is, therefore, extremely important to have instrument overlap, to be able to track instrument stability, to quantify, measurement uncertainties, and to establish absolute scale traceable to the International System of Units (SI). The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for both the Terra and Aqua missions, which were launched in December 1999 and May 2002, respectively. It has 20 reflective solar bands (RSB) with wavelengths from 0.41 to 2.2 micrometers and observes the Earth at three nadir spatial resolutions: 0.25km, 0.5km, and 1km. MODIS RSB on-orbit calibration is reflectance based with reference to the bidirectional reflectance factor (BRF) of its on-board solar diffuser (SD). The SD BRF characterization was made pre-launch by the instrument vendor using reference samples traceable directly to the National Institute of Standards and Technology (NIST). On-orbit SD reflectance degradation is tracked by an on-board solar diffuser monitor (SDSM). This paper provides details of this calibration chain, from prelaunch to on-orbit operation, and associated uncertainty assessments. Using MODIS as an example, this paper also discusses challenges and key design requirements for future missions developed for accurate climate studies.

  15. MODIS solar reflective calibration traceability

    Science.gov (United States)

    Xiong, Xiaoxiong; Butler, Jim

    2009-08-01

    Long-term climate data records often consist of observations made by multiple sensors. It is, therefore, extremely important to have instrument overlap, to be able to track instrument stability, to quantify measurement uncertainties, and to establish an absolute measurement scale traceable to the International System of Units (SI). The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for both the Terra and Aqua missions, which were launched in December 1999 and May 2002, respectively. It has 20 reflective solar bands (RSB) with wavelengths from 0.41 to 2.2μm and observes the Earth at three nadir spatial resolutions: 0.25km, 0.5km, and 1km. MODIS RSB on-orbit calibration is reflectance based with reference to the bi-directional reflectance factor (BRF) of its on-board solar diffuser (SD). The SD BRF characterization was made pre-launch by the instrument vendor using reference samples traceable directly to the National Institute of Standards and Technology (NIST). On-orbit SD reflectance degradation is tracked by an on-board solar diffuser stability monitor (SDSM). This paper provides details of this calibration chain, from pre-launch to on-orbit operation, and associated uncertainty assessments. Using MODIS as an example, this paper also discusses challenges and key design requirements for future missions developed for accurate climate studies.

  16. Compton Backscattering for the Calibration of KEDR Tagging System

    CERN Document Server

    Kaminskiy, V V; Zhilich, V N

    2014-01-01

    KEDR detector has the tagging system (TS) to study the gamma-gamma processes. To determine the two-photon invariant mass, the energies of the scattered at small angles electrons and positrons are measured by the magnetic spectrometer embedded into the lattice of the VEPP--4M collider. The energy resolution (scattered electron/positron energy resolution divided by the beam energy) of this spectrometer varies from 0.6% to 0.03% depending on the electron/positron energy. The Compton backscattering of laser radiation on the electron/positron beam is used for the accurate energy scale and resolution calibration of the tagging system. The report covers the design, recent results and current status of the KEDR TS calibration system.

  17. Compton backscattering for the calibration of KEDR tagging system

    Science.gov (United States)

    Kaminskiy, V. V.; Muchnoi, N. Yu; Zhilich, V. N.

    2014-08-01

    KEDR detector has the tagging system (TS) to study the gamma-gamma processes. To determine the two-photon invariant mass, the energies of the scattered at small angles electrons and positrons are measured by the magnetic spectrometer embedded into the lattice of the VEPP-4M collider. The energy resolution (scattered electron/positron energy resolution divided by the beam energy) of this spectrometer varies from 0.6% to 0.03% depending on the electron/positron energy. The Compton backscattering of laser radiation on the electron/positron beam is used for the accurate energy scale and resolution calibration of the tagging system. The report covers the design, recent results and current status of the KEDR TS calibration system.

  18. The photomultiplier tube calibration of the Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    The Sudbury Neutrino Observatory (SNO) is a solar neutrino experiment designed to search for neutrino flavour oscillations. It is located 2040m underground in the INCO, Ltd. Creighton mine near Sudbury, Ontario. The detector consists of a kilotonne of heavy water (D2O) viewed by approximately 9,500 Photomultiplier Tubes (PMTs). The PMTs detect Cerenkov photons produced following the interactions of 8B solar neutrinos with the D2O. These neutrinos can interact with D2O in three different ways. This allows the electron neutrino flux and the total flux of all flavours of neutrino to be measured. In order to distinguish the different types of reaction, it is essential to reconstruct where the interactions took place in the detector. The reconstruction critically depends on an accurate knowledge of the relative times at which the PMTs detect the Cerenkov photons. The first results from SNO provide strong evidence for neutrino oscillations and have further constrained the possible values of the square of the neutrino mass differences and the neutrino mixing angles. The topic of this thesis is the Photomultiplier Tube Calibration. The SNO electronics record a time and an integrated charge for each PMT that is triggered by a photon. The recorded time has an unknown offset and the time resolution of the PMTs is degraded by an effect arising from variations in the pulse sizes. The PMT calibration removes the time offsets, giving the relative timing of the PMTs, and restores the time resolution to the extent possible. The PMT calibration also converts the integrated charge into the same units for all PMTs. This thesis describes how the PMT calibration is implemented and presents the results of investigations into its performance. The PMT calibration is found to perform well and is crucial to the analysis of SNO data. (author)

  19. Traveling-wave ion mobility mass spectrometry of protein complexes

    DEFF Research Database (Denmark)

    Salbo, Rune; Bush, Matthew F; Naver, Helle;

    2012-01-01

    The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization of...

  20. Another look at volume self-calibration: calibration and self-calibration within a pinhole model of Scheimpflug cameras

    Science.gov (United States)

    Cornic, Philippe; Illoul, Cédric; Cheminet, Adam; Le Besnerais, Guy; Champagnat, Frédéric; Le Sant, Yves; Leclaire, Benjamin

    2016-09-01

    We address calibration and self-calibration of tomographic PIV experiments within a pinhole model of cameras. A complete and explicit pinhole model of a camera equipped with a 2-tilt angles Scheimpflug adapter is presented. It is then used in a calibration procedure based on a freely moving calibration plate. While the resulting calibrations are accurate enough for Tomo-PIV, we confirm, through a simple experiment, that they are not stable in time, and illustrate how the pinhole framework can be used to provide a quantitative evaluation of geometrical drifts in the setup. We propose an original self-calibration method based on global optimization of the extrinsic parameters of the pinhole model. These methods are successfully applied to the tomographic PIV of an air jet experiment. An unexpected by-product of our work is to show that volume self-calibration induces a change in the world frame coordinates. Provided the calibration drift is small, as generally observed in PIV, the bias on the estimated velocity field is negligible but the absolute location cannot be accurately recovered using standard calibration data.

  1. A study on improvement of measurement capability for gravimetric flowmeter calibrator

    International Nuclear Information System (INIS)

    The calibration of flowmeter is a very important procedure to set up traceability from the national or international standards. The uncertainty of flow measurement defines reliability for measurement results. The uncertainty of gravimetric method combines uncertainties of each independent variable, including mass, time, water density, air density and the density of dead weight. In this study, it has been found that the uncertainties of mass and time measurement in the gravimetric method have dominant influence on the total measurement uncertainty. After improvements of a constant head tank and a diverter, the best measurement capability for K-water's calibration facility has been reached less than 0.1%.

  2. Herschel SPIRE FTS Relative Spectral Response Calibration

    CERN Document Server

    Fulton, Trevor; Baluteau, Jean-Paul; Benielli, Dominique; Imhof, Peter; Lim, Tanya; Lu, Nanyao; Marchili, Nicola; Naylor, David; Polehampton, Edward; Swinyard, Bruce; Valtchanov, Ivan

    2014-01-01

    Herschel/SPIRE Fourier transform spectrometer (FTS) observations contain emission from both the Herschel Telescope and the SPIRE Instrument itself, both of which are typically orders of magnitude greater than the emission from the astronomical source, and must be removed in order to recover the source spectrum. The effects of the Herschel Telescope and the SPIRE Instrument are removed during data reduction using relative spectral response calibration curves and emission models. We present the evolution of the methods used to derive the relative spectral response calibration curves for the SPIRE FTS. The relationship between the calibration curves and the ultimate sensitivity of calibrated SPIRE FTS data is discussed and the results from the derivation methods are compared. These comparisons show that the latest derivation methods result in calibration curves that impart a factor of between 2 and 100 less noise to the overall error budget, which results in calibrated spectra for individual observations whose n...

  3. Absolute calibration in vivo measurement systems

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs

  4. Calibration Monitor for Dark Energy Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, M. E.

    2009-11-23

    The goal of this program was to design, build, test, and characterize a flight qualified calibration source and monitor for a Dark Energy related experiment: ACCESS - 'Absolute Color Calibration Experiment for Standard Stars'. This calibration source, the On-board Calibration Monitor (OCM), is a key component of our ACCESS spectrophotometric calibration program. The OCM will be flown as part of the ACCESS sub-orbital rocket payload in addition to monitoring instrument sensitivity on the ground. The objective of the OCM is to minimize systematic errors associated with any potential changes in the ACCESS instrument sensitivity. Importantly, the OCM will be used to monitor instrument sensitivity immediately after astronomical observations while the instrument payload is parachuting to the ground. Through monitoring, we can detect, track, characterize, and thus correct for any changes in instrument senstivity over the proposed 5-year duration of the assembled and calibrated instrument.

  5. Research of Camera Calibration Based on DSP

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2013-09-01

    Full Text Available To take advantage of the high-efficiency and stability of DSP in the data processing and the functions of OpenCV library, this study brought forward a scheme that camera calibration in DSP embedded system calibration. An arithmetic of camera calibration based on OpenCV is designed by analyzing the camera model and lens distortion. The transplantation of EMCV to DSP is completed and the arithmetic of camera calibration is migrated and optimized based on the CCS development environment and the DSP/BIOS system. On the premise of realizing calibration function, this arithmetic improves the efficiency of program execution and the precision of calibration and lays the foundation for further research of the visual location based on DSP embedded system.

  6. Calibration of beta dosimeter and personal dosimeter

    International Nuclear Information System (INIS)

    This paper introduces ISO standard ISO 6980 which prepared especially for the calibration of beta dosimeter and personal dosimeter. The standard has three aspects including method of production of reference beta particle radiations, calibration fundamentals related to basic quantities characterizing the radiation field, and calibration of area and personal dosemters and the determination of their response as a function of beta radiation energy and angle of incidence. Here particular emphasis is placed on the determination of basic quantity of tissue absorbed dose at a depth of 0.07 mm in the tissue slab phantom and calibration procedure by mean of the calibration quantity of directional dose equivalent H'(0.07, Ω) and personal dose equivalent Hp (0.07, Ω). Finally, combined standard uncertainty for the determination of absorbed dose rate and component uncertainties of calibration is given as examples. (authors)

  7. Calibration biases in logical reasoning tasks

    OpenAIRE

    Guillermo Macbeth; Alfredo López Alonso; Eugenia Razumiejczyk; Rodrigo Sosa; Carolina Pereyra; Humberto Fernández

    2013-01-01

    The aim of this contribution is to present an experimental study about calibration in deductive reasoning tasks. Calibration is defi ned as the empirical convergence or divergence between the objective and the subjective success. The underconfi dence bias is understood as the dominance of the former over the latter. The hypothesis of this study states that the form of the propositions presented in the experiment is critical for calibration phenomena. Affi rmative and negative propositions are...

  8. Calibration of Nacelle-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents the result of the lidar calibration performed for a two-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements....

  9. On Single-scanline Camera Calibration

    OpenAIRE

    Horaud, Radu; Mohr, Roger; Lorecki, Boguslaw

    1993-01-01

    A method for calibrating single scanline CCD cameras is described. It is shown that the more classical 2D camera calibration techniques are necessary but not sufficient for solving the 1D camera calibration problem. A model for single scanline cameras is proposed, and a two-step procedure for estimating its parameters is provided. It is also shown how the extrinsic camera parameters can be determined geometrically without making explicit the intrinsic camera parameters. The accuracy of the ca...

  10. Camera calibration from surfaces of revolution

    OpenAIRE

    Wong, KYK; Mendonça, PRS; Cipolla, R.

    2003-01-01

    This paper addresses the problem of calibrating a pinhole camera from images of a surface of revolution. Camera calibration is the process of determining the intrinsic or internal parameters (i.e., aspect ratio, focal length, and principal point) of a camera, and it is important for both motion estimation and metric reconstruction of 3D models. In this paper, a novel and simple calibration technique is introduced, which is based on exploiting the symmetry of images of surfaces of revolution. ...

  11. Calibration metrology for fixed irradiation sensors

    International Nuclear Information System (INIS)

    After having recalled the regulatory and technical framework of the calibration of radioprotection measurement instruments, and outlined some technical and operational constraints, the authors report the development of an in situ calibration methodology, i.e. without displacement of the sensor. After the presentation of the calibration chain (from the measurement given by a fixed sensor to the reference value given by a primary standard), they indicate the definition and calculation of the different calibration coefficients allowing the linking up of the different levels, and also the taking of uncertainties into account. They finally report the validation of results

  12. Sloan Digital Sky Survey Photometric Calibration Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Marriner, John; /Fermilab

    2012-06-29

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  13. Sloan Digital Sky Survey Photometric Calibration Revisited

    Science.gov (United States)

    Marriner, J.

    2016-05-01

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  14. The long term stability of lidar calibrations

    DEFF Research Database (Denmark)

    Courtney, Michael; Gayle Nygaard, Nicolai

    Wind lidars are now used extensively for wind resource measurements. One of the requirements for the data to be accepted in support of project financing (so-called ‘banka-bility’) is to demonstrate the long-term stability of lidar cali-brations. Calibration results for six Leosphere WindCube li-dars......-ters pertaining in the different calibration periods. This is supported by sliding-window analyses of one lidar at one location where the same order of variation is observed as between pre-service and post-service calibrations....

  15. Research of Camera Calibration Based on DSP

    OpenAIRE

    Zheng Zhang; Yukun Wan; Lixin Cai

    2013-01-01

    To take advantage of the high-efficiency and stability of DSP in the data processing and the functions of OpenCV library, this study brought forward a scheme that camera calibration in DSP embedded system calibration. An arithmetic of camera calibration based on OpenCV is designed by analyzing the camera model and lens distortion. The transplantation of EMCV to DSP is completed and the arithmetic of camera calibration is migrated and optimized based on the CCS development environment and the ...

  16. Calibration services for medical applications of radiation

    Energy Technology Data Exchange (ETDEWEB)

    DeWerd, L.A.

    1993-12-31

    Calibration services for the medical community applications of radiation involve measuring radiation precisely and having traceability to the National Institute of Standards and Technology (NIST). Radiation therapy applications involve the use of ionization chambers and electrometers for external beams and well-type ionization chamber systems as well as radioactive sources for brachytherapy. Diagnostic x-ray applications involve ionization chamber systems and devices to measure other parameters of the x-ray machine, such as non-invasive kVp meters. Calibration laboratories have been established to provide radiation calibration services while maintaining traceability to NIST. New radiation applications of the medical community spur investigation to provide the future calibration needs.

  17. Calibration services for medical applications of radiation

    International Nuclear Information System (INIS)

    Calibration services for the medical community applications of radiation involve measuring radiation precisely and having traceability to the National Institute of Standards and Technology (NIST). Radiation therapy applications involve the use of ionization chambers and electrometers for external beams and well-type ionization chamber systems as well as radioactive sources for brachytherapy. Diagnostic x-ray applications involve ionization chamber systems and devices to measure other parameters of the x-ray machine, such as non-invasive kVp meters. Calibration laboratories have been established to provide radiation calibration services while maintaining traceability to NIST. New radiation applications of the medical community spur investigation to provide the future calibration needs

  18. Tool calibration system for micromachining system

    Science.gov (United States)

    Miller, Donald M.

    1979-03-06

    A tool calibration system including a tool calibration fixture and a tool height and offset calibration insert for calibrating the position of a tool bit in a micromachining tool system. The tool calibration fixture comprises a yokelike structure having a triangular head, a cavity in the triangular head, and a port which communicates a side of the triangular head with the cavity. Yoke arms integral with the triangular head extend along each side of a tool bar and a tool head of the micromachining tool system. The yoke arms are secured to the tool bar to place the cavity around a tool bit which may be mounted to the end of the tool head. Three linear variable differential transformer's (LVDT) are adjustably mounted in the triangular head along an X axis, a Y axis, and a Z axis. The calibration insert comprises a main base which can be mounted in the tool head of the micromachining tool system in place of a tool holder and a reference projection extending from a front surface of the main base. Reference surfaces of the calibration insert and a reference surface on a tool bar standard length are used to set the three LVDT's of the calibration fixture to the tool reference position. These positions are transferred permanently to a mastering station. The tool calibration fixture is then used to transfer the tool reference position of the mastering station to the tool bit.

  19. Efficiency calibration of low background gamma spectrometer

    International Nuclear Information System (INIS)

    A method of efficiency calibration is described. The authors used standard ores of U, Ra and Th (power form), KCl and Cs-137 sources to do calibration volume-sources which were directly placed on the detector end cap. In such a measuring geometry, it is not necessary to make coincidence-summing correction. The efficiency calibration curve obtained by the method were compared with results measured by Am-241, Cd-109 and Eu-152 calibration sources. The agree in the error of about 5%

  20. FY2008 Calibration Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Bret D.; Myers, Tanya L.; Broocks, Bryan T.

    2009-01-01

    The Calibrations project has been exploring alternative technologies for calibration of passive sensors in the infrared (IR) spectral region. In particular, we have investigated using quantum cascade lasers (QCLs) because these devices offer several advantages over conventional blackbodies such as reductions in size and weight while providing a spectral source in the IR with high output power. These devices can provide a rapid, multi-level radiance scheme to fit any nonlinear behavior as well as a spectral calibration that includes the fore-optics, which is currently not available for on-board calibration systems.

  1. KINIK, Absorber Rod Calibration Kinetics

    International Nuclear Information System (INIS)

    1 - Description of program or function: KINIK is an inverse kinetic code that solves the inverse form of the point kinetic equations using the Runge-Kutta method. An optimization procedure is involved to control the time step and to reduce the running time. Up to 24 delayed neutron groups of different types (in case of heavy water as moderator or beryllium as reflector) are considered. KINIK is commonly applied to determine reactivity worths and to calibrate absorber rods. Following a rod drop, neutron flux or power is recorded as a function of time and used as input. 2 - Method of solution: The inverse point kinetic equations are numerically solved for each time step using the Runge-Kutta method. The input data resulting from measurements are first approximated by polynomials of maximum degree 10 using a least-squares approach

  2. Whole-body detector calibrating with a modular phantom

    International Nuclear Information System (INIS)

    Human body models (phantoms) of various size and weight are produced in order to calibrate gamma spectrometers for accurate activity measurement. The phantoms are built of separate modules with mass of 0.5 kg and size 20 x 14 x 2 cm. There are modules with standard Eu-152 and Am-241 radioactivity designed for homogenous radioactivity imitating and critical organs moulding, as well as 'zero' -phantom modules without activity imitating a standard human body. Human organs are modelled by 11 x 9 x 0.5 cm modules with 0.16 kg mass. The phantoms have been used to obtain calibration curves and absolute efficiencies for selected energies of radionuclides expected to be found in the Kozloduy NPP staff. It is shown that the efficiency depends not only on the mass but on the geometric size of the measured object. Scanning of phantoms has been carried out and a profile of activity obtained. The profile consists of an abrupt rising of the sum of pulses (measuring time - 20 s) when the detector passes from neck to chest, a plateau when it moves over the head or the trunk and gradual decrease over the legs. Profiles of activity in organs are best obtained with a lead collimator. 4 refs., 7 figs., 2 tabs

  3. A simple algorithm improves mass accuracy to 50-100 ppm for delayed extraction linear MALDI-TOF mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Christopher A.; Benner, W. Henry

    2001-10-31

    A simple mathematical technique for improving mass calibration accuracy of linear delayed extraction matrix assisted laser desorption ionization time-of-flight mass spectrometry (DE MALDI-TOF MS) spectra is presented. The method involves fitting a parabola to a plot of Dm vs. mass data where Dm is the difference between the theoretical mass of calibrants and the mass obtained from a linear relationship between the square root of m/z and ion time of flight. The quadratic equation that describes the parabola is then used to correct the mass of unknowns by subtracting the deviation predicted by the quadratic equation from measured data. By subtracting the value of the parabola at each mass from the calibrated data, the accuracy of mass data points can be improved by factors of 10 or more. This method produces highly similar results whether or not initial ion velocity is accounted for in the calibration equation; consequently, there is no need to depend on that uncertain parameter when using the quadratic correction. This method can be used to correct the internally calibrated masses of protein digest peaks. The effect of nitrocellulose as a matrix additive is also briefly discussed, and it is shown that using nitrocellulose as an additive to a CHCA matrix does not significantly change initial ion velocity but does change the average position of ions relative to the sample electrode at the instant the extraction voltage is applied.

  4. Stellar mass -- halo mass relation and star formation efficiency in high-mass halos

    CERN Document Server

    Kravtsov, Andrey; Meshscheryakov, Alexander

    2014-01-01

    We study relation between stellar mass and halo mass for high-mass halos using a sample of galaxy clusters with accurate measurements of stellar masses from optical and IR data and total masses from X-ray observations. We find that stellar mass of the brightest cluster galaxies (BCGs) scales as M*BCG\\propto M500^a_BCG with the best fit slope of a_BCG~0.35+-0.1 and scatter of M*BCG at a fixed M500 of ~0.2 dex. We show that M*-M relations from abundance matching or halo modelling reported in recent studies underestimate stellar masses of BCGs by a factor of ~2-4, because these studies used stellar mass functions (SMF) based on photometry that severely underestimates the outer surface brightness profiles of massive galaxies. We show that M*-M relation derived using abundance matching with the recent SMF calibration by Bernardi et al. (2013) based on improved photometry is in a much better agreement with the relation we derive. The total stellar mass of galaxies correlates with total mass M500 with the slope of \\...

  5. ICESat Laser Altimetry: Calibration/Validation

    Science.gov (United States)

    Schutz, B. E.

    2003-12-01

    The Geoscience Laser Altimeter System (GLAS) was launched on ICESat in January 2003 into a 600 km altitude, near polar orbit from Vandenberg, California. The GLAS instrument has been developed by NASA Goddard and it was mated to the spacecraft bus, built by Ball Aerospace, in June 2003. GLAS laser-1 was activated in orbit on February 20, 2003 and elevation profiles of the Greenland and Antarctic ice sheets, as well as land and ocean profiles, have been produced using the 1064 nm wavelength. The laser pulse has a divergence of about 0.11 mrad, which illuminates a spot on the surface with a 66 m diameter. The 170 m spot separation on the surface is determined by the ICESat orbital motion and the 40 Hz laser pulse repetition rate. Unlike wide pulse radar altimeters, accurate knowledge of the laser beam direction is required for the laser altimeter to produce accurate surface profiles. The laser pointing direction is determined with the assistance of an innovative system of CCD cameras plus calibration/validation methodologies. The combination of the laser pulse round trip time of flight and the pointing determination system provides an altitude vector. Determination of the direction of the altitude vector has an accuracy requirement of about 1.5 arcsec (or about 4.5 m on surface). In addition to the instrumentation required to produce the altitude vector, the position of a GLAS reference point with respect to the center of mass of the Earth is required. The ICESat BlackJack GPS receiver from NASA JPL has enabled determination of the radial component of the orbit to a few centimeter accuracy level. Laser-1 operated in orbit with a ground track that was controlled to within 800 m of an 8-day repeat reference track. During laser-1 operation and after the laser ceased firing on March 29, experiments were conducted to assess and improve the accuracy of off-nadir pointing, a unique capability to enhance the science return. This paper will provide an assessment of the

  6. Clustered Calibration: An Improvement to Radio Interferometric Direction Dependent Self-Calibration

    CERN Document Server

    Kazemi, Sanaz; Zaroubi, Saleem

    2013-01-01

    The new generation of radio synthesis arrays, such as LOFAR and SKA, have been designed to surpass existing arrays in terms of sensitivity, angular resolution and frequency coverage. This evolution has led to the development of advanced calibration techniques that ensure the delivery of accurate results at the lowest possible computational cost. However, the performance of such calibration techniques is still limited by the compact, bright sources in the sky, used as calibrators. It is important to have a bright enough source that is well distinguished from the background noise level in order to achieve satisfactory results in calibration. We present "clustered calibration" as a modification to traditional radio interferometric calibration, in order to accommodate faint sources that are almost below the background noise level into the calibration process. The main idea is to employ the information of the bright sources' measured signals as an aid to calibrate fainter sources that are nearby the bright sources...

  7. Design and Calibration of a Cryogenic Blackbody Calibrator at Centimeter Wavelengths

    CERN Document Server

    Kogut, A J; Fixsen, D J; Limon, M; Mirel, P G A; Levin, S; Seiffert, M; Lubin, P M

    2004-01-01

    We describe the design and calibration of an external cryogenic blackbody calibrator used for the first two flights of the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE) instrument. The calibrator consists of a microwave absorber weakly coupled to a superfluid liquid helium bath. Half-wave corrugations viewed 30 deg off axis reduce the return loss below -35 dB. Ruthenium oxide resistive thermometers embedded within the absorber monitor the temperature across the face of the calibrator. The thermal calibration transfers the calibration of a reference thermometer to the flight thermometers using the flight thermometer readout system. Data taken near the superfluid transition in 8 independent calibrations 4 years apart agree within 0.3 mK, providing an independent verification of the thermometer calibration at temperatures near that of the cosmic microwave background.

  8. The physical principles of XRF calibrations

    International Nuclear Information System (INIS)

    Full text: XRF Control and calibration software has come a long way in recent years. Advances in the multiple regression software sophistication and speed of computers have provided an essential resource to the XRF analyst. Over recent years there has been a trend amongst some analysts to develop XRF calibrations based exclusively on the statistical information given by calibration software. Multiple regression statistics are designed for non-correlated data sets but give unpredictable results if there are significant correlations in the standards used. This is typical for calibrations weighted towards certified reference materials (CRM's) which, being natural materials, contain correlated concentrations. Purely statistical methods in calibration development have applicability only over very short concentration ranges and for materials whose composition varies little. Beyond these ranges, the calibration has the potential to be unstable and has been known to produce significant deviations in analysis of unknown samples. The statistical information generated during XRF calibrations can be a very useful tool when used in conjunction with knowledge of the physics behind the correction factors applied. The matrix coefficients represent physical absorption/enhancement effects within the sample and are not arbitrary numbers used to get a good fit to the calibration line. Inappropriate use of matrix factors and overlap factors can produce low RMS values but erroneous results in unknown samples. This talk will contain examples to demonstrate hazards with different calibration strategies and will include coverage of the following topics: physical effects occurring within the sample as a result of X-ray irradiation; use of multiple regression statistics and what role it plays in the calibration; calibration strategies using synthetic and CRM standards; determining appropriate theoretical and semi-empirical matrix corrections and line overlap factors. Copyright (1999

  9. Energy calibration by silicon resonance: Completing system calibration with one reference material

    Energy Technology Data Exchange (ETDEWEB)

    Healy, M.J.F. [Cranfield University, Defence Academy of the United Kingdom, Shrivenham, Swindon, Wiltshire SN6 8LA (United Kingdom)]. E-mail: m.j.f.healy@cranfield.ac.uk

    2006-08-15

    Accelerator energy calibration is seldom a swift process. A rapid calibration method using the proton elastic scattering resonances of silicon was compared to the gamma resonance method. The silicon method proved rapid and convenient given that silicon is also being explored as a means of solid angle calibration, but only moderately accurate. {sup 13}C was identified as a particularly good material for calibration by the superior and established method of gamma resonance.

  10. Neutrino Masses

    CERN Document Server

    Weinheimer, Christian

    2013-01-01

    The various experiments on neutrino oscillation evidenced that neutrinos have indeed non-zero masses but cannot tell us the absolute neutrino mass scale. This scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing constraints on the sum of all neutrino masses from cosmological observations two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double $\\beta$-decay and the direct neutrino mass search by investigating single $\\beta$-decays or electron captures. The former method is not only sensitive to neutrino masses but also probes the Majorana character of neutrinos and thus lepton number violation with high sensitivity. Currently quite a few experiments with different techniques are being constructed, commissioned or are even running, which aim for a sensitivity on the neutrino ...

  11. Mass spectrometry.

    Science.gov (United States)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  12. Radiological standards and calibration laboratory capabilities

    International Nuclear Information System (INIS)

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest Laboratory (PNL), performs calibrations and upholds reference standards necessary to maintain traceability to national radiological standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE sites, and research programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, and thermoluminescent and radiochromic dosimetry. The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, and a beta standards laboratory used for beta energy response studies and beta reference calibrations. Calibrations are routinely performed for personnel dosimeters, health physics instrumentations, photon transfer standards and alpha, beta and gamma field sources used throughout the Hanford Site. This report describes the standards and calibrations laboratory. Photographs that accompany the text appear in the Appendix and are designated Figure A.1 through A.29

  13. An operational analysis of system calibration

    OpenAIRE

    Gaver, Donald Paul; Mutlu, Hasan B.

    1988-01-01

    Mathematical models are proposed for studying the impact of mis-calibration upon operational effectiveness. Methodology for assessing the system effectiveness and an approach for optimizing the effectiveness of a calibration program are examined. The theory and application are discussed, and the results of some specific and convenient models are presented.

  14. Calibration of Avent Wind IRIS SN 01030167

    DEFF Research Database (Denmark)

    Courtney, Michael

    This report presents the result of the lidar calibration performed for a two-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement un...

  15. Astronomical calibration of the Maastrichtian (Late Cretaceous)

    DEFF Research Database (Denmark)

    Husson, Dorothée; Galbrun, Bruno; Laskar, Jacques;

    2011-01-01

    Recent improvements to astronomical modeling of the Solar System have contributed to important refinements of the Cenozoic time scale through astronomical calibration of sedimentary series. We extend this astronomical calibration into the Cretaceous, on the base of the 405 ka orbital eccentricity...

  16. Microfabricated field calibration assembly for analytical instruments

    Science.gov (United States)

    Robinson, Alex L.; Manginell, Ronald P.; Moorman, Matthew W.; Rodacy, Philip J.; Simonson, Robert J.

    2011-03-29

    A microfabricated field calibration assembly for use in calibrating analytical instruments and sensor systems. The assembly comprises a circuit board comprising one or more resistively heatable microbridge elements, an interface device that enables addressable heating of the microbridge elements, and, in some embodiments, a means for positioning the circuit board within an inlet structure of an analytical instrument or sensor system.

  17. Lidar to lidar calibration phase 2

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents the results from phase 2 of a lidar to lidar (L2L) calibration procedure. Phase two of the project included two measurement campaigns conducted at given sites. The purpose was to find out if the lidar-to-lidar calibration procedure can be conducted with similar results at...

  18. Self-calibration and biconvex compressive sensing

    Science.gov (United States)

    Ling, Shuyang; Strohmer, Thomas

    2015-11-01

    The design of high-precision sensing devises becomes ever more difficult and expensive. At the same time, the need for precise calibration of these devices (ranging from tiny sensors to space telescopes) manifests itself as a major roadblock in many scientific and technological endeavors. To achieve optimal performance of advanced high-performance sensors one must carefully calibrate them, which is often difficult or even impossible to do in practice. In this work we bring together three seemingly unrelated concepts, namely self-calibration, compressive sensing, and biconvex optimization. The idea behind self-calibration is to equip a hardware device with a smart algorithm that can compensate automatically for the lack of calibration. We show how several self-calibration problems can be treated efficiently within the framework of biconvex compressive sensing via a new method called SparseLift. More specifically, we consider a linear system of equations {\\boldsymbol{y}}={\\boldsymbol{D}}{\\boldsymbol{A}}{\\boldsymbol{x}}, where both {\\boldsymbol{x}} and the diagonal matrix {\\boldsymbol{D}} (which models the calibration error) are unknown. By ‘lifting’ this biconvex inverse problem we arrive at a convex optimization problem. By exploiting sparsity in the signal model, we derive explicit theoretical guarantees under which both {\\boldsymbol{x}} and {\\boldsymbol{D}} can be recovered exactly, robustly, and numerically efficiently via linear programming. Applications in array calibration and wireless communications are discussed and numerical simulations are presented, confirming and complementing our theoretical analysis.

  19. Design, calibration and operation of Mars lander cameras

    Science.gov (United States)

    Bos, Brent Jon

    2002-09-01

    In the 45 years since the dawn of the space age, there have only been two Mars lander camera designs to successfully operate on the Martian surface. Therefore information on Mars imager design and operation issues is limited. In addition, good examples of Mars lander imager calibration work are almost non-existent. This work presents instrument calibration results for a Mars lander camera originally designed to fly as an instrument onboard the 2001 Mars Surveyor lander as a robotic arm camera (RAC). Test procedures and results are described as well as techniques for improving the accuracy of the calibration data. In addition we describe camera algorithms and operations research results for optimizing imager operations on the Martian surface. Finally, the lessons learned from the 2001 RAC are applied to the preliminary design of a new Mars camera for the Artemis Mars Scout mission. The design utilizes a Bayer color mosaic filter, white light LED's and includes an optical system operating at f/13 with a maximum resolution of 0.11 mrad/pixel. It is capable of imaging in several modes including: stereo, microscopic and panoramic at a mass of 0.3 kg. It will provide planetary geologists with an unprecedented view of the Martian surface.

  20. Calibration biases in logical reasoning tasks

    Directory of Open Access Journals (Sweden)

    Guillermo Macbeth

    2013-08-01

    Full Text Available The aim of this contribution is to present an experimental study about calibration in deductive reasoning tasks. Calibration is defi ned as the empirical convergence or divergence between the objective and the subjective success. The underconfi dence bias is understood as the dominance of the former over the latter. The hypothesis of this study states that the form of the propositions presented in the experiment is critical for calibration phenomena. Affi rmative and negative propositions are distinguished in their cognitive processing. Results suggests that monotonous compound propositions are prone to underconfi dence. An heuristic approach to this phenomenon is proposed. The activation of a monotony heuristic would produce an illusion of simplicity that generates the calibration bias. These evidence is analysed in the context of the metacognitive modeling of calibration phenomena.

  1. DECal: A Spectrophotometric Calibration System For DECam

    CERN Document Server

    Marshall, J L; DePoy, D L; Prochaska, Travis; Allen, Richard; Behm, Tyler W; Martin, Emily C; Veal, Brannon; Villanueva,, Steven; Williams, Patrick; Wise, Jason

    2013-01-01

    DECal is a new calibration system for the CTIO 4 m Blanco telescope. It is currently being installed as part of the Dark Energy Survey and will provide both broadband flat fields and narrowband (about 1 nm bandwidth) spectrophotometric calibration for the new Dark Energy Camera (DECam). Both of these systems share a new Lambertian flat field screen. The broadband flat field system uses LEDs to illuminate each photometric filter. The spectrophotometric calibration system consists of a monochromator-based tunable light source that is projected onto the flat field screen using a custom line-to-spot fiber bundle and an engineered diffuser. Several calibrated photodiodes positioned along the beam monitor the telescope throughput as a function of wavelength. This system will measure the wavelength-dependent instrumental response function of the total telescope+instrument system in the range 300 < lambda < 1100nm. The spectrophotometric calibration will be performed regularly (roughly once per month) to determ...

  2. Calibration concepts for the MUSE integral field

    Science.gov (United States)

    Kelz, Andreas; Bauer, Svend M.; Roth, Martin M.

    2006-06-01

    The phase-A design study of the Calibration Unit (CU) for the Multi-Unit Spectroscopic Explorer (MUSE) is presented. MUSE is an integral-field spectrograph for the 2nd generation of VLT instruments and offers a relative wide integral-field, adaptive-optics assisted spatial resolution, and a wavelength coverage between 465 and 930 nm. MUSE is a project of seven European institutes and is led by the Centre de Recherche Atronomique de Lyon (CRAL). Amongst other work-packages, the Astrophysical Institute Potsdam (AIP) is responsible for the Calibration Unit. The paper describes the calibration requirements, including issues related to spectral, image quality, and geometrical calibration. The opto-mechanical layout of the calibration unit is presented and the use of focal plane masks to evaluate image distortions and PSF degradations is explained.

  3. Assessing students' metacognitive calibration with knowledge surveys

    Science.gov (United States)

    Lindsey, Beth A.; Nagel, Megan

    2013-01-01

    "Calibration" is an aspect of metacognition that describes how well students assess their own knowledge. One tool that can help to assess student calibration is the knowledge survey (KS). On a KS, students rate their confidence in their ability to answer questions related to course content. A comparison of a student's confidence level with their actual performance on course exams gives an indication of the student's metacognitive calibration. We report on a study that explores students' responses to a KS in introductory physics and chemistry courses serving both STEM and non-STEM populations. In many courses, Delta (the difference between KS-score and final exam score, a measure of calibration) was anti-correlated with final exam performance. No relationship was found between Delta and students' scientific reasoning abilities. We also report preliminary findings on how calibration differs for questions of a quantitative nature vs. those of a more conceptual nature.

  4. The ATLAS Electromagnetic Calorimeter Calibration Workshop

    CERN Multimedia

    Hong Ma; Isabelle Wingerter

    The ATLAS Electromagnetic Calorimeter Calibration Workshop took place at LAPP-Annecy from the 1st to the 3rd of October; 45 people attended the workshop. A detailed program was setup before the workshop. The agenda was organised around very focused presentations where questions were raised to allow arguments to be exchanged and answers to be proposed. The main topics were: Electronics calibration Handling of problematic channels Cluster level corrections for electrons and photons Absolute energy scale Streams for calibration samples Calibration constants processing Learning from commissioning Forty-five people attended the workshop. The workshop was on the whole lively and fruitful. Based on years of experience with test beam analysis and Monte Carlo simulation, and the recent operation of the detector in the commissioning, the methods to calibrate the electromagnetic calorimeter are well known. Some of the procedures are being exercised in the commisssioning, which have demonstrated the c...

  5. Parallel Calibration for Sensor Array Radio Interferometers

    CERN Document Server

    Brossard, Martin; Pesavento, Marius; Boyer, Rémy; Larzabal, Pascal; Wijnholds, Stefan J

    2016-01-01

    In order to meet the theoretically achievable imaging performance, calibration of modern radio interferometers is a mandatory challenge, especially at low frequencies. In this perspective, we propose a novel parallel iterative multi-wavelength calibration algorithm. The proposed algorithm estimates the apparent directions of the calibration sources, the directional and undirectional complex gains of the array elements and their noise powers, with a reasonable computational complexity. Furthermore, the algorithm takes into account the specific variation of the aforementioned parameter values across wavelength. Realistic numerical simulations reveal that the proposed scheme outperforms the mono-wavelength calibration scheme and approaches the derived constrained Cram\\'er-Rao bound even with the presence of non-calibration sources at unknown directions, in a computationally efficient manner.

  6. Systems and methods of eye tracking calibration

    DEFF Research Database (Denmark)

    2014-01-01

    parameters relate to a calibration of a calculation of gaze information of a user of the device, where the gaze information indicates where the user is looking. While the one or more objects are displayed, eye movement information associated with the user is determined, which indicates eye movement of one...... or more eye features associated with at least one eye of the user. The eye movement information is associated with a first object location of the one or more objects. The one or more calibration parameters are calculated based on the first object location being associated with the eye movement information.......Methods and systems to facilitate eye tracking control calibration are provided. One or more objects are displayed on a display of a device, where the one or more objects are associated with a function unrelated to a calculation of one or more calibration parameters. The one or more calibration...

  7. Absolute sensitivity calibration of extreme ultraviolet photoresists

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Juanita; Naulleau, Patrick P.; Gullikson, Eric M.; Aquila, Andrew; George, Simi; Niakoula, Dimitra

    2008-05-16

    One of the major challenges facing the commercialization of extreme ultraviolet (EUV) lithography remains simultaneously achieving resist sensitivity, line-edge roughness, and resolution requirement. Sensitivity is of particular concern owing to its direct impact on source power requirements. Most current EUV exposure tools have been calibrated against a resist standard with the actual calibration of the standard resist dating back to EUV exposures at Sandia National Laboratories in the mid 1990s. Here they report on an independent sensitivity calibration of two baseline resists from the SEMATECH Berkeley MET tool performed at the Advanced Light Source Calibrations and Standards beamline. The results show the baseline resists to be approximately 1.9 times faster than previously thought based on calibration against the long standing resist standard.

  8. Calibration of phase detector using IQ modulator

    International Nuclear Information System (INIS)

    The beam energy of the J-PARC Linac is calculated by TOF (Time-of-Flight) method with the flight distance and beam phases at the two of measurement points. Because the accuracy of the beam energy measurement is directly depending on the errors in the phase measurement system, all 111 beam phase monitors are calibrated annually. Here, we adopted a calibration method using the IQ modulator as a method for carrying out more simply and accurately, calibration of the phase detection circuit is provided to the phase detection system. In the calibration, we have used the trombone circuit for the adjustment of the reference frequency, but it is thought that the procedure using an IQ modulator is more simple and accurate, and it reduces the time for the calibration. We describe the procedure of the phase detection system and the method of energy calculation. In addition, the general descriptions of the IQ modulation specification and its performances are introduced. (author)

  9. Calibration of Sr-90 ophthalmic applicators

    International Nuclear Information System (INIS)

    The purpose of this paper is to alert users of Sr-90 ophthalmic applicators about potential large errors in calibration of these devices. A discrepancy of more than 50% in calibration of Sr-90 ophthalmic applicators between the US National Institute of Standards and Technology (NIST) and one foreign manufacturer (the world's only remaining supplier) has been reported. A single-plane Sr-90 ophthalmic applicator was calibrated by the manufacturer, by NIST, and by the University of Wisconsin. The manufacturer's close rate calibration is confined to a 3-mm-diameter active area, while NIST measures all beta radiation emitted into a 2-PI solid angle. The discrepancy was verified by means of a technique based on that of NIST. Reports of calibrations at NIST of applicators made by several American manufacturers (no longer available) indicate that large discrepancies exist for other manufacturers as well

  10. Weak lensing calibrated M-T scaling relation of galaxy groups in the cosmos field

    International Nuclear Information System (INIS)

    The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10 galaxy groups in the COSMOS field, combined with 55 higher-mass clusters from the literature. The COSMOS data includes Hubble Space Telescope imaging and redshift measurements of 46 source galaxies per arcminute2, enabling us to perform unique weak lensing measurements of low-mass systems. Our sample extends the mass range of the lensing calibrated M-T relation an order of magnitude lower than any previous study, resulting in a power-law slope of 1.48−0.09+0.13. The slope is consistent with the self-similar model, predictions from simulations, and observations of clusters. However, X-ray observations relying on mass measurements derived under the assumption of hydrostatic equilibrium have indicated that masses at group scales are lower than expected. Both simulations and observations suggest that hydrostatic mass measurements can be biased low. Our external weak lensing masses provide the first observational support for hydrostatic mass bias at group level, showing an increasing bias with decreasing temperature and reaching a level of 30%-50% at 1 keV.

  11. Low Charge and Reduced Mobility of Membrane Protein Complexes Has Implications for Calibration of Collision Cross Section Measurements.

    Science.gov (United States)

    Allison, Timothy M; Landreh, Michael; Benesch, Justin L P; Robinson, Carol V

    2016-06-01

    Ion mobility mass spectrometry of integral membrane proteins provides valuable insights into their architecture and stability. Here we show that, due to their lower charge, the average mobility of native-like membrane protein ions is approximately 30% lower than that of soluble proteins of similar mass. This has implications for drift time measurements, made on traveling wave ion mobility mass spectrometers, which have to be calibrated to extract collision cross sections (Ω). Common calibration strategies employ unfolded or native-like soluble protein standards with masses and mobilities comparable to the protein of interest. We compare Ω values for membrane proteins, derived from standard calibration protocols using soluble proteins, to values measured using an RF-confined drift tube. Our results demonstrate that, while common calibration methods underestimate Ω for native-like or unfolded membrane protein complexes, higher mass soluble calibration standards consistently yield more accurate Ω values. These findings enable us to obtain directly structural information for highly charge-reduced complexes by traveling wave ion mobility mass spectrometry. PMID:27153188

  12. Guidelines on calibration of neutron measuring devices

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency and the World Health Organization have agreed to establish an IAEA/WHO Network of Secondary Standard Dosimetry Laboratories (SSDLs) in order to improve accuracy in applied radiation dosimetry throughout the world. These SSDLs must be equipped with, and maintain, secondary standard instruments, which have been calibrated against primary standards, and must be nominated by their governments for membership of the network. The majority of the existing SSDLs were established primarily to work with photon radiation (X-rays and gamma rays). Neutron sources are, however, increasingly being applied in industrial processes, research, nuclear power development and radiation biology and medicine. Thus, it is desirable that the SSDLs in countries using neutron sources on a regular basis should also fulfil the minimum requirements to calibrate neutron measuring devices. It is the primary purpose of this handbook to provide guidance on calibration of instruments for radiation protection. A calibration laboratory should also be in a position to calibrate instrumentation being used for the measurement of kerma and absorbed dose and their corresponding rates. This calibration is generally done with photons. In addition, since each neutron field is usually contaminated by photons produced in the source or by scatter in the surrounding media, neutron protection instrumentation has to be tested with respect to its intrinsic photon response. The laboratory will therefore need to possess equipment for photon calibration. This publication deals primarily with methods of applying radioactive neutron sources for calibration of instrumentation, and gives an indication of the space, manpower and facilities needed to fulfil the minimum requirements of a calibration laboratory for neutron work. It is intended to serve as a guide for centres about to start on neutron dosimetry standardization and calibration. 94 refs, 8 figs, 12 tabs

  13. Selection of stars to calibrate Gaia

    Science.gov (United States)

    Carrasco, J. M.; Voss, H.; Jordi, C.; Fabricius, C.; Pancino, E.; Altavilla, G.

    2015-05-01

    Gaia is an all-sky survey satellite, launched by ESA on 19th December 2013, to obtain parallaxes and proper motions to microarcsecond level precision, radial velocities and astrophysical parameters for about one billion objects down to a limiting magnitude of 20. The chosen strategy to perform the photometric calibration is to split the process into two steps, internal and external calibration. The internal calibration will combine all different transits of a given source to a common reference internal system producing a 'mean' Gaia observation. This internal calibration accounts for the differential instrumental effects (in sensitivity, aperture, PSF, etc.). They depend on the colour and type of the source. For this reason, a selection of calibration sources ensuring a good representation of all kind of observed sources is needed. The entire magnitude and colour range of the sources have to be covered by these calibration stars and for all calibration intervals. It is a challenge to obtain a suitable colour distribution for the standards, especially for bright sources and the daily large scale calibration intervals. Once the mean Gaia observations are produced, a final step, the external calibration, transforms them to absolute fluxes and wavelengths. In principle, few calibration sources are needed (about 200 spectrophotometric standard stars, SPSS, are currently being considered). They need to have accurate determinations of their absolute fluxes and their non-variability need to be ensured below 1% precision. For this purpose, a big international observational effort is being done (using telescopes as 2.2m@CAHA, TNG@LaPalma, NTT@LaSilla, LaRuca@SPM, and others). During this observational effort some cases of non-expected variability of the SPSS candidates have been discovered.

  14. High Precision Momentum Calibration of the Magnetic Spectrometers at MAMI for Hypernuclear Binding Energy Determination

    CERN Document Server

    Margaryan, A; Achenbach, P; Ajvazyan, R; Elbakyan, H; Montgomery, R; Nakamura, S N; Pochodzalla, J; Schulz, F; Toyama, Y; Zhamkochyan, S

    2016-01-01

    We propose a new method for absolute momentum calibration of magnetic spectrometers used in nuclear physics, using the time-of-flight (TOF), differences of pairs of particles with different masses. In cases where the flight path is not known, a calibration can be determined by using the TOF differences of two pair combinations of three particles. A Cherenkov detector, read out by a radio frequency photomultiplier tube, is considered as the high-resolution and highly stable TOF detector. By means of Monte Carlo simulations it is demonstrated that the magnetic spectrometers at the MAMI electron-scattering facility can be calibrated absolutely with an accuracy $\\delta p/p\\leq 10^{-4}$, which will be crucial for high precision determination of hypernuclear masses.

  15. Automation of dosimeters calibration for radiotherapy in secondary dosimetric calibration laboratory of the CPHR

    International Nuclear Information System (INIS)

    This paper presents the design and implementation of an automated system for measurements in the calibration of reference radiation dosimeters. It was made a software application that performs the acquisition of the measured values of electric charge, calculated calibration coefficient and automates the calibration certificate issuance. These values are stored in a log file on a PC. The use of the application improves control over the calibration process, helps to humanize the work and reduces personnel exposure. The tool developed has been applied to the calibration of dosimeters radiation patterns in the LSCD of the Centro de Proteccion e Higiene de las Radiaciones, Cuba

  16. SMAP Radar Processing and Calibration

    Science.gov (United States)

    West, R.; Jaruwatanadilok, S.; Kwoun, O.; Chaubell, M.

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission is part of the NASA space-based Earth observation program, and consists of an L-band radar and radiometer scheduled for launch into sun synchronous orbit in late 2014. A joint effort of the Jet Propulsion Laboratory (JPL) and the Goddard Space Flight Center (GSFC), the SMAP mission draws heavily on the design and risk reduction heritage of the Hydrosphere State (Hydros) mission [1], [2]. The SMAP science and applications objectives are to: 1) understand processes that link the terrestrial water, energy and carbon cycles, 2) estimate global water and energy fluxes at the land surface, 3) quantify net carbon flux in boreal landscapes, 4) enhance weather and climate forecast skill, and 5) develop improved flood prediction and drought monitoring capability. To meet these science objectives, SMAP ground processing will combine the attributes of the radar and radiometer observations (in terms of their spatial resolution and sensitivity to soil moisture, surface roughness, and vegetation) to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Model sensitivities translate the soil moisture accuracy to a radar backscatter accuracy of 1 dB (1 sigma) at 3 km resolution and a brightness temperature accuracy of 1.3 K at 40 km resolution. This paper will describe the level 1 radar processing and calibration challenges and the choices made so far for the algorithms and software implementation.

  17. A Cryogenic Infrared Calibration Target

    CERN Document Server

    Wollack, Edward J; Rinehart, Stephan A

    2014-01-01

    A compact cryogenic calibration target is presented that has a peak diffuse reflectance, $R \\le 0.003$, from $800-4,800\\,{\\rm cm}^{-1}$ $(12-2\\,\\mu$m). Upon expanding the spectral range under consideration to $400-10,000\\,{\\rm cm}^{-1}$ $(25-1\\,\\mu$m) the observed performance gracefully degrades to $R \\le 0.02$ at the band edges. In the implementation described, a high-thermal-conductivity metallic substrate is textured with a pyramidal tiling and subsequently coated with a thin lossy dielectric coating that enables high absorption and thermal uniformity across the target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to $\\sim4\\,$K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials -- Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder -- are character...

  18. Fabrication and Calibration of FORTIS

    Science.gov (United States)

    Fleming, Brian T.; McCandliss, Stephan R.; Kaiser, Mary Elizabeth; Kruk, Jeffery; Feldman, Paul D.; Kutyrev, Alexander S.; Li, Mary J.; Rapchun, David A.; Lyness, Eric; Moseley, S. H.; Siegmund, Oswald; Vallerga, John; Martin, Adrian

    2011-01-01

    The Johns Hopkins University sounding rocket group is entering the final fabrication phase of the Far-ultraviolet Off Rowland-circle Telescope for Imaging and Spectroscopy (FORTIS); a sounding rocket borne multi-object spectro-telescope designed to provide spectral coverage of 43 separate targets in the 900 - 1800 Angstrom bandpass over a 30' x 30' field-of-view. Using "on-the-fly" target acquisition and spectral multiplexing enabled by a GSFC microshutter array, FORTIS will be capable of observing the brightest regions in the far-UV of nearby low redshift (z approximately 0.002 - 0.02) star forming galaxies to search for Lyman alpha escape, and to measure the local gas-to-dust ratio. A large area (approximately 45 mm x 170 mm) microchannel plate detector built by Sensor Sciences provides an imaging channel for targeting flanked by two redundant spectral outrigger channels. The grating is ruled directly onto the secondary mirror to increase efficiency. In this paper, we discuss the recent progress made in the development and fabrication of FORTIS, as well as the results of early calibration and characterization of our hardware, including mirror/grating measurements, detector performance, and early operational tests of the micro shutter arrays.

  19. HIBP calibration on WEGA stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Podoba, Yuriy; Otte, Matthias; Wagner, Friedrich [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Zhezhera, Alexander; Chmyga, Alexander; Kozachok, Alexander; Komarov, Alexander; Bondarenko, Ivan; Deshko, Galina; Khrebtov, Sergey; Krupnik, Ludmila [Kharkov Institute of Plasma Physics, Kharkov (Ukraine)

    2009-07-01

    The heavy ion beam probe (HIBP) is an established non-perturbing diagnostic for determining spatial distributions of plasma potential, density, temperature and poloidal magnetic field of magnetically confined plasmas. These quantities can be determined from the change in the ion beam parameters (charge, intensity and trajectory) passing through a plasma volume due to collisions with electrons and interactions with the confining magnetic field. The WEGA HIBP operates with a Na{sup +} with an energy of 39.5 keV and beam current 35 {mu}A. Conventionally the coordinate mapping of the HIBP is provided by ray tracing calculations of the ion beam in the magnetic field. However, it is very difficult to include all physical effects in the model, thus the result of the calculations may significantly differ from the real probing position. In order to improve the mapping precision an additional measurements of the beam position have been provided using a beam detector array inside the vacuum vessel. This allows to compare the measured and calculated ion beam position in order to find out the reasons for the coordinate mismatch and include adjustments in the calculation code. Results of this calibration are presented in this work.

  20. Intercomparison and calibration of dose calibrators used in nuclear medicine facilities

    CERN Document Server

    Costa, A M D

    2003-01-01

    The aim of this work was to establish a working standard for intercomparison and calibration of dose calibrators used in most of nuclear medicine facilities for the determination of the activity of radionuclides administered to patients in specific examinations or therapeutic procedures. A commercial dose calibrator, a set of standard radioactive sources, and syringes, vials and ampoules with radionuclide solutions used in nuclear medicine were utilized in this work. The commercial dose calibrator was calibrated for radionuclide solutions used in nuclear medicine. Simple instrument tests, such as linearity response and variation response with the source volume at a constant source activity concentration were performed. This instrument may be used as a reference system for intercomparison and calibration of other activity meters, as a method of quality control of dose calibrators utilized in nuclear medicine facilities.

  1. Calibration and intercomparison methods of dose calibrators used in nuclear medicine facilities

    International Nuclear Information System (INIS)

    Dose calibrators are used in most of the nuclear medicine facilities to determine the amount of radioactivity administered to a patient in a particular investigation or therapeutic procedure. It is therefore of vital importance that the equipment used presents good performance and is regular;y calibrated at a authorized laboratory. This occurs of adequate quality assurance procedures are carried out. Such quality control tests should be performed daily, other biannually or yearly, testing, for example, its accuracy and precision, the reproducibility and response linearity. In this work a commercial dose calibrator was calibrated with solution of radionuclides used in nuclear medicine. Simple instrument tests, such as response linearity and the response variation of the source volume increase at a constant source activity concentration, were performed. This instrument can now be used as a working standard for calibration of other dose calibrators/ An intercomparison procedure was proposed as a method of quality control of dose calibrators used in nuclear medicine facilities. (author)

  2. Gamma camera determination of thyroid mass

    International Nuclear Information System (INIS)

    A method is suggested for imaging of the thyroid area as a zone of interest and determination of the number of elements of the matrix (the pixels) upon which the image is built. The value of each pixel in square centimeters for different martices and image densities is obtained by preliminary calibration and placing at an exactly determined distance (20 cm apart) two syringes with 1,75 MBq 99mTc-pertechnetate activity each. Knowing the distance between the two radioactive sources, one readily estimates the calibration coefficient. The surface value, obtained directly in the zone of interest, multiplied by the calibration coefficient, is expressed in square centimeters. Once the surface of the thyroid has been determined, its mass is readily estimated. Results are presented in 9 tables allowing to define the thyroid mass at different matrices and magnifications by the number of pixels

  3. The calibration of the central electromagnetic calorimeter of UA1 proton-antiproton experiment at CERN

    International Nuclear Information System (INIS)

    The most important result of the UA1 experiment at CERN has been the discovery of the weak intermediate vector bosons W+, W- and Z0. We describe the calibration of the electromagnetic calorimeter, which gives the signature of the electronic mode of desintegration of the intermediate bosons and measures their masses. We shall discuss this process and give some experimental results

  4. Sub-part-per-million Precursor and Product Mass Accuracy for High-throughput Proteomics on an Electron Transfer Dissociation-enabled Orbitrap Mass Spectrometer*

    OpenAIRE

    Wenger, Craig D.; McAlister, Graeme C.; Xia, Qiangwei; Coon, Joshua J.

    2010-01-01

    We demonstrate a new approach for internal mass calibration on an electron transfer dissociation-enabled linear ion trap-orbitrap hybrid mass spectrometer. Fluoranthene cations, a byproduct of the reaction used for generation of electron transfer dissociation reagent anions, are co-injected with the analyte cations in all orbitrap mass analysis events. The fluoranthene cations serve as a robust internal calibrant with minimal impact on scan time (

  5. Preliminary evaluation of a Neutron Calibration Laboratory

    International Nuclear Information System (INIS)

    In the past few years, Brazil and several other countries in Latin America have experimented a great demand for the calibration of neutron detectors, mainly due to the increase in oil prospection and extraction. The only laboratory for calibration of neutron detectors in Brazil is localized at the Institute for Radioprotection and Dosimetry (IRD/CNEN), Rio de Janeiro, which is part of the IAEA SSDL network. This laboratory is the national standard laboratory in Brazil. With the increase in the demand for the calibration of neutron detectors, there is a need for another calibration services. In this context, the Calibration Laboratory of IPEN/CNEN, Sao Paulo, which already offers calibration services of radiation detectors with standard X, gamma, beta and alpha beams, has recently projected a new calibration laboratory for neutron detectors. In this work, the ambient equivalent dose rate (H⁎(10)) was evaluated in several positions inside and around this laboratory, using Monte Carlo simulation (MCNP5 code), in order to verify the adequateness of the shielding. The obtained results showed that the shielding is effective, and that this is a low-cost methodology to improve the safety of the workers and evaluate the total staff workload. (author)

  6. Increased Automation in Stereo Camera Calibration Techniques

    Directory of Open Access Journals (Sweden)

    Brandi House

    2006-08-01

    Full Text Available Robotic vision has become a very popular field in recent years due to the numerous promising applications it may enhance. However, errors within the cameras and in their perception of their environment can cause applications in robotics to fail. To help correct these internal and external imperfections, stereo camera calibrations are performed. There are currently many accurate methods of camera calibration available; however, most or all of them are time consuming and labor intensive. This research seeks to automate the most labor intensive aspects of a popular calibration technique developed by Jean-Yves Bouguet. His process requires manual selection of the extreme corners of a checkerboard pattern. The modified process uses embedded LEDs in the checkerboard pattern to act as active fiducials. Images are captured of the checkerboard with the LEDs on and off in rapid succession. The difference of the two images automatically highlights the location of the four extreme corners, and these corner locations take the place of the manual selections. With this modification to the calibration routine, upwards of eighty mouse clicks are eliminated per stereo calibration. Preliminary test results indicate that accuracy is not substantially affected by the modified procedure. Improved automation to camera calibration procedures may finally penetrate the barriers to the use of calibration in practice.

  7. Calibration of a groundwater flow model with different tracer technologies

    International Nuclear Information System (INIS)

    Full text: This study developed a mechanism to calibrate a regional groundwater flow model for an aquifer system in central Mexico (Guanajuato) by residence time values of a set of different tracers. The used tracers were carbon-14, tritium, chlorofluorocarbons (CFCs), and sulfur hexafluoride (SF6). The applied program for the flow simulations was the modular finite-difference MODFLOW-2000, coupled to the transport model MODPATH. The local recharge estimates obtained from the chloride mass-balance method were regionalised by a Kriging method, whilst hydraulic conductivity values for each geological unit were interpreted from pumping test data. The flow simulation was considered in steady-state conditions (pre-development model). Since the flow domain was complicate and the number of grid cells large, an algebraic multigrid solver was applied rather than the classical iterative methods. The calibration process consisted in adjusting the hydraulic conductivity values until (a) the calculated head distribution matched the observed water level measurements, and (b) the flow balance is satisfied in the whole flow domain (mass balance) and in parts of the flow domain (zone budget), (c) the mean residence time values of carbon-14, tritium, CFCs, and SF6 matched the time of travel of corresponding particles in the flow domain. Since carbon-14 is known to be modified due to geochemical interactions with the aquifer material, a preceding correction by using the program PHREEQC was necessary to obtain reliable mean residence time values. Due to the low time resolution, the tracers for young groundwater (tritium, CFCs, SF6) could be applied in the flow simulation only to indicate if the groundwater is younger or older than 40 to 50 years. This calibration approach was not only useful to quantitatively describe the flow regime of an aquifer system, but also to make some observations to its vulnerability. Comments on the experience of the used tracer technologies in combination

  8. Galaxy And Mass Assembly: Estimating galaxy group masses via caustic analysis

    CERN Document Server

    Alpaslan, Mehmet; Driver, Simon; Norberg, Peder; Peacock, John A; Baldry, Ivan; Bland-Hawthorn, Joss; Brough, Sarah; Hopkins, Andrew M; Kelvin, Lee S; Liske, Jochen; Loveday, Jon; Merson, Alexander; Nichol, Robert C; Pimbblet, Kevin

    2012-01-01

    We have generated complementary halo mass estimates for all groups in the Galaxy And Mass Assembly Galaxy Group Catalogue (GAMA G3Cv1) using a modified caustic mass estimation algorithm, originally developed by Diaferio & Geller (1997). We calibrate the algorithm by applying it on a series of 9 GAMA mock galaxy light cones and investigate the effects of using different definitions for group centre and size. We select the set of parameters that provide median-unbiased mass estimates when tested on mocks, and generate mass estimates for the real group catalogue. We find that on average, the caustic mass estimates agree with dynamical mass estimates within a factor of 2 in 90.8 +/- 6.1% groups and compares equally well to velocity dispersion based mass estimates for both high and low multiplicity groups over the full range of masses probed by the G3Cv1.

  9. Handbook of mass measurement

    CERN Document Server

    Jones, Frank E

    2002-01-01

    "How much does it weigh?" seems a simple question. To scientists and engineers, however, the answer is far from simple, and determining the answer demands consideration of an almost overwhelming number of factors.With an intriguing blend of history, fundamentals, and technical details, the Handbook of Mass Measurement sets forth the details of achieving the highest precision in mass measurements. It covers the whole field, from the development, calibration, and maintenance of mass standards to detailed accounts of weighing designs, balances, and uncertainty. It addresses the entire measurement process and provides in-depth examinations of the various factors that introduce error.Much of the material is the authors'' own work and some of it is published here for the first time. Jones and Schoonover are both highly regarded veterans of the U.S. National Institute of Standards and Technology. With this handbook, they have provided a service and resource vital to anyone involved not only in the determination of m...

  10. Construction and calibration of a bar weighing lysimeter

    Directory of Open Access Journals (Sweden)

    Daiane Cinque Mariano

    2015-08-01

    Full Text Available Generally, standard lysimeters include a lever-load cell scale, which has become expensive compared to new electronic equipment available for experimental purposes. Currently, lysimeters containing weighing bars with up to 4 load cells are economically feasible. This goal of this study was to present the construction and calibration of four weighing lysimeters built using two rectangular tanks, with a surface area of 1.35 m2 (1 m by 1.35 m and a depth of 1.5 m, loaded on two weighing bars. Each bar had two high accuracy loading cells connected to a junction box and a datalogger by a coaxial cable. Calibration of each lysimeter was performed after field installation. The results showed a linear response (R2 > 0.9999 of electric signal (mV to mass increase or decrease (kg with minimum hysteresis. The mean absolute error of the mass estimate (0.0245 to 0.2844 equivalent-mm and a Willmott index between the observed and estimated data (d = 1.0000 indicate the high precision of the new equipment. The results allow concluding that the lysimeters in this study are appropriate for estimating evapotranspiration and other components of soil water balance.

  11. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...... measurements are given for information only....

  12. Optimal, Reliability-Based Code Calibration

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    Reliability based code calibration is considered in this paper. It is described how the results of FORM based reliability analysis may be related to the partial safety factors and characteristic values. The code calibration problem is presented in a decision theoretical form and it is discussed how...... acceptable levels of failure probability (or target reliabilities) may be established. Furthermore suggested values for acceptable annual failure probabilities are given for the ultimate and the serviceability limit states. Finally the paper describes a procedure for the practical implementation of...... reliability based code calibration of LRFD based design codes....

  13. Single Camera Calibration in 3D Vision

    OpenAIRE

    Caius SULIMAN; Puiu, Dan; Moldoveanu, Florin

    2009-01-01

    Camera calibration is a necessary step in 3D vision in order to extract metric information from 2D images. A camera is considered to be calibrated when the parameters of the camera are known (i.e. principal distance, lens distorsion, focal length etc.). In this paper we deal with a single camera calibration method and with the help of this method we try to find the intrinsic and extrinsic camera parameters. The method was implemented with succes in the programming and simulation environment M...

  14. Multi-Camera Calibration Using a Globe

    OpenAIRE

    Shen, Rui; Cheng, Irene; Basu, Anup

    2008-01-01

    The need for calibration of multiple cameras working together in a network, or for the acquisition of free viewpoint video for 3D TV, is becoming increasingly important in recent years. In this paper we present a novel approach for calibrating multiple cameras using an ordinary globe that is usually available in every household. This method makes it possible to reduce multi-camera calibration to a level that is attainable by non-technical users. Our technique requires only one view of the glo...

  15. Calibration for 3D Structured Light Measurement

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A calibration procedure was developed for three-dimensional(3D) binocular structured light measurement systems. In virtue of a specially designed pattern, matching points in stereo images are extracted. And then sufficient 3D space points are obtained through pairs of images with the intrinsic and extrinsic parameters of each camera estimated prior and consequently some lights are calibrated by means of multi point fitting. Finally, a mathematical model is applied to interpolate and approximate all dynamic scanning lights based on geometry. The process of calibration method is successfully used in the binocular 3D measurement system based on structured lights and the 3D reconstruction results are satisfying.

  16. Calibration of personal dosimeters: Quantities and terminology

    International Nuclear Information System (INIS)

    The numerical results obtained in the interpretation of individual monitoring of external radiation depend not only on the accurate calibration of the radiation measurement instruments involved, but also on the definition of the quantities in term of which these instruments are calibrated The absence of uniformity in terminology not only makes it difficult to understand properly the scientific and technical literature but can also lead to incorrect interpretation of particular concepts and recommendations. In this paper, brief consideration is given to definition of radiation quantities and terminology used in calibration procedures. (author)

  17. Calibration boards for the ATLAS LAr calorimeters

    International Nuclear Information System (INIS)

    In order to calibrate the ATLAS Liquid Argon (LAr) calorimeters to an accuracy better than 1%, over 16 bit dynamic range, chips have been designed in DMILL technology. The design and performance of a 16 bit DAC, a static low offset operational amplifier and a digital chip to control the calibration boards are presented. A 8 channels board using these chips has also been realised and carefully measured as this module will be replicated 16 times to design the final 128 channels calibration board. (authors)

  18. Global analysis of the phase calibration operation

    Science.gov (United States)

    Lannes, André

    2005-04-01

    A global approach to phase calibration is presented. The corresponding theoretical framework calls on elementary concepts of algebraic graph theory (spanning tree of maximal weight, cycles) and algebraic number theory (lattice, nearest lattice point). The traditional approach can thereby be better understood. In radio imaging and in optical interferometry, the self-calibration procedures must often be conducted with much care. The analysis presented should then help in finding a better compromise between the coverage of the calibration graph (which must be as complete as possible) and the quality of the solution (which must of course be reliable).

  19. Design of a neutron source for calibration

    International Nuclear Information System (INIS)

    The neutron spectra produced by an isotopic neutron source located at the center of moderating media were calculated using Monte Carlo method in the aim to design a neutron source for calibration purposes. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices with calibrated neutron sources whose neutron spectra being similar to those met in practice. Here, a 239Pu-Be neutron source was inserted in H2O, D2O and polyethylene cylindrical moderators in order to produce neutron spectra that resembles spectra found in workplaces

  20. Neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Weinheimer, Christian [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster, Wilhelm-Klemm-Str. 9, D-48149 Muenster (Germany); Zuber, Kai [Institut fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, Zellescher Weg 19, D-01069 Dresden (Germany)

    2013-09-15

    The various experiments on neutrino oscillation evidence that neutrinos have indeed non-zero masses but cannot provide the absolute neutrino mass scale. This scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing constraints on the sum of all neutrino masses from cosmological observations, two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double {beta}-decay and the direct neutrino mass search by investigating single {beta}-decays or electron captures. The former method is not only sensitive to neutrino masses but also probes the Majorana character of neutrinos and thus lepton number violation with high sensitivity. Currently quite a few experiments using different techniques are being constructed, commissioned, or are even running, which aim for a sensitivity on the neutrino mass of O(100) meV. The principal methods and these experiments are discussed in this short review. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Calibration of routine dosimeters in radiation processing: Validation procedure for in-plant calibration

    Directory of Open Access Journals (Sweden)

    Šećerov Bojana Lj.

    2011-01-01

    Full Text Available The essential prerequisite of radiation dosimetry is to provide quality assurance and documentation that the irradiation procedure has been carried out according to the specification requirement of correct calibration of the chosen dosimetry system. At the Radiation Plant of the Vinča Institute of Nuclear Sciences we compared two recommended protocols of irradiation procedures in the calibration of dosimetry systems in radiation processing: (1 by irradiation of routine dosimeters (ethanol-chlorobenzene - ECB at the calibration laboratory and (2, by in-plant calibration with alanine transfer - dosimeters. The critical point for in-plant calibration is irradiation geometry, so we carefully positioned the phantom carrying both dosimeters in order to minimize dose gradients across the sample. The analysis of results obtained showed that the difference among determined absorbed doses for the construction of calibration curves between these two methods, (alanine vs. ECB, is less than 1%. The difference in combined standard uncertainty for each calibration procedure is 0.1%. These results demonstrate that our in-plant calibration is as good as calibration by irradiation at the calibration laboratory and validates our placement of the irradiation phantom during irradiation.

  2. Tuned mass absorber on a flexible structure

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    2014-01-01

    The classic design of a tuned mass absorber is based on a simple two-mass analogy in which the tuned mass is connected to the structural mass with a spring and a viscous damper. In a flexible multi-degree-of-freedom structure the tuned mass absorber is typically introduced to provide damping of a...... specific mode. The motion of the point of attachment of the tuned mass absorber to the structure has not only a contribution from the targeted mode, but also a background contribution from other non-resonant modes. Similarly, the force provided by the tuned mass absorber is distributed between the targeted...... mode and the background modes. It is demonstrated how this effect can be included via a non-dimensional dynamic background flexibility coefficient, extracted from a classic modal analysis for the particular frequency of the selected mode. An explicit calibration procedure is developed starting with the...

  3. A taxonomy of camera calibration and video projection correction methods

    OpenAIRE

    Radhwan Ben Madhkour; Matei Mancas; Thierry Dutoit

    2015-01-01

    This paper provides a classification of calibration methods for cameras and projectors. From basic homography to complex geometric calibration methods, this paper aims at simplifying the choice of the methods to perform a calibration regarding the complexity of the setup. The classical camera calibration methods are presented. A comparison gives the pros and cons for each method. For the projector calibration, the homography, the structured light methods and the geometric calibration are pres...

  4. GIADA: extended calibration activities before the comet encounter

    Science.gov (United States)

    Accolla, Mario; Sordini, Roberto; Della Corte, Vincenzo; Ferrari, Marco; Rotundi, Alessandra

    2014-05-01

    The Grain Impact Analyzer and Dust Accumulator - GIADA - is one of the payloads on-board Rosetta Orbiter. Its three detection sub-systems are able to measure the speed, the momentum, the mass, the optical cross section of single cometary grains and the dust flux ejected by the periodic comet 67P Churyumov-Gerasimenko. During the Hibernation phase of the Rosetta mission, we have performed a dedicated extended calibration activity on the GIADA Proto Flight Model (accommodated in a clean room in our laboratory) involving two of three sub-systems constituting GIADA, i.e. the Grain Detection System (GDS) and the Impact Sensor (IS). Our aim is to carry out a new set of response curves for these two subsystems and to correlate them with the calibration curves obtained in 2002 for the GIADA payload onboard the Rosetta spacecraft, in order to improve the interpretation of the forthcoming scientific data. For the extended calibration we have dropped or shot into GIADA PFM a statistically relevant number of grains (i.e. about 1 hundred), acting as cometary dust analogues. We have studied the response of the GDS and IS as a function of grain composition, size and velocity. Different terrestrial materials were selected as cometary analogues according to the more recent knowledge gained through the analyses of Interplanetary Dust Particles and cometary samples returned from comet 81P/Wild 2 (Stardust mission). Therefore, for each material, we have produced grains with sizes ranging from 20-500 μm in diameter, that were characterized by FESEM and micro IR spectroscopy. Therefore, the grains were shot into GIADA PFM with speed ranging between 1 and 100 ms-1. Indeed, according to the estimation reported in Fink & Rubin (2012), this range is representative of the dust particle velocity expected at the comet scenario and lies within the GIADA velocity sensitivity (i.e. 1-100 ms-1 for GDSand 1-300 ms-1for GDS+IS 1-300 ms-1). The response curves obtained using the data collected

  5. Bartolome Island, Galapagos Stable Oxygen Calibration Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Galapagos Coral Stable Oxygen Calibration Data. Sites: Bartolome Island: 0 deg, 17'S, 90 deg 33' W. Champion Island: 1 deg, 15'S, 90 deg, 05' W. Urvina Bay (Isabela...

  6. Champion Island, Galapagos Stable Oxygen Calibration Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Galapagos Coral Stable Oxygen Calibration Data. Sites: Bartolome Island: 0 deg, 17 min S, 90 deg 33 min W. Champion Island: 1 deg, 15 min S, 90 deg, 05 min W....

  7. Calibration of pressure gauge for Cherenkov detector

    CERN Document Server

    Saponjic, Nevena

    2013-01-01

    Solartron/Hamilton pressure gauges are used to monitor the gas pressure in the particle beam detectors installed in the experimental areas. Here is description of the test bench for the calibration of these gauges in Labview.

  8. Calibration of a photomultiplier array spectrometer

    Science.gov (United States)

    Bailey, Steven A.; Wright, C. Wayne; Piazza, Charles R.

    1989-01-01

    A systematic approach to the calibration of a photomultiplier array spectrometer is presented. Through this approach, incident light radiance derivation is made by recognizing and tracing gain characteristics for each photomultiplier tube.

  9. Calibration device for ultrasonic inspection equipment

    International Nuclear Information System (INIS)

    The inspection equipment is introduced into the reactor vessel and deposited there. The real inspection of the vessel is performed by means of a manipulator arm carrying an ultrasonic transducer field and being desplaceable along nine axes of motion for the inspection of welds. In order to be sure of adequate testing the origin of the field must exactly be known. This is achieved by means of a calibration unit by which the exact zero position in the vessel is fixed, the position of the ultrasonic transducer is calibrated and its angular position can be determined. It has got a spherical calibration body and at least one inlined reflection surface (tuncated cone surface) that can take a fixed position with respect to the ultrasonic transducer. The calibration body and/or the reflection surface are moved with respect to the ultrasonic transducer until the maximum amplitude of the reflected signal is obtained. (DG)

  10. A transmission calibration method for superconducting resonators

    CERN Document Server

    Cataldo, Giuseppe; Barrentine, Emily M; Brown, Ari D; Moseley, Samuel H; U-Yen, Kongpop

    2014-01-01

    A method is proposed and experimentally explored for \\textit{in-situ} calibration of complex transmission data for superconducting microwave resonators. This cryogenic calibration method accounts for the instrumental transmission response between the vector network analyzer reference plane and the device calibration plane. Once calibrated, the observed resonator response was modeled in detail by two approaches. The first, a phenomenological model based on physically realizable rational functions, enables the extraction of multiple resonance frequencies and widths for coupled resonators without explicit specification of the circuit network. In the second, an ABCD-matrix representation for the distributed transmission line circuit is used to model the observed response from the characteristic impedance and propagation constant. When used in conjunction with electromagnetic simulations, the kinetic inductance fraction can be determined with this method with an accuracy of 2%. Datasets for superconducting microst...

  11. Construction of calibration curve for accountancy tank

    International Nuclear Information System (INIS)

    Tanks are equipped in a reprocessing plant for accounting solution of nuclear material. The careful measurement of volume in tanks is very important to implement rigorous accounting of nuclear material. The calibration curve relating the volume and level of solution needs to be constructed, where the level is determined by differential pressure of dip tubes. Several calibration curves are usually employed, but it's not explicitly decided how many segment are used, where to select segment, or what should be the degree of polynomial curve. These parameters, i.e., segment and degree of polynomial curve are mutually interrelated to give the better performance of calibration curve. Here we present the construction technique of giving optimum calibration curves and their characteristics. (author)

  12. The 2007 ESO Instrument Calibration Workshop

    CERN Document Server

    Kaufer, Andreas; ESO Workshop

    2008-01-01

    The 2007 ESO Instrument Calibration workshop brought together more than 120 participants with the objective to a) foster the sharing of information, experience and techniques between observers, instrument developers and instrument operation teams, b) review the actual precision and limitations of the applied instrument calibration plans, and c) collect the current and future requirements by the ESO users. These present proceedings include the majority of the workshop’s contributions and document the status quo of instrument calibration at ESO in large detail. Topics covered are: Optical Spectro-Imagers, Optical Multi-Object Spectrographs, NIR and MIR Spectro-Imagers, High-Resolution Spectrographs, Integral Field Spectrographs, Adaptive Optics Instruments, Polarimetric Instruments, Wide Field Imagers, Interferometric Instruments as well as other crucial aspects such as data flow, quality control, data reduction software and atmospheric effects. It was stated in the workshop that "calibration is a life-long l...

  13. Laboratory calibration and characterization of video cameras

    Science.gov (United States)

    Burner, A. W.; Snow, W. L.; Shortis, M. R.; Goad, W. K.

    1990-01-01

    Some techniques for laboratory calibration and characterization of video cameras used with frame grabber boards are presented. A laser-illuminated displaced reticle technique (with camera lens removed) is used to determine the camera/grabber effective horizontal and vertical pixel spacing as well as the angle of nonperpendicularity of the axes. The principal point of autocollimation and point of symmetry are found by illuminating the camera with an unexpanded laser beam, either aligned with the sensor or lens. Lens distortion and the principal distance are determined from images of a calibration plate suitably aligned with the camera. Calibration and characterization results for several video cameras are presented. Differences between these laboratory techniques and test range and plumb line calibration are noted.

  14. Non-iterative method for camera calibration.

    Science.gov (United States)

    Hong, Yuzhen; Ren, Guoqiang; Liu, Enhai

    2015-09-01

    This paper presents a new and effective technique to calibrate a camera without nonlinear iteration optimization. To this end, the centre-of-distortion is accurately estimated firstly. Based on the radial distortion division model, point correspondences between model plane and its image were used to compute the homography and distortion coefficients afterwards. Once the homographies of calibration images are obtained, the camera intrinsic parameters are solved analytically. All the solution techniques applied in this calibration process are non-iterative that do not need any initial guess, with no risk of local minima. Moreover, estimation of the distortion coefficients and intrinsic parameters could be successfully decoupled, yielding the more stable and reliable result. Both simulative and real experiments have been carried out to show that the proposed method is reliable and effective. Without nonlinear iteration optimization, the proposed method is computationally efficient and can be applied to real-time online calibration. PMID:26368490

  15. The twisted cubic and camera calibration

    OpenAIRE

    Buchanan, Thomas

    1988-01-01

    We state a uniqueness theorem for camera calibration in terms of the twisted cubic. The theorem assumes the general linear model and is essentially a reformulation of Seydewitz's star generation theorem.

  16. The PREMOS/PICARD instrument calibration

    Science.gov (United States)

    Schmutz, Werner; Fehlmann, André; Hülsen, Gregor; Meindl, Peter; Winkler, Rainer; Thuillier, Gérard; Blattner, Peter; Buisson, François; Egorova, Tatiana; Finsterle, Wolfgang; Fox, Nigel; Gröbner, Julian; Hochedez, Jean-François; Koller, Silvio; Meftah, Mustapha; Meisonnier, Mireille; Nyeki, Stephan; Pfiffner, Daniel; Roth, Hansjörg; Rozanov, Eugene; Spescha, Marcel; Wehrli, Christoph; Werner, Lutz; Wyss, Jules U.

    2009-08-01

    PREMOS is a space experiment scheduled to fly on the French solar mission PICARD. The experiment comprises filter radiometers and absolute radiometers to measure the spectral and total solar irradiance. The aim of PREMOS is to contribute to the long term monitoring of the total solar irradiance, to use irradiance observations for 'nowcasting' the state of the terrestrial middle atmosphere and to provide long term sensitivity calibration for the solar imaging instrument SODISM on PICARD. In this paper we describe the calibration of the instruments. The filter radiometer channels in the visible and near IR were characterized at PMOD/WRC and the UV channels were calibrated at PTB Berlin. The absolute radiometers were compared with the World Radiometric Reference at PMOD/WRC and a power calibration relative to a primary cryogenic radiometer standard was performed in vacuum and air at NPL.

  17. Strain Gauges Mounted To Retain Calibration

    Science.gov (United States)

    Butler, Barry L.

    1993-01-01

    Silicon-based semiconductor strain gauges mounted in such way they retain original calibration for several years instead of few months. Improvement effected by bonding gauges to ceramic substrates with glasses instead of epoxies as adhesives.

  18. Calibration of sources for alpha spectroscopy systems

    International Nuclear Information System (INIS)

    This paper describes the calibration methodology for measuring the total alpha activity of plane and thin sources with the Alpha Spectrometer for Silicon Detector in the Nuclear Measures and Dosimetry laboratory at IEAv/CTA. (author)

  19. Calibration system of fiber bragg gratings measurement

    OpenAIRE

    Jelínek, M. (Martin)

    2015-01-01

    This work deals with design of the calibration part of the nuclear power plant containment shape monitoring system. The design and implementation system of the optical filter thermal compensation is described. The control system was implemented in LabVIEW.

  20. Computer Vision Assisted Virtual Reality Calibration

    Science.gov (United States)

    Kim, W.

    1999-01-01

    A computer vision assisted semi-automatic virtual reality (VR) calibration technology has been developed that can accurately match a virtual environment of graphically simulated three-dimensional (3-D) models to the video images of the real task environment.

  1. Low Power, Self Calibrated Vector Magnetometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR project investigates a novel approach to vector magnetometry based on high precision measurements of the total magnetic field. The calibration is...

  2. HPS instrument calibration laboratory accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Masse, F.X; Eisenhower, E.H.; Swinth, K.L.

    1993-12-31

    The purpose of this paper is to provide an accurate overview of the development and structure of the program established by the Health Physics Society (HPS) for accrediting instrument calibration laboratories relative to their ability to accurately calibrate portable health physics instrumentation. The purpose of the program is to provide radiation protection professionals more meaningful direct and indirect access to the National Institute of Standards and Technology (NIST) national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. The process is designed to recognize and document the continuing capability of each accredited laboratory to accurately perform instrument calibration. There is no intent to monitor the laboratory to the extent that each calibration can be guaranteed by the program; this responsibility rests solely with the accredited laboratory.

  3. Calibration of the JEM-EUSO detector

    Directory of Open Access Journals (Sweden)

    Gorodetzky P.

    2013-06-01

    Full Text Available In order to unveil the mystery of ultra high energy cosmic rays (UHECRs, JEM-EUSO (Extreme Universe Space Observatory on-board Japan Experiment Module will observe extensive air showers induced by UHECRs from the International Space Station orbit with a huge acceptance. Calibration of the JEM-EUSO instrument, which consists of Fresnel optics and a focal surface detector with 5000 photomultipliers, is very important to discuss the origin of UHECRs precisely with the observed results. In this paper, the calibration before launch and on-orbit is described. The calibration before flight will be performed as precisely as possible with integrating spheres. In the orbit, the relative change of the performance will be checked regularly with on-board and on-ground light sources. The absolute calibration of photon detection efficiency may be performed with the moon, which is a stable light source in the nature.

  4. Low radioactivity spectral gamma calibration facility

    International Nuclear Information System (INIS)

    A low radioactivity calibration facility has been constructed at the Nevada Test Site (NTS). This facility has four calibration models of natural stone that are 3 ft in diameter and 6 ft long, with a 12 in. cored borehole in the center of each model and a lead-shielded run pipe below each model. These models have been analyzed by laboratory natural gamma ray spectroscopy (NGRS) and neutron activation analysis (NAA) for their K, U, and Th content. Also, 42 other elements were analyzed in the NAA. The 222Rn emanation data were collected. Calibrating the spectral gamma tool in this low radioactivity calibration facility allows the spectral gamma log to accurately aid in the recognition and mapping of subsurface stratigraphic units and alteration features associated with unusual concentrations of these radioactive elements, such as clay-rich zones

  5. Absolute calibration technique for spontaneous fission sources

    International Nuclear Information System (INIS)

    An absolute calibration technique for a spontaneously fissioning nuclide (which involves no arbitrary parameters) allows unique determination of the detector efficiency for that nuclide, hence of the fission source strength

  6. HPS instrument calibration laboratory accreditation program

    International Nuclear Information System (INIS)

    The purpose of this paper is to provide an accurate overview of the development and structure of the program established by the Health Physics Society (HPS) for accrediting instrument calibration laboratories relative to their ability to accurately calibrate portable health physics instrumentation. The purpose of the program is to provide radiation protection professionals more meaningful direct and indirect access to the National Institute of Standards and Technology (NIST) national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. The process is designed to recognize and document the continuing capability of each accredited laboratory to accurately perform instrument calibration. There is no intent to monitor the laboratory to the extent that each calibration can be guaranteed by the program; this responsibility rests solely with the accredited laboratory

  7. Commissioning the CMS alignment and calibration framework

    International Nuclear Information System (INIS)

    The CMS experiment has developed a powerful framework to ensure the precise and prompt alignment and calibration of its components, which is a major prerequisite to achieve the optimal performance for physics analysis. The prompt alignment and calibration strategy harnesses computing resources both at the Tier-0 site and the CERN Analysis Facility (CAF) to ensure fast turnaround for updating the corresponding database payloads. An essential element is the creation of dedicated data streams concentrating the specific event information required by the various alignment and calibration workflows. The resulting low latency is required for feeding the resulting constants into the prompt reconstruction process, which is essential for achieving swift physics analysis of the LHC data. This report discusses the implementation and the computational aspects of the alignment and calibration framework. Recent commissioning campaigns with cosmic muons, beam halo and simulated data have been used to gain detailed experience with this framework, and results of this validation are reported.

  8. Absolute calibration of JET ELE system

    International Nuclear Information System (INIS)

    The first Michelson channel of the JET ECE system has been calibrated absolutely using a new high temperature source. The estimated uncertainties are of order +- 20% in the absolute spectral response and +- 10% in the relative spectral shape

  9. Regional Location Calibration in Asia

    Science.gov (United States)

    Steck, L. K.; Hartse, H.; Aprea, C.; Franks, J.; Velasco, A.; Randall, G.; Bradley, C.; Begnaud, M.; Aguilar-Chang, J.

    2002-12-01

    This paper presents a spectrum of issues and efforts involved in improving seismic location performance worldwide. Our efforts are largely designed around providing validated, rigorously calibrated travel times, azimuths, and slownesses along with accurate error estimates. To do so entails a significant effort that includes data mining, data integration, database management, developing optimal 1-, 2-, and 3-D Earth models, using the Earth models to predict wave propagation, developing corrections and errors for travel times, azimuths, and slownesses, and validation of all products. Results presented here will focus on Asia. For the region around station MAKZ in north-central Asia we have looked at several tens of published 1-D velocity models. For each model, travel time calculations were performed, predictions for P and S arrivals were established, and the predicted times were compared to the observed. We will present best-fit models for tectonic provinces out to regional distances from MAKZ. Previous work has shown that Non-stationary Modified Bayesian Kriging of travel time residuals successfully improves regional seismic event location, and this method is being extended to calculate corrections for azimuth and slowness. The ability to krig over 3-D Earth models is also being implemented. In order to produce the most useful corrections, we require accurate ground truth. For this we are continuing efforts to create a location database consisting of the best available seismic event locations and the most accurate and precise travel times. Building this database relies on participation from universities, other NNSA laboratories, and contacts in private industry. Through the kriging procedure we are able to stabilize location algorithms, but the ultimate usefulness of the corrections themselves is directly related to the quality of the ground truth from which the corrections are derived. Indeed, epicentral mislocations from EvLoc using travel time correction

  10. Digital Calibration of TR Modules for Real-time Digital Beamforming SweepSAR Architectures

    Science.gov (United States)

    Hoffman, James Patrick; Perkovic, Dragana; Shaffer, Scott; Veilleux, Louise; Peral, Eva

    2011-01-01

    Real-time digital beamforming, combined with lightweight, large aperture reflectors, enable SweepSAR architectures such as that of the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI). These new instrument concepts require new methods for calibrating the multiple channels, which must be combined on-board, in real-time. The calibration of current state-of-the-art Electronically Steered Arrays typically involves pre-flight TR (Transmit/Receive) module characterization over temperature, and in-flight correction based on temperature, which ignores the effects of element aging and drifts unrelated to temperature. We are developing new methods for digitally calibrating digital beamforming arrays to reduce development time, risk and cost of precision calibrated TR modules for array architectures by accurately tracking modules' characteristics through closed-loop Digital Calibration, thus tracking systematic changes regardless of temperature. The benefit of this effort is that it would enable a new class of lightweight radar architecture, Digital Beamforming with SweepSAR, providing significantly larger swath coverage than conventional SAR architectures for solid earth and biomass remote sensing, while reducing mission mass and cost. This new instrument concept requires new methods for calibrating the multiple channels, which must be combined on-board, in real-time.

  11. GIADA - Grain Impact Analyzer and Dust Accumulator - Onboard Rosetta spacecraft: Extended calibrations

    Science.gov (United States)

    Della Corte, V.; Sordini, R.; Accolla, M.; Ferrari, M.; Ivanovski, S.; Rotundi, A.; Rietmeijer, F. J. M.; Fulle, M.; Mazzotta-Epifani, E.; Palumbo, P.; Colangeli, L.; Lopez-Moreno, J. J.; Rodriguez, J.; Morales, R.; Cosi, M.

    2016-09-01

    Despite a long tradition of dust instruments flown on-board space mission, the largest number of these can be considered unique as they used different detection techniques. GIADA (Grain Impact Analyzer and Dust Accumulator), is one of the dust instruments on-board the Rosetta spacecraft and is devoted to measure the dust dynamical parameters in the coma of comet 67P/Churyumov-Gerasimenko. It couples two different techniques to measure the mass and speed of individual dust particles. We report here the results of an extended calibration activity carried-out, during the hibernation phase of the Rosetta mission, on the GIADA Proto Flight Model (PFM) operative in a clean room in our laboratory. The main aims of an additional calibration campaign are: to verify the algorithms and procedures for data calibration developed before Rosetta launch; to improve the comprehension of GIADA response after the increased knowledge on cometary dust, e.g. the composition of dust particles after Stardust mission. These calibration improvements implied a final step, which consisted in defining transfer functions to correlate the new calibration curves obtained for the GIADA PFM to those to be used for GIADA onboard the Rosetta spacecraft. The extended calibration activity allowed us to analyze GIADA data acquired in the 67P/C-G coma permitting to infer additional information on cometary dust particles, e.g. density and tensile strength.

  12. New apparatus for calibrations in the range of 2 kPa absolute pressure

    Science.gov (United States)

    Woo, S. Y.; Choi, I. M.

    2005-12-01

    Capacitance diaphragm gauges (CDGs) are precise electromechanical pressure sensors in which the displacement of a stretched thin metal diaphragm is detected by the measurement of a capacitance. These are very accurate gauges, and are frequently used as transfer gauges. To calibrate such accurate low-pressure gauges, precise mercury manometers have been used. However, complexity, concern about mercury vapour, and cost of mercury manometers have made it difficult to use these manometers in many industrial calibration laboratories. As a substitute, gas-operated piston gauges can be used for the calibration of such low-pressure gauges. However, the minimum pressure that is necessary to balance the tare weight, which generally corresponds to a pressure of several kilopascals, is a major obstacle. To reduce this minimum operating pressure, we adopted a variable bell-jar pressure method. To realize this method effectively, we developed a new mass-handling device that makes it possible to add or remove weights up to 200 g easily, with a resolution of 10 g, without breaking the vacuum during the calibration. This calibration system can be used to measure pressures from 100 Pa to 2 kPa in the absolute mode. In this paper, we also present the calibration results for two types of CDGs with full-scale ranges of 1330 Pa and 1000 Pa, respectively.

  13. 40 CFR 1065.315 - Pressure, temperature, and dewpoint calibration.

    Science.gov (United States)

    2010-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Measurement of Engine... temperature-equilibrated and temperature-monitored calibration salt solutions in containers that...

  14. Automatic colorimetric calibration of human wounds

    Directory of Open Access Journals (Sweden)

    Meert Theo

    2010-03-01

    Full Text Available Abstract Background Recently, digital photography in medicine is considered an acceptable tool in many clinical domains, e.g. wound care. Although ever higher resolutions are available, reproducibility is still poor and visual comparison of images remains difficult. This is even more the case for measurements performed on such images (colour, area, etc.. This problem is often neglected and images are freely compared and exchanged without further thought. Methods The first experiment checked whether camera settings or lighting conditions could negatively affect the quality of colorimetric calibration. Digital images plus a calibration chart were exposed to a variety of conditions. Precision and accuracy of colours after calibration were quantitatively assessed with a probability distribution for perceptual colour differences (dE_ab. The second experiment was designed to assess the impact of the automatic calibration procedure (i.e. chart detection on real-world measurements. 40 Different images of real wounds were acquired and a region of interest was selected in each image. 3 Rotated versions of each image were automatically calibrated and colour differences were calculated. Results 1st Experiment: Colour differences between the measurements and real spectrophotometric measurements reveal median dE_ab values respectively 6.40 for the proper patches of calibrated normal images and 17.75 for uncalibrated images demonstrating an important improvement in accuracy after calibration. The reproducibility, visualized by the probability distribution of the dE_ab errors between 2 measurements of the patches of the images has a median of 3.43 dE* for all calibrated images, 23.26 dE_ab for all uncalibrated images. If we restrict ourselves to the proper patches of normal calibrated images the median is only 2.58 dE_ab! Wilcoxon sum-rank testing (p Conclusion The investigators proposed an automatic colour calibration algorithm that ensures reproducible colour

  15. Calibration analysis for water storage variability of the global hydrological model WGHM

    Directory of Open Access Journals (Sweden)

    S. Werth

    2009-07-01

    Full Text Available This study contributes to an improved global simulation of continental water storage variations by calibrating the WaterGAP Global Hydrology Model (WGHM for 28 of the largest river basins worldwide. Five years (01/2003–12/2007 of satellite-based estimates of total water storage changes from the GRACE mission are combined with river discharge data in a multi-objective calibration framework of the most sensitive WGHM model parameters. The uncertainty and significance of the calibration results is analyzed with respect to errors in the observation data. An independent simulation period (01/2008–12/2008 is used for validation. The contribution of single storage compartments to the total water budget before and after calibration is analyzed in detail. A multi-objective improvement of the model states is obtained for most of the river basins, with mean error reductions up to 110 km3/month for discharge and up to 24 mm of a water mass equivalent column for total water storage changes, as for the Amazon basin. Errors in phase and signal variability of seasonal water mass changes are reduced. The calibration is shown to primarily affect soil water storage in most river basins. The variability of groundwater storage variations is reduced at the global scale after calibration. Structural model errors are identified from a small contribution of surface water storage including wetlands in river basins with large inundation areas, such as the Amazon or the Mississippi. The results demonstrate the value of GRACE data and the multi-objective calibration approach for improvements of large-scale hydrological simulations, as they constitute a starting-point for improvements of model structure. The integration of complimentary observation data to further constrain the simulation of single storage compartments is encouraged.

  16. Designing valid and optimised standard addition calibrations: Application to the determination of anions in seawater.

    Science.gov (United States)

    Rodrigues, Joana; da Silva, Ricardo J N Bettencourt; Camões, M Filomena G F C; Oliveira, Cristina M

    2015-09-01

    A strategy for designing valid standard addition calibrations and for optimising their uncertainty is presented. The design of calibrations involves the development of models of the sensitivity and precision of the instrumental signal, in a wide range of analyte concentration (or any other studied quantity), and the definition of sample dilution and standard addition procedures that allow fulfilling the assumptions of the linear unweighted regression model in, typically, a smaller range of standard addition calibrations. Calibrators are prepared by diluting the sample and adding analyte with negligible uncertainty to fit in a concentration range where signals are homoscedastic. The minimisation of the uncertainty is supported on detailed measurement uncertainty models function of the calibrators preparation procedure and of analytical instrumentation performance. The number of collected signals replicates is defined by balancing their impact on the estimated expanded uncertainty, the resources needed and the target (maximum) uncertainty for the intended use of measurements. The calibration design strategy was successfully applied to the determination of the mass concentration (mg L(-1)) of Cl(-), Br(-), NO3(-) and SO4(-2) in seawater by ion chromatography. A target expanded uncertainty of 20% was defined for the determination of Cl(-), NO3(-) and SO4(-2), or 40% for the determination of the smaller mass concentration of Br(-). The developed measurement model produced reliable predictions of the measurement uncertainty from approximate concentration of the analyte in the sample, before its accurate quantification, thus proving optimisation is effective. Predictions are more prone to the variability of the measurement uncertainty estimation if based on low number of calibrators signals. The reported relative expanded uncertainty ranged from 7.1% to 49%. PMID:26003694

  17. Conception of CTMSP ionizing radiation calibration laboratory

    International Nuclear Information System (INIS)

    The present paper describes the implantation process of an ionizing radiation calibration laboratory in a preexistent installation in CTMSP (bunker) approved by CNEN to operate with gamma-ray for non destructive testing. This laboratory will extend and improve the current metrological capacity for the attendance to the increasing demand for services of calibration of ionizing radiation measuring instruments. Statutory and regulatory requirements for the licensing of the installation are presented and deeply reviewed. (author)

  18. First results from the MINOS calibration detector

    CERN Document Server

    Vahle, P; Alner, J; Anderson, B; Attree, D; Barker, M; Belias, A; Crone, G; Durkin, T J; Felt, N; Falk, E; Harris, P; Jenner, L; Kordosky, M; Lang, K; Lebedev, A; Lee, R; Longley, N P; Marshak, M; Miyagawa, P; Michael, D G; Morse, R; Musser, J; Nichol, R; Nicholls, T; Oliver, J; Pearce, G; Petyt, D; Proga, M; Rebel, B; Saakyan, R; Smith, C; Sullivan, P; Thomas, J; Weber, A; Wojcicki, S G

    2002-01-01

    The MINOS calibration detector (CalDet) is a small version of the MINOS Near and Far neutrino detectors. A program of exposure to beams of muons, electrons, pions and protons at the CERN PS will provide calibration of the calorimetric and topological response of the Near and Far detectors. In this talk, we briefly discuss the goals and design of the CalDet and present first results from the initial beam exposure. (3 refs).

  19. Camera calibration from road lane markings

    OpenAIRE

    Fung, GSK; Yung, NHC; Pang, GKH

    2003-01-01

    Three-dimensional computer vision techniques have been actively studied for the purpose of visual traffic surveillance. To determine the 3-D environment, camera calibration is a crucial step to resolve the relationship between the 3-D world coordinates and their corresponding image coordinates. A novel camera calibration using the geometry properties of road lane markings is proposed. A set of equations that computes the camera parameters from the image coordinates of the road lane markings a...

  20. Adaptive visual servoing by simultaneous camera calibration

    OpenAIRE

    Pomares, J.; Chaumette, François; Torres, F.

    2007-01-01

    Calibration techniques allow the estimation of the intrinsic parameters of a camera. This paper describes an adaptive visual servoing scheme which employs the visual data measured during the task to determine the camera intrinsic parameters. This approach is based on the virtual visual servoing approach. However, in order to increase the robustness of the calibration several aspects have been introduced in this approach with respect to the previous developed virtual vi...